


One of the greatest problems hydrology research faces today is how to quantify uncertainty, which is inherent in every
hydrological process. This modern overview of uncertainty emphasises non-orthodox concepts, such as random fields,
fractals and fuzziness. This book comprehensively reviews alternative and conventional methods of risk and uncertainty
representation in hydrology and water resources. The water-related applications discussed in the book pertain to areas of
strong recent interest, such as multifractals and climate change impacts.

The authors represent a variety of research backgrounds, achieving a broad subject coverage. The material covered
provides an important insight into new theories of uncertainty related to the field of hydrology. The book is international in
scope and will be welcomed by researchers and graduate students of hydrology and water resources.
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Preface

The present volume contains the edited proceedings of the
International Workshop on New Uncertainty Concepts in
Hydrology and Water Resources, held in Madralin near
Warsaw, Poland from 24 to 26 September 1990. It was
organized under the auspices of the Institute of Geophysics,
Polish Academy of Sciences, Warsaw, Poland, and the
International Commission on Water Resources Systems
(ICWRS) - a body within the International Association of
Hydrological Sciences (IAHS). The Organization and Pro-
gramme Committee for the Workshop consisted of the
following individuals: Professor Lars Gottschalk (Norway/
ICWRS/IAHS), Professor Zdzislaw Kaczmarek (Poland/
IIASA), Professor Janusz Kindler (Poland), Professor
Zbigniew W. Kundzewicz (Poland), who acted as the
Secretary, Professor Uri Shamir (Israel/ICWRS/IAHS) and
Professor Witold Strupczewski (Poland).

The Workshop was a continuation of series of meetings
organized under the aegis of the International Commission
of Water Resources Systems (ICWRS) within the IAHS.
This series of meetings was initiated by the former ICWRS
President, Professor Mike Hamlin in Birmingham, 1984.
Last Workshop of similar character was organized by the
ICWRS Secretary, Professor Lars Gottschalk in Oslo (1989).

The Workshop was primarily devoted to recent methods
of representation of uncertainty in hydrology and water
resources. This embraces newly introduced methods and
approaches that, albeit not new, have raised considerable
recent interest. In the menu of topics tackled at the Work-
shop were, among others, such diverse items, as fractals, risk
and reliability-related criteria, fuzzy sets, pattern recogni-
tion, random fields, time series, outliers detection, non-
parametric methods, etc. The apparent side effect of the
Workshop was also putting different methods into perspec-
tive. It possibly helped assessing methodologies and answer-
ing the question, whether the apparent attractivity of parti-
cular methods is based on permanent values or it is just a
band-wagon effect and the methods are likely to pass as a
short-lasting fashion. The Workshop attracted 44 registered
participants from 16 countries, who presented 44 oral contri-
butions during nine technical sessions. The set of participants
was highly heterogeneous, as regards their backgrounds,

institutions represented, theoretical and practical exper-
iences and research philosophies. The participants were, by
background, hydrologists, civil, environmental and agricul-
tural engineers, foresters, geographers, geologists, geophysi-
cists, system scientists, mathematicians, computer scientists
and physicists. The institutions, where participants worked
ranged from universities, through non-university research
institutes (e.g. academies of sciences), administration
(government agencies) to consulting engineers. The variety
of backgrounds, research orientations and preferences is
clearly visible in this volume, where more descriptive contri-
butions are neighbours to papers stuffed with heavy mathe-
matical developments. The heterogeneity and multidiscipli-
narity is believed to have contributed to a broad subject
coverage and to have caused a welcome cross-fertilization
effect.

The idea of the Workshop was to report on recent
research, to present and discuss work at different stages of
progress. Some entries in the discussion were indeed thought-
provoking and surely helped the presenters and the audience
to shape their further research.

It is a pleasure of the editor of this volume (and also
secretary of the Organization and Programme Committee)
to thank the participants in the Workshop and the contribu-
tors to this volume for their fine work that made the
Workshop an undoubtful success. Thanks are extended to
the organizing institutions mentioned. The financial support
provided by the Institute of Geophysics, Polish Academy of
Sciences and by the International Institute for Applied
Systems Analysis (IIASA) in Laxenburg, Austria, is grate-
fully acknowledged. Last, but not least, thanks are due to the
UNESCO and its Director of Division of Water Sciences, Dr
Andras Szollosi-Nagy, for the invitation to publish this
volume within the International Hydrology Series and for
support of the editorial work.

It is believed that the present contribution contains a
wealth of illuminating and stimulating material. It may be
useful for researchers, lecturers and graduate students in
hydrology and water resources.

Z. W. Kundzewicz

xni





Introduction





Hydrological uncertainty in perspective

Z. W. KUNDZEWICZ
Research Centre of Agricultural and Forest Environment Studies, Polish Academy of Sciences, Poznan, Poland

ABSTRACT Different aspects and meanings of uncertainty are reviewed. This introduc-
tory review forms a basis for putting recent developments in hydrological and water resources
applications of uncertainty concepts into perspective. The understanding of the term
uncertainty followed herein is a logical sum of all the notions discussed. An attempt is made to
justify the structure of the present volume and to sketch the areas of particular contributions
in the volume and to point out their connections to different facets of uncertainty.

INTRODUCTION

It seems that there is no consensus within the profession
about the very term of uncertainty, which is conceived with
differing degrees of generality. Moreover, the word has
several meanings and connotations in different areas, that
are not always consistent with the colloquial understanding.

In the following section the notions and concepts of
uncertainty both beyond and within the water resources
research are discussed. Further, particular contributions in
this volume are reviewed in the context of their connections
to different facets of uncertainty. This is done in the systema-
tic way, following the structure of the book.

NOTIONS OF UNCERTAINTY

Let us take recourse to established dictionaries and see how
the words 'uncertain' and 'uncertainty' are explained.
Among the meanings of the word 'uncertain', given by
Hornby (1974) and Webster's (1987) dictionaries, are the
following: not certain to occur, problematical, not certainly
knowing or known, doubtful or dubious, not reliable,
untrustworthy, not clearly identified or defined, indefinite,
indeterminate, changeable, variable (not constant).

The noun uncertainty results from the above concepts and
can be summarized as the state (quality) of being uncertain,
with the word uncertain attaining one of meanings listed
above.

There is a plethora of single words that are synonymous of
the word uncertainty. The meaning of the term uncertainty
partly overlaps with the contents of such words as doubt,
dubiety, skepticism, suspicion, mistrust, inconstancy.

Uncertainty is obviously opposed to certainty, where the
complete information is available. One sometimes makes a
distinction between risk and uncertainty. In the former case,
i.e. when talking of risk, one tacitly assumes that a prob-
ability distribution of outcomes exists, made on a meaningful
basis (i.e. agreed upon by a set of relevant experts). In the
latter case, if there is an absence of information on prior
probabilities, i.e. nothing (or little) is known as to the
likelihood of particular outcomes (or a consensus among
experts cannot be achieved), one can talk about uncertainty.
In other convention of risk and uncertainty, risk embraces
both uncertainty and the results of uncertainty, and means
lack of predictability about outcomes, structure etc.

Sometimes authors distinguish between uncertainty and
randomness. In this context, uncertainty results from insuf-
ficient information and may be reduced if more information
is available. This is to be distinguished from the concept
of randomness related to quantities fluctuating in a non-
controllable way.

There are several practical approaches to dealing with
some forms of uncertainty. One possibility is the Laplacean
postulate, called also principle of insufficient reason. It states
that if the probabilities of an event are not known, they
should be assumed equal. A simple, though typically non-
satisfactory method is - to replace the uncertain quantities
with the worst case values (most pessimistic scenario) or with
some measures of central tendency (expected value, median).
By a sensitivity analysis the importance of uncertainties can
be traced. The other simple way of coping with some types of
uncertainty is by interval analysis, i.e. assuming ranges of
parameters rather than a number. In a more advanced
approach that is commonly used, uncertainty can be encoded
with probability methods or with fuzzy sets methods. The



I INTRODUCTION

former approach is most useful if the estimating functions
have a statistical form, i.e. if standard deviations, standard
errors of forecasts etc. are available. The measures of uncer-
tainty are typically-probabilities, approximated by frequen-
cies or via the geometric definition. The fuzzy sets approach
is a powerful tool where insufficient data exist, or where it is
difficult or even impossible to attribute probabilities. That is,
the areas of dominance of concepts of randomness and
fuzziness can be defined as follows. The former apparatus is
used if the event is clearly defined but its occurrence is
uncertain. In the latter approach the very event may not be
strictly defined and no additivity property is present.

There are two basis attitudes to uncertainty in hydrologi-
cal and water resources research. Either the world is con-
sidered as being basically indeterministic (i.e. must be
modelled in terms of stochastic systems) or the stochasticity
is a necessary evil (i.e. cannot be avoided at present, when the
understanding is not sufficient, but would give floor to
increasingly deterministic descriptions when our under-
standing improves).

It is not only uncertainty about numbers (e.g. inaccuracy
of measurements). If one does not know whether some
variable attains the value of 1.03 or 1.05, it is a very trivial
lack of certainty, though it may be quite critical in some
cases. The uncertainties in hydrology are much stronger and
pertain to the directions of change, dominating mechanisms,
and understanding of processes. Moreover, it follows from
the theory of chaotic systems, that the time series of hydrolo-
gical variables are inpredictable over a longer time horizon,
hitherto inherently uncertain, unknown.

Uncertainty in hydrology results from natural complexity
and variability of hydrological systems and processes and
from deficiency in our knowledge. The uncertainty may
pertain to magnitudes and space-time (i.e areal location and
temporal frequency) attributes of signals and states of hydro-
logical systems (storages).

Yet more uncertain (unexpected and unforeseeable) are
the variables of relevance to water resources management.
One may identify, among others, the following uncertainties:

- uncertainty in knowledge of the external environment
(structure of the world, future changes of the
environment);

- uncertainty as to future intentions in the related fields of
choices;

-uncertainty as to appropriate value judgments of
consequences.

Consider the water demands as an example. They depend
on several demographical, economical, technological, social,
political, and regional development factors, each of which is
itself uncertain and non-predictable (e.g. forecast of future
population, water use rates, priorities, irrigation patterns).

On top of this there is also an uncertainty on the side of
available water supply, whose natural variations have been
typically considered known. The main uncertainty there falls
in the category known under the collective name of the
climate change.

There were numerous attempts in the water related litera-
ture to distinguish different types of uncertainty. Plate &
Duckstein (1987) identified the groups of uncertainties in a
hydraulic design. They distinguished hydrological uncertain-
ties, embracing data uncertainties (e.g. measurements), sam-
ple uncertainties (e.g. number of data) and model uncer-
tainty (density function). Further they identified hydraulic
uncertainties in the process of hydraulic transformation of
hydrological data, embracing parameter uncertainties (Man-
ning's n), model uncertainty (empirical equations) and scal-
ing laws (physical models). Finally, structural uncertainties
were associated with the material, design models, external
effects, etc. However, in another convention, structural
uncertainty is understood as considerable lack of sureness
about the formulation of the problem in terms of structure
and assumptions.

Bernier (1987) distinguished natural uncertainty related to
a random nature of physical processes and technological
uncertainties embracing sampling errors and the model
uncertainties. Uncertainty of the former category is linked
with the total duration of the period of records, whereas the
latter category may result from the model choice or imprecise
identification of parameters.

Beck (1983) distinguished uncertainty and error in the field
data, inadequate amount of data, uncertainty in relation-
ships between variables, and uncertainty in model para-
meters estimation. After a successful calibration exercise it
would be expected that the degree of uncertainty in a
parameter estimate would be less than the uncertainty asso-
ciated with the prior estimate before calibration. Reduction
of uncertainty is the measure of relevance of a parameter.
However, the uncertainty of parameter estimates is inversely
related to the amount of field observations and to errors
associated with these observations. Posterior estimates are
also uncertain (fingerprint of the calibration method that can
propagate forward).

Klir (1989) considered uncertainty versus complexity.
Both categories are in conflict: if complexity decreases, the
uncertainty grows. Uncertainty is related to information,
being reduced by an act of acquiring information (obser-
vation, performing an experiment, receiving a message). The
amount of information received quantifies the reduction of
uncertainty. Klir (1989) considered the principle of maxi-
mum uncertainty - use all, but no more, information than
available. Our ignorance should be fully recognized when we
try to enlarge our claims beyond the given premises. At the
same time - all information contained in premises should be
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fully utilized. Another aspect is the principle of minimum
uncertainty, actual when simplifying a system. The loss of
relevant information should be minimized at any desirable
level of complexity.

The understanding of the word uncertainty in the present
volume will follow the logical sum of all the uncertainty
aspects discussed above.

FACETS OF UNCERTAINTY

Although the Workshop was primarily method-oriented,
some contributions were rather problem-oriented. It is worth
mentioning a couple of examples, starting from contribu-
tions pertaining to the very timely area of hydrological
consequences of climatic change.

Moss (1995) studied the concept of Bayesian relative
information measure, applied to evaluate the outputs of
general circulation models (GCM). The relative information
was understood as the ratio of information contents of the
model and of the data, e.g. of the model-based histogram and
the data-based histogram). The approach allows the com-
plexity connected with disparate temporal and spatial scales
of outputs of GCM simulations and the actual observations
to be resolved. The methodology devised by Moss (1995) is
capable of giving preliminary answers to several practical
questions connected with comparisons of models, effects
of the grid size and evaluation of the soundness of
disaggregation.

Bardossy (1995) extended the classical hydrological
perspective of transformation of rainfall into runoff by
treating the atmospheric circulation pattern as the primary
input signal. He confirmed that daily precipitation depths
and mean temperatures are strongly linked to the atmos-
pheric circulation patterns and developed relevant mathema-
tical models. As GCMs produce air pressure maps with
relatively good credibility, the model lends itself well to
applications in stochastic simulation studies of climate
change.

Another example of problem-oriented research was the
contribution of Kotwicki & Kundzewicz (1995), studying the
process of floods of Lake Eyre. This is quite a convincing
manifestation of hydrological uncertainty. The available
observational records are not long. Therefore one is forced to
use a model and proxy data in order to reconstruct river
flows.

Strupczewski & Mitosek (1995) showed that the hydrolo-
gical uncertainty influencing a design in the stationary case,
will significantly increase in the non-stationary case. One can
only hypothetize the mechanism and structure of non-
stationarity. Strupczewski & Mitosek (1995) developed a
method of estimation of time dependent parameters of a

distribution from the available non-stationary data set. The
uncertainty in the design process is magnified due to the
necessity of identification of additional parameters. This is
likely to lead to the increase of the quantile estimation error,
growing with the length of the time horizon of extrapolation.

Guo (1995) devised and examined a new plotting position
rule. The new formula is applicable for the presented case,
where flood records obtained in two different ways (i.e. of
different accuracies) should be blended. In addition to the
systematically recorded data (observation period) there may
exist also historical data and palaeologic information related
to flows over some threshold of perception.

NOVEL APPROACHES TO
UNCERTAINTY

There is a number of novel methodological approaches to
uncertainty, originating in areas outside hydrology (typically
- applied mathematics, systems theory, physics) but relevant
to water sciences. Although the origin and applicability of
these approaches largely differ, they are treated collectively
in one part of this volume.

The concept of fractals, as developed by Mandelbrot
(1977), has found a strong resonance in hydrological
sciences. This methodology made it possible to analytically
describe complicated natural objects, without the need to
approximate them via the constructs of the classical
geometry.

Kemblowski & Wen (1995) tested the assumption of
fractal permeability distribution in their study of infiltration
soils. This represents one of the challenging avenues of
application of fractal framework, gaining increasing recent
interest in the theory of flow in porous media, groundwater
and petroleum engineering. Kemblowski & Wen (1995)
postulated that the fractal nature of the permeability distri-
bution strongly influences the mixing processes in ground-
water, with major impact on the value of asymptotic mac-
rodispersivity. A higher fractal dimension results in higher
vertical mixing and less longitudinal spreading of the plume,
while for the fractal dimension approaching two the horizon-
tal spreading disappears. It was also indicated that the travel
distance necessary to reach the asymptotic conditions was
scale-dependent and related to the thickness of the plume and
to the pore-level transverse dispersivity. These findings of
Kemblowski & Wen (1995) are believed to narrow the gap in
the understanding of subsurface transport processes, and in
particular of the process of mixing of soluble plumes with
surrounding groundwater.

The contribution of Lovejoy & Schertzer (1995) differs
considerably from the rest of the volume. It is a solicited
extensive review paper reaching much further than the oral
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presentation at the Workshop. It summarizes the research
work that has been done in the area of multifractal analysis
of rain. The bulk of the material stems from the original
research of the authors. Lovejoy & Schertzer (1995) estab-
lished and tested the scaling ideas of description of the
process of rain. The concept of continuous turbulent cas-
cades is thoroughly discussed. Different applications of the
concepts of multifractals at the interface between meteor-
ology and hydrology are reviewed. The contribution by
Lovejoy & Schertzer (1995) is possibly the most extensive
lumped coverage of the problem available in the literature.

Zawadzki (1995) studied scaling properties of the spatial
distribution of rainfall rate, for a broad spectrum of scales
ranging from the radar coverage area down to individual rain
drops. The results show that no scaling or multiscaling
properties could be detected for scales exceeding the size of a
mature precipitating cumulus. Preferential scales were found
in the range of a few tens of kilometers. Within the scales of
the order of a cumulus size some multiscaling properties were
found.

Hubert et al. (1995) reported the evidence of a multifractal
structure of temporal occurrence of rainfalls at particular
locations of the Soudano-Sahelian region for a range of
temporal scales of two orders of magnitude, ranging from
days to months. Fractal dimensions of the data analyzed,
varying between zero and one, were estimated with the help
of the functional box counting method. As can be expected,
fractal dimensions of rainfall occurrence depended strongly
on the chosen rainfall intensity threshold, decreasing with the
rise of the threshold. Attempts to find regional patterns and
trends were also undertaken.

It seems that the fractal concepts are of permanent value in
hydrological sciences, as they provide a new insight into the
nature of processes, describing apparently irregular natural
forms in a straightforward, novel way.

The contribution by Georgakakos et al. (1995) dealt with
the area of chaotic dynamics that has risen considerable
general interest. They reported on their analysis of very fine
increment point rainfall data. High-resolution rainfall data
recorded by a fast-responding optical raingauge was ana-
lyzed via classical statistical and recent fractal and chaotic
dynamics methods. The analysis showed the evidence of
scaling and chaotic dynamics.

An assemblage of four papers presented in Madralin, two
of which are published in the present volume, dealt with the
problem of applications of the fuzzy theory in hydrology.

Mizumura (1995) presented a model of snowmelt runoff
based on the theory of fuzzy sets. The contribution shows
that the combined approach using the conceptual tank
model and a fuzzy logic model yields satisfactory results. The
effect of different membership functions on the prediction is
tested.

Kindler & Tyszewski (1995) objectively studied the appli-
cability of the fuzzy sets theory to hydrological and water
resources problems. They elucidated why the practical appli-
cations of the methodology in the water field are so rare. The
fundamental problems are - how to identify membership
functions, and how to interpret fuzzy results. According to
Kindler & Tyszewski (1995), the theory seems more appli-
cable for diagnostic problems rather than in the context of
decision making.

Another novelty that has attracted much interest ofhydro-
logists was the concept of pattern recognition, belonging to
the area called artificial intelligence (Al).

Mizumura (1995) used a technique originating from pat-
tern recognition methodology to forecast the ranges of
runoff values likely to occur. The forecast made use of the
values of rainfall and runoff recorded in former time steps.
The Bayesian methodology used does not require the
detailed physical information on the watershed. Use of the
tanks model, and prediction of runoff by the pattern recogni-
tion method, from the past observed data and the past errors
of the tank models improves the accuracy of forecasts.

Ranjithan et al. (1995) devised a method potentially useful
for hydraulic gradient control design of plume migration.
The neural network technique was used, i.e. a branch of the
artificial intelligence (Al) framework. This method can cap-
ture information that is imprecise, complex, vague and
inexpressable by mathematical or symbolic means. Pessimis-
tic realizations of the uncertain field of hydrogeologic para-
meters that would influence the final design were identified.
Although the process of training the neural network (pattern
association task, i.e. learning the links between each spatial
distributions of hydraulic conductivity values and the impact
upon the final groundwater remediation design) was found
difficult, a trained network screens a set of realizations with
little computational effort.

One of the promising techniques raising recent interest in
hydrology has been the non-parametric approach. This
could help in objectivization of the design procedures. Non-
parametric methods allow the bulk of information present in
the data to be extracted, without forcing it to fit a tight
uniform. They let the data speak for themselves, so to
say, thus decreasing the degree of subjectivity. The non-
parametric estimation methods enable one to estimate an
unknown p.d.f. without a prior assumption of the underlying
parent distribution (that is, in fact, never known in hydro-
logy). This is particularly important for extreme value statis-
tics used in the hydrological design that typically dwelt on a
number of standard distributions. As the values used in
design were obtained via extrapolation (e.g. assessment of
the 100-years flood), they do heavily depend on the type of
distribution used. The non-parametric methods are capable
of inferring complicated densities or relationships. They
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allow, for instance, a bimodal form to be approximated,
what can occur in hydrological data forming a superposition
of two distinct mechanisms of generation.

Feluch (1995) applied the non-parametric estimation
methods to two classes of practical hydrological problems.
He presented the multivariate estimation of annual low flow
and high flow characteristics (understood as: maximum flow
and volume of the flood wave; or minimum flow and low flow
period, respectively). He also used the non-parametric
regression to establish the linkage between the river dis-
charge and the water stage, and to find the relationships
between concurrent time series of runoff and groundwater
level. Variable kernel estimator was found better when the
sample skewness was greater than one. Simulation showed
that quantiles estimated by a non-parametric method com-
pare favourably to the parametric estimator. In extrapolat-
ing exercises the non-parametric method places a stronger
weight on a few large observations. Thus the problem of the
tails of parameters distribution fitted to the whole sample is
weakened.

Guo (1995) studied non-parametric methods of flood
frequency analysis (FFA). He compared application of fixed
and variable kernel estimators (FKE and VKE, respectively)
for analysis of a design flood with pre-gauging data and
information. He gave also the guidelines on the choice of the
kernel type, depending on the sample skewness.

RANDOM FIELDS

Meyer et al. (1995) considered the risk of exposure to
contaminated groundwater caused by leakage from a
municipal solid waste landfill. In order to reduce this risk by
early detection of the contaminant and appropriate preven-
tion action, a groundwater quality monitoring network is to
be designed. The methodology used contains numerical
modelling of groundwater flow and contaminant transport
and optimization. The main uncertainties pertain to the
contaminant source location and variations in hydraulic
conductivity. The issue of strong practical flavour reads -
find the well locations in the neighbourhood of the landfill,
that maximize the probability, that an unknown (here ran-
domly generated) plume is detected.

Romanowicz et al. (1995) studied the effect of the spatial
variation of the initial soil moisture contents on the distribu-
tion of the soil moisture and on the evaporation rate from the
land surface. They used a lumped nonlinear model based on
thermodynamics and evaluated distributions, means and
variances of the soil moisture contents, time to desaturation
and actual evapotranspiration. The case of lognormal distri-
bution is considered in more details.

Gottschalk et al. (1995) addressed the problem of deter-
mining outliers in the data on floods in Norwegian rivers.
Point kriging, i.e. the methodology belonging to the geosta-
tistical framework, was exploited.

TIME SERIES AND STOCHASTIC
PROCESSES

The era of univariates in hydrology has been passing. It gives
room to the era of random fields, where hydrological vari-
ables are treated as functions of location (in one, two, or
three dimensions) or both location and time (spatial-
temporal fields). Random fields approach better represents
the nature of processes. Examples of typical applications of
random fields in hydrology range from rainfall, through
distributed runoff, to groundwater and water quality.

Krasovskaia & Gottschalk (1995) analyzed regional
drought characteristics (deficit and extent). They used empir-
ical orthogonal functions (EOF) in their quantification of
regional meteorological droughts. It is again a type of
technique that draws much information from the data,
without the need to dwell on assumptions.

Georgakakos & Krajewski (1995) analyzed the worth of
radar data in a real time prediction of areal rainfall. The
methodology used was the covariance analysis of a linear,
physically based model. The improvement of estimators due
to the presence of radar data was quantitively evaluated.

Krajewski & Smith (1995) addressed the problem of
rainfall estimation via radar, and in particular adjusting
radar rainfall estimates to raingauge estimates.

Several contributions presented at the Workshop can be
clustered around the heading of time series and stochastic
processes, although typically in a non-classical context.

Rasmussen & Rosbjerg (1995) analyzed the applicability
of seasonal models for representation of extreme hydrologi-
cal events. In the case of a prediction task it may well be that a
simplified non-seasonal model performs superior to a seas-
onal model due to parsimony in parameters. Rasmussen &
Rosbjerg (1995) recommended that in case of weak season-
alities the available data should be pooled. If the seasonality
is pronounced, the most dominant season should be selected
for the non-seasonal approach, and the data on the other
seasons discarded. In the cases analyzed by Rasmussen &
Rosbjerg (1995) optimal estimates of T-year events were
always obtained with the non-seasonal approach.

Jakubowski (1995) presented analytical derivations of the
general form of distribution of the 1-day total precipitation.
This has been achieved within the framework of the alternat-
ing renewal methodology. The assumptions made in the
development are - dependence of total precipitation of the
wet days sequence on the length of this sequence and
independence of successive dry and wet spells.
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Konecny & Nachtnebel (1995) presented a stochastic
differential equation model, based on the mass balance of a
linear reservoir, to describe daily streamflow series. The jump
process for the input was based on the concept of intensity
function randomly alternating between two levels. The
model applied to an Austrian river yielded a good reproduc-
tion of the observed characteristics.

Weglarczyk (1995) performed extensive analysis of the
impact of temporal discretization on the analysis of different
stochastic characteristics of the point rainfall. The material
used is a continuous record of precipitation depth at a gauge
in Krakow, covering the time span of 25 years. The range of
time intervals from five minutes to one day, i.e. over two
orders of magnitude were considered. The modelling of
distribution of particular characteristics and study of interre-
lations between them was made.

Gottschalk & Kundzewicz (1995) analyzed the series of
maximum annual flows with respect to outlying values.

Tsakiris & Manoliadis (1995) modelled the hydrants ope-
ration in irrigation networks, using alternating renewal
process in continuous time. It seems that the renewal theory
is a good basis to assess the probability of hydrant operation
and to aid in design of pressurized irrigation systems.

Kowalski (1995) compared the correlation time of hydro-
climatical processes (flow of few European rivers, tempera-
ture and precipitation in Poznafi). The correlation time was
considered as a measure of the order or disorder of geophysi-
cal processes.

Napiorkowski & Strupczewski (1995) incorporated physi-
cal structure into the study of stochastic processes of river
flow. They used a rapid flow model originating from a
physically sound hydrodynamic description of the process of
open channel flow.

RISK, RELIABILITY AND RELATED
CRITERIA

This part of the book groups six contributions covering a
broad spectrum of topics.

Plate (1995) sketched the outline of a gigantic research
project into non-point pollution of surface waters in agricul-
tural landscape (Weiherbach project). The models consist of
four parts, each of which contains uncertainty elements. The
input model provides the pollutant outflow along the river
for a given rainfall and pollutant input. The process describes
the transport of pollutants in a river. Finally, the decision
model quantifies the consequences of excess pollution of the
river. Plate (1995) discussed also risk as a figure of merit and
uncertainty in the decision model.

Karbowski (1995) dwelt upon the idea of application of
statistically safe sets and optimal operation of water storage

reservoirs. The methodology seems to be quite a general tool
for solving storage management problems under risk.
Inflows are assumed to be independent random variables of
known distribution or the Markovian chain. A set of con-
straints (chance-constraint or expected value-constraints)
need to be fulfilled. The approach separated two basic
elements of a control problem, i.e.

(a) optimization of a performance index (PI); and
(b) fulfillment of reliability constraints.

Applicability of different variants of dynamic programming
is discussed.

Kozlowski & Lodzinski (1995) proposed a method of
risk assessment in the problem of management of a system
of storage reservoirs in Poland. The risk was estimated
on the basis of probability distributions of inflows, concep-
tualized as a non-stationary Markovian chain. Kozlowski
& Lodzinski (1995) advocated that two indices related to
risk, i.e. the probability of failure and the magnitude of loss
should be considered in the decision making process.

Kundzewicz & Laski (1995) reported on a subset of criteria
of evaluation of performance of water supply systems,
embracing different notions of reliability and related con-
cepts. The analysis was presented for two case studies in
Poland, for which system simulation for historical series of
flows and hypothetical assessments of future water demands
were performed. The criteria studied were related to fre-
quency, duration, and severity of non-satisfactory system
performance (reliability, resilience, vulnerability). Straight-
forward results and links between criteria are due to the
application of the renewal theory, where exponential distri-
bution of periods of nonsatisfactory and satisfactory system
performance were assumed.

Bogardi & Verhoef (1995) analyzed a number of perfor-
mance indices describing the operational behaviour of the
multi-unit multipurpose reservoir system situated on the
Mahaweli River, Sri Lanka. They formulated several
conclusions on the relative importance of particular perfor-
mance indices. It was shown, for example, that maximum
vulnerability and frequency of failures are more important
characteristics of municipal water supply systems than mean
vulnerability or duration.

Sowinski & Yusuf (1995) addressed another problem of
risk analysis in hydraulic engineering. They studied a compo-
site risk model of the Ogee type spillway.

CONCLUSIONS

Uncertainty means lack of sureness about something (or
somebody). It may range from the complete lack of definite
knowledge (about facts, mechanisms, processes, results) to
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small doubts (falling short of certainty, imprecision). The
very term of uncertainty has quite fuzzy borders.

Uncertainty is inherent in water resources research as
observations, measurements, theories, assumptions, models,
equations, predictions, estimators, parameters do not closely
reproduce the reality. And sometimes no observations, mea-
surements, theories and models exist at all.

It is shown in the present volume that the problems of
uncertainty are by no means simple. Therefore much effort
must be directed to this problem area. The importance of the
topic can be illustrated by an excerpt of rare beauty, formu-
lated by an ancient Chinese philosopher - Tsu, and quoted
by Klir (1989): Knowing ignorance is strength. Ignoring
knowledge is sickness.

The coverage of uncertainty problems in the book is by no
means complete, nor uniform. Some areas are presented in
detail, the others, though undoubtedly important, remain
untouched.

The contributions gathered in this volume range from
rigorous analytical developments, where under some simpli-
fying assumptions a closed-form formula can be obtained,
through mixed analytical-numerical approaches to numeri-
cal studies, where a large number of variants are calculated.

In all contributions quantitative methods, i.e. various
classes of mathematical models are explored.

The apparent side effect of the Workshop was also putting
different methods into perspective. It possibly helped assess-
ing methodologies and answering the question whether the
apparent attractivity of particular methods is based on
permanent values or it is just a band-wagon effect and the
methods are likely to pass as a short-lasting fashion.

As an example of promising methodologies the renewal
theory can be mentioned. It is being increasingly applied in
hydrology and water resources. This has been proved in the
present volume in three distinct areas; i.e. precipitation
totals; reliability properties of irrigation systems; and water
supply systems by Jakubowski (1995), Tsakiris & Manoliadis
(1995) and Kundzewicz & Laski (1995), respectively.

The Workshop was primarily devoted to recent methods
of representation of uncertainty in hydrology and water
resources. This embraces newly introduced methods and
approaches that, albeit not new, have raised considerable
recent interest. In the menu of topics tackled at the Work-
shop were, among others, such diverse items as fractals, risk
and reliability related criteria, fuzzy sets, pattern recognition,
random fields, time series, outliers detection, non-parametric
methods, etc.

Hydrologists claim to have mastered uncertainty. This
statement may be relatively valid in the sense that hydrolo-
gists have always had to deal with uncertainty and they have
developed some tools (e.g. flood frequency studies). The
numbers for design (e.g. 100-years flood) are produced. The

critical question may occur - how uncertain are these
numbers? This rhymes with Klemes's rhetoric - unreliability
of reliability estimates.

It is believed that the material presented in the Workshop
and contained in the present volume is an important contri-
bution to our knowledge of uncertainty in hydrology and
water resources, showing us how to deal with uncertainty.
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1 Bayesian relative information measure - a tool for
analyzing the outputs of general circulation models

M. E. MOSS
U.S. Geological Survey, Tucson, Arizona, USA

ABSTRACT Mathematical models that generate scenarios containing no temporal
correspondence to time series of actual occurrences are difficult to evaluate. One such class of
models consists of atmospheric General Circulation Models (GCM), which have an
additional drawback that the temporal and spatial scales of their outputs do not match those
of the actual observations of the simulated phenomena. The problem of disparate scales can
be ameliorated by aggregating both the model output and the observed data to commensurate
scales. However, this approach does not permit quantitative testing at scales less than the least
common level of aggregation.

The lack of paired observations in the aggregated time series makes standard statistical
methods either invalid or ineffective in testing the validity of a GCM. One approach to
resolving this quandary is the use of a relative information measure, which is based on the
uncertainties contained in the histograms of the aggregations of both the model output and
the data base. Each interval of each histogram is analyzed, from a Bayesian perspective, as a
binomial probability. For the data-based histogram, the reciprocal of the sum of the
variances of the posterior distributions of probability in each interval is denoted as its
information content. For the model-based histogram, the reciprocal of the sum of the
expected mean squared errors of the posterior distributions in each interval likewise is its
information content. The expected mean squared error, which accounts for potential biases in
the GCM, is computed as the expectation of the squared differences between the data-based
and the model-based posterior distributions for each interval. The ratio of the information
content of the model-based histogram to that of the data-based histogram is the relative
information of the model.

A five-year monthly precipitation time series for January at a single node of the current
version of the Community Climate Model including the Biosphere Atmosphere Transfer
Scheme contains 7.5 percent of the information in the most recent 30 years of data in the
Climatological Data Set assembled by the National Climate Data Center (NCDC). If the
five-year simulation were extended, its relative information content could be expected to
approach 11.5 percent. For July monthly precipitation, the five-year simulation contained
13.7 percent of the information of NCDC data base and had a limit of 39.3 percent for
extremely long simulations. Aggregation of two adjacent cells at the same latitude showed
some improvements in relative information, but longitudinal aggregation with two additional
adjacent cells showed improvement for January precipitation, but degraded information for
July precipitation.

An extended version of this contribution (with Appendix) was published in
Journal of Geophysical Research (Atmospheric Sciences), American Geophy-
sical Union.
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NOTATION

DG Gaussian discrepancy used to define an optimum
histogram

E [a] Expected value of the random variable contained
within the brackets

ID Information content of data-based time series
IM Information content of GCM output
/R Relative information content of the GCM output

to the data-based time series
Mt Mean squared error of the model-based estimate of

the probability of an observation in the /th interval
of a histogram

TV Number of observations in a time series
P[a] Probability of the event described within the

brackets
U Uncertainty
X Random variable
Y Logarithmic transform of the random variable, X
d Derivative symbol
e Base of natural logarithm
/ Probability density function of a random variable
~fi Average probabi l i ty density function within an

interval , /, of a h i s togram
i Index of the interval of a h is togram
i° Left-most non-empty interval of a sample histo-

gram
i* Right-most non-empty interval of a sample histo-

gram
mt Expected value of the model-based Bayesian esti-

mator of the probability of an event in the /th
interval of a histogram

nt Number of observations in the /th interval of a
histogram

pt Probability of an event in the /th interval of a
histogram

sf Variance of the model-based Bayesian estimator of
the probability of an event in the /th interval of a
histogram

sx Estimate of the standard deviation of the random
variable X

u( Limit of integration
x Realization of the random variable X
y Logarithm of a realization of the random variable

X
zt Probability of an event in an expanded interval (to

account for empty intervals adjacent to interval /)
F[a] Complete gamma function of the argument con-

tained in the brackets
£ Summation
a Ratio of the half length of an empty string adj acent

to and left of the /th interval to the interval width
p Ratio of the half length of an empty string adjacent

to and right of the /th interval to the interval width
e Interval width
Ci The Bayesian estimator of zt

k The Bayesian estimator of the parameter of an
exponential probability distribution

k ° The parameter of an exponential probability distri-
bution of the logarithms of observations on the low
end of sample histogram

k* The parameter of an exponential probability distri-
bution of observations on the high end of a sample
histogram

v Condition in which the random variable Xis known
to be within the range of an expanded interval of a
histogram

nt Bayesian estimator of the probability of an event in
the /th interval of a histogram

nt Bayesian estimator of the probability of a data-
based observation in the i th interval of a histogram

7T, Bayesian estimator of the probability of a model-
based observation in the /th interval of a histogram

T, Mathematical expression used to compute the
expected square of the Bayesian estimator of the
probability in the /th interval of an exponential
probability distribution

0 ° Bayesian estimator of the probability of an event of
magnitudes less than e°

\l/t Mathematical expression used to compute the
expected value of the Bayesian estimator of the
probability in the /th interval of an exponential
probability distribution

at; Mathematical expression used to compute the
expected square of the Bayesian estimator of the
probability in the /th interval of an exponential
probability distribution

Var[<z] Variance of the random variable contained in the
brackets
Indicator of conditioning on the random variable X
being less than i°
Indicator of conditioning on the random variable X
being in an expanded interval of a histogram

| Indicator of conditioning on the event defined to its
right.

INTRODUCTION

In many scientific investigations, mathematical models are
developed to capture understanding about physical, chemi-
cal, or biological processes in a form that subsequently can be
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used in actual decision making. However, prudent decision
makers frequently question the goodness of such models
before accepting their output. For certain classes of models
in which observations of the modeled phenomena are putati-
vely concurrent with the output of the model, goodness-of-fit
measures are available (e.g., Troutman, 1985). For other
classes that lack concurrence of measurement and model
output, the evaluation of the validity of a model is not a
straight-forward exercise.

One class of models in the latter category is the general
circulation model (GCM) as employed in climate analysis
(Washington & Parkinson, 1986). GCMs are being used to
develop scenarios of atmospheric variables for hypothetical
conditions of doubled atmospheric carbon dioxide (e.g.
Schlesinger & Zhao, 1989), nuclear war (e.g., Malone et ai,
1986), and denudation of tropical rain forests (e.g., Dickin-
son, 1989; Lean & Warrilow, 1989) that can be compared
with the climate of today. However, because of inherent
inaccuracies in GCMs, such comparisons usually are made
between the simulation of the altered environment and a
simulation of today's climate. By comparing simulated
scenarios, it is hoped that errors will be compensating and
that the changes experienced between the simulations will
approximate those that would occur if the hypothetical
condition came to pass.

The utility of the comparative analysis and of the simu-
lated changes could be enhanced if an adequate measure of
the validity of the underlying simulation of today's climate
were available. One approach that has been used (Chervin,
1981; Katz, 1982, 1988) to address this need is that of
statistical hypothesis testing in which the statistics of the
simulation and those of actual climate data are compared to
see if there is a significant difference between the two. Even
the most sophisticated model is not a perfect representation
of the real world. Therefore, the results of hypothesis testing
simply indicate whether sufficient data are incorporated to
detect the differences that exist and do not serve as a
validation or invalidation of the model. Thus, such attempts
to instill objectivity into the investigation of the validity of
GCMs have not been fully successful. Therefore, an alterna-
tive approach is presented here to address this problem.

Traditionally, climatology has been a statistical compo-
nent of the atmospheric sciences (Guttman, 1989) in which
suites of variables are described probabilistically in time and
space. However, from this suite, only a single variable,
monthly precipitation over a single grid cell, will be used to
illustrate the proposed approach for measuring the goodness
of a GCM's output. Extension of the approach to multi-cell,
spatial dimensions will be provided in an example; it is hoped
that extensions in time and to other atmospheric variables
will be evident.

APPROACH

The seasonal-precipitation climatology for a particular grid
cell can be described partially by the probability density
function (pdf) of the spatially averaged depth of precipi-
tation during the season over the grid cell. Neither the
mathematical form nor the parameter values of such a pdf
are known, but they can be estimated from actual data from
within the geographical region containing the cell. Actual
measurements of precipitation exist only at a finite number of
points within or near the grid cell; actual measurements of
spatially averaged depth of precipitation do not exist, but can
be constructed mathematically from the point data by
weighted averages, by Thiessen polygons (Thiessen & Alter,
1911), or by more sophisticated approaches such as Kriging
(Bras & Rodriguez-Iturbe, 1985). In the absence of persist-
ence, the unknown pdf would contain perfect information
about the seasonal-precipitation climatology. However,
even in the absence of persistence, the estimate of the pdf will
contain only limited information because (1) the time series
of measurements upon which it is based is of finite length and
(2) each computed value of the series contains a combination
of measurement and interpolation errors. In this paper, the
measurement and interpolation errors are assumed to be
negligible; in actuality, they usually are not. A subsequent
paper will incorporate the effects of errors in the data into the
approach.

The data from the time series of grid-cell precipitation can
be manipulated to form a histogram that approximates the
unknown pdf. Within any interval, /, of the histogram, the
count, ni9 of precipitation events divided by the total number
of events, N, is one estimate of the probability, pi9 of a
random precipitation event of a magnitude within the range
of the interval. The true probability, pi9 is a function of the
unknown pdf:

= fx(x) dx (1)

where fx(x) is the pdf of a precipation event, X, and e is the
interval width of the histogram. Therefore,

ft=Pje (2)

where/ is the average value of the pdf within the interval /.
With a finite sample of N events, it is possible to estimate pt

only with limited accuracy. The uncertainty in pt can be
quantified by the variance of the conditional (posterior)
probability density function of its Bayesian estimator, ni9

given the nt observations in the i th interval. As is discussed
subsequently in more detail, the conditional pdf of ni can be
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developed by considering the numbers of observations in
consecutive intervals of the data-based histogram as realiza-
tions of binomial random variables. The total uncertainty
about spatially averaged precipitation over the grid cell can
be approximated by the sum over all intervals of the vari-
ances of the individual conditional pdfs of nf.

(3)

where U is the total data-based uncertainty about spatially
averaged precipitation and Var[*] is the variance of the
random variable contained within the brackets. A measure
of the information content, 7D, of the data base pertaining to
spatially averaged precipitation is the reciprocal of the total
uncertainty (Fisher, 1960):

/ D = l / U (4)

A comparable measure for the information contained in
the GCM output also can be derived. With the GCM output,
the binomial analogy is used to estimate posterior means and
variances for the model-based Bayesian estimators. How-
ever, the posterior variances are inappropriate measures of
the uncertainties in the GCM output. The variance is a
measure of the dispersion of likelihood of a value of a
random variable about its mean, which, in the absence of any
other information, is its best estimate, in a least-squares
sense, of the unknown value. However, in comparing the
GCM output with the measured data, it is assumed that the
data provide the best estimate of today's climate. Therefore,
the dispersion of the GCM output should be measured
relative to the information contained in the data. If pt were
known with certainty, the GCM dispersion could be eva-
luated by using the transfer of moments equation from basic
mechanics:

Mt = sf + (ra, -Pi)1 (5)

where Mt is the mean squared error of ni9 the model-based
Bayesian estimator ofpf, sf and mt are the variance and mean,
respectively, of the posterior distributions of nt. To account
for the imperfect knowledge concerning/?, in the data-based
time series, an expected value of Mt is developed by integrat-
ing the product of mt and the posterior pdf of nt derived from
the measured data:

E[MJ= (6)

where/(^l/i,-) is the data-based posterior pdf. The summa-
tion of E[MJ over all intervals is an estimate of the total
uncertainty about the spatially averaged precipitation in the
GCM output; the reciprocal of the total uncertainty is a
measure of the information content of the model output, 7M:

(7)

The information measures defined by equations 4 and 7
have the units of the reciprocal of the variance of probability.
To facilitate interpretation of the model's information con-
tent, its ratio to that of the data-based time series is presented
as relative information, 7R, a concept first introduced to
hydrology by Matalas & Langbein (1962):

(8)

Because the data are assumed to provide the best estimates of
the/?,-, 7R always will be contained within the range from zero
to one.

FUNDAMENTAL CONSIDERATIONS

The following sections expand the descriptions of the key
elements of the relative-information approach.

Data-based time series

The average precipitation on the land surface is assumed to
be analogous to the precipitation leaving the lowest elements
of the stacks that represent the atmosphere above each cell of
interest. To construct commensurate data-based time series,
point precipitation data from a collection of actual weather
stations must be converted to areal averages over identical
cells to those used in the GCM. As stated above, several
procedures exist for performing this task.

For purposes of illustration, this study uses the precipi-
tation data from the monthly climatic averages compiled by
the National Climatic Data Center of the U.S. National
Oceanic and Atmospheric Administration for each climatic
division in the contiguous 48 States. The climatic divisions
are shown in Fig. 1 as are the borders of a GCM grid cell for
which a time series of monthly mean precipitation is to be
constructed. The precipitation series, one for each climatic
division, were constructed by simple averaging of the
monthly precipitation for each station within the climatic
division that reports both monthly temperature and precipi-
tation (Karl & Knight, 1985). To construct a monthly time
series of precipitation over the grid cell, the reported precipi-
tation magnitude for a given month and year for each
climatic division is weighted by the ratio of that portion of its
area contained within the cell to the total land area of the cell,
and these weighted magnitudes are summed to obtain a
single entry in the time series. Fig. 2 shows such a time series
of January precipitation for the grid cell delineated in Fig. 1
for the period from 1960 to 1989. The units of the time series
have been transformed into average daily precipitation
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500 KILOMETERS

Fig. 1 A GCM cell superimposed on the map of the State Climatic Divisions.

rates to be consistent with the GCM output described
subsequently.

Although precipitation data for the State climatic div-
isions are available for all years since 1895, climatic norms
traditionally have been based on the most recent three
decades of data. This is a tacit recognition by climatologists
that climate is nonstationary. Therefore, for the sake of
consistency with tradition, only data from the most recent 30
years will be used to define the optimum histogram and the
data-based uncertainties. Use of the most recent data also
avoids potential problems of reconstruction errors in the
time series prior to 1931 (Karl & Knight, 1985).

Optimum histogram

Information content, determined by either equation 4 or
equation 7, will vary with the locations of the histogram
intervals that underpin its definition, as can be readily seen in
equation 1. Therefore, for the sake of consistency, the
histogram definitions used to compute the information con-
tents both of the data-based time series and of the model
output should be identical. Because of the assumption that
the data base contains significantly more information than
does the model, the preferable definition for the computation
of relative information is that which minimizes the expected

1.0

0.8

z 0.6

2
< 0.4

0.2

0.0
n D

YEAR

Fig. 2 Time series of January precipitation for a grid cell.

discrepancy between the data-based histogram and the un-
known pdf of spatially averaged depth of precipitation.
Linhart & Zucchini (1986) advocate the use of a Gaussian
discrepancy, Z>G, in defining the optimum histogram for a
given set of observations:

El

I lfx(x)-?if (9)

8(1- 1)
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where /• is the histogram estimate of the average of the
unknown pdf in the /th interval (see equations 1 and 2).

Linhart & Zucchini (1986, p. 31) also report on an
approach based on asymptotic considerations of the Gaus-
sian discrepancy (Scott, 1979) that defined the interval width

3.49
#1/3

(10)

where sxis the sample standard deviation of the data set that
is to be incorporated into the histogram. Cursory testing of
data sets like that shown in Fig. 2 indicated that equation 10
yields more stable results than does the minimization of a
criterion based on equation 9. Therefore, equation 10 is used
in conjunction with the data-based time series to define the
optimum histograms in the results that follow.

Bayesian analysis of histograms

Because finite time series are the sole basis for estimating the
probabilities of precipitation magnitudes within the various
intervals of a histogram, uncertainty about the probabilities
will be inherent. One means of dealing with uncertainties of
this sort is known as Bayesian analysis (Epstein, 1985), in
which a constant, but unknown, probability is treated as a
surrogate random variable. The uncertainty about the un-
known probability can be quantified by the variance of the
surrogate random variable.

In the case of an isolated interval of a histogram, the
unknown probability can be described as a Bernoulli trial in
which the probability of a precipitation event falling within
the interval is pt, and the probability of the event being
outside the interval is 1 —pt. To describe the uncertainty
about pt, Epstein (1985) provides a pdf of the Bayesian
estimator of pt:

f(ni\ni,N) = -
T(N)

(11)

where nt is used to represent either n( or TC,. Equation 11 yields
a variance of %;.

N\N+\)
(12)

Equation 12 is an appropriate measure of the uncertainty
ofpt only when the /th interval and the adjacent intervals on
its right and left are all non-empty. A non-empty interval is
one for which nt is not equal to zero. When equation 11 is
used in conjunction with an empty interval, the mean and
variance degenerate to zero, which indicates with certainty
that no precipitation events with magnitudes within the
interval could occur. It is very likely that the occurrence of an
empty interval is a relic of a finite sample size and does not
represent a physical impossibility of such an event. There-

fore, three assumptions are made to avoid this unlikely
situation.

(1) If an empty interval or string of empty intervals occurs at
magnitudes less than the minimum precipitation event
sampled, the negative of the logarithm of the ratio of the
event magnitude to si0, where i° is the number of the
interval containing the minimum, is assumed to be expo-
nentially distributed conditioned on the magnitude of the
event being less than si°.

(2) If an empty interval or string of empty intervals occurs
within the range of observed events, the interval or string is
partitioned into two equal parts and a uniform pdf for each
part is assumed to derive from a conditional binomial
analysis with its nearest non-empty neighboring interval.

(3) The probability density over the interval containing the
maximum precipitation event and over all intervals with
magnitudes greater than the observed maximum is assumed
to be distributed exponentially conditioned on the event
magnitudes being greater than s(i* — 1), where /* is the
number of the interval containing the maximum sampled
event.

A description of the implementation of these assumptions
in the relative-information approach is provided in the
Appendix in Moss (1991).

Expected mean squared error and relative information

Equation 6 defines the expected mean squared error, E[Mf],
of the Bayesian estimator of the probability in the /th interval
based on the output of a GCM.

As shown in equation 7, the information content of the
GCM output is the reciprocal of an infinite sum of the
E[MJs. If the information content is to be a non-trivial
measure, this infinite series must converge. Attempts to
prove this convergence, using the relations provided earlier
and in the Appendix in Moss (1991), failed; therefore, only
empirical evidence for convergence can be offered herein.

A set of computations, using the examples described in the
next section, were executed in which the sum of E[MJ was
truncated at 10, 50, 100, and 200 intervals beyond the last
non-empty interval of the model-based histograms. In no
case did the sum increase by more than 0.05 percent between
the truncation levels of 10 and 200 intervals. To test this
measure further, one summation was extended to 1000
intervals, and, to four significant figures, no further
increment to the sum was obtained. Thus, no evidence was
found to indicate lack of convergence. Similar experiments
pertaining to the information content of the data-based time
series resulted in an identical conclusion. The results pre-
sented subsequently are based on truncating the sums of
E[MJ and Var [nt] after 10 intervals beyond the highest
non-empty interval of either the data-based or the model-
based histograms.
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Fig. 3 Maximum relative information of a model's output based
on a 30-year record.

By carrying out the integration on the right-hand side of
equation 6 and rearranging terms, it can be seen that

t] = sf + Var[7c,]+ K - E [ 7 r J (13)

Thus, if a model output of equivalent length to the
data-based time series results in an nt equal to that of the
data-based time series, mt will equal E[7iJ, sf will equal Var
[TTJ, and E[Mt] will equal 2 Var[7iJ. If the time series of the
model output is identical with that derived from the data
base, E[MJ will equal 2 Var [TTJ for each interval, and the
relative information of the model output will be half of that
of the data base. If the two series were putatively concurrent,
their cross-correlation coefficient would be unity; the relative
information of the model would equal one. Thus, the lack of
concurrence reduces the information content of the model by
a factor of two. This reduction is directly attributable to the
unknown biases, that is the inability of the model to exactly
mimic the real world. Such model errors, which cannot be
expected to be reduced by extending the length of the
simulation, can only be addressed by improved conceptuali-
zation, parameterization, or resolution of the underlying
GCM.

It can be shown that the maximum value of /R attainable
for two time series of equal length is 0.5, which once again is a
manifestation of the unknown model errors. For /R to exceed
0.5, the length of the time series of the model output must
exceed that derived from the data base, and the resulting
pairs of values of E[7iJ and mt for each interval must be
approximately equal. To approach the upper limit of one for
lR, the model output must be very long and the differences in
Efo] and mt must be very small within each interval. For
example, Fig. 3 shows the relation of the maximum attain-

able value of /R to the length of the model-based time series
when the data-based time series is thirty years long. The
maximum 1̂  for given lengths of the two time series is
obtained when the differences in E[TTJ and mt are minimum
for each interval.

The expected mean squared error is comprised of three
separate components: (1) time-sampling error of the data-
based histogram represented by Var [TTJ in equation 13, (2)
time-sampling error in the model-based histogram repre-
sented by sf in equation 13, and (3) squared bias represented
by (m, —E[7cJ)2. Extension of the output time series of the
model can be expected to reduce only the second component,
model time-sampling error. Therefore, by subtracting the
sum of the sfs from the total uncertainty of the model-based
histogram, an estimate of the uncertainty and concomitantly
the /R contained in the output as the run length goes to
infinity can be obtained.

EXAMPLES

The Biosphere-Atmosphere Transfer Scheme (BATS), deve-
loped by Dickinson et al. (1986), contains one of the more
sophisticated representations in a GCM of the interactions
between the atmosphere and the land surface. BATS is
designed to function either interactively with a GCM or as a
post processor of GCM outputs.

It has been most commonly used in conjunction with the
Community Climate Models of the National Center for
Atmospheric Research, where BATS was developed.
Monthly precipitation time series for grid cells in the Central
Plains of the U.S. from an interactive run of BATS and
CCM1, the most current version of the Community Climate
Model, were provided to illustrate the use of the relative
information measure (PJ. Kennedy; written communica-
tion). The model output was five years in length.

A single grid cell

The model-based time series of monthly precipitation for
January and July for the grid cell depicted in Fig. 1, which
will henceforth be designated as cell A, are shown in Fig. 4
along with the most recent 30 values of the data-based series
for the same cell. Sample statistics for these data are provided
in Table 1. By examining the data-based time series and its
statistics, it can be seen that the climatology of cell A has a
relatively dry winter with little variability of precipitation
and a dramatically heavier and more variable summer preci-
pitation regime. On a qualitative basis, the model does
reasonably well in mimicking the July precipitation char-
acter, but generates a much wetter and more variable Janu-
ary regime than the observations indicate.
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Table 1. Sample statistics for January and July precipitation
for cell A

Data Model

January precipitation [mm/day]
Expected value
Standard deviation
First-order serial correlation coefficient

July precipitation [mm/day]
Expected value
Standard deviation
First-order serial correlation coefficient

0.47
0.28

-0.31

2.73
0.94
0.11

1.22
1.00

-0.23

2.52
1.06

-0.23

A. January

• DATA

M MODEL

O 2

S 1

B. July
• DATA

M MODEL

Fig. 4 Data-based and model-based monthly precipitation time
series for January and July for cell A.

With the sample sizes available for the time series, none of
the serial correlation coefficients in Table 1 are statistically
significant. Furthermore, if there were persistence at the level
indicated by these coefficients, the estimates of standard
deviations would tend to be biased only slightly. Therefore,
the analysis will proceed under the assumption of negligible
persistence in the time series.

The individual pairs of time series, for January and for
July, were analyzed on the basis of the concepts and assump-
tions presented above. Fig. 5 shows the histograms of the
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Fig. 5 Histograms of January and July precipitation for cell A.

four input time series, and Tables 2 and 3 present the salient
results. Consistent with the statistics in Table 1, the model's
performance in January is not as good as it is in July -
January 7R equals 7.5 percent, while July's is 13.7 percent.

The total uncertainty in the data-based histograms, about
0.02, is very similar for January and July in spite of the large
difference in their interval widths. Therefore, the difference in
/R between the two months can be related almost solely to the
characteristics of the model-based histograms. It can be seen
that the sum of the posterior variances of the January
histogram is about equal to that of July. Thus, the potential
biases of the model seem to be the major cause of the
differences in the two months. The bias component of
histogram uncertainty is the sum over all intervals of the
squared differences in the expected probabilities of the data-
based and model-based posterior distributions. The expected
probabilities for each month are presented in Fig. 6. The sum
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Table 2. Posterior analysis of January precipitation in cell A
(interval width — 0.32 mm/day)

Data-based probabilities Model-based probabilities

Expected mean
Interval Mean Variance Mean Variance squared error

1
2
3
4
5
6
7
8
9

10
11
12
13

20
SUM

0.400
0.367
0.133
0.097
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

0.0077
0.0075
0.0037
0.0028
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0218

0.035
0.365
0.133
0.080
0.133
0.027
0.027
0.033
0.033
0.115
0.001
0.003
0.002

0.000

0.0048
0.0378
0.0156
0.0069
0.0156
0.0011
0.0011
0.0017
0.0017
0.0134
0.0003
0.0001
0.0000

0.0000
0.0999

0.1459
0.0453
0.0193
0.0100
0.0327
0.0018
0.0018
0.0028
0.0028
0.0266
0.0004
0.0001
0.0000

0.0000
0.2893

Data-based information = 45.9
Model-based information = 3.4
Relative information = 0.075

Table 3. Posterior analysis of July precipitation in cell A
(interval width = 1.06 mm/day)

Data-based probabilities Model-based probabilities

Expected mean
Interval Mean Variance Mean Variance squared error

1
2
3
4
5
6
7
8
9

20
SUM

0.034
0.232
0.400
0.300
0.022
0.005
0.002
0.001
0.001

0.000

0.0008
0.0054
0.0077
0.0068
0.0006
0.0000
0.0000
0.0000
0.0000

0.0000
0.0214

Data-based information =

0.133
0.167
0.300
0.392
0.005
0.001
0.000
0.000
0.000

0.000

6.7
Model-based information = 6.4
Relative information = 0.137

0.0156
0.0167
0.0300
0.0395
0.0003
0.0000
0.0000
0.0000
0.0000

0.0000
0.1021

0.0261
0.0264
0.0477
0.0548
0.0012
0.0001
0.0000
0.0000
0.0000

0.0000
0.1886

of the squared differences for January is 0.168 of which 0.133
is from the first interval. The sum of the squared differences
for July is 0.096.

By deducting the time-sampling error from the total
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Fig. 6 Expected probabilities for cell A.

uncertainty of the model-based histogram, an estimate of the
relative information contained in the output of a model run
approaching infinite length can be obtained. For January,
the infinite run could be expected to have an /R of 11.5
percent, an increase from 7.5 percent for the 5-year run. For
July, the infinite run should attain an 1̂  of 39.3 percent, an
increase from 13.7 percent for the 5-year output time series.

Aggregation of cells

A common approach for presenting and analyzing the
outputs of GCMs is to average or aggregate time series
across latitudinal bands, usually encompassing the globe.
Two examples, one aggregating two adjacent cells at the
same latitude and another aggregating two additional cells
from the next tier to the south, are presented to illustrate the
use of the relative-information approach in exploring
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Fig. 7 Location of grid cells.

whether or not information increases with higher levels of
aggregation.

Fig. 7 is a map showing the locations and extents of the
four grid cells; cell A is the cell investigated in the previous
sub-section. First, 30-year data-based precipitation series are
generated for each of the three new cells by using the same
procedure used for cell A. Then, for the two-cell aggregation,
the data-based time series for cells A and B are averaged for
each month to compute an aggregated time series, and
likewise, the model outputs for the two cells are averaged to
obtain a model-based time series. The results of this two-cell
aggregation are shown in Table 4, where it can be seen that
latitudinal aggregation provided a relative-information
increase for January from 7.5 percent to 8.1 percent and
caused an increase for July from 13.7 percent to 16.1 percent.
There also are improvements in the limits of /R as the run
length goes to infinity. For January, the limit increased from
11.5 percent to 12.4 percent, while, for July, it went from 39.3
percent to 57.5 percent. These increases are derived primarily
from decreases in the bias components of the model-based
histograms for each month. The changes in biases can be seen
by comparing Figs. 6 and 8.

The second aggregation example was devised by averaging
for each month the data-based precipitation series for cells C
and D of Fig. 7 and then averaging the resulting time series
with the aggregated series for cells A and B. An aggregated

model-based time series was generated in the same manner.
The results of the relative-information analysis of the four-
cell aggregation are given in Table 5, where it can be seen that
the results for January improve, but those for July degrade.
The degradation is particularly obvious for the sum of the
squared biases for July, which increases from 0.017 for the
two-cell aggregation to 0.046. This increase reduces the limit
of the relative information from 57.5 percent to 33.2 percent.
Thus, the very tentative conclusion from the four-cell aggre-
gation is that, for the Central Plains of the U.S., longitudinal
aggregation of GCM precipitation output may not increase
its information content.

C O N C L U S I O N S

A new approach for estimating the information content of
the outputs of GCMs has been presented. The underlying
concepts account for the uncertainties in both the model
outputs and in the data base that is used as a metric of
comparison. However, the current version of the approach
incorporates only uncertainties in the time-sampling domain
of the data base and does not include components of
measurement and computation errors that degrade its infor-
mation content. These are elements for future study.
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Fig. 8 Expected probabilities for cells A and B aggregated.

The relative-information measure is a statistic with un-
known sampling properties; confidence bands cannot be
placed on any particular realization at this time. Nor can
inferences about the underlying biases of a GCM be tested
for significance. These also are topics for further study.

Nevertheless, even in its infancy, the approach should be
capable of giving preliminary answers to questions like:

(a) Does a finer grid of the same model generate more infor-
mation than its coarser predecessor?

(b) Does model X provide more information about a given
variable or suite of variables than model Y?

(c) At what level of aggregation of a GCMs output is there
sufficient information to undertake its statistical disaggre-
gation to smaller spatial or temporal scales?

Such studies are planned to be concurrent with the continued
development of the approach.

Table 4. Analysis of aggregated monthly precipitation for
cells A&B

Data Model

January:
Mean*
Standard Deviation*
Serial Correlation
£ Variance
£ E[Mt]
X Squared bias
Information

0.74
0.41

-0.33
0.023

43.1
Relative information (5-year simulation) =
Relative information
Interval width* =

July:
Mean*
Standard Deviation*
Serial Correlation
£ Variance
Z E[Mt]

£ Squared bias
Information

Relative information
Relative information
Interval width* =

Note:
* Units are mm/day.

limit =

2.98
0.89
0.20
0.023

43.4
(5-year simulation) =
limit =

1.64
0.98

-0 .34
0.101
0.288
0.164
3.5
0.081
0.124
0.46

2.80
0.76

-0 .44
0.103
0.143
0.017
7.0
0.161
0.575
1.00
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A stochastic weather generator using atmospheric
circulation patterns and its use to evaluate climate
change effects

A. BARDOSSY
Institute for Hydrology and Water Management, University of Karlsruhe, Karlsruhe, Germany

ABSTRACT The daily rainfall and the daily mean temperature are modelled as processes
coupled to atmospheric circulation. Atmospheric circulations are classified into a finite
number of circulation patterns. Rainfall occurrence is linked to the circulation patterns using
conditional probabilities. Rainfall Z is modelled using a conditional distribution (exponential
or gamma) for the rainfall amount, and a separate process for rainfall occurrence using a
normal process which is then transformed, delivering both rainfall occurrences and rainfall
amounts with parameters depending on the actual circulation pattern. Temperature is
modelled using a simple autoregressive approach, conditioned on atmospheric circulation.
The simulation of other climatic variables like daily maximum and minimum temperature,
and radiation, is briefly discussed. The model is applied using the classification scheme of the
German Weather Service for the time period 1881-1989. Precipitation and temperature data
measured at different locations for a period of 30 years are linked to the circulation patterns.
Circulation pattern occurrence frequencies are analyzed, and anomalies due to a possible
climate change are presented. A stationary model uses a semi-Markov chain representation of
circulation pattern occurrence. The possibility of developing a non-stationary process
representation using General Circulation Models is also presented.

INTRODUCTION

Daily weather data are required for many different hydrolo-
gical applications, such as hydraulic engineering design,
water quality and erosion modelling, evaluation of different
watershed management options etc. Observed weather
events are often insufficient to get useful model responses.
Particularly in the case of climate change investigations there
are no observed data at all. Therefore it is useful to generate
weather series which either reproduce the statistics of the
observed data or reflect possible changes in climate.

Most known precipitation and weather generation pro-
cedures are purely stochastic point models (Jones et al. 1972,
Richardson 1981). The assumption of stationarity is absolu-
tely necessary for these models.

There appears to be a close relationship between atmos-
pheric circulation and climatic variables. Burger (1958)
studied the relationship between the atmospheric circulation
patterns and mean, maximum and minimum daily tempera-

tures, precipitation amounts and cloudiness using the time
series from 1890 to 1950 measured at four German cities
(Berlin, Bremen, Karlsruhe and Munich). He found a good
correspondence between climatic variables and atmospheric
circulation. Lamb (1977) stated that even the highly
varying precipitation is strongly linked to the atmospheric
circulation.

Recently McCabe et al. (1989) classified nine weather
types for Philadelphia by using seven climatological para-
meters for a period of 35 years (1954-88) as a basis for
stochastic precipitation modeling. Wilson et al. (1990) deve-
loped a daily precipitation model using a weather classifica-
tion scheme for the Pacific Northwest US. Wilks (1989)
developed a regression based method for generation of local
weather elements (temperature, precipitation), using the
large scale information.

In Bardossy & Plate (1991) a model was developed for the
precipitation occurrence at a selected site conditioned on the
actual atmospheric circulation pattern. A multivariate
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model for the spatial distribution of rainfall depending on
atmospheric circulation patterns was developed in Bardossy
& Plate (1992).

The purpose of this paper is to develop a mathematical
model for the daily precipitation and daily mean temperature
based on atmospheric circulation patterns. Daily precipi-
tations are described using two different approaches:

(a) The rainfall occurrences are considered as primary pro-
cesses, and precipitation depths on rainy days are taken
from an appropriate distribution.

(b) Rainfall occurrences and amounts are modelled within a
single process.

Mean daily temperature is modelled with the help of an
autoregressive type approach. In all cases the atmospheric
circulation pattern is a conditioning factor for the processes.

The model can be applied in stationary and non-stationary
cases. In Bardossy & Caspary (1990b) time series of circula-
tion patterns were analysed, and it was found that frequen-
cies of several circulation patterns changed considerably
during the last years, showing extremes never reached before.
The link to atmospheric circulation patterns makes it suit-
able for local weather simulation under climate change
(Bardossy & Caspary, 1990a). The model is applied using the
classification scheme of the German Weather Service which
is available for the time period 1881 to 1989.

MATHEMATICAL MODEL

Let Z(t) be the daily precipitation amount on day t and T(t)
be the mean daily temperature on day t. Both Z(t) and T{i)
are considered to be random variables, depending on the
actual atmospheric circulation pattern At. At is also a random
variable, with possible values {al9...,a^}. The random pro-
cess At will not be analysed in this paper: for example
semi-Markov process model for At developed in Bardossy
and Plate (1990b) may be used.

l l4 = aJ=/>, (2)

The distribution of rainfall amount also depends on At\

F[Z(t)<z\At = *i, Y(t)=l] = Ft(z) (3)

Let/(z) be the density function corresponding to Ft(z).

Rainfall amounts using rainfall occurrences

The link between circulation patterns and wet days is
obtained through the probabilities pt. For simplicity let
pu=Pi and pOl= l - / v

There is a weak persistence property of Y(i) which may be
expressed using conditional probabilities as follows:

-l) = l and (4)

(5)

However if the circulation pattern changes the precipi-
tation occurrence of the following day is independent of that
on the previous day.

The inclusion of this Markovian property within a period
of constant circulation patterns does not influence the proba-
bilities pt.

Rainfall amounts Z(t) are then related to Y(t) through the
conditional distributions Ft(z) given as (3).

Daily rainfall amount distributions Ft(z) are usually
assumed to be exponential (Katz, 1977), or in some special
cases geometrical (Duckstein et al., 1972) or gamma. Distri-
bution parameters were estimated using both the moment
method and the maximum likelihood method (Bowman &
Shenton, 1989).

Rainfall amounts of adjacent days were usually found to
be independent (Katz, 1977). Therefore daily rainfall
amounts are modelled independently, only in connection
with the atmospheric circulation pattern through the con-
ditional distribution Ft(z).

Precipitation

A major problem in the mathematical description of precipi-
tation is that it has a mixed distribution, dry days occurring
with high probability, and a continuous distribution for
rainfall amounts on rainy days. To describe the precipitation
occurrence process one can define the process Y(i) as the
indicator of {Z(0>0}:

1; ifZ(0>0
0; ifZ(0 = 0

(i)

The probability of rainfall at time t depends on the
atmospheric circulation pattern At

Transformed normal process

Another possibility is to describe both precipitation occur-
rence and amount with the help of a single process W(t). Let
W(t) be a random variable which is related to Z(i) for a given
circulation pattern At = a, through the power transformation
relationship:

if W(t)<0
ifW(t)>0

(6)

Here ($ is an appropriate positive exponent. There are
infinitely many W{t) random variables which satisfy (6).
Suppose that W(i) is normally distributed. This way the
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Fig. 2 Relationship between the normal density function of W{t),
Pi and/(z).

The rainfall occurrence probability pt satisfies equation
(2). Therefore:

/i,+ <p-1(l-JP,>! = 0 (9)

where # ~l (.) is the inverse of the standard normal distribu-
tion function.

If the circulation pattern changes then W(i) of the follow-
ing day is independent of that on the previous day W(t— 1):

(10)

Fig. 1 Relationship between intermittent rainfall process, multi- If there is no change in the circulation pattern then W(i) is
variate normal and transformed temporal rainfall process. described with the help of a simple AR(1) process:

mixed (discrete - continuous) distribution of Z(i) is related
to a normal distribution. Fig. 1 displays the relationship
between Z(0, Y(t) and W{t). The relation between the
normal density function of W(t), pt and/(z) is explained in
Fig. 2. As a first step, parameters \i{ and ot of W(i) have to be
estimated for each given af. Here the following equation
should hold for the expected rainfall amount:

, = a,, 7(0=1]

^A^oLi (11)

where Vt is a standard normal random variable.
The parameter (j){ which is equal to the step 1 autocorrela-

tion px of W(t) for a, (Bras & Rodriguez-Iturbe, 1985) has to
be estimated. The precipitation series Z(t) only provide the
positive values of W(t), therefore a straightforward estima-
tion is not possible. For this purpose the indicator series Iq(t)
is defined for any 0 < q < 1 as:

exp (7) 0; if F,[Z(0]+/>,
(12)

Let

The second moment of the rainfall is given by:

Note that the indicator series for Z(t) and W(t) are the
same. Let p be the indicator correlation for the partial
indicator series At = a,.

The required correlation p is related to the indicator
correlation through the following relationship (after Abra-
mowitz & Stegun, 1962):

arc sin p(

2a?
(8) 2nq{\-q)

[ expf y" "IJ F]_l + sinrJ dr (13)
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yq is the value of the q quantile of the standard normal
distribution functiony = $~l(q). Applying this formula for
<7 = 0.5 one has:

(14)

This makes the estimation of p possible. Other techniques
for estimating p using formulas for the bivariate normal
distribution are given in Patel & Read (1982).

Temperature

In contrast to precipitation, temperature can be described
with the help of a continuous distribution. The annual cycle
plays a major role in temperature modeling. Therefore this
annual cycle has to be separated and the residual has to be
modeled. Atmospheric circulation patterns also play a differ-
ent role in different seasons. For example air flow from the
Atlantic ocean causes mild weather, up to 5 °C warmer than
normal in winter, and cold weather, up to 5 °C colder than
normal in summer. Let

T(t) = M(t) + R(t) (15)

where M(t) is the expected value of T(t) and R(t) is the
residual.

E[T(t)] = M{t) and E[R(t)] = 0 (16)

This residual is dependent on the actual atmospheric
circulation pattern.

£[*(OI4 = 0,1 = ̂ (0 (17)

In order to fulfill (15) for the above defined T,-(f)s one has:

(18)

Here continuity in temperature is assumed, whereas inde-
pendence of temperature residuals corresponding to adjac-
ent days before and after a change in the atmospheric
circulation pattern is not assumed.

R(t) = \l/iR(t- 1)+ U(t\At) (19)

In order to satisfy equation (16) the expectation of the
random variable U(t\At) has to be:

(20)

Here

& Plate (1991) a generalized Poisson distribution was used
for the duration of a circulation pattern. Note that h^ is not
site specific, it depends only on the circulation pattern. The
variance of U can also be calculated:

Var[C/(.)]=(l-^2)Var[^(0] (21)

The estimation of ij/^ and T,; /= 1, . . . , / is straightforward.

APPLICATION

The actual values h depend on the stochastic model used
for At. In the semi-Markov approach presented in Bardossy

Atmospheric circulation

Baur et al. (1944) developed an atmospheric circulation
classification scheme for European conditions describing the
circulation types within the area of Europe and the eastern
part of the North Atlantic Ocean taking into account the
general circulation pattern of the whole Northern Hemis-
phere.

Based on Baur's classification a uniformly classified very
long time series of daily records of the European atmospheric
circulation patterns from 1881 until today is available.
Besides the 109 years of data records another advantage of
these data is that they are derived from barometric pressure,
a climatic parameter likely to have been measured accurately
in the past using a relatively dense network of weather
stations.

Baur et al. (1944) defined a circulation type as a mean air
pressure distribution over an area at least as large as Europe.
Any given circulation type persists for several days (normally
at least 3 days) and during this time the main features of
weather remain mostly constant across Europe. After this
there is a rapid transition to another circulation type. Only
large-scale features of the general circulation are included in
Baur's classification scheme, namely:

(a) the location of sea level semi permanent pressure centers,
(i.e. Azores high/Iceland low);

(b) the position and paths of frontal zones; and
(c) the existence of cyclonic and anticyclonic circulation types.

Using the classification of Baur et al. (1944), Hess &
Brezowsky (1969) presented a catalogue of classified daily
European circulation patterns from 1881 till 1966. Since 1948
the European circulation patterns and types are classified
and published monthly by the German Weather Service
(Deutscher Wetterdienst).

Precipitation

Thirty-four years of daily precipitation data measured at
Essen were used for the model. Rainfall probabilities and
amounts were supposed to depend both on the circulation
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Table 1. Observed and fitted statistics for different circulation patterns for daily precipitation

Circulation pattern

West anticyclonic

West cyclonic

Central European high

Central European low

British Islands low

Season

Winter
Spring
Summer
Fall

Winter
Spring
Summer
Fall

Winter
Spring
Summer
Fall

Winter
Spring
Summer
Fall

Winter
Spring
Summer
Fall

Mean

2.4
3.1
3.4
3.3

5.9
5.7
5.7
5.8

1.1
2.2
4.5
1.5

2.6
4.2
6.7
4.4

2.0
4.2
4.6
3.9

Observed

Standard
deviation

2.8
2.9
4.2
3.8

5.6
4.7
6.0
6.4

1.8
3.1
5.7
1.9

3.3
5.8
6.3
4.9

2.0
4.6
5.3
5.4

Probability
of rain

44.8
46.4
34.9
38.2

85.6
78.2
73.4
76.0

8.2
13.1
19.2
9.5

47.7
60.6
72.3
68.3

65.3
71.7
76.8
69.0

Mean

2.4
2.9
3.4
3.2

5.9
5.5
5.7
5.9

1.2
2.2
4.4
1.4

2.6
4.5
6.5
4.4

2.0
4.2
4.7
4.2

in Essen (1952-87)

Fitted

Standard
deviation

2.9
3.5
4.3
4.1

5.5
5.5
6.0
6.0

1.7
3.1
6.0
2.0

3.1
5.0
6.8
4.8

2.2
4.5
4.8
4.5

Probability
of rain

44.8
46.6
34.9
38.4

85.4
79.0
73.3
75.5

8.2
13.1
19.4
9.5

47.6
60.0
72.9
68.2

65.3
71.6
76.3
68.3

pattern and on the season. Therefore these quantities were
calculated for each season separately.

The parameters of the first model of rainfall occurrence
were estimated according to the method described in Bar-
dossy & Plate (1991). Then for each season and for each
circulation pattern the parameters of the conditional rainfall
distributions were estimated. Three distributions were con-
sidered: exponential, lognormal and gamma. The first two
gave very poor fits in more than 25% of the cases. The
gamma distribution fitted the experimental distributions
quite well, with only a very few exceptions.

Two different time series of circulation patterns were used:

(a) a semi-Markov chain based simulated time series;
(b) observed values of 34 years daily series (the same that

occured in the observed precipitation series).

Only the gamma distribution was used for rainfall amount
generation.

For the second model parameters for the distribution of
W(i) were estimated using (7), (8) and (9) for each circulation
pattern. As there are only two unknowns O^ff,), the
weighted sum of the squared differences between the right
and left hand side of equations (7)-(9) was minimized. Table
1 shows the estimated and observed statistics for different

circulation patterns. The transformed normal distribution
fitted the observed data in 75% of the cases better than any
other distribution (gamma, exponential, lognormal) used.
The comparisons were made using a Kolmogorov-Smirnov
distance.

The indicator correlations were calculated for two differ-
ent sets of circulation patterns: (a) with ^ ^ O ^ , (b) with
/?/<0.5. For the first set q = 0.5 was selected for the indicator
correlation, for the second # = 0.75 or # = 0.9. The final
correlation coefficient p was then calculated as a weighted
sum of the individual pt values. The values of pt varied
between 0.1 and 0.3, the overall p was found to be 0.215.

After the model parameters were estimated, the same two
series of circulation patterns were used for rainfall simula-
tion. Different statistics were calculated to evaluate the
model results. Fig. 3 shows the autocorrelation functions for
winter. Fig. 4 shows the observed and the simulated distribu-
tions of dry periods.

Temperature

Table 2 gives, as an example, the deviations of winter
(December, January and February) mean daily temperatures
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Table 2. Deviations of winter (December, January and February) mean daily temperatures from the mean monthly
temperatures for selected circulation patterns at four German cities (Berlin, Bremen, Karlsruhe and Munich, after Burger,
1958, modified)

Location

Berlin

Bremen

Karlsruhe

Munich

>5°

—

SWz

SWz

SWz

3.0° to 4.9°

Wa, Wz, SWz

Wa, Wz, SWa

Wz,Ws

Wz, Ws, TB

Warmer

1.0° to 2.9°

NWa, NWz, Ws
SWa, TB, TrW
Ww

NWa, NWz, Ws
Sz, TB, TrW
Ww

NWz, Wa, SWa
Sz, TB, TrW
Ww

NWz,Wa
SWa, Sz, TrW
Ww

0.0° to 0.9°

TrM, Sz, HM

—

—

TrM, NWa

-0.0° to -0.9°

HB,TM

HB, TrM, HM

TrM, NWa
Sa, SEz, TM

SEz, TM

Colder

-1.0° to -2.9°

HNa, Nz, Sa
NEz, NEa, BM

Nz,Sa
BM,TM

HB, Nz, NEa
NEz, HM, BM

Nz, Sa, NEa
NEz, HM, BM

-3.0° to -4.9°

SEz

HNa
SEz, NEz, NEa

HNa, SEa, HFa

HNa, HB, SEa

<-5°

SEa, HFa

SEa, HFa

—

Hfa

1.0 -I

Observed
-V Simulated

n
15 20 25 30 35 40 45

Observed
Simulated

Time (days)

Fig. 3 Observed versus simulated autocorrelation function for
winter precipitation.

20 25

Time (days)

Fig. 4 Observed versus simulated distributions of dry periods.

from the mean monthly temperatures for selected circulation
patterns. A comparison using data collected at Karlsruhe
over the period 1951 to 1989 indicated no significant changes
from the results of Burger (1958). These later data were used
for calibrating the model.

D I S C U S S I O N AND CONCLUSIONS

The results of this paper may be summarized as follows.

(a) Daily precipitation amounts and mean daily temperature
are strongly linked to the atmospheric circulation and can
be modeled as coupled processes.

(b) Two different models were presented for the daily rainfall
amount
(i) based on rainfall occurence and corresponding con-

ditional distributions;

(ii) based on a transformed normal process.
(c) Daily mean temperature can be modeled as a non-station-

ary autoregressive process with parameters depending on
the actual atmospheric circulation pattern.

(d) The model is well suited for daily rainfall and mean daily
temperature simulation, coupled to a deterministic or sto-
chastic atmospheric circulation model.

(e) GCM air pressure maps can be used for circulation pattern
classification, so the model could be applied to simulate
stochastic climate change effects over small scale regions.
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ABSTRACT The uncertainty aspects of the process of floods of Lake Eyre are examined.
The available records of floods cover the time span of 40 years only. As longer time series of
precipitation records are available, one has extended the observed series of inflows to Lake
Eyre with the help of a rainfall-runoff model. Further reconstruction of the inflow series has
been achieved with the help of proxy data of coral fluorescence intensity. However the
limitations of these extensions and reconstructions of inflows are severe. The process of
inflows to Lake Eyre could be considered one of the most convincing manifestations of
hydrological uncertainty.

LAKE EYRE AND ITS BASIN

Lake Eyre, a large depression in arid Australia, rarely filled
with water, attracts the interest of limnologists, hydrologists,
geomorphologists and ecologists all over the world. The
process of inflows to Lake Eyre has been recently studied by
Kotwicki (1986). The following general information draws
from the data assembled there.

The Lake Eyre basin (Fig. 1) spreads over 1.14 million km2

of arid central Australia. Almost half of the basin area
receives as little rainfall as 150 mm per year or less. The
higher rainfalls of the order of 400 mm per year occur in the
northern and eastern margins of the basin, influenced by the
southern edges of the summer monsoon.

The annual potential evaporation as measured by Class A
evaporometer ranges from 2400 to 3600 mm, with the value
of pan coefficient for the Lake Eyre basin of the order of 0.6.
The annual evaporation rate for the filled Lake Eyre ranges
from 1800 to 2000 mm.

Since discovery of Lake Eyre in 1840 until its first recorded
filling in 1949 the lake was considered permanently dry and
eventual reports on the existence of water in the lake were
dismissed as observation errors. After 1949 a sequence of wet
and dry spells have been observed. Amidst minor isolated
floodings a major flood event was recorded, which began in
1973, reached its peak in 1974 and persisted until 1977. It is

estimated that the peak water storage in the lake during this
event read 32.5 km3. Until recently one used to consider
fillings of Lake Eyre as rare and independent events. Now
they are increasingly being looked at as a predictable mani-
festation of the global circulation patterns (e.g. El Nino-
Southern Oscillations phenomena).

The Lake Eyre drainage basin is quite well developed and
of persistent nature, due to favourable structural conditions.
Much of this drainage pattern are disconnected relics from
linked river systems which developed under the wetter past
climate and which became disorganized under the arid
conditions.

The lake is mainly fed by its eastern tributaries, the Cooper
Creek and the rivers Diamantina and Georgina (Fig. 1),
featuring extreme variability in discharge and flow duration.
Mean annual runoff of the Lake Eyre basin, of the order of
3.5 mm depth (i.e. 4 km3 volume) is the lowest of any major
drainage basin in the world. This is some six per cent only of
the value for the whole waterless Australian continent. A
good demonstration of the aridity of the basin is its specific
yield of 10 m3 km~2 day"1 in comparison to the value of 115
m3 km"2 day"1 for the Nile. In the conditions of arid central
Australia rainfall of the volume of 50 mm is required to
sustain a full channel flow and the frequency of such an event
is less than once a year. Major events of filling Lake Eyre are
associated with rare cases of annual rainfall in exceedence of
500 mm, or, as happened in 1984 and 1989, by heavy

32
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Fig. 1 Map of Lake Eyre Basin.

localized storms with precipitation of some 200-300 mm in
the vicinity of Lake Eyre.

FLOODS OF LAKE EYRE- RECORDS AND
RECONSTRUCTIONS

Time series of recorded fillings of Lake Eyre, shown in Fig. 2
embrace a short span of four decades. This short record is

also subject to significant uncertainties. The existing instru-
mentation and observation network is not adequate. Even
now the inflows to Lake Eyre are not measured directly in the
lower course of either of its tributaries. The existing gauges
measure runoff from as little as 40 per cent of the catchment
area. The information on fillings before 1949 is practically
non-existent. Therefore some means of extension of the
observational records have been urgently required.

Kotwicki (1986) used a rainfall-runoff model for determi-
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Fig. 2 Recorded inflows to Lake Eyre (1949-90).
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nation of past inflows to the lake. Using 40 years of available
data for identification and validation of the model he
managed to reconstruct a time series of inflows to Lake Eyre
for a century (1885-1984). Reliability of the results depends
largely on the adequacy of the mathematical model available
for transformation of rainfall into runoff. The idea of
rainfall-runoff models has been developed for areas of
humid or moderate climates. Therefore most of these models
function satisfactorily under such climatic conditions and
may not account for the processes of water losses, essential in
the Lake Eyre basin, with sufficiently good accuracy.
Although it is believed that the particular rainfall-runoff
model used (RORB3, cf. Laurenson & Mein, 1983), that has
been developed and tested for the arid Australian conditions
may be the best available method, it is still a source of some
uncertainty. The results of Kotwicki (1986) are shown in Fig.
3. Fig. 4 shows the same data, that look rather erratic in the
raw plot, in the moving average (11 terms) framework.

One of the possibilities of further extension of the available
time series of inflows is to use the El Nino-Southern Oscilla-
tion link that manifests itself via some proxy data, thus
allowing reconstruction of longer series of records.

Isdale & Kotwicki (1987) and Kotwicki & Isdale (1991)
used coral proxy data to further reconstruct the inflows to
Lake Eyre. This is possible as the coral data reflect in some
way the flows of the Burdekin River, draining a catchment of
around 130 thousand km2, directly adjoining the much larger
Lake Eyre system. The process of the flow of the River
Burdekin is strongly nonstationary, both in the yearly and
over-yearly scale. The annual flows range from 3 to 300 per
cent of the long term mean. During high flow periods the
discharge of the Burdekin River moves northwards from the
river outlet due to a longshore drift, and eventually reaches
the shelf-edge reefs 250 km north of the mouth. The land-
derived organic compounds, like humic and fulvic acids, are
transported by the river and introduced to the marine

Fig. 3 Observed annual inflows to Lake Eyre (since 1949) aug-
mented with inflows reconstructed with the help of the rainfall-
runoff model (1885-1990). Linear trend marked.

40
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Fig. 4 Moving average of inflows to Lake Eyre (1885-1980).

system. These compounds taken up by corals and accomo-
dated in their growing skeleton structures can be detected as
they fluoresce under ultraviolet light. This fluorescence inten-
sity provides a proxy measure of adjacent river discharge in
the region of high flows. Dendrometric measurements along
the depth of the core allowed dating of skeletal carbonate
growth bands since 1724. The technique of dating the core
resembles the method of dating yearly tree rings.

Although the proxy data of the River Burdekin are shown
to be statistically linked to inflows to Lake Eyre, there are
again significant uncertainty elements involved. The basin of
the River Burdekin, though adjacent to the Lake Eyre basin,
may have been behaving quite differently for particular
events, as pointed out by Isdale & Kotwicki (1987). The
anomalies have been caused by the non-uniform storm
coverage (heavy local rains). Moreover, the place where the
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Fig. 6 Time series of coral fluorescence data (1735-1980) and its
cumulative departure from mean.

coral reefs are analyzed is quite distant from the river outlet,
bringing an additional contribution to uncertainty.

Kotwicki & Isdale (1991) observed a significant correla-
tion between the time series of inflows to the Lake, the coral
fluorescence intensities and the El Nino-Southern Oscilla-
tions (ENSO) index. The time series of coral fluorescence
intensity for the period 1885-1980 in the form of moving
average (11 terms) is shown in Fig. 5. It is clearly visible from
Figs. 4 and 5, that there is some similarity of the two
processes. The link between the two time series can be used to
establish a relationship between the coral proxy data and the
inflows to Lake Eyre. This could help drawing from the entire
coral proxy record available (Fig. 6) since 1735. There is,
however, also a significant difference in behaviour of the 100-
years series of inflows to Lake Eyre and of coral fluorescence
intensities. Coral intensity may be characterized by a conti-
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Fig. 7 Box-plots of (a) inflows to Lake Eyre; (b) coral fluores-
cence data.
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Fig. 8 Frequency histograms of (a) inflows to Lake Eyre; (b) coral
fluorescence data.

nuous distribution, whereas the process of inflows is des-
cribed by a mixed (discrete-continuous) distribution with a
large part of the population (including the lower quartile)
attaining zero value. This difference in behaviour of both
series is shown in the form of box-plots (Fig. 7) and in the
form of frequency histograms (Fig. 8). Both series contain a
few (three or four) points lying significantly outside the upper
hinge of the box-plots.

It seems that the standard two-parametric linear regres-
sion (line a in Fig. 9) is, in general, not the proper link
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Fig. 9 Linear regression of inflows to Lake Eyre vs coral fluores-
cence intensity; (a) two-parametric linear regression; (b) one-
parametric linear regression with supressed intercept; and (c) two-
parametric linear regression for non-zero inflows.

between the coral proxy and the flood data. This is because
one is likely to obtain negative values of inflows to the lake
for low values of intensity of coral fluorescence. This defi-
ciency is eliminated if the intercept is set to zero (i.e. in the
case of one-parametric linear regression, also shown as line b
in Fig. 9). The fit can be improved if the linear regression
excludes the zero yearly inflows to Lake Eyre. That is, one
looks for the linear relation (line c in Fig. 9):

inflow = function (coral intensity | inflow > zero).

However, it does not seem possible to identify if the
condition of non-zero inflow is fulfilled, drawing from an
exterior information. Fig. 10 shows the multiple box-plot of
inflows to Lake Eyre for different classes of coral fluores-
cence. It can be seen that zero inflows occur for all magnitude
classes of coral fluorescence intensity, whereas for the lowest
class even the 75 per cent quantile of inflows is zero. The
probabilities of zero inflow in particular coral fluorescence
classes read: 0.79 for the class from 0 to 100,0.58 for the class
from 100 to 200,0.41 for the class from 200 to 300, and 0.08
for the class over 300.

The relation between the coral proxy data and the inflows
to Lake Eyre is the result of some dynamical process. Causal
relationships call for an input-output dynamical model
linking the flows of the River Burdekin (model input) and the
coral fluorescence intensity (model output). If linear formu-
lation is used, one gets the following convolution integral
valid for an initially relaxed case:

y(t)

t

38.4 —

28.8 —

19.2 —

0-100 100-200 200-300 over 300

Coral fluorescence intensity

Fig. 10 Multiple box-plot for different zones of coral fluorescence
intensities.

where x(t), h(t), y(t) denote the input function (flows of the
River Burdekin that are believed to be closely linked to the
process of inflows to Lake Eyre), impulse response (kernel
function of the linear integral operator) and the output
function (coral fluorescence intensity), respectively. The
symbol * denotes the operation of convolution.

However, what one needs is the inverse model producing
the flows of the River Burdekin (and, further on - inflows to
Lake Eyre) from the coral data. Input reconstruction is a
difficult, and mathematically ill-posed, problem. The theory
warns that even small inadequacies in the data available for
an inverse problem may render the result of identification
unstable. Moreover, the available yearly data are not suffi-
cient for identification of such dynamics. This results from
the analysis of cross-correlation between the two series (Fig.
11), where a significant value is attained only for the lag zero.

CONCLUSIONS

T) x(r) dT = h(t) * x(t)

The process of inflows to Lake Eyre involves a very high
degree of hydrological uncertainties. The most essential
uncertainty aspects in the process of floods of Lake Eyre are
as follows.

(a) The observations gathered until present (gauge records)
pertain to runoff from a portion (some 40 per cent only) of
the area of Lake Eyre basin.

(b) The available records (biased as noted under (a)) cover the
time span of 40 years only, that is the period of data for
identification and validation of the rainfall-runoff model is
very short. Therefore the recommended split-sample tech-
nique cannot be used.
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(c) The accuracy of rainfall-runoff model (used for augment-
ing the available time series) for arid conditions may be
lower than for humid or moderate conditions, where the
idea of the unit hydrograph and alike concepts has been
developed and widely applied.

(d) In order to validate the coral fluorescence-inflow relation-
ship one disposes with 40 years of observations (cf. (a)) that
can be augmented by results of rainfall-runoff modelling
(see remarks (b)-(c)) to 100 years. This may be still too little
for the rigorous split-sample approach.

(e) The coral proxy analysis is based on the assumption of the
same climatological forcing of both the River Burdekin and
Lake Eyre basins. However, the River Burdekin basin,
although adjacent to the Lake Eyre basin, has not always
been subject to a similar precipitation regime (anomalies
identified by Isdale & Kotwicki, 1987). There were numer-
ous periods of different behaviour of the process of flows of
the River Burdekin and of the inflows to Lake Eyre. It was
not uncommon that the spatial coverage of rainfalls did not
embrace both basins. As the Lake Eyre basin itself is huge,
different climatic conditions can occur simultaneously in
various parts of the basin.

(f) It is only in cases of high flow that the land-derived organic
compounds are transported to Pandora Reef.

(g) There is a large distance between the gauge at the River
Burdekin and the site of coral colonies studies. There may
be additional uncertainty factors influencing the long range
transport process.

(h) The process of inflows to Lake Eyre is extremely complex. It
is driven by several mechanisms and therefore the sample is
heterogenous. This is clearly seen in the examples of 1984
and 1989, when contrary to most of historical records, the
bulk of inflows was provided by the ephemeral rivers west
of Lake Eyre. These rivers were typically dry during other
events. It is believed that after having removed the hetero-
genity of available records, a significally better correlation
with coral proxy data would be achieved.

Fig. 12 shows the cause-effect structures used for exten-
sion of available records. There are uncertainties contained
in the rainfall-runoff analysis shown as the line 1 (e.g.
difficulties in obtaining the average rainfall, questionable

Broad climatic forcing I
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Fig. 12 Cause-effect structures for extension of available records.

applicability of a lumped model with average precipitation as
the lumped input). The cause-effect structure of the relation-
ships between the coral proxy data and the inflows to Lake
Eyre is far more complicated (line 2 in Fig. 12). It is an inverse
problem combined with inferring on an adjacent system.
That is, coral proxy reconstruction of past inflows to Lake
Eyre is almost a hopeless task. However, despite all the
uncertainties in the cause-effect links, Isdale & Kotwicki
(1987) had the right to draw the following corollaries from
their studies.

(a) The vast area of the Australian landmass comprising both
Lake Eyre and the Burdekin River basins endures a
common broad climatic forcing, which is the Southern
Oscillations or some function of it; and

(b) the coral proxy record may be used to hindcast annual scale
paleohydrological sequences (and ENSO periodicities) for
several centuries before the modern instrument period.

Considering the process of inflows to Lake Eyre one can
possibly notice some analogy to the Galilean statement on
the infinitely complex movement of a single droplet of water.
This complexity does not hamper the specialists to forecast
routinely the movement of water masses (flood waves) in
open channels. The complexity at the microscale turns into
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simplicity at the macroscale. It is not to say that on this scale
the problem suddenly turns simple. However, it is possibly
closer to our scale of perception and its solution is more
adequate to the scarcity of data which can be collected.
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ABSTRACT If hydrological systems and properties of their input are changing year to
year the stationarity assumption of hydrological time series could not hold any longer. The
non-stationarity may occur due to the global climate changes and continued man-induced
transformations of river basins. The assumption is made that the time series of annual values
of hydrological variables are non-stationary, which in fact can be tested statistically. Then the
question arises how to use such series in hydrological design if the structure is to be
dimensioned on the statistical base. It seems reasonable to try to extend the existing statistical
procedure to cover such a case. Following this line it is proposed to keep the type of
probabilistic distribution constant and to allow its parameters to vary in time. Estimation of
time dependent parameters is described. Various hypotheses regarding the form of time
dependence can be compared and significance of the dependence tested. In order for a
hydraulic structure to be dimensioned, its period of life shall be defined, while probability of
exceedance or economic risk shall refer to this period. If the same trend in the parameter
change is to be preserved in future, it will enable extrapolation of parameter values to every
year of the life period and then to evaluate the probability distribution for the whole period of
life.

INTRODUCTION PROBABILITY DISTRIBUTIONS

Many works devoted to problems of the global climatic
change and of the anthropopression within the scale of the
drainage area, have appeared in recent years. This may
advocate postulating the existence of a trend of the hydrolo-
gical regime, which directly influences the procedure to be
taken in hydrological design. The fact has to be accounted
that recorded time series of annual values of hydrological
variables cannot be further treated as stationary. Therefore a
question arises how to deal with the non-stationary realiza-
tion within the design process, if dimensioning of a structure
results of a statistical analysis.

The presented work is an attempt to expand the existing
design procedures, by the presumed non-stationarity, which
so far have been based on the stationary assumption.

In the hitherto existing practice a probability distribution of
occurrence of the phenomenon was assumed unchangeable
from year to year. Thus parameters gj of the distribution of
the variable X

f(x9gl9...,gm) (1)

can be estimated from its random sample of x
= (xl9 x29..., xi9..., xn)9 by using one of the standard estima-
tion techniques, e.g., maximum likelihood method with the
condition of maximization of likelihood function (or its
logarithm):

L=Y\f(Xi>gl>'~>8m) (2)

39
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A very convenient consequence of the assumption of
stationarity is the non-significance of random gaps in obser-
vational series and the validity of the determined distribution
in an arbitrarily long time horizon.

Rejection of the stationarity assumption means that the
probability distribution:

PARAMETER ESTIMATION

J v * > S t , 1 > § t , 2 * ' ' * > o t , ! > • • • > S t , (3)

is time dependent. Assume here, that the type of distribution
remains unchanged. The immediate problems are the one of
estimation of parameters in every observation year, as it only
gives one realization of the random variable X, as well as the
one of prediction of distribution for the period correspond-
ing to our practical or research interests. If we eliminate the
possibility of physical estimation of parameters, arbitrary
assumption of time dependence structure of distribution
parameters is essential to solve the problem. It can have a
variant character and concern only one or more parameters,
whereas the remaining parameters are left as invariable with
time, and the decision about the choice of a variant should be
based on statistical tests.

Lower order statistical moments have a clear interpre-
tation, which makes it easier to build hypotheses on the
temporal trend of the distribution. Therefore, we shall
replace the original distribution parameters gti with
moments using relations for each type of distribution, avail-
able in the literature. Here the moments will be estimated by
the maximum likelihood method, and not by the method of
moments. In order to simplify the notation the cumulants kt

will be used, which are functions of moments (Fisz, 1963). It
can be easily shown that the first cumulant is equal to the first
moment about the origin, whereas the second and third
cumulants are equal to the second and third central
moments, respectively. Thus

Jx,t J\X9 ktA* ^/,2» • • • 9 kf,ir> • • • 9 kt, (4)

Assume, for simplicity, that only one cumulant, e.g. the
first one, is time dependent

fx, t ~f(x> ktl9k2,...,km)

and let the dependence be linear

(5)

(6)

where the notion k0l refers to the first cumulant in the year
preceding the first year of observation, i.e., for t = 0. Then the
probability density function may be written as

It has only one parameter (a{) more than the appropriate
density function for a stationary case (equation (1)).

The maximum likelihood method for parameter estimation
will be applied here. In case of gaps in observations, t is the
time index and not the successive number in the observa-
tional series. Therefore, if the observations (also with gaps)
cover a period T years, then estimated parameters will be
obtained from the condition:

max 2,-,km,au (8)

whereas, according to the idea of creating the likelihood
function, no observation in the year /, is represented in the
likelihood function as the probability of the certain event,
that is

+ 00

I (9)

ACCURACY OF QUANTILE ESTIMATION
FOR AN INDIVIDUAL YEAR

The variance-covariance matrix of distribution parameters
estimated by the maximum likelihood method may be
obtained (e.g. Wilks, 1950; Schmetterer, 1956; Kaczmarek,
1960) by determining the following Jacobian

r yin in (10)

where (&,#,-) = {kOtl,k2,...,km,ax}. Substituting the estimates
of parameters obtained from equation (8), and then inverting
it one gets the variance-covariance matrix:

(11)

where r is the correlation coefficient between the estimation
errors of appropriate parameters and o{.) is the standard
error of the parameter in question. In practice the accuracy of
the estimated quantile of defined probability of exceedance is
used. In the non-stationary case this may concern the indivi-
dual year t, or a period being its multiplicity. Let the
probability distribution (7) in the individual year t be
expressed in the form:

^ , , ^ ifl,) (12)

and then let us determine the functional matrix
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(13)

where gt and gj are the same as in equation (10), and the
partial derivatives are calculated in points corresponding to
estimated values of parameters. The variance of quantile xpt

may approximately be defined (e.g. Hald, 1952) as the sum of
products of appropriate matrix terms defined by equations
(11) and (13).

*2(*,.i) = 2>*fy (14)

Note that accuracy of estimation is derived under assump-
tion of knowledge of the 'true' form of the probability density
function and of the exact observation data. We shall soon
return to the problem of defining the quantile and its
accuracy for a period of several years.

COMPARISON OF HYPOTHESES ON
NON-STATIONARITY

Let us assume two hypotheses concerning the type of non-
stationary functions (4):

whereas e.g., / ^ may be expressed by (7), and
contain a linear trend in standard deviation

where

(15)

may

(16)

(17)

Another simple possibility, producing one extra para-
meter only, is to accept a linear trend in the average value kx

and in standard deviation k\% maintaining a constant varia-
bility coefficient Cv:

ot=Cv(mQ + axi) (18)

A very satisfactory method of comparison of hypotheses is
the quotient test (Fisz, 1963; Kaczmarek, 1977) defined as the
ratio of likelihood functions calculated for both discussed
hypotheses:

(19)

Verification of alternative hypotheses involves defining to
which of three areas (Ho, no basis to make a decision, or Hx)
the value of the ratio (19) belongs.

Competing with the above quotient test is the information
criterion proposed by Akaike (1971). It states that when
several competing hypotheses are being estimated by the
method of maximum likelihood the one with the smallest
value of the Akaike's Information Criterion (AIC):

AIC = - 2(minimum log likelihood) + 2(number of
independently adjusted parameters) (20)

should be chosen as the best one. If some hypotheses give the
same minimal value of the AIC then the one with the smallest
number of free parameters is the best.

HYDROLOGICAL DESIGN

Hydrological design involves consideration of risks. A
water-control structure might fail if the magnitude of a
hydrological variable exceeds the design value within the
expected span of life of the structure.

Assume that the design life period of a hydraulic structure
is known, i.e., the year ts when it is planned that it will come
into operation and the design life is Tt years. This construc-
tion must be dimensioned with regard to the magnitudes of
the hydrological variable X expected within the period TQ

years (e.g. the maximum annual discharge). Assume also that
the probability distribution/(*, T) of the random variable X
in each exploitation year T = 1,2,...,TQ is known in the
meaning of the structure of the density function and its
parameters. The relation, essential for extrapolation,
between the time index of the observational series /, and the
time index of the exploitation period T is in the form:

T = t-T-A (21)

where A is the length of the period in years between the last
included observation in the time series and the beginning of
the exploitation period of the structure ts. Then, assuming,
similarly as in the stationary case, the independence in the
time series, the probability of exceedance of the level x by
maximum values A'in the period of Te years attains the form:

(22)PTe(X>x)=\-J]

while probability of nonexceedance

00

PT,(X<x)=l-Y[ [f(x,t)dx
T - l J

(23)

Probability distributions prepared for the life period of the
structure would serve to determine the design value for the
given risk of failure during the expected life of structure.
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==0

(26b)

(26c)

Using the principles of the combinatorial analysis prob-
ability of ra-fold exceedance (m = 1,2,..., re) of the assumed
level x in the period of Te years may be additionally
determined.

Proceeding in a similar way, the optimal economic risk-
based design procedure (cf. Prichett, 1964) can be adjusted to and its solution gives following estimators of the parameters:
the non-stationary case. —_ -

« , = 4 ^ (27)

d\nL
dax

dlnL

dG

1 T

T
_i

G

(xt m0 axi)

1 *

QUANTILE ESTIMATION ERROR

Determination of accuracy of quantile estimation with a
given probability of exceedance in the life period of the
water-control structure is of essential practical significance.
Let us assume, for example, that only the first cumulant is
non-stationary, as in equation (6). Then, using an inverse
transformation we may write equation (22) in a form analo-
gous to equation (12):

x —xl/ivTtfc tc tc CL ) (24)

Transformation of equation (22) to the form of equation
(24) and determination of the functional matrix (equation
(13)) will, in general, be possible in the numerical way only.
Knowing the matrix M (equation (11)) and the matrix N
(equation (13)) the quantile estimation error may be deter-
mined from equation (14).

EXAMPLES

If a normal, log-normal, exponential, or Fisher-Tippett type
I (max) distribution is assumed, then depending on the
hypothesis concerning non-stationarity, one can obtain ana-
lytical results. Although, because of asymmetry of distribu-
tions the normal distribution has limited application in
hydrology, it will be used for exemplification. There are
several reasons for that. This simple distribution allows one
to get analytical results. The estimations obtained by the
method of moments and by the maximum likelihood method
are identical, and the linear trend in the mean value is
expressible by the known regression equation. For conve-
nience only we shall assume no breaks in the time series.

Take the hypothesis of linear trend in a mean value, i.e.,
k(l—k0l-\-alt (equation 6), whereas k2 = const.:

/*.,=
1

<7(27T)
1/2 exp

2G1

and

Tt=l
 Xt m° "l X m°

Considering in equations (27)-(29) that

_ r+1

and

r = -

one obtains

12

1)

— T+1

mo = x — ax

[i !)p!L^j

(28)

(29)

(30)

(31)

(32)

(33)

(34)

The variance-covariance matrix reads:

/Z)2(m0)/x1,(»i0,fl1

M= | D2(a{)

f2(2T+ X)G2

T(T- 1)

(35)

(25) Equation (12) takes the form

wheremo = kol, cr2-k2, t—\,2,...,T. p''

System of equations of the maximum likelihood method: where zp is the lower integral limit:

d\nL 1 £
= —2 X (xt-m0-alt) =

om0 o t=\
(26a) + 00

exp(-z2/2)dz.

(36)

(37)
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The functional matrix reads:

/I t

tzn (38)

Thus, the accuracy of the quantile estimation (36) can be
expressed, as:

2 a2

The parameter a, on the right hand side of equation (39),
can be expressed in terms of the parameter

under the stationarity assumption, the drift parameter {dx),
and the length of records (T):

5. 10. 15. 20. 25. 30. 35. 40. 45. 50.

12'
-1) (40) Fig. 1 The ratio of mean squared errors R = G2(XPJ)/G

2(XP) for
p = 50%, T= 30, and various ratios (aJ6s)

2.
In a limiting case all variability of the process xt is caused

by the time drift and then 6 is equal to zero while <rs takes its
lowest possible value re

(41)

In the stationary case the mean-square error of the quan-
tile estimation is given by

Introducing a standardized variable

^
x — mr

(42)

(45)

(46)

The ratio, R, of the mean-squared errors can serve to
assess the consequence of the non-stationary hypothesis in
regard to the mean value

one obtains the probability distribution for the design life of
a structure in the form:

(x-mx)/a

T2-\ i+0-fa']

with minimum for

t={T+\)j2

(43)

(44)

Fig. 1 presents, for/? = 50% and T=30 years, and for
various ratios (djas)

2, the value ofR versus t. Note that a loss
in accuracy in reference to the stationary case does not
depend on the sign of the parameter dx and is greatest for
^ = 0.

Equation (22) for the normal distribution takes the form:

Assuming T=30 years, A = 5 years (i.e. /s = 35 years),
re =50 years, mo= 1000, a{ = 2, and <r=300, we obtain the
following estimations of quantiles xpTeJ: 1785, 1983 and
2187 for Pre=50%, 10%, and 1%, respectively. The func-
tional matrix (equation (13)) was estimated numerically and

(48)

Multiplying appropriate terms of the functional matrix
(equation (48)) and of the variance-covariance matrix (equa-
tion (35)) we obtain the mean square error of the quantile
estimate. Fig. 2 presents the probability distribution

for PT= 50% it reads:

/1.00

N(Pre=50%) =

\

63.53

4036.65

2

139

4

.20

.67

.83
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Fig. 2 The probability distribution of exceedance with confidence
intervals for the confidence level /? = 95%.

(b) even if make a proper estimation and choice, the modelling
of non-stationarity is connected with the introduction of
additional parameters that are estimated for the time series
available.

The latter increases the error of the quantile estimation, and
this error grows with the increasing time horizon of
extrapolation.

Existing design procedures based on the risk expressed in
the terms of the probability of failure or in the terms of the
expected economic losses during the life time can be adjusted
to the non-stationary case and applied if only the form of
non-stationarity has been identified.

However, the problem remains open, whether the descrip-
tion of the phenomenon in the form of a stochastic process is
to be included in the project, or (as done here) the random
variable framework is to be used. The available realizations
of annual values can be treated as a Markov type process in a
procedure of estimation by the maximum likelihood method,
developed here.

exceedance with the confidence intervals for a confidence
levels = 95%. R E F E R E N C E S

C O N C L U S I O N S

In the stationary case, the hydrological uncertainty of water-
control structure design, is the result of the non-representati-
veness of a short random sample available, randomness of
the phenomenon concerning the life period of the structure,
error of measurement, and arbitrariness of the choice of the
type of probability distribution. In the non-stationary case
this uncertainty is increased because:

(a) one does not know in what way it is manifested (this can be
only estimated by statistical tests); and
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New plotting position rule for flood records
considering historical data and palaeologic
information
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ABSTRACT The graphical curve fitting procedure has been favoured by many hydrolo-
gists and engineers, and the plotting positions are required both for the display of flood
records and for the quantile estimation. The existing plotting position formulae which
consider historical floods and palaeologic information are reviewed and discussed. The
plotting positions for systematically recorded floods below the threshold of perception must
be adjusted to reflect the additional information provided by the pre-gauging period if the
historical flood data and the systematic records are to be analyzed jointly in a consistent and
statistically efficient manner. However, all available formulae are unlikely to adjust these
plotting positions properly. It is felt that the traditional rule and exceedance rule assumptions
are inconsistent with the floods over and below the threshold of perception of historical
floods. A new type of formula is proposed and examined. Simulation studies and numerical
examples show that the new formula type performs better than the traditional rule and
competitive to the exceedance rule. The Weibull based formulae result in large bias in quantile
estimation. If an unbiased plotting position formula were required, then the proposed
modified exceedance Cunnane formula would be the best selection.

INTRODUCTION

Probability plots are much used in hydrology as a diagnostic
tool to indicate the degree to which data conform to a specific
probability distribution, as a means of identifying outlier, in
order to infer quantile values. Probability plotting positions
are often used for the graphical display of annual maximum
flood series and serve as estimates of the probability of
exceedance of those values. They also provide a non-para-
metric means of forming an estimate of the data's probability
distribution by drawing a line or a curve by hand or
automated means through the plotted points. Because of
these attractive characteristics, the graphical approach has
been favoured by many hydrologists and engineers. It has
been widely used both in hydraulic engineering and water
resources planning. For example, a graphical curve fitting
procedure which depends on plotting position formula was
recommended as a standard method of design flood estima-
tion in China (MWR, 1980). Probability plots were recently

recommended by the National Research Council of U.S.A.
(1985) as a basis for extrapolation of flood frequency curves
in dam safety evaluation. Although the U.S. Interagency
Advisory Committee on Water Data (IACWD, 1982) advo-
cated the use of the method of moments to fit the log Pearson
type 3 distribution to observed flood data, their recommen-
dation also include the use of probability plots. Clearly,
probability plots play an important role in statistical hydro-
logy.

The plotting position formulae express the relationship
between order number of order statistic and corresponding
average frequency value of that statistics over a large number
of samples. Most of them originated from the theory of order
statistics and they measure the central tendency of the
distributions of either F(xt) or xt. Probability plotting of
hydrologic data requires that individual observations or data
points be independent of each other and that the sample data
be representative of the population.

To date, more than ten plotting position formulae have

45
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appeared in the literature. Most of them, in situations where
no pre-gauging floods are considered, may be expressed as
special cases of the general form

l — OL
1 = 1 , . . ., (1)

where Pt is the plotting probability of the / th largest value, s is
the sample size (systematic record) and a is a constant.

For the Weibull (1939) formula a = 0, for the Cunnane
(1978) formula a = 0.4, while a = 0.44, and a = 0.5 are
Gringorten (1963), and Hazen (1914) formulae, respectively.
Cunnane (1978) and Harter (1984) provided detailed reviews
and discussion on this subject. Much of the disagreement and
confusion as to the choice of plotting positions is due to the
fact that the cumulative distribution function (cdf) at the
expected value of the /th order statistic is not equal to the
expected value of the cdf at the /th order statistic, except in
the case of the uniform distribution, i.e. F\E{xt)]
±E[F(xi)] = i/(s+ 1), in which / is the rank of the sample,
and the expression i/(s+l) is the familiar Weibull (1939)
formula. The plotting position F[E(xi)] leads to unbiased
estimates of the values of a measured variable corresponding
to particular values of the cumulative probability. This
criterion should be considered as the best one for the purpose
of flood quantile estimation (Cunnane, 1978). Only the
Weibull and Cunnane based formulae will be discussed in
this paper due to their widespread use in practice. The
Gringorten (1963) and Hazen (1914) formulae are not con-
sidered in this study since they are similar to Cunnane
formula.

The methods and the value of historical floods or palaeolo-
gic information, for improving estimates of flood quantiles,
have been discussed by many authors (Stedinger & Cohn,
1986; Guo, 1990). Historical flood peaks reflect the fre-
quency of large floods and thus should be incorporated into
flood frequency analysis (NERC, 1975; MWR, 1980;
IACWD, 1982 and Hirsch, 1987). They can also help to judge
the adequacy of an estimated flood frequency relationship.
Appropriate plotting position formulae are required for the
graphical display of real data and serve as the estimates of
design floods.

The existing plotting position formulae for historical
floods and palaeologic information are reviewed and dis-
cussed. This paper emphasizes the development of a probabi-
listic model of flood records, which include pre-gauging
information, the use of that model to develop reasonable
plotting position formulae and the evaluation of these esti-
mators in comparison with others. Finally, the unbiased
plotting position formulae for historical data and palaeo-
floods are identified and recommended.

X

years

Fig. 1 Sketch of the annual maximum flood series when the
historical information is available, in which the total number of
known floods g = k + s - e.

REVIEW OF EXISTING PLOTTING
POSITION FORMULAE FOR PRE-
GAUGING FLOOD DATA

Various formulae have been proposed for estimating the
exceedance probability of flood discharges in annual maxi-
mum flood series which include systematic records as well as
historical information. The major citations on this subject
include Benson (1950), Qian (1964), NERC (1975), IACWD
(1982), Hirsch (1987) and Hirsch & Stedinger (1987). Some
useful notation is introduced in Fig. 1, largely following the
one presented by Hirsch (1987). There are a total of g known
flood magnitudes in n years. Of these floods, k are known to
be the largest k values in the period of n years. The n year
period contains within it some systematic (gauged) record
period of s years (s<n). Of the k largest floods, e of them
occurred during the systematic record (e < k, e < s). Note also
that g = k + s-e. We assume that there is a threshold of
perception Xo such that the k largest floods are larger than or
equal to it and the remainder are smaller that it and that all
floods greater or equal to Xo over the n years should be
known.

Notation used reads:

n - historical period;
s - length of recently recorded series;
m - pre-gauging period (m = n — s);
Xo - threshold of perception;
r - number of floods exceeding Xo within m years;
e - number of floods exceeding Xo within s years;
k — total number of floods exceeding Xo within n years

g - total known flood magnitudes in n years (g = s + k — e).

Benson (1950) first discussed the use of historical infor-
mation to improve flood estimates on the Susquehanna river
at Harrisburg. He proposed the following plotting position
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formula to display historical data and to estimate flood
quan tiles.

P,=
n+\

n — k i—k
(2)

n+1 n+1 s—e

Qian (1964) derived a plotting position formula which is
more closely based on the Weibull rule

• /I+l

* /!-*+!

1 = 1 , . . . , *

i-k
(3)

n+\ /i+l s-e+l

This latter formula is recommended by Chinese authori-
ties (MWR, 1980) as a standard formula to calculate prob-
ability plotting positions in the graphical curve fitting pro-
cedure. Equation (3) implies that the probabilities are
uniformly distributed over the range k/(n+ 1) (the plotting
position of the smallest extraordinary flood) and 1 for the
floods below the threshold. NERC (1975) suggested using
Gringorten formula (1963)

P,=
/-0.44

H + 0 . 1 2 '
(4)

to calculate plotting positions for extraordinary floods
(above the threshold of perception Xo and formula

/> ,=-
i-k+e-0A4

5 + 0.12 '
(5)

for the floods below the threshold Xo. This rule at least has
two problems. One is non-monotonicity when these floods
are displayed on the probability paper. Another problem is
that large gaps can occur between the probabilities assigned
to the floods above or below the threshold of perception.

IACWD (1982) recommended the following formula,
based on Hazen's formula, for determining flood flow
frequency

i-0.5

k + 0.5 n-k i-k-0.5
(6)

W+l s~e

Some formulae simply extend equation (1) to form a new
formula when pre-gauging information is available and can
be characterized by the form

i —a

P,=
n+l-2a

i — k — cc

s-e+\-2a

(7)

where

* - a

* w + l - 2 a

Equation (7) is a general form of traditional rules defined
by Hirsch (1987). These formulae are referred to herein as the
Weibull (W) formula when a = 0, Cunnane (C) formula
when a = 0.4, etc.

Recently, Hirsch (1987) and Hirsch & Stedinger (1987)
introduced the concept of exceedance probability Pe and
proposed a group of formulae which can be expressed in a
general form as

I-OL

k+l-2a
(8)

s-e+l-2a
/ = *+! , . . . ,g

which is the same as equation (7) but with Pe estimated by a
particular Pk. Equation (8) is referred to as exceedance rules.
This result is based on the fact that Pt is an order statistic of a
uniformly distributed random variable. These order statis-
tics follow a beta distribution regardless of the distribution of
discharge. The exceedance probability (Pe) for Xo can be
estimated by maximum likelihood (and method of moments)
both of which estimate is as k/n. From equation (8), one can
form an exceedance Weibull (E-W) formula by setting a = 0,
an exceedance Cunnane (E-C) formula with a = 0.4, etc.

A PROPOSED NEW FORMULA
GROUPING

The plotting positions for systematic record floods below the
threshold must be adjusted to reflect the additional infor-
mation provided by the pre-gauging period if the historical
flood data and the systematic record are to be analyzed
jointly in a consistent and statistically efficient manner.
However, all available formulae are unlikely to adjust these
plotting positions properly. Consider the plotting positions
for the floods less than Xo. Both the traditional rules (equa-
tion 7) and the exceedance rules (equation 8) simply assume
that the probabilities of s — e floods are distributed either in
the range of Pk to 1.0 or PQ to 1.0 (see Fig. 2). This assumption
is inconsistent with the plotting positions over and below the
threshold, because the plotting positions of the k largest
floods are calculated on the historical period «, and the values
range either from 0.0 to Pk or from 0.0 to PQ. The inconsis-
tency of the formulae in treating the two parts of the sample
may cause the separation between pre-gauging floods and
systematic records when these flood data are plotted on the
same probability paper. Therefore, it would be more reason-
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able to distribute n - k floods (less than Xo) over the range of
Pk to 1.0 for the traditional rule or Pe to 1.0 for the
exceedance rule. Since n-s-k + e pre-gauging floods which
are less than threshold Xo are unknown, the concept of
historically weighted moments, recommended by USWRC
(1981), can be used to form a new formula grouping. It has
been shown by Hirsch (1987) as well as by Hirsch and
Stedinger (1987) that the exceedance rule formulae (equation
8) are better than the traditional rule (equation 7). Hence, a
group of modified exceedance rule formulae is proposed here
with the following form

l — OL

A;+l-2a e /=! , , . . . 9k

i-k-oc
(9)

n-k+l-2oi

in which the weighting factor (W) is defined as

n-k
w=-

s — e
(10)

As before, one can form a modified exceedance Weibull
(M-E-W) formula by setting a = 0 and substituting equation
(10) into equation (9), which results in

i k

k+l n

n — k i —

1=1, . . . ,*:

n — k
+ + + /=fc+l,...,g

n n n—k+\ s — e

A modified exceedance Cunnane (M-E-C) formula can be
obtained by setting a = 0.4.

/-0.4 k

3.2 n
1 \k n-k i-k-OA n-k

n n n — k+0.2 s — e

(12)

COMPARISON BETWEEN PROPOSED
FORMULAE WITH TRADITIONAL RULE
AND EXCEEDANCE RULE

Hirsch (1987) and Hirsch & Stedinger (1987) considered the
bias in probability, and bias in discharge of both traditional
rule and exceedance rule based plotting position formulae for
the case of / < k (floods greater than or equal to Xo, which are
the cases of greatest interest in terms of design flood estima-
tion). In terms of bias with respect to probability, a desirable
plotting position is that E[Pt] - E[PJ should be small, where
E[PJ is the expected value of the probability plotting
position of the /th largest flood and E[Pt] is the expected
value of true exceedance probability of the /th largest flood.

1.0

Fig. 2 Sketch of the probability plotting position values for tra-
ditional rule (Pk) and exceedance rule (Pe).

While bias in discharge is defined as the difference between
E[Qt] (the expected value of the /th largest flood) and
E[F~ * (1 - Pt)]9 in which F~l is inverse distribution form and
Pt is estimated by plotting position formula. With limited
Monte Carlo experiments and numerical analysis, they con-
cluded that with combined historical and systematic records,
no rule appears unbiased in terms of probability, while the
Gringorten and Hazen based formulae all appear relatively
unbiased in terms of discharge. The appropriate choice of
historical period n and the consequences of values often
employed, the impact of uncertainty as to the value of Xo and
the effect of multiple historical record lengths have also been
discussed by Hirsch and Stedinger (1987) in their appendix
A, B and C.

Since the proposed formulae are exactly the same as the
exceedance rule for the case of floods over the threshold of
perception Xo, the conclusions made by Hirsch (1987),
Hirsch & Stedinger (1987) are also valid for the new pro-
posed formulae. However, the criteria used by them to
compare different plotting position formulae have some
limitations. As we know in practice, the floods over threshold
of perception are quite few, and systematic records also affect
design flood estimates. Therefore, it is desirable to consider
all the sample values (both systematic records and pre-
gauging data, i.e. i=l,k9...,g) rather than using the floods
over the threshold (i<k) only in comparison.

In order to determine which group of plotting position
formulae are the most suitable for pre-gauging floods,
another two experiments based on the criteria of the descrip-
tive ability and predictive ability of the formulae are pro-
posed. The former criterion relates to the ability of a chosen
formula to describe the flood data, while the latter criterion
relates to a procedure's statistical ability to achieve its
assigned task, such as minimum bias and maximum
efficiency of quantile estimation (Cunnane, 1987). In this
study, five plotting position formulae are considered: Wei-
bull (W), exceedance Weibull (E-W), modified exceedance
Weibull (M-E-W), exceedance Cunnane (E-C) and modified
exceedance Cunnane (M-E-C).



5 NEW PLOTTING POSITION RULE 49

Experiment 1 (test of descriptive ability)

The graphical data display method is used to compare the
fitting ability of different plotting position formulae. The
general extreme value (GEV) distribution is commonly used
for flood frequency analysis (NERC, 1975), and the Gumbel
(EV1) distribution is a special case. Therefore the GEV
distribution is chosen for this experiment. Under the assump-
tion of GEV parent parameters, 10000 traces of data are
generated by Monte Carlo experiments. It was decided to test
the fitting for two cases of data which often meet in practice:

(a) n = 50,
(b) «=100

30, k = 2, and e = 0

Two types of censored sample are defined by statisticians
and the distinction between them depends on the process that
created the sample. With type II censoring, a fixed number of
the smallest or largest observations are removed regardless
of their magnitudes. The type II censoring method is used to
simulate a sample series from case (1). Fifty random variates
are generated and the largest and second largest values are
considered as historical floods. The first 20 values generated
are then censored, excluding the two largest values if they fell
in that group. Similarly, we can simulate case (2) data series.
Each censored sample series is ranked in descending order,
i.e. Xx > X2 >... > Xs_e>... > Xg. The ranked values are then
averaged over the 10000 samples to obtain X(i) values which
represent the parent population E[X(]

1 10000

IOOOO r=
(13)

One can obtain g values of exceedance plotting probability
P(/ ) J from each of the formulae, j= 1,2,3,4,5. Then for the
GEV parent population, the corresponding variate value of
X^j can be calculated by

(X

1{

p=o
(14)

in which w, a and ft are location, scale and shape parameters
of the GEV distribution, ij represent sample order and
formula used respectively. X^jis the ith order statistic value
from the GEV population corresponding to they th formula.
The values (X(i)J; i= l,2,...,g) are considered to be a rep-
resentative sample (not necessarily random) from the popu-
lation. If they th formula is unbiased then X(i)J should equal
Xiof equation (13).

Since the probability paper for the GEV distribution is
commercially unavailable, instead the relationships between
X(i) and X^j were plotted in Figs. 3 and 4, in which the 45°
theoretical line is based on the plots of X^ vs X^j. Because

the difference between E-W and M-E-W, E-C and M-E-C
formulae are relatively small in these experiments, only the
results of W, M-E-W and M-E-C formulae are presented for
comparison. Figs. 3 and 4 show the points of the M-E-C
formula are correctly located on the 45° theoretical line and
the points of the M-E-W formula are more close than that of
the Weibull formula at high flood values. The difference
between W, E-W and M-E-W formulae are reduced as the
historical period n is increased.

Experiment 2 (test of predictive ability)

Four populations are considered in this experiment. These
are EV1, two parameter log-normal (LN2), GEV and Pear-
son type 3 (P3) distributions. The theoretical quantile values,
QT, can be easily calculated at given return periods (T= 50,
100, 200, 500, 1000) for each parent. The historically
weighted moments method (USWRC, 1981) was used to
calculate sample statistics, such as mean, Cv and Cs. Then the
parameters and quantiles (QTJ) °f a particular distribution
can be obtained from the corresponding X^j representative
samples. It should be noted here that the choice of the
method of moments is only for the purpose of comparison.
The variate values of X(i)j are calculated for each parent
population and formula

X(i)J=F-l(\-P J;{i)J (15)

in which F l is the inverse distribution form; /, j represent
sample order and formula used respectively. A"(/)J is the ith
order statistic value from the same parent population corres-
ponding to they'th formula. The values (X(i)j; i= l,2,...,g)
are considered to be a representative sample (not necessarily
random) from the population. The relative bias (RB) of
quantile estimates fory'th formula can be calculated by

RBTj=-
QT

(16)

where T is return period. Two different sample groups are
considered:

(1) « = 50, 5 = 20, k = 2 and e=l; and
(2) « = 200,s = 20,A:=10and6> = 0.

Monte Carlo method was used to generate these two
sample groups from the EV1, LN2, GEV and P3 distribu-
tions respectively. The relative biases of quantile estimates
are plotted on Figs. 5,6,7 and 8 for the convenience of visual
comparison. It is clear that the Weibull formula has the
largest bias in quantile estimation for all parents and sam-
ples. In the case of two parameter distributions (EV1 and
LN2), the proposed modified exceedance formulae (equation
9) perform better both than the traditional rule formulae
(equation 7) and the exceedance rule formulae (equation 8).
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(1) n=50, s=20, k=2 and e=0

(2) n=100, s=20, k=10 and e=0

300

250

200 •

A 150
R

100 -

50 -

Fig. 3 Plots of X(i) vs X(i)J for the EV1 distribution with parent
mean=100andC=0.5.

The modified exceedance Cunnane formula (equation 12) is
nearly unbiased in quantile estimation (Figs. 5 and 6). When
dealing with three parameter distributions (P3 and GEV),
both the proposed rule and exceedance rule formulae per-
form better than the traditional rule formulae. The differ-
ences between modified exceedance rule and exceedance rule
are very small and could be neglected (Figs. 7 and 8).

S U M M A R Y AND C O N C L U S I O N S

Historical data and palaeofloods provide a useful source of
information in addition to the recently recorded series. The

(1)

r

mean=100,

Cs=1.903 (/

Cv=0.5

3=-O.l)

and

/ X

)

50 100 150 200 250 300

200

175

150

125

(2) mean=100, Cv=0.25 and

Cs=0.623 (£=0.1)

100 125 150 175 200

Fig. 4 Plots of X(i) vs X(i)J for the EV1 distribution with different
parent populations and sample size n = 50, s = 20, k = 2, and e = 0.

Legend: xxx, Weibull formula; + + +, modified exceedance Cun-
nane formula; and o o°, modified exceedance Weibull formula.

graphical curve fitting procedure has been favoured by many
hydrologists and engineers, and the plotting positions are
required both for the display of flood data and for the
quantile estimation. The existing traditional rule and exceed-
ance rule formulae were reviewed and discussed. The main
objective of this study was to develop new plotting position
formulae when historical data and palaeologic information
are available. The comparison of proposed formulae with
other plotting position rules were conducted by Monte Carlo
experiments. The main conclusions are summarized as
follows:
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Fig. 6 Plots of relative bias of of quantile estimates for the two
parameter log normal distribution with parent mean= 100 and

Fig. 5 Plots of relative bias quantile estimates for the EV1 distri- Cv = 0.5.
bution with parent Cv = 0.5.

(a) The assumption of traditional rule (equation 7) and exceed-
ance rule (equation 8) formulae is inconsistent with the
flood above and below the threshold Xo, which may result in
the separation between extraordinary floods and systematic
records when displayed on probability paper. The recogni-
tion of these limitations leads to the consideration of a new
group of plotting position formulae, which make use of the
same concept as historically weighted moments. The pro-
posed modified exceedance rule (equation 9) is more rea-
sonable since its assumptions about floods above or below
the threshold are consistent.

(b) Hirsch (1987) and Hirsch & Stedinger (1987) have shown
that the exceedance rule formulae are better than corres-
ponding traditional rule formulae in flood quantile estima-
tion. This conclusion has been confirmed in these studies.

(c) Based on the results of experiment 1 (test of descriptive
ability), the modified exceedance Cunnane formula always
performs best. The plots of traditional Weibull formula are
separated from theoretical line at high discharge values.

The results of two simulation experiments show that the
performance of Cunnane based formulae are much better
than that of Weibull based formulae both in the descriptive
ability and the predictive ability. Therefore, there is not any
good reason to continue using Weibull rule in flood fre-
quency analysis, particularly when historical data and
palaeofloods are included.

(d) The modified exceedance Cunnane formula (equation 12) is
the least biased plotting position formula for EV1 and LN2
distributions. The performance of M-E-C and E-C formu-
lae are very similar for three parameter distributions (GEV
and P3). It should be noted here that the performances of
modified exceedance Gringorten formula (set a = 0.44 in
equation 9) and modified exceedance Hazen formula (set
a = 0.5 in equation 9) are competitive with modified exceed-
ance Cunnane formula. If an unbiased plotting position
formula were required for the historical records and
palaeoflood data, then the proposed modified exceedance
Cunnane formula (equation 12) would be the best selection.
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Dispersion in stratified soil with fractal permeability
distribution

M. W. KEMBLOWSKIand JET-CHAU WEN
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ABSTRACT Stochastic analysis of flow and transport in subsurface usually assumes that
the soil permeability is a stationary, homogeneous stochastic process with a finite variance.
Some field data suggest, however, that the permeability distributions may have a fractal
character with long range correlations. It is of interest to investigate how the fractal character
of permeability distribution influences the spreading process in porous media. Dispersion in
perfectly stratified media with fractal distribution of permeability along the vertical was
analyzed. Results were obtained for the transient and asymptotic longitudinal dispersivities.
The results show that the macroscopic asymptotic dispersivity depends strongly on the fractal
dimension of vertical permeability distribution. Macroscopic dispersivity was found to be
problem-scale dependent in development and asymptotic phases.

INTRODUCTION

The impact of heterogeneities on flow and mass transport in
groundwater has been investigated for some two decades.
Usually this type of investigation is performed using a
stochastic, as opposed to deterministic, framework. This
choice is not based on the assumption that the flow process
itself is stochastic, but rather on the recognition of the fact
that the deterministic description of the parameter distribu-
tions would be impractical, if not impossible.

Initial research in this area did not consider the spatial
structure of flow properties, assuming that either they
behaved like the white noise process (lack of spatial correla-
tion), or had a layered structure in the direction parallel or
perpendicular to the flow (perfect correlation in one direc-
tion). The next step was to consider spatial correlation of
flow properties. Various autocovariance functions, including
anisotropic ones, were used to describe the spatial correla-
tion (Dagan, 1984; Gelhar & Axness, 1983). Excellent review
of this research is given by Gelhar (1986). However, in most
of these efforts it was assumed that the correlation structure
of parameter fluctuations is such that the fluctuation vari-
ance is bounded. The validity of this assumption for geologic
formations has yet to be demonstrated. The field data from
the rather homogeneous Borden site indicate that, at least for
this site, the assumption is acceptable. Other sites, however,
show scale-dependent variance and long-range correlations

of subsurface properties (Burrough, 1981, 1983; Hewett,
1986; Kemblowski and Chang, 1993). This evidence
prompted us to investigate the statistical behavior of solute
transport in heterogeneous systems whose properties exhibit
long-range correlations. The statistics of such properties is
described using the concept of fractal, self-similar objects.
Following that, we examine the behavior of a relatively
simple transport problem: two-dimensional (vertical cross
section) solute transport in a perfectly stratified medium (a
medium in which hydraulic conductivity varies only along
the vertical, and is uniform in the horizontal plane).

FRACTAL PERMEABILITY
DISTRIBUTION

Fractal objects are characterized by their self-similar struc-
ture at theoretically all scales, and thus have partial correla-
tions over long ranges. Such self-similarity may be exact, as
in the case of Koch Snow Flake, or statistical, as in the case of
natural objects (Mandelbrot, 1983). The basic assumption of
the classical stochastic analysis of subsurface properties is
that the variance of increments, or variogram, is bounded by
the property's variance (Journel & Huijbregts, 1978).

lim
l=> 00

(1)
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One such variogram, used frequently in mining explo-
ration, is the spherical variogram

(2)

The interval a, where the variogram reaches its maximum
value (y(a) = a2), is called the range. For fractal distribu-
tions, the variogram is not bounded because of the correla-
tions over all scales, and is described by a power law (Hewett,
1988)

7(0 = (3)

where y0 is the variogram value at /= 1, and H is the fractal
co-dimension, which is equal to the difference between the
Euclidean dimension in which the fractal distribution is
described and the fractal dimension of this distribution, D.
Thus, for the vertical distribution of hydraulic conductivity
K, the co-dimension is given by

H=2-D (4)

since such distribution is described in the two-dimensional
space K—z. The statistical self-similarity of distributions
whose variogram is given by equation 3 is indicated by the
fact that variations over any scale r I may be expressed in
terms of the variations over a scale / by

y(rl) = y(l)r2H (5)

where: r = scaling factor.
An important conclusion from this relationship is that for

fractal distributions the variance at any scale can be defined
by the variance estimated at any other scale. This also implies
that for the fractal distribution the variance is scale depen-
dent. The variogram may be related to the two-point auto-
covariance function. The definition of the autocovariance
function of process X is given by

Cx(i) = E{X(z } - E2{X(z)} (6)

The relationship between the variogram and the auto-
co variance function is defined as follows:

yx(l) = E{X\z)} - E2{X(z)} - CX(D (7)

Using this relationship and the Wiener-Khintchine
theorem (Hewett, 1986)

CX(D= \Sx(f)cos(2nfl)df (8)

where: Sx(f) = spectral density of X(z), it can be demon-
strated that the spectral density of the fractal objects will also
have the power-law form,

Sx(f) = Sof~P (9)

where: So = spectral density a t / = 1, and f$ = 2H+ 1.
Thus, the fractal dimension of a given process may be

estimated by approximating the variogram and the spectral
density of the process with linear functions in logarithmic
coordinates. The slopes of these functions are related to the
process' fractal dimension (2H= A-2D and ft = 5 - 2D).

Several sets of hydraulic conductivity data have been
analyzed by Ababou & Gelhar (1989). Their analysis indi-
cates that the vertical distribution of hydraulic conductivity
is characterized by a highly irregular character, with the
fractal dimension used varying to 2.0. In the next section we
will explore the relationship between this fractal dimension
and solute spreading.

ANALYSIS OF SPREADING IN PERFECTLY
LAYERED MEDIA

In this section, we will deal with the impact of the fractal
nature of hydraulic conductivity distribution on the spread-
ing of soluble plumes. The specific scenario considered in this
paper assumes that groundwater flows horizontally in a
perfectly stratified aquifer. Thus, in the horizontal direction
the correlation scale of permeability is infinite, whereas in the
vertical direction permeability is described as a stochastic
process. Mass transport of a conservative tracer in such a
situation consists of horizontal advection, and horizontal
and vertical local (pore-level) dispersion. This transport
problem is described in detail by Gelhar et al. (1979), who
also derived for this scenario a general relationship between
the stochastic structure of hydraulic conductivity and the
longitudinal macrodispersivity. Using their general results,
we will investigate the behavior of macrodispersivity for the
case when the vertical distribution of permeability is fractal.

For a detailed description of the derivation of longitudinal
macrodispersivity the reader is referred to Gelhar et al.
(1979). However, for the reader's convenience, we will review
the major assumption involved in the derivation. Mass
transport of a conservative tracer is described by:

dC di

dt dx

where DL and DT are local (pore-level) longitudinal and
transverse dispersion coefficients, Cis the concentration, and
U is pore-water velocity. These quantities are considered
random processes with:

C(x, z, 0 = , 0 + c(x, z, t),

DL = E[DL],

C= E [C],

E[dL] = 0

E[a\] = 0

E[c] =

= KJ/n= {K+ k)J/n (11)
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where: C(x, t) = average vertical concentration, U= seepage
velocity, K= hydraulic conductivity, ^=mean hydraulic
conductivity, k = hydraulic conductivity variations, / = con-
stant hydraulic gradient, and n = porosity.

These equations and the spectral representations of the
variations of hydraulic conductivity and concentration are
used to derive a mass transport equation for the average
concentration C(x, t). The derivation, based on the approach
first presented by Taylor (1953), neglects the second order
terms in the mass transport equation, and assumes that the
fluctuations in the local longitudinal coefficient of dispersion
are proportional to the fluctuations of hydraulic conducti-
vity, namely:

L = 3/2(k/K) (12)

Based on these assumptions, Gelhar et al. (1979) derived
the following mass balance equation in terms of the vertically
averaged concentration C:

dC d2C d3C d3C
iA + ) U B 3 A U a L - 3 + ...

(13)

) U B 2

+ higher order terms

where: x = x—Ut, A = longitudinal macrodispersivity,

(14)

S(f) = spectral density ofk,b = aTUf2, aT = local transverse
dispersivity, and /= wave number. Parameter B is given by:

(15)
2/4«2 /

Gelhar et al. (1979) concluded that, for the large-time
behavior, the second derivative term in equation (13):
((A + Of) Ud2C/d£2) is the most important term on the right
hand side. The large-time limit of macrodispersivity A is
given by:

f S(f) df
(16)

At this point we can start considering the behavior of
solute transport spreading in media with fractal hydraulic
conductivity distribution. Such distributions are character-
ized by the spectrum:

SJ-* (17)

It is apparent that the spectrum is not bounded when the
frequency approaches zero (S(0) -»Infinity). This can be
easily understood when one remembers that the low frequen-
cies are associated with large distances, and that as the lag

approaches infinity, so does the variogram of a fractal
process. However, in practice size of a transport domain is
finite. Denoting the characteristic vertical dimension of a
soluble plume as Lo, we can redefine the spectral density as
follows:

Sol/I"
0

for />/ 0

otherwise
(18)

where/0= 1/LO. Substituting the fractal spectrum into equa-
tion (16) leads to the following relationship for the asympto-
tic macrodispersivity:

_
inf

2S0Lt2D

aTK2(6-2D)
(19)

It is of interest to investigate the impact of fractal dimen-
sion D on macroscopic dispersivity. The derivative of A with
respect to D is given by:

1
(20)

It can be seen that, except for very small values of Lo,
macroscopic dispersion decreases when the fractal dimen-
sion of K increases. This agrees with our physical intuition.
As the fractal dimension increases, the front of the plume
becomes 'rougher', which leads to more mixing between the
'layers'. This enhanced vertical mixing reduces the horizontal
spreading. Note that for the same reason macrodispersivity
is inversely correlated with local transverse dispersivity. The
positive correlation between macrodispersivity and the frac-
tal dimension for small values of Lo is an artifact which
reflects the fact that by keeping So constant and increasing D
(which is equivalent to decreasing /?), we increase the power
(variance) of the process associated with higher frequencies
(Fig. 1).

A more appropriate way to analyze the correlation
between the fractal dimension and macrodispersivity is to
assume that the variance of K over Lo remains constant. This
variance can be estimated as follows for D< 2:

00 00

= a2
0= J 5(/)d/= J (21)

Substituting this equation into equation (19) leads to:

A 2a\L0)L
2(p-l) 2a2L2(4-2D)

(XTK2(6-2D)
(22)

Thus, the asymptotic macrodispersivity appears to depend
on the problem scale. In particular, it depends on the
characteristic plume thickness and the variance of AT over this
thickness. The derivative of AM with respect to D can be
estimated as follows
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dAinr_ 4<T2L0
2 /4-2D

3D OLTK2(6-2D)\6-2D
— 1 (23)

The behavior of this function for GQLQ/(XTK2 = 1 is shown in
Fig. 2. It can be seen that 3A/SD is in this case (for constant
variance GQ) always negative, and its absolute magnitude
increases with D. This again demonstrates that the higher
fractal dimension enhances the vertical mixing process and
therefore decreases the horizontal spreading.

Fig. 3 depicts the behavior of the normalized asymptotic
dispersivity (the dispersivity is normalized with regard to the
asymptotic dispersivity at D = 1) as a function fractal dimen-
sion D. It can be clearly seen that the asymptotic dispersivity
decreases as the fractal dimension decreases. In fact, for the
fractal dimension D approaching 2, we have the case of
perfect mixing (which is similar to the case of aT approaching
infinity, although in this case the mixing is caused by the fact
that the vertical distribution of K completely fills the x — z

plane). Due to the perfect mixing effect there is no longitudi-
nal spreading related to the heterogeneous velocity field. This
problem can be illustrated by introducing the concept of
effective mixing coefficient, aeffective, defined as follows

aeffectivi

qT(6-2D)

" (4-2/))
(24)

Using this definition, the asymptotic macrodispersivity
may be defined as

(25)

The behavior of the normalized effective mixing coeffi-
cient, aeffective/aT» a s a function of the fractal dimension is
shown in Fig. 4. The effective mixing coefficient seems to be
most sensitive to the changes in the fractal dimension in the
region 1.8 < D< 2. Field data suggest that the fractal dimen-
sion of the vertical distribution of hydraulic conductivity lies
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Fig. 5 Development of the spreading process.

precisely in this region (Ababou & Gelhar, 1989; Kemb-
lowski & Chang, 1993). It may be therefore difficult to
estimate the effective mixing coefficient with adequate accur-
acy, since this would require robust estimation procedures
for D. This problem will be exacerbated when one considers
the actual three-dimensional field situation.

It is worthwhile noting that equation (22) is similar to the
one obtained by Gelhar et al. (1979). There are, however, two
significant differences. First of all, in the fractal case, the
variance of K is scale-dependent, i.e. it depends on the
characteristic plume thickness. Secondly, the correlation
scale in this case is related to the plume thickness itself, since
the vertical hydraulic conductivity distribution has the corre-
lation scale theoretically equal to infinity. To better under-
stand the behavior of the dispersion process, parameter A
has to be evaluated as a function of travel time, or more
specifically, travel distance. Substituting equation (18) into
equation (14) leads to the following result:

— = 1 — exp
4 V (26)

where x = average travel distance, x=Ut, and
= incomplete Gamma function. The behavior of this ratio as
a function of normalized travel distance X=CCTX/LQ and
fractal dimension D is shown in Fig. 5.

It appears that the asymptotic value of macrodispersivity
is reached at X equal approximately to 1, regardless of the
magnitude of fractal dimension. The fractal dimension
influences the development of the spreading process to a
limited degree only. Specifically, the asymptotic value is
reached slightly faster for the higher fractal dimension of K.
It is interesting to note that the travel distance required to
reach the asymptotic behavior depends not only on the pore-
level transverse dispersivity, but also on the scale of the
problem, namely the characteristic vertical dimension of the
plume Lo. Thus, the spreading process in fractal porous

media appears to be scale dependent in the development and
asymptotic phases. The approach to the asymptotic regime
may be rather slow. For typical values of Lo = 300 cm and
a T =l cm, the distance required to reach the asymptotic
conditions is x = 900 m.

CONCLUDING REMARKS

The impact of the fractal dimension of the vertical distribu-
tion of hydraulic conductivity on the behavior of soluble
plume spreading was investigated. It was found that the
fractal dimension has a major impact on the value of
asymptotic macrodispersivity. A higher fractal dimension
enhances vertical mixing and results in less longitudinal
advective spreading of the plume. For the fractal dimension
approaching 2, the longitudinal spreading of the plume
disappears altogether. Our results indicate also that the
asymptotic dispersivity is a scale-dependent parameter. In
particular, its value depends on the characteristic thickness
of the soluble plume and the variance of the K process over
this thickness. The transient development of the spreading
process does not appear to depend on the fractal dimension.
Our analysis indicates that the travel distance necessary to
reach the asymptotic conditions is also scale-dependent, and
is directly proportional to the squared characteristic thick-
ness of the plume (LQ), and inversely proportional to the
pore-level transverse dispersivity (aT). The approach to the
asymptotic conditions may be for practical cases quite slow.
It is recognized that these results were obtained for a rather
idealized transport scenario. However, it is felt that this
approach may lead to narrowing the gap in our understand-
ing of subsurface transport processes, particularly regarding
the actual mixing of soluble plumes with surrounding
groundwater. It is a very important phenomenon which has
not been given enough attention in the past. It is generally
agreed that the mixing of soluble contaminant plumes with
the oxygen-containing groundwater is, along with the actual
aerobic biodegradation process, the major mechanism con-
tributing to and limiting the biodegradation of soluble
hydrocarbon plumes (see for example Frind et al., 1989). Our
results clearly indicate that there is a strong connection
between the fractal dimension of K and the mixing process.
We are now in the process of developing this theory to deal
with more realistic hydrogeologic situations.
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ABSTRACT Scaling models and analyses of rain have now been around for over ten
years, a period in which the corresponding scale invariant notions have seen rapid
development. We review these developments concentrating on multifractals that are believed
to provide the appropriate theoretical framework for scaling nonlinear dynamical systems.
Although early scaling notions were geometric rather than dynamic, they contributed
towards establishing and testing scaling ideas in rain and in determining the limits of scaling in
both time and space. The problematic of passive scalar clouds and (continuous) turbulent
cascades, provided them with a sound physical basis. Building on these advances, later
analysis methods (particularly Double Trace Moment technique) made it possible to obtain
robust estimates of the basic multifractal parameters. Continuous (and universal) cascades
allow us to exploit these parameters to make dynamical models. We also discuss various
applications of multifractals to rain including multifractal objective analysis, statistics of
extreme values, multifractal modelling, space-time transformations, the multifractal radar
observer's problem, stratification, and texture of rain.

I N T R O D U C T I O N

Stochastic models of rain, atmospheric scaling and
multifractals

The atmosphere is probably the most familiar highly non-
linear dynamical system; the nonlinear terms are roughly
«1012 (the Reynolds number) times larger than the linear
(dissipation) terms, and structures vary over 9-10 orders of
magnitude in space ( « 1 mm to 104 km) and at least as much
in time (»10~3 s on up). The nonlinearity involves many
fields: rain is dynamically coupled with the velocity, tempera-
ture, radiation, humidity, liquid (and solid) water fields.
Because it so palpably impinges on the human senses, it is
undoubtedly subjectively experienced as the most extremely
variable atmospheric field. For similar reasons, in terms of
accuracy of measurements over the widest range of space and
time scales, the associated radar ('effective') reflectivity field
is likely to be the best measured turbulent field in geophysics
or elsewhere.

While this extreme variability is undeniable, traditional
modelling approaches have been limited by lack of knowl-
edge of the nonlinear partial differential equations governing

rain. Since the 1960s, these two circumstances have com-
bined to lead to the development of stochastic1 rain models2.
In the 1980s, with the growing recognition of the fundamen-
tal importance of 'scaling' (especially associated with the
fractal geometry of sets, Mandelbrot, 1983); scale invariant
symmetries and fractals, it was natural to construct stochas-
tic models that respected such symmetries (Lovejoy & Man-
delbrot, 1985, Lovejoy & Schertzer, 1985). Unfortunately,
the first scaling models were totally ad hoc, designed only to
respect a purely statistical scaling symmetry (i.e., with no
direct connection either with physics or phenomenology),
and worse still, were restricted to a very simple kind of scaling

1 Influenced by the rapid pace of developments in deterministic chaos, the
idea was recently suggested (e.g. Tsonis & Eisner, 1989, Rodriguez-Iturbe
et al., 1989) that only a very small number of degrees of freedom were
dynamically important, and that in rain deterministic rather than stochas-
tic models would be appropriate. As argued by Osborne & Provenzale
(1989), Ghilardi (1990) and Schertzer & Lovejoy (1991a) (section on
stochastic chaos vs. deterministic chaos), such conclusions are based on
overinterpretations of the data; in our view, there is no compelling reason
for abandoning stochastic (large number of degrees of freedom) models.
See also Visvanathan et al. (1991) for a discussion of stochastic behaviour
of deterministic models.

2 Early models include Cole (1964), Arajimo (1966) and Bras & Rodriguez-
Iturbe (1976).
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now known as 'simple' scaling3. This was all the more true
since evidence had been accumulating since the 1960s sug-
gesting that rather than being qualitatively distinct, the large
and small scale regimes of the atmosphere were actually both
part of a very wide single scaling regime. Rather than
consisting of an isotropic two dimensional turbulent regime
at large scales, and an isotropic three dimensional regime at
small scales, the atmosphere is apparently scaling but aniso-
tropic throughout4.

In parallel with the development of these geometric
'monofractal' models, work in turbulent cascade processes
and strange attractors showed that real dynamical systems
were much more likely to be 'multifractal5' (Hentschel &
Proccacia, 1983; Grassberger, 1983; Schertzer & Lovejoy,
1983, 1984, 1985b; Parisi & Frisch, 1985). They therefore
require an infinite number of scaling exponents for their
specification, a fact soon empirically confirmed in rain with
radar data6.

The multiscaling/multifractal problematic provided much
more than just an improved empirical fit with the data. The
bold proposal (Schertzer & Lovejoy, 1987a) that rain varia-
bility could be directly modelled as a turbulent cascade
process for the first time provided the physical basis for
stochastic rain modelling. This proposal was all the more
attractive since such cascade processes were found to generi-
cally yield multifractals. In the same way that Gaussian
noises frequently occur in linear (sums) of random variables,
cascade processes generically produce special (universal)
multifractals by nonlinear mixing of scaling noises. The
existence of stable and attractive universality classes implies
that the infinite number of multifractal dimensions can be
described by just three basic exponents. This finding greatly
simplifies analysis and simulation of multifractal fields.

Monofractal analyses, scaling and intermittency

In the following sections, we will argue that scaling systems
will generally involve universal multifractals. This current

3 Keddem & Chiu (1987) discuss an even simpler scaling which we called
'very simple' scaling, Lovejoy & Schertzer (1989), but it does not seem to
be relevant to rain.

4 For early discussion and reviews of scaling and its limits in the atmosphere,
see Schertzer & Lovejoy (1985a), Lovejoy & Schertzer (1986a); for more
recent discussion see many of the papers in the book Nonlinear Variability
in Geophysics', Scaling and Fractals, (Schertzer & Lovejoy, 1991).

5 This expression was coined somewhat later by Parisi & Frisch (1985). In a
paper devoted in considerable part to defending the 'unicity' of fractal
dimensions, Mandelbrot (1984), for the first time admitted the possibility
of multiple fractal dimensions.

6 Rain data provided the first determination of multifractal dimensions in
any empirically measured field. Furthermore, the original analysis was
done in one, two, three, four (JC, y, z, /) and 1.5 dimensions (a simulated
measuring network, see Fig. 5), showing the utility of radar rain reflectivi-
ties (Schertzer & Lovejoy, 1985b). Later, when similar analysis techniques
were applied to other turbulent fields (the turbulent velocity field, Mene-
veau & Sreenivasan, 1987, Schmitt et al., 1991), the data were only one
dimensional (time series at a single point).

understanding was the result of many years of research
during which simpler (geometric monofractal) scaling
analyses and models were developed and criticized. In order
to understand these developments, we briefly review some
early results.

The simplest scaling of relevance to rain is the following
'simple scaling7' or 'scaling of the increments': before the
discovery of multifractals, it was thought to be quite gener-
ally associated with fractal fields. For the rainrate R, it can be
denned as follows:

AR(X Ax) = X AR(Ax) (1)

where the small scale difference is AR(X~xAx) = R(xx + X~x

Ax)-R(xx) and the large scale difference is AR{Ax)
= R(x2 + Ax) — R(x2) where xl9 x2 are arbitrary, X is a
reduction ratio, and 77 is the (unique) scaling parameter. The

d.

equality ' = ' means equality in probability distributions viz.

a = b if and only if Pr(a>q) = Pr(b> q) for all q, where 'Pr'
indicates 'probability'. The special case of equation 1 where
the probability distributions are Gaussian is Brownian
motion (//= \9 increments are independent), and fractional
Brownian motion (H =f \9 Kolmogorov, 1940; Mandelbrot &
Van Ness 1968). Fractional Brownian motion was proposed
as a streamflow model by Mandelbrot & Wallis (1969); the
nontrivial exponent H was to account for the 'Hurst pheno-
menon' of long range dependence in streamflow (Hurst, 1951
empirically found 77^0.7 in many streamflow records over
scales up to millenia).

In rain, Lovejoy (1981) hypothesized that simple scaling
holds - although due to the extreme variability of rain - the
probability distributions were expected to have algebraic
('fat') tails instead of ('thin') Gaussian tails8. Below, we show
that such hyperbolic tails (associated with the divergence of
the corresponding statistical moments) can be considered as
multifractal phase transitions. Since then, Bak et al. (1987)
have considered the combination of scaling with hyperbolic
tails as the basic features of 'self-organized criticality'
(S.O.C.) and Schertzer & Lovejoy (1994) have shown how
multifractals generically lead to S.O.C. Probability distribu-
tions were used to test empirically both the simple scaling and
the 'fatness' of the tails in space using Montreal radar rain
data (with Jx = 0.25, 0.5, 1 km). Equation 1 was reasonably
well followed (see Fig. 1), especially for the extreme tails, and

7 This type of scaling was first introduced by Lamperti (1962) under the
name 'semistable'. It was called 'self-similarity' by Mandelbrot & Van
Ness (1968). However, this name turned out to be a misnomer since the
actual functions were not self-similar but self-affine, and self similarity is a
much wider concept anyway. We use the expression 'simple scaling', which
contrasts it with the more general and interesting multiple scaling dis-
cussed later. For more on rain applications, see Waymire (1985).

8 This terminology was introduced by Waymire (1985). Schertzer & Love-
joy (1985a) use the expression 'hyperbolic intermittency' for the 'fat'
algebraic tails.
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Fig. 1 The first direct empirical test of simple scaling. The prob-
ability (Pr (Ar > AR) of a random (absolute) rain rate difference
Ar, exceeding a fixed AR for spatial increments in 0.25 x 0.25 x 1
km averaged rain rates. The curves shown are for Ax = 0.25, 0.5, 1
km respectively. Data are from the tropical Atlantic (GATE
experiment, phase III) radar reflectivities from a single radar scan
converted to rainrates using standard reflectivity/rain rate rela-
tions. The straight reference lines correspond to qD = 0.15, 2
respectively, and indicates that the variance (the moment q = 2)
barely converges. The roughly linear left-right shift between the
curves indicates - at least for the extreme gradients - that simple
scaling roughly holds with H&0.5. From Lovejoy (1981).

the value9 of H was estimated as «0.5. In time, instead of
using Eulerian differences, isolated storms were tracked,
their total rain flux was determined every five minutes for 100
minutes. Here, simple scaling was again found to hold
reasonably well (Montreal, Spain and tropical Atlantic data
yielded similar results with value H«0.7); in addition, the
extreme tail of the distribution was roughly hyperbolic:
Pr(Ar>AR)&AR~qD (AR>>\) for the probability of a
random rainfall fluctuation Ar exceeding a fixed value AR.
The subscript D is necessary since the value of the exponent is
expected to depend on the dimension of space over which
averages are performed10. It was found11 that qD&\.l, (with
D = 2; the integration is over areas). For comparison, Fig. 2a
(from Ladoy et aL, 1991) shows the probability distributions
for daily rainfall accumulations from a station at Nimes from
1949-88, with qD&3.5 (see Ladoy et aL (1993) for an

9 In the same paper, a similar value of H was obtained via another method
(R/S analysis) over the range 0.25-13 km.

10 Note that in the original paper, the symbol a rather than qD was used since
a is the corresponding divergence exponent for Levy variables (the rain
process was thought to be an additive, simple scaling Levy process).

11 In Fig. 1, qD « 2, although the evidence for this asymptotic behaviour is not
conclusive. To our knowledge, other strictly comparable analyses do not
exist. A related result was obtained by Zawadzki (1987) who found some
some evidence for hyperbolic behaviour (with qD&2) in tipping bucket
rain rain measurements rain with roughly the same exponent, although (as
expected) the sample sized required to empirically see it was quite large.
Table 1 summarizes related results.
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Fig. 2a The probability (Pr(Ar>AR) of a random (absolute) rain
rate difference Ar, exceeding a fixed AR for daily differences in
daily rain accumulations at Nimes-Courbessac (France) from
1949-88 (14245 days). The tail is nearly straight with exponent
qD&3.5. From Ladoy et aL (1991).

interpretation in terms of multifractal phase transitions).
Similarly, Fig. 2b shows qD&\.\ and Fig. 2c shows q ^ ^ . O
for radar rain reflectivities of rain, 2.4 for snow, and 3.9 for
melting snow ('bright band')12. A related result is Fig. 2d, the
probability distribution of raindrops with volumes in various
Hawaiian rains (replotted from Blanchard, 1953). The tails
are nearly hyperbolic with13 qDw 1.9±0.5. The long tails on
these distributions point to the extremely variable, highly
intermittent non-Gaussian nature of rain.

Perhaps the most systematic and voluminous study of high
resolution (tipping bucket) raingage data to date is described
in Segal (1979). He digitized 90000 tipping bucket records
from 47 recording stations across Canada, each 5-15 years in
length, seeking to obtain statistics on rare, high rain rate
events that effect microwave transmission. After comparing
regressions of a variety of functional forms (including the
log-normal, see Fig. 2e and discussion in the next section) for
one minute averaged rain rates greater than « 3 mm/h he
concluded that 'a power law relationship . . . provided the
best fit except in the low-intensity (drizzle) region', with (for
seven of the stations for which the parameters were given),
qD&2.5±0.5. Table 1 compares all the values cited above. It
is still not clear whether the dispersion in values of qD is due to
the difficulty in obtaining accurate estimates (very large
samples are needed), differences in the effective D of averag-

12 Further, we show that these fat tails cannot arise due to fluctuations in the
reflectivities due to drop 'rearrangement'; the latter is a thin tailed
(exponential) effect.

13 This is significant for radar measurements of rain, since (among other
things) standard theory requires qD > 2 so that the variance converges.
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Fig. 2b The probability Pr(Z' > Z) of a random radar rain reflec-

tivity Z ' exceeding a fixed threshold Z for 10 CAZLORs (Con-

stant Altitude Z LOg Range maps), taken at the McGill weather

radar, Montreal (data from 1984). The resolution varies over the

map from «0.25 to 2.5 km at ranges 20 to 200 km. Each value is

determined from the maximum of several consecutive pulses (the

'peak detection' method - necessary at the time (1984) due to

limitations on the speed of digitizers). The reference line corres-

ponds to qD = 1.06. From Schertzer & Lovejoy (1987a).

ing, or due to true variations for different locations, climato-

logical regimes14 etc.

Other evidence for scaling was the area-perimeter15 rela-

tion for radar rain and satellite cloud areas over the range 1

14 These issues are discussed in the section on basic properties of multifractal
fields; according to multifractal theory, a finite qD is not necessary, indeed,
there is evidence based on estimates of universality parameters that it may
be very large (or even infinite) in time. It may well be that the dispersion of
estimates for qD are simply the result of undersampling a distribution with
a much larger qD\ if we have an insufficient number of independent samples
we really estimate the 'sampling moment' qs; see equation 15a.

15 See also Lovejoy (1982,1983), Lovejoy et al. (1983), Lovejoy & Schertzer
(1985b), Rhys & Waldvogel (1986), Come (1988) for more rain analyses of
this type. For more recent empirical area-perimeter results, (for clouds) see
Welch et al (1988), Seze & Smith (1990), Cahalan (1991) and Yano &
Takeuchi (1991). Other highly geometric (and, compared to statistical
methods, indirect) type analyses are possible including analyses of fractal
sets associated with graphs of rain series (Boucquillon & Moussa, 1991).
Originally, area-perimeter exponents were interpreted as fractal dimen-
sions of the perimeters. Since rain and clouds are in fact multifractals, a
correction is necessary: for this as well as a detailed criticism of these
geometric approaches to multifractals, see Lovejoy & Schertzer (1990a,
Appendix A).

Fig. 2c The same as Fig. 2b except for a vertically pointing

(nonscanning) radar at a pulse repetition rate of 1300 Hz, with

each pulse return digitized, for a single Montreal storm (October

15, 1991) for 1380 seconds (1.8 x 106 points per histogram). The

curves from top to bottom are bright band (melting snow and ice,

2.3 km altitude), rain (2.0, 2.15 km) and snow (2.45 km). The

differences in reflectivities are largely explained by the low dielec-

tric constant of ice compared to water, and by the large size of the

water coated ice/snow particles. The asymptotic slopes yield esti-

mates of qD&2.4 for snow, «3.9 for the bright band, and «3.0

for rain. The reference line corresponds to qD = 2. From Duncan

etal. (1992), Duncan, (1993).

km2 to «1.2 x 106 km2, and the distribution of radar deter-

mined rain areas that was argued to be hyperbolic not

log-normal16: ?r(A>a)&a~B (with B&0.S over the range

« 1 to 10 km), for the probability of large areas A exceeding a

fixed threshold a. A related result is the finding by Cahalan

(1991) that over the range «80 m to » 1 km, £^0.75 for

stratocumulus and intertropical convergence zone clouds.

The evidence suggesting that radar rain data could be

approximated by simple scaling - although with highly non-

Gaussian (hyperbolic) probability distributions17 - was

reviewed by Lovejoy & Mandelbrot (1985), where the 'Frac-

tal Sums of Pulses' (FSP) process (an additive compound

Poisson process involving pulses) was developed as a model.

Although it had features common with other existing sto-

chastic rain models such as those proposed by Waymire &

16 The log-normal phenomenology of rain and cloud areas goes back to at
least Lopez (1976,1977a, b). Since lognormal distributions are long tailed
- and except for the problem of 'dressing', correspond to universal
multifractals - they are close to the theoretically expected distributions. In
any event, they can only be distinguished empirically from hyperbolic
distributions by carefully examining their tails corresponding to extremely
rare large areas. The lognormal fits to rain area histograms could be
profitably re-examined in this light.

17 Such models exhibit what Mandelbrot & Wallis (1968) called the 'Noah'
effect i.e. stochastic realizations of the corresponding processes involve
extreme fluctuations the largest of which dominate the others. In multi-
fractals, the effect is generalized to moments of fluctuations higher than
the first. These authors also introduced the term 'Joseph' effect to denote
the phenomenon of long range correlations; all multifractals exhibit this
effect.
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Table 1. A comparison of various empirical estimates of the divergence of moments exponent qD

Radar rain Radar rain
differences differences

Data Type (space) (time)

Vertical
Radar pointing radar
reflectivity reflectivity

Tipping
Daily rain gauge bucket Rain drop
accumulations gauges volumes

Location

ID

References

Tropical
Atlantic
2

Lovejoy,
1981

Tropical
Atlantic
1.7

Lovejoy,
1981;
Lovejoy &
Mandelbrot,
1985

Montreal

1.1

Schertzer
& Lovejoy,
1987a

Montreal

3.0 (rain)
2.4 (snow)
3.9 (bright band)

Duncan et al.,
1992; Duncan,
1993

Nimes

3.5

Ladoy et al.,
1991, 1993

Montreal

2

Zawadzki,
1987

Western
Canada
2.5±0.5

Segal, 1979

Hawaii

1.9±0.5

Blanchard
1953

-11

Fig. 2d Three rain drop distributions replotted from original data
published in Blanchard (1953) from three different Hawaiian oro-
graphic rain events showing that the extreme tails have from top
to bottom qD&2.3, 1.9, 1.1 in rains with rain rates 127 mm/h, 21
mm/h, 9 mm/h respectively.

Gupta (1984) and Rodriguez-Iturbe et al. (1984), both its
philosophy and properties are different. Instead of basing
itself on an ad hoc division of the atmosphere into a hierarchy
of qualitatively different regimes, each occuring at different
scales, and each requiring a different set of modelling
parameters18, the FSP involved the linear superposition of
structures whose relative size and frequency of occurence
were related so that the resulting process lacked characteris-
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Log-log
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10 100

Rainfall rate (mm/h)

1000

Fig. 2e An example (from 10 years of tipping bucket raingauge
data at St. John, New Brunswick) of the extreme rainrate end of
one minute resolution rainrate probability distributions from
Segal (1979). The straight reference line corresponds to qD= 1.9,
the curved reference line is the best fit lognormal for comparison.

The better known of these scale dependent models the 'Waymire-Gupta-
Rodriguez-Iturbe' (WGR) model involved over 10 empirically adjustable
parameters; and even then only provided plausible statistical properties
over a relatively narrow range of scales (see Rodriguez-Iturbe et al, 1987,
Eagleson et al, 1987). Another 'nearly' scaling model (Bell, 1987) had
similar problems.
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Fig. 3a-3c A single space-time FSP simulation of rain on an 800 x 800 grid showing three simulated fields seperated by 80 time units.
The space/time transformation used was a statistical (and isotropic) version of Taylor's hypothesis of frozen turbulence. As expected,
small structures live the shortest time, large ones longer, here (on average) linearly increasing with duration. The grey scale is
proportional to the logarithm of the rain. From Lovejoy & Mandelbrot (1985).

tic scale19. It yielded simple scaling20 with qD = H x (with
1 < qD < 2,5 < H< 1). Two dimensional models on large grids
were produced, and time series were modelled by making

19 Similar models were discussed in Rosso & Burlando (1990).
20 Lovejoy & Schertzer (1985a) proposed a variant on this model called the

Scaling Sums of Pulses process (SCP) in which qD, H could be varied
separately. Another related model is (Wilson et ai, 1986), the Wave
Intermittent Packet (WIP) model; in current parlance, the packets are
essentially 'wavelets'.

simulations in three dimensional (x,y, t) space21. By varying
the shape of the 'pulses' from circles to annuli, more or less
'fragmented' or 'lacunar' rain fields could be produced.
Using the same scaling parameters to model the concent-
ration of liquid water, surprizingly realistic cloud fields were
produced (see e.g. Figs. 3a, b, c for a temporal sequence).

21 This relies on a generalization of Taylor's hypothesis of 'frozen tur-
bulence'.
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Fig. 3d, e Non self-similar (anisotropic scaling) FSP rain models on a 400 x 400 point grid, using linear Generalized Scale Invariance
with generators with off-diagonal elements to yield differential rotation. This results in differences in orientation of structures as
functions of scale which is clearly perceived as cloud 'texture'. From Lovejoy & Schertzer (1985a).

Realistic textures/cloud types also can be obtained by using
'Generalized Scale Invariance' - see Figs. 3d, e, as can
vertical cross-sections with appropriate 'elliptical dimen-
sions' (Figs. 3 f, g, h, i).

Another analysis method that can be used to investigate
scaling is the energy spectrum E(k). For statistically iso tropic
scaling fields22 E(k) will be of the power law form k ~ p where k
is a wave vector modulus, and /? is the spectral exponent. In
time, the spectrum as a function of frequency co will be of the
same form but not necessarily with the same exponent. The
most impressive single analysis of this sort to date is found in
Duncan et al. (1992). These authors used a high resolution
vertically pointing radar to perform a time series of 7 x 106

pulses at 1.3 kHz from a single pulse volume 30 x 37 x 37m in
size. For computational reasons, the total range «10~3-104 s
was split up into two regions, with average spectra calculated
in each (Fig. 4a, 4b). One notices two scaling regimes with
/?»1.66 (roughly the same in each) corresponding to time
periods 2 x 10~3 s < t< 10 ~2, and t> 3 s. Duncan et al. (1992)
and Duncan (1993) argue (with the help of multifractal
models) that the breaks at 10~2 s, 3 s separating the flat
'spectral plateau' are both due to instrumental effects; they
are simply the time scales associated with the spatial scales of
the radar wavelength (3 cm), and the pulse volume23 size

22 Self-similar fields - see section on generalized scale invariance.
23 The corresponding velocities are 3 cm/10 ~2 s = 3 m/s, and 30 m/3s ~ 10 m/s

respectively which are quite plausible fall speeds for rain. Further below
we see that the velocity is expected to be a function of scale, so that the
small difference in the two velocity values is not surprising.

( « 30 m). The rain itself is apparently scaling over almost the
entire regime: only the high frequency (t < 2 x 10 "3) regime is
believed to be a real break associated with dissipation24.

Other relevant temporal spectra are found in Ladoy et al.
(1991) who examined daily raingauge accumulations, finding
f$ « 0.3 (Fig. 4c) for periods of 1 day to 4 years at a station in
Nimes (France). Fraedrich & Larnder (1993) find (Fig. 4d)
the corresponding spectrum for a 45 year period for an
average of 13 stations in Germany, showing roughly similar
behaviour although for frequencies lower than « (3 years)"l

the spectrum rises more quickly25. The only relevant spatial
spectra of which we are aware are shown in Figs. 4e and 4f
from Tessier et al. (1993) using radar reflectivities, show
/?»0.3 over the range 2-256 km in the tropical Atlantic but
j8«1.45 in Montreal (over the range 150 m to 19.2 km;
indicating the possibility of significant climatological
differences26). Other relevant power law spectral analyses

24 As expected, the exact breakpoint depends on the meteorological situation
and precipitation type, although contrary to the standard theory of radar
measurements, for all the cases studied, it is apparently smaller than the
radar wavelength (3 cm here).

25 Fig. 4d actually seems to have low and high frequency scaling regimes
separated by a 'spectral plateau' of the sort found in temperature series by
Lovejoy & Schertzer (1986b), Ladoy et al. (1986) and Ladoy et al. (1991).
In this case, the difference with Fig. 4c could be due to differences in
climatological regimes, and breaks delimiting the plateau might be time
scales corresponding to structures of global spatial extent (see Lovejoy &
Schertzer, 1986b for more discussion on this possibility).

26 Another source of variation is the possibility of significant scatter of the
estimated /? from one scan to the next - this is expected since the
asymptotic logarithmic probability distribution slopes {qD or qs) are
frequently ~ 2, and the spectrum is a second order statistic.
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Fig. 3f-i FSP models of vertical cross sections of rain fields on 400 x 400 point grids. Going from f to i the isotropic ('sphero') scale
increases from one pixel to 10, 100, 1000 (equivalent to 'zooming' in at random positions). In Fig. 3f, stratification dominates
completely, as we zoom in, more and more vertical structure is visible, finally, at highest resolution (Fig. 3i), structures are vertically
aligned, simulating convective rain 'shafts'. The elliptical dimension used for these cross-sections was 1.5. From Lovejoy & Schertzer
(1985a).

are, Crane, 1990 (log radar reflectivity in space27), and
Rodriguez-Iturbe et al, 1989 (15 second averaged rain gage
rain rates28).

27 He obtains p ~ 5/3 over the range 1 minute to 1 hour. The scaling of the log
reflectivities is not related in a simple way to the scaling of the reflectivities.

28 From their Fig. 4, we estimate ji~ 1.3 over periods of ~ 1 minute to 2
hours. It is worth noting that gauge rain rates are frequently estimated
from tipping buckets which mark equal accumulation times; this leads to a
nontrivial bias in rainrate statistics, especially for the (very frequent) lower
rain rates.

With the development of multifractals, it was realized that
the apparent visual success of the FSP process masked a basic
shortcoming: Lovejoy & Schertzer (1985a) criticized its
monodimensional character, calling for the development of
'multidimensional'29 alternatives. Nearly simultaneously,
the first empirical multifractal analyses were performed using
radar rain data (Schertzer & Lovejoy, 1985b, Fig. 5). An

29 This cumbersome expression was a forerunner of the term 'multifractal'.
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l o g 1 0 co

Fig. 4a Average power spectra E(co) from 896 consecutive 8192
point sections of a time series from a vertically pointing, 3 cm
wavelength radar at McGill taken from a single (30 x 37 x 37 m)
pulse volume at 1 km altitude on Sept. 19, 1990 as a function of
frequency w (in units of rad/s, from Duncan et al. (1992). The
data was sampled at 1.3 kHz, so the entire « 7 x 106 point data set
spanned the range «10"3 to 104 s. The straight reference line
shows an exponent /?= 1.66.
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Fig. 4c The average of six consecutive 4 year spectra of the daily
rainfall accumulations at Nimes-Courbessac. The annual peak is
fairly weak, the scaling holds over most of the regime with slope
(=- / ? )«— 0.3. There is no clear evidence for the 'synoptic maxi-
mum' (i.e. a break at periods of a few weeks). From Ladoy et al.
(1991).

Fig. 4b Same as Fig. 4a except that the series was averaged over
512 consecutive points before the spectrum was taken. Here we
obtain scaling over the entire range shown here (with the /?= 1.66
line, same as in Fig. 4a, the beginning of this regime is « 3 s, and
is seen on Fig. 4a) shown for reference.

entire codimension function was necessary to specify the

scaling of the reflectivities, not just the small number of

exponents30 (qD, H) involved in simple scaling. The ad hoc,

geometric FSP construction had to be replaced by a physi-

cally based multiscaling/multifractal model. There were two

main obstacles to doing this. The first was the establishment

of a sound connection between passive scalar concentrations

and multifractal energy fluxes (via fractional integration, see

below), and the second, was that then, multifractal cascades

were discrete, i.e. they involved horrible artificial straight line

structures; continuous cascades were needed. While the

situation was apparently better as far as data analysis was

concerned, it was soon to become evident that it too,

(45yrs) (32days)- (2days)-

Fig. 4d Energy spectrum of daily rainfall accumulations over a 45
year period in Germany. The spectrum is an average of that
obtained from 13 stations. The annual peak is much more pro-
nounced than Fig. 4c, with evidence for a 'spectral plateau' from
« 20 days to « 3 years. The overall spectral shape, including the
low frequency rise (/?«0.5) is very similar to the temperature
spectra analyzed in Lovejoy & Schertzer (1986b). The high fre-
quency fall-off (also with /?»0.5) may be due to smoothing intro-
duced by the spatial averaging (the 13 stations had correlated
temperatures). At high frequencies, the power was averaged over
logarithmically spaced frequency bins to decrease statistical
scatter (Fraedrich & Larnder, 1993).

30 In the multifractal models, we shall see that qD, H are independent.
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Fig. 4e Horizontal spectrum of tropical Atlantic (GATE experi-
ment) radar reflectivities for 14 radar scans at 15 minute intervals,
each scan with 360 radials (1°), 1 km downrange resolution. The
(one dimensional) spectra were taken downrange (over 256 pulse
volumes) and averaged over all the radials and scans. The refer-
ence line has /? = 0.3. From Tessier et al. (1993).

8
(10km) (1km)" (100m)-

Fig. 4f Horizontal spectrum of McGill radar reflectivities for a
2.2° elevation radar scan with reflectivities averaged over 75 x 75
m grids (PPI). The isotropic two dimensional spectrum was taken
over 256 x 256 grid points. The reference line has /?= 1.45, (quite
different from GATE). From Tessier et al. (1993).
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Fig. 5 The functionp(h,DA)( = K(q), h = q) for dressed radar
reflectivities from 5 sets of radar CAZLORs at altitudes of 3, 4, 5
km, each set involving 14 scans taken at thirty minute intervals.
There were 200 downrange elements, 375 azimuthal elements; the
total data set involved 5 x 3 x 14 x 200 x 375 ̂  1.5 x 107 points.
The data was dressed (averaged) over sets with various dimen-
sions DA: over the downrange only (bottom curve), downrange
and cross range (third from bottom), downrange, cross-range and
in altitude (second from top), space/time (top), as well as over a
simulated measuring network, dimension 1.5 (second from the
bottom). This curvature clearly shows the multiscaling, multifrac-
tal nature of rain. From Schertzer & Lovejoy (1985b).

involved nontrivial difficulties The remainder of this

paper will concentrate on these developments.

PROPERTIES AND CLASSIFICATION OF
MULTIFRACTALS

An explicit multifractal process, the a model

Multifractals arise when cascade processes concentrate

energy, water, or other fluxes into smaller and smaller

regions. To understand cascades intuitively and to see their

relevance to rain, consider the daily rainfall accumulations
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Fig. 6 The 'inverse cascade' produced by averaging daily rainfall
from Nimes over longer and longer periods. Accumulation/aver-
aging periods from top to bottom: 1, 4, 16, 64, 256, 1024, 4096
days, 11 years. From Ladoy et al. (1993).

for Nice shown in Fig. 6. Over the 11 year period (1978-88),
we can see that several extreme events stand out; in particu-
lar, notice the record holder in October 1988 that had a 24
hour accumulation of 228 mm (compared to a mean of «1.5
mm)31. This extreme rainfall event is sufficiently violent that
it stands out as the temporal resolution is degraded by
averaging the series over four days (second row), 16 days
(third row), 64 days (fourth row); even at 256 days (fifth row)
its effect is still noticeable (see even « 35 months (sixth row)
or the entire 11 year period (bottom row)). We can see that
the same type of behaviour is true (although to a lesser
degree) of the less extreme 'spikes'. If the analysis sequence
high resolution => low resolution is inverted, we have a
cascade that can be thought of as a dynamical production
process by which rain water is concentrated from a low
resolution 'climatological' average value into wet/dry years,
wet/dry seasons, months, weeks, days etc. Since the lifetime
of atmospheric structures including storms depends on their

31 This extreme behavior is quite typical; using tipping bucket gages, Hubert
& Carbonnel (1989) have even determined in the Sahel that half of the
yearly rainfall occurs in less than three hours!
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Fig. 7 A schematic diagram showing a two dimensional cascade
process at different levels of its construction to smaller scales.
Each eddy is broken up into four subeddies, transferring a part or
all its energy flux to the sub-eddies. The left hand side shows a
homogeneous cascade as originally proposed by Kolmogorov
(1941); the nonlinearities simply redistribute energy flux density to
smaller scales of motion, the overall density stays uniform. On the
right hand side, the /? model involving occasional dead eddies
(here one in four) is shown, simulating intermittency; it already
leads to a monofractal support. From Lovejoy & Schertzer
(1986a).

spatial scale32, the actual cascade is a space/time process with
analogous mechanisms concentrating water fluxes into
smaller and smaller regions of space, yielding the observed
high spatial variability.

As an example of the inverse low => high resolution process
that corresponds to the actual dynamics, consider a cascade
produced by dividing the 11 year period with initial rainrate
i?! = 1 into sub-periods each of scale X ~l where X (= 2 here) is
the scale ratio (see the schematic diagram Fig. 7, and
simulation Fig. 8). The fraction of the rain flux concentrated
from a long period (large interval) into one of its sub-
intervals is given by independent random factors33 (fiR) given
by the Bernoulli law shown in equation 2.

32 The time scale of structures of global extent seems to be of the order of two
to three weeks; in temperature series, it is associated with a spectral break
called the 'synoptic maximum'; see Koleshnikova & Monin (1965),
Lovejoy & Schertzer (1986b). There is some evidence of this in Figs. 4d, see
also Fig. 23c, d.

33 These multiplicative 'increments' are denoted y in analogy with the 'zl'
used for the usual increments in additive processes.
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Fig. 8 A discrete (a model) cascade in one dimension. The con-
struction of the 'bare' cascade is shown on the left (top to bot-
tom), at each step, the unit interval is broken up into intervals
half the size of the previous step and the energy flux density
(vertical axis) is multiplied by a random factor. In the a model,
there are only two possibilities - a boost or a decrease with
probabilities chosen to respect ensemble conservation <ez> = 1. As
the scale ratio increases, the flux density is increasingly dominated
by a few large spikes, the singularities. The right hand side shows
the corresponding 'dressed' cascade obtained by averaging over
the corresponding scale. The dressed cascade is more variable due
to the high resolution modulations. From Schertzer & Lovejoy
(1989a).

The parameters y + , y -, c are usually constrained so that
the ensemble average {fiR} = 1, ky+ > 1 (y + > 0) corresponds
to strong (wet) intervals, Av < 1 (y ~ < 0) to weak (dry) subin-
tervals. This pedagogical model (Schertzer & Lovejoy, 1983,
1984; Levich & Tzvetkov, 1985; Bialas & Peschansky, 1986;
Meneveau & Sreenivasan34,1991) was introduced and called
the 'a model' because of the divergence of moment
exponent35 a it introduced (in the notation used here, the
corresponding divergence parameter is qD). The dead/alive P
model36 is recovered with y ~ = - o o , y + =c, c being the
codimension of the support ( = D — Ds, D is the dimension of
space in which the cascade occurs). As the cascade proceeds,
the pure orders of singularities y~9 y+ yield an infinite

34 Although it was never intended to be more than pedagogical, these authors
attempt a detailed comparison with turbulence data.

35 The choice a for this exponent seemed natural at the time since it
generalized the Levy exponent a.

36 This monofractal model was studied in various slightly different forms at
different times (Novikov & Stewart, 1964; Mandelbrot, 1974; Frisch et al.9
1978), the parameter ft = X ~c in the notation used here.

hierarchy of mixed orders of singularities (y <y<y + ) , after
steps these singularities are given by a binomial law:

y= =n

(3)

Nn«(Xn) ~D is the total number of intervals at scale X "", D
(k\

the dimension of space and I I indicates the number of

W
combinations of n objects taken A: at a time. In the large n
limit, cn(y)&c(y), and we are lead (Schertzer & Lovejoy,
1987a, b) to the multiple scaling probability distribution law:

(4)

Multifractal processes

The multifractal processes discussed here were first deve-
loped as phenomenological models of turbulent cascades, the
a model being the simplest. They are designed to respect basic
properties of the governing nonlinear dynamical ('Navier-
Stokes') equations. The following three properties lead to a
cascade phenomenology37: a) a scaling symmetry (invariance
under dilations, 'zooms'), b) a quantity conserved by the
cascade (energy fluxes from large to small scale), c) localness
in Fourier space (the dynamics are most effective between
neighbouring scales: direct transfer of energy from large to
small scale structures is inefficient). Cascade models are
relevant in the atmosphere in general and in rain and
hydrology in particular since (as argued in Schertzer &
Lovejoy, 1987a), although the full nonlinear partial differen-
tial equations governing the atmosphere will be more com-
plex than those of hydrodynamic turbulence, they are
nonetheless still likely to respect properties a,b,c. In other
words we expect the complete dynamics to involve coupled
cascades. There are now a whole series of phenomenological
models: the 'pulse in pulse' model (Novikov & Stewart,
1964), the 'lognormal' model (Kolmogorov, 1962; Obukhov,
1962; Yaglom, 1966), 'weighted curdling' (Mandelbrot,
1974), the 'p model' (Frisch et aL, 1978), 'the a model'
(Schertzer & Lovejoy, 1983b, 1985a), the 'random p model'
(Benzi et al.9 1984), the 'p model'38 (Meneveau & Sreeniva-
san, 1987) and the 'continuous' and 'universal' cascade
models (Schertzer & Lovejoy, 1987a, b). It is now clear that
scale invariant multiplicative processes genetically yield mul-
tifractals and - due to the existence of stable and attractive
multifractal generators - to universal multifractals in which
many details of the dynamics are unimportant. These results
are important in hydrology and geophysics since they show

37 First proposed by Richardson (1922) in his now celebrated poem.
38 This is a microcanonical version of the a model.
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that while geometrical fractals are sufficient to study many
aspects of scaling sets, that multifractals (with their statistical
exponents) provide the general framework for scaling fields
(measures). In models of hydrodynamic turbulence, the
energy flux e from large to small scales is conserved (i.e. its
ensemble average <£> is independent of scale), therefore it is
the basic cascade quantity. Directly observable fields such as
the velocity shear (A v7) for two points separated by distance /
are related to the energy flux via dimensional arguments:39

Av «e^3/^3 (5)

This equation should be understood statistically. A
straightforward interpretation useful in modelling is to view
the scaling /1/3 as a power law filter (k ~1/3, fractional integral)
of e//3 (Schertzer & Lovejoy, 1987a; Wilson, 1991; Wilson et
al, 1991).

In contrast to the well studied case of hydrodynamic
turbulence, the dynamical equations responsible for the
distribution of rain and cloud radiances are not known;40 the
best we can do now is to speculate on the appropriate
fundamental dynamical quantities analogous41 to e. Since a
priori, there is no obvious reason the rainrate or cloud
radiance fields themselves should be conservative, in analogy
with turbulence, we introduce a fundamental field q>t that has
the conservation property <<?/> = constant (independent of
scale). The observable (nonconserved) rainfall (or cloud
radiance) fluctuations (̂ 1R/) is then given by:

ARx&cpflH (6)

Since we have yet no proper dynamical theory for rain, we
do not know the appropriate fields q>t nor the corresponding
values of a. We shall see that changing a essentially corres-
ponds to changing Cx defined below. Therefore, the scaling
parameter /f has a straightforward interpretation: it specifies
how far the measured field R is from the conserved field
<p:(\ARi\y&lH. H therefore specifies the exponent of the
power law filter (the order of fractional integration) required
to obtain R from (p.

Basic properties of multifractal fields

We now focus our attention on the conserved quantity q>t.
Early scaling ideas were associated with additive (linear)
processes, and unique scaling exponents H (which - only in
these special cases) were related to unique fractal dimensions
by simple formulae. The properties of q>t were more straight-

39 Equat ion 5 is the physical space expression of the famous K o l m o g o r o v
k~5/3 velocity spectrum.

40 W e exclude here the essentially ad hoc parametrizations employed in
numerical c loud and weather models .

41 These will be various conserved fluxes such as the humidity variance flux
and bouyancy force variance flux.

0
Fig. 9 A schematic diagram showing a multifractal energy flux
density with smallest resolution A"1, and indicating the exceed-
ance sets corresponding to two orders of singularities, yl9 y2. From
Te&sier etal. (1993).

forward, and were usually understood implicitly. We have
already discussed 'simple scaling'. This is a special case of
equation 6 in which q>l is simply a scale invariant noise (Of>
are all constants, independent of scale).

Turning our attention to (nonlinear) multiplicative pro-
cesses we can consider some properties of cp that will generi-
cally result from cascades. We have already discussed the
example of the a model, including the form of the probability
distribution after n cascade steps. In fact, denoting the entire
range of scales from the largest to smallest by A, and
considering the cascade of cp (rather than of R directly), we
obtain the following general multifractal relation:

(equality is to within slowly varying functions of A such as
logs). c{y) is therefore the (statistical) scaling exponent of the
probability distribution (see Fig. 9 for an illustration). How-
ever, when the process is observed on a low dimensional cut
of dimension D (such as the D = 2 dimensional simulation
shown in Fig. 10) it can often be given a simple geometric
interpretation. When D > c(y), we may introduce the (posit-
ive) dimension function D(y) = D — c{y) which is the set with
singularities y.

This geometric interpretation can be useful in data analy-
sis. For example, consider a data set consisting of Ns radar
scans (assumed to be statistically independent realizations
from the same statistical ensemble). A single D dimensional
scan {D = 2 in this example) will enable us to explore struc-
tures with dimension D>D(y)>0; structures with c(y)>D
(which would correspond to impossible negative42 values of

42 Mandelbrot (1984) introduced the expression 'latent' for these nonstan-
dard dimensions. If the (intrinsic) codimensions are used, this artificial
problem is entirely avoided.
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Fig. 10 Successive stages in the construction of a universal multifractal temperature field shown with resolution increasing by factors of
four, counterclockwise from the upper left corner. The temperature is represented as a surface with false colours, incipient singularities
(the high valued spikes) and associated 'Levy holes' are particularly evident in the low resolution image in the design. The parameters
used for the simulation were those estimated from atmospheric measurements analysed in Schmitt et al. (1992), i.e. a= 1.3, Q = 0.5,
H=\. From Lovejoy & Schertzer (1991c).

D(y)) will be too sparse to be observed (they will almost
surely not be present on a given realization). This restriction
on the accessible values of c(y) is shown in Fig. 11; to explore
more of the probability space, we will require many scans.
With Ns scans, the accessible range of singularities can
readily be estimated. If each scan has a range of scales X
( = the ratio of the size of the picture to the smallest resolu-

tion = the number of'pixels' on a side), then we can introduce
the 'sampling dimension' (Schertzer & Lovejoy, 1989a;
Lavallee, 1991; Lavallee et al, 1991a): D=\o%NJ\o%L It is
not hard to see (Fig. 12) that the accessible range will be
y<ys, with c(yx) = A + As (see Fig. 30 for a concrete illus-
tration in rain).

c(y) has many other properties that are illustrated graphi-
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rare
events

extreme
events

Fig. 11 A schematic diagram showing a typical codimension func-
tion for a conserved process (H = 0). The lines c(y) = D,y
= C~l(D) indicate the limits of the accessible range of singulari-
ties for a single realization, dimension D. The corresponding lines
for D + Ds, where Ds is the sampling dimension, are also shown.
As we analyse more and more samples, we explore a larger and
larger fraction of the probability space of the process, hence
finding more and more extreme (are rare) singularities. From
Tessier etal. (1993).

rare
events

extreme
events

Fig. 12 Same as previous, but showing the fixed point Q = c(Q),
(with 0<Cl <D) the singularity corresponding to the mean of the
process. The diagonal line is the bisectrix (y = c(y)). From Tessier
etal. (1993).

cally. A fundamental property which is readily derived by
considering statistical moments (below), is that it must be
convex. It must also satisfy the fixed point relation Cx — c(Cx)
as indicated in Fig. 12. Cx is thus the codimension of the mean
process; if the process is observed on a space of dimension D,
it must satisfy D>C{, otherwise, following the above, the

rare
events

-H Ci-H
extreme
events

Fig. 13 Same as 11, but for a nonconserved process. All the
singularities are shifted by —H. From Tessier et al. (1993).

mean will be so sparse that the process will (almost surely) be
zero everywhere; it will be 'degenerate'. We can also consider
the (nonconserved) ARk; it is obtained from q>k by multiplica-
tion by X~H, since q>k = k\ we have ARx = ky~H\ i.e. by the
translation of singularities by - / / ( s ee Fig. 13).

Rather than specifying the statistical properties via the
scaling of probabilities c(y) can (equivalently) be specified by
the scaling of the statistical moments43. Consider the #th
order statistical moments <(?/>. We can now define the
multiple scaling exponent44 K(q)\

<<pl> = * m (8)

K(q), c(y) are related by the following Legendre transfor-
mations (Parisi & Frisch, 1985):

K(q) = maxy (qy - c(y)); c(y) = max^ (qy - K(q)) (9)

which relate points on the c(y) function to tangencies on the
K(q) function and visa versa; y = K'(q), q = c'(y). For ex-
ample, a quantity which will be useful below in estimating
the multifractal parameters of radiances and reflectivities is
the sampling moment qs which is the maximum order mo-
ment that can be accurately estimated with a finite sample.

43 Gupta & Waymire (1990) have introduced the idea of multiple scaling of
random variables rather than fields/measures ('GW multiscaling'): in
other words a multiple scaling without the notion of scales. In GW
multiscaling there are no multifractals and there is no 'hard' behavior (see
below).

44 The turbulent codimension notation c(y) and K{q) is related to the '/(a)'
dimension notation (Halsey et al., 1986) by the following: oc=(D-y),
f{tx) = D-c(y), T{q)={q-\)D — K(q). Because the dimension notation
fundamentally depends on the dimension of the observing space D; it
cannot be used in stochastic processes such as those of interest here where
we deal with infinite dimensional probability spaces, D=>oo. The dimen-
sion notation is useful for multifractal probability measures; in turbu-
lence, we deal with spatial measures e which do not reduce to probability
measures.
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Table 2. Classification of multifractals according to

Type of
multifractal

Geometric
Microcanonical
Canonical

Types of singularities
present

calm
calm
calm, wild, hard

III NOVEL APPROACHES

their extreme singularities

Conservation
Localized? per realization?

yes
no
no

yes
yes
no

TO UNCERTAINTY

Convergence of
all moments?

yes
yes
usually no

Recalling that the maximum accessible order of singularity
was ys = c~l (D + Ds), we obtain: qs = c'(ys). The functions
for the corresponding nonconserved fields (H^O) are
obtained by y => y - H, K(q) => K(q) - Hq.

The classification of multifractals: nonlocal, wild and
hard multifractals, multifractal phase transitions

We now discuss various different types of multifractals. To
this end, we must first make a distinction between the 'bare'
and 'dressed' multifractal properties (Schertzer & Lovejoy,
1987a, b). The 'bare' properties are those which have been
discussed above, they correspond to the construction of the
process over a finite range of scales k. In contrast, the
'dressed' quantities (see the right hand side of Fig. 8) are
obtained by integrating (averaging) a completed cascade
over the corresponding scale. Experimentally measured
quantities are generally 'dressed' since geophysical sensors
typically have resolutions which are much lower than the
smallest structures in the fields they are measuring (which in
the atmosphere, is typically of the order of 1 mm or less). The
dressed quantities will generally display an extreme, 'hard'
behavior involving divergence of high order statistical
moments. Specifically, for spatial averages over observing
sets with dimension D there is a critical order moment qD

(and corresponding order of singularity yD
 = K'(qD)) such

that:

<(?*> = oo q>qD

where qD is given by the following equation:

K{qD)={qD-\)D

(10)

(11)

The associated qualitative change of behaviour at qD (or yD)
can be considered a multifractal phase transition (Schertzer
et al., 1993). Unfortunately, these general multiplicative
processes with their corresponding hard behaviour have
received relatively little attention in the literature; it is much
more usual to introduce various constraints which have the
effect of severely limiting the occurence of extreme events.
While these restrictions lead to simplifications in the theoreti-
cal treatment which are justified when studying strange
attractors, they are too restrictive to be appropriate in

geophysics; one must be wary of the simplistic data analysis
techniques they have spawned. Since this underestimation of
the diversity of multifractal behaviour persists in the litera-
ture, we now briefly summarize the properties of both
'geometrical' and 'microcanonical' multifractals.

To understand the corresponding different types of multi-
fractal process, recall that we have considered 'canonical'
multifractals subject only to the weak constraint of conser-
vation of cp only over the entire statistical ensemble, indivi-
dual realizations will not be conserved. If on the contrary, we
impose the much stronger constraint of conservation on each
realization, then large fluctuations are suppressed and we
obtain a 'microcanonical' process. Specifically, we find that
'wild' singularities with y>D are supressed. Both canonical
and microcanonical multifractals are stochastic processes,
they are defined on (infinite dimensional) probability spaces:
each realization in a space of dimension D must be viewed as
low-dimensional cuts.

Just as microcanonical processes are calmer than canoni-
cal processes, another type of multifractal; 'geometric' multi-
fractals (Parisi & Frisch, 1985) can be defined which are even
calmer. Geometric multifractals involve no probability
space, nor stochastic process; they are defined purely geo-
metrically as a superposition of completely localized (point)
singularities each distributed over fractal sets. As mentioned
earlier, since such sets must have positive dimensions, their
singularities are restricted so that c{y)<D. Schertzer et al.
(1991) and Schertzer & Lovejoy (1992) discuss this classifica-
tion of multifractals in much more detail; their properties are
summarized in Table 2.

Universal multifractals

The above discussion is quite general and at this level, it has
the unpleasant consequence that an infinite number of
scaling parameters (the entire c(y), K{q) functions) will be
required to fully specify the multiple scaling of our field.
Fortunately, real physical processes will typically involve
both nonlinear 'mixing' (Schertzer et al, 1991) of different
multifractal processes, as well as a 'densification' (Schertzer
& Lovejoy, 1987a,b) of the process leading to the dynamical
excitation of intermediate scales. Rather than just the dis-



2 MULTIFRACTALS AND RAIN 77

crete scales (factors of 2) indicated in Figs. 7 and 8, there is
the continuum indicated in 10. Either mixing or densification
are sufficient45 so that we obtain the following (bare46)
universal47 multifractal functions48:

(12)

c(y-H) = Clcxp[(y/Cl)-l] a=l

l-(9a-q)

C, q logfe)

1 1

a = l
(for a<2,#>0)

(13)

The multifractality parameter a is the Levy index and
indicates the class to which the probability distribution
belongs49. There are actually 5 qualitatively different cases.
The case a = 2 corresponds to multifractals with Gaussian
generators50, the case 1 < a < 2 corresponds to multifractal
processes with Levy generators and unbounded singularities,
a = 1 corresponds to multifractals with Cauchy generators.
These three cases are all 'unconditionally hard' multifractals,
since for any D, divergence of moments will occur for large
enough q (qD is always finite). When 0 < a < 1 we have
multifractal processes with Levy generators and bounded
singularities. By integrating (smoothing) such multifractals
over an observing set with large enough dimension D it is
possible to tame all the divergences yielding 'soft' behavior,
these multifractals are only conditionally 'hard'. Finally51

45 This applies only to canonical multifractals; there seems to be no corres-
ponding universality for geometric or microcanonical multifractals.

46 The corresponding dressed functions are the same only for y < yD, and
q<qD; for finite sample sizes, they becoming linear for larger y, q.

47 The problem of universality was for some time obscured by the exclusive
study of (nonuniversal) discrete cascades in which the limits of more and
more random variables and smaller and smaller scale structures were
confounded (both limits occured simultaneously as the number of discrete
steps approached infinity). On the contrary, universality results when
more and more random variables are involved within a fixed and finite
range of scales. The limit of the range of scales approaching infinity (the
small scale limit) is taken only later. An example of the widespread anti-
universality predjudice is the recent statement by Mandelbrot (1989):
in the strict sense there is no universality whatsoever . . . this fact about
multifractals is very significant in their theory and must be recognized
{op cit, p. 16).

48 These formulae (with H = 0) first appeared in Schertzer & Lovejoy (1987a,
Appendix C ) . Recently, in the special case H=0, Kida (1991), Brax &
Peschanski (1991) have obtained equivalent formulae using different
notat ions. They use the expressions ' log stable' and 'log Levy' multifrac-
tals respectively. These terms are somewhat inaccurate since due to the
dressing problem, the distributions will only be approximately log stable
or log Levy.

49 Similar looking formulae (but for r andom variables, not multifractal
measures) can be obtained in G W multiple scaling, G u p t a & Waymire
(1990).

50 This is nearly the same as the lognormal multiscaling model of turbulence
proposed by Kolmogorov (1962), Obhukhov (1962), except that the latter
missed the essential point about the divergence of high order moments ,
thinking in terms of pointwise processes.

51 A more detailed discussion about these fives cases and in particular about
the generators of the Levy variables can be found in Schertzer et al, 1988;
F a n 1989; and Schertzer & Lovejoy 1989a; see also Lovejoy & Schertzer
(1990a, b , 1991a,b) for some applications and review.

a = 0 corresponds to the monofractal '/? model'. Universal
multifractals have been empirically found in both turbulent
temperature and wind data (Schertzer et al., 1991a; Schmitt
et al., 1992; Kida, 1991). They have also have recently found
applications in high energy physics (Brax & Pechanski, 1991;
Ratti, \99\;Rattietal., 1994),oceanography(Lavalleeeffl/.,
1991b), topography (Lavallee et al., 1993), as well as the low
frequency component of the human voice (Larnder et al.,
1992). The first empirical estimates52 of Cx, a in cloud
radiances53 are discussed in Lovejoy & Schertzer, 1990 (see
also Gabriel et al., 1988 for the first test of universality in an
empirical data set54).

It is interesting to note here that the probability distribu-
tions associated with the various (bare) universality classes
are respectively lognormal (a = 2), and log-Levy (a < 2). The
latter are in turn approximately log-normal since, with the
exception of their extreme tails, Levy distributions are them-
selves nearly normal (this 'tail' is pushed to lower and lower
probability levels as a -» 2). The multifractal nature of rain is
therefore quite in accord with the widespread hydrological,
meteorological (and generally geophysical) lognormal phe-
nomenology. Of particular relevance here are numerous
studies that have claimed that rainrates, cloud and radar
echo sizes, heights and lifetimes, as well as total rain output
from storms over their lifetimes are either log-normal or
'truncated log-normal' distributions (Biondini, 1976; Lopez,
1976,1977a; Drufuca, 1977; Houze & Cheng, 1977; Konrad,
1978; Warner & Austin, 1978 etc.). Furthermore, the cascade
models that generate them are actually just concrete imple-
mentations of vague laws of 'proportionate effects' (see
Lopez, 1977a,b for an invocation of this law in the rain
context). Shifting our attention to the dressed quantites, the
above statement still holds for (nonextreme) fluctuations (up
t 0 7i» <1D)I b u t wiH (drastically) underestimate the frequency
of occurence of extreme events (y > yD, q > qD).

Using the universal multifractal formulae above, some of
the results discussed earlier may be expressed in simpler
form. Formulae which will prove useful below are for the
sampling order moment qs (the maximum order moment that
can be reliably estimated with a finite sample), and qD, the
critical order for divergence:

(14a)

-l)] = D (14b)

For q>qc = min(^, qD), K{q) will be linear, for y > yD c(y) will
also be linear:

52 Recent (greatly improved) analyses indicate that the original estimates of
a were not too accurate. See Tessier et al, 1992, and below.

53 For theoretical discussion of multifractal clouds and their associated
radiance fields, see Lovejoy et al (1990), Gabriel et al (1990), Davis et al
(1990, 1991a, b).

54 Only the hypothesis a = 2 was tested.
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q>qc

y>yD

(15a)

(15b)

where yds is the highest order dressed singularity present in
the sample.

MULTIFRACTAL ANALYSES OF RAIN

Trace moment analyses

Soon after the discovery of multifractals, it was realized that
radar rain data would provide ideal testing grounds for
multifractal theories as well as data analysis techniques55. A
whole series of new multifractal analysis techniques (trace
moments, functional box-counting, elliptical dimensional
sampling), were developed and tested for the first time on
rain data. In this section we first discuss what might be
viewed as first generation multifractal analysis techniques:
methods that can be applied (with various limitations) to
general multifractals. These methods are the multifractal
analogues of the nonparametric methods of standard statis-
tics. Further we indicate how a second generation of tech-
niques can be be developed which explicitly exploit the
existence of universality classes. These are the analogues of
parametric statistics, and just as parametric statistical meth-
ods have more statistical power than nonparametric meth-
ods, the specific (universal) multifractal analysis techniques
(when applicable) will lead to much more accurate multifrac-
tal characterizations. All these techniques are essentially
experimental in the sense that no proper goodness of fit
statistics are known; at the moment, confidence in the results
of analyses can be obtained primarily by comparing the
results of different and complementary methods as well as by
extensively testing the analysis on numerical simulations.

The first multifractal rain analyses were performed on
radar volume scans of rain from the McGill radar weather
observatory56 (Schertzer & Lovejoy, 1985b, 1987a, see Figs.
5,15). Volume scans are made every 5 minutes, at 200 ranges
(r) and 375 azimuthal (0) and 13 elevation angles. In the trace
moment analysis described here, data were resampled in the
vertical onto constant altitude projections ('CAZLORs') at 3
levels (3, 4, 5 km altitudes, z) at 30 minute intervals in time.
The analysis was performed using the data to estimate the
trace moments. In this technique, the data are systematically
degraded in resolution, average reflectivities being calculated
over grids whose resolution is successively doubled, the
resulting spatial averages are then raised to a series of powers
q and the result averaged over each image, and then over
many realizations.

To give a formal definition, consider the conserved (H= 0)
55 Schertzer & Lovejoy (1989b) and Lovejoy & Schertzer (1990b) develop

this idea and argue that it is true of many other geophysical fields.
56 For an analogous analysis of tropical Atlantic radar data see Gupta &

Waymire (1990).
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Double Trace Moment Technique

Fig. 14 A schematic diagram illustrating the different averaging
scales used in the double trace moment technique, the single trace
moment is obtained by taking r\ = 1. The idea is straightforward;
at the highest available resolution (A.') various powers (rj) are
taken. They are then degraded to an intermediate resolution (A)
by averaging, finally the qth. power of the result is averaged over
all the data sets. From Tessier et al, 1993.

multifractal flux density at (fine) resolution A' (the ratio of
the outer (largest) scale of interest to the smallest scale of
homogeneity). The (dressed) flux over an observing set (Bx,
this corresponds to the j-th low resolution 'pixel') with
dimension Z>, (lower) resolution X (k<Ar) is simply an
integral over the density:

(16)

Bx,i

We may now define the qth order 'Trace moments' (Schertzer
& Lovejoy57, 1987a) by summing 11^(2^) over each indivi-
dual realization58 (each satellite picture, covering the region
A has lD disjoint covering sets Bk which are summed over in
equation 16, see the schematic illustration, Fig. 14), and then
ensemble averaging over all the realizations:

(17)

This formula will break down for moments q>qD, and
(when finite samples are used to estimate the ensemble
average) when q > qs. Although it allows the determination of
K{q) (at least for small enough q), and hence in principle the

57 Although the formalism above was developed here, essentially the same
method was empirically applied to rain in Schertzer & Lovejoy (1985b).

58 Without the ensemble averaging, we have a partition function, appropri-
ate for analyzing strange attractors.
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10 13

Fig. 15a The h\h trace moments (in the notation in the text, q = h)
estimated from 70 CAZLORs in the horizontal, averaging over a
straight line {A is the set of downrange elements used in the
averaging), the data is the 3 km altitude subset of that used in Fig.
5. The resolution is X = 2". Lines from top to bottom are for the
following values of h: 5, 3, 2.5, 2, 1.5, 1.2, 1., 0.8, 0.6, 0.3. Note
that the scaling is extremely accurately followed. From Schertzer
& Lovejoy (1987a).

determination of Q, a (via equation 14) this method will
involve ill-conditioned nonlinear regressions (K(q) vs. q).

Fig. 15 shows the result using 70 realizations, clearly
showing that the multiple scaling is very well respected. The
resolution can be degraded along ranges (D=l), (r,<9)
simultaneously (D = 2), (r, <9,z) or (r, 0,z, t) simultaneously
(Z> = 3,4 respectively). Fig. 5 shows the resulting exponents
including a 1.5 dimensional case obtained by using simulated
fractal measuring networks59. The exponents are nearly
independent of dimension for low order moments (q), but for
q > 1.1 become increasingly separated, asymptotically tend-

59 This was close to the dimension estimated for typical gage networks; a
better estimate (Lovejoy et al, 1986) is 1.75.

Fig. 15b Same as 15a but for averaging in the horizontal, A is a
plane. From Schertzer & Lovejoy (1987a).

ing to straight lines with slopes « D for large q. It was argued
(Schertzer & Lovejoy, 1987a) that this behaviour could be
simply explained since for that data set qD& 1.1 (Fig. 2b).
Some recent results on the 'pseudo-scaling' (Schertzer &
Lovejoy 1983a, 1984) obtained when q> qD and the relation
of this to multifractal 'phase transitions' is discussed in
Schertzer et al. (1991b).

More recently (Lovejoy & Schertzer, 1991a) trace
moments were used to investigate the multiple scaling of rain
at scales much smaller than the minimum ( « 1 km) of the
above radar analysis. One of the analyses (Pham & Miville,
1986) was performed on data obtained by rapidly ( « 1 s)
exposing large pieces (128 x 128 cm) of chemically treated
blotting paper to rain, estimating the position and size of the
drops. Fig. 16a shows the result of one such exposure, and
Fig. 17 shows the resulting trace moment analysis and Fig. 18
the scaling exponent estimates for scales >8 cm. This
analysis indicates that at least down to this scale, rain is
multiscaling. The break observed at « 8 cm could be due to



80 III NOVEL APPROACHES TO UNCERTAINTY

Y
(cm)

120

m

0

60

0

• •

• •

• •
• • £ 1
• • 1

Xy'
• *""

—1 *i

•

&-.
• • • ( 1 .

" * • ' •

• •

• i f 1
• • •

• •

fv
I •

• " • •
• • • m •

' - . • • • "•'s ' •
V • •• • •

• " • . • • •
•• • 9 • • ^ B •

• • . ' • " • # . « #

• • " •
0.0 2.0

60 120

X(cm)
Fig. 16a Each point represents the centre of a raindrop for the
128 x 128 cm piece of chemically treated blotting paper discussed
in the text. There are 452 points, the exposure was about 1 s.
From Lovejoy & Schertzer (1990c).
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Fig. 17 A log-log plot of <Tr^yj> = k - KD(q) vs. k where/, is the
number of drops per unit area at resolution X ( = the scale ratio).
(The h in the figure is the same as the q used here - this is also true
for Figs. 18, 19). Note that the largest scale (k= 1) was 128 cm
and that convergence to power laws occurs only for lengths > 4
cm. The curves, top to bottom, are for q = 5, 3, 2.5, 2, 1.5, 1.2, 0.8,
0.6, 0.3. From Lovejoy & Schertzer (1991a).

-0.2
0

Fig. 16b Plot showing k 2 times the integrated energy spectrum
of the radar reflectivity of the distribution in Fig. 16a plotted
against k = k/k0 where k is the wave number, k0 corresponds to the
largest scale (k0 =\ko\ = 2TT/128. The straight line (slope -0.12)
indicates a scaling power law spectrum (Gaussian white noise
yields a slope 0) up to k « 30 which corresponds to « 4 cm. From
Lovejoy & Schertzer (1991a).

finite sample effects (a single exposure was used with only 452
drops), or the break could be more fundamental; related to
the inner scale at which rain can no longer be treated as a
field60, where its particulate nature must be considered61. Fig.
16b shows the Fourier energy density integrated over circles,
confirming the breakdown by the flattening of the spectrum

60 However, the spectrum in Fig. 4a suggests an inner dissipation scale of the
order of millimeters.

61 The proper mathematical framework is mathematical measures, associat-
ing with each drop a position r,, and volume Vt.

Fig. 18 -KnD(q) = K(q)-{q-\)D estimated from (top to bot-
tom) a manually analysed 1293 drop case (q>0 only; q = h), the
452 drop (digital) case, and a 339 drop manually analysed case
(#>0). The straight lines are asymptotic fits to the negative and
positive large (absolute) q regions for the 452 drop case. The large
q slope gives y^ = 0.44 (the largest singularity present). From
Lovejoy & Schertzer (1991a).

for scales less than about 4 cm. To our knowledge, this is the
first attempt to study spatial heterogeneity at the individual
drop level; existing empirical studies of the distribution of the
drops are numerous, but consider only their relative sizes;
spatial homogeneity is simply assumed on faith. Much more
research at the individual drop level will be necessary to
properly understand the multifractal structure of rain. We
may anticipate that the results will be important in appli-
cations: Lovejoy & Schertzer (1990a) already indicate how
even monofractal approximations lead to important correc-
tions to standard radar estimates. Two low budget feasibility
studies at McGill62 point to the difficulty in accurately

62 The blotting paper, lidar and other feasibility studies were all performed as
third year physics lab projects from 1986 to present.
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Fig. 19a Trace moment analysis for the time domain (5000 pulses
to = 500 s) for those range corrected returns that exceeded the
average (this is an estimate of the drop number density/,; it
assumes either zero or one drop per pulse volume). Curves from
top to bottom are for q= 10, 9, 8, 7, 6, 5, 4, 3, 2 respectively. Note
that the scaling is extremely accurately followed. From Lovejoy &
Schertzer (1991a).

obtaining spatial information about large numbers of drops:
stereophotography of a « 1 m3 region (Bochi Kebe & Howes,
1990), and photography of rain illuminated by sheets of laser
light (to obtain horizontal rain intersections with rain, Harris
& Lewis, 1991) both indicate that the relevant measurements
will be quite difficult, primarily due to the very small cross-
sections (at visible wavelengths) of the rain drops which
makes their detection quite difficult63.

To extend these results to slightly larger scales, high
powered lidars (Weisnagel & Powell, 1987) were used to
detect the optical backscattering from very small volumes64

the sensitivity was such that individual drops 1 mm in
diameter could be detected at «10 km distances. The YAG
laser used had a pulse repetition frequency of 10 Hz, data
were logged over 180 downrange bins, several thousand in
time. Often, especially in light rain, pulse volumes were
empty, and they rarely contained a large number of drops.
Shorter pulse length lasers should be able to probe down to
the individual drop level (this may indeed be the most
promising approach for further studies). Fig. 19a, b, c shows
the resulting trace moment analyses (space, time, space/
time), showing not only the surprising accuracy with which
the (multiple) scaling is respected, but also the possibility of
using this approach for studying the space/time transforma-
tions associated with rain. A different approach currently

63 The cross-section is however significantly enhanced for both forward and
back scattering.

64 The pulse lengths were 3 m and the widths varied from 0.3 mm to 30 cm at
distances of 10 and 1000 m respectively. The associated pulse volumes
were thus in the range 10 "6 to 10 "2 m3: 1015 to 1011 times smaller than
typical radar volumes.
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Fig. 19b Trace moment analysis for downrange domain (each
pulse return is divided into 180 pulselength sections, 3 m apart,
hence the largest scale is Lo — 540) for those range corrected
returns that exceeded the average. Curves from top to bottom
same as for Fig. 19a. Note that the scaling is extremely accurately
followed. From Lovejoy & Schertzer (1991a).

Fig. 19c Trace moment analysis for the (x, t) domain (180 pulses,
0.1s apart in time, space resolution 3 m) for those range corrected
returns that exceeded the average. Curves from top to bottom
same as for Fig. 19a. Note that the scaling is extremely accurately
followed. This data set is the same as that shown in Fig. 19b
except that analysis was performed on 'squares' in (JC, /) space
rather than by intervals (downrange) only. By comparing the
slopes in 19a, b, c, the elliptical dimension of (JC, t) space can be
estimated. From Lovejoy & Schertzer (1991a).

being studied at McGill is to use stereo photography with
high powered flash lamps.

Functional box-counting

Since the discovery of multifractal universality classes in
1986-7, a primary goal has been to test the (multi )scaling and
to estimate the basic parameters H9 Cl9 a in rain over wide
ranges of scale. While the trace moment analyses discussed
above clearly established the multiple scaling nature of rain,
they suffer from a number of limitations which make them
difficult to use to estimate the universal parameters. These
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Fig. 20 Functional box-counting analysis of the field/(r). In A
the field is shown with two isolines that have threshold values
T2>TX; the box size is unity. In B, C, and D, we cover areas
whose value exceeds T{ by boxes that decrease in size by factors of
2. In E, F and G the same degradation in resolution is applied to
the set exceeding threshold T2.

limitations are summarized and studied in detail in Lavallee
et al., 1991a, Lavallee, 1991; they are a) the divergence of
moments which leads to 'spurious' or 'pseudo-scaling', b)
finite sample size. Both effects will lead to asymptotically
straightline exponents (as observed in both Figs. 1 and 18);
corresponding to multifractal phase transitions. In order to
overcome these difficulties, other methods which avoid the
use of statistical moments were developed. The first of these
was 'functional box counting' (Lovejoy et al., 1987). This
method is straightforward: the empirical fields are first
converted into finite resolution sets by using a series of
thresholds; the sets of interest being defined by the regions
exceeding the threshold (T), see the schematic illustration
Fig. 20. In the second step, the resolution of these sets is
degraded systematically by covering the sets with boxes of
increasing size (the standard 'box-counting' procedure for
analysing strange attractors). The dimension as a function of
threshold is then obtained as the (negative) logarithmic slope
of the number of boxes NT(L) as a function of the log of the
box size (L). Fig. 21a, b shows the result when this method is
applied to radar rain data, Fig. 22 when it is applied to the
associated cloud fields (from satellite data). Again, the
(multiple) scaling is well respected.

Hubert & Carbonel (1988, 1989, 1991) have used func-
tional box-counting to study rainfall time series from Bur-
kina Faso raingauges, finding that the multiscaling extends
from one day to at least a year. For example they found that

Fig. 21a A plot of N(L) versus L for a single radar scan with nine
radar reflectivity thresholds increasing (top to bottom) by factors
of « 2.5, analyzed with horizontal boxes increasing by factors of 2
in linear scale. The negative slope (dimension) decreased from
1.24 to 0.40. From Lovejoy et al. (1987).

B

Fig. 21b Same volume scan as Fig. 21a except that the boxes used
are cubical and yielded values of dimension that decreased from
2.18 to 0.81 for the same thresholds. Only eight vertical levels
were available. See text for discussion of the vertical anisotropy,
and 'elliptical box counting'. From Lovejoy et al. (1987).

the fractal dimension of wet days was « 0.8 which meant that
local rule of thumb knowledge of the climate (7 wet months/
year) could be extended down to at least a day since
Iog7/logl2«0.8.

Other related applications of functional box counting in
rain can be found in Olsson et al. (1990), satellite cloud
pictures in (Gabriel et aL, 1988; Baryshnikova et aL, 1989;
Detwiller, 1990), and in situ measurements of cloud liquid
water (Duroure & Guillemet, 1990). Although functional
box-counting has the advantage of avoiding the use of
statistical moments, it has the basic problem that it is not easy
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Fig. 22a A plot of the fraction FT(L) of cloud pictures exceeding
a threshold T, for six radiance thresholds with L increasing for 8
to 512 km, at visible wavelengths. From a GOES (geostationary)
satellite picture over the Montreal region (summer with mostly
cloud cover). The minimum digital count is 24 (ground), maxi-
mum is 52 (bright cloud) corresponding to a brightness ratio of
(52/24)2«4.7. The fraction is estimated by using box counting to
degrade the resolution of exceedance sets, and then calculating the
fraction of all the boxes available at resolution L: FT(L)
= NT(L)/L~2. The straight lines indicate that over the range
(which includes most of the meso-scale), that the scaling is accu-
rately followed. From Gabriel et al. (1988).
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vation (i7=/=0). Finally, the method does not take into
account whether a given box is filled by more than one pixel
(it is an all or nothing estimator). For a critique of this
method, see Lovejoy & Schertzer, 1990a (Appendix A), and
Lavallee (1991).

Direct application of functional box-counting requires
gridded data. We now describe a variant which is useful for
highly inhomogeneous raingage network data (indeed, as
shown in Lovejoy et al. (1986), they are more nearly uniform
over a fractal than over a surface66). Define the 'exceedance
stations' as all the stations whose rain rate exceed a given
threshold, and then calculate the number of pairs of exceed-
ance stations that are closer than a distance67 / (this is
proportional to the average number of exceedance stations in
a circle radius /). The resulting scaling exponent is called the
'correlation dimension'; it will less than or equal to68 the
corresponding fractal (box-counting) dimension. Fig. 23a
shows69 the result when the method is applied to daily rain
accumulations for 1983 (roughly 8000 stations were used),
for various exceedances levels up to 150 mm/day. Although
the statistics become poor at the high thresholds, the lines are
fairly straight indicating that the scaling is well respected
(over the range « 3 km-5000 km). Note that the zero level
exceedance line is also included; this has a nontrivial fractal
dimension («1.78 here) due to the fractal nature of the
network.

This method of improving statistics by examining pairs of
points can also be applied to time series. Tessier (1993) has
used this method to effectively study the scaling of increas-
ingly wet stations using the same global daily rainfall data
set. Fig. 23b shows that the value 0.8 for wet/dry days (using
a threshold of 0.1 mm/day) seems to be global (rather than
specific to the Sahel, Hubert & Carbonnel 1988). However,
Fig. 23c, d indicate that a definite scale break occurs at « 3
weeks for higher thresholds, consistent with the existence of a
'synoptic maximum' (see Fig. 4d; i.e. a break whose duration
corresponds to the lifetime of global sized rain events).

Fig. 22b Same as Fig. 22a except for the corresponding infrared
image. The straight lines correspond to effective black body tem-
peratures of (top to bottom) 17, 9, 2, - 5, - 23 °C respectively.
Here the lowest radiances (proportional to the fourth power of
the temperature) comes from the sparsest (highest) cloud tops.

to relate the threshold to the order of singularity65 y. Another
related problem is its tendency to 'saturate' in certain situa-
tions because all the boxes larger than a given scale can be
filled, a problem likely associated with statistical nonconser-

65 This can be done approximately via the relation r ~ L y, but the normali-
zation (which is required to nondimensionalize this relation and determine
the proportionality constant), is nontrivial, and cannot be completely
determined at a single averaging resolution.

The probability distribution/multiple scaling technique
(pdms)

A more successful way of estimating c(y) is to directly exploit
the scaling of the probability distributions of the multifrac-
tals as indicated in equation 7. Methods which directly
exploit this equation were developed and baptized 'prob-

66 In fact it is even better to treat the density of stations as a multifractal.
67 To account for the curvature of the earth, the following measure of

distance should be used:

/=rV(8(l-cos0/2)),

where r is the radius of the earth, 6 is the angle subtended at the centre of
the earth by the two stations (Lovejoy et al., 1986).

68 In practice, the difference is usually small.
69 We thank C. Hooge for help with this analysis.
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Fig. 23a The correlation function (the average number of exceed-
ance stations in a circle) n(L) as a function of radius (L), for
various thresholds. From top to bottom, the thresholds (in mm
for daily accumulations) are 0, 0.1, 0.2, 0.4, 0.8, 1.6, 2.5, 3.2, 5.0,
6.4, 10.0, 12.8, 17.5, 20.0, 25.0, 40.0, 52.5, 76.0, 150.0. Note that
at least some of the deviations from straight line (scaling) are due
to the imperfect scaling of the network itself (top line).

ability distribution/multiple scaling' techniques (PDMS) in
Lavallee et al. (1991a), Lavallee (1991). They are dis-
tinguished from other histogram based techniques (e.g.
Paladin & Vulpiani, 1987; Atmanspacher et al., 1989) in that
they overcome the nontrivial problem of the (slowly varying)
proportionality constants in equation 7 by examining the
histograms over a range of scales rather than at a single scale.
The drawback of these methods is that they are quite
sensitive to the correct normalization of the field: the ensem-
ble average of the large scale spatial average must satisfy
{Rl)=l (i.e. in rain, the large scale, climatological rate must
be used). An early implementation in rain is given in Seed
(1989) (see e.g. Fig. 24) who studied radar reflectivities of
four separate convective storms in Montreal. However, the
statistical estimation of H, Cl9 a from c(y) is a poorly
conditioned nonlinear regressions and leads to low accura-
cies in the estimates. Nonetheless, Seed found a in the range
0.3-0.6 and Cx in the range 0.6-1.0. Although he averaged in

Fig. 23b The number n{x) of exceedance pairs for daily accumu-
lations in time T (for a year), accumulated over all 8000 stations.
Since many stations frequently had missing data, it was first
confirmed (top curve) that the pattern of missing data was not
itself fractal (the slope is consistent with a dimension 1 on the time
axis, hence nonfractal data outages). The line below is only for
those stations whose accumulation was above the minimum detec-
table level 0.1 mm/day. From Tessier (1993).

O

Fig. 23c Same as Fig. 23b except for a threshold of 1.28 cm/day,
showing a clear break at about three weeks (the 'synoptic maxi-
mum'). From Tessier (1993).

space, he pooled statistics into histograms involving many
(~ 144) consecutive 5 minute PPIs. His estimates are in fact
close to the more accurately estimated temporal parameters
found here.

Another application of PDMS to rain is described in
Tessier et al. (1994), where it is applied to the global
meteorological network (Fig. 25) used to estimate global
rain.
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Synoptic Maximum

Fig. 23d Same as 23c except for a (very high) threshold of 10.24
cm/day, showing the same break at about three weeks and much
lower dimensions. From Tessier (1993).

Direct estimates of universality parameters: double trace
moments

Above, we reviewed the results of multifractal analysis
techniques which in principle could be applied to arbitrary
multifractals. They enjoyed the apparent advantage of
making no assumptions about the type of multifractal being
analyzed. In practice however, the techniques are overly
ambitious: for a finite (and usually small) number of samples
of a process, they attempt to deduce an entire exponent
function, with the result that there is considerable uncer-
tainty in the resulting estimates of c(y) or K(q). With the
realization that physically observable multifractals are likely
to belong to universality classes, it is natural to develop
specific methods to directly estimate the universality para-
meters (H, Cl9 a). These parameters can then be used to
determine c(y), K(q) from equations 12-13.

The double trace moment (DTM) technique (Lavallee,
1991; Lavallee et al, 199Id) directly exploits universality by
generalizing the trace moment; it introduces a second
moment rj by transforming the high resolution field
cpA, => cpn

A,. This transforms the flux II into an 'rj flux'

(18)

The double trace moment can then be defined as:
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where we have introduced the (double) exponent K(q,rj),
which reduces to the usual exponent when rj = 1:
K(q,\) = K(q) (the sum is over all disjoint boxes indexed by
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Fig. 24 An early implementation of the PDMS technique on
radar reflectivities during a summer storm in Montreal (August
14th, 1988), using 144 consecutive CAPPIs (Constant Altitude
Plan Position Indicators, i.e. constant altitude reflectivity maps),
at five minute intervals. The codimension function was estimated
at scales of 2, 4, 8, 16, 32 and 64 km from the corresponding
probability distributions (of spatially degraded reflectivities) using
the following approximation: c(y)& -log(ZA)/log/l (i.e. setting
the proportionality coefficient in equation 7 equal to unity). The
resulting estimates for each of 6 resolutions is shown, along with a
smooth curve obtained by nonlinear regression using the theoreti-
cal (universal) formula equation 12. The universal parameters can
be graphically estimated using the construction line (the bisectrix
x=y) shown, which exploits the fact that for a conserved multi-
fractal (H = 0), ciC^) = Cl9 c'(Cl) = 1, i.e. the bisectrix will be
tangent to c(y) at the point Q (see Figs. 12, 13). From the graph
we immediately deduce that H %0, (from equation 12, H=/=0 leads
to a left/right shift of c(y) with respect to the bisectrix), Cx «0.9,
and from some other point on the curve (e.g. the value of c(0)) we
deduce a «0.55. From Seed (1989).

/). Note that the basic implementation of the DTM is quite
straightforward70; the field at the highest available resolution
is raised to the power q, the result is iteratively degraded in
resolution and the qth moment averaged over the field and
the ensemble of samples available - see Fig. 14 for a
schematic illustration.

The entire transformation from single to double trace
moments (i.e. taking rj powers and then integrating) can be
summarized in the following formulae (where the prime
indicates transformed, double trace quantities, not
differentiation):
70 Note that, if H> 0 the data will require some 'prewhitening' before the

application of the DTM, i.e. power law filtering to yield a conserved field.
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Fig. 25 Probability Distribution/Multiple Scaling analysis of the
NMC network (Fig. 26), log10 Fr(px>Ay) vs. log10^ for y increas-
ing in 0.1 intervals from 0 (top) to 0.8 (bottom line), the absolute
slopes give c(y), pk is the station density at resolution X. Iog102 = 0
corresponds to the largest scale (here «15000 km), the (multiple)
scaling is well followed up to Iog10>1^2 («150 km); for smaller
scales, the finite number of stations leads to a break in the scaling.
Using nonlinear regressions, the universal parameters were esti-
mates as a^0.8, Cx «0.5. From Tessier et al. (1994).

(20a)

(20b)

(20c)

(20d)

Note the subtlety in the above: due to the integration in
equations 18-19, we are dealing with dressed rather than
bare quantities, hence the dressed singularities (equation
20a) transform with an extra term (— K{rj))\ necessary since
the dressing operation enforces conservation of the rj flux.

The real advantage of the DTM technique becomes appar-
ent when it is applied to universal multifractals (Laval-
lee, 1991) since we obtain the following transformations of
C,:

dK &K'

q=\ dq'
(21)

Therefore, K'{q') — K(q,rj) has a particularly simple depen-
dence on rj:

K(q, rj) = r\ <xK(q) (22)

a can therefore be estimated on a simple plot of log K(q, rj) vs.
log Y\ for fixed q. By varying q, we improve our statistical
accuracy. Finally, note that since equation 20d is only valid
when the relevant statistical moments converge, and the
sample size is sufficiently large to accurately estimate the

scaling exponents, whenever max(qri,q)>mm(qs,qD) the
above relation will break down; K(q, rj) will become indepen-
dent of rj. We shall see that effective exploitation of the above
involves a 'bootstrap' procedure in which the well estimated
low q, rj exponents are used to estimate a, Q, and then
equations 14a, b can be used to predict the range of reliable
estimates.

In comparison with existing multifractal analysis meth-
ods, the DTM technique has two advantages. First, the
estimated scaling exponent K(q, rj) is independent not only of
the normalization at the largest scales, but also of the change
y => y + b corresponding to a translation in y space - in the
bare quantities71. The second is that when a multiplicative
change of y is made (y=>ay) then relation for
K(q^rl)^'K(q^a~rj)=zaCCK(q^rl) (when a corresponds to a
contraction in the y space, but is also equivalent to the
integration of the fields (pA at an unknown power a by the
experimental apparatus). This implies that the determination
of a will also be independent of the power a to which the
process is raised. In other words the universality has been
exploited to give a method to determine a which is invariant
under the general transformation y => ay + b!

Estimating H

We have seen that in multiplicative processes, it is convenient
to isolate an underlying conserved quantity which has basic
physical significance; in turbulence it was the energy flux to
smaller scales, in rainfall we denoted it by cp, and related it to
the rain fluctuations via equation 3. In terms of the scaling,
conservation means <cpA> = constant (independent of X),
hence K(l) = 0. If we consider the energy spectrum of cpk, it is
of the form k'p with72 p=\-K{2), i.e. the spectrum is
always less steep than a 1//noise73.

The reason for dwelling on this is that it illustrates a basic
point common to most geophysical fields viz, their spectra
often have /? > 1, hence they cannot be conservative pro-
cesses, they must be74 (fractionally) differentiated by order
— //(the spectra must be power law filtered by kH) to become
conservative. Lavallee (1991) analyzed simulations of con-
served processes fractionally integrated and differentiated by
varying amounts. As long as he differentiated (filtered hy kH

with / / > 0) using the DTM technique, he obtained stable and
accurate estimates of both Cx and a; however when he
fractionally integrated (//<0), he only recovered a. C\ was

71 This is also true of single trace moments or partition function approaches.
72 This formula is a consequence of the fact that the energy spectrum is the

Fourier transform of the autocorrelation function which is a second order
moment.

73 The difference is often not great since K(2) is usually small: =C1(2a

- 2 ) / ( a - l ) , andO<a<2.
74 See Schertzer & Lovejoy (1991, Appendix B.2) for more discussion of

fractional derivatives and integrals.
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not accurately determined75. From the C\, a estimated this
way, we can determine K(2) from equation 11 and hence76,
writing ($ for the spectral slope of the observed process, the
order of fractional integration required to go from the
conserved process to the nonconserved (observed) process is
given by:

nJ-l+K(2)J-l [

2 2 2(a - l )
(23)

In many data analyses, it is possible to avoid the use of
Fourier space. In 1 — D we have already recalled that replac-
ing the time series by its differences is approximately the same
as multiplying by k in Fourier space77. To generalize this to
two (or more) dimensions, one possibility is to use a finite
difference Laplacian. This multiplies by \k\2 in Fourier space,
hence the spectrum by \k\4; although this is quite drastic we
have found that it apparently works fairly well. A method
involving less smoothing which also works well, is to replace
the field by the modulus of the local finite difference gradient
operator.

As a final comment, it is possible to directly estimate H via
(first order) structure functions (the scaling of absolute
differences). However, current direct methods are designed
for time series analysis, the optimum extension for fields in
two or higher dimensions is not clear. Other methods such as
the probability distribution and R/S analysis methods used
in Lovejoy (1981) when applied to multifractals yield results
which are not directly related to the multifractal parameters;
the value H&0.5 quoted earlier (which assumed simple
scaling) needs careful reconsideration.

ESTIMATES OF UNIVERSAL
MULTIFRACTAL EXPONENTS IN RAIN —

Analyses of rain gage network in space and multifractal
objective analysis

A basic problem with in situ geophysical measurements -
such as those from rain networks - is that the networks are
typically sparse, they have 'holes' at all scales. An early
method for dealing with this problem involved characteriz-
ing the sparseness by fractal dimensions, for example, Love-
joy et al. (1986) found a fractal dimension of ~ 1.75 in the
«10000 station network reporting to the World Meteoro-

75 This indicates that as long as the spectrum is less steep than the underlying
conserved process (/J< 1 - K(2)\ that we can recover Cx.

76 In the case of turbulence, it is not necessary to infer the relation since it is
given by dimensional analysis from known dynamical quantities. In rain,
we don't know the corresponding dynamical (partial differential) equa-
tions, nor their conserved quantities, so that this type of empirical
inference is unavoidable.

77 Because of the finite differencing, this will not be exactly true at the highest
frequencies corresponding to the resolution the series.

Fig. 26 Position of the stations reporting daily rainfall accumu-
lations in 1983 that have been used in our analysis.

logical Organization indicating that 'holes' do indeed occur
over a wide range of scales. Using (generalized) intersection
theorems and ordinary trace moments, Montariol & Giraud
(1986), Giraud et al. (1986), Marquet & Piriou (1987) and
Ladoy et al. (1987) showed how corrections to network
infered rain statistics could be made by subtracting appropri-
ate network codimensions from the corresponding measured
rain codimensions. Below, we examine the daily rainfall
accumulations observed by raingages at synoptic weather
stations78 covering the earth for the year 1983 (Fig. 26).

Actually, it is better to treat the density of stations as a
multifractal measure (rather than the stations themselves as a
fractal set, see Fig. 25), and then to statistically correct for the
multifractal nature of the network density. In what follows
we summarize the results of Tessier et al. (1994). Consider
that the measuring stations have a multifractal density px

when measured at resolution X. This is found (see Fig. 25) to
be a reasonable approximation to the density field over the
range ~ 5.0 x 103 km to ~ 1.5 x 102 km (the lower limit arises
because there were only ~ 8000 stations which is quite small
for this type of analysis).

Over the multifractal range, the station density may be
estimated in a variety of ways, for example by counting the
number Nx of stations in a circle of radius X ~x (taking the size
of the earth =1), and then79 px&NxX

2. Consider now the
product measure Mx — pxRx. In the /th circle BXi, it can be
estimated as follows:

where the sum is over the measured rain rates (indexed byy)
of the stations in the /th circle. If we now suppose statistical
independence of p, R, by taking qth powers and ensemble
averaging we immediately obtain:

78 This data set was archived at the National Meteorological Center (NMC)
of NOAA; it is not exactly the same as the WMO set.
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q=0.5

q=1.5

q=2.0

1.0

Fig. 27 log (| K(q,rj) |) versus log (77) for daily rainfall accumu-
lations on a global network after the corrections explained in the
text. The regression lines (for # = 0.5, 1.5, 2, bottom to top respec-
tively) give a value of a = 1.35 ± 0.1 and Cx = 0.16 ± 0.05. From
Tessier etal. (1993).

Tessier et al. (1993) indicate how to generalize this result to
double trace moments (K(q, rj)); the principle is the same,
subtract the measured KM, from the network80 Kp:KR(q,rj)
= KM(q,rj)-Kp(q,l). From such an analysis we obtain a
= 1.35 ±0.1 and Q = 0.16 ±0.5 as may be seen on Fig. 27
where we have plotted \og\K(q9rj)\ vs log^ for q = 0.5,1.5, 2.
We see that for large values of rj the curve K(q, rj) becomes
flat, here due to limited sample size, whereas at low values of
rj, it also becomes flat due to the sensitivity of the low order
moments to noise and/or the presence of a minimum order of
singularity.

The classical radar observer's problem for multifractal
reflectivity fields and estimates of Ch a from radar

Up to now, we have discussed various fractal and multifrac-
tal analyses of radar rain reflectivity data, carefully dis-
tinguishing this from the rain rate. The exact relationship
between the radar reflectivity and the rain rate (R) is an
unsolved problem going back to the 1940s. Standard (non-
scaling) theory already leads to power law relations between
the two and we have already mentioned the monofractal
(Lovejoy & Schertzer, 1990c) corrections that can be used to
improve the latter. In this section we summarize some recent
theoretical results (Lovejoy & Schertzer, 1990a) on this
'classical'81 multifractal 'observer's problem'.

79 Ignoring factors of n; this will be a good approximation when Nx»1.
80 The double trace moment is with respect to the measure pdDx, rather than

the usual dDx; hence the Kp(q,\) rather than Kp{q,r\). Kp{q,\) is easy to
estimate since Kp(q,\) = KM(q,0).

81 'Classical' because we assume subresolution homogeneity; the multifrac-
tals are (unrealistically) assumed to be cutoff at this scale.

In its classical form (Marshall & Hitschfeld, 1953, Wal-
lace, 1953), the observer's problem makes assumptions of
subsensor homogeneity (specifically that the rain drops have
uniform (Poisson) statistics over scales smaller than the
radar 'pulse volume': typically about 1 km3). The variability
in observed 'effective82' radar reflectivity factor Zeff is then
considered to arise from two sources. The first is the natural
variability of interest characterized by the 'reflectivity factor'
Z (proportional to the variance of the drop volumes). The
second arises as a result of the random positions of each of
the drops within the pulse volume. Under certain assump-
tions about the homogeneity of the field and on the form of
the drop size distribution (finite variance, qD>2), Z can be
related to the rain rate, total volume of liquid water, or other
parameters of interest83.

Figs. 2a, b, c, d, Fig. 4a, b and Figs. 16a, b already point to
the inadequacy of the assumptions of homogeneity (even at
subwavelength scales); even the assumption of finite variance
is not trivially respected. In spite of this, based on these
assumptions, much work has been done to devise sampling
and averaging strategies to obtain Z from Zeff. In this section,
we indicate that even with these subsensor homogeneity
assumptions, that correction can still arise if we allow for a
multifractal Z field from the largest scales down to the radar
scale; hence even in the standard theory, we must still
account for multifractal effects. Introducing the natural log
of the range in scales84 (£ = \nX) and the measured codimen-
sion function ceff(y) (for Zeff) we seek to relate this to the
underlying c(y) (for Z). The basic result of Lovejoy &
Schertzer (1990a) is:

c'(y)[\nc'(y)-l] (\
O ( — (26)

hence for X large enough, ceff(y) => c(y): in the limit where the
natural variability builds up over a sufficiently wide range of
scales (i.e. that the radar resolution is much smaller than the
outer scale of the rain producing processes), the two are
equal85. In other words, in this limit the natural variability is
so strong that it completely dominates that arising from
random fluctuations due to drop phases. This answers the

82 In this subsect ion w e denote the 'effective reflectivity factor' by Zcff, and the
'reflectivity factor' by Z; in the rest o f the paper, for convenience , w e drop
the subscript 'erf'; Z denotes the measured 'effective' quantity, we d o n o t
require the (unobserved, theoretical) 'reflectivity factor'.

83 The fact that individual radar echoes have long tails (e.g. Figs . 2b , c) and
that the drops are highly n o n uniformly distributed means that in reality, Z
can only be statistically est imated from Z e f f - ult imately it will probably be
simpler to statistically relate the Zef f directly to the rain rate; use o f the
unmeasureable Z will be unnecessary.

84 Taking a typical radar resolution o f 1 k m , and an external scale for the rain
processes at 1000 to 10000 km, we find £ in the range ln(1000) to
ln(10000)~7-9.

85 Using data from Seed (1989), Lovejoy & Schertzer (1990a) estimated that
the largest correction to c(y) is ~0.14.
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Fig. 28a log((AT(̂ ,f7)|) versus log(f/) for the gradient of vertically
pointing radar reflectivities in the vertical direction (128 elevations
at 21 m intervals), for # = 2, statistics accumulated over 8192
consecutive pulses at 2 second intervals. The straight line indicates
<x = 1.35, Q = 0.11. From Tessier et al. (1993).

logio *n
0.5 1.0

Fig. 28b \o%{\K(q,r\)\) versus log(f/) for the gradient of the hori-
zontal radar reflectivities (same data as in Fig. 4f) at 75 m
resolution. The bottom curve is for # = 0.5 and the top for q = 2.0.
The straight line indicate a = 1.40, Cl = 0.12. From Tessier et al.
(1993).

question raised by Zawadzki (1987) as to which variability is
strongest.

We now seek to explore the relation between the reflecti-
vity factors and rain rates. Limiting ourselves to studying the
implications of the usual semi-empirical relations, (based
again on subresolution homogeneity) we find the simplest
statistical relation between Z and R is a power law i.e. ZozRa.
Such power laws are frequently invoked in rain (e.g. the well
known semi-empirical Marshall-Palmer (1948) law has
exponent a = 1.6). Writing Z=)JZ and R = XyR this is equiva-
lent to the linear transformation of singularities: yz = ayR

where yz is the singularity in Z and yR is the corresponding
singularity in R. We have already seen (equation 20 with
rj = a) that under such transformations, a => a, Cx => Cxa*.

Fig. 28a shows the results for vertical pointing radar
reflectivities yielding az» 1.35 and Clz«0.11 (vertical direc-
tion) and Fig. 28b for a horizontal pointing radar yielding
az«1.40 and Clz«0.12 (horizontal direction) showing
remarkable agreement with a for network rain, and between
the vertical and horizontal directions. To estimate H, we may
use the horizontal estimate of fi («1.45, Fig. 4f), to yield
Hztortt0.32, and in the vertical, using the estimate /? = 2.3
(Tessier et al., 1991a), we obtain 7/zhor«0.73. The agreement
between the values of a is particularly significant considering
the apparently very different natures of the data sets
involved. The C{ estimates are comparable, although

-1.0
-1.00 -0.50 0.00 0.50

Fig. 28c log(\K(q,rj)\) versus log(fy) for the gradient of vertically
pointing radar reflectivities in time (8192 consecutive pulses at 2
second intervals) and statistics accumulated for 128 elevations at
21 m intervals (same data set as Fig. 28a). The straight line
indicates a = 0.50, Cx = 0.60. From Tessier et al. (1993).
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Table 3. A comparison of various gauge and radar estimates ofa, Clf H over various space scales and directions. Particularly
significant is the agreement between the a estimates from such disparate sources. The errors in a are estimated to be about
±0.1, in C]f ±0.05. The value ofH is poorly estimated. The value oc^l.35, C^O.15 is the same as that obtained by Tessier
et al. (1991a) for visible and infra red cloud radiances. It is also very near that found by Schmitt et al. (1991) for turbulent
temperatures

Data type
Domain
Data type
Range of scales
a

Q
H
References:

Radar reflectivity, Montreal
horizontal space
radar reflectivity
75 m to 19.2 km
1.40
0.12
0.32
Tessier et al. 1993

Gauge, daily accumulations
horizontal space
daily gauge accumulations
«150 km to global
1.35
0.16
0.2 ±0.3
Tessier 1993

Radar reflectivity, Montreal
vertical space
radar reflectivity
21 m-2.5 km
1.35
0.11
0.73
Tessier et al. 1993

Table 4. A comparison of various gauge and radar estimates ofcc, Cl over various time and space scales. All parameters were
estimated from the DTM technique with the exception of the Seed (1989) study. Note that the C7 value for reflectivities are
not expected to be the same as for the gauge rain rates

Data type

Location

Sample characteristics

a

C,

References

Gauge, daily
accumulations

Global network

1000 stations,
1-64 days

0.5

0.6

Tessier et al.
1993

Gauge, daily
accumulations

Reunion island

1 station, 30
years, scales
1-64 days

0.5

0.2

Hubert et al.
1993

Gauge, daily
accumulations

Nimes

1 station, 30
years, scales
1-64 days

0.5

0.6

Ladoy et al.
1993

Gauges, daily
accumulations

Germany

1 station, 45
years, scales
1-32 days

0.6

0.5

Larnder &
Fraedrich*

Radar reflectivity

Montreal

4 storms, 144
PPIs each 1 km
resolution every
5 minutes

0.3-0.6

0.6-1.2

Seed 1989

Radar reflectivity

Montreal

1 storm,
vertically
pointing radar 20
m resolution,
every 2 s for 5\
hours

0.5

0.6

Tessier et al. 1993

Note:
* = Private communication.

differences86 are to be expected if only because of the Z-R
relation, and the horizontal/vertical anisotropy87. This is the
first empirical agreement between any fundamental statisti-
cal rain gauge and reflectivity parameters and gives us
confidence in the value obtained. Table 3 shows an overall
comparison of these spatial estimates.

Double Trace Moments and the statistics of rain in time

The scaling of rain in space coupled with the scaling of the
dynamic (wind) field leads to temporal scaling. Theoretically,

86 Differences could also arise because of the limited sample sizes used in the
various studies, and because C, may in fact vary climatologically: the
theoretical arguments for the universality of C, are less convincing than
for a.

87 From the values quoted above, it seems that the most obvious effect of
anisotropy is to modify the values of H.

the appropriate framework for treating the problem is via
scaling space/time transformations and Generalized Scale
Invariance; this is discussed in the next section, here we
summarize various recent empirical results. Table 4 is a
summary of six independent analyses from four different
locations, different data types, ranges of scale and analysis
methods, studies indicating a remarkable consistency88 in
estimates ofa, Cl9 especially a. Considering only the gauge
estimates, we obtain a « 0.5 ± 0.1, Cx« 0.5 ± 0.1. Unfortuna-
tely, at present the temporal value of H is not well known. A
rough estimate can be obtained from the high frequency end
of Fig. 4d: f$ « 0.5. If we use the corresponding values ofa, Q
we obtain89 (using equation 23), i /«0.1±0.1, i.e. it is

88 The theoretical arguments leading to the expectation of a universal C, are
much weaker than those for a universal a.

89 Using the mean of the individual H values also yields HK 0.1 ±0.1.
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Minutes
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Hours
3 6

Months

Fig. 29 The world's record point rainfall values, 1 - Cherrapunji, India; 2 - Silver Hill Plantation, Jamaica; 3 - Funkiko, Taiwan; 4
Baguio, Philippine Is.; 5 - Thrall, Texas; 6 - Smethport, Pa; 7 - D'Hani, Texas; 8 - Rockport, W.Va; 9 - Holt, Mo.; 10 - Cutea de
Arges, Romania; 11 - Plumb Point, Jamaica; 12 - Fussen, Bavaria; 13 - Unionville, Md.; values from Jennings (1950). ( +) La
Reunion, France; (x) Paishih, Taiwan; values from Paulhus (1965).

possible that in time, rain is a conserved process (H=0). In
comparison, we may apply the double trace moment tech-
nique to time series from the vertical pointing radar data
discussed in the previous sub-section (Fig. 28c), finding
a«0.50, Cx «0.60. The spectral slope yielded p& 1.1, hence
we obtain H&0A for the effective reflectivity.

multifractals with 1 <a<2) , in any finite sample there will
always be a maximum order of singularity present ys. Which-
ever way it arises, for any fixed averaging period (resolution),
this maximum order of singularity places an upper bound on
the extreme values that will be observed. To see this, consider
the maximum rain accumulation Ax ( = TRX) over time x

EXTREME RAINFALL EVENTS

One of the attractive features of multifractal models of rain is
that they naturally generate violent extreme events. In this
subsection, we show that they are apparently of the same
type as those which actually occur. The following is a
summary of recent work by Hubert et al. (1993).

To begin with, consider a multifractal rainfall time series
with maximum order of singularity ymax. This maximum may
arise through a variety of mechanisms: it could be due to
geometrical or microcanonical constraint, the result of a
cascade with bounded singularities, or - of relevance here
(Table 3) - associated with universal multifractals with
0 < a < 1 (see equation 12). In any case even if the process
itself has unbounded orders of singularity (as in the universal

4«T ' - ' - (27)

We therefore will expect log-log plots of maximum accumu-
lations Ax versus duration T to be straight, Fig. 29 (from
Rememeras & Hubert, 1990) shows a typical result showing
the maximum recorded point rainfall depths for different
durations going from minutes to several years. These mea-
surements easily fit straight line with slope equal to about 0.5
(hence ymax*0.5).

If we consider the empirically observed Cx and a values for
the temporal rain process we can readily explain this remark-
able alignment. Recall from Table 3, (gauge results only) that
a « 0.5 ±0.1, Q » 0.4 ±0.1 from series of quite disparate
origins. Since 0 < a < l , the following maximum order of
singularity y0 of the process is obtained (equaton 12):

(28)
- a
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-1 -0.5

GENERALISED SCALE INVARIANCE

a '0

Fig. 30 The c(y) curve corresponding to the estimated parameters
a«0.51 ±0.05, C1»0.44±0.169 with ys for NS=XD* samples, and
7o ( = ys f° r a n infinite number of samples; DS = NS= oo). From
Huberts*a/. (1993).

Using the above estimate of a, Q, (with H = 0) we obtain
yo«O.8±O.2. This maximum corresponds to the stochastic
generating process, for any finite sample, the actual limit will
be determined by ys = ymax = c~l(D + Ds), see Fig. 30 for the
corresponding illustration). However, when a < 1, the differ-
ence ys — y0 is typically small:

(29)

with the upper limit (implying ys-+y0) occuring when
Ds -• oo (an infinite number of samples), and the lower limit
applying for single samples (Ds = 0). Using the above gauge
values in Table 3 for Cl9 a, we obtain with Ds = 0, y&0.1
± 0.2, whereas for an infinite number of independent rain
series, y«0.9 ±0.3. In both cases, the predicted slopes
( l -y«0 .3±0 .2 , 0.1 ±0.3 respectively) are close to those
observed in Fig. 29 («0.5).

These results help to reconcile two opposing views on
extreme precipitation, the 'extreme maximum precipitation'
(PMP) and probability approaches (based on frequency
analyses) since it simultaneously clarifies the role of the
accumulation period and sample size in determining the
observed maxima. It also provides a solid theoretical ground
for the derivation of rate-duration-frequency curves.

GENERALIZED SCALE INVARIANCE,
STRATIFICATION AND SPACE TIME
TRANSFORMATIONS

Vertical stratification of rain

We have considered the simplest scaling system involving no
prefered orientation; isotropic (self-similar) scaling whose

enlargement'
ratio X

ANISOTROPy:

Unit ellipsoid

Fig. 31 A schematic diagram illustrating Generalized Scale Invar-
iance. The top box indicates the familiar self-similar scale invar-
iance involving ordinary 'zooms', with scale changing operator
TA = /l ~G with G the identity. The bottom box illustrates the more
general case, the main requirement on Tx is that it satisfy group
properties. From Schertzer & Lovejoy (1989b).

theory has been developed over a considerable period of
time, particularly in fluid turbulence. However, the atmos-
phere is not a simple fluid system, nor is it isotropic; gravity
leads to differential stratification, the Coriolis force to differ-
ential rotation and radiative and microphysical processes
lead to further complications. However even when the exact
dynamical equations are unknown it can still be argued that
at least over certain ranges, these phenomena are likely to be
symmetric with respect to scale changing operations. This
view is all the more plausible when it is realized that the
requisite scale changes to transform the large scale to the
small scale can be very general.

To see this, introduce a scale changing operator TA defined
by: TAB{ = Bx, where Bx will be a large scale averaging set, Bx,
the corresponding set 'reduced' by factor L For example,
considering multifractals, 'self-similar' measures will satisfy
equations 7 or 9 with TA = X ~l = X " l l where I is the identity
matrix i.e. TA is a simple reduction by factor L However,
much more general scaling transformations are possible;
detailed analysis shows that practically the only restriction
on TA is that it has group properties, viz.: Tk = X "G where G is
the generator of the group of scale changing operations (this
formalism is called 'generalized scale invariance' or GSI,
(Schertzer & Lovejoy 1983b, 1985a, b, 1987a, b, 1989a,
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ANISOTROPIC
COMPRESSION AND

REDUCTION

N(L)CL

Fig. 32 A schematic diagram analogous to Fig. 7, but showing an
anisotropic cascade, here with

H|~1 0 "I

At large scales eddies are flattened in the horizontal (like Hadley
and Ferrel cells), whereas at small scales, they are more vertically
aligned (like convective cells). The cross-sectional area clearly
decreases with the 3/2 power of the horizontal scale; the elliptical
dimension is 3/2. Left and right hand sides again show (stratified)
homogeneous and (stratified) p model turbulence. From Lovejoy
&Schertzer (1986a).

1991b), see Fig. 31 for a schematic illustration). For example
'self-affine' measures involve reductions coupled with com-
pression along one (or more) axes; G is again a diagonal
matrix but with not all diagonal elements equal to one (see
Fig. 32 for a schematic of such a cascade, Fig. 33a for the
corresponding balls). If G is still a matrix ('linear GSF) but
has off-diagonal elements, then TA might compress an initial
circle Bx into an ellipsoid as well as rotate the result (see Fig.
33b). Linear and nonlinear GSI has already been used to
model galaxies, clouds and rain (for examples of the corres-
ponding balls Bk, see Fig. 33c, d for examples with rotation
(also Fig. 37), see Fig. 3d,e, for stratification only, see Fig.
3f,g,h,i). Empirically, the trace of G (called the 'elliptical
dimension' del of the system) has been estimated in both rain
and wind fields to have the values 2.22 and 2.55 respectively,
indicating that the fields are neither isotropic (del = 3), nor
completely stratified (de{ = 2), but are rather in between,
becoming more and more stratified at larger and larger
scales.

Fig. 33a The series of balls Bk for a example of linear GSI with
only diagonal elements (a 'self-affine' transformation) showing the
stratification of structures that result. From Schertzer & Lovejoy
(1989b).

Fig. 33b Same as Fig. 33a, but with off diagonal elements show-
ing the rotation and stratification of structures that result. From
Schertzer & Lovejoy (1989b).

Fig. 33c Same as Fig. 33a, but for a nonlinear but deterministic
generator G. From Schertzer & Lovejoy (1989b).
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ELLIPTICAL BOX COUNTING

Fig. 33d Same as Fig. 33a, but for a nonlinear but stochastic
generator G. From Schertzer & Lovejoy (1991a).

The method that was used to estimate del in rain was
'elliptical dimensional sampling' (Lovejoy et al.9 1987), the
basic idea is shown in Fig. 34; the corresponding functional
box-counting indicates quite different dimensions in (x,y,z)
and (x,y) space, (Figs. 21a, b). There now exists a much
improved Fourier space based method for studying scaling
anisotropy and estimating linear approximations to G called
the 'Monte Carlo Differential Rotation' technique (Pflug et
al., 1991a, b, see Figs. 35a, b and 37 for examples). It has now
been successfully tested on satellite cloud radiances; tests on
radar rain data are in progress.

Space-time transformations in rain and the prediction
problem

In both geophysical and laboratory flows, it is generally far
easier to obtain high temporal resolution velocity data at one
or only a few points than to obtain detailed spatial infor-

2"

| - £ - |

Fig. 34 The variation on usual (isotropic) box counting that can
be used to estimate del when the direction but not magnitude of
the stratification is known; this method applied to radar reflectivi-
ties (Figs. 13a,b) yielded d̂  « 2.22 ± 0.07 (Lovejoy et al., 1987).
This figure is from Schertzer & Lovejoy (1989b).

mation at a given instant. It is therefore tempting to relate
time and space properties by assuming that the flow pattern
is frozen and is simply blown past the sensors at a fixed
velocity without appreciable evolution, and to directly use
the time series information to deduce the spatial structure.
This 'Taylor's hypothesis of frozen turbulence' (Taylor,
1938) can often be justified because in many experimental set
ups, the flow pattern is caused by external forcing at a well
defined velocity typically much larger than the fluctuations
under study. However, in geophysical systems (in particular
in the atmosphere and ocean) where no external forcing
velocity exists, the hypothesis has often been justified by
appeal to a 'meso-scale' gap separating large scale motions
(two dimensional turbulence associated with 'weather') and
small scale three dimensional turbulence (viewed as a kind of
'noise' superposed on the weather90. If such a separation
existed, it might at least justify a statistical version of Taylor's
hypothesis in which the large scale velocity is considered
statistically constant (i.e. stationary). Various statistical
properties such as spatial and temporal energy spectra would
be similar even though no detailed transformation of a given

90 Zawadzki (1973) finds that from 5 to 40 minutes this version of Taylor's
hypothesis is consistent with radar rain data, but that for longer times it is
inconsistent. We suspect that his data may be much more consistent with
the generalizations of Taylor's hypothesis discussed here. For a discussion
of conventional Taylor hypotheses in rain, see Gupta & Waymire (1987).



2 MULTIFRACTALS AND RAIN 95

Fig. 35a Illustrations of the Monte Carlo differential rotation technique applied to NOAA satellite infra-red image of a field of Marine
Stratocumulus clouds at 1.1 km resolution (256 x 256 points), the left is a grey scale rendition in real space, the right is the modulus
squared of the fourier transform in Fourier space. The superposed ellipses are the best fits corresponding to a sphero-scale of 3.5 km,

fO.57 -0.401
r~|_0.40 1.43J

(in linear GSI, the Fourier space generator is the transpose of the real space generator). From Pflug et al. (1993).

Fig. 35b Same as Fig. 35a except for cloud associated with a midlatitude cyclone, at visible wavelengths, 1.1 km resolution with 512
points on a side. The estimated generator, was

fO.68 -0.181

'~|_0.16 1.32J

the sphero-scale, 3.9 km. From Pflug et al (1993).
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time series to a particular spatial pattern would be possible.
Only some kind of statistical equivalence would be possible.

However, as argued here, the scaling is likely to continue
over most of the meteorologically significant range of scales.
No large scale forcing velocity can be appealed to in order to
transform from space to time; a turbulent velocity must be
used (equation 5). Due to the multifractal nature of the wind,
the exact scaling will depend on the K(q) of the energy flux91

(e). For example, < vz> ^l1/3'^1^ according to Schmitt et
al. (1992), in wind tunnel wind data, Cx« 0.25, a «1.3, hence
- #(1/3)«0.07. Denoting this small intermittency correc-
tion by <5, we expect that rather than being scale independent,
the space-time transformation has a scale dependent velocity
<v,>«/" with Hv= 1/3+ <5. The two geophysically relevant
statistical Taylor's hypotheses therefore correspond to Hv

= 0 or Hv = 1/3 + S depending on the existence (or not) of the
'gap'.

The theoretical arguments mentioned above make it clear
that the turbulent velocity is likely to be the relevant one for
space-time transformations; this rules out the constant velo-
city (Hv = 0) hypothesis92. In fact, as discussed in Pflug et al.
(1991, 1993), a good way to directly measure the series of
'balls' is to look for lines of constant energy density in
Fourier space; Fig. 36 shows the result using vertically
pointing radar data), the elliptical character of the (vertical)
spatial wavenumber/frequency isolines, with eccentricity
clearly varying with scale; this shows unambiguously that
empirically (z, i) space is anistropic. Theoretically, with the
help of in the formalism of Generalized Scale In variance, we
can understand this by deriving the space-time transforma-
tion from the (turbulent) value of / / v(«l /3) . Consider
(x9y9t) space, the space-time transformation can be simply
expressed by statistical invariance with respect to the follow-
ing transformation (generalized reduction in scale by factor
X): x=>Ax, y=>Ay, t=>Xl~Hv or, using the notation r

= (x, y, z, 0, rx = Tkrx with Tk = X ~G and:

G =

1 0

0 1

0 0

0

0

l-Hv

we therefore obtain Trace G = 3 - Hv i.e. by measuring del or
Hv we can determine G (assuming that there are no off-

91 A priori, any o f the statistics <vf> l l q could be used in space-time transfor-
mations; all that is required is a parameter with the dimensions o f velocity.
It is therefore possible that (due to the multiple scaling o f v,) that the
relevant transformation will be different for different orders o f rain
singularities y ( indeed, in view o f the different a values found in time and
space, this is necessary). Here for simplicity, we ignore this possible
complicat ion and consider transformations o f the low order singularities
corresponding to q ~ 1.

92 U s i n g lidar data, Lovejoy & Schertzer (1991a) find the value (Hv

= 0.5 ± 0 . 3 ) which is not accurate enough to usefully estimate d. A more
accurate radar based estimate Hv = 0.38 + 0.05 was announced by Tsonis
etal. (1990).

diagonal elements corresponding to rotation between space
and time, and ignoring differential rotation in the horizon-
tal). The isotropic statistical Taylor's hypothesis is therefore
expressed by del= 3 (Hv = 0), the anisotropic, turbulent scale-
dependent Taylor's hypothesis is i / v « l /3 , Je l«8/3. If we
now consider the full (x,y,z,t) space, it has already been
shown (Lovejoy et al., 1987) that in (x,y,z) space del = 2.22
(i.e. the z direction contributes 0.22 to the trace of G) for the
corresponding transformation in (x, y, z) space for radar rain
data, hence for the (x,y,x, t) process, the corresponding
value is del« 2 + 0.22 + 2/3 « 2.89.

The generator of space/time transformations defines the
operation required to go from large to small space/time
structures. When it is coupled with the multifractal prob-
ability generator (characterized by H, Cl9 a), it provides a
complete statistical description of the space/time process,
and hence - in principle - all the information necessary to
produce stochastic predictions. Such predictions may be
viewed as systematic generalizations of existing prediction
techniques based on the 'stochastic memory' of the system.
Work is currently in progress at McGill and the Meteorolo-
gie Nationale to use this approach to improve nowcasting
methods for extrapolating radar echoes and satellite esti-
mated rain areas93 (e.g. Bellon et al., 1980). For any given set
of data, they have the potential to provide the theoretically
optimum prediction: all that is required is knowledge of the
multifractal generators (G, H, Cl9 a).

Dynamical simulations of rainfall

In this section we indicate briefly how to exploit the universa-
lity (and the measured H, Cl9 a parameters) to perform
multifractal simulations. The first 'continuous'94 multifractal
models of this type were discussed in Schertzer & Lovejoy
(1987a, b), and Wilson (1991). Wilson et al. (1991) gives a
comprehensive discussion including many practical (numeri-
cal) details95. In particular, the latter describes the numerical
simulation of clouds and topography, including how to
iteratively 'zoom' in, calculating details to arbitrary resolu-
tion in selected regions. Although we will not repeat these
details here, enough information has been given in the
previous sections to understand how they work. First, for a
conserved (stationary) multifractal process cpk we define the
generator Tx = log cpx. To yield a multifractal cpx, Tk must be
exactly a 1//noise, i.e. its spectrum96 is E ^ ^ A : " 1 (this is

93 F o r rain forecasts for up to six hours , such techniques are already the best
available.

94 'Cont inuous ' since it does not involve integer ratios between eddies and
sub-eddies; it is cont inuous in scale, avoiding the artificial straight lines o f
the (discrete ratio) cascades.

95 F o r a recent illustration, see Fig . 10 from Lovejoy & Schertzer (1991c) .
96 F o r a < 2, the generator variance diverges, we use 'generalized' spectra -

see Schertzer & Lovejoy (1987a) , appendix C.
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Fig. 36 We plot here the contours of the (two dimensional) energy spectrum from the vertically pointing radar reflectivities; 2 second
temporal resolution, 21 m spatial resolution. The figure is the result of averaging the Fourier space energy density (modulus squared of
the Fourier transform) over 20 consecutive (z, i) planes, each with 256 x 512 points (Fourier conjugate axes are k,<x> respectively). Note
the clear differential stratification. The rotation of the principle axes with respect to the (Fourier) axes seems not to be differential
(hence due to a mean wind). From Tessier et al. (1993).
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necessary to ensure the multiple scaling of the moments of
cpx). To produce such a generator, we start with a stationary
Gaussian or Levy 'subgenerator'. The subgenerator is a noise
consisting of independent random variables with either
Gaussian (a = 2) or extremal Levy distributions (character-
ized by the Levy index a), whose amplitude (e.g. variance in
the Gaussian case) is determined by Cx. The subgenerator is
then fractionally integrated (power law filtered in Fourier
space) to give a (generalized) k ~l spectrum. This generator is
then exponentiated to give the conserved cpx which will thus
depend on both Cx and a. Finally, to obtain a nonconserved
process with spectral slope /?, the result is fractionally inte-
grated by multiplying the Fourier transform by k~H. The
entire process involves two fractional integrations and hence
four FFTs. 512x512 fields can easily be modeled on
personal computers (they take about 3 minutes on a Mac II),
and 256x256x256 fields (e.g. space-time simulations of
dynamically evolving multifractal clouds) have been pro-
duced on a Cray 2 (Brenier97, 1990, Brenier et al., 1990). We
used the multifractal parameters estimated by the various
methods described above, taking H&0.3, Q^O.l , <x«1.35
in space to produce the simulation shown in Fig. 37.

CONCLUSIONS

For over ten years, scaling ideas have provided an exciting
new perspective for dealing with rain and other dynamical
processes occuring in the atmosphere and other geophysical
systems; in this paper we have attempted to give a brief
review of this mushrooming field. To maintain a focus, as
indicated in the title, we have restricted our attention as much
as possible to an account of the necessary multifractal
formalism and to specific results on rain. Although multi-
fractal notions are also relevant in stream flows, river basins
and other areas of hydrology, we have omitted these from the
discussion. We have only mentioned in passing the now
burgeoning literature concerning scaling analyses and
modeling of clouds and their associated radiative transfer.
Finally we have only given a brief outline of the relation of
our results to turbulence theory and to recent empirical
turbulence results.

During the period covered by this review, scaling ideas
were extended far beyond the restrictive bounds of the fractal
geometry of sets to directly deal with the multifractal statis-
tics (and dynamics) of fields. Multifractals are now increas-
ingly understood as providing the natural framework for
scale-invariant nonlinear dynamics. Furthermore, due to the
existence of stable attractive multifractal generators they

97 This paper describes how such clouds simulations were used to produce a
video called 'Multifractal Dynamics'.

provide attractive physical models. This implies that many of
the details of the dynamics are irrelevant (universal behav-
iour) and leads to new and powerful multifractal simulation
and analysis techniques (many of which were discussed).

Scaling ideas have also been enriched by extensions in
another quite different direction: scaling anisotropy. Recall
that a scaling system is one in which small and large scale
(statistical) properties are related by a scale changing oper-
ation involving only the scale ratio: there is no characteristic
size. Until recently, this scale change was restricted to
ordinary 'zooms' or magnifications. Since the 1950s, this
isotropic self-similar scaling has provided the theoretical
basis of the standard model of atmospheric dynamics: a large
scale two dimensional turbulence and a small scale three
dimensional turbulence. The only generalization of scaling
beyond self-similarity was a slight variation called 'self-
affinity' which combined the zoom with a (differential)
'squashing' along certain fixed directions (e.g. coordinate
axes). While this extension is necessary to account for the
observed atmospheric stratification (implying a single scal-
ing, anisotropic turbulence), it is still very special. In particu-
lar, geophysical applications generally involve not only
differential stratification but also differential rotation (e.g.
due to the Coriolis force). The formalism developed to deal
with scaling anisotropy is Generalized Scale Invariance
(GSI). GSI goes far beyond self-affinity: not only does it
involve both differential rotation and stratification, it allows
both effects to vary from place to place in either deterministic
or even random manners.

We have argued that due to the enormous quantities of
rain data spanning many orders of magnitude in time and
space, that rain has and will continue to play a leading role in
testing and developing new ideas in scaling and nonlinear
dynamics. The rapid progress of this field makes the task of
reviewing difficult. In the first part, we have attempted to
concentrate on results which most clearly demonstrate the
scaling of rain; by combining many different measurement
techniques although the exact limits are still not clear, we
have seen that it is possible that rain is scaling over most of
the meteorologically significant range of scales. In general,
we did not attempt detailed intercomparisons of different
empirical results, largely because many were derived from
essentially experimental data analysis techniques (such as
functional box-counting, area-perimeter relations etc.),
which are now somewhat outdated and which in any event
were often applied to quite different data sets. Nevertheless,
the measurements presented here cover the entire range from
% 1 mm (blotting paper analysis of rain drop distributions),
to «10000 km (the global rain network), and give us
considerable confidence that the basic (multi) scaling holds
reasonably well.

Whereas early analysis and modeling techniques were
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Fig. 37 Numerical simulation of a universal continuous cascade multifractal rain field on a 512 x 512 point gridwidth a= 1.3, Cx = 0.1,
7/= 0.3, G the same as empirically estimated in Fig. 35b. We thank S. Pechnold for help with the simulation.

based on ad hoc geometric notions relevant to fractal sets, the
more mature multifractal framework outlined in the main
part of the paper depended on two important breakthroughs.
The first was the connection with the physics of rain pro-
cesses via the problematic of passive scalar clouds, and the
second, the continuous (cascade) modelling of the latter with
the associated discovery of multifractal universality classes.
Universality also provided the framework for the develop-
ment of a new generation of 'specific' multifractal analysis
methods that are analogous to parametric methods in

standard statistics and are statistically quite robust. Indeed,
the results of the Double Trace Moment technique are now
providing consistent estimates of multifractal parameters in
rainfall measured over wide ranges of scale in both time and
space, as estimated from both rain gage and radar measure-
ments (see Tables 3 and 4 for summaries). Although these
results are quite recent, they suggest that the field is maturing,
and that it is now the time for developing a variety of
multifractal applications. Some have already been men-
tioned; the multifractal objective analysis problem, the
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multifractal observers problem for radar data, the statistics

of extreme rain events.

Other areas where work is only just beginning were also

mentioned, in particular the problem of multifractal space/

time transformations, scaling anisotropy, and stratification,

as well as their modeling. These are areas where we may soon

expect exciting new developments, especially for multifractal

forecasting methods, and multifractal classification of

storms, morphologies and textures. Finally, given increasing

confidence in our multifractal parameter estimates, all these

ideas can be tested on (dynamical) multifractal models which

are thus likely to play an important role in helping to

understand the larger problem of resolution dependence of

remotely sensed data, including the relation between the

radiance and rain fields (useful for improving satellite rain

estimating algorithms).
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3 Is rain fractal?

I. ZAWADZKI
Department of Physics, University of Quebec in Montreal, Canada

ABSTRACT Some scaling properties of the distribution of rain rate in space are
investigated. The scales of concern range from the radar coverage range (of the order of 400
km) down to individual raindrops. Preliminary results show that over this wide range of scales
rain fields exhibit: preferential scales in the range of a few tens of kilometers; behaviour
compatible with multifractal structure between scales of 0.5 to 12 km and some clustering
properties of the distribution of the small raindrops in space probably related to raindrop
collisions and breakup.

INTRODUCTION MESOSCALE

Rain rate fields exhibit variability at all scales down to
individual raindrops. In this sense the answer to the title
question is positive. However, our interest focuses more on
restrictive properties, such as scale invariance, that could
serve in modelling the process. One should not expect the
restrictive properties (if they exist) to extend uniformly over
all scales of the rainfall fields. On scales smaller then the size
of individual cumulus turbulence probably prevails in deter-
mining the distribution of water substance. On larger scales
other phenomena will affect markedly the distribution of
precipitation in space. For example, orography (including
the distribution of humidity sources) plays undoubtedly a
role in organizing convective elements.

The ability to study rain at all scales is limited. A single
radar does not cover a typical precipitation system. Quanti-
tative data from networks of radars covering extended areas
are now only becoming operational. Thus, one is limited to
circular areas of the radius of the order of 200 km. On the
other end of the scale the nature of the radar signal limits the
resolution to the order of one square kilometer (depending
on the range and the time integration of the radar signal).
For smaller scales little spatial information is available
and one must rely on the time records of rain measuring
devices.

In this work analysis of radar data and time records of
raindrop detection will be made, in search for the evidence of
scaling behaviour.

Several precipitation systems were analyzed using radar
derived rain rate distribution in space. Basic resolution was
4 x 4 km, maximum range was 190 km and data were
presented as constant altitude plan-position indicator
(CAPPI) at 2 km height. Typical results are those of a system
which occurred on June, 29th 1977, associated with the
passage of a front. The distribution of rain at one time instant
is shown in Fig. 1. The moment analysis was performed with
these data both for quasi-instantaneous precipitation pat-
terns and for data averaged over a number of radar scans.
Results are shown in Fig. 2. The change of moment with scale
does not exhibit a behaviour indicative of scaling for any time
resolution. Nevertheless, for single scan data a linear fit to the
values may appear as satisfactory approximation. However,
multiscaling models based on such an approximation lead to
a power-law form of the autocorrelation function (ACF) of
the model field. The correlation analysis of the precipitation
patterns shows, however, a more complex behaviour. In Fig.
3 the time averaged spatial ACF is shown (for definitions, see
Zawadzki, 1973). Sections along the major and minor axis
are shown in log-log coordinates in Fig. 4, where some
instantaneous values of the spatial ACF are also shown.

It is clear that in this case the quite uniform N-S distribu-
tion of rain is insufficiently covered by a single radar to reveal
any structure. Along the minor axis of the ACF, on the other
hand, the most striking feature is the breaking point at c. 80
km which may be indicative of a preferred scale of organiza-
tion. The scale of a few tens of kilometers is usually asso-
ciated in convective rainbands with clusters of convective
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Fig. 1 Frontal rain band at 11:05 on 29/6/77. Data correspond to 2 km height and shades indicate rain rate in mm/h.

cells. On both sides of the breaking point a power law
approximation to the ACF is reasonable. At any given time
the curves show some secondary maxima or minima but the
essential pattern is the same as for the time averaged ACF.
The breaking point changes in time as the precipitation
systems go through an evolution of the organization on the
restricted scale of radar coverage.

CONVECTIVE SCALE

A three days record of high resolution radar data taken on 11
September, 1981 was examined in the search for the rain
structure in scales below ten kilometers. The sample repre-
sents 24 hours of precipitation. The raw data were smoothed
first to a resolution of 0.5 km2 in order to eliminate signal
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SURFRCE (km3) SURFRCE (km*)

Fig. 2 Change of moments with resolution of data for the indi-
cated number of radar scans (1 scan every 10 minutes). Top left,
second moment; (top right) third moment; bottom left, fourth
moment; bottom right, fifth moment.

Fig. 4 Cross sections along the major and minor axes of the
spatial ACFs (29/06/77).

fluctuations. This resolution together with constraints due to
ground clutter limits the radar coverage to the range of 12 to
40 km. In azimuth the data were limited to 80° in the N-E
quadrant. Comparison with raingauge data insures a good
quantitative quality of the radar data (Zawadzki et ah, 1986).

As previously, moments and correlation analyses were
performed. Fig. 5 shows the values of some moments as
functions of the spatial resolution. The power law behaviour
of these curves is striking. Fig. 6 shows the slopes of the lines
in Fig. 5 as functions of the moment order. For the three time
resolutions a behaviour usually associated with the multi-
scaling concept is seen.

However, as seen in Fig. 7, the spatial autocorrelation
function (quite isotropic at these scales) shows again a
broken line aspect in log-log coordinates. The breaking point
is at c. 1 km which may be associated with the size of well
developed and intense individual convective cells.

S M A L L SCALE

-10

-20
-23

-30 -20 -10

Fig. 3 Time averaged autocorrelation pattern of the rain system
of 29/6/11. Space lag is in multiples of 4 km.

Since raindrops are the basic elements of rain, fractal proper-
ties at small scales are better investigated by the analysis of
distribution of raindrops in space. Data of this sort are not
obtainable in a practical manner for scales beyond a few
square meters. An alternative source of data are the time
records of falling drops, such as given by the distrometer of
Joss-Waldvogel (1967). For a given diameter of drops these
records can be interpreted as drops distributed in space.

Two records of the temporal length of 15 minutes, com-
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prising ca. 8000 drops were analyzed in search for the
correlation dimension. The data analysis was performed for
drops in various diameter categories and results were com-
pared with random generated data of the same sample size.
For drops larger than 0.5 mm in diameter no significant
evidence of any structure was found. For smaller drops the
analysis shown in Fig. 8 shows a correlation dimension of

Fig. 7 Spatial autocorrelation of the rainfall events for which the
moment analysis is shown in Figs. 5 and 6.

0.93. This small but significant effect, if true, has a simple
physical explanation in the collisional break-up that gener-
ates a cluster of small drops after each event. It is interesting
to note that although the phenomenon was extensively
studied in laboratory no clear evidence of its occurrence in
nature was available up to now. However, it should be
pointed out that for the very small diameters the distrometer
may be not sufficiently accurate.
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Fig. 8 Number of drops within a time interval centred at a drop
arrival time as a function of the interval duration. Squares indi-
cate actual data for drop diameters below 0.5 mm and triangles
correspond to randomly generated data.

DISCUSSION

The results presented here indicate that no scaling or multi-
scaling properties are present in rain distribution in space for
scales exceeding the size of mature precipitating cumulus.
Log-log plots of the space correlation function indicate
preferential scales around 30 km but varying from case to
case and in time with each case. This is not a surprising result.
Storm dynamics tells us that in strong systems some group-
ing of convective elements is the consequence of the dyna-
mics of the process. Analysis, such as presented here, repre-
sents an objective and unambiguous way of revealing these
features.

Within scales of the order of a cumulus size, some multi-
scaling properties appear to hold for rain. This conclusion is
based on moment analysis and it is not sustained by the
characteristics of the autocorrelation function. This illus-
trates that fulfilling one necessary condition for scaling does
not suffice for concluding about the scaling nature of the
process. However, the apparent contradiction may be due to
limitations in the theoretical framework within which this
contradiction arises. The empirical study presented by Fox

(1989) on the relationship between fractal dimension and
power spectra is illustrative of this.

Records of time of arrival of raindrops at a point at ground
indicate that the rain rate is not scaling at the very small
scales. The small drops, for which the analysis reveals some
moderate clustering, do not contribute significantly to the
rate.

The main problem with the study of scale in variance in the
rain is the observational one. No single instrument can
observe a wide range of scales. Meteorological radar data
correspond to a fraction of a precipitation system. One
assumes, that a time sequence of these records provides
information on the spatial distribution on scales much larger
than the radar range. For the study of smaller scales the radar
resolution is barely sufficient, and furthermore, if high
resolution is maintained, the noise contaminates the data.
Sample size of data is a critical issue. Unlike turbulence at
small scales in the boundary layer, where all situations
resemble each other, rain systems come in distinct categories:
stratiform, frontal band, local convection, etc. Even a causal
look at rain patterns occurring in different climatological
regions reveals obvious differences within the same categor-
ies of rain systems. It would be highly desirable to character-
ize this variability by a single parameter, like the fractal
dimension, or by a reduced number of parameters. Only a
systematic effort of analysis of a large number of different
situations, with an adequate a priori classification will deter-
mine if the fractal geometry can fulfill this goal.
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ABSTRACT Rainfall occurrence related to a particular location, denned as the set of
rainy periods observed, can be regarded as a fractal object belonging to the 1-D space of time.
The dimension of this object, which is bounded by 0 and 1, is estimated via the functional box
counting method. A large number of West African rainfall time series has been analysed. The
resulting dimension is a function of the time scale and of the accepted threshold of rainfall
intensity. In all cases under study, for a given time scale, a decreasing fractal dimension of
rainfall occurence with increasing rainfall intensity threshold was observed. A main time scale
range of practical interest was found to be from some days to some months. It is possible to
attribute a multifractal structure to the process of rainfall occurrence. It can be used for
simulation and/or estimation purposes. Attempts to find regional patterns and trends, and to
compare them to those of inter annual rainfall means were undertaken.

INTRODUCTION METHODOLOGY

In a given location, rainfall is an intermittent process. That
means that, for this location, one can observe a succession of
wet and dry states. These states must be carefully defined,
with areal, time interval and threshold references. A time
period would be defined as wet if a given area receives during
a given time interval an amount of water greater than the
given threshold.

A raingauge defines accurately an observed area, being its
collection surface (generally 400 cm2). Raingauge measure-
ments are typically performed at seven or eight o'clock every
morning. Then, one can qualify successive daily periods as
wet or dry. A period is considered wet if the amount of
rainfall gathered during this period is greater than or equal to
the given threshold. It is considered dry if the amount of
rainfall is less than the threshold. A recording raingauge has
also a well defined collection area and enables one to reach a
better time resolution. However, it is an expensive equip-
ment, requiring a more skilled manpower.

Daily observation records were used in this study. They were
extracted from the rainfall data base the CIEH (Comite Inter
Africain d'Etudes Hydrauliques, Ouagadougou, Burkina
Faso) kindly made available.

For each daily series, and for different rainfall thresholds,
the observation period was divided into dry and wet periods.
Rainfall occurrence then appears as a disconnected set
supported by the time axis. From a geometrical point of view
this set resembled the result obtained in course of generation
of a Cantor dust from a segment (Fig. 1). Such objects can
now be considered classical in the light of the works of
Mandelbrot (1975, 1977), who introduced the concepts of
fractal objects in geosciences.

The fractal dimension of rainfall occurrence has been
estimated with the help of the box counting method (Hents-
chel and Proccacia, 1983a; Hentschel & Proccacia, 1983b;
Lovejoy, Schertzer & Tsonis, 1987). Given a fractal object of
the dimension D, included in a space of Euclidian dimension
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Fig. 1 Daily rainfall records in Dedougou (Burkina Faso) cover-
ing the time span of 45 years. The first solid line shows the length
of a whole year. In the lower rows, representing consecutive years
from 1922 to 1966, the rainy days, during which precipitation
greater than 0.1 mm was observed, were marked.

E, the number N of a-sided boxes (respectively segments,
squares or cubes if is is equal to 1, 2 or 3) necessary to cover
the fractal object reads:

log [N(a)] = - D log (a) + K; K= const. (1)

So, on a log-log diagram, the points whose coordinates are
a and N(a) would fall around a straight line with slope — D.
In the present work, the set under study is included in a space
of Euclidian dimension 1, the boxes are segments and the
fractal dimension of rainfall occurrence ranges between 0
and 1.

STUDY OF DAILY TIME SERIES

The first series studied, with a 0.1 mm threshold, was that of
Dedougou (Burkina Faso, latitude 12.28 N, longitude 3.29
W), the length of which is about 45 years (Hubert &
Carbonnel, 1989). The results of the box counting are shown
in Fig. 2, where one can see the alignment of points 4 to 8 on
the one hand, and the alignment of points 9 to 15 on the other
hand.

The alignment of points 9 to 15 along a line with the slope
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Fig. 2 Log-log diagram of the box counting method applied to
the daily rainfall series of Dedougou (Burkina Faso).

of - 1 is trivial. The time scale of point 9 is 256 days and for
such a scale, a rainy spell has always been observed. Then for
time scales equal to or greater than 256 days the rainfall
occurrence is merged with the time axis and its fractal
dimension is obviously equal to 1.

The alignment of points 4 to 8 is more relevant. One can see
on the log-log diagram that these points lay along a line with
the slope of — 0.79. This gives the rainfall occurrence a fractal
dimension of 0.79 for time scales ranging from 8 to 128 days.
This structure and this dimension may be related to the
duration of the rainy season in West Africa (about 7 months,
from April to October). A Cantor dust generator with such
an initiator would yield a dimension equal to 0.783 [log(7)/
log(12)] very close to our empirical computation.

The Soudano-Sahelian region experienced an alternation
of dry and wet periods during this century, here conceived as
groups of years with relatively low or high precipitations
(Nicholson, 1983; Hubert, Carbonnel & Chaouche, 1989). It
seemed interesting to look for possible variations of the
fractal dimension of rainfall occurrence during the century.
In fact, no significant differences could be seen between four
contrasted long periods, of the length of 11 years each,
beginning respectively in 1924 (wet), 1937 (dry), 1953 (wet)
and 1969 (dry). The fractal dimension remained quite con-
stant and equal to the previously estimated value of .79. This
constancy is in agreement with the results of Chaouche
(1988), who showed that the limits of the rainy season have
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not changed in this century while annual rainfall heights were
subject to very large variations. In addition, from the self
similarity observed from 8 to 256 days, one may infer that the
internal structure of the rainy season has not changed.

This study has been repeated for different stations of the
Soudano-Sahelian region and for different daily rainfall
thresholds. 44 stations have been chosen from the daily
rainfall data base of the CIEH in order to constitute a
network as dense as possible over the Soudano-Sahelian
climatic region during a continuous period as long as poss-
ible. The choice of the 44 series is the empirical result of a
compromise between these conflicting demands. Sorting the
series by countries we find 8 series in Mauritania, 6 in
Senegal, 11 in Mali, 6 in Burkina Faso, 7 in Niger and 6 in
Chad. Their location can be seen on the different maps
quoted thereafter. All these daily series embrace a common
period of the length of 41 years, from 1936 to 1976, which will
be under study here. An original procedure, including the
box counting method, but especially an automatic estima-
tion of the slope and of the time range of the daily rainfall
occurrence fractal behaviour for a given threshold has been
devised.

The results of the Dedougou station can be generalized. In
all cases a fractal behaviour was found for time scales
ranging from some days to some months (about two orders
of magnitude).

New conclusions resulted from this analysis. The value of
the fractal dimension depends on the location of the
raingauge and on the choosen daily rainfall threshold. The
illustration of this latter point can be seen in Fig. 3, for the
Mopti station. The dimension of the rainfall occurrence
decreases as the threshold denning this occurence increases,
what gives rise to a multifractal structure (Schertzer &
Lovejoy, 1988). As far as the influence of the location is
concerned, three maps were drawn in Figs. 4, 5 and 6, for
thresholds 0.1, 10 and 40 mm, respectively. A strong depen-
dence of the fractal dimension of rainfall occurence on
latitude was observed. It was quite similar to that of mean
annual rainfall, although more regular.

MOPTI (Mali) 1936-1976

CONCLUSIONS

The main result of this study of daily rainfall series of the
Soudano-Sahelian region is the evidence of the multifractal
structure of the rainfall occurrence in this region for times
scales ranging from some days to some months. This prelimi-
nary result opens some new perspective, and makes the
analyst raise several questions.

Intensive studies, often using Markov chains (Masson,
1977), have been done in the field of synthetic rainfall series
generation. Since the reviews of Buishand (1978) and Way-
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Fig. 3 Fractal dimension of the rainfall occurrence at Mopti
(Mali) vs the daily rainfall threshold.

mire & Gupta (1981), new developments have to be noticed
(Smith & Karr, 1985; Foufoula-Georgiou & Lettenmaier,
1987; Tsakiris, 1988). Some attempts of simulation of fractal
(Lovejoy & Schertzer, 1986; Wilson, Lovejoy & Schertzer,
1986; Chils, 1988) or multifractal fields (Schertzer & Love-
joy, 1987; 1988; Wilson, Lovejoy & Schertzer, 1988) have
been made. Such simulations can be applied to rainfall
occurrence and give a new insight into synthetic rainfall
series generation.

A large field of research about the structure of the rainfall
occurrence using the fractal language and tools is now open.
Beside our work, Tessier et al. (1989) and Olsson et al. (1990)
have also dealt with this area, giving valuable contributions.
However, the amount of data analyzed is still small, while the
shorter time scales, less than a day, have to be explored. The
computation algorithms must be assessed, improved or even
renewed (Lavalle et al., 1990). At last, these investigations
must be managed in close linkage with those regarding
atmospheric phenomena and sharing the same theoretical
background.
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ABSTRACT Point-rainfall data recorded by a fast-responding optical raingauge were
analyzed. The methods used range from statistical analysis to the fractal and chaotic
dynamics approaches. The study showed the evidence of scaling and chaotic dynamics. It is
believed that the insight into the dynamics of rainfall data with very fine increment, gained in
the course of the exercise, could be useful in advancing our capability to reliably estimate
probable maximum rainfall for design purposes.

INTRODUCTION AND BACKGROUND

The realization that it is possible to have a temporal natural
process that has a random appearance but which is generated
by a deterministic set of ordinary differential equations,
triggered by Lorenz (1963) in his now well known example of
the dynamics of a convecting fluid, has initiated a wealth of
attempts to re-investigate natural phenomena thought to be
inherently random. Rainfall rate is one such natural variable
and a few investigations of its nature and dynamics have
already appeared in the literature that provide some evidence
for the existence of a deterministic generating mechanism in
the rainfall process at small spatial scales (Rodriguez-Iturbe
et al, 1989, and Sharifi et ai, 1990). The mathematical
methods for the investigation of this 'new' dynamics (called
chaotic dynamics) require samples with very fine temporal
resolution, that goes beyond the resolution available with
conventional in situ raingauges. The work presented herein
reports results obtained using very-fine increment convec-
tive-rainfall data recorded by a specially-calibrated optical
raingauge in Iowa City, Iowa, USA, during the summer of
1989. Results of both conventional statistical analysis and
modern chaotic-dynamics analysis are reported.

The theory, vocabulary and methods of investigation of
chaotic-dynamics are new to the field of hydrology/hydro-
meteorology and we devote a few paragraphs for their

outline in the next section before we describe the experimen-
tal facility. Further, results are presented and discussed, and
finally conclusions and prospects are outlined. The reader
interested in gaining a more in-depth understanding of the
field of chaotic-dynamics, including methods of data analy-
sis, is referred to texts such as Berge et al. (1984), Ruelle
(1989), Schuster (1988), Moon (1987) and to the descriptive
but insightful book by Gleick (1987).

ELEMENTS OF ANALYSIS METHODS FOR
CHAOTIC DYNAMICS

Continuous spectrum constructed from samples of a natural
process was usually taken as a sure sign of randomness. It has
now been established, however, that certain class of dissipa-
tive deterministic systems are capable of generating such a
spectrum, too. In particular, systems of ordinary nonlinear
differential and difference equations have been constructed
that generate continuous spectra and motion that is chaotic
(e.g., Moon, 1987). That is, given two nearby trajectories in a
region of the space of state variables of the system under
consideration (phase or state space), system evolution in time
forces exponential divergence of the aforementioned trajec-
tories, resulting in the loss of predictability; and this for a
perfectly deterministic system. Furthermore, in the presence
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of chaotic dynamics, system trajectories in phase space
remain on a phase-space object whose dimension is less (and
in some cases considerably less) than the dimension of the
embedding phase space. Such an object is called a strange
attractor. In most cases of chaotic dynamics, the dimension
of the embedded attractor is not an integer but it is a fraction,
greater than its topological dimension, and it is called a
fractal dimension (Mandelbrot, 1983).

Inherent in the notion of fractality are the notions of self-
similarity and scaling (Mandelbrot, 1983), which, if pres-
ent, advocate the absence of a measure for scale for an
object or a process. For random variables, scaling is
defined asymptotically through the probability distribution
(usually the exceedance probability distribution). That is,
there exists an exponent D>0 such that the Prob(Z>x)
scales as x~D for large x. The probability distributions with
such a property are called asymptotically hyperbolic distri-
butions.

The theory of chaotic dynamics has received a strong
impetus by the findings of several investigators that have
reported evidence of chaotic dynamics in experimental data
and observations of natural processes (e.g., Berge et al, 1984,
Tsonis & Eisner, 1988, Nicolis & Nicolis, 1987, Rodriguez-
Iturbe et al, 1989, Sharifi et al, 1990). Instrumental in such
studies has been the design of methods for detecting the
presence of a strange attractor and of trajectory divergence
(and, therefore, of chaotic dynamics) for a natural process
based on a time series sampled from the process. Grassberger
& Procaccia (1983a, b) have proposed a method of time-
delays that helps determine whether there is a strange
attractor in the observed time series with a dimension that is
less than the embedding dimension of the phase space.
Mayer-Kress (1987) has, in addition, determined error
bounds for the dimension computations that depend on the
sample size and the range of scaling present in the sample
data. To complement inference studies, Wolf et al (1985)
have developed an algorithm to confirm and measure expo-
nential divergence of nearby sampled trajectories from a
natural process. In the following, we describe briefly the basis
of the aforementioned methods of inference for sampled
processes that exhibit chaotic dynamics.

The methodology of Grassberger & Procaccia (1983a, b)
(see also Berge et al, 1984, for a comprehensive exposition) is
based on the concept of the correlation integral and correla-
tion dimension. The latter dimension is obtained from the
correlation between random points on the presumed strange
attractor and bounds the fractal dimension from below.
Given a sample time series: X(Q, i= 1,2,...., of a natural
process, a trajectory can be constructed in a ^-dimensional
phase space by taking as coordinates for the ith point of the
trajectory: X{t& X{tt + z)9 *(/, +2T) ,..., A% +(p - 1)T),
where T is an appropriate time delay. Then, to measure

spatial correlation, the correlation integral C(r) is
determined:

C(r) = lim l/N2 {number of pairs ij whose
Ns><° distance \X-Xj\<r} (1)

where Xt is the ith coordinate vector. For many attractors
this function has been found to exhibit a power law depen-
dence on r as r => 0. The exponent in the power law depen-
dence is the correlation dimension v, which is found as the
slope of the log[C(r)] versus log(r) curve. The dimension v is
determined for various embedding dimensions /?, and if the
values of v remain constant after a certain embedding
dimension (saturation of v occurs), there is an evidence of the
presence of a strange attractor with a correlation dimension
equal to the saturation value of v.

A measure of the time-averaged exponential rate of diver-
gence of trajectories initiated from two nearby initial con-
ditions is provided by the Lyapunov exponents. An hyper-
sphere in the ^-dimensional phase space of a continuous
dynamical system evolves to an hyperellipsoid due to the
locally deforming nature of the system. The ith one-dimen-
sional Lyapunov exponent is defined in terms of the length of
the ellipsoid principal axis pt(t) as:

l i m -
t=>co t

(2)

where the i/s are ordered from largest to the smallest, and t
denotes time. Since the orientation of the ellipsoid changes
continuously as it evolves, the direction associated with a
given exponent varies in a complicated way through the
attractor, and one cannot associate a direction with a given
attractor. If d0 is a measure of the initial distance between two
nearby starting points, in a short time the distance is

where the largest Lyapunov exponent, kx, controls the linear
extent of the ellipsoid growth. The existence of a positive
Lyapunov exponent implies the divergence of nearby trajec-
tories and, thus, the presence of chaotic dynamics. The
numerical algorithm of Wolf et al (1985) has been used in
this work for the computation of the largest positive Lyapu-
nov exponent from the sample time series.

EXPERIMENTAL APPARATUS AND DATA
COLLECTION

Through the four months of the summer of 1989, a project
was run for the purpose of collecting rainfall data. The first
two months were spent in acquiring background infor-
mation, setting up the equipment and data acquisition
system, and testing. During the last two months, actual



116 III NOVEL APPROACHES TO UNCERTAINTY

Fig. 1 Optical raingauge and recording apparatus at the Iowa
Institute of Hydraulic Research in Iowa City, Iowa.

rainfall data was collected and analyzed. The objective of this
project was to collect high resolution rainfall data, to create a
prototype storm directory, and to perform preliminary
analysis on the rain data. This project is part of an ongoing
rainfall analysis program designed to provide insight into the
dynamics of very-fine increment rainfall data.

The device used for measuring and recording rainfall was
an optical raingauge, placed on a fifteen-foot tower located
on the roof of the building that houses the Iowa Institute of
Hydraulic Research of The University of Iowa, and con-
nected to a micro computer (Fig. 1). The infrared beam
emitted from the gauge is sensitive to the light scattered by
the falling raindrops and the optical raingauge records these
scintillations on a path- and time-averaged basis. This pro-
cess is effective for both light and heavy rainfall and the
amount of light scattered is converted to voltage for record-
ing. The raingauge has a DC voltage range of -1.0 to 5.0
Volts and was manufactured by Scientific Technology Incor-
porated (STI). Actual measurement range is from —.35
Volts, corresponding to .1 mm/h rainfall, to 3.65 Volts,
corresponding to 1000 mm/h rainfall. In terms of accuracy,
from 10 mm/h to 100 mm/h, the raingauge is accurate to
within 1% and from 1 mm/h to 500 mm/h accuracy is to
within 4% outside the previous range (Scientific Technology,
Inc.). A series of three articles (Wang et aL, 1978,1979,1980)
discussed the development of obtaining path averaged rain
rates from a divergent laser beam. These articles present the
advantages of this method and the effects of the following
conditions: rain-drop size, updrafts and downdrafts along
the laser beam, path length, and rain-drop terminal velocity.

The signal is read by output circuitry electronics found
within the gauge itself. Voltage is then interfaced directly to
the microcomputer via a fifty foot straight wire through the

roof of the building. A 12-bit analog to digital converter card
was contained within the hardware, giving us an accuracy of
plus or minus .0025 Volts (Fig. 1).

The optical raingauge implements precipitation measure-
ments on a 40-inch beam path. It was used to sample rainfall
once every 5 seconds. The noise level of the measurements
was established in days of calm weather to be equal to — 0.35
Volts. The raingauge was set up and operating as of July 7,
1989, with the first recorded rainfall occurring on July 15.
Data were taken twenty-four hours a day with data stored in
files only for the times for which voltage exceeded —0.35
Volts. Quality control consisted of scanning the files
manually for obvious outliers (none were detected), and the
data were divided in storm time series. Intervals greater than
1 hour between recordings were used to separate different
storms. In that way an inventory of fine-increment rainfall
data corresponding to eleven individual rainfall events was
created. For more details on data collection and processing
the interested reader is referred to Sturdevant et al. (1990).

RESULTS AND DISCUSSION

Analysis of the fine-increment rainfall data was based on the
computation of first and second moment statistics of the time
series corresponding to each individual rainfall event, com-
putation of relative frequency and exceedance histograms,
and correlation dimension analysis. Sturdevant et ah (1990)
present all the results in detail. In this paper we only
comment on important findings and present selected results.
Table 1 presents selected sample statistics for the eleven
rainfall events.

Characteristic of the time series plots is their wavelike
appearance dominated by irregular (in terms of length,
frequency and magnitude) bursts of rain (e.g., Fig. 2). The
average duration of a rain burst is about twenty minutes
ranging from as low as five minutes to as long as forty
minutes. Another characteristic of the time series plots is an
apparent scale invariance. Storms with similar durations and
with maximum rainfall amounts that differ by an order of
magnitude(e.g., 7.9 mm/hr and 71.9 mm/hr) can not be
distinguished based on the overall appearance of the time
series plots. Thus, if the rainfall amount axis was not
indicated on the plot it would be impossible to recognize the
high from the low intensity storm.

The possibility of correlation between the length of a
rainfall event and several statistics computed from its
observed intensity was examined based on the values of
Table 1. The sample mean and sample variance vs. duration
plots show significant scatter with the variability in the mean
and variance decreasing for longer duration rainfall events.
The correlation coefficient vs. duration plots indicate that the
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Table 1. First and second moment statistics for the eleven recorded rainfall events during the summer of 1989 in Iowa City

Storm
Number

Storm
Date

Duration
(hrs)

Mean
(mm/hr)

Standard
Deviation
(mm/hr) Lag-12 Lag-60 Lag-180

1
2
3
4
5
6
7
8
9

10
11

7.15.89
7.18.89
7.19.89
7.23.89
8.03.89
8.13.89
8.14.89
8.23.89
8.23.89
8.26.89
8.28.89

4.406
3.957
1.426
.589
.925
.982

1.597
3.14
0.726
2.779
0.3

.240
1.455
1.022

16.54
34.78

.534
2.35
2.39
1.964
5.09
1.058

.295
1.931
.433

16.713
32.259

.392
4.31
1.46
1.614

12.38
.848

.92

.849

.78

.773

.88

.863

.788

.884

.795

.889

.844

.572

.387

.46

.048

.5

.256

.341

.447

.242

.282

.133

.13

.303

.02

.016

.2
- . 3 4
- .076

.544
- .216
2.779

-1.51

Table 2. Scaling regions and associated scaling exponents for
the eleven recorded rainfall events during the summer of 1989 in
Iowa City

time (hr)

Fig. 2 Five-seconds rainfall data during the August 26, 1989
rainfall event in Iowa City. Rainfall is in mm/hr.

one- and five-minute correlation coefficients have a mild
dependence on storm duration. For increasing duration, the
correlation coefficient increases by the rate of 0.1 per 4 to 5
hours.

Regarding dependence of the sample mean and variance
statistics on the sample size, Sturdevant et al. (1990) show
that due to the sudden jumps that are present in the relevant
plots, a sample size of about 1000 of five-second data points
is necessary for stable estimates of both sample statistics. A
sample size of about 2000 five-second data points is required
for stable estimates of the sample five-minute-lag correlation
coefficient.

Exponential shape was predominant in the relative fre-
quency histograms. The log-log plots of the relative fre-
quency of rainfall magnitudes greater than a certain magni-
tude showed two scaling regions for most rainfall events.
Table 2 shows the slope of the log-log plot (referred to as
scaling exponent) and the scaling region for all eleven storms.
Fig. 3 presents a typical example of a log-log plot. It can be
seen that the estimates of the scaling exponent in the high

Storm
No.

1

2

3
4

5

6

7

8
9

10

11

Storm
Date

7.15.89

7.18.89

7.19.89
7.23.89

8.03.89

8.13.89

8.14.89

8.23.89
8.23.89
8.26.89

8.28.89

Scaling

Scaling Region
(mm/hr)

.317-1.2
1.2-2.0
2.2-10.5

10.5-13
1.32-2.2
8 ^ 0

40-63
12.3-69
69-124

.52-2
2-2.85
3-15.5

15.5-26
no scaling exponent

3.03-7
13.2-70.1
70.2-83

.324-1.33
1.33-3

Scaling
Exponent

2.0
3.8
2.1
5.6
6.9
1.0
3.6
0.5
5.8
1.6
7.9
0.9
6.0

3.3
1.0
7.0
1.0
2.8

intensity scaling region range from 2.8 to 7.9, while in the low
intensity scaling region they ranged from 0.5 to 1.6. In most
cases the estimates in the low scaling region are more reliable
due to the presence of more data points. These results give a
preliminary indication of self similarity and asymptotic
scaling (e.g., Mandelbrot, 1983). Analysis of many more time
series is necessary, however, before a definite statement to
this effect can be made.



118 III NOVEL APPROACHES TO UNCERTAINTY

10°

o

o
©

a:

10-1

10-2
10° 101

Low Side of Interval

102

Fig. 3 Relative frequency of exceeding a threshold rainfall rate vs.
the rainfall rate threshold in a log-log plot. Rainfall event of July
23, 1989, in Iowa City. Shown are the fitted lines that determine
the scaling exponent D.

Sturdevant et al. (1990) show that the spectra of the eleven
rainfall events studied have continuous regions over a wide
range of frequencies. Such a finding warranted the use of
correlation dimension analysis in search of chaotic dynamics
in the time series of rainfall events. Correlation dimension
analysis followed the work of Sharif! et al. (1990). They used
the Grassberger & Procaccia (1983a, b) algorithm to com-
pute the correlation dimension from the correlation integral.
In this work, error bounds on the correlation dimension were
also computed using an algorithm similar to that proposed
by Mayer-Kress (1987). Only rainfall events with more than
2000 data points were used. Table 3 presents the estimates of
correlation dimension for each of the rainfall events studied
together with their sample size. The results are in good
agreement with those of Sharifi et al. (1990) and lend
credence to the conjecture that a low dimensional strange
attractor is in the heart of storm rainfall. As an example, Fig.
4 presents the correlation dimension v vs. embedding dimen-
sion/? for the rainfall event of August 26, 1989 in Iowa City.
The estimate of v is 2.5 with an error bound that implies a
maximum v of about 3.5. Lyapunov exponent analysis
according to Wolfs algorithm (Wolf et al., 1985) was also
undertaken. The results appear in Table 3 for each of the

Table 3. Correlation-dimension and largest positive
Lyapunov-exponent estimates for rainfall events with sample
size greater than 2000 data points

Correlation Dimension and Largest
Lyapunov Exponent Estimates

Storm No. of Correlation Lyapunov
No. Date Data Points Dimension Exponent

1
2
3

8.14.89
8.23.89
8.26.89

2236
2265
2421

2.1
3.7
2.5

3.7 xlO"3

1.7xlO"5

4.3 xlO"3

nun
10 12

Fig. 4 Correlation dimension v vs. embedding dimension p for the
rainfall event of August 26, 1989, in Iowa City. Error bars are
also indicated on the figure.

three storms and range in value from 10~3 to 10~5. Fig. 5
gives the estimate of the Lyapunov exponent for the August
26, 1989 storm as a function of sample size.

Given that for some of the storms the correlation dimen-
sion was less than 3, the strange attractor can be recon-
structed in a three dimensional space using the method of
time-lagged coordinates (Grassberger & Procaccia, 1983).
Fig. 6 is an example of a three-dimensional phase space for
the August 26, 1989 rainfall event. Several folding and
stretching regions (characteristic of a fractal object in phase
space) can be identified on the sample trajectories.

CONCLUSIONS AND PROSPECT

Data recorded by a fast-responding optical raingauge have
been analyzed using classical statistical analysis, and modern
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Fig. 5 Largest positive Lyapunov exponent vs. sample size for the
rainfall event of August 26, 1989, in Iowa City.

Fig. 6 Strange attractor projection in three dimensional space for
the rainfall event of August 26, 1989, in Iowa City.

fractal and chaotic-dynamics analysis methods. Eleven con-
vective rainfall events over the Iowa City, Iowa, area have
been used in the analysis. Evidence of scaling and chaotic
dynamics was found during the analysis. The accurate, high-
resolution rainfall data supporting the aforementioned find-
ings are rare. There is certainly a need for more work in this
area before conclusive evidence is obtained. On a basic
research level, high resolution data provide the only hope for
an experimental verification of the conjectures put forth in
this work. From a utilitarian point of view, the insight into
the dynamics of very-fine increment rainfall data can be very
useful in advancing our capability to reliably estimate prob-
able maximum rainfall for hydraulic and hydrologic design.

For future studies of surface storm dynamics, the optical

raingauge has been complemented by in situ, fast-respond-
ing, accurate sensors of air temperature, humidity, wind
direction and speed and barometric pressure. A basic
research effort has begun to reconstruct the governing ordin-
ary differential equations that presumably generate chaotic
dynamics and a strange attractor in phase space. The effort is
based on the reduction of the partial differential equations
that describe the known physics of the rainfall process to a set
of a few ordinary differential equations, aided by the high
resolution samples of the observed meteorological variables.
If successful, the research effort would confirm and describe
in quantitative terms the nature of chaotic dynamics in
rainfall. As of the beginning of the summer of 1990 all the
sensors were operational.
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6 Application of fuzzy theory to snowmelt runoff

K. MIZUMURA
Civil Engineering Department, Kanazawa Institute of Technology, Ishikawa, Japan

ABSTRACT Fuzzy theory (logic) is introduced to reduce uncertainty in the prediction of
snowmelt runoff. It has been used to control plants, traffic junctions, subway systems, etc. The
tanks model of Sugawara seems to be the most reliable method enabling computation of the
snowmelt runoff in Japanese conditions. However, it is difficult to identify the parameters of
this model and much data are needed for calibration. Fuzzy logic is the tool that gives the best
prediction while it does not require the optimal parameters of the prediction model (tanks
model). If the fuzzy logic is employed, the deviation between the observed values and the
predicted ones is automatically minimized step by step. The prediction by the fuzzy logic is
based on the value of the membership functions used. The effect of different membership
functions on the prediction is tested by changing coefficients in time. As a result, despite the
complexity of the phenomenon of snowmelt runoff, the prediction is in a good agreement with
observation.

INTRODUCTION

A fuzzy set theory developed by Zadeh (1965) is presently
being applied in many fields. For example, Mamdani (1974,
1981) used a fuzzy algorithm to control a plant (laboratory-
built steam engine). Further, Pappis & Mamdani (1977) used
the fuzzy logic for a traffic-junction control. Recent use of
fuzzy methods can be found in the field of complex industrial
processes (Tong, 1977) and feedback analysis (Cumani,
1982, Tanaka et al.9 1982, and Tong, 1980). Fujita (1985)
predicted runoff from rainfall by adopting a fuzzy logic. The
main purpose of this study is to predict the snowmelt runoff
by the combined system of the tanks model (Sugawara, 1979)
and the fuzzy logic controller.

A part of Japan facing the Sea of Japan is known to have
heavy snowfalls. The main cause is the monsoon, blowing
from a high pressure system over Siberia to a low pressure
system over the North Pacific Ocean during the winter
season. The monsoon winds pick up the moisture while
passing over the Sea of Japan and deliver a heavy snowfall
when rising along the high mountains on Honshu Island of
Japan. Therefore, snowmelt runoff is an important source of
water supply in this region, where it is used for hydropower,
rice cultivation, and as drinking water. Snowmelt runoff in
the spring is stored in reservoirs and, thus, an accurate runoff
prediction is necessary for water level controls in the reser-
voirs. Rainfall-runoff and snowfall-snowmelt processes

were studied in the Tadami River watershed northwest of
Tokyo in Japan (Fig. 1). The watershed area is 478.6 km2 and
the altitudes of several mountains are about 2000 m.

FUZZY SET THEORY

A fuzzy set A in X is characterized by a membership function
/A 00 which associates with each point in X a real number in
the interval [0,1], with the value of fA(x) representing the
grade of membership of x in A (Zadeh, 1965). Therefore, the
closer to unity the value of/A(x) is, the higher the grade of
membership of x in A. If B is a fuzzy set, then the union, the
intersection, and the complement, are defined as follows:

/ A v / B = max{/A,/B}

/AA/B = max{/A,/B}
(1)

(2)

(3)

where the prime ' denotes the complement of the set. A fuzzy
reasoning based on the fuzzy set theory is given by the
following fuzzy conditional statements:

If x is A then y is B.

If x is A then y is B else y is C.
(4)

(5)

Defining the above conditional statements as RK B and RA BC.

121
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Fig. 1 Study area.

respectively, Mamdani et al. (1974) proposed the following
equations:

J) = / A W VBW +/A ) V C W

(6)

(7)

in which '*' and ' + ' denote intersection and union, respecti-
vely. The operation '*' is defined in the product space of x
and y as follows:

(8)

(9)

Next, consider a method of application of the fuzzy
reasoning to control. This is based on the fuzzy reasoning
such that y is B ' ' is inferred from 'If x is A then y is B' and 'x
is A". Expression that (x,y) is R by 'If x is A theny is B', y is
2?" is reasoned by 'B' = A'R\ if 'JC is A" is given. That is

Equation (10) can be transformed into

[min {/A.(*,

(10)

^ (11)

Next, consider a method of fuzzy reasoning in the control
process. This is based on the fuzzy reasoning such that 'y is B'
is inferred from 'If x is A theny is B' and 'x is A''. Expressing
that '(*,y) is K by 'If x is A then y is B', 'y is B " is stated as
'B' = A'R\ if 'JC is A" is given. That is:

Equation (10) can be transformed into

[min {fK.(x,)f RA^B(iJ)}]

(12)

(13)

The following examples illustrate the fuzzy computations.
Assume that the membership functions are expressed by

AC*,) =[0.3, 1., 0.5, 0.4]

A(*/)=[l.,0.9,0.5,0.2]

Then:

0.3

1.0

0.5

0.4

~0.2

0.2

0.2

0.2

[0.2, 0.8,

0.3

0.8

0.5

0.4

0.3

0.9

0.5

0.4

0.9,

0.3

0.4

0.4

0.4

0.4,

0.1

0.1

0.1

0.1

(14a)

(14b)

(14c)

(15)

= [l.,0.9, 0.5, 0.2]

0.2
0.2

0.2

0.2

0.3
0.8

0.5

0.4

0.3
0.9

0.5

0.4

0.3
0.4

0.4

0.4

0.1
0.1

0.1

0.1

= [0.2,0.8,0.9,0.4,0.1] (16)

TANKS MODEL SYSTEM

The model, referred to as the 'tanks model' hereafter, is
represented by a cascade series of conceptual reservoirs, as
shown in Fig. 2. The number of tanks used is five. This is
because of the inclusion of the snowmelt runoff having an
important effect on the groundwater flow. Although the
study area is not wide, snowmelt gradually influences runoff
from this watershed for a long time. Sugawara (1979) classi-
fied the structure of the tanks model and suggested appropri-
ate values for its parameters. A tank for snow accumulation
is located in the upper position of the series of five tanks. The
snowfall is stored in this upper tank and melts when the air
temperature becomes higher than 0 °C. The snowmelt and
rainfall move into the second tank together. Most of the
snowmelt and rainfall stored in the second tank is discharged
through side outlets, and the remainder infiltrates to the third
tank through a bottom outlet. It is assumed for the sake of
simplicity, that there is no interaction between the rainfall
and the snowfall in the model; that is, that rain does not melt
snow. Sugawara suggests that this assumption is reasonable
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Fig. 2 Principle of the Tank Model.

to describe the snowmelt-runoff process. As the elevation of
this watershed is higher than the elevation of the measuring
stations, the average snowfall on the watershed may be
several times that of the measuring station.

Accordingly, if St is the snow-pack depth at the measuring
station at time step /, then kSt represents the average snowfall
in this watershed, where k is greater than 1. Next, to simplify
the snowmelt process, snowmelt can be assumed to be
proportional to the air temperature Tk in the kth time step,
and is expressed by mTk if Tk is greater than 0 °C. Further,
considering that the snowmelt does not occur when the air
temperature is lower than 0 °C, or when the present snowfall
accumulation Xl in the first tank is zero, the snowmelt yl
from the first tank can be expressed by the following
equation:

° or Tk<0

(17)

mTk

k~\

where X\ = £ (kSi—yj); m and k are parameters; and Tk is
1 = 1

the air temperature at the time step k. The inflow to the

second tank becomes xk=yl + rk; where rk is the rainfall at
the time step k. The superscript and the subscript indicate the
tank number and the time step, respectively. Runoff through
two side outlets from the second tank can be obtained as:

f° ifX2
k<h\

yl = < (18)

where X\ is the storage in the second tank; \i\ and \i\ are the
discharge coefficients; h\ and h\ are the elevations of the side
outlets from the tank bottom; and the superscript refers to
the second tank. Discharge via the bottom outlet of the
second tank into the third tank is given by multiplying the
discharge coefficient, v2, and storage in the second tank, X\\

_ 2 _ 2x^2 (\Qk\
zk~v Ak UyJ

The storage at the (k+ l)th time step is represented by the
following equation:

xi+ \=x2k-yl-zl+Xk+\ (20)

in which z\ is the discharge from the bottom of the second
tank into the third tank. Runoff from the third tank is
formulated as follows:

y\=
o if At < A3

(21)

3 3
t — V (22)

where z\ is the discharge from the tank bottom into the
fourth tank; X\ is the storage in the tank; \xl and v3 are the
discharge coefficients, respectively, and h3 is the elevation of
the side outlet from the tank bottom. The calculations in the
fourth and fifth tanks are the same as those in the third tank.
The total runoff y (k) at the time step k can be expressed as:

yl+yl+yl+yl
The data used for this procedure are rainfall, snowfall,
snow-pack accumulation, runoff, and air temperature at 9
p.m. at the measuring station. Rainfall, snowfall, and runoff
are averaged daily from 9 a.m. to 9 a.m. The air temperature
is greatly influenced by the Sea of Japan and the minimum
during a year appears in February. It increases in the
snowmelt period from March to May, while the air tempera-
tures higher than 20 °C in April are caused by the foehn
phenomenon. Fig. 3 shows the meteorological data, i.e. air
temperature, rainfall and snow data.

APPLICATION OF FUZZY SET THEORY -

Fuzzy reasoning can be used to predict the deviation of the
runoff computed by the tank model from the observed data.
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The discharge deviation Q(t) during the snowmelt season is
most likely dependent on the discharge deviation, rainfall, air
temperature, and snow deposit at the previous time steps.
Therefore, the discharge Q{t) may be expressed by the
following function:

Q(t) = Function of [r(t- 1), r(t- 2),...,r(t-mr), T(t- 1),
T{t-2)9...9T(f-mT\S(t-\)9S(t-2)9...,S(t-ms\
Q(t-\)9Q(t-2)9...9Q{t-mQ)\ (24)

where r is the rainfall, Tis the air temperature, S is the snow
deposit, and mr, mT, ms, mQ are the memory lengths of
rainfall, air temperature, snow deposit, and discharge devi-
ation, respectively. One of the possible conditional state-
ments of equation (24) is explained by the following form:

Rt = If r(t- 1) then r(t- 2) then... then r{t-mr) then
T(t- 1) then T(t-2) then...then T{t-mT) then S(t- 1)
then S(t- 2) then... then S(t-ms) then Q(t- 1) then
Q(t-2) then... then Q(t-mQ). (25)

This statement is time dependent. Since the set of con-
ditional statements Rl9R2,...,Rt until the time t is obtained,
the whole fuzzy relation becomes:

When/ e , / r , / r and/5 are the membership functions of Q(t)9

r(t), T(t), and S(t), respectively, then the membership func-
tion of Q(t+ 1) is written by:

J<2(t+\) Jr(t-mr+l) Jr(t-mr+2)
O f O f Of

JT(t) JS(t-ms+\) JS(t-ms+2)

o f o f t
Jr(f) JT(t-mT+\)

O O f O
JS(t)

f
JQ{t-Q{t-mQ+\)

O f
JQ(tQ(t) (27)

This is so called fuzzy reasoning. Further, the fuzzy
relation derived from equation (6) reads:

* v f Jr(t — mr) Jr(t—mr

JTit-T(t-mT+\)

+ 1) Jr(t-\) JT{t-mT)
* f * f -•
JS(t-ms) JS(t-ms+l)

* f * f
J G(0

K f *
JS{t-\)

(28)
fr(t-i

fQ(t-mQ+\)

Thus the membership function of Q{t+ 1) is derived from
equation (27) if the membership functions in the previous
time steps and Wt are known. In the result, the membership
function of Q (t) is obtained by using equations (28), (26), and
(27). Therefore the discharge difference Q(t+ 1) at time t+ 1
is inferred from the membership function of Q(t+ 1).

ILLUSTRATIVE EXAMPLES

The set of available data is the meteorological data on the
Okutadami watershed, measured from February to May
1979, as shown in Fig. 3. The detailed discussion of these data
is given in the reference by Electric Power Development
Company (1980). The membership functions assumed read:

fexp(-/?|x-r(OI);

o
f«p(-/»|z-r(oi);

fs(t)
0

x>0

x<0

y + QT(t)>0

y + QT(t)<0

z>0

z<0

S>0

x<0

(29a)

(29b)

(29c)

(29d)

1, = /?! oe R2or...or R, (26)

where QT(i) is the runoff computed by the tanks model, and/?
is a parameter determining the shape of the membership
functions.

The result computed for p = 1 is plotted in Fig. 4. The
predicted discharge is obtained by taking the fuzzy mean as if
it does not have a peak.

(30)

The comparison of the error variance between the pre-
dicted and the observed runoff for different values of/? in the
membership functions is represented in Fig. 5. It is not
sensitive to variations in values of/?.
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C O N C L U D I N G REMARKS

The deviation of the runoff predicted by the tanks model
from the observed one is estimated by using the fuzzy logic.
The rainfall, the air temperature, and the snow deposit at the
previous time step are employed as the membership func-
tions. The combined system of the tanks model and the fuzzy
logic model was found to predict the runoff during the
snowmelt period very well.
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On the value of fuzzy concepts in hydrology and
water resources management

J. KINDLERand S. TYSZEWSKI
Institute of Environmental Engineering, Warsaw University of Technology, Warsaw, Poland

ABSTRACT Evaluation of the applicability of the fuzzy sets theory in the area of
hydrology and water resources management is attempted. In this respect, the determination
of the membership functions and the interpretation of the results of operations on these
functions are of crucial significance. Using water resources allocation problems as an
example, the advantages of fuzzy set approaches vis a vis other techniques are demonstrated
and discussed. Although the advantages of fuzzy approaches in the decision-making contexts
are not always straightforward, these approaches seem to be very attractive in the various
diagnostic and classification problems in hydrology and water resources management as well.
This is illustrated by the application of some elements of fuzzy sets theory within the
framework of a decision support system for a choice of an analog catchment.

INTRODUCTION

Water resources systems include a number of physical,
economical, social, and environmental factors that must be
considered in making choices among alternative options for
resource use and control. The development and application
of planning, management, and policy-oriented models for
helping water resources managers have been taking place for
several decades throughout the world. Most of them deal in
one or another way with the uncertainty issue - uncertainty
due to the random character of natural processes governing
water supply (precipitation, streamflow, etc.), uncertainty
concerning management objectives and evaluation criteria,
and uncertainty about the future embedded above all in
future demand projections. To deal quantitatively with
uncertainty, the techniques and tools provided by the prob-
ability, decision, control, and information theories have been
for a long time employed. There is no doubt about the
usefulness of these techniques and tools for the solution of
many problems in water resources management.

It should be acknowledged, however, that much of water
resources management takes place in an environment in
which the basic input information, the goals, the constraints,
and the consequences of possible actions are not known
precisely. In other words, water resources managers and
modellers are bound to deal with imprecision - mostly due to
insufficient data and imperfect knowledge - which should

not be equated with randomness and the consequent uncer-
tainty (Bellman & Zadeh, 1970).

As discussed by Kacprzyk (1983), the existence of manage-
ment problems with relevant imprecision-related aspects was
early recognized by many decision scientists, however, for a
long time, there was no appropriate formal apparatus for
handling imprecision. The situation changed in 1965 when
L. A. Zadeh introduced the concept of the fuzzy sets theory.
The new concept attracted attention of many analysts and
modellers in many fields and the already numerous literature
on this subject is growing every year.

The interest in the fuzzy sets theory has not bypassed water
resources systems. The possibilities of application of the
fuzzy concepts and techniques in this field have been dis-
cussed in an early paper by Hipel (1982). Several applications
were attempted during the past eight years, including some
by the authors of this paper (e.g. Kindler et al., 1985; Kindler,
1990). It seems to be the right time, therefore, to undertake
some evaluation of the applicability of the fuzzy sets theory
in the field of hydrology and water resources management.

This paper is a modest attempt towards such evaluation. It
uses two examples of a choice of the best analog catchment
and a simple water resources allocation problem to illustrate
the essence of the fuzzy concepts as applied in hydrology and
water resources. The paper is written under assumption that
basic definitions, operations on the fuzzy sets, and the
extension principle are known to the reader. These examples

126
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are followed by a brief discussion of a few rather fundamen-
tal problems related to:

(a) identification of a membership function;
(b) aggregation operator; and
(c) interpretation of the calculation results.

THE CHOICE OF THE BEST ANALOG
CATCHMENT

Assume that n controlled catchments (i.e. catchments with
hydrological observation records) are given and each of them
is characterized by m physiographic and climatic characteris-
tics {xiX,xi2,...,xim}\ /= 1,2,...,72. The problem is to choose
the catchment which is most similar (from the point of view
of these m characteristics) to the uncontrolled catchment
described with the characteristics (xO|1,xO)2,...,xOm).

The identification of the best analog catchment is based on
the following asumptions:

(a) the /th controlled catchment (xitl,xit2,...,xim)is similar to
the analyzed catchment (xox,xO2,...,xOm) in a sense of
similarity in runoff generation mechanism, if each one of
their m characteristics is similar;

(b) the /th controlled catchment is similar to the analyzed one
from the point of view of Ath characteristic, if the value of
xik is equal or close to the value of x0 k;

(c) as a measure of the degree of similarity, the value \ik (xt k)of
the triangular membership function will be adopted, des-
cribing the degree of membership of the value xik to the
fuzzy set 'value close to xOtk (Kindler et al, 1985). See Fig.
1.

/**(*«,*)="

0 for. - a * ) • * << > , *

k~~ X 0,k

ak'X0,k

0

for xuke(x0tk9(l + uk)

fOTXuk>(l+<*k)'X0tk

(1)

where ak is the parameter of the membership function.
The values of fik(xik); k=\,2,...,m which define 'partial

similarities' of the /th controlled catchment to the uncon-
trolled one, must now be aggregated into one synthetic value
fi(i) describing global similarity (from the point of view of all
m characteristics). Since the analog catchment must be
similar to the analyzed one from the point of view of all
characteristics, it seems to be most natural that the aggregat-
ing function \i = G (fix, fi2,..., fim) should correspond to the
aggregation operator 'and' which corresponds to the inter-
section (Byczkowski et al., 1988):

~\

Fig. 1 Triangular membership function defining 'partial similar-
ity' from the point of view of fcth characteristics between rth
controlled (gauged) catchment and the catchment brought under
analysis.

The best analog catchment is the one for which the
aggregated measure of similarity attains its maximum:

arg max
1 = 1 , 2 , . . . , / !

WATER RESOURCES ALLOCATION BY
LINEAR PROGRAMMING (FLP)

(3)

= m i n x(xiX),f (2)

The classical problem of allocating limited resources among
competing activities is often formulated as a linear program-
ing (LP) problem of a general form:

n

max Z = YJCJ'XJ
7 = 1

subject to: (4)

Xj>0; j=l,2,...,n

where: xl9..., xn are the decision variables; Z is the objective
function; cpaipbt are parameters.

Utilization of such a linear model for allocation of water
resources requires that the numerical values of model para-
meters cpatj and bt are given by the decision-maker (DM)
concerned with a problem at hand.

Assume that in the system shown in Fig. 2 it is necessary to
allocate available water resources to water users Ux and U2,
i.e. it is necessary to define such values of xx and x2 that the
total economic returns due to water use are as high as
possible, and at the same time minimum flow requirements
QNX and QN2 in certain parts of the system are satisfied.

The symbols used in Fig. 2 have the following meaning:

-Qi,Q2 are discharges available in two river profiles;
Qx = 60 m3/s, Q2 = 50 m3/s,
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Fig. 2 General scheme of a water resources system considered.

-Pl9P2 are water requirements of users Ux and U2; P\ = 50
m3/s,P2 = 42rn3/s,

- <j>x is the consumptive use coefficient of user Ux; <f>x = 0.8,
-QNX,QN2 are minimum flow requirements; QNX = 45

m3/s;2iV2=10m3/s,
-El9E2 are economic effects resulting from water supply to

users,
-cx,c2 are unit effect ceofficients; cx = \ $/m3/s, c2=1.6

$/m3/s,
— JC19JC2 are the amounts of water actually supplied to water

users Ux and U2 (decision variables - m3/s).

Mathematically, the problem stated above is:

10 20 30 40 50 60 70 80

M (5O.O; 25.0)

Fig. 3 Representation and solution of a water resources allo-
cation problem (classical LP).

duced by Zimmermann (1976) and Hamacher et al. (1978),

this problem is represented in form:

max Z= YJ cfxj
7=1

S.t. (7)

max Z=cl'Xl + c2'X2

s.t.

xx<Px\ x2<P2; xx<Qx; x2<Q2; xx>0; x2>0;

(5)

X "ij'Xj^H i=l,...,m
7=1

xeX
where: x=[xl9...,xn]

^ k=\,...,mx; 0; j=
7=1

Taking into account numerical values of system (model)
parameters, the problem (5) can be writen as:

max Z=JC 1 +1.6-x2 (6)

s.t.

x2<50; x2<42; J C ^ O ; X 2 <50 ; ^ > 0 ; JC2>0;

0.8-JC1+JC2<65;X2<40

Graphical representation of problem (6) is shown in Fig. 3.
The optimal allocation decision is defined by point C with
coordinates Jcx = 31.25 and x2 = 40.00. Such allocation pat-
tern generates a profit of:

APPLICATION OF ZIMMERMANN'S FLP
FORMULATION

The fuzzy LP formulated by Zimmermann (1976) belongs to
a certain class of decision problems analyzed in terms of the
so called 'satisficing' decisions. Following notation intro-

This type of a decision problem requires from the DM that
he defines aspiration levels concerning accomplishment of
individual goals (objectives, constraints) to be statisfied by
the system under consideration (e.g. water resources system).
Moreover, the DM has to define the criteria of accomplish-
ment of the goals. For example, if one of the goals of a given
water resources system is water quality control, the DM
states that all decisions (solutions, alternatives) x
= [xl9...9xn]9 which ensure that concentrations of a certain
pollutant in the control profile of the river which are less than
b [mg/1 ], are satisfactory from the point of view of water
quality control. In such case pollutant concentration b is an
aspiration level of DM.

In the fuzzy linear programming problem (FLP) formu-
lated by Zimmermann it is assumed, that aspiration levels
concerning the goal Zo and constraints bx,...,bm are not
ordinary numbers but fuzzy numbers Zo, bx,...,bm character-
ized by the triangular membership function of the following
form:

(8)
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The criteria of satisfying the goal and constraints, Zim-
mermann determines in form of the membership functions of
a fuzzy goal:

Z r v

and fuzzy constraints fit I Z
 atj'xj I determined in the follow-

ing way (see Figs. 4 and 5):

Z c/*/)=
nz

7=1

0

Cj'Xj—ZjQ

z-z0
1

for

forZ,

for

7=1

n

7=1

n

Y.c
Fig. 4 Membership function of the fuzzy goal.

7=1

And per analogy:

(9)

(10)

Following the definition of fuzzy optimality introduced by
Bellman & Zadeh (1970), solution of Zimmermann's
problem is such vector x = [xl9..., xn] for which the degree of
satisfaction due to the simultaneous satisfaction of the
constraints and accomplishment of the goal attains the
highest possible value:

x = arg max fiD(x) (11)
xeX

where fiD(x) is a membership function of fuzzy decision:

fiD(x) = min {fio(x), nx(x),...,/i(x)} (12)

Problem (11) can be written in the following equivalent form:

(13)

0 1

= argmax/l
xeX

Fig. 5 Membership function of the fuzzy constraint.

fuzzy set theory (A^is n o t a fuzzy one) and it needs additional
criteria unconsidered so far.

Following the original Zimmermann's formulation, it is
proposed to replace problem (13) by a classical LP problem
of the following form:

S.t. xeX
(15)

i=l,...,m S.t.

£ Cj-Xj-k\Z0-Z)>Z
7=1

n

Z au'Xj-ibi-bjKbii /= l , . . . ,m
7 = 1

In other words, solution of Zimmermann's problem is
obtained by determination of the highest possible value X
(which measures the degree of satisfaction related to the
solution of the problem) for which the set of satisficing
decisions:

Zx={jc:/i1(;c)>X; /=0,l, . . . ,m} (14)
APPLICATION OF FUZZY LP TO

is nonempty. ALLOCATION OF WATER RESOURCES —
It should be noticed that set X% may include more than a

single element. In case of card (Xx) > 1, we encounter another Consider the same water resources system as the one intro-
decision problem, namely how to chose x = [xu..., xn] from duced before (see Fig. 2), but now assume that the numerical
the set X%. Solution of this problem is beyond the scope of the values of water requirements Px and P2 of users Ul and U2
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and minimum flow requirements QNX and QN2 cannot be
precisely defined. These parameters are only known in form
of the fuzzy numbers Px, P2, QNX and QN2 characterized by
the triangular membership functions:

= <35,45,50>;

Moreover it is assumed, that the DM can define fuzzily - in
form of a fuzzy number Z - the level of his aspirations
concerning accomplishment of the system goals, i.e. \iz

= <Z,Z,Z> = <80,l 10.140).
Under this assumptions, the fuzzy water resources aloca-

tion problem can be stated as:

x = arg max X
XxeX

s.t. (16)

cxxx + c2x2 — X(Z — Z)>Z

xx + X(Px-Px)<Px

x2 + X(P2-P2)<P2

x2 + X-(QN2-QN2)<Q2-QN2

xx<Qx; x2<Q2

xx>0; x2>0

Taking into account numerical values of system (model)
parameters, problem (16) can be written as:

x = arg max X
xeX

s.t. (17)

2 + l-X<47

xx>0; x2>0

The solution of problem (17) shown in Fig. 6 has the
following interpretation. For the fuzzy parameters of the
problem and DM's fuzzy aspirations, the optimal decision is
defined by point S with coordinates xx = 32.49 and x2 = 423\.
At the same time, the degree of truth X in the assertion:

allocation of xx = 32.49 m3/s of water to user Ux and x2 = 42.31 m3/s to
user U2 generates a profit of Zmax = Z + X - ( Z - Z ) = 80+ 0.671-(110
- 8 0 ) = 100.13$

is 0.671.

Fig. 6 Solution of the water resources allocation problem.

EVALUATION OF THE FUZZY SETS
APPLICATIONS IN HYDROLOGY AND
WATER RESOURCES MANAGEMENT

Problems related to identification of the membership
function

In the problem concerning the choice of the best analog
catchment, the fundamental and most critical issue is deter-
mination of the membership function nk(xik). If a given
physiographic or climatic characteristic is being explicitly
and numerically used in the hydrological catchment model,
the sensitivity analysis may be used for determination of the
parameters of the membership function. Those parameters
can also be determined by an expert hydrologist (subjective
judgement). Another possibility presented by Tyszewski et
al. (1990) is to determine the parameters of the membership
function on the basis of the so called 'teaching sample'.

The essence of this approach is that for each one of the n
catchments, an expert hydrologist (or a group of experts) -
based on his (or their) experience and/or detailed hydrologi-
cal studies - has to evaluate how good analogues are each of
the remaining n - 1 catchments. In this process, the ̂ -degree
scale may be used, describing how analogous one catchment
to the other is. This way the so called 'teaching sample' is
created:

J\,n

co2X co23 co24 CO'2,n (18)

where: co is the degree to which they'th catchment is analo-
gous to the zth catchment.

Having built the 'teaching sample', now the problem of
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determining membership function (1) is reduced to identifi-
cation of such values of parameters <xk, for which the corre-
spondence in the choice of the best analog catchment made
by fuzzy sets method and by an expert is as large as possible.

This can be mathematically formulated as the following
optimization problem:

max F= £ co
1 = 1

s.t.

iyNAi
(19)

, ^ = 1,2, . . . , W

where: n is the number of catchments in the 'teaching
sample'; m is the number of physiographic and climatic
characteristics; ak is the parameter of the membership func-
tion of the kth characteristics; and coiNA. is the evaluation
how good the catchment NAt is as an analog for the /th
catchment.

The problems related to aggregation of partial goals and
interpretation problems

Consider a simple decision problem as to determine the value
of a decision variable x which satisfies:

(a) goal: 'x greater than Z;
(b) constraint: 'x less than V\
where Z and b are fuzzy aspiration levels of the goal and
constraint respectively.

Assume that fuzzy numbers Z and b are characterized by
triangular membership functions:

Hb(x) = (b,b,5y= < 5,8,12 >

With the aid of expressions (9) and (10) it is possible to
construct membership functions of the fuzzy goal /xo(x) and
fuzzy constraint nx{x)\ (see Fig. 7).

This simple example provides a good illustration of a
problem how to choose the most appropriate aggregation
operator. By the analogy to the conventional set theory in
which the intersection contains the elements belonging to one
set 'and' to the other one, likewise for fuzzy sets the intersec-
tion corresponds to 'and' operator. The appropriateness of
this operator is therefore very much connected to the seman-
tical meaning of of the connective 'and'. However, the fuzzy
sets literature considers several other aggregation operators
(min-type, weighted-sum-type, max-type, and others) and
the problem is still fairly open to debate.

According to Bellman & Zadeh (1970), fuzzy decision set
liD(x) is obtained by intersection:
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Fig. 7 Membership functions of the fuzzy goal, fuzzy constraint,
and fuzzy decision.

and the fuzzy optimal decision is defined as such for which
the membership function inD(x) attains its maximum. As
shown in Fig. 7, fuzzy optimal decision defined this way is not
univocal. Thus, the problem is what is to be done in such
situations?

CONCLUSIONS

Although the fuzzy sets theory and the associated concepts
are truly compatible with the type of information normally
available, their practical application in hydrology and water
resources raises some doubts. The fundamental problem is
how to identify membership functions. One of the possible
ways of attaining this goal has been demonstrated in this
paper. The 'teaching sample' approach has been used in the
diagnostic problem of the analog catchment but its eventual
use in the allocation problem would be much more difficult.
The aggregation of goals and constraints in the decision-type
problems is also open to debate. Finally interpretation of the
fuzzy results is not an easy task. Although it cannot be the
other way round and 'fuzzy-in' must lead to 'fuzzy-out',
sometimes one may be wondering whether the computa-
tional effort related to the use of fuzzy sets apparatus is worth
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trying. The theory seems to be much more applicable in the
diagnostic problems than in the decision-making contexts.
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8 Application of neural network in groundwater
remediation under conditions of uncertainty
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ABSTRACT The design of groundwater contamination remediation based on hydraulic
head gradient control method determines the locations of the pumping wells and their
pumping rates. In a heterogeneous medium such a design will be sensitive to the spatial
characteristics of the underlying geological parameters. The geological uncertainty is due to
the heterogeneity of the hydraulic conductivity of the porous medium. Under conditions of
uncertainty, incorporation of transmissivity fields with spatial characteristics that most
influence the design will reduce the sensitivity of the design. A new class of artificial
intelligence technique known as neural networks has been identified as appropriate for
pattern association tasks. A neural network based screening tool is being developed to
identify transmissivity fields with such spatial characteristics. The ongoing research embraces
training a neural network to learn the association between transmissivity fields and their
impact on the design, and using the trained network to classify randomly generated feasible
transmissivity fields according to their level of impact on the design.

INTRODUCTION

Safe and effective designs for groundwater remediation is a
topic that is currently gaining increased worldwide attention.
There are many alternative techniques available for ground-
water contaminant containment and restoration. The
hydraulic gradient control for containment and removal of
groundwater contamination is one of the techniques under
investigation among the researchers in the field of ground-
water management (Gorelick et al. (1984); Atwood & Gore-
lick (1985); Keely (1984); Colarullo (1984); Wagner & Gore-
lick (1987); Valocchi & Eheart (1987); Gorelick (1987);
Wagner & Gorelick (1989); Morgan (1990)). The hydraulic
gradient control technique uses a series of extraction/injec-
tion wells to control plume migration, extract and possibly
treat the contaminated groundwater, and re-inject treated or
fresh water. A brief description of this method is given
further. Performance of a reclamation design based on this
technique is highly influenced by the accuracy of the aquifer
parameters used to develop the design. The hidden nature of
aquifer geology and insufficient data and knowledge about
them lead to uncertainty in the estimation of hydrogeologic
parameters. Furthermore, the accuracy of estimated para-
meters cannot be easily verified since the response times of

aquifers are very long. Therefore design of groundwater
pollution control under conditions of parameter uncertainty
plays an important role in reliable aquifer protection
programs.

A major source of uncertainty is due to insufficient
knowledge about the spatial variability of the hydraulic
conductivity (or the transmissivity in a two dimensional case)
of the aquifer medium. In general the uncertainty in geology
is assumed to be due to the heterogeneity of the porous
medium as manifested in the hydraulic conductivity (or
transmissivity) parameter. Although uncertain parameters
are not completely known, they could be assumed to lie
within a range estimated from partially known information.
Most of the methods reported in the literature adopt the
stochastic approach of considering many realizations of the
random hydraulic conductivity field. A design that satisfies
many realizations will, in general, tend to be more reliable
than one that satisfies fewer realizations. However, all the
realizations included in a design do not equally constrain the
design. The realization that most constrains the design will be
called the most pessimistic realization. Generation of pes-
simistic realizations, and only considering these realizations,
is important in that it would lead to reliable designs with the
least amount of computational effort. Development of a tool
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that could generate pessimistic realizations for hydraulic
gradient control design is the focus of this work. Some
preliminary results were reported in Ranjithan et al. (1991).

The characteristics that make a realization to be pessimis-
tic are essentially spatial in nature, i.e., they depend on the
spatial distribution of the hydraulic conductivity values with
respect to the pump location and the plume boundary.
However these spatial characteristics are currently not well
defined. An initial attempt was made by Eheart et al. (1990)
to identify some spatial characteristics that would constitute
a pessimistic realization, but the authors acknowledge that
these characteristics are not complete. It would be ideal if a
random field generator could generate hydraulic conducti-
vity fields which contain these specific spatial characteristics.
Even under the optimistic assumption that such spatial
characteristics are a priori known, numerically incorporating
a spatial characteristic along with the estimated statistics in
the generation phase of the random hydraulic conductivity
fields makes the generation task intractable. For example,
Eheart et al. (1990) proposed an optimization approach for
parameter configuration: first they identified three spatial
characteristics in a hydraulic conductivity field that would
render it pessimistic and then used appropriate weights in the
objective function to obtain a feasible hydraulic conductivity
field with those characteristics. This approach suffers from
computational complexities due to the non-linear con-
straints in the parameter configuration technique.

It may be possible to approach this design problem using
rule-based heuristic methods. Although no such application
to this problem is reported in the literature, the complexities
of capturing spatial relations and reasoning through a purely
rule-based approach to the problem of sampling design for
plume delineation were reported in an unpublished report
(Ranjithan & Morgan, 1988). In that report, it was con-
cluded that

(a) eliciting the knowledge behind spatial reasoning was very
difficult and subject to incompleteness;

(b) the number of rules became incredibly large to represent
even rather trivial spatial reasoning tasks; and

(c) it became impossible to handle a situation involving simul-
taneous interactions of multiple spatial reasoning tasks.

In light of these limitations in both analytical and symbolic
approaches, an alternative method must be developed.

An alternate approach, described further, is to use a tool
that could pick out from many realizations only those that
have a spatial distribution of hydraulic conductivity values
commonly found among pessimistic realizations. This entails
complex pattern recognition. Neural networks have been
found to be good at recognizing patterns after being trained
to do so. A neural network-based tool for recognizing
particular patterns of spatial distribution of hydraulic con-
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Fig. 1 Schematic diagram of a typical problem.

ductivity values that constrain a design is described in this
paper.

DESCRIPTION OF THE PROBLEM AND
MANAGEMENT MODEL

This section briefly describes the groundwater contamina-
tion problem and a management model for remediation that
are used in the subsequent sections. A typical problem
scenario is as shown in Fig. 1. In the absence of complete
knowledge of the location of the contaminant plume, the
plume is assumed to lie within a capture zone that has to be
cleaned up. The domain is discretized into rectangular grids
and the properties within each grid are assumed to be
uniform. This discretization approach is required to compute
the head at a location (using a standard finite-difference or
finite-elements based numerical method) for a problem with
a heterogeneous hydraulic conductivity field.

One approach to groundwater remediation is through
hydraulic head gradient control. The goal of the hydraulic
gradient control design is to create a hydraulic head field that
captures the contaminant and flushes the contaminant to
extraction wells which carry it to the surface; i.e., minimize
the cost of pumping strategy that induces inwardly directed
hydraulic gradients at specific check points along the bound-
ary of the capture zone. An optimization model could be
written as shown in Fig. 2 (see Atwood & Gorelick, 1985, for
details). The first set of constraints (equation (2) in Fig. 2)
ensures that the hydraulic gradient along the boundary of the
plume are inwardly directed for successful plume contain-
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Qmax - maximum possible pumping rate for a single well

Fig. 2 Optimization model for well design.

ment. The second constraint (equation (3) in Fig. 2) ensures
that the total withdrawal rate is larger than the total injection
rate. The constraint set (equation (2) in Fig. 2) represents one
single hydraulic conductivity field. For each hydraulic con-
ductivity field incorporated into the design, its correspond-
ing constraint set must be included in the model described
above. Under conditions of uncertainty, a typical stochastic
approach would be to include as many realizations of the
uncertain hydraulic conductivity field as possible in the
model given in Fig. 2. However, only a small set of (pessimis-
tic) realizations will influence the final design. The neural
network-based tool proposed here will generate the pessimis-
tic realizations which alone could then be considered in the
optimization model to obtain a reliable design thus reducing
the size of the optimization model.

NEURAL NETWORK-BASED PATTERN
RECOGNIZER

This section presents the over-all framework for building the
neural network-based pattern recognition tool for identifica-
tion of pessimistic realizations. The development of the
neural network-based screening tool is first illustrated using
a simple example. The architecture of the pro-type neural
network and the required input-output to this network are
described. The generation of training examples and the
performance of the neural network are also presented.

Approach

The method presented here uses a 'generate and screen'
approach. A standard random field generator is used to
generate many realizations of the hydraulic conductivity.
Then a neural network-based pattern recognition tool scans
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Fig. 3 Illustrative example: spatial distributions of hydraulic con-
ductivity and corresponding level of criticalness. (Dark regions
represent low conductivity regions and light regions represent
high conductivity regions.)

each realization and identifies those possessing the character-
istics of pessimistic realizations. Lack of knowledge about
the actual constitution of these pessimistic realizations
requires the tool to be able to learn the relationship between a
hydraulic conductivity field and its being or not being a
pessimistic realization. In the absence of a known closed-
form relationship, it is imperative that this relationship be
captured through observations, i.e., the proposed tool
should learn the association from examples. Backpropaga-
tion learning in feed-forward type neural networks (Rumel-
hart et al., 1986) has been found to be effective at learning and
recognizing the association between a set of input and output
signals. Neural networks technology is a rapidly emerging
field of research within artificial intelligence that has the
advantage of being able to capture knowledge that is vague,
complex, and not explicitly expressed by mathematical or
symbolic (i.e., rule-based, frame-based) means. An illustra-
tive example is used in the following section to describe the
implementation of the proposed tool.

Neural network: an illustrative example

A simple example is used to illustrate the function of
backpropagation learning in feed-forward type neural
networks. The illustrative example has a 2 grid x 2 grid
pattern where each grid represents the average hydraulic
conductivity within a region. The average hydraulic conduc-
tivity is represented by a continuous scale varying from very
low to very high, 0.0 representing very low and 1.0 represent-
ing very high. All the possible spatial distributions of
hydraulic conductivity in this 2 x 2 grid representation are
shown in Fig. 3 (the dark area represent low hydraulic
conductivity regions, 0.1 on the continuous scale, and the
light area represent high hydraulic conductivity regions, 0.9
on the continuous scale). The value assigned beside each
pattern represents how critical that spatial distribution of
hydraulic conductivity is towards the total pumping rate (0.0
representing least critical and 1.0 representing most critical).
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Although these values were assigned arbitrarily, in the real
problem a measurable quantity will be used as a surrogate for
criticalness. The pattern association task at hand is to learn
the association between each spatial distribution of
hydraulic conductivity values and the corresponding level of
criticalness.

A neural network model capable of performing this pat-
tern recognition task is shown in Fig. 4. This is a collection of
highly interconnected units. Each unit in the network is
capable of a limited amount of processing involving integrat-
ing all incoming input signals (a product of activation and
connection strength), computing an output signal, and send-
ing the output signal to other units to which a unit is
connected. Activations at a unit generally vary continuously
between 0 and 1. In the input layer, each grid is represented
by a unit. There are four input units in this example. The
activations, each of whose magnitude represent the average
hydraulic conductivity in the region represented by that unit,
are externally input at the input units to represent the
different hydraulic conductivity patterns shown in Fig. 3.
The activation at the output unit represents the level of
criticalness of a given input pattern. The intermediate units
are what the neural network model uses for internal represen-
tation of the mapping between the input and output signals.
In this neural network model each input unit is connected to
all the intermediate units and each intermediate unit is
connected to the output unit as shown in Fig. 4. The
association between the input patterns and the output values
will be captured in the connection strengths in the network.

Initially the connection strengths are set randomly and
therefore the association between the input and output
patterns is not properly captured. That means if an input
pattern, say the second pattern in Fig. 3, is input to the neural
network model, the activation of output unit will not likely
be close to the expected value of 0.2. The backpropagation
training procedure modifies the connection strengths in the
network until the input-output association is properly cap-
tured. The modifications are made by propagating back-
wards through the network the error at the output node for
all the pairs of input-output patterns. During the training
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Fig. 5 Results comparing the training performance of neural
network model for the illustrative example (vertical axis repre-
sents level of criticalness).

phase, the input-output patterns are presented to the
network and the training procedure continues until the error
at the output unit is reduced to an acceptable level for all
training cases presented. The details of connection strength
updating schemes are discussed in Chapter 8 of Rumelhart et
al (1986).

Testing of the trained neural network model involves two
different aspects. One is the capability of the network to
predict correctly the output for the input patterns used in the
training; this is a test of accuracy. The other is the capability
of the network to correctly predict the output for input
patterns that were not in the training set; this is the test of
generalization capability. The results of the first test are
presented in Fig. 5. Here the actual output, i.e. the level of
criticalness given in Fig. 3, is compared with the predicted
output when each of the 16 patterns in Fig. 3 was presented to
the trained network. These results indicate that the network
has been successfully trained to closely predict the actual
outputs for the 16 different input patterns. In order to test the
generalization capabilities some noise was introduced into
the input patterns and compared the output with the output
corresponding to the input pattern without noise. The input
patterns with noisy data can be assumed to represent distri-
butions of hydraulic conductivity that are similar to but not
exactly the same as the input patterns shown in Fig. 3. The
results (see Fig. 6) indicate that the neural network model has
fairly good generalization capabilities. Here again the actual
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Fig. 6 Results comparing the generalization capabilities of neural
network model for the illustrative example (vertical axis represent
level of criticalness).

output, i.e. the level of criticalness given in Fig. 3, is com-
pared with the predicted output when each of the 16 patterns
in Fig. 3 was presented with noisy data.

A prototype neural network model

The concept of neural networks was explained and illus-
trated by a simple example in the previous section. This
section describes the components of a prototype neural
network model for screening out critical realizations and
then discusses the overall architecture of the network and the
training performance. Fig. 7 shows a schematic diagram of
the prototype neural network.

Input patterns: a 10 gridx 10 grid discretization of the
physical domain was used to represent the distribution of
hydraulic conductivity values. (The dimensions of discretiza-
tion is not limited by the method.) This required 100 input
units that represented the hydraulic conductivity values.
Further, it was found that inclusion of the mean and
standard deviation of the hydraulic conductivity values in a
realization as inputs improved the training performance of
the neural network model. Therefore two input units, whose
activations represent the normalized values of these two
parameters, were included in the input level. All the input
activations at the input units were normalized to a range
between 0 and 1.

Output value: our research indicates that the total pump-
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"level of criticalness"
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Fig. 7 Schematic diagram of the prototype neural network.

ing rate required for optimal pumping strategy to contain a
plume in a realization could be used as a surrogate for the
level of criticalness of that realization. A set of realizations
that require high total pumping rates (evaluated by solving a
groundwater management model for each realization) com-
prise the set of critical realizations. First the total pumping
rate required for a realization is obtained by solving the
management model for that realization. Rank ordering a
large set of realizations according to the total pumping rates
gives a relative measure of criticalness of each realization.
However, the total pumping rate will vary depending on the
number of potential reclamation wells in the management
model. Our investigations also indicate that a realization
requires high total pumping rate independent of the number
of potential wells in the management model. This useful
discovery provides the means by which one could develop a
single neural network model, for identifying critical realiza-
tions, that is independent of the number of potential reclama-
tion wells.

The output layer in the neural network model has a single
unit representing the level of criticalness. The total pumping
rate required by the optimal pumping strategy for a manage-
ment model (with an arbitrary number of potential reclama-
tion wells) is used as a surrogate for the level of criticalness of
a realization. The activation at the output unit is again
normalized between 0 and 1.

Neural network architecture: the architecture of the proto-
type neural network model consist of 102 input units, one
output unit, and 36 intermediate units. The number of
intermediate units was obtained through a trial-and-error
procedure. The state-of-the-art theory does not provide any
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analytical method to determine the best number of interme-
diate units, however, empirical results show that too many or
too few intermediate units are not the best choice and there
exists an optimal number in between.

Performance of the neural network models

The trained neural network model was tested using a differ-
ent set of 200 realizations. For each of these realizations the
required total pumping rate was computed and the set of 200
realizations were then rank ordered based on the total
pumping rates. The input activations for each of the realiza-
tions were computed and fed into the neural network model.
The realizations were then rank ordered according to the
predicted output values from the neural network model. The
two rank orders were then compared in order to evaluate the
performance of the neural network model.

The results presented here are based on a neural network
model that was trained on 100 training cases. The trained
neural network model was then tested on another set of 200
realizations. Fig. 8 shows the performance of the neural
network model that was trained based on total pumping
rates obtained for 9 potential reclamation wells; the predic-
tions are compared against the rankings based on the actual
total pumping rates obtained by solving the management
model with 9 potential reclamation wells. Perfect prediction
would be illustrated by a straight line at 45 degrees to the

horizontal; note that the predictions are closely distributed
around this line. Fig. 9 shows the performance of the neural
network model that was trained based on total pumping
rates obtained for 6 potential reclamation wells; the predic-
tions are compared against the rankings based on the actual
total pumping rates obtained by solving the management
model with 9 potential reclamation wells. Again a very close
prediction is observable although two different numbers of
potential reclamation wells were involved.

These results indicate that the neural network model does
provide a tool for quickly screening a set of realizations to
identify the critical realizations. The neural network
approach improves on computational efficiency by cutting
down on the computational effort required for solving the
steady state flow model (to obtain the coefficients required in
the formulation of the management model) and the solution
of the management model. It could be argued that consider-
able computational effort is spent on the preparation of the
training cases and the training process itself. On the other
hand, once the neural network is trained it could be used in a
wide range of situations repeatedly with very little computa-
tional effort. Furthermore, considerable improvements in
computational effort could be achieved through parallel
processing due to the inherent parallel nature of the neural
network models. Computational effort for solving a non-
linear management model with only one realization to obtain
the total pumping rate will be tremendously smaller than that
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required for a non-linear management model with multiple
realizations. Therefore, the use of a screening tool could save
large computational effort when a management model has a
non-linear formulation.

The following section shows the usefulness of the neural
network-based screening tool through an application. This
illustration shows how pumping strategies with high reliabi-
lity levels, for aquifer remediation under uncertainty, could
be achieved by considering only a few critical realizations
instead of a very large number.

AN APPLICATION

This section presents an application of the neural network-
based screening tool to illustrate the usefulness of this tool.
For this application we used the management model as
described previously. Spatial variability in hydraulic conduc-
tivity was considered to be the uncertain parameter in this
model. A stochastic approach to hydraulic head gradient
control was adopted to obtain the pumping strategies. In this
case multiple realizations were considered simultaneously in
the model (l)-(5)- The reliabilities of pumping strategies with
and without the use of the screening tool were compared. The
reliability of a pumping strategy was evaluated using the
approach described in Wagner & Gorelick (1989); a post
optimality Monte Carlo analysis was performed and the
reliability of a pumping strategy was computed based on the
percentage of realizations for which successful containment
was achieved.

Design without the screening tool

In this case, 100 realizations were generated using COVAR
(William & El-Kadi, 1986). These realizations were simulta-
neously considered in the model (l)-(5) and solved to obtain
the optimal pumping strategy. The reliability level of the
optimal pumping strategy was computed based on the
number of realizations (from a different set of 100 realiza-
tions) for which successful containment was achieved. This
procedure was carried out for various cases of potential
number of reclamation wells and different statistical distribu-
tions of the uncertain parameter. The results are summarized
in column (3) of Table 1.

Design with the screening tool

In this case, 100 realizations were first generated using
COVAR (William & El-Kadi, 1986) and then they were
screened by the neural network-based screening tool. After
screening, the 10 most critical realizations were picked out.
These critical realizations were then simultaneously con-

Table 1. Comparison of reliability levels of optimal pumping
strategies with and without the use of the neural network-
based screening tool

(1)
number of
potential
reclamation
wells

6
6

100
100
100

(2)
standard
deviation of
log hydraulic
conductivity

0.5
1.0
0.5
1.0
2.0

(3)
reliability level
of pumping
strategy for
multiple (100)
realizations

100%
90%
96%
96%

N/A

(4)
reliability level of
optimal pumping
strategy for
10 most critical
realizations

100%
90%
96%
94%
95%

sidered in the model (l)-(5) and solved to obtain the optimal
pumping strategy. Again the reliability levels were evaluated
as described previously. The results are summarized in
column (4) of Table 1.

A comparison of the reliability levels shown in columns (3)
and (4) of Table 1 indicates that high reliability levels could
be achieved with only as few as 10 critical realizations instead
of 100 unscreened realizations. In order to prove that this
behavior is not a random occurrence the following test was
done; the reliability levels of pumping strategies obtained by
simultaneously considering only 10 random realizations in
the management model were compared with the results
shown in column (4) of Table 1. These results are compared
in Table 2. Results presented here suggest that critical
realizations do possess specific characteristics that are not
present in any realization.

CONCLUSION AND SUMMARY

A stochastic approach to design under conditions of uncer-
tainty is to ensure that the final design satisfies many
realizations of the uncertain parameter field. However, only
few of the realizations will constrain the final design. Identifi-
cation of these pessimistic realizations, which is something a
human familiar with the problem will be able to do manually,
will ensure a reliable design with reduced computational
effort. This paper presented a neural network-based tech-
nique for recognizing pessimistic realizations from a large set
of realizations. A feed-forward type neural network is first
trained, through presentation of examples, to identify the
pessimistic realizations. The network learns the association
between the spatial distribution of the hydraulic conductivity
values in a realization and its impact upon the final ground-
water remediation design. These pessimistic realizations
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Table 2. Comparison of reliability levels of optimal pumping
strategies obtained when simultaneously considering (a) 10
random realizations, (b) 10 most critical realizations in the
management model

standard
deviation of log
hydraulic
conductivity

0.5
1.0
2.0

reliability level of
optimal pumping
strategy for 10
random realizations

74%
76%
74%

reliability level of
optimal pumping
strategy for 10 most
critical realizations

96%
94%
95%

research would be to investigate the applicability and useful-
ness of a neural network-based screening tool in a case with a
non-linear management model.

The work presented here pertains to a small hypothetical
scenario. Further research is warranted to examine the
general applicability of the proposed screening tool An
imminent question is whether the same neural network could
be used for different values of ensemble statistics (i.e., mean,
standard deviation, and correlation scale) of the hydraulic
conductivity field. An important extension would be to
examine the performance of the neural network-based
screening tool for different domain sizes of the groundwater
problem and different ensemble statistics of the hydraulic
conductivity parameter.

could then be incorporated into a groundwater management
model for design under conditions of uncertainty in the
hydraulic conductivity parameter.

An application of the screening tool was also illustrated
through a simple example. This example showed that pump-
ing strategies with high reliability levels could be achieved
with only as few as 10 critical realizations. The critical
realizations were obtained by screening, using the neural
network-based tool, a large set of realizations. The reliability
levels of pumping strategies obtained using only the 10 most
critical realizations were comparable to the reliability levels
of pumping strategies obtained using 100 unscreened realiza-
tions. These results indicate that the critical realizations do
have specific characteristics that make those realizations to
constrain the design the most. Results also show that a neural
network based pattern recognition tool could identify the
critical realizations.

A trained neural network could screen a set of realizations
with very little computational effort. However, considerable
computational effort is required in the training process; for
generation of the training cases and error backpropagation
in the network. The proposed approach consumes the bulk
of the computational time up-front and very little at run-
time. This approach could therefore be used very effectively
in an interactive design procedure where critical realizations
need to be generated at run-time. The current implemen-
tation of the neural network is carried out using a network
simulator on a serial computer. This does not harness the
inherent parallel nature of neural networks. The overall
computational time could be reduced by implementing the
neural network on a parallel machine.

Some management models have non-linear formulations.
Solving such a model with multiple realizations could lead to
computational complexities, so much in some cases that no
solution could be found. In such cases it would be very
efficient to screen the realizations and use only a few of the
most critical realizations. An extension of the current
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Application of pattern recognition to rainfall-runoff
analysis

K. MIZUMURA
Civil Engineering Department, Kanazawa Institute of Technology, Ishikawa, Japan

ABSTRACT Traditionally human beings predict future runoffs from present rainfalls.
One of the recent methodologies of prediction stemming from the pattern recognition
technique is presented. The possible range of values of the predicted runoff is estimated by the
discriminant functions. The discriminant functions are derived from data sets on several
events of rainfall and runoff in the same watershed. The predicted runoff is in good agreement
with the observed one.

INTRODUCTION

Forecasting the runoff resulting from a rainfall belongs to the
classical basic issues of hydrology. It is shown that the
pattern recognition method, which is used in as diverse fields
as medical diagnosis, mail problems, banking processes,
coastal changes and cybernetics (Mizumura, 1988) is useful
also in hydrological forecasting. The method dwells on the
obvious statement that much and little rainfall correspond to
much and little runoff, respectively.

RAINFALI^RUNOFF PROCESS

The physical system of transformation of rainfall into runoff
is very complex. Moreover the runoff consists of three
components such as surface flow, interflow, and ground-
water flow. Therefore, even if the model strictly described the
underlying physical phenomena, it would be difficult to solve
the governing equations. The rainfall-runoff process is heav-
ily dependent upon many characteristics of each watershed.
For the sake of runoff prediction the rainfall-runoff process
is treated here as a black box. Thus, one can employ either of
such methods as differential equations, integral equations,
least square methods, Wiener-Hopf equation, Kalman fil-
tering etc. Yet another approach originating from the pat-
tern recognition methodology will be tackled here. The
forecasted range of runoff will be estimated using rainfall and
runoff in the previous time steps. This forecast is based on the
process similar to the analogue form of reasoning of human
beings. The forecast equation can be expressed as:

[Range of g j = Function of {Rn_u Rn_2,...,Rn_t, Qn_u

Qn-l^^Qn-j) (1)

where Qn is the forecasted runoff at the n time step, Rn-tis the
rainfall at the («-/) th time step, Qn_j is the runoff at the
(n -j)th time step, and i and j are the memory lengths of
rainfall and runoff, respectively. Equation (1) states that in
the process of runoff forecast one makes use of rainfall and
runoff data during the previous /, and j , days, respectively.
The function in equation (1) is derived by combination
pattern between the range of forecasted runoff, and observed
rainfall and runoff in the previous time steps. Therefore, this
combination pattern is determined before the runoff forecast
is made. That is, the decision functions necessary to classify
patterns are computed. In the forecast phase, the range of the
forecasted runoff is defined as the range where the discrimi-
nant function takes its maximum value.

FUNCTIONAL APPROXIMATION OF
PROBABILITY DENSITY FUNCTIONS

Let p(x) define an estimate of p{x) in which p{x) denotes
p(x lew,). The estimate is defined by minimizing the following
equation:

* • / •

= \u(x)[p(x)-p(x)]2dx (2)

in which u(x) is a weighting function and x is a pattern vector.
Expand the estimate p(x) in the series
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(3)
7=1

in which C, are the coefficients to be determined and {(/>/*)}
are a set of specified basis functions. Substituting equation
(3) into equation (2) one gets:

R= u(x)[p(x)- X crfjix)]2 dx (4)

x

A necessary condition for the minimum of R is:

dR/dCk = 0; k=l,2,...,m

The result is

(5)

m /•

Zo «(
7=1 J

{x)(j>Xx)(j>k{x) dx = u{x)(t>k{x)p{x) dx (6)

The right hand side of equation (6) is approximated by the
sample average. If the basis functions {<j>k{x)} are orthonor-
mal, then Ak=\ for all k. Thus

Z «(*/)

(12)

When the terms «(*,) are independent of k and are
common to all coefficients, then:

(8)

4>l(x) = H0(xl)H0(x2)...H0(xH)=l
<t>2(x) = Hx(xx)H0(x2)...H0(xn) = 2xx

(t>3(x) = H0(xl)Hl(x2)...H0(xn) = 2x2

4>n+x (x) = H0(xx )H0(x2). ..Hx(xn) = 2xn

(t>n + 2(X) = Hx (xx )HX (X2) . . . HQ(Xn) = 4X{X2

4>n+i(x) = Hx (xx )H0(x2)... H0(xn) = 4xxx3

(j)2n(x) = Hx (xx )H0(x2). ..Hl(xn) = 4xxxn

<t>in+\ (x) = H0(xx )HX (x2)... H0(xn) = 4x2x3

The next problem is to determine the coefficients Ctj for use
in the expansion oip{x\(Di). For class cof.

(13)

in which TV̂  is the number of patterns in the class a>t and k
ranges from 1 to m. The decision functions for this problem
are given by:

di(x)=p(x\coi)p(coi); «=1,2 /i (14)

in which

7 = 1

A pattern x is assigned to the class cot if for that pattern
dt(x)>dj(x) for a&j+i.

Next, design a Bayes classifier by employing probability
density functions which have been directly estimated from
the simulated samples. One may approximate these func-
tions by an expansion of the following form:

ILLUSTRATIVE EXAMPLES

(9)
7=1

in which the first subscript of the coefficients denotes the class
co,. The Hermite polynomial functions are applied as the
functions {0/x)}. In the one-dimensional case these func-
tions are given by the following recursive relation:

Hl+ x (x) - 2xHl(x) + 21H}_ x(x) = 0

The first few terms of H(x) are as follows:

H0(x)=\;
Hx(x) = 2x;
H2(x) = 4x2-2
H3(x) = 8x3-\2x
H4(x)=l6x4-4Sx2+12

(10)

(11)

A ^-dimensional orthogonal set of functions is easily
obtained by forming arbitrary pairwise combinations of the
one-dimensional functions.

Fig. 1 represents the hyetograph and the hydrograph at the
watershed of the river Onga on Kyushu Island. The units
used are milimeters per day for the rainfall and cubic meters
per second for the runoff. The total number of the data points
used is 100. Fig. 2 shows the comparison of the observed data
and the runoff forecasted with the help of the pattern
recognition method. The result is in a relatively good agree-
ment with the observed data.

Further, to improve the forecast of the runoff, the tanks
model (Fig. 3) is employed and the deviation of the computed
runoff from the observed data is predicted by the pattern
recognition method. Rainfall is stored in the first tank with
two side outlets, active after some thresholds of stored
volumes are exceeded, and one bottom outlet draining into
the second tank. The discharge from the first tank is given by

fO if*^*i

ifhl<Xl<h2
l (15)

X\-h\) if hl
x<Xl

k

where n\ and \i\ are the discharge coefficients, Xx
k is the water

level in the first tank, and h\ and h\ are two threshold
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Fig. 1 Hyetograph and hydrograph at the watershed of the river
Onga.

elevations above the tank bottom for side outlets. Further,
the infiltrated discharge z1 to the second tank is given by:

zl
k = vlXl (16)

where vl is the discharge coefficient. For the other tanks the
relationships are analogous. The total discharge is given by
yl+yl + yl+yl. The superscript denotes the tank number.
The difference between the observed runoff and the runoff
computed by the tanks model is forecasted by the method of
pattern recognition discussed previously. The parameters
used for computing the discharge by the tanks model are
given as follows:

^ = 0.08; ^ = 0.2; ^ = 0.013; /z3 = 0.013;/z4 = 0.008;
\i\ = 0.008;

/z2
3 = 0.008; \i\ = 0.004; v! = 0.3; v2 = 0.16; v3 = 0.013;

h\=\.2;

h\ = 20; h\= 1.5; h\ = 2.0\ /*3 = 5.0; h\ = 0.001; h\ = 6\

(17)

To check the relevance of the memory length, the value of
the AIC (Akaike Information Criterion) is employed as
follows:

10

o

!

- Memory length = 2

Observed data

10 20

In days

30

Fig. 2 Prediction of runoff via pattern recognition method with-
out the Tanks Model.

(18)

where No is the total number of data points, yt are the
observed data, yt are the forecasted values, Nis the number of
parameters involved in the model. Comparison of the values
of the AIC shows that the model of the memory length of
m = 5 is the best.

The results of the prediction of runoff achieved with the
help of the pattern recognition methodology with the Tanks
Model are shown in Fig. 4. The simulation is significantly
better than achieved without the Tanks Model (Fig. 2).

CONCLUDING REMARKS

Application of the method of pattern recognition to the
process of transformation of rainfall into runoff yielded
satisfactory results. Since this forecast is based on a Bayesian
approach, the detailed physical information on the
watershed is not necessary. The eventual new data do not
play such an important role as they do in forecasting via the
Kalman filtering technique. The use of the tanks model
improves the forecast.
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Fig. 4 Prediction of runoff via pattern recognition method with

the Tank Model.
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10 Nonparametric estimation of multivariate density
and nonparametric regression

W. FELUCH
Technical University of Warsaw, Institute of Environmental Engineering, Warsaw, Poland

ABSTRACT The p.d.f.s typically used in hydrology for determination of exceedance
probability (e.g. design floods) are typically based on the parametric approach. In the two- or
three-dimensional cases and in the case of regression problems the multivariate normal
distribution is in common use. Nonparametric density estimators in multivariate random
variables are a new approach to estimation and regression. As an alternative to the standard
parametric estimators, the nonparametric multivariate Parzen estimator has been used in the
analysis. The results of the analysis indicate that the parametric and nonparametric
estimators are performing comparatively well. Some conclusions are offered concerning the
applications of the nonparametric approaches.

INTRODUCTION

Various probability distributions are used in hydrology for
determination of exceedance probability. Flood frequency
analysis is an example, where typically only one-dimensional
random variables are considered (Flood Frequency and Risk
Analyses, 1986; Kaczmarek, 1970). Sometimes models
involving two- or three-dimensional random variables are
investigated. For example, multivariate models for low or
high water stages were developed by Zielinska (1963, 1964),
Yevjevich (1967) and Strupczewski (1967), under the
assumption of normality of the underlying probability
distribution.

Another parametric estimation approach in hydrology is a
classical regression problem also based on multivariable
normal distribution (Kaczmarek, 1970).

Recently investigations based on the nonparametric
approach (nonparametric method of estimation (NME))
have been initiated in hydrology (Adamowski, 1985, Feluch,
1987, Adamowski & Feluch, 1988, Schuster & Yakowitz,
1985). The nonparametric method of estimation enables one
to estimate unknown probability densities without any prior
assumptions concerning the shape of the density function.

A well-known method of nonparametric estimation is the
kernel method (for the one-dimensional case, cf. Feluch
(1987) and Adamowski & Feluch (1988)).

The kernel estimator of unknown density/(x) based on
random sample {Xt}"B Y of independent and identically distri-
buted real-valued random variables is given by

1=1

(1)

where h is the bandwidth or smoothing factor related to «,
and K(.) is the kernel function which satisfies the conditions

sup \K(y)\ <
— 00<>><00

K(y)>0

K(y)dy=\
\

(2)

(3)

(4)

The kernel estimator (1) is a sum of'bumps' placed at the
observations. The kernel function K{.) determines the shape
of these bumps, while the bandwidth h determines their
width. An illustration is given in Fig. 1, where the individual

bumps n h
"•*

are shown and the estimate / is

constructed by adding them up.
In practical applications, the kernel function K(.) is

assumed to be a symmetrical function, that is K(y) = K( — y).
Usually, one of the following two kernels is used:

- the optimal kernel function (Epanechnikov, 1969):

K(y)
for \y\ <v 5

for |j>|>V5
(5)
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Fig. 1 Kernel estimates showing individual kernels.

- the Gauss kernel function (Tapia & Thompson, 1878;
Scott & Terrel, 1987)

1 for—oo<j<oo (6)

The optimal kernel function is the one which minimizes the
mean integrated square error of the form

MISE </,/>=E | -f(x)]2dx (7)

MISE for the Gaussian kernel function is asymptotically 4%
larger then that for the optimal kernel (Tapia & Thompson,
1978).

The smoothing factor h is computed from the data, and is
based on minimizing the MISE as well. For Gaussian kernel
the smoothing factor is given by Rudemo (1982) and deve-
loped in hydrology by Feluch (1994).

The estimator (1) was applied to flood frequency analysis
(Feluch, 1987, Adamowski & Feluch, 1988) and to minimum
yearly discharge frequency analysis (Feluch, 1988).

MULTIVARIATE NONPARAMETRIC
DENSITY FUNCTION

<P
*/

(10)

where

<p(y)=

00

J«p(-
A2

2
(11)

In the above estimators there are k smoothing factors.
Rudemo (1982) has proposed a procedure for estimation of
an optimal value of the smoothing factor using a cross-
validation (CV) technique for minimizing MISE (7).

In the multivariate case the MISE can be written in the
form

(12)

dx-2\f(x) E[f(x)] dx
lf\x)dx,

where the integration is over the region of the values of the
function arguments, that is

oo oo

J -H-™
fc-times

The last term of equation (12) does not depend on/. In the
sense of minimizing MISE the ideal choice of smoothing
factors {h[}f=l is the one corresponding to the choice which
minimizes the quantity R denned by

dx-2j/(x)] E[jj»] dx (13)

Using the CV technique one gets the estimator of R(fJ)
(Silverman, 1986) in the form:

Assume, that a random sample of size n of ^-dimensional
random variables is given

with an unknown density function/(JC), x = (xl,x2,...xk},
which can be estimated nonparametrically as (Cacoullos,
1966, Epanechnikov, 1969; Feluch, 1989):

(9)

where x is a /:-vector of variables x = (xl,x2,...xk), ht is a
smoothing factor of the /th variable, that is /th coordinate of
the random vector X.

Using the Gauss kernel function one gets the exceedance
probability

i,j=\ 1=1

Using the Gaussian kernel function in equation (14) has
two advantages:

- the extrapolation and interpolation ranges may be better
derived than when using the Epanechnikov kernel,

-the minimization of equation (14) is simple because
derivatives of this estimator exist everywhere.

Using the Gaussian kernel yields

i=\
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where
Table 1. The minimum sample size required to achieve that
the required relative errors MSE and MISE are less than 0.1

(16)

The problem of finding the smoothing factors {hl}f=l can be
solved minimizing the above expression (Feluch, 1994).

Required sample sizes for given accuracy

This problem was considered by Silverman (1986). He
assumed, that the true density / is standard multivariate
normal, and that the kernel is normal too. At first he assumed
/ a t the point 0, and he found the smoothing factor h which
minimized the mean square error at this point. He ensured
that the relative mean square error (MSE) E{/(0)
-/(0)}2//(0) is less than 0.1. Table 1 (columnn 1) gives the
sample size required to achieve this objective as a function of
dimension. Table 1 shows, how the required sample size
increases with dimension. Furthemore Silverman suggested
that in all dimensions up to 10, the sample sizes required to
yield a value of 0.1 for the relative mean integrated square
error (MISE), E$(f(x)-f(x))2dx/$f\x)dx are approxima-
tely 1.7 times those given in Table 1, column (2). If a used
measure of the global fit were more sensitive to tail behav-
iour, then the sample sizes required would be still larger.

The above results justify the following conclusion import-
ant in hydrological applications: the dimension of the
random vector has to be strictly related to the sample size. As
hydrological data are typically scarce, the value of the
dimension of the random vector is not larger than three.

Estimation of the exceedance probability of the high/low
water discharge

According to the above conclusions concerning the required
sample size, the value of the dimension of the random vector
assumed in this example is two. It is very important for small
rivers, when the period of observation is short.

The flood discharge can be characterized from practical
engineering view point as a random vector

x/" / /~\ high jy \ / -• ^y\

where g^gfr [cms] is the maximum (culmination) discharge in
the high-flow period and Fhigh [cm] is the volume of the flood
wave.

Analogically, the low flow coordinates of the random
vector are

X= <QlrZ> ^1OW> (18)

where Q1^ [cms] is the minimum discharge in the low flow

Dimensionality

1
2
3
4
5
6
7
8
9

10

MSE < 0.1

4
19
67

223
768

2790
10700
43700

187000
842000

MISE < 0.1

7
33

110
380

1300
4800

18000
74000

320000
1430000

period and rlow [days] is a low water flow period. The
exceedance probability is given by the estimator (10).

The high and low flow periods occur few times a year. The
annual probability of this phenomena is applied in engineer-
ing. There are relations between the annual probability and
the probability in the sample (Zielinska, 1963; Strupczewski,
1967).

The results of the multivariate estimation of the annual
maximum and minimum flow in the river Vistula at the gauge
Sandomierz and in the river Warta at the gauge Skwierzyna
are presented in Figs. 2 and 3. The shapes of the curves of
exceedance probability for both rivers do largely differ. They
both feature stabilization of the values in the tail parts. This is
the effect of the property of the density estimator (9), giving
values close to zero behind the observed range. The results
show that the behaviour of the above estimator limited
extrapolation of density function and exceedance probability
functions. Of course there are other estimators which have
different properties - the smoothing factor is not constant.
These estimates give good results in the extrapolation range
(Feluch, 1994).

ESTIMATOR OF REGRESSION
FUNCTION

Regression estimator assumes that a random variable Y is
related to a random vector X of dimension k. The random
sample (8) is extended to the form of

Xi,Yi=(X\,Xi
2,...X

i
k,Y?> (19)

Assume that the above sample originates from a multivariate
distribution with joint density f(x,y). The marginal density
of* is (Rao, 1983)
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Fig. 3 The multivariate estimation of the annual minimum dis-
charges based on low flow in the river Warta at the gauge Skwier-
zyna (observation period 1901-59).

f= f f(x,y)dy (20)

and the conditional density of Y given X= x is

f(yl*)=
f(x,y)
g(x)

The conditional mean or regression of Fon A"is

r(x) = E(Y\X=x)

00

J yf(x,y)dy

r(x) = -
g(x)

(21)

(22)

(23)

The nonparametric estimator of the unknown joint density
/(x, y) can be expressed as

i=l 1=1

where hy is a smoothing factor corresponding to the realiza-
tion of the random variable Y.

The nonparametric estimator of the marginal density (23)
is given by

g(x)=ftx) (25)

where/(jr) is a multivariate estimator of an unknown density
function (9). Based on (23)-(25) the nonparametric estimator
of the regression function can be expressed as

(26)

The above estimator is a local weighted average of the Yt

given a random vector x.

Nonparametric regression as applied to the classical
relation: river discharge - water stage

Based on the nonparametric regression estimator (26), the
relationship between river discharge and water stage was
developed.

Regression analysis of the relationship was conducted,
whose results are presented in Fig. 4. In engineering appli-
cations the shape of this relationship is not known theoreti-
caly and the choice of the shape is arbitrary. The nonpara-
metric method gives the possibility to choose better and more
objective shape of this relationship.

Based on the results presented in Fig. 4 it can be concluded
that the nonparametric regression algorithm (26) gives excel-
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lent results especially in areas with a high density of obser-
vation data. When the density of the data is low, the curve is
oscillating (cf. the high part of relationship presented in Fig.
4). This is suggesting, that sometimes, for very low values of
the density of the observed data, interpolation with this
algorithm can be defective.

Outside the observed data range, the shape of the curve is
stabilizing. It is natural for this algorithm; if there are no
observations, the values of the density are equal to zero.

From practical engineering view point it is known, that the
interpolation and extrapolation in this relationship have to
be very smooth and the extent of a reasonable extrapolation
is limited.

Based on these results it can be concluded that the nonpar-
ametric regression estimator (26) has to be modifited for this
application by using, for example, the variable kernel in the
estimator. The variable kernel can yield a smoother curve in
the interpolation and extrapolation areas (Adamowski,
1989; Feluch, 1994).

Nonparametric regression in the relation of concurrent
time series of runoff and groundwater elevation

The data set analysed is a concurrent time series of runoff and
groundwater level in Silver Springs in Florida taken from
Kuczera (1982). A split-sample procedure was employed in
using the nonparametric regression program, whereby the
first half of the data set was used to estimate the smoothing
parameters (exactly two) and the second half was used as a
basis for verifying the model's predictive capabilities. The
plot of the observed versus predicted values of groundwater
levels time series is shown in Fig. 5; for the observed data
(used to estimate smoothing factors); and in Fig. 6 for
extrapolation (i.e. split-sample experiment).

mo-

CONCLUSIONS

Methods of nonparametric estimation of density and of
regression function can be used in hydrologic applications
because they require few and mild assumptions, and are
capable of inferring complicated densities or relationships (in
regression case). These properties are very important in
practical hydrology.

When applying nonparametric approach to the estimation
of density function and regression one has to be particularly
careful about:

(a) the relationship between the sample size required for
achieving the prescribed accuracy of estimation and the
dimensionality of the problem;

(b) the accuracy of interpolation and extrapolation in the
region where there are no data or where only few data are
available.

490
2.0 2.5 3.0 3.5 V.O 4.5

WATER STAGE [m]

Fig. 4 The relationship between river discharge and water stage
for the river Odra at Gozdowice.
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11 Nonparametric approach for design flood estimation
with pre-gauging data and information
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ABSTRACT The main task of flood frequency analysis is to obtain design flood
magnitudes from a streamflow record. The gauged record is rarely long enough to yield an
estimate of an extreme flood which is sufficiently accurate to be applied with confidence in
hydraulic engineering. Therefore extending a data record back in time using historical or
palaeoflood data has the potential to provide a considerable amount of additional infor-
mation on very large floods. Parametric estimation methods are readily applicable to flood
frequency analysis when pre-gauging data is available. However, all parametric approaches
need an assumption about the underlying parent distribution which is never known in
hydrologic processes. A new nonparametric kernel estimation model is proposed and
developed. With limited real data and simulation experiments, results show that quantiles
estimated by nonparametric methods are better than those obtained by some selected
parametric estimators both in terms of the descriptive ability and predictive ability. The
choice of the optimum kernel function, the uncertainty of the threshold of perception value
and the difference between fixed kernel and variable kernel estimators are also discussed. It is
expected that the nonparametric approach will be widely used in practice as it is free of serious
limitations of classical parametric models.

INTRODUCTION

Statistical methods of flood frequency estimation in current
use are mainly based on the assumption that observed flood
series comes from a population whose probability density
function is known. Several estimation methods exist which
may be used in these circumstances to obtain estimates of
parameters and quantiles. Such methods are said to be
'parametric'. However, in hydrological practice, there is no
compelling evidence in favour of any one parametric distri-
bution or fitting procedure. Based on goodness-of-fit tests,
several different distributions can appear to fit the data
equally well, but each distribution gives quite different
estimates of a given quantile, especially in the tail of the
distributions (Guo, 1986). To achieve some degree of uni-
formity in the determination of flood quantiles, some coun-
tries have imposed a certain probability distribution coupled
with a certain parameter estimation procedure, for example,
the log Pearson type 3 (LP3) distribution was recommended

by USWRC, (1968,1981), the general extreme value (GEV)
distribution was suggested for use in the UK and Ireland
(NERC, 1975). A uniform method is desirable, but is of
questionable validity with currently available knowledge. It
is evident that the parametric method, which depends on the
assumption of a parent distribution, has its disadvantage and
limitations. Dooge (1986) pointed out that 'no amount of
statistical refinement can overcome the disadvantage of not
knowing the frequency distribution involved'.

Currently used flood frequency analysis methods were
seriously criticized by Klemes (1986, 1987). Due to recent
developments in nonparametric statistics theory, another
possible approach to flood frequency analysis is to estimate
the density function nonparametrically. Adamowski (1985,
1989) has suggested that the nonparametric approach
provides an alternative to making unjustified assumptions
concerning the unknown distribution in flood frequency. He
pointed out (1989) that: 'The nonparametric method is there-
fore intuitively very attractive in the absence of a clear
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indication of which parametric family should be selected'. All
work that has been done in this area is based on two sets of
relatively long recorded data and limited Monte Carlo
experiments.

The gauged records are rarely long enough to yield an
estimate of a design flood which is accurate enough to be
applied in hydraulic engineering. Therefore, there is a con-
siderable interest in augmenting the flow record with infor-
mation from other sources. One of these techniques of data
extension is to consider historical information and to include
extraordinarily large records in flood frequency analysis.
Another source of information regarding presample floods is
palaeohydrology, in which the data and magnitudes of flood
events are deduced from physical evidence such as deposited
mud layers and age of vegetation at the flood site (Baker,
1987). The methods of incorporation of historical floods and
palaeologic information into parametric models and the
usefulness of doing so have been discussed by many hydrolo-
gists (USWRC, 1981; Stedinger & Cohn, 1986; Hirsch, 1987;
Guo, 1990). The main problem of this study is how to
incorporate this valuable pre-gauging information into non-
parametric kernel density estimation process. Before the
widespread application of nonparametric methods in flood
frequency analysis is possible, several questions also should
be answered and discussed in detail, such as the estimation of
the smoothing factor, the choice between fixed kernel and
variable kernel estimators and the reliability of extrapolation
of the frequency curve beyond the largest observed data.

NONPARAMETRIC DENSITY
ESTIMATION

Many different types of nonparametric density estimators
are available, including the histogram, kernel, penalized-
likelihood estimator, etc. The histogram is probably the
oldest probability density estimator, and it is the classical
nonparametric statistical tool for the graphical display of
data. The most popular and well developed theoretically is
the kernel estimator (Rao, 1983; Adamowski, 1989).

The fixed kernel estimator (FKE)

For a given kernel function K(.), which is a probability
density function symmetric about zero, a positive smoothing
parameter h and a sample xl9 x2,..., xn, the kernel estimate of
probability density function at each fixed point x is:

x-x
(1)

The kernel estimate is nonnegative and integrates to one.

Fig. 1 Plots of dk vs k at Guan Ting catchment, China, where

sample size n = 50, x = 1121 m3/s, Cv = 0.86 and Cs = 2.25.

The variable kernel estimator (VKE)

Breiman et al (1977) defined VKE as

1 1 x-x,
akdu

(2)

where dik is the interpoint distance between xt and its fcth
nearest neighbour among xl9x29...,xn data points, ak is a
constant smoothing factor and K{.) is the smoothing kernel
function whose functional form has to be obtained. In the
VKE method, it is necessary to assume a kernel and deter-
mine the values of A:, ak and dik. Determination of the values
of k is critical. The value of k should range from 1 to n/2.
Breiman et al. (1977) established empirically that the optimal
value of A: corresponds to a knee (a sudden change in slope) in
the relationship of dk to k, where dk is the arithmetic mean
value of dik. For example, the relationship of dk and k in
Guan Ting catchment (China) is plotted in Fig. 1, in which
the value of A: can be determined (k = 7).

The choice of kernel function

The choice of a kernel has been investigated extensively by
many researchers (Rao, 1983; Adamowski, 1985). It is now
known that many symmetric unimodal kernel functions are
nearly optimal. This implies that the choice of kernel is not
critical as even a suboptimal kernel leads to only a small loss
of accuracy with respect to integrated mean square error
criterion (Rao, 1983).
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An optimal kernel given by Adamowski (1989)

fO x<~\
- J l 2 (3)

(0 JC>1

is circular in shape, bounded, and not dependent on the 50°
sample size or underlying density function.

400

A CHOICE BETWEEN FKE AND VKE
ESTIMATOR

Two catchments whose sample skewness read 2.25 and 1.07,
respectively, were chosen for the purpose of comparing the
performance of FKE and VKE. The nonparametric kernel
estimates as well as the recorded data were plotted on the
same EV1 probability paper. Fig. 2a indicated that nonpara-
metric variable kernel estimate gives more reasonable extra-
polation than that of fixed kernel estimate for Guan Ting
catchment (C, = 2.25). The differences between the variable
and fixed kernel estimates will reduce as the sample skewness
decreases. It is also shown that the quantiles estimated by
fixed kernel are closer to the real data points than those
estimated by variable kernel in the case of small sample
skewness (e.g. Bu Xi catchment, Cs= 1.07), see Fig. 2(b).

It is now known that the choice between fixed and variable
kernel estimator depends on sample skewness. Each of these
kernels may have its own advantages and disadvantages. For
example, the fixed kernel is suitable for small skewness
sample and easy calculation of h, but it may obtain unreason-
able extrapolation curve in high skewness sample. The
question naturally arises as to what kind of kernel should be
selected for any particular sample.

In order to answer this question, a Monte Carlo experi-
ment was carried out. For simulation purposes the GEV
distribution was selected as a parent population because it
fits a wide range of flood observations and is mandated in the
United Kingdom and Ireland (NERC, 1975). The prob-
ability density function of GEV can be expressed as

EVl PLOTTING PAPER

1 f x—u ( x-u\\
- e x p - expf —j ;

(4)

where M, a and /? are location, scale and shape parameters,
respectively.

For a given sample size n and parent parameters, 10000
traces of data are generated by Monte Carlo method and
each simulated series is ranked in ascending order. The
ranked values are then averaged over the 10000 to obtain x(i)

values which represent the parent population E[x(/)] values.

(a) Legend:
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Fig. 2 Flood quantiles estimated by nonparametric FKE and
VKE methods; (a) Guan Ting catchment (Cs = 2.25); (b) Bu Xi
catchment (Cs= 1.07).

10000

10000 t\
V(0J (5)

The nonparametric fixed and variable kernel probability
density estimators were calculated by equations 1 and 2,
respectively for this representative sample x(/). These prob-
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ability density estimates were plotted on the same graph with
the parent probability density function (equation 4) in order
to compare the differences.

While a large number of simulation tests has been carried
out, only a small amount of results are presented in Fig. 3 for
sample size 50 and different parent skewnesses. The figures
show that the fixed kernel estimator can fit the rising part and
mode of the density function quite well for all parents, but it
gives unsatisfactory results in the fitting of the tail. The
differences in the fitting of the tail become more evident when
sample skewness is large. On the other hand, the variable
kernel estimator can fit the tail reasonably well, particularly
for large skewness samples, see Fig. 3c and d. It is known that
hydrologists and engineers are much concerned with the tail
behaviour in flood frequency analysis, because the extrapola-
tion of the frequency curve mostly depends on the large
recorded floods. Those results show that the VKE is more
flexible than the FKE and is suitable for different samples.
Therefore it is recommended that the fixed kernel estimator
could be used when sample skewness is less than 1.0; if the
sample skewness is greater than 1.0, the variable kernel
estimator should be selected although it is relatively more
difficult to obtain smoothing factor than the fixed kernel
estimator.

MONTE CARLO EXPERIMENTS

A Monte Carlo comparison of parametric and nonpara-
metric estimation of flood frequencies has been reported by
Adamowski (1989). He showed that nonparametric method
is competitive with parametric counterparts. However, in his
simulation work, all samples came from the log Pearson type
3 distribution with small parent skewness (Cs = 0.444). This
could have caused that the differences between results
obtained by the different methods were not remarkable.

The statistical properties of nonparametric kernel
approach used for estimating flood quantiles were investi-
gated again and compared with other common 'parametric'
flood frequency models, namely, LP3/MOM, P3/MOM and
GEV/PWM. The relative bias and root mean square error
(RMSE) are chosen as criteria for comparison:

(6)

(7)

where T is return period; TV is the number of Monte Carlo
repetitions; QiTand QT represent the calculated and theoreti-
cal quantile values, respectively.

Hundred samples with size 50 were simulated from Pear-

Table 1. Relative bias and RMSE in the estimation of 100-
year design floods. 100 samples with size 50 were simulated
from Pearson type 3 distribution with parameters Q = 100,
Cv = 0.5 and Cs= 1.0, 1.5 and2.0

C = 1.0 C = 1.5 C=2.0

model

VKE (k = 10)
VKE (A: = 20)
P3/MOM
LP3/MOM
GEV/PWM

BIAS

0.013
0.001

-0.021
0.476
0.043

RMSE

0.156
0.145
0.126
0.581
0.159

BIAS

-0.007
-0.013
-0.044

0.076
0.050

RMSE

0.172
0.177
0.144
0.173
0.179

BIAS

-0.034
-0.046
-0.060

0.063
0.164

RMSE

0.164
0.164
0.145
0.174
0.269

son type 3 distribution (Whittaker, 1973) with parent para-
meters (2=100, Cv = 0.5 and C,= 1.0, 1.5 and 2.0. The
relative bias and RMSE of quantile estimates were calculated
for each sample by each algorithm. In the case of nonpara-
metric VKE, the same order of A: was fixed in advance for all
the samples. Only the results for 100-year design flood
estimates were given in Table 1.

Table 1 shows that the quantiles estimated by the nonpara-
metric VKE method are less biased than those estimated by
the parametric models. As regards the RMSE, the nonpara-
metric estimates are better than LP3/MOM and GEV/PWM
and competitive with P3/MOM. The P3/M0M algorithm
performed well due to the fact that the samples originated
from the Pearson type 3 parent distribution. The differences
between VKE estimates are quite small when the order k
changes from 10 to 20. It is expected that the accuracy of
nonparametric estimates will be improved if the choice of A: in
VKE is made for each sample rather than being fixed in
advance for all examples.

NONPARAMETRIC MODEL WITH
HISTORICAL DATA AND PALEOFLOOD
INFORMATION

Consider the form of the annual maximum flood series
presented in Fig. 4. There are a total of g known floods, m of
which are known to be the m largest in the period of n years.
The n year period contains within it the systematic record
period of s years (s<n). The number e of the m largest floods
occurred during the systematic record (e<m and e < s). Note
also that g = s + m — e. Assume that there is a threshold of
perception Xo such that the m largest floods are larger than or
equal to it and the remainder are smaller than it. We know
about the m — e floods in the pre-gauging period (n — s)
specifically because they were greater than or equal to Xo.

Arrange the g known floods in ascending order, i.e.,
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Fig. 3 Comparison between fixed and variable kernel estimator for the GEV representing sample with size n = 50, u = 0, a = 1 and
different p values. Solid line: I - fixed kernel estimator, II - variable kernel estimator, circle - recorded AM flood data.

x{<x2<...<xg. The probability density function /(x), equal to the threshold value Xo in the period of n years,
shown in Fig. 5, can be expressed as: Therefore, the nonparametric fixed kernel estimation can be

obtained directly as follows

(*) *>*o (8) / 2 W =1 y * f c * '
nhi=s-e+l \ h

(9)

For/2(X), it is known that there are m floods larger than or As regards the estimation of fx{x), n — s — m + e floods
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X
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- • • years

Fig. 4 Sketch of the annual maximum flood series when historical
information is available, in which the total number of known
floods g = s + m-e.

f(x)

X

Fig. 5 Sketch of the probability density function.

which are smaller than Xo are unknown in the period of n
years. Because these floods must not exceed Xo, one gets:

(10)

where

A"

F(X0)= \f(x)dx

be estimated by maximum likelihood (and method of
moments) both of which estimate it as m/n (Hirsch, 1987).
Therefore, the non-exceedance probability F(X0) is equal to
1 - Pe. Substitution of the kernel estimate of probability
density function and equation (11) into equation (10), results
in

(12)

In summary, the probability density function/(x) can be
estimated by

/(*)=•

n-m s~e

nh(s — e) i=\
1 gs-e

\ — — V Y

h

x — x,

x<Xn

x>X0

(13)

for fixed kernel estimator. Similarly, the variable kernel
estimator can be expressed by

n i=s-e+i akd{

x<X

x>X

(14)

uk

It should be noted here that the estimate of the probability
density function (pdf) in equations (13) and (14) do not
integrate to one. This is due to the fact that pdf is directly
estimated from a sample without such a constraint on its
integral as would usually be the case with an algebraically
defined pdf. This is a deficiency of the proposed nonpara-
metric kernel estimation method. However, this property of
the estimation procedure does not affect flood quantile
estimation scheme in practice. For example, 50-year records
can result in reasonable 100-year design flood estimates (see
Table 1), but it is impossible to extrapolate to a 1000-year
flood by nonparametric kernel estimation procedure. On the
other hand, even though parametric models (assuming prob-
ability density function) can predict a thousand- or a million-
year flood from 20- to 50-year records, the results are
practically meaningless, cf. Klemes (1987).

The non-exceedance probability distribution function
F(X0) can be estimated empirically by

n — m
(11)

which depends only on the values of m and n. This result is
based on the fact that the probability P(x) is an order statistic
of a uniformly distributed random variable. These order
statistics follow a beta distribution regardless of the distribu-
tion of discharge. The exceedance probability (Pe) for Xo can

METHOD OF ESTIMATING THE
SMOOTHING FACTOR

The maximum likelihood method is proposed and developed
for estimation of the smoothing factor h in equation (13).
Since FKE and VKE are of the same form, only the
derivation and formulae of fixed kernel estimator will be
shown in the following. Consider the following problem with
a maximum likelihood criterion for choosing h
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maximize L(h) = Y\ f(xj);
7 = 1

h>0 (15)

It may be seen from equation (15), that /z = 0 maximizes
L(h), corresponding to an estimate with a Dirac function at
each sample point. Thus a slightly modified maximum
likelihood criterion is used

maximize L' (h) =

=n/i<*y) n
7=1 j=s-e+\

where

Xj-X,

i=s-e+i

(16)

(17)

(18)

and in the terms of log likelihood

j=s-e+l

Iog{f2(xj)\ (19)

Substituting equations (17) and (18) into equation (19),
taking partial derivative with respect to h, equating to zero,
and rearranging gives:

j=s-e+l L A . ,
i=s-e+l \ n

-n =

7 = 1

(20)

where K(x)= 1.5x for |JC| < 1 and zero elsewhere.
Equation (20) only has one unknown parameter h, and can

be solved by using simple optimization techniques for given
kernel and sample. It was found that the choice of tolerance
(defined as e) in estimating the smoothing factor h in equa-
tion (20) is also important. For example, in Yi Chang
catchment whose sample size and statistics are n = 820,

i S=10l ,m = 8,jc=51612m3/s,Cv=0.19andC5=0.43,alarge
tolerance (e = 0.1) value results an irregular density function
(Fig. 6a, h = 3351). Vice versa, a small tolerance value
(6 = 0.0001) produces oversmoothing density estimates (Fig.
6d, h = 13 324). Fig. 6b and c show that density estimates are
more reasonable when e equals 0.03 (/z = 5397) and 0.001
(h = 7957) respectively. Unfortunately, the tolerance or cri-
terion use to choose the smoothing factor varies with the
sample and depends on personal experience and judgement.
However, the effect on the tail of a distribution is relatively
small and can be neglected, see Fig. 6.

FLOOD QUANTILE ESTIMATION

In flood frequency analysis, the main task is to estimate a
design quantile value corresponding to a given return period.
It is, of course, sufficient to estimate only the exceedance
probability P(x) corresponding to ordered values of obser-
vations. The estimation of exceedance probability P(x) does
not only depend on the density function, but also depends on
the value of threshold of perception, Xo, of historical floods.
We consider the following two situations:

(a) tfx>X0, then

nn i
C,(x) (21)

where

i:\dx

(b) ifx<Z0, then

— u

= f/1(x)dx+ [?2{x)dx

-m s~e
n-m (22)

where

and

- |dx

The estimation of C't(x) and C"(x), will depend on the
location of Xo and the kernel which have been discussed by
Guo (1990). Generally speaking, accurate determination of
Xo does not significantly influence the effectivity of the
proposed nonparametric kernel estimation models.

COMPARISON OF PROPOSED
NONPARAMETRIC MODEL WITH
PARAMETRIC METHODS

The performance of the proposed nonparametric model was
compared with some parametric models, namely, LP3/
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Fig. 6 Fixed kernel probability density function estimates with different tolerance values at Yi Chang catchment, where n = 820, 5=101,
m = 8, and Xo = 75 000 m3/s.
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Table 2. List of sample sizes and statistics for two
catchments in the UK (the units of X and Xo are ms/s)

EVI PLOTTING PAPER

catchment

Avon at Bath
Adelphi Weir

n

90
73

s

32
31

m

16
25

e

6
15

X

200
240

*o

155
215

0.43
0.40

cs

1.56
0.48

Table 3. Comparison of 100-year flood quantile estimates for
different models fm3/sj

catchment P3/HMOM LP3/HMOM ML/EV1 Proposed

Avon at Bath 378 412 344 379
Adelphi Weir 451 558 490 471

HMOM, P3/HMOM and EV1/ML, in which the EV1/ML
procedure is that proposed by Leese (1973) and HMOM is
the method of historically weighted moments (USWRC,
1982). Two catchments in the England were selected for the
analysis. The annual maximum flood series of these catch-
ments were used as examples in the Flood Studies Report
(NERC, 1975, pp. 216-17) and their sample size and statis-
tics are listed in Table 2.

Table 3 only gives the quantile estimates for the return
periods equal to 100 at Avon at Bath and at Irwell at Adelphi
Weir catchments. For the convenience of visual comparison,
the flood quantiles estimated by different models were plot-
ted on EV1 probability paper, in which exceedance Gringor-
ten formula is used (Hirsch, 1987).

z-0.44 m

fra + 0.12 n
\
[m n — m i — m — 0.44

n n s — e + 0.12'

/=

i=m+

(23)

It is shown that the proposed model can fit the real data
much more closely than can P3/HMOM, LP3/HMOM and
EV1/ML, see Figs. 7 and 8. Another large difference is that
the flood quantiles estimated by parametric models increase
rapidly with T in the high return periods, particularly for
large skewness samples; while the extrapolation of the non-
parametric kernel estimator suggests that a possible upper
bound exists for a given catchment.

SUMMARY AND CONCLUSIONS

Historical flood peaks and palaeologic information reflect
the frequency of large floods and thus should be incorpor-
ated into flood frequency analysis. They also can help to
judge the adequacy of an estimated flood frequency relation-
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ship. Parametric estimation methods, such as maximum
likelihood estimators (Leese, 1973; Stedinger & Cohn, 1986),
historically weighted moments (USWRC, 1982) and graphi-
cal curve fitting (Hirsch, 1987), are readily applicable to flood
frequency estimation when historical or palaeoflood data is
available. However, all parametric approaches do need an
assumption about the underlying parent distribution which
is never known in hydrologic processes. To overcome some
of the limitations of the 'parametric' method, there has been
a recent trend to develop new nonparametric approaches. In
this study, a new nonparametric kernel estimation model is
proposed, investigated and compared with some selected
parametric methods. The choice between FKE and VKE, the
method of estimating smoothing factor as well as the optimal
kernel were also discussed. Some useful discussions and
conclusions are summarized as follows.

(a) The nonparametric approach does not require the assump-
tion of any particular form of density function. This
procedure allows the annual maximum flood series to
'speak for themselves', i.e., the probability density function
is directly estimated from the sample. Most of the common
'parametric' models are unimodal, thus representing homo-
geneous phenomena which is why parametric models some-
times fail to fit annual maximum flood series well especially
if the actual histogram is multimodal as can happen in some
catchments. The nonparametric model on the other hand
can fit multimodal density functions.

(b) Either the fixed kernel or variable kernel estimator can be
used to estimate the density function. The choice between
them will depend on the sample skewness. It is recom-
mended that the variable kernel estimator should be used
when the sample skewness is greater than one.

(c) Simulation results show that quantiles estimated by non-
parametric method are more reliable and better than para-
metric estimates, especially when the sample skewness is
larger than two (see Table 1). The comparison of a nonpar-
ametric model with parametric methods was based on real
data when pre-gauging information is available. It is shown
that the nonparametric kernel estimator fitted the real data
points closer than its parametric counterparts.

(d) It should be stressed that there is an important difference in
the application philosophy of parametric and nonpara-
metric methods. Generally, the nonparametric method
places a strong weighting on the flood magnitudes in the
vicinity of the specified discharge x. The extrapolation of
frequency curve by nonparametric model is based on the
shape of kernel, and the value of smoothing factor. Thus,
only a few large observations contained in the interval of
smoothing factor will influence the extrapolation. On the
contrary, the parametric approach uses both historical and
systematic information about the annual maxima distribu-
tion as a whole. This gives rise to results which run counter

to hydrologic intuition. For example, it might be ques-
tioned why the addition of a few very large historical floods
should cause an adjustment in the LP3 or GEV estimates of
5-year magnitudes. Comments in a similar vein were made
by Klemes (1986, Fig. 5).

In summary, the proposed nonparametric kernel estima-
tion model provides an alternative way in flood quantile
estimation when historical data or palaeofloods are
available.

ACKNOWLEDGEMENTS

The author wishes to record his thanks to Professor C.
Cunnane for his supervision. Grateful acknowledgements
for general encouragement and help are due to Professors
J. E. Nash and Ye Shouze.

REFERENCES

Adamowski, K. (1985) Nonparametric kernel estimation of flood
frequency, Water Resour. Res., 21(11), 1585-90.

Adamowski, K. (1989) A Monte Carlo comparison of parametric and
nonparametric estimation of flood frequencies. /. Hydrol., 108,
295-308.

Baker, V. R. (1987) Paleoflood hydrology and extraordinary flood
events. /. Hydrol., 96, 79-99.

Breiman, L., Meisel, W. & Purcell, E. (1977) Variable kernel estimates of
multivariate densities. Technometrics, 19(2), 135-44.

Dooge, J. C. I. (1986) Looking for hydrologic laws. Water Resour. Res.,
22(9), 465-85.

Guo, S. L. (1986) Flood frequency analysis in Hubei Province, China,
M.Sc. Thesis, National University of Ireland, Galway, Ireland.

Guo, S. L. (1990) Flood frequency analysis based on parametric and
nonparametric statistics, Ph.D. Thesis, National University of Ire-
land, Galway, Ireland.

Hirsch, R. M. (1987) Probability plotting position formulas for flood
records with historical information. / . Hydrol., 96, 185-99.

Klemes, V. (1986) Dilettantism in hydrology: - transition or destiny?
Water Resour. Res., 22(9), 177-88.

Klemes, V. (1987) Hydrological and engineering relevance of flood
frequency analysis. In Singh, V. P. (Ed.), Hydrologic Frequency
Modelling, Reidel, Dordrecht.

Leese, M. N. (1973) Use of censored data in the estimation of Gumbel
distribution parameters for annual maximum flood series. Water.
Resour. Res., 9(6), 1534-42.

Natural Environmental Research Council (NERC) (1975) Flood Studies
Report, London, England.

Rao, B. L. S. P. (1983) Nonparametric Function Estimation, Academic
Press, New York, N.Y.

Stedinger, J. R. & Cohn, T. A. (1986) The value of historical and
paleoflood information in flood frequency analysis. Water Resour.
Res., 22(5), 785-93.

U.S.W.R.C. (1976, 1977 & 1982) Guidelines for determining flood flow
frequency, Bulletin 17, Hydrology Committee, Water Resources
Council, Washington, D.C.

Whittaker, J. (1973) A note on the generation of gamma random
variables with non-integral shape parameter, In: Floods and Droughts,
Proceedings of the Second Symposium on Hydrology, Water Resources
Publication, Fort Collins, Colo., 591^.



IV

Random fields





Analysis of regional drought characteristics with
empirical orthogonal functions
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ABSTRACT An approach to quantify regional meteorological drought is presented.
Different definitions and types of drought are discussed and the importance of problem and
place related drought criteria is emphasized. The method of empirical orthogonal functions is
used for interpolation of drought characteristics: drought area and areal deficit. The method
allows quantification of drought characteristics in respect to any chosen drought criteria. The
approach is illustrated with one example from Kerala, south-western India.

INTRODUCTION

It is difficult to define precisely what drought is, but in general
terms it can be regarded as a condition of 'lack of sufficient
water to meet requirements which are dependent on the
distribution of plant, animal and human populations, their
lifestyle and their use of the land' (Gibbs, 1975). It is obvious
from this general definition that an universal quantitative
measure of drought does not exist. Traditionally three types
of drought are distinguished: meteorological, hydrological
and agricultural. Meteorological drought can be defined as a
prolonged and abnormal moisture deficiency. Hydrological
drought can be thought of as a period during which the
actual water supply is less than the minimal water supply
necessary for normal operation in a particular region. Agri-
cultural drought is usually described in terms of crop failure
and is said to exist when soil moisture is depleted so that the
yield of plants is reduced considerably (after Thomas, 1965).

As drought (contrary to flood or rainfall) is a 'non-event',
it is impossible to precisely state the date of its onset or end. It
is possible to precisely determine the existence of drought
when it has already begun. Similarly, the drought does not
cease with the first rainfall but disappears gradually, with the
rate dependent on drought severity for the particular local
conditions. As the effect of a drought is dependent on the
concrete problem and local natural and economic con-
ditions, studies of any drought type make sense only in
regard to a particular problem and place.

A study of regional drought characteristics has been
carried out in connection to a project on water resources
assessment in Kerala, Western India. More precisely, the
task was to quantify the demand in groundwater to compen-
sate rainfall deficit during meteorological drought in differ-
ent parts of the region of study. For this specific problem, the
regional drought, evaluated from a regional set of data, is
more important than point drought, analysed from indivi-
dual precipitation time series. The former one is directly
related to the regional water shortages due to rain deficit and
their impacts. Different theoretical approaches characteriz-
ing regional drought have been developed and reviewed by
Sen (1980), Santos (1983) and Correia (1987). Regional
patterns of precipitation can be conveniently described with
the help of empirical orthogonal functions (EOF) and this
approach is developed and applied here for the determi-
nation of regional drought characteristics in Kerala for
seasonal data.

METEOROLOGICAL DROUGHT

There are different ways of characterizing meteorological
drought conditions. Precipitation analysis with respect to
amounts and distribution can be an effective tool to define
meteorological drought quantitatively. Meteorological
drought can be, for example, subdivided into absolute
drought, partial drought and dry spell (Rodda, 1965; Raju et
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al., 1983), basing on the length of the period during which
precipitation is less than a given amount.

Another way to describe meteorological drought is to
regard rainfall 'surplus' or 'deficit' with respect to 'normal'
rainfall. The latter is assumed to be the mean rainfall for a
certain period (month, season or year). For Western India,
for example, the even rainfall distribution throughout the
year prevails. That is, as the approximation, l/12th of the
annual precipitation value (8.3% of the total annual rainfall)
can be assumed as the average monthly value (Raju et al.,
1983). The value 8.3% has been chosen on the basis of
agroclimatic considerations, as this amount creates identical
conditions for the growth of the perennial crops and also
provides for adequate water supply for other purposes.
Negative deviations from the 'normal' precipitation give the
'deficit'. As stated before, drought criteria should be related
to the local conditions. In this study the following drought
criteria, suggested by the Indian Meteorological Depart-
ment, have been used along with long term means:

(a) deficient rainfall (negative deviation of 20-60% from the
mean);

(b) scanty rainfall (negative deviation of more than 60% from
the mean).

Meteorological droughts can also be described in terms of
an 'effective rainfall', which is usually defined as a rainfall
sufficient to counteract evaporation and runoff and to main-
tain soil moisture above the wilting point. According to
Indian Meteorological Department the amount of 'effective
rain' equals 2.5 mm/day, which gives about 76 mm/month.
This criterion has also been used in the study. It is also
possible to quantify the concept of meteorological drought in
terms of probabilities of lengths of rainless periods and their
sequences and a of certain rainfall amount, defined for a
particular problem and place.

It can be assumed that life and farming in any region are
adapted to the prevailing climatic pattern, so that maximum
advantage is taken of the months with high average rainfall.
However, variations in precipitation during these 'wet'
months can cause drought conditions. On the other hand,
almost totally 'dry' months during a certain time of the year
are not harmful as agricultural activities are usually well
adapted to this pattern. That is why the study puts the stress
on the deviations from the normal climatic situation with
respect to harmful droughts.

EMPIRICAL ORTHOGONAL FUNCTIONS

The general idea of using empirical orthogonal functions
(EOF) is to make a linear transformation of the original data
and produce a new, orthogonal set of functions. The method

simplifies, and excludes redundant information. The type of
analysis used to derive EOFs has much in common with such
methods as the principal component analysis or the eigenvec-
tor analysis. The theory of expansion into empirical orthogo-
nal functions has been treated by, for example, Holmstrom
(1963) and Obled & Creutin (1986). A short summary of the
method is presented below.

Consider a set of time series Zl(t), i = 1,..., N over a time
interval (a, b). Z\ (t) are the corresponding series with respect-
ive time averages subtracted. An expansion into EOF has the
form:

where: hni are weight coefficients (summing to M over n
= 1,..., M) varying between the series but constant in time,
and Pn are sets of functions common to all series. These
functions will be called amplitude functions.

Requiring fastest possible convergence of the series expan-
sion and adding a normalizing condition to the weight
coefficients, we get orthogonal sets of weight coefficients and
amplitude functions with the properties:

M

I hnihmi=KmM
1 = 1

(2)

and

(3)

where: bnm is the Kronecker delta and kn are the eigenvalues of
the covariance matrix.

The weight coefficients, hni, are the elements of the eigen-
vectors of the covariance matrix. The new set of functions
created by this expansion is empirical in the sense that they
are based on the series themselves and not restricted to any
predetermined polynomial form. Normally the sets of EOFs
are arranged in descending order according to the propor-
tion of variance explained by each function. An important
property is that a small number of functions reproduce a
great part of the total variance. An EOF representation using
M=N linearly independent functions is a complete descrip-
tion of the original data.

REGIONAL DROUGHT
CHARACTERISTICS

Drought conditions are described by some critical level, say
Do, in accordance with the drought criteria referenced above.
The deficit at the point (x,y) at time / is defined by the
following non-negative function:
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D(x,y,t) =
Do-Z(x,y,t) when Z(x,y,t)<D0

0 when Z(x,y,t)>D0
(4)

percent

Important regional drought characteristics are the total
area with deficit AD(t) and the total areal deficit DT(t). The
deficit area can be simply defined as a portion of the total area
determined from the quotient between the number of
stations with deficit and the total number (Sen, 1980). Santos
(1983) on the other hand did not give equal weight to all :;;:.;.. ;•;. i;.;il i i ^ ^ ^ ^ I I
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stations but in proportion to an estimated effective area for
each station.

In the present study the deficit area is determined from the Fig. 1 Seasonal distribution of precipitation,
regionally interpolated deficit function as:

64

17

16

"S-W monsoon"

"hot weather"
•

"N-E monsoon"

"winter"

D ( 0 = iD(x,y,i) dx dy (5)

Where I(x9y) is an indicator function defined as:

(6)

The total areal deficit is determined from the expression:

K,y,t)dxdy (7)

CASE STUDY

The area of study is situated in the zone of monsoon climate.
The concept of monsoon contains two key ideas - regularity
and reversal. Strong seasonal contrasts of weather are asso-
ciated with the mean seasonal circulation. The monsoon
period of four months is out of step with conventional three
months seasons. Several alternatives can be used instead of
the traditional concept of season. In this study we followed a
general classification, suggested by Rao (1981):

(a) Season 1 'Winter' - January-February;
(b) Season 2 'Hot weather season' ('spring') - March-May;
(c) Season 3 'Southwest monsoon period' ('summer') -

June-September;
(d) Season 4 'Northeast monsoon period' ('autumn') -

October-December.

There is a clear dominance of monsoon in the climatic
pattern of the region. The amount of rain bound to the
southwest monsoon (see Fig. 1) is one order of magnitude
more than during the rest of the year, which makes both
annual and monsoon isohyets look rather similar. The
diagram in Fig. 1 is based on the analysis of data for 17
precipitation stations, whose location is given in Fig. 2.

The mean annual amount of precipitation in the region
varies between 2000 mm and 4000 mm, with values decreas-

Fig. 2 Location of observation stations (monthly precipitation
values for 1951-70).

ing in the direction to the north. The average amount of rainy
days is 125. The annual precipitation sums can vary up to
30%, with the average about 20% (based on the coefficient of
variation). The variability of rain amounts depends to a great
extent on the variation in the duration and continuity of the
southwest monsoon. The monsoon rains vary considerably
not only from year to year, but also in the intensity and
distribution within one event. The dry spells that interrupt
the rainy weather vary in duration and frequencies. These
variations have an important role due to the great effect of
the southwest monsoon on human life and economy.

The EOF-analysis of seasonal precipitation data showed
that 95% of variation is already explained by the first three
amplitude functions. The first amplitude function describes
the mean variation pattern for the whole region, while the
second seems to describe a delay in the onset of the monsoon
period (Fig. 3). The weight coefficients for seasonal data have
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Fig. 3 The first three amplitude functions for seasonal data; (a),
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been subject to trend surface analysis in the search for the
trend pattern in the region (Fig. 4). They vary smoothly over
the region of study, hence they can be considered to be
functions of spatial coordinates h = h(x,y). In absolute
values the second coefficient gives the dominant influence.
The regional pattern reflects the approach of the monsoon
from south-west towards north-east.

Inserting equation (1) of the EOF-model into equation (4),
one gets a model for a description of time-space variation of
regional drought deficit:

t)= fA)"Z(*,}>,0 when Z(x,y9t)<Do
y* [0 when Z(x, y, i) > Do

(8)

Fig. 4 Trend surfaces for the first three weight coefficients.

Fig. 5 Area with deficit and mean deficit for south-west monsoon
season for: (a) dry year (1966), area with deficit 24000 km2, mean
deficit 612 mm; and (b) wet year (1968), area with deficit 1336
km2, mean deficit 121 mm. Drought criterion: long term mean
(D0 = m(x,y)).

where

hn{pc9y)flH(t) + (9)

and m(x,y) is the mean value at the point (x,y), and 8 is a
random error caused by the truncation of the series expan-
sion (M< N). Three amplitude functions will be used in the
sequel (M=3). The individual precipitation series can be
considered to be independent in time. This fact allows us to
further simplify the model equation (9) to the following
expression:

M

(10)

where /?, n = 1,..., M are independent stochastic variables in
the time domain. hn(x,y) and m(x,y) are deterministic func-
tions in space. In the present study point kriging is applied for
spatial interpolation of these functions. Figs. 5a and 5b show
examples of calculations of the regional deficit for two
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Fig. 6 Probability distribution function for the area with deficit
and mean deficit for this area for season 3 (June-Sept.). Drought
criterion: deficient rain (Do= 1563 mm).

drought criteria: the long term mean value for a season
(Z)o = m(x,y)) and the 'effective rain' (Do = 76 mm * length of
the season in months). For comparison two years have been
chosen: a very dry, shown as (a) in the figure, and a very wet,
shown as (b).

The elements of individual amplitude functions pn are
independent and therefore uniquely described by one dimen-
sional distribution functions as well as the error term e. This
allows us to derive the probability distribution functions for
the drought characteristics AD and DT defined from equa-
tions (5) and (7) by means of Monte Carlo methods. (For
details see Gottschalk & Krasovskaia, 1987).

The calculated probability distribution functions (see an
example in Fig.6) show different patterns. The spatial varia-
tions (mainly a north-south trend) for seasons 2 and 4 are of
the same order of magnitude as the variability between the
years. In this case there are always parts of coastal Kerala
that receive less precipitation than the critical level (those

used in the study), but the probability that the whole territory
is below the critical level is negligible. Only for the 'scanty
rain' criterion there is a 3% probability that some part
receives less precipitation during the fourth season than this
critical amount. For southwest monsoon season the fluctua-
tions between years are much bigger than the spatial varia-
bility. There is as much as 30% probability that none of the
territory has precipitation below the long term seasonal
mean. For 'deficient rain'-criterion this probability is 90%.

CONCLUSIONS

An approach to quantification of regional meteorological
drought based on the concept of Empirical Orthogonal
Functions (EOF) is presented. The EOF technique allows
one to interpolate the precipitation data in the region and
also the values of the deficit function, based on the precipi-
tation amounts. This gives a possibility to quantify the
drought characteristics used for the region of study, that is
the amount of deficit DT (in mm) and the area affected by
drought (experiencing this deficit) AD (in km2). The choice of
the drought characteristics was guided by the local climato-
logical conditions, agricultural techniques and the task to
quantify the demand for supplementary use of ground water
in case of drought. An example is given of the use of the
amplitude functions obtained by means of EOF techniques
for derivation of the probability distribution functions for
the drought characteristics DT and AD with the help of Monte
Carlo methods.
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ABSTRACT The utilization of operationally available radar data for improved short-
term predictions of mean areal rainfall on hydrologic scales can be accomplished by the use of
a physically-based spatially-lumped rainfall prediction model. The state-space form of such a
model admits covariance estimation algorithms for the determination of rainfall forecast
variance. In particular, when the model is linear in the state, covariance analysis can be
performed without the use of radar reflectivity data. Covariance analysis of a particular linear
physically-based model indicates that the utility of the radar reflectivity data of various
elevation angles is limited in mean areal rainfall predictions, even when a very small density of
rain gauges exists over the region of interest and good quality radar data are used. This applies
to both raw reflectivity and radar-rainfall data converted through a Z-R relationship. The
ratio of mean areal rainfall prediction variances, defined as variance with radar data divided
by variance without radar data, was found to be greater than 0.8 in most cases. On the other
hand, the radar data reduced the estimated variance of the vertically-integrated liquid water
content considerably, even when high density rain gauge data were present. The conclusions
of this study are representative of covariance analyses procedures that require linear or
linearized rainfall prediction models and, for such procedures, are independent of the
particular model used. On the other hand, the model used is a spatially-lumped model and can
not utilize information on storm velocity offered by the radar data time series. Extensions to
two-dimensional stochastic-dynamic formulations are proposed.

INTRODUCTION point data of readily available variables such as surface air
temperature, dew point temperature and pressure. Real-time

Forecasting mean areal rainfall accurately and reliably on a observations of rain gauge rainfall are used in model state
basin scale and in real time has been one of the pressing needs updating. It seems reasonable to expect improvements in
of hydrology. Recently, it has been addressed in review model predictions if additional information on the relevant
papers of Georgakakos & Hudlow (1984) and Georgakakos processes could be included. In particular, further improve-
& Kavvas (1987). They discuss the suitability of spatially- ments are expected if real time observations of radar reflecti-
lumped quantitative rainfall prediction models developed by vity were used.
Georgakakos & Bras (1984a,b) and Georgakakos (1984, The rainfall prediction models are based on the principle
1986c) for use in real-time flood forecasting. The models were of the conservation of liquid water mass and utilize adiabatic
developed in an effort to improve short-term precipitation and pseudo-adiabatic air-parcel ascent processes for the
predictions on the scale of small- and medium-size hydrolo- determination of the condensation and deposition source
gic basins (100 to 1000 km2). They have already been coupled term. Computations of cloud precipitation rate are based on
to hydrologic models (Georgakakos, 1986a,b) to form inte- parameterizations of cloud micro-physics. Evaporation of
grated hydrometeorological forecast systems for the real- cloud drops in the sub-cloud layer of unsaturated air is also
time prediction of floods and flash floods (Georgakakos, modeled. Those models predict hourly precipitation rates
1987). The models, as originally formulated, use as input given input in the form of surface air temperature, pressure
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and dew-point temperature. The models have been formu-
lated in state-space form and state estimators have been
designed to process mean areal rainfall observations in real
time for: 1) state updating and 2) determination of forecast
uncertainty. Tests of the models with field data showed
considerable skill in predicting rainfall with hourly forecast
lead times.

This work is an attempt to quantify the utility of radar data
in the real time prediction of mean areal rainfall on hydrolo-
gic scales down to 100 km2. The spatially-lumped stochastic-
dynamical rainfall prediction model of Georgakakos & Bras
(1984a, b) is used in the following to integrate rainfall
microphysics and dynamics with uncertainty measures of
observations from various sensors with the purpose to
determine the reduction of rainfall prediction variance
attained by the real-time utilization of radar data. Linear
covariance analysis is applied that does not require observed
radar rainfall. Such a type of analysis is attractive since good
radar reflectivity data of sufficient quantity for covariance
analysis are difficult to obtain. This situation will change
soon with deployment in the 1990s of a network of more than
150 NEXRAD (Next Generation Weather Radar) radars in
the United States and Western Europe (Leone et al., 1989).

In this paper both steady state and unsteady covariance
measures are presented, with the unsteady measures being
applicable to particular storms and the steady state measures
being more generally applicable as long-term covariance
averages. Both vertically-averaged reflectivity data and low-
elevation angle reflectivity data converted to rainfall through
a standard Z-R relationship are considered. The covariance
analysis performed assumes only random errors in the
observed data and does not account for potential systematic
errors in radar data (e.g., due to solid precipitation effects on
reflectivity). Therefore, a preprocessing of the radar data is
assumed (for NEXRAD precipitation processing system see
Ahnert et al., 1983, and Hudlow et al., 1983) such as the one
planned for NEXRAD. Analyses such as the one presented
in this paper are necessary if the deployment of the NEX-
RAD radars is to bring significant improvements to hydrolo-
gic and hydrometeorological forecasting practices.

Following the mathematical formulation of the next
section, the steady state assessment is presented later,
followed by the unsteady covariance analysis. Conclusions
and recommendations for further research are also given.

Scanned Volume
Over Pixel Pn

MATHEMATICAL FORMULATION

Covariance Analysis

Consider the discrete form of the dynamic equation of the
Georgakakos & Bras (1984 a,b) precipitation forecasting
model for sampled input data:

Fig. 1 Schematic of radar coverage of the atmospheric column
above the area where mean areal surface rainfall predictions are
sought.

where the state xk represents the condensed water equivalent
mass in a cloud column composed of both cloud and rain
water at time tk, fk is the mass input to the column due to
condensation over the interval At=tk+l — tk, and hkxk is the
mass output due to precipitation at cloud base over the same
interval. The stochastic process wk represents random errors
in model structure, input and parameter estimates. It is a zero
mean process with variance Q. It is noted that/^. and hk differ
from the analogous quantities in Georgakakos & Bras (1984
a, b) in that they represent the total mass input and output
over the period At rather than instantaneous input and
output mass rates. For the purposes of this work A t = 1 hour.

The corresponding observation equation for mean areal
surface rainfall is

forA:=l,2,... (2)

for £ = 0,1,2,... (1)

where Rk is the rainfall amount observed at ground level over
the period (tk—tk_x),

 (Pkxk is the surface rainfall accumu-
lation predicted by the Georgakakos and Bras model for the
same period, and vTk represents the random sequence of
observation errors, with zero mean and variance RT. It is
noted that the mean areal surface rainfall observation Rk

could be based only on rain-gauge observations, on base scan
(low-tilt angle) radar rainfall observations, or on both of the
above sensor data. Such situations should be reflected in the
choice of a value for RT.

For the locations under a meteorological-radar coverage
an additional observation may be available. This obser-
vation is the radar-measured raindrop reflectivity. For illus-
tration purposes, Fig. 1 presents a schematic of the radar
coverage of the atmospheric column above the area where
mean areal rainfall predictions are sought. Appendix A (see
also Georgakakos & Krajewski, 1989) derives a second
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observation equation that gives the observed vertically-
averaged reflectivity factor Zk as a linear function of the
model state xk at time tk\

for *= 1,2,... (3)

The term vZk represents the random sequence of obser-
vation errors in reflectivity measurements with zero mean
and variance Rz, and the term ^pc*. is the model-predicted
vertically-averaged reflectivity factor with Wk defined as

Wk = (720 £4 a7 )/(npwZCk) (4)

where e4 and a are parameters, pw is water density and ZCk is
cloud depth in [m] at time tk.

It is noted that there could be situations when concurrent
values of vTk and vZk are correlated, and we denote by pTZ the
relevant correlation coefficient. One such case is the case of
utilizing base scan radar data for the determination of Rk.

Given the dynamics, parameters and the parameters of the
noise statistics, as well as initial conditions on xk, it is possible
(e.g. Gelb, 1974, Jazwinski, 1970) to use state estimators to
obtain the state prediction variance and the state estimation
(or updating when observations become available) variance
of the stochastic-dynamical model in real time. The state
co variance propagation and updating for the above formula-
tion is accomplished by the following set of recursive
equations.
Propagation

Updating

(5)

(6)

where Pk
+ is the estimated state variance at time tk given

observations up to and including time tk; P^+1 is the esti-
mated state variance at time tk+l, given observations before
time tk+l;Kk+lis the estimator gain matrix at time tk+l; and

(7)

(8)

(9)

Gelb (1974) gives:

where Rv is defined by

Wl
In case vertically averaged reflectivity data are not avail-

able, the matrices Hk and Rw become scalars equal to &k and
RT, respectively. Then, RT is the variance of observation error
associated with rain gauge data alone, with base scan radar
data, or with both types of data.

Substituting for the elements of Hk, Rk+l,
equations (6) and (8) yields:

and Rv in

\V2

(10)

Dividing both numerator and denominator by RTRzPk+ x one
obtains

— + — +
Rr

k+l

2p

(R!A)1/2J (11)

When vertically averaged reflectivity data are not avail-
able, Equation (11) still holds true but with the terms
containing pTZ and Wk set to zero. Given expressions for hh <Pk

and Wk, estimates of the model-error variance Q and esti-
mates of the observation-error variances RT and Rz, one can
use equations (5) and (11) to obtain predicted and updated
estimates, Pk+1 and Pk+ {, of the state variance for all times
tk+l during a storm. The reader is reminded that in the
present model the state is the condensed water equivalent
mass in the cloud, and it consists of both rainwater and
cloudwater. Using the observation Equation (2) we can
obtain an expression for the error variance in the surface
rainfall predictions, Ek+l9 for all k by

(12)

Rainfall variance sensitivity

One way to examine the sensitivity of the rainfall prediction
error variance Ik with respect to RT and Rz is to study the time
variation of the normalized derivatives SR = (RJIk)
(dIk/dRT) and Sz= (RJZk)(dZk/dRz) (e.g., Rabitz, 1989). In
the following, expressions for the derivatives (dIk/dRT) and
(dIJdRz) are obtained using the co variance propagation
and updating equations.

Taking derivatives of both sides of Equation (12) with
respect to Rr and Rz yields:

,dp;
dRr

dR7

dRT
(13)

(14)

Then, using Equation (5) we can obtain the following
forms for the right-hand side derivatives:

(15)

(16)

dRr

dR,

dR,

8R,
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Finally, the derivatives in the right-hand side of (15) and
(16) can be obtained from equation (11) as:

8JjL
dR

RZ
,

RT

, i-p«

dpk
+

dR'

pt
2_,

The set of equations (15) and (17) form a recursive set
which can be used to obtain dPk~+1 /dRT for all k. Similarly,
equations (16) and (18) can be used to obtain dPk~+l/dRz.
Notice that Equations (17) and (18) depend on Pk~. They
should be simulated together with the covariance propaga-
tion and updating equations. As for initial conditions to start
the iterations, one can use

dP0
+/dRr =

and

(19)

(20)

Steady state covariance analysis

An approximate assessment of the contribution of radar data
to the prediction and estimation of rainfall can be made by
specializing the covariance propagation and updating equa-
tions for a hypothetical steady state. The advantage of the
simplification is that the results are applicable generally and
do not pertain to individual storms. Thus, they offer added
insight into the question of radar utility for forecasting, in
real time, mean areal rainfall. Assuming characteristic values
h, <P, and W for hk, <Pk and Wk for an extended period of time,
and pTZ = 0, one can rewrite equations (5) and (11) as:

and

For the given assumptions and for time invariant Q, Rz

and RT, it is known (e.g., Gelb, 1974) that the system of
equations (21) and (22) reaches a steady state with Pk

+ => P^
and Pk~ =>P~, for k large enough. Using equations (21) and
(22) and denoting by 1/B the first two terms in the denomina-
tor of equation (22) we obtain:

P~ = [(B-AB-Q)2 + 4BQ)l/2-(B-AB-Q)y2 (24)

with A denoting (l-/z)2. The steady state value of the
estimation (or updating) covariance P* is obtained by
substitution of P ~ from equation (24) in equation (22).

In the absence of vertically-averaged reflectivity data, Zk,
equation (22) reduces to:

P k + j = (<P2/Rr + 1/Pk+ i ) ~ l (25)

and the steady state value P ~ r for this case is given by

P",r = [(Br - ABT - 0 2 + 4BTQ)x'2 - (BT - ABT - Q)]/2 (26)

with l/BT denoting the first term in the denominator of
equation (25).

The ratio RP=P~/P~T is a measure of the improvement in
state and, via Equation (12), rainfall prediction accuracy
gained by using vertically averaged reflectivity data over the
rainfall model updated with only surface rainfall data. The
ratio RP = P*/P*tT is a measure of the improvement in state
estimation (or updating) accuracy gained by using reflecti-
vity data. Such ratios can be computed for various values of
h, <P, W, Q, RT and Rz and an assessment of the worth of
reflectivity data for real-time mean areal rainfall prediction
and estimation of rain and cloud water content can be made.

Using dimensionless quantities, one can denote by FT the
ratio of the standard deviation of the measurement noise vr to
the average value of the observations of surface rainfall Rk

during the steady state period; Fz the ratio of the standard
deviation of vz to the average value of the observations of
vertically-averaged reflectivity Zk during the steady state
period; Fq the ratio of the standard deviation of the model
error to the average value of the model state xk during the
steady state period. It follows that

RT=(Frct>xk)
2

Rz=(FzWxk)
2

Also,

and

l/BT=l/(F2x2)

(27)

(28)

(29)

(30)

(31)

= (i-h)2(\/B+\/p-y (23)

Then, the ratios P^/P^^ and P*/P*it become functions
of only FT, Fz, Fq and h. Note that FT and Fz can be interpreted
as coefficients of variation of the rainfall and vertically-
averaged reflectivity observations.

As an example, we present the limiting case of h = 1 which
corresponds to a 100% depletion of the cloud water. In such
a case,

which can be solved for the positive root: (32)
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with

* oo - * o o , r

Also

V 2

V 2

(33)

(34)

(35)

(36)

It can be seen that for a given Fg, as Fz increases for a given
Fr9 the variance ratio tends to 1 indicating no utility for the
vertically-averaged reflectivity data. However, as FT increases
for a given Fz9 the utility of the radar data increases. Also,
notice that as Fq increases so is the potential utility of the
radar data since there is a larger number added to 1 in the
denominator of the last relationship. In a following section,
various cases of steady state variance ratios are presented
and discussed.

The formulation of equations (24), (26), (27) and (29) can
also be used to assess the utility of base scan radar data in
obtaining measurements of surface mean areal rainfall as a
substitute for or in conjunction with rain gauge data. In such
a case, B in equation (24) would be computed as in equation
(30) with the first term neglected and FT representing errors in
mean areal rainfall observations due to errors in base scan
radar data. BT would be computed as in Equation (31) with FT

representing errors in mean areal rainfall as computed from
point rain gauge data.

STEADY STATE ASSESSMENT

Several useful results can be obtained utilizing the steady
state concepts of the last section. It is noted that even though
a true steady state is infrequently reached during a storm
period (for evidence of the existence of steady rain periods see
Kessler, 1969), steady state covariance analysis may be
successfully employed to determine relative magnitudes of
covariances for periods characterized by certain quasi-steady
state behavior (e.g., intense rainfall periods, light rainfall
periods). Also, steady state analysis is a general analysis in
that it does not depend on particular time series of meteoro-
logical variables that correspond to only a few storms.

Low-Tilt Angle Radar Data

At first, we examine the worth of the low-tilt angle radar data
in the prediction of mean areal surface rainfall. In this case,
the state space form of the model consists of equations (1)

and (2), where vTk represents the random error in the measure-
ment of mean areal surface rainfall. We distinguish two
situations.

(a) Only rain gauges have been used to obtain the measurement
of mean areal surface rainfall. (This situation is referred to
as situation (a) in the following and will be denoted with an
appropriate index.)

(b) Only low-tilt angle radar data have been used to obtain the
measurement of mean areal rainfall, utilizing a standard Z-
R relationship of the type (e.g. Burgess & Ray, 1986):

Z=cxR
C2 (37)

with cx and c2 being known constants, Z denoting the radar
reflectivity factor in mm6/m3 and R denoting the mean areal
rainfall rate in mm/h. (This situation is referred to as
situation (b) in the following and will be denoted with an
appropriate index.)

In both situations, vn in equation (2) represents random
errors (vs. biases) in the measurement of mean areal surface
rainfall.

Steady state analysis of the type developed in the previous
section yields equation (26) for the steady state predicted
state variance with BT denoting R^J®2 for situation (a), and
RtJ®2 for situation (b). RT& is the observation error variance
associated with the determination of mean areal rainfall by
rain gauge data. RTh is the analogous quantity for the
situation (b) involving low-tilt angle radar data. The rest of
the quantities in equation (26) are as previously defined.

Denote by RP the ratio of the steady state rainfall predic-
tion variances with and without low-tilt angle radar data.
Equation (12) suggests that RP is also equal to the ratio of the
steady-state state prediction variances:

RP = P-JP-a (38)

where subscripts a and b distinguish the aforementioned two
situations. By letting ra approach infinity, we can derive a
lower bound, RP, for RP. This limiting case corresponds to
non-existent or very bad quality rain gauge data and, thus, in
most cases, values of RP are expected to be considerably
greater than Rp*.

Using equations (25) and (21) for l//?ra = 0, gives

P-=Q/(1-A) (39)

Substituting equations (29) and (31) in equation (26) for
situation (b), and equation (29) in equation (39) one obtains

\-A {[l-A-

(40)

Thus, the limiting ratio Rp* depends on h (through A) and
on the ratio FJFTb. Fig. 2 presents the ratio R£ as a function of
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RATIO OF FRACTIONAL MODEL ERROR TO

FRACTIONAL RADAR MEASUREMENT ERROR

Fig. 2 Minimum values of the ratio of rainfall prediction vari-
ances with and without low-tilt angle radar reflectivity data as
function of the ratio of fractional model error to fractional radar
measurement error for moderate (h = 0.6) and light (h = 0.4)
rainfall.

FJFTh for several values of h. For h=l, rainfall fully depletes
the cloud water xk during each time step: tk_{ to tk. Such a
situation occurs under conditions of fully developed intense
rainfall (e.g. Kessler, 1986). The case h< 1, corresponds to
rainfall that does not deplete cloud water completely during
each time step, thus allowing for memory in the rainfall
production process. This case is referred to as the case of
moderate to light mean areal rainfall since lower rainfall
rates result as compared to the case with h = 1 for the same
input meteorological conditions.

The curves in Fig. 2 reveal that only in cases of light mean
areal rainfall and large ratios FJFTh, do low-tilt angle reflecti-
vity data improve mean areal rainfall predictions signifi-
cantly. For h = 0.6, even for ratios FJFrb up to 3, (implying
highly uncertain model and highly accurate radar data), Rf
remains above 0.85. For intense rainfall (h= 1), there is no
memory in the rainfall process and the ratio RP is identically
equal to 1 with both numerator and denominator equal to Q
in equation (38).

Vertically integrated radar reflectivity data

CASE A: INTENSE RAINFALL
At first, we examine the character of equation (36), that gives
the ratio of state estimation (or updating) variances with and

Fr=0.2

Fr=0.6

Fr=l.O

Fr=2.0

FRACTIONAL ERROR IN REFLECTIVITY OBSERVATIONS

Fig. 3 Ratio of estimation variances with and without radar
reflectivity data as a function of the fractional error in reflectivity

3 • ° observations. Intense rainfall.

Fz=0.4

Fz=0.8

Fz=1.0

Fz=2.()

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FRACTIONAL ERROR IN SURFACE RAINFALL OBSERVATIONS

Fig. 4 Ratio of estimation variances with and without radar
reflectivity data as a function of the fractional error in surface
rainfall observations. Intense rainfall.

without vertically-averaged reflectivity observations (reflec-
tivity observations in short) as a function of the uncertainty
in reflectivity measurements, surface-rainfall measurements
and in the model (model error variance). The situation under
study is for h= 1. For such a case, the ratio of prediction
variances is equal to 1, and independent of the observation
errors. Figs. 3 and 4 present the ratio of estimation variances,
RE = P* /P*t r for various values of the fractional observation
error in reflectivity, Fz, and in surface rainfall, FT, using the
fractional model error, Fq, as a parameter. Fig. 5 shows
dependence of RE on Fq for several values of FT and for
Fz = 0.4. The value of Fq=0.5 used in Figs. 3 and 4 represents
the best estimated value of Vg by previous studies (i.e.,
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Fr=1.0

Fr=2.0

FRACTIONAL MODEL ERROR

Fig. 5 Ratio of estimation variances with and without radar
reflectivity data as a function of fractional model error. Intense
rainfall.

Georgakakos, 1984) as a fraction of the mean state value xk,
for cases of intense rainfall. The value of Fz = 0.4 used in Fig.
5 represents a 40 percent random error in the observations of
vertically-averaged reflectivity and corresponds to good
radar measurements.

Examination of the aforementioned three Figures leads to
the following observations:

1. Significant reduction in the estimation variance of the total
mass of cloud and rainwater can be attained in real-time by
utilizing good quality radar reflectivity data (see Figs. 3 and
4). For up to 80 percent measurement error in reflectivity,
and for greater than 60 percent error in the surface rainfall
observations (or estimates), the ratio RE remains below 0.8.
For good quality radar data (error less or equal to 40
percent), even for very small measurement error in the
observations of surface rainfall (down to 20 percent), the
radar data reduce RE below the 0.8 level.

2. For good quality radar data (of about 40 percent measure-
ment error) the ratio RE drops sharply with increasing error
in the measurement of surface rainfall (i.e., Fig. 4, curve
labeled Fz = 0.4).

3. For bad quality measurements of surface rainfall (more
than 100 percent measurement error), even fair-quality
radar measurements (of an 80 to 100 percent measurement
error) are useful in reducing the ratio RE to the 0.8 level or
below. It is noted that such measurements of surface
rainfall are typical in areas with sparse raingauges.

4. The greater the model uncertainty, the smaller the ratio RE

is and, therefore, the higher the potential utility of radar
reflectivity data for the real-time estimation of vertically
integrated cloud and rain water (see Fig. 5).

CASE B: MODERATE TO LIGHT RAINFALL
This case corresponds to h < 1. Now attention is directed
toward equations (24) and (26) for the ratio of state and

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 fa

Fig. 6 Isometric plot of the rainfall-prediction variance ratio with
and without radar reflectivity data as a function of fractional
errors in surface rainfall and reflectivity measurements, for Fq

= 0.5. Moderate to light rainfall.

rainfall prediction variances: RP = P~ /P~,T. It is noted that in
contrast to the previous case examined, radar data can
reduce the state and rainfall prediction variance (RP< 1). In
terms of the right-hand side of equations (24) and (26), RP is
given as:

[(l-A-C)2 + 4C]l/2-(\-A-C)\ - l

RP=-

with

= F2JF2

(41)

(42)

(43)

(44)

A value of h equal to 0.60 was used for the tests of this case
which represents an average value for moderate to light
rainfall. Fig. 6 presents an isometric plot of the ratio of
prediction variances with and without radar reflectivity data
for Fq = 0.5. It can be seen that the ratio RPcan take on values
less than 1 when poor quality measurements for the estima-
tion of mean areal surface rainfall are available together with
high quality radar reflectivity data. For example, values of
RP less than 0.9 are observed for errors greater than 120
percent in surface rainfall observations and less than 40
percent in radar reflectivity data.

Figs. 7 and 8 present the ratio RP as a function of Fq for
various values of FT and for two cases of radar reflectivity
data. A case of good quality reflectivity data (Fz = 0.4, Fig. 7)
and a case of very good quality reflectivity data (Fz = 0.2, Fig.
8) are presented. Both figures show marginal utility of
vertically-averaged radar reflectivity data (even of a very
good quality) when surface rainfall data, even of a bad
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Fig. 7 Ratio of prediction variances with and without radar
reflectivity data as a function of fractional model error, for Fz

= 0.4. Moderate to light rainfall.
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FRACTIONAL ERROR IN REFLECTIVITY OBSERVATIONS

Fig. 9 Ratio of rainfall estimation variances with and without
radar reflectivity data as a function of the fractional error in
reflectivity observations. Moderate to light rainfall.
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Fig. 8 Ratio of prediction variances with and without radar
reflectivity data as a function of fractional model error, for Fz

= 0.2. Moderate to light rainfall.
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FRACTIONAL ERROR IN SURFACE RAINFALL OBSERVATIONS

Fig. 10 Ratio of rainfall estimation variances with and without
radar reflectivity data as a function of the fractional error in
surface rainfall observations. Moderate to light rainfall.

quality, are present. In addition, for a given error in surface
rainfall data, there seems to be a value of Fq for which the
radar reflectivity data contribute the most. There is a mini-
mum for the function RP(Fq) which is more pronounced as
the quality of surface rainfall data deteriorates to values

Once the steady state rainfall prediction variance is deter-
mined by equations (24) and (26) with and without radar
reflectivity data, equations (22) and (25) can be used to
obtain the corresponding steady-state state estimation vari-
ances. Then, the ratio RE = P*/P*r can be determined for
various values of Fr, Fz and Fq, given h = 0.6. Figs. 9,10, and
11 are analogous to Fig. 3, 4, and 5 and display dependence

of the ratio in state (rain and cloud water) estimation (or
updating) variances with and without reflectivity data on
fractional errors Fz, FT and Fq9 respectively. The comments
made previously for the case h=l apply here too. The
difference is that for /z = 0.6, the ratio of state estimation
variances is somewhat lower than for h = 1, for given values
of FT, Fz and Fq, especially for large values of FT and Fz. The
reduction in RP is small, however, with decreasing h and the
assessment of the worth of radar reflectivity data made for
h = 1 applies for moderate to light rainfall as well. Clearly, the
contribution of vertically-averaged radar reflectivity data to
the real time prediction of mean areal surface rainfall is
significantly less than their contribution to the real time
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Fig. 11 Ratio of rainfall estimation variances with and without
radar reflectivity data as a function of the fractional model error.
Moderate to light rainfall.

estimation of vertically integrated cloud and rain water.
However, in cases of very poor conventional observations
(e.g., due to sparse raingauge networks), radar reflectivity
data will reduce the rainfall prediction variance.

UNSTEADY COVARIANCE ANALYSIS

The steady state results of the previous section, albeit gener-
ally applicable, can not be used to assess the utility of radar
data (either low-tilt angle data converted to surface rainfall
or vertically-averaged reflectivity data) in cases of transient
model behavior. In those cases, the set of unsteady, recursive
variance equations (5), (11), (12) and the set of sensitivity
equations (13) through (18) can be numerically simulated
with hk, <Pk and *Fk, evaluated from observed meteorological
storm data. In the following, we report on the results of an
extensive sensitivity analysis that was performed on the
variance and sensitivity equations utilizing meteorological
data from two long-lasting storms. The storms have been
previously used for the calibration of the rainfall model. The
first storm occurred in September, 1962, and was recorded at
Logan Airport in Boston, Massachusetts. It spanned a
period of 43 hours. The second storm occurred in May, 1950,
and was recorded at Tulsa International Airport in Okla-
homa. It spanned a period of 41 hours. Hourly data of
surface air temperature, pressure and dew-point temperature
were used for the computation of hk, <Pk and Wk. Sensitivity
analysis was performed with respect to Q, RT, Rz and prz. Q
was further parameterized as

Q=(co+cjfk)
2 fk>o

where Co and C, are two new parameters and fk is the
condensation and deposition term in equation (1) computed
as in Georgakakos & Bras (1984a). Equation (45) reflects the
hypothesis that the model dynamics is more accurate when
convection is strong (fk is large).

During the sensitivity runs, Co took the values 5, 2 and 0
mm; Cx took the values 0, 0.1, and 0.5 mm2/hr; (i?r)

1/2 took
the values 100, 150 and 200 percent of the observed mean
areal surface rainfall in mm/hr; (Rz)

l/2 took the values 1, and
2 dBZ; and prz took the values 0, 0.5, and 0.8. Plots of the
ratios RP, RE and of the normalized sensitivities SR and Sz (as
defined earlier), as functions of time step k, were produced
for each sensitivity run, and were superimposed on plots of
rainfall rate as a function of k. Conclusions were drawn
based on the visual inspection of the aforementioned plots.

Storm 1

The average hourly rainfall rate for this storm was 1.91
mm/hr with a sample standard deviation of 1.86 mm/hr. The
storm rainfall lasted for 43 hours. When a standardized Z-R
relationship (Marshall-Palmer, see Battan, 1973) was used it
gave an average reflectivity factor of 27.5 dBZ. The following
are the most significant observations that we made, based on
the sensitivity analysis runs.

1. The lowest instantaneous rainfall variance prediction ratio
RP was as low as 0.75 and that value was obtained rarely
during the runs. The lowest average prediction ratio was as
low as 0.80, in good agreement with the steady state theory
predictions. The lowest values of the instantaneous and
average state variance estimation (or updating) ratios were
0.18 and 0.22, and were obtained for the same sensitivity
run as were the aforementioned lowest prediction ratios.
That run was made with Co = 5 mm, Cx = 0, (RT)l/2 = 200%,
(Rz)

l/2= 1 dBZ, prz = 0. The prediction ratio instantaneous
(average) value for (i?r)

1/2= 100% was 0.75 (0.85).
2. The time variation of the normalized rainfall prediction

variance sensitivities with respect to the reflectivity error
variance, was found to bear no significant relationship to
concurrent variations of the observed hourly rainfall rates.
On the other hand, normalized state estimation (or updat-
ing) variance sensitivities with respect to the reflectivity
error variance, showed higher values for periods of light
rain as compared to periods of intense rain. This last finding
correlates well with our findings from the steady state
analysis. The highest normalized rainfall variance predic-
tion sensitivities, with respect to Rz, were as high as 0.24 for
instantaneous values and 0.12 for average values during a
run. The run parameters that gave the aforementioned
sensitivity values were: Co = 5 mm/hr, Q = 0, (Rr)

l/2

= 100%, (Rz)
l/2= 1 dBZ, prz = 0.8. The highest normalized

rainfall variance estimation (or updating) sensitivities with
respect to Rz were as high as 3.0 for instantaneous values
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Fig. 12 Hourly rainfall prediction variance ratio and hourly state
estimation (or updating) variance ratio for the Boston, Massachu-
setts, storm. Also, shown on the right scale are the concurrent
rainfall rates in mm/hr. The parameter values are: pi?z = 0,
(Rr)

l/2= 100%, R2 = ldBZ, Co = 5.00, and Q = 0.0.
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Fig. 13 Hourly normalized prediction sensitivities of the rainfall
prediction variance with respect to Rz and Rr for the Boston,
Massachusetts, storm. Also, shown on the right scale are the
concurrent rainfall rates in mm/hr. The parameters are as in Fig.
12.

Storm 2

The average rainfall rate for this storm was 3.27 mm/hr with
a sample standard deviation of 3.87 mm/hr. The rainfall
duration was 41 hours. Using a standardized Z-R relation-
ship, an average reflectivity factor of 31.25 dBZ was obtained
for this storm. Compared to the Boston Storm 1, the Tulsa
storm had much higher hourly rainfall rates (a maximum of
about 16 mm/hr vs a maximum of 7 mm/hr for Storm 1), and
it exhibited a more pulse-like nature characteristic of Okla-
homa convective storms. The general comments made for
Storm 1 regarding the behavior of variance ratios and
normalized prediction sensitivities are applicable to the
results obtained from the sensitivity runs of Storm 2. The
main difference was that the minimum instantaneous rainfall
prediction variance ratio was obtained for a lower value of Q
(Co = 2, Cx = 0) and its value, 0.90, was higher than for Storm
1. The minimum instantaneous state estimation (or updat-
ing) variance was also higher at 0.25 and it was obtained for
the aforementioned value of Co and Cx. Characteristic of the
runs with Storm 2 data was that the rainfall prediction
variance and state estimation variance ratios exhibited
smaller fluctuations than those observed in the case of Storm
1. The values of the normalized prediction sensitivity, with
respect to Rz, were about the same magnitude in Storm 2 as in
Storm 1. A significant increase (100 percent) of the prediction
sensitivities, with respect to RT, was observed in the runs of
Storm 2, as compared to those in the runs of Storm 1. Figs. 14
and 15 are analogous to Figs. 12 and 13, respectively, and
correspond to a Storm 2 run with parameters: Co = 5, Cx = 0,
prz = 0, (Rr)= 100 percent of observed surface rainfall, and
0Rz)

1/2=ldBZ.

CONCLUSIONS AND FUTURE
DIRECTIONS

and 2.6 for average values during a run. The same run gave
the highest prediction and estimation sensitivities.

3. The effect of reducing Co while the other run parameters
were being held constant, was to smooth out temporal
fluctuations in the plots of all the variance ratios and
normalized sensitivities. The opposite effect was observed
when prz and Cx were increased to values higher than 0, and
when (Rz)

l/2 was increased from 1 dBZ to 2 dBZ. An
increase in (RT)l/2 resulted in a decrease of the average
variance ratios.

Figs. 12 and 13 are presented to illustrate the character of
the sensitivity plots. The variance ratios (Fig. 12) and the
normalized prediction sensitivities with respect to Rz and Rx

(Fig. 13) are shown for the case with run parameters: Co = 5
mm/hr, Cx = 0, (RT)l/2= 100% of observed surface rainfall,
CRz)

1/2=ldBZandprz = 0.

This work has employed methods of modern estimation
theory applied to physically-based spatially-lumped rainfall
prediction models to quantify the potential improvement
offered by radar data in real-time short-term mean areal
rainfall predictions. Utility of both base scan and volume
scan radar data has been examined. Improvement of rainfall
predictions was measured by the reduction in the rainfall
prediction variance attained when radar data was used. The
results show that in the presence of raingauges (even for a
small number of them), the ratio of predicted mean areal
rainfall variance with radar data to the same quantity
without radar data approaches 0.75 as a low value with more
typical values in the range of 0.85-0.95. In addition, data
from storms in Boston, Massachusetts, and Tulsa, Okla-
homa, indicated greater improvement in mean areal rainfall
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MULTISENSOR QPF MODEL
rho= 0.00 Rz= 1.00 Rr= 1.00 CO- 5.00 C1= 0.00

20 30

Time (hours)

Fig. 14 As in Fig. 12, only for the Tulsa, Oklahoma, storm.

MULTISENSOR QPF MODEL
rho= 0.00 Rz= 1.00 Rn= 1.00 C0= 5.00 C1= 0.00

10 20 30 40 50

Time (hours)

Fig. 15 As in Fig. 13, only for the Tulsa, Oklahoma, storm.

predictions for Boston when radar data were used. The radar
data, however, offered significant reduction of the uncer-
tainty associated with the real-time estimation of the model
state: vertically integrated condensed water equivalent mass.

The lack of a continuous record of good quality radar data
that would cover several storms in various hydroclimatic
regimes prevented the use of actual radar data for the
covariance analysis. Instead, linear estimation theory
methods were used that decouple the mean from the covar-
iance equation and allow covariance analysis in the absence
of actual data. To satisfy this requirement, a linear (in the
state) rainfall prediction model was used which has been
previously used in the real-time prediction of areal rainfall.
However, given the good performance of the model in the
short term prediction of rainfall and the published evidence
that its optimal parameters remain reasonably constant in
various regimes (e.g. Georgakakos, 1984), the results
reported herein should be representative of other linear or
linearized rainfall prediction models.

Several case studies using actual radar and raingage data
together with the input data are underway. These will allow
for covariance analysis of nonlinear (in the state) spatially-

lumped rainfall prediction models with the mean and co-
variance equations of the state estimator being coupled. The
data involved include radar observations from Darwin,
Australia; Champaign, Illinois; Norman, Oklahoma (from
NEXRAD prototype facility); and the Japanese radars
operated by the Japan Ministry of Construction.

The authors are currently involved in extending the pres-
ent formulation into a two-dimensional model that includes
both advection and convection dynamics, of the type des-
cribed by Lee & Georgakakos (1990). The addition of
advection of storm clouds in such models offers promise for
increased utility of radar data when used for the estimation
of storm velocity. Such an extension requires reliable models
for the statistical description of the spatial structure of radar
measurement errors.

The described study underscores the importance of the
investigations of errors in mean areal precipitation estimates.
In the case of using raingage data, the sources of errors
include sampling errors due to sparseness of raingage
network with respect to hourly rainfall spatial variability,
measurement error in point observations and estimation
errors due to a particulant interpolation method used. The
sampling errors are addressed by Bras & Rodriguez-Iturbe
(1985), Silverman et al (1981), and Gabriel (1981) among
others. Point accuracy of raingage observations was dis-
cussed by Sevruk & Hamon (1984), Larson & Peck (1974)
and others. Still, a comprehensive assessment of the problem
would be very useful. A similar, but somewhat more compli-
cated situation exists in the evaluation of the errors in radar
rainfall-related measurements. Wilson and Brandes (1979)
summarized the problem, others including Zawadzki (1982),
Sachidanada & Zrnic (1987), Chandrasekhar & Bringi (1987)
and Jameson (1989) addressed in a comprehensive way the
problem of reflectivity measurements and radar-rainfall esti-
mates error in a simple sampling volume. However, the
problems of spatial structure of radar errors, clearly relevant
for the discussed problem (see also Krajewski, 1987), have
not been properly addressed.

Finally, the recent radar technologies of multiparameter
radar rainfall observations (Jameson, 1989) can be readily
incorporated into the presented framework for analysis of
the prediction error variance. This is because the described
framework is based on physical models and data uncertainty
measures, and thus, it is suitable for optimal combining of
multisensor observations relevant for rainfall prediction and
estimation.

APPENDIX A

Given reflectivity-factor measurements Z{ (i= 1,...,«) at various
radar-antenna elevation angles <Pj with7= l,...,/w, assumed to
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be taken at instances tx through tn during the time interval A t, the
following reflectivity-factor vs. size-distribution relationship
exists (e.g., Burgess & Ray, 1986):

00

Z{= D6n{ (Al)

where the size distribution of hydrometeors n(D) has been
localized as n{(D) for the time instant tf and the tilt angle $j. The
size distribution n(D) is assumed exponential of the type:

= N0Qxp(-D/s4) (A2)

Localization of the distribution is through localization of its
parameters No and e4. Because of the absence of upper-air
meteorological data for the temporal scales involved (hourly),
utilization of reflectivity factor for each tilt angle is not recom-
mended. Instead, as a compromise, we propose to use an average
reflectivity factor Z(tt), defined by:

larger hydrometeors produce the bulk of the radar return signal,
it is expected that parameter a will satisfy: a> 1.

The last two equations (after substitution of the exponential
size distribution relationships for nt(D) and n't{D) have four
unknowns: X, Z, No, s4. One, then, can eliminate two of them by
solving the equations for those two unknowns. Since X(tt) is the
model state variable and Z(tt) is observed, it is convenient to
solve for the parameters of the hydrometeor size distribution.
This way, if reflectivity factor measurements are available, they
could be used in a second observation equation within the model
state space form. The second observation equation would be:

with

*'[«(*,)]=-
720 s4V

(A6)

(A7)

and with v'(*,•) accounting for random measurement errors in
reflectivity-factor observations.

1
- £ Z{
m j=x

(A3)

as a characteristic measure of non-zero reflectivity factors over
the height of the storm clouds and for time instant tt. In addition,
we assume that an 'equivalent' size distribution, n't{D\ which is
uniform over the height of the storm clouds exists at time tt such
that:
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ABSTRACT Two Monte Carlo simulation experiments which address the problem of
radar-rainfall estimation are presented. One of the problems associated with hydrologic use
of radar-rainfall data is the need to adjust radar rainfall estimates to raingage estimates. The
adjustment, which is performed in real time, can be done in the mean field sense. The problem
of development of such an adjustment scheme is difficult due to largely unknown statistical
structure of radar errors and the fundamental sampling differences between these two
sensors. To investigate the problem, mean field bias is modeled as a random process that
varies not only from storm to storm but also over the course of a storm. State estimates of
mean field bias are based on hourly rain gage data and hourly accumulations of radar rainfall
estimates. The procedures are developed for the precipitation processing system to be used
with products of the Next Generation Weather Radar (NEXRAD) system. To implement the
state estimation procedure parameters of the bias model must be specified. The performance
of the state estimation is investigated within a Monte Carlo simulation framework. The
results highlight the dependence of the state estimation problem on the parameter estimation
problem. The second experiment addresses the problem of converting radar-measured
reflectivity into rainfall rate. This is typically done using a Z-R relationship. The parameters
of such relationship can be estimated using climatological data and nonparametric estimation
framework. In the paper the effects of thresholds imposed on the observations included in the
estimation are investigated.

INTRODUCTION from storm to storm and, during a storm, on an hourly time

scale. The estimation procedures are designed for the precipi-

Modern weather radars are capable of providing detailed tation processing systems used for the Next Generation

quantitative information on spatial and temporal distribu- Weather Radar (NEXRAD) system. Discussions of general

tion of rainfall. The utility of this information can be design features of the precipitation processing systems are

significantly increased if radar-rainfall estimates are comple- given in Hudlow et al. (1984) and Shedd et al. (1989) among

mented by their uncertainty bounds. However, in order to others.

produce these bounds in a reliable and consistent manner a This paper describes an attempt to quantify these errors

statistical framework needs to be developed which would using mathematical models and numerical simulation. Smith

account for all the uncertainty sources. Among the many &Krajewski( 1991) describe estimation of the mean field bias

errors affecting radar-rainfall estimates are those associated of radar-rainfall estimates using a recursive algorithm which

with Z-R relationship effect and the mean field bias effect, could be applied in real time. The statistical model proposed

Other error sources are discussed in detail by Wilson & by Smith &Krajewski (1991) has four parameters and their

Brandes (1979), Zawadzki (1984), Austin (1987), Chandra- study focuses on a scheme to estimate these parameters from

sekar & Bringi (1987), Joss & Waldvogel (1990) and others, radar and raingage data. In this paper the effects of the

Mean field bias is modeled as a random process that varies propagation of the parameter errors on the mean field bias
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estimates are studied. Since the mean field bias can be
interpreted as randomizing the multiplicative parameter in
the Z-R relationship, it is of interest to study the errors in Z -
R parameter estimation. This was the subject of work by
Krajewski & Smith (1991) and is continued here.

BIAS MODEL FORMULATION

To estimate the mean field bias a statistical model is deve-
loped that relates radar measurements of rainfall to the true
rainfall field. A component of the model is a time-varying
random process representing mean field bias. Specification of
the model serves two purposes. First, it provides a precise
interpretation of the mean field bias. It also serves as the basis
for development of an observation equation that relates
radar and rain gage measurements to the mean field bias. The
observation equation and model of mean field bias are the
principal tools required for development of procedures to
estimate the mean field bias. The notation to be used is
introduced below. The presentation follows that by Smith &
Krajewski (1991).

Precipitation rate at time t and spatial location x is denoted
ix(x). The index T represents time, in hours, since the last
period of no rainfall. The precipitation rate process for radar
scan t of hour s averaged spatially over the bin specified by
azimuth / and range j is denoted

Rst(iJ)=\Di * (x) dx' r=(s- (1)

where Dtj is the land area beneath the radar sample volume
with azimuth / and rangey, \Dtj\ is the surface area associated
with Dip and At is the time resolution of radar observations
(in hours). The number of scans y during an hour is 1 /A t. For
the US NEXRAD system the time resolution is approxima-
tely 6 minutes {A t = 0.1 hour) during precipitation periods so
the number of scans during an hour will be 10. As noted in (1)
the times T for which observations are available, relative to
the start of the storm, are given by (s — 1) + tA t, with t ranging
from 1 to 7. The equivalent radar reflectivity factor (Battan,
1973) for scan t in hour s at azimuth / and rangey is denoted

The most popular method of estimating rainfall using
radar is to convert the equivalent radar reflectivity factor to
rainfall rate by a Z-R relationship. Typically, it has a power
law form. The statistical model presented below specifies that
rainfall rate can be represented as the product of two terms.
The first term is a power function of equivalent reflectivity
factor with range-dependent parameters. The second term
specifies a multiplicative error model for radar rainfall
estimates. The statistical model is expressed as follows:

In the formulation given above the model can be inter-
preted as a regression model for log rainfall rate versus log
reflectivity factor. The error field e has, for each s, t, i, andy, a
log-normal distribution with mean 1 and range-dependent
standard deviation. The mean field bias B(s) is a Markov
chain with median 1. Its complete distribution is specified
below. Unlike the mean field bias, the error field e is spatially
varying over the radar field and varies from scan to scan.
Both error processes are assumed to be mutually indepen-
dent and to be independent of the reflectivity process.
Underlying the distributional assumptions on the error
processes is the assumption that rainfall rate and reflectivity
factor follow a log-normal distribution. An alternative rep-
resentation of the model is

where

(3)

(4)

This formulation leads to the interpretation of the bias
process as producing a randomized Z-R relationship. In this
case the randomized multiplicative coefficient is given by the
process {As(j)}. The formulation of (3) also leads to an
interpretation of the statistical model as a 'random coeffi-
cient' regression model. This interpretation is useful in
development of parameter and state estimation procedures.

Denote the natural logarithm of the mean field bias for
hour s by f$(s), that is,

P(s) = \n[B(s)] (5)

We assume that P(s) is a stationary Markov chain over the
integers (1 , . . . , T) satisfying

- 1)+ W(s); W(s)~N(0,v) (6)

where 0<ax < 1, v is nonnegative, Tis the storm duration in
hours, and W(s) is a sequence of independent normally
distributed random variables with mean 0 and variance v.
The log bias process has mean 0. We denote the stationary
variance of the log bias process by the parameter a2 that is,

o2 = var[i8(j)]; s = 0,..., (7)

ZSJ(iJ)bU)] (2)

The correlation function of the log bias process is given by

Two very distinct conceptual models of radar bias have
simple representations in terms of model parameters. It
follows from the assumption of stationarity that

v = a2(\-a]) (9)

Note that if a{ equals 1, v must equal 0. If the correlation
parameter ax equals 1, the bias process can vary randomly
from storm to storm, but is fixed over the duration of a storm.
The log bias, which applies over the duration of a storm, has
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a normal distribution with mean 0 and variance a2. Conver-
sely, if the correlation parameter is less than 1, the bias varies
not only from storm to storm but also over the course of a
storm.

To develop procedures for estimating the bias process B(s)
it is necessary to specify the relationship between radar and
rain gage observations and the mean field bias. The number
of rain gages reporting measurable rainfall for hour s of the
storm is denoted rj(s). The accumulated rainfall measured by
gage k during hour s is denoted Gs(k). Gage locations are
specified in terms of the radar grid coordinates; the location
of the kth gage is denoted (i(k)J(k)). It follows from (2) that

(10)

a[Xk)]ZS!Mk)J(k)]b[Kk\l[W)J(k)]

Recall that y is the number of radar samples in an hour.
Based on (10) and the log-normality of B(s) the following
approximation is used for the observation equation:

where

M(s)~N{0,a[ri(s)]2}

I Gw(k)
k=l

a[j(k)]Z,it[i(k)J(k)]bim-

(11)

(12)

k=\ t=\

a{ri) is a nonnegative function representing the observation
error given that the number of gages with measurable rainfall
is rj, and M{s) is a sequence of independent normally
distributed random variables with mean 0 and variance a(n).
It is assumed that the error function is a power function of the
number of gages, that is,

&{n) —citf 4 (l5)

The power law form of (13) allows the error model to
account for correlation of gauge observations.

The observation Y(s) is the log ratio of mean gage rainfall
to mean radar rainfall at gage locations. The error process
M(s) accounts for the approximation of gage observations
for the numerator in (10) and for the approximation of radar
observations to the random variable in the denominator of
(10). Therefore, both discrete approximation and measure-
ment errors are taken into account.

STATE ESTIMATION OF MEAN FIELD
BIAS

The formulations of the bias model and observation model in
the previous section provide a model system in which pro-
cedures can be developed for correcting radar rainfall esti-

mates for mean field bias. The procedures developed below
will be applied in the NEXRAD precipitation processing
algorithms. The resulting precipitation estimates serve multi-
ple purposes. They are used for flash flood forecasting, main
stem flood forecasting, routine river flow and stage forecast-
ing, and in preparation of long-term hydrologic forecasts.
Automated rain gage data are required, along with radar
data, for implementation of the bias estimation procedures.
For the majority of radar umbrellas in the US it will be
possible to obtain more than 30 gages with automated hourly
data. For more than one-third of the radar umbrellas 100 or
more automated gages are currently available.

In the flash flood application interest focuses on the most
recent rainfall estimates. To correct these estimates for mean
field bias we must estimate the bias for the most recent hour
given observations prior to and including the most recent
hour. This type of state estimation problem is referred to as a
filtering problem. For main stem river forecasting, with the
longer response times of catchments to precipitation, precipi-
tation estimates prior to the most recent hour are of signifi-
cant interest. Consequently in some situations we will want
to correct for bias in preceding hours given observations
prior to, including, and following a given hour. This state
estimation problem is referred to as a smoothing problem.
The final type of problem we may face is one in which
inadequate gage data are available for the current hour to
make a bias computation. In this case we will want to
estimate the current bias from observations preceding the
current hour. This problem is one of prediction. We define
our state estimation problems more formally below.

State estimation is distinguished from parameter estima-
tion by virtue of the fact that the objects to be estimated are
random variables rather than unknown real-valued para-
meters. In the problem at hand the mean field bias {B(s)} has
been modeled as a random process with distributional law
specified by (5)-(7). The observations related to the bias
process are specified by the observation equation (12). State
estimators are derived, whenever possible, as the conditional
expectation of the process given the observations. We define
our state estimation problems below.

Let 7(1),..., Y{T) be observations of log radar bias, as
defined in (12). The state estimation problem is to compute
the conditional expectation of the bias B(s) given obser-
vations Y(l),..., Y(u) for u less than or equal to T, that is,

(14)

If u<s, the problem is one of prediction; if u = s, the
problem is one of filtering; and if u>s, the problem is one of
smoothing.

To evaluate accuracy of the state estimators we want to
compute the conditional error variance

V(s\u) = E{[B(s\u)-B(s)]2\ Y(u)9..., Y(\)} (15)
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The bias model is defined in terms of the log bias process
P(s). State estimators for B(s) will consequently be derived in
terms of state estimators for fi(s). The following argument
shows how this is done. From (6) and (11) it can be seen that
the random variables f$(s), Y(l),..., Y(u) have a multivariate
normal distribution. It follows from Theorem 2.5.1 in Ander-
son (1958) that the conditional distribution of fi(s) given
Y(l),..., Y(u) is normal, we will write

[fi(s)\Y(u),...9 Y(l)]~N[fi(s\u),Z(s\uy\

It follows that

where

and

= E[fi(s)\Y(u)9...9Y(l)]

= E{[$(S\U)-P(S)]2\Y(U),...,Y(\)}

(17)

(18)

It follows that the conditional distribution of B(s) given
Y(l),...,Y(u) is log-normal with parameters P(s\u) and
Z(s\u). Consequently,

and

= B(s\u)2{exp[Z(s\u)]-l}

(19)

(20)

The remaining problem is to compute state estimates for
log bias. We begin with the filtering problem for f$(s). It can
be shown (Smith & Krajewski, (1991)) that the smoothing
and prediction problems simplify to filtering problems. We
suppress the conditioning argument u for filtering problems,
so fi(s) equals @(s\s) and Z(s) equals Z(s\s).

The Kalman filter can be used to recursively compute @(s)
and Z (s). To initiate the procedure note that

= E[/J(O)] =

and

(21)

= a2 (22)

For s > 1, the conditional expectations can be computed
recursively using the following relations, developed orig-
inally by Kalman (1960):

e(s)

where

e(s)=Y(s)-aJ(s-l)

is the 'innovation' and

(23)

(24)

(25)

(26)

The prediction problem is easily solved by noting that

Similarly,

k-\

j-o
a2ja2(\-a

2)

(28)

(29)

Discussion on the smoothing procedure can be found in
Smith & Krajewski (1991). In this section it has been
implicitly assumed that parameters of the observation equa-
tion and bias model are known. Generally, this will not be the
case. In order to effectively implement the state estimation
procedures we must develop procedures to estimate un-
known parameters of the model. Smith & Krajewski (1991)
presented a recursive algorithm for parameters estimation.
In the next section we will describe a Monte Carlo simulation
experiment demonstrating the effects of parameter uncer-
tainty on the bias estimation.

EFFECT OF PARAMETER
UNCERTAINTY

Z < W(s + k-j) (27)

The values of parameters of the bias model are never known
exactly even if the model structure is perfect. The two main
sources of parameter uncertainty are 1) the measurement
errors; and 2) the sampling errors. Smith & Krajewski (1991)
presented the results of extensive Monte Carlo simulation
experiments of the bias model parameter estimation. They
focused on the effects of sampling errors and concluded that,
if the record is large enough the parameters can be estimated
quite accurately. The most important finding was that the
estimates were unbiased. In this section we extend their
experiment to investigate the effects of parameter estimator
errors propagation on the radar rainfall field bias estimators.

In our experiment the raingage and radar observations are
generated according to the bias model presented earlier. In
the generation step assumed (true) values of the parameters
are used. Then, the state (bias) estimation takes place. Two
scenarios were investigated. In the first one the true values of
the parameters were used while in the second one the
perturbed values were used. That way the bias errors in the
first scenario are the consequence of the sampling error only.
This sampling error is due to limited number of storms used
in the bias estimation. The second scenario accounts for both
the sampling errors and the errors in the model parameters.
The perturbations in the second scenarios were generated
randomly from a Gaussian distribution with the mean and
variance corresponding to the distribution of the parameter
values obtained in the experiments by Smith & Krajewski
(1991). Values corresponding to several sample sizes are
used. The sample size ranges from 10 to 500 storms. Storms
are defined as in Smith and Krajewski (1991). The results of
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the simulation are presented in Figs. 1 and 2 for both
scenarios, respectively. The statistics shown in the Figures
are the mean, the variance and the lag-1 correlation of the
bias errors. For both scenarios the results are unbiased, but
there is considerably more variability in the second scenario
which takes into account the parameter errors. The residual
correlation is low in both cases.

It should be emphasized that the presented results estab-
lish the upper limit of bias estimation performance (using the
presented model) since the simulation assumed the perfect
model structure. The presented framework, however, offers a
way to estimate radar-rainfall bias in real time using a limited
number of raingages (10 in the simulation experiment) and
producing an accuracy measure associated with the bias
estimates.

0.20

0.15 -

Z-R PARAMETER ESTIMATION

The discussion in the proceeding sections was based on the
assumption that the parameters of a Z-R relationship, a(j)
and b(j) are known. In this section we will investigate the
estimation process of these parameters since accurate specifi-
cation of Z-R parameters provides the fundamental building
block for constructing high quality radar rainfall estimates.
We will focus on a particular method of Z-R estimation, the
so-called climatological method.

The method was developed in response to the need for
accurate Z-R estimation from non-synchronous radar and
rain gage observations. The concept was originally suggested
by Miller (1972), and has been followed by the work of
Calheiros & Zawadzki (1987), Atlas et al. (1990), Smith et al.
(1989), and Rosenfeld et al. (1990). In general terms, the
method establishes Z-R relations by relating reflectivity and
rainfall rate values corresponding to the same probability of
exceedence. These values can be obtained not only from the
concurrent pairs, but from all the available historical radar
and raingage data as well. The approach could be particu-
larly attractive if used in conjunction with methods such as
the Area-Time Integral (ATI) (Doneaud et al., 1984) and the
Height-Area Rainfall Threshold (HART) technique (Atlas,
et al., 1990) to estimate areally averaged rainfall. Krajewski
& Smith (1991) discussed many statistical aspects of the
method and presented the results of a Monte Carlo experi-
ment of Z-R parameter estimation. In this paper we will
continue the framework of their experiment focusing on the
single issue of the effects of rainfall thresholds often used in
the climatological method.

Climatological method

The key feature of the climatological method, which in spirit
is a nonparametric procedure, is its reliance on order statis-

0.5 1.0 1.5 2.0 2.5 3.0
LOG OF THE NUMBER OF STORMS

0.30

-0.1 1.0 1.5 2.0 2.5 3.0
LOG OF THE NUMBER OF STORMS

Fig. 1 Results of the Monte Carlo simulation experiment using
perfect parameters of the bias model. The mean, variance, and
Lag-1 correlation of the log-bias errors are shown. The true
values of the model parameters were ax = 0.8, a2 = 0.1, a3 = 1.0,
and a4= - 1.0. The data points correspond to 10, 25, 50, 100, and
500 storms each with average duration of 5 hours. One hundred
realizations were performed. The vertical bars denote a range of
one standard deviation. The average number of rain-reporting
gages per hour was 10.
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1.5 2.0 2.5 3.0
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0.60

- 0 . 1

Fig. 2 Results of the Monte Carlo simulation experiment. The
true parameters of the bias model are the same as those in Fig. 1.
In bias calculations the randomly perturbed parameters were
used.

tics, that is, the ordered values of the sample. We denote the
order statistics of the rain rate sample by

\n) (30)

Similarly the order statistics of the reflectivity sample are
denoted

(31)) — • • * - ^ ( m )

The quantile function of the reflectivity distribution is
defined by

QZ(P)=F;\P) (32)

where Fz{) is the probability distribution function of the
radar reflectivity. In words, the quantile Qz(p) provides the
reflectivity value that is exceeded with probability I-p.
Similarly, QR(p) will denote the quantile function of the
rainfall rate distribution. Nonparametric procedures for
estimating climatological Z-R relationships can be based on
the observation that

Qz(p) = aQR(p)b (33)

which follows directly from equation of the power law type
relationship typically adopted for Z-R estimation. Climato-
logical Z-R relations can be obtained (Calheiros & Zaw-
adzki (1987)) by relating QR(pt) and Qz(pt) for k values of
exceedance probability,px,...,pk. We can choose Z-R para-
meters to minimize the sum of squared differences

k

H(a, b) = X Qn[Q,(Pi)] ~
1 = 1

(34)

To implement estimators based on equation (34) the
quantile functions must be replaced by estimators obtained
from samples of reflectivity and rainfall rate. Sample quantile
estimators are of the form

(35)
H + l /l+l

3.5 1.0 1.5 2.0 2.5 3.0
LOG OF THE NUMBER OF STORMS

More sophisticated quantile estimators based on order
statistics are discussed in Serfling (1980).

It can be shown (see Cramer, 1946) that the probability
density function of the rath order statistic of a random
sample with probability density function/^ is given by

p(R)m-l[l-p(R)]N-mfR(R)
(m-l)\(N-m)\

(36)

In some cases this result can be used to evaluate sampling
properties of quantile estimators. Even for parametric
models, however, equation (36) will often be too complicated
to provide useful sampling properties of quantile estimators.
An attractive feature of quantile estimators, including the
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sample quantile estimator of equation (35), is asymptotic
normality (see Serfling, 1980) represented as follows:

Nonlinear Regression

(37)

where I is a k by k covariance matrix. This result will provide
a guide for the simulation experiments carried out in the
following section.

Nonparametrie procedures have two major advantages:
parametric distributional assumptions are not required, and
estimators can be derived which are more robust to common
sources of error in radar and rain gage samples. A disadvan-
tage of nonparametric procedures, compared to parametric
models using maximum likelihood estimates, is that it is
more difficult to quantitatively assess the accuracy of the
estimators. This can be achieved only by using simulation.
Krajewski & Smith (1991) investigated the effects of several
factors on the accuracy of Z-R parameters estimated within
the climatological framework. Factors they considered
included: the sample size, radar and raingage observations
errors, and the thresholds applied to eliminate the low
intensity data which are typically very noisy. The problem of
appropriate threshold selection is important in the climatolo-
gical context as it affects the quantile estimators used in the
estimation. This was recognized by Rosenfeld et al. (1993)
who recommend that the thresholds should correspond to
each other. In the next section we present the effects of
mismatched thresholds.

Monte Carlo experiment

In order to investigate the effect of selecting radar and
raingage observations threshold on the performance of the
climatological Z-R estimation an extensive Monte Carlo
experiment was designed and conducted. The experiment
parallels that by Krajewski & Smith (1991). In the experi-
ment the observations were generated from a known (Mar-
shall-Palmer) Z-R relationship for which # = 200 and
6= 1.6. Independent samples of varied size were generated
from an exponential distribution for rainfall and a corres-
ponding (through the true Z-R relationship) distribution for
radar reflectivity. The parameter of the exponential distribu-
tion was selected to give the mean rainfall rate of 2 mm/h.
The size of the generated sample was 10000. The obser-
vations in both radar and raingage samples were contami-
nated by the simulated measurement errors. For the raingage
observations the error was random from Gaussian distribu-
tion with zero mean and the standard deviation of 10% of the
true value. For the radar the value of 1 dBZ was used. This
value corresponds to a good quality radar. For each sample
nine quantiles corresponding to the probabilities 0.031,
0.063, 0.125, 0.250, 0.500, 0.750, 0.875, 0.938, and 0.967,
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Fig. 3 The Z-R parameter estimators as a function of threshold
ratio. The rainfall threshold was kept constant at 0.2 mm/hr while
the radar reflectivity threshold was adjusted according to the
indicated ratio. For ratio equal to 1.0 both thresholds match
through the true Z-R relationship. The top plot shows the para-
meter a, the bottom plot shows the parameter b. The true values
of the parameters are indicated. The number of realizations was
250. The vertical bars indicate one standard deviation range. The
estimation was performed using a nonlinear regression.

were calculated. Then, both a nonlinear regression and a
linear regression were performed based on the model pre-
sented earlier. The process was repeated for 250 independent
realizations and statistics of the parameter estimators were
calculated.

To eliminate the noisy low intensity rainfall observations
(which are of low importance for total rainfall volume)
thresholds are often imposed. It was noticed by Krajewski &
Smith (1991) that the climatological parameter estimators of
a and b were sensitive to the selection of these thresholds. The
experiment performed in this work shows these effects
systematically. In Fig. 3 and Fig. 4 the results of the Z-R
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Fig. 4 The same as in Fig. 3, but the estimation was performed
using a linear regression.

parameter estimation are presented for nonlinear, and linear
regression, respectively. The curves shown correspond to the
mean of results obtained based on 10000 element samples. It
is quite striking that both parameters obtained using either
method show significant sensitivity to the right specification
of the thresholds. Since in dealing with actual data we usually
do not have enough information about the probability
distribution of rainfall one should expect difficulties in
estimating Z-R relationship using the climatological data.

CONCLUSIONS

Two problems regarding radar rainfall estimation were
investigated using a Monte Carlo simulation approach. The
first problem concerns real-time estimation of the mean field
bias. It was found that the uncertainty in the parameters of
the bias model considerably increase the uncertainty in the
mean field bias estimates. Even with the uncertain para-

meters, however, the bias estimates remain free of systematic
errors. The second problem concerns the use of a climatolo-
gical method of estimating the Z-R relationship. In practical
implementations the method, based on matching quantiles
of equal probability, disregards values below certain thres-
holds (both for radar reflectivity and raingage data). It was
shown that the parameters of the Z-R relationship are very
sensitive to the correct specification of the thresholds. The
estimates of the parameters of the Z-R relationship are
unbiased only if the thresholds correspond to each other
through a correct Z-R relationship.

Monte Carlo simulation should be used more extensively
in rainfall research to complement real data analysis. The
results of idealized scenarios, which can be studied within a
Monte Carlo simulation framework, can provide bounds for
the performance of various methods to be expected in reality.
The biggest advantage of using a Monte Carlo approach to
study rainfall measurement and prediction problems is that it
allows for isolation of various effects - something clearly
impossible while working with actual data.
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4 Design of groundwater monitoring networks for
landfills
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ABSTRACT Designing a system to monitor groundwater for contamination from
landfills involves a tradeoff between cost, time of detection, and probability of detection. As
monitoring wells are spaced more closely together, the probability of detecting a leak
improves. Locating monitoring wells further downgradient of the landfill also improves
detection probability because the plume disperses more and is less likely to move undetected
between two monitoring wells. However, closer spacing costs more, and location further
away from the source implies a greater time of detection and a greater probability that a water
supply well will become contaminated.

An important problem in designing a monitoring system is that the hydraulic conductivity
properties of the aquifer around and under the landfill are often poorly understood. It is
possible to test for these properties only at points and interpolation between them may be
done only with some uncertainty.

A method is discussed for designing a monitoring system under parameter uncertainty.
This method places a given number of wells (the number selected by the analyst or user) in
locations that maximize the probability of detection of a plume. The method requires some
prior knowledge of the statistical properties of the conductivity parameters of the aquifer and
some knowledge of the probability of a leak occurring at any given point in the landfill. The
method is microcomputer based and currently runs on an advanced microcomputer
workstation. The possibility for its adaptation to a more readily available microcomputer is
discussed.

INTRODUCTION located in a hydrogeologic environment that inhibits the
transport of contaminants into potential groundwater

The response of the public to certain environmental issues sources. The landfill can also be designed to minimize the
has recently been what might be called reactionary; the Alar chance of leakage. The risk of contamination, however,
scare of 1989 comes to mind. The so-called NIMBY response cannot be completely eliminated. Even a well-located and
of the public to local government attempts to site municipal well-designed landfill may release contaminants. Risk of
solid waste landfills (MSWLFs) is a further example. Fear of exposure can be further reduced by monitoring the quality of
groundwater contamination from a leaky landfill has been a the groundwater. In the event of a release, it is the purpose of
major reason for the difficulty in locating MSWLFs. When groundwater monitoring to detect the contaminant early
faced with a skeptical, and even reactionary public, the enough that appropriate action can be taken to prevent
ability of technical experts to present designs that minimize exposure.
risk becomes very important (not to mention the ability to For the purposes of this discussion, a groundwater moni-
communicate those risks to the public). In the case of a toring network is a series of wells located around a landfill
MSWLF, concern often centers on the risk of exposure to and sampled periodically for contaminants. Such a monitor-
contaminated groundwater. ing network, unfortunately, may not completely eliminate

The risk of exposure to groundwater contamination from the risk of exposure to contaminants released from the
a landfill can be reduced in several ways. The landfill can be landfill. Since it is impossible to predict with certainty the

190
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path of a contaminant plume in groundwater, a plume may
travel between monitoring wells and go undetected by the
network. Uncertainty in the contaminant path arises because
the natural variability of subsurface properties limits our
understanding of site specific contaminant transport. Cost
constraints limit the amount of hydrogeologic information
that can be gathered. In addition, it may also be impossible to
predict important factors such as the location of a contami-
nant release. The net effect of our incomplete information is
that the success of a monitoring network cannot be predicted
absolutely. It is thus appropriate to design a monitoring
network that has a high probability of detecting groundwater
contamination.

This paper presents a method for groundwater monitoring
network design that explicitly incorporates uncertainty in the
description of contaminant transport. The method uses a
numerical model of groundwater flow and contaminant
transport coupled to an optimization model. The method
provides network alternatives that have a high probability of
detection and can also be used to develop tradeoffs between
the number of wells in the monitoring network, the position
of the compliance boundary, and the probability of contami-
nant detection. An application to a field site is also presented.

The 1984 amendments to the Resource Conservation and
Recovery Act (RCRA) required the Environmental Protec-
tion Agency (EPA) to establish criteria for municipal solid
waste landfills. These criteria, as stated in RCRA, should
provide that 'no reasonable probability of adverse affects on
health or the environment' arise from the disposal of waste in
the landfill. EPA has proposed extensive revisions to the
regulations for MSWLFs. Among the proposed rules is a
requirement that groundwater monitoring be carried out to
determine both the background (upgradient) water quality
and the quality of groundwater passing a specified (down-
gradient) compliance boundary. The compliance boundary
is either the landfill boundary, or an alternative boundary
specified by the State that can be up to 150 meters from the
landfill boundary. The number, location, and depth of
monitoring wells is to be proposed by the landfill owner or
operator and approved by the State. The State's evaluation is
to be based upon site specific hydrogeologic information.

The network design method presented here can be used for
site specific evaluation of decisions such as the appropriate
position of the compliance boundary and the number and
location of monitoring wells. The method can also be used to
evaluate the performance of existing monitoring networks.
In addition, the method can be used in a more generic
manner by examining the effect on network design of
changes in parameter values. These results can be used to
develop rules-of-thumb that may be appropriate for screen-
ing network design alternatives.
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Fig. 1 Groundwater contamination scenario (after Massmann &
Freeze, 1987).

A REVIEW OF THE MONITORING
NETWORK DESIGN METHOD

A comprehensive framework for design of a landfill oper-
ation was presented by Massmann & Freeze (1987). Their
design objective maximizes a sum of benefits, costs, and risks.
Risk is present in the operation of a landfill because of the
possibility that the landfill will fail to contain its contents. In
the framework of Massmann & Freeze (1987), failure occurs
when a contaminant leaks from the landfill and reaches a
prespecified compliance boundary with a concentration in
excess of a predetermined level (e.g. the detection limit). If a
landfill fails in this manner, the consequences of that failure,
such as increased regulation and possible remedial action,
have costs associated with them. These costs are the compo-
nents of risk in the objective function of Massmann & Freeze
(1987). Fig. 1 illustrates the components of the problem.
Groundwater monitoring enters into the landfill design
process because it is able to influence the objective function
by providing a means to detect a leak from the landfill, thus
reducing the probability of failure. Monitoring is able to play
this role because the monitoring wells are located between
the landfill and the compliance boundary, as is indicated in
Fig. 1. Upon detection of a contaminant at a monitoring
well, a landfill owner/operator is thus able to take action to
prevent failure (i.e. to prevent the contaminant from reach-
ing the compliance boundary). Note that detection, as used
here, means detection before the contaminant reaches the
compliance boundary.

Meyer & Brill (1988) used the framework of Massman &
Freeze (1987) to develop a method for the optimal design of
groundwater monitoring networks. Meyer & Brill (1988)
reasoned that, since monitoring can directly influence the
landfill owner/operator's objective function, the most desir-
able monitoring network is that which has the greatest
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positive effect on the objective function. In the framework of
Massmann & Freeze (1987), the greatest reduction in the
probability of failure is achieved by a network that maxi-
mizes the probability of plume detection. The goal of the
method of Meyer & Brill (1988) is to produce alternative
network designs that maximize the probability of detection,
where it is understood that detection occurs before contami-
nants reach the compliance boundary. The monitoring
network design method described in this paper is an exten-
sion of the method presented by Meyer & Brill (1988).

As mentioned above, there always exists some amount of
uncertainty in the description of contaminant transport. One
of the most important parameters, in terms of its contribu-
tion to uncertainty, is the hydraulic conductivity. Hydraulic
conductivity is a measure of how easily water can move
through a porous material. In particular, the transport of
contaminants in groundwater is greatly affected by the
manner in which the hydraulic conductivity varies in space.
For the landfill monitoring problem, the location of the
contaminant source constitutes another source of uncer-
tainty. That is, the contaminant will leak from within the
boundary of the landfill, but the precise location of the leak
cannot be predicted. Although the hydraulic conductivity
and the contaminant source location are here assumed to be
the major contributors to contaminant transport uncer-
tainty, there may be additional parameters that are also
important.

The uncertainty in parameter values is incorporated into
the monitoring network design using a Monte Carlo simula-
tion. The Monte Carlo procedure involves the generation of
random contaminant plumes using a numerical model. The
two parameters discussed above, the hydraulic conductivity
and the location of the contaminant source, are modeled as
random variables. Each random plume results from the
random selection of both the contaminant source location
and the spatially varying hydraulic conductivity. Figs. 2A, B
and C represent three random plumes that might result from
a Monte Carlo simulation. The small circles in Fig. 2
represent potential well locations, the set of points at which a
monitoring well may be installed.

In the monitoring network design method, the movement
of each of the random plumes is simulated until it just reaches
the compliance boundary, as shown in Fig. 2. This is the
point of failure. If a plume can be detected before reaching
this point, it is possible that failure can be averted. A plume is
detectable if the concentration at a potential well location is
above the detection limit at the point of failure. The shaded
well locations in Figures 2A, B and C, are the locations at
which each plume is detectable. The Monte Carlo simulation
for network design consists of generating a large number of
random plumes and keeping track of the potential well
locations at which each plume is detectable.
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Fig. 2 An illustration of the monitoring network design method:
(A), (B) and (C) show random plumes from a Monte Carlo
simulation and the potential well locations indicated at which
each plume is detectable before reaching the compliance bound-
ary. (D) shows how the plumes can be combined to indicate
potential well locations that maximize the number of plumes
detected.

The goal of the network design is to find the well locations
that maximize the probability that a future (unknown) plume
is detected. For a given monitoring network configuration,
this probability can be estimated by the fraction of simulated,
random plumes that the network detects. This quantity can
be determined since the Monte Carlo simulation keeps track
of the potential well locations at which each plume is
detectable. The problem thus becomes to identify the well
locations that maximize the number of simulated plumes
detected. Fig. 2D illustrates the concept. There are five
locations at which two of the three plumes are detectable.
One well can thus detect a maximum of two plumes. If the
network consists of two properly located wells, all three
plumes can be detected.

The optimal location of a single well can always be
determined in a straightforward manner by counting the
number of detectable plumes at each potential well location.
The optimal location of a single well will be that location at
which the greatest number of plumes is detectable. It is likely,
however, that the network will be composed of more than
one monitoring well. In a practical Monte Carlo simulation,
consisting of many more than three random plumes and
twenty potential well locations, the determination of the
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optimal locations for two or more wells is no longer trivial,
since there will be a large number of network configurations
to consider. In this case, an efficient means to search the
many possible configurations is required.

Church & ReVelle (1974) presented a facility location
model called the Maximal Covering Location Problem
(MCLP) that Meyer & Brill (1988) showed could be used in
groundwater monitoring network design. Facility location is
a broad subject that, in general, deals with the problem of
locating facilities to optimally satisfy a demand. Meyer &
Brill (1988) drew an analogy between groundwater monitor-
ing network design and facility location by observing that a
monitoring well could be thought of as a facility and a
contaminant plume could be viewed as a demand. Detection
of a plume is analogous to satisfying demand. The MCLP
can be used to search the many possible network configu-
rations to find a given number of well locations such that a
maximum number of plumes from the Monte Carlo simula-
tion are detected. The MCLP formulation is as follows:

maximize Q = £ J,

subject to
jeN{

Xj=0oi ;=i,.....

(i)

(2)

(3)

(4)

(5)

where Q is the number of plumes detected before reaching
the compliance boundary,
/ is the number of plumes generated,
/ is the number of potential well locations,
yt= 1 if plume i is detected before reaching the compliance
boundary; = 0 otherwise,
Xj= 1 if a well is located at j ; = 0 otherwise,
P is the number of wells in the network, and
Nt is the set of well locations at which plume i is detectable
before reaching the compliance boundary.

Constraints of type (2) stipulate that a plume cannot be
detected unless a well is included in the network at a location
at which the plume is detectable. Constraint (3) requires that
P wells be included in the monitoring network solution.
Constraints of type (4) and (5) prevent the unrealistic case of
a fraction of a well being installed, or a fraction of a plume
being detected.

For a fixed number of monitoring wells, the MCLP
determines the locations of the wells that maximize the
number of simulated plumes detected. Further increasing the
number of detected plumes can only be accomplished at the
expense of using additional wells. There is thus a tradeoff
between the number of simulated plumes detected and the
number of monitoring wells. Groundwater monitoring

Existing Monitoring Wells

Potential Source Location

0

m

River, Illinois

m

urn

Regional Flow Direction

300 feet N |

Fig. 3 Shell Oil model showing the location of existing monitor-
ing wells, the solid waste disposal basin, and the old fly ash pond.

network design is a multiobjective problem in which it is
desired to both maximize the probability of detection and
minimize the cost of the network. The number of random,
simulated plumes detected is used as a surrogate for the
probability of detection and the number of wells in the
network is the surrogate for cost. The tradeoff between these
two conflicting objectives can be found by solving the MCLP
several times for different values of P. Such tradeoffs are
calculated for the application discussed below.

AN APPLICATION OF THE MONITORING
NETWORK DESIGN METHOD

The application presented here is to a hazardous waste
disposal site at the Shell Oil Company-Wood River Manu-
facturing Complex located in Wood River, Illinois. Fig. 3
shows a layout of the waste disposal area.

Hazardous waste has been disposed of in the Solid Waste
Disposal Basin (SWDB). Potential contamination from the
SWDB is the concern. There is also a buried disposal area
referred to as the Old Fly Ash Pond (OFAP) that is import-
ant because it restricts the location of monitoring wells -
wells cannot be located in the OFAP. Fig. 3 also shows the
locations of existing monitoring wells. The model of the area
near the SWDB was based upon available hydrogeological
information on the Shell site, obtained primarily from
Dames and Moore (1981).

The potential source area was taken to be the downstream
edge of the SWDB as indicated in Fig. 3. The actual source
for each random plume covered a single model grid cell with
its location chosen at random according to a uniform
probability distribution. The Monte Carlo simulation con-
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Fig. 4 Sensitivity of the tradeoff curve to a change in transverse
dispersivity; open symbols indicate networks consisting of existing
wells (1, 4 & 6) and (4, 5, 6 & 7); circles indicate networks shown
in Fig. 5.

sisted of 160 randomly generated plumes and 290 potential
well locations.

A graphical summary of monitoring network performance
is the tradeoff between the number of monitoring wells in the
network and the maximum fraction of simulated plumes
detected before reaching the compliance boundary. This
tradeoff is shown in Fig. 4 for the Shell site (refer to the solid
triangle or solid plus symbols).

As the number of wells in the network increases, the
fraction of plumes detected also increases. As Fig. 4 indi-
cates, five or six wells, optimally located, can detect nearly all
the plumes. Fig. 4 presents results for two problems whose
only difference is the value of transverse dispersivity. The
transverse dispersivity is a groundwater transport parameter
that reflects the spread of a contaminant in the direction
perpendicular to the direction of regional flow. As transverse
dispersivity increases, the simulated plumes tend to spread
out and cover a larger area. Consequently, they are easier to
detect. Fig. 4 clearly shows that the fraction of plumes
detected is sensitive to the transverse dispersivity.

Fig. 4 also shows the modeled performance of two
networks consisting of existing wells. The detection monitor-
ing network currently in use at the Shell site consists of
existing wells 1,4, and 6. The fraction of plumes detected by
this network (for both transverse dispersivity values) are
indicated in Fig. 4 with the open symbols at P=3. The
performance of this network is quite sensitive to the trans-
verse dispersivity. This network is also clearly inferior. The
network design method predicts that the network currently
in use is about 30% below optimal, in terms of the prob-
ability of detecting a contaminant plume. It is only fair to
note, however, that the boundary conditions of the ground-
water flow model impose a regional gradient parallel to the x-
axis of the model domain. It is likely that the operators of the
Shell site believe the regional gradient is directed slightly
toward existing well 1. The groundwater flow data available
to us, however, is limited. Herzog et al. (1988) note in an

+ 3 well optimal
5 well optim;
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m

m
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Fig. 5 Effect on optimal well locations of a change in transverse
dispersivity. Each network detects 94% of the simulated plumes.

evaluation of the Shell site detection monitoring network
that wells 1, 4, and 6 are not located to detect all probable
contaminant pathways. In any case, this example illustrates
how the network design method can be used to evaluate
existing monitoring networks. A network made up of four
existing wells (4, 5, 6, and 7) is also included in Fig. 4. This
network is much closer to optimal.

Fig. 5 illustrates the optimal well locations for two of the
networks of Fig. 4 (these two networks are circled in Fig. 4).
The networks shown in Fig. 5 are the three well network for
the large value of transverse dispersivity and the five well
network for the small value of transverse dispersivity. Each
of the networks detects 94% of the simulated plumes. As can
be seen, the value of transverse dispersivity is related to the
average distance between monitoring wells.

The network design method requires the specification of
the compliance boundary. Because the method simulates
contaminant plumes only until they reach the compliance
boundary, this boundary can be interpreted as a limit on the
acceptable area of contamination. That is, if the compliance
boundary is set farther from the contaminant source, the
implication is that it is acceptable to contaminate a larger
part of the aquifer. The effect on network design of different
compliance boundary positions is examined below.

Tradeoff curves for three compliance boundary positions
are presented in Fig. 6. Fig. 7 shows the locations of these
boundaries. As Fig. 6 indicates, there is little difference
between the fraction of plumes detected for the mid-position
and the far-position compliance boundaries. When the com-
pliance point is set at the near-position, however, the optimal
detection percentages are significantly reduced. Remember
that monitoring wells cannot be placed within the old fly ash
pond. The potential locations for wells are thus limited to the
small area between the OFAP and the near-position com-
pliance boundary. The results of Fig. 6 suggest that the
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Fig. 7 Three locations of the compliance boundary and the asso-
ciated range within which a single row, four well solution can be
found detecting at least 97% of the simulated plumes.

existence of the OFAP prevents the monitoring wells from
being optimally located when the near-position compliance
boundary is used.

The question then arises, how does the best location for
monitoring depend upon the compliance boundary position?
Fig. 6 indicates the effect of compliance boundary position
on the fraction of plumes detected, but not the effect on the
monitoring well locations. The following specific question
was posed for the Shell site. If a monitoring network consist-
ing of four wells located in a single row (i.e. in a line pointing
north) were to be used, what is a good location for the
network? A network was said to be in a 'good' location if it
detected at least 97% of the plumes (an arbitrary value). The
answer to this question depends on the location of the
compliance boundary.

Fig. 7 shows the range in which a four well network (with
all wells located in the same row) that detects at least 97% of
the plumes can be found. The range is quite large when the
compliance boundary is in the far position, and becomes

progressively smaller as the compliance boundary is placed
closer to the contaminant source. Note that the range of
'good' locations stops short of the edge of the SWDB. For the
near-position compliance boundary, the only 'good' location
is near the source, entirely within the old fly ash pond area.
Because of the existence of the OFAP, a single row, four well
network cannot be found that will detect a high percentage of
plumes and limit the extent of contamination to the near-
position boundary. According to Fig. 7 the best that can be
done is to limit the contamination to the mid-position
boundary. This can be accomplished by locating four wells
just outside the OFAP. To emphasize this point, the perfor-
mance of the single row, four well network consisting of
existing wells 4,5,6, and 7 is included in Fig. 6. The detection
percentage for this network is quite high when the com-
pliance boundary is in the mid or the far position, but
declines considerably for the near-position compliance
boundary. The performance of the network consisting of
existing wells 1,4, and 6 is included in Fig. 6 for comparison.

An important implication of Fig. 7 is that if it is allowable
for a large portion of the aquifer to be contaminated (i.e. if
the distance between the contaminant source and the com-
pliance boundary can be large), then less care is needed in
locating monitoring wells because there are many good
locations. If, however, the goal is to limit strictly the contami-
nation of the aquifer, then the monitoring wells must be
precisely located.

It is important to understand the difference between the
model of detection monitoring embodied in the design
method presented here and the conceptual model under
which conventional detection monitoring at MSWLFs is
carried out. In conventional practice, the monitoring wells
define the compliance boundary. That is, failure occurs when
contamination is detected in the monitoring wells. At the time
of initial detection, however, there is a significant chance that
the contamination will already extend beyond the location of
the monitoring wells. The implicit assumption in conven-
tional practice is that the extent of contamination can be
minimized by locating the monitoring wells as close to the
waste disposal facility as possible. No explicit limit on the
extent of contamination enters the design, however. By
distinguishing between the location of monitoring wells and
the position of the compliance boundary, the design method
presented in this paper is able to incorporate explicitly a limit
on the extent of contamination. The probability of detection
can then be measured with respect to this limit and the
number and location of monitoring wells can be determined
within the context of this previously defined contamination
limit.

Fig. 7 illustrates two points concerning well location that
are relevant to the discussion of conventional monitoring
network design. One, there may be a large area in which
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monitoring wells can be placed and still achieve a high
probability of detection. The size of this area apparently
depends upon the distance between the source and the
compliance boundary. Two, in order to achieve the highest
probability of detection with a fixed number of wells, these
wells should not be located very close to either the com-
pliance boundary or the contaminant source. This obser-
vation suggests that current monitoring practice is not
optimal.

CONCLUDING REMARKS

Monitoring in the vicinity of landfills is an important means
of reducing the risk of exposure to contaminants. The
inherent uncertainty in the transport of contaminants in
groundwater makes monitoring network design an uncertain
process. The method for groundwater monitoring network
design presented in this paper explicitly incorporates
groundwater transport uncertainty. The location of wells is
based upon maximizing the probability of contaminant
detection. By measuring detection with respect to a fixed
compliance boundary the method takes into account the goal
of limiting the contaminated area. The application presented
above illustrates the use of the method both to design a
monitoring network for a specific site and to assess the
performance of an existing monitoring network. The method
can also be used to evaluate the relationship between
problem parameters and network design. The application
illustrated this for two parameters: transverse dispersivity
and compliance boundary location. With further work, it
may be possible to quantify these relationships to develop

generic rules-of-thumb. Such rules-of-thumb could be used
in screening network design alternatives at poorly character-
ized sites.
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ABSTRACT The effect of spatial variation of the initial moisture contents on the
distribution of soil moisture and the evaporation rate from the land surface is evaluated. The
process of drying is described by a lumped, nonlinear model representing two stages of
evaporation using the thermodynamic equation.

STAGES OF SOIL DRYING

The evapotranspiration process over the catchment con-
sidered in this work, can be subdivided into two stages. If
there is enough water at the surface of the soil, the evapo-
transpiration proceeds at the potential rate and the process is
determined by the atmospheric conditions above the soil
surface and the evapotranspiration rate does not depend on
the state of the soil. Once the soil moisture at the surface layer
is below some value prescribed by soil and vegetation con-
ditions, it is these conditions, that control the evapotranspi-
ration rate, independently of the atmospheric conditions.
The controlling factor is usually taken as a threshold average
root zone water contents below which the transport of water
to the plant leaves limits the transpiration process (Gardner
et al., 1975; Cordova & Bras, 1981). In the literature, these
two stages of evapotranspiration were tackled using switch-
ing boundary conditions (e.g. Entekhabi & Eagleson, 1989;
and Kuhnel, 1989). In the first stage the condition of constant
moisture flux at the surface was used and in the second stage
this condition was replaced by the condition of the constant
moisture contents at the surface. A third stage of evaporation
is reached for very low moisture contents when the moisture
movement is largely in vapour form and is usually taken as a
low constant value. This process can be described by the non-
isothermal theory (Philip & de Vries, 1957) and is outside the
scope of this paper.

When considering the evapotranspiration process at the
catchment scale, the existence of the 'switching' phenomenon

makes it difficult to average the moisture contents over the
catchment area because of discontinuities present in the
model description. In this paper a model is proposed, des-
cribing the two stages of evapotranspiration process in a
concise way without discontinuities in its structure.

In order to overcome the problem of spatial variability of
parameters, the idea of scales over which they are defined,
has been introduced (e.g. Tillotson & Nielsen, 1984). The
larger the spatial variability of a parameter is, the more
measurements of this parameter are needed for its identifica-
tion. That is, the data acquisition costs and measurement
errors are likely to increase. On the other hand, the increase
of the length scale used decreases the spatial variation of the
parameters while increasing the uncertainty of the parameter
values. Hence spatial variation and uncertainty are strongly
related. The uncertainties of soil moisture contents can be
also caused by the inadequate knowledge of the relief, the
rates of precipitation and evaporation, their duration and
frequency of occurrence. All the lack of human knowledge
regarding these factors can be expressed by treating them as
random variables. This leads to the necessity of introducing
stochastic techniques to obtain the solution of flow problems
in the unsaturated zone. Several investigations of stochastic
processes of flow in the unsaturated zone have been pre-
sented in the hydrological literature over the last few years.
The general idea of most of these studies was to evaluate the
stochastic properties of an output, assuming a complete
knowledge of the stochastic properties of the input data.
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STOCHASTIC APPROACHES TO
EVAPORATION

A general review of the role of soil moisture in climate
modelling together with the present practices of soil moisture
modelling in general circulation models was given by Dooge
(1986). The first and very substantial work towards the
transformation of physical hydrology through the catch-
ment scale to the GCM scale was due to Eagleson and
coauthors (Eagleson, 1978; Eagleson, 1982; Milly & Eagle-
son, 1982; and Entekhabi & Eagleson, 1989). In the first of
these works (Eagleson, 1978) a statistical dynamic approach
was used to incorporate the short term dynamics of the soil
moisture contents into the long-term water balance. The
probability density functions of the actual infiltration during
storms and actual evaporation between storms were derived,
using representative probability density functions for the
independent climatic variables and assuming the soil moist-
ure contents and the corresponding rate of deep moisture
percolation at the beginning and at the end of each event.
Then the average volumes of infiltration and evaporation in
the average long-term water balance were evaluated using
the average number of storms in the rainy season. Milly &
Eagleson (1982) studied the effects of spatial variability of the
storm inputs and of the soil on the infiltration process using
the statistical techniques of temporal averageing. They found
that increased spatial variability nearly always leads to
decreased infiltration and to increased surface runoff.

In one of the first approaches to modelling dynamic
unsaturated flow in spatially variable soils, the case of
unsaturated flow in a series of one-dimensional noninteract-
ing soil columns was considered. The soil properties were
assumed random, but uniform over depth. This type of
approach can be found in the works of Dagan & Bresler
(1983), Koch (1985) and Mtundu & Koch (1987). In the work
of Dagan & Bresler (1983) the expectations and variances of
a few water flow variables and of effective hydraulic proper-
ties have been computed. They were obtained by the statisti-
cal averageing procedure and probability density function
(pdf) of saturated hydraulic conductivity, under the station-
ary hypothesis. Mtundu & Koch (1987) derived a model of
stochastic ordinary differential equations after having intro-
duced assumptions on the stochastic character of the vari-
ables describing precipitation, cumulative infiltration, and
evapotranspiration. These equations are equivalent to sto-
chastic Ito integrals (Ito, 1951). Their solutions have been
obtained via the sample function approach. The moments of
the solutions have been derived as well. This approach was
further extended by Serrano & Unny (1987) and Serano
(1990) to the cases when the stochastic partial differential
equations for horizontal and vertical infiltration are con-
sidered. In the model developed by Koch (1985) the form of

equations describing the soil moisture flow in the unsatur-
ated zone is similar to that in the previous models. The first
and second moments of excess precipitation and drainage
have been derived analytically using the standard expec-
tation formulae (Parzen, 1962).

The approach in which the soil is modelled as an assem-
blage of a series of vertical columns might be justified in the
case of infiltration caused by a high rate of surface recharge.
In the case when lateral inflow is also important, an alterna-
tive approach based on partial differential equations is
preferrable. The evaluation of stochastic properties of a
three-dimensional process is possible using the linearized
perturbation method. For the first time this method was used
to explore the effects of spatial variability on unsaturated
flow by Anderson & Shapiro (1983), in a one-dimensional
steady state model. Yeh et ah (1985a, b,c) examined the
effects of spatial variability on the steady unsaturated flow
using three-dimensional stochastic approach and a linear-
ized perturbation method. This work was continued by
Mantoglou & Gelhar (1987a, b,c) towards modelling large
scale transient unsaturated systems in spatially variable soils.
They assumed that local soil properties are realizations of
three-dimensional zero-mean second-order stationary
random fields. The large scale model structure has been
derived by averageing the local governing flow equation. The
resulting mean model representation is in the form of a
partial differential equation in which the averaged or flow
effective parameters occur. These effective model parameters
(i.e. effective hydraulic conductivity and effective specific
moisture capacity) have been evaluated using a quasi-
linearized fluctuation equation and spectral representation
of stationary processes. From the study of analytical rela-
tionships obtained it was concluded that the variability of
soil properties produces large-scale hysteresis and aniso-
tropy of the effective parameters. The effective parameters of
the large-scale model do not depend on the actual local soil
properties but rather depend on a few parameters describing
the statistics of local variability (i.e. mean, variances, correla-
tion lengths). Unlike the local parameters which are infinite
in number and not identifiable, the effective parameters
depend on a few parameters that should be identifiable using
a finite observation set and/or prior information about the
characteristics of the soil property variability.

Although the latter approach seems advantageous for
future research, it cannot be used to analyze the influence of
initial and boundary conditions (e.g. initial soil moisture
contents at the surface) on the soil moisture distribution as
well as the impact of the threshold effect (time to desatu-
ration). This follows from the necessary assumption needed
for the linearization of the moisture flow equation in the
vicinity of mean effective values of parameters far from the
boundaries.
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MODEL DESCRIPTION

It is assumed herein that the soil moisture flow in unsaturated
zone can be described by a one-dimensional model, averaged
over depth, where the switching from the atmosphere-
controlled to the soil-controlled evaporation is modelled
with the help of a thermodynamic equation. Hence the soil-
plant-atmosphere system can be considered as a physically
based conceptual model, in which the preceding input to the
system, i.e. the water infiltrated from the storm event is
represented by the initial moisture contents. The output from
the model is the actual evapotranspiration from the surface
layer. The state variable will be 0(t), the soil moisture
contents of the root zone. The changes in the state of the
system are then described by (Philip, 1957):

d<9

dt (1)

where L is the depth of the root zone, Ep is the potential
evapotranspiration from the upper layer of the soil, and ha

and hp are the relative humidities of the atmosphere and the
soil, respectively (ha<hp< 1). It is assumed that the relative
humidity of the surface soil layer can be described by the
thermodynamic equation (cf. Philip, 1957; O'Kane, 1990):

(2)

where Mw is the molar mass of water (0.018 kg/mol), R is the
molar gas constant (8.314 J/mol K) and T is the constant
temperature (293 K i.e. 20 °C). The initial condition for this
process is:

0 = 1 t=tn (3)

where t0 denotes the beginning of the considered time hori-
zon taken as the time at which infiltration ceases.

0 is constrained:

where

exp(«)6>s) (3a)

<9res denotes residual moisture content, 0S is the soil moisture
at saturation; n is a soil water parameter depending only on
temperature:

n = MJRT (3b)

where 4>e is an air entry potential.
In order to solve the problem described by equations (1)

and (3), the form of the soil moisture characteristic curve
0(0) must be assumed. In the present study a generalized
version of the model developed by Gardner (1958) is used. As
a first step the original exponential Gardner model for <P(0)

can be considered, with an exponential relationship between
the unsaturated hydraulic conductivity and the soil moisture
potential. In the present paper this is written as:

— a, (4)

where OLX is a dimensionless parameter depending on soil
properties and #e is an air entry potential. A similar relation-
ship will be assumed for the soil moisture characteristic
curve:

(5)

where a2 is a soil dependent dimensionless parameter, in
general case different from (x{.

The relations (4) and (5) give the following soil moisture-
hydraulic conductivity relationship:

K(0) = (6)

to a2:

If OLX is equal to a2, the relation (6) becomes linear and it
corresponds to a constant soil moisture diffusivity (D = K

), cf. Philip (1967). For the general case of a! not equal

(7)

It can be easily seen that the relations given by equations
(5), (6), and (7) fulfill the general requirements concerning the
variation of diffusivity, the unsaturated hydraulic conducti-
vity and the soil moisture retention curves for real soils. In
order to use the above model one has to evaluate its
parameters using some known identification techniques
(Eykhoff, 1974). The adjustment of the parameter a2 for the
model can be made by fitting the analytical soil moisture
retention curve to the data for some specified soils (e.g. sand
and loam). The bigger the value of a2 is, the more nonlinear
the model becomes, i.e. the switching between the soil- and
atmosphere-controlled evapotranspiration is more sharp (it
becomes a step-like function). For the values of a2 estimated
from the conductivity-soil moisture relation for the Gardner
model (ô  = a2 = a) the analyzed model gives a very sharp
switching with the actual evapotranspiration equal to the
potential one, before the switch, and sudden fall of evapo-
transpiration after the switch.

AN ANALYTICAL SOLUTION OF THE
PROBLEM

Consider the soil moisture retention curve given by equation

(5). Substituting this relation to the model equations (1) and

(2) and simplifying the notation (a = a2) one gets:
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d<9
L—=

dt
exp(«#J —

\-K
(8)

The solution of this equation can be obtained analytically:

Ln~—[F(0o)-F(0)] (9)t = -

where

F(0o)-F(0)

and

m
F(0) = 0 -

b

&0

d0

Aa-exp(n<zg —

(10)

0

where a = ha; b — ) a n d m = oi/n<Pe, (11)

The number of terms of the series in (11) is determined by
the physical parameters of the soil (a and <Pe), as well as the
thermodynamic parameter n (equation 3b). For the light,
sandy soils this parameter is bigger than for the loam and clay
soils. Hence for the clay the number of terms in the series will
be the smallest.

The relation (9) allows us to evaluate the time to desatu-
ration, td, defined as the time in which the soil moisture at the
surface layer decreases below some value, 0*, conditioned
by soil and vegetation status, i.e. a threshold average root
zone water content below which transport of water to plant
leaves limits the transpiration process (Gardner et al.91975):

[F(0*)-F(0o)] (12)

The performance of the model depends also on the values
of the atmospheric humidity which stands as the lower
constraint of the evapotranspiration (see equation 3a). The
influence of the values of a and of the atmospheric humidity
on the model performance are given in Figs. 1 and 2,
respectively. It results from Fig. 1 that for the values of a
around 0.15 x 10~3, i.e. in the range corresponding to several
terms of the series in (11), the relation for soil moisture
content is nonlinear but invertible. For bigger values of a
(over 2.5x 10~3) which correspond to hundred or more
terms in the series in (11), the moisture content curve
becomes distinctly divided into a linear pre-desaturation part
and nearly constant post-desaturation part. That curve,
though not invertible, models better the evaporation process.
A similar effect is obtained by means of increasing the
atmospheric humidity. Decreasing the potential evaporation
one gets longer intervals before the desaturation occurs. For

= 9 (a = 0.147-10 3)

Fig. 1 Influence of the coefficient a on soil moisture deterministic
model; Ep = 0A l(T3[m/d].

9, Ep = 0.5-10"4 m/hr

120

Fig. 2 Influence of potential evaporation on soil moisture content
(deterministic model).

the purpose of illustrative examples in this paper the two
values of a were chosen: 0.15 x 10~3 and 2.5 x 10~3.

The purpose of this research is to solve equation (1) subject
to (2)-(3) and the given soil moisture characteristic for a field
whose hydraulic properties vary in space. In the next section
the problem of evapotranspiration will be considered under
assumption that uncertainties following from the spatial
variability of soil parameters are enclosed in the random
initial soil moisture content, <90.

SOLUTION FOR RANDOM INITIAL
CONDITIONS

The concept of a stochastic process is used to model the
properties which vary in space, as well as the uncertainties
following from both errors in modelling the soil moisture
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flow in unsaturated zone and measurement errors. The
models of unsaturated flow process with stochastic inputs are
usually assumed to be relatively simple in order for the
analytical relationships for the moments of the probability
density function to be obtained. Under the assumption that
the initial soil moisture contents is a random variable,
equation (8) will be treated as a random differential equation
(see Soong, 1973; Bobrowski, 1987). This type of equations
follows the formalism of stochastic equations with Lebesque
or Lebesque-Stieltjes integrals:

J "
rather than the stochastic differential equations formulated
for example in the work of Mtundu & Koch (1987), cf. also
Serrano (1990), following the formalism of stochastic Ito
integrals:

b

/ « dXt

where Xt; t e (a, b) is a stochastic process and / ( ) is a real
function.

The advantage of the former approach consists in the fact
that the solution of the random differential equations
requires only well known standard mathematical tools and
there is no need of introducing special assumptions concern-
ing the input stochastic processes. However, using this
technique one has to be careful about the risk connected with
the uncritical transfer of properties of the real functions
solutions of deterministic differential equations, such as
continuity and differentiability to the stochastic processes.
Also new type of problems arise related to the probabilistic
sense of the obtained solutions and to the relationships
between the solutions in the sense of different definitions.

The proposed technique allows one to determine the
probabilistic characteristics of the solution for the nonlinear
initial condition problems as well as for the random forcing
function and random parameters of the model. The algor-
ithm used here consists in:

(a) the solution of the stated problem for deterministic initial
moisture content 0O; and

(b) subsequent determination of the probability density func-
tion of the solution, assuming that 6>0 is a random variable
with known distribution function.

DETERMINATION OF PDF FOR SOIL
MOISTURE CONTENTS

The deterministic solution of the model of interest is given by
equation (9). The next step of the method consists in the

evaluation of the distribution of the solution obtained
assuming that the distribution of initial soil moisture content
is known. Following the discussion given in the work of
Bobrowski (1987), the general formula for the pdf of an
absolutely continuous function Y—h{X) of an absolutely
continuous random vector X, assuming h(X) and X
= h~l(Y) have continuous derivatives, has the form:

(13)

where / =
dh~\y)

dy

and/x( ) is the pdf of a random vector, X.
The distribution function of soil moisture content can be

evaluated from the formula (13) provided that the inverse
function of the equation (9) exists.

Let us assume that 6>0 has a lognormal distribution given

by

1 \~-(\n0o-fi)
2l

(14)

where \i and a are the mean and the variance of ln(6>0),
respectively.

As the value of <90 is constrained according to the con-
dition (3a), the assumption of its lognormal distribution is
not strictly correct and should be accompanied by the
assumption of a very small variance.

The transformations enabling us to obtain the pdf of the
soil moisture content pdf were developed in Romanowicz et
al. (1990) The formulae obtained allow one to calculate the
soil moisture distribution function for any assumed initial
moisture content distribution.

As indicated earlier, soil moisture content evaluated from
the model given by equation (8) is linear in most of its region,
excluding only the values close to the lower constraint
determined by the atmospheric humidity, ha. Hence the
solution can be approximated by the linear relation:

t = -(Oo-0)
E

(15)

which is valid for G > <9min, where <9min is given by equation
(3a) and t«L0JEp. It corresponds to the assumption of
constant evapotranspiration with the potential rate in equa-
tion (1).

For this case and under the assumption that the distribu-
tion of the initial moisture content is given by equation (14),
the distribution of the soil moisture content takes the follow-
ing form:

exp

(16)
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It is interesting to analyze the changes of the soil moisture
content with time. Obviously, it tends to zero with the rate
inversely proportional to the value of potential evapotrans-
piration, Ep. Its expected value is equal to:

(17)

and the variance reads:

ae = (18)

Hence the coefficient of skewness of this approximated
model has the form:

L

(19)

As the expected value of the soil moisture depends on time,
the process is nonstationary. The variance depends only on
the parameters of the initial moisture content distribution.
The distributions of the initial surface soil moisture content
and of the one evaluated after certain period of time since the
infiltration ceases are given in Fig. 3. The temporal changes
of expected values and variances of soil moisture content for
different potential evaporation rates are plotted in Fig. 4. In
order to investigate the effect of nonlinearity of the evapo-
ration equation (1) the soil moisture distribution was eva-
luated for the approximate solution (15) with the lognormal
initial surface soil moisture content.

Under the assumption of linearity shown by the approxi-
mate solution of equation (15) we can determine the autocor-
relation of the soil moisture process for two arbitrary time
instants, tx and t2.

L
(20)

L0S

where tl9t2<
p

DETERMINATION OF PDF FOR TIME TO
DESATURATION

Using the same equation (13) as in the last paragraph, the
probability distribution of the time to desaturation can be
obtained from equation (9), assuming that the initial soil
moisture content has a distribution given by equation (14).
The formula for the time to desaturation developed in
Romanowicz et al. (1990) describes the spatial variability of
the time to desaturation depending on the spatial variability
of soil moisture characteristic enclosed in the initial soil
moisture contents. The mean value of time to desaturation
and its variance can be evaluated using the derived p.d.f
function.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative moisture content

Fig. 3 Pdf of soil moisture contents, E(<90) = 0.32, 0S = 0.42 and
£p = 0.M0~3[m/h].

Fig. 4 Expected value (a) and variance (b) of soil moisture con-
tents for different potential evaporation rates.

Assume that the process prior to desaturation can be
approximated by a linear relation (15). Then the distribution
of the time to desaturation will have the form:

(21)

If one assumes that the initial moisture contents has a
lognormal distribution, then the approximate time to desatu-
ration will also be lognormal with the mean equal to:
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(22)

and the variance unchanged. The pdf of the time to desatu-
ration for different values of potential evapotranspiration
rates is plotted in Fig. 5, for both linear and nonlinear cases.
Using the formulae given by Romanowicz et al. (1990), the
expected values of time to desaturation for the nonlinear case
were evaluated.

Following the reasoning from the work of Sivapalan &
Wood (1986) we shall evaluate the portion of the catchment
that is desaturated at time t, denoting it as y(t). The desatur-
ated portion of the catchment can be calculated as (Roma-
nowicz etal9 1990)

7(0 = o(^o)d0o (23)

If we assume that <90 is lognormally distributed, the
function F~l(i) is also lognormally distributed. After integ-
ration we get:

= j erf (24)

Using the above formula one can determine the influence
of the values of the potential evapotranspiration Ep and the
coefficient of variation of the initial moisture content on the
cumulative distribution of time to desaturation as shown in
Fig. 6.

EVALUATION OF THE ACTUAL
EVAPOTRANSPIRATION AND ITS
DISTRIBUTIONS

According to equation (1) the actual evapotranspiration was
assumed to have the form:

10 12
cumulative time to desaturation

Fig. 6 Distribution of cumulative time to desaturation.

\-K
(25)

where hp is given by equation (2).
Hence, for the generalized Gardner model the actual

evapotranspiration takes the form:

exp(w4>e) -h.

l-h.
(26)

Let us assume that the initial moisture content is a random
variable and that the rest of parameters of this model are
deterministic. In that case the soil moisture content, (9, is also
a random variable. The evaluation of the distribution of
actual evapotranspiration can be done only numerically,
using the soil moisture probability distribution function
derived earlier, unless some approximation is made. The
mean and the covariance of this function can be computed
according to Romanowicz et al. (1990).

As it can be seen from Figs. 1 and 2, the soil moisture
contents in the light soils remains linear in nearly whole range
of its variation, while the actual evapotranspiration varies
more strongly with time. This is due to the fact that the time
dependence of the soil moisture contents emerges from the
integration of the power function of the soil moisture con-
tents (actual evapotranspiration). The process of integration
exerts a kind of smoothing effect. Hence one can assume that
the soil moisture contents is a linear function of time and its
distribution is given by equation (16) for the case of lognor-
mal initial moisture contents. This assumption allows one to
determine the approximate analytical p.d.f. of actual evapo-
transpiration. Substituting the linear relation for the soil
moisture contents (15) into equation (26) one gets

E=En

- h.

l-h.
(27)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
relative actual evaporation

Fig. 7 Pdf of actual evaporation, Ep = 0.07 • 10"3 [m/h], E(<90)
= 0.32.

10 20 30 40
time [h]

60 70

Fig. 8 Changes of expected values of actual evaporation with
time.

Using the relations given by Romanowicz et al. (1990) one
can obtain the following equation for the pdf of an approxi-
mate analytical formula for evapotranspiration:

+ Ept/L)
dE.

(28)

This relation is valid only as long as the assumption of a
linear soil moisture contents distribution holds, for times
shorter than L(0s-0min)/Ep. The distribution of actual
evapotranspiration as well as its expected value for different
values of potential evaporation, Ep, are plotted in Figs. 7 and

variance of the time to desaturation to be obtained. The
cumulative distribution of the time to desaturation is also
evaluated.

The above derivations have implicitly made use of the
ergodic assumption, that means that the averageing area is
infinitely large, so that the areal mean is equal to the
ensemble mean. In practice, the actual catchments are prob-
ably not large enough to justify the ergodic assumption.

The theoretical results are illustrated with typical field
data. This approach can be further extended for the case of
the random potential evaporation, random forcing function,
and random parameters of the model as well as for the two-
dimensional random fields.
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ABSTRACT The plausibility analysis of the regional flood data of Southern Norway is
performed with the help of geostatistical methods. As the data at a number of sites are
analyzed, one can account the spatial relationships in the outliers detection problem. That is
the results of outliers detection may differ in comparison to the non-structured (univariate)
case. The geostatistical methods applied are block kriging and Switzer's location-specific
covariance analysis, with catchment areas accounted.

INTRODUCTION

An intuitive definition of an outlier can be 'an observation
which deviates so much from other observations as to arise
suspicions that it was generated by a different mechanism'
(Hawkins, 1980). An outlying observation can be interpreted
in several ways. It may represent an event of extreme
magnitude (e.g. due to rare natural causes) that has unexpec-
tedly happened in the system. In flood frequency analysis
such extreme events are of outmost importance, indicating a
heavy right tail of the parent distribution. On the other hand,
a value differing from the remainder of the data set may be an
erroneous observation. This could have been caused by
instrument malfunctioning or human mistakes (e.g. at the
stage of interpretation of the rating curve for high flows). In
this latter case outliers may contaminate the data and reduce
the useful information about the natural process.

Detection of outliers in hydrological data can be per-
formed in a number of ways. Kottegoda (1984) considered
approaches based either on distributional, mixture, or slip-
page alternatives for investigation of a series of maximum
annual flows. Gottschalk & Kundzewicz went along similar

lines in the companion paper (1991). Gottschalk (1989)
showed that values of maximum annual flow in one site of the
data set studied are mutually independent. Therefore the
maximum annual flow data for particular sites were analyzed
by Gottschalk & Kundzewicz (1989) in the way typical for
non-structured (univariate) observational material, rather
than for time series.

If the regional flood data (at a number of sites) are
available, it is advantageous to consider spatial relationships
in the outliers detection problem. Such an analysis, per-
formed in the partial duration series context is a welcome
extension to the analysis of a series records at individual sites.
Assume that one observation departs considerably from the
remainder of the data for an individual gauge and it could be
marked an outlier by the procedure outlined in Gottschalk &
Kundzewicz (1995). However, similarly high flows may have
occured in adjacent catchments. That is, the observation
questioned in analysis of the data from one gauge (time
series) may seem quite regular in the context of regional flood
data. The other way round - a plausible observation in the
univariate approach may seem rogue in the context of values
in the neighbourhood. Geostatistical methods have proven

206
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to be useful for outliers detection in regional groundwater
quality data (Kundzewicz et aL, 1989) and are also applied
here.

GEOSTATISTICAL ANALYSIS OF
FLOODS

One of standard objectives of geostatistical analyses is to
estimate the value of the variable under study, z in the point
x0, as a linear combination of regional observations z{xx);
/=! , . . . ,« . The estimator is therefore:

(1)

where Z is the column vector of observations and AT is the
transposed column vector of weights 2, /= 1,...,« associated
to the observations. Optimal weights can be found, based on
the intrinsic assumption and under the conditions of unbia-
sedness, by minimizing the estimation variance. This gives
rise to the system of kriging equations that read in the matrix
notation:

rA=r0
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y{h) denotes the (point) semivariogram for the distance h and
H is the Lagrange multiplier. If instead of the intrinsic
assumption the second order homogeneity of the stochastic
field z{x) is assumed, the semivariogram 7 (h) is related to the
covariance c{h) as

(3)

(4)

= c(0)-c(h)

In this case the kriging equations have the form

CA = C0

where
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The optimal weights, i.e. formal solution to equations (1) and
(4), and the estimation variance read, respectively

= C'lC0 (5)

(6)

From the definition of the co variance matrix it results that:

m(xi)m(xJ) + C[Z(x,),
m(x,)m(Xj) + s(Xi)s(Xj i-Xj\)

(7)

where

r(\xi-xj\) =

If the random field is homogeneous (spatially stationary),
that is m(xi) = m(Xj) = m and s(xi) = s(xj) = s, one can sim-
plify equation (7) to the form:

In the above derivations only one realization of the spatial
stochastic field, z(*,-), was considered. On the other hand,
regional flood data z(xt, tk) contain several events in time tk\
k=l,...,K, and sites in space xt; i = 1,...,n. Typically the
number of observed space points n is less than the number of
observed time points K. Existence of several observed values
at each site allows site specific mean values, standard devi-
ations, and covariances to be determined.

Once data for several events in time and for several spatial
locations are available, one can estimate spatial covariances
separately for each event and then average them over time.
The spatial covariances for an individual case are not esti-
mated well when the number of sites n is small. Therefore the
time averaged covariances may be used. If the number of
temporal events Kis large, the time averaged covariances are
quite stable. Let these time-averaged translation-invariant
spatial covariances be denoted by:

c(\xt- Xj\) = *,-- *,!)] (9)

The values calculated after equation (9) may replace the
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elements in the covariance matrix C and in the covariance
vector Co (equation 4). They will be denoted C and Co,
respectively, in the sequel.

Switzer (1989) points out that in case of space-time data
there may not be a compelling reason to use translation-
invariant spatial covariances. A covariance c(\xt — Xj\)
between any pair of locations xt and Xj can be directly
calculated from data. It is clear that two pairs of stations,
separated by the same spatial distance, might still be
observed to have quite different covariances. That is, spatial
interpolation would be more precise in the vicinity of a pair
of stations with higher covariance and less precise closer to a
stations pair with lower covariance. Using the time-averaged
translation-invariant covariance one is forced to assign the
same precision to both these cases.

To overcome this Switzer (1989) suggests to calculate a
location-specific and not translation-invariant covariance
vector Co between the location x0 and the observation sites
xl9...9xn from the formula

C'0 = C(CylC0 (10)

where C is the n x n matrix of observed station pair covari-
ances c(\X; — Xj\). The model is proposed using mean-
centered covariances. Applying the time averaged transla-
tion-invariant spatial covariances one gets the kriging
weights as A = (C)~ lC'o. Equation (10) can thus be written in
the form:

C0 = CA (11)

After having introduced the location-specific covariance
vector into equation (5) one gets:

A' = C"1CA = A = A (12)

That is, the weights are identical with those for the

translation-invariant case. However, the estimation variance

is different and reads:

where s\x0) is the variance assigned to the unobserved
location x0.

It is necessary to note that regional flood (runoff) data do
not represent a single point at the outlet of the catchment but
rather the total area A of the catchment i.e.

i)=\z(x)dx (14)

For this random field with areal support the semivario-
gram is related to the point semivariogram by the equation

y (Ai9 Aj) = y(At, Aj) - 0.5y(Ai9 Aj) - 0.5y(Ap

where

(15)

KAi'Aj) = ̂ A f [yQx-
At Aj

Similarly, one can link the covariances in the form:

c(Ai9Aj) = —— [cdXi-XjDdXidXj
AiAj J J

At Aj

= 7 T I I s(xMxj)r(\xrxj\) dxt dxj (16)
AiAJ J J

At Aj

Under assumption that s (x) is a smoothly varying function
in space, i.e. in accordance with the covariance model
equation (8) one gets the following equation for the correla-
tion function

c(\xt-Xj\) dx^Xj

At Aj

c(\xt-Xj\) dxtdxj

At At A, A,

(17)

As the flood data represent areas rather than points, the
point covariances in the kriging equations given above
should be replaced by the covariances calculated from equa-
tion (16). Using equation (5), with suggested modification to
support the nature of flood data, one can calculate the
estimated values of a flood at a certain site and its estimation
variance based on observations at other sites. The values of
absolute normalized deviations (AND) defined as the differ-
ences between the estimated (kriged) and the observed
values, related to the kriging standard variations can now be
subject to analysis. If the value of AND for a particular site is
greater than three, the observation at this site is labelled an
outlier. The above procedure is based on the well established
theory of normal variables and holds if the normalized
deviations are approximately normally distributed with the
mean 0 and the standard deviation 1.

EXPERIMENTAL SEMIVARIOGRAMS AND
CORRELATION FUNCTIONS

There are at least two ways of detecting outliers in a set of
flood data with the help of geostatistics. This can be achieved
either already at the stage of determination of an experimen-
tal semivariogram or at the stage of cross-validation of the
theoretical semivariogram where all the data are compared
with values obtained with the help of kriging. In the former
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case the analysis, to be successful, has to be performed at the
level of each flood event and calls for examination of
individual data points for the distance classes of the semi-
variogram (Kundzewicz et al.9 1989). The latter approach is
more suitable for operational applications. A theoretical
semivariogram (or correlation function) determined for all
data is subsequently used to estimate parameter values and
kriging variances for every observational point. Linear,
spherical, exponential and Gaussian models (Clark, 1979)
are used in the present study as theoretical semivariograms.
Once a kriged value in a point is much different from the
observed value, seen in relation to the estimation variance,
the observation at this point is marked an outlier.

The empirical semivariogram is determined from the
experimental data set for the event tk by the equation

2N(h)
(z (xi9 tk)-z (JC* tkV V ' k) V J k

(18)

where

RW={(iJ);h-e<\xi-xj\<h + s}

that is, all pairs of sites separated by a distance close to h are
considered, and N(h) is the number of elements in the
distance class R(h).

Equation (18) is sensitive to outliers in data and thereby a
more robust estimator is needed. Trimmed means in particu-
lar distance classes have been chosen here among several
candidates for robust semivariogram estimators proposed in
literature. The average experimental semivariogram for all K
events is determined as the simple mean:

Hh)=

N(h)-N0 K

V
2[N(h)-2N0]K IJ

l=NQ+l k=\

where trimming is performed by removing the No highest and
No lowest values from the sample of N(h) values.

Pairwise correlation coefficients between observation
points are determined from

f{h) =
K

k=\

k=\ k=\
(20)

where h=\xi-xJ\ and m(xt) is the estimated mean value. In
case of time-space data a theoretical semivariogram or
correlation function can either be fitted to the time-averaged

experimental semi-variogram (equation 19) or to the scatter
of correlation coefficients (equation 20) plotted against the
distance h.

Equations (18), (19) and (20) are developed for point
values. However, as a runoff value is representative for a
catchment, i.e. area rather than a single point, some way of
incorporating the areal support in the algorithm is required.
The iterative procedure devised by Bardossy (1989, personal
communication) reads:

- Each catchment is represented by its centre point xt.
- An experimental semivariogram yk(h) is calculated using

the flood observations as point values at xt.
- A theoretical semivariogram yk(h) is fitted to yk(h). Set

/=0.
- A new experimental semivariogram is calculated from

(compare equation (15)):

1
{z(Xi,tk)-z(Xj,tk))

2

pj) (21)

- A theoretical semivariogram y'k
+' (h) is now fitted to

tf+1(*)-
- yl

k (h) and yl
k
+1 (h) are compared. In case of convergence

it is accepted as a point semivariogram. In the other
case / is set to /= /+ 1, a new experimental semivario-
gram is calculated from equation (21) and the iteration
is continued.

In case of time-space data the experimental semivariogram
yk(h) calculated from equation (18) for a single event is
replaced with the averaged semivariogram y(h) from equa-
tion (19). The alternative for the time-space data is to fit a
theoretical function to the pairwise correlations r(h) deter-
mined from observational data with the help of equation
(20). Similarly, one can account areal support and find the
point correlation coefficients by an iterative procedure (cf.
equation (17)):

?+' (Ah Aj)=t(hyJrl(A> Atyr% (22)

CASE STUDY

The data base used in this study consists of a set of 42
registered flood events at 22 observation stations in southern
Norway (Fig. 1) during 20 years (1970-89). The data do not
embrace the observation stations at the West Coast, where
strong anisotropy can be observed. Variability of runoff in
the West Coast is mainly controlled by the distance from the
North Sea. For each site a partial duration series of daily
flood peaks is constructed. A regional flood event is defined
so that a peak should have been registered at at least one
station. Typically, such an event embraces peak flows in
several catchments, either in the same day, or in one of the
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Fig. 1 Map of southern Norway with observation stations used in
the study.

neighbouring days. It is also controlled that rainfall events
occurred in the region at the onset of the floods.

Characteristics for the observation stations used are
shown in Table 1. Each catchment is schematized in the form
of a rectangle, whose axis of symmetry is drawn by the outlet
and the centre of the catchment. The catchment length is
taken as the distance along the symmetry axis of the rect-
angle, from the outlet to the orthogonal projection of the
source point. The width is adjusted so as to give correct area.
The angle between the axis and the North is also calculated.
The approximated catchments are displayed in Figs. 2 a and
2 b together with an example flood event. The region of study
is dominantly mountainous with well pronounced large
valleys. This explains a rather large variation in statistical
parameters of flood events among stations. In order to
smoothen the variation pattern observation series are nor-
malized with respect to their mean values.

Individual outlying observations may have a drastic
influence on the experimental semivariogram calculated for
single flood events. An illustration is given in Fig. 3, where

experimental semivariograms for event 25 (presented in Fig.
2 a) are shown for several cases (non-trimmed/trimmed and
with/without outlying observation at station 437). It is
noteworthy that removal of the single outlying point flattens
the semivariogram much stronger than the trimming process
(removal of ten per cent highest and ten per cent lowest
points from the semivariogram cloud). One of explanations
is the observation that the contaminating effect of the outlier
is lumped in several distance classes (see Fig. 2 a) and may
locally exceed the trimmed ten per cent. It is found that the
outlier detection on the event basis may be preferably
performed at the stage of analysing an empirical semivario-
gram, rather than at the stage of cross-validation. In this
latter case fitting of a theoretical semivariogram is a
prerequisite.

The experimental semivariograms differ considerably in
form and parameters (sill, nugget, range) from one event to
another. These parameters are evaluated via optical fitting
for each event. Their mean values and variability are illus-
trated in Table 2, both for the case of point and block
approaches (equations 18 and 21). The differences in para-
meters of theoretical semivariograms are also reflected in the
estimation variances for the events and thereby influence the
decision whether or not to give the label 'outlier' to an
observation. When the areal support is taken into account in
the cross-validation, estimated values are almost identical to
the point representation of catchment. Estimation variances
are also very close but as a rule a few percent higher.

The average experimental semivariograms calculated
from equations (19) and (21) are less sensitive to individual
outlying observations. As an example, average empirical
semivariograms estimated with and without observations
from station 437 are shown in Fig. 4. The record in this site
contains the two most extreme values of the total data set.
The comparison of semivariograms given in Fig. 4 shows
that the process of elimination of two largest outliers has a
relatively smaller effect, whereas trimming influences consi-
derably the empirical semivariograms obtained. Therefore
the question emerges of the suitability of the trimming
process in the analysis of the flood data. It seems, in general,
that the effect of trimming on the form of an experimental
semivariogram can be two-fold. If the semivariogram is very
irregular, trimming is likely to regularize it by eliminating the
most outlying points in particular distance classes of the
semivariogram. However, if the semivariogram calculated
according to eq. (18) or (19) is regular, trimming may not be
necessary. This is because trimming always results in reduc-
ing the values of the semivariogram, that may be unwelcome
for analyses of regional flood data.

Scatter diagram of pairwise correlation coefficients for the
same data set (with and without the station 437) is shown in
Fig. 5. Some few extreme points off the main concentration



6 DETECTING OUTLIERS IN FLOOD DATA 211

Table 1.

Station
No.

400
410
411
437
478
867
887

1354
1355
1357
1364
1380
1476
1489
1555
1573
1591
1603
1604
1605
1607
1609
Average

Characteristics of observation stations from Southern

Area
km2

470
1618
1755
565
155
473
121
248
620
549
791
25

235
68

101
262

56
78

251
260
371
135

Length
km

32.5
45.0
52.5
36.0
18.0
32.5
16.5
33.5
39.5
28.0
31.5
6.5

17.5
7.5

14.5
24.5
9.5
9.0

24.4
14.0
26.0
19.5

Width
km

14.5
36.0
33.4
15.7
26.3
14.6
7.3
7.4

15.7
19.6
25.1

3.8
13.4
9.0
7.0

10.7
5.9
8.6

10.2
18.6
14.3
6.9

Norway used in

Angle

245
148
218
27

257
122
35
27

173
152
152
276
311
190
187
232
261

77
114
352
106
152

the study

Maximum yearly flood runoff

Mean
1/s/km2

47.4
23.4
44.7
37.5
89.0

130.0
24.6
13.9
19.8
34.8

114.2
11.8

160.9
27.4
31.5
39.8
67.1

125.7
137.5
142.6
151.6
124.8
72.7

(in l/km2/s)

Standard
dev.

29.0
19.7
36.2
31.8

104.5
92.5
17.0
10.3
11.5
27.4
76.3
10.7

120.9
22.8
33.8
37.3
81.3
95.2

109.2
128.5
115.9
98.4
72.3

Variation
coefficient

0.61
0.84
0.81
0.85
1.17
0.71
0.69
0.74
0.58
0.79
0.67
0.91
0.75
0.83
1.07
0.94
1.21
0.76
0.79
0.90
0.76
0.79
0.99

l l ll

o
Fig. 2 Schematized map of study area displaying position of the schematized catchments and observed values of two example events;
(a) event No. 25, (b) event No. 1.
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Table 2. Characteristics of interactively evaluated theoretical semivariogram parameters for the 42 flood events

Nugget

Mean 0.056
Variability 0.0-0.27

Point approach

Sill

0.612
0.10-2.21

Range

78
70-126

Nugget

0.140
0.05-0.35

Block approach

Sill

0.748
0.15-2.30

FIELDS

Range

78
70-126

0.50

0.00
0.00 300

Fig. 3 Experimental semivariograms for event 25; line (a) non-
trimmed, with one outlying observation; line (b) trimmed, with
one outlying observation; line (c) non-trimmed, one outlying
observation removed.
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Fig. 5 Example of plots of pairwise correlation vs distance.
Crosses mark corellation coefficients of the station, containing
two largest outliers from the data set.

1.13

0.75'

0.38

0.00
0.00 50 100 150 200 250 300

Fig. 4. Example of time averaged semivariograms; (a) experimen-
tal semivariogram with several outliers, non-trimmed; (b) as
above, trimmed; (c) experimental semivariogram after removal of
the station, containing the two largest outliers from the data set,
non-trimmed.

of points disappear when the contaminating station 437 is
removed. It should be noted (cf. Fig. 5) that the runoff data
typically yield stronger scatter of data points in plots of
correlation coefficients vs distance (cf. Gottschalk, 1989)
than, for instance, precipitation data. The spread is thus not
only a question of statistical errors in the estimated correla-
tion coefficients, although this explains a significant part of
the scatter. It can be stated that individual stations (of bad
quality?) are often the offspring to groups of 'off points'.

Cross-validation is performed for each individual event
both with the help of point and block kriging (with areal
support accounted). In both cases it is based on theoretical
curves fitted to the averaged semivariograms over all events
(Fig. 6) or on curves fitted to the correlation scatter. Fig. 7
shows the correlation corresponding to the theoretical semi-
variogram fitted as shown in Fig. 6. It is also possible to
derive a semivariogram corresponding to a fitted correlation
function. Estimation variances are determined in accordance
with both equation (6) and equation (13), the latter taking
into account the location-specific covariances. The variance
at the site of validation is used in the evaluation of equation
(13). There is, however, no assurance that the expression for
estimation precision is non-negative (cf. Switzer, 1989). This
is so, because equation (13) may produce negative values if
ATCA is greater than the estimated local variance in the
unknown location (s2(x0)). This can occur despite the posi-
tive definiteness of the matrix involved. The case considered
(blocks with different supports) is more complicated than the
regular situation for which the method was proposed (point
kriging or block kriging with equal supports). Bardossy
(personal communication, 1990) suggests that the way of
solving the problem of negative precision estimates may be to
use the original covariance matrix also for establishing the
local variance.

Analysis of the results of cross-validation illustrates the
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0.75

0.00 50 100 150 200 250 300

Fig. 6 Averaged experimental semivariograms for all events with
fitted theoretical curves; (a) point semivariograms; (b) block semi-
variograms. Solid and dashed lines denote experimental, and
theoretical semivariograms, respectively.

contaminating effect of outliers. There may be several obser-
vation points in the data, where observed values largely differ
from the estimated values. This is caused by the fact that an
outlier may influence estimated values in its neighbourhood.
Removal of one or few extreme outliers may liquidate
differences between observed and estimated values at a
number of sites.

An example of another contaminating effect can be seen at
observation sites close to the boundary between the areas
with high and low runoff values. In one event high flows
occured only in the upper left quadrant of the map given in
Fig. 2, whereas the other quadrants contained significantly
smaller flows. In such a situation of partial coverage of the
study area with extreme runoff (or precipitation), that is not
uncommon in the data analyzed, behaviour of the estimation
process close to the boundary of distinct areas is not regular.

CONCLUSIONS

The event-based case showed, that it is advisable to perform
outlier detection at the stage of analysing semivariograms.
As the total variance (sill) differs considerably from one
event to the other an observation can be labelled outlier in

•o.so.

0.00 50 100 150 200 250 300

Fig. 7 Spatial correlation scatter diagram with fitted theoretical
curve.

one event, whereas when compared to the full series of events
would not be considered so.

Detection of outliers with cross-validation based on the
time averaged semivariograms and/or pairwise correlations
is well fitted for operational use. The approach seems little
sensitive to such elements as, for instance, areal support and
local variance. The methodology needs to be elaborated
further in respect to the quality of data, statistical errors,
data smoothening etc.

The philosophy of the geostatistical approach for outlier
detection resembles the application of tests of Student ratios
and the RST-statistics to outliers detection in non-structured
data (Roesner, 1977). However, in comparison to these
methods that do not take into account the regional infor-
mation, cross-validation with time-averaged semivario-
grams gives higher precision in the determination of outlying
observations. The supplementary spatial information in this
latter case is reflected in the standard deviation of the
estimation. This is, in general, significantly lower than the
standard deviation for the time series of annual maximum
flow at a site, which is, in turn, the basis of the Student ratio
and RST-statistics.
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Prediction uncertainty in seasonal partial duration
series

P. F. RASMUSSENand D. ROSBJERG
Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark

ABSTRACT In order to obtain a good description of the exceedances in a partial
duration series it is often necessary to divide the year into a number (2-4) of seasons. Hereby a
stationary exceedance distribution can be maintained within each season. This type of
seasonal model may, however, not be suitable for prediction purposes due to the large number
of parameters required. In the particular case with exponentially distributed exceedances and
Poissonian occurrence times the precision of the T-year event estimator has been thoroughly
examined considering both seasonal and non-seasonal models. The two-seasonal probability
density function of the T-year event estimator has been deduced and used in the assessment of
the precision of approximate moments. The non-seasonal approach covered both a total
omission of seasonality by pooling data from different flood seasons and a discarding of non-
significant season(s) before the analysis of extremes. Mean square error approximations (bias
second order, variance first and second order) were employed as measures for prediction
uncertainty. It was found that optimal estimates can usually be obtained with a non-seasonal
approach.

INTRODUCTION

Since its introduction into flood frequency analysis, the
partial duration series (PDS) method has gained increased
acceptance as an appealing alternative to the annual maxi-
mum series (AMS) method. PDS models were introduced in
hydrology by Shane & Lynn (1964), and Todorovic &
Zelenhasic (1970). They assumed independent and identi-
cally distributed exceedances occurring according to a Pois-
son process with time-dependent intensity. The efficiency of
the PDS-model was demonstrated by Cunnane (1973) and
Taesombut & Yevjevich (1978). Todorovic & Rousselle
(1971) suggested a division of the year into distinct seasons
with different, time-independent distributions of exceed-
ances, while North (1980) and Konecny & Nachtnebel (1985)
considered a continuous variation of parameters. Trigger-
type cluster models were explored by Kavvas (1982a, b) and
correlated exceedances by Rosbjerg (1985,1987a). Contrary
to the standard procedure, which is based on a fixed thres-
hold level, Buishand (1989) studied PDS-models with a fixed

An extended version of this contribution (with Appendices) was published
in Water Resour. Res., 27(11), Nov. 1991, copyright by the American
Geophysical Union.

number of peaks. Alternatives to the exponential distribu-
tion of exceedances include the Gamma-distribution (Zelen-
hasic, 1970), the log-normal distribution (Rosbjerg, 1987b)
and the generalized Pareto-distribution (Fitzgerald, 1989).
Refined studies of the prediction uncertainty of PDS-models
have been carried out by Ashkar & Rousselle (1981) and
Rasmussen & Rosbjerg (1989). Risk and uncertainty mea-
sures in a Bayesian framework have been developed by
Rousselle & Hindie (1976) and Rasmussen & Rosbjerg
(1991a).

In this paper the seasonal approach introduced by Todor-
ovic & Rousselle (1971) is critically reviewed. When exceed-
ances of the base level have different statistical properties, for
instance different mean value (maintaining the exponential
distribution assumption), a better description of the process
is clearly possible by means of a seasonal model. However, it
is a well known fact that the gain obtained from a sophisti-
cated description must be balanced against the increased
sampling uncertainty due to a larger number of parameters.
In many cases a simple model with only a few parameters is
preferable to a more complex model with regard to predic-
tion uncertainty. The problem of estimating the annual
maximum distribution from samples of maxima in separate

217
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seasons has recently been examined by Buishand & Demaree
(1990). In the present paper, however, the approach is
somewhat different, since the estimator of the T-year event is
obtained directly from the partial duration series without
consideration of the annual maximum distribution.

The model to be used here assumes stationary distributed
exceedances within each season. The occurrence of exceed-
ances takes place according to a Poisson process which may
have continuously varying intensity. When the threshold is
chosen sufficiently high, the seasonality becomes more or less
negligible, while a low threshold often implies a pronounced
seasonality. Therefore a high threshold might be desirable.
On the other hand, information is discarded when the
threshold is increased. With realistically chosen thresholds
some kind of seasonality will almost always be present in
PDS-data, which suggests the use of seasonal models. Better
results, in terms of prediction accuracy, may, however, be
achieved if seasonality is simply disregarded. The mean
square error of the T-year event estimator is used here to
compare different model candidates. For that purpose
approximate formulas for bias and variance are deduced
both in the case of seasonal models and models where
seasonality is present but disregarded. A third approach
consists of using data only from the dominant season. This
may in some cases provide satisfactory results. The three
methods are compared, and some guidelines for choosing the
appropriate model are given.

MODEL DESCRIPTION

The stochastic model, which we shall use in this study,
assumes that the year can be divided into a number of
seasons, M, and that within each season the exceedances of
the threshold level are independent and identically distri-
buted. Exceedances appear according to a Poisson process
with possibly time-dependent intensity. Let kjbe the expected
number of exceedances per year in season no. j . If / years of
records are available, the distribution of the total number of
exceedances in season no. j , Np is given by

w = 0, 1,2 (1)

where E(7v}) = Var(yVy) = kjt.
Let the chosen threshold level be denoted q0, and the

magnitude of an exceedance be defined as X= Q - q0, where
Q is a flood peak exceeding q0. In a particular season, sayy,
these magnitudes are assumed exponentially distributed with
parameter ay. The cumulative distribution function (CDF) of
a single event is thus

where E{X} = q and Var{JT} = a/.
The T-year flood, QT, is defined as the flood magnitude

that is exceeded on the average once per T years. In order to
derive the relationship between xT(=QT-q0), T, and the
parameters al5...,aM, kl9...9kM, we first notice that the
annual mean number of floods larger than q0 + x in season
no. j is

(3)E(Nxj) = kj[l — Fj(x)] = kj exp( — x/oij)

Hence the mean value of the total number of exceedances
of q0 + x in t years, Nx9 is

E(NX ) = t X E{NXJ) = t ^ ^ exp ( - */«,) (4)
7=1 7=1

Inserting t=T, x = xT and E{NX} = 1 and rearranging
yields:

M

h(xT,a1?...,aM,kl9...,kM,71) = £ ^exp (-x/otj) (5)
7=1

whereby the T-year event, xT, is given implicitly as a function
of the distribution parameters and the return period, T. For
given values of these parameters an iterative technique, e.g.
the Newton-Raphson iteration, must be applied to obtain
xT. The N-R method is very robust in this particular case and
converges to a satisfactory precision in a few steps. For
practical application, estimates of the parameters can be
obtained from the series of historical flow records. Maximum
likelihood estimators read

(6)

where Xji9 i=l929..Nj are the exceedance magnitudes

observed in season no. j and

(7)

where t is the number of observation years.

PDF OF THE J-YEAR EVENT
ESTIMATOR

Fj(x) = 1 - exp(x x>0 (2)

The non-seasonal probability density function (PDF) of xT,
i.e. the special case M = l , was deduced by the authors
(Rasmussen & Rosbjerg, 1989). By means of this PDF
explicit, exact expressions for the mean value, E{;cr}, and the
standard deviation, S{Jcr}, were derived. The case of season-
ality was considered by Ashkar & Rousselle (1981), but they
used a definition of the T-year event based on the annual
maximum series. In this section we shall briefly show how the
PDF of xT, defined directly from the PDS, and correspond-
ing moments can be deduced when seasonality is present.
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For simplicity we shall confine ourselves to the case M= 2,
yet the following results are general and can be extended to
comprise an arbitrary number of seasons. The sampling
distributions of Nj and of dj conditional upon Nj are given by
(1) and

(8)

respectively (see for instance Ashkar & Rousselle, 1981).
Inserting estimated parameters in (5) and rearranging allow
us to express a! as a function, k, of xT and the remaining
parameter estimates

(9)

This arrangement is, of course, only permissible if ix > 0.
Another basic requirement can be expressed in the inequality

l / r -X 2 exp( -x77a 2 )>0 (10)

If the left side of (10) is equal to zero, the total contribution to
T will be explained by the second season, and 1 should be
zero, which only happens with probability zero. For fixed
values of dc2, Xx and %\ consider the transform of variables
dx -+xT. The PDF of xT, conditional upon a2, Xx and Xx, is

1

dx:

ddx

(11)

where k = k(x, a2, njt, n2/t)
By appropriate summation the conditioning upon lx can

be eliminated

) = Z fdi[k(x,a2,nx/t,n2/t)\Nx = nx

kx(x,a2,nx/t,n2/t) (12)

where k'x is the partial derivative of k with respect to JC. The
unconditional PDF of xT may now be obtained by integ-
ration of the probability of d2 conditional on N2 followed by
summation of the probability of N2. For a given value of X2

the estimator d2 is restricted by (10). The final expression
reads:

x/\n(n2/t)T
oo /• oo

fxM)= Z Z fa\k{^a2,n2lt,n2lt)\Nx = nx]
«2=1 J "1 = 1

(13)

Observe that P{7V/ = n;}, 7= 1,2, as given in (1), must be
adjusted by division with the probability of Af > 0 in order to

one season
two seasons

0.50 1

0.40-

0.30-

0.20-

0.10 -

0.00

Fig. 1 Pdf of Jc50 corresponding to t= 10 years. Non-seasonal:

a = 1 and X = 4. Two-seasonal: otY = 1, a2 = 1, kx = 1.33 and k2

= 2.67.

constitute a proper probability function (note that the sum-
mations start from one). The PDF of xT should thus be
regarded as a conditional probability, namely conditional
upon at least one exceedance in each season during t obser-
vation years. No further simplification of the above expres-
sion seems possible. Numerical integration must be used to
determine the PDF as well as the moments of xT. Clearly, this
procedure is not very tractable, and when more than two
seasons are involved, the calculations become almost over-
whelming, even with strong computer support. In order to
obtain the bias and the standard deviation of Jcrit is therefore
necessary to have approximate formula available that do not
involve multiple integrations and summations.

Fig. 1 shows the PDF of xT according to two distinct
models, namely a non-seasonal and a two-seasonal
approach. In order to make a comparison possible, the same
mean exceedance has been chosen in either season, whereas
the intensities are distinct: kx= 1.33 and X2 = 2.61. Clearly,
this case does not require a seasonal approach. Yet both
models are correct and yield the same theoretical T-year
event. As expected the two PDFs are quite similar, though
the figure reveals some decrease in precision, when the
seasonal approach is used.

APPROXIMATE MOMENTS OF THE
J-YEAR EVENT ESTIMATOR

Approximate moments of a stochastic property, which is a
function of random variables with known sampling proper-
ties, can be obtained by means of a Taylor series expansion.
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The T-year event estimator, xT9 is implicitly determined by
(5). In general, we may write

xr=g(a1,a2,...,aM,X1,...,XM) = g(ff) (14)

where, for notational convenience, the 2M-dimensional
vector

has been introduced. The mean value of 0 is denoted ji0. The
vector (5 will be treated as an unbiased estimator of 0 ,
though, strictly speaking, Xy is biased due to the fact that the
case Nj=0 must be omitted. Its bias, however, is only
significant when kf, is very small. Note that the function g
does not exist in an explicit form. Expansion of g around \i0

yields

2M

2M 2M

2M 2M 2M a3 (

• 1 / 3 ! I Z I j '
k=\ 7=1 i=l 0

(15)

where index m means that the derivatives must be evaluated
at ]ie. The expectation of xT is therefore approximately
(neglecting terms higher than second order)

(16)

where it has been used that all parameter estimators are
unbiased and uncorrelated. The approximate bias of Jcr is

Var(^) (17)

Derivatives of g and Varl®,} are given in Appendices A, and
C, respectively, in Rasmussen & Rosbjerg (1991b). An
example of the use of this formula is presented in Fig. 2. The
approximation is in good agreement with the analytical,
exact curve obtained by means of the theoretical PDF (13).
Simulated results are given for verification. When one of the
seasons is dominant over the other, in terms of mean
exceedance, the bias is small, whereas there is a certain bias,
when the a values are close to each other.

Equations (16) and (17) and following expressions for
approximate moments depend on the population para-
meters, which are unknown in all practical cases. The
problem is circumvented by inserting the parameter esti-
mates ji6>=(a1,a2,..,aM,X1,..,XM)r for \ie. Using this pro-
cedure on a large number of generated samples leads to a
range of estimated values for the bias, but the variability is
usually found to be relatively small, thus justifying the

procedure. Corresponding remarks apply to the following
variance approximation.

From (15) it can be seen that a first order approximation to
the variance of xT reads:

2M d4 (18)

In the non-seasonal case this formula is very accurate as
demonstrated by Rasmussen & Rosbjerg (1989). However,
in the case of two seasons the method tends to underestimate
the variance when the exponential distributions have similar
parameters, while overestimating it when the seasonality
becomes more pronounced, see Fig. 3. When M = l , the
satisfactory results of (18) are mainly owing to the linearity
between xT and dT=S{. When M > 1 , the relationship
between xT and dj is non-linear, which may partly explain the
deviation from the simulated results. An improvement of the
fit could possibly be obtained by introducing a second order
approximation which reads:

2M

Z

2M 2M
Cov i * -

where

i+j

Cov[6- v,, (6j - Hjf] = [Var(0,.)]3/2y „

Cov[^-Ai,.)(^-ft.)
3]=tVar(^,.)]2y2,.

Cow[6-,1,0-fi^j- fij)2] = Var(0,) Var(0y)

(19)

(20)

(21)

(22)

(23)

Here yu and y2i are the coefficient of skewness and the
coefficient of kurtosis, respectively, in the distribution of©,.

Fig. 3 shows that for some parameter combinations the
agreement with simulated results can be improved by using a
second order approximation, but a general conclusion is
somewhat unclear. Due to the complexity of the second order
approach, along with the general uncertainty inherent in the
analysis, the first order formula will, in practical appli-
cations, provide sufficient precision. In the forthcoming
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Fig. 2 Relative bias of x50 according to a two-seasonal model.

t= 10 years, a = 1, Xx = 1.33 and >12 = 2.67. Number of

simulations = 5000.
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Fig. 3 Relative standard deviation of x50 according to a two-

seasonal model. t= 10 years, a 2 = 1, Xx = 1.33 and X2 = 2.61.

Number of simulations = 5000.

analysis we will therefore use (18) as an approximation of the
variance.

APPROXIMATE MOMENTS WHEN
SEASONS ARE POOLED

So far it has been assumed that the division of the year into
seasons is given. It is, however, not obvious how this division
should be made. A possible approach is to consider the year
as having four seasons, spring, summer, fall and winter. In

most cases floods only occur in two or maybe three seasons,
being caused for example by snowmelt or heavy rainstorms.
An improvement in the analysis can be obtained if floods can
be recognized by their causal origin (Waylen & Woo, 1982),
but this will usually require more information such as
temperature and precipitation.

A flood frequency model containing many parameters is
known to be less robust to sampling errors than a model with
fewer parameters. On the other hand, the latter may intro-
duce systematical errors in quantile estimates due to an
incapability to describe the true statistical nature of floods. It
is intuitively obvious that one should not choose a model that
is more complex (in terms of the number of parameters) than
absolutely required. Thus it might be appropriate to accept a
certain systematical error (i.e. bias) in order to make the
quantile estimates more robust. A simplified model can be
achieved by pooling data from different seasons (with poss-
ibly different statistical properties) into one sample and
estimating the parameter of an assumed single exponential
distribution for all the exceedances. In order to compare
models (in terms of mean square error), approximate
formulas for bias and variance will be developed for the case
where seasonality is disregarded.

If xris estimated from pooled seasons, the following result
for the bias of xris obtained. Assume, as an example, that the
first two seasons are pooled. Now xT is given by g* (<5*). The
new parameter vector, 0*, contains 2M* elements, where
M* = M - 1 . Note that

are related to the original parameter estimators through

and

Xf = X, + X2

The variance of Xf is readily obtained

Var(Xf) = Var(X,) + Var(X2)

(24)

(25)

(26)

Some kind of approximation is required in order to
determine the variance of af. Let

af = A(X1,X2,a1,d2). Then
2

l
8h\2

— )
8h\ (dh\2

— ) Var(«1)+ — Var(«2)

;Var(a,) + - Var(a2) (27)
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Fig. 4 Comparison of the relative bias of x50 corresponding to a
two-seasonal approach and a pooled seasons approach. t= 10
years, a2 = 1, Xx = 1.33 and k2 = 2.67. Number of simulations
= 5000.

The bias estimate is eventually obtained as

2M* d2z*

j )m

Var(0*)-gOi0) (28)

Fig. 4 shows how this approach affects the relative bias of
xT. There seems to be a satisfactory agreement between
calculated and simulated values. It is evident from the two
curves that ignoring seasonal variations introduces a system-
atic error whose magnitude depends on the significance of the
seasonality. In a small band around ccj(x2 = 1, the absolute
bias is smaller when the non-seasonal method is used,
reflecting the negligible seasonal behaviour in this case.

The first order variance approximation is obtained by
inserting the modified parameter vector and variance expres-
sions, (26) and (27), into (18). A comparison of the two
methods is given in Fig. 5. For all parameter combinations
the approximate relative standard deviation is smallest when
seasonality is disregarded. It should be noted that the
variance is sensitive to the number of observation years.

C O M P A R I S O N OF M O D E L
P E R F O R M A N C E

In order to illustrate the implications of different design
procedures, a numerical example was designed. The results
from preceeding sections have been used to construct Figs.
6a, b, which depict the relative root mean square error of xT,
defined as

0.30 -i SixTi/xT

0.25-

0.20-

0.15 -

0.10

two seasons (1. order)
pooled seasons
range of
simulations

0.00 1.00 2.00 3.00 400 5.00

Fig. 5 Comparison of the relative standard deviation of *50 cor-
responding to a two-seasonal approach and a pooled seasons
approach, f = 10 years, a2= 1, Xx = 1.33 and A2 = 2.67. Number of
simulations = 5000.

rrmse ( (29)

The year is assumed to be characterized by two flood
seasons with known statistical population parameters. The
annual mean number of exceedances in the two seasons are,
respectively, 1.333 and 2.667. The rrmse(jc50) corresponding
to 10 years (a) and 50 years (b) of observation is shown as a
function of various relationships between ax and a2. Three
different estimation methods are considered, namely (i) a
seasonal model, (ii) a model with pooled seasons and (iii) a
dominant season model (here defined as the season with the
largest a-value). It is evident that, when one of the two
seasons is pronounced dominant, one need only use this
season for estimating of xT. Hence, it must be anticipated
that the curves in Figs. 6a, b corresponding to methods (i)
and (iii) are identical in the tails, which is clearly the case. In a
band around (xja2 = 1 the rrmse(jcr) from the pooled seasons
model is less than that for the seasonal model, indicating that
it would be more efficient to use the former method. Outside
the band the bias dominates the rrmse of the pooled seasons,
making it virtually useless. Adopting the rrmse as a criterion
for model selection, one can make the following conclusions
from the figures. When the seasonality in the mean exceed-
ance is weak, it is possible to obtain more robust quantile
estimators by pooling seasons together, although this vio-
lates some of the basic distribution assumptions. When the
seasonality is pronounced, one need only consider the domi-
nant season. The size of the region at the a1/a2-axis where a
seasonal approach is justified depends on the amount of data
available, i.e. on t. As t increases, the bias due to model errors
constitutes a growing part of the total rrmse, but even with
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Fig. 6 Comparison of the relative root mean square error of x50

corresponding to a two-seasonal approach and a pooled seasons
approach. a2= 1, Xx = 1.33, X2 = 2.61, and (a) t= 10 years, (b) t = 50
years.

t(kx +12) as large as 200 (Fig. 6b) a seasonal procedure seems
only optimal in a limited region.

Finally, a case-study was performed based on 90 years of
observed discharge of the Mississippi River at St. Paul.
Details of the analysis can be found in the work of Rousselle
(1972). Essentially, he found that, if the year is divided into
four seasons, then the assumptions concerning occurrence
rates and distributions of exceedances can easily be accepted.
He calculated the parameter estimates given in Table 1
(threshold level and units omitted).

An analysis was effectuated to see how different groupings

Table 1. Mississippi River at St. Paul. Estimated mean value
of exceedances and average number of exceedances in four
seasons (from Rousselle, 1972)

1 3

1.017
0.256

1.080
0.056

2.048
1.667

1.611
0.633

of seasons affect the mean square error (mse). Fig. 7 shows
the main result of this analysis. The calculated values are
obtained by means of the developed approximate formulas
for bias and variance, while the simulated values are sample
estimates obtained from computer-generated time series
assuming the values in the table to be the population
parameters. Axis-labels, such as (1)(234), mean that seasons
2,3 and 4 have been pooled. It is clear that the smallest mse is
obtained for the combinations (12)(34), (1)(2)(34), or simply
(34), the latter meaning that only seasons 3 and 4 are
considered when JC1000 is estimated. Seasons 3 and 4 are the
dominant ones, while seasons 1 and 2 only add noise to the
estimation of xT. Clearly, information is lost, if only season 3
is considered. Though this is the most dominant single
season, the information in season 4 is not without signifi-
cance and should be used to increase the robustness of xl0OO.
Therefore, our recommendation is that the data from season
3 and 4 be pooled and used to estimate xim as if no
seasonality was present.

CONCLUSIONS

Seasonal models can be applied in order to obtain a more
precise description of the processes governing extreme hyd-
rologic events. However, when such models are used also for
predictive purposes, the prediction uncertainty should be
considered in order to ensure the most reliable estimation
procedure. Thus it is possible that a simplified procedure
with only a few parameters involved performs better than a
more complete and systematically correct model with a
larger number of parameters.

For hydrological time series where exceedances of a given
threshold level exhibit seasonality it has been found that the
simple non-seasonal model usually outranks more sophisti-
cated seasonal models as far as estimation precision is
concerned. This statement, however, presupposes that the
selection of the data for the one-seasonal approach is correct.
The following guidelines may be used.

When the seasonality is weak, the seasons should be
pooled, and the entire data series be used as a basis for the
analysis. Seasonal approaches are deprecated in case of weak
seasonality, especially when only few data are available. In
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ABSTRACT The objective of this paper is to describe daily discharge series by a
stochastic differential equation which is based on the mass balance of a linear reservoir. The
input consisting of a series of jumps reflects the rainfall while the output refers to the
discharges of a river basin. To account for random phenoma such as evaporation during the
transformation process a perturbation term was introduced. The point process describing the
shots (jumps) is based on an intensity function alternating randomly between two levels. Thus
clustering of shots can be incorporated into the model.

INTRODUCTION MODEL DESCRIPTION

Numerous stochastic models have been applied to stream-
flow series. They can be grouped, for instance, into ARMA-
type models (Fiering, 1967; Hipel et al.9 1917; Noakes et al
1985; Kottegoda & Horder, 1980; Salas & Smith, 1981), long
term memory models such as fractional Gaussian noise
models (Mandelbrot & van Ness, 1968; Mandelbrot &
Wallis, 1969) and related broken line models (Meija et al.,
1972). The third class of models refers to the transformation
of an intermittent rainfall process into a continuous dis-
charge series (Treiber & Plate, 1975; Weiss, 1973, 1977;
Miller et al.9 1981; Kavvas & Delleur, 1984; Koch, 1985;
Bodo & Unny, 1987). In this paper daily streamflow series
(Beard, 1967; Quimpo, 1967; Valencia & Schaake, 1973;
Mejia & Rousselle, 1976; Yakowitz, 1979; Morris, 1984;
Miller et al 1981; Weiss, 1977; O' Cornell, 1977) are being
modelled. An appropriate model should reproduce

- the distinct increase of the discharge at the beginning of
floods;

- the slow decay during the falling limb of floods;
- the clustering of flood events;
- nonlinear characteristics of the system;
- seasonality in the discharge series.

Essentially the same paper was published in the Proceedings of Hydrology
Days, 1991, pp. 185-94, H. J. Morel Seytoux (editor).

In this paper the streamflow at the catchment outlet is
described by the discharge from a linear reservoir. This
conceptual reservoir (Nash, 1957; Kelman, 1980; Bodo &
Unny, 1987) provides the time delay between instantaneous
rainfall events and the resulting discharge. The mass balance
equation is given in equation (1)

dS
—
At

(1)

where 5, / and Q are the storage volume, the input and the
reservoir outflow considered in continuous time. Assuming a
linear reservoir, for which Q = a S, we obtain:

(2)

Considering the randomness in the input by modeling the
rainfall by a compound Toisson type' process the respective
cumulative form is expressed by

A - I UH (3)

where Nt counts the shots in the time period (0, t] and the
shots Un are independent and identically distributed random
variables (i.i.d.r.v.).

225
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Fig. 1 Sample intensity of the RCM-process.

Often, it is observed that the counting process exhibits
clusters and cannot be modeled as a Poisson process. There-
fore, a point process with an intensity alternating randomly
between zero and an intensity /? (Fig. 1) was applied. This
type of process was investigated by Kingman (1964) and
applied to rainfall modeling by Smith & Karr (1983). Intro-
ducing a time-space 'Poisson type' process v(.,.) the input
can be rewritten as the Stieltjes integral

/,= wv(df,dw) (4)

o o

This representation is used in the formalism of stochastic
differential equations with jump terms (cf. Snyder, 1975).

To take account for phenomena such as evaporation, time
dependent and spatially distributed retention capacity in the
basin a perturbation term

a + a(Q)w (5)

is additionally included in equation (2). a is a constant, a a
function of the outflow and w a wideband noise. Finally, the
nonlinear stochastic differential equation

dt
(6)

is obtained.
For the sake of mathematical convenience the wideband

noise is substituted by white noise, which is a stationary
process with constant spectral density. Formally spoken,
white noise is the derivative of a standard Wiener process W.
Expressing equation (6) in its integral form we obtain

(7),= Qo+ {(AQs + a)ds+ L(Qs)dws+ f L

0 0

In the drift term A = - a has been substituted and in the
jump term a was included in u. Usually, equation (7) is given
in the form of an Ito-differential equation

•J uv (dt, du) (8)

The solution process of this equation is called a jump-
diffusion process, where o(Qt) is the diffusion coefficient and
Jwv(df,dw) stands for the jumps (shots). The diffussion
coefficient <T(.) expresses the infinitesimal variance between
the shots and is obtained from (9).

Three cases have been considered:

(a) a (x) = <70 = const
(b) a(x) = ^2Cx
(c) o(x) = Bx

In the first case the perturbation is independent of the
outflow, in the second case the infinitesimal variance is linear
in x and in the third case a quadratic function is assumed.
Cases (a) and (c) lead to special cases of a general linear
stochastic differential equation

fwv(d/,dw) (10)dQt=(AQt + a)dt +

The solution of this equation is given by (cf. Gikhman &
Skorokhod, 1972)

Y.+ ia-Bb) !rsds + b f YjiW,+ f

01)

with

+ w)v(ds,dw) (12)

IDENTIFICATION OF THE JUMP
DIFFUSION PROCESS

In this section the characteristics of the process which refer to
the frequency and distribution of jumps and the behaviour of
the recession curve are investigated. Often, local maxima of
the hydrograph occur in groups. In this model the rising limb
in a hydrograph is represented by a shot of the magnitude Un

(see equation 3). The interarrival times between shots are
modeled by a mixture distribution with the density

(13)

(14)p{+p2
= 1 and/>,>0

</>! and (/>2 denote the mean interarrival times in wet and dry
periods and px and p2 assign weights to these periods. The
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corresponding point process describing the occurrences of
the shots was called RCM-process (cf. Smith & Karr, 1983).
It can be described by three parameters: the positive intensity
level P and the transition characteristics y0 and y{ governing
the transition between two intensity levels fi and zero.
Roughly speaking, these two levels indicate wet and dry
periods. The estimation of the parameters was done by the
so-called EM-algorithm which is an iterative estimation
procedure to find parameter estimates in incomplete data
problems. For a detailed description of this estimation
method we refer to Redner & Walker (1984) and Konecny &
Nachtnebel (1990).

The magnitude of the shots is represented by a sequence of
positive i.i.d. random variables. In this paper a two para-
metric log-normal distribution was applied. Between two
shots equation (8) reduces to equation (15) which describes
the discharge from a reservoir superimposed by some
random fluctuations.

dQt= (AQt + a)dt + (r(Qt)dWt (15)

The identification of the perturbation function cr(.) and the
drift parameters A and a is performed by utilizing daily
discharge series and additional observations with a higher
time resolution (cf. next section). A two-step identification
procedure has been applied. First, the diffusion term is
identified by the use of the quadratic variation of the
observations and second, the drift parameters are estimated
by the maximum likelihood method.

APPLICATION OF THE MODEL

The model was applied to an Austrian river basin located in
the south-eastern part of Austria. The gauging station
controls a rather flat area of 440 km2. Due to climatic
conditions runoff from snowmelt can be neglected and
therefore the discharge does not exhibit a pronounced
seasonality in comparison with alpine regions.

In this paper the nonlinear case (b) will be described. A
daily discharge series from 1961 to 1971 has been analysed.
The discharge series from 1961 is given in Fig. 2. Typical
parameters obtained from the daily discharges are given in
Table 1. Additionally, the hydrograph was also investigated
at a time resolution of half an hour to obtain an estimate of
the infinitesimal variance.

In a first step jumps (shots) had to be selected. A jump was
identified as an increase in the discharge within a maximum
of five days and at least 2.5 m3/s increase per day and a peak
exceeding 8 m3/s. Minor fluctuations in the increasing limb
were allowed. Finally 84 jumps were selected with a mean
value of 14.2 m3/s, a variance of 196.2 (m3/s)2 and a mean
interarrival time of 43 days. Clustering of the peaks was

Table 1. Hydrological parameters of the observation series
(1961-71) and corresponding values obtained from a
generated 10 years series

mean daily discharge (m3/s)
standard deviation (m3/s)
skewness (m3/s)
minimum discharge (m3/s)
maximum discharge (m3/s)

obs.

4.5
4.6
5.6
0.93

56.8

Table 2. Estimates of the model parameters

A= -0.352
a= 1.142
C= .10

<j)x= 74 .8
d>2= 4 7 . 4

Pi= -747

sim.

4.4
4.4
6.3
0.9

74.4

150.00 200.00 250.00

Time/Days

Fig. 2 Observed discharge series. River Lafnitz (Austria) 1961.

obvious as can be seen from Fig. 2. Table 2 gives the estimates
of the model parameters.

The lognormal distribution which was fitted to the
observed shots which is given in Fig. 3. Based on these
characteristics a daily discharge series were generated from
which an example is given in Fig. 4. The corresponding
parameters of the generated series are also included in
Table 1.

The autocorrelation function is given in Fig. 5 which
exhibits a slightly faster decrease of the autocorrelation
coefficient of the generated series compared to the empirical
values.

Summarizing, the presented model describes typical
characteristics of a daily discharge series. The fast increase of
the hydrograph and the slow decay in the falling limb are
considered in the model. Also, it accounts for clustering in
the shots and the nonlinearity is introduced by the diffusion
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T i m e L a g i n D a y s

J Fig. 5 Autocorrelation function (observed — and simulated ---).

0 10 20 30 40 50

Fig. 3 Histogram of observed shots and fitted density function.

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Time/Days

Fig. 4 Simulated discharge series.

term. In the present stage of model development a season-
ality in parameters has not been considered. Comparing
parameters from generated series and empirical values it can
be concluded that the first three moments are sufficiently
reproduced and also the autocorrelation function fits in good
agreement to empirical data.
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The influence of time discretization on inferred
stochastic properties of point rainfall

S. W^GLARCZYK
Institute of Water Engineering and Water Management, Cracow Technical University, Cracow, Poland

ABSTRACT The influence of time discretization on inferred stochastic properties of the
point rainfall process was investigated through analysis of its eight characteristics (number of
rain spells in a given time interval, AN; duration of dry spell, Td; time interval between the
beginnings of successive rainfalls, Tb; total depth of rainfall, H; duration of rainfall, T;
average, la, and maximum rainfall intensity, Im; relative duration of rainfall, Tr— T/Tb) at
time scale A t ranging from 5 minutes to 24 hours. The analysis, based on 25-year continuous
records from a daily pluviograph, showed that the process AN can be described by the
negative binomial distribution (NBD) for At<60 min and by the Poisson distribution for
At > 60 min. All remaining processes considered were found independent with the log-normal
probability distribution function rendering the best fit at each At. Rainfall and dry spell
durations behave differently. For A t > 180 min they have to be treated as discrete ones with the
NBD. About one third of all correlations for the seven processes is strongly affected by A t
causing change of their significance.

INTRODUCTION

The uncertainty accompanying all hydrologic processes is
particularly visible in the case of the atmospheric precipi-
tation. The genesis of the process takes place within a large
volume of space-time domain where the leading role is played
both by strong random factors (related, among others, to air
turbulence, heat transfer between ground and atmosphere,
etc.) as well as by deterministic periodic factors, as the
astronomical cycles, particularly the annual cycle of solar
radiation. In general, the precipitation process is a nonsta-
tionary stochastic process within a year. Additionally, it is an
intermittent process, i.e. the periods of time with instanta-
neous rainfall intensity £, > 0 are alternated with the periods
with £t = 0 so that the probability density function (PDF) of
<*, is of mixed, discrete-continuous, type.

The information about the process under consideration is
mostly limited to the point rainfall recorded at a determined
time scale (called henceforth also the time discretization
level, and denoted as TDL or At). The natural stochastic
process of the point rainfall is investigated through its
representation, e.g. daily rainfall. Therefore the randomness
of the process founded on the basis of this representation is
'local' and refers to the daily rainfall only. The question
arises - how a change of the time scale influences the inferred
properties of the investigated rainfall. This is particularly

important if the TDL of the data available is different from
the one needed (Committee on Precipitation, AGU Hydro-
logy Section, 1984; Valdes & Rodriguez-Iturbe, 1985; and
Woolhiser & Osborn, 1985).

The second essential factor strongly affecting the inferred
properties of rainfall is the assumed definition of the rainfall
event. This arbitrariness is possible because of the intermit-
tency of the rainfall process. Many different definitions of
rainfall event exist, depending on the goal of the investi-
gations. This variety is particularly spectacular in design
rainfalls (Marsalek & Watt, 1984) and rainfalls with TDL
less than one day.

The objective of the paper is to show the influence which
time discretization exerts on some chosen characteristics of
the rainfall events. Basing on the data covering the time span
of 25 years, it is accomplished by the analysis of one-
dimensional rainfall characteristics treated as nonstationary
stochastic processes, and by the analysis of correlations
between them, made for each assumed TDL.

BACKGROUND

The basic process

The basic process, the knowledge of which would make it
possible to find all the searched characteristics of rainfall, is

230
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the continuous stochastic process of rainfall intensity £„
t > 0. It is an intermittent process, i.e. for every positive tx, t2, t

, = 0, teAx}>0
lim Prob{£, = 0, teAx} =

Prob{£,>0,
and

(1)

where A T = (/1?/2) and Prob{.} denotes probability. Thus, in
a given time interval there may be a rain (£,>()) or no rain
(£t = 0) with positive probability, and the probability of no
alternation between two states (£,>0 and £, = 0) in a given
interval Ax tends to zero with its increasing length.

If an arbitrary set of time points {tl912,..., tn} is chosen,
then, in general, the PDFs of the ^-process, Ft.(x)
= Prob(^.<x), will be different for different tt. So different
will be also the moments of the process at given time points.
In particular it refers to the expected value E(£,) and the
variance var(£,). If the ^-process is nonstationary then this
fact should be reflected in dependence of E(£,) and/or D2(£,)
on time.

Because of the basic property of ^-process, that is its
intermittency, a certain conceptual structure may be intro-
duced, namely a rainfall event, defined as continuous rainfall
between two successive non-rainy time intervals. For each
rainfall event one can define many characteristics (derived
processes or derived variables) which can be divided into
external ones, such as the rainfall duration, the total depth,
the average intensity, the beginning time of rainfall, etc., and
internal characteristics of rainfall describing the function
£,> 0 and its stochastic properties.

The ^-process as such is rarely investigated. Usually the
information about it is given in series of depth increments
{Aht}9 i= 1,2,...,«, taken in determined (constant or vari-
able) time intervals:

(2)

Rainfall event would be now an uninterrupted sequence of
nonzero rainfall depth increments {Ahf}, i= 1,2,...,«, limited
by two successive zero-rainfall increments: Aho = O and
Ahn+l =

Data

The data basis consisted of all rain gauge daily charts
recorded at the Krakow Botanical Garden meteorological
station during 5-month period (May 1-September 30) of
each year from 1961 until 1985.

Each chart with total daily rainfall amount of more than
0.5 mm was digitized into a broken line resembling the
recorded continuous one as closely as possible, and then

corrected if necessary and possible. Daily hyetographs were
chronologically linked into yearly hyetographs containing
all rainfalls from successive years, beginning at 0000 hour of
May 1 and ending not later than at 2400 of September 30. The
set of all 'metahyetographs' ('broken-line' set) was used for
making 9 derived sets of rainfall depth increments at a given
time discretization level A t which was assumed to equal 5,10,
15, 30, 60,180, 360, 720, and 1440 minutes. Then for each of
those 9 sets and the 'broken-line' one, the sets of rainfall
events (rainfalls) were determined.

For the use of the following part of the paper a rainfall
event is defined as a noninterrupted sequence of A ̂ -minute
time intervals with non-zero rainfall increments preceded
and followed by at least one time interval with 'zero' rainfall
increment. This last term means a threshold value beneath
which all is but the noise and was set equal to 0.1 mm/h unless
the recorded rainfall amount exceeded 0.05 mm. The latter
condition was of value for longer discretization intervals A t
in order not to omit small rainfalls. Very small rainfalls with
total depth not greater than 0.1 mm were rejected. Apart
from those 9 sets of rainfalls another set was made (denoted
as At = 0) one, containing all rainfalls with variable discreti-
zation interval (made on the basis of the 'broken-line' set).

The investigated derived processes

In the present paper the following one-dimensional external
characteristics of rainfall are investigated at each assumed
At:

(1) the number of rainfalls which began in a given time interval,
AN(t);

(2) the time interval between the end of a given rainfall and the
beginning of the next one (the dry period duration), Td(i)

M;
(3) the time interval between the beginning of a given rainfall

and the beginning of the next one, Tb{i) [days];
(4) the total depth of rainfall, H(t) [mm];
(5) the duration of rainfall, T(t) [h];
(6) the average rainfall intensity, Ia(t) [mm/h],

Ia(t) = H(t)/T(t);
(7) the maximum rainfall intensity, Im(i) [mm/h];
(8) the relative duration of rainfall, Tr(t) [-]: Tr(t)=T(t)/

Tb(t), investigated mostly in its transformed form
Tr'=Tr/(l-Tr).

In all the cases the variable t denotes the beginning time of a
rainfall event, and t = 0 at 0000 hrs of May 1. Some of the
above-defined characteristics are illustrated in Fig. 1.

Each characteristic X(with exception of the A TV-process) is
by definition a nonstationary stochastic process Xt,te (May
1,0000, September 30,24°°)= (0,Z>), D= 153 days, given at a
determined At by 25 yearly realizations X^{tj) = Xy\ j

each, which are the basis of the analysis. Each of the 25
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Table 1. Lengths of stationarity intervals AD, their number mAtper 153-day period, and minimum «,
number of rainfalls per AD at assumed discretization levels At

min and maximum «max

Time discretization level A t [min]

AD days
mAt

Wmin

"max

0

6.1
25
102
215

5

6.1
25
99
200

10

7.0
22
99
212

15

7.0
22
96
199

30

7.7
20
108
185

60

9.6
16
98
195

180

15.3
10
96
210

360

19.1
8
97
189

720

25.5
6

114
170

1440

30.6
5
97
139

Im(t)

Ia<t)

' rain/all intensity I
event 1

nJh
r-i r •—i

r UH(t) f

mm/hJ

event

• rrtrr
2

n..

event 3

fl

h.,, •i i i i i i i i

t=O j« j
j< Tb(t) >j

L instant t

Fig. 1 Illustration of some characteristics of rainfall event. The
smallest time interval is equal to A t.

realizations of the A TV-process was a sequence of numbers of
rainfalls in a given time interval of all successive years.

Two approaches to analysis of a nonstationary stochastic
process

An important problem is to choose the method of analysis of
a given process. There exist two fundamental approaches
(Todorovic & Yevjevich, 1969).

The first approach is a method of separation of determinis-
tic and stochastic part of the investigated process Xt. It is
transformed in such a way as to remove all existing determi-
nistic components which are assumed to contain all the
nonstationarity of the process. The remaining part Xt is now
a pure stochastic process. The most often used transforma-
tion is

(3)
D(X,)

and it is based on the assumption that the nonstationarity of
the process is confined only to E ^ ) and T)2(Xt). Thus the
new process Xt is a stationary one (dependent or not)
containing all randomness of the JJf,-process.

When taking the second approach, the process Xt is
investigated as observed with its deterministic part not
separated from the stochastic one. Nonstationarity is being
searched in various functions of the process, e.g. in para-
mete rs gl9...,gk of its P D F F(x; gx(t),...9 gk(t)). This

approach is attractive for intermittent processes and will be
applied in the present paper.

Assumptions made

Two assumptions were made. First, that the PDFs of the
investigated processes are functions of time through their
parameters gl5g2> • • • >gk-

P(Xt<x) = F(x;gl(t),g2(tl...,gk(t)) (4)

te(09D), D= 153 days, k<2. Secondly, that these processes
are not highly variable within the year and may be considered
stationary within consecutive intervals (named further
stationarity intervals) ADt (of the same length AD each),
/= l,2,...mA,, where mAt stood for their number at a given
TDL. The aim of the analysis was to find the best possible
estimation of the function (4) in every ADt.

The important problem for the analysis is the determi-
nation of the length AD of stationarity intervals at a given
TDL. It has to be done in such a way that:

(a) the nonstationarity of the process under investigation is
taken into consideration as precisely as possible; and

(b) best possible estimation of the function (4) is obtained.

As a compromise between these conditions the assumption
was accepted that the length of a stationarity interval at each
given TDL should cover at least about nmin= 100 rainfalls.
This gave different numbers mAt of stationarity intervals at
different TDL, from mAt = 25 for At = 0 to mAt = 5 for At
= 1440 minutes (Table 1). Such division ensures, indepen-
dently of the assumed TDL, approximately constant accur-
acy (which depend first of all on the sample number) of the
estimated parameters of the function (4).

The above-established division was the basis of further
investigations which included the following steps:

(1) Proving that the random sample (being a set of data
representing the investigated random variable Xin an ith
stationarity interval ADt, i= 1,2,.., mAt at a determined A i)
was an independent sample. The proof was given by testing
significance of lag-one auto-correlation coefficient within
the sample, rx (/), / = 1,2,..., mAr
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(2) Searching (for each ADi9 /= 1,2,..., mAt, at a determined A i)
for the best probability distribution function F(x;
gi(t),g2(t)) out of a given set of PDFs. This required (i)
estimation of the parameters gl (i), g2(i), i= 1,2,..., mAt, of
all PDFs, and then (ii) selection of some quantities which
will measure the quality of the fit, and calculation of their
values.

The first task was accomplished by means of the maximum
likelihood method applied to all used PDFs, the second one
by the Kolmogorov goodness-of-fit test for continuous vari-
ables and the Pearson x2 test for discrete ones. These
characteristics played an additional role: their values served
as the quality indices when choosing the best PDF in the
sense that the smaller a test statistic value the better
distribution.

The within-the-year variation of gt and other quantities
will not be analysed here, although some information on
them will be given herein.

ONE-DIMENSIONAL CHARACTERISTICS
OF RAINFALL

AH El/day3

In order to illustrate at least qualitatively the influence of
time discretization on the chosen processes, they were
initially assumed to be stationary and independent within the
153-day period, and (for each process) four statistics were
calculated at each TDL, namely the average (av), the
standard deviation (sd), the coefficient of variation (cv) and
the coefficient of skewness (cs). The results as functions of At
are presented in Fig. 2. Apart from a few cases, these statistics
are highly regular (and mostly monotonic) functions of A t.

The presented functions, perhaps beside the cs, show
expected tendencies. Characteristics whose the values are
proportional to time (T, Td, Tb, H) have their averages and
standard deviations increasing with At, while characteristics
with values per time unit (AN, la, Im) have these statistics
decreasing. An interesting case is the 7>-process: its av-
function is not monotonic and has unexpectedly high values
(30-35%) for lower At in relation to the percentage of the
total duration of all rainfalls within a year which varies for
At<60 min from 5 to 9%. It means that a short rainfall
period is typically followed by a short period with no rain.
Coefficients of variation are decreasing with A t and are not
high. Coefficients of skewness for the ^-processes (T, Tb, Td,
Tr) and AN are increasing with At.

Process \N(t)

The realizations of this process were the numbers of rainfalls
in a given stationarity interval of all successive years. Usually
it is assumed to be Poissonian. This possibility was tested in
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Fig. 2 The influence of the discretization level At [hours] on the
basic characteristics of the investigated processes assumed to be
stationary and independent.

In(chi2) : Poisson

- 3 - 2 - 1 0 1 2 3 4

In(chi2) : negative binonial (NBD)

r^-^r^

- 3 - 2 - 1 0 1 2 3 4

Fig. 3 Average (squares), maximum, and minimum (vertical lines)
values of logarithms of the Pearson chi-square goodness-of-fit test
statistics for the Poisson and NBD PDFs as functions of the
discretization level At [hours]. Horizontal lines are 1% (solid) and
5% (dotted) average critical values of the test.

each stationarity interval at a given TDL by the x2 test. As
can be seen from Fig. 3 this distribution cannot be accepted
at TDLs shorter than 180 minutes. For this reason another
distribution was applied, namely two-parameter negative
binomial distribution (NBD). The acceptance area of it is in a
sense complementary to that of the Poisson PDF. It must be
stressed here that the within-the-year variability of the x2

statistic is large, especially for the Poisson distribution,
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Fig. 4 Average (squares), minimum, and maximum (vertical lines)
values of the lag-one autocorrelation coefficient rl as functions of
the discretization level At [hours] for the investigated processes.
Solid and dotted lines limit 99% and 95% average tolerance
intervals.

which can be the result of a rather small size (only 25 items
per each ADt) of samples available.

The remaining processes

All the remaining characteristics were treated as continuous
processes which were stationary in the successive intervals.
The independence of these processes was tested by means of
the lag-one autocorrelation coefficients rl(/), i= \,2,...,mAt

the average values of which are illustrated in Fig. 4. The
extreme values of rl(i) are sometimes outside the tolerance
interval - this refers, however, mostly to only one value of all
r\{i) for a given At. Thus, the independence could be
accepted in all cases.

Basing on this finding, five PDFs: normal, log-normal,
gamma, Weibull and beta2 (cf. Yevjevich, 1972) were applied
to successive processes for each stationarity interval at the
successive TDLs. Having in mind the fact that for the
Poisson process the distribution of times between events is
exponential, this distribution was additionally applied to Td-
and 72>-processes. Parameters of all these distributions were
estimated by the maximum likelihood method, and the
quality of fit was tested by the X Kolmogorov-Smirnov test.
Average values of X together with its maximum and mini-
mum at each At for the investigated processes are given in
Fig. 5. It is clearly seen that beside the T- and Ttf-processes,
the applied approach makes it possible to use one PDF for all
ADt at all TDLs for a given process. The best distribution,
from the point of view of its consequency in being significant
within the range of A t-variability, is the log-normal one,
although at some TDLs there are distributions with smaller
average X. In some cases {la, Im, Tr') the beta2 PDF is also

• jjjjjtfo j ^ 1 ^
r\ T:HeibulI ^ T:beta2

| -ft | Ia : i

l n (M + 0 . i ) | j 1 1 1 1 1 1 i j

Td;log-nrn -A Td:ga«a -A Td;HeibuI! -.\ Td:bsta2 7\ Td;exp
i , • i S

'.log-nrn -^ Tb:gaftHa -& TblMeibui! -£ Tb:bet32

\TrJ:log-nr» T>, Tr':gam« -v\ Tr "iteibul! -fr Tr' :beta2

- 3 - 1 1 3 - 3 - 1 i 3 - 3 - 1 1 3 - 3 - i 1 3 - 3 - 1 i 3

Fig. 5 Average values of the Kolmogorov-Smirnov goodness-of-
fit test statistic X (squares), and its minimum and maximum values
(vertical lines) as functions of the discretization level At [hours]
computed for the PDFs of the investigated processes. Horizontal
lines are 1% (solid) and 5% (dotted) critical values of the test.

very good. The remaining distributions (beside the normal
one) can be accepted only for some Ats.

The problem is more complicated if one considers the T-
and 7W-processes. For small discretization intervals A t (up to
c. 10 min for Tand 60 min for Td) the log-normal distribu-
tion can be accepted, while for the higher TDLs no PDF can
be accepted. The possible reason is the non-adequacy of the
continuous description of the variables which are discrete.
Accepting that explanation, two discrete PDFs: the Poisso-
nian one and the NBD were applied for those processes at
TDLs greater than 10 min for T, and greater than 60 min for
Td. The realizations of the processes were transformed by
means of the following formula:

X'=[X/At]-\ (5)

where X= Tor X= Td and [x] is the highest integer value not
greater than x. The maximum likelihood method was applied
to estimate the parameters of the PDFs used. The quality of
the fit (measured by the x2 statistic values) for both distribu-
tions is shown in Fig. 6. The Poisson distribution is not
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In(chi2): Poisson(T) In(chi2): NBD(T>

0 b 12 18 24

In(chi2): PoiEson<Td)j In<chi2): NBD(Td)

Fig. 6 Average (squares), minimum, and maximum values (verti-
cal lines) of logarithms of the Pearson goodness-of-fit test statistic
for Poisson and negative binomial (NBD) PDFs as functions of
the discretization level At [hours] for the processes Tand Td.
Horizontal lines are 1% (solid) and 5% (dotted) average critical
values of the test.

acceptable in any case, although its fit is getting better with
the A t values. The other distribution, NBD, is very good at all
applied TDLs for the 7W-process. Unfortunately, it is not the
same for the T-process: the NBD is acceptable for At> 180
min only. Thus, the Jtf-process can be described as a
nonstationary independent one with its PDF continuous
(log-normal) up to At = 60 min and with discrete (negative
binomial) PDF for At>60 min. For the T-process the
situation is more complicated because for At= 15, 30 and 60
minutes neither continuous nor discrete distribution is
acceptable.

The exponential distribution which is expected for the Td-
and ^-processes if the A TV-process is Poissonian is practically
not acceptable at any At, so the Poisson distribution for
At> 180 min is a rough approximation.

INTERCORRELATIONS BETWEEN THE
DERIVED PROCESSES

As in the previous section, the analysis made here refers to
the successive stationarity intervals at each of the ten TDLs.
Because of the log-normality of the majority of the one-
dimensional PDFs of the investigated processes (i.e. H, T, la,
Im, Tb, Td, Tr'), the assumption was accepted that all
possible pairs of these processes had two-dimensional log-
normal PDF within each stationarity interval at each At.
Then the correlation coefficients between logarithmically
transformed processes were computed and their significance
tested. The intra-year variability of the coefficients was
consistently over or under the critical values so that it was
possible to use the average correlation coefficients as indices
of interdependence between the processes. There were, how-
ever, some cases (i.e. some Ats) for which it was difficult to
decide whether the correlation within all the 153-day period
was significant or not. This took place when the frequent
within-the-year alternation between significance and insig-
nificance occurred. The obtained results are summarized in

Table 2, as well as in Fig. 7 where more information is
provided.

It can be seen from Table 2, that eight of the correlations
were constantly (i.e. at each A/-level) significant, seven
constantly insignificant, and in the remaining six cases the
crossing of the tolerance interval limit took place. More
details are given in Fig. 7.

The significant interdependence is very strong in most
cases with intra-year variability of the correlation coefficient
rather low (cf. Fig 7, diagrams A, B, C, F, L, S, U). It is
interesting that there is such strong interdependence for the
(la, H), (la, Im), and (Td, Tr') pairs of processes. A rise in A t
affects moderately the average correlation coefficient chang-
ing its values at about 0.2 at maximum.

The lack of the dependence (diagrams E, J, M, N, O, Q, R
of Fig. 7) means, in turn, that the correlation coefficient is
more variable within the year.

In cases where significance/insignificance alternation
occurred (i.e. D, G, H, I, P and T in Fig. 7) the influence of A t
is so strong that it changed qualitatively the interdependence,
and the within-the-year variability of r(A /(-functions was the
greatest. The point of A t equal to one hour seems to separate
the interval of almost constant values of r(At) from the
interval with a continuous rise with At.

CONCLUSIONS

Based on the 25-year continuous records of rainfall depth at
the Krakow gauging station, an analysis of the influence of
time discretization on some chosen characteristics of rainfall
event was made. The processes were treated as nonstationary
stochastic ones that can be investigated within the year in
consecutive (stationarity) intervals containing at least ca 100
rainfall events. The following conclusions can be drawn from
the analysis:

1. For the investigated processes there exist the significant
within-the-year sequential independence which is the better
the larger the discretization interval At is. It does not
concern the AiV-process whose independence was not
investigated.

2. For the majority of the processes investigated the log-
normal PDF can be accepted as the best one at each A t.

3. For the Td- and T-processes the conclusion 2 is valid only
for small At. When large TDLs (i.e. A/>180 min) are
considered, these processes have to be treated as the discrete
ones with the negative binomial distribution. For At= 15,
30 and 60 min the T-process has no acceptable PDF out of
the applied set of PDFs.

4. The A TV-process can described by the negative binomial
distribution for At< 180 min and the Poisson distribution
for At> 180 min.

5. For almost all cases the interdependence between the
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Table 2. The global results of significancy test of inter-dependence between processes under consideration. The sign + or -
without numbers means signifinancy or insignificancy of a given pair of processes at 1% level at each At. Two numbers
determine an interval, one a At value for which the inter-dependence is significant ( + ) or insignificant ( — ) . The ? sign
means lack of decision. Letters A-U refer to Fig. 7

process la Im Tb Td Tr'

H
B

- 0-60
+

C D

- 0
+ ?

- 0
+

H

- 0-60
+

K

la
M N O

Im
R

Tb - 1440
T

Td
U

6.

investigated processes is constantly significant or con-
stantly insignificant within the year at a given A t, enabling
therefore the use of an average correlation coefficient r(At)
as an index of interdependence at a given At. When
significant, the correlation function r(At) is very regular.
In some cases increasing the A t-values causes at a certain A t
appearing or disappearing the interdependence.
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Fig. 7 Average (squares), minimum, and maximum values (verti-
cal lines) of the correlation coefficient between the investigated
processes as functions of the discretization level A t. Horizontal
lines are the average limits (upper one, if positive, lower one, if
negative, or both) of the 1 % tolerance intervals.



The distribution of the /-day total precipitation
amount
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ABSTRACT On the two-dimensional domain of the time (discrete variable) and the
cumulative daily rainfalls (continuous one) an alternating rainfall process is constructed.
Methods of renewal theory are used to define the process and to calculate its properties. The
fundamental assumption used to derive results of this paper is: the total precipitation amount
of the wet days sequence is dependent on the length of this sequence. The independence of the
successive dry and wet sequences is assumed too. Based on the above assumptions we finally
derive the theoretical distribution of the /-day total precipitation.

INTRODUCTION

Hydrology, from its beginnings, is concerned with rainfall
modelling. The importance of precipitation for other hydro-
logical processes caused a stormy development of various
models. For a detailed review see for instance the work of
Waymire & Gupta (1981). More recent investigations about
the properties of daily rainfalls can be divided into three
parts:

(a) the seasonal variation of the stochastic model parameters
(Woolhiser & Pegram, 1979; Valdes, Rodriguez-Iturbe &
Gupta 1985; Yevjevich & Dyer, 1983; Woolhiser & Roldan,
1986);

(b) the description of precipitation occurrence and intensity
(Buishand, 1979; Woolhiser & Roldan, 1982);

(c) the construction of models of wet and dry sequences
occurrence (Roldan & Woolhiser, 1982; Mimikou, 1983;
Jakubowski, 1988).

Unfortunately, though the obtained results are generally
more useful than raw observations, they can rarely be
applied as an input for simulation models. They do not even
give a precise description of the precipitation climatology of
a region.

One of the fundamental problems of rainfall modelling is
to find a relation between daily precipitation intensity and
character of the wet interval. The extensive study on such
relation for Dutch and foreign stations has been published by
Buishand (1979). Among the conclusions presented there
are:

(a) the distribution of daily rainfalls depends on the number of
adjacent wet days;

(b) during winter and autumn there is a small, but significant
correlation between daily rainfalls on successive wet days.

More generally one can express these conclusions in a
following statement: the daily rainfalls of any wet sequence
are dependent and not homogeneous.

This formulation determines the basic assumption of this
paper: the total precipitation of the wet days sequence is
dependent on the length of this sequence. The second,
generally accepted assumption is that the length of successive
dry and wet periods are independent. Finally we restrict our
considerations to unchangeable climatology conditions
only. These three assumptions let us to employ renewal
theory for the theoretical description of the precipitation
behavior of some /-day period (because of the third assump-
tion, / should be limited; in practice it does not exceed 30
days). As a final result, the theoretical distribution of the /-
day total precipitation amount is presented.

THE RAINFALL PROCESS

The simplest model describing the rainfall phenomenon gives
an alternate discrete process. Two states {0,1} denote dry and
wet days respectively. The properties of such process and its
fitting to observed data are often investigated, see for
instance Buishand (1979), Jakubowski (1988). We also con-
centrate on the alternate process, but in other, more general

238
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way. The states, the same as for the occurrence process,
depend now not only on the time, but also on the sum of daily
totals. In this approach the sum is taken as a second variable.
The process, called further the rainfall process, is described
on the two-dimensional domain of time and amount, where
time expressed in days is a discrete variable, while the amount
in millimeters is a continuous one.

To define the rainfall process first we concentrate on a
random character of the phenomenon. We can determine
two sequences of random variables:

for the dry period - Bt - the number of the days;
for the wet period - (Ai9 Ht) - At is the number of days;

where Ht is the total rainfall of the wet sequence.
Note that /, which indicates the successive dry and wet

periods, not only represents the time but also reflects on the
variety of cumulative precipitation amounts.

The defined variable (Ai9 Ht) is a two-dimensional one. As
it is observed in reality (see Buishand, 1979) we have some
kind of connection between the length of wet period and it's
total rainfall. Therefore in this paper we assume a depen-
dency of At on Ht. Hence for the probability we have
P(Ai9Hi)±'P(Ai)P(Hi) and consequently the next defined
rainfall process should be two-dimensional.

According to the above assumptions we describe the
rainfall phenomenon by a sequence of independent random
variables: . . . , (ApHt)9 Bi9 (Ai+l,Hi+l), Bi+l,...,ie N. We

will investigate it in the equivalent form: ..., (Ai9Ht)9 (Bi9It)
(Ai+l9Hi+l), (Bi+xJi+x)...,ie N, where for any ie N P(/,
= 0 )= l . We also assume that (A^H^iA^H) and (Bi9It)
= (B,I) are identically distributed. To make further calcula-
tions more clear we restrict our study to the sufficiently
smooth distributions only.

Note that for determining the variety in time it is sufficient
to study the sequence ..., Ai9 Bf, Ai+l, Bi+l,...,ie N . The
sequence..., Hi9 It, Hi+19 Ii+l,...,ieN , which is equivalent to
the sequence {Ht}, ie N , defines the successive increments of
the wet periods rainfalls. From practical point of view, a
renewal process of amount, given by {//,}, would not be
investigated without its precise location in time.

For k = 1,2,... let us denote by

and take SQ= Vo= T0 = 0.
The distributions of (Sk, Vk) and (TkJ), A: = 0,1,... will be

denoted by Fk(n, h) and Gk(ri), n = k,k+l,...h>0. The distri-
butions of the sum (AXiHx)+ (A2,H2)= (S2, V2) and
(AX,HX)+(BXJX)=(AX + BX,HX) are given by the
convolutions:

n-\

n

J '=1
-s)dP(Bl = n-i,/,<s

which we will write in the form

F{ («, h) * Fx («, h) and Fx (n, h) * Gx (n)

The probability that the fcth wet and the &th dry sequences
terminated exactly on the nth day with the total precipitation
not greater h is given by

n = 2k,2k+\,... h>0.

Taking the sum of &k over k we obtain

[nil]

k=\

as the two-dimensional renewal function.
Note that <P(n,h) satisfied the renewal equation

= n-k,H<h-s)d<P(k,s)•J k = 2

Having described the random character of the rainfall we
can now start to construct the simple rainfall process Y(t, h):

(a) We fix the initial conditions. We assume that process starts
from the point (0,0) and the day t = 1 is first at the wet days
sequence.

(b) To describe the process domain O we fix an arbitrary point
(t0, h0), where time toe N and cumulative rainfall h0 > 0. We
can distinguish:

-t0 is a wet day and belongs to /rth, A: =1,2,... wet
sequence;

consequently we have Vk<h0<Vk+l; for other h0 (i.e.
ho< Vk or ho> Vk+1) points (*0,/*0)<£D;

— r0 is a dry day and belongs to fcth, A: =1,2,... dry
sequence;

this forces ho= Vk9 for other h0 (/*0=/= Vk) points (to,ho)$ O.
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Fig. 1 A realization of the rainfall process domain.

and

satisfy the renewal equations:

Mx (t, h) = P(A>t, H> h) + M1 (r, h)*Fx (f, h)*Gl (t)
M0(t,h) = F(A + B>t,H>h)-F(A>t,H>h)

+ M0(t,h)*Fl(t,h)*Gl(t)

It follows from the renewal theory (Bickel & Yahav, 1965)
that

Notice that process domain D is a random variable. An
example of its realization is shown in Fig. 1.

(c) To define a simple rainfall process Y(t,h) for any point
(t,h)e Owe put

!

1 where Sk+Tk<t<Sk+l + TkandVk<h£Vk+l

for some £ = 0 ,1 , . . .

0 where Sk+l + Tk<t<Sk+l + Tk+l and h= Vk+l

The process Y(t,h) is used to construct a (stationary)
rainfall process a(t, h). For this purpose we have to calculate
the limits of the probabilities:

(a)
(b)

(1)
(2)

when t and h tend to infinity.
The random variable (y (/),£(/*)) is the two-dimensional

residual waiting time and amount of the process Y(t, h) in the
state 1, and it is defined as follows.

Let for given t and h9teN,h>0, Y(t,h)=\, then y{i) is

equal to the number of successive wet days, which follows tth
day, 7(0 = 0,1,2,... and ((/*) is equal to the sum of daily
rainfalls which appear in these days (if y (0 = 0 then ((/*) = 0).

The random variable Y\ (t) is the residual waiting time of the
process Y(t, h) in the state 0 and it is defined similarly as y{t).

Consider the probabilities (1). It is easily seen that

lim
+ B)H\ J t=\E[(A + B)H]

E{AH)

and

lim M0(t,h) = + B>t,H>h)

-V(A>t,H>h)\dh
E[(A + B)H]-E(AH) E(BH)

E{AH) + E(BH) E{AH) + E(BH)'

where E (.) denotes the expected values. To simplify notation
we denote E(AH) = EAR. Taking into account the assump-
tion on the independence of the successive wet and dry
periods we have EBH=EBEH. (Note that EAH+EAEH.)
Hence the limiting values of the process Y(t9h) are

EAH

and

EBEH

n

P(A>t-n,H>h-s)d<P(n,s)
For the residual variables from (2) we have:

and

n

JJ
J »

and

-P(A>t-n,H>h-s)]d<P(n,s)



4 DISTRIBUTION OF /-DAY TOTAL PRECIPITATION 241

f - 2

=t + k-n,A<t-n,H>h-q)d<P(n,q)

The functions:
= P(y (*) = *, C(A)>J, r(f,A)=l), satisfy the renewal
equations:

oo

-—f
E^#J

?(A>k,H>h)dh

Using once more the renewal theory (Bickel & Yahav,
1965) we have:

lim R0(t9h) =
t,h-+ oo

oo
/• 00

1,?, =t + k9A<t9H>h)dh

oo

J.

o

and

lim
t,h-> oo

1—[i
00

1P(A>k,H>h)dh

These calculations enable us to write:

lim
t,h-+ oo

EAH+EBEH EHP(B>k) _?{B>k)

EBEH EAH+EBEH~ EB

and

lim
t,h-> oo

EAH+EBEH 1
EAH EAH+EBEH

00

IP(A>k9H>h)dh

To construct the rainfall process a(t,h) as mentioned
earlier we take that for any time t and any cumulated amount
h the suitable probabilities ofa(t,h) are equal to the limiting
values of the process Y(t9 A). Therefore for the process a(t9 A),
te N , A > 0 and residual variables connected with it we put:

^̂

The random variables A, B9 y(t)9 C(A) and rj(t) are defined
as for simple rainfall process Y, but & and ^ are some
distribution functions.

Straightforward computations show that covariance func-
tion of a(t9h)9 te N , A>0, does not depend on time t9 and
total precipitation amount A. This proves a second order
stationarity of the rainfall process.

Taking the assumption that the length of wet days
sequence is independent on its total rainfalls, we obtain a new
process d(t9h) - a simplified version of a(t9 A).

P ( ( A ) l ) ** P ( ( A ) O)
EA + EB

1 f
=

EAEHJ
s

00

1 1 f
= —P(A>k)

EA EH J

P(A>k)P(H>x)dx

P(*>£)
EB

It means, that the process d(t,h) is compound of two
independent processes: the alternate occurrence one for time
step and the simple renewal - for increments of wet sequence
rainfalls.
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THE DISTRIBUTION OF THE /-DAY
TOTAL PRECIPITATION AMOUNT

To find the distribution of the total precipitation amount Wl

in a fixed /-day period let us consider the two-dimensional
random variable (Nl9W[)9 where ^ = 0 , 1 , . . . , / denotes the
number of wet days in the /-day period.

Because of the rainfall stationarity it is sufficient to accept
that after Oth day we have h = 0 mm and the /-day period
starts at the first day on time scale. We consider four events:
Qy, i,j= 0,1. They describe the states of Oth and /th days. For
/= 0 and 7= 1 the Oth day is dry and the /th one is wet. The
other three events are defined similarly. To obtain the
distribution of Wt it is enough to calculate:

EAH

E(H\A>i)
i,h-s)\dFn(k-i,<s)

= a £ 9H(l-k{F1(k,h) +
« = 0 |_

EAH

E{H\A>k)
P(k,h)\*Fa(k9 h) (4)

To prove the above formula we consider the situation of
the /th day.

(a) If the /th day is the last in the A:day wet sequence, then the
distribution of the sequence is obviously Fx{k,h).

(b) If the /th day is not the last, then the situation is much more
complex. The formula

A: = 0 Q

where Qe{QW9Q0l9Ql09Qn}. k.n
To simplify the notation we set &n(k)= £ 9(i)Gn(k-i)

h h

P(A > k,H>s)ds \P(A > k, H> s)ds

0 0

P(A>k,H>s)ds

For Qoo (by definition) it is clear that

For k wet days (k = 0 , . . . , / - 1) we have

(k when k<l/2
\l-k when k>l/2

transitions from the dry to the wet state. Thus

gives the distribution of the residual participation amount.
Note, that for stationary, one-dimensional, nonperiodic,
renewal processes the distributions of residual waiting time
and up to now time are equal one to another. Hence the
probability of the first A>day part of the wet sequence which
is contained in the /-day period is equal to:

n

\
P(A>k,H>s)ds

-k-j) for*=l, . . . , / - l

a X FH(k,h) fo-iC/-*)-

EAH

'E(H\A>k)?(A>k) E(H\A>k)

For Ql0 we have P(JV7=/, Wl<h,Ql0) = 0, and for k wet
days (k = 0 , . . . , / - 1) we get

for k= ! , . . . , / - !

A: when A:<//2

l-k-l when fr>//2

(3^ transitions from the dry to the wet state. Thus

For QQl we have P(A^/=0, Wl<h,Q0l) = 0, and for k wet
days (k = 1,...,/) we get

fc-1 when fe<//2

l-k when k>l/2

transitions from the wet to the dry state. Thus

EAH

n=\ j=n
h

Z

[Gm(l-k)-Gm+l(.l-k)]Fa(k,h)*P(k,h). (5)

= G%(l-k)\Fl(k,h) +
E(H\A>k)

h
k-n

For Qn we have P(JV/=0,
days (A:= 1 , . . . , / - 1) we get

= 0, and for k wet

k when ^<//
/-fe when k>l/2
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transitions from the wet to the dry state. The considerations h

m — r I* rn

concerning the /th day are the same as for the condition Q0l. y ^p rm — f s \ = y p (i K\
Thus 1=0 J j=o

o

Denote by U(i,h)= Z ^ i ( ^ ) + * ^ f ., ^ (*,*)•

Notice that for each / > 0, U(i, h) is a probability distribu-
t i o n ' T h e c o n v o l u t i o n u(k,h)*Fr(k>h)is t a k e n for /=0,. . . ,v k-\ Pk—\ /• r v » / rv > /

P Z Gn(l-k) Z Z Fx{j9h-z-s)+ k~r- N o t i c e furthermore that EBP(<$n_lm) =
n=2 i=n~ i J ./= i J L - P(Tn<m) (Jakubowski, 1988). Hence the probabilities (7)

and (8) can be expressed by:
EAH

EAH ~|
(̂&,/*) + ^(k,h) \*^(k,h) (6) A

E(H\A>k) J a n a

*Fn_x(l-k,h)

The case when k=l, we will discuss separately. Proceeding V(Wl<h,Ql0+Qn)= ft ^
similarly as for the condition Q0l one can examine two cases J'=o

q I—ft

of the /th day, and determine the probabilities for both of + . y y ^ /£\p n-k h)*\U(l-k h)-U
them. We make a simplification, and take »=i k=n

EAH
*)-

Summing up the probabilities (3) and (4) as well as (5) and EH

(6) over k, k = 0,...,/, (for the details write to the author) we w h e r e P =
 EAH+EBEH' a n d r ' q a r e d e f i n e d a s Prev ious ly•

can obtain: A f t e r t h e burdensome calculus (for the details write to the
author) for the distribution P(PF/</z) of the / -day total

*. W&KQu) precipitation amount we obtain:

Z
f Z Z ^- i ( ;

n = l k = n ~ l L>=1
 + P Z I Gn(^)F/I_1(/-/:,A)*[l-f/(/-^A)]

E ^ ^ "I *) n=lk = n
^(l-k,h)-l \*Fn M-k,h)} (7) *\\-fj(1-khW (V\

E(H\A>l-k) V J j n"lV y j W Ll ^ U ^ « ) J (9)
i EAH

f [//2] for even / where C/(/, A) = Y F, (y, A) + &(z, A).
where r=< , />0 , and r-; ! E/f

|[/ /2]+l for odd/ 7=1

CONCLUSIONS

— R ) Y &( ' h\+ Y V C (Ir\F (l—k<h\* '̂ Theoretical results presented here can become a basic tool
\j=o ' „= i k=n

 n~x ' ~ for a practical estimation of a week, 10-day or fortnight total

[ /-* EAH ~| 1 rainfall distributions. Though the form of the formula (9) is

Z ^iO>/0+ > z ^ ( / - M ) - l *^(/-A:,A)l rather complicated, it is possible to evaluate the required
probabilities. It is sufficient, as it is often done in practice, to
choose a gamma-type distributions for fitting to all random

where q = [1/2] for every /> 0. The result of the convolution of variables used here. For instance for the wet sequence we can
Fr(m,h) with 1 is take Fl(i,h) = Pqv(i) ra>v+l-_1(A), where Pqv denotes Pascal
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distribution describing the length of the wet days sequence,
and Fa v+/_ {denotes gamma distribution describing the total
precipitation amount of the sequence.

2. The distribution of the /-day total precipitation amount,
given by (9) is quite general. Taking the precipitation
amounts on individual wet days as the independent and
identically distributed random variables, independent also
on the occurrence process, we can easily obtain the well
known formula

where F(h) is the distribution of daily rainfalls, and *k
denotes A>fold convolution. The differences between the
results from these two expressions depend mostly on the
character of the daily rainfall data. More precisely they are
caused by the degree of the dependency and nonhomogeneity
of a given daily rainfall record.

3. Taking /* = 0 we obtain the probability of a dry spell in
the /-day period.

Gx{k) F0(l-k9h)
k=\

* n — lid— i

Since 1 - U(0, h) = 0 for each h > 0 and $& (0,0) = p, hence

(!-k-\)Gx(k)

>-£ P(B>k)\
k = 0 J

It means that the distribution of random variable Wt has a
positive value at h = 0. If we assume the independence of the
wet sequence length on its amount, then the probability of a
dry spell is identical to the probability of no wet days in the /-
day period (cf. Jakubowski (1988)).
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ABSTRACT Plausibility analysis of annual maximum flows of Norwegian rivers is
performed. The data embrace time series of 60 years (1921-80) gathered at 42 observation
stations and time series of 30 years (1921-50 and 1951-80) collected at 86 and 83 observation
stations, respectively. Six different tests for outliers detection have been used (Shapiro-Wilk,
skewness, Student, RST, probability plot coefficient and Anderson-Darling). The tests are
based on the assumption of normal distribution, so the normalization (logarithmic or cube
root transformation) of the raw data may be a prerequisite. The empirical orthogonal
functions approach was used to simulate regional samples with preserved first and second
order moments. Outliers analysis of the simulated data was performed and the results were
compared with observations.

INTRODUCTION

The existence of outliers in hydrological observation series
can possibly explain many of the problems faced in the
regional analysis of hydrological data. Figs. 1 and 2 show
some examples of hydrographs and probability plots, con-
taining suspicious outliers conceived as observations
strongly deviating from the remainder of the data set.

Processing outliers consists of two stages - detection and
treatment. Depending on the way the outliers are treated, one
can get quite a different representation of the process. In
practice outliers are detected and removed in accordance
with some intuitive rule. It is so because one finds it difficult
to properly choose the theoretical distribution function for
an individual observation series and to estimate its para-
meters. If the parent distribution was known these problems
could have been easily solved.

The situation is different if one deals with an ensemble of
observation series. The point is, whether or not one is
convinced that the outlying observations really reflect the
hydrological phenomenon (natural variability) and are not
caused by inadequacies in the observation method or in the
processing of data (e.g. uncertainty of the rating curve in the
high flow zone due to extrapolation). The frequency of

outliers in a regional ensemble gives information about the
eventual existence of a parent distribution with a heavy right
tail. Within modern hydrological literature the interest has
mainly been concentrated on the regional behaviour in the
third order statistical moment, i.e. the skewness coefficient,
describing the symmetry of the distribution of data. A high
positive value of this parameter indicates a heavy right tail of
the distribution. This parameter, when estimated from
observed data is significantly influenced by the eventual
existence of outliers in the data set. It is not uncommon that
one single outlier in a hydrological observation series can
change this parameter by a factor of two. The high regional
variability in the skewness can be caused by several outliers in
the regional data set.

Hawkins (1980) distinguished two principal mechanisms
to explain the occurrence of outliers.

(a) The data come from a heavy tailed distribution. That is an
outlying observation need not be erroneous. An 'outlier
prone' distribution has a tail slowly tending to zero. A
distribution is called absolute outlier prone if (Green,
1976):

Ve, 5 > 0 Pr{xB>ll- *„,„_2 > s} > S for all n > n0

where xHtiis the i th order statistics based on a sample of size
n. A distribution is called relatively outlier prone if:
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Fig. 1 Examples of hydrographs containing suspicious outliers; B™); (c) Gauge 703 (Kapskarmo).

(a) Gauge 659 (Bjorset); (b) Gauge 661 (Haga Bru); (c) Gauge 703
(Kapskarmo).
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Vc> 1,3>0 xn^n_x >c}>5 for all n>n0.

In other cases a distribution is called absolutely, and
relatively outlier resistant, respectively. As examples, it can
be mentioned that the normal distribution is classified as
absolute outlier resistant, while the gamma distribution is
absolutely outlier prone and relatively outlier resistant,

(b) The data arise from two distributions, a basic distribution
fo(.) and a contaminating distribution/i (.). Two situations
can occur:

(i) exactly n — k observations of the total sample size n
come from the basic distribution, and k observations
arise from the contaminating distribution.

(ii) A: is not known. Instead the probability p is given that
an observation comes from the contaminating distri-
bution and the probability (1 — p) that it comes from
the basic one, i.e.:

A basic problem then is whether the distribution functions
conventionally used in hydrology can explain the frequency
with which outliers appear in regional samples or if it is
necessary to use the model (b - ii) with some super-popula-
tion of floods. In both cases it is of interest to identify the
existence of outliers. In the first case one needs to take such
measures as using estimation methods that are insensitive to
outliers (robust) or simply excluding the outliers from the
sample. In the second case the aim is to separate the two
populations.

TESTS FOR REJECTION OF OUTLIERS —

In the following a review of potentially useful tests for
outliers detection will be given. Subsequently all these tests
will be applied to flood flows data of Norway. Similar
analysis has been applied by Kottegoda (1984) to 51 series of
annual maximum flows in North America.

Tests for rejection of outliers are mainly based on the
slippage or departure-from-model concepts. In a slippage
test (which is a generalisation of the outlier problem) obser-
vations xij,j= 1 to mi9 /= 1 to n, which all are independent, are
assumed to come from distributions /•(.). The slippage
hypothesis is that while the majority of the/( . ) are identical
to some common distribution/(.), some small number of
them have large probabilities in the tail regions of it, and are
said to have 'slipped'. Karlin and Truax (1960) have sug-
gested the following test for this situation: Suppose that for
i=\ to n, Xj has a density /(. |0f), where 0t is an unknown
parameter. The null hypothesis is formulated as:

H0:0i=d , / = l to n

and the alternative hypothesis is:

,A>0

Oj=e j+i

Three tests that are applied here can be seen as special cases
of the slippage problem. The first one is to use the Student
ratio:

where x{n) is the largest value among the total of n obser-
vations, and x and s are the mean and the standard deviation,
respectively, of these observations. A slight modification of
this test is to exclude the suspected outlier from the data used
for estimation of the mean and the standard deviation
(x\s'). The test statistic has the form (RST-statistic,
Rosner(1977)):

(x(n)-x')/sf
(2)

The null hypothesis is that the xi9 i=l, . . . ,w belongs to a
normal distribution with the same mean. If the test statistic is
larger than the critical value, the hypothesis is rejected and
x(n) is marked an outlier. There can of course exist more
outliers in the sample. The test can then be repeated after
having excluded x(yi) from the sample.

The sample coefficient of skewness Cs can also be used as a
test statistic. The null hypothesis is again that the obser-
vations xi,i=l,...,n come from the same normally distri-
buted population. The hypothesis is rejected if Cs is bigger
than some critical value. This test statistics does not actually
test whether a specific observation is an outlier. It merely
indicates that one or more outliers are present. To turn it into
a rule for identifying outliers, it must be supplemented by
another rule for rejection. One possibility would be to reject
extreme observations until Cs becomes non-significant.

The other alternative is to use 'departure from model'
statistics. These tests are not directly designed for the outlier
problem, but can give some indication of the existence of
outliers in data. Three different tests of this type have been
applied in this study.

(a) The Shapiro and Wilk's W-statistic is a goodness of fit test
for normality. The test statistic originates essentially from
the one by Cramer-Von Mises which is the square of
deviations between the theoretical distribution F0(x) and
the empirical one, Fn(x):

00

W= f (Fn(x)-F0 (x))2dF0(x0) (3)

For a discrete sample xt i= 1,...,n the statistics has the
form

(4)
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(b)

where m is the highest integer less than «/2, xn is the mean
and x(/) is the ith value in the ordered set x(1) < x(2) <...
<*(„). The weights anj are tabulated by, for instance,
Shapiro & Wilk (1965). Here the statistics has been calcu-
lated from algorithms suitable for computer implemen-
tation developed by Royston (1982).
The Anderson-Darling test is also a test for normality and
is a special case of the weighted Cramer-Von Mises test
(Shapiro, Wilk & Chen, 1968). The test statistics A\ is based
on the difference between the sample step function Fn(x)
and the underlying theoretical distribution F0(x):

00

- \

[Fn(x)-F0(x)]2

F0(x)[l-F0(x)]
dF0(x) (5)

For a discrete sample the test statistics can be written as:

l = n- l/n (6)

where u^F^Xi). For the normal distribution ux can be
approximated by ut= (i- .3175)/(/i + .365) (Blom, 1958).

(c) The probability plot correlation coefficient test (Filliben,
1975) with the test statistic:

r=Corr{x(i), ut} (7)

where Corr denotes the correlation.
The null hypothesis is that the x come from a normal

distribution. In that case */=g(Mi) should form a straight
line. The hypothesis is rejected if r is below a critical level.
Filliben (1975) has tabulated percentage points of the
normal probability plot correlation coefficient.

It should be noted that the interpretation of significance
level in these tests is not related to the existence of outliers,
and therefore cannot be used in a straightforward manner.

All the enumerated tests are based on the assumption of
normally distributed observations. In order to tackle non-
normal data one has to use appropriate transformations.
Here the simple logarithmic and cube root transformations
will be applied. The first one allows testing of lognormally
distributed observations. The second one renders two-para-
meter gamma distributed variates approximately normal
(Wilson-Hilferty transformation).

CASE STUDY

The tests were applied to annual flood series data from
Norway. Two sets of 30-year records (1921-50, 1951-80) at
86 and 83 observation sites, respectively, and one set of 60
year records (1921-80) at 42 observation sites were utilized.
The statistical tests were complemented by visual inspection
of all series (cf. Figs. 1 and 2). One of the results is shown in
Fig. 3, where years of largest annual extreme values in

Fig. 3 Years of largest annual extreme values in regional samples
of flood data in Norway (1921-1980).

regional samples for the years 1921-80 are given. The
observations classified as outliers are underlined and the
suspected ones are marked with brackets. The results of the
statistical analysis of the raw data, and after logarithmic and
cube root transformations are shown in Table 1.

As seen in Table 1, results of different tests do largely
differ. This could be expected, however, as the tests are
sensitive not only to the existence of outliers but also to
extreme observations in both tails of the distribution. Best
agreements are found between the Shapiro-Wilk, the Stu-
dent deviation and the probability plot correlation tests. If
the test of the skew coefficient is applied as a one-(right)-sided
test, it also gives a good agreement with the three others, as
well as with the subjective visual judgment.

A dramatic difference in results between the different
transformations has been observed. The large number of
rejections when the tests are applied to the raw data, can be
interpreted as a rejection of the assumption of normality. The
smallest number of rejections are observed in the case of the
cube root transformation. Splitting the data set into two
populations can be used as a check of stability of the tests and
also to see if there is a tendency of the number of outliers to
relatively decrease with increasing sample size. In the case of
the Shapiro-Wilks, Student, and probability plot correlation
tests it is the same number of outlying observations both in
the 60 years and in the 30 years series. These tests thus do not
give any indication that the number of outliers may decrease
with increasing sample size.

The effect of outliers in the analysis of the regional
behaviour in statistical parameters is pronounced. Table 2
presents a comparison between the regional parameters
calculated from the original regional data sets of 60 years of
records at 42 points and from the purified data set, i.e. after
the removal of five most significant outliers from the samples.
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Table 1. Number of rejections at 5 and 1°A

Test

Shapiro-Wilk
5% sign.
l%sign.

Anderson-Darling
5% sign.
1 % sign.

Skewness
5% sign.
1% sign.

Student deviation
5% sign.
l%sign.

RST
5% sign.
l%sign.

PPC
5% sign.
l%sign.

norm

29
25

6
1

33
28

22
16

29
21

31
22

> significance levels of six outlier tests

60 years series
1921-80

log-norm

14
5

1
0

18
11

3
2

7
3

16
11

lj -trans

9
6

0
0

15
7

10
4

14
9

10
7

norm

22
14

0
0

27
17

17
11

25
21

18
11

30 year series
1912-50

log-norm

5
0

0
0

10
4

1
0

5
2

8
3

lj -trans

4
0

0
0

7
1

6
1

11
7

5
1

norm

27
14

3
0

30
20

20
11

27
24

23
13

30 year series
1951-80

log-norm

8
6

1
0

14
8

4
2

9
5

9
7

lj -trans

11
7

0
0

14
9

9
3

14
10

11
5

Table 2. Illustration of effect of five most apparent outliers
in the regional sample (42 stations observed in 60 years) on
regional statistical parameters

Parameter

Mean

Cv

C.

cjcs

Outliers

Included
Removed

Included
Removed

Included
Removed

Included
Removed

Mean

324
322

0.42
0.40

1.14
0.92

2.58
2.29

Standard deviation

256
255

0.11
0.09

0.88
0.46

1.53
1.15

The regional mean is little affected, but already the standard
deviation of the coefficient of variation shows a reduction.
The standard deviation of the coefficient of skewness is
reduced by 30 per cent.

A basic question is whether the number of outliers is in
agreement with the standard distributions applied in hydro-
logy. To solve this problem Monte Carlo methods can be
applied. Such approaches have their limitation in the diffi-
culty in deriving a proper algorithm for the simulation of
regional samples with a certain parent distribution which
preserves all the statistical properties of the original samples.

An empirical orthogonal functions (EOF) approach is
applied in the present study. The general idea of using EOFs
is to produce a set of orthogonal functions via a linear
transformation of the original data. The method orders the
available information, and excludes redundancies. The type
of approach used to derive EOFs has much in common with
such methods as principle component analysis and eigenvec-
tor analysis. The theory of expansion into empirical orthogo-
nal functions has been treated among others by Holmstrom
(1969) and Obled and Creutin (1986). A concept of the
method is presented in the Appendix.

In the present study the idea of EOFs has been used to
simulate regional samples of normally and log-normally
distributed data. 1000 data sets of 42 series of 10,20,30 and 60
elements, respectively, were generated. The parameters were
estimated from the 42 observed series with a record of 60
years. The number of rejections of outliers in the synthetic
data sets of 60 years series are given in the Table 3. For
comparison the results of the same analysis on the original
data set, shown earlier in the Table 1, are repeated.

The simulation model is able to preserve the first and the
second order moments (means, variances and covariances).
The distribution functions of the regional behaviour of
higher order moments and of outliers calculated from Monte
Carlo simulations can be used for hypothesis testing. The
null hypothesis is that the observed regional sample belongs
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Table 3. Number

Method

Shapiro-
Wilk

Anderson-
Darling

Skewness

Student

RST

PCC

5%
1%

5%
1%

5%
1%

5%
1%

5%
1%

5%
1%

of rejected outliers in original and synthetic data

Original

29
25

6
1

33
28

22
16

29
21

31
22

Normal distribution

mean

4.2
0.9

0.0
0.0

4.6
0.9

2.0
0.4

4.8
1.6

2.2
0.4

Synthetic

95%

8
3

0
0

8
3

5
2

9
4

5
2

99%

9
4

0
0

11
4

6
3

11
5

6
2

Original

14
5

1
0

18
11

3
2

7
3

16
11

Lognormal

mean

5.0
1.1

0.0
0.0

4.7
1.1

2.1
0.5

4.9
1.7

2.3
0.4

distribution

Synthetic

95%

9
3

0
0

9
3

5
2

10
4

5
2

99%

10
4

0
0

10
4

7
3

12
6

7
3

to a certain parent distribution. If the observed regional
mean or variance of the coefficient of skewness Cs and of the
ratio CJCV and of the observed number of outliers lie outside
some critical level of the respective distributions of these
parameters, the hypothesis is rejected. Such a regional test is
found to be more reliable than applying goodness-of-fit-test
to each individual observed series.

It is difficult to interpret these results. This is due to the fact
that the tests are mainly aimed at detecting a departure from
model rather than outliers. The tests based on the Student
deviation and the RST-statistic indicate most directly the
existence of extremely large values. In both these tests the
number of rejections in the original data sets is well in
agreement with that of the synthetic data with lognormal
parent distribution. If the number of outliers is used as a test
statistic for the regional sample, the hypothesis that the
original data comes from a lognormal distribution cannot be
rejected. Based on the results of goodness-of-fit tests, the
same hypothesis must be rejected in all cases except for the
Anderson-Darling test. The hypothesis of a normal parent
distribution is rejected in all cases.

CONCLUSIONS

The study has revealed the problems encountered when
trying to detect outliers in a set of maximum annual flow data
for a site. As the parent distribution function is unknown,
there is indeed no rigorous cookbook for finding outliers in a
set of maximum annual flow data. The tests for outlier
rejection that perform comparably are: Shapiro-Wilk,

Skewness, Student and RST, whereas the performance of the
Anderson-Darling test is entirely different. As the original
data are very far from normality, some normalizing transfor-
mation is necessary, what results in reduction of the number
of outliers detected. Removal of one or few of most signifi-
cant outliers from the population may have a profound effect
on the statistical characteristics, and in particular on the
skewness coefficient.
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APPENDIX. THE NOTION OF EMPIRICAL
ORTHOGONAL FUNCTIONS (EOF)

Consider a set of time series Pt(t), i=l,...,N over a time interval
(a,b). Pf

t(t) are the corresponding series with respective time
averages subtracted. An expansion into EOF has the form:

M

= 1 (1)

where: hni are weight coefficients (summing to M over n
= 1,..., M) varying between the series but constant in time and
Pn are sets of functions common to all series. These functions are
called amplitude functions.

Requiring the possibly fast convergence of the series expan-

sion and adding a normalizing condition to the weight coeffi-
cients, one gets orthogonal sets of weight coefficients and
amplitude functions with the properties:

and

(2)

(3)

where: bnm is the Kronecker delta and kn are the eigenvalues of
the covariance matrix. The weight coefficients, hni, are the
elements of the eigenvectors of the covariance matrix. The new
set of functions created by this expansion is empirical in the sense
that they are based on the series themselves and not restricted to
any predetermined polynomial form. Normally the sets of EOFs
are arranged in descending order according to the proportion of
variance explained by each function. An important property is
that a small number of functions will be able to reproduce a great
part of the total variance. An EOF representation using M=N
linearly independent functions is a complete description of the
original data.



Stochastic modelling of the operation of hydrants in
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ABSTRACT The irrigation system design of pressurized networks is often dimensioned
based on the probability of hydrant operation. Simple statistical techniques have been
extensively used in the past to model the hydrants operation and to calculate the design
capacity of each reach of the network. Such methods as, for example, Clemment's 'on
demand' approach, are adopted by designers and agencies in the design of irrigation systems.
The objective of this paper is to attempt to model the hydrants operation in the irrigation
network using the Alternating Renewal Process in continuous time. Extensive data were
gathered from collective irrigation networks in Crete. These data were used to estimate the
parameters of the Alternating Renewal Process model. A graphical representation of the
results could assist in drawing useful conclusions.

INTRODUCTION

Design of collective pressurized irrigation systems is often
based on the probability of hydrants operation. The method
known as 'on demand' was introduced by Clemment (1955)
for the estimation of peak season discharge requirements.
Therefore the probability of operation of hydrants as a
design factor has a significant effect on the overall economy
of the irrigation project (construction, operation and man-
agement). Common practice for the description of the
demand pattern when designing an irrigation project is to
calculate a probability of hydrant operation based on earlier
experience or on assumed pattern of operation.

Numerous studies on modelling irrigation networks can
be found in the literature. The difficulty in predicting the
pattern of the hydrant operation is, that this pattern is related
to the user's behavior which is not stationary in time.
According to Svehlik (1977) recording of the fluctuations in
demand is the main obstacle for finding the correct design
capacity of the irrigation system. To model the variations of
irrigation water demand Delclaux (1984) suggested a real
time control model used for demand prediction based on
discrete time schedule. However, it results from the literature
research, that there are no mathematical models characteriz-
ing the behaviour of hydrants in continuous time.

The objective of this paper is to use the Alternating
Renewal Process theory in continuous time for modelling the

operation of hydrants. The renewal theory, used to study
probability problems connected with failure and replace-
ment of mechanical components, is used here to model the
operation of hydrants of a collective pressurized irrigation
network.

It was assumed for the simulation of the model that all
hydrants have similar operating characteristics (irrigation
area, discharge, pressure etc.). A schematic representation of
this process is shown in Fig. 1, where the sequence of'on' and
'off' intervals is plotted versus time. According to the
Renewal Theory, the points in time at which the process is
switched from a non-operating ('off') state to an operating
('on') state interval are called the 'renewals'.

ALTERNATING RENEWAL PROCESS
FORMULATION

Consider one or more hydrants, each of which is, at any
instant, either on or off. Assume that the 'on' and 'off
intervals belong to a continuous stochastic process with two
states. These two states are denoted by the two-state stochas-
tic process as follows:

Z(t) =
1 when a hydrant is 'on'

[2 when a hydrant is 'off'

Two other processes related to the above are now defined:

(1)
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OFF ON OFF ON OFF ON OFF ON OFF

Fig. 1 A schematic representation of a Renewal Process of 'on'
intervals.

(a) the process {D(t), t>0} as the total duration of the 'off'
period during time interval (0, i); and

(b) the process {W(t), t > 0} as the total duration of the 'on'
period during time interval (0,i).

That is D(t) and W(t) represent the total time the process
spends in the state Z = 0 and in the state Z = 1, respectively.
Since the time interval t comprises either 'on' or 'off' periods,
then:

D(t)+W(t) = (2)

It must be stressed that the three above processes are
mathematically completely equivalent. They can be
expressed as a function of Z(t) as follows:

D(i)= [l-Z(x)]dx; t>0

t>0W(t)=\[Z(x)]dx;

(3)

(4)

The Poisson process

In the renewal theory, the probability density functions are
represented by the family of Erlang distribution functions.
Erlang functions are the exponential distribution, the
Gamma distribution, and the General and the Special Erlan-
gian distribution. In this study the exponential distribution
with rate k is used, that is:

= 1*-h

and the cumulative probability function is:

(5)

l-e"A< (6)

Fig. 2 shows an example of the probability density function
and the cumulative density function for an exponential
distribution.

THE PROBABILITY OF OPERATION OF
HYDRANTS IN THE INTERVAL (0, t)

Hours of operation

Fig. 2 Probability density function (p.d.f.), and cumulative
density function for an exponential distribution.

W(t)<ry=ZFn(r)[Gn(t-r)-Gn+l(t-r)}; for t>r

(7)

in which the term inside the brackets on the right-hand side of
equation (7) represents the probability of having n renewals
in the time period (0, t) while Fn(r) represents the cumulative
density function of the sum of the n separate 'on' intervals.

The probability of having n renewals in the time period
(0,0

The probability density function represents that at any time t
the probability of a renewal occurring before t +At is AAt.
Divide the time interval (0, t) into a large number k of small
subintervals of length A t, where kAt = t. The probability of a
renewal in the subinterval At is XAt. Furthermore the prob-
ability of two or more renewals in the same subinterval is 0A t.
Using the binomial probability law given as equation (7), or

(kAt)m(\-kAt) (8)

one can obtain the number of renewals in (0,/) for the
exponential distribution.

The sum of the 'on' separate intervals

One of the main mathematical tools used in the renewal
theory is the Laplace tranform technique. The Laplace
transform/*(s) is defined by:

In accordance with this theory the distribution of the total
operating period may be found (Takacs, 1957; Barlow &
Hunter, 1961; Tsakiris 1988):

•J dx (9)
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For the exponential distribution function

-kx -sx _ X

X + S

t-r) = e-"^ltl (^ "} 1
(10)

Another example of use of the Laplace transform is:

/*r": .\. ^)=TT-^ (ID

(16)

From equations (12) the n-fold convolution may be
derived:

(17)

(«-l)! ) (X + s)'
where F0(y) = 1.

The importance of the Laplace transforms in renewal I n s e r t i n g e q u a t i o n s ( 1 6 ) a n d ( 1 7 ) i n t 0 e q u a t i o n ( 1 5 ) t h e

theory is visible for sums of independent random variables. If i +t b
Xl9 X2,...Xn are non-negative random intervals when the
hydrant is 'on', with p.d.f.s:/;(t),f2(t)9fH(t)9 then the Laplace . (, i = y -^t-r) f ^ Z Z ^ l ^nyn~XQ~Xy

transform of the p.d.f. of the sum Xl + X2 + ...Xn is, by ~ 0 |_ n\ J ( « - l ) !
definition

Or finally according to Li (1971):

(12)

(13)

and using equation (12)

x{Xxy
(n-\)\

=Fn(t) (14)

which is the w-fold convolution and represents the prob-
ability of having n renewals in the time period (0,*)•

THE PROBABILITY OF OPERATION OF
HYDRANTS IN THE INTERVAL (0, 0

The solution of equation (7) depends mainly on the form of
F(x) and G(x). The main difficulty encountered is the evalu-
ation of convolutions. In the general case equation (15) may
be solved using numerical techniques (McConaloque, 1978).
According to Li (1971), the infinitive sum in equation (7) may
be approximated by a finite sum up to a number TV by adding
an error term e(N), as follows:

=Y.^n(r) [Gn(t-r)-Gn+l(t-r)]
o

(15)

Li (1971) showed that the error s(N) is bounded and
therefore satisfactory approximations may be obtained.

There are special cases for which the distribution of D{f)
can be calculated using equation (15) with the aid of a
computer. The computations may be significantly simplified
if F(r) and G(r) are the members of the family of Erlang
distributions. From equation (8) the propability of having n
renewals in the time interval (0, i) may be derived:

dy
(19)

where all the symbols retain the meanings attributed to them
previously and Ix is the modified Bessel function of the first
kind. Similar expression may be obtained for the 'off'
intervals.

FIELD APPLICATION- DISCUSSION

To apply the methodology presented above, data concerning
the operation of hydrants were obtained from an existing
trickle irrigation project in Chania - Crete Greece. The
irrigation project area is 1.4 km2 with 350 users and 43
hydrants. The area was considered representative of the
region. The collected data are observations of flow meters on
a continuous time basis for the peak irrigation season of
1989. The hourly observations were found suitable for
representing the continuous process as was proposed pre-
viously by Cox (1962).

The data were collected at flow meters and pressure gauges
in hourly intervals. An example of on-off intervals is shown
in Figs. 3a and 3b.

According to the 16 hour daily shift during the peak
irrigation season there were 16 x 43 daily sampling points on
a real time continuous basis. The period of the study started
at mid July and ended at the end of August which is
considered the peak irrigation season. During the irrigation
season the data were found to be homogeneous with respect
to the discharge of the hydrant characteristics. The data were
then normalized in terms of pressure deviations in the net-
work. The parameter of the exponential distribution is
X = 0.527 h~l. The exponential distribution is accepted at the
10% significance level using the Kolmogorov-Smirnov test.

Based on equation (15) a computer programme was
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Fig. 4 Cumulative probability of operation P{ W(i) < t) for 18
hours' operation.

Fig. 3a Input 'on'-'off' states of hydrants operation, Monday 23
July 1989.

3 4 5 6 7 8 9 10 11 12
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Fig. 3b Exponential probability density function of 'on' intervals.

written for the calculation of the cumulative probability of
the operation of hydrants within any interval (0, t). The
results are presented in Fig. 4. As can be seen the resulting
cumulative probability of operation of hydrants for four
hours operation is 92%.

Based on the results of Fig. 4 the duration of a hydrant
operation may be obtained associated with the correspond-
ing level of risk. The information provided by the above
procedure could be useful for the selection of the probability
of hydrants operation as a design procedure for the design of
collective trickle irrigation networks.

CONCLUDING REMARKS

It may be also concluded that the proposed methodology can
be used as the basis for assessing the probability of hydrant
operation and the design of pressurized systems of 'on
demand' water distribution in areas in which field data as
those presented in this study can be collected and analysed.
Further extensive field work is needed under a variety of
conditions (method of irrigation, farm unit area, farmer's
behaviour etc.) in order to make the method operational for a
variety of other conditions. As can be seen from the graphical
results of the field application analyzed in the previous
paragraphh the probability of duration of hydrant operation
is a variable to be decided when designing a collective
irrigation system. This conclusion is in contrast to the 'on
demand' theory which accepts that this probability is calcu-
lated from data of the farm unit.
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7 Order and disorder in hydroclimatological processes
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ABSTRACT The order of hydroclimatological processes has been evaluated with the help
of the correlation time. Correlation time is a synthetic measure of temporal consistency of a
signal. This measure has several interesting mathematical features. It allows the signal-to-
noise-ratio and the spectral bandwidth to be determined. These features were used in the
analysis of long time series of flows of a few European rivers, temperature and precipitation in
Poznan.

INTRODUCTION

Autocorrelation function is one of important characteristics
used in hydroclimatic series analysis. A correlation time
lends itself as a convenient synthetic measure of order in the
autocorrelation function. It allows the analyst to check if the
order of a signal has changed in time and to compare orders
of different processes.

The correlation time has interesting mathematical features
both in temporal and in frequency domains. It allows the
signal-to-noise and the spectral bandwidth to be determined.

Fig. 1 presents the autocorrelation functions of such
hydroclimatic processes as river flows (Warta, Poznan and
Gota, Sweden), precipitation in Poznan and solar activity,
expressed by sunspot numbers.

THE CORRELATION TIME: DEFINITION
AND MATHEMATICAL FEATURES

The correlation time will be understood in the present work
as:

oo

(1)

where p(t) is the autocorrelation function.
This follows one of alternative definitions of the correla-

tion time (cf. Cempel, 1979, Kowalski, 1982). Alternatively,
the use of the absolute value of the autocorrelation function
rather than squared p(r) in the integral (1), is advocated.
Bendat (1981) called this measure the correlation duration,
while Gottschalk (1977) used the term time scale.

The advantage of the formulation given as equation (1) is
the existence of a simple relationship between the represen-
tations in the temporal and the spectral domains.

In the frequency domain the correlation time can be
expressed with the help of the Parseval theorem as:

T C = [ 1 / ( 2 V

00

if) (2)

Assuming that the process considered is normal and with
constant spectral density function with limited bandwith,
AF, one can determine the spectral bandwidth as:

AF= 1/[2*(TC)J (3)

In the case of sine function (complete order, AF=0), the
correlation time is infinite, TC=OO, whereas in the other
extreme case, of the white noise, the correlation time is TC = 0.

The ratio of signal to noise can be easily expressed by the
correlation time according to the formula:

r = S/N=-Tj(Tc-c) (4)

where: c is the correlation time for ordered function and r is
the signal-to-noise ratio.

The correlation time is a convenient aggregated measure
of autocorrelation properties, that lend themselves well to
comparison of deterministic parts of processes, very useful in
detecting deterministic processes in noise. This deterministic
part is considered as the order of a process. Correlation time
is a of measure of a 'memory' of a signal. In the sequel some
properties will be discussed of the correlation time given as
equation (1) and of its sensitivity (5) in comparison to such
measures as normalized moments of higher order:
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Fig. 1 Autocorrelation functions of hydroclimatic processes: (a) Fig. 1 Autocorrelation functions of hydroclimatic processes: (c)
flows of the river Warta in Poznan, Poland; (b) flows of the river precipitation in Poznah; (d) solar activity expressed by sunspot
Gota in Sjotorp-Vannersburg, Sweden. number.

r d l n r

The sensitivity of correlation time function has the follow-
ing properties:

(a) limSr
Tc=l; (6)

r=>0

(b) lim S;< = 0; (7)
r=> oo

(c) sensitivity function^ is a monotonic function of the vari-
able r = S/N;

(d) it does not depend on c.

Sensitivity functions of other statistical measures like
moments of higher order y(n\ (e.g. skewness or kurtosis) do
not have these features but rather (Kowalski, 1986):

r=>0

(b) dependence of SJM is not a monotonic function of the
variable r = S/N;

(c) lim (9)

These differences between time correlation TC and other
statistical measures y(/l) are clearly illustrated in Fig. 2. It can
be seen that the correlation time performs well in detecting
deterministic signal in noise, particularly for a low signal-to-
noise ratio. Other statistical measures like normalized
moments higher of order y(n) do not have these features.

The correlation time depends on spectral moments like
derivatives of different order of Rice frequency (Hjorth,
1972):

..,/U«),/) (10)

(11)

where

/ » = 1/(2*7T)*K(« +

is the Rice frequency of the process being nth order derivative
of the process x(t) and / is the integration interval.
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3 6 9 12 1

the signal-to-noise ratio, r= S/N

Fig. 2 Sensitivity function for correlation time and kurtosis as a
function of the signal-to-noise ratio for a harmonic signal.

The important properties of the correlation time, related
to the Rice frequencies and the integration interval read:

Table 1. Correlation time, the signal-to-noise ratio and
spectral bandwidth for different hydroclimatic processes and
solar activity

Hydroclimatic process

Correlation The signal-
time, TC to-noise Spectral
[years] ratio bandwidth

river Warta in Poznan,
Poland (1822-1988)

river Gota in Sjotorp
Vannersburg, Sweden
(1807-1957)

river Rhine in Basle,
Switzerland (1807-1957)

river Nemunas in
Smalinakai, Lithuania
(1811-1941)

precipitation
in Poznan, Poland
(1848-1988)

temperature in Poznan,
Poland (1848-1988)

solar activity expressed
as sunspot number
(1848-1988)

1.477

1.6

1.3547

1.32

1.407

1.39

6.5

0.009

0.011

0.007

0.007

0.007

0.007

0.11

1.05

0.83

1.35

1.28

1.26

1.28

0.09

lim (12)

lim SJC = oo
/=>o

lim S]< =
/=>00

ORDER AND DISORDER IN
HYDROCLIMATIC PROCESSES

(13)

(14)

0.72

Using the correlation time as measure of order to a few long
time series of geophysical processes such as: river flows,
temperature, precipitation, and of solar activity, the results
given in Table 1 were obtained. The correlation time was
calculated with the integration interval / equal to 65 years.
The data on river flows (except Warta) stem from Yevjevich
(1963), the data on flows of the river Warta are taken from
Olejnik (1985), and the data on solar activity originate from
Vitinskij (1973).

Considering the geophysical processes mentioned in Table
1 one can note that the best ordered processes are the flows of
the river Gota, whereas the flows of the Lithuanian river
Nemunas are least ordered. Climatic processes in Poznah
have similar correlation time to hydrological processes. An
example of non-geophysical time series with very high corre-
lation time is the solar activity, expressed as sunspot number.

Spectral bandwidth is largest for the flows of the river
Rhine and smallest for the flows of the river Gota and for
sunspot number.

It can be seen in Table 1 that the ratio S/N is about 1-2%.

0.54 J

0.36

0.18

1

1820 1850 1880 1910 1940
time [years]

1970 2000

Fig. 3 Temporal variability of the correlation time of the process
of flow of the river Warta.

This order of magnitude agrees with the results of analysis of
levels of the Lake Victoria, where periodic component is not
greater than 3%. (Kite, 1982).

That is, the 'ordered' processes are small parts of signals,
and therefore a toolbox of subtle methods is required to
study regularities and irregularities.

Fig. 3 shows the temporal variability of the correlation
time of flow in the river Warta. The variability became
stronger after the year 1950. It is not clear to what extent it
has been caused by the climatic variability accompanying
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changes in chemical composition of the atmosphere (CO2,
SO2 and other trace gases). R E F E R E N C E S

C O N C L U S I O N S

Correlation time seems to be a convenient aggregate measure
of order of hydroclimatic processes. It lends itself well as a
synthetic measure for comparison.

Hydroclimatic processes do not have a 'long memory' and
their ratio of signal to noise is small (less than 2% of the
power of the signal).

The order of hydroclimatic processes changes in time. The
observed changes of the correlation time of the river Warta
were particularly strong after about 1950, what may have
something in common with the chemical changes in the
atmosphere.
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8 Towards the physical structure of river flow
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ABSTRACT The transformation of white noise and Markov processes through the
simplified St. Venant flood routing model is examined. This model has been derived from the
linearized St. Venant equation for the case of a wide uniform open channel flow with arbitrary
cross-section shape and friction law. The only simplification results in filtering out the
downstream boundary condition. The cross-correlation and normalized autocorrelation
functions are determined in analytical way.

INTRODUCTION

The development of water resources research has created the
need for an extension of mathematical analysis of hydrologi-
cal data. An awareness of the stochastic structure of hydrolo-
gic processes is necessary for modelling water resources
systems. The aim of the paper is to investigate the physical
structure of the process of outflow from a river reach.

The widely accepted assumption about a structure of an
inflow process is that it can be considered as a sum of
deterministic and random components. It is assumed that the
input signal is weekly stationary (stationarity of the first two
moments).

It is assumed that the system behaves linearly. This is the
crude simplification granting the compromise between sim-
plicity and accuracy. The structure of the random compo-
nent transformed by some conceptual linear flood routing
models (linear reservoir, Nash, Muskingum) was examined
by Strupczewski et al. (1975a, b). Some of their results are
easily available (e.g. Singh, 1988, p. 240). In the present paper
the structure of the random component transformed by the
flood routing model based on the St. Venant equations will be
analyzed.

The rigorous hydrodynamic description of open channel
flow (St. Venant model), requires two boundary conditions
and in the case of a tranquil flow one of these is at the
downstream end of the channel. In practical flood routing
the influence of downstream controls is typically neglected
and the routing takes part only in a downstream direction.

The hydrodynamic model used in this paper, called the
rapid flow model (RFM), was developed by filtering out the
downstream boundary condition to approximate the diffu-
sion term in the St. Venant equations.

DERIVATION OF THE RAPID FLOW
MODEL (RFM) FROM THE LINEARIZED
ST. VENANT EQUATION

The findings presented in this paragraph borrow heavily
from Strupczewski & Napiorkowski (1990). The linearized
St. Venant equation for one-dimensional unsteady flow in
uniform channel with arbitrary cross-section shape and
either of the common friction laws may be written as (Dooge
et al., 1987a):

dx °dxdt dt2

dSfdQ\
dQ dt dA dx , 0)

where Q is the perturbation of flow about an initial condition
of steady uniform flow Qo, Ao is the cross-sectional area
corresponding to this flow, Fis the Froude number, Sf is the
friction slope, y0 is the hydraulic mean depth, v0 is the mean
velocity, So is the bottom slope, x is the distance from the
upstream boundary, t is the elapsed time and derivatives of
the friction slope S{ are evaluated at the reference conditions.
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The variation of the friction slope with discharge at the
reference condition for either of the common frictional
formulas for rough turbulent flow could be expressed as:

dSr
—
dQ

(2)

Define an auxilliary parameter m as the ratio of the kinematic
wave speed to the average velocity of flow

= cJ(Q0/A0) (3)

where the kinematic wave speed ck is as given by Lighthill &
Whitham (1955)

dQ_ dSf/dA

dA dSJdQ
(4)

The parameter m is a function of the shape of channel and
of a friction law parameter.

Substituting equations (2)-(4) into equation (1) one
obtains

(l-F2) yo
2mS0 8x2 ' ckS0 dxdt

my0 B2Q

2clS0 8t2

dQ 1 dQ
- 1
dx cv dt

(5)

The linear equation (5) is a hyperbolic one, i.e. it has two
real characteristics. The direction of these characteristics
gives the celerity of both the primary and secondary waves.
For Froude numbers less than 1, the celerity of secondary
wave is in an upstream direction. In order to filter out the
downstream boundary condition the small convective term
(the first term in equation 5) can be neglected entirely. It
provides the exact solution for Froude number equal to one.
However, in order to increase the accuracy for the value of
the Froude number close to one, one can represent the
convective term in equation (5) on the basis of lower order
approximation to the solution of the equation. This low
order approximation is given by neglecting all terms on the
left-hand side of equation (5) to obtain kinematic wave
equation

dQ

dx' ckQt
(6)

This lower order solution can be used to approximate the
first term on the left-hand side of equation (7) in terms of:
the second term:

d2Q

dx2

the third

d2Q

dx2

1 d2Q

ck dxdt

term:

\d2Q
cldt2 (8)

or by the linear combination of the second and third terms:

d2Q 1 1 d2Q

dx ck ck dt

where Cx and C2 are coefficient to be determined.
Note, that:

(i) equation (7) is a special case of equation (9) for Cx = 1 and
C2 = 0;

(ii) equation (8) is a special case of equation (9) for Cx = 0 and
C2=l;

(iii) the approximation based on entirely neglecting the diffu-
sion term is for Cx = 0 and C2 = 0.

Substitution of approximations (9) into equation (5) gives
the Rapid Flow Model (RFM) in the form

d2Q d2Q dQ 1 dQ
-oc B—- = 1

dxdt H dt2 dx c, dt
(10)

On general grounds one could expect that the models
based on the approximation of the diffusion term through
the kinematic wave approximation would be preferable to
the one in which this term is neglected. These general
considerations are reinforced by comparing some properties
of equation (10) with other known results in open channel
hydraulics (Strupczewski & Napiorkowski, 1990). All forms
of the RFM discussed will exactly predict the first moment or
lag of the Linear Channel Response (LCR), i.e. the solution
of the equation (1) for semi-infinite channel and for F< 1. To
get equivalence of second moments of the RFM and the LCR
the coefficients Cx and C2 should fulfill the relation Cx + C2

= 1, while for the additional equivalence of third moments
Cx = 2. It is suggested that any discussion of the applicability
of the RFM should be confined to this form that preserves all
three moments of the complete linear equation. Therefore
the final values of the parameters a and /? in equation (10) are:

mck

2mc2

(11)

(12)

Since the downstream boundary condition was filtered out
from the St. Venant equation only upstream boundary
condition Qu(t) = Q(O,t) is required to solve equation (10).
Hence, all transfer properties of the hydrodynamic model
described by equations (10)—(12) can be described by the
impulse response given in the Fourier transform domain as:

(7) HRFM (xjco) = exp I - Ajco -
1 + ay co

where

m \-(m-X)2F2 So

(13)

(14)
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(15)

The RFM impulse response in the time domain has a clear
conceptual interpretation being the total of the products of
the Poisson distribution

_ ^
Pk k\

(16)

and the impulse response of cascade of A>linear reservoirs
(CLR) with a time constant a (equation 11)

1
(17)

shifted in time by a time delay A given in equation (15). This
impulse response is thus given by (cf. Strupczewski &
Napiorkowski, 1990):

(18)

The upstream boundary condition is delayed by a linear
channel with time lag A, divided according to the Poisson
distribution with the mean I, and then transformed by
parallel cascades of equal linear reservoirs (with time con-
stant a) of varying lengths.

The Rapid Flow Model can be considered as both, a
conceptual and a physical one. On one hand it is a conceptual
model with physically derived parameters. On the other it is a
rigorous simplification of the linearized St. Venant equa-
tions. This simplification results in reducing the number of
model parameters and filtering out the downstream bound-
ary condition. The RFM can be applied to any length of
channel reach. However, the quality of the Linear Channel
Response approximation by the RFM depends on the type of
motion, as discussed in Strupczewski & Napiorkowski
(1990).

TRANSFORMATION OF STOCHASTIC
PROCESSES IN THE RFM

commonly used in stochastic hydrology due to their simpli-
city and existing relationship to real processes.

If the stationary random process X(t) is fed to a linear
shift-invariant system with the impulse response h(t), then
the output random process can be expressed as the convolu-
tion integral

Y(t)= h(T)X(t~T)dT (19)

Computing the cross-correlation function between the
input process and the output process one finds:

1-00

= (O)RX(T - a)da = h(x) * Rx(r) (20)

Taking the Fourier transforms of both sides of equation
(20) one obtains the frequency domain representation of the
cross-correlation function

) = H(co)Sx(ca) (21)

Finally, the autocorrelation function of the output is
expressed as

-h 00

RY(x)= f Rt (22)

while in the spectral domain via Fourier transformation it
becomes

= SYX((jo)H*(co) (23)

Combining the preceding results, one obtains a fundamen-
tal equation relating the autocorrelation function of the
output to the autocorrelation function of the input

which in the spectral domain takes the form:

SY((o)=\H((o)\2Sx(co)

(24)

(25)

In this section the transformation of stationary random
processes in the RFM will be analyzed. This class of pro-
cesses is important because stationarity provides the possibi-
lity of learning the statistical properties under various ergo-
dicity hypotheses. Also the amount of information required
to statistically describe stationary processes is greatly
reduced. Finally, frequency-domain methods can be used in
the analysis of the RFM with stationary input processes.
White noise and Markovian noise are the processes assumed
as the input stochastic processes in the analysis. They are

TRANSFORMATION OF WHITE NOISE IN
THE RFM

Consider the RFM with a white noise input (Xx). The
correlation function of the white noise process contains the
Dirac delta impulse, i.e.:

RXi(r) = G2b(T) (26)

so that its power spectral density defined as its Fourier
transform is a constant
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Cross-correlation function Output auto—correlation function

with white noise input

Fig. 1 Cross-correlation function of the cascade of linear reser-
voirs with white noise input.

Fig. 2 Normalized auto-correlaton function of the cascade of
linear reservoirs with white noise input.

SXl(co) == ~2 -oo<co<+oo (27)

For the RFM transfer function (transform of the impulse
response in the Fourier domain) given by equation (13) one
gets the following cross- and output-power spectral densities

(28)= a exp ( — Ajco — k + -
+ajco

2A

(29)

It is shown in Appendix A that:

(i) the inverse Fourier transform of equation (28) yields the
cross-correlation function

nRFM/
KYXX (

t-A) x>A

0

(30)

where h£^R(t), given by equation (17) and plotted in Fig. 1,
is the impulse response of the CLR, that is cross-correlation
function of the CLR with white noise input;

(ii) the inverse Fourier transform of equation (29) yields the
output correlation function

Pk(2X) k,*,r) (31)
k=\

where Pk(2X) is a Poisson distribution (equation 16) and

(32)

is the autocorrelation function of the output from the CLR
with the white noise input (see Fig. 2).

It is interesting that the RFM cross-correlation function
given by equation (30) is 0 for i<A. This means that the
output Yin time instant t is orthogonal to values of the input
Xx for te( — A, + oo), which is a white noise. This occurs
because of three reasons: The part of the model responsible
for the modulatory performance is causal, another part of
the model can be interpreted as a time shift (pure delay) and
the input is a white noise. The system causalty requires that
the output does not depend directly on future inputs but only
depend directly on present and past inputs. The whiteness of
the input Xx guarantees that the past and present inputs will
be uncorrelated with future inputs. Combining three con-
ditions we see that there will be no cross-correlation between
the present output and the inputs in time interval ( - A, + oo).
If we assume additionally that the input is Gaussian, then the
input process is an independent process and the output
becomes independent of all future inputs and those in time
interval ( — Afl). So, the causality of the system prevents the
direct dependence of the present output on future inputs, and
the independent process input prevents any indirect depen-
dence. These ideas are important to the theory of Markov
process in next section.

It is convenient to illustrate the results in terms of dimen-
sionless independent variables defined with the help of
bottom slope *S0, the depth y0, and the velocity v0 for the
steady uniform reference conditions about which pertur-
bation are taken. Thus we can write:

A

t' =

(33)

(34)

Hence, the dimensionless parameters of transfer function
are given respectively by:
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Cross-correlation function Output auto-correlation function
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x'=20
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Fig. 3 Cross-correlation function of the Rapid Flow Model with
white noise input.

1.2

0.8

The RFM
with white noise input

Fig. 4 Normalized auto-correlaton function of the Rapid Flow
Model with white noise input.

m
(m-\)F2 (35)

(m-l)F2]2

(m2-\)F2

+ (m-l)F2]

(36)

(37)

For illustration the flow in a broad rectangular channel
with Manning friction (m = 5/3) and the Froude number
F= 0.3 (a' = 0.381) will be considered. Figs. 3 and 4 show the

= exp I — Ajco — X +
2D2c

1 + ajco I c2 + co2

2D2c

It is shown in Appendix B that:

(40)

(41)

. (a) the inverse Fourier transform of equation 40 yields the
cross- and output-correlation functions of the Rapid Flow , .. r

^ v cross-correlation function
Model described by eqs.30 and 32 for wide rectangular chan-
nel of dimensionless lengths: x'= 1 (short channel), x' = 5 ^ / x
(intermediate channel), and x' = 20 (long channel). Bothfigures are drawn in function of dimensionless time x'/a'. (42)

where

TRANSFORMATION OF MARKOVIAN
NOISE IN THE RFM

In this section the RFM with Markovian noise input is
considered. The correlation function of normal Markovian
noise (X2) is given by:

(43)

is the cross-correlation function for the cascade of linear
— oo < T < +oo (38) reservoirs with Markovian noise input and is plotted in

, Fig- 5;
where D2 is the variance of the input process, so its power ( b ) ^ i n y e r s e F o u r i e r t r a n s f o r m o f e q u a t i o n ( 4 1 ) y i e l d s t h e

spectral density is described by o u t p u t correiation function

2D2c °°
Sx (co) = — , - oo < co < + oo (39) RfFM(x, T) = P0(2X)D2e c|T| + Y Pk(2X) RyLR(k, a , T )

2 cz + coz 2
 k=\ 2

(44)
Accordingly, we have the following cross- and output-power
spectral densities where Pk(2X) is a Poisson distribution and
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Cross—correlation function

Cascade of linear reservoirs
with Markovian noise
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Cross—correlation function
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Fig. 5 Cross-correlation function of the cascade of linear reser-
voirs with Markovian noise input.
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Fig. 6 Normalized auto-correlation function of the cascade of
linear reservoirs with Markovian noise input.
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1)!

(

+ OLC)k

%x r !
ftj |_(l+a<
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is the output-correlation function of the cascade of linear
reservoirs with Markovian noise input (see Fig. 6).

Figs. 7 and 8 show the cross- and output-correlation
functions of the Rapid Flow Model described by equations
(42) and (44) for wide rectangular channel of dimensionless
lengths: x'=\ (short channel), x' = 5 (intermediate chan-
nel), and x' = 20 (long channel) with the Manning friction
m = 5/3, Froude number F=0.3, and dimensionless para-

0.8 -

The RFM with
Markovian noise

input

xf=20

-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

Fig. 7 Cross-correlation function of the Rapid Flow Model with
Markovian noise input.

Output auto-correlation function

0.8

0.6

0.4

0.2

9 0
0 2 4 6 6 10 12 14 16

r'/a'

Fig. 8 Normalized auto-correlaton function of the Rapid Flow
Model with Markovian noise input.

meter of Markovian noise c' = 0.3. Both figures are drawn in
function of dimensionless time X'JOL'.

C O N C L U S I O N S

The cross- and auto-correlation functions are derived in the
analytical way for the simplified linearized St. Venant model
with upstream control only, i.e. for the Rapid Flow Model,
with white noise and Markovian inputs. Obtained functions
are much more complicated than those of the cascade of
linear reservoirs. It is also possible to obtain time averaged
results in an analytical way.

In the case of the white noise input one can see that the
output autocorrelation function is considerably weaker than
the one observed in nature (Fig. 4). Consider a wide rectan-
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gular channel with depth yo= 1.4 m, the Manning friction
coefficient n = 0.03 and the Froude number F=0.3, i.e. the
dimensionless a' parameter equal to 0.381. Then the mean
velocity and the bottom slope are respectively equal to
v0 = 1.1 m/s, and So = 0.0007. Accordingly, independent vari-
ables x and / are related to the dimensionless variables as
follows

(33a)

(34b)t=\2t'[mm]

Hence the values of the dimensionless lengths: x'=l,
x' = 5 and x' = 20 in Fig.4 correspond to 2 km, 10 km and 40
km respectively, and the unit of dimensionless time T'/OCI =

T/OL corresponds to 12 min.
For example, for hourly observations and 40 km length of

a reach (above values correspond approximately to x/ = 20
and T'/CC' = 5) the value of the output auto-correlation func-
tion is less than 0.7, while in a real system it is generally
greater than 0.99. For the analyzed Markovian noise input
and the same flow conditions the value of normalized
autocorrelation function is 0.9. It proves, that channel
impact on autocorrelation function of river process is
strongly limited to a short time. Therefore the long term
auto-correlation observed in the river processes must be
caused by other contributing processes like watershed ali-
mentation, surface and subsurface runoff.

Streamflow data used in the time series analysis are usually
pulse data. In order to make theoretical and empirical results
comparable Strupczewski et al. (1975b) working on concep-
tual flood routing models covered also such case. At the cost
of additional algebra it is possible to account it also for the
RFM with white noise and Markovian inputs and to obtain
the cross- and auto-correlation functions for any length of
the discretization interval.

More realistically, one can consider a stream network
rather than a single river reach with multidimensional input,
correlated in space or both in space and time, or alternatively
the RFM by complete linear St.Venant equation solved for
semiinfinite channel or one can try to tackle with a complex
system having rainfall as input. It is obvious that any attempt
to an extension of generalization of the presented model
would lead to further complication of analytical solution.

Responding to the question, whether the aspiration to
establish the physical structure of the stochastic process of
river flow is justified, is left to the reader.

REFERENCES

Dooge, J. C. L, Napiorkowski, J. J. & Strupczewski, W. G. (1987) The
linear downstream response of a generalized uniform channel, Ada
Geophysica Polonica, 35(3), 279-93.

Lighthill, M. H. & Whitham, G. B. (1955) On kinematic waves, 1. Flood
movements in long rivers. Proc. R. Soc. Lond., A229, 281-316.

Napiorkowski, J. J. & Dooge, J. C. I (1988) Analytical solution of
channel flow model with downstream control. Hydrol. Sci. / . , 33, 3.

Singh V. P. (1988) Hydrologic Systems, Vol. I, Rainfall-runoff Modeling,
Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Stark, H. & Woods, J. W. (1986) Probability, Random Processes, and
Estimation Theory for Engineers. Prentice-Hall, Englewood Cliffs,
New Jersey 07632, USA.

Strupczewski, W. G., Kiczko, R. J., Kundzewicz, Z. W., Napiorkowski,
J. J. & Mitosek, H. T. (1975) Stochastic properties of the processes
transformed in linear hydrological systems, Proceedings of the Bratis-
lava Symposium on Application of Mathematical Models in Hydrology
and Water Resources Systems, IAHS Publ. No. 115, pp. 231-7.

Strupczewski, W. G., Kiczko, R. J., Kundzewicz, Z. W., Napiorkowski,
J. J. & Mitosek, H. T. (1975) Transformation of the processes in the
linear hydrological systems, Proceedings of the Second World Con-
gress, International Water Resources Association, New Delhi, India, 5,
33-43.

Strupczewski, W. G. & Napiorkowski, J. J., 1990. Linear flood routing
model for rapid flow. Hydrol. Sci. J., 35(1), 2.

APPENDIX A. DERIVATION OF CROSS-
AND OUTPUT-CORRELATION FUNCTION
FOR THE RFM WITH WHITE NOISE
INPUT

Cross-correlation function

For the case of the RFM with white noise input Xx the following
equation for the cross-power spectral density (equation 28)
holds:

(Al)

Expanding equation (Al) into a convergent series and operat-
ing on it term by term one obtains

oo 2k 1

(A2)

Recalling the definition of the Poisson distribution (equation
16) and the system function of the cascade of fc-linear reservoirs,
namely

1

(1 +jcoa)K

equation (A2) may be rewritten in the form

S^(X,(D) = (72P0(X)Q-AJO) £ ff
2?t(l)e"4

(A3)

(A4)

Applying the translation theorem one gets the cross-correla-
tion function

(A5)

where the impulse response of the cascade of A>linear reservoirs
^£aR(0 is given by equation (17).
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1 Q
Output-correlation function = - fe_1 [,S^R(fc,a,.s)e5T(*- l / a / ] , = 1/a

1 d*"1

F o r the case of the R F M with white noise input the following exp(r/a) k~l (k + i— l)\
equat ion for the power spectral density of the output signal = o2 —-———7. £
(equation 29) holds:

(A14)
/ 2k \

Sy™(x9 co) = G2Q~2k exp I Y~~i I (A6) combining the results into a single formula, one gets

E x p a n d i n g e q u a t i o n ( A 6 ) i n t o a ser ies o n e ge t s Ryx (k> oc,x) — a

TTT^Zi (A7)

exp(— ITIAX) k~] (k + i— 1)!
= a2 X

a(*-l)!2* ,ti,(A:-i-l)!27!vl " '
(A15)

Since the spectral density of the output signal for the cascade A p p E N D I X R D E R I V A T I O N OF CROSS-
of hnear reserves wUh whUe n01se mput „ gwen by . _ OUTPUT-CORRELATION FUNCTION

(A8) x w ^ A l i r i ^ i T X VT A A AX M A R K O V I A N N O I S E
u - ^ a w ; INPUT

equat ion (A7) may be rewritten in a way similar to cross- Cross-correlation function
correlation function as

For the R F M with Markovian noise input X2 one gets the
S ^ J C , co) = a2P0(2k) + £ Pk(2k) S^R(k, a, co) (A9) following cross-power spectral density (equation 40)

RFM / ^ \ 2L>2c

a n d t h e R F M w i t h w h i t e n o i s e i n p u t h a s t h e a u t o c o r r e l a t i o n YX2 v-*>«v ™v \ "J™ i + ajco) c
2 + co2

function of the output signal given by
Expanding equation (Bl) into a series one gets

nRFM/ \ — / r 2 p f) 2 \?\ fr\ -4- \"* P (*) 1\ J?^^^flr r/ T\ / ' A 1 ^ ^ ,
Ixy \X, X) — O / Q \AAJO \X) I 7 * k \ ^ ) Y \ ' ' / V*^^v oo 1 ̂  1 ^r>2

o ŷ - (x, co) — e e /^ 7 (132)

Hence, it remains to invert equat ion (A8) from the Fourier-
transform domain to original domain. Since the cross-power spectral density for the cascade of linear

Applying the residue method to evaluate the inverse Fourier reservoirs with Markovian noise input is given by
transformation (Stark & Woods , 1986), rewrite the right hand 2

side of equat ion (A8) in terms of complex variable jco to obtain SYxR (k, a, co) = 7 (B3)
2 (1 + ayco) (c +jco) (c —jco)

2

SYl (KaJ&>)= ri 2/ • \2ik (AH) equation (B3) may be rewritten as

Replacingyco by s one extends the function S( jco) to the entire Sf™ (*, co) = Po(k)e AjOiSXi(co) + £ Pk(k) e Aja)SYXf (k, a, co)
complex plane (two-sided Laplace transform of the correlation k= l

function) ^ ^

ff2 Applying the translation theorem one gets the cross-correla-
SY^R(k, a, s) = — -7— -7 (A 12) tion function for the R F M with Markovian noise input

1 (I + as)k(l - as)k

00

Evaluating the residues for positive x (kth order pole, counter- ^y | 2
M(x , x) = P0(k)D2e c|T Al + ^ Pk(k) R^yfft, a, T — A)

clockwise traversal of the contour), one gets
(B5)

R^R (k, a, T) = Res[S^R(k, a, s)eST; s = - 1 /a] I t r e m a i n s t o i n v e r t equation (B3) from the Fourier-transform

I d " r^cLR/iL \ sx( , 1 / \\ domain to original domain. Applying the residue method to
(k— l^ds^"1 ' ' ~1/a evaluate the inverse Fourier transformation, we replaceyco by s

1 \ k-1 ^ ^ , . _ n , to extend the function S(jco) to entire complex plane
_ 2 Y

(A13) rX2^ } (\ + xs)k(c + s)(c-s) K }

while for negative T (clockwise traversal of the contour) one gets Evaluating the residues for positive x (one first order pole, one

*?CLR Or n r\- R PQ r <:CLRrt « eV^- , - 1 /n,i ^ t h o r d e r P o l e ' counterclockwise traversal of the contour) , one
KYx ( / £ , a , T ; — — K e s [ b Y l (fc,oc,s)e , s — i / a j

gets
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R^R (k, a, T) = Res [S^R (k, a, s)csx; s = - 1 /a] equation (B13) may be rewritten as

%R(A;,a,s)e5T; s= -c] (B7)
SR™() _ Pk(21)S%LR(A:,a,co) (B15)

E v a l u a t i n g the res idue for 5 = — c, one gets z * k=\

T̂ n D2 and the RFM with Markovian noise input has the correlation
R e s [ S ™ ( M , J ) e - s= -c] = - ^ ^ e - (B8) f u n c t i o n o f o u t p u t g i v e n b y

00

while for s= - I / a one has RR™(X,T) = P0(21)D2e~cW + £ Pk(21) R^R(k,a,T) (B16)

™^(k,(x,s)esx;s=-\/a\
, *k-\ It remains to invert equation (B14) from the Fourier-trans-

: — — k_l {Syxf(k,a,s) esx(s + \/a)k}s= _ 1/a form domain to original domain. Applying the residue method
to evaluate the inverse Fourier transformation, one can replace

2D c d ~l
 f e t ^ _ j f x -1 5T> yea by s to extend the function S( jco) to entire complex plane

S$LR(k,*,s) = — 1 7 (B17)

-1" (1-ac)* \
Evaluating the residues for positive T (one first order pole, one

Evaluating the residue for negative T (one first order pole, k\h order pole, counterclockwise traversal of the contour), one
clockwise traversal of the contour), one gets gets

* , « , T ) = -Res[Sgf (ik,«,5)c"; s = c] = - ^ - k (BIO) R^R(k^) = RQs[S^R(k^s)^; s= - I/a]
(l + ac) R[S£LR(fc,s)e*T; s= -c] (B18)

Combining equations (B7)-(B9) one gets the cross-correla- Evaluating the residue for 5= - c, one gets
tion function of the cascade of linear reservoirs with Markovian
noise input as R e s J ^ C L R ^ ^ 5 y r . s=-c] = £ | (Bj9)

2 (1 — ac) (1+ac)

D2Q-cx ^ W a ) ' T 1 1 1 while for 5 = - I / a

D2QCX 1 d*"1 f _ „ /I

(!+«)*• T<° (B11) (t-Did^-r'1 ™ - V «
2D2c

~(A:-1)!(
Output-correlation function ^

Z) e~T'a I 1 I I 1 ' (A: +/—Dlft/a)'"7

y I I Y"1 V J / ' v / /

For the case of the RFM with Markovian noise input the (A:—1)! /=0 (1+ac)*"1' (1—ac)*~z =0 (i~j)\fi 2k+j

following output spectral density is obtained (equation 41): (B20)
/ 21 \ 2D2c-̂RFM rx^ ^ _ e - 2̂ e / \ ^g 12) Evaluating the residues for negative T (one first order pole, one
yl + a c o y c + c o ^ ^ o r c i e r pOie? clockwise traversal of the contour), and combin-

_ ,. /T»I"»\- . • ^ ing equations (B19) and (B20) one can find the output-correla-
Expanding equation (B12) into a series one gets . ^ . \ t \ ^. . . , * * , .

tion function of the cascade of linear reservoirs with Markovian2D2c _1X « (2A)fc 1 noise input as
2 • 2 e L 1 . /1 , ..2 2xA: l B 1 : > )V

k% k\ 2 c | t |

a x =

Since the output-power spectral density for the cascade of 2 (1 —ac) (1-
linear reservoirs with Markovian noise input is given by

1 11 + acr • i i - o c r • i - u-i'rr't'' ( B 2 1 )

(B14)
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Stochastic approach to non-point pollution of
surface waters

E. J. PLATE
Institute for Hydrology and Water Resources Planning, University of Karlsruhe, Germany

ABSTRACT An outline of conceptual stochastic models for describing the concentration
of pollutants from non-point sources in a river is presented. Pollutants are assumed to have
originated from agricultural fields and to have reached a river attached to suspensa eroded
from a watershed. The model consists of three parts: a module describing runoff of pollutants
from the land into the river, a module for transport in the river, and a decision module which
quantifies the consequences of the river pollution. The model serves as a guide for structuring
an experimental programme being conducted at the University of Karlsruhe.

INTRODUCTION

Surface runoff from fertilized fields is an important source of
pollution of surface waters. In order to remedy a potentially
critical pollution, it is necessary to quantify the amount of
pollutants carried by the waters. A quantification of the
pollutant load must include random aspects, as crops, agri-
cultural chemicals used and hydrological variables vary in
space and time. A stochastic approach requires a long term
simulation, which is feasible only if the physical situation is
suitably simplified. That is, only a class of pollutants is
typically considered. One can distinguish three basic classes,
that is substances that adhere to the soil particles (e.g.
phosphates), well soluble substances that act like simple
tracers (e.g. NaCl), and those that interact chemically with
the soil and with other substances (e.g. nitrates).

Further simplifications depend on the time and space
scales of the model. A model for annual pollutant load can be
based on less detailed components, than a model used for
determination of the exceedence of a critical concentration in
a river. An event based stochastic model is outlined in the
present contribution.

The structure of a river pollution stochastic model

Consider the situation depicted in Fig. 1. The river basin
studied is partly covered with agricultural fields. It is the
farmers who decide what crops to grow and what kind and
what amount of agricultural chemistry products (fertilizers,
insecticides, pesticides and herbicides) to use. These sub-

stances may pollute surface waters alimented by the runoff
from the field in question. The paths of pollutants to the
point of water extraction - denoted by point Q in Fig. 1 - and
the concentration c at Q depend not only on natural topo-
graphic and geological conditions of the area, but also on the
soil, on the climate and on the anthropogenic impacts
(agricultural practices). The combination of these factors
results in a time variable concentration of pollutants in
surface waters.

A stochastic non-point pollution model for describing this
situation must consist of three parts. The first module is the
input model, providing the pollutant loading into the river.
The information needed by the input model consists of
rainfall fields, providing the runoff for pollutant transport,
and of fertilizer inputs into each field, identified as Mt for the
/th field. The input model also includes process models for
the fields, which convert rainfall into runoff, and fertilizer
mass into fertilizer concentration ct in the runoff from field /.

The second module is a transport model for the river, by
means of which transport and mixing in the river are
described. This process model incorporating the transport by
convection and by diffusion yields a time series of the
concentration c(t) and of discharge Q(i) in the river at the
water extraction point.

The third module is called the decision model. In its most
elementary form, the model consists of mass balance rela-
tionships with statistical parameters, and decisions at any
level have thus to be made on a statistical basis. The problem
associated with decision making on the basis of pollutant
concentration in a river may then be taken as a design
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Fig. 1 Schematic presentation of pollutant transport in a river.

problem based on failure probability, to which standard
techniques of reliability analysis (Duckstein et al., 1986) or of
stochastic design (Ang & Tang, 1984; Plate & Duckstein,
1988) can be applied. Consider the three modules as they are
integrated into a stochastic water pollution model.

THE INPUT MODEL

The purpose of the input model is to provide the time
distribution of pollutant at any point along the river, for a
given rainfall and pollutant input.

Consider an event based model supported by experimental
results. It seems that the Universal Soil Loss Equation
(USLE) appears to be most suitable for modelling erosion-
driven pollution. This useful equation in its original form is
valid for calculating annual sediment yield from small agri-
cultural plots, and its originator Wischmeyer expressedly
warned against application of the USLE for shorter times.
However, for the lack of other similarly well documented
erosion models, the USLE has been used in a modified form
given by Williams (1975) for shorter time periods as well. The
modified USLE, or MUSLE, has been used in several
stochastic sediment studies (Smith et al., 1977; Bogardi et al.,
1985). Smith et al. (1977), for example, have combined the
MUSLE with the SCS method of calculating rainfall abstrac-
tions. They obtained the following expression for the sedi-
ment yield z(r) per rainfall event r.

z(r) = . v_l 1 ° (1)

where w and a0 are conversion factors incorporating size of
field, land use etc, yT is the effective rainfall depth per event r
(in mm), for r = 1,2,.. N, where N is the number of events per
season,/is the constant describing total infiltration (in mm),
ax is a dimensionless constant, Tr is the rainfall event duration
(in hours), and Tc is the concentration time, i.e. the time
which elapses between the beginning of the rainfall and the
occurrence of the peak runoff. For details and for numerical
values, the original papers by Smith et al. (1977) or Bogardi
et al. (1985) should be consulted.

fy(y)

fyT(y,T) = fy(y)fT(T) = const

Fig. 2 Schematic presentation of dependence of F(z) on the bivar-
iate density distribution/(y, T).

The structure of equation (1) makes it clear that the input
for this model must be an event based rainfall. The actual
rainfall event is approximated by a block rainfall with the
basis TT and the height yr. In this way, the rainfall event is
described by the two variables Tandy, and thus, the random
distribution of rainfall events can be approximated by the
joint probability density/(j, T). It has been solved numeri-
cally by Smith et al. (1977) with rainfall event inputs which
have a bivariate exponential distribution for rainfall inten-
sity and rainfall duration. The number N of events per season
is Poisson distributed. It has also been solved by simulation
in Bogardi et al. (1985).

If the function f(y, T) is known either theoretically, or
experimentally, then the method for finding the erosion rate
is as schematically illustrated in Fig. 2. The random variables
y and Tare the coordinates of a plane in which the isolines of
the joint pdf, f(y, T) are indicated. In this plane, the con-
dition z' = constant produces a family of curves for different
values of the constant (Fig. 2). The cumulative distribution
Fz(z) is calculated for each z' = Z by integration off(PT, tT)
over the area in which z<Z, as is indicated by the hatched
region of Fig. 2. Finally the probability density function
fz(z') is found from Fz(z') by differentiation.

Equation (1) can also be used with experimentally deter-
mined rainfall functions/^, T) which have been extensively
studied in urban hydrology (cf. Xanthoupolos, 1990). An
example of a bivariate relationship for German conditions
(station Essen) is shown in Fig. 3.

Water quality parameters depending directly on the rate of
surface erosion are obtained by combining the soil loss
equations with an elementary water quality model. As an
example the phosphorus load model of Bogardi & Duckstein
(1978) may be mentioned. However, uncertainty is intro-
duced by the fact that such a model is based on the assump-
tion that the pollutant is distributed uniformly throughout
the top soil layer.
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Fig. 3 Typical empirical joint probability distribution of y and T
for the station Essen, Germany (courtesy of A. Bardossy).

As an alternative to MUSLE a more physically-based
model or a unit pollutograph approach may be used. An
example of the former category is the model devised by Julien
(Mien & Frenette, 1986, Julien & Dawod, 1987), who used a
more elaborate input hydrograph and an overland erosion
model based on hillslope hydraulics.

A 'pollutograph' is a function constructed in the same
manner as a unit hydrograph. The pollutant applied to the
land is considered as the input to be convoluted with the
impulse response function, hs(i) called pollutograph (Jury et
al., 1986). As far as the properties of a pollutograph are
concerned, it is often noticed that the peak of the pollutant
wave arrives faster than that of the flood wave. That is, a unit
pollutograph may have a shorter rise time than the unit
hydrograph.

In general, unit hydrographs and 'pollutographs' are used
deterministically, i.e. both the input function and the impulse
response (unit hydrograph) are deterministic. However, it is
not difficult to use a deterministic h{i) with random inputs,
by employing simulation techniques. A special case is a
random input consisting of a time series with normally
distributed input magnitudes. In this case the output is also
normally distributed, with a variance which can be deter-
mined via the spectrum function of the input process and the
Fourier transform of the impulse response. Some use of these
relations has been reported for groundwater models, see for
example Geldner (1980).

In order to proceed with the pollutant model for a river one
needs the information on the delivery ratio in addition to the
soil erosion from individual fields. That is, one needs an
estimate of the losses of eroded sediment in the course of its
transport from the field to the river. Attempts have been
made to develop such models, although to the knowledge of
this author, there is no truly physically-based model capable

of operating without calibration. Erosion models have been
included into catchment models consisting of a network of
channels and unit hydrographs of the type described by Plate
et al. (1988) in order to calculate the rate of erosion from soil
surfaces and deposition in reservoirs. Studies of this kind
have been reported by Bogardi et al (1985) and Hrissanthou
(1986). Both authors used simulation methods to obtain the
historical sequence of event-based erosion yields, which were
then summed over the year. They subdivided the basins into
many small, approximately field size subbasins, to each of
which the MUSLE has been applied. An annual precipi-
tation index K was used. The event dependence was intro-
duced by the use of a daily value of effective rainfall from
which the sediment inflow into the reservoir was calculated.
The differences between the two studies were in the way the
MUSLE was used for the subbasins, and how they were
linked for the total yield. For each partial area the assump-
tions made by Hrissanthou (1986) were about the same as for
the model of Smith et al. (1977), which has been described
above. However, instead of using the SCS method for
determination of the effective rainfall, he used a modification
of the SCS method developed by Lutz (see Plate et al., 1988).
Furthermore, the MUSLE included a channel sediment
routing subroutine (Williams, 1975). In both cases the results
were compared with measurements of annual reservoir depo-
sition and good agreement was found for long term average
deposition but considerable scatter for the individual values.

Input model for pollutant input along the river

One has to determine the distribution of the pollutant input
along the river as a function of distance and time. This is not
directly obtained from the erosion model for a field. The
point load M of sediment which leaves the field during the
rainfall event, has to be transformed into the pollutant load
for the river. One needs to know how much of the sediment
which is eroded from the field will reach the river, where it
will reach the river, and how it will be distributed over time.
One needs to have component models combining many fields
into inputs. That is, in addition to the soil erosion zt from
individual fields the delivery ratio Dt should be known. One
needs an estimate of the losses of eroded sediment in the
course of the transport from field to river.

Pollutants adhering to the eroded material enter the river
from many fields as indicated schematically in Fig.l. The
river originates in an unpolluted area, so that zero concent-
ration in the river upstream from the agricultural areas can
be assumed. The rural area consists of many different fields,
each of which is fertilized. However, application of fertilizer,
land use, and fertilizer uptake by crops are not constant. The
rates administered may vary from field to field in a random
manner.
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A complete simulation procedure which should be based
on such input models requires not only that the temporal
variability of all input variables are appropriately con-
sidered, but also that physical processes contributing to the
conversion of the input into the pollutant loaded runoff be
well known and quantifiable. In general, it is impossible to
exactly quantify all the relevant processes, and the result may
show a high degree of uncertainty. One therefore needs a
certain amount of stochasticity in all water quality models.
Stochastic water quality models have been reviewed in Plate
& Duckstein (1990).

A feasible concept employing such a model is to describe
the fertilizer runoff model for daily mean quantities, and to
relegate all other dynamic effects to an uncertainty band
around the mean. It is likely that such a strictly statistical
model can provide results of similar quality as physically-
based deterministic models, provided it can be calibrated
with reliable data.

It is furthermore assumed that only little runoff of fertilizer
takes place during dry conditions: critical conditions for
concentration c to exceed concentration cp occur only during
or after rainfall events. Let ct be the concentration in the
runoff Q from field / during a rainfall event, so that the total
amount of pollutant from field / which reaches the river at
point j is CjjQij. The total amount M of pollutant substance
reaching pointy on the river is also a random variable, which,
with given discharge Q and average concentration c, and
with the subscript j dropped, can be expressed as:

M= (2)
1 = 1

where Dt is the delivery ratio \pt is the pollutant concentration
in sediment from the field; and the summation has to be
extended over all /fields.

Since the number of fields involved in producing M is
assumed to be large, one may invoke the central limit
theorem of statistics and assume that M is a normally
distributed random variable, with probability density
function:

fM(M) =
1

M\/2TI
— exp
2 L 2 < J (3)

Experimental evidence, for example by Marani & Bendor-
icchio (1986), indicates that event based runoff from indivi-
dual fields can be adequately represented by a gamma
distribution, or a generalized gamma distribution. Clarke
(1990) used the log-normal distribution for describing both
Qt and ci9 in which case cQt is also log-normally distributed.
It results from the central limit theorem that a sum of many
variables of the same distribution (e.g. one of the distribu-
tions considered above) attains the normal distribution.

PROCESS MODELS FOR RIVER
TRANSPORT

Continuous processes of pollutant transport

The average concentration of pollutant in a river caused by
runoff of sediment from fields can be expressed as follows:

I DM,
1 = 1 = M/Q (4)

where Q is the river flow.
Since the rainfall event increases both the river flow and

the mass of the eroded material, there exists some depen-
dence between M and Q. The simplest type of a model
describing such a dependence is a functional relationship
between an input variable x and an output variable y:

y=g(*) (5)

Such a relation is found for many water quality processes.
It usually connects the variable y describing the transport of
a pollutant with the variable x describing the flow of a
transporting agent. The variable x can pertain directly to
water flow, or to sediment runoff, thus indirectly to water
flow. The established relations for process models of pollu-
tants are of the form:

= axn (6)

where a and n are typically empirical parameters.
For the case of dissolved pollutants, x is the flow rate or the

rainfall, n = 1, and y is the output concentration (Haith &
Tubbs, 1981). For the case of particulate pollutants, x is the
eroded soil, and y is the outflow of particulate pollutants, and
«=1 . In the case of pollutant adhering to the soil and
transported as suspended load by a river one has to use a
relationship between the river discharge (x=Q) and the
suspended sediment load (y = QS). This relationship is often
found to agree with equation (6), with n ranging from 1.5 to
3, (see for example Walling, 1977). Thus one can describe the
pollutant outflow as:

M=aQs (7)

where M is the mass of pollutant per time unit.
The average concentration, c, during the time unit,

expressed as M/Q, reads:

= aQs
(8)

In order to improve the fit of experimental data to this
curve, it may be useful to consider a to be a random variable
as well. In this case the result c is a product of two random
variables.
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Fig. 4 Zones of dispersion in a river downstream of a point
source of pollutant input.

Short duration input processes

Assume the input of pollutants to be of the point-source type
and of short duration (Fig. 4). Then the pollutant input Mis
conveyed through the river at the discharge Q. Due to
convection and dispersion the input moves downstream,
spreading in the longitudinal and transverse (lateral)
direction.

The concentration c(x, t) downstream from the point P in
Fig. 4 can be found by means of a model of the process of
convection and dispersion for a given discharge Q and a
given mass M. The output of this model is the concentration
c(x, t) and its input is the two-dimensional input vector
(MQ).

Consider the traditional diffusion model with a point
source. Such a model assumes that diffusion is a linear
process, which is not likely to hold in natural rivers. Never-
theless, in order to illustrate the dispersion effect, it is useful
to consider the dispersion from a point source, and to make
use of the convenient property of superposition. After this
has been done, one is better prepared to determine whether
dispersion should be considered or not.

Spreading of pollutants from a point source takes place in
three zones depicted in Fig. 4. In each of these zones,
diffusion is governed by different processes of fluid mecha-
nics. In the first zone near the source diffusion is governed by
the configuration of the source, and by the rate of lateral
spreading. In particular when immission takes place from the
shore, it takes a considerable distance before the pollutants
are uniformly distributed in a cross-section of the river
(Naudascher & Fink, 1983). This process is modelled by
assuming a virtual origin to exist for the source, which is
located at a virtual distance x0 upstream from the actual
point of immission.

Both the second and the third zones have the property that
the concentration is constant across the river, so that only
longitudinal dispersion needs to be considered. It results
from two different effects, that is from diffusion caused by
small scale turbulence generated on banks and river bottom,

and from dispersion caused by velocity gradients in the
vertical and horizontal directions. The effect of dispersion
has first been formulated by Taylor (1954) for pipe flow.
Fischer (1973) applied Taylor's model to rivers, including the
transfer processes induced by horizontal velocity gradients.
However, these models yield very crude approximations to
observed dispersion in actual rivers, which might deviate by
more than three orders of magnitude from the theoretical
predictions. This is due to the occurrence of large eddies
generated by large scale bottom features (Grimm-Strele,
1983), and exchange processes in dead water zones, caused
by river training structures, by natural bays (Valentine &
Wood, 1977), or by overbank flow over wooded flood plains
(Pasche & Rouve, 1986). Furthermore, the curvature of the
rivers also has an effect (Friedrich & Plate, 1973).

Determination of failure conditions

The decision model allows one to determine if the water
quality standards expressed in terms of the permitted con-
centration cp are exceeded so frequently that toxicity
problems come about. In order to define the effect of this
exceedance, one has to know the corresponding probability
function. A situation in which the standards are not met, i.e.
if the river or creek is in the state c > cp is called a 'failure'. A
reliability based decision model starts from the assumption
that it is not necessary to completely avoid the 'failure'
condition, but that intolerable damage, i.e. health hazards or
damage to the ecosystem, occurs if the failure probability
PF= P{c> cp) is higher than some critical value. The failure
condition c > cp is a stochastic event, which in terms of the
naturally random variables Q and the permissible mass
M= c Q can be rewritten as:

M>cpQ (9)

The left hand side of equation (9) is a random variable due
to changes in the runoff from fields and in the concentration
of substances. The right hand side is a random variable due to
variability of discharge Q. The model expressed by equation
9 is equivalent to the classical case of calculating the prob-
ability of failure for random resistances and loads, r = cp Q
and s = M, as illustrated in Fig. 5. A two-dimensional p.d.f.
/r5(r,s) for resistance and load is shown in Fig. 5 for the case
where the existence of statistical dependence between both
variables is assumed. Marginal distributions fr(r) and fs(s)
are also plotted on the axes. It is to be noted that/r(r) is
identical to the probability density of Q except for the scaling
factor cp, whereas fs(s) is the density of the pollutant mass
loading into the river.

The condition r = s, corresponding to the failure surface, is
a straight line bisecting the s — r quadrant. The probability of
failure is that of finding a combination of r and s in the
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Fig. 5 Probability diagram for resistance r and load s, with failure
surface indicated by z = 0.

shaded region of the r-s quadrant. It is calculated from the
probability distribution of the pollutant excess z defined as:

= s — r

with the mean value:

u=u -ur

(10)

(11)

The equation for fz(z) can be obtained by integration of
frs(r, s) over the region - oo < z < 0 as shown in Fig. 5. It reads
(Papoulis, 1965):

00

> - •

ds*

dz
ds (12)

where s* is the transformation of s(z) for the condition
z = constant. Here s* is simply:

Finally, one obtains:

oo

(14)

where fr s(
s\r) *s the conditional probability density for s

given r. Equation 14 cannot be analytically solved for the
general case, and the solution usually has to be found by
numerical integration.

As an approximation, the pollution level for continuous
inputs can be obtained if one assumes that the central limit
theorem holds for the mass M contributed by all the fields
along the river, so that M is distributed normally. For
simplicity, one may also assume Q to be normally distri-
buted. Since discharge and mass are caused by the same
rainfall conditions, a certain degree of correlation exists
between the two variables, and variables r and s have a

correlation coefficient q. The calculation of the probability of
failure for this case can be done in a closed form (Plate, 1991).
One obtains a formulation which is entirely equivalent to the
standard expression used in the Second Moment Analysis,
i.e. the approach to reliability analysis based on the normal
distribution (Ang & Tang, 1984). Therefore, methods deve-
loped in the context of structural safety analysis can be
applied, including uncertainty analysis. Also, if the assump-
tion of normality of distributions or that of perfect (error
free) data cannot be maintained, then other approaches
towards refined second moment analysis can also be used.

DECISION MODELS FOR RIVER
POLLUTION

Because the general problem illustrated in Fig. 1 is of extreme
complexity, simplifications are needed if the design or man-
agement decisions must be made. Decision models have
components whose outputs can be modified by means of
decision variables, being influenced directly or indirectly by
human actions. The type of model to be used in water quality
decision processes depends on the kind of decisions in
question. For example, a model used for prediction of the
peak concentrations of pesticides in a river at a particular
point can have a different structure than a model used for
prediction of the amount of pesticides penetrating into the
groundwater in a subarea of the basin.

The generalized risk, as defined for example in Duckstein
et al. (1987), which quantifies such decisions, is therefore an
important figure of merit for pollutant transport models.

(13) Risk as figure of merit

In the context of stochasticity of decision models one can
accept the following definition of risk (Berger, 1985). Let
y = (.Vi> J^ •••>'/) t>e those variables from the output vector of
a WQM which can be manipulated by decisions, so that their
values are conditional on the decisions d= (dl,d2,...dJ),
where dis the vector of decision variables. Let these variables
occur in combinations determined by the joint probability
density function (joint pdf) given by:

f(y, d) =f(y\9y2, • ••>'/>•• d{, d2,.. dj) (15)

Furthermore, let K(y,D) be the function describing the
consequences of the occurence of the combination y{,y2...
for a given decision vector d=D. Then the risk is defined in
general as the expected value of Kover the (conditional) pdf
f(y\D),ov:

oo

>•RI(D)= K(y,D)f(y\D)dy (16)
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where the integration has to be performed over all the
elements of the vector y.

The risk is a measure of the gamble which one takes,
making the decision D. It is a single valued number, called a
Figure of Merit, FM (Duckstein et al.9 1987), which permits
to judge the value of the decision. Note that there might be
other figures of merit associated with any decision process.
FMs may be based on different criteria using output vari-
ables. Also, different types of risk may occur, depending on
the definition of the consequence function. For details refer-
ence is made to Duckstein et at. (1987).

Risk is a FM that evaluates the consequences of nonsatis-
factory system behaviour. It serves therefore two goals. First,
it helps evaluate the alternatives and the necessary actions to
optimize decisions (e.g. which region should be held free of
fertilizers, or in which areas the amount of fertilizer appli-
cation should be reduced, and by how much). Second, a
decision analysis can be used to select a model for a given
purpose, and to determine how far one should go in improv-
ing simple models.

The probability of failure is a particular FM, based on a
consequence function K(.,.) = 1. It may not be a useful
criterion for assessing the merit for pollution control, (e.g. by
changing the prevalent practice of fertilizer application),
because it does not include the consequences of exceeding cp.

Uncertainty in decision models

Because uncertainty of different kinds may limit the quality
of the information which can be obtained from a model, it is
useful to consider the tradeoff of model uncertainty against
natural variability. Obviously, if the variance of the pdf for
the model uncertainty is small compared to that of the
sample or the measurement, then it is not worthwhile to
further improve the model.

More generally, the value of a model can best be assessed if
a preference value is assigned to the consequences of a
decision which is based on the model. If a clearly advan-
tageous decision can be made independently of the quality of
the model, then there is no operational sense in further
improving the model. If, on the other hand, costly invest-
ments would be necessary for preparation against possible
but uncertain consequences, then model improvements, or
improvements in the data basis may be in order.

In general, stochastic models are subject to many uncer-
tainties. Uncertainty has the effect that the risk RI(d)
becomes a random variable. It is a conditional function
f(RI{d\PAR}) = g(d\PAR), also called goal function, where
the vector PAR consists of all the uncertain parameters on
which /?/may depend. From this pdf one must estimate the
best value of RI to be used for decision making. It could be
for example the expected value.

CONCLUSIONS AND OUTLOOK

A concept was presented by means of which the failure
probability for a concentration of substances in a river can be
determined from a stochastic model. The complete model
consists of an input part, a river part, and a decision part. For
some cases, the problem can be formulated as a problem of
determining the failure probability, or the exceedence prob-
ability. The use of normal distributions simplifies this
problem, but it is not a necessary condition for the applicabi-
lity of the concept. An important aspect of this formulation,
and also of deterministic formulations, is that the transfer
functions which describe the process of rainfall conversion to
mass runoff M need to be quantified. Natural variability of
processes is a very important factor in uncertainty consider-
ations. This is caused by the stochasticity of the river
discharge Q, and by the randomness of the input of pollu-
tants. Statistical properties of Q have been extensively stu-
died, whereas the input from pollutants requires investi-
gation of the pollutant sources. The parameters determining
the mass of fertilizers entering the river from a field / depend
on the amount of pollutant administered or generated in soil
and groundwater, and on the processes determining the
chemical and biological changes of the pollutants during
their path from the source to the river.

It is, however, not very likely that a simple single input
model can be used to describe a real situation. A typical rural
region may show the diversity depicted in Fig. 6, representing
a typical small agricultural and silvicultural area in rural
Germany, which may cover an area of a few sqare kilometers.
Pollutant content of runoff from such an area reflects the
diversity of land use, and different fertilizing patterns for
different crops. It also reflects the variety of soils that are
found in the region, and the geological structure of the
underlying subsoil, determining the amount of fertilizer-
carrying capacity of water percolating into the groundwater.
It is also influenced by the topography of the region, with
runoff characteristics of flat lands quite different from those
of steeper areas.

It is obvious that the rigorous description of runoff
characteristics of water and pollutants from such an area
would require much more elaborate process models than the
simple approaches described in this paper. Such in-depth
studies, however, would last long and be prohibitively costly.
Therefore it is unlikely that one can study each situation of
pollution potential in detail, and even the construction of
models from building blocks of the kind used in the flood
studies (Plate et al., 1988) would be too costly for general
applications. This is in contrast to the great need that exists
for an operational model on which agricultural or other land
use decisions can be based. Such a model should be capable
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of evaluation of effects of feedlots or accidental spills as point
sources, or of acid rain, fertilizer application and other
external spatially distributed sources of pollutants. There-
fore it is necessary to develop simple models, which retain the
essential features of the prototype, but which are simple
enough to be formulated and calibrated in practical appli-
cations, including emergency situations.

It seems that numerous field studies are required to
determine the variability of the processes involved in the
problem. Such a study whose ultimate purpose is to develop a
simple model for describing the transport of agricultural
pollutants from fields to a river is being carried out at the
University of Karlsruhe. Fifteen institutes cooperate in this
study, financed by the German Ministry of Science and
Technology. The procedure accepted starts from a possibly
complete description of the process of non-point water
pollution, and then simplifies the model to the practical form,
where only the most essential aspects for the decision situa-
tion are left. In an exemplary manner, this model is being
developed in a combination of theoretical and field studies,
under the collective name of the Weiherbach Project. The
project is carried out in the catchment of Weiherbach creek (6
square kilometers area) situated in the Kraichgau area,
North East of the city of Karlsruhe. Within the framework of
the project the transport processes from rainfall and fertilizer
application on every field to runoff and concentrations of
substances ranging from fertilizers to pesticides and heavy
metals in Weiherbach creek, are measured and mathemati-
cally modelled.

In the initial phase the Weiherbach situation should be
described by a model, which is as deterministic as possible.
However, the long term objective is to use this model as a test
case for statistical models calibrated and tested against the
'ground truth', or against the results from an accurately
calibrated and accurately formulated deterministic model. It
will give the opportunity to find out which are the essential
processes contributing to the mass transfer from land to
water, and which processes can be considered secondary and
thus relegated to statistical variability.

The structure of a model of the Weiherbach type is
hierarchical, as schematically shown in Fig. 7. A number of
different levels exist, for which the information has to be
stored and prepared in suitable form.

(a) The input level. The input level in Fig. 7 consists of
parameters that describe both the area and its transport
features. Basic variables needed for models at any time scale
are those describing the natural properties of the area, such
as topography, geology, soil and land use characteristics.
These sort of data are usually available from topographic
and geological maps, and from information collected by the
Agricultural Service. It is likely that in future much of this
information can be obtained from remote sensings, from

satellites or from aerial photographs. The data are stored in
computer based information systems, such as a Geographi-
cal Information System (GIS). These basic data are suffi-
cient to specify the properties of water and matter transport
for long term averages.

Superimposed on these basic parameters are parameters
pertaining to a seasonal time scale, which are needed to
determine average seasonal balances. Both seasonal and
permanent data are likely to be stored in a GIS and can be
represented on maps. They also provide background infor-
mation for the event based models, whose time scale is of
the order of hours to days.

The actual dynamics of the transport must be generated
from event based information, such as historical rainfall
events, or time series of rainfall events to be generated by
Monte Carlo techniques. Such process models are needed
to provide space time variable inputs into event based
hydrological decision models. The event input includes also
information on the input of matter into the hydrological
system, such as fertilizer inputs, or inputs through acciden-
tal releases of toxic or harmful substances.

The input parameters describing the boundary con-
ditions and the local parameters of all hydrological models
are constant for all time steps, and should be available in the
GIS of the area. The time invariant parameters of the
permanent inputs will be the same for all types of models.
However, not all will be needed for the different types of
problems that are to be solved, and also, additional para-
meters pertaining to the time variability of the processes to
be considered may be required if shorter time scales are
selected. We distinguish different types of models asso-
ciated with different levels of resolution,

(b) The model level. The model level of Fig. 7 includes all
possible models for describing the water and pollutant
transport processes. It is likely that different tasks will
require models based on different time scales. Long term
averages, required for example for annual balances, can be
aggregated from short term models, but it is likely that
simpler models are useful for long term or large area
averages, as for example in the use of hydrological models
for climate research (Becker & Nemec, 1987). Conse-
quently, three types of models can be identified.

The first is the basic hydrological site model, in which
topography, soil properties, land use and other factors are
analysed and combined. It incorporates all permanent and
time invariant information, from which an output consist-
ing of maps and tables can be obtained. This model requires
access to tables of parameters (in terms of an expert system,
or simply by drawing on information supplied from local
field studies), which represent local properties needed for
transport models.

The second is the seasonal or climate model, which
combines the site model with seasonally varying para-
meters, such as meteorological information on seasonally
varying mean temperatures, precipitation, average cloudi-
ness and the like, and seasonal variations of the land use,
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such as potential evapotranspiration, crop production
factors, average use of fertilizers.

The third class is the event based model, capable of
yielding the most detailed output information, but requir-
ing the most extensive input information. If this type of
model is used for long term application, one would have to
deterministically calculate the flow of water and matter at
one or more points of the site to obtain a continuous record
of output functions. It is obvious that a model for long term
simulation of occurrences of polluting episodes is expensive
to use and time consuming to construct. Therefore it can be
applied only in exceptional circumstances, e.g. during pilot
studies (Weiherbach project).

(c) The output level. The output level consists of the results. The
basic hydrological information is presented in maps and
graphs, and may be subjected to statistical analysis. Natur-
ally, the output level may consist of outputs from all kinds
of models, and can be used for all special purposes to which
the model is to be applied. Therefore, the output also
includes information obtained during the last stage of the
four stage process described in Fig. 7: the decision level.

(d) The decision level. Actual operational models are likely to
be simplified, whereas the degree of simplification depends
on the purpose of the model. Output performance of the
model can be measured in terms of the performance cri-
teria. Monitoring models, which serve the purpose of
verifying the observed data, require different performance
criteria than models which are used for making decisions on
improving water quality. We find it important, therefore, to
incorporate a decision level into the system model, as has
been discussed.

Only some of the ideas that are used in stochastic
modelling can be outlined in the present contribution. In
spite of great efforts made in many parts of the world, one is
still far away from arriving at a universal model of general
usefulness. Therefore field studies are of paramount
importance and the Weiherbach project is just one of many
needed.
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Statistically safe sets methodology for optimal
management of reservoirs in risk situations

A. KARBOWSKI
Institute of Automatic Control, Warsaw University of Technology, Warsaw, Poland

A B S T R A C T The paper concerns the problems of optimal control of reservoirs when
subsequent inflows are represented as independent random variables of known distributions
or the Markov chains, and apart from performance index other control goals are present.
They may have the form of chance constraints or constraints on the expected value of certain
functions of stage variables (i.e., controls or states in given periods). A method of conversion
of the global constraints to the stage ones is also presented. The statistically safe sets
methodology is explained on the background of other methods of determining reservoir
control strategies such as linear decision rules, reliability programming, penalty function
method or the method of the Lagrange multipliers.

INTRODUCTION

For many years the specialists in designing control algor-

ithms for water reservoirs have agreed that the problems of

risk connected with uncertainty of inflows are of primary

importance. It is almost impossible to enumerate all tech-

niques proposed in the literature. The models that account

risk through imposing lower constraints on the probability

of desirable events and upper constraints on the probability

of undesirable events (so-called 'reliability' or 'chance' con-

straints) are most popular. These events may be considered in

any given period, a specific control horizon or during the

entire life of the system.

The 'reliability' or 'chance' constraints define an admiss-

ible area in which the optimal release curve, maximizing or

minimizing an objective function, is sought. Sometimes they

are replaced with constraints on expected value of some

variables or functions.

The typical formulation is as follows:

k=l,..,N

subject to:

Si= S

0<sk<sm

r N *\

£ Bk(sk,rkJk)\ (1)

(2)

(3)

(4)

P(skeSk)><xk k = 2,..,N

P(gk(sk,rk,ik)eGk)>Pk k=l,..,N

P(hk(sk,rk,ik)eHk, k=\,..,N)>y

where:

(5)

(6)

(7)

(8)

E is the expectation operator on the probability distribu-
tions of inflows;

[1,7V] is the control horizon;
Bk(.,.,.) are the benefits in the period k;
sk is the storage level at the start of the period k;
rk is the release in the period k;
ik is the inflow in the period k, a random variable with a

known probability distribution (it is assumed that subse-
quent inflows are independent random variables);

s is the initial storage of the reservoir;
smax is the maximal storage capacity;
Sk is the set of desirable storage levels in the period k;
ak is the minimal admissible reliability of belonging the

storage sk in the period k to the set Sk;
gk, hk are the real-valued functions of storage, release and

inflow in the period k;
Gk is the set of desirable values of the function gk\
f$k is the minimal admissible reliability of belonging the

value of function gk to the set Gk;
Hk is the set of desirable values of function hk;
y is the minimal admissible reliability (probability) that the

values of the functions hk belong to the sets Hk, calculated
over the whole control horizon;
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Rk(sk) is the set of admissible releases in the period k
dependent on the current storage sk.

Only upper constraints on probabilities are considered.
Lower constraints on probabilities can be transformed into
the upper constraints in an obvious way.

Constraints (4) and (6) are used alternatively. The former
one is usually incorporated into the state equation. That
leads to the following transition rule:

sk+l = max(0, min(>max, sk + ik - rk)) (9)

Of course, this trick guarantees the fulfillment of the state
constraint (4), but it can be shown (Karbowski, 1991), that
such simplification causes, even in deterministic case, the
departure of the solution from the optimal to a suboptimal
one.

Sets Sk are usually time-invariant and have the form:

(a) [X^, oo] the corresponding constraint P (sk > s^n) > ock

(b) [-oo,5max] "

Similarly, sets Gk are in most cases constant intervals. A
typical example of the constraint (8) is the lower constraint
on reliability to supply the target release rk during the whole
control horizon. In this case the functions hk and sets Hk are
stationary and have the form:

**(**> rk, ik) = h(sk, rk, ik) =

Hk = H= [0,oo)
k - rk

(10)

(11)

As it was mentioned earlier, all reliability constraints
(6)-(8) may be replaced with constraints on expected value of
the same expressions, i.e.,

EskeSk

Z pHk(
hk(sk>rkJk)) eHS

where p is the characteristic set function of the form:

fl XEA

(0

(12)

(13)

(14)

(15)

and HS is the set of the desired number of successes.

SHORT REVIEW OF METHODS USED FOR
DETERMINATION OF CONTROL
STRATEGIES IN THE PRESENCE OF THE
CHANCE CONSTRAINTS

At the beginning the optimal control problems with chance
constraints were solved in a simplified way under the assump-
tion, that the release in every period is a linear (or more

precisely affine) function of storage (or storage and past
inflows) and inflows in subsequent time periods are indepen-
dent random variables with known distributions (cf. ReVelle
etal, 1969;Loucks, 1970). This assumption allowed express-
ing the stochastic control problem in terms of the determinis-
tic linear or nonlinear programming, for linear or nonlinear
objective function, respectively. Unfortunately the solutions,
although elegant from a mathematical point of view,
belonged to a very narrow class of functions, were often far
from the optimum (Stedinger, 1984).

In the turn of seventies and eighties a new method of a
similar kind was proposed (Colorni & Fronza, 1979; Simon-
ovic & Marino, 1980; Marino & Mohammadi, 1983). In the
so-called 'reliability programming' (RP) the demand of
linearity of the control rule was rejected and the probability
levels restricting risk were optimized as additional decision
variables, rather than being fixed a priori. Because of that the
objective function was augmented with components repre-
senting losses related to these probabilities.

The first impression was that this approach is more general
than the previous one, based on linear decision rules. How-
ever, as noted by Strycharczyk & Stedinger (1987), in con-
trast to the linear decision rule (LDR) models, there were no
'allowance for variations in response to actual inflow and
demand levels' in the RP. One can add that there were no
variations in response to the reservoir storage level, either. In
terms of the control theory, the RP models proposed open-
loop control scheme. Their results were therefore worse than
these of the LDR models, because the class of the control
rules that are constant functions is a subset of the class of
these control rules that are functions of measurements, even
as simple functions as linear (affine).

From the stochastic control theory point of view both
approaches are far from the optimal one. The main reasons
are the following:

1. They use very small pieces of the information concerning
the distribution of inflows, only one statistics of the distri-
bution, namely a quantile of a specified order (a ,̂ f}k, y or
1 — (xk, 1 — pk, 1 — y). The rest is completely ignored. That is,
the proposed releases may be identical for various distribu-
tion curves, provided their quantiles of specified orders are
the same.

2. They do not take into account the information how the
real-time control system works. The most important
features of such systems are as follows:
(a) at time k, while calculating a control for the nearest

period there is uncertainty about future inflows, but
the past inflows and the current state are known

(b) the current intervention is not the last one (unless k is
the ending time of the control horizon), and at times
k+l,k + 2, k + 3 one gets new measurements and may
calculate the suitable control. This is the main differ-
ence between the open-loop feedback control (OLFC)
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and the closed-loop feedback control (CLFC) schemes
(see Bertsekas, 1976).

The mechanisms that ignore this wealth of information
cannot be effective. That is why their performances in the
tests conducted by Strycharczyk & Stedinger (1987) and
Stedinger (1984) were so bad.

The only method of solving this problem that makes use of
its sequential nature, as well as of the sequential nature of the
real-time control process, is the stochastic dynamic program-
ing (SDP).

The first algorithm was proposed by Askew (1974a, b). He
analyzed the problem of deriving the optimal operating
policies that maximize the expected net benefits after a 50
year design period for a water supply system. Its statement
included the performance index (1), the state equation (9)
with initial condition (3) for s = smax, the release constraint (5)
and the global risk constraint of the type (8) or (14), where
functions hk and the sets Hk were defined by (10) and (11).
That means, the risk of the deficit in the next period did
matter the most. Askew proposed a combination of dynamic
programing and simulation. The main idea consisted in
augmenting the right hand side of the recursive equation of
the dynamic programing (DP) with a penalty function taking
only two values: W< 0 if the deficit of water is expected at the
next stage (that is if hk(sk,rk,ik)$Hk) and 0 otherwise. By
heuristic, interactive searching over a range of values for W
and performing the whole DP algorithm for each value, a
policy was found that offered the maximum expected net
benefit and complied with the reliability constraint. Unfortu-
nately, such iterative process might converge very slowly
and, as Sniedovich & Davis remarked (1975), not necessarily
to the optimal solution of the original problem.

The latter difficulty was overcome by Rossman (1977) who
proposed more effective and formally justifiable algorithm,
yet still based on the penalty function approach. The algor-
ithm for problems with constraints of type (14) was deve-
loped within the context of the Lagrangian duality theory of
nonlinear programing. In this connection the objective func-
tion (1) was augmented with a linear penalty term represent-
ing the cost of violating the reliability constraint (14) and all
stage problems were augmented with appropriate stage
penalty terms. Optimal value of the Lagrange multiplier k
was sought, due to duality theorem, via minimization of the
total cost-to-go (that is the cost after performing one - for a
specific A - DP backward iteration for k = N, JV-1,
N- 2,.., 1) by any method of scalar minimization.

After two years Sniedovich (1979) generalized the Ross-
man approach for problems with probability constraints of
type (8). The method proposed by him has the same draw-
backs as those of Askew and Rossman. It requires multiple
solving of the control problem by DP method for different
Lagrange multipliers to achieve the saddle point of the

Lagrange function. Some convexity conditions must be
satisfied to achieve this, otherwise the duality gap may
appear (see Rossman, 1977).

The question arises if there is a method of solving this
problem directly by passing the DP recursive scheme only
once. To the present author's knowledge, supported by the
opinion of Yeh (1985): 'The reliability-constrained or chance-
constrained formulation [of DP] has been solved with the
penalty function approach or the Lagrangian duality theory of
nonlinear programming', until now there has been no other
investigations on this problem.

Although Yakowitz (1982) stated that: 'It does not seem
possible to fit such chance-constraint reservoir problem exactly
into the optimal control problems format', there are some
possibilities to imbed this problem into the classical DP
formulation. They were perceived by Sniedovich & Davis
(1975), but without presentation of a concrete algorithm and
results, and as it will be explained below, with some
shortcomings.

At last some remarks should be made on very popular in
recent years algorithms applying differential DP to reservoir
management problems with stochastic inflows (Georgaka-
kos & Marks, 1987, Trezos & Yeh, 1987). Although they
could deal with problems of very high dimension, from
control theory point of view they are suboptimal, because
they realize open-loop feedback control scheme. We will not
analyze them here, ending with the remark that they take the
risk constraints into account through barrier function (Geor-
gakakos & Marks, 1987) or through guessing a feasible initial
trajectory and considering these constraints in some subopti-
mal way, independently while every DP iteration (Trezos &
Yeh, 1987).

STATISTICALLY SAFE SETS
METHODOLOGY

The main idea underlying the statistically safe sets methodo-
logy stems from the observation, that difficulties which
appear while solving the problems (l)-(8) by combination of
DP and penalty function technique are related to twofold
character of each stage optimization. At every time period we
look for the control which assures the best trade-off between
the benefits expressed by the objective function and losses
expressed by the penalty term. The result is dependent on the
penalty coefficient (Win the Askew's method or X in Ross-
man's method). During many iterations the solutions, i.e.,
the optimal strategies r[ = rk(sh Wl) or r[ = fk(sk, I1), where /
is the number of the penalty coefficient iteration, are inadmis-
sible from the constraints' (8) or (14) point of view. On the
other hand, many iterations may produce strategies giving
very low value of the objective function, yet being admissible.
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The question arises if these two requirements can be separ-
ated. The answer is positive, we can achieve it by using
statistically safe sets methodology. This methodology con-
sists in imposing additional deterministic restrictions on the
sets Rk of admissible releases (5), in order to assure that all
reliability constraints (6)-(8) are satisfied. These constraints
are calculated recursively in the same manner (i.e., passing
backward) as the Bellman function.

The proposed approach may be treated as the relaxed
version of the Yakowitz's (1969) 'sets of strategies associated
with an adaptive control problem'. He analyzed the optimal
control problems with statistic law of motion, the finite
horizon (he called them 'truncated Markovian adaptive
control processes') and deterministic constraints on state
variable having the form

skeSk VfceUV

To ensure that these conditions are satisfied for each k, at
every stage Yakovitz (1969) restricted the set of admissible
controls Rk(sk) to

= {reRk(sk):P(sk+leSk+l\sk,r,k)=l} (16)

In statistically safe sets methodology formula (16) is
modified on account of probabilistic, not deterministic as
above, nature of constraints (6) and the necessity to ensure
that all controls from the set R* (constraint (5)) lead the
system (of course in a probabilistic sense) to such states sk+ {

in time period k + 1 for which any admissible control strategy
exist.

More precisely, at each stage k we consider two sets,
namely the set of statistically safe storages and the set of
statistically safe releases. The first one comprises these
storages sk for which there exists at least one sequence of
releases rk, rk+l9...,rN belonging respectively to sets Rk,
Rk+l,...,RN, which, together with the resulting state trajec-
tory, satisfies the reliability constraints (6) in periods k,
fc+1,...,#.

The set of statistically safe releases in period k includes
these releases satisfying constraint (5), that lead from the
current to the next (in period k + 1) set of statistically safe
storages. It should be emphasized, that both definitions
correspond to the behaviour of the release and storage
trajectories, which means, that the attention is paid not only
to current values of these variables in every period k,
k+l,...9N, but also to transitions between subsequent per-
iods. The latter thing is quite often neglected while construct-
ing reservoirs' control rules.

The method used to evaluate the safe sets is based, as
optimization in DP, on recursion.

Let us denote as Xk the set of statistically safe storages in
period k and Rk(sk) - the set of statistically safe releases in
period k, when the storage at the start of this period is equal

to sk. The recursive formula accounting both the determinis-
tic constraint on release (5) and the reliability constraints (6),
(7) is as follows

(17)

(18)

(19)

(20)

Rk(sk) = {r: F(gk(sk,r,ik)eGk)>pk}

Xk={sk.Rk(sk)+0}

Expressions (18) and (19) mean, that as far as we assume
that inflows in subsequent time periods are independent
random variables, the mixed reliability constraint (7) on
current storage and release can be treated as an additional
deterministic constraint on release defining set Rk(sk). On the
other hand, sets Xk+l in expression (17) additionally restrict
sets Sk+l to ensure not only the fulfillment of the risk
constraints (6) but also transitions between safe sets in
subsequent time periods. In this way the presented approach
may be treated as stochastic version of the 'adaptive corridor
width selection' (Yakowitz, 1969; Murray & Yakowitz,
1979).

Expressions (17)—(19) can be written commonly as:

Rk(sk)={reRk(sk):P(gk(shr,ik)eGk)>Ph

i)>**} (21)

The compact form of the above definitions was obtained
due to the property that during control we use feedback and
while determining the release for period k we will know the
value of the current storage. Because of that and the indepen-
dence assumption, the probabilities in (6),(7) and (17),(19) or
(21) are calculated with regard only to current inflow ik.

The global constraint (8) has a different character since the
probability does not concern the inflow ik in one period k, but
is calculated over the sequence of inflows il9 i2,...JN. The
only method of incorporating it into DP procedure is based
on introducing an additional state variable accounting the
probability of not failure up to the beginning of the period
under consideration. Denote this variable as yk. Its state
equation is:

(22)

(23)

Now the constraint (8) can be written as

To apply the safe sets methodology, we should add the
suitable terms to definitions (17) or (21). For example the
expression (17) will take the form:

= yk'T>(hk(sk9rJk)eHk)eXYk+l} (24)
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(25)

(26)

(27)

(28)

The sets Xk are now defined on the cartesian product of
spaces of storages S and probabilities Y. The boundary
condition (26) for the iterative process of determining these
sets results from the global probability constraint of type (8)
and assures that this constraint (expressed also by the new
state variable yk and the inequality (23)) will be satisfied. The
set XYk+l is a projection (II is the operator of projection) of
the set Xk+l on the space Y and XSk+l(v) is a set of safe
storages corresponding to the probability of success equal v.
The sense of all these sets is explained in Fig. 1.

In a similar way we can define the safe sets for the expected
value type of constraints. The equivalent of (17)—(19) is

Rk(sk) = {reR'k(sk):E[sk+ik-r]eSk+l()Xk+l} (29)

Rk(sk) = {r: E [gk(sk,r, ik)} e Gk} (30)

and the equivalent of (24)

(31)=yk + E[pHk(hk(sk9r,ik))]eXYk+l}

In the latter expression yk is an additional state variable
satisfying the state equation:

* rk, ik) =

and the final condition

[pHk(hk(sk, rk, ik

(32)

In this case the variable yk accounts the number of
successes (of belonging the value of the functions hk(sk, rk, ik)
to sets Hk for subsequent k) up to the beginning of the period
under consideration.

The definitions of sets Xk, XSk(v), XYk remain the same as
above (see formulas: (25), (27), (28)) as well as the set Rk(sk)
(see (18)). Only the boundary condition on the sets of
admissible states (both storages and the expected number of
successes ) will be different, namely:

XN+1 = SxHS (33)

Let us notice, that all the above presented sets, both the
sets of the safe states (physical, i.e., storages and artificial
probabilities or the expected number of successes) can be
determined before the optimization, that is before the essen-
tial iteration of the DP algorithm. Of course, the Bellman

XS,.(v)
Fig. 1 Sets of safe states in problems where the global risk con-
straints are present.

functions (functions of the 'optimal cost-to-go') and the
control rules rk(sk,yk) will be calculated only for points
(sk9yk) belonging to sets Xk for all k.

Hence, the backward DP algorithm will be as usual:

)= m a x

with

) = max E {BN(sN, rN,
rNeRN(sN,yN)

(34)

(35)

where functions fk are defined by (22) or (32), and the
expectation is calculated with respect to the stage inflow ik.

As it is seen from the recurrence scheme (34), (35), all
constraints in the general problem (l)-(8) or (l)-(5), (12)-
(14) can be transformed, owing to statistically safe sets
methodology, to deterministic constraints on release. More-
over, this process can be performed before the optimization
(i.e., before DP backward recurrence scheme (35),(34)).
Because of that, while we restrict our attention only to sets
Xk9 for which the Bellman functions Fk as well as the optimal
control strategies rk(sk,yk) are calculated, there is no neces-
sity to check if 'chance' or 'expected value type' constraints
are satisfied. It is simply guaranteed by choosing releases rk

from sets Rk(sk,yk).
To explain better the application and possibilities of

stochastically safe sets methodology, in the next section its
application to two case studies will be presented. The first
example is taken from the classical literature (Askew,
1974a, b; Rossman, 1977; Sniedovich, 1979, see the review
section), while the second one concerns real-time winter
flood control problem.
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CASE STUDIES

Example 1

Askew (1974a, b), Rossman (1977) and Sniedovich (1979)
studied a single reservoir water supply system. The basic goal
was to determine the release rule which maximized the
expected value of discounted net benefits subject to con-
straints on the probability of failure to supply the target
release or on the expected number of failures over the lifetime
of the system. More precisely, the problem was as follows:

•&['
-^•(B(ak)-c-rk)}}
+P) JJ

k=l,..,N

sk+l = max (0, min (smax, i

Sy=i

k=l9.

or

E

where:

r N

(36)

(37)

(38)

(39)

(40a)

(40b)

TV is the number of years under consideration; lifetime of the
reservoir system (it was assumed in calculations that
N= 50);

ik is the inflow to the reservoir, a discrete random variable
with identical and independent distributions given by the
following table

'" P(0

0
1
2
3
4
5
6

0.0062
0.0606
0.2417
0.3830
0.2417
0.0606
0.0062

/max is the maximal annual inflow, /max = 6;
Bk is the annual net dollar benefits function;
ak = m i n ^ + ik, rk) is the actual annual release;
5max is the maximal admissible storage (the assumed value:

•W = 3);
sk is the storage at the beginning of the A:th year, a discrete

variable,^ eS={0, 1,2,3};
rk is the release in kth year, a discrete variable;
p is the discount rate;
c is the cost parameter (the assumed value: c = 4);
B(ak) is the undiscounted revenue function, defined by the

following table:

a

0
1
2
3
4
5
6
7
8
9

B(a)- case A

0
10.5
20.5
30.0
39.0
47.5
55.5
63.0
70.0
76.5

B(a)-case B

0
5.0

10.5
16.5
23.0
30.0
37.5
45.5
54.0
63.0

5 is the maximal admissible probability of failure;
NF is the maximal admissible number of failures;
p is the characteristic set function (see def. (15)).

To express this problem in terms of our general formula-
tion (l)-(8) (or (l)-(5), (12)-(14)) we should take:

(41)

(42)

(43)

(44)

(45)

Hk=[0,oo)

HS={N-NF,N-NF+l,...,N}

and add a new artificial state variable yk, satisfying state
equations, respectively, (22) in the case of the chance con-
straint (40a) or (32) in the case of the 'expected value' type
constraint (40b).

Moreover, let us notice, that due to the definition of
success (the situation when there is no necessity of the deficit
at the next stage), and the form of the release constraint (41),
for every storage sk e {0,1,2,3}, and every yk admissible, there
exists at least one release, that guarantees that yk+l will be
also admissible (that is the global constraints (40a) or (40b)
will not be violated by an action performed at the next stage).
This special release is equal 0. But that means, that the safe
sets will be time-invariant, and will have the form of a box

for the global constraint (40a), or

Xk = X=XN+l = SxHS

(46)

(47)

for the constraint (40b).
Because of that the definitions (24) and (31) will take the

form:

1} (48)

HS} (49)

which is equivalent to introducing additional stage con-
straints on variable yk of a form:

yk>y k = 2,3,..,N (50)
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or

yk>N-NF k = 2,3,..,N (51)

It should be emphasized, however, that such transforma-
tion can be applied only in the case when the sets of safe states
have the form (46), or (47), which in our problem is simply a
consequence of possibility of implementing the zero release
from the reservoir (i.e., VskeS 0eR(sk)). In general, the
formulation (36)-(39), (22), (50) or (36)-(39), (32), (51) is not
equivalent to (36)-(39), (40a) or (36)-(39), (40b).

Because of that, Sniedovich & Davis (1975) in general were
not right. Their state variable yk together with constraints of
(50) or (51) type does not lead, except the specific situation
that was mentioned above, to optimal solution of the reser-
voir control problem with risk constraints. Thus the only
method transforming general reservoir's management
problems with risk constraints (l)-(8) or (l)-(5), (12)—(14) to
the form where the standard dynamic programming algor-
ithm can be applied is based on statistically safe sets
methodology.

There are also some misunderstandings with the interpre-
tation of the state variable yk. Though artificial, it is determi-
nistic and proper state variable, because it depends on the
history only through its last value yk_x and the last storage
sk_x. The probability of success (not failure) can take values
from the interval [y,l]. So that is not true what Yakowitz
(1982) wrote, that '[while process] the only possible value for
the probability are 0 and 1'. During the control process the
probability of success yk (the same with the expected number
of successes) should be calculated all the time due to formula
(state equation) (22) (or (32)). Of course, its value is changing
after each period. And there is no relation between this value
and the real number of successes (or failures) that occur
during the control process. The feedback with the process is
realized only through the measured value of storage sk. It
influences yk by the state equation (22) or (32).

Two numerical experiments were performed. The first one
with the chance constraints (40a), for the probability of
failure (5 = 0.1, and the benefit function B (a) as in case A, with
the discount rate p = 0.l, and the second one with the
expected value constraints of type (40b), for the number of
failures NF= 1, and the benefit function B(a) as in case B,
without discounting (i.e., p = 0). In both cases the artificial
variable yk was discretized into 50 intervals. The results were
as follows: in the first case, 191.2275, and in the second case,
242.7426. When we compare these results with the results
reported by Sniedovich (1979), and Rossman (1977) it turns
out that in the first case our result is a little worse (Sniedovich
obtained 191.8, but author could not achieve it for the
optimal strategy described by Sniedovich), but in the second
case our result was better (the best result reported by
Rossman for randomized policy was equal to 242.1).

The computations took about 2 minutes on IBM PC/AT-
compatible computer with 8 MHz clock.

Example 2

This example concerns the reservoir management during
thaw flood. It is presented here to show that the statistically
safe sets methodology is quite a flexible tool and can be
applied not only to problems expressed in terms of (l)-(8) or
(l)-(5), (12)—(14), but also to other water reservoir manage-
ment problems.

The main difference between the model considered in this
section and the previous one consists in other than summa-
tion performance index (it is of the minimax type now, which
means that we assume, that flood damages are proportional
to the culminant flow at a cross-section just below the
reservoir) and in the first order Markovian model of inflow
(for higher order processes the argumentation is analogous).
Of course, the latter thing is a big simplification, but we
present this problem rather to illustrate the possibilities of
statistically safe sets methodology than to solve it for a
concrete system.

It is obvious, that when a Markovian model of inflow is
used, the state vector contains one or several (in the case of a
higher order of the Markov process) additional coordinates
(corresponding to past inflows) and their number is equal to
the order of the Markov process. Thus, in our case the state
vector will have the form:

**= !>*>**-il (52)

We want to work out a unified control strategy, that is a
sequence of the reservoir's control rules for each time stage
during the whole flood period. Obviously, these rules should
depend on the reservoir storage and on the latest inflow (or
several latest inflows according to the order of the Markov
chain).

The problem can be formulated as follows

mini?! max rk\

k=l,...9N-l

subject to:

rkeR(sk)=[rmin,rm&x(sk)]

k=l,..,N

(53)

(54)

(55)

(56)

The quantity ock is a given a priori level of reliability that our
control will not evoke the violation of the reservoir storage
constraints (56).

Because our structure will be closed-loop, the control as a
function of the state variables (or the state vector) will be also
a random variable and there is a point in minimizing its
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expected value (more precisely the expected value of a
functional of it).

According to the first order Markovian assumption,
dependencies between inflows in subsequent time instants
can be represented by transition probability matrices [p%n],
where pj™ is the probability that the inflow, or more precisely
the level of inflow, in in period k + 1 follows the inflow im in
period k.

Before the synthesis of the optimal control we should
determine for every stage k of the control horizon the set of
safe controls Rk(sk, i™_ x) as well as the set of safe storages and
inflows Xk from the relationship:

(57)

(58)»4-1

eX,k+\ (59)

Taking into account that the inflow is a Markov chain of
the first order, we can calculate the probability in definition
(57) due to the formula

(60)

where p denotes the characteristic set function defined by
(15) and

As the final condition we take:

XN={(sJ):seSN,ieI} (61)

where / denotes the range of possible inflows.
If at a stage k the set Xk or Rk{.,.) proves to be empty, it will

signify that there exists no control assuring the maintenance
of the reservoir in the admissible area with the reliability
greater than cck.

After the determination of the sets of safe storages and
releases, we will calculate the optimal control strategy, that is
such a sequence of admissible control rules

where

(62)

(63)

which asserts the lowest value of the performance index (53).
The expected value in the performance index (53) is calcu-
lated with respect to densities of random variables il9

i2, ...,iN-i forming the Markov chain with the given vector of
initial probabilities

po= [0,0,... ,0,1,0,. ..,0]

where the figure one is put at the rath position according to
the measured level of the initial inflow i0 = im.

For this problem the Bellman recursion scheme will be as
follows:

FN_ j (sN_! £_ 2 min rN_,
rN-leR(sN-hiff_2)

(64)

= min E [max(^, Fk+ ,(sk + ik - rk, ik))\ik_ {= /w]

= minYjp™l-max (rk,Fk+l(sk+in
k-rkJ

n
k))

rk n

for^ = 7V-2,7V-3,...,3,2,l (65)

The Bellman function for the last period of the control
horizon does not contain the expectation operator, because,
due to our convention the control rN_x at the stage TV— 1 is
independent of the inflow at this stage.

Performing at each step k the minimization (65) for all

eXk we obtain a sequence of control rules (62),

that is the optimal control strategy. Applying them during
control horizon at each time instant k we assure the minimi-
zation of the performance index (53) and at the same time not
violation of the given (instantaneous) reliability level ak of
maintaining the reservoir within constraints. It will not
protect us, however, completely from going out of the sets of
admissible states Xk or Sk. It is a consequence of our
admission that the reliability <xk is less than one. Moreover,
the inflow model as each model of the physical phenomenon,
is not ideal. The most sensible thing as may be done in such,
failure situation is to realize a control out of the set
Rk(sk,ik-i) but from the set R(sk), leading the storage to set
Xk+! (4) at the next time instant k + 1. Then we will be able to
apply the rules (62) again.

C O N C L U S I O N S

The presented methodology is a general tool for solving
reservoir management problems in risk conditions, when
inflows are random variables and some 'chance' or 'expected
value' constraints (imposed on stage values or on trajectories
of storages or storages together with releases and inflows)
have to be satisfied. If the optimal control strategy exists, it
could be calculated with the help of this methodology. Its
main advantage results from the fact that it separates two
inherent components of each reservoir control problem:
optimization of a performance index and assurance that all
reliability constraints are satisfied. The second task, consist-
ing in the determination of the sets of safe storages (and
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sometimes other state variables) and releases, can be solved
before the essential DP recursion. This recursion is the
standard DP backward stagewise optimization performed
for particular values of state variables with properly modi-
fied sets of admissible releases depending on states.

While using statistically safe sets methodology we can
determine the optimal control strategy after one iteration of
the DP algorithm, there is no necessity, as in other
approaches, to perform many DP iterations to find the
optimal value of a penalty coefficient. There is no danger of
getting into the 'duality gap' (compare Rossman, 1977),
either.

Statistically safe sets methodology can be applied both in
discrete DP and DP with approximations of the stagewise
cost-to-go functions and the optimal control rules (see
Foufoula-Georgiou & Kitanidis, 1988), as well as in
problems with independent and Markovian inflow models.

It can be also useful in some suboptimal approaches
stemming from differential DP idea (see Georgakakos &
Marks, 1987; Trezos & Yeh, 1987). In that case subsequent
iterations would be performed only to minimize the perfor-
mance index, they would not be lost on looking for an
admissible (i.e., satisfying risk constraints) solution.
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3 Risk assessment in control of reservoir systems

A. KOZLOWSKIand A. LODZINSKI
Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland

ABSTRACT Decision making in the process of control of water storage reservoirs is
always combined with risk, whose evaluation is of utmost practical importance. Define the
risk as the probability of failure within an operational control process, in the sense of water
deficit or water surplus. The control is the sequence of interventions (releases) on future
intervals. The risk is estimated on the basis of probability distributions of the total inflows
within the horizon of an intervention. The stochastic process of total inflow is conceptualized
as a non-stationary Markov chain of first or second order, under discrete time. The
methodology is illustrated at the example of the water supply system of a cascade of reservoirs
on the river Sola.

INTRODUCTION outflow from the cascade of the Tresna, Por^bka, Czaniec
storage reservoirs on the river Sola in Southern Poland.

In a real decision making problem a decision is made under
the conditions of uncertainty, i.e. the decision maker does
not have complete information about all elements that
influence his decision.

In the water resources management the estimation of the
quality of control is carried out a posteriori as a result of
analysis of water management system performance within a
long period of time, usually several years. A probabilistic
estimation of failure in the control process is conducted
through the determination of the periods of assurance of
various desirable outflows. Recently some specific perfor-
mance indices of water resources system, such as reliability,
vulnerability, resilience and robustness have been considered
(cf. Cohen, 1982; Haimes et al.9 1984; Hashimoto et al.,
1982a, b).

The present paper deals with the probabilistic estimation
of failure, C understood as the impossibility to meet the
planned outflows), within an operational control process,
being a sequence of interventions planned over some control
horizons, which may have several weeks. This estimation is
made at the beginning of each individual intervention. Thus
it is an a priori estimation, concerning the future situations. A
main task of the proposed method is evaluating of the risk of
failure to maintain the planned outflow in the course of the
time horizon considered. This value of risk is useful for the
decision maker.

The present paper illustrates the proposed method of risk
assessment by its application to keeping up the planned

SOURCES OF RISK

Even though risk has not been precisely defined, it is assumed
that it is a function of two variables:

(a) the probability of failure;
(b) the magnitude of loss.

Human activity is liable to risk, because within our
environment we always deal with uncertainty and we may
expect some negative consequences.

The present paper deals only with the first risk index - that
of failure probability. The other index - the magnitude of loss
- depends on the utility function. It is difficult to determine
the appropriate formula for this function in water manage-
ment; in particular, as one does not have all necessary data.
Failure probability can be estimated on the basis of
sequences of many years of observed inflows.

METHOD OF RISK ESTIMATION USED IN
THE DECISION MAKING PROCESS

While determining a decision making model, which is to
serve as a decision making instrument, the random factors
can be taken into account in various ways.

According to the way of considering uncertainty in the

293
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Control assessment method

Y

Risk assessment

_/ Accept,ance \

7'
I

The model of the system

Control correction

Fig. 1 Scheme of decision making.

decision making process, various approaches are possible.
They range from the optimistic ones, where favourable
conditions are assumed, to the pessimistic ones, where the
worst possible conditions are assumed.

Such different methods reflect different risk perceptions of
the decision maker (risk prone or risk averse attitude).

So, it would be worthwhile to support the decision maker
operation by introducing an estimation of the chances of
success to the decision making scheme. The method of
decision making is presented in Fig. 1.

The process of control consists of a sequence of repeated
control and risk assessment. The control horizon is divided
into K intervals. At the fcth moment - the beginning of
intervention, k = 1,..., K, the control for the interval of the
length H (horizon of intervention), i.e. for the times
te [k, k + H] is assigned. For this control the value of risk is
estimated. If the decision maker accepts the calculated value
of risk, he accepts also the assigned control. The non-
acceptance involves the necessity of control correction,
which is made by modifications of some parameters in the
method of control assessment, by application of another
method, etc. The decision chosen is applied to the system
over a part of the intervention horizon only, [k, k+ 1], rather
than over the whole horizon [k,k + H]. Such procedure is
continued until the moment K—l, when the control for the
last interval is assessed and applied over [K— l,K],

Within this method of control the decision maker is

constantly being informed about the consequences of its
choices.

While introducing risk into the decision making process,
one has to introduce two characteristic quantities:

(a) acceptable risk level Rd;
(b) tolerated departure from the planned control, that is,

tolerated relative deficit or surplus.

As long as the risk of given control is not greater than Rd,
no correction of the control value is made. In the opposite
case the second threshold is taken into account: the tolerated
departure from the planned control, i.e. tolerated failure
value. While doing so we want to decrease the risk of
impossibility of realization of the accepted decision.

RISK IN A STORAGE RESERVOIR
SYSTEM

A characteristic feature of a reservoir system is the stochastic
character and inpredictability of the inflow process in a
deterministic sense. The reservoir inflow is a random vari-
able. While making decisions concerning the maintenance of
the outflow on a desirable (non-random) level one is faced
with a danger of violating conventional or physical limits of
the reservoir storage capacity. In order to avoid this, one
sometimes has to give up the desirable outflow levels. This
results in undesirable disturbances in water alimentation of
the user - in deficits or in undesirable surplus. Assessment of
the probability of the fact that the planned outflow will be
not realised (probability of failure) is of utmost importance.

A formula for the risk estimation in a discrete time case
will be derived in the sequel.

The following notation is assumed:

/=0,1,2,..., h - index of the time interval within the horizon
of intervention;

h = Q,\,2,...,H- number of time intervals within the hori-
zon of control under consideration;

So - storage value at the beginning of an intervention (at the
beginning of the k + 1 time interval, k=l,..., K);

Sh - storage at the end of the horizon of an intervention of
the length h;

qt - average inflow within the /th time interval;
dt - average planned outflow within the /th time interval;
ut - average actual outflow within the /th time interval;
5t - relative water deficit within the /th time interval;

c
 d~ui

rjt - relative water surplus within the /th time interval;

=
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et - evaporation and filtration within the i th time interval;
V\ - lower physical or economic limit of the capacity of the

reservoir at the end of the horizon of the length h;
VI - upper physical or economic limit of the capacity of the

reservoir at the end of the horizon of the length h;
h

Qh=Yu 4i ~ total inflow over the horizon of the length h;
i=\

h

Dh=Y, dt - total planned outflow over the horizon of the

length h;
h

Uh=Yj ui - total realized outflow over the horizon of the

length h\
h

Eh=Y, et~ total evaporation and filtration over the horizon

of the length*.

On the basis of the reservoir equation of mass conser-
vation, the volume at the end of the horizon of the length * is
expressed by the formula:

h = S0 + Qh-Dh-Eh (1)

The occurrence of water deficit before the end of the
horizon of the length h time is expressed by the inequality:

sh<v\ (2)

The occurrence of water surplus before the end of the
horizon of the length * time is expressed by the inequality:

Sh>Va
h (3)

Regarding (1) and neglecting filtration and evaporation
for simplicity, these inequalities can be put as follows:

and

S0+Qh-Dh>Th

or

and

(4)

(5)

(6)

(7)

Inequalities (6)-(7) determine the division of the total
inflow area Q into three parts: deficit inflow, desirable inflow
and surplus inflow, which are marked in Fig. 2, respectively
by Fd, S, Fs. In the case of Vf = const, V) = const (denoted as
Vd, V1) and dt=const, i=l,...9h the lines marking the
division are straight. In the general case they are broken.

When the total inflow Qh at the end of the intervention
horizon of the length h takes the values above the upper line,
the case can be called water surplus (the storage volume
greater than V^ value), whereas for Qh below the lower line

vu-s
O

Surplus
Q

o h

Desirable
values
S

V -S +D,
o h

Fig. 2 Division of the total inflow area into deficit inflow, desir-
able inflow, and surplus inflow.

one gets the water deficit (the storage volume less than V\).
In both situations the outflow ut instead of dt is realized.

The risk considered, i.e. the probability that the planned
outflow di,i=l,...,h over the horizon of the length h will not
be realized, may be calculated as the probability that the total
inflow takes a value from the area Fd or Fs in any time during
this horizon of the length h:

v . . . v A . . .

]} (8)

This is the probability of the event that either the total
inflow Qt is too small to maintain the planned outflow within
the horizon of the length h of intervention on the dt level
without violating V\ or the total inflow Qt is too great to
maintain the planned outflow on the dt level without violat-
ing Fu, i=l,...,h. Thus it is the forecast of the total control
failure with the horizon of the length h.

Using the symbols S, Fs and Fd of the respective desirable,
surplus and deficit areas one can reformulate (8) as follows:

(Q2eFdv Q2eF%)]v...

(QheFdvQheFs)]} (9)

In order to calculate the risk rh one transforms the formula
(9) into the form of sum of the following components,
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In fact, it is easy to verify that:

h

v Q,eFs)]
(10)

(ii)

This results immediately from the observation that the sets
S and Fd U Fs are complementary, i.e. x e S <=> x $ Fd U Fs.

The formula (8) defines risk in general terms, for any
outflow value. By substituting concrete releases, one can
estimate the risk for an individual situation.

There are certain characteristic outflow values typically
applied in water management, like

h

(a) target draft df and Df = £ djd;

(b) maximum acceptable flow value in the river below the
h

reservoir d™ax and D%** = £ d™ax;
i=\

(c) minimum acceptable flow in the river below the reservoir
(for environmentally essential needs only) dj™n and D™m =

where i= 1,...,/*, h= l,...,H.

By substituting the above values into the general formula,
one arrives at formulas for h = 1, . . . , / / describing the follow-
ing situations:
(a) the risk of not sustaining the target draft value:

i < V1 -So V»-S0+D\6)]{[fio =

]} (12)

(b) the risk of not sustaining the planned release within the
limits of the economically acceptable outflow:

.A V'- ^ A

(13)

(c) the risk of transgressing the minimum acceptable flow:

(14)

(d) the risk of transgressing the maximum flow in the river
below the reservoir:

A Qh_, < F " - So + Dn A Qh> V- 50 + /> •»)]

(15)

If the risk calculated for the planned outflow is too high
then the planned outflow must be changed - regarding,
however, a given, acceptable level of alteration. This accep-
table level, assumed by the system users, is defined by some
concrete values: relative deficit St and relative surplus */,.
Thus, instead of the planned value di9 the following values ut

of the outflow are realized:

(a) in a deficit case:

('deficit outflow');
(b) in a surplus case:

('surplus outflow').

For these new values of the outflow one can calculate the
new value of risk. The formulas for estimation of the risk of
transgressing the tolerated failure values are set up analogi-
cally as in (14) and (15):

(a) the risk of transgressing the tolerated deficit outflow:

t^ AQh<Vl-S0+Uf)] (16)

(b) the risk of transgressing the tolerated surplus outflow:

Q1<VU-S0+U1A...

(17)

= P [(Co <7o A fi,> v.. . v (fio

(c) the risk that the planned outflow does not fall within the
limits of the tolerated outflow:

rl = rF + r}r (18)

Consider now the method of effective calculation of the
risk rh with the help of equations (10) and (11). These
formulas deal with the probability distributions of the
inflows Qi9 /= l , . . . , / j ; namely with the probability of its
occurrence in desirable S or undesirable Fs or Fd areas. The
probability distributions of Qi9 i= 1 ,...,/* are not stationary.
These distributions depend on the initial moment (beginning
of intervention), the initial inflow value q0 and the previous
inflows Qj,j= l,...,i- 1. As time goes by, this dependence
disappears.

The above suggests that rt can be represented with the aid
of respective conditional probabilities. So, rt is noted as
follows:
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= q0 A QxeS A ... A Q^. Fs)

. . .AG H eS) (19)

where, for instance, the last conditional probability can be
defined by the formula:

This probability should be evaluated on the basis of large
number of observed hydrological records. However, the
number of these records is typically not adequate. For this
reason one often takes the assumption that the stochastic
process Qh is a Markov process. This allows one to use for
example the following relationship, /=!,...,/*:

(21)

So one may transform the relationship (19) into the
following form:

eS)-] (22)

Finally, the stochastic process Qh, h=l,...9H can be
approximated by a non-stationary Markov chain of first or
second order and considered for the discrete time. At the
same time the total inflow area Q is divided into Fd, S and Fs

subareas. Thus one arrives at a stochastic, triple Markov's
chain. In practice one increases a number of chain states in
order to make the appearance of initial inflow within the
various states. In connection with it subareas Fd, S and Fs can
comprise more than one chain status.

EXAMPLE OF CALCULATIONS

The results of the application of the suggested method to the
risk estimation are given for the system of the storage
reservoirs on the river Sola (Tresna, Porabka and Czaniec
storage reservoirs), a tributary of the Upper Vistula. Capaci-
ties of these reservoirs are considered jointly.

The upper constraint of the conservation capacity value of
these reservoirs (without spillway capacity and flood control
capacity) is 101.7 million m3, the lower constraint is 18.2
million m3 (dead capacity). The calculation is conducted for
different initial storage values So - (20.0, 40.0, 80.0 million

- ^

1

—

__ - —

1 1 1

•

s =20

43

mln

m3/

m 3

Fig. 3 Risk as a function of time for initial storage value So = 20
(20) niinm3.

43m'/s

15 m3/s

3m3/s

S =40 mln m3

Time

Fig. 4 Risk as a function of time for initial storage value So = 40
mln m3.

43 m3/s

15 m3/s

3 m3/s

S =80 mln m3

I I I 1 I l _
0 1 2 3 4 5 6 7

Time
10 11 12 13

h

Fig. 5 Risk as a function of time for initial storage value *S0 = 80
mln m3.

m3), different initial inflow values Qo - (3.0, 15.0, 43.0 m3)
and for the fixed target release - 11.8 m3/s.

Figs. 3, 4, 5 represent the alteration of the risk that the
planned outflow is not sustained for an intervention started
at the end of the third interval (h = 3). They present the
influence of the storage value So and of the inflow Qo on the
value of rh, i.e. on the risk that the planned release trajectory
cannot be sustained in the intervention horizon of the length
h. The influence of the storage, So on the risk value is
remarkably greater than that of the inflow, Qo. The latter is
significant for smaller initial storage values, So (Figs. 3, 4).

Fig. 6 represents the correction of the planned release,
necessary for the risk not to exceed the acceptable value
during of sequence of 13 interventions. The correction refers
to the run of inflow of the fall of 1987 and initial storage 43.12
million m3. Fig. 7 illustrates corresponding changes of the
storage trajectory.
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Time
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h

Fig. 6 Correction of the planned release.

Before correction

After correction

Min accept

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time h

Fig. 8 Change of target release due to excessive risk.

6

6
<D 30

Target

Rd=0.3

Rd=0.1

Constraint

J I I I L_

Time

Fig. 7 Change of storage trajectory.

Before correct!

After correctio

Min acceptable

Fig. 9 Change of risk due to correction of release.

An example of the change of the target release planned at
the beginning of a single intervention due to excessive risk is
shown in Fig. 8. Change of risk due to the correction of
release is shown in Fig. 9.

C O N C L U S I O N S

The present paper describes the method of risk estimation in
a reservoir system control.

Failure probability is the information concerning possible
future dangers, of direct significance for water system users.
However, it says nothing about the scale of a possible failure,
hence it makes no distinction between the failures with the
same probability of occurrence and different magnitude of
loss.

Were both risks indexes, i.e. failure probability and loss
magnitude, considered in the decision making process, then
the information concerning possible future dangers would be
significantly more complete. The suggested method is par-
ticularly useful in low-water seasons.
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ABSTRACT In the study of water supply system expansion in two areas of Poland, the
design of a number of water storage reservoirs is considered. The reliability studies reported
are based on a system simulation performed for a historical time series of observations of river
flows, with and without the hypothetical reservoirs, for future water demands given in two
variants. Periods of non-satisfactory and of satisfactory system performance and values of
maximum and of cumulative deficits are analyzed. Frequency, duration and severity of non-
satisfactory system performance are assessed as reliability, resilience, and vulnerability.
Assumption of exponential distribution of periods of non-satisfactory and satisfactory
performance allows straightforward links between several criteria to be established.

INTRODUCTION

In order to evaluate various aspects of non-satisfactory
performance of a technical, or natural system, it is necessary
to use multiple performance criteria. The use of a set of
criteria to describe the possible variants, scenarios and
policies offers a perspective that cannot be achieved with a
single objective.

The criteria of concern pertain to time-related characteris-
tics (duration and frequency) of the non-satisfactory system
performance and also to the amplitude-related characteris-
tics (maximum instantaneous entry into the state of non-
satisfactory performance and the cumulated entry). The
ultimate criteria, combining both above types of characteris-
tics measure various aspects of severity and consequences of
the non-satisfactory performance. Characteristics of this
kind have been recently given a more systematic form via a
number of criteria (risk, safety, reliability, resilience, vulner-
ability and robustness) discussed in the water resources
literature in the last decade (cf. Hashimoto et al., 1982;
Fiering, 1982; Kaczmarek, 1984; Duckstein & Plate, 1985;
Moy et al., 1986; Kindler & Tyszewski, 1989).

One possible formulation of these criteria is presented in
the present contribution. They measure such properties of
the time series of variables representing the system behaviour
as duration of periods of satisfactory and non-satisfactory
performance, and maximum and cumulated deficits. The
methodology is applied to a problem of water supply expan-
sion in two drainage basins in Poland.

MATHEMATICAL FORMULATION: TIME-
RELATED CHARACTERISTICS

Assume, that there is a single variable deciding whether the
system performance is satisfactory or not. This may be
approximately correct in a number of technical applications,
including water supply expansion problems considered here.

Define the satisfactory behaviour of a system in the load-
resistance framework, originating from the structural engin-
eering, that is according to the inequality:

load < resistance (la)
The interpretation in the water supply case is
water demand < water supply (1 b)

299
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supply
(8)

(9)

(10)

A special case of the renewal process dwells on the concept
""-' - of a two-state homogeneous Markov chain for which the

k \ past history of the process is completely summarized in the
current state. Therefore the distributions of the system

- ^ ^ — A sojourns in satisfactory and non-satisfactory states must be
C ) memory-less, that is exponential:

. <_ p | _ li | ^ | 3 | 1 _ V . f(t) = kexp(-kt) (11)

< < VI %** g(j) = ^ exp ( - fit) (12)
MMMH^^M^ time

Fig. 1 Load-resistance analogy in the time series representation;
(a) time series of constant load (water demand) and variable
resistance (water supply, i.e. river flow rate); (b) time series of
deficits; (c) renewal stream.

If, in a particular time instant, the system fulfills the above
inequality, it is performing satisfactorily.

Fig. la shows an example of time series of constant water
demand (load) and non-stationary water supply, i.e. flow
rate in a river (resistance). Fig. lb illustrates the time series of
deficits and Fig. lc - the so called renewal stream. The term
renewal means a comeback of the system from a state of non-
satisfactory performance to a state of satisfactory perfor-
mance. It has been found convenient (Kundzewicz, 1989) to
use the renewal theory framework (Solovjev, 1983) embrac-
ing different measures of reliability and resilience criteria.
The notation used in Fig. 1 reads:

x\ - periods of system sojourn in the state of satisfactory
system performance;

T " - periods of system sojourn in the state of non-satisfac-
tory system performance;

t\- time instant of system passage from the state of
satisfactory system performance to the state of non-
satisfactory system performance;

t" - time instant of system passage from the state of
non-satisfactory system performance to the state of
satisfactory system performance.

Assume that:

It is possible to obtain characteristics of various aspects of
r d i a b i l i t y v i a s i m p l e a n a l y t i c manipulations with two para-^^ for ^ exponential distribution)> X and „
(Kundzewicz, 1989). The inverse of TNS is tantamount to
Hashimoto's definition of resiliency (Hashimoto et al., 1982).
It is easy to determine the renewal density m(t) that allows
calculation of the recurrence, or expected number of
renewals M(t), i.e. of cycles of satisfactory and non-satisfac-
tory performances in the time interval (0, i)\

M(t)= \m(t)dt

where, under the assumptions (11)—(12)

(13)

(14)

The instantaneous availability A(t), i.e. the satisfactory

performance of the system in the time instant t reads:

The stationary (limiting) availability is consistent with a
common notion of reliability (also called temporal certainty
in Klemes, 1969).

= rs/(rNS+rs) (16)

(a) All variables x\ and %•' are independent.
(b) All variables T- are identically distributed:

(3)

(4)

(5)

(6)

It may be problematic, whether the parameters k and ii can
be indeed considered constant in time, what is necessary in
order to justify the assumption of exponential distributions
of the sojourns in particular states. However, it is possible
(Kundzewicz, 1989) to accommodate the nonstationarity in
the above Markovian scheme, e.g. by allowing the explicit
changes in the parameters of the exponential distributions, k
and jn.

CASE STUDIES

(c) All variables x" are identically distributed: The problem analyzed in the case studies is the one of
(7) expansion of the existing water supply capacities in two river
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basins. The case studies embrace the municipal systems of
Radom in Central Poland, and of the Lublin conurbation in
the South-Eastern Poland, located in the basins of the River
Radomka, and of the River Wieprz, respectively. The exist-
ing water supply systems seem insufficient for the foreseeable
water needs in the near future. The possible expansion of the
systems consists primarily of creating water storage reser-
voirs, Domaniow and Olesniki, in the Radom and the Lublin
systems, respectively.

The description of network schemes, hydrological data,
water demand characteristics and hierarchy of fulfilling the
water needs of particular users of the system are described in
a series of progress reports by HYDROPROJEKT Consult-
ing Engineers (1988-90).

The simulation was performed with the help of a network
model software package developed by HYDROPROJEKT.
The hierarchy of fulfilling water demands gives greater
priority to the municipal needs than to the ones of local
industries. The idea of the operating policy is to provide the
target release for as long as possible (under no account of
forecast, and without hedging).

Hydrological records (ten-day streamflow values) and
projections of water demands were used to generate resis-
tance and load variables (cf. equation (1)). The analysis was
carried out for several conditions on supply (without reser-
voir, with reservoir) and on demand (several scenarios of
demand growth, typically intensive and moderate develop-
ment, resulting from different forecasts of population,
regional development and water consumption standards).
The drought management policies have been also con-
sidered, where the household consumption was reduced to
200 (in emergency, even 150) liters per capita per day. One of
the reasons of growth of water demand (in addition to the
increase of population and to the regional development -
agriculture, industry) is the mandatory limitation to the
groundwater use in the future. Excessive exploitation of
groundwater in the Radom area caused the water level to
drop considerably. Reconstruction of groundwater reserves
seems urgently necessary and the temporal schedule of
reduction of groundwater use has been set up.

There were water deficits occuring in most analyzed vari-
ants. The data resulting from the simulations were used to
construct the deficit series and renewal streams allowing the
reliability-related criteria to be evaluated.

Examples of deficit series and renewal streams for the
water supply expansion study in the Radom area are shown
in Table 1 for the horizon of the year 2020, under assump-
tions of intensive development, with reservoir. The notation
used is: time - time instant, TS - duration of the system
sojourn in the state of satisfactory performance, TNS -
duration of the system sojourn in the state of non-satisfac-
tory performance, whereas DEFMAX and DEFCUM

Table 1. Example of renewal stream with deficit series

time
[decades]

139
142
145
153
222
226
229
233
307
310
643
646
649
653
654
657
658
663
664
667
668
682
685
693
694
696
704
718
720

TS
[decades]

139

3

69

3

74

333

3

1

1

1

1

3

1

8

2

TF
[decades]

3

8

4

4

3

3

4

3

5

3

14

8

2

14

DEFMAX
[m3/d]

124

108

83

108

48

114

74

43

70

109

115

117

92

79

DEFCUM
[xlOm3]

340

516

235

211

82

286

262

111

201

138

911

458

175

521

denote the amplitude of the deficit and the cumulative deficit,
respectively. The values of time, TS and TNS are given in
decades, whereas DEFMAX in m3/d and DEFCUM in tens
ofm3.

The statistical processing of the simulation data in the
sense of fitting a distribution was not always possible, due to
a small amount of events of non-satisfactory system perfor-
mance, observed in some cases. However, good fit of a simple
one-parametric exponential distribution, plausible for use
with scarce data was generally obtained. This is true not only
for TNS, what is intuitively expected, but also for TS. A
couple of illustrations of the fit are given in Figs. 2a-4a for
TNS and in Figs. 2b-4b for TS, respectively. The particular
Figs, pertain to the Radom system:

(a) Case 1 (Figs. 2a and 2b) - variant presented in Table 1
(horizon 2020, intensive development, with reservoir);

(b) Case 2 (Figs. 3a and 3b) - horizon of the year 2010,
intensive development, no reservoir;
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Fig. 2 Frequency histogram of durations of system sojourn in the
states of: (a) non-satisfactory performance; (b) satisfactory perfor- Fig" 3 Fre1uency histogram of durations of system sojourn in the
mance (Case 1, horizon 2020, intensive development, with
reservoir).

states of: (a) non-satisfactory performance; (b) satisfactory perfor-
mance. (Case 2, Radom, horizon 2010, intensive development, no
reservoir).

(c) Case 3 (Figs. 4a and 43b) - horizon of the year 2010,
moderate development, no reservoir.

These illustrations correspond to the controlled regime
(discharge from the reservoir, cf. Figs. 2a-2b) and to the
natural regime (no reservoir, cf. Figs 4a-4b). In the
controlled situation (with reservoir) the value of TS and of
temporal reliability is much higher than for the case without
reservoir.

As can be expected, the sojourn time in the state of non-
satisfactory performance and the cumulated deficit volume
are strongly correlated (cf. Fig. 5). The values of correlation
coefficients between the variables TNS, DEFMAX AND
DEFCUM for the three illustrative cases are given in Table 2.

A set of reliability-related criteria analyzed in the present
work was:

(a) reliability (temporal reliability, or stationary, i.e limiting

availability), i.e. the ratio of the number of decades in which
the system did not leave the state of satisfactory perfor-
mance to the total number of decades considered;

(b) resilience (reciprocal of the mean system sojourn in the non-
satisfactory state);

(c) volumetric reliability (cf. Klemes, 1969), understood as the
portion of required volume of water supplied in the time
period considered, with the rate less than or equal to the
demanded volume;

(d) mean maximum deficit, as a simple measure of vulner-
ability. For the sake of consistency with the former three
measures the reciprocal of the mean maximum deficit was
used.

Ranking of cases, according to the four above criteria can
be done by analyzing the four axes diagram given in Fig. 6.
The further the point is from the zero point of the ordinate
system, the more welcome the situation. Presentation of Fig.
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Fig. 4 Frequency histogram of durations of system sojourn in the
states of: (a) non-satisfactory performance; (b) satisfactory perfor-
mance. (Case 3, Radom, horizon 2010, moderate development, no
reservoir).
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Table 2. Sample correlations between the variables TF,
DEFMAX and DEFCUM for the cases 1-3 corresponding
to Figs. 2-4

Casel
DEFMAX
DEFCUM

Case 2
DEFMAX
DEFCUM

Case 3
DEFMAX
DEFCUM

TF
.2952
.8787

TF
.6458
.9359

TF
.5919
.9072

DEFMAX

.5734

DEFMAX

.7572

DEFMAX

.8095

6 offers versatility of description of the non-satisfactory
system performance and helps evaluating the trade-offs
combined with alternatives.

It is instructive to trace particular lines in Fig. 6. The line
A-F pertains to the time horizon 2020 and links the variant of
intensive development with reservoir (A) and without reser-
voir (F). The line A-E links the cases of the time horizon
2020, with reservoir, under the assumption of intensive (A)
and moderate (E) developments. The line F-G pertains to
two time horizons: 2010 (G) and 2020 (F), under the
assumption of intensive development, and no reservoir.
Finally, the broken line A-B-C-D links four variants of the
horizon 2020 and intensive development. Variant (A) is the
standard operating rule, (B) - drought management with
emergency reduction of household consumption (200 liters
per capita per day), (C) - as (B) with full cut-off of water
supply to industry if the contracted volume of municipal
supply cannot be released and (D) - drought management
with emergency reduction of household consumption down
to 150 liters per capita per day.

CONCLUSIONS

0 200 400 600 900

Fig. 5 Example of linear regression of TF and DEFCUM. (Case
2, Radom, horizon 2010, intensive development, no reservoir).

It seems that the set of four criteria (temporal reliability,
resilience, volumetric reliability and vulnerability) character-
izing the non-satisfactory system performance is a versatile
means of description of various aspects of the system perfor-
mance in the cases analyzed. However, in general case of
arbitrary system the above set of four criteria may be
insufficient. This is particularly true for extreme situations
('tight' system). Then the set of criteria accepted would
depend on the concrete situation. It may happen that the
behaviour of some criteria is counter-intuitive - large
changes in the system may only slightly alter the criterion
values. The sensitivity of particular criteria may be examined
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Resilience
•1.0

Volumetric re l i ab i l i t y
1,0 0,95 0,9 0,85

0.9

*D

Vulnerability

Fig. 6 Four-axes diagram of evaluations of multiple criteria for
particular cases.

in Fig. 6. When considering two variants of strongly differing
severities (e.g. the cases with reservoir and without reservoir,
line A-F) there is a large difference in the values of both
temporal and volumetric reliabilities, but counter-intuitive
differences of resilience and vulnerability. It is clear that the
sum of times of system sojourn in the non-satisfactory state
for the case with existing reservoir is significantly shorter
than for the case without reservoir. The same pertains also to
the sum of deficits, and, consequently to temporal and
volumetric reliabilities. Such a statement cannot be issued,
however, for a mean time of system sojourn in the non-
satisfactory state nor for a mean amplitude of deficits. This is
so, as the number of system sojourns in the non-satisfactory
state in the case with existing reservoir is lower than in the
case without reservoir. Long sojourns in the non-satisfactory
state get shorter and short ones disappear, but no general
corollary on the mean time of a single system sojourn in the
non-satisfactory state can be issued.

There is a number of candidate reliability-related criteria
that may be useful in particular cases, when the four above
criteria are not sufficient (e.g. the ones reviewed by Kundzew-
icz, 1989). A measure of frequency of occurrence of maxi-
mum deficit (e.g. deficits of particular exceedence prob-
ability) is an example of possibly useful criterion. It violates
the simplicity of the approach though.

The comparison of temporal and volumetric reliabilities

0.8

0.7

•g 0.6

0.5

0.4
0.4 0.5 0.6 0.7 0.8 0.9

Temporal reliability

Fig. 7 Relations between temporal and volumetric reliabilities.

made for the Radom and the Lublin case studies showed a
great deal of similarity in behaviour, that is also of depen-
dence (Fig. 7). This property, however, may be specific to a
subset of water supply systems rather than to hold generally
for arbitrary systems.

It may well be that the dependence of temporal and
volumetric reliability is stronger in extreme ranges. This is
intuitively obvious that the temporal reliability approaches
the volumetric reliability if the system performs very poorly
(reliability tending to zero) or very well (reliability tending to
one).

While the sojourn times in the states of satisfactory and
non-satisfactory system performances fit well the exponen-
tial distributions, it is possible to analytically extend the set of
reliability-related criteria by manipulation with two para-
meters, using the results of the renewal theory.

Available time series of flows observed within some twenty
years were used for the future time horizons 2000, 2010 and
2020. This is tantamount to the assumption of stationarity in
the sense that the time series of flows observed in the past are
statistically equivalent to the ones that will occur in the
future. This assumption may be considered dubious in the
light of the present evidence. Apart from the natural variabi-
lity river flows are subject to several anthropogenic impacts
(changes in land use, manipulation with the land surface,
soil, vegetation etc.). Moreover, under the expected scenarios
of climatic change, the possibility of considerable changes in
temperature and precipitation cannot be ruled out. These in
turn will heavily alter the river flow, i.e. the variable of
primary importance in the study reported. However, at the
present stage of understanding of the climate change, it does
not seem realistic to translate the sketchy and uncertain
evaluations and forecasts into the design rules. This may be a
strong growth area of research in the years to come.

It is not the scope of the present contribution to optimize
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the reservoir operating policies. This is a separate, challeng-
ing and difficult task. In the present contribution only a small
set of standard operating policies were considered, differing
in the rules for management of droughts.

The study clearly shows, that it is justified to pose the
problem of reduction of controlled discharges in the times of
troubles that allows attaining more acceptable values of
reliability criteria (attempt to meet reduced targets). The
practical question of this kind reads - how big reduction of
the delivered amount of water is necessary for the actual
standards of long-term reliability-related criteria to be
fulfilled.
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ABSTRACT Optimization (mainly dynamic programming) based operation of reservoir
systems has proven its superiority over traditional techniques based on the concept of rule
curve, at least in terms of the selected objective function. Stochasticity of the system can be
considered in the optimization by using stochastic dynamic programming to derive long-
term, expectation oriented optimal policies. Since the optimality of the operation can only be
realized during an infinite operational period, the performance of a stochastic system should
not be characterized for practically available time series alone by the expected (annual) value
of the objective function. In addition to the traditional output figures a number of
performance indices (PI) can be derived to describe the operational behaviour (especially
reliability) of the system upon the application of a certain operational policy. These
performance indices can be estimated by simulation of the system operation according to the
operational policy to be tested.

The inclusion of these Pis in the overall judgment creates a multicriterion framework for
decision making. Furthermore, these performance indices are believed to be more sensitive in
reflecting the impact of certain constraints than the value of the objective function alone.

The validity of this hypothesis will be tested on a multiunit multipurpose reservoir system,
the Victoria, Randenigala, Rantembe reservoir cascade situated on the river Mahaweli in Sri
Lanka.

Based on the results of simulation, the Pis will be analyzed for their viability in practical
applications.

INTRODUCTION

The consideration of reliability aspects is rapidly becoming
one of the major issues in engineering. Changing attitude of
the public towards scrutiny of new projects and the dwind-
ling tolerance to accept failures of infrastructure and techni-
cal systems have led to efforts to analyze reliability aspects in
a systematic context. Besides structural reliability, the opera-
tional reliability of existing systems, here in particular that of
storage reservoir systems is of importance. The use of refined
operation policies (mainly optimization based) is one way to
avoid, or at least to postpone the physical extension of the
systems. However, optimal operation may 'push' the system
to the limit of its performance capability, thus reducing the
inherent redundancy.

The subject of this study is the investigation of the
performance indices characterizing the behaviour of reser-
voirs following an optimal operational policy. While reliabi-

lity in general is covered in great detail in many technical
publications, like Henley & Kumamoto (1981), in water
resources management the papers of Hashimoto et al. (1982)
and Fiering (1982) were among the first publications advo-
cating the use of performance (reliability) indices. An in-
depth review of the literature by Budhakooncharoen (1990)
revealed certain inconsistencies in definitions and the termin-
ology used. It appeared that it would be more appropriate to
talk about performance indices (only few of them are in fact
directly related to reliability). The term 'reliability analysis',
being narrower in its scope, has historical background.

In this paper a number of Pis will be derived, based on the
work of Duckstein & Plate (1987).

The hypothesis that performance indices may reflect better
the influence of constraints than the optimal value of the
objective function, applied to derive the optimal operational
policy, will be tested on the case study of the three reservoirs
(Victoria, Randenigala and Rantembe: V + R + R) subsys-

306



5 RELIABILITY ANALYSIS

Table 1. Salient features of the

Reservoir

Victoria
Randenigala
Rantembe

Active
storage
MCM

686.0
580.0

17.0

Victoria, Randenigala, Rantembe subsystem

Live stor.
upper lower
limits MCM

720/ 34
875/295

21/ 4

Installed
capacity
MW

210
126
49

Average
net head
m

190
78
32.7

307

of the Mahaweli Ganga Development Scheme

Turbine
discharge
m3/s

140
180
180

Francis
turbines

2
2
2

Monthly firm
energy GWh

37.0
25.0
14.5

* » X OlanttTank

Wahalkodo
_ _ J _ T o n k

Huruluwawa ^ v

P==^ Sea
^7 Reservoir in Planning

Y Existing Reservoir with Active Storage
• Existing Power Station
O Proposed Power Station

River
===== Canal /Tunnel Diversion

— Dam/Barrage or Anicut
(E) System 'E* Irrigation Area

FjTx^l Subsystem Considered in this Study

Fig. 1 Schematic layout of Mahawelli Ganga Development Scheme.

tern of the Mahaweli River Development Scheme in Sri
Lanka (see Fig. 1 and Table 1). Operational policies will be
derived by means of stochastic dynamic programming (SDP)
following the version of this technique as recommended by
Loucks et al. (1981). It is described by the Bellman recursive
equation as follows:

\jf!^*{U)\ for feasible/ (1)

p\j - transitional probability specifying the occurrence of
inflow classy during time step t+ 1, given that during
time step / class i occurred;

l=l(k,i,t) - operational policy specifying the targetted
storage class / as function of k, i and t;

Bk,u,t - system output (increment of the value of the
objective function during stage t, given k, i and /);

JM - number of inflow classes to be considered during

where

k, I - are reservoir storage classes at the beginning of
subsequent time steps, t and t + 1;

i,j- inflow classes characterizing the inflows during time
steps t and t + 1;

The increasing superscript, n and the decreasing subscript,
t indicate the backward DP approach.

Program coding and the simplification of the subsystem,
i.e. considering the Rantembe reservoir as a simple run-of-
the-river hydropower plant by neglecting its storage capacity
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Table 2. Objective criteria used for SDP optimizations

No. Objective function

1 Min. e(L(E-Edf)

3 Min. s(L((E-Ed)
2 +(LOO)2 (Q-Qdl)

2
pol))

4 Min. £(£((£,- EJ2 + (1.50)2 ( f t - g*&))
5 Mill. 8 (S(a-e^)pol + min)
6 Max. s(E ED ; Demand constraints
7 Max. s(L £, + 0.5 x g^-h0.25 x ftj)
8 Max. e(SSPf);

SP,= IOOOO ft<ft«
Si>,= 0 Qt=Qdi

SPi=Q-Qdi Qi>Qdi

Where,
£ = Denotes the expectation,

Et = Energy generation of the system during the
month i, in GWh

Edi = Energy demand from the system during the
month /, in GWh,

ft = Inflow to the diversion points during the
month /, in MCM,

Qdl,=Irrigation water demand at the diversion points
during month i, in MCM,

pol = Polgolla diversion,
min = Minipe diversion,
Qpi — Volume of water diverted at Polgolla month /,

in MCM,
Qmi — Volume of irrigation water supplied at the

Minipe anicut,
5Pz = The spillages at the diversion during month i,

in MCM

are according to the results of Nandalal (1986). Reservoir
operation is derived by using monthly time steps. The
hypothesis of the relative insensitivity of the system output
(like total energy output) to the use of different objective
criteria and constraints stems from the results of Kularathna
& Bogardi (1989). As Tables 2 and 3 reveal the average
annual energy output is virtually independent of the type of
the selected objective function, whereas the mean of the
annual shortages also does not seem to provide an adequate
measure of the system performance. The large standard
deviation figures (see Table 3) refer to few extreme shortage
events within generally satisfactory fulfilment of the down-
stream irrigation water demand.

PERFORMANCE INDICES

These PI may be developed for both types of system
outputs, being subject of optimization or being enforced
through a (stochastic) constraint.

Number of failures. Indicates the number of times the
system fails to deliver the target output. One failure may last
several months.

Number of failure months. Number of months the system is
operating in failure mode (i. e. substandard, compared to the
target output level).

PI4 reliability. Three types of reliability can be considered.
They are referred to as: annual occurrence-based reliability
(PI4ob), time-based reliability (PI4tb), and quantity-based
reliability (PI4qb).

*Annual occurrence-basedreliability is the fraction of years
per system simulation during which the system never flips
into the failure mode (n). This reliability index will vary from
Oto 1,

JJ

(2)

In order to avoid confusion in terminology, the nine perfor-
mance indices (PI) applied in this study will follow the
notations used by Duckstein & Plate (1987).

where Sob(fiJ) is an indicator function

{1 if the system is at least once in mode \i

during year j (3)

0 otherwise

/ / i s the total number of years considered in the simulation.
* Time-based reliability is defined as the relative frequency

that the system is not operating in mode [i during the
simulated operation. The indicator function Sth(fi,k) has the
property that

l'l if the system is in mode fi during month k

\0 otherwise (4)

Then the time-based reliability is obtained by

JK

k=\

where JK is the number of time steps (months) in the
simulated operational time horizon (JK= 384 in this particu-
lar study). Due to its similarity to the annual occurrence-
based reliability concept, the time-based reliability (in case of
monthly time steps) may be called monthly occurrence-based
reliability.

* Quantity-based reliability. This third reliability indicator
differs from the above described types in that it can take
values lower and higher than 1.0. Its theoretical minimum
value is 0.0, but this will never occur in practice since this
refers to a permanently empty reservoir system (except for
some dead storage). For the supply oriented V + R + R
reservoir system Verhoef (1990) found the maximum values
of PI4

b = 2.3 (for irrigation) and PI4
b = 1.7 (for energy). High

values can be regarded as indicators of oversized systems.
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Table 3. Simulation results according to the different

Objective
function

1
2
3
4
5
6
7
8

Kotmale
annual energy
(GWh)

370.5
372.1
369.5
368.6
370.0
396.2
399.0
383.2

Polgolla
annual shortage
(MCM)

19.9
9.1
9.0

10.4
15.2
2.8
2.3
9.4

objective functions

Victoria Randen
and Rantembe
annual energy
(GWh)

1531.7
1529.9
1532.1
1535.5
1539.7
1593.7
1596.7
1539.3

Minipe
annual shortage
(MCM)

7.3
2.7
2.7
2.7
4.2
0.0
0.0
0.0

Std. Dev. of
total annual
energy

351.9
357.8
364.4
365.4
375.7
407.7
422.4
392.5

Std. Dev. of
total annual
shortage

47.3
23.1
23.1
23.8
29.1
9.9
9.4

23.3

7/qb>1.0 implies that the accumulated system output
exceeds the accumulated demand (target output).

However, P^b values over 1.0 may not exclude shortages. If
this reliability < 1.0, then the reservoir system is having a
substandard performance. Negotiations between the users
will be necessary to accomplish new agreements about lower
demand.

JK JK

k=\ k=\
(6)

Qk indicates simulated system output for month k, whereas
Tk is the corresponding target output.

In the present study the aggregate target may be defined as
the sum of monthly firm power targets stipulated by the
power company.

Period of incident, PI5. The period of incident (a better
name would be period between incidents) is the mean intere-
vent time (in days) between the subsequent failures of a
simulation experiment. It is also called average recurrence
time.

If d5 (ji,n), n > 1, denotes the duration of the nth interevent
time then:

PI5 =
N-l

N-\

I' [days] (7)

where TV is the number of incidents during the time horizon / .
Such an incident lasts one month or more.

Because the time horizon is finite (in this example 32 years
or 384 months), the question arises whether the periods
before occurrence of the first failure and after occurrence of
the last failure should not be considered in this equation.
With increasing number of failures the influence of neglect-
ing these head and tail periods will be small. However, for
experiments with only a few events the value of the mean
interarrival period is a non-informative and misleading
parameter. Tables 6 and 8 display both values.

Repair ability, P/8. Average length of time (in days) that the
reservoir system stays in mode \i during a system simulation.

[days] (8)

where d%(n,ri) is the duration of the «th incident (n
= 1,2,..., N). The inverse of this index measures how quickly
the system bounces back to a satisfactory state. It is termed
the resiliency.

Vulnerability, PI9. Besides assessing the frequency and
duration indicators of failures, two indicators can be applied
to estimate the severity of the mode \i.

Mean vulnerability can be defined as the average of the
accumulated shortages per failure incident.

iV

DQi,n)

t=\
(9)

where D (/x, n) is the duration of the nth operational period in
failure mode (in months) and DEFt is the achievement deficit
to meet the target in month t. The maximum vulnerability
index PI^ax is equal to the largest monthly deficit observed
during the simulation period

where DEFnm{iX is the largest monthly deficit of failure n.
Using for example constant target monthly firm power

output, the maximum vulnerability cannot exceed this value.
Following the above definitions the numerical value of PI^ax

may exceed the instantaneous ]

OBJECTIVE FUNCTIONS, SIMULATION -

The V + R + R subsystem of the Mahaweli scheme has two
major objectives: the first one is to maximize hydropower
output, whereas the predetermined firm energy (constraint 1)
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Table 4. Summary of optimizations and simulations

SDP policy

without firm energy
constraint but with
irrigation constraints

with firm energy
and with irrigation
constraints

with firm energy but
without irrigation
constraints

without firm energy
and without irrigation
constraints

based on 32 years data

based on 16 years data

8 experiments
IF=1.0-1.5;2.0;2.5

3 experiments
IF=1.0;1.2;1.4

8 experiments
IF = 1.0-1.5;2.0;2.5
3 experiments
IF=1.0;1.2;1.4

1 exper.
IF=1.0

1 exper.
IF=1.0

should be supplied as given in Table 1. Simultaneously the
aggregate irrigation water demand at Minipe diversion (con-
straint 2) should be met. Given the expectation oriented
characteristics of SDP, the optimization can be carried out
by maximizing the expected annual total energy generation,

12

max E £ TEPt
i=l

subject to the firm energy and irrigation constraints.
Alternatively the SDP optimization can be carried out
without one or both constraints.

There are 32 years of historical inflow records and esti-
mated irrigation demands for the present size of irrigated
area available. The SDP-based policies will be derived by
using the whole set of data to derive the transitional prob-
ability matrices. Alternatively the policy will be derived by
using only the data of the first 16 years of record. This is done
to test the robustness of the SPD-based policy. The potential
extension of irrigation is conceived by multiplying the esti-
mated present demand figures by an irrigation factor (IF)
varying from 1.0 to 1.5 (0.1 increments) as well as using
factors 2.0 and 2.5. Subsequent simulations will always be
carried out, based on the same 32-year-long data sets.

Table 4 summarizes the different optimization and simula-
tion runs conducted to assess the Pis.

RESULTS

Tables 5-14 summarize the Pis obtained by simulation,
according to the set of experiments as given in Table 4.

D I S C U S S I O N

Long term based (LTB) experiments

The results presented in a condensed form in Tables 5-14
seem to confirm the original hypothesis. The pairwise com-
parisons of the Tables 5 and 6, and respectively, 7 and 8
reveal the following.

Table 5. Firm, total and dump water supplies for the 'without
firm energy' (policy (a); and the 'with firm energy policy'
(b). All values are based on a period of 32 years (b is
expressed as percentage of a)

irrigation
factor
IF

1.0
1.1
1.2
1.3
1.4
1.5
2.0
2.5

total demand
[MCM]

a

49742.6
54716.9
59691.1
64665.4
69639.6
74613.9
99485.2

124356.5

b%

100
100
100
100
100
100
100
100

total supply
[MCM]

a

113580.1
113616.8
114214.1
114248.9
114568.6
114629.2
114910.0
112654.0

b%

100.95
100.98
100.50
100.54
100.38
100.42
100.00
100.30

dump supply
[MCM]

a

63837.5
58899.9
54523.0
49583.5
44929.0
40015.3
15424.8

(-)11702.5

b%

101.69
101.88
101.04
101.24
100.97
101.21
100.01
97.11

Note:
(—) total supply is less than demand: (negative dump supply
component)

Even a 100% increase of the annual irrigation demand (a
constraint) had virtually no impact upon the total irrigation
supply (approximately 1 % increase). By reducing the dump
component of the total release the increased demand could
be met. A further increase of the irrigation factor (IF = 2.5)
implies the underachievement of this high demand. In addi-
tion the total release is decreasing in absolute terms. Quantity
based reliability is less than 1.0. The system is 'over-chal-
lenged'. The SDP policy encounters a large number of
infeasible releases, thus the performance is sharply deterior-
ated. The incorporation of an additional constraint (firm
power) seems to increase (within 1%) the total irrigation
supply compared to the no firm power constraint case. Since
the corresponding increases in dump water releases are
somewhat higher (Table 5) than that of the total supply, a
slight reduction of the necessary releases, intended to meet
the irrigation water demand can be expected for the ope-
ration considering firm power requirements. This can be seen
in the pronounced differences between the corresponding Pis
(except for the time- and quantity-based reliabilities) in
Table 6a and 6b. The additional firm power constraint has a
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Table 6. Performance indices for irrigation water supply obtained by a policy derived without firm energy constraints (a) and

(b): performance indices for irrigation water supply obtained by a policy with firm energy constraints

a.

Irrigation factor IF

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident [days]
without head/'tail periods

Repairability [days]
Mean vulnerability [MCM]
Max. vulnerability [MCM]
Number of failures
Months of failures

b.

Irrigation factor IF

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident [days]
without head/tail periods

Repairability [days]
Mean vulnerability [MCM]
Max. vulnerability [MCM]
Number of failures
Months of failures

1.0

1.00
1.00
2.28

—

—
—
—

0
0

1.0

1.00
1.00
2.30

—
—

—
—
—

0
0

1.1

1.00
1.00
2.08

—

—
—
—

0
0

1.1

0.91
0.98
2.10

3780.0
324.0

45.0
107.6
194.8

4
6

1.2

1.00
1.00
1.91

—

—
—
—

0
0

1.2

0.78
0.96
1.92

1585.7
747.7

52.5
121.3
234.9

8
14

Without firm energy: Irrigation

1.3

0.94
0.99
1.77

11460.0
690.0

30.0
64.7
93.4

2
2

1.4

0.81
0.98
1.65

2256.0
2022.0

40.0
66.8

110.8
6
8

With firm energy: Irrigation

1.3

0.66
0.94
1.78

900.0
875.0

55.4
131.8
259.0

13
24

1.4

0.53
0.90
1.65

517.5
504.0

55.7
175.9
283.2
21
39

1.5

0.59
0.95
1.54

782.1
775.7

38.0
79.8

283.2
15
19

1.5

0.34
0.86
1.54

331.0
328.0

51.3
173.0
307.3
31
53

2.0

0.03
0.69
1.16

150.0
149.4

66.1
371.5
529.8
54

119

2.0

0.06
0.64
1.16

133.6
133.1

74.5
425.2
529.8

56
139

2.5

0.00
0.53
0.91

106.8
103.7

93.6
750.8
680.2

58
181

2.5

0.00
0.51
0.91

104.5
101.3

99.5
787.8
680.2

57
189

Table 7. Firm, total and dump energy generation for the

'withoutfirm energy'policy (a); and the 'withfirm energy

policy' (b). All values are based on a period of 32 years (b is

expressed as percentage of a)

irrigation
factor
IF

1.0
1.1
1.2
1.3
1.4
1.5
2.0
2.5

firm energy
[GWh]

a

29376
29376
29376
29376
29376
29376
29376
29376

b %

100
100
100
100
100
100
100
100

total energy
[GWh]

a

50117
49921
49728
49203
48372
47806
39678
35605

b %

94.85
94.15
93.62
92.79
91.75
89.74
96.05
99.12

dump energy
[GWh]

a

20741
20545
20352
19827
18996
18430
10302
6229

b%

87.57
85.79
84.42
82.10
78.99
73.39
84.77
94.88

dramatic deteriorating effect on most of the performance

indices. Furthermore the dependence of most of the Pis on

increasing IF values is clearly seen, whereas the consequence

of these demand changes remains almost undetected in Table

5 (except for IF = 2.5, see negative dump supply). However, a

different picture emerges in the case of energy generation.

The total energy output decreases with increasing IF values,

indicating that additional releases may be needed to meet

irrigation demand even during full capacity utilization of the

turbines. The impact of the additional firm power constraint

deteriorates the total energy output even more. While the

total generated energy decreases by up to 10%, compared to

the corresponding energy output figures according to an

operational policy without firm energy constraint, the drop

in dump (Table 7) energy output (within 5-26%) is even

more pronounced. In fact this difference implies an increase

of the firm energy output. This is duly reflected by the

generally improving PI values for the option relying on firm

power constraint. Except the quantity-based reliability, the

repairability and mean vulnerability (Table 8 a and 8 b), all

Pis show consistently better performance. Similar to the
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Table 8. Performance indices for energy generations obtained by a policy derived without firm energy constraints (a) and

(b): performance indices for energy generation obtained by a policy with firm energy constraints

a.

Irrigation factor IF

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident [days]
without head 1 tail periods

Repairability [days]
Mean vulnerability [MCM]
Max. vulnerability [MCM]
Number of failures
Months of failures

b.

Irrigation factor IF

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident [days]
without head 1 tail periods

Repairability [days]
Mean vulnerability [MCM]
Max. vulnerability [MCM]
Number of failures
Months of failures

1.0

0.06
0.72
1.71

150.0
147.3

58.4
64.2
72.3
56

109

1.0

0.31
0.85
1.62

349.3
342.9

60.0
59.8
68.1
29
58

1.1

0.06
0.71
1.70

151.7
150.6

60.5
71.0
72.3
55

111

1.1

0.25
0.84
1.60

310.6
304.8

59.1
64.8
69.3
32
63

Without firm energy:

1.2

0.06
0.73
1.69

155.0
153.9

57.3
59.8
72.3
55

105

1.3

0.09
0.72
1.67

145.3
144.2

55.9
58.8
73.6
58

108

Without firm energy:

1.2

0.34
0.82
1.58

324.8
319.7

70.0
74.7
69.4
30
70

1.3

0.31
0.80
1.55

270.9
265.6

66.0
66.0
69.3
35
77

Energy generation

1.4

0.03
0.73
1.65

147.4
146.3

53.8
57.9
73.6
58

104

1.5

0.03
0.73
1.63

161.0
158.1

59.4
63.2
72.3
53

105

Energy generation

1.4

0.22
0.78
1.51

248.3
243.3

69.7
74.4
69.3
37
86

1.5

0.25
0.77
1.46

260.3
255.9

76.3
86.7
69.3
35
89

2.0

0.03
0.66
1.35

136.1
132.9

68.4
79.8
73.4
57

130

2.0

0.06
0.62
1.30

130.4
127.6

77.7
91.7
73.4
56

145

2.5

0.03
0.58
1.21

115.9
114.8

81.4
95.2
73.4
59

160

2.5

0.06
0.58
1.20

121.6
121.1

86.3
103.8
73.4
56

161

Table 9. Comparison of irrigation and energy performance indices for simulations based on policies with and without

considering irrigation demand as a constraint in SDP. With and without firm energy constraints for irrigation factor IF= 1.0

Irrigation

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident*
Repairability
Mean vulnerability
Max. vulnerability
Number of failures
Months of failures

without firm energy

without irrigation
constraint

0.09
0.79
2.28

200.7
51.5

159.4
262.9
46
79

constraint

with irrigation
constraint

1.00
1.00
2.28

—
—
—
—

0
0

with firm energy

without irrigation
constraint

0.13
0.86
2.30

251.5
40.5
81.9

201.6
40
54

constraint

with irrigation
constraint

1.00
1.00
2.30

—
—
—
—

0
0
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Table 9. (cont.)

Energy

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident*
Repairability
Mean vulnerability
Max. vulnerability
Number of failures
Months of failures

without energy
constraint

0.06
0.72
1.71

120.0
46.5
57.8
74.0
69

107

with energy
constraint

0.06
0.72
1.71

147.3
58.4
64.2
72.3
56

109

without energy
constraint

0.38
0.86
1.67

349.3
53.8
56.5
68.4
29
52

with energy
constraint

0.31
0.85
1.62

342.9
60.0
59.8
68.1
29
58

Note:
•without head and tail periods

Table 10. Comparison of total irrigation and energy outputs for simulations fin %]. Irrigation factor IF= 1.0

with irrigation demand
as constraint in SDP

with irrigation demand
as constraint in SDP

Total energy

without firm energy
constraint in SDP

100%

100.34%

generation

with firm energy
constraint in SDP

94.85%

97.7%

Total irrigation

without firm energy
constraint in SDP

100%

99.7%

supply

with firm energy
constraint in SDP

100.95%

100.74%

Table 11. Irrigation-related performance indices for a 'without' (a) and 'with' (b) firm energy policy, respectively. Operating

policy derived from years 1-16. Simulation executed for years 1-32

Irrigation factor

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident [days]
without head/tail periods

Repairability [days]
Mean vulnerability [MCM]
Max. vulnerability [MCM]
Number of failures
Months of failures

Cumulative irrigation
water releases [MCM]
(32 years)

IF=1

a

1.00
1.00
2.31

—
—

—
—
—

0
0

113830

.0

b

0.94
0.99
2.31

11430.0
270.0

45.0
66.8

113.3
2
3

114668

IF=1

a

0.97
0.99
1.92

—
—

30.0
11.6
11.6

1
1

114398

.2

b

0.75
0.95
1.92

1098.0
918.0

49.1
137.0
234.9

11
18

114903

IF

a

0.78
0.97
1.65

1395.0
1248.8

40.0
84.0

196.7
9

12

114607

= 1.4

b

0.47
0.89
1.65

443.5
430.4

55.0
200.9
306.5
24
44

115095
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Table 12. Energy-related performance indices for a 'without' (a) and 'with' (b) firm energy policy, respectively. Operating

policy derived from years 1-16. Simulation executed for years 1-32

Irrigation factor

Annual reliability
Time-based reliability
Quantity-based reliability
Period of incident [days]
without head/tail periods

Repairability [days]
Mean vulnerability [MCM]
Max. vulnerability [MCM]
Number of failures
Months of failures

Cumulative energy
generation [GWh]
(32 years)

I F = 1

a

0.03
0.70
1.69

127.6
125.2

54.4
54.4
70.1
64

116

49549

.0

b

0.31
0.82
1.60

277.9
271.8

59.1
58.0
71.1
35
69

46967

I F = 1

a

0.09
0.72
1.67

163.5
162.4

61.2
59.3
68.7
52

106

49019

.2

b

0.31
0.80
1.54

290.0
291.3

70.3
75.2
71.2
32
75

45153

IF =

a

0.06
0.73
1.64

182.6
181.3

66.4
67.0
73.6
47

104

48167

1.4

b

0.25
0.77
1.47

259.4
254.1

77.1
89.2
73.4
35
90

43317

Table 13. Comparison of short-term-based (16 years) STB and long-term-based (32 years) LTB policies. Total irrigation

releases for 'without' (a) and 'with' (b) firm energy constraint. IF= 100; LTB a= 100%

Periods of
comparison

1-16
17-32

1-32

(years) LTBa

100
100
100

IF =

STBa

99.79
100.71
100.22

= 1.0

LTBb

100.17
101.85
100.95

STBb

100.37
101.63
100.96

LTBa

100.04
101.16
100.56

IF =

STBa

99.82
101.76
100.72

1.2

LTBb

100.43
101.79
101.06

STBb

101.44
100.84
101.16

LTBa

100.36
101.46
100.87

IF =

STBa

100.35
101.55
100.90

1.4

LTBb

101.46
101.01
101.25

STBb

102.24
100.29
101.33

Table 14. Comparison of the short-term-based (16 years) STB and the long-term-based (32 years) LTB policies. Total

energy generation for 'without' (a) and 'with' (b) firm energy constraint. IF= 1.0; LTB a= 100%

Periods of
comparison (years)

1-16
17-32

1-32

LTBa

100
100
100

IF =

STBa

99.82
97.77
98.87

1.0

LTBb

96.41
93.05
94.85

STBb

95.18
92.02
93.71

LTBa

99.32
99.11
99.22

IF =

STBa

99.19
96.21
97.81

1.2

LTBb

94.13
91.47
92.90

STBb

93.35
86.33
90.10

LTBa

97.81
95.02
96.52

IF =

STBa

97.82
94.05
96.11

1.4

LTBb

91.32
85.35
88.55

STBb

89.35
83.05
86.43

irrigation Pis the set of performance indices allow a more

detailed assessment of the operation than the simulated O.F.

and constraint values alone.

Table 9 reveals some interesting characteristics as far as

the impact of an irrigation demand constraint is concerned.

By not incorporating this constraint in the SDP optimiza-

tion of the operational policy, most of the Pis react with

disastrous figures as far as the irrigation water supply is

concerned. In the meantime most of the Pis show the

opposite effect for the energy output. However the rates of

change are quite moderate.

Table 10 is not only a confirmation of the previous

comparison but also indicates that the 'with' or 'without'

irrigation constraint options do not differ significantly as far

as the two essential outputs - total energy generation and

irrigation water supply are concerned.
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Short term based (STB) experiments

The system operational experiments are repeated for IF
= 1.0; 1.2; and 1.4; respectively. The operational policies,
however, have been derived by relying only on the first 16
years of record to assess the transitional probabilities for the
SDP computations. In spite of the limited data base, the
operational policies have proven to be compatible with the
ones, derived by using the full 32-year-long inflow time series.
Table 13 indicates that irrigation releases vary between
99.79% and 102.24% of the value obtained for the long-term
bases (LTB) SDP-policy without considering firm energy
constraints.

While the shorter inflow time series do not seem to affect
the total irrigation release (Table 13), there is a marked
deterioration in terms of Pis. The comparisons of the rele-
vant columns of Tables 6 and 11 reveal that the performance
indices for the short-term based (STB) policies are worse. In
addition the incorporation of the firm energy constraint
appears to aggravate the situation even more as shown in
Table 11. An observation which can not be made for the LTB
experiment in Table 6 for IF = 1.0, and only to a lesser degree
forIF=1.2andIF=1.4.

The energy related performance indices derived for the
same experiments (Table 12) show, in comparison with the
respective figures of Table 8 less pronounced deterioration
than in the case of irrigation water supply. As expected the
firm energy constraint influences the energy related Pis less
than it was the case for the respective irrigation performance
indices.

These results are astonishing, especially in the light of the
results displayed in Table 14. Compared to the LTBa for
IF = 1.0 (100%) reference simulation results all other combi-
nations yielded less total energy. With increasing IF this drop
went up to 17% compared to the reference simulation run.
Even within the IF = 1.4 class the deviations between LTBa
and STBb can be as high as 12%. One would have expected a
corresponding 'landslide' as far as Pis had been concerned.

CONCLUSIONS

As the discussion of the above results reveals, some of the
conclusions might be only tentative, reflecting specific
characteristics of the V + R + R system.

Some conclusions, however, can be drawn with consider-
able certainty.

- The hypothesis that the simulated value of the objective
function and the output figure related to the constraints
are not sufficient for an adequate characterization of the
operational performance seems to be proven.

- It is still disputable how many and which performance
indices are indispensable to add more information for the
assessment of the system performance. Quantity-based
reliability, being closely related to the 'traditional' output
indicators seems to be a redundant PI.

- The choice of other indices, or the deletion of some may
depend on psychological factors (risk averse or gambler
behaviour of the decision maker), or on the particular
aspects of the purpose. It is conceivable that municipal
water supply can be better characterized for example by
maximum vulnerability and frequency of failures, than by
duration or mean vulnerability.

- SDP seems to be quite insensitive as far as the available
streamflow data are concerned. This result seems to
confirm similar findings by Bogardi & He (1991). Rather,
the policy seems to be sensitive versus exaggerated con-
straints (IF =2.5).

-Due to the relatively limited impact as far as energy
generation output is concerned, it seems to be appropriate
to include the irrigation demand constraint in the SDP
computations. The question, whether firm power require-
ments could be omitted as a constraint is rather a practical
than a scientific one.
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ABSTRACT In the existing design methods consideration is given to stochastic processes
of flood flows imposed on the structure in order for the hydrological uncertainty to be
accounted. However, there are also various uncertainties associated with flood conveyance
structures which have to be considered in the design of hydraulic structures. A static model
integrating hydrological and hydraulical uncertainties in the design of the Ogee spillway is
devised in the present contribution. Results show that the conventional method of the
evaluation of risk, where hydrological risk only is accounted, produces underestimation of
the risk of failure. This becomes particularly significant if the return period and the safety
factor are large.

INTRODUCTION

There are many parameters and variables subject to uncer-
tainty in the process of design of a flood conveyance struc-
ture. These uncertainties have been classified as hydrological,
hydraulic, structural and economical ones (cf. Tung & Mays,
1980). In the conventional method of design of a spillway
structure it is considered that the annual flood flow input is a
stochastic process and that the capacity of the structure is
deterministic. This approach underestimates the risk of
failure and consequent economic losses. The present work
deals with hydrological and hydraulic uncertainties in the
development of a composite risk model, as applied to an
Ogee type spillway. The relationships among various risk
levels, safety factor, expected service life of the structure, and
design return period are derived using the design data of
Dadin-Kowa dam and the flow data of the river Gongola in
Bauchi State of Nigeria.

performance of a hydraulic structure. Later, Tang et al.
(1975) incorporated this risk procedure into a dynamic
programming approach for the optimal risk-based design of
storm sewers. Other researchers (e.g. Mays, 1979; Tung &
Mays, 1980,1981 a, b) have developed composite risk models
for flood conveyance structures such as culverts and flood
levees. In those papers, however, the hydrological parameter
uncertainty arising from insufficient data was neglected. The
importance of the uncertainty was treated recently by Tung
(1987) in the risk models by constructing confidence intervals
for flood frequency analysis under normal and log-normal
condition, using the sampling distributions developed by
Stedinger (1983). This is a step forward in considering the
total hydrological risk advocated by Benjamin & Cornell
(1970) in the design of a hydraulic structure.

In the present contribution, the inherent randomness of
flood flows is integrated with the hydraulic uncertainty to
develop the static model for an Ogee type spillway.

LITERATURE REVIEW

A few efforts have been made until recently to integrate the
stochastic process of flood flows and other uncertainties. Yen
& Ang (1971) incorporated the inherent randomness of
hydrological events among the hydraulic uncertainty in the

HYDROLOGICAL UNCERTAINTY AND
FLOOD FLOWS PROBABILITY
DISTRIBUTION

In order to determine flood flows probability distribution,
the frequency analysis was performed using the data records

316
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6UMBEL DISTRIBUTION
Return period *>

99 9Q9 75.9 56.7 25 20 10 5 333 2.5 2.0 1.0
Frequency *~

Fig. 1 Flood frequency curve for annual flood values of the river Gongola at Dadin-Kowa, Bauchi State. Dashed lines show the zone
where the true value for that occurrence interval lies (with 90% probability).

of maximum annual flood for the river Gongola at Dadin-

Kowa for the period of 1956-87. Statistical model verifica-

tion test (Kolmogorov-Smirnov) was performed on the three

selected distributions: log-Pearson III, lognormal, and Gum-

bel (extreme value I ) distribution. The latter distribution

performed satisfactorily both with regard to the model

verification test and to the confidence band curves placed on

the frequency curves (Fig. 1). The approximate control

curves placed on the frequency curves were those proposed

by Beard (1962).

The two-parametric Extreme Value I probability density

function of floods is given by

1

a2 •[-*?--(-*?)]
where OLX and a2 are parameters

y = 0.577 (Euler constant)

(2)

(3)

Qd is the mean annual flood flow, and OQA is the standard

deviation of Qd.

From the hydrological data, Qd = 499 m3/s, and aQd

= 187.14. Substituting these values in equations (2) and (3),

the following parameter values were obtained:

OLX= 145.9, a2 = 415.5.

The cumulative probability function of the Gumbel distri-

bution is expressed as

(4)

and the flood magnitude for any return period Tr may be

computed from the equation:

(5)
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EGL C=RH) (8)

Fig. 2 Profile of Ogee spillway.

HYDRAULIC UNCERTAINTY

Hydraulic model

The discharge Qc over the Ogee spillway may be computed
from the well known weir formula

Qc=CLHeQ~3/2
(6)

(in which C is the coefficient of discharge, L is the effective
crest length and He is the total head on the crest.

Coefficient of discharge

The coefficient of discharge for the Ogee crest is influenced by
a number of factors, like:

(a) velocity of approach;
(b) upstream face slope;
(c) downstream submergence; and
(d) head differing from the design head (Fig. 2).

Assuming that the depth of approach (equal to the height
of the spillway) is greater than 2.5 Hd (where Hd is the design
head of the crest), the effect of this velocity on the coefficient
of discharge may be neglected (Chow, 1959). Considering
only a crest of spillway with the vertical upstream face the
effect of upstream face slope is not taken into account.
Finally, the effect of submergence is not considered.

The effect of the head on the crest differing from the design
head HD is considered below. The relationship between the
coefficient of discharge and the head is usually presented in
the dimensionless form as the ratio of coefficients of dis-
charge C/CD against the ratio of heads, HT = H/HD

C/CD=f(HT) (7)

where the subscript D refers to the design head.
This relationship was plotted by Chow (1959), US Bureau

of Reclamation (1974), and Creager (1964), but in the latter
case the left hand side of equation (7) is not dimensionless (it
is not divided by CD), so equation (7) becomes:

The values from the above mentioned graphs for head
ratios between 0.3 and 1.3 were used as data for determin-
ation of the coefficient of discharge. The proposed regression
equation for this coefficient is:

=Ac + Bc\nHT (9)

where Ac and Bc are regression constants.
For the expected value of C the values of these constants

were found to be AC = 2A93 and Bc = 0.25.
Thus equation (9) becomes

.2501n#r (10)

Equations describing the lower Cx and the upper Cu

boundary of changes of the coefficient C read:

(^ = 2.167 + 0.283 In 77r

Cu = 2.193 + 0.2501n#r

Total head

(11)
(12)

The total head HQ includes the approach velocity head. When
the height of the spillway is greater than 1.33 HD, then the
approach velocity is so small, that it may be neglected (Chow,
1959). This case was considered in the following analysis.
Therefore the symbol He in equation (6) was replaced by H
denoting the difference between the elevation of the water
surface upstream from the spillway and the elevation of crest
(see Fig. 2).

Crest length

The effective crest length may be computed by reducing the
net crest length as follows

= Lt-2(NKP-KA)He (13)

where Lt is the net (total) length of the crest between
abutments, N is the number of piers, KP is the pier contrac-
tion coefficient and KA is the abutment contraction
coefficient.

The pier contraction coefficient KP, varies with nose shape
of the pier and head ratio. This relationship was plotted on a
graph by Chow (1959). For the purpose of this analysis, the
pier nose shape between round-nose (type 2) and oval-
pointed-nose (type 3) was chosen. The values of KP for the
type 2 were designated as lower boundary values and for the
type 3, as the upper boundary values for determining the
interval of changes of value of KP. The expected values were
computed at the middle of the above specified intervals
assuming symmetric, triangular probability distribution for
a random variable, KP. Regression analysis was performed
to fit the equation for the lower, the upper and the expected
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values of the pier contraction coefficient. The following
results were obtained:
for the lower boundary

KPL = 0.0025 - 0.045 In HT

for the upper boundary

KPU = 0.0098 - 0.054 In Hr

and for the expected value

KPj> = 0.0047 -0.054 In HT

(14)

(15)

(16)

The general equation for ith pier coefficient may then be
written as:

KP = Av-0.054 In Hr (17)

where Av is the coefficient, which assumes the values indi-
cated in equations (14), (15) and (16).

Model error

Because hydraulic conditions for flow over any spillway are
non-uniform and unsteady, equation (6) yields an approxi-
mate discharge value. To take into account the possibility of
an error, a model error term, /lm, should be incorporated into
equation (6). Introducing km and substituting equations (9),
(13), and (17) in equation (6), and neglecting the abutment
contraction coefficient, yields:

: lni7r) |~Lt- 2NH(A -0.0541n #3/2

(18)

The expected value for model error, Aw, may be assumed
1.0 since there is no tendency of over- or underestimation of
the discharge over the spillway by equation (6).

First-order analysis of uncertainty

The uncertainty of an independent random variable may be
fully described by its distribution. Often this distribution is
not known due to insufficient information and an approxi-
mate method based on statistical moments (mean and vari-
ance) is used. This approach allows the determination of the
uncertainty of the dependent variable, W, which is a function
of independent variables:

W=f(wl9w2,...,wn) (19)

in terms of these moments. First-order analysis can be
applied for this purpose and it is based on Taylor expansion
of the functional relationship (19) around the expected value,

as:

" 8f(W)
dw,

(20)

in which \i is the vector of expected values of wl9 w2,..., wn

and R is the remainder term.
Assuming that all variables w( are statistically indepen-

dent, the expected value of PFis equal to the first term of the
right hand side of this equation, since

thus:

E(W)=f(fi) (21)

Since

var[/0i)] = 0,

the variance of W is obtained by transforming the second
term of equation (20), remembering that

var[ovj = c2 var[wj

where c is a constant;

var(FF)=I — —
i-i V dw, W=,i.

var[n>,]

Introducing the coefficient of variation denned as

w E(W)

one can rewrite equation (22) as

" [E(»F)]2/=i\

(22)

(23)

(24)

Inserting equation (21) to (18) and remembering that the
independent variables are Am, Ac, Bo Lt, and Ap, (where the
head H, and the head ratio, HT, are treated as parameters),
one gets the mean discharge over the spillway as:

\-2NH(A -0.0541n

(25)

or

Qc = lm\ Lt(Ac + Bc\nHx)-2NH(AC + Bc + \nHr)Ap

2N(0.054)H(Ac + Bc\n HT)\nHT \H3/2 (26)cln HT)\nHT \H3

Taking the partial derivatives of the independent random
variables of equation (26), substituting the results in (24), and
simplifying, one gets:

2 _Q2
Be y2 U

4N2H2A2

(27)
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wr wM w

Fig. 3 Triangular probability distribution for variable w.

where

and

= Lt-2NH(AP-0.054 In Hx)

(28)

(29)

Coefficient of variation of independent variables and
spillway capacity

In order to perform further computations it is necessary to
specify the geometric characteristics of the spillway, i.e. the
net length of the crest, Lt, the design head, HD, and the
maximum head, Hma. The data taken for the case study of
Dadin Kowa dam on the river Benue (Northern Nigeria) are
as follows:

Lt= 18.0 m, HD= 10.0 m, 77max= 12.0 m.

A tolerance limit of linear measurement of length of the
crest was assumed as + 0.05 m. Thus the lower and upper
boundary values were determined as 17.95 m, and 18.05 m,
respectively. It seemed reasonable to assume, after Tung &
Mays (1980), triangular distributions for all independent
variables, using symbols from Fig. 3, where: wx is the lower
boundary, wu is the upper boundary, and wp is the expected
value of the variable.

The general formulae for the mean, w, and the coefficient
of variation (c.o.v.) Qw of the random variable, w, are:

GW

(30)

(31)

In the case of equal distances of the lower and the upper
boundaries from the expected value, equation (30) is simpli-
fied and the mean becomes

w=wn
(30a)

The values of mean and coefficient of variation were
computed using the last two equations for boundary limits
assumed earlier. The results are listed in Table 1.

Table 1. Boundary limits and coefficient of variation of
independent variables

Lower
boundary

Probable
value

Upper
boundary c.o.v.

Variable

Aim]

2.167
0.230
0.025

17.95

2.193
0.250
0.0047

18.00

2.215
0.263
0.0098

18.05

0.013
0.046
0.630
0.001

Table 2. Mean capacity and coefficient of variation of the
spillway as a function of head ratio

Head ratio
Hr = H/HD

Head
H[m]

Mean capacity C.o.v.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0

174
277
406
531
688
856
1043
1244
1486
1727

0.02320
0.02200
0.02138
0.02104
0.02074
0.02064
0.02062
0.02060
0.02059
0.02055

Due to lack of information, the value of the coefficient of
variation of model error, 2m, was assumed as Qx. Substituting
the obtained values of means and coefficients of variation
into equations (26) and (27), one gets the mean and the
coefficient of variation of the spillway capacity. The results
obtained for different heads on the spillway are given in
Table 2.

Computation of probability distribution parameters

Log-normal distribution was assumed for the spillway capa-
city, so its density function is given by the formula

l r ^fa
exp -\[

QC°lnQc L \

JyQc)- i— exp -\[ - (32)
V2 Q L \ ) J

where

filnQc - the mean of transformed variable In Qc

oXviQ - the standard deviation of this variable

The relation between the standard deviation aXnQc and the
coefficient of variation, QQc, is given (Benjamin & Cornell,
1970), as:

•i 1/2 (33)
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Table 3. Risk-safety factors for the statical composite model

Tin 2c
risk
Safety factors

TT = 2

rr=5
rr=io
rr=20
rr=30
rr=50
rr=ioo

0.3

5.12
.0232
.996

0.37
0.26
0.22
0.19
0.17
0.16
0.14

0.4

5.59
.0220
.94

0.59
0.42
0.35
0.30
0.28
0.26
0.23

0.5

5.75
.0214
.71

0.84
0.60
0.50
0.43
0.40
0.34
0.33

0.6

6.25
.0210
.39

1.14
0.81
0.68
0.58
0.54
0.50
0.45

0.7

6.51
.0207
.16

1.47
1.04
0.86
0.75
0.70
0.65
0.58

0.8

6.73
.0206
.054

1.84
1.30
1.09
0.94
0.87
0.77
0.72

0.9 1

6.92 1
.0206
.016

2.25 :
1.59 ]
1.33 1
1.15 ]
1.06 1
0.98 1
0.88 1

1.0 1

1.10
.0206
.004

>.69 :
1.90 :
L.60
1.38
1.28
1.18
L05

l.l

129
.0206
.0007

U 7
>.23
1.88
1.62
1.50
1.39
L.24

1.2

7.42
.0205
.0002

3.70
2.62
2.19
1.89
1.75
1.62
1.45

and between the mean filnQc and the mean Qc, as

/VGc = l n e c - W n G c (34)

The values of the mean, filnQc, and the standard deviation,

(TlnQc, were computed using equations (33) and (34) for

different head ratios. The results are given in Table 3.

Static reliability model

In the development of the static reliability model, when the

annual flood is described by Gumbel distribution and the

capacity of the structure by lognormal distribution, the

reliability can be computed from the formula (Tung & Mays,

1980):

Table 4. The hydraulic risk values with various head ratios

Head ratio,

Hr

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Discharge,

Sc[m3/s]

174
277
405
531
688
856

1043
1244
1486
1727

Hydrological
risk, Rn

0.995
0.92
0.66
0.36
0.14
0.047
0.0138
0.0034
0.00057
0.00012

bR[%] from
equation (39)

0.1
2.1
7.0

11.7
12.7
13.0
13.75
15.0
18.6
37.5

o

•exp

QC°\nQc

(35)

This equation was solved by numerical integration for

different head ratios, filnQc and cF\nQc, and Gumbel parameters

OLX = 415.52 and a 2
= 143.9. For each head and the corres-

ponding spillway capacity, the safety factor was computed

for different return periods, TT, from the relation:

SF=-

in which the flood discharge Qd(TT) was computed from

equation (5). The risk values were computed from the

relation:

r isk=l-Z? (37)

The results of the computations were listed in Table 2 and
illustrated in Fig. 4.

When only hydrological uncertainty is considered, the

expression for hydrological risk is given by equation:

H =1 -exp [ - exp (38)

in which Qc is expressed as in equation (6), and OLX and a2 are as

defined earlier. The result for the risk values are shown in

Table 4. The percentage contribution of hydraulic risk to the

composite risk computed from the formula

R-RH
- -

R
(39)

(36) are listed in the last column of Table 4.

CONCLUDING REMARKS

There are various uncertainties involved in the design of

flood conveyance structures. The methodology presented in

this paper considers a composite risk resulting from the

hydrological uncertainty in the development of the static risk
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0 0001 0.001 0.01

Fig. 4 Risk-safety factor relationship for a static model.

model for an Ogee type spillway. Hydrological model verifi-
cation was performed using the Kolmogorov-Smirnov test
and confidence band was constructed around the flood
frequencey curve to select the probability distribution that
best fits the flood flows of the river Gongola. Among the
selected competing hydrological models, Gumbel distribu-
tion was found to satisfy both the Kolmogorov-Smirnov test
and the confidence reliability band.

The relationship among the risk values, the safety factor
and the return period has been established, which can
facilitate the risk-based optimal design of spillway
structures.

The example illustrated that considering only hydrological
uncertainty underestimates the risk of flood exceeding the
spillway capacity, as compared to a composite risk which
takes into account the hydrological and hydraulic uncertain-
ties. The percentage contribution of hydraulic risk to the
composite risk was found to range between 0.1 % and 37.5%
for the range of the safety factor between 1.04 and 3.70, and
the return period between 2 and 100 years.

The static model developed does not take into account the
repeatability of flood events. Repeated loadings on a hyd-
raulic structure are characterized by the time each flood value
is applied and the behaviour of time intervals between the
application of flood values. The consideration of this time-
dependent composite risk will form a subject of a future work.
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