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Preface 

The present book is an attempt to outline some, certainly not all, mathematical 
aspects of modern organic chemistry. We have focused our attention on topological, 
graph-theoretical and group-theoretical features of organic chemistry, Parts A, B 
and C. 

The book is directed to all those chemists who use, or who intend to use mathe­
matics in their work, and especially to graduate students. The level of our exposition 
is adjusted to the mathematical background of graduate students of chemistry and 
only some knowledge of elementary algebra and calculus is required from the readers 
of the book. Some less well-known. but still elementary mathematical facts are collected 
in Appendices 1-4. This, however, does not mean that the mathematical rigor and 
numerous tedious, but necessary technical details have been avoided. The authors' 
intention was to show the reader not only how the results of mathematical chemistry 
look, but also how they can be obtained. 

In accordance with this, Part 0 of the book contains a few selected advanced 
topics which should give the reader the flavour of the contemporary research in mathe­
matical organic chemistry. 

One of the authors (I.G.) was an Alexander von Humboldt fellow in 1985 when 
the main part of the book was written. He gratefully acknowledges the financial 
support of the Alexander von Humboldt Foundation which enabled his stay at the 
Max-Planck-Institut fUr Strahlenchemie in M iilheim and the writing of this book. 

The authors are indebted to Dr. HEINZ BARENTZEN and Professor MAXIMILIAN 
ZANDER for valuable discussions. 

The manuscript of the book was able to be completed thanks to the enthusiastic 
assistence of Mrs. I NGEBORG HEUER. The authors also thank Mrs. RENATE SPECKBRUCK 
and Mrs. [VELll\;\ CURRELL for their help. 

I'vl iilheim a. d. Ruhr, April 1986 I van Gutman Oskar E. Polansky 



Contents 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Part A Chemistry and Topology . . . . . 

Chapter 1 Topological Aspects in Chemistry. . . . . . 

1.1 Topology in Chemistry. . . . . . . . . . . . . 
1.2 Abstraction in Science and How Far One Can Go. 

Chapter 2 Molecular Topology . . . 

2.1 What is Molecular Topology? . 
2.2 Geometry, Symmetry, Topology. 
2.3 Definition of Molecular Topology 

Part B Chemistry and Graph Theory . 

Chapter 3 Chemical Graphs. . . . . . 

Chapter 4 Fundamentals of Graph Theory . 

4.1 The Definition of a Graph . . . . . 
4.1.1 Relations . . . . . . . . . . 
4.1.2 The First Definition of a Graph. 
4.1.3 The Second Definition of a Graph 
4.1.4 Vertices and Edges . . . . . . . 
4.1.5 Isomorphic Graphs and Graph Automorphisms 
4.1.6 Special Graphs. 

4.2 Subgraphs . . . . 
4.2.1 Sachs Graphs . 
4.2.2 Matchings. . . 

4.3 Graph Spectral Theory. 
4.3.1 The Adjacency Matrix 
4.3.2 The Spectrum of a Graph 
4.3.3 The Sachs Theorem. 
4.3.4 The Il-Polynomial 

4.4 Graph Operations. . . . 

3 

5 

5 
8 

12 

12 
14 
14 

17 

19 

23 

23 
23 
24 
25 
26 
27 
28 
29 
30 
32 
33 
33 
34 
35 
38 
39 



VIII Contents 

Chapter 5 Graph Theory and Molecular Orbitals . 

Chapter 6 Special Molecular Graphs . t,; . 

6.1 Acyclic Molecules . . . . . 
6.1.1 Trees. . . . . . . . . . 
6.1.2 The Path and the Star. . . 
6.1.3 The Characteristic Polynomial of Trees 
6.1.4 Trees with Greatest Number of Matchings . 
6.1.5 The Spectrum of the Path 

6.2 The Cycle . . . . . 
6.3 Alternant Molecules. . . 

6.3.1 Bipartite Graphs . . 
6.3.2 The Pairing Theorem 
6.3.3 Some Consequences of the Pairing Theorem 

42 

46 

46 
46 
47 
48 
51 
53 
54 
55 
56 
57 
58 

6.4 Benzenoid Molecules. . . . . . . . . . . . . 59 
6.4.1 Benzenoid Graphs . . . . . ... . . . . 59 
6.4.2 The Characteristic Polynomial of Benzenoid Graphs. 61 

6.5 Hydrocarbons and Molecules with Heteroatoms. . . . . 62 
6.5.1 On the Question of the Molecular Graph . . . . . 62 
6.5.2 The Characteristic Polynomial of Weighted Graphs. 64 
6.5.3 Some Regularities in the Electronic Structure of Heteroconjugated 

Molecules. . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Part C Chemistry and Group Theory. . 67 

Chapter 7 Fundamentals of Group Theory . 69 

7.1 The Symmetry Group of an Equilateral Triangle. 70 
7.2 Order, Classes and Representations of a Group . 71 
7.3 Reducible and Irreducible Representations . . . 73 
7.4 Characters and Reduction ofa Reducible Representation. 75 
7.5 Subgroups and Sidegroups - Products of Groups. 80 
7.6 Abelian Groups. . . . . . . . . . . . 82 
7.7 Abstract Groups and Group Isomorphism 84 

Chapter 8 Symmetry Groups . . . . . . . . 85 

8.1 Notation of Symmetry Elements and Representations 85 
8.2 Some Symmetry Groups . . . . . . . . . . . . . 86 

8.2.1 Rotation Groups. . . . . . . . . . . . . . 87 
8.2.2 Groups with More than One n-Fold Axis, n > 2. 88 
8.2.3 Groups of Collinear Molecules. . . . . . . . . 89 

8.3 Transformation Properties and Direct Products of Irreducible Representa-
. tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 
8.3.1 Transformation Properties. . . . . . . . . . . . . . . . . . . 90 
8.3.2 Rules Concerning the Direct Product of Irreducible Representations' 94 

8.4 Some Applications of Symmetry Groups 95 
8.4.1 Electric Dipole Moment. . . . . . . . . . . . . . . . . . . . 96 



Contents IX 

8.4.2 Polarizability . . . . . . . . . . . . . . . . . . . . . . . . 96 
8.4.3 Motions of Atomic Nuclei: Translations, Rotations and Vibrations 97 
8.4.4 Transition Probabilities for the A~sorption of Light. 99 
8.4.5 Transition Probabilities in Raman Spectra 101 
8.4.6 Group Theory and Quantum Chemistry. 103 
8.4.7 Orbital and State Correlations 104 

Chapter 9 Automorphism Groups . . 108 

9.1 Automorphism of a Graph . . . 108 
9.2 The Automorphism Group A(G1) 109 
9.3 Cycle Structure of Permutations. 111 
9.4 Isomorphism of Graphs and of Automorphism Groups. 112. 
9.5 Notation of some Permutation Groups. . . . . . . . 113 
9.6 Direct Product and Wreath Product . . . . . . . . . 114 
9.7 The Representation of Automorphism Groups as Group Products liS 

Chapter 10 Some Interrelations between Symmetry and Automorphism Groups 117 

J 0.1 The Idea of Rigid Molecules 117 
10.2 Local Symmetries. . . . . . . . . . . . . . . . . . . . . . . . . 117 
10.3 Non-Rigid Molecules. . . . . . . . . . . . . . . . . . . . . . . 118 
J 0.4 What Determines the Respective Orders of the Symmetry and the Auto-

morphism Group of a Given Molecule? . . . . . . . . . . . . . . . 120 

Part D Special Topics ... 121 

Chapter 11 Topological Indices 123 

I J . J Indices Based on the Distance Matrix . . . . . . J 24 
11.1.1 The Wiener Number and Related Quantities 124 
11.1.2 Applications of the Wiener Number . . . 127 

11.2 Hosoya's Topological Index . . . . . . . . . . 127 
11.2.1 Definition and Chemical Applications of Hosoya's Jndex. 128 
11.2.2 Mathematical Properties of Hosoya's Index . . . . 129 
11.2.3 Example: Hosoya's Index of the Path and the Cycle. 131 
11.2.4 Some Inequalities for Hosoya's Index . . . . . . 132 

Chapter 12 Thermodynamic Stability of Conjugated Molecules. 135 

12.1 Total n-Electron Energy and Thermodynamic Stability of Conjugated 
Molecules. . . . . . . . . . . . . . . . . . 135 

12.2 Total n-Electron Energy and Molecular Topology. 136 
12.3 The Energy of a Graph . . . . . . . . . . . . 137 
12.4 The Coulson Integral Formula . . . . . . . . . 139 
12.5 Some Further Applications of the Coulson Integral Formula. 143 
12.6 Bounds for Total n-Electron Energy. . . . . . . . . . . . 147 
12.7 More on the McClelland Formula . . . . . . . . . . . . 149 
12.8 Conclusion: Factors Determining the Total n-Electron Energy lSI 
12.9 Use of Total n-Electron Energy in Chemistry. . . . . . . . 151 



x 

Chapter 13 Topological Effect on Molecular Orbitals. 

13.1 Topologically Related Isomers 
13.2 Interlacing Rule . . . . . . . 
13.3 PE Spectra of Topomers . . . . 
13.4 TEMO and a-Electron Systems. 
13.5 TEMO and Symmetry . 

Appendices. . . . . . . 

Contents 

155 

155 
157 
162 
164 
166 

169 

Appendix 1 Matrices . . 171 
Appendix 2 Determinants 176 
Appendix 3 Eigenvalues and Eigenvectors 179 
Appendix 4 Polynomials. . . . . . . . 182 
Appendix 5 Characters of Irreducible Representations of Symmetry Groups 184 
Appendix 6 The Symbols Used . . . . . . . . . . . . . . . . . . . . . 200 

Literature . . 
Bibliography . 
References. . 

Subject Index 

203 
203 
205 

209 



Introduction 

Mathematical chemistry nowadays presents a variety of approaches to understanding 
the mathematical structures which lie behind existing chemical concepts, to estab­
lishing and investigating novel mathematical models of chemical phenomena, and 
applying mathematical ideas and techniques in chemistry. Throughout the entire 
history of chemistry certain scientists, usually not numerous, were inclined to con­
template connections between mathematics and chemistry and the possibility of 
using mathematics for deducing known and predicting new chemical facts. Extensive 
use of mathematical methods is traditional in various branches of physical chemistry, 
especially in thermodynamics (partial derivatives, proper and improper differentials, 
path integrals etc.) and chemical kinetics (coupled non-linear differential equations). 
A real need for mathematics in chemistry appeared, however, only after the discovery, 
made by physicists in the first three decades of our century, that the basic properties 
of atoms and molecules can be explained and predicted by means of quantum theory. 
The awareness that chemistry cannot be understood without a knowledge of quantum 
physics, including its sophisticated mathematical apparatus, was the actual driving 
force which led to the introduction of mathematics and mathematical thinking into 
(or at least not very far from) chemical laboratories. 

The advent of computers gave another impetus to the mathematization of chem­
istry. Computers not only enable calculations and data processing which were 
inconceivable in the recent past, but they are also stupid enough to require absolutely 
unequivocal, precise and complete instructions, thus forcing the programmer to 
think in a mathematician's manner. 

The constitution of mathematical chemistry as a novel specialized and interdis­
ciplinary branch of Science is just a necessary consequence of the mathematization 
which is nowadays occurring in chemistry) . This, of course, does not mean that certain 
parts of mathematical chemistry, especially those related to mathematical analysis 
(derivatives, integrals, differential equations) have not been well established for many 
years. For a long time mathematics was imported into chemistry from physics and, 
as a consequence of this, those parts of mathematical chemistry which are of little 
or no importance for physicists remained underdeveloped. This especially applies 
to various topological and combinatorial aspects of (organic) chemistry. 

A rapid proliferation of genuine mathematical investigations in organic chemistry 
began somewhere in the early seventies, when the significance of graph theory became 

) A similar process is currently under way in biology whereas mathematical physics has a 
tradition of some two centuries. 
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fully recognized. Progress in mathematical organic chemistry is clearly illustrated 
by the great number of newly obtained results. It can be estimated that after 1979 
more than 600 relevant papers have appeared in the chemical literature. The first 
scientific meeting on mathematical chemistry (chemical graph theory) was held in 
1975. Some ten such conferences have since been organized. The journal Mathematical 
Chemistry (Match) has been published since 1975. For a list of existing books and 
reviews on mathematical chemistry and related topics see the bibliography at the 
end of this book. 

The present book is an attempt to give a cross-section through the contemporary 
mathematical research on organic molecules. It was not the authors' aim to offer 
a complete or even a nearly complete review of the plethora of approaches which 
have appeared in the literature in the last 10--15 years. Rather we shall focus our 
attention on a few selected topics and elaborate them in some detail. This selection, 
however, has been made in such a manner as to provide a representative image of the 
present status of the mathematical chemistry of organic molecules. 

The book is mainly concerned with theorems (i.e. non-trivial statements which 
are mathematically correct and which have been proved in the mathematical sense 
of this word). Theorems represent the heart of any scientific theory which can be 
characterized as mathematical. The authors' intention was not only to outline the 
existing results, but also to demonstrate how they have been obtained. Complete 
proofs are presented only for a limited number of theorems. Otherwise only the idea 
of the proof is indicated or a pertinent reference is quoted. In general, however, the 
reader of this book will get a sufficient insight into the proof techniques of modem 
mathematical chemistry and may become able eventually to deduce his own results. 

In addition to this formal approach, we illustrate our statements by concrete 
chemical examples and/or applications. 

The book is divided into 13 chapters and 6 appendices. Chapters 1 and 2 are 
concerned with topological, Chapters 3 to 6 with graph-theoretical and Chapters 7 
to 10 with group-theoretical issues in organic chemistry. Chapters 11 to 13 elaborate 
in more detail three selected topics, namely certain topological indices, the thermo­
dynamic stability of conjugated molecules and the so-called topological effect on 
molecular orbitals. The Appendices 1 to 4 will remind the readers of the theory of 
matriCes, determinants, eigenvalues and polynomials, respectively. Appendix 5 is 
closely related to Chapter 8 and contains the character tables of many chemically 
significant symmetry groups. The readers, especially those who are not starting to 
read the book from its beginning should not hesitate in consulting Appendix 6, 
where a list of symbols used is given together with a brief explanation of their meaning. 
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Chapter I 

Topological Aspects in Chemistry 

In constitutional formulas 
the atoms are represented 
by letters and the bonds 
by lines. They describe the 
topology of the molecule. 
V. PRELOG, Nobel Lecture, December 12, 1975 [165] 

1.1 Topology in Chemistry 

Since the time of v AN'T HOFF, chemists are used to thinking about molecules as geo­
metric objects in which atoms have a certain spatial arrangement. The geometric 
parameters of molecules (interatomic distances, bond angles, dihedral angles, etc.) 
can be measured with a rather high degree of accuracy and are indeed known in a 
considerable number of cases. 

It is, however, perfectly clear that the positions which the atoms occupy in the mole­
cule are not fixed and various kinds of intramolecular motions (internal rotations, 
vibrations, conformational changes, etc.) are known to occur. Even if one disregards 
these atomic motions, the geometry of a molecule is to some extent influenced by its en­
vironment (e.g. by pressure in the case of crystals, by the choice of the solvent in the 
case of solutions, etc.). The difficulties in bringing the concept of molecular geometry 
in harmony with the basic principles of quantum theory are also worth mentioning 
(see [181] and the references cited therein). 

On the other hand it is beyond dispute that the molecule maintains its identity 
irrespective of all these geometric changes. Hence there must be something in the 
molecule which remains invariant when (slight) modifications in its geometry occur. 

Having all this in mind, it is not surprising that the knowledge of exact geometric 
parameters of molecules is usually of little value when problems which occur in 
chemical practice have to be solved. Chemists are very often satisfied with much less 
detailed information about the structure of molecules. This is called "constitution" 
or "connectedness" in some, while "form" or "shape" in other cases. Another expres­
sion, becoming more and more popular, is "topology" [22,44], although the precise 
meaning of this word is somewhat obscure. 

Another drawback of the geometric approach is that the geometric parameters 
provide a local characterization of the molecule (i.e. they establish relations between 
two, three or four atoms). On the other hand, certain spatial relations in molecules 
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I Topological Aspects in Chemistry 

Fig. 1.1. a Example of a catenane 
[60]; b a MOBIUS strip compound (I) 
and its normal ("cylindrical") iso­
mer (II) obtained by cyciization of 
tris(tetrahydroxymethylene )diol 
ditosylate (III) [178] 

are consequences of the molecular architecture as a whole. The most peculiar of such 
cases are the catenanes [60] and MOBIUS compounds [178]. 

What is exceptional in these molecules are not their bond lengths and angles, 
but rather the embedding of the molecule as a whole in three-dimensional space [22]. 

The fact that certain properties of geometric objects remain invariant under 
continuous deformation l of their points has long been recognized. The theory of 
such phenomena was named "topology" and eventually became one of the most 
distinguished disciplines of modern mathematics [19]. Instead of conventional geo­
metric objects (which are sets of points in the two- or three-dimensional space, whose 
distances are determined by the Euclidean metric), modern topology investigates 
sets with much more general properties. 

A good part of the geometric problems considered in the early stages of topology 
have been overtaken by another mathematical discipline, namely graph theory. 

·Graph theory seems to prvvide the real operative basis for the topological considera­
tions in chemistry. The readers will become acquainted with chemical graphs in 
Chap. 3 and meet them thereafter very frequently. 

Returning to geometric objects, we can say that two of them are topologically 
equivalent if one object can be continuously t~ansformed so as to coincide with the 
other. For instance, the lines Ll and L2 are topologically equivalent whereas the line 
L3 (possessing an articulation point A) is a topologically distinct entity. 

1 In topology instead of "continuous deformation" one speaks about "homeomorphic mapp­
ing", a concept which is then rigorously defined [19]. We use here a much more intuitive approach. 
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Similarly, there are two topologically different ways in which a pair of cycles 
can be embedded in three-dimensional space. 

00 
It is clear that any deformation which would transform the catenated cycles into 

disjoint ones would require the breaking of one of them. Such a deformation would 
not be continuous. It is less obvious (but can be demonstrated) that catenated and 
disjoint cycles can be continuously transformed into each other in four-dimensional 
space. This shows that the answer to the question whether two geometric objects are 
topologically equivalent depends not only on the objects themselves, but also on the 
properties of the space in which they are embedded. The reader should convince 
himself about this by considering the possible relations between two cycles embedded 
in two-dimensional space (i.e. in the plane). 

Changes in the molecular geometry, caused by intramolecular motions or by any 
kind of external influence, but in which no chemical bond has been broken or formed, 
can be regarded as continuous deformations. Those characteristics of molecules 
which remain invariant under such deformations are therefore called topological 
properties. 

The relations which exist between the topological and the real chemical and physical 
properties of the molecules are the subject of numerous recent mathematical investiga­
tions in organic chemistry. Some aspects of these studies are outlin.:d in the present 
book. 

At this point it should be clearly emphasized that the approach which we pursue 
in the present and the subsequent chapter is not the only way to introduce topological 
concepts into chemistry. First of all, throughout the previous discussion we have 
tacitly understood as granted that in a molecule there are atoms, that these atoms have 
a more or less fixed position in the molecule and that between some (but not all) atoms 
chemical bonding occurs. Hence our notion of molecular topology is based on classical 
chemical ideas and will be therefore "intuitively clear" to the readers of this book. 

There exist, however, other, more sophisticated and mathematically much more 
rigorous approaches to molecular topology. These are obtained by using topological 
concepts within the quantum mechanical description of molecular systems. Two such 
theories, associated with the names of PAUL MEZEY and RICHARD BADER are especially 
interesting. Even a brief exposition of each of these theories would require a long 
chapter and a detailed mathematical introduction, which we cannot afford in the 
present book. The reader who wants to learn more about the work of MEZEY and BADER 
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should. consult a pertinent review (e.g. [4] and [53]) and the extensive literature cited 
therein. 

In both MEZEY'S and BADER'S theories a molecular system is considered as a collec­
tion of electrons and atomic nuclei whose motion is described by a SCHRODINGER 

equation. If there are N nuclei in the system, then an abstract n = 3N - 6 dimensional 
nuclear configuration space [Jln is introduced. MEZEY examines the potential energy 
hypersurface E(R), R E [Jln. The critical points of the energy hypersurface determine 
the number of possible reaction mechanisms of the given molecular system. Chemical 
structures are represented by the so-called catchment regions, which are open subsets 
of [Jln and which include a critical point of E(R). A stable molecule is represented by 
a catchment region of index A. = 0, i.e. the corresponding critical point of E(R) 
is a minimum. A transition structure ("transition state") is represented by a catchment 
region of index A. = 1, whose critical point is a saddle point. 

BADER'S theory considers the molecular charge distribution Q(r) = Q(r, R), where 
r is a three-dimensional position coordinate and R E [Jln, as before. The basic property 
of Q(r) is that it exhibits local maxima only at the positions of nuclei. The nuclei 
thus behave as point attractors in the associated gradient vector field \l Q(r). According 
to BADER, an atom is defined as the union of an attractor and its basin. The border 
between two such atoms is again determined by certain critical points of Q(r, R). 
The atomic interaction line is a path through space linking neighbouring nuclei, along 
which the charge density is a maximum with respect to any neighbouring path. 
A molecular graph is defined as the union of these interaction lines and such a graph 
may be assigned to each point R of the nuclear configuration space [Jln. 

In topology, two vector fields "Y" 1 and "Y" 2 over [Jl3 are said to be equivalent if 
there is a continuous one-to-one mapping of [Jl3 into [Jl3, which maps the trajectories 
of "Y" 1 into the trajectories of "Y" 2' BADER defines two nuclear configurations RI and 
R2 to be equivalent if the vector fields \l Q(r, RI ) and \l (l(r, R2 ) are topologically 
equivalent. Furthermore, two molecular graphs are defined to be equivalent if and 
only if they correspond to equivalent nuclear configurations. An equivalence class 
of molecular graphs is then called the molecular structure. 

1.2 Abstraction in Science and How Far One Can Go 

When a phenomenon occuring in Nature is studied from a scientific point of view 
then a convenient and rather fruitful procedure is to abandon the consideration of 
some of its details and focus the attention only on those features of the phenomenon 
which are expected to be significant. When such an abstraction is made in a reasonable 
way, then the loss of the knowledge of the details is abundantly compensated by the 
gain of a better insight into the phenomenon. The concept of ideal gas, absolutely 
black body, nucleon and the rationalization of the periodic system of elements by 
means of the Aufbau process are examples which come readily to mind. 

Depending on the level of the abstraction, we may pose different sorts of questions 
as illustrated in Fig. 1.2 (see p. 10). Depending on the information we are interested in, 
we may choose an appropriate level of abstraction. 

The following scheme suggests a possible classification of the ways in which the 
notion of a chemical substance and its structure can be viewed. 
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Substance in free nature 

Substance in laboratory 

Disregarded 

Uncontrollable influences 
of the environment 

Chemically pure substance Effect of impurities 

Atomistic theory 

Quantum theory 

Approximate quantum 
theoreticaf models 

Molecular geometry 

Structural formula 

Molecular topology 

Intermolecular interactions 

Non-quantum-mechanical 
(e.g. relativistic) effects 

Several requirements 
of quantum mechanics 

Quantum mcchanics 

Details of chemical binding 

Differences between atoms 
------_._ .. - --- ------~ 

9 

Gained 

Reproducibility 

Perfect reproducibility, 
quantitative measurements 

Simple picture of chemical 
processes 

Explanation of basic 
chemical notions 

MO schemes 
VB schemes 

Applicability of Euclidean 
geometry to molecules 

Pictorial representation 
of molecular structure 

? 
--_._--.. _--

Molecular topology lies at the very bottom of our table, being thus the most 
abstract model for the structure of chemical substances. It has obviously lost a great 
deal of its relation to real chemistry. The question which naturally arises is whether 
by putting forward this model we did not go too far in the process of abstraction. In 
other words we are faced with the danger that molecular topology will not be able to 
reflect any meaningful property of chemical compounds. 

The question mark in the right lower corner of the above table is related to the 
provocative question: 

Is there any chemistry left in molecular topology? 

The last three levels in our classification scheme can also be characterized in the 
following way: 

Molecular geometry 

Structural formula 

Molecular topology 

Disregarded 

Information about 
energy 

Information about 
energy and space 

Physics 

Physics 

Information about No physics 
energy. space and matter 

----_._--- - ---
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Beautiful? Female or male? 

Human or hare? How many! 

Fig. 1.2. The sort of questions one may ask depends on the level of abstraction 

Having in mind that natural sciences are concerned with the behaviour of matter 
in space and time, we are ready to conclude that on the level of molecular topology 
the connection with physical reality has been completely lost. This is definitely not so. 
As a matter of fact, 

topology provides the frame for physics 

and, in particular 

molecular topology provides the frame for molecular physics and chemistry. 
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This frame has to be filled with a physical content, which shows it to be not fully 
independent of the frame itself. 

Considerations based exclusively on molecular topology will give no results useful 
for chemistryl. It is a fortunate fact, however, that in a number of chemically quite 
important cases, molecular topology can be recoupled with certain physical models, 
thus enabling the estimation of both spatial and energetic relations. We shall elaborate 
this point in more detail later on and demonstrate the validity of our claim on a number 
of concrete examples. 

1 Topology suffices for enumeration and classification purposes, as a basis for a chemical 
nomenclature and similar applications. 



Chapter 2 

Molecular Topology 
f 

2.1 What is Molecular Topology? 

A precise, but formal and not easily understandable definition of molecular topology 
will be given in Sect. 3 of this chapter. For most"of the applications, however, the 
present simple description will fully suffice. Suppose a molecule M is composed 
ofn atomsAl> A2 , ••• ,An. Suppose also that for any two atoms Ai and Ajwe can decide 
which of the following two statements is correct: 

(a) In the molecule M there is a chemical bond between the atoms A. and A .. 
J J 

(b) In the molecule M the atoms Ai and A j are not chemically. bonded. 

Then the totality of information about the mutual connectedness of all pairs of 
atoms in a molecule (and only this information) determines the topology of the 
respective molecule. 

There are several ways in which the information on mutual connectedness of 
atoms in a molecule can be recorded. A diagramatical representation, which we 
shall describe now, can be easily grasped by organic chemists, because of its close 
resemblance to the structural formulas: 

Represent each atom by a small cir~le and draw a line (not necessarily a straight 
one) between any two circles which correspond to chemically bonded atoms. The 
diagram obtained in this manner is a graph. Since it represents the molecular topology, 
it will be called a molecular graph. 

Consider as an example ethanole and represent its topology as described above. 
For the sake of the reader's convenience we have labeled the atoms and the corre­
sponding circles by I, 2, ... , 9. 

A chemist would obviously be more satisfied if the circles and lines were slightly 
rearranged : 

~
25 

1 3 6 8 9 

4 7 
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There is no reason not to meet this aesthetic requirement, and in the following 
the diagramatic representation of the topology of an organic molecule will always 
be drawn so as to match the corresponding structural formula. It must, however, 
not be forgotten that this is just a matter of convenience. In particular, both graphs 
given above are equivalent and represent the very same molecular topology. 

The concept of molecular graphs is explained in full detail in Chap. 3. 
The idea of molecular topology and the degree of abstraction involved in it will 

become even more transparent after the definition of isotopological molecules. Hence, 
two molecules are said to be isotopological if their topologies coincide. On Fig. 2.1 

CH, - N : C • 0 :::: ~ :: 

CH 3 - 0 - C == N 

CH 3 - S - S - H 

CH 3 - C == C -Sr 

H H Br Br , , 
" N - N , C = C 

H " H'-.7-</ H ... H 

H H,../' , H Br , , 
" c = C C = C, 

H ' H Sr" H 

Fig. 2.1. Examples of isotopological molecules. These are indistinguishable from the point of 
view of molecular topology 

are presented two quartets of isotopological molecules. These examples reveal an 
apparent difficulty in the topological approach, namely that one molecular graph 
represents a whole set of isotopological, but chemically distinct and often quite 
diverse compounds. Consequently if T is a certain topological property (which can 
be expressed by means of a number), then all members of an isotopological class 
have the same numerical value for T. Now, if P is a measurable physical quantity 
which is expected to be related with the molecular topology via a function 

P = f(T, a, b, c, .,,) (I) 

where a, b, c, ". are parameters of the theory, then the function f must be the same 
for all classes of compounds and only the parameters a, b, c, ... may vary from class 
to class. 

At the present moment we know of a very limited number of molecular properties 
which would meet the above rigorous requirements. One of these seems to be a 
regularity (called TEMO), concerning the electron energies of certain topologically 
related isomers. More details on TEMO can be found in Chap. l3. 

On the other hand, there is a lot of evidence that physical properties of particular 
classes of (organic) molecules can be reproduced (usually in a semiquantitative 
manner) from the molecular topology. Examples for this are given in Chaps. II, 12 
and elsewhere. 
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2.2 Geometry, Symmetry, Topology 

The claim that molecular topology provides a frame for molecular physics and 
chemistry can be understood in the following manner. There are certain geometries 
which are compatible with a given molecular topology; all other molecular geometries 
are forbidden for topological reasons. 

Symmetry is another important characteristic of a molecule. It depends both 
on molecular geometry and the type of atoms which form the molecule. This latter 
is denoted as the materialization of a certain molecular geometry or molecular 
topology. 

The delicate interplay between molecular geometry, symmetry and topology is 
best illustrated by the simple example of triatomic molecules. These can have two 
different topologies - cyclic and acyclic. The corresponding molecular graphs are 
G1 and Gr 

G, 

Table 2.1 presents the possible molecular geometries, their materializations and 
the corresponding symmetry groups. (For details on symmetry groups see Part C 
of the present book.) 

Table 2.1. Topologies, geometries and symmetries in triatomic molecules and their mutual 
relationship 

Topology Geometry Materialization 

AAA ABA AAB ABC 

Cyclic Planar D3h C 2v C1h 

(83) 

Acyclic Planar C 2v C 2v C1h C1h 

(82 EEl 81) Collinear D· ooh D"h Cooh Coov 

For a more elaborated and mathematically rigorous treatment of these problems 
the reader should consult the work of ERNST RUCH on chirality functions [52, 167, 
'168]. 

2.3 Definition of Molecular Topology 

The first attempt to give a precise definition of molecular topology using the concept 
of the molecular graph as a starting point seems to be the work of MERRIFIELD and 



2.3 Definition of Molecular Topology 15 

SIMMONS [145]. We shall elaborate here a somewhat different approach to the same 
problem. We assume that the reader of this section is already familiar with the con­
cept of distance in a graph (see Sect. 4.1.4.). 

Let us start with a few definitions [19]. 
Consider a set Zf. Another set .¥) is called a subset of X if every element of X) is 

also an element of .Jr. This fact is denoted by .cr) ~ X. Let Xl' X Z' ,cr3 , ... be subsets 
of the set .1£. 

An open set topology or an O-topology in the set .cr is a collection 
T () = {.'!f l' .'if 2' .ur 3' ... } of subsets of.?f if 

[T I]: each union of the members of To is a member of To; 
[T 2]: each intersection of a finite number of members ofT 0 is a member ofT 0; 

[T 3]: X belongs to To; 
[T 4]: the empty set ~ belongs to To' 

Recall that the union of two sets ,J{) and ,?f 2 is the set, containing elements of both 
?I) and X 2' The intersection of X) and ?Iz is the set, containing those elements which 
belong simultaneously to ,'!f) and .J{ 2' The intersection of two sets may be empty. 

The finiteness requirement in point [T 2] is of little relevance for the present 
discussion. 

Let X = {x, y, z, ... } be a set. A metric on ,'!f is defined via the requirements: 

[M I]: d(x, y) ~ 0 for all x, Y E .'£; 
[M 2]: d(x, y) = 0 if and only if x = y; 
[M 3]: d(x, y) = d(y, x) for all x, y E q;; 
[M 4]: d(x, y) ~ d(x, z) + d(y, z) for all x, y, z E X. 

Then d(x, y) is called the distance between the elements x and y. 
If a metric is defined on the set X, then X is called a metric space. 
If q; is a metric space, then for each x E X and e > 0 we define the ball-neighbour­

hood of x as the set of all elements of ,cr whose distance to x is smaller than e: 

olt,(x) = {yly E?I, d(x, y) < e} . 

This ball-neighbourhood is said to have radius e. Each ball-neighbourhood Olf,(x) 
contains at least one element, namely x itself. 

Let us apply these general concepts to graphs. If G = ('1', Iff) is a connected 
graph), then for any two vertices u, v E '1' the distance d(u, v) is a well-defined quantity 
(see paragraph 4.1.4) and evidently obeys the above conditions required for a metric. 

Consequently, we may speak about ball-neighbourhoods for every vertex. For 
obvious reasons, only the ball-neighbourhoods with integer radii are to be consi­
dered. 

For instance, we present the ball-neighbourhoods of radii e = 1,2,3,4 and 5 
of the vertex I of the graph G) . 

1 All molecular graphs are connected. Note, however, that as a consequence of the present 
approach, catenanes, rotaxanes and molecular complexes have to be understood as aggregates 
composed of several topologically disjoint moieties. 
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7 9 

5 

2 4 

10 12 

G1 

OUI(l) = {l} 

OU2(l) = OUI(l) u {2, 6} = {l, 2, 6} 

OU3(l) = OU2(l) u {3, 5, 8} = {I, 2, 3, 5, 6, 8} 

OU4(I) = OU3(l) u {4, 7, 9, ll} = {I, 2,3,4,5,6,7,8,9, ll} 

OUs(1) = OU4 (l) u {1O, 12} = {l, 2, ... , 12} = "f/(Gl ) 

Evidently, OU.(l) = "f/(G l ) for all e ~ 5. 
We define now the neighbourhood OU of an element x of the set f![ as any subset 

of f![, such that for some e > 0, OU.(x) S OU. Let U(x) be the collection of all neigh­
bourhoods of x. A neighbourhood topology or aU-topology (U = Umgebung) T u in 
the set f![ is defined by means of the neighbourhoods U(x), x E f![ provided the following 
conditions are obeyed: 

[U 1]: x E OU for all OU from U(x); 
[U 2]: if OU is a member of U(x) and OU s OU', then OU' is a member of U(x); f![ is a 

member of U(x); 
[U 3]: the intersection of two members of U(x) is a member of U(x); 
[U 4]: for every OU E U(x) there exists a OU" E U(x), such that OU E U(y) for all y E OU". 

The statements [U 1 ]-[U 4] are known as the HAUSDORFF neighbourhood axioms. 
The set f![ together with its U-topology forms a topological space. 

If we apply the above definitions to the vertex set "f/( G) of a connected graph G, 
then it is easy to see that the collection U(v) of all neighbourhoods of a vertex v satisfies 
the HAUSDORFF axioms [U I]-[U 4]. Hence the set of all U(v), v E "f/(G) defines a 
neighbourhood topology in the vertex set of a molecular graph and this is just what 
we shall call the topology of the corresponding molecule. The vertex set together with 
its neighbourhood topology forms the molecular topological space. 

It should be noted that a U-topology, contrary to an O-topology does not contain 
the empty set. Indeed, U(x) cannot contain the empty set since every neighbourhood 
OU E U(x) has at least one element, x itself (c.r. axiom [U 1]). On the other hand, 
the set U(x) amended by the empty set is an O-topology, as the reader may easily 
verify in the case of the vertex set of a molecular graph. 



Part B 

Chemistry and Graph Theory 



Chapter 3 

Chemical Graphs 

The concept of a molecular graph was introduced in Sect. 2.1. Elements of the 
mathematical apparatus of graph theory will be given in Chap. 4. The purpose of 
the present chapter is to review the manifold types of molecular graphs which occur 
in mathematical investigations in organic chemistry. 

The most straightforward graph representation of a molecule has already been 
mentioned in Sect. 2.l. We shall call it the complete molecular graph and illustrate 
it by two further examples: 

OH 
I 

HO,C--C 
-- \ 

I C=O 
H-C-d 

I 
HO-C-H 

I 
CH20H 

The skeleton graph represents only those atoms which can be regarded as forming 
the framework of the molecule. Other atoms, which are usually hydrogens, are 
disregarded. The skeleton graph is almost universally used in applications of graph 
theory to saturated and fully conjugated hydrocarbons, since then the neglect of the 
hydrogen atoms cannot cause any ambiguity. 

The following are the skeleton graphs of seven monocycloalkanes C6H12 : 
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The first of them represents cyciohexane, the second methylcyciopentane, the 
third I,I-dimethylcyciobutane, etc. 

The skeleton graphs of fully conjugated molecules, not necessarily hydrocarbons, 
are called HDcKEL graphs because of their role in HDcKEL molecular orbital theory 
(see Chap. 5). They correspond, in fact, to the network over which the n-electrons 
in such molecules are delocalized. It must be immediately pointed out that the use 
of Hi.icKEL graphs goes much beyond the HDcKEL molecular orbital scheme. Histori­
cally, however, they were first used by ERICH HDcKEL in the early thirties!. 

Here are some examples: 

o H 
I 

©Q=¢@-
I 0 
H 

The fact that different conjugated molecules (in our example: pteridine and 
naphthalene) can have isomorphic HDcKEL graphs is, of course, rather inconvenient 
and calls for amendments. The natural solution of this problem is to associate pertinent 
weights to the vertices and edges of the molecular graph. The theory of such "weighted" 
graphs is elaborated in Sect. 6.5. 

In the study of CT-electronic systems a slightly more complicated graph representa­
tion is needed, which is in fact the line graph of the complete molecular graph. We 
present here only an example and refer the interested reader to Sect. 4.4 (for the 
definition of line graphs) and Chap. 13 (for the role which such graphs play in MO 
theory). 

Some special types of graphs have been used in the topological investigations of 
benzenoid hydrocarbons. The inner dual is obtained by associating a vertex to each 
hexagon and connecting vertices corresponding to adjacent hexagons. The inner dual 
of benzo[a]pyrene is given as follows: 

1 That the Hamiltonian of the HiicKEL molecular orbital theory is closely related to the adjacency 
matrix ofa graph was recognized much later, as a result of the work of RUEDENBERG, COULSON, 
HEILBRONNER and others. 
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Different benzenoids may have identical inner duals. For instance the inner dual 
of both chrysene and tetracene is isomorphic to the path with four vertices: 

In order to overcome such a redundancy (and thus make the concept of inner dual 
more suitable for application) BALABAN [72] defined the characteristic (or dualist) 
graph of a benzenoid system as the diagram obtained in the same way as the inner 
dual, but in which the vertices retain their original geometric positions. Hence the 
characteristic graphs of chrysene and tetracene are different: 

It is clear that the characteristic graph (in spite of its name) is not a graph at all. 
Namely, a vertex in a graph cannot have any "position"; the unique property which 
a vertex possesses in a graph is its connectedness to other vertices. This, of course, 
does not mean that we are denying the documented usefulness of characteristic graphs 
in the theory of polycyclic aromatic hydrocarbons [73]. 

Two further graphs have been associated with benzenoid hydrocarbons: the 
GUTMAN trees [86, 101] and the CLAR graphs [106]. They playa certain role in the 
aromatic sextet theory of CLAR [13] and in the theory of the sextet polynomial [132]; 
none of these will be considered in the present book. We show as an example the 
GUTMAN tree and the CLAR graph of a non-branched cata-condensed benzenoid 
hydrocarbon as well as the CLAR graph of a peri-condensed molecule: 

Note that GUTMAN trees exist only for non-branched cata-condensed benzenoids. 
In that case the CLAR graph is the line graph of the corresponding GUTMAN tree. 
For more details along these lines see [86, 101, 106]. 

The factor graph concept has been introduced by JOELA [135]. A factor graph is 
constructed from a KEKULE valence formula of a conjugated molecule by associating 
a vertex to each double bond and connecting vertices corresponding to double bonds 
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separated by one single bond. The five factor graphs of phenanthrene are given as 
follows: 

09 I" " ....-:: /.: ---+ ~ 
09 ;; I " 
~ ~ 

----. ~ 
a9 rP ;;...- 7, ---+ ::-.... ;:-.... 

09 ~ ;;...- ~ 

;:-....' ~ ----. 

09 I~ ....-::....-:: ---+ <tJ 
For various applications of factor graphs see [87] and the references cited therein. 
The present account of types of molecular graphs used in the chemical literature 

is not intended to be complete. Rather we wanted to illustrate the many facets of 
the application of graph theory in modeling chemical phenomena. 

A rather important class of chemical graphs has not been mentioned so far. These 
are the reaction graphs in which vertices represent different chemical systems and 
two vertices are connected if the corresponding species can be chemically inter­
converted one into other. Reaction graphs are used both in the study of the kinetics 
of chemical processes and in classification of chemical reactions. New reaction 
pathways could be discovered by this means. 

Reaction graphs go beyond the scope of the present book. Nowadays they have 
an extensive literature; the interested reader is referred to [6, 39, 75, 77, 85, 139]. 



Chapter 4 

Fundamentals of Graph Theory 

It is not necessary to persuade the reader that graphs are one of the basic mathematical 
objects with which the present book is concerned. Chap. 2 gave a general conceptual 
basis for the use of graphs for representing the topology of a molecule. In Chap. 3 
we got acquainted with a variety of types of molecular graphs. The present chapter 
will, finally, provide a precise mathematical characterization of a graph. We shall 
list here a number of additional graph-theoretical definitions and mention a few 
basic properties of graphs. 

Only those graph-theoretical notions which will be needed later will be introduced 
here. Hence this chapter can by no means provide a substitute for a text-book of 
graph theory. Those readers who wish to get a more complete knowledge of graph 
theory should study one of the many existing books ml this subject (e.g. [8,10,34,55, 
57, 59, 67]). For first reading the textbook of HARARY [34] is usually recommended. 

In addition to the present, more or less, abstract outline of the basic concepts 
of graph theory, in Chap. 6 a number of chemically important classes of graphs 
are examined in some detail. Further applications of graph theory are found in the 
Chaps. II, 12, 13 and elsewhere. 

4.1 The Definition of a Graph 

4.1.1 Relations 

Let-r be a set of some unspecified elements, r = {vI' v2 ' •.. , vJ. In the following 
we shall always assume that 'r is a finite set, that is the number of elements of -r 
is finite. 

The set 'r ® 'I' consists of all ordered pairs [vr' vs] of the elements of Y. Any 
subset .~ of 'r ® "t~ is called a relation on the set "r. 

For example, {[rz' ['3], [V2' VS], [['3' 1'3]' [1'4' Vs], [Vs' v4 ]} is a relation on the set 
{vI' v2 , l",. 1'4' l',1. 

A relation on a set can be presented diagramatically if we symbolize the elements 
ofr by small circles and draw a directed line between two circles whenever the 
corresponding ordered pair belongs to the relation. For example the diagram of the 
above relation is: 

v, 
o 
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Let f?t be a relation on the set "Y and let u, v be elements of "Y. Then f?t is said to 
be symmetric if [v" v.l E {I/ implies [V., v,l E f?t. The relation {I/ is said to be reflexive 
if for all v E "Y, [v, vl E f?t. The relation is antireflexive if [v, vl E {I/ is not true for any 
v E "Y. In other words, f?t is antireflexive if 

[v" v.l E f?t implies v, t= v •. 

For example, {[V2' vsl, [v4' vsl, [vs' v2l, [vs' v4]} is a symmetric and antireflexive 
relation on the set {VI' v2' v3' v4 ' vs} and has the following diagraniatic representation. 

If a relation is symmetric and antireflexive then the ordered pairs in it appear in 
doublets [v" v.l and [v., v,]. Instead of,~ch a doublet, one can take an unordered 
pair (v" vJ. Hence a symmetric and antireflexive relation on a set "Y is a set of certain 
unordered pairs of the elements of "Y. In the diagramatical representation, a pair 
of oppositely directed lines can be substituted by a single undirected line. 

The relation given in the previous example can be written also as {(v2 ' vs)' (V4' vs)} 
and the corresponding diagram as 

4.1.2 The First Dermition of a Graph 

Consider a finite set "Y. Let tff be a symmetric and antireflexive relation on "Y, 
that is let tff be a set of unordered pairs of elements from "Y. Then the set "Y together 
with the relation tff forms a graph. If this graph is denoted by G, then we shall write 
G = ("Y;tff). 

The last example considered in the previous section: "Y = {v!, v2' v3' v4 ' vs} and 
tff = {(V2, vs), (V4, vs)} was, in fact, a graph. 

The procedure for the pictorial representation of a graph G = ("Y, tff) is evident: 
the elements from "Yare visualized by means of small circles and two such circles are 
joined by a line if the corresponding elements of"Y are in the relation 8. 

The elements of the set "Yare called vertices. (Some authors call them points or 
nodes.) The elements of the relation tff, considered as unordered pairs, are called edges. 
(Some authors call them lines.) 

The present definition of a graph can easily be extended to the case when tff is 
either not symmetric (then we speak about graphs with directed edges or digraphs) 
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or not anti reflexive (then we speak about graphs with loops) or when $ is neither 
symmetric nor antireflexive. We shall not be concerned with these types of graphs, 
although they are rather interesting in both "pure" graph theory and its numerous 
applications. 

A graph defined in the above restricted manner is denoted as simple or "schlicht". 
Hence a simple graph does not posses directed edges and/or edges which start and 
end at the same vertex (loops). Such graphs do not posses multiple edges either. 
(Multiple edges are discussed in the subsequent paragraph.) 

In the present book we deal almost exclusively with simple graphs. The set of all 
graphs is denoted by ~§ whereas the set of all graphs with n vertices by ~ n' 

4.1.3 The Second Definition of a Graph 

Consider two finite sets "fI" = {VI' V2, ... ,vn} and $ = {elo e2, ... ,em}. Let f be 
a mapping which associates each element of $ to an (unordered) pair of elements 
of "fI". Hence for any e. E $ there exists a unique pair (v. , v. ), v. E "fI", v. E "fI", 

, 'I '2 'I '2 
such that 

f: e. -+ (v. , v. ) . 
, 'I '2 

(1) 

Then the two sets ..,.' and $, together with the mapping f form a graph. This graph 
'can be denoted as ("fI", $,1). 

For example, the graph considered in the previous two subsections can be defined 
by means of"fl" = {UI' l'z. v3, v4, vs}, $ = {el • ez} and the mapping/, 

f: el -+ (v2 , vs) 
e2 -+ (v4 , vs) . 

(2) 

The advantage of this definition is that it can easily be extended to multigraphs, 
that is graphs with multiple edges. Really, the mapping f need not be a bijection; 
several elements of $ could be mapped onto the same pair of elements of "fI". 

For example, if'V = {VI' vz' v3' V4 }, $ = {el' e2, e3, e4 , es} and 

f: e1 -+ (vI' v2 ) 

ez -+ (v2 • v3 ) 

e3 -+ (v2 • v3 ) 

e4 -+ (v2 , v3 ) 

es -+ (v3 ' v4 ) 

then we have the following multigraph ("I', $,1): 

(3) 
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The theory of multigraphs will not be further elaborated in the present bookl. 
Nevertheless, the following remark is worth noting. If a unit "weight" is associated 
to a simple edge, then it is natural to interpret a multiple edge as having weight greater 

than unity (e.g. 2 and 3 or V2 and V3 for a double and a triple edge, respectively). 
Hence, the multigraphs provide a bridge between the simple graphs and the so-called 
weighted graphs. More details on weighted graphs can be found in Sect. 6.5. 

4.1.4 Vertices and Edges 

If G = (Y, ~) is a graph then the elements of the set Yare called vertices and the 
elements of the set ~ edges. Throughout the entire book the number of vertices will 
be denoted by n and the number of edges by m. We may symbolize this also as Iyl = n, 
I~I = m. 

The fact that y is the vertex set of the graph G will often be denoted by Y(G). 
Two vertices U E Y and v E yare adjacent if(u, v) E~. Then we shall also say that 

u and v are neighbouring vertices, that they are connected by an edge e = (u, v), 
that u and v are the end vertices of the edge e and that the edge e is incident to the 
vertices u and v. 

The number of vertices which are adjacent to a given vertex v is called the degree 
(or valency) of this vertex. A vertex of de~ree zero is called an isolated vertex. A vertex 
of degree one is called a pendent vertex. 

For example, the graph GI . 

has three isolated and four pendent vertices. In addition to this, GI has three vertices 
of degree 2, a vertex of degree 3 and a vertex of degree 5. 

If gv is the degree of the vertex v, then the following identity holds 

I gv = 2m (4) 
VE"I/ 

where, of course, m is the number of edges of the graph2 • The reader may check 
whether the relation (4) holds for GI . 

A sequence of vertices v iO ' ViI', ... , ViI ofagraph, such that Vij_1 and vijare adjacent 

j = I, 2, .,. , I is called a path or elementary path in the graph G, connecting the vertices 
v. and v . . The length of this path is I because the path contains I edges. 

'0 'I 

1 There exists an obvious analogy between multiple edges in a multigraph and multiple chemical 
bonds. The above multigraph has been chosen so as to resemble the structural formula of 
acetylene. Hardly any useful application of this analogy has so far been made in mathematical 
organic chemistry. 
2 A chemical consequence of this result is that the number of atoms in a molecule having 
odd valency must be even. 
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The vertices between which there exists an elementary path are said to belong 
to the same component of the graph. Otherwise they belong to different components. 

The number of components of a graph G is denoted by k = keG). 
For example, k(G I ) = 5. 
A graph for which k = 1 is said to be connected. 
If G a' G b' G c' ... , G k are the components of the graph G, we shall write 

Concerning the union of graphs the reader should consult Sect. 4.4. 

(5) 

For connected graphs, the distance between two vertices u and v is defined as the 
length of the shortest path between u and v. The distance between the vertices u and v 
is denoted by d(u, 1') and has already been considered in Sect. 2.3. 

Since the notion of distance is crucial in the definition of molecular topology 
(Sect. 2.3) we present the distance matrix D(Gz) of the graph Gz. (The entry in the 
i-th row and j-th column of the distance matrix is the distance between the vertices Vi 

and vr ) 

VI 0 I 2 3 2 v'er 1 0 1 2 2 1 

V5 V3 2 0 1 2 
D(G z) = 

v4 3 2 0 I 2 

G2 2 2 1 I 0 1 

2 2 0 

4.1.5 Isomorphic Graphs and Graph Automorphisms 

Let G and H be two graphs whose vertices are Ut> Uz, ... , Un and VI' V2' ... , Vm respec­
tively. Let further n be a permutation! of the numbers 1,2, ... , n: 

( 1 2 ... n) 
n: n(l) n(2) ... 1T(n) 

(6) 

Suppose now that a permutation 1T can be found, such that for i = I, 2, ... , nand 
j = I, 2, ... , n the vertices Ui and U j are adjacent in G if and only if the vertices V,,(i) and 
v"(j) are adjacent in H. Then the two graphs are said to be isomorphic, G ~ H. 

In that case the permutation n represents an isomorphic mapping of the vertex 
set of G onto the vertex set of H; an isomorphic mapping of the vertices always conserves 
the adjacency relations. The vertex lI, l~ <.:alkJ the origin and the vertex l'''(i) the image 
of the mapping. 

Isomorphic graphs are essentially one and the same mathematical object. They 
differ only in the way in which their vertices are labeled. 

I For the definition of a permutation see Appendix 2. Basic properties of permutations are 
outlined in Chap. 9. 
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An isomorphic mapping of the vertices of a given graph onto themselves (which 
also preserves the adjacency relation) is called an automorphism of the graph. Evi­
dently, each graph possesses a trivial automorphism, the so-called identity automor­
phism: 

. (1 2 ... n) 
no· 1 2 ... n (7) 

Some graphs may also possess non-identical automorphisms. For example, in the 
case of G2 

(8) 

is an automorphism. 
The set of all automorphisms of a graph forms a group, the so-called automor­

phism group. This matter is further elaborated in Chap. 9. 
A number J(G) which can be associated with a graph G in a certain way and which 

has the same value for all graphs isomorphic to G is called a graph invariant. Conse­
quently, graph invariants are quantities independent of the labeling of the vertices 
of a graph. 

We mention in passing that determining whether two given graphs are isomorphic 
or not is by no means an easy task. A reader interested in testing his imagination may 
try to decide which two (if any) of the graphs G3 , G4 and Gs are isomorphic. 

Gs 

4.1.6 Special Graphs 

If $ is an empty set, $ = f), then the graph G = ("1',8) consists ofn isolated vertices. 
This is the null graph. If $ contains all possible pairs of elements of "1', then the cor­
responding graph is called complete and is denoted by Kn. The first five complete 
graphs are given as follows: 

o 

Kl Ks 

Evidently, all vertices in Kn are adjacent and the distance between any two of them 
is unity. 
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A graph in which all vertices have equal degree, say g, is a regular graph of degree g. 
According to this definition Kn is a regular graph of degree n - 1. In chemical appli­
cations the connected regular graph of degree 2 plays an outstanding role. Its name is 
the cycle (or circuit) and will be denoted by Cn • The first five cycles are given as follows: 

A connected graph which does not contain cycles is called a tree. A detailed expo­
sition of the theory of trees is given in Sect. 6.1. 

4.2 Subgraphs 

If G = (1',6') is a graph, 1/"* is a subset of l' and 6'~ both a subset of 6' and a sym­
metric and anti reflexive relation on 1'*, then G* = (1'*,6'*) is a subgraph of the 
graph G. In other words, a subgraph is obtained by deleting certain vertices and cer­
tain edges from the graph. The deletion of a vertex implies also the deletion of all 
the edges which are incident to this vertex. 

G6 , G7 and Gs are subgraphs of G2 • Note that G6 is obtained by deletion of edges, 
G7 by deletion of vertices (and the incident edges) while Gs is obtained by deletion 
of both vertices and edges. 

If v is a vertex of the graph G, then G - v will denote the subgraph obtained by 
deletion of v from G. Similarly G - e is the subgraph obtained by deletion of the 
edge e. In general, if H is a subgraph of G, G - H will symbolize the deletion of all 
vertices (and, of course, all incident edges) of H from G. 

If H is a subgraph of the graph G we shall say that H is contained in G. In particular, 
if Ck is contained in G, we say that the graph G contains a k-membered cycle and G 
is a cyclic graph. If G does not contain cycles, then G is acyclic (also called a forest). 
As already mentioned, a connected acyclic graph is a tree. 

A cycle with n vertices, contained in a graph G with n vertices is called a Hamil­
tonian cycle of G. A tree with n vertices, contained in a graph G with n vertices is a 
spanning tree of G. Only connected graphs have spanning trees. 

Two special types of subgraphs playa distinguished role in the chemical applica­
tions of graph theory. These are the SACHS graphs and the matchings. The two sub­
sequent paragraphs elaborate this matter in some detail. 
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4.2.1 Sachs Graphs 

A SACHS graph is a graph whose components are cycles and/or complete graphs with 
two vertices, K2 • 

For example, G9 , GlO and Gll are SACHS graphs contained in G2 • We can write 
G9 = C3 U C3, GlO = C3 U K2 and Gll = K2 U K2. 

I 
0--0 0--0 

Gg G11 

Note that all components of G9 are cycles, all components of Gll are K2 graphs 
whereas GlO is composed of cycles and K2 graphs. In the above example all three 
SACHS graphs have two components. The number of cycles is 2, 1 and 0, respectively; 
the number of vertices is 6, 5 and 4, respectively. 

Let S be a SACHS graph. Then k(S), c(S) and n(S) will denote the number of com­
ponents, cycles and vertices of S. 

For example, consider the following four SACHS graphs Sl' S2' S3 and S4: 

A 0 0--0 (0 0--0 

0--0 
0--0 

(] 0--0 
0---0 

0--0 
0---0 

0----0 

0 0 
S1 52 53 S4 

k(Sl) = 5 C(Sl) = 2 n(Sl) = 15 

k(S2) = 3 C(S2) = 3 n(S2) = 16 

k(S3) = 6 C(S3) = 0 n(S3) = 12 

k(S4) = 1 C(S4) = 1 n(S4) = 10 

The set of all SACHS graphs with i vertices, which are contained in a graph G, 
is denoted by f/j(G) or, when there is no danger of misunderstanding, simply by f/j' 

The knowledge of the sets f/ 1> f/ 2, ... , f/ n is essential for the application of the 
SACHS theorem, which will be extensively discussed later on. Here we want to point 
out that the finding of all SACHS graphs of a given graph is an extremely laborious and 
error prone combinatorial task. 
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Figure 4.1 presents, as an instructive example, the set of the 6-vertex SACHS graphs 
of the benzocyclobutadiene graph GIZ ' 

The following general properties of the sets //i are immediate consequences of 
the definition of SACHS graphs. 

I. Since a cycle has at least three vertices and Kz has two vertices, the SACHS 
graphs have at least two vertices. Therefore, the set //1 is always empty, //I(G) = 0 
for all graphs G. 

2. The set //z contains only SACHS graphs with a unique component, namely Kz. 
The number of elements in //z(G) is equal to the number of edges of the graph G. 

3. The set Y\ contains only SACHS graphs with a unique component, namely C3 . 

The number. of elements in /1' 3(G) is equal to the number of triangles in the graph G. 

o ~tl 

~ 

~ 0-0 

~o-o 

~ 

b tl 
~ 

b ~ 

~ b b 

0--0 

0-0 

0-0 

0-0 

~ tl 
~ 0-0 

~ 

~ 0-0 

0-0 

Fig. 4.1. The set of all SACHS grapbs with 6 vertices of the benzocyciobutadiene graph. This 
example illustrates how difficult is the problem of finding these subgraphs even in the case of 
molecular graphs with small number of vertices 
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4. Since the number of vertices of K2 is even, every SACHS graph with odd number 
of vertices must contain at least one odd-membered cycle. Consequently, if the graph G 
does not contain odd-membered cycles, Y'j(G) = ~ for all odd values of i. Note that 
graphs without odd-membered cycles, are the so-called bipartite graphs, discussed 
in detail in Sect. 6.3. 

4.2.2 Matchings 

Two edges of a graph are said to be independent if they are not incident to a common 
vertex. A k-matching of the graph G is a selection of k mutually independent edges. 
It is immediately clear that every k-matching corresponds to a subgraph of G, con­
taining k copies of K2 • 

Bearing in mind the definition of a SACHS graph we conclude that every SACHS 
graph with k components, all of which are K2-graphs (hence, none of which is a cycle) 
is in a one-to-one correspondence to a k-matching. The previously given SACHS 
graphs Gu and S3 represent a 2- and a 6-matching, respectively. Similarly, there are 
20 distinct 3-matchings of G12 and they are presented by the last 20 SACHS graphs in 
Fig. 4.1. 

The number of k-matchings of the graph G is denoted by m(G, k). 
In particular, m(G, 1) is equal to the number of edges of G. For all graphs G we 

define m(G, 0) = l. Since every k-matching covers 2k vertices ofa graph, there cannot 
exist k-matchings with k > n/2. Hence m(G, k) = 0 for k > n/2. 

For example, m(G12 , 3) = 20. We shall demonstrate in a while that m(G12 , 4) = 3. 
In addition to this, m(G12 , 1) = number of edges of G12 = 9. 

If a graph G possesses n vertices and n is even, then the (n/2)-matchings of G are 
called perfect matchings (or linear factors) of G. An interesting observation, which 
will not be further elaborated in this book, is that every perfect matching of a HOCKEL 
graph is in a one-to-one correspondence with a KEKULE structure. One example 
should suffice: 

As a consequence of this, if n is even then m(G, n/2) is equal to the number of 
KEKULE structures of the corresponding conjugated molecule. 

We prove now the following important property of the numbers m(G, k). 

Lemma 4.1. If u and v are adjacent vertices of G and e is the edge connecting u and v, 
then for k ~ 1 

m(G, k) = m(G - e, k) + m(G - u - v, k - 1). (9) 
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Proof All the k-matchings of G can be divided into two groups: those which con­
tain the edge e and those which do not contain e. The way in which we can select k 
independent edges from G, so that e is not among the selected edges is evidently equal 
to the total number of selections of k independent edges in G - e. This is just 
meG - e, k). 

If the edge e is selected, then we have to find additional k - 1 independent edges 
of G, which, consequently, must not be incident to the vertices u and v. The number 
of such selections is meG - u- to, k - 1). 0 

Lemma 4.1 has an important special case, namely when the vertex v is pendent. 
Then Eq. (9) becomes 

meG, k) = meG - v, k) + meG - u - v, k - I) . (10) 

The matchin?J polynomial of the graph G is defined as 

[n/2) 

a(G) = a(G, x) = I (_I)k meG, k) X n - 2k (II) 
k~O 

and plays an important role in many chemical applications. A complete theory of 
the matching polynomial will not be outlined in the present book and the readers 
are referred to the reviews [23, 27]. Some properties of the matching polynomial are 
given in Theorem 11.5. 

4.3 Graph Spectral Theory 

The theory of graph spectra is extensively used throughout the present book, especially 
in Chaps. 5, 6, 12 and 13. We give here the necessary definitions and a few basic 
theorems. Their elaboration and application follows in the subsequent parts of the 
book. For those who wish to become perfectly familiar with graph spectral theory 
we recommend the reading of the monograph of CVETKOVIC, DooB and SACHS [16]. 
Graph spectral theory can also be found in a considerable number of "chemistry 
oriented" books and reviews [3, 18, 24, 30, 31, 64, 65]. 

4.3.1 The Adjacency Matrix 

The information about the adjacency relation for the vertices VI' v2 , ••. , V n of a graph G 
can be converted into a matrix form using the following natural definition. 

The adjacency matrix A = A( G) of the graph G is a square matrix of order n 
whose entry in the i-th row and j-th column is defined as 

(/ .. = {I if the vertices Vi and Vj are adjacent 
IJ 0 otherwise. 

( 12) 
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"Otherwise" means that either the vertices Vi and Vj are not adjacent or i = j. 
The construction of the adjacency matrix depends on the labeling of the vertices 

of the graph. Hence A( G) is not a graph invariant. 
The adjacency matrix of the graph G2 with vertices labeled as before is 

0 0 0 0 

I 0 I 0 0 I 

A(G 2) = 0 0 0 0 
0 0 I 0 I 0 

(13) 

0 0 0 I 0 I 

0 0 0 

It is evident that A(G) is a symmetric matrix with zero diagonal. If the graph G 
is composed of two components Ga and Gb, G = Ga U Gb , then A(G) has the following 
block form 

(14) 

where 0 is the zero matrix of pertinent order. 

4.3.2 The Spectrum of a Graph 

The eigenvalue-eigenvector problem of the adjacency matrix of a graph has attracted 
the attention of graph theoreticians over a considerable period of time (see [16] for 
further details, references and historical remarks). The HOCKEL molecular orbital 
theory has been developed by chemists independently and it was not immediately 
recognized that the mathematical basis of the HMO theory is just the eigenvalue­
eigenvector problem of the HiicKEL graph (see Chap. 5). After this had been made, 
the graph spectral theory found numerous chemical applications. 

If A is the adjacency matrix of the graph G and there exists a vector C and a num­
ber A, such that 

AC = AC (15) 

then C is an eigenvector and A an eigenvalue of the graph G. 
We assume that the readers are familiar with the eigenvector-eigenvalue theory 

of real symmetric matrices (see Appendix 3). The following statements about graph 
eigenvectors and graph eigenvalues are straightforward specializations of statements 
known for real symmetric matrices. 

1. There are n linearly independent graph eigenvectors, Ct , C2, ••• , Cn. They can 
always be chosen so as to be orthonormal: 

citcj = (jij (16) 

with (jij denoting the KRONECKER delta «(jij = I if i = j and (jij = 0 if i # J). 
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2. The graph eigenvalues are real numbers. They will be labeled in non-increasing 
order as 

(17) 

and, of course, so that the eigenvalue ).j corresponds to the eigenvector C j • Some graph 
eigenvalues may be equal, then they correspond to degenerate eigenvectors; we shall 
also say that these eigenvalues are degenerate. 

Then graph eigenvalues )'1' },z' ... , )'n form the spectrum of the graph. The spectrum 
is a graph invariant. If two nonisomorphic graphs have the same spectrum, then 
they are said to be cospectral (or isospectral). Cospectral graphs occur very frequently 
and it is easy to construct them. The two matching equivalent trees given in para­
graph 6.1.4 are examples of cospectral graphs. 

The characteristic pO/l'nomia/ of the graph is the characteristic polynomial of its 
adjacency matrix: 

<peG) = <peG, x) = det (xl - A) . (18) 

We now point out three elementary, and in the later text often used, properties 
of the characteristic polynomial of the graph. 

3. Because of (14) 

(19) 

4. A graph eigenvalue is a zero of the characteristic polynomial, <peG, A) = 0 
for all i. According to the definition (18), <pc G) is a polynomial of degree n, and can 
be factorized as 

n 

<peG, x) = I (x - AJ. 
j= I 

5. The characteristic polynomial is a graph invariant. 

4.3.3 The Sachs Theorem 

We may write the characteristic polynomial ofa graph G in the coefficient form 

n 

<peG, x) = I 0iX"-i. 
i= 0 

(20) 

(21 ) 

Since the coefficients ao' aI' az, ... ,an are graph invariants, one can pose the 
question: How does the structure of the graph determine the coefficients of the charac­
teristic polynomial? 

Investigations along these lines have a long history both in mathematics and in 
chemistry and a surprisingly large number of authors has independently reached 
similar results. Hence the SACHS theorem was discovered by several scientists and the 
essential parts of it were already known when HORST SACHS published his paper [171]. 
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Nevertheless the theorem relating the coefficients of the characteristic polynomial 
with the structure of the graph will be associated with HORST SACHS' name in the follow­
ing. 

A full account of the controversies concerning the discovery of the SACHS theorem 
can be found in [16]. 

The concept of SACHS graphs has been defined previously. Let !l'i be the set of 
all SACHS graphs with i vertices, which are contained in the graph G. Let k(S) and 
c(S) denote the number of components .and cycles in a SACHS graph S. 

Theorem 4.2. (The SACHS Theorem). For i ~ 1 

ai = I (_l)k(S) 2e(S) 

SE[/i 

where the summation goes over all elements of the set !l'i' In addition, ao = I. 

(22) 

As already mentioned, it is quite difficult to construct the sets !l'i(G) even for 
graphs of moderate size. Therefore the SACHS theorem (in spite of the claims which 
sometimes appear in the chemical literature) is only of a rather limited applicability 
for the calculation of the characteristic polynomial of the graphs. 

To illustrate this point we shall determine a6(G12), using the SACHS graphs from 
Fig. 4.1. 

a6(G12) = (_1)121 + (_1)221 + (_1)221 + (_1)221 + (-1)32° 

+ (_1)32° + (-w 2° + .,. + (-1)32° = (_1)1 21 + 3[(-1)221] 

+ 20[(-1)3 2°] = -2 + 3·2 - 20·1 = -16. 

Further exercises of this kind can be found elsewhere [64, 65]. 

(23) 

The great value of the SACHS theorem becomes evident when generally valid state­
ments about the coefficients of the characteristic polynomial of a graph are needed 
[94]. Several sophisticated applications of the SACHS theorem will be given in the fol­
lowing chapters. Here we shall work out only a few elementary results, referring to 
the properties 1-3 of the sets !l'i' outlined in paragraph 4.2.1. 

I. Since !l'1 = ~, for all graphs (without loops) a1 = O. As an immediate conse­
quence of this, 

(24) 

The result that the sum of the eigenvalues of a simple graph is zero follows also 
from the fact that the adjacency matrix has a zero diagonal, and hence its trace is 
zero. 

2. For all S E !l'2' k(S) = I and c(S) = 0 and therefore 

a2 = -(number of edges of G) = -m . (25) 
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Using the relation between a2 and the graph eigenvalues: 

(26) 

and applying (24) one attains to the important identity 

" I A~ = 2m. (27) 
;= I 

3. For all S E Y\, k(S) = I and c(S) = I and therefore 

a3 = - 2 . (number of triangles in G) . (28) 

Some additional consequences of the SACHS theorem are also worth mentioning. 
Let the graph G contain r cycles: ZI' Z2' .,. , Zr' Let G - Za denote the subgraph 
obtained by deletion of all the vertices of Za from G. 

For instance, the benzocyclobutadiene graph G12 contains three cycles, Zl> Z2 

and Z3: 

z, 

The corresponding subgraphs GI2 - ZI and GI2 - Z2 are given as follows 

( 

whereas GI2 - Z3 is the "graph" ~ without vertices. 
4. Let e be an edge of the graph G, containing the vertices u and v. Then 

cp(G) = cp(G - e) - cp(G - u - v) - 2 I cp(G - Z) (29) 
z 

with the summation going over all cycles Z which contain the edge e. If G - Z = ~ 
then cp(G - Z) = 1. 

If the edge e does not belong to any cycle, that is if e is a bridge, then Eq. (29) 
reduces to the so-called HEILBRONNER formula: 

<peG) = <peG -- e)- <peG - u - v) . (30) 

5. Let u be a vertex of the graph G, being adjacent to the vertices VI' v2 ' ... , vg' 

Then 

9 

(cpG) = xcp(G - u) - I cp(G - u - vJ - 2 I <p(G - Z) 
;=1 z 

(31 ) 
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where now the second summation on the right-hand side embraces all cycles Z which 
contain the vertex u. 

If the vertex u does not belong to any cycle, that is if u is a cutpoint, then Eq. (31) 
reduces to another formula associated with the name of EDGAR HEILBRONNER: 

9 

cp(G) = xcp(G - u) - L cp(G - u - Vi) • (32) 
i= 1 

As a matter offact, in HEILBRONNER'S paper [126] the most general recursion rela­
tion of this type, namely Eq. (29) can be found. 

The characteristic polynomial, given by Eq. (18), and the matching polynomial, 
given by Eq. (11), seem to have very little in common. However the following rela­
tions between them exist [119]: 

6. Let ZI' Z2' ... , Z, be the cycles of the graph G. If Za and Zb do not possess 
common vertices, then by definition G - Za - Zb = (G - Za) - Zb. If, however, 
Za and Zb possess common vertices, then the subgraph G - Za - Zb is undefined. 
In that case one has to set cp(G - Za - Zb) = 0 and a(G - Za - Zb) = O. The 
subgraphs G - Za - Zb - Zc' G - Za - Zb - Zc - Zd etc. and their characteristic 
and matching polynomials are determined analogously. Let, in addition, a(~) = 1. 
Bearing these definitions and conventions in mind, we have [119] 

cp(G) = a(G) - 2 L a(G - Za) + 4 L a(G - Za - Zb) 
a aeb 

- 8 L a(G - Za - Zb - Zc) + ... (33) 
a<b<c 

cx(G) = cp(G) + 2 L cp(G - Za) + 4 I cp(G - Za - Zb) 
a aeb 

+ 8 L cp( G - Z a - Z b - Z c) + .... (34) 
acb<" 

4.3.4 The Il-Po1ynomial 

As we have seen in point 6 of the previous paragraph, the characteristic and the match­
ing polynomials of a graph are intimately related. Therefore it is of some interest to 
seek for some more general polynomials which would, as special cases, yield cp(G) 
and a(G). It is possible to generalize a(G) and cp(G) in several different ways. In the 
present section we shall point out one such attempt, which has found noteworthy 
applications in the theory of cyclic conjugation [110, 112, 119]. 

In order to introduce the J.t-polynomial we associate a variable weight ta to the 
cycle Z of the graph G, a = 1,2, ... ,r. The r-dimensional vector (tl' t2, ... , t) a • , 

will be denoted by T. 
Let now S be a SACHS graph of the graph G and let the cycles Zal' Za2' ... , Zac 

of G be components of S. Then we associate the weight t(S) = t t ... t to the 
at Q2 DC 

SACHS graph S. If S is acyclic (that is c = 0), then t(S) = 1. 
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In full analogy with the SACHS theorem we define the numbers J;, i ~ I as 

j; = I (-I )kIS) 2C(.5)(S) (35) 
SE.'/i 

where the summation goes over aU SACHS graphs contained in the set Y'i' These 
numbers are interpreted as the coefficients of the J1-polynomial. In other words, the 
J1-polynomial of the graph G is defined as 

(36) 

It can be shown that J1(G, T) satisfies the following recursion relations [119]: 

J1(G, T) = IX(G) - 2I t"IX(G - Z) + 4 I t"'hlX(G - Za - Zh) 
a<b 

- 8 I tJhtP(G - Za - Zb - ZJ + ... (37) 
a<b<c 

J1(G, T) = ep(G) + 2I (I - tal ep(G - Za)+ 4 I (I - tal (I - tbl qJ(G - Za - Zb) 
(l a<b 

+8 I (l-tJ(I-tb)(l-tc)ep(G-Za-Zb-Zc)+ .... (38) 
u<n<c 

From the above formulas is easy to see that for T = (1, 1, ... , 1) the J1-polynomial 
reduces to the characteristic polynomial whereas for T = (0, 0, ... , 0) the J1-poly­
nomial gives as a special case the matching polynomial. 

For further details of the mathematical properties and chemical applications 
of the J1-polynomial the interested reader should consult the paper [119]. 

4.4 Graph Operations 

There are many graph operations known and extensively studied in the mathematical 
literature. We mention here only those which we shall need later on. 

The complement of a graph G is the graph G, which contains the same vertices as 
G and exactly those edges which are not contained in G. 

For example G13 = G14 and G14 = G13 : 

The complement of the complement of a graph is the graph itself: G = G. The 
complement of the complete graph Kn is the graph with n vertices and without edges 
(the so-called null graph). 
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The line graph L(G) of the graph G is constructed so that every vertex of L(G) 
represents an edge of G. Two vertices of L(G) are adjacent if the corresponding edges 
of G are incident to a common vertex. 

For example the line graph of GIS is G16' L(GIs) = G16 : 

The reader should convince himself that L(Cn) = Cn• 

Let Ga = ("f'"a' tSa) and Gb = ("f'"b' tSb) be two graphs and "f'"a = {uI ' u2 ' ••• ,un). 

"f'"b = {VI' V2, ••• ,V. }. Suppose further that the graphs Ga and Gb have disjoint vertex 
sets, i.e. that the int6'rsection of l' a and l' b is empty: l' a n f" b = ~. 

The union of the graphs Gaand Gb is the graph Ga U Gb whose vertex set is "f'"a U "f'"b 
and whose edge set is tSa U tSb. If G = Ga U Gb then one usually says that Ga and Gb 
are the components of G. We have seen many examples for the union of graphs in the 
previous parts of this chapter. 

The compound of the graphs Ga and Gb is the graph Ga E9 Gb whose vertex set is 
l' a U l' b and whose edge set contains the edges of G a' the edges of G b and all the edges 
between the vertices of Ga and Gb• 

As an example we present the graph K2 E9 P3. Let the vertices of K2 and P3 be 
labeled as indicated. 

Then, K2 E9 P3 is the following graph with 2 + 3 = 5 vertices: 

It is clear from the above definition that Ga E9 Gb = Gb E9 Ga. It can be shown 
that 

(39) 

In particular, the compound of Ka (null graph with a vertices) and Kb (null graph 

with b vertices) is the complete bipartite graph on a + b vertices: Ka $ Kb = Ka•b. 
(The notion of a bipartite graph is explained in the paragraph 6.3.1, where examples 
of complete bipartite graphs also can be found.) 
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The composition of the graphs Ga and Gb, denoted as Ga[Gb] is a graph whose vertex 
set is Y a ® j;~b' Two vertices lUi' v) and [Uk' VI] of Ga[Gb] are adjacent if either 

Ui is adjacent to Uk in Ga 

or 

This relatively complicated definition would become more transparent if the 
reader would work out a few examples. We give here two simple ones. 

Let the vertices of K2 and P3 be labeled as before. 
Then K2[P3] is the following graph with 2 x 3 = 6 vertices: 

The composition is not a commutative operation, that is Ga[Gb] and Gb[Ga] need 
not be isomorphic. This is seen from the following example: 

The union, compound and composition of graphs are important in the study of 
the automorphism groups, which are discussed in some detail in Chap. 9. Here we 
present only one relevant result of this type. 

Theorem 4.3. The automorphism group of the composition of the graphs Ga and Gb 

is equal to the wreath product of the automorphism groups of Ga and Gb . 



Chapter 5 

Graph Theory and Molecular Orbitals 

In the present chapter, as well as throughout the entire book, we assume that the reader 
knows the basic facts about the HOCKEL molecular orbital (HMO) theory [35, 51, 62]. 
Hence HMO theory is an approximate quantum-mechanical approach to the descrip­
tion of the n-electrons in unsaturated conjugated molecules. The wave function for 
a n-electron is presented in the LCAO form 

n 

tPi = I Cij IP) 
j=1 

(1) 

where Ipj> symbolizes a p,,-orbitallocated on the j-th atom of the conjugated mole­
cule, and the summation goes over all n atoms which participate in the conjugation. 

The SCHRODINGER equation in the HMO theory reads 

(2) 

i = 1, 2, ... , n, where Ei is the energy of a n-electron in the i-th molecular orbital and 
where the Hamiltonian operator Yf is defined by means of the matrix elements 

<Pj IYfI Pj> = rJ.j 

<Pj IYfI Pk> = f3 jk ' j=/-k. 

(3) 

(4) 

Hence, Yf is an effective one electron operator. In the standard HOCKEL theory, 
the following apparently drastic approximations are accepted: 

rY.. = rY. 
) 

for all atomsj = 1,2, ... , n, 

for all pairs of atoms j, k between which a chemical bond exists, and 

for all pairs of atoms j, k which are chemically not bonded. 

(5) 

(6) 

(7) 
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The above relations are assumed to hold only for conjugated hydrocarbons. In 
the case of conjugated molecules containing heteroatoms, not all a-integrals are 
supposed to be equal and sometimes the non-zero p-integrals are also taken to be 
different for different sorts of atoms involved in the corresponding chemical bond. 
These details will not be considered here any further and we shall continue with the 
outline of the HOcKEL approximation for hydrocarbons. 

In addition to the above requirements for the integrals a and p, the basis orbitals 
IP) are considered as normalized: 

(8) 

for allj = 1,2, .... n (a commonly accepted property of orbitals) and orthogonal: 

(9) 

whenever j #- k. 
It is very difficult, if not impossible, to give an acceptable physical justification for 

the approximations (5), (6), (7) and (9). In the early thirties, when HMO theory was 
invented, the drastic simplifications (5), (6), (7) and (9) were inevitable bacause of 
the lack of computing machines. In the meantime this excuse for the usage of (5), 
(6), (7) and (9) can no longer be put forward. Nevertheless, HMO theory still conti­
nues to live in theoretical chemistry, although much overshadowed by more sophisti­
cated quantum-chemical methods. As we shall see later on, the role of HMO theory 
in the modern theoretical chemistry is restricted to the finding of qualitative and, in 
the best case, semiquantitative predictions of the behaviour of conjugated n-electron 
systems. However, if the results obtained from the HMO model are used and inter­
preted in a reasonable manner, then we are again and again surprised how such a 
simple approach, based on so crude approximations is in a tolerable agreement with 
experimental findings. 

The reasons for this unexpected success of the HMO model are not completely 
clear. One of them is certainly the close relation between the HMO Hamiltonian and 
molecular topology. 

The connection between the HMO Hamiltonian and the adjacency matrix of a 
certain graph is the basis of an extensive application of graph (spectral) theory in 
chemistry and resulted in more than one thousand pUblications. A plethora of books 
and reviews covers and elaborates this matter [3, 6, 16, 18,24,30,31,65] and there­
fore in this chapter we shall be as concise as possible. 

Consider, as an example, pent alene 

H H 
I 7 I 
C"C_C /6- 1 ~ 

H-C5 I 2C-H 
~4 C-3/ C- -C 
I 8 I 
H H 
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and write down its HMO Hamiltonian matrix. Applying (5)-{7) we obtain 

a 13 0 0 0 0 13 0 
13 a 13 0 0 0 0 0 
0 13 a 0 0 0 0 13 

H(pentalene) = 
0 0 0 a 13 0 0 13 (10) 0 0 0 13 a 13 0 0 
0 0 0 0 13 a 13 0 
13 0 0 0 0 13 a 13 
0 0 13 13 0 0 13 a 

The matrix (10) is the representation of the operator Yf for pentalene in the hasis 
formed by the p,,-atomic orbitals. 

Using elementary matrix-theoretical transformations (see Appendix I), we can 
write H(pentalene) in the form: 

H(pentalene) = a 

100 0 0 0 0 0 
o I 0 0 0 0 0 0 
001 0 0 000 
000 1 0 0 0 0 
000 0 1 000 
00000 1 0 0 
000 0 001 0 
000 0 000 1 

+13 

o 1 000 0 1 0 
1 0 1 0 0 000 
o 1 000 0 0 1 
o 0 001 001 
00010 100 
o 0 001 010 
1 0 000 1 0 1 
00110010 

(11) 

The first matrix on the right-hand side of the above equation is the unit matrix 
of order eight. The second matrix is another symmetric matrix of order eight, whose 
diagonal is zero and whose off-diagonal elements are zero or unity. Bearing in mind 
what we already know about graphs, we can interpret the matrix in question as the 
adjacency matrix of a certain graph. This graph is easily recognized as the HOcKEL 
graph of pentalene : 

W71 5 2 
4 3 

8 

Hence we showed that 

H(pentalene) = al + f3A(HOcKEL graph of pentalene) . (12) 

The result obtained is, of course, quite general. If M is a conjugated hydrocarbon 
and G is its HOcKEL graph, then 

H(M) = al + f3A(G) . (13) 
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The identity (13) is the mathematical expression of the relation which exists be­
tween HMO theory and graph theory. Equation (13) has numerous remarkable con­
sequences. 

Firstly, the matrices H and A commute, i.e. HA = AH. Therefore H and A have 
identical eigenvectors. In other words, the LCAO coefficients C;j given in Eq. (I) 
coincide with the components of the i-th eigenvector of the pertinent HOCKEL graph. 

Secondly, if it; is an eigenvalue of A, then IX + {3).; is an eigenvalue of H. Bearing 
in mind Eq. (2), we see that the eigenvalues of H are the molecular orbital energy 
levels, i.e. 

(14) 

for i = 1,2, ... , n. This means that the HUCKEL molecular orbital energies are linear 
functions of graph eigenvalues. 

These two corollaries of Eq. (13) show how important a role the graph eigenvectors 
and eigenvalues are playing in HMO theory. Sometimes is even claimed that the 
HUCKEL theory is fully equivalent to the graph spectral theory (see p. 65 of [65]). 
This is an exageration: graph spectral theory provides only the mathematical basis 
of the HUCKEL model. 

Several mathematical details related to HMO theory will be elaborated in the 
next chapter. In Chaps. 12 and 13 two special topics in HMO theory will be presented 
in full dp-taii. In Chap. 13 also another molecular orbital model will be outlined, in 
which (J' MO energy levels are related to the eigenvalue of the line graph of the mol­
ecular graph. 



Chapter 6 

Special Molecular Graphs 

6.1 Acyclic Molecules 

In graph theory a connected acyclic graph is called a tree. Hence we may say that the 
topology of acyclic molecules is represented by trees; the essential topological pro­
perties of acyclic molecules coincide with those of trees. In the following we shall get 
acquainted with the basic properties of trees. 

6.1.1 Trees 

It is a common joke among graph-theoreticians that if a certain problem cannot be 
solved for graphs, one should try to solve it for trees. As a matter of fact, trees can be 
regarded as having the simplest structure among all graphs. On Fig. 6.1 are presented 
all the fourteen trees with not more than six vertices. 

0 0--0 0--0--0 0-0---0--0 

T1 T2 T3 T4 

o-L 0---0--0---0-0 o-L-o + Ts T6 T7 Te 

~ ~ ~ 
Tg T10 T11 

Fig. 6.1. Trees with six or less vertices 

Note that the tree with one, two and three vertices is unique. For n ~ 4 there are 
several trees with n vertices and their number rapidly increases with n. We shall not 
be concerned with the important (solved) problem of the enumeration of trees which 
is closely related to the famous (and also solved) problem of the enumeration of iso­
meric alkanes. 
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The following theorem characterizes the trees. 

Theorem 6.1. Let G be a graph with n vertices and m edges. Then the statements 
( a )-( e) are equivalent. 
(a) G is a tree, i.e. G is connected and acyclic. 
(b) G is acyclic and m = n ~ 1. 
( c) G is connected and m = n ~ I. 
( d) G is connected, hut G ~ e is not connected, where e is an arbitrary edge of G. 
( e) G is acyclic and aery yraph obtained hy introducing a new edge in G is cyclic. 

Note that the statement (d) cannot be applied to Tl while the statement (e) has 
two exceptions: Tl and Tz· 

Whenever possible we will denote a tree by T. The set of all trees is denoted by !I 
whereas the set of all trees with n vertices by !In' Thus, for instance, :Y'3 = {T3} 
and!l6 = {T9' Tw' Til' Tlz ' T13 , T14 } (see Fig. 6.1). 

As an exercise we prove an elementary result. A vertex of degree one is called a 
pendent vertex. 

Lemma 6.2. Every tree with at least two vertices has at least two pendent vertices. 

Proof A tree T with more than two vertices has at least one edge. Let e be an 
edge of Tand let its end vertices be u and v. 

We prove first that T has a pendent vertex. Suppose that neither u nor v are of 
degree one and consider the vertex u. It must have at least another neighbour, say UI' 

The vertex u j is either pendent or has another neighbour, say uz. The vertex Uz differs 
from v since otherwise T would possess a cycle. The vertex Uz is either pendent or has 
another neighbour, say u3 . The vertex u3 differs from v and ul since otherwise Twould 
possess a cycle. 

Continuing this reasoning and having in mind that the number of vertices of T 
is finite, we will necessarily come to a vertex which is of degree one. 

Applying the same argument to the vertex u we can prove the existence of another 
pendent vertex in T. 0 

We have given the proof of Lemma 6.1 in full length because it implies a further, 
rather important conclusion. 

Theorem 6.3. Every two vertices in a tree are connected by exactly one elementary 
path. 

For the definition of an elementary path see the paragraph 4.1.4. 

6.1.2 The Path and the Star 

With regard to Lemma 6.2 we may be interested to find trees with minimal (= 2) 
and maximal number of pendent vertices. The answer is simple: in !In there is a 
unique tree with two pendent vertices (called the path and denoted by Pn) and another 
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unique tree with n - I pendent vertices (called the star and denoted by Kl,n-l)' 
Their structure and the way in which we shall label their vertices is given as follows: 

~ ---0--0 
1 2 n-I n 

Pn 

n-:~V~2 
n-;~-3 

'.' 
K1,n-1 

Among the trees from Fig. 6.1, Tl , Tl , T3, T4, T6 and T9 are the paths with 
n = 1,2,3,4,5 and 6 vertices. Furthermore, Tl ~ KIP T3 ~ Kll, Ts ~ K13, 
Tg ~ KI ,4 and Tl4 ~ Kl,s' ", . 

6.1.3 The Characteristic Polynomial of Trees 

Applying the SACHS theorem (see the paragraph 4.3.3) to trees we easily obtain the 
following conclusion. Since trees do not contain cycles, c(S) = 0 must hold for all 
their SACHS graphs or, in other words, every SACHS graph of a tree is composed of 
components Kl , exclusively. As already pointed out (see the paragraph 4.2.2), a 
subgraph, composed exclusively of components Kl represents a matching. We see, 
therefore, that in the case of trees there is a one-to-one correspondence between a 
SACHS graph with 2k vertices and a k-matching. 

The number of k-matchings of a graph G is denoted by m(G, k). 

Theorem 6.4a. For all T E fJ the coefficients of the characteristic polynomial of T 
obey the relations 

(1) 

and 

(2) 

for all k ~ O. 

Using the definition of the matching polynomial [see Eq. (4.11)] we arrive at an­
other form of the above theorem. 

Theorem 6.4h. For all T E fJ the characteristic and the matching polynomial 
coincide: 

cp(T) = a(T) (3) 

i.e. 

[nI2) 

cp(T, x) = L (-ll meT, k) xn- lk • 
k;O 

(4) 
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It can be shown that Eq. (4) holds only for acyclic graphs. Namely if a graph G 
contains cycles, then the statement of Theorem 6.4a is violated for at least one value 
of k and consequently, the characteristic and the matching polynomial of G differ. 

Using the basic recurrence for the number of k-matchings [Eqs. (4.9) and (4.10)], 
we immediately attain a few recurrence relations for the characteristic polynomial 
of a tree. 

Theorem 6.5. If e is any edge of T E ,~, connecting the vertices u and v, then 

cp(T) = cp(T - e) - cp(T - u - v) . (5) 

Note that because of part (d) of Theorem 6.1 the subgraph T - e is always com­
posed of two components, which are trees themselves. The number of components 
of T - u - v is equal to g. + gv - 2, where g denotes the vertex degree. Supposing 
that T - e = T. u Tb , we can further simplify Eq. (5), viz. 

(6) 

There is a straightforward generalization of Theorem 6.5. An edge of a graph G 
is called a bridge if G - e possesses more components than G. [By part (d) of Theo­
rem 6.1, all edges of trees are bridges.] Then if e is a bridge of G E r§, connecting the 
vertices u and v, 

cp(G) = cp(G - e) - cp(G - u - v) . (7) 

If, in addition, G - e = G. u Gb, then 

(8) 

An important special case of formula (8) is obtained when G. (or Gb) is a graph 
possessing just one vertex. Then cp(G.) = x and cp(G. - u) = 1. 

Corollary 6.5.1. If l' is a pendent vertex of G E r§, being adjacent to the vertex u, 
then 

cp(G) = xcp(G - v) - cp(G - v - u) . (9) 

Recall that by Lemma 6.2 pendent vertices necessarily exist in trees. 
Formulas (5}-(9) enable a very easy and efficient calculation of the characteristic 

polynomial of trees and, more generally, of graphs having bridges and pendent 
vertices [74, 136]. 

Corollary 6.5.2. If v is a vertex of T E ff, being adjacent to the vertices Ul' U2, •.• , ug, 

then 

9 

CP(T) = xcp(T - v) - I cp(T - U i - v) . (10) 
i=l 
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Proof Apply (5) repeatedly to the edges e1, e2 , ••• , egconnecting v with u1' u2 ' ••• ,ug 
and note that T - e1 - e2 - ••• - eg ~ Kl u T - v, where Kl is the graph possess­
ing just one vertex. Then 

q>(T - e1 - e2 - ••• - eg) = q>(K1) q>(T - v) = xq>(T - v). 0 (11) 

In order to illustrate the above recurrence formulas, we shall determine the 
characteristic polynomial of T*: 

T* 

Application of Theorem 6.5 on the edge indicated by an arrow gives 

= $ (J>-o-o) . $ (~) - $ (r) . ~ ( < )= 

where the symbols T3, Ts and T7 refer to Fig. 6.1. It is now easy to calculate that 

q>(T3) = x3 - 2x 

q>(Ts) = .0 - 3x2 

q>(T7) = X s - 4x3 + 2x . 

For instance, using Eq. (9) we have 

(12) 

(13) 

(14) 

(15) 

(16) 

Substituting these polynomials back into the above expression for q>(T*) we finally 
get 

q>(T*) = (x4 - 3~) [(~ - 4r + 2x) - (r - 2x)] = x9 - 8x7 + 19~ - 12r (17) 

or in factorized form 

(18) 
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6.1.4 Trees with Greatest Number of Matchings 

In certain applications, which are discussed in Chaps. II and 12, the comparison 
of trees by their matching numbers will be needed. Let us therefore pose the question, 
which trees (with a given number of vertices) have the maximum and minimum 
number of matchings. 

Since not all matchings are of the same cardinality, it is useful to introduce a 
quasiordering of graphs as follows [100, 104, 113]. Let meG, k) be the number of 
k-matchings of the graph G. Iffor two graphs G1 and Gz the inequalities 

(19) 

hold for all values of k, then we write G1 >- Gz or Gz oe( G1 • If both G1 >- Gz and 
Gz >- G1 we write G1 - Gz and say thatthe graphs G1 and Gz are matching equivalent. 
Note that for the definition of the quasi ordering G1 >- Gz it is not necessary that 
the graphs G1 and Gz have an equal number of vertices. 

If neither G1 >- Gz nor G1 oe( Gz hold then the graphs G1 and Gz are said to be 
matching incomparable and we shall write G1 + Gz. There exist matching equivalent 
as well as matching incomparable pairs of trees, as shown by the following examples. 

* mIT,1) = 7 
mIT,2) = 9 
m(T,3) =0 

mIT,1 ) = 7 
mIT,2) =14 
mIT,3) =8 
mIT,4) = 0 

m(T,1)=7 

mIT, 2) = 9 
m(T,3) = 0 

mIT,1)=7 
mIT,2)=12 
mIT3)=7 
m (T, 4) = 1 

Nevertheless, in many cases trees are matching comparable. 

Theorem 6.6. If T E .Y., then 

K1..-1 oe( Toe( p •. (20) 

Furthermore, T is matching equivalent to Kl, .-1 and p. only if T ~ Kl, .-1 and 
T ~ p., respectively. 

Proof For all trees TE .Y., meT, I) = n - l. Now it is obvious that in the star 
no two edges are mutually independent. Hence m(KI, .-1' k) = 0 for all k ~ 2. For 
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all other trees it is possible to find at least one pair of independent edges. Hence 
K1• n - 1 -< T. 

We prove the second part of the theorem by induction on the number of vertices. 
Since g-2 = {T2 } and g-3 = {T3 }, the statement T -< Pn is in a trivial manner 

fulfilled for n = 2 and n = 3. 
Suppose now that the statement is true for all trees with n - I and n - 2 vertices. 

Consider an arbitrary tree T E g-n. Let v be a pendent vertex of T. Lemma 6.2 guaran­
tees that such a vertex exists. Let u be the vertex adjacent to v. Then by (4.10), 

meT, k) = meT - v, k) + meT - u - v, k - 1) . (21) 

A special case of this identity is 

m(Pn, k) = m(Pn-l' k) + m(Pn- 2 , k - 1) . (22) 

It is clear that T - v E g-n-l and T - u - V E g-n-2. Then according to the 
induction hypothesis 

meT - v, k) ~ m(Pn- 1 , k) (23) 

and 

meT - u - v; k - 1) ~ m(Pn - 2 , k - 1) (24) 

for all k. Summing these two inequalities we get 

meT - v, k) + meT - u - v, k - 1) ~ m(P.- b k) + m(Pn- 2 , k - 1). (25) 

This implies, 

meT, k) ~ m(Pn, k) (26) 

and thus we have also proved the right-hand part of Theorem 4.6. 0 

It has been shown that in the set g-n \ {K1.n-t> Pn} the trees with minimum and 
maximum number of matchings are Ta and Td , respectively [100]. 

MonocYclic [104], bicYclic [104] and tricyclic [113] graphs with maximum number 
of matchings have also been determined. 

We now formulate an auxiliary result which will be needed later on. 
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Lemma 6.7. Let n = 4k or 4k + 1 or 4k + 2 or 4k + 3. Then 

Pn » P2 U Pn- 2 » P4 U Pn- 4 » ... » P2k U Pn- 2k » P2k+1 U Pn- 2k - 1 

» P2k - 1 U Pn- 2k+ 1 » ... » P3 U Pn- 3 » PI U Pn- l . 

53 

(27) 

Proof can also be performed by Illduction on the number of vertices of Pj U Pn- j" 

Since the procedure is quite lengthy and not too interesting, we present only a charac­
teristic detail of it. 

Suppose that we want to show that for n ~ 2, P2 U Pn- 2 » PI U Pn-l. For 
n = 2 and n = 3 we can check this statement by direct calculation. Assuming the 
validity of P2 U Pn- 3 » PI U Pn- 2 and P2 U Pn- 4 » PI U Pn- 3 , i.e. 

(28) 

and 

m(P2 U Pn- 4 , k - 1) ~ m(PI U Pn- 3 , k - 1) (29) 

we obtain 

m(P2 U Pn- 3 , k) + m(P2 U Pn- 4 , k - 1) ~ m(PI U Pn - 2 , k) 

+ m(PI U p.- 3, k - 1) (30) 

and therefore 

(31) 

6.1.5 The Spectrum of the Path 

In numerous chemical applications the spectrum and/or the characteristic polynomial 
of the path play an important role. These results have long been known [15, 140]. 
We shall repeat them here in order to provide a more advanced illustration of the 
material outlined in the previous sections. 

Applying Corollary 6.5.1 we get the simple recursion relation 

(32) 

which together with the initial conditions cp(Po) = 1, cp(PI) = x enables an easy 
step-by-step calculation of cp(P.). 

Solving the relation (32) by standard algebraic methods, we get 

(33) 
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Setting x = 2 cos r and performing appropriate trigonometric transformations, 
this formula is reduced to 

cp(Pn, x) = sin (n + 1) rlsin r . (34) 

The zeros of cp(Pn, x) can now be easily deduced. They read 

A.i = 2 cos [jnl(n + 1)] (35) 

j = 1,2, ... , n. These are, of course, also the eigenvalues of Pn• The eigenvector of 
Pn, corresponding to the eigenvalue A.i has components 

Cir = V2(n + I) sin [jrnl(n + I)] (36) 

r = 1,2, ... ,n. 
It can be further shown that 

( n - k) m(Pn, k) = k (37) 

and consequently 

cp(Pn, x) = I (-It xn-2k. 
[n/2) (n - k) 
k:O k 

(38) 

Since the CHEBYSHEV polynomial of the second kind is defined as 

Un(x) = (1 - x2)-1/2 sin [(n + 1) arccos x] . (39) 

the characteristic polynomial of the path obeys 

(40) 

6.2 The Cycle 

As already mentioned in paragraph 4.1.6 the cycle is a connected regular graph 
of degree two. In the same section the first five cycles are given as examples. The 
cycle with n vertices is denoted by Cn' 

The cycle has the following obvious properties. If e is any edge of Cn' then 
Cn - e ~ Pn• If v is any vertex of Cn> then Cn - v ~ Pn - 1• Furthermore, if u and v 
are adjacent vertices of Cn> then Cn - u - v ~ Pn - 2 . 

Bearing this in mind, we can write down the following special case of Eq. (4.31) 

(41) 

Of course, G - Z in formula (4.31) is now the graph without vertices and its 
characteristic polynomial is by definition equal to unity. 
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Substituting (34) into (41) one arrives at 

r.p(Cn, x) = 2 cos m 2 (42) 

where x = 2 cos T. 

The eigenvalues of Cn are now obtained by equating r.p( Cn) to zero. Since cos (J. = I 
for (J. = 2jn, from (42) we conclude that r.p(Cn, x) = 0 whenever T = ~jnln and hence 
x = 2 cos (2jnln). Consequently, 

Xj = 2 cos (2inln) 

j = I, 2, ... , n are the eigenvalues of Cn. 
lt can be demonstrated that 

r.p(Cn , x) = I (-l( -- X n - 2k - 2. 
[n/2J n (n - k) 
k~O n - k k 

The CHEBYSHEV polynomial of the first kind is defined as 

Tn(x) = cos [n arccos x] . 

Combining (42) with (45) we immediately see that 

r.p(Cn, x) = 2Tn(x/2) - 2. 

6.3 Alternant Molecules 

(43) 

(44) 

(45) 

(46) 

The concept of the alternant and non-alternant hydrocarbons was introduced by 
COULSON and RUSHBROOKE [80] in connection with the discovery of the pairing theo­
rem. Over decades this was the most important result in molecular orbital theory 
which had a clearly.topological origin. 

COULSON and RUSHBROOKE noticed, namely, that it is reasonable to divide conju­
gated hydrocarbons into two classes, depending upon whether or not their carbon 
atoms can be labeled by stars and circles, so that first neighbours carry different 
labels. Such a classification of unsaturated cyclic hydrocarbons eventually became 
standard in organic chemistry. 

For example, naphthalene and biphenylene are alternant hydrocarbons as one 
can check from the following "starred" diagrams: 

* * °eoo 

* * * o 0 

* 0 

o~* 

*~o 
o * 
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On the other hand, heptafulvene and dicalicene are non-alternant since the atoms 
marked by a question mark cannot be labeled by either a star or a circle: 

? 

'0 o 0 ? ? 

* ? 

? 

The reason why such a classification is important will be seen from what follows. 

6.3.1 Bipartite Graphs 

In graph theory the notion of a bipartite graph precisely corresponds to the chemical 
concept of an alternant hydrocarbon. A bipartite graph is a graph whose vertex set 
can be partitioned into two parts, say 1/ a and 1/ b, such that two adjacent vertices 
belong neither both to 1/a nor both to 1/b' Hence edges exist only between vertices 
belonging to different sets: 

Clearly, if one labels the vertices of 1/a by stars and the vertices of 1/b by circles, 
then two adjacent vertices will always carry different labels. 

The following characterization of bipartite graphs is important. 

Theorem 6.S. A graph is bipartite if and only if it contains no odd-membered cycles. 

We shall adopt the following conventions. The sets 1/a and 1/b have a and b 
elements, respectively and a ~ b. The bipartite graph whose vertex set is 1/a u 1/b 
will be said to have a + b vertices and to belong to the set C§a. b' The element of C§a, b 

having the maximum possible number of edges is called the complete bipartite graph 
on a + b vertices and is denoted by Ka, b' 

It should be an easy exercise for the reader to convince himself that the following 

graphs are K2,2' K3,3 and K2 ,4' 

D 
The star is a further example of a complete bipartite graph. 
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6.3.2 The Pairing Theorem 

Theorem 6.9 (the Pairiny Theorem). If AI' ).2' ... , An are the eiyenmlues of a hipartite 
yraph, then 

(47) 

for all i = 1,2, ... , n. In other words, the eigenvalues of a bipartite graph occur in 
pairs of the form (A, ~;'). Exceptionally, if n is odd, one eigenvalue remains unpaired; 
its value is equal to zero. 

First proof According to Theorem 6.8 a bipartite graph G does not possess odd­
membered cycles. Then, of course, no SACHS graph of G possesses odd cycles. Hence 
all SACHS graphs of G are composed of graphs Kz and/or even-membered cycles. 
Hence all SACHS graphs of G have an even number of vertices. 

From the SACHS theorem (see paragraph 4.3.3) is now evident that for a bipartite 
graph all odd coefficients of the characteristic polynomial are equal to zero and 
therefore the characteristic polynomial takes the form 

(48) 

Consequently, <peG, -x) = (~I)n <peG, x) and if for some }" <p(G, A) = 0, then 
also <peG, ~A) = O. 

This proves the theorem. 0 

Second proof Label the vertices of G so that the vertices 1,2, ... , a belong to 1Ia 
and the vertices a + 1, a + 2, ... ,a + b = n belong to r b . Then the adjacency 
matrix of G has the following block form: 

A = (\ B) 
B 0b 

(49) 

where B is an a x b matrix, Bt is its transpose and 0a and 0b are zero-matrices of order 
a and b, respectively. 

We can now write the eigenvalue-eigenvector equation as 

(50) 

where we have omitted the index i from )'j and C j . Besides, the eigenvector C is pre­
sented in a block form 

C = (~:) (51 ) 

where Co and Cb are vectors of dimension a and b, respectively. 
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After performing the matrix multiplications in (50) we obtain two equations 

(52) 

BtC = AC 
a b 

(53) 

which must be simultaneously obeyed. Now, these equations are not changed if A 
is replaced by -A and Cb by -Cb • Hence, if A is an eigenvalue of G, then also -A is 
an eigenvalue. D 

We have, however, proved more. 

Corollary 6.9.1. If [Ca' Cb]t i'S the eigenvector of G E ~a. b' corresponding to the 

eigenvalue A, then [Ca' -Cb]t is the eigenvector corresponding to the eigenvalue -A. 
Hence also the eigenvectors of bipartite graphs are paired. 

6.3.3 Some Consequences of the Pairing Theorem 

In order to simplify the analysis which follows, consider a bipartite graph G E ~ a. a' 

Then according to Corollary 6.9.1 the unitary matrix which diagonalizes the adjacency 
matrix of G (see Appendix 4) has the following block form 

(54) 

where X and Yare square matrices or order a. The condition U t u = f 2a implies 

(55) 

Within the HUCKEL molecular orbital theory the diagonal elements of the matrices 
2XtX and 2yty are interpreted as the n-electron charge densities on the atoms 
labeled by stars and circles, respectively, of an alternant conjugated hydrocarbon 
[123]. From the above relations we see that the n-electron charge density on all atoms 
is equal to unity. This is just the well-known result of the HUCKEL theory that all 
altern ant hydrocarbons have a uniform n-electron charge distribution [80]. 

A detailed analysis would show that the same conclusion is reached for a graph 

G E ~a. b' if a -# b. 
Equation (48), deduced in the first proof of the pairing theorem, has a further 

consequence. 

Corollary 6.9.2. If G E ~ a, b' then the characteristic polynomial of G can be written 
in the form 

a 

q;(G, x) = I (_1)k beG, k) x a+b- 2k , (56) 
k=O 

where beG, k) ~ 0 for all values of k. 
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Proof Suppose in the spectrum of G there are n + positive, no zero and n _ negative 
eigenvalues. Because of the pairing theorem, n + = n _ . Therefore, only the coefficients 
ao = I, a2, a4, ... ,aZn . in (48) are different from zero. 

According to the bESCARTES theorem (see Appendix 4), there must be exactly 
n+ sign changes in the sequence ao' az, a4, ... ,all . Obviously this is possible only if 

ao > 0, az < 0, a4 > 0 etc. Consequently, we can write an = (_1)k beG, k) where 
h(G,k) > 0 fork = 0, I, ... ,n+ andh(G,k) = Ofork > n+. 

In order to complete the proof of Corollary 6.9.2, note that because of (49), 
n + is equal to the rank of B, and obviously rank B ~ a. Therefore, the summation 
in (56) needs not to go beyond k = a. 0 

6.4 Benzenoid Molecules 

Benzenoid hydrocarbons form an important and well investigated class of unsaturated 
conjugated compounds. The parent compound - benzene - was discovered as 
early as 1825 and in the meantime almost 500 hydrocarbons containing condensed 
benzene rings have been obtained. 

Figure 6.2 shows some representatives of benzenoid hydrocarbons together with 
their trivial names. 

Be B9 

Fig. 6.2. Examples of benzenoid systems. Bl = benzene, B2 = naphthalene, B3 = anthracene, 
B4 = phenanthrene, B5 = tetracene, B6 = chrysene, B7 = pyrene, B8 = perylene, B9 = coro­
nene, BlO = ovalenc 

6.4.1 Benzenoid Graphs 

Benzenoid yraphs are the networks obtained by arranging congruent regular hexagons 
in the plane, so that two hexagons are either disjoint or possess a common edge. 
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In the chemical and mathematical literature the names "polyhex", "hexagonal 
animaf', "hexanimaf', "hexagonal polyomino" and "hexagonal system" are also 
used to describe the same class of graphs. It is obvious that benzenoid graphs provide 
the proper topological representation of benzenoid hydrocarbons. The objects 
presented on Fig. 6.2 can be viewed as benzenoid graphs. 

A more precise definition of a benzenoid graph is the following. Let ZB be a 
cycle on the hexagonal (i.e. graphite) lattice. Then the vertices and the edges which 
lie on ZB and in the interior of ZB form a benzenoid graph B. The cycle ZB is called 
the perimeter of B. An example is given on Fig. 6.3. 

Fig. 6.3. A cycle on the hexagonal lattice and the corresponding benzenoid graph 

The vertices of a benzenoid graph can be partitioned into external and internal. 
The external vertices are those belonging to the perimeter. The rest of the vertices are 
called internal. The number of internal vertices is denoted by nj • For the benzenoid 
graph Bll in Fig. 6.3, nj = 6. 

Those benzenoid system for which nj = 0 are called cata-condensed; those for 
which ni > 0 are peri-condensed. The graphs BI-B6 from Fig. 6.2 are examples of 
cata-condensed benzenoids whereas B7-BIO are peri-condensed. 

Let h denote the number of hexagons, n the number of vertices, n2 and n3 the 
number of vertices of degree two and three, and m the number of edges of a benzenoid 
graph. Then these parameters are related by [97, 160]: 

n = 4h + 2 - ni , 

m = 5h + I - ni , 

n2 = 2h + 4 - ni ' 

n3=2h-2. 

HARARY and HARBORTH [125] proved the following result. 

(57) 

(58) 

(59) 

(60) 

Theorem 6.10. Benzenoid graphs exist whenever the parameters n, m, hand nj are 
within the ranges (61)-(66): 

2h + 1 + {V 12h - 3} ;£ n ;£ 4h + 2 (61) 
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3h + {V 12h ~ 3} ;;:; m ;;:; 5h + I 

n ~ I + {en ~ 2)/4} ;;:; m ;;:; 2n ~ {[n + V6nl/2} 

{en ~ 2)/4} ;;:; h ;;:; n + I ~ {[n + V6nl/2} 

4{(n ~ 2)/4} + 2 ~ n ;;:; nj ;;:; 3n + 6 ~ 4{[n + V6nl/2} 

o ;;:; nj ;;:; 2h + I -- {V12h ~ 3} , 

61 

(62) 

(63) 

(64) 

(65) 

(66) 

where {x} denotes the smallest integer being greater than or equal to x. All values of 
the parameters n, m, hand nj within the above ranges can occur in benzenoid graphs. 

Benzenoid graphs contain no odd-membered cycles. Then by Theorem 6.8 they 
are bipartite. Benzenoid graphs may possess even-membered cycles of all sizes, except 
of size 4 and 8. In [81l the following peculiar result has been obtained. 

Theorem 6.11. Let B be a benzenoid graph and Z one of its cycles. If the size of Z 
is divisible by four. then in the interior of Z there is an odd number of vertices. If the 
size of Z is not dil·isible by four. then in the interior of Z there are either I/O rertices 
or their number is eren. 

Corollary 6.11.1. All cycles in a cata-condensed benzenoid system hare sizes not 
divisible by four (hence 6,10,14,18 etc.). In aery peri-condensed benzenoid system 
there is at least one cycle, the size of II'hich is divisible by four (hence 12, 16, 20, etc.). 

6.4.2 The Characteristic Polynomial of Benzenoid Graphs 

Since a benzenoid graph is bipartite, its characteristic polynomial can be written in 
the form (56). In the case of benzenoid systems, the coefficients beG, k) have some 
special properties. These will be pointed out in the following theorem [84, 107l. 

Let meG, k) denote the number of k-matchings of the graph G. 

Theorem 6.12. If G is a benzenoid graph, then 

(a) beG, k) = 0 if and only if meG, k) = 0, (67) 

(b) beG, k) ~ meG, k) for all k ~ 0, (68) 

and, if n is even, then 

(c) beG, n/2) = meG, n/2)2 . (69) 

If n is even, then meG, n12) is equal to the number of perfect matchings of G, 
which coincides with the number ofKEKuLE structures of the corresponding conjugated 
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molecule. DEWAR and LONGUET-HIGGINS [84] were the first who observed the impor­
tant relation 

det A = (_I)n/2K2 (70) 

which, of course, is equivalent to statement (c) of Theorem 6.12. Here A denotes the 
adjacency matrix and K the KEKULE structure count of the corresponding benzenoid 
molecule. 

Equation (70) has had a great impact on the development of various theoretical 
approaches to benzenoid hydrocarbons. These have been reviewed elsewhere [28, 
29]. Some applications of (70) will be discussed in Chap. 12. 

As a consequence of the pairing theorem and Eq. (70) the number of KEKULE 
structures of a benzenoid molecule is obtained by multiplying the non-negative 
eigenvalues of the molecular graph: 

{n/2} 

K = n Aj • 
j= 1 

(71 ) 

In particular, K = 0 if and only if the molecular graph possesses a zero eigenvalue. 

6.5 Hydrocarbons and Molecules with Heteroatoms 

6.5.1 On the Question of the Molecular Graph 

In Chaps. I and 2 it was outlined that the molecular graph does not contain informa­
tion about the nature of the atoms and chemical bonds in the corresponding molecule, 
that is about the materialization of a given topology. As a consequence of this, quite 
dissimilar chemical species may fall into the same class of isotopological molecules 
(cf. Fig. 2.1). 

In the case of hydrocarbQns this lack of information is fully compensated by 
our a priori knowledge of the type of atoms occuring in such molecules. Furthermore, 
it is trivially easy to distinguish the vertices representing the carbon atoms from the 
vertices (if any) representing the hydrogen atoms. 

We shall consider as a heteroatom any atom in an organic molecule which is 
neither carbon nor hydrogen. The type and the position of heteroatoms in a molecule 
can be deduced only in exceptional cases from its molecular graph. 

In order to overcome this shortcoming of the topological description of molecules 
one needs to supply the molecular graph with some additional information about 
the atoms and chemical bonds. This can be done in several distinct, but mutually 
equivalent ways. 

The most frequently used graphic representation of molecules with heteroatoms 
is that in which each heteroatom is symbolized by a vertex with a weighted loop 
[70, 166]. The weight of the loop is characteristic to the type of the heteroatom. 
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F or instance, the molecular graph of pyridine is given as follows: 

[] 
N 

where h is a certain number (= weight of the loop). If we want to indicate that the 
CN bonds in pyridine are not the same as the CC bonds, we may associate a certain 
weight, say k, to the edges representing the CN bonds: 

cdJ 
N 

Such a representation of molecules with heteroatoms has its obvious origin in 
the application of graph theory to HOCKEL molecular orbital theory (see Chap. 5). 
The weights hand k are, in fact, closely related to the HMO parameters used in the 
COULOMB and the resonance integrals. 

We would like to point out the following disadvantages of such a representation. 
Firstly, the diagrams called "molecular graphs" are not graphs at all (in the sense of 
the definitions given in the paragraphs 4.1.2 and 4.1.3). Rather they provide a pictorial 
representation of a matrix, in particular the HMO Hamiltonian matrix. Secondly, 
isotopological molecules now have different molecular "graphs". As a consequence 
of this, the molecular "graph" can be no more viewed as simply depicting the topology 
of a molecule. Thirdly, the molecular "graph" depends on such marginal facts as the 
choice of the HMO parameters for the heteroatom. 

We propose here a slightly different approach in which the molecules with hetero­
atoms are also represented by simple graphs [96, 154]. 

For example, the HUCKEL graph of pyridine: 

o 
N 

----+. 0 
is isomorphic to the HOcKEL graph of benzene. A weight matrix W = W( G) is asso­
ciated with the molecular graph G and by means of this matrix additional information 
concerning the atoms and the bonds can be recorded. The elements of W(G) are 
interpreted as weights. In particular if the vertices of G are denoted by VI, VZ, .•• , Vn> 

then 

Wrr is the weight of the vertex L'r 

wrs is the weight of the edge, connecting the vertices vr and vs. 

The weight matrix must be symmetric (wrs = wsr) and it is rather convenient to 
choose W rs = 0 whenever the vertices Vr and Vs are not adjacent. 
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The method of construction of the weight matrix depends exclusively on the 
specific application for which one will need it. In particular, if we want to use graph 
theory within the framework of the HMO model, then we shall choose W(G) so as 
to coincide with the HMO Hamiltonian matrix. 

For different purposes a completely different weight matrix may be needed. 
If G is a graph and W its weight matrix, then the ordered pair (G, W) will be 

called a weighted graph. The weighted graph is the appropriate topological representa­
tion of molecules containing heteroatoms. 

6.5.2 The Characteristic Polynomial of Weighted Graphs 

Whereas the characteristic polynomial of simple graphs is just the characteristic 
polynomial of their adjacency matrix, in the case of weighted graphs it is reasonable 
to consider the characteristic polynomial of the weight matrix. Hence if (G, W) is 
a weighted graph, then 

cp(G, W) = cp(G, W, x) = det (xl - W) (72) 

will be its characteristic polynomial. 
In the following we shall be interested only in the special case when 

(73) 

where A denotes the adjacency matrix of the graph G and diag (Wl' w2 ' ••• , wn) is 
the diagonal matrix of vertex weigh!s. 

Theorem 6.13. If the relation (73) holds and Wl = W2 = ... = Wn = w, then 

cp(G, W, x) = cp(G, x - w) . (74) 

• 
The verification of the above result should be an easy exercise for the reader. 

It is sufficient to substitute (73) back into (72) and to recall the definition (4.18) of 
the characteristic polynomial of a graph. 

Theorem 6.14. If the relation (73) holds and Wi = Of or all i "# r, then 

cp(G, W) = cp(G) - wrcp(G - Vr) . (75) 

Proof Without loss of generality we may assume that r = 1. Then the charac­
teristic polynomial of (G, W) is given by 

det (xl - A - diag (wl' 0, 0, ... ,0» . (76) 

Applying Eq. (16) from Appendix 2 we get 

cp(G, W) = det (xl - A) + det (diag (-wl' x, x, ... ,x) - A') (77) 
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where the matrix A' coincides with A, except in its first row: 

0 0 0 0 
a21 a22 a23 a2n 

A'= a31 a32 a33 a3n (78) 

anI an2 an3 ann 

It is immediately seen that if A is the adjacency matrix of G, then Al 

(79) 

is the adjacency matrix of G - VI' 

The first term on the right-hand side of (77) is evidently equal to ep(G). Expanding 
the second determinant we obtain 

det (diag (-11'1' X. X • ... , x) - A') = -WI det (diag (x, x, ... ,x) - AI) 

= -lVlep(G - VI) . (80) 

Hence the right-hand side of (77) is equal to ep(G) - H\ep(G - VI) and Theorem 
6.14 has thus been proved. 0 

Corollary 6.14.1. It the relation (73) holds and Wi = 0 for all i f= rand i f= s, 
then 

ep(G, W) = ep(G) - H'rep(G - v,) - wsep(G - v) + wrwsep(G - vr - v) . (81) 

Theorem 6.14 and its corollary can be further generalized [109]. 

Theorem 6.15. If the relation (73) holds, then 

ep(G, W) = ep(G) - I Wrep(G - Vr) + I WrWsep(G - Vr - Vs) 
r r <s 

- I It'rW,Wtep(G - Vr - l"s - V,) + .... 
r<s<t 

6.5.3 Some Regularities in the Electronic Structure 
of Heteroconjugated Molecules 

(82) 

In spite of the fact that the n-electron properties of conjugated molecules have been 
extensively studied by means of graph theory [24, 30, 31], very few general results 
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have been obtained for heteroconjugated systems. We shall quote here an old [79] 
and a new one [109]. 

In paragraph 6.3.3 we have shown that the HMO theory predicts a uniform 
n-electron charge distribution in alternant hydrocarbons. If one heteroatom is intro­
duced into an altern ant conjugated system, the charge distribution is no longer 
uniform. COULSON and LONGUET-HIGGINS discovered the following "law of alternating 
polarity" [79]. 

Theorem 6.16. In an alternant conjugated molecule with nne heteroatom, all starred 
atoms have HMO n-electron charges of the same sign and all unstarred of the opposite 
sign. 

An immediate consequence of Theorem 6.16 is that n-electron charges alternate 
in sign along any path in an alternant molecule with one heteroatom. A complete 
proof of this result has been obtained quite recently [105]. 

The pairing theorem (Theorem 6.9) does not hold for alternant molecules with 
heteroatoms. There exists, however, an exception [109]. Let G be a bipartite graph 
and vr and Vs its two symmetrically equivalent vertices. Choose a weight matrix W 
of the form (73) such that Wj = 0 for i "# rand i "# s, and wr = -ws' 

Theorem 6.17. The pairing theorem holds for the weighted graph (G, W). 

Proof Apply Corollary 6.14.1. Since v r and v s are assumed to be symmetrically 
equivalent, G - Vr ::= G - Vs and, consequently, cp(G - Vr). = cp(G - us) and 
wrcp(G - v) + wscp(G - v) = O. Therefore, 

cp(G, W) = cp(G) - (wycp(G - vr - vs) . (83) 

Both G and G - vr - Vs are bipartite graphs and Eq. (48) applies to both of them. 
Therefore, (G, W) is also of the form (48). 

Now we can prove Theorem 6.17 using the same argument as in the first proof 
of the pairing theorem. 0 

Theorem 6.17, although analogous to Theorem 6.9, does not have the same con­
sequences concerning the eigenvectors of (G, W). 



Part C 

Chemistry and Group Theory 

The present part of the book deals with group theory, a very powerful tool in the con­
sideration of the symmetry of a molecule. In Chap. 7 the concept of groups will be 
briefly displayed and exemplified by means of a particular symmetry group (C3J 
The other most common symmetry groups and some of their applications are given 
in Chap. 8. In Chap. 9 an approach to the automorphism groups of simple graphs, 
useful in the discussion of the symmetry of non-rigid molecules, is outlined. Finally, 
in Chap. 10 some particular interrelations between these two types of groups will 
briefly be discussed. The character tables of some point groups and the first six sym­
metric groups are given in Appendix 5. 



Chapter 7 

Fundamentals of Group Theory 

Groups are sets of elements amended with a combination law that satisfies certain 
conditions (axioms). 

Defmition 1: Let {A, B, C, ... } be a set of elements and let 0 symbolize an operation, 
the effect of which is defined upon the elements, say for example A 0 B = C. Such a set 
together with the operation is called a group G if the following axioms are satisfied: 
[G I]: The combination of any two elements of the set by the operation defined results 
in another element of the set: 

A, BEG; if A 0 B = C, then C E G . (I) 

[G 2]: The set G contains a particular element E which satisfies the following relation 
for all other elements A E G: 

EOA=AOE=A. 

This particular element E is called the identity element of the group G. 
[G 3]: All the operations defined conserve the associative law, i.e.: 

A 0 (B 0 C) = (A 0 B) 0 C = A 0 B 0 C . 

(2) 

(3) 

[G 4]: For every element, PEG, there exists an inverse one, p- 1 = Q E G, such that 

QOP=POQ=E. (4) 

Of course, according to Eq. (2) the identity element is self-inverse. 
One should note that every element of the group commutes with its inverse, as 

expressed by Eq. (4). In general, however, the conservation of the commutative law 
needs not to hold, thus A 0 B may differ from BOA. 

Definition 2: The group G is said to be Abelian if the commutative law is conserved 
by all pairs of elements: 

AOB=BOA. (5) 



70 7 Fundamentals of Group Theory 

The wide scope of Definition I may be illustrated by the following examples. 
The (";)mplete set of positive and negative integers (inclusively zero) forms an infinite 
group under the operation of addition wherein the zero represents the identity element 
and - A is the inverse of + A. Other examples of infinite groups are the space groups 
of crystal lattices [1,48], but they play only a minor role in organic chemistry. An 
infinite group of particular interest for atomic physics is the group 0(3) which possesses 
the full symmetry of a sphere in three-dimensional space. The symmetry groups of 
collinear molecules, C'X)v and D ooh' are also infinite (see paragraph 8.2.3). 

For the sake of brevity the symbol 0 is usually omitted. Hence instead of A 0 B 
we shall write AB. 

7.1 The Symmetry Group of an Equilateral Triangle 

As an example of a symmetry group we consider the operations which transform 
the corners of an equilateral triangle into themselves (see Fig. 7.1). They are: 

(i) the identity operator E which leaves each point unchanged; 
(ii) three reflections A, Band C in a plane perpendicular to the plane of the triangle, 

passing through the points a, band c, respectively; 
(iii) two rotations through 120°, D and F, where D is the counterclockwise and F 

the clockwise rotation. 

y Coordinates: 
b \0 

Point x y 

A x 2(2 0 a a 
b -(2 (2V3 

)F c -(2 -(2V3 

Fig. 7.1. Symmetry operations and l:oordinates of an equilateral triangle (C3v) 

That the symmetry operations {E, A, B, C, D, F,} form a group is proved by 
setting up the following multiplication table. 

X= E A B C D F 

y= E E A B C D F 
A A E D F B C 
B B F E D C A (6) 
C C D F E A B 
D D C A B F E 
F F B C A E D 
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The entries, Z E [E, A, B. C, D, F], of the above table are obtained as follows: 
first an operator of the heading line, X, is applied to transform the triangle; onto the 
result of this an operator, Y, of the heading column is applied. Then by inspection of 
Fig. 7.1, the operator Z is found which performs the same result, Z = yx. 

The multiplication table shows that the axioms [G I], [G 2] and [G 3] are satisfied. 
Further, in accordance with Eq. (4), the inverse elements (axiom [G 4]) are found 
as follows: 

X EABCDF 
(7) 

X-I E ABC F D 

Finally, from the multiplication table one can easily decide whether the group 
considered is Abelian. Since in the case of an equilateral triangle we find AB = D, 
but BA = F, this group is not Abelian. 

The results achieved hitherto may be summarized as follows: The symmetry opera­
tions of an equilateral triangle form a non-Abelian group G = fE, A, B, C, D, F}. 
The usual notation of the group elements (see Sections 8.1 and 8.2.1) is: the reflec­
tions A, B, C are denoted by tT,., the rotations D and Fby C3 and C; (note that C; = E), 
and the group G itself by C3, .. 

7.2 Order, Classes and Representations of a Group 

Definition 3: The number of elements which form a group is called the order of 
the group. 

According to this definition the group C3r has order h = 6. 
The group C3 ,. consists of three different types of operations: the identity opera­

tion E; the reflections tT,.' and the rotations C3 , C;. Each of these three subsets is 
called a class. In simple point groups the classes may be easily found by inspection. 
In more complicated cases as well as in the case of non-geometric groups one may 
find the classes by means of the following definition. 

Definition 4: Let P be any element of the group G. The subset {QIQ = X-I PX; 
X E G] of the elements of G is the class to which P belongs. The element Q = X-I PX 
is called the conjuyate of element P. 

For example, using Definition 4 and the multiplication table, Eq. (6), of the 
group C31., the classes {El, fA, B, C} and {D, F} are obtained. 'In order to obtain 
all the elements of a class, the complete set of group elements X E G must be applied. 

The multiplication table represents the structure of the group. By chance, one 
may find a set of elements, e.g. numbers, matrices, etc., which multiply according 
to this table. This means that if. for example, the numbers 0(, #, () are associated to 
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the operators A, B, D of G then these numbers must satisfy r:xf3 = (j in accordance 
with (6). Such a set of numbers (or more general: elements), which need not be all 
different, forms a representation r of the group. In the case of C3v we easily find the 
following sets of numbers: 

E ABC D F 
r l : 1 1 1 1 1 (8) 
r2 : 1 -1 -1 -1 

which agree with the multiplication table (6). Thus r l and r2 are two different repre­
sentations of the group; obviously they are inequivalent. 

Evidently, the number + 1 associated to each element of the group will always 
agree with a one-dimensional representation of the group. It is called the totally 
symmetric representation. As has already been done in (8), we will denote this repre­
sentation by r l' In an alternative convention, the totally symmetric representation 
is denoted by A and some additional suffixes, depending on the structure of the group 
(see for that Sect. 8.1); in automorphism groups (see Chap. 9) it is denoted by roo 

Another representation, r3 , is presented by the transformation matrices of the 
coordinates x and y associated with the symmetry operations under the law of matrix 
multiplication. 

E ABC D F 

r3: E ABC D F 

where 

E=(~ ~), A=(~ _~). B=(=: -~), 
_ (-X 11) _ (-X -11) _ (-;I( 11) C- .r,D- ,F- , 11 ;I( 11 -;I( -11 -;I( 

(9) 

( 10) 

;I( = 1/2, and 11 = 0/2. Obviously, the identity E must be represented by the unit 
matrix. The matrices D and F are obtained from the general transformation matrix 
for a rotation through an angle <p (see Eq. (21) of Appendix 1) by inserting the proper 
values of <p, 120° and 240°, respectively. The matrix A is simply derived by inspection 
of Fig. 7.1. The reflection in the plane A keeps the x coordinate unchanged but changes 
the sign of the y coordinate. The matrices Band C were obtained by the matrix multi­
plications B = AD and C = AF according to the multiplication table (6). Note that 
those matrices which correspond to the elements of a given class have equal traces. 
This will be proved below by Eq. (33). 

From the matrices given in (10) an infinite number of sets of matrices can be ob­
tained by similarity transformations (see Appendix 1): E' = S-l ES, A' = S -1 AS, 
B' = S--1BS etc. It can be easily verified that the matrices E', A', B', C', D', F' also 
form a representation of the group. For instance, A'B' = S-l ASS-IBS = S-l ABS 
= S-lDS = D'. 
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Thus the matrices E', A', 8', C', D', F' form another representation of the group, 
which is equivalent to that given in (9). 

7.3 Reducible and Irreducible Representations 

The matrices given in (10) operate on the coordinates of a single point. By their means 
we may construct the transformation matrices of the triangle within the x,y-plane: 

(II) 

where 0 stands for a zero matrix of order 2. As it is easily verified these matrices 
satisfy the multiplication table (6), hence, they also form a representation of the group 
C3v• But due to the block diagonal form of all these matrices, the representation given 
by (11) may be reduced to that given by (9). One says that the representation (11) is 
reducible. 

Let us assume that we have found a set of matrices {E', A', B', e', D', F'} of order 
n which satisfy the multiplication table (6), e.g.: 

A'B' = D'. (12) 

Suppose further that there is a similarity transformation which transforms all the 
matrices E', A', ... into the block diagonal form 

A"=S-IA'S= 0 A; 0 .. . (A~ 0 0 ... ) 

(13) o 0 A~ .. . 
. . . . .. 

where A;',j = 1,2,3, ... , is a square matrix of the same order as B;', e;', etc. Then 
from the law of matrix multiplication and from Eq. (12) one obtains the following 
relations: 

Ai'Bi' = Di' 
(14) 

A~'B~' = D~' 
etc. 

and the sets·ofmatrices {E" A" B" e" D" F"} {E" A" 8" e" D" F"1. etc l' l' l' l' l' l' 2' 2' 2' 2' 2' 2J' . 
also form rep'resentations of the group. Once again one says that the matrix represen-
tation E', A " 8', ... is reducible and has been reduced by means of a similarity trans­
formation with the matrix S. 
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A matrix representation is said to be irreducible if it is not possible to find a 
similarity transformation which reduces to block diagonal form all the matrices of 
this representation. Evidently, anyone-dimensional representation and, in particular, 
the totally symmetric representation is always irreducible. A precise criterion for the 
reducibility of a: representation is given in Sect. 7.4. 

The representations r l' r 2 and r 3 given in (8) and (9) are irreducible. 
Two irreducible representations are said to be equivalent if they differ only by 

a similarity transformation. 
As it will be shown below the representations r l , r2 and r3 are the only non­

equivalent irreducible representations of the group C3v' 

Without proof, we give now certain general theorems on irreducible representations 
of groups. 

Denote by R a symmetry operation of the group considered. Let ri(R) be the 
matrix corresponding to that symmetry operation in the irreducible representation 
r i and let r/R)mn denote its element in the m-th row and n-th column. Then let us 
consider the sums 

(15) 

where ri(R)!n denotes the complex conjugate of the number ri(R)mn' If the group 
representations considered are real, then ri(R)!n = ri(R)mn' 

In the case of the group C3v we obtain from the irreducible representations (8) 
and (9) a series of relations among which the only non-zero sums are 

I rl(R)~1 r 1(R)11 = 6 (16) 
R 

(17) 

(18) 

This result may be generalized to 

(19) 

where h is the order of the group and Ii is the dimension of the i-th irreducible representa­
tion, rio Taking into account that all the other sums result to zero one may write 

(20) 

where (jij denotes the KRONECKER delta which has only two values, namely, (jij = 1 
if i = j and (jij = 0 if i =f- j. 
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It has been shown that Eq. (20) holds for the non-equivalent irreducible repre­
sentations of any group. 

The factors of the summands in Eq. (20) are the matrix components fi(R1)mn' 
T;(R2 )mm ... , of the h symmetry operators forming the group; they may be regarded 
as the components of an h-dimensional vector defined for a certain irreducible 
representation, T;, and a certain element (mn) of its matrices. As Eq. (20) s\-jows all 
these vectors are orthogonal to each other. Since in an n-dimensional vector space 
at most n orthogonal vectors may be constructed, one can conclude from Eq. (20) 
that there are exactly h such h-dimensional vectors. On the other hand in each irre­
ducible representation fj of the dimension Ij we have q different elements (mil) of 
the matrices, thus there are P. such h-dimensional vectors associated with f .. Summing 

I I 

over all irreducible representations one obtains 

~+~+~+ ... =h. (21) 

Since this result is a consequence of Eq. (20) which has general validity, the result 
given in Eq. (21) is true for the non-equivalent irreducible representations of any 
group. 

From Eq. (21) one may conclude that the irreducible representations, f l' f 2 

and f3 given in (8) and (9) are the only non-equivalent irreducible representations 
of the group C31 .. 

7.4 Characters and Reduction of a Reducible Representation 

The traces of the matrices which form a given irreducible representation are 
invariant under similarity transformations (see Appendix 1); they are called the 
characters of the symmetry operations in the given irreducible representation. Let 
X;CR) denote the character of the symmetry operation R in f i . Then we have 

Xj(R) = I flR)mm . (22) 
m 

Since the identity operation E is always represented by a unit matrix E, from 
Eq. (22) one obtains 

(23) 

Consequently, Eq. (21) can be written as 

(24) 

where the sum runs over all irreducible representations. 
As a kind of counterpart to the table of irreducible representations the character 

table of the group can be set up. In the case of C3v' for example, one obtains from (8) 
and (9): 
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av a. av C3 C2 3 
E 

A B C D F 

Al = r l 1 1 (25) 
A2 = r 2 1 -1 -1 -1 1 1 
E = r3 2 0 0 o -1 -1 

In the following we shall see that a one-to-one correspondence exists between 
, the irreducible representations and group characters. Hence, it is sufficient to use 

either the former or the latter. 
In order to illustrate the meaning of group characters, some internal motions of 

ammonia, NH3, are considered. NH3 has C3v-symmetry: the equilibrium positions 
of the hydrogens form an equilateral triangle and the nitrogen is located above its 
center representing the apex of a regular triangular pyramid. The elongation vectors 
of the N-H-bonds are denoted by 'a' 'b and 'eo respectively (see Fig. 7.2a); they 
transform under the operations of C3v as follows: 

a. a. a. C3 C2 
3 

E 
A B C D F 

r r r a re rb rb 'e (26) a a 
rb rb re rb ra , 

e ra 
r re rb r a r e ra rb e 

From these transformation properties and the character table of C3., Eq. (25), 
the so-called symmetry-adapted functions are obtained by means of 

",. = L X·(R) (RIX) 
J R J 

(27) 

where IX is an element of the basis, IX E {ra' rb• r J and RIX is taken from (26). For 
r l = Alone obtains 

(28) 

shown in Fig. 7.2a; this function is related to the symmetric stretching mode of 
NH3• The function constructed for f2 = A2 vanishes identically. The following 
three functions obtained for r 3 = E 

e l = 2ra-rb - re , 

e2 = 2r b - r e - r a ' 

e3 = 2r e - r a - r b ' 

(29) 
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are shown in Fig. 7.2b, c, and d. They are equivalent and differ only in their spatial 
orientation. Consequently, their motions have the same energy and, therefore they 
are called degenerate. Since e1 + ez + e3 = 0 they are linearly dependent, but they 
may be transformed into a pair of independent degenerate functions, e; = e1 and 
e~ = ez - e3 = rb - rc (Fig. 7.2e) which are related to the asymmetric stretching 
modes of NHy 

The orthogonal functions e; and e~ span an invariant subspace. They transform 
under the operations of the group according to 

2 

Rej = L r 3(R)jk e~ . 
k=l 

This result may be generalized for an irreducible representation r i of dimension 
Ii as follows: Let the orthogonalized equivalent functions of ri be denoted by t/I j' 
i = 1, 2, ... , Ii; then 

Ii 

Rt/lj = I ri(R)jkt/lk (30) 
k=l 

is satisfied by each element R of the group. 

N N 

H 

a °1 b e 1 

N N 

~:H 
--~- \ 

H __ :::== __ ~ __ \ H 

c d 

N 

e f Rz 

Fig. 7.2. Symmetry-adapted functions in NH3 molecule: a symmetric stretching mode; b to e 
asymmetric stretching modes of the NH bonds; f rotation about the z-axis 
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Definition 5: A function t/I j is said to transform according to a given irreducible 
representation r i if Eq. (30) is satisfied by each element of the group. 

In the case of a one-dimensional representation Eq. (30) reduces to 

(31) 

In Fig. 7.2f each hydrogen is associated with an elongation vector, ta, tb and t e, 

respectively, which belong to the xy-plane and have counterclockwise tangential 
directions with respect to the circle passing through the hydrogens. As is easily 
verified, the function 

(32) 

belongs to r 2 = A2 and represents a rotation of the entire ammonia molecule around 
the z-axis. 

The normal coordinates of a molecule [66] are constructed in a similar manner 
(see paragraph 8.4.3). 

As shown in Appendix I the trace (character) of a matrix is invariant under simi­
larity transformations. Here we shall consider the case when the matrix X used for 
the similarity transformation belongs to a representation of the group. Let P and Q 
be two different elements, P #- Q, of a matrix representation of G, and assume that 
P and Q belong to the same class of G; then, as a consequence of Definition 4, in 
this representation there is at least one element X E G which satisfies the equality 
Q = X-1PX. In view of Eq. (22) one obtains the character of Q as follows: 

(33) 

This equation means that if two operations belong to the same class they have 
the same characters in a given irreducible representation. 

In order to apply Eq. (20) to the characters one has to put m = nand m' = n'. 
This results in 

(34) 

where the indices m and m' run as follows: 1 ~ m ~ Ii, 1 ~ m' ~ Ij ; Ii ~ Ij • Summing 
Eq. (34) over all values of m and m' we obtain with regard to Eq. (22) the following 
expression 

I xlR)*xiR) = hc5ij • 
R 

(35) 

From Eq. (35) one may conclude: 

[C 1]: The characters of the irreducible representations form orthogonal vectors. 
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[C 2]: Two non-equivalent irreducible representations, i.e. i"# j, have different 
character systems and two irreducible representations having the same 
character system are equivalent. 

[C 3]: The sum of the squares of the characters in a given irreducible representation 
equals the order h of the group. 

[C 4]: The sum of the characters in a given irreducible representation equals zero if 
the representation considered is not the totally symmetric one. 

Due to the general validity of Eq. (20) the statements above are true for the cha­
racters of the non-equivalent irreducible representations of any group. 

The statement [C 3] may be used as a criterion for the reducibility of a representa­
tion: Suppose that for a given representation r i the expression on the left-hand 
side of Eq. (35) has a value greater than h. Then the representation considered is 
reducible. 

The statement [C 4] is obtained by means of Eq. (35) if r i is supposed to be the 
totally symmetric representation, i.e. X i(R) = I for all REG. 

Let k denote the number of classes of a given group, 9 Q the number of group 
elements in class 12, and finally Re anyone of these elements. Since according to 
Eq. (33) all elements belonging to the same class have the same character, the left­
hand side of Eq. (35) may be rewritten as a summation over the classes as 

k 

I geXi(R/ x;(Re) = Mij . 
e=l 

(36) 

With regard to this expression the normalized characters V gQ/h x;(RQ) may be 
considered as the components of a set of orthonormal k-dimensional vectors. Since 
there can be at most k such vectors, each one of which is associated with a particular 
irreducible representation, one can conclude [36] from Eq. (36): The number of 
irreducible representations equals the number of classes. 

Any matrix representation of a group must be either irreducible or reducible. 
In the latter case it is always a particular combination of irreducible representations 
in the sense ofEq. (13). As shown by Eq. (13) a reducible representation can be 
reduced to its irreducible representations by means of an appropriate similarity 
transformation. Since the characters are defined as the traces of matrices and the 
traces are invariant under similarity transformations, we can express the character 
of a matrix R of the reducible representation as 

k 

X(R) = I a -X .(R) 
j= 1 }} 

(37) 

where aj denotes how many times the j-th irreducible representation occurs in the 
considered reducible one. Applying Eq. (35) we have 

I x(R)* Xi(R) = I I ujxiR)* x,{R) = hai . (38) 
R R j 
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Thus, the number of times the irreducible representation Ti occurs in the reducible 
representations is 

(39) 

Applying group theory to chemical problems, it is more convenient to use group 
characters than matrices of irreducible representations. Due to the one-to-one 
correspondence between the system of the characters and that of the irreducible 
representations of a group both treatments are equivalent. Note however that for 
a multidimensional irreducible representation there is a unique system of characters 
whereas an infinite number of matrix representations may be constructed. From this 
the high significance of group characters can be understood. 

The group character table of any group can be constructed from the relations 
given above. 

For convenience we summarize the rules derived above which hold for any finite 
group: 

Rule 1: The number of irreducible representations and the number of classes of the 
group are equal. 

Rule 2: The sum of the squares of the dimensions of the irreducible representations 
of a group equals the order of the group; see Eqs. (21) and (24). 

Rule 3: The characters of an irreducible representation form a vector; the vectors 
corresponding to non-equivalent irreducible representations are orthogonal; see 
[C 1] and [C 2]. 

Rule 4: The sum of the squares of the characters of a given irreducible represen­
tation equals the order of the group; see [C 3]. 

Rule 5: The sum of the characters of a given irreducible representation equals the 
order of the group if the irreducible representation is the totally symmetric one, but 
it equals zero otherwise; see [C 4]. 

Rule 6: Two elements belonging to the same class have the same character in a 
given irreducible representation; see Eq. (33). 

Rule 7: In each group there is one and only one totally symmetric representation; 
its dimension is 1. 

7.5 Subgroups and Sidegroups - Products of Groups 

Out of the multiplication table given in (6) one may extract the following part 

E D F 

E E D F (40) 
D D F E 
F FED 

From this and Definition lone easily concludes that the subset G' = {E, D, F} 
represents a group of order hi = 3. Such a group G' of order hi which is contained 
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in a group G of order h, h' < h, is called a subgroup G' of the group G while G is the 
supergroup of G'; these relations are indicated by G' c G. The complement G' of 

the subgroup G' with respect to the group G is called the sidegroilp of G'. (In our 
example, G' = {A, B, C}.) Since a sidegroup does not contain the identity element, 
it cannot satisfy the axiom [G 2] and, consequently, the elements of a sidegroup never 
form a group on their own. 

Note that the identity element itself also forms a group {E} of order one. Hence, 
each group G contains two trivial subgroups, namely the group G itself and the group 
{E} formed by the identity element only. Certainly, the non-trivial subgroups are more 
interesting than the trivial ones. Synonymous terms for trivial and non-trivial sub­
groups are proper and improper subgroups, respectively. 

By inspection of the multiplication table of the group {E, A, B, C, D, F} given 
in (6) one may find several non-trivial subgroups. In addition to the already mentioned 
subgroup {E, D, F}, we also have {E, A}, {E, B} and {E, C}. These latter groups are 
equivalent because each consists of the identity element and one reflection; they are 
said to be isomorphic (see Sect. 7.7). 

Note that all proper subgroups mentioned above are Abelian. 
We will now show that the set of elements {E, A, B, C, D, F} of the group G is the 

cartesian set-product of the elements of two smaller groups, G! = {E, A} and G2 

= {E, D, F}. Applying the multiplication law of sets one obtains 

{E, A} ® {E, D, F} = {EE, ED, EF, AE, AD, AF} . 

According to Eq. (2) we have 

EE= E, ED= D, EF= F, AE= A. 

With the assignments 

AD = Band AF = C , 

which agree with the notations of (6), one obtains indeed 

{E, A} ® {E, D, F} = {E, D, F, A, B, C} . 

This relation may be generally expressed by 

G! 0 Gz = G 

(41) 

(42) 

(43) 

(44) 

(45) 

where 0 stands either for EB or for Q. In the first case (EB) one says! that the group G 
is the direct product of the groups G! and G2 ; in the second case (Q) the product de­
fined by Eq. (45) is termed the semidirect product [1] of G! and G2 • The difference 

1 In the theory of symmetry groups (see Chap. 8) the symbol ® or x is usually used for direct 
products. In the field of permutation groups, however, to which the automorphism groups of 
graphs (discussed in Chap. 9) belong, direct products are indicated by EEl while the symbol ® 
is used for cartesian products of permutation groups. Although cartesian group products are 
not discussed within this book, for the sake of the uniformity of notation we use EEl for indicating 
group direct products even in the case of symmetry groups. Semidirect products are indicated 
by the symbolQ as usual [I]. 
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between these two types of group products is the following. Let RI and R2 be arbitrary 
elements of the groups GI and G2 , respectively. If the commutation law RIR2 = R2RI 
holds for all the combinations of any RI E GI with any R2 E G2 then the group G 
in Eq. (45) is the direct product. Otherwise G is the semidirect product ofGI and G2 . 

For more details see Chaps. 4 and 19 of [1]. 
As seen from the multiplication table, Eq. (6), AD = B but DA = C, i.e. AD =1= DA; 

hence, the group {E, D, F, A, B, C} is the semidirect product of {E, A} and {E, D, F}. 
If the factor groups, GI and G2 have the orders h(GI ) = hi and h(G2) = h2' 

respectively, the order of the resulting group G = GI 0 G2 is the product of these 
orders: 

(46) 

Equation (46) is related to LAGRANGE'S theorem which states that the order of 
a proper subgroup is a divisor of the order of the group. Its immediate consequence 
is the following result. 

Rule 8: If the order of a group is prime, then this group does not contain any non­
trivial subgroup. Such groups are called primitive groups; they are Abelian. 

When a group G is generated as a product according to Eq. (45), then the number 
k(G) of its classes may be equal to or less than the product of the number of classes 
of the factor groups, i.e. k(G) ~ k(G I ) • k(G2 ). Equality holds for direct products. 
The consequences of this concerning the c~mstruction of the character table of a group 
are discussed in paragraph 8.2.1. 

Note that the direct product of two Abelian groups is Abelian, but the semidirect 
product is not. This latter may be verified in the case of Eq. (44). 

Because D2 = F and D3 = E, the group {E, D, F} may be generated by the powers 
of D. Hence the symmetry element D is the generator [50] of the group {E, D, F}. 
The generator of {E, A} is obviously A. From Eq. (44) it is seen that the group 
{E, A, B, C, D, F} is generated by A and D. 

7.6 Abelian Groups 

According to Definition 2 the elements of an Abelian group commute with each 
other. This has a very noticeable consequence. 

Rule 9: In Abelian groups each element forms a class on its own. 
Really, let P and Q be two elements of a given class. Then by Definition 4, Q 

= X-I PX for some X E G. Now since PX = XP and X-IX = E we always obtain 

Q = X-I P X = X-I XP = EP = P . (47) 

Since the group consists of h elements, according to Rule I, we also have h irre­
ducible representations. From Rule 2 and Eq. (21) one immediately obtains that each 
of the irreducible representations has dimension I. 

Rule 10: All irreducible representations of an Abelian group are one-dimensional. 
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We will now conside~ in some detail an Abelian group of order n > 2 generated 
by the powers of a part I,';: h r symmetry element A. This is the cyclic group of order n. 
Its elements are Ak, 1 ~ k ~ n - 1, and An = AO = E. The law of multiplication 
within this group is given by 

(48) 

Because of 

An = AO = E (49) 

the inverse of the element Ak is given by 

(50) 

In order to find the characters ·of the elements of this group one must keep in 
mind that they must multiply according to Eq. (48) and must satisfy Eq. (49). Let I"f.. 

} 

be the character of A in the irreducible representation fj' i.e. X/A) = I"f.j' then we have 

(51) 

and bearing in mind Eq. (23), 

X/An) =I"f.] = J)E) = 1 (52) 

since all irreducible representations are I-dimensional. From Eq. (52) one finds 

(53) 

for j = 0, 1,2, ... ,n - 1, where w = exp (2ni/n), w* = exp (-2ni/n) and i = 0. 
Thus, the character table of the cyclic group of order n [50) reads as follows: 

Irreducible 
representation 

fo 
I f1 
I f n - 1 

I f2 
I f n - 2 

etc. 
(fn/2 ) 

i r----.. -. 
, 1 1 1 

W w2 W*2 (0* 

(1)* 0)*2 (I} (0 

(I} (04 (0*4 w*2 (54) 
(1)*2 (1)'1<4 ... (JJ4 (1)2 

(I -1 1 -1) 
_.L_ .. ___ . __ ~. ______ _ 

As a consequence of Eq. (53), in cyclic groups there are always pairs of irreducible 
representations whose characters are pairwise complex conjugate; for examples see 
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r 1 and rn-l' r2 and rn- 2 , etc., in (54). They are called complex conjugate representa­
tions. The totally symmetric representation ro cannot be paired in such a manner. 
In the case of even n another representation, r n/2' is present which also cannot be 
paired. Due to Eq. (53) its character is Xn/2(A) = -I, hence, it is called antisymmetric 
with respect to A. 

The character table given by (54) is typical for cyclic groups. The characters are 
in general complex numbers as defined by Eq. (53). Note that all cyclic groups are 
Abelian, but not all Abelian groups are cyclic groups. 

Abelian groups have some importance. As already mentioned in Sect. 7.5 all 
primitive groups of prime order (h = 2,3,5, 7, etc.) are Abelian; just these groups 
are most frequently used to generate groups of higher order by means of group pro­
ducts. 

7.7 Abstract Groups and Group Isomorphism 

The group {E, A, B, C, D, F}, whose multiplication table is given by (6), has been 
derived by considering the symmetry of an equilateral triangle. This means that 
each element of the group has been uniquely associated with a particular well-defined 
geometric operation. However, even if we did not know the origin of the table (6), 
an inspection of it would show that (i) the six abstract elements A, B, C, D, E and F 
form a group, say G, under the law of non-commutative multiplication, (il) E repre­
sents the identity and (iii) A, Band C form one, D and F another class. From this, 
Rule I, Eqs. (20) and (21), the character table given in (25) would be obtained. From 
all these we learn that completely abstract elements may also form a group. 

Definition 6: An abstract group is formed from abstract elements under a defined 
law for the combination of pairs of elements. 

The group 

G = {E, A, B, C, D, F} (55) 

can be understood as such an abstract group as well as the Abelian group given in (54). 
With the usual notation (see paragraph 8.2.1) the symmetry group of an equi­

lateral triangle may be denoted as 

(56) 

Obviously, the groups G and C3v have exactly the same structure. Further, each 
element of the group corresponds uniquely to one and only one element of the other 
group. Two groups which are related in this manner are said to be isomorphic. If 
two groups G1 and G2 are isomorphic, then we shall write G1 ~ G2 • 

As seen in paragraph 8.2.1, D3 is another symmetry group isomorphic with G. 
Since C3v and D3 are isomorphic with the same abstract group, they are said to be 
isomorphic too. It can be shown that Cnv and Dn are isomorphic for all values of n. 
Another example for such a general isomorphism is: D2n and D nd are isomorphic if n 
is even, whereas D2n and Dnh are isomorphic if n is odd. 
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Symmetry Groups 

8.1 Notation of Symmetry Elements and Representations 

In 3-dimensional space only the few following types of symmetry operations are 
feasible in order to transform a symmetrical molecule into itself: 

E .,. the identity operation which keeps all the points unchanged. 
C •... a rotation about an axis of symmetry by the angle 2njn where n denotes any 

natural number; C. is called an n-fold axis of rotation. C. and C;:-I differ only 
in the direction of the rotation. The value n = I indicates that no symmetry 
axis exists, i.e. C1 = E; the values n ~ 7 are only occasionally realized except Coo 
which coincides with the molecular axis in collinear molecules. Among several 
axes of symmetry that one which has the largest value of n is called the principal 
axis. The rotations obey the following relations: 

Ck = C . 
km m' C;:=E. (1) 

(Jh ... a reflection in a symmetry plane which is perpendicular to the principal axis. 
(Jv'" a reflection in a symmetry plane which contains the principal axis. 
(J d ... a reflection in a plane of symmetry which contains the principal axis as well as 

bisects the angle between two C2 axes which are perpendicular to the principal 
axis. 
The reflections obey the following relations: 

a;.=E; (J; = E; ~ = E. (2) 

S •... a rotation about an axis of symmetry by the angle 2n/n followed by a reflection 
in a plane perpendicular to the axis or vice versa. Thus one has 

(3) 

S. is called an n-fold alternating axis or an njold rotation-reflection axis. S. 
and s:: -I differ only with respect to the direction of the rotation. It is easily 
verified that (JhC2 = S2 is identical with the inversion i on a symmetry center 
(see below). The following relations are obeyed: 

s2m = C2m . .' 2m < n; 

S2.+ 1 
2.+1 = (Jh' 

S2.+1 S . 
4.+2 = 2 = I, S2. = E 

2. . (4) 
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i... the inversion in a center of symmetry. Obviously, the following relations hold: 

(5) 

Equations (1) to (5) are useful for the construction of the multiplication table of 
a given group as well as for the generation of a group by means of the group product 
of two groups. 

By convention, the principal axis of symmetry is always identified as the z-axis 
of the coordinate system; if the group considered contains a further rotation axis 
perpendicular to the principal axis then it is identified as the x-axis. 

The one-dimensional representations of finite symmetry groups are denoted by A 
or B, the two-dimensional ones by E, three-dimensional ones by F or T, four-dimen­
sional ones by G, etc., now in alphabetic order (MULLIKEN'S notation). A and B 
distinguish the representations which are, respectively, symmetric or antisymmetric 
with respect to the rotations about the principal axis of symmetry. These rotations 
always form an Abelian subgroup isomorphic with the cyclic group (see Sect. 7.6). 
Within this subgroup, A and B correspond to ro and rnl2 , respectively, as given by 
Eq. (7.54). 

Several representations of the same type are distinguished by subscripts (see for 
example Cnv in the paragraph 8.2.1): A1 and A2 are respectively symmetric and anti­
symmetric with respect to the sidegroup. 

The subscripts g ("gerade" = even) and u ("ungerade" = odd) indicate that the 
representation is symmetric (g) or antisymmetric (u) with respect to the center of 
symmetry (see for examples C(2n) h in paragraph 8.2.1). If the group considered does not 
contain a center of symmetry, but possesses a reflection plane, G'h' perpendicular to 
the principal axis, then the representations symmetric under G'h are primed whereas 
the antisymmetric ones are doubly primed (see for examples C(2n+1)h in paragraph 
8.2.1). 

According to these conventions, the totally symmetric representation is denoted 
by one of the following symbols: A, Al' A1g, A' or A~. 

In infinite symmetry groups, C oov and Dooh, a special notation is used namely, 
A1 = I+,A 2 = I-,E1 = n,E2 = J,E3 = «f),etc. 

8.2 Some Symmetry Groups 

The groups used to describe the geometric symmetry of finite molecules are point 
groups. A symmetry group is called a poillt group if all its operations leave one point 
unchanged. This point coincides with the center of inversion, provided such a center 
exists. Symmetry groups are usually denoted by boldface letters. 

For convenience we shall divide the symmetry groups into the following three 
classes: 
(1) Finite rotation groups possessing a single principal axis of symmetry; 
(2) Groups with more than one n-fold axis, n > 2; 
(3) Groups of collinear molecules. 

In the following the groups most frequently occurring in organic chemistry will 
be described. The corresponding character tables are collected in Appendix 5. 
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8.2.1 Rotation Groups 

All the rotation groups possess a principal axis of symmetry, Cn, which is usually 
identified as the z-axis of the coordinate system. The following types of groups belong 
to this class: 

I. The groups Cn : These groups consist only of all powers of the rotation Cn. 
Hence, their order is h(Cn) = n. The group Cn is Abelian, and is isomorphic with the 
cyclic group described in Sect. 7.6. The group C] consists only of the identity element, 
C] = {E}: all molecules without any symmetry belong to Ct. If n is not prime but 
may be represented by a product of prime numbers, e.g. n = abc, then Ca, Cb , Cc' 

Cab' Cae and Cbe are proper subgroups of Cn• 

In Appendix 5 the character tables of these groups are given for n ~ 6. As al­
ready mentioned, the representations A and B correspond to ro and r nl2 , respectively, 
of (7.54). The pairs rj and rn_j' 0 < j < n/2 > I, of the table (7.54) are denoted as 
components of doubly degenerate representations. The function z always belongs 
to A; the functions x and y belong to E1, that is (x + iy) and (x - iy) transform accord­
ing to the one-dimensional components of E1• 

2. The groups Cn,.: The group Cn,. may be generated by Cn Q {E, aJ and, hence, 
it consists of all powers of the rotation Cn and n planes of symmetry containing Cn. 

The order of this group is h(CnV> = 2n. Such a group does not exist for n = 1. Due to. 
the generation of Cn,. as a semidirect product of Cn and {E, aJ, its side group is 
produced by Cn ® [a,.]. All these elements are planes of reflection. If n is odd, they 
form a single class, {a,.}, of order n, but they split into two classes, {av} and {CT v'}, 

of equal order, if n is even. 
The character system of the Cn subgroup in Cnv is the same as in Cn. But because 

the character of a,. in {E, o-,.} is either + I or -I, each irreducible representation of 
Cn is split into two representations distinguished by SUbscripts I and 2. In one (sub­
script I) the characters of the sidegroup elements (Cna v) are identically equal to those 
of the corresponding subgroup elements, i.e. xlCnCTv) = xlCn), but in the second one 
(subscript 2) X/CnCT') = -xlCn). The elements Cn and CTv do not commute. The 
following equality is readily proved 

(6) 

Since CT; = E, from this result one obtains CTvc;:'av = C:-mCTvCTv = c:-m and 
CTvc:-m CT,. = CT,.CTvC: = c;:'. This means that in the groups Cnv' n :s 3, the rotation 
C;;' and its inverse c;-m form a class of order 2 for all m, I ~ m < n/2. As a conse­
quence of that, the number of classes and irreducible representations is reduced 
to k < h = 2n. In addition to this, the components of Cn with conjugate complex 
characters collapse into doubly degenerate representations. Such a behaviour is 
typical for groups generated by a semidirect product. Concerning the characters of 
the doubly degenerate representations (see Chap. 4 of [1]) note that oj + (j)*j 

= 2 cosjrp, where (j) = exp (2rri/n), (j)* = exp (-2rri/n) and rp = 2rr/n. 
3. The groups Cnh : These groups may be generated by the direct product Cn 

EEl {E, CTh}· Since C. and CTh commute as shown by Eq. (3), these groups are Abelian. 
In view of Eqs. (3) and (4) they contain all powers of the rotation Cn• They further 
contain CTh and, if n is even, also i. The other elements ofCnh are of Sn type. Consequent­
ly, the order of the group is h(Cnh ) = 2n. The group C]h is very often assigned as Cs ; 
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it is the group of all molecules which have no symmetry element other than a plane 
of symmetry. 

The character of I1h in {E, I1h} is either + lor -1. Thus, due to Cnh = Cn $ {E,l1h}, 
each representation of Cn splits into a pair of representations distinguished by the 
characters of the sidegroup elements Cn ® {l1h}. These are either the same as for the 
Cn subgroup elements or have opposite signs. The representations of such a pair 
are primed and doubly primed if n is odd or g and u if n is even. Such a splitting of 
the character system is typical for groups generated as the direct product of two smaller' 
groups, one of which has order 2. 

4. The groups Sn: These groups consist of all powers of Sn. Hence their order is 
h(Sn) = n. These groups are Abelian and isomorphic with the cyclic group of order n 
(see Sect. 7.6). As seen from Eq. (4) they only exist for even n. They always contain 
Cn/Z as a proper subgroup. If n = 4v + 2, then according to Eq. (4) the group also 
contains the inversion i. The groupSz is usually denoted by Ci . 

5. The groups Dn: The group Dn may be generated by Cn Q {E, C~} and, hence, 
it consists of the powers of Cn and n 2-fold axes C; which are perpendicular to the 
principal axis Cn. Hence, the order of the group is h(Dn) = 2n. Ifn is odd all the 2-fold 
axes are polar and equivalent; if n is even they are apolar but there are nl2 two-fold 
axes of one type, C:l, and nl2 two-fold axes of another type, ct. The group Dz is also 
denoted by V. 

It is easy to prove that 

C'Ck = Cn-kC' . (7) 
Z n n Z 

This has similar consequences as Eq. (6) for the groups Cnv and results in the non­
Abelian character of the groups D n' n > 2. 

In the group Dz the three two-fold axes coincide with the axes of the coordinate 
system and they are equivalent. Consequently, in Dz there is only one representation 
of A-type, but three are of B-type. The group Dz is Abelian. 

6. The groups Dnd : These groups may be generated in accordance with Dn EEl {E, I1d}, 
hence their orders are h(Dnd) = 4n. The product of C; E Dn and I1d results in {C;} 
® {l1d} = {SZn}, where {C;}, {l1d} and {SzJ denote the classes containing C;,l1d 
and SZn' respectively. The group DZd is also denoted by Yd. As a consequence ofEq. (6) 
the groups Dnd are not Abelian and therefore the representations Bz' B3 E Dz are 
merged into a doubly degenerate representation E E Dld. 

7. The groups Dnh : These groups may be generated according to Dn EEl {E, I1h}, 
where {Cn} ® {l1h} = {Sn}, {C;} ® {l1h} = {I1J and {C;'} ® {l1h} = {l1d}. As be­
fore, {Cn}, {l1h}, {Sn} etc. are the classes which contain Cn' I1h, Sn etc. The order of 
Dnh is h(Dnh) = 4n. The group DZh is also denoted by Vh; the three symmetry axes 
as well as the three symmetry planes of DZh are respectively equivalent. Among the 
groups Dnh only DZh is Abelian. 

8.2.2 Groups with More than One n-Fold Axis, n > 2 
Of interest are the cubic groups derived from the tetrahedron, from the octahedron 
or cube, and the icosahedral groups. 

1. Tetrahedral groups T, Td and Th: The group T transforms a regular tetrahedron 
into itself, the group Td is the symmetry group of methane, CH4 , and Th is the sym­
metry group of [CO(NOZ)6]3 - . 
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The three two-fold axes coincide with the axes of the coordinate system; they are 
equivalent in all these groups and, hence, form a class. There are four three-fold 
axes coinciding with the cube diagonals a) x = y = z, b) x = -y = -z, c) x = y 
= -z,andd)x = -y = z,respectively;theyalwaysbelongtooneclass.Thecounter­
clockwise and the clockwise rotations about these axes form different classes in T 
and Th, but a single class in Td• 

2. Octahedral groups 0 and 0h: The group 0 transforms a cube or a regular 
octahedron into itself while 0h is the symmetry group of SF6 . 

The three two-fold axes, C2 = C;, of these groups coincide with the axes of the 
coordinate system; the six two-fold axes, C;, bisect the angles formed from a pair, 
of C2 . The three-fold axes are located as described in the case ofT, i.e. they intersect 
the centers of pairwise parallel triangles of the octahedron. 

In Appendix 5 we give only the character table of the group O. The character 
table of 0h is simply produced according to 0h = 0 EB {E, i}. In 0h the functions 
x, y, z belong to Flu; Rx ' Ry' Rz to Fig; ~ + l + Z2 to A Ig ; ~ + l- 2~ and 
x2 -l to Eg; and finally xy, yz, zx to F2g• 

As seen from the character table, T is a subgroup ofO. 
3. Icosahedral groups I and Ih: The group I transforms a regular icosahedron into 

itself. These groups play some role in boron-organic chemistry. So, for example, 
the sodium chloride-type lattice of boron carbide, CB4 , is occupied by linear C3 

groups and compact B12 groups forming regular icosahedra. Further, the C6o-cluster 
"footballene", obtained recently from graphite in laser experiments, is assumed to 
exhibit Ih symmetry. 

From all the rotation axes ofI only one Cs coincides with an axis, say z, of the co­
ordinate system. 

In Appendix 5 we only give the character table of the group I from which that of 
Ih is simply obtained according to Ih = I EB {E, i}. In Ih the functions x, y, z belong 
to Flu; Rx , RJ"' Rz to Fig; x2 + l + r to A Ig ; and all the other bilinear functions as 
.~ + yZ- 2r, .~ - y2, xy, yz, zx to the five-fold degenerate representation Hg • 

8.2.3 Groups of Collinear Molecules 

The principal axis of rotation which coincides with the z-axis is oo-fold. Hence, the 
rotation angle qJ can assume any value between 0 and 2n. Therefore the order of these 
groups is infinite. The groups of interest are C oov' the symmetry group of collinear 
molecules without a center of symmetry (like HCN) and D ooh' the symmetry group of 
collinear molecules with a center of symmetry (like HC=CH). 

The counterclockwise and the clockwise rotations about the axis by a given angle qJ 

form a class indicated by 2C;. There is an infinite number of such classes, correspond­
ing to the infinite number of values (p may take. Due to C~J = C2 , there is also a two­
fold axis coinciding with the z-axis; this C2 forms a class on its own. The infinite num­
ber of symmetry planes u,. form a single class. 

The group D'lh may be generated according to Dooh = Coov EB {E, i}, where 
C~i = S;"-CP, C2i = uh and uJ = C;. The general structure remains unchanged 
by the generation procedure. Hence, D cLk has the additional classes i, 2S:, uh and 
ooC;. Further, each representation ofC"", splits into a 9 and a u representation. 
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8.3 Transformation Properties and Direct Products 
of Irreducible Representations 

8.3.1 Transformation Properties 

First of all, we consider the symmetry transformations of a point which is part of 
an object exhibiting DZh symmetry. The symmetry elements of DZh coincide with the 
axes, the planes and the origin of the coordinate system (see paragraph 8.2.1) . 

Definition 1: A point of the space is called an arbitrary point if it does not belong 
to any element of the symmetry group. 

Obviously, in D2h such an arbitrary point, say PI' has coordinates (x, y, z) with 
non-zero entries. The various elements of DZh transform PI into 8 points, Pi> P2 , ••. , 

Ps (see Fig. 8.1), according to which: 

DZh E cz 
2 CY 

Z 
cx 

2 

PI PI P2 P3 P4 P5 

X X - x - x x -x 
y y -y y -y -y 
z z z -z - z -z 

----.r----,{"lp, 

(JXY (J'X (JYz 
v v v 

P6 P7 Ps 
x x -x B3" 

(8) 
y -y y Bz" 

-z z z . B1 
I " 

Fig. 8.1. The octuple of points generated from 
PI under the symmetry operations of D2h 

The points PI' P2 , .•• , Ps represent the corners of a rectangular prism. It is' easy 
to see that in the case ofDzh symmetry, all arbitrary points of the space may be grouped 
into such octuples. As seen from (8), their coordinates are functions of the coordinates 
of one of these points, say Pl' Thus, in D2h one may choose the subspace defined by 
x > 0, y > 0 and z > 0 as the subspace o.findependent arbitrary points. This subspace 
corresponds to a spherical angle of 41[/8 and it is mapped onto the total space of arbi­
trary points under the operations of D2h . The total space of all points is obtained by 
adding the three symmetry planes (J , which do not contain arbitrary points according 
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to Definition 1. In view of the Definition I and the group axiom [G I] these results 
may be generalized as follows. 

Rule 1: Under the operations of a symmetry group of order h an arbitrary point 
is transformed into exactly h points. The subspace of the independent arbitrary 
points corresponds to a spherical angle of 4n/h. 

Let fix, y, z) be a symmetry-adapted function which transforms according to 
the one-dimensional irreducible representation T j of the symmetry group G of order 
h, i.e. let fix, y, z) satisfy Eq. (7.31) for all elements Rk ofG, I ~ k ~ h. Let in addi­
tion fiP 1) = fi X 1, Y l' Z 1) denote the value of this function at an arbitrary point PI 
with the coordinates (Xl> 0,.v1 > 0, Zl > 0). Assume that Rk transforms PI into Pk, 
that.is RkP1 = Pk • Then according to Eq. (7.31), the value offix, y, z) at the point Pk 

is given by 

(9) 

Summing over all values of k, I ~ k ~ h and taking into account Rule 5 from 
Chap. 7, one obtains 

± f(Pd = {h f (P1) 
k~ 1 0 

if r j is totally symmetric 

otherwise. 
( 10) 

Equation (10) also holds whenfix, y, z) transforms according to a multidimensional 
irreducible representation, i.e. I(x, y, z) satisfies Eq. (7.30). In this case Eq. (9) must 
be appropriately modified. 

Note that Eq. (9) holds for any arbitrary point of the space. Thus, for the integral 

<I) = fHfix, y, z) dx dy dz (II) 

the integration over the complete space may be replaced by an integration over the 
subspace of independent arbitrary points and the subsequent application of Eq. (10). 
From this one concludes the following: 

Rule 2: An integral of type (11) over the complete space is zero if the integrand 
does not belong to the totally symmetric representation. 

The above result is rather important because integrals of the type (11) frequently 
occur in various branches of science. Since Rule 2 tells us under what conditions these 
integrals vanish identically, it is a very powerful tool and gives rise to a series of selec­
tion rules. 

Deriving Rule 2, it was assumed that the integrand in Eq. (ll),fix, y, z), belongs 
to a distinct irreducible representation of the group. We now consider another inte­
grand, F(x, y, z), which does not meet that assumption. This means that F(x, y, z) 
is reducible and may be expanded in terms of symmetry-adapted functions.0(x, y, z) 
E T(.0) as 

k 

F(x, y, z) = 2: aJ}(x, y, z) . (12) 
j~l 
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The coefficients aj are determined by means of Eqs. (7.37), (7.38) and (7.39). 
As easily verified, the integral (F) is solely determined by the totally symmetric 
component of F(x, y, z); for more details see Chaps. 8 and 9 in [Ill 

With regard to the general validity of Rule 2, we shall now consider the case when 
the integrand in (11) is a product of symmetry-adapted functions. Suppose that 
ai(x, y, z), i = 1,2, ... , and b/x, y, z), j = 1,2, ... , are two sets of functions which 
form bases for representations of the group. Then the set of functions 

forms another basis for a representation of the group. The set offunctions cij is called 
the direct product of the sets of functions ai and bi" It can be shown (see for example 
Sect. 10d in [20]) that the characters of cij are obtained by the application of the follow­
ing equation for all elements R of the group: 

This result can be generalized for direct products made up from more than two 
sets of functions. Let the integrand of (11) be a product of symmetry-adapted func­
tions gix, y, z) E T(gj),j = 1,2,3, ... , 

j(x, y, z) = n gj(x, y, z) 
j 

then the characters ofj(x, y, z) are given as 

x(j, R) = n X(gj' R) . 
j 

(13) 

(14) 

Rule 3: The character of the representation of a direct product is equal to the pro­
duct of the characters of the individual representations. 

The direct product of two irreducible representations will be reducible in general. 
It may be expanded in terms of the irreducible representations by means of Eqs. (7.37) 
and (7.39). As easily verified, in the case of the group given by Eq. (7.25) one obtains 

Tl EB Tl = T1 , 

Tl EB T2 = T2 , 

T2 EB T2 = Tl ' 

Tl EB T3 = T3 ' 

T3 EB T3 = Tl + T2 + T3 ' 

T2 E9T3=T3· 

These results illustrate another general rule. 

Rule 4: The direct product of two irreducible representations contains the totally 
symmetric representation only if the two factors of the direct product are equal. 

In the integrals of type (11) which frequently occur in quantum chemistry, the 
integrand has usually the following form: 

(15) 

where I/Ij and I/Ik denote the wave functions involved and 1F is an operator associated 
with a particular observable; concerning the construction of such operators see for 
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example Sect. 3d of [20]. If j = k and t/l j denotes a state function (most frequently 
of the ground state), then the integral (1) is called the expectation value of the ob­
servable associated with ff. 

By means of Rule 3 the symmetry assignments of molecular states may be obtained. 
For example, the symmetry characters of an electronic state of a molecule, i.e. its 
electronic configuration, are given by the direct product of those irreducible repre­
sentations to which the occupied MO's belong. In order to distinguish these different 
symmetry species, minuscules are used for assigning MO's (e.g. bz"' aU), but capitals 
for states (e.g. BZ"' A "). It can be shown that an electronic configuration belongs to 
the totally symmetric representation if all its MO's are doubly occupied by electrons 
or empty and if equivalent degenerate MO's are either all occupied or all empty 
("closed shell configuration "). Thus in the case of a closed shell configuration t/lk' the in­
tegrand t/ltfft/lk and the operator.'F transform according to the same representation. 
Consequently the integral (1) vanishes identically unless .'1' itself or a component 
of ff belong to the totally symmetric representation. 

Rule 5: For closed shell configurations only those operators have non-zero expecta­
tion values which are either totally symmetric or have a totally symmetric component. 

Consider now the transformation behaviour of the functions x, y and z under 
the operations of D2h. A comparison of Eq. (8) with the character table of DZh (see 
Appendix 5) shows that in D2h , 

From these variables the following bilinear forms can be constructed: r, l, r, 
xy, yz and zx. Applying Rule 3 one immediately finds that in DZh' 

xy E Big' yz E B3g , ZX E B2g . (16) 

Note that the three p-AO's located at the origin of the coordinate system trans­
form like x, yand z. Similarly, three of the five d-AO's transform like xy, yz and zx. 
Thus, each of these AO's belongs to a pertinent irreducible representation of DZh' 
The two remaining d-AO's, namely d,.z _ ,2 and dz2 , both belong to Ag . 

Since DZh is Abelian, the application of (14) is simple. In the case of C3v (see (7.25) 
and paragraph 8.2.1), one finds that z E A I whereas x and y form a 2-dimensional 
irreducible representation E. From this result and Rule 3 one simply concludes that 
Z2 E A and yz, zx E E. For the bilinear forms x2, yZ and xy from Eq. (14) one obtains 
the character of E EEl E, i.e. X(E) = 4, x(2C3) = I, X(3o-,) = O. Obviously, this re­
presentation is reducible and by means of (7.39) one finds that for C3v 

(17) 

Consequently, x2 + )'2 E AI and.f -l, xy E E. Note that r - yZ and xyare 
equivalent functions which differ only in their orientation in the xy-plane by an 
angle of 45'J: hence they are degenerate. 

In all rotation groups with an n-fold principal axis, n > 2, the functions x and y 
as well as x2 - y2 and xy belong either to a doubly degenerate irreducible represen­
tation or (in the case when the rotation group is Abelian) to a pair of complex con­
jugate representations. 
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8.3.2 Rules Concerning the Direct Product of Irreducible Representations 

The procedure performed above for E EB E in C3v may be similarly applied to any 
direct product of two irreducible representations of an arbitrary group. The results 
obtained are summarized by the following rules. 
(I) General rules: 

AEBA=A, BEBB=A, 

AEBE=E, 

A EB E1 = E1 ' 

A EB E2 = E2 , 

gEBg=g, uEBu=g, 

, E£l ' = ' , ."$"= 
, , 

(2) Multiplication of subscripts on A or B 
(2.1) except for 02 and 02h: 

lEB1=1, 2EB2=1, 

(2.2) for 02 and 02h: 

lEB2=3 2EB3=1 

(3) Two-dimensional representations: 

AEBB=B; 

BEBE=E, 

B EB E1 = E2 ' 

B EB £2 = E1; 

gEBu=u; 

'EB"= " 

lEB2=2; 

lEB3=2. 

(3.1) for C3 , C3v' C3h , 03' D3d, D3h , C6 , C6v, C6h , D6 , D6h , S6' T, Td, T h, 0, 0h: 

E1 EB E1 = E2 EB E2 = A1 + A2 + E2 

E1 EB E2 = B1 + B2 + E1 ; 

For groups listed above where the symbols A, B, or E are without sub­

scripts, take A1 = A2 = A, etc. 

(4) Three-dimensional representations: 
(4.1) for Td, 0, 0h: 

E EB F1 = E EB F2 = F1 + F2 ; 

F1 Et> F1 = F2 Et> F2 = A1 + E + F1 + F2; 

F1 EB F2 = A2 + E + F1 + F2 ; 

(4.2) for T and T h : Delete subscripts 1 and 2 from A and F. 
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(5) Rulesfor Coov and Dox>h: 

r+ ffi r+ = r- EB r- = r+ , 

r+ EB II = r- EB II = II , 

r+ EB A = r EE> A = A, etc.; 

II EB II = r+ + r- + A , 

A EB A = r+ + r + r; 
llffiA=ll+tP. 

9S 

All the multiplications indicated within these rules are commutative. In order 
to illustrate the above rules consider the product B2u EB E 1U EE> E29 in D6h• From 

uEBuEBg=uEBu=g (18) 

one concludes that the result belongs to g-representations. From El EB E2 = Bl 
+ B2 + EI the following intermediate result 

(19) 

is obtained. Because of 

(20) 

one finally obtains 

(21) 

8.4 Some Applications of Symmetry Groups 

The applications of symmetry groups are too numerous for a complete review. There­
fore only a few examples can be given here. Our selection will be limited to topics 
which have significance in organic chemistry. The various applications of group 
theory to the theory of the electronic structure of atoms [33, 36, 43, 45] and transition­
metal complexes [14, 21,32,43,56,61] are beyond the scope of this section. Never­
theless it should be mentioned that the atomic quantum numbers I and m can be de­
rived either from the SCHRODINGER equation for H, He + etc., or from the properties 
of the rotation group 0(3) (see especially Chap. 2 of [36]). Beyond the scope of this 
book are also the double-groups [14, 33, 36,42,49], which are very useful in the dis­
cussion of MOBRJS systems and properties of elementary particles with half-integer 
quantum numbers of angular momentum, e.g. the electron spin. 
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8.4.1 Electric Dipole Moment 

In general for a given molecule one may define the centers of the positive and the 
negative electric charge, which depend on the spatial distribution of the nuclei and 
the electrons, respectively. Due to the electro-neutrality of molecules the absolute 
values IQI of the positive and the negative charge are equal. Let R denote the distance 
vector between the centers of charges. Then the permanent dipole moment p of the 
molecule is classically given by p = R IQI, but within quantum theory it is the ex­
pectation value of the electric dipole operator p = er, where e denotes the charge 
of an electron and r the radius vector. Thus we have 

(p) = HJ t/I~ert/lo dx dy dz . (22) 

Therein t/lo denotes the ground state wave function which is assumed to be totally 
symmetric. According to Eq. (12), the operator p may be decomposed into its com­
ponents Jl.x = ex, Jl.y = ey and Jl.. = ez, which transform like x, y and z, respectively. 
From Rule 2 it follows that a molecule can have non-zero permanent dipole moment 
if and only if at least one of the functions x, y, z belongs to the totally symmetric 
representation of the symmetry group of the molecule. 

An inspection of the character tables in Appendix 5 shows that in C1 p has arbitrary 
direction, in C1h p belongs to the xy-plane, in Cn, Cnv, n ~ 2 and Coov p coincides with 
the z-axis and in all other groups p must be equal to zero. 

For example, from the absence of a dipole moment in p-difluorobenzene, one may 
conclude that the structure of this molecule is D2h • On the other hand the presence 
ofa dipole moment in o-andm-difluorobenzene (38.5 .10-30 Cmand25.3 .1O-30 Cm, 
respectively) indicates that these molecules exhibit C2v or even lower symmetry. 

8.4.2 Polarizability 

An external electric field E induces an electric dipole p(i) 

(23) 

where a denotes the polarizability tensor, a symmetric square matrix of order 3: 

C' 
oc xy .,,) 

a = ocyx OCyy ocy• (24) 

OCzx oc.y oc .. 

OCXy = ocyX ' oc = oc yz zy' oc.x = ocx, • (25) 

The entries of a transform as the functions indicated as index, i.e. OCxx transforms 
like :X:, OCXy like xy, etc. 

By a unitary transformation (see Appendices 1 and 3) the matrix a can be diago­
nalized to a'. Its diagonal elements oc:x ' OC;y and oc;. are the main axes ofthe so-called 
polarizability ellipsoid. For completely anisotropic molecules, oc:x #= OC;y #= oc; •. As 
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seen from the character tables in the Appendix 5, this may be realized in the case of 
rotation groups with a principal axis CO' n ~ 2. For completely isotropic molecules 
one has O:~x = O:~y = O:~z i.e. the polarizability ellipsoid degenerates to a sphere. This 
case is realized for molecules belonging to symmetry groups with more than one Cm 

n > 2. In the case of all other groups, O:~x = ex~y -:f- O:~z i.e. the polarizability is repre­
sented by an ellipsoid which has prolate or oblate shape, depending on whether 
ex' = 0:' >:;t' (e.g. benzene, C6H6 E D6h ) or 0:' = 0:' < 0:' (e.g. all molecules = " H = " " of C CX)[' and D etCh symmetry), respectively. 

The sphape of the polarizability ellipsoid plays a significant role for the refraction 
indices of polarized light, for the KERR effect and in RAMAN spectroscopy. 

8.4.3 Motions of Atomic Nuclei: Translations, Rotations and Vibrations 

The symmetry group of a molecule is derived from the equilibrium positions of the 
nuclei. But even at the zero point of absolute temperature they are not at rest. Thus, 
one has to attribute three components of the elongation vectors, ~., rJ., (., to each 

J J J 
nucleus i, which span a local cartesian coordinate system at each nucleus, having its 
origin in the equilibrium position of the respective nucleus. For convenience ~j' rJ j 

and (j are chosen with equal lengths in such a way that they are parallel with the 
X-, y- and z-axis, respectively, of the molecular coordinate system. The origin of this 
latter system is in the center of gravity of the molecule. The principal axis of symmetry 
coincides with the z-axis. In a molecule with n atoms there are in total 3n such vector 
components. They are independent and span a (3n)-dimensional vector space, useful 
for discussing the modes of the motion of the atomic nuclei. 

The functions 

(26) 

describe the translation of the molecule as a whole in the directions of x, y and z, 
by a unit length. They are the normal modes of translations. An arbitrary translation 
of the molecule is described by a linear combination of Tx' Ty and Tz. It is readily 
seen that T" Ty and To transform under the operation of the group like x, y and z, 
respectively. 

There are three other functions derived by considering an infinitesimal rotation 
of the whole molecule about the X-, y- and z-axis, respectively [66]: 

where x., y. and z. denote the coordinate of the i-th atom in the molecular coordinate 
J J J 

system (see Eq. (7.31) and Fig. 7.2f). They are the normal modes of rotation. The rota-
tion about an arbitrary axis may be expressed by a linear combination of Rx' Ry 
and Rz . The transformation properties of Rx ' Ry and Rz are assigned in the character 
tables. As seen from (27), in the case of a collinear molecule (for which Xj = 0, Yj = 0 
for all i), Rx and Ry have equal absolute values while Rz = O. 

Separating the subspaces of the translations and rotations, a subspace of dimen­
sion 3n - 6 (in the case of collinear molecules 3n - 5) is retained which is the space 
of the normal modes of vibration. 
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In order to find the normal modes of the motion of all atomic nuclei, the (3n)­
dimensional space spanned by the elongation vectors is transformed into subs paces 
corresponding to the irreducible representations of the group, which are then analysed, 
representation by representation. For illustration, such an analysis is performed 
here for the water molecule, H20. 

z 

~ 
y ~) 

~,' 

a C2 b OH. e o 

Fig. 8.2. Vibrations in H20 molecule: a location of the atoms, the symmetry elements of C2v 

and local cartesian coordinate systems ; b vibrational modes 

H20 belongs to C2v = {E, C2 , av , a fv }' In Fig. 8.2a the elements of this group 
and the location of the atoms in a~ (= yz-plane) as well as the local coordinate systems 
are shown. In an analogous manner to the case of ammonia, Eqs. (7.26) to (7.29), 
the symmetry coordinates are obtained as 

AI: ''It -'h, '1 + '3' '2 

A2: ~1 - ~3 (28) 

Bl : ~1 + ~3' ~2 

B2: '11 + '13 ' '12 ' '1 - '3' 

The subspace of Al is 3-dimensional; since Tz E Ab there are two vibrations, 
Qb Q2 E AI' As seen from Eqs. (28) the single function of A2 corresponds to Rz 

(note that in the case of H20 Yl = - Y3' Yz = 0 and Xj = 0 for allj). Hence no vibra­
tion belongs to A2 • The same is true for B1' because Tx' Ry E B1• Finally, in the 3-
dimensional subspace of B2, in addition to Ty, Rx E B2 there is also a vibration Q3 E B2· 
For the vibrations the following expressions are obtained: 

Ql(A 1) = -kll ('11 - '13) - k 12('1 + '3) + k 13'2 

Q2(A 1) = -k21 ('11 - '13) + k2zC'1 + '3) - k23'2 

Q/B2) = -k31 ('11 + '13) + k32'12 - k33('1 - '3) . 

(29) 
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The coefficients k .. depend on the mass of the nuclei involved in the vibration, 
'J 

the force constants of the particular symmetry functions and their coupling constants, 
and they are determined as the solutions of an eigenvalue problem; for details see for 
instance [66]. In Fig. 8.2 b the normal modes of vibrations are depicted; the elongation 
of ° is drawn about four times as long as it really is relative to the elongations of H. 
The phase of the vibrations agrees with the notation in Eq. (29). QI may be recognized 
as a nearly pure symmetric hand stretchiny mode, Qz as a nearly pure symmetric bond 
angle deformation mode. The B2-species, Q3' is called the asymmetric bond stretching 
mode. 

Obviously, all bent molecules of AzB-type belong to CZI'; thus Eqs. (28) and (29) 
are valid for the whole class of this type, but due to the dependence of the coefficients 
k ij on the molecular parameters (as listed above), the pattern of the AI-modes varies 
significantly. So, for example, in sulphur dioxide SOl' the symmetric bond stretching 
and bond angle deformation mode are strongly coupled. Therefore in this case QI 
and Qz are mixtures of these internal coordinates [37]. 

Each normal mode of vibration, Qk' is associated with a series of vibrational levels, 
labeled by different values of the vibrational quantum number vk" which takes values 
0, 1, 2, ... with ascending energy of the corresponding leveL Thus, a vibrational quan­
tum state is defined by an N-tuple of quantum numbers, VI, Vl, ... , VN, associated 
with the respective modes Ql' Ql' ... , QN' where N = 3n - 6 and N = 3n - 5 for 
non-linear and collinear molecules, respectively. 

At the wound lae/ of vibration all quantum numbers are zero, VI = vl = ... 
= vN = O. It can be shown that the ground level always belongs to the totally symme­
tric representation of the group of the molecule. 

The levels where only one quantum number, say vk ' differs from zero are called 
fundamental /el'e/.~ if l'k = 1 or Ol'ertone lerels if L'k ;:;; 2. The fundamental level of 
Qk' i.e. 1\ = 1, belongs to the same irreducible representation as Qk does, say r(Qk)' 
The r-th overtone level of Qk' i.e. l'k = r, belongs to the direct product representation 
obtained from the r-th power of r(Qk)' In the case when r(Qk) is one-dimensional, 
it belongs to r(Q k) if r is odd, but to the totally symmetric representation if r is even. 

In combination ferels more than one quantum number differs from zero; they 
belong to the representation which results from the direct product of representations 
to which the fundamentals and overtones belong. 

When vibrational modes are treated in the so-called harmonic approximation [66] 
then transitions between the various levels are allowed only for a change of a single 
quantum number by unity (harmonic oscillator selection rule). This rule is sometimes 
violated due to the anharmonicity of the potential energy function for the motion 
of the nuclei [37] (see the subsequent paragraph). 

8.4.4 Transition Probabilities for the Absorption of Light 

Light has a dualistic nature: in some experiments it behaves as an electromagnetic 
wave of frequency v: in other experiments it exhibits properties of corpuscules (pho­
tons) of energy h \' and momentum h vic, where h denotes the PLANCK constant and c 
the velocity of light. 
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In quantum chemistry the interaction between molecules and light is sufficiently 
well described by means of time-dependent perturbation theory (see for instance 
Chap. 8 of [20]). It is shown that a transition from an initial quantum state 1/1 m of energy 
Em into a final one 1/1 n of energy En takes place by absorbing a photon of the appro­
priate energy hv = En - Em' The probability of such a transition is proportional to 
the square1 IRmi. There are various contributions to Rmn which are classified as elec­
tric or magnetic dipoles, quadrupoles etc. They differ by several orders of magni­
tude2• Thus Rmn may be sufficiently well approximated by the electric dipole contri­
bution only, the so-called electric transition dipole, defined as 

(32) 

where 1/1 m and 1/1 n denote state functions, R the vector sum of all electronic position 
vectors, R = x + y + Z, and d-r the volume element built up from the coordinates 
of all electrons. Replacing R in Eq. (32) by its vector components, the integrals 
Xmn, Ymn and Zmn are defined in an analogous manner, which satisfy the equation 

IR 12 = IX 12 + I Y 12 + IZ 12. mn mn mn mn 
(33) 

From Rule 2 one concludes that the transition 1/1 m --+ 1/1 n has non-zero probability 
only if at least one of the integrands I/I:xl/lm' I/I:yl/lm or I/I:zl/lm belongs to the totally 
symmetric representation. If this is the case, then such a transition is said to be sym­
metry-allowed. For example, according to (21), this would be the case for the B2u --+ E2g 

transition in D6h, where x, y E E1g• Since for that transition Zmn is identically zero, 
Zmn = 0, one says that the transition is x,y-polarized. 

If for a particular transition Xmn = Ymn = Zmn = 0 and, hence, Rmn = 0, one 
says that the transition is symmetry-forbidden. The so-called n --+ n* transitions are 
symmetry-forbidden with respect to the electric transition dipole Rmn' They are, 
however, rendered by the magnetic transition dipole Mmn defined by 

(34) 

where P denotes the momentum and, thus, the vector product R x P is the angular 
momentum of the electrons. Due to the difference in the respective orders of magnitude 
of Rmn and M mn, n --+ n* transitions have low intensities. 

In the discussion above 1/1 m and 1/1 n have been understood to be electronic state 
functions. The symmetry selection rule given above applies also when I/Im and I/In 
represent vibrational quantum states within a given electronic configuration. Then, 
however, the symmetry selection rule is superimposed on the harmonic oscillator 
selection rule mentioned in the foregoing paragraph. Consequently, the transitions 
from the totally symmetric ground level to any fundamental level have non-zero 
probability only for those normal coordinates Qk which belong to an irreducible 
representation to which at least one of the coordinates x, y and z also belongs. These 

1 In general Rm. can be a complex number. In that case IRml = R!.Rm.' 
2 The contributions of magnetic dipoles and electric quadrupoles are by a factor of 10- 5 and 
10-7, respectively, smaller than the electric dipole contribution to Rm.' 
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normal coordinates are called active modes, the other ones are inactive. As seen from 
the analysis presented in the foregoing paragraph and from the character table of C2v' 
all the possible vibrational transitions in H20 are symmetry-allowed. Thus the IR­
spectrum of H20 should be governed by the harmonic oscillator selection rule, 
.dvk = ± 1. But, as already mentioned, this rule is violated due to the anharmonicity 
of the potential [37]. Therefore the IR bands of the H20 vapour also contain transitions 
ascribed as (000) -+ (020), (000) -+ (011) and (000) -+ (021) at wave numbers v = 3151, 
5332 and 6874 cm- 1, respectively. The notation (1'1' v2 ' v3 ) is in accordance with 
Ql, Q2 and Q3 as depicted in Fig. 8.2 b. 

In C2v IR-inactive modes are those which belong to A2 . Such a vibrational mode 
exists for difluoromethane, CH2F 2' as the reader may derive as an exercise. The A2-

mode ofCH2F2 corresponds to the twisting of the planes of the CH2 and CF2 groups, 
thus varying the dihedral angle e between these two planes. The equilibrium value 
for e is n/2 (see Fig. 8.3). 

z 

OC, OF, OH, 

Fig. 8.3. The CH1F1 molecule 
in C1v 

The symmetry selection rule holds also for transitions between rotational as well 
as rotation-vibrational levels. We shall not discuss it because the pure rotational and 
the rotation-vibrational spectra are of nearly negligible use in organic chemistry. 
Note, however, that the rotational spectra obtained by microwave absorption are 
in general a powerful tool in determining internuclear distances and angles. 

8.4.5 Transition Probabilities in Raman Spectra 

As discussed in the foregoing paragraph, monochromatic light of frequency v 
can be absorbed by a molecule in a state of energy Eo only if it has another state of 
energy E1, such that El - Eo = hI'. If this is not the case, then the irradiated light is 
scattered. 

Suppose that the energy of the irradiating light is rather high compared with the 
quantum hVk of any vibrational excitation of the molecule, but much lower than the 
electronic energy, hVk ~ hI' ~ El - Eo' Then its energy is insufficient for absorption. 
An analysis of the scattered light shows that in addition to the initial frequency 
(RA YLEIGH scattering), some frequencies I' - I'k and l' + vk are also present (RAMAN 
scattering), with intensities due to the population of the ground and the fundamental 
level, respectively (see Fig. 8.4). 
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Fig. 8.4. RAMAN scattering: the interaction of a 
molecule with an energy quantum hv insufficient 
for absorption 

From time-dependent perturbation theory one obtains [20] that the probability 
of both RAMAN transitions is proportional to the square of the integral 

(35) 

where ljJm and ljJn denote the initial and final vibrational state, respectively. The tensor 
product R . R of the radius vector transforms like the polarizability tensor as 

(
X2 xy XZ) 

R . R = yx y2 yz . 

zx zy Z2 

(36) 

Comparing the IR and RAMAN transitions, Eqs. (32) and (35), one sees that the 
former are made feasible by a change of the permanent dipole, whereas the latter 
by a change of the induced dipole due to the vibration considered. 

As seen from (35), a RAMAN transition is symmetry-allowed if the direct product 
r(ljJJ EI3 T{eiej ) EI3 T{ljJJ is either totally symmetric or contains the totally symmetric 
representation; eiej denotes any of the bilinear forms x2, xy etc. The character table of 
C2v shows that each irreducible representation of this group has at least one of these 
species. Thus, the RAMAN spectrum of a molecule belonging to C2v contains the 
fundamental tones of all vibrations. 

From the character table of D ooh is seen that the totally symmetric representation 
I; has two such species, x2 + y2 and r. Hence, the fundamental transition of the 
symmetric stretching mode of CO2 which belongs to I; is present in the RAMAN 
spectrum, in contrast to the IR spectrum where it is absent (see the foregoing para­
graph). This may serve as an example for the so-called IR-RAMAN alternative rule. 

IR-RAMAN Alternative Rule: In a centro-symmetric molecule (which has a center 
of inversion) the linear functions x, y and z belong to u-representations, their bilinear 
forms x2,y2, r, xy, yz and zx to g-representations. Thus in view of the transformation 
properties of vibrational states, the IR and RAMAN spectra of such a molecule can 
obtain fundamental absorption of u- and g-modes, respectively. This means that the 
fundamentals present in the IRabsorption spectrum are absent in the RAMAN spectrum 
and vice versa. 

In the case of benzene, C6H6 , belonging to D6h , one meets the following situation. 
From the 30 vibrational modes 15 belong to u- and 15 to g-representations. Among 
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these modes, 7 are active in the IR spectrum and 12 in the RAMAN spectrum. Among 
the 12 irreducible representations of D6h only 5 are active in the IR or in the RAMAN 
spectrum. 

8.4.6 Group Theory and Quantum Chemistry 

Some results of the numerous applications of group theory to quantum chemistry 
[1 1,20,36] have already been used in the previous parts of this section. Here a few 
additional features will be outlined. 

The central problem of quantum chemistry is to find the eigenvalues Ek and the 
eigenfunctions t/l k of the Hamiltonian operator Jf of the system considered. Most 
commonly this problem is represented by the (non-relativistic) time-independent 
SCHROEDINGER equation 

(37) 

It can be shown that the following general results hold. 

Rule 6: The Hamiltonian Jf of a given molecule always belongs to the totally 
symmetric representation of the group of the molecule considered. 

Rule 7 (Wiegner's theorem): The molecular Hamiltonian Jf commutes with each 
element R of the group G of the molecule. 

Let Rt/lk denote the function obtained from t/lk under the symmetry operation R 
of G. If t/lk satisfies Eq. (37), then according to rule 7, 

(38) 

From the invariance of the eigenvalues under the operation of the group one 
reaches the following important conclusion. 

Rule 8: The eigenfunctions of a molecular Hamiltonian transform according to 
particular irreducible representations of the symmetry group of the molecule. 

Since Eq. (37) can be solved exactly for only a few cases, numerous approximate 
methods have been developed. Let cP!, CP2' .. , be a set offunctions which are symmetry 
adapted, i.e. they belong to particular representations, CPj E r(cp) of the symmetry 
group of the molecule. For example, the functions CPj may be atomic orbitals, linear 
combinations of them, etc., but by no means eigenfunctions of the molecular Hamil­
tonian. Further let these functions depend on a given molecular parameter q, e.g. 
the coordinates of the equilibrium positions of the nuclei. 

The molecular Hamiltonian Jf can be then represented within this basis by means 
of a square matrix H whose entries are 

(39) 

Then the matrix H has diagonal block form and each block corresponds to a 
particular irreducible representation of the group. This is because from Rules 2 
and 6 it follows that Hjk is identically zero if cP j and CPk belong to different representa­
tions. The diagonal elements H .. represent energies associated with the functions cp. n J 
while the off-diagonal elements Hjk' j =/; k, indicate the energetic effect of the inter-
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action of the functions <Pj and <Pk' Since the functions <Pj are assumed to depend on 
the molecular parameter q, all the matrix elements of H must be functions of this 
parameter: Hjk = Hjk(q)· 

For a distinct value of q, say q', it may happen that two diagonal elements H .. 
}} 

and Hkk take the same value. Then the functions Hjj(q) and Hkk(q) intersect each 
other at q = q' as shown schematically in Fig. 8.5a. 

E E 

I 

)(~ I . 

I 

: Hkk 
I 
I 
I 

q' q q' q 
a b 

Fig. 8.5. Illustration of the non­
crossing rule: a two crossing 
levels; b removed crossing 

In this case an eigenvalue problem must be solved for the functions <Pj and <Pk 
at q = q' (see especially Sect. C of Chap. 16 of [20]), which results in 

81 ,2 = [Hjj + Hkk ± V(Hjj - Hkk)2 + 4H]k]/2 . (40) 

If <P j and '({)k belong to the same irreducible representation, T( <p) ;: T( <PJ, then 
Hjk is not necessarily zero and the crossing is removed (Fig. 8.5b).This result is the 
essence of the non-crossing rule. 

Rule 9 (the non-crossing rule): Two levels belonging to the same irreducible repre­
sentation never intersect. 

If <Pj and <Pk belong to different representations, T(<p) ¥- T(<pJ, then according 
to Rules 2 and 6, Hjk is identically zero and consequently, Eq. (40) results in 81,2 

E {Hli' Hu}, i.e. two levels cannot interact. Hence the crossing remains as depicted 
in Fig. 8.Sa. 

Although Rule 9 is strictly valid only if the crossing levels depend on a single 
parameter, e.g. the distance between the nuclei in a diatomic molecule, its applications 
are much wider. 

8.4.7 Orbital and State Correlations 

Some groups may be generated as products of smaller groups according to (7.45). 
In this procedure the irreducible representations of one group are split by those of 
the other group. This has been briefly discussed for Cnv = Cn G {E, o-.} and 
Cnh = Cn $ {E, O"h} in Sect. 8.2. Here the interest is focused on exactly the opposite: 
What happens to the irreducible representations if the symmetry of the molecule is 
lowered? The remaining symmetry group is a proper subgroup of the original group. 
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The number of different subgroups which can be extracted from the group considered 
is equal to the number of ways in which the original symmetry can be lowered. Let 
us take C2 1" as an example and let us lower the C2v symmetry once to C2 and sub­
sequently to C lh : 

---------r-------

C2 E C2 C21· 
i E C2 u;. Clh E a r· a 
-------------

A Al I A' 
8 -1 A2 -1 -1 AU -1 

8 1 -1 I -1 
8 2 -I --1 1 
--- .1----- ------- ----

In the case of the symmetry lowering C21. ----> C2 , the twofold axis is retained. In 
A E C2 one has x( C2) = 1; the same characters one finds in C 2" for A I' A2 E C2v. 
Thus, the functions belonging in C21. either to Al or A2 will belong to A in C2 . One 
says concisely that Al and A2 of C21. correlate with A of C2 . From X(C2) = -lone 
similarly concludes that 8 1, 8 2 E C21" correlate with 8 E C2 . 

In the case of the symmetry lowering C21. ----> Clh first of all it must be decided 
which of the two reflection planes of C21., a,. or a;., is retained. Let us assume that av 

is retained. Then from the values of x(a,,) in C2 l' and Clh it follows that Al and 8 1 of 
C2" correlate with A' of Clh . Similarly, A2 , 8 2 E C2v correlate with AU E Clh • If the 
symmetry species correlated are MO's, one speaks about orbital correlation, whereas 
if they are states, one llses the term state correlation. 

As an illustration the ring closure of cis-butadiene (I) to cyclobutene (II) and the 
inverse reaction of ring opening, II ----> I will be considered: 

[] 

I II 

Both molecules have C2 l' symmetry. In the reaction I ----> II two n bonds are broken 
and a new n bond as well as an additional a bond are formed. In the reaction II ----> I 
the opposite happens. The reaction requires a rotation of the CH2 groups about the 
respective CC bonds since they are coplanar in I but perpendicular to the plane of 
the carbon atoms in II. This rotation lowers the original Czv symmetry. If both planes 
rotate with equal velocities in the same direction (conrotatory mode), then the C2 axis 
is conserved and the symmetry is lowered from C2l' to C2 • However, if the directions 
of the rotations are opposite (disrotatory mode), then the (Jv plane is conserved and 
the symmetry lowering occurs from C2v to Clh• 

In Fig. 8.6 those MO's of I and II are schemacically depicted which are subject 
to significant changes in the course of the reaction. They are readily classified as n, 
n*, (J and (J* MO's. Their respective irreducible representations are indicated. As 
a consequence of the different correlation of the Czv species with those ofCz and Clh , 

the MO's of cis-butadiene (I) and cyclobutadiene (II) correlate in a different manner 
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for the con- and the disrotatory mode. The orbital correlation shown in Fig. 8.6 
represents one of the numerous applications of WOODWARD-HoFFMANN rules to 
organic reactions [2, 68]. 

IT] 

bl(O'''') '' b '" 0·· _______ ··· bl(d"') 
o ... olln l ) ... ..------

°l(n 2) 

b,(n) ... ~.- b , (n, )'" "'b,(n) 
b ... - ... _____ 

__ ... 0 O~ ... __ 

0, (0') '----v-----J ~ 0 , (0') 

C1• conrototory Cl V disrototory C 2v 
Fig. 8.6. Orbital correlation for the 
reaction I ;:::t II 

The conrotatory and the disrotatory modes are competing reaction paths. In 
this competition that path is favoured which needs a lower energy of activation. 
Qualitative conclusions about the relative magnitude of the energy of activation may 
be drawn from the state correlation diagram (Fig. 8.7). Therein the states involved 
in the thermal and in the photoreaction I -+ II and II -+ I are denoted by 1/1[, 
i = 1, 2, 3, 4; J = I, II. For the thermal reaction the reactant is assumed to be in 

conrototory mode: 

w;- -- --wf 

[] 
a 

disrototory mode: 

b 

Fig. 8.7. State correlation for the 
reaction I -+ II. The conrotatory 
pathway is preferred for thermal, 
the disrotatory pathway for photo­
reaction 

its ground state 1/11, whereas in the photochemical reaction it is in its first excited 
state 1/Ii. The other states involved are the lowest doubly exCited state 1/1~ and another 
singly excited state 1/IJ.. From an inspection of Fig. 8.6 and the character table of C2u 

one finds 
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t/!: = rritS E AI' 

t/!~ = rrirrzrrt E 8 2 ' 

./,1 _ Z *2 A 
'1'3 - rr1 rr 1 E l' 

t/!~ = rr1 rr;rri E 8 Z ; 

./,11 = (JZrrZ E A 
'I' 1 1 ' 

./,11 = ~rrrr* E 8 
'1'2 Z ' 
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(41) 

The Figures 8.7a and 8.7b show schematically the state correlations in the case 
of the conrotatory and disrotatory mode, respectively. In the conrotatory mode the 
levels of the photoreaction, t/!~ ~ t/!~ and t/!~ ~ t/!~, in the disrotatory mode those 
of the thermal reaction t/!: --+ t/!~ and t/!~I --+ t/!~, cross each other. Due to Rule 9 
they must not cross. Since an avoided crossing is usually associated with a strong 
increase of energy, from Fig. 8.7 one may conclude that the thermal reaction I --+ II 
follows the conrotatory reaction path while the photoreaction takes place in the 
disrotatory mode. These conclusions are experimentally confirmed [141]. 

Although the WOODWARD-HoFFMANN rules are usually discussed in terms of 
symmetry as above, one should realize that they are essentially topological. Hence, 
they work even if the molecules considered have no higher symmetry than Ct. 

In order to save space, no correlation tables for descent in symmetry are given 
here; they can be found in [58]. 



Chapter 9 

Automorphism Groups 

9.1 Automorphism of a Graph 

The notion of graph automorphism has already been introduced in Section 4.1. 
An automorphism may be understood as a bijective (that is one-to-one) mapping 
of the vertex set "f/( G) of the graph onto itself which preserves the edge relation tC( G) 
of the graph. Evidently, only those vertices can be mapped onto each other which 
are equivalent, i.e. they are indistinguishable apart from their labels. A subset of 
"f/( G) formed by all mutually equivalent vertices is called an orbit of the graph vertices. 

6 5*7 
3~4 

1 

. G, 

As seen by inspection the vertices of the graph G, form four orbits, namely: 

{1} , {2} , {3, 4} , {5, 6, 7} . (1) 

Obviously, the vertices 1 and 2 can be mapped automorphically only onto them­
selves. For the vertices of {3, 4} and {5, 6, 7} there are 2 and 6 feasible bijective 
mappings, respectively. Since each automorphism of G, can be regarded as a particular 
combination of just one bijective mapping of equivalent vertices one has 1 . 1 . 2 . 6 
= 12 different automorphisms for G,. In the next section it is shown that the omnium 
of the automorphisms of a graph forms a group, the so-called automorphism group 
of the graph. 

As shown in Sect. 4.1 an automorphism is unequivocally expressed by an appro­
priate permutation: in the upper line the origins, in the lower line the images of the 
corresponding automorphic mapping are denoted. 

The combination of two permutations is explained as follows. (i) The permutation 
at the right-hand side is assumed to be applied first; its lower line assigns the images 
of the originals. (ii) The permutation at the left-hand side, now applied, operates 
upon these images. (iii) The result is represented by another permutation which 
correlates the originals with the final images. In this way one has for example: 

( 1 2 3 4 5 6 7) (1 2 3 4 5 6 7) = (1 2 3 4 5 6 7). (2) 
12436751243576 1234657 
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9.2 The Automorphism Group A(G1) 

The orbits of equivalent vertices of G1 are given by (1); they have the cardinalities 
I, 1,2 and 3, respectively. The automorphisms of G1 already discussed above are 
represented by the following permutations which are abbreviated by letters for 
convenience: 

E: C ~ ~ : ~ ~ ~), A : C ~ ~ : ~ ~ ~). 

C: (II ~ 33 44 _! 67 67), (I 2 3 4 5 6 7) 
_ D: I 2 3 4 7 6 5 ' 

B:(~ ~ ~ ~ ~ ~ ~), 

F: C ~ ~ : ~ ~ ~), 

L: G ~ ~ ; ~ ~ :), M: C ~ ~ ; ~ ~ ~), N: C ~ ~ ~ ~ ~ ~). 
(3) 

By means of Eq. (2) the multiplication table of these permutations is obtained 
as follows: 

E ABC D F H J K L M N 
----~~-.-.------~ ._----- ----~-------

E EABCDFHJKLMN 
A ABEFCDJKHNLM 

B 
C 
D 

B E A D F 
C D F E A 
D F C B E 

CKHJ MNL 
BLMNHJK 
AMNLKHJ 

F F C D A 
H H J K L 
J I J K H N 
K ' K H J M 

~I~~zz 
j~~-~~. 

BENLMJ KH 
M N E ABC D F 

LMABEFCD 
N L B E A D F C 
J K C D F E A B 
HJ DFCBEA 

KHFCDABE 

(4) 

From the multiplication table one may conclude that the permutations given in 
(3) indeed form a group under the law of multiplication exemplified by Eq. (2). The 
axioms [G I] to [G 4] are satisfied; the permutation E represents the identity element 
of the group. This group is called the automorphism group of the graph Gl' denoted 
by A(G,). Its order is h(A(G,)) = 12. 
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Further, from the multiplication table the inverse elements may be obtained as 

X EABCDFHJ KLMN 
(5) 

X- 1 E B A C D F H K J L M N 

Finally, by means of Definition 4 from Chap. 7 the following classes are obtained: 

{E}, {A, B}, {C, D, F}, {H}, {J, K}, {L, M, N} . (6) 

Since there are 6 classes, according to Rule 1 from Chap. 7 there must be 6 irreduc­
ible representations. Let Sj denote the number of irreducible representations of 
dimensionj, then we have 

(7) 

and according to Eq. (7.21) 

(8) 

From these two equations it follows that Sl = 4, S2 = 2 and Sj = 0 for j ~ 3. 
Hence, the automorphism group A( G 1) has four l-dimensional and two 2-dimensional 
irreducible representations. 

It can be easily shown that A(G1) may be generated by means of the permutations 
A, C and H according to 

{E, C} Q {E, A, B} = {E, A, B, C, D, F} 

{E, H} ® {E, A, B, C, D, F} = A(G1) • 

(9) 

(10) 

Equation (10) can be used for the construction of the character table of A(G1). 

Having in mind the character table (7.25) of the group {E, A, B, C, D, F}, we imme­
diately arrive at (11). 

{E) {A, B} {C, D. F} {H} {J, K} {L,M,N} 

r1 I I 1 
r' 1 -1 -1 -1 
r2 -1 1 1 -1 
r' 2 -1 -1 -I 1 (11) 

r3 2 -I O· 2 -I 0 
r' 3 2 -1 0 -2 1 0 



9.3 Cycle Structure of Permutations III 
The procedure outlined above shows that all the fundamental laws of group 

theory, as exemplified in the Chaps. 7 and 8 for spatial symmetry groups, are also 
applicable to groups formed by permutations. There is only the idea of the degree 
of permutation groups which is undefined in space groups and, hence, must be added 
here [164]: 

Definition 1: The degree of a permutation group is the number' of objects upon 
which the permutations of the group operate. 

The degree of the permutation group G will be denoted by g(G). Obviously, the 
degree of an automorphism group of a graph is equal to the number of vertices of 
this graph. 

9.3 Cycle Structure of Permutations 

Consider the permutation J given in (3). J may be understood as the result of the 
action of four permutations, operating upon disjoint subsets, namely 

J: (I 2 3 4 5 6 7) = (I) (2) (3 4) (5 6 7). 
1243675 1243675 

( 12) 

In (12) the cycle structure of the permutation J comes forward. The labels 5, 6 and 7 
are permuted in a three-membered cycle, the labels 3 and 4 in a two-membered cycle 
and, finally, the labels I and 2 in one-membered cycles each. The cycle structure of 
the permutation J, denoted as cs(]) may be expressed as 

cs(]) = [1]2[2][3] . (13) 

It is easy to see that if a given permutation P has the cycle structure 

es(P) = [I r [2J# [3J ." , (14) 

then the degree of the permutation is given by 

g(P) = rJ. + 2f3 + 3)' + .... (15) 

The cycle structures of the permutations forming the automorphism group 
A(G1) are 

cs(£) = [lr , cs(A) = cs(B) = [1]4[3] , 

cs(C) = cs(D) = cs(F) = [lP[2] , cs(H) = [1]5[2], (16) 

cs(]) = cs(K) = [1]2 [2][3] , cs(L) = cs(M) = cs(N) = [lP [2]2 . 

The following rule holds. 

Rule 1: The permutations belonging to the same class have equal cycle structure. 
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The opposite is not true as exhibited by {H} and {C, D, F} in eqs. (16). The non­
equivalence of the classes {H} and {C, D, F} is due to the nonequivalence of the 
objects transposed by these permutations, {3,4} and {5, 6, 7}, respectively. 

As mentioned in Appendix 2 each permutation may be considered as a result 
of a number of transpositions. It can be shown that the cycle [m] needs m - I trans­
positions. Hence, its parity is given by (_I)m -1. From this, by inspection of Eqs. (16) 
one readily finds that the permutations E, A, B, L, M and N are even while C, D, 
F, H, J and K are odd. Since permutations belonging to the same class have the same 
cycle structure, they also must have the same parity. 

Having in mind that the parity of an identical permutation E is, regardless of 
its degree, always (_1)° = + 1, from the group axiom [G 2] one easily concludes 
that no automorphism group can consist solely of odd permutations. On the other 
hand, permutation groups consisting only of even permutations do exist, as illustrated 
by the subgroups {E, A, B} and {E, A, B, L, M, N} of A(G1). It can be shown that 
the following statement holds. 

Rule 2: An automorphism group of order h consists either of h even or of hj2 even 
and hj2 odd permutations. If h is odd, then all permutations forming the group are 
even. 

The notation on the right-hand side of Eq. (12) is often used to present permuta­
tions in a single line. The indication of the objects which are permuted is unequivocal 
only in the case of the cycle structure [I]O![2]P. For example, L = (1)(2)(34)(5)(67) and 
M = (1)(2)(34)(57)(6). If the permutation contains n-cycles, n > 2, then a whole 
set of permutations is indicated by the same symbol. Thus (1)(2)(34)(567) stands 
for both the permutations J and K. 

9.4 Isomorphism of Graphs and of Automorphism Groups 

Let Ga and Gb be two isomorphic graphs, Ga ~ Gb • Then the automorphism groups 
of these graphs must be isomorphic, A(Ga) ~ A(GJ, because each particular auto­
morphism of Ga is in a one-to-one correspondence with a distinct automorphism of Gb• 

The reverse of this statement is not true. Figure 9.1 shows examples of non-isomorphic 
graphs with isomorphic automorphism groups. The reason for the isomorphism of 
the respective automorphism groups is the fact that all the graphs depicted in Fig. 9.1 
have the same number of vertices partitioned into the same number of equivalence 
classes (= orbits) of pairwise identical cardinalities. 

'*' ,+, ,+, ''\i(' '?' '?' 3~4 3<>4 3~4 3y 3<>4 3~4 
1 1 1 1 1 1 

Fig. 9.1. Six non-isomorphic graphs with 7 vertices. The first graph from the left has been already 
used and is denoted by G,. The automorphism groups of all graphs shown are isomorphic to 
A(G,) 
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It is worthwile to note that the automorphism group of a graph depends on the 
classes of equivalent vertices and their interrelations. In order to illustrate the role 
of the interrelations between two subsets of equivalent vertices, we compare the auto­
morphisms of the graphs Gz and G3 . These two graphs differ only in two edges, (3,6) 
and (4,7), which are present in G3 but not in Gz. Both graphs have the same orbits, 
[I}, {2}, {3, 4}, {5} and {6, 7}. Obviously, the automorphism group of Gz is formed 
by the permutations 

4 7 4 7 

,~ ,~ 
3 6 3 6 

G2 G3 

E:C 
2 3 4 5 6 7) .' 

P: C 2 3 4 5 6 ~) , 2 3 4 5 6 7 ' 2 4 3 5 6 
(17) 

Q:C 2 3 4 5 6 :) , R: C 2 3 4 5 6 :) . 2 3 4 5 7 2 4 3 5 7 

Thus A(Gz) = {E, P, Q, R}. Due to the presence of the edges (3,6) and (4,7) 
in G3 , the permutations P and Q are not feasible in the case of G3 • Therefore, A(G3) 

= {E, R}. Note that the equivalent vertices of {3, 4} and {6, 7} may be automorphical­
ly mapped in Gz independently of each other. Contrary to that, the interrelation be­
tween these two orbits, caused in G3 by the presence of the additional edges, requites 
a simultaneous well-tuned mapping of the vertices of these two orbits. 

9.5 Notation of some Permutation Groups 

We list here briefly the most common permutation groups of degree n [36, 38, 41, 46]. 

Sn The symmetric group of order h = n! consists of all possible permutations of n 
objects. 

An The alternant group of order h = n !/2 consists of all possible even permutations 
of n objects. 

Dn The dihedral yroup of order h = 2n is generated by the n-cyde (I 2 3 ... n) and 
(I n) (2 n 1)(3 n- 2) .... 

Cn The cyclic group of order h = n is generated by the n-cycle (I 2 3 ... n). 
En The identic yroup of order h = I consists of only the identical permutation 

(I) (2) (3) ... (n). 

As can be easily recognized, all permutation groups of degree n and of order less 
than n ! are proper subgroups of Sn (CA YLEY'S theorem, see, for instance, p. 16 of [33]). 
For the groups listed above we have in particular: 

EcCcDcS 
n n n n 

(18) 

(19) 
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In general, On is not a subgroup of An' except for n = 4k + 1. Also, en is a sub­
group of An only if n is odd. For an exercise the reader may prove (18) and (19) by 
means of Rule 2. 

For n ~ 3 some degeneracies in Eqs. (18) and (19) occur, namely e3 = ~, 
03 = S3; E2 = A2, e2 = 02 = S2; El = e1 = 01 = Al = Sl' It is also worth 
noting that S2' S3 and S4 are isomorphic with e., e3V and Td, respectively, but Ss 
is not isomorphic with Ih• 

The symmetric group Sn is the automorphism group of the complete graph Kn 
as well as of its complement, 

(20) 

The dihedral group On is the automorphism group of the cycle eft as well as of 
its complement, 

(21) 

The character tables of the symmetric groups Sft' n ~ 6 are given in Appendix 5. 
These tables are arranged so that the classes forming the alternant group An are on 
the right-hand side. 

9.6 Direct Product and Wreath Product 

There are several group operations [34] for the generation of a group from two groups. 
The direct and the wreath product of two automorphism groups are of special interest. 
In order to explain these group operations we shall use two permutation groups 
A = {A) and B = {Bt } which operate on the set of objects ~ = {x~} and'W = {y~}, 
respectively, such that AJx~ E ~ and B,.y~ E 'W and ~ () 'W = ~. The orders and the 
degrees of these two groups are denoted by h(A), h(B), g(A) and g(B), respectively. 
Note that 

g(A) = I~I and g(B) = I'WI . (22) 

The sum or the direct product A e B is a permutation group which operates upon 
the union of the sets ~ and 'W. Hence its degree is g(A e B) = g(A) + g(B). The 
elements of this group are ordered pairs (Aj e Bt ) and the order of the group is 
h(A e B) = h(A) h(B). The element Z E ~ u 'W is permuted according to the rule 

(23) 

There are two graph operations (see Sect. 4.4) which correspond to the direct 
product: the union Ga u Gb and the compound Ga e Gb of two graphs Ga and Gb• 

Thus the respective automorphism groups are obtained as 

(24) 
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Since the complete bipartite graph can be obtained as the compound of two null 
graphs, Ka•b = 1< EB Kb (see Sect. 4.4), from Eqs. (20) and (24) follows 

(25) 

The wreath product A[B] is a permutation group operating upon the cartesian 
product ?f ® ![If of the sets .!f and ![If. Hence the degree of the group is given by 

g(A[B]) = y(A) y(B) . (26) 

Note that the set .!f ® '!II is composed of all ordered pairs (x~ ® y~), I ~ ~ ~ l?fl, 
I :s; '1 :s; I~YI. For each Aj E A and each sequence (Bk ' Bk ' ... ,Bk ) of y(A) (not 

- - 1 2 g(A) 

necessarily different) permutations from B, there is in A[B] exactly one permutation 
(A., Bk ' Bk ' ... , Bk ) which permutes the elements x, ® y of!![ ® ![If according 

J 1 2 g(A) , ~ 

to the rule 

(A., Bk ' Bk ' ... ,Bk ) (x, ® v) = (A x,) ® (B,y ) . 
J 1 2 g(A)" ~ J , , ~ 

(27) 

From the construction of the group elements one may conclude that 

h(A[B]) = h(A) [h(B)]9(A) . (28) 

The relevance of the wreath product for the composition of graphs has already 
been mentioned in Sect. 4.4 (see Theorem 4.3). From Eq. (28) one immediately con­
cludes that the wreath products A[B] and B[A] cannot be isomorphic. 

Wreath products play an important role in the discussion of the symmetry of 
non-rigid molecules [54] (see Sect. 10.3) as well as in the theory of regular polymers 
[161 ]. 

9.7 The Representation of Automorphism Groups as Group Products 

In many molecular graphs several orbits of equivalent vertices appear which may 
be automorphically mapped independently of each other. In such cases, the auto­
morphism group can usually be expressed in the form of a direct product or wreath 
product [153]. We shall exemplify this for the graphs GI' G2 and G3 . 

As shown in (3), the vertices I and 2 can only be mapped identically. They form 
a subset upon which the identic group E2 operates. The two permutations of the ver­
tices 3 and 4 form the symmetric group S2 whereas the six permutations of the vertices 
5,6 and 7 agree with S3' One could. therefore, expect that A(G1) is the direct product 
of the three groups, 

(29) 

Bearing in mind the definition of the direct product (see Sect. 9.6), we see that 
y(E2 EB S2 EB S3) = 2 + 2 + 3 = 7 and h(E2 EB S2 EB S3) = I . (2!) . (3!) = 12. 
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These results agree with the degree and order of A(G1). The correctness of Eq. (29) 
is definitely verified by expanding its right-hand side and comparing the result ob­
tained with (3). 

In a similar manner one obtains 

(30) 

In the case of G3 we have once again the group E3 operating upon the vertices 1, 2 
and 5. The vertices 3 and 6 on the one, and 4 and 7 on the other hand form certain 
subunits of G3 , which can be mapped onto each other. This mapping is described 
correctly by 82, but the mapping of the vertices within the subunits, 3 +-+ 3 and 6 +-+ 6, 
as well as 4 +-+ 4 and 7 +-+ 7, is described by E2 . Thus the automorphic mapping of the 
vertices 3, 4, 6 and 7 is described by the wreath product 82[E2]. Therefore, one obtains 

(31) 

The degree, g(A(G3 )) = 3 + 2 . 2 = 7, and the order, h = 1 . (2, 12) = 2 of 
A(G3) are correctly reproduced. 

Recently another approach to finding the group structure of simple graphs has 
been proposed [89] which makes use of the fact that the cycle structure of feasible 
permutations may be traced in the adjacency matrix of the graph considered. Further, 
attention should be drawn to the recent review of K. BALASUBRAMANIAN, Chern. 
Rev. 85, 599 (1985), and the references cited therein. 



Chapter 10 

Some Interrelations between Symmetry 
and Automorphism Groups 

10.1 The Idea of Rigid Molecules 

Apart from the identity operation E, the elements of a space group are geometrically 
well-defined subspaces of the 3-dimensional space, i.e. points (/), straight lines (en'S.) 
and planes (O"h' O"v' O"J Thus the operations associated with these elements are realized 
in each point of the space. On the other hand, each point of the space and, thus, each 
center of the molecule is transformed by such an operation, provided the point does 
not belong to the symmetry element considered. As a final consequence of these 
circumstances, the molecule treated by means of symmetry groups is considered to 
be rigid. This means that each atom of the molecule is associated with a triple of co­
ordinates characterizing its mean position with absolute precision. Vibrations of 
the atoms about their mean positions are discussed in terms of elongation vectors 
(see paragraph 8.4.3). This concept begins to break down when an internal degree 
of freedom (e.g. the torsion of a methyl group) becomes fully excited. As the shall 
show later, automorphism groups of the molecular graph are well-suited to treat the 
symmetry in non-rigid molecules. 

10.2 Local Symmetries 

l-Cyclopentadienyl-3-cycloheptatrienylbenzene (I) has highest spatial symmetry if all 
the three rings are coplanar. In this case I belongs to the symmetry groups Cs = {E, 0" h} 

and all n-MO's of I belong to the irreducible representation A /I of this group. Hence, 
the adjacency matrix (and, consequently, the HikKEL molecular orbital Hamiltonian) 
of I cannot be factorized by means of Cs . 

The molecular graph of I exhibits some local symmetry in the external rings, indi­
cated by P and Q, respectively. No geometric symmetry element can be assigned to 
these local symmetries and, therefore, Cs cannot take account of them. Contrary 
to this, the automorphism group of I will contain permutations corresponding to P, 
Q and R = PQ = QP, i.e. A(I) = {E, P, Q, R}. Thus the order of A(I) is higher 
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than the order of the symmetry group, h(A(I» = 4 > h(Cs) = 2. The elements of 
A(I) have the following cycle structure: 

cs (E) = [1]18, cs (P) = [1]14[2f , 

cs (R) = [1]8[2P . (I) 

Since A(I) is Abelian, it possesses four irreducible representations. As a conse­
quence of that, the adjacency matrix of I is factorized into three blocks of order 13, 
3 and 2, respectively. 

In the case of poly-m-phenylene the local symmetry of the terminal phenyl rings 
causes two isolated levels within the gap between the two highest valence bands 
of this polymer [161]. 

For more details concerning local symmetries see [176, 180]. 

10.3 Non-Rigid Molecules 

Boron trifluoride (II), BF3, is a planar molecule, that is the mean positions of the four 
atoms lie in one plane, (Jh' The symmetry group of BF3 is D 3h, with the order h(D3h) 

= 12. The automorphism group of the molecular graph of BF3 is A(II) = E1 EB S3 
with the order h(A(II») = 6. 

4F'1,/F3 
8 

H3C ,/CH3 
'8 H-C=C-H 

I I 
2F CH3 

II ill IV 

The elements of A(II) are: 

E:C 2 3 :) , D:G 2 3 ~), F:C 2 3 ;) , 2 3 3 4 4 2 
(2) 

A:C 2 3 ;) , B:C 2 3 ~) , c:G 2 3 :) . 2 4 4 3 3 2 

They are grouped in the following classes: {E}, {D, F}, {A, B, C} [153]. 
Note that the symmetry group of BF 3 has higher order than its automorphism 

group. 
The mean position of the boron and the carbon atoms of trimethylboron (III), 

B(CH3)3' also lie in one plane, but depending on the location of the hydrogen atoms, 
various symmetry groups could be appropriate. In Fig. 10.1 some of these configura­
tions are depicted schematically. In IlIa and Hid three hydrogen atoms are located 
in the molecular plane, from which this plane gains the property of a symmetry ele­
ment (Jh' The symmetry ofIlIa is C3h whereas that ofIlld is only Cs ' When starting 
with III a the methyl groups rotate conrotatorily in phase. i.e. <P A = <PH = <Pc = <p, 
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Fig. 10.1. Some particular conformations of trimethylboron (III) 

oC 
@B 

119 

then the molecule passes through various C3 conformations and arrives with CfJ = n/6 
at the configuration III b which exhibits C3v symmetry. An in-phase-disrotatory 
motion of two methyl groups, say CfJ A = ~CfJB' CfJc = 0, transforms Illb to IIIc, 
showing C, symmetry. In contrast to IlIJ. here only one hydrogen atom is located 
in the (Jh plane. In nrc (Jh is perpendicular to the molecular plane while in IIId these 
two planes coincide . Obviously, any out-of-phase motion of the methyl groups ruins 
all the symmetry elements and generates conformations of C1 symmetry. Thus, 
the orders of the symmetry groups associable with III range between I and 6. 

Topologically, the three methyl groups of III are equivalent. Therefore, the auto­
morphism group of III should be similar to that ofBF3, A(II) = Ej EB S3' But whereas 
in II the S3 operates on the three F atoms, in the case of III S3 operates on the com­
posed "methyl" units. Since the hydrogen atoms of a given methyl group are equi­
valent, the automorphism group of an isolated methyl would take the form Ej EB S3' 
where EI operates on the carbon and S3 on the hydrogen atoms. In view of that and 
the equivalence of the methyl groups, the automorphism group of III is 

(3) 

This expression reflects the constitution of B(CH3)3 with astonishing transparency. 
According to Eqs. (9.26) and (9.28), the order of A(III) is 1 ·6 . (t . 6)3 = 1296 and 
its degree is 1 + 3 . (I + 3) = 13. 

The above analysis shows [153] that no simple symmetry group can take into 
account the equivalence of the hydrogens in III as indicated by its NMR spectrum 
[82,91]; but A(III), given by Eq. (3), does that. Concerning the treatment of the sym­
metry of non-rigid molecules by means of symmetry groups see [1,71,142, 172]. 

The high order of A(III) is due to the automorphic mappings of the hydrogen 
atoms and, indeed, the subgroup S3[S3]' operating only upon the hydrogen atoms has 
the same order, h(S3[S3D = 1296. The group S3[S3] is a subgroup ofS9 , which would 
be appropriate for nine equivalent objects if they were not grouped into three distin­
guishable subsets. The orders of S9 and S3[S3] are in the ratio 280: I. 

When the automorphism groups of the complete molecular graphs are expressed 
by means of direct and wreath products, then usually one does not use Sn with n > 4. 
A well-known exception is the case of bullvalene, C1oH1o' The non-rigid high-tem­
perature form of this molecule corresponds to the automorphism group SjO[E2] of 
the order 10! = 3628800 and degree 20. On the other hand, the rigid low-temperature 
form agrees with C31" h(C3 ,,) = 6. The temperature-dependence of the j H-NMR 



120 lO Some Interrelations between Symmetry and Automorphism Groups 

spectrum of bullvalene nicely reflects the existence of these two forms as well as their 
mutual transition. At about 80°C the NMR spectrum consists of only one singlet, 
at 15°C a broad signal with unresolved structure is obtained while at about -80°C 
two signals (with relative intensities 6:4) appear, corresponding to the olefinic and 
aliphatic protons, respectively [40]. 

Although the NMR spectra of the high-temperature forms of trimethylboron 
and bullvalene indicate that in both molecules under the experimental conditions all 
hydrogen atoms are equivalent, these equivalencies have different reasons: in tri­
methyl boron it is due to the full excitation of the internal torsional motion of the 
methyl groups, while in the case of bullvalene it is caused by very fast rearrangements 
of the molecule. Since a particular conformation of bullvalene can rearrange into 
3 of the 10! distinct conformations, in its high-temperature form there are simultane-

ously ~ . 1O! = 5443200 conformational equilibria present. 

10.4 What Determines the Respective Orders of the Symmetry 
and the Automorphism Group of a Given Molecule? 

For I and III the order of the automorphism group is higher than that of the respective 
symmetry group because the latter does not take into account the local symmetries 
and non-geometric equivalencies. For the planar BF3 (II), however, where such addi­
tional features are not present, the opposite is true. Here one element of A(II) corre­
sponds to a pair of elements ofD3h. In particular, E E A(II) corresponds to E, uh E D3h, 
D, FE A(II) to 2C3, 2S3 E D3h and A, B, C E A(II) to 3C;, 3uv E D3h. This is a result 
of the inability of the elements of A(II) to recognize the direction of a vector parallel 
to the z-axis, i.e. to distinguish between +z and -z. 

Consider an unbranched molecule like acetylene, HC == CH, (IV). In addition 
to the identical mapping only one more automorphism exists which maps the terminal 
vertices, their neighbours, etc., pairwise onto each other. Hence, h(A(IV» = 2. 
On the other hand, the symmetry group of IV is D ooh' having one oo-fold axis of sym­
metry. Consequently, h(DOOh) = 00. In order to understand this we must remember 
that the full orthogonal group 0(3), which possesses the complete symmetry of the 
sphere, consists of an infinite number of oo-fold axes of symmetry, in accordance 
with the high symmetry of the 3-dimensional Euclidean space. When within this 
space a given topology is realized, the high symmetry of 0(3) is broken. In the case 
that an unbranched topology is realized by a collinear geometry, only one of the in­
finite number of oo-fold axes of symmetry is conserved. Thus the high symmetry of 
a collinear molecule reflects rather the symmetry of the Euclidean space than the 
symmetry of its molecular topology, as expressed by the automorphism group of the 
molecular graph. 
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Special Topics 



Chapter 11 

Topological Indices 

Whereas the topology of a molecule, represented by the molecular graph is an essen­
tially non-numerical mathematical object, various measurable properties of molecules 
are usually expressed by means of numbers. In order to link molecular topology to 
any real molecular property one must first convert the information contained in the 
molecular graph into a numerical characteristic. Every number which is uniquely 
determined by a graph is called a graph invariant. Those invariants of molecular 
graphs which are used for structure-property or structure-activity correlations are 
usually called topological indices (of the corresponding molecule). 

All topological indices I( G) must meet the following requirement: 

(1) 

The reverse of this statement is by no means true. If I(G!) = I(G2), then the graphs 
G! and G 2 need not be isomorphic. 

Much effort has been made to design topological indices, or pairs, triplets etc. of 
topological indices which would characterize a molecular graph up to isomorphism!. 
It is commonly believed in graph theory that a non-trivial characterization of this 
type is not possible. 

A plethora of topological indices has been proposed in the chemical and pharma­
ceuticalliterature [7, 9, 47], with no sign that their proliferation will stop in the near 
future. The great and increasing number of topological indices indicates that perhaps 
a clear and unambiguous criterion for their selection and verification is still missing. 
Moreover, many of the currently used topological indices are mutually correlated. 
Moroc and BALABAN have demonstrated this for 17 indices on the example of the 
octane isomers [147]. On the other hand, the success in predicting certain physical, 
chemical and pharmacological properties of organic molecules by means of topo­
logical indices cannot be denied. 

It is not the aim of this section to either review these numerous topological indices 
or to elaborate on their applications in practice. We shall restrict our attention to 
only two of them and examine some of their mathematical properties. It is somewhat 
surprising that, although the work on topological indices comprises a good part of 
research in contemporary mathematical chemistry, rather few general results (theo­
rems) have been obtained so far. 

I This so-called "isomorphism disease"' seems to be widespread among beginners and amateurs 
in graph theory. 



124 II Topological Indices 

The first topological index was introduced in 1947 by HARRY WIENER [179] and 
used for correlation with boiling points of alkanes. WIENER'S index is related to the 
distances in molecular graphs and will be considered in Sect. 11.1. Another topolo­
gical index whose mathematical properties are relatively well investigated is that of 
HosOY A, which will be presented in Sect. 11.2. 

11.1 Indices Based on the Distance Matrix 

11.1.1 The Wiener Number and Related Quantities 

The distance between two vertices in a (connected) graph as well as the distance matrix 
have been defined in Sect. 4.1. If vI' v2 ' ... , vn are the vertices of a connected graph G 
and d(vr' vs) denotes the distance between vr and vs' then the elements' of the distance 
matrix are given by 

(2) 

The r-th row of the distance matrix is called the distance vector D of the vertex Vr' 
Vr 

Hence 

(3) 

The sum of all the entries of D v is called the distance number of the vertex v and 
will be denoted by d(v) = d(v, G). 

The WIENER number W = W(G) of the graph G is equal to the sum of the distances 
between all pairs of vertices of G. It is immediately clear that 

1 
W = I drs = - I d(v). 

r<s 2 vE'I' 
(4) 

A distance tree Tv (G) of the vertex v of the graph G is a spanning tree of G with 
the property that T/G) and G have identical distance vectors corresponding to the 
vertex v. 

The existence of at least one distance tree for each vertex of a connected graph 
G is evident from the following construction [158]. 

Let 11 be the vertex set of G and let v E 11. Partition the vertices of G into classes, 
such that the k-th class contains all vertices u E 11 for which d(u, v) = k. 

These vertices are said to form the k-th sphere of the vertex v. 

1. Start with a collection of n isolated vertices whose labels coincide with those from 11. 
2. Link the vertex v with all those vertices which are adjacent to v in G (the vertices 
of the first sphere). 
3. For k = 2, 3, ... , n - 1 link the vertices of the (k - 1 )-th sphere to those vertices 
of the k-th sphere which are neighbours in G, but without forming any cycle. 

The construction of distance trees is illustrated in Fig. 11.1. 
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Fig. 11.1. The construction of the distance tree for the vertex I of the graph G. Note that in the 
third step either the edge e34 or the edge e46, but not both e34 and e46 are introduced, resulting 
thus in two non-isomorphic trees T1(G) and T{(G) 

In the general case several non-isomorphic distance trees may exist for the same 
vertex. The presence of even-membered cycles in G is a necessary, but not a sufficient 
condition for the existence of several non-isomorphic distance trees. 

In order to illustrate the above definitions, consider the cycle Cn• Since all the 
vertices of Cn are equivalent, all its distance trees must be isomorphic. It is easy to 
see that Tv(Cn) ~ Pn for all t' E "Y·(Cn). 

By an appropriate labeling of the vertices we can obtain the distance vector of 
a vertex v of Cn in the form 

Dv(Cn) = (0, 1,2, ... , (n - 4)/2, (n - 2)/2, (n - 4)/2, ... ,2, 1) (5) 

if n is even, and 

DJCn) = (0, 1,2, ... ,(n - 3)/2, (n - 1)/2, (n - 1)/2, (n - 3)/2, ... ,2, 1) (6) 

if n is odd. It follows now immediately that for all v E "Y(Cn), 

{ n2/4 if n is even 
d(v, en) = (n2 . 1)/4 if n is odd, (7) 

and consequently 

{
n3/8 

W(Cn) = n(n 2 _ 1)/8 if n is odd. 

if n is even 
(8) 
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Theorem 11.1. If G is a connected graph with n vertices, then 

n - I ~ d(v, G) ~ n(n - 1)/2 (9) 

for any vertex v E 1'(G), and 

n(n - 1)/2 ~ W(G) ~ n(ri- - 1)/6. (10) 

Proof One has to observe first that among graphs with n vertices the complete 
graph Kn and the path Pn have minimum and maximum distance and WIENER numbers, 
respectively. The left-hand sides of the above two inequalities are just the distance 
and the WIENER numbers of Kn. The right-hand sides of these inequalities are the 
maximum value for d(v, Pn) and the WIENER number of Pn' respectively. D 

The proof of the following result [158] should be an easy exercise from group 
theory. 

Theorem 11.2. If two vertices of a graph are automorphically mapped onto each 
other, then their distance numbers are equal. 

Let u and v be two adjacent vertices of the graph G. The vertex set of G can be 
partitioned into three classes: 

1'u = {p E 1'(G)ld(u, p) < d(v, p)} 

1'uv = {p E 1'(G)ld(u,p) = d(v,p)} 

1'v = {p E 1'(G)ld(u, p) > d(v, p)} . 

(11) 

Denote the number of elements of these classes by l1'ul, I)/'uv l and l1'vl, respectively. 
Without proof we state the following result [158]. 

Theorem 11.3. 

d(u, G) = d(v, G) + Wvl - Wul. (12) 

It is interesting to note that the set l' uv is non-empty if and only if the vertices u 
and v belong to an odd-membered cycle. 

Theorem 11.3 provides an efficient method for the calculation of the distance 
number and thus also the WIENER index of a graph. The procedure requires the know­
ledge of a single distance number (which can be conveniently achieved by constructing 
a single distance tree). The distance numbers of all other vertices of G can be then 
determined step-by-step using Eq. (12). 

In the case of trees, there is an even more rapid way for the calculation of the 
WIENER number [179]. 
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Theorem 11.4. Let T be a tree and use the same notation as in Theorem 11.3. Then 

W(T) = L I y u I . 11"" I (13) 
II," 

with the summation going over all pairs of adjacent vertices of T. 

Proof By Theorem 6.3, any pair of vertices in a tree is connected by a unique 
path. The number of edges of this path is just the distance between the respective 
two vertices. 

Now, in the case of trees the WIENER index can be obtained either be summing 
the distances between all pairs of vertices or summing the number of paths which 
contain a given edge, over all edges. 

Let e be an edge of T, connecting the vertices u and v. Then for all pEru and 
q E i'v the (unique) path connecting p and q contains e. The total number of paths 
containing e is thus l'l'ul . I'I~"I and Theorem 1l.4 follows immediately. 0 

11.1.2 Applications of the Wiener Number 

As already mentioned, the WIENER number is the first in a long series of topological 
indices, In his pioneering paper [179] WIENER introduced not only the "path number" 
(which is nowadays known under his name), but also the "polarity number" - the 
number of selections of P4 subgraphs in the molecular graph. By using a linear com­
bination of the "path number" and the "polarity number", WIENER was able to give 
a reasonably reliable prediction of boiling points of alkanes. In a series of subsequent 
papers, WIENER and independently PLATT extended the application of these indices 
to a number of other physico-chemical properties of alkanes (heats of formation, 
heats of vaporization, molar volumes and molar refractions). Since the WIENER 
number measures the compactness of a molecule (c.f. Theorem 11.1), it is clear that 
it can be correlated with those physico-chemical properties which depend on the 
volume/surface ratio of the molecules. Gas-chromatographic retention data for series 
of structurally related molecules are typical examples where the WIENER number 
"works", Less common applications of the WIENER number have also been reported, 
e.g. in modeling crystal growth and crystal vacancies and certain properties of con­
jugated polymers, For further data on the applications of the WIENER number and 
an extensive bibliography, the interested reader should consult the review [7]. 

11.2 Hosoya's Topological Index 

Hosoy A [129] in 1971 seems to be the first to conceive the chemical significance of 
certain combinatorial properties of the molecular graphs of saturated hydrocarbons, 
namely those related to the selection of mutually nonadjacent (or as graph theore­
ticians use to say: independent) edges. Whereas the perfect matchings of molecular 
graphs (called KrKuLE structures), have attracted the attention of chemists over 
a whole century, the non-perfect matchings have been long disregarded. 
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HOSOYA introduced the quantities m(G, k) as the number of selections of k mutually 
nonadjacent CC bonds in the hydrocarbon whose molecular graph is G and called 
their sum the topological index. It was claimed that this index was a candidate for 
classifying saturated hydrocarbons with respect to their topological nature. Although 
it is not capable of reflecting the entire structure of isomers, it is roughly dependent 
on their size, mode of branching and ring closure [129]. 

11.2.1 Defmition and Chemical Applications of Hosoya's Index 

The number of k-matchings in a graph, denoted by m(G, k), was,defined in para­
graph 4.2.2 where its basic mathematical properties were also described. Hence, 
the topological index defined in [129] is given as 

[n/2) 

Z = Z(G) = I meG, k) (14) 
k=O 

and is thus equal to the total number of matchings of the graph G. The graph G was 
originally assumed to represent the carbon-atom skeleton of a saturated hydrocarbon. 
There is, however, no obstacle to considering Z(G) for an arbitrary graph G E t§. 

Z(G) is usually called HosoYA'S topological index. The descriptor "topological" 
will be dropped in the following text. 

It has been shown that a nearly linear correlation exists between the logarithm 
of Z and the boiling point of the corresponding saturated hydrocarbon [129, 131). 
The quality of this correlation is illustrated on Fig. 11.2. 
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Fig. 11.2. Boiling points (in K at normal pressure) 
of alkanes with 6, 7 and 8 carbon atoms versus the 
logarithm of HosoYA's index 

A better reproduction of boiling points was gained by the formula (a In Z 
+ b) n- 1/2 + c, where a, band c are empirical parameters [131]. 

In a later work it was found that the absolute entropy of acyclic saturated hydro­
carbons correlates well with the logarithm of Z, except for sterically overcrowded 
and highly symmetric molecules. The physical meaning of this relation was clarified 
by analyzing the rotational partition function [152). 

Figure 11.3 should provide an illustration of the connection between entropy and 
HOSOYA'S index. 

Attempts to use the index Z for classifying structural formulas in chemical docu­
mentation were also reported [130]. 
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Fig. 11.3. Entropy (in JK-1mor 1 at 298 K) of 
alkanes with 4 to 7 carbon atoms versus the loga­
rithm of HOSOYA'S index 

11.2.2 Mathematical Properties of Hosoya's Index 

In order to make the manipulations with Z(G) easier, it would be convenient to intro­
duce a polynomial 

[n/2] 

(X t(G, x) = I m(G, k) Xk ( 15) 
k~O 

which is in fact the generating function for the number of k-matchings of the graph G. 
Of course, Z(G) = (Xt(G, 1). 

It is clear that the polynomial (X t (G) is closely related to the matching polynomial 
(X( G), see Eq. (4.11). The explicit relation between them is 

(16) 

or 

(17) 

where i = V-1. 
Consequently, there is no need to elaborate the properties of (Xt(G). All we have 

to do is to directly reformulate the results known for the matching polynomial. 
As a matter of fact, the recurrence relations for the matching polynomial are 

fully analogous to the recurrence relations for the characteristic polynomial of trees, 
except that they hold for all graphs. We shall summarize them in a theorem. 

Theorem 11.5. (a) I/,e is any edge o/, a yraph G E '§, connecting the vertices u and v, 
then 

(X(G) = a(G -- e) - a(G - u - /") . ( 18) 

(b) If l' is a pendent vertex o/, G, being adjacent to the vertex u, then 

a(G) = xo:(G- 1") - a(G - u - v) . (19) 
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(c) Ifv is a vertex ofG, being adjacent to the vertices u1' uZ' ••. , Ug' then 

9 

oc(G) = xoc(G - v) - I IX(G - Uj - v) . (20) 
i=1 

The parts (a), (b) and (c) of the above theorem should be compared with Theorem 
6.5, Corollary 6.5.1 and Corollary 6.5.2, respectively. 

Proof All the statements given in Theorem 11.5 can be deduced from the rela­
tions (4.9) and (4.10), bearing in mind the definition of the matching polynomial 
(4.11). The details are similar to those used in the proof of Theorem 6.5 and its corol­
laries and will be omitted here. 0 

Recursion relations for Hosoy A'S index are now a straightforward consequence 
of Theorem 11.5 and the fact that 

Z(G) = (--i)" IX(G, i) . (21) 

This latter formula follows, of course, from Eq. (17). 

Theorem 11.6. (a) If e is any edge of a graph G E rg, connecting the vertices U and v, 
then 

Z(G) = Z(G - e) + Z(G - U - v) . (22) 

(b) If v is a pendent vertex of G, being adjacent to the vertex u, then 

Z(G) = Z(G - v) + Z(G - U - v) . (23) 

( c) If v is a vertex of G, being adjacent to the vertices up u2 ' ••. , Ug' then 

9 

Z(G) = Z(G - v) + L Z(G - Uj - v). (24) 
i=1 

For the actual calculation of Z(G) the following simple result is rather useful. 
If G is composed of components G1 , G2 , ••• , Gk , then 

(25) 

As an example we shall calculate HOSOYA'S index for the tricyclic graph G(n, i,}) 

i -1 

G (n,i,j) 
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Applying (24) to the central vertex r of G(n, i, J) we get 

Z(G(n, i,j» = Z(C.) + 3Z(Pn-d (26) 

since the graph obtained by the deletion of v and any of its neighbours is isomorphic 
to the path with n - 1 vertices. Explicit expressions for Z(C.) and Z(Pn- 1) will be 
deduced in the subsequent paragraph. 

It is worth noting that Z(G(n, i,j» does not depend on the parameters i andj. 
As a consequence, systems like G(12, 5, 9), G(12, 5, 10), G(l2, 3, 7) etc. are indis­
tinguishable as long as the Z index is considered. 

G(12,5,9) G(12,5,10) G 02,3,7) 

11.2.3 Example: Hosoya's Index of the Path and the Cycle 

In order to make the reader a bit more familiar with HOSOYA'S index we shall 
work out two further examples, exhibiting certain interesting combinatorial features 
of Z(G). 

Corollary 11.6.1. For the path Pn lI'ith n vertices, Z(Pn) is equal to the n-th FIBONACCI 
number. Therefore, 

(27) 

Proof Recall that the FIBONACCI numbers Fn' n = 2, 3, 4, ... are generated re­
cursively from the relation Fn = Fn _ 1 + Fn _ 2' using the initial conditions Fo = Fl = 1. 
Now, because of (6.22), 

(28) 

which is just the FIBONACCI recursion. By direct calculation we can check that Z(Pn) 

coincides with Fn for, say, n = 1,2 and 3. Then Z(Pn) will coincide with Fn for all n. 
The expression (27) for Z(Pn) is the well known BINET formula for the FIBONACCI 

numbers. D 

Corollary 11.6.2. For the cycle Cn with n vertices, Z(Cn) is equal to the n-th LUCAS 

number. Therefore. 

Z( Cn) = [(1 + yS)/2]n + [(1 - yS)/2]n . (29) 
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Proof. We shall first show that Z(Cn) obeys a FIBONACcI-type recursion relation, 
namely 

(30) 

For this, it is sufficient to verify that 

(31) 

Apply Theorem l1.5a to any edge of the cycle. This gives 

(32) 

Using (6.32) and having in mind that rx(Pn) = q>(P.) we can transform rx(Cn) as: 

rx(Cn) = [xrx(Pn _ 1) - rx(Pn - z )] - [xrx(Pn_ 3) - rx(Pn - 4J] 

= x[rx(Pn _ 1) - rx(Pn - 3)] - [rx(Pn - Z) - rx(Pn - 4)]· 

(33) 

By (32), rx(Pn - 1) - rx(Pn- 3) = a(Cn_1) and a(Pn- Z) - a(Pn- 4) = a(Cn_ Z) and one 
arrives at (31). 

Of course, the relation (30) could also be obtained by a direct application of 
Theorem 11.6. 

The rest of the proof is now completely analogous to that of Corollary 11.6.1. 
Recall that the LUCAS numbers L n, n = 1,2, '" are defined recursively via Ln = L n- 1 

+ Ln-z with the initial conditions Lo = 2, Ll = I. 0 

11.2.4 Some Inequalities for Hosoya's Index 

The quasiordering of graphs introduced in paragraph 4.1.4 has a straightforward 
application to HosoYA'S index. Namely, if G1 >- Gz' then also Z(G1) ~ Z(G2 ) with 
equality only if the graphs Gland G 2 are matching equivalent. 

From Theorem 6.6 we can now immediately conclude that among trees with n 
vertices the star has the minimum and the path the maximum value for Z. The following 
statement is somewhat stronger. Let Ta, Tb, Tc and Td be trees with n vertices: 

Theorem 11.7. If Tis any tree from the set fTn \ {Kl,n-l' Ta, Tb, Tc' Td, Pn}, then 

(34) 
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This statement applies for n ~ 8. For smaller values of n some of the above 
inequalities need to be slightly modified. 

Numerous relations for HOSOYA'S index follow from the results given in [100, 104, 
II3] (see paragraph 6.1.4). We present here only one of them, which has a direct 
experimental consequence. 

Let the tree Pn(j) be obtained by joining a new (pendent) vertex to the j-th vertex 
of the path Pn. 

Theorem 11.8. Let n = 4k - I or 4k or 4k + I or 4k + 2. Then 

440 
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(35) 

Proof Apply Theorem 11.6b to the third pendent vertex of Pn(j). This gives 

b.p. 
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(36) 

Fig. 11.4. Boiling points (in K) of monomethylal­
kanes as a function of the position (j) of the methyl 
group. Note that j = 1 corresponds to the normal 
alkanes 
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The first summand on the right-band side is independent of j. Therefore, 
Z(P/,j)) ~ Z(Pn(j*)) whenever Z(Pj_1 U Pn-) ~ Z(Pj*_1 U Pn- j*). This latter 
will occur if Pj- 1 U Pn- j >- Pj*-l U Pn- j* and Theorem 11.8 is obtained from 
Lemma 6.7. 0 

The tree Pn(J) is, however, the molecular graph of a monomethylalkane (e.g. 
P7(3) represents the 3-methylheptane). Therefore, Theorem 11.8 implies certain 
regularities in the boiling points and entropies of monomethylalkanes. In particular, 
the boiling points should alternately decrease and increase as the methyl group is 
"moved" along the carbon-atom skeleton. How good the experimental findings 
follow the predictions based on Theorem 11.8 can be seen from Fig. 11.4. 



Chapter 12 

Thermodynamic Stability of Conjugated Molecules 

12.1 Total1t-Electron Energy and Thermodynamic Stability 
of Conjugated Molecules 

We already know that the molecular orbital energy levels of the n-electrons in con­
jugated molecules are (within the HMO approximation) related to the eigenvalues 
of the molecular graph via 

(1) 

If the number of n-electrons in the j-th molecular orbital is 1'/ j (where, of course, 
1'/. is either 2 or 1 or 0), then the total energy of all n-electrons in the molecule considered 

J 
is given by 

n 

Err = I I'/jE j . 
j= ! 

Combining (l) and (2) we immediately arrive at 

n 

Err = nell + f3 I I'/)j 
j= ! 

(2) 

(3) 

where ne denotes the number of n-electrons. The term nell corresponds to the energy 
of ne isolated p-electrons. The second term on the right-hand side of (3) is the energy 
gained from the interaction of these p-electrons in the molecule and is sometimes 
called the n-binding energy. Since f3 is a constant, the only non-trivial part of (3) is 

n 

E = I I'/ij' (4) 
j=! 

The quantity E, defined via (4) is also called the HMO total n-electron energy 
and will be the object considered in the present chapter. It is formally obtained from 
(3) by using the so-called f3-units: Il = 0 and f3 = 1. One should, however, always 
have in mind that f3 is a negative constant! (whose actual numerical value is irrelevant 
for the problems with which we shall be concerned), so that the total (electron) energy 
of a conjugated molecule decreases with increasing E. Hence, the larger is the value 
of E the greater is the (predicted) thermodynamic stability of the corresponding 
compound. 

! The value f3 = -137.0 kllmo/ = -1.4199 eV was recommended for thermodynamic 
applications of the HMO model [173]. 
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A serious objection to Eq. (3) is that it does not take into account the interactions 
between the x-electrons, as required by more sophisticated molecular orbital ap­
proaches. Arguments have been offered supporting the opinion that (at least a part of) 
the electron interaction is contained in Eq. (3) [133, 143, 170, 174]. Their consideration 
would go much beyond the scope of the present book. Here we rather emphasize 
the empirically tested fact [173] that the total x-electron energy is in good linear 
correlation with experimental heats of formation of conjugated hydrocarbons, 
especially when there is no steric strain. Heats of atomization computed by the HMO 
method are found to be accurate to 0.1 %, implying accuracy of ± 0.005fJ in resonance 
energies per x-electron. 

Figure 12.1 should give a general impression about the thermodynamic relevance 
of the HMO total x-electron energy. More details along these lines are given in Sect. 
12.9. 
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Fig. 12.1. Experimental heats of atomization 
(in MJ/mol) vs. heats of atomization calculated 
by the HMO method [173] 

It has been recently demonstrated [133] that the HMO total x-electron energy 
is in a perfect linear correlation with the kinetic energy of x-electrons as calculated 
by rather accurate (STO-3G) ab initio methods. 

One of the main uses of total x-electron energy is the calculation of resonance 
energy [90]. HESS and SCHAAD have demonstrated that the resonance energies calculated 
from HMO total x-electron energies are of equal quality and reliability as those 
obtained by far more advanced SCF MO methods (see [127, 128] and the numerous 
subsequent pUblications). For more detail on this matter see Sect. 12.9. 

We may conclude that despite its admitted limitations, the HUCKEL molecular 
orbital total x-electron energy is usually a good estimate for a given conjugated 
compound, when compared to more sophisticated methods. Moreover, trends 
within a class of topologically related compounds are generally well-accounted for. 

12.2 Totaln-Electron Energy and Molecular Topology 

It is clear from (4) that the total x-electron energy is uniquely determined by the 
topology of the corresponding molecule (via the eigenv~lues of its molecular graph), 
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provided the occupation numbers IJ j are fixed. This is indeed the case if we consider 
the conjugated molecules in their ground state. Then we immediately have 

ne/2 

E = 2 I Aj (5) 
j=l 

if n. is even, and 

(6) 

if ne is odd, where ne is the number of n-electrons. 
In former times numerous attempts have been made to design calculation schemes 

for estimating E from some (easily obtainable) topological invariants of the molecule. 
With the advent of the era of computers, exact E values become so easily available, 
that any further effort along these lines turned out to be meaningless. 

Another, somewhat related question continues, however, to attract the attention 
of contemporary researchers. This is the problem of how E depends on the topology 
of the molecule. In other words we may ask which topological invariants of the con­
jugated molecule or which invariants of the molecular graph determine the totaln-electron 
energy. The answer to this question would give us insight into the perplexed relations 
which exist between the chemical structure of a conjugated molecule and its thermo­
dynamic stability. 

Fortunately the HMO model is simple enough to allow the treatment of the 
above stated problem. On the other hand, the dependence of the HMO total n­
electron energy on molecular topology is complicated enough to enable the formula­
tion of a variety of non-trivial mathematical statements. These will be exposed in 
what follows. 

12.3 The Energy of a Graph 

In order tq avoid any misunderstanding we stress immediately that a graph (being a 
mathematical object) cannot possess any kind of real (physical) energy. Nevertheless, 
as explained in detail in the previous two sections, the binding energy of the n-electrons 
can be calculated from the molecular graph. In all real chemical applications, the 
graph from which this energy is calculated must correspond to a chemically meaningful 
n-electron network and is therefore subject to drastic limitations (see Chap. 3). On 
the other hand, the vast majority of the results which will be exposed in the present 
chapter hold irrespective of all such limitations. This gives us a motivation to introduce 
the concept of the energy of a graph as a proper (but formal mathematical) generaliza­
tion of what is actually calculated for molecular graphs [25]. The advantage of this 
generalized graph energy is that most of our mathematical results will now apply to 
all graphs. 

In the great majority of (though certainly not in all) conjugated n-electron systems 
of chemical interest all bonding molecular orbitals are doubly occupied and all 
anti bonding molecular orbitals are unoccupied. (For the calculation of E the number 
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of n-electrons in non-bonding molecular orbitals is irrelevant.) This means that 
17. = 2 if A. > 0 and 17. = 0 if A. < 0, and Eqs. (5) and (6) can be written in the form 

) ) ) ) 

where I means summation over all positive graph eigenvalues. 
+ 

(7) 

For instance, Eq. (7) holds for all alternant hydrocarbons because of the pairing 
theorem (Theorem 6.9). 

Even if some of the bonding MO's are empty or some antibonding MO's are filled, 
Eq. (7) still holds, but only as a good approximation. This is because the graph 
eigenvalues corresponding to the highest bonding and the lowest anti bonding MO 
are usually negligibly small compared to E. 

In all the considerations which follow, the validity of Eq. (7) will be assumed. 
We prove now an elementary yet rather important consequence of (7). 

Theorem 12.1. For conjugated hydrocarbons whose totaln-electron energy satisfies 
(7), 

n 

E=IIAjl. (8) 
j=l 

Proof The sum of the eigenvalues of a simple graph is zero (see Eq. (4.24)). Hence 

(9) 

where I symbolizes summation over all negative eigenvalues. Substituting the above 

identity into (7) we get 

E=IAj-I,lj (10) 
+ 

from which (8) is obvious. 0 

Corollary 12.1.1. For heteroconjugated molecules whose total n-electron energy 
satisfies (7), 

( 11 ) 

where hv is the weight associated with the vertex v (see Sect. 6.5). 

Theorem l2.l is important because it relates the total n-electron energy to an 
interesting though not simple function of the graph eigenvalues. It is, for example, 
worth noting that the right-hand side of (8) is a symmetric function in the sense that 
it remains unchanged if any two eigenvalues exchange places. 
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The function' on the right-hand side of (8) has a certain mathematical beauty. 
2uriously enough, it has not previously been considered by mathematicians. This 
quantity is, of course, well defined for all graphs. Having in mind the previously 
given explanation, we shall call it the energy of the graph [25]. 

Hence let G be an arbitrary graph and ,1,1' ,1,2' ... , ,1,0 its eigenvalues. Then the 
energy of G is defined to be equal to 1)'11 + 1,1,21 + ... + 1,1,01 and will be denoted by 
E(G) or (where there is no danger of misunderstanding) simply by E. 

Most of the results which will be presented in this chapter are, in fact, statements 
about the energy of graphs. 

12.4 The Coulson Integral Formula 

A classical result in the topological theory of total n-electron energy is that obtained 
by COULSON as early as 1940 [78]. It provides a direct analytical connection between 
the characteristic polynomial and the energy of a graph. 

Theorem 12.2. Let G be a graph with n vertices and qJ'(G, x) the first derivative of 
its characteristic polynomial, Let further i = V=I. Then 

co 

E(G) = ~ f [n - ixq/(G, ix)/cp(G, ix)]dx 

-co 

+co 

__ :-1 f " [n - x(d/dx) In cp(G. ix)] dx . (12) 

-co 

+co 

Here and later, by the integral I F(x) dx we always mean its proper value 
z -co 

lim f F(x) dx. 
Z-HlC) -z 

Proof The above result is easily obtained by contour integration [78]. We offer 
here another, somewhat more elementary and straightforward derivation of (12), 
based on the observation that 

n I 
cp'(G, x)/q>(G, x) = I --, 

j= 1 X - Aj 

Let us consider the simple integrals 

-co 

(13) 

(14) 
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and 

+00 f h 
2 2 dx = O. 

A + x 
( 15) 

-00 

Since IAI = /1 + i12' we obtain 

IAI = ~ f+oo A2 + ih dx = ~ f+oo[l -~J dx 
" A 2 + x 2 n ix - A 

(16) 

-00 -00 

and thence 

n n 1 f+ oo[ iX] 1 +foo[ n ix ] I I Aj I = I-I - -. - dx = - n - I -. - dx, 
j=1 j=1 n IX -Aj n j=l/X -A j 

(17) 

-00 -00 

from which (12) follows immediately. 0 

Since COULSoN-type integral formulas will frequently be used in the following 
text and since they are rather important, we shall illustrate Eq. (12) by the example 
of fulvene, whose molecular graph is G I 

G, 

and whose characteristic polynomial cp(GI , x) = x6 - 6x4 + 8r - 2x - l. There­
fore, cp'(Gl' x) = 6x5 - 24x3 + 16x - 2 and formula (7.8) reads 

+00 

1 f [ 6X6 + 24x4 + 16x2 + 2iX] 
E(G ) = - 6 - dx 

I n x6 + 6x4 + 8x2 + 1 + 2ix 
(18) 

-00 

where both the numerator and the nominator are divided by tj = -1. It is by no 
means easy to calculate the above integral and even to see that its imaginary part is 
equal to zero. Hence the usage of Theorem 12.2 for numerical calculation of Ewould 
be a rather inappropriate idea. 

Theorem 12.2, however, gives some insight into the dependence of E(G) on the 
structure of G. 

Let us first point at a few other integral formulas which are straightforward 
corollaries of Theorem 12.2. 



12.4 The Coulson Integral Formula 141 

Theorem 12.3. Let Gland G2 be graphs with equal number of vertices. Then 

+00 

E(Gd - E(G 2 ) = ~ f In Irp(G 1, ix)/rp(G 2 , ix)1 dx. (19) 

-00 

Proof From Eq. (12), 

+00 

E(G\) - E(G 2 ) = - ~ f x(d/dx) In [rp(G\. ix)/rp(G 2, ix)] dx. (20) 

-00 

By partial integration we get 

+co 

+ ~ f In [rp(G\. ix)/rp(G 2 • ix)] dx. (21) 

-00 

Equation (19) follows now from 

x In [rp(Gp ix)/rp(G2 • ix)] -+ 0 for x -+ ± 00 (22) 

and from the fact that E(G) is necessarily a real number. 0 

Theorem 12.4. For a graph G with n vertices. 

+00 

I f 2 E(G) = -; x- In I t/J(G, x)1 dx (23) 

-00 

where 

I/t(G, x) = (-ix)" rp(G, i/x) . (24) 

Proof Choose in Theorem 12.3 G2 to be the null graph with n vertices. Then 
f/J(G2 • x) = x" and E(G2 ) = O. Theorem 12.4 results now after an appropriate change 
of variables x -+ x -\ . 0 

Substituting (4.21) into (23) we obtain the explicit dependence of E(G) on the 
coefficients of the characteristic polynomial: 
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Substitution of the SACHS theorem (see paragraph 4.3.3) into Eq. (25) reveals the 
rather perplexing, but analytically well defined dependence of the total n-electron 
energy on the structure of the molecular graph. In principle, all questions concerning 
the dependence of E(G) on molecular topology can be answered by combining (25) 
with the SACHS theorem. However, due to the rather complicated form of (25), such 
an analysis is by no means simple and many relevant problems in this field still remain 
unsolved. 

In the case of alternant hydrocarbons formula (25) is considerably simplified 
because of Eq. (6.56). Thus, if G is a bipartite graph with a + b vertices, 

+00 

E(G) = ~ J x- 2 1n [f b(G, k) X2kJ dx. 
n k=O 

-00 

If G is acyclic, then we have a further simplification: 

+00 

E(G) = ~ f x- 2 In [III m(G, k) X2kJ dx. 
n k =0 

-00 

Equation (27) follows from (26) because of Eqs. (6.1) and (6.4). 
We point now at three interesting consequences of (26) and (27). 

(26) 

(27) 

Corollary 12.4.1. If G E '§ a, b' then E( G) is a monotonically increasing function of 
the coefficients b(G, k), k = 1,2, '" ,a. (These coefficients are, of course, defined 
via Eq. (6.56).) 

Corollary 12.4.2. If G E :Tn' then E( G) is a monotonically increasing fwzction of 
the matching numbers m(G, k), k = 1, 2, ... ,[nI2]. (These numbers are extensively 
discussed in paragraphs 4.2.2 and 6.1.3.) 

Corollary 12.4.3. Let G E '§ a, b and let its characteristic polynomial be given by Eq. 
(6.56). Let ~k and 'k be real numbers such that ° ~ ~k ~ b(G, k) and 'k ~ 0, 
k = 0, 1, ... ,a. Then 

+00 

~ f x-21n[kto[b(G'k)-~k]2x2kJdX~E(G) 
-00 

+00 :;;; ~ f x- 2 In [ f [b(G, k) + 'k]2 X2kJ dx . 
n k=O 

(28) 

-00 

As a special case of the above inequalities we have a lower bound for E(G) [102], 

(29) 



12.5 Applications of the Coulson Integral Formula 

where 

1 

J 1 = ~ f x- 2 In [I + b(G, I) x2 + b(G, 2) X4] dx 

o 

co 

J 2 = ~ f x- 2 In [b(G, a - I) X 2a- 2 + b(G, a) x2a] dx. 

1 

143 

(30) 

(31 ) 

The estimate (29) is only one among the many possible lower bounds for E which 
can be deduced from Corollary 12.4.3. However, in this particular case J 1 and J2 

can be calculated by elementary methods of integration. Thus we have 

4 2 
J1 = -(IX arctan IX + f3 arctan f3) - -In [I + b(G, 1) + b(G, 2)] 

n n 

where 

{
I }1/2 

IX = 2 [b(G, I) + Vb(G, 1)2 - 4b(G, 2)] 

{
I }U2 

f3 = "2 [b(G, I) - Vb(G, W - 4b(G, 2)] 

and 

2 
J2 = -{n - 2 + 1t'}' - 2}' arctan}, + In [b(G, a-I) + b(G, a)]} 

n 

where 

}' = [b(G, a)/b(G, a - 1)]1/2. 

(32) 

(33) 

(34) 

(35) 

(36) 

It has been found that an unexpectedly good linear correlation exists between E 
and its lower bound J1 + J2 [102]. 

12.5 Some Further Applications of the Coulson Integral Formula 

Suppose that we are able to show that for two bipartite graphs Gland G 2 the inequalities 

(37) 

are satisfied for all values of k ~ O. Then from Corollary 12.4.1 it immediately 
follows that 

(38) 
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Equality in (38) is reached only if (37) is an equality for all k which in practice 
will occur only if G1 and G2 are cospectral. (Note that in (37) it is not required that 
the graphs G1 and G2 have equal number of vertices. Nevertheless, the case when G1 

and G2 have unequal number of vertices is of little interest for us.) 
If(37) holds for all k, we will write G1 >. G2 or G2 .< G1 • IfG1 and G2 are acyclic 

graphs, then the relation G1 >. G2 reduces to the relation G1 >- G2 , discussed in 
detail in paragraph 6.1.4. 

Hence, if G1 and G2 are acyclic graphs, then the relation G1 >- G2 implies 

(39) 

As a consequence, each result given in Theorem 11.7 yields a pertinent inequality 
for totallt-electron energy. We shall formulate here only some of them. 

Theorem 12.5. If T E :Y n' then 

(40) 

with equality only ifT ~ K1• n- 1 or T ~ Pn, respectively. 

It should be mentioned thatE(K1• n_1) = 2v;=t andE(P J = 2 cosec [It/(2n+2)] 
- 2 if n is even and E(Pn) = 2 cotan [It/(2n + 2)] - 2 if n is odd. 

Theorem 12.6. If Pn(j) is the tree defined in paragraph 11.2.4, then for n = 4k - 1 
and n = 4k, 

E(Pn(I» ~ E(Pn(3» ~ E(Pn(5» ~ ... ~ E(Pn(2k - 1» 

~E(Pn(2k» ~ E(Pn(2k - 2» ~ ... ~ E(Pn(4» ~ E(Pn(2» 

whereas/or n = 4k + 1 and n = 4k + 2, 

E(Pn(l» ~ E(PP» ~ E(Pn(5» ~ ... ~ E(Pn(2k - 1» ~ E(Pn(2k + 1» 

~ E(Pn(2k» ~ E(Pn<2k - 2» ~ ... ~ E(Pn(4» ~ E(Pn(2» . 

We show now a similar result which holds for bipartite graphs [183]. 

(41) 

(42) 

Theorem 12.7. Let the graph Pn(j, v) G be obtained by joining the vertex v of a 
bipartite graph G to the j-th vertex of the path Pn: 

O-<>- ••• ~ ••• ~ 
1 2 j-1 j j.1 n 

Pn (j,v)G 
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Then all the inequalities given in Theorem 12.6 remain valid if PnW is replaced 
by PnV, v) G. 

Proof It is sufficient to demonstrate that 

Pn(l, v) G >. Pn(3, v) G > .... >. Pn(4, v) G >. P.(2, v) G . (43) 

Notice that the edge joining the vertices} and v is a bridge. Hence we may apply 
Eq. (4.30), which results in 

cp(PnV, v) G) = cp(Pn u G) - cp(Pj- 1 U Pn- juG - v) (44) 

or in coefficient form 

b(PIIV, v) G, k) = b(Pn u G, k) + b(Pj_1 U Pn- j u G - v, k - 1). (45) 

Now, the first term on the right-hand side of the above identity is independent 
of}, whereas 

k 

b(P j_1 U Pn- j U G - v, k) = I b(Pj_1 U Pn- j, l) beG - v, k -/). 
/=0 

(46) 

Consequently PnV, 11) G >. PnV*, v) G if and only if Pj- 1 U Pn- j » Pj*-l 
U Pn - w The rest of the proof is now a simple application of Lemma 6.7. 0 

Many other results similar to Theorems 12.5-12.7 are also known [100, 122]. 
In the subsequent chapter two topologically related isomers Sand T will be con­

sidered and it will be shown (see Eq. (13.3» that 

cp(T) - cp(S) = [cp(A - k) - cp(A - I)f (47) 

where A is a graph (from which the S-, T-isomers are constructed) and k and I are 
two of its vertices (see Fig. 13.2a). 

Theorem 12.8 [92]. If the S-, T-isomers are alternant hydrocarbons, then 

E(S) ~ E(T) (48) 

with equality if and only if cp(A - k) = cp(A - I). 

Proof. The theorem requires that the graphs Sand T and therefore also A are 
bipartite. Hence their characteristic polynomials obey 

cp( S, ix) = i2n I b(S, j) x2n - 2j 
j 

and 

cp(T, ix) = i2n I beT, j) x2n - 2j 
j 

(49) 

(50) 
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where n is the number of vertices of A and thus 2n is the number of vertices of Sand T. 
In addition to this, qJ(A - k) - qJ(A - l) is a polynomial of degree n - I - 2~ 

where ~ is some unspecified integer. Consequently 

[qJ(A - k, ix) - qJ(A - t, iX)]2 = i2(n-1-2{){~ [b(A - k, j) - b(A - t, j)] xn_2iy. 

(51 ) 

Combining the above three equations with (7.18) we easily conclude that 

qJ(S, iX)/qJ(T, ix) = 1 - i4{+ 2 {~[b(A - k, J) - b(A _ t, j)] xn- 2i} 2 ~ 1 (52) 

because - j'1-1; + 2 = + 1. 
Theorem 12.8 is obtained now by applying Theorem 12.3. 0 

It should be noted that Theorem 12.8 cannot be extended to non-alternant S-, 
T-isomers. Examples of non-alternant S-, T-isomeric pairs are known, for which 
E(S) < E(n [92]. 

As a third application of the COULSON integral formula we describe the following 
method for designing approximate topological expressions for E(G) [99, 120]. 

It is clear that the full information on the dependence of E(G) on the structure 
of G is contained in Eq. (25). We may write (25) as 

+00 

E(G) = ~ f F(x) dx (53) 

-00 

where the form of F(x) is seen from (25). The knowledge of the behaviour of F(x) 
in the entire interval (-00, + 00) is required if one wants to predict E( G) on the basis 
of (53), and this is exactly what is missing. On the other hand, some of the properties 
of F(x) can be easily established by analytical methods, especially for large and for 
near-zero values of x: 

1° F(x) = -F(-x); 
2° F(x) has a unique maximum for x = 0 and F(O) = m; 
3 ° F(x) monotonically decreases in the interval (0, 00) and vanishes for x -+ 00; 

hence F(x) is bell-shaped; 
4° for large values of x, F(x) behaves like nx-2 In x, provided an :F O. 

Suppose now that P(x) is another function having the properties 1°-4° and that 
the integral 

+00 

E*(G) = ~ f F*(x) dx (54) 

-00 

can be explicitly calculated. Then it is reasonable to expect that E*(G) will be a 
satisfactory approximate formula for E(G). 
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As a matter of fact, a great number of simple analytical functions with the desired 
properties could be constructed, leading to a whole class of approximate topological 
formulas for E(G) [99, 120]. Moreover, some of these functions depend on one 
or even two unspecified parameters. Then the approximation can be further improved 
by adjusting a parameter so that F*(xo) = Ftxo) for some selected value of Xo (usually 
Xo = I). 

For example, 

F*(x) = [m + nWln(1 + Bx2)]/(1 + 2WX2) (55) 

where 

W = [m - F(l )]/[2F(l) - n In (I + B)] (56) 

and B is an arbitrary constant, B > VW - 1, is a function behaving according 
to 1 "-4" and leading to the approximate topological formula 

(57) 

12.6 Bounds for Totaln-Electron Energy 

There are nowadays very many known bounds for the total n-electron energy. The first 
and probably the most important of these inequalities was obtained by MCCLELLAND 
[144]. 

Theorem 12.9. Let G be a graph with n vertices, m edges and adjacency matrix A. 
Then 

(58) 

Proof at' the left inequality. We start with an identity for E based on Eq. (4.27): 

(59) 

Since for non-negative numbers the arithmetic mean is not smaller than the geo­
metric mean, 

(60) 

Combination of the above two relations gives the lower bound for energy. 0 
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Proof for the right inequality. From the identity 

(61 ) 

one gets 2nm - E2 ~ o. 0 

Corollary 12.9.1. If det A =I 0, then E ~ [2m + n(n - 1)p/2 ~ n. 

Theorem 12.9 was later improved [98]. 

Theorem 12.10. Let U = 2m - nldet A12/n. Then for any graph G 

U ~ 2nm - E2 ~ (n - 1) U (62) 

while for bipartite graphs 

2U ~ 2nm - E2 ~ (n - 2) U . (63) 

Note that U ~ o. 
Another recent improvement of MCCLELLAND'S upper bound was proposed by 

TURKER [177]. 

Theorem 12.11. If G is a bipartite graph, then 

E(G) ~ 2Vm + [n(n - 2) b(G, 2)j2p/2 ~ V2mn. (64) 

Proof will be provided only for the first of the above two inequalities. 
For the bipartite graphs, because of the pairing theorem (see paragraph 6.3.2), 

n/2 
b(G, 2) = I A;Ai . 

j<k 
(65) 

Using the fact that the mean value of squares is not less than the square of the 
mean value, we attain 

[(n/2)-ln/2 22J1/2 (n/2)-ln/2 _ 1 (n/2)-I[(n/2 )2 n/2 2J I Aj'1k ~ I Alk - - I Aj - I Aj 
2 j<k 2 j<k 2 2 j= 1 j= 1 

1 (n/2)-1 
= "2 2 [(E/2)2 - m] (66) 

which after necessary transformations results in the required upper bound. 0 

Some less elementary upper and lower bounds for total n-electron energy were 
obtained in [111] and [121]. 
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Theorem 12.12. Let the number of 3- and 4-membered rings in the conjugated 
system under consideration be denoted by n3 and n4 , respectively. If its molecular graph 
has n + positive and n _ negative eigenvalues, then 

(67) 

where Q = 8n4 + 2D ~ 2m and D is the sum of the squares of the degrees of the 
vertices of G. 

Note that in the chemically most common cases, n3 = 0 and n+ = n_ = nl2 and 
then the above inequalities reduce to 0 ~ E(G) ~ (2mn)I/2. Hence, Theorem 12.12, 
despite its complicated form, is essentially weaker than Theorem 12.11. 

Theorem 12.13. Consider the system of equations 

ct.2 + (n12 ~ I) {J2 = m 

ct.{J"/Z - I = K , K> O. 

(68) 

(69) 

Let ct.1, {JI be their solution, such that ct.1 > {JI > O. Let ct.z' {Jz be another solution 
of the above system, such that {Jz > ct.z > O. Let Emi" = 2ct.1 + (n ~ 2) {JI and 
Emax = 2ct.z + (n ~ 2) {Jz. Then for a benzenoid hydrocarbon with n carbon atoms, 
m carbon-carbon bonds and K KEKULE structures, 

E . .::;. E < E min - max 

It has been shown that [121] 

Emin ~ 2~ + 2r(K/~)I/t 

and 

Emax ~ 2(mr)I/2 + 2K(rlm)'/z 

where 

~ = {m ~ Kr[n ~ r(Kzlm)I/Tl/Z}I/Z 

and 

r = nl2 ~ I . 

12.7 More on the McClelland Formula 

(70) 

(71 ) 

(72) 

(73) 

(74) 

The expression (2mn)I!Z occurs in numerous approximate formulas and bounds for 
total n-e1ectron energy. Already in [144] it was observed that the expression a(2mn)1!2, 
where a is an empirically determined constant, is capable of reproducing E(G) fairly 
well. 
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The following two results will give insight into this point from a somewhat different 
angle. 

In Sect. 4.3 we have shown that the graph eigenvalues conform to the Eqs. (4.24) 
and (4.27). These can be understood as certain information about the distribution 
of the graph eigenvalues. On the other hand, according to (4), E is a function of 
the graph eigenvalues and must obviously be sensitive to their distribution. Thus we 
may pose the question: Which is the maximum possible value of E, Eq. (4) if the graph 
eigenvalues are constrained to the conditions (4.24) and (4.27) and only to these 
conditions? 

Assuming that n is even and that the occupation numbers of the MO's satisfy the 
conditions '11 = '12 = ... = '1n/2 = 2 and '1n/2+1 = ... = '1n = 0, one obtains the 
following result [108]. 

Theorem 12.14. The eigenvalue distribution which gives a maximum value for E 
and which simultaneously fulfils the relations (4.24) and (4.27) is 

A.n/2+1 = ... = A.n = -(2m/n)1/2 . 

The maximum value for E is then (2mn)1/2. 

(75) 

(76) 

Theorem 12.14 implies, of course, MCCLELLAND'S upper bound. In fact, Theorem 
12.14 in a certain sense explains the origin of his estimate. It is an interesting and not 
fully obvious finding that (2mn)1/2 becomes equal to E(G) only under the assumption 
that all bonding MO's (as well as all antibonding MO's) have equal energies. 

However, if we consider a completely different hypothesis, namely that the MO 
energy levels are uniformly distributed (and hence no two of them degenerate): 

(77) 

with L1 being a constant, independent ofj,j = 1,2, ... , n - 1, then a direct calculation 
gives 

E(G) = fin) (2mn)1/2 (78) 

where 

fin) = (n/2)[3/(n2 - 1)P/2 . (79) 

The functionf(n) rapidly converges to a constant valuef(n) = 0.87 with increasing 
n. This limit is close to a = 0.92 determined empirically [144]. Therefore, one may 
conclude that MCCLELLAND'S approximate formula a(2mn)1/2 is in a certain sense 
related to, and a consequence of the (tacit) assumption of a uniform distribution 
of the molecular orbital energy levels. 

The apparent disadvantage of any approximate topological formula for total 
It-electron energy of the form E* = E*(m, n) is that it cannot distinguish between 
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isomers, i.e. predicts equal total n-electron energy for all isomers [115]. A considerable 
variety of approximate formulas has been proposed in the last 20~30 years in order 
to understand the factors causing energy differences between isomers! . These formulas, 
however, are often much less successful than their complicated algebraic form may 
suggest. 

A systematic study [117] of all known approximate formulas for total n-electron 
energy depending on three (or less) invariants of the molecular graph~number 
of vertices, number of edges and number of KEKULE structures (perfect matchings) 
gave the following surprising result. Among 7 formulas containing one empirical 
parameter, the best was 0.908(2mn)!/2. Among 9 formulas containing two empirical 
parameters, the best was 0.899 (2mn)!/2 + 0.426. Among formulas containing three 
empirical parameters the best found was 0.714n + 0.566m + 0.395. All 13 examined 
formulas depending on the number of KEKULE structures (which distinguish isomers) 
were found to be inferior to the above mentioned ones. 

12.8 Conclusion: Factors Determining the Totaln-Electron Energy 

The results outlined in the preceding section strongly suggest that m and n are the 
dominant factors determining E. If any simple analytical expression can be used 
to describe this dependence, then it is certainly the MCCLELLAND formula. 

The role of other graph invariants is much more obscure. It is known that E(G) 
decreases with the increase of branching of the molecular skeleton [134]. The earlier 
belief that in a series of structurally similar isomers E(G) increases linearly with the 
logarithm of Idet Al had recently to be revised. HALL has namely shown that for 
benzenoid hydrocarbons, E is a linear function of K, the number of KEKULE structures 
(recall Eq. (6.70» [124]. HALL'S empirical formula 

E = 0.442n + 0.788m + 0.34K(0.632)m-n (80) 

having a quite unusual algebraic form, could be supported by graph-theoretical 
arguments [118]. 

Cyclic conjugation is another factor important for the complete understanding 
of the behaviour of total n-electron energy. It is related to the presence of cycles in 
the molecular graph. Details of the theory of cyclic conjugation are reviewed elsewhere 
[110, 112, 119]. 

12.9 Use of Totaln-Electron Energy in Chemistry 

As already mentioned in Sect. 12. I, HMO total n-electron energies can be used to 
determine the heats of atomization of conjugated hydrocarbons. We now.present 
this matter in more detail. 

1 For bibliography covering data until the middle of the 70's see [26] and [103]; more recent 
references can be found in [117,120,134]. 
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The total electron energy of a conjugated molecule may be assumed to be equal 
to the sum of Err' the total n-electron energy, and Ea, the energy of the a electrons. 
This latter energy can be further approximated as [173] 

(81) 

Here nc and nH are the number of carbon and hydrogen atoms, respectively; 
E,"c; and E':t are the a-energies of isolated carbon and hydrogen atoms, respectively; 
E,"c;ii) is the a-electron energy of the i-th CH bond, E,"c;cW is the a-electron energy of 
the j-th CC bond and the two summations on the right-hand side of (81) go over all 
chemical bonds in the molecule considered. 

The first two terms in (81) will cancel in computations of heats of atomization or 
binding energies and need be examined no further. Adopting the usual assumption 
that all CH bonds have equal energy [90, 173], the third term in (81) will be reduced 
to ncHE,"c;H' with nCH denoting the number of CH bonds. 

It is evident that E,"c;c depends somehow on the length of the corresponding CC 
bond. On the other hand, the CC bond lengths in conjugated hydrocarbons are to 
a great extent determined with the n-electron bond orders. Elaborating these argu­
ments, one arrives at the relation [90] 

E,"c;c(;) + E"ccW = Ei:c + 2f3p(j) (82) 

where El:c is a constant and p(j) denotes the order of the j-th n-bond. 
Such a consideration results finally in the following expression for the heat of 

atomization 

(83) 

where E is the total n-electron energy, given by Eqs. (5) and (6). The constants E~H' 
Egc and f3 are to be treated as semi-empirical parameters. A least-squares fitting, based 
on experimental heats of atomization gave [90]: E~H = -411.09 kJ/moi, Egc = 

-325.18 kJ/mol and f3 = -137.00 kJ/mol. 
The accuracy of formula (83) is, in fact, much better than could be concluded 

from Fig. 12.1. The agreement between experimental heats of atomization, those 
calculated by a PARISER-PARR-POPLE-type SCF MO method [83] and those calculated 
by Eq. (83) can be seen from the examples collected in Table 12.1. 

Estimation of resonance energies is another field where HMO total n-electron 
energies are used in chemistry. As a matter of fact, a great number of different reso­
nance energy concepts has been proposed in the last 10-20 years. It is not the intention 
of the present book to consider details of these resonance energies, but rather to men­
tion a few of them. 

Resonance energy is usually conceived as the difference between the total electron 
energy of a conjugated molecule and the energy of something that is called "reference 
structure". Since the reference structure is an imaginary moiety, it is not clear what 
should be considered as its energy. In several approaches the energy of the reference 
structure is obtained by summing certain bond-energy increments. 
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Table 12.1. Heats of atomization of selected conjugated hydrocarbons. All values are in MJ/mo/ 

Molecule i 
I 

Heats of atomization 

r-- Experiment~----SCF ~o [83] Eq. (83) 

Butadienc 
Benzenc 
Hexatriene 
Pentalene 
Azulene 
Naphthalene 
Acenaphthylene 
Anthracene 
Phenanthrene 
Perylene 

--1-------------------
4.057 4.057 4.054 
5.515 5.515 5.513 
5.895 5.867 5.872 

8.606 
8.743 

10.065 
11.957 
II. 984 
16.599 

6.825 6.805 
8.632 8.696 
8.743 8.741 

10.117 10.118 
11.954 11.959 
11.985 11.978 
16.610 16.607 

For the reader's convenience four different sets of parameters are collected in 
Table 12.2. They have been proposed for the calculation of resonance energy by means 
of the formula (84): 

RE = E - I E(bond) 
bonds 

Table 12.2. Parametrization schemes for the calculation of resonance energy 
via Eq. (84). All bond-energy parameters are in f3-units. Note that in the 
variant of HESS and SCHAAD thc value of the resonance energy depends on the 
KEKULE structure upon which the calculation is based; an averaging over 
all KEKULE structures is therefore necessary. In the method of JIANG, TANG 
and HOFFMANN it is not necessary to distinguish between single and double 
bonds 

Variant 

Classical resonance energy 
(see e.g. [62]) 

DEWAR resonance energy 
[83. 146] 

HESS-SCHAAD resonance energy 
[127,128] 

Parametrization by JIANG. 
TA'lG and HOFFMANN [134] 

Bond type 

C=C 
C--C 

C=C 
C-C 

HzC=CH 
HC=CH 
HzC=C 
HC=C 
C=C 
HCCH 
HC-C 
CC 

HzC - CH 
HlC-C 
HC-CH 
HC C 
C-C 

Bond energy 

2.0000 
0.0000 

2.0000 
0.5200 

2.0000 
2.0699 
2.0000 
2.1083 
2.1716 
0.4660 
0.4362 
0.4358 

1.5898 
1.4145 
1.2691 
1.1328 
1.0211 

(84) 
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where E is the HMO totaln-electron energy, E(bond) is the energy corresponding to 
a particular bond type and the summation goes over all CC bonds. 

We also mention in passing the so called "topological resonance energy" [69, 116] 
in which the reference energy is calculated in a somewhat different manner. Here, 
namely, the reference energy is obtained from a formula fully analogous to Eqs. (5) 
and (6), where instead of graph eigenvalues A.j one uses the zeros of the matching poly­
nomial. 

Resonance energies are usually quoted in discussions concerning the aromaticity 
of conjugated molecules. It is not the authors' intention to consider this matter. We 
rather refer the interested reader to the books [5, 65]. A general impression about 
resonance energies can be gained from Fig. 12.2. 

0.39 0.55 

0.77 0.81 0.97 

-0.01 -0.14 0.35 - 0.33 

0.23 0.47 0.26 0.11 

-1.07 -0.22 0.33 -0.05 

Fig. 12.2. HESS-SCHAAD resonance energies (in p units) of selected conjugated hydrocarbons. 
Observe that stable and easily obtainable compounds have large positive resonance energies; 
negative or near-zero resonance energies are associated with highly reactive conjugated species 



Chapter 13 

Topological Effect on Molecular Orbitals 

Chemical experience is gained from the study of real existing molecules, which are 
thought to be composed of distinct particles of matter, namely atomic nuclei and elec­
trons. Abstracting the molecular structure as far as possible one arrives at molecular 
topology. In the course of abstraction one and the same molecular topology may be 
obtained from very different molecules (see Fig. 2.1). Thus the pronounced differences 
in the chemical properties should be an exclusive consequence of the properties of 
the atoms used in the various realizations of a given topology. In view of this, one 
may wonder whether topology plays any role at all. The successful application of 
topological indices in various correlations (see Chap. 11) may be evaluated as some 
positive evidence, but not as a rigorously proved answer: neither the physical meaning 
of the topological indices nor the physical interrelations causing the correlations are 
sufficiently understood. Contrary to that, the topological effect on molecular orbitals 
(TEMO) [162] provides solid evidence that topology determines at least a frame within 
which series of physically and chemically diverse species may be realized. 

13.1 Topologically Related Isomers 

It has been shown in Chap. 2 that to each molecule a defined topological space is 
associated, which depends uniquely on the constitution of the molecule. 

Definition 1: Two isomers with different constitutions are called topologically 
related if their respective topological spaces may be divided into two or more sub­
spaces, such that they are pairwise isomorphic. Topologically related isomers are 
termed topomers. 

Thus, the topological spaces of topomers differ only with respect to the connection 
of the respective subspaces. In Fig. 13.1 examples of topomers are given. The pairs 
of topomers are denoted by Roman numerals whereas the individual species of a 
given pair are distinguished by Sand T. The topomers I are constructed from equal 
subunits while in the topomers II to V unequal subunits have been used. Note that 
the pairs I and II have the topomer T in common. If one supposes that the T topomer 
of a given pair is made from its S topomer, then some bonds must be first broken 
and then formed again, as indicated by the dashed lines in Fig. 13.1. The number 
of these bonds is 2 for I, II and III, 3 for IV and 4 for V. These bonds correspond to 
the adjacency relations which distinguish the topomer S from the topomer T. Hence, 
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IS IT ns nT 

W-' C@.o-' I I ' I 
• I f I 
, I I I 

\ , \ I - -

VS VT :lZlS 1'IT 

Fig. 13.1. Examples of topomeric aromatic hydrocarbons 

the number of these bonds also indicates the number of reorganized adjacency rela­
tions: Writing down the ball-neighbourhoods (as defined and exemplified in Sect. 2.3), 
one immediately sees that the effect of reorganized adjacency relations increases 
relatively if the subunits are made unequal as well as if the number of reorganized 
adjacency relations is increased. Consequently, the effect is greater in II and III than 
in I, etc. 

The pair VI can be understood as composed of two unequal moieties derived 
from naphthalene and styrene, respectively. It may also be considered as formed 
of three moieties: two terminal ones derived from styrene and a central moiety derived 
from ethylene. 

The manner in which a pair oftopomers may be constructed is called a topological 
model; it is characterized firstly by the number of subunits used and secondly by the 
specifications by which these subunits are connected. The model 1 [162] used in the 
construction of the pairs I to V works with two subunits; it is modified by the number 
of bonds, I = 2, 3, 4 as described above. For the construction of the pair VI another 
model, model 2, [95] is used which works with three subunits. Further models are 
described elsewhere [92,95, 155, 156, 157, 159, 162]. 

It should be noted that the connection of two univalent subunits by one bond 
cannot generate a pair of topomers. Therefore the valencies of the subunits and the 
number of connecting bonds must be at least 2. But even from two bivalent subunits 
no pair of topomers can be constructed unless the sites of valency in the subunits 
are non-equivalent. Thus in the case of two connecting bonds, I = 2, the models I 
and 2 used in the construction of the pairs I-III and VI, respectively, can be schematiz­
ed as shown in Fig. 13.2. Therein the vertices k, IE 'f/(A) as well as p, q E 'f/(B) are 
non-equivalent. 
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a 

QtJ ~ k P k q 

I q I P q P 
b 

S T S T 
a model 1 b model 2 

Fig. 13.2. Schematization of two topological models in the case of two connecting bonds (edges). 
The subunit containing the vertices k and I is denoted by A: the subunit containingp and q is B 

Supposing that the subunits A and B are isomorphic, A ~ B, some symmetry 
is induced in the topomers constructed in accordance with the model 1. The same is 
true for topomers according to model 2, provided the central moiety does not lower 
that symmetry. For instance, if model I is applied to the generation of planar topo­
mers, then Sand T exhibit at least CZI' and C2h symmetry, respectively. 

13.2 Interlacing Rule 

Applying Eq. (4.29) to Sand T of the model 1,1 = 2, as depicted in Fig. 13.2a, one 
obtains for the respective characteristic polynomials, 

ep(S, x) = ep(A, x) ep(B, x) - ep(A - k, x) ep(B - p, x) - ep(A - I, x) ep(B - q, x) 

+ ep(A --- k - /, x) ep(B - P - q, x) 

- 2[ r ep(A - Pkl' x)] [r ep(B - P pq' x)] 
(1) 

ep(T, x) = ep(A, x) ep(B, x) - ep(A - k, x) ep(B - q, x) 

- ep(A - I, x) ep(B - p, x) + ep(A - k - I, x) ep(B - P - q, x) 

- 2[r ep(A - Pkl' x)] [r ep(B - P pq' x)] 

where Pkl and Ppq denote elementary paths (see paragraph 4.1.4), connecting the 
vertices k and I, and p and q, respectively. The summations in (1) go over all paths 
which connect the respective vertices. 

The difference of the two polynomials given in (1) is denoted by LI(x) and direct 
calculation shows that 

A(x) = ep(T, x) - ep(S, x) 

= [ep(A - k, x) - ep(A - I, x)] [ep(B - p, x) - ep(B - q, x)] . (2) 

This expression may be applied to the difference of the characteristic polynomials 
of Sand T in the pairs I to III of Fig. 13.1, but not to the other pairs because in IV 
and V there are more than 2 connecting bonds whereas VI is constructed from three 
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subunits. In the case of the pair II the derived graphs are readily identified as fol­
lows: 

A A - k A -I 

O:p 0 
B B-p B-q 

The vertices k, IE i'"(A) and p, q E i'"(B) must be non-equivalent in order to achieve 
that Sand T represent different chemical species. Eq. (2) illuminates this from another 
point of view: If the vertices of one of these pairs were equivalent, then L1(x) would 
be identically equal to zero and, consequently, cp(T, x) = cp(S, x). 

The vertices corresponding to k, IE i'"(A) and p, q E i'"(B) in the examples given 
in Fig. 13.1 are evidently non-equivalent since they cannot be mapped automorphically 
onto each other. Thus the given examples exhibit constitutional (struCtural) isomerism. 
Notice that L1(x) will not be identically equal to zero even if the vertices k and I are 
topologically equivalent, but realized in the molecular structure by atoms of different 
kind [163]. Examples constructed in that way exhibit positional isomerism, as for 
instance: 

s--@-~-- --@--T 
In the case that the subunits are isomorphic, as realized in the pair I, A ~ B, 

A - k ~ B - P and A - I ~ B - q, the respective polynomials are equal and, as 
a consequence of this, the bilinear expression (2) reduces to a perfect square 

L1(x) = [cp(A - k, x) - cp(A - I, X)]2 ~ O. (3) 

In this case S denotes the topomer in which the equivalent centers of A and B 
are connected pairwise by bonds (edges). Obviously, in this case L1(x) is non-negative 
in the complete range of the variable x and the following inequality holds: 

cp(T, x) ~ cp(S, x) ; XE(-oo, +(0). (4) 

A consequence of (4) was already presented in Theorem 12.8. Another con­
sequence of (4) is the folowing important result. 

Theorem 13.1. Let S and T be a pair of topomers made from isomorphic subunits 
according to Fig. 13.2a and let liS) and liT) denote the zeros of the characteristic 
polynomials of Sand T, respectively. Then, 

(5) 
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The genesis of (5) is schematically illustrated in Fig. 13.3. The pattern of eigen­
values according to (5) has been termed topological effect on molecular orbitals 
(TEMO) [162]. It is schematically shown in Fig. 13.4. Two independent proofs of 
Theorem 13.1 are given in [93,114]. 

x x 

=-r~ 
-::: 

s T 

:: : -' r:' : 

---~-~. ~--- ----- ----
-- -

-::: -= -'1': -:;: 
-~ ~ I : 

0) n= 2v b) n= 2v+, Fig. 13.4. Eigenvalue pattern of Sand T 

The TEMO pattern shown in Fig. 13.4 is obtained purely from the topology. 
Suppose that Sand T are fully conjugated hydrocarbons. Then the pattern given in 
Fig. 13.4 must be identified with the HOCKEL MO energy levels of the topomers. 
Let n be the number of n-electrons of the subunit A. Then the MO patterns of Sand T 
consist of 2n MO levels, n of which are doubly occupied. From (5) and Fig. 13.4 one 
arrives at the following conclusion. 
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Rule 1: If the number n of n-electrons of the building subunit A is even, then the 
HOMO-LUMO separation AE as well as the first ionisation potential [PI are smaller 
for S than for T, provided the HOMO level is not degenerate. If n is odd, the reverse 
is true. 

This rule is in excellent agreement with experimental results as proved by the 
p-absorption bands and first ionization potentials of polycyclic aromatic hydro­
carbons [12, 162]. 

As another more general consequence of (5), the photoelectron (PE) spectra of 
topomers should exhibit a similar interlacing as depicted in Fig. 13.4. In Sect. 13.3 
it is shown that this pretentious demand is also well satisfied. 

The isomorphism of the subunits A and B is a necessary presupposition for the 
formulation of (3)-{5), Theorem 13.1 and Rule 1. Let us now return to the more 
general case A #- B. Then for an arbitrary value of x no direct conclusion can be 
drawn from Eq. (2) cocerning the sign of A(x) and the relative magnitude of the 
characteristic polynomials q>(S, x) and q>(T, x). Nevertheless, some rules may be 
extracted even in this case. 

The difference function A(x) changes sign if the variable x passes through a real 
root of A(x) = 0 which is either non-degenerate or has an odd degeneracy; it is 
readily seen that complex roots or double roots, fourfold roots etc. do not change the 
sign of A(x). Let Xj'} = 1,2, 3, ... , denote the real roots of odd degeneracy of A(x) = 0 
and let them be labeled in decreasing order, XI > x2 > X3 > ... Then the roots Xj 

determine open intervals, e.g. (xj + l , x), in which either A(x) ~ 0 or A(x) ~ 0 holds. 
A(x) takes the value zero within such an interval if and only if the interval contains 
a real root of even degeneracy. It is readily seen that A(x) has the sign of (-l)j within 
the open interval (xj +l , Xj) and opposite sign within the two adjacent intervals, pro­
vided A(x) is non-negative in the interval (xl' <Xl). Then in all intervals (x2k+ I' X 2k) 

there will be A(x) ~ 0 and, hence, q>(T, x) ~ q>(S, x). As said above, under these 
conditions (5) holds. On the other hand, within all intervals (X2k' X 2k - l ) there will be 
A(x) ~ 0 and, consequently, q>(T, x) ~ q>(S, x). This produces an inversion of the 
order of MO's and therefore within these intervals 

(6) 

Since the real roots Xj of odd degeneracy cause these inversions, they are termed 
inversion points. . 

The above considerations have shown that the MO spectra of pairs of topomers 
constructed according to the model 1 (Fig. 13.2a) exhibit an interlacing as expressed 
by the relations (5) and (6). Ifthe subunits A and B are isomorphic, no inversion occurs, 
but inversions may appear if A and B are non-isomorphic. 

The complexity of the expression for A(x) increases rapidly with the increase 
of the number I of connecting bonds. In the case of topomers made of two trivalent 
subunits, as realized by the pair IV, one has the following schematic model: 

m,mA s: 
p q r B m,mA T: 

r q p B 
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from which one derived 

Ll(x) = [ep(A - k, x) - ep(A - m, x)] [ep(B - p, x) - ep(B - r, x)] 

- [ep(A - k -I, x) - ep(A - /- m, x)] [ep(B - P - q, x) - ep(B - q - r, x)] 

+ 2[ ~ ep(A -- Pkl' x) - ~ ep(A - P,m, x)] [~ep(B - P pq' x) 

- ~ ep(B - Pqr• x)] 

- 2[~ ep(A - m - Pkl' x) - ~ ep(A - k - P,m, x)] 

X [~ep(B - r - Ppq' x) - ~ ep(B - P - Pqr, x)] . (7) 

Even if A ~ B this expression results in a sum of four squares with pairwise 
opposite signs. In the case of I = 4, the function Ll(x) has 32 bilinear terms [156]. 
Thus. for pairs of topomers in which the subunits are connected by more than two 
bonds the appearance of inversions cannot be excluded. 

For illustration, in Table 13.1 the HMO eigenvalues of triphenylene (VII S) 
and chrysene (VII 7) are given [IS]. The respective characteristic polynomials are: 

Table 13.1. Bonding HMO eigenvalues [15] of triphenylene (VII S) and chrysene (VII T) and 
inversion points. The antibonding eigenvalues are symmetrical to the bonding ones with respect 
to x = 0 

~ CO:o 
1lIIS 1lIIT 

inversion points 

2.532089 
2.499046 
2.166518 

1.969616 
1.969616 

1.700759 
1.539774 

1.347297 
------ 1.285778" -----_._-

1.285774 
1.285575 
1.285575 

1.216441 
-----_.- 1.000000 --_. -_. - . 

0.879386 
0.875324 
0.792335 

0.684041 
0.684041 

0.520139 
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cp(VII S, x) = Xl8 - 21xl6 + 180Xl4 - 825xl2 + 223xlO - 3645x8 

+ 3627x6 - 2106x4 + 648x2 - 81 (8) 

cp(VII T, x) = Xl8 - 21xl6 + 180Xl4 - 824xl2 + 2214xlo - 3605x8 

+ 3533~ - 1990x4 + 577x2 - 64. 

Thus the difference polynomial LI(x) takes the form 

LI(x) = Xl2 - 9xlO + 40xB - 94x6 + 116x4 - 71x2 + 17 . 

(9) 

(10) 

The real roots of LI(x) = 0 are Xl ,4 = ± 1.286 and X2,3 = ± 1.0. Thus, there 
are two intervals, (1.0, 1.286) and (-1.286, -1.0) within which the MO pattern is 
inverted (see Table 13.1). 

For the model 2 of Fig. 13.2b one obtains [92,95, 155, 156]: 

LI(x) = [cp(A - k,x) - cp(A -I,x)] [cp(B -p,x) - cp(B-q,x)] cp(C - a -b, x). 
(11) 

Once again, if A ~ Band C has a symmetric structure such that cp( C - a - b, x) 
= Y(X)2, then Eq. (11) takes the form ofa square [156]: 

LI(x) = [cp(A - k, x) - cp(A - I, X)]2 Y(X)2 ~ 0 (12) 

and therefore the interlacing of the MO eigenvalues according to (5) has to be ex­
pected. Further, for this model the appearance of inversions can be excluded. 

Model 2 may also be extended to tri-, tetra-, etc. valent subunits [156], but then 
the appearance of inversions cannot be excluded. 

The topomers VI are considered to be constructed from three subunits as indicated 
in Fig. 13.1. They could also be thought of as formed according to modell from two 
non-equivalent subunits derived from naphthalene and styrene, respectively. In the 
second case due to A #- B inversions could not be excluded, but this can be done 
when model 2 is applied. This illustrates the usefulness of having different models 
at one's disposal. 

13.3 PE Spectra of Topomers 

The photoelectron (PE) spectrum of a molecule consists of a series of vertical ionisa­
tion potentials which are related to MO energies of the molecule, provided the Koop­
MANS theorem [137] holds. Hence the PE spectrum of a molecule represents the upper 
part of its MO energy diagram. Thus the inspection of the PE spectra of topomers 
is the most rigorous proof of the physical relevance of TEMO because it allows an 
estimate ofthe extent to which the purely topological TEMO rule dominates in physical 
reality. 

For such an estimate not the accurate location of the MO levels, but rather the 
satisfaction of the interlacing rule, which is the intrinsic characteristic of TEMO, 
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has crucial significance. Having in mind that all material and geometrical features 
of the molecular structure considered are completely ignored in the topological treat­
ment, some violations of TEMO should even be anticipated. Such violations must 
be understood as physically induced inversions. Since the TEMO rule is a consequence 
of Eq. (2), the absolute value of L1(x) should indicate somehow the strength of the 
topological features when they compete with the physical ones in modeling the MO 
pattern as finally observed by means of PE spectra. 

Table 13.2. The PE spectra of the topomers I - VI. All energies are in e V. Inversion points are indicated 
by dashed lines 

II IS lT Ins lIT IllS lIlT I IVS IVT I VS VT I VIS VIT IVIi-s VIlT 
Ref.: [175] [175] I [76] [175] [175] [175] I [175] 

I, 1 I~ ~ -- ~.~~1 -- 6.61 6.44 7.20 1 7.14 . 7.59 1" c----;;-

Model I 

1 I 

~ 

7.27 6.97 7.02 7.39 1=·:0 _____ I 7.60 7.88 

7.39 7.92 7.47 7.89 I 7.4 I 8.02 7.88 
7.92 8.00 7.55 7.9517.48 , 8.10 8.10 

8.32 8.32 8.14 
I i 

8.24 7.96 I 8.68 8.65 
8.54 8.45 8.31 8.28 8.08 8.98 8.68 

8.90 9.01 8.56 9.05 8.67 9.18 9.43 
9.01 9.06 8.60 9.14 8.72 9.43 9.68 

9.39 9.39 9.16 9.25 8.96 9.72 . 9.68 
9.53 9.50 9.36 9.39 9.14 9.96 9.72 

9.66 9.80 9.36 9.91 9.37 10.22 10.06 
9.80 10.00 9.49 9.92 9.47, 10.52 10.52 

10.23 
10.3 

10.5 

I 
2 

A::=B 
o 

----

11031 

110.8 
I 
I 

I 

10.23 9.90 

10.25 

I 

9.92 9.69 
9.95 10.3 9.85 

9.95 9.96 
10.18 

10. 30
1 __ +-____ +-___ -+--____ _ 

1 II 1 2 1 
2 r 3 4 2 3 2 

A#B 
6 

A#B I A#B A#B A::=B A::=B 
2 3 402 

In Table 13.2 the PE spectra of the topomers I to VI are given. All examples are 
taken from the class of polycyclic aromatic hydrocarbons because the PE spectra 
of these compounds usually have an exceptionally high number of well-resolved 
peaks. For TEMO within other classes of compounds see [88,92,95, 148, 155, 162, 
163,182]. 
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The appearance of inversions is topologically excluded for the pair I (modell, 
I = 2, A ~ B) and for the pair VI (model 2, I = 2, A ~ B), whilst all other pairs 
may have inversions within their TEMO patterns. This demand is satisfied with aston­
ishing fidelity in view of the competition between topological and physical features. 
The characteristic interlacing of the MO's within various intervals is also exhibited; 
see for example the interval from 8.4 to 10.3 e V in the case of the pair III which con­
tains 5 MO levels of Sand T each. All these results may be rated as solid evidence for 
the physical relevance of TEMO. 

The PE spectra of the pair II show a great number of inversions. From the cha­
racteristic polynomials of these topomers two inversions are deduced which are 
located below the HOMO and above the deepest n-MO, respectively. Since the 
energies of the levels at 9.01 and 9.06 eV are within the range of instrumental error, 
the two inversions near 9 e V are possibly due to experimental error. Thus, from the 
6 inversions exhibited by the PE spectra of the topomers II there are at least two 
physically induced inversions. 

Physically induced inversions have been investigated by means of variational 
perturbation theory at the level of non-empirical HF SCF MO calculations on much 
smaller molecules [148-151] than those shown in Fig. 13.1. The results obtained may 
be summarized as follows: (i) The variation of the potential at the various nuclei 
has effected the inversion only in the case of pyridazine (S) and pyrazine (1) [149]. 
(ii) All the other inversions found in the calculated MO spectra are due to interactions 
between non-neighbouring centers. It seems to be noteworthy that the use of an 
improved basis set reduces the number of inversions [151]. Hence, one could speculate 
that some of the inversions found by ab initio calculations might even be artefacts 
of the basis set used. 

The results obtained quantum chemically support those derived from the PE spec­
tra of pairs of topomers. Both taken together are a very solid evidence for the physical 
relevance of TEMO. 

13.4 TEMO in tT-Electron Systems 

As explained in Chap. 5 the hydrogen suppressed molecular graph used in HMO cal­
culations is correctly understood as the graph which depicts the basis set of the 
p,,-AO's and their interactions [154]. The HMO method is characterized by defining 
an effective one electron operator upon this graph [169]. In order to construct a similar 
method for O"-electron systems, one could choose completely localized apolar 0"- and 
O"*-MO's for the basis. Ifit is assumed that two O"-MO's (O"*-MO's) interact ifand only 
if the corresponding two bonds have an atom in common and that all these inter­
actions are equally valued, then the line graph of the skeleton graph of the molecule 
(see Chap. 3 and Sect. 4.4) is its O"-basis graph and an isomorphic line graph is the 
O"*-basis graph [153]. Note that the vertices of these line graphs depict the 0"- and 0"*­
MO's, respectively. Their edges correspond to pairwise non-zero interactions of the 
MO's. If a line graph is derived from a graph which possesses vertices of degree 9 ~ 3, 
then it contains three-membered cycles; hence, the line graphs of interest will be non­
bipartite. 
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Using hybrid orbitals (HO's) for the formation of the u- and the u*-MO's one 
can show that an effective one electron operator Jf produces the following integrals 

rx.j = (u j IJfI u) = eo + fJ' 

rx.'!' = (u'!' IJfI a'!'> = eo - fJ' 
J J J 

fJ. = (a .IJfI a > = f fJ ifj and. k are adjacent 
Jk J k 0 otherwise 

fJ'!' * = (a'!' I Jfl u* > = { fJ if j and. k are adjacent 
Jk J k 0 otherwise 

(13) 

(14) 

(15) 

(16) 

Proof Let a, b, c, ... label subsequent trivalent centers of an unsaturated system; 
let the HO's located at these centers be ai' bi' ci' ... , i = 1,2, 3, and assume their 
mutual spatial orientation as follows: 

Then the non-polar a- and a*-MO's for the bonds, say, j (a -- b) and k (b - c) 
are given by the following expressions 

(17) 

(18) 

etc., where Nand N* denote the respective normalization constants. 
Inserting these expressions into the integrals (l3)-{16) one obtains 

(19) 

where eo is the energy of an electron in its so-called valence state [51], 

(20) 

where f3' is the resonance integral of the two HO's which form the u- or the a*-MO, 
and 

(21) 
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where fJ is the resonance integral of an HO of one center with any HO of an adjacent 
center, except that one with which it forms a a- or a a*-MO. 

All other integrals are zero either because of the orthogonality of the HO's of 
the same center or since all interactions between non-adjacent centers are neglected. D 

From (20) and (21) is seen that fJ' and fJ are "bonding" quantities, and that IfJ'l > IfJl. 
In the case of saturated a-electron systems the same formalism can be applied. The 
adopted energy equivalents of the parameters eo, fJ' and fJ will be slightly changed 
but not their formal meanings. 

The various bonds as CH, CO, CC etc. are not differentiated; even lone pairs 
are treated as a-MO's. 

By means of this purely topological method similar results for a-electron systems 
are obtained as described in the preceding paragraph for n-electron systems. In parti­
cular, TEMO without inversions results for the a-systems of those topomers which 
are in accordance with either of the models 1 or 2 if I = 2 and A ~ B. 

Besides HMO-type assumptions, the topological a-method requires some addi­
tional approximations. Thus the topological a-method is not so close to physical 
reality as the corresponding HUCKEL method for n-electrons and more violations of 
the TEMO rule should be expected in the case of a-electron systems. This agrees with 
the results of quantum chemical calculations, but, here again the number of inversions 
is surprisingly small. Since the PE spectra of saturated compounds are not so nicely 
resolved as those of n-electron systems, only a few data are available, too few for 
evident conclusions. 

13.5 TEMO and Symmetry 

As already mentioned in Sect. 13.1, the isomorphism A ~ B induces some symmetry 
in the isomers Sand T. In this very case one could think that perhaps the interlacing 
of their eigenvalues is induced by symmetry. 

Let us consider for instance a pair of topomers constructed according to the mo­
dell, 1= 2, A ~ B, as shown schematically in Fig. 13.2a. Due to the isomorphism 
A ~ B, the MO's of A and B are pairwise equivalent, i.e. they have the same energies 
and the same systems of linear combinations of AO's (LCAO). 

Applying the perturbation molecular orbital (PMO) theory [17, 35] to the i-th 
MO of A and B which have energy ei and LCAO MO coefficients Cik = Cip and Gil = ciq' 
one obtains the first-order perturbation energies (C:k + C:l) fJ and 2cikcil fJ for the topo­
mers Sand T, respectively. Evidently, C;k + C71 ~ 2CikCil and thus the splitting of the 
levels ei in Sand T meets one requirement of TEMO, namely the interlacing of two 
eigenvalues of T between two ones of S: 

E2i - 1(S) = ei + (C:k + C:l) fJ 
E2i - 1(T) = ei + 2cikcil fJ 
E2i(T) = ei - 2cikcil fJ 

E2i(S) = ei - (C7k + C:l) fJ 

(22) 
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Table 13.3. PMO- and HMO-data for the pair VIII of topomers 

A [63) 

--... -]-C'.k 
C d 

: 0.1582147 I 

2.5474193 I 

0.0874258 ! 

0.3093214 

2.5147441 
2.1904652 

2 2.0586327 

3 

4 

5 

6 

; 0.1901388 
1.9268002 
1.8275361 

i 0.0221996 I 

1.8179306 

1.4536477 

1.2819126 

0.0954605 

0.3360196 

I 

'0.2834566 

I 1.808325 I 
1.6469045 

I ~ 1.2603909 
I 1.3456930 

O.23099IS 

10.1020939 I 

. 0.0000000 

1.2181322 
1. 0000000 

1.0000000 I 

I 0.0000000 
i C 1.0000000 
. 1.0364026 

0.2999756 , 
7 0.9145266 ' 

! 0.1785795 ' 

I CO.792650 6 
0.832 1162 

i 0.277 649 3 ' 
8 0.6124155 . 

; 03776395 
CO.392 714 8 

0.4545453 

0.3015113 
9 0.0000000 

2.57S0834 

2.5197552 

2.1762607 

1.9410047 

1.8221690 

I 1.8136922 

1.6441416 

1.263153) 

1.3290783 

1.2347469 

1.0000000 

1. 000 000 0 ~ 

1.021665) 

i 0.2073876) 

0.8221IS/ 

0.402712 '~ 

0.363638 I 

0.6030226 
i 

etc. etc. I etc. 

-0.3636381) 
C°.4545453 I 

etc. etc. 

HMO [138) 

2.52791 
2.26638 

1.97632 
1.84199 

1.81194 
1.64820 

1.43984 
1.32286 

1.22857 
1.00000 

1.00000 
1.00000 

1.00000 
0.76319 

0.50172 
0.30664 

-0.30664 
etc. 
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2.61956 

2.53281 

2.25874 

2.00000 

1.83045 

1.81662 

1.64770 

1.44509 

1.31823 

1.25894 

I. 000 00 

1.00000 

1.00000 

I. 00000 

0.72753 

0.50254 

0.25001 

-0.25001 

etc. 
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where EiS) and Efn denote the energy of the j-th MO of Sand T, respectively, as 
calculated within the first-order PMO approximation. 

The other demand of TEMO, namely the interlacing of the eigenvalues of S be­
tween the ones of T is not guaranteed by means of PMO. This is illustrated by Table 
13.3 which collects the following data: 8i , Cik and Cil of the subunit A taken from [63], 
E.(S) and E.(1), and the HMO eigenvalues [138] .A. .(S) and k(1), J' = 2i - 1, 2i, of 

J J J J 
the topomers VIII S and VIII T 

VIII 5 V III T 

In Table 13.3 the disorders of the first-order PMO energies are marked by arrows. 
If these energies are ordered with respect to their magnitudes, readily done by the 
reader, the pattern obtained has four inversion points. In addition to this, one must 
recognize that in the case of non-isomorphic subunits, A "# B, no conclusion analogous 
to (22) can be drawn from PMO theory. On the other hand, the TEMO rule is satisfied 
also in these cases, as shown by Tables 13.1 and 13.2. 

All these facts give strong evidence that the interlacing is not induced by symmetry, 
but is a real consequence of molecular topology. 



Appendices 

In the first four appendices we shall briefly remind the reader to some of the most 
important definitions and theorems of matrix theory, theory of determinants, spectral 
theory of matrices and theory of polynomials. The facts outlined here should suffice 
for the reading of the present book. For more details and explanations the reader 
should, of course, consult an appropriate textbook. 

In Appendix 5 we have collected the character tables of a number of point groups 
as well as of the first six symmetric groups. Appendix 6 provides a list of symbols used 
in the present book with a brief explanation and an indication where a more complete 
definition can be found. 



Appendix 1 

Matrices 

The table M 

ml2 ••. ml q) 

~22 .•. '~2q 

m p2 ... mpq 

(I) 

composed of p . q numbers, arranged in p rows and q columns is called a matrix. 
Such a matrix is of dimension p x q and the numbers which form the matrix are its 
elements. The matrix element mij is said to be in the i-th row and in the j-th column. 
If p = I, then the matrix 

(2) 

is called row-vector of dimension q. If q = I, then the matrix 

(3) 

is called a column-vector of dimension p. If P = q, then we have a square matrix of 
order p. 

Let N be another matrix of dimension r x s, 

(
nil nil'" nlS) 

N =. ~21 ~Zl ..• ~2S . 

nrl nr2 nrs 

(4) 

Then the sum of the matrices M and N exists if p = rand q = s and is given by 

mlq + nl q ) 

::: m2q :- nZq • 

.. , mpq + npq 

(5) (

mil + nil 

M + N = m21 :- nll 

mpi + npl 
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The difference M ~ N is defined analogously. If two matrices are not of the same 
dimension, their sum and difference are not defined. 

If e is a number, then the product of e and M is determined as 

(

emil 

eM = C~21 

empl 

em 12 ... em l q ) 

e~22 ..• e~2q . 

emp2 empq 

(6) 

A matrix all of whose elements are equal to zero is the zero matrix and will be 
denoted by O. It is clear that M + 0 = M and cO = O. 

The product T of two matrices M and N of dimension p x q and r x s, respectively, 
exists only if q = r and is defined as a matrix of dimension p x s 

such that 

q 

tij = I miknkj . 
k=1 

(7) 

(8) 

If the elements of the matrix T are defined via (8), then we shall write T = MN. 
The product T' = N M exists only if p = s and its matrix elements obey 

(9) 

Both the products MN and NM exist only if the conditions q = rand p = s 
are simultaneously fulfilled. In particular, both MN and NM exist if M and N are 
square matrices of the same order. In the general case MN differs from NM, as shown 
by the following example. 

Let 

and T = MN. Then 

til = I . 5 + 2 . 7 = 19 

tl2 = I ·6 + 2 ·8 = 22 

121 = 3 . 5 + 4 . 7 = 43 

t22 = 3 . 6 + 4 . 8 = 50 

(10) 

(II) 



Appendix 1 Matrices 

and hence 

( 19 22). MN = 
43 50 

If T' = NM, then 

t; I = 5 . I + 6 . 3 = 23 

t;2 = 5 . 2 + 6 . 4 = 34 

t~1 = 7 . I + 8 . 3 = 31 

t~2 = 7 . 2 + 8 . 4 = 46 

and 

NM = (23 34). 
31 46 

Consequently M N =1= N M. 
If MN = NM then the matrices M and N are said to commute. 
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(12) 

(13) 

(14) 

In the following we shall be concerned mainly with square matrices. If not other­
wise stated the matrices considered are square of order n. 

Let M be a square matrix of order n. Then the matrix elements mil' m22 , ... , mnn 
form the dial/anal of M. The numbers m ji , i =1= j are the off-diagonal elements of M. 

The tracc of M is the sum of its diagonal elements: 

n 

Tr M = L mjj • (15) 
i.::::l 

If all the off-diagonal elements of M are equal to zero, then M is said to be a diagonal 
matrix and we shall write 

( 16) 

The diagonal matrix whose diagonal elements are equal to unity is called the 
unit matrix and will be denoted by I n or (where there is no danger of misunderstanding) 
simply by I. 

The unit matrix has the obvious property 

MI = 1M = M (17) 

for all square matrices M of the same order as that of I. 
If M N = I then N is the inverse matrix of M and is usually denoted by M -I. 

A necessary and sufficient condition for the existence of M - I is that the determinant 
of M is non-zero. The elements of M -1 are given by Eq. (13) of Appendix 2. 

If M and N are matrices such that for all i, j, 

(18) 
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then N is the transpose of M and will be denoted by Mt. If M is a square matrix and 
mij = m ji , then M is a symmetric matrix. Hence a matrix M is symmetric if M = Mt. 

If mij is the complex conjugate of mji' then M is said to be a Hermitean matrix. 
A symmetric matrix whose elements are real numbers is Hermitean. 

If a matrix V has the properties 

then it is called unitary. Hence V is a unitary matrix if vt = V-I. 
The reader can easily verify that 

-sin cp) 
cos cp 

(19) 

(20) 

is a unitary matrix. This example is given in order to illustrate the following important 
application of matrices. 

Consider a point (x, y) in a two-dimensional coordinate system. If we rotate this 
point by an angle cp around the origin of the coordinate system then the new coordi­
nates (x', y') satisfy the equation 

(x:) = (c~S cp -sin CP) (X) . 
Y = sm cp cos cp y 

(21) 

Let M, N and V be square matrices of the same order. Let in addition the deter­
minant of V be non-zero. Then V-I exists. 

If N = V- 1M V, then the matrices Nand M are said to be similar and the mapping 
of Minto N is a similarity transformation. An important property of similar matrices 
is that their traces are equal. Hence 

L (M);; = L (U- 1 MUl;; (22) 
i i 

for all matrices V which have an inverse. 
In particular, if U is a unitary matrix, then we speak about unitary transformations. 

Unitary matrices and unitary transformations play an important role in the spectral 
theory of matrices (see Appendix 3). 

A matrix 

mIl m 12 m 1q m 1•q + 1 m 1,q+2 m 1,q+s 

m 21 m 22 m 2q m 2 ,q+l m 2 ,q+2 m 2,q+s 

m p1 m p2 m mp,q+ 1 m p,q+2 mp,q+s 
M= 

pq 
(23) 

m p + 1,l m p + 1,2 m p + 1,q m p + 1,q+l m p+l,q+2 m p + 1,q+s 

m p + 2,l m p + 2,2 m p + 2 ,q m p + 2,q+l m p + 2,q+2 m p + 2,q+s 

m p + r,l m p + r ,2 mp+r,q m p + r ,q+l m p + r ,q+2 mp+r,q+s 
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can be viewed as composed of the blocks 

( 
mll ml2 :Iq 1 

M = m21 m 22 2q 
I 

. . 

m pl m p2 mpq 

C'.+' M, ~ :, .• +0 

p,q+ I 

l m,+LO M _ m p + 2,1 
3 -

mp+r,1 

l mp+1.q+1 

M, ~ :'H"" 
p+r,q+ I 

that is 

m1.q+2 

m 2 ,q+2 

m p,q+2 

m p +1.2 

m p + 2 ,2 

m p +r,2 

m p +1.q+2 

m p + 2 ,q+2 

m p + r,q+2 

M = (MI M2 ). 

M3 M4 

m1.q+s 1 
m 2,q+s 

mp,q+s 

:P+l,q 1 
p+2,q 

mp+r,q 

:P+l,q+s 1 
p+2,q+s 

mp+r,q+s 
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(24) 

(25) 

(26) 

(27) 

(28) 

Of particular importance are the matrices having the so-called block diagonal 
form: 

(29) 

where MI and M2 are square matrices. A frequently used property of such matrices 
is that the determinant of M is equal to the product of the determinants of M 1 and M 2' 
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Determinants 

Let .fn be the set of the first n positive integers: 

.fn = {I, 2, ... , n} (1) 

Every mapping P of .fn onto itself is called l a permutation. We shall present the 
mapping P as 

(2) 

which means that P maps I into kl' 2 into k2' ... n into kn and furthermore 
{kb k2' ... , kn} = .fn• 

It is well known that there are n! distinct permutations of n elements. A permuta­
tion of the form 

( 1 2 ... ~ - 1 i + 1 

I 2 ... 1-1 j i+l 

j-l j j+1 

j-l j+1 
... n) 
... n 

(3) 

which interchanges a single pair of numbers, i and j, is called a transposition. Any 
permutation P can be obtained by making a certain number of successive transposi­
tions. Let the number of transpositions required for the creation of the permutation P 
be denoted by r(P). Then the term ( _l)r(P) is a unique characteristic of the permuta­
tion P and is called its parity. 

Let M be a square matrix of order n. The determinant of M is defined as 

(4) 

where the summation goes over all n! permutations of the numbers I, 2, ... ,n. In 
particular, for n = I 

(5) 

1 A more detailed account of the theory of permutations is given in Chap. 9. 
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for n = 2, 

(6) 

for n = 3, 

(7) 

Let Mij be the matrix obtained by deleting from M the i-th row and thej-th column. 
Then the col"actor of the element m .. of M is .I' I} 

_ i+j 
J1.ij - (-I) det Mij · 

The following results concerning the cofactors are worth mentioning. 
1° If M is symmetric, then J1.ij = J1. ji • 

(8) 

20 Since it is easier to calculate the cofactors than the determinant itself, the following 
expansion formulas 

n n 

det M = I m ijJ1.ij = I m jiJ1.ji 
i=l i= 1 

are often used in practice. They hold for all j E '~n' If k "# j, then 

n n 

I m ijJ1.ik = I mj;llki = O. 
i= I i= 1 

30 From (9) it is evident that 

adetM 
~=J1.ij' 

IJ 

(9) 

(10) 

(II) 

Furthermore, if M is a matrix whose diagonal elements are all equal to x, then 

a del M n 

a = I Pii' 
X i=1 

(12) 

4' The inverse of M exists if and only if det M "# 0 and then 

(13) 
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5° Denote by MI12 ... q the matrt'<. obtained by deletion from M the first q rows and 
the first q columns. Then 

det (::: ::: ::: :::) = (det M)q-l det (M112 ... q). 

I1ql I1q2 I1qq 

(14) 

For q = 2 we have the following special case of (14): 

det (MIl) det (M~) - det M det (MIW = l1ijl1ji • (15) 

Formulas (14) and (15) are known as the JACOBI identity. Note that det (MIl) 

= I1w 
Among many other properties of determinants we mention here the formula (16) 

because it will be needed later on: 

(m" + m;, m 12 + m~2 ... m" + m;. ) 
det m 21 • 

m 22 ... m 2• 

m.l m.2 m.n 

e" 
m l2 

m" 1 C' 
m~2 ... 

m' 1 In 

= det ~21 m 22 m 2n + det ~21 m 22 ... m 2n (16) 

mnl m n2 mnn m.l m n2 m n• 

Two determinants of order n can be added (in the sense of the above equation) 
only if n - 1 of their rows or n - 1 of their columns coincide. 
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Eigenvalues and Eigenvectors 

In the present appendix M will always denote a real and symmetric square matrix 
of order n. In other words the elements of M are real numbers and mij = mji • 

According to the definition of matrix multiplication, if C is an n-dimensional 
column-vector, then MC is also an n-dimensional column-vector. 

Two vectors C and C' are said to be collinear if there is a constant A, such that 
C' = AC. Those vectors C which have the property that C and MC are collinear 
are the eigenvectors of the matrix M. The corresponding constants A are the eigenvalues 
of M. The equation 

MC = AC (1) 

is called the eigenvalue-eigenvector equation of the matrix M. 
It can be shown that there exist n linearly independent vectors CI , C2 , ••• , C. 

which satisfy Eq. (I). The corresponding eigenvalues (which need not be all distinct) 
will be labeled by AI' ,12' ... , )~ •. 

If the (linearly independent) eigenvectors C,. , C. , ... , C. have the same eigen-
I '2 'd 

value (i e A = )~. = ;.. = ... = ) .. ), then they are d-times degenerate and the eigen-
. . 'I '2 'd 

value A is said to have algebraic multiplicity d. 
Two eigenvectors C j and C j of M which correspond to different eigenvalues (which 

are not degenerate, )'j -:/- A) must be orthooonal: 

(2) 

Degenerate eigenvectors need not be orthogonal. However, if C j and Cj are dege­
nerate eigenvectors of M, then their arbitrary linear combination (that is pCi + qCj' 
where p and q are arbitrary numbers) is also an eigenvector of M with the same eigen­
value. Using this property of degenerate eigenvectors, one can always construct 
their linear combinations which are mutually orthogonal. 

In addition to this, the eigenvectors of M can be chosen so as to be normalized: 

(3) 

for all i. 



180 Appendices 

If all the eigenvectors are normalized and mutually orthogonal, then they are 
said to be orthonormal. The orthonormality of the eigenvectors can be presented in the 
form 

(4) 

where the symbol Dij is the so called "KRONECKER delta", defined as Dij = 0 if i #- j 
and Dii = 1. 

For every matrix M with the above described properties a unitary matrix U can 
be found such that 

(5) 

The diagonal elements of U -1 M U are just the eigenvalues of M. All eigenvalues 
of M, with pertinent algebraic multiplicities, appear on the diagonal of U- 1MU. 
Furthermore, 

(6) 

The unitary matrix U satisfying (5), is said to diagonalize the matrix M. Two 
matrices are diagonalized by the same unitary matrix if and only if they commute. 
This means that matrices which commute have the same eigenvectors. 

The characteristic polynomial of the matrix M is defined as 

cp(M, x) = det (xl - M) . (7) 

Bearing in mind the properties of the determinant, one immediately sees that 
cp(M, x) is a polynomial of degree n (in the variable x). The eigenvalues of M are the 
zeros of cp(M, x), that is 

cp(M, A) = 0 (8) 

for all i = 1,2, ... , n. If A is an eigenvalue of a d-times degenerate eigenvector, then A 
is a d-fold zero of cp(M, x). 

The numbers A1' A2 , ... , An (taking into account their algebraic multiplicities) 
form the spectrum of the matrix M. 

If M is a real and symmetric (or more general: a Hermitean) matrix, then its spec­
trum is composed of real numbers. 

Define M2 = MM, M3 = M2M etc. It can be shown that for all k ;?; 1, 

n 

Tr (Mk) = I ).~ . (9) 
i=l 

The expression on the right-hand side of (9) is sometimes called the k-th moment 
of the matrix M. 
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Let us write the characteristic polynomial (7) as 

(10) 

Then the CAYLEy-HAMILTON theorem claims that 

(II) 
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Polynomials 

Let ao' a1' ... , an -1' an be a sequence of n + 1 numbers, n > 0. Then the expression 

(1) 

is called a polynomial in the variable x. If ao #- 0, then P(x) is a polynomial of degree n. 
The numbers ao' a1 , ••• , an are the coefficients of P(x). 
Let Q(x) be another polynomial 

(2) 

The polynomials P(x) and Q(x) are equal if n = m and ai = hi for all i. Then, 
of course, the equality P(x) = Q(x) holds for all x. Whenever there is no danger of 
misunderstanding, we shall denote the fact that two polynomials P(x) and Q(x) 
are equal simply by P(x) = Q(x). 

If for x = A the value of the polynomial P(x) is equal to zero, then A is a zero of 
the polynomial P(x). Hence A is a root of the equation P(x) = O. 

A fundamental theorem of algebra is that every polynomial P n(x) of degree n > 0 
has at least one zero and, consequently, can be written in the form 

(3) 

where Pn- 1(x) is a polynomial of degree n - 1 (if n > I) or a constant (if n = I). 
In Eq. (3) the zero of Pn(x) is denoted by ..11 ' This can be either a real or a complex 
number. 

A proper consequence of (3) is that a polynomial P(x) of degree n can be written 
in the form 

(4) 

where ..11' ..12 ' ••• , An are its zeros. A certain zero of P(x) can occur several times in 
the product on the right-hand side of (4). If A.. = A.. = ... = A.. = A, then we say 

11 12 ld 

that A is a d-fold zero of P(x) or that the algebraic multiplicity of A is equal to d or 
that its degeneracy is equal to d. 

If the algebraic multiplicity is taken into account, then every polynomial of 
degree n has exactly n zeros. 
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The coefficients and the zeros of a polynomial are related by the so-called VIETA 
formulas. Let AI' A2, ... , An be the zeros of the polynomial P(x) defined via Eq. (1). 
Then 

n 

-al/aO = I Ai 
i=1 

+a2/ao = I Ai/oj 
i<j 

etc. 
Define the quantity Sk (which is sometimes called the k-th moment) as 

(5) 

(6) 

(7) . 

(8) 

Then the relations between Sk and the coefficients of the polynomial P(x) are 
given by the NEWTON identities: 

(9) 

if k ~ n, whereas for k > n, 

(10) 

It would be useful to compare Eq. (9) from Appendix 3 with the present Eq. (8). 
Relations (9) and (10) hold for the moments of a matrix and the coefficients of its 
characteristic polynomial. 

Polynomials whose zeros are real deserve a special attention because of their 
role in the present book. For instance, all the zeros of the characteristic polynomial 
of a symmetric real matrix (and therefore of the characteristic polynomial of a graph) 
are real. The same is true for the matching polynomial. 

For such polynomials the DESCARTES theorem enables one to determine the number 
of positive zeros: 

Let a polynomial P(x) be given by Eq. (1) and let all its zeros be real numbers. 
Then the number n + of positive zeros of P(x) is equal to the number of sign changes 
in the sequence ao' al' ... , an. Coefficients which are equal to zero do not contribute 
to sign changes. 

If in (1) ak "# 0 and ak+1 = ak+2 = ... = an = 0, then A = 0 is an (n - k)-fold 
zero of P(x). Hence P(x) has no = n - k zeros which are equal to zero. Since the 
total number of zeros of P(x) is equal to n, the number n _ of negative zeros is equal 
to n - n+ - no. Consequently, from the knowledge of the coefficients llo, ab ... , a. 
one can easily deduce the number of positive, zero and negative zeros of P(x). 
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Characters of Irreducible Representations of Symmetry Groups 

In this appendix we present the character tables of the symmetry groups which are 
most frequently used in organic chemistry. In the left column of these tables the irre­
ducible representations of the group are indicated. The next column giv~s the respectIve 
characters for the different classes of symmetry elements. In the right column the 
transformation properties of some functions under the symmetry operations of the 
group are indicated. Rx' Ry and Rz denote the rotation of the molecule around the 
axes of the coordinate system (see Eq. (8.27)). The transformation properties (see 
Sect. 8.3) of the functions x, y, z, xy, yz and zx are always in harmony with a particular 
irreducible representation. In some groups, however, the transformation behaviour 
of the functions x2, land Z2 cannot be properly associated with any irreducible 
representation. In such cases, linear combinations like ~ + l, ~ - l etc. are 
considered, which transform in accordance with a particular representation. 

For further notation used in the following tables the reader should consult Chap. 8. 
The character tables of some further symmetry groups can be found in [58]. 

We give here also the character tables of the symmetric groups 8n, n ~ 6 [41]. 
The group elements are denoted by their cycle structures. Below each cycle structure 
the number of elements of the corresponding class is given. For details see Chap. 9. 

A 
I 

~,l.~,xy,yz, zx 

C2 E C2 

A 1 1 z Rz ~,y2, Z2, xy 
B 1 -1 x,y Rx. Ry yz, zx 

C3 E C3 C2 
3 W = exp (2rrij3) 

A 1 1 I z Rz .x2 + l, Z2 

E{ 1 W w 2 } } Rx' Ry } ~ -l,xy, 
1 w* W*2 

x,y 
yz,zx 
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-~--.----- -

C4 I E C4 C2 C3 

~ 
4 

Z R = 
X2 +y,Z2 

B I 1 ~l 1 ~l x2 ~ y2, xy 

1 --I ~i } } } E {I x,y Rx' Ry yz, zx 
~i ~-l 

_~~ __ L _____ '--

Cs E Cs C2 
5 C3 

5 C4 
5 w = exp (2ni/5) 

---

A 1 1 1 1 1 

EI { 
1 W w2 w3 w4 

1 w* W*2 W*3 W*4 

E2 { 
1 w2 w4 w 

:.' I 1 W*2 W*4 w* 
-

~--

I R z 
r + y2, Z2 

} x,y } Rx' Ry } yz,zx 

} r~y,xy 

C6 E C6 C3 C . C2 
2 3 CS 

6 W = exp (2ni/6) 

A 1 1 1 1 1 1 z R z x2 + y, Z2 
B 1 ~I 1 ~l 1 ~l 

EI { 
1 W w1 ~l ~w ~W2 

} x,y } Rx' Ry } yz,zx 
1 w* W*2 ~1 ~w* ~W*2 

E, { 
1 w2 w4 1 w2 w4 

} x2 ~ y, xy 
1 W*2 W*4 1 W*2 W*4 

C2v 
I 

E C2 (Jv (Jd 
ZX yz 

Al 1 1 1 1 Z x2, y2, Z2 

A2 1 1 ~l ~1 R xy z 

BI 1 ~1 1 ~l x R 
Y 

zx 
B2 1 ~l ~l 1 y R yz x 

C3v E 2C3 3(J v 

Al 'z 

I 

r + y, Z2 
A2 ~l R z 

E 2 ~I 0 x,y I 
Rx' Ry 

{r ~ y, xy 

I 
yz, zx 
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C4v E 2C4 C2 2CTv 2ad 

Al 1 1 1 1 1 Z 

A2 1 1 1 -1 -1 R • 
Bl 1 -1 1 1 -1 

B2 1 -1 1 -1 1 
E 2 0 -2 0 0 x,y Rx ' Ry 

Csv E 2Cs 2C2 
5 5CTv q> = 2rr/5 

Al 1 1 1 1 z 

A2 1 1 1 -1 R • 
El 2 a b 0 x,y Rx' Ry 
E2 2 b a 0 

I 

a = 2 cos <p = 2 cos 4q> = (0 - 1)/2 = 0.618034, 

b = 2 cos 2<p = - (0 + 1)/2 = -1.618034. 

C6v E 2C6 2C3 C2 3CTv 3CTd 

Al 1 1 1 1 1 1 z 

A2 1 1 1 1 -1 -1 

Bl 1 -1 1 -1 1 -1 
B2 1 -1 1 -1 -1 1 

R. 

Appendices 

Xl+I,z2 

Xl-I 
xy 
yz,zx 

Xl + y2, z!-

yz,zx 
Xl -I, xy 

Xl + I, z!-

El 2 1 -1 -2 0 0 x,y Rx ' Ry Y=,zx 
Xl -I,xy E2 2 -1 -1 2 0 0 

C1h E CTh C1h = C. 
xy 

A' 1 1 x,y R • x2 , I, z!-, xy 
A" 1 -1 z Rx ' Ry yz,zx 

C2h E C2 i CTh 

A 1 1 1 1 R. Xl, I, z!-, xy 
9 

A 1 1 -1 -1 z u 
Bg 1 -1 1 -1 Rx' Ry yz, zx 
Bu 1 -1 -1 1 x,y 
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C3h E C3 C2 3 (Jh S3 S2 3 

A' R z r+/,z2 
A" -1 -1 -1 z 

{ w w2 W w2 
} x,y }r -/,xy E' 

w* W*2 I w*- W*2 

E" { 
W w2 -1 -w _w2 

}Rx' Ry } yz, zx w* W*2 --1 -w* _W*2 
--- -- ------

C4h E C4 Cz C3 4 S3 4 (Jh S4 

A R r + /, z2 
9 = 

A -1 -1 u ~1 -1 z 
B -1 -1 1 -1 1 --1 r -/, xy 

9 

B -1 --1 -1 1 -1 1 u 

Eg { 
-1 --i -1 -i 

} Rx' Ry } yz, zx -i -1 1 -i -1 

Eu { 
-1 --i -1 -i 

} x, Y -i -1 -1 -i 
.. _------_. ----
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1 
-I X,}', Z 

S4 E S4 C2 s:1 
A 1 
B -1 1 -1 z 

E{ -1 -i 
} X,Y -i -I 

-

S6 E C3 C2 
3 

S5 
6 S6 

A 
9 

A -I -1 -I 
" 

::iL 
w w2 1 W w2 

w* W*2 1 w* W*2 

E { 1 w oi -I -w -oi 
" 1 w* (1)*2 -\ -W* _W*2 

~ 

:: Ift-_ ~c,_ 
A2 1 \-1 
E 2 -I 

z 
o x,y 

xl,~,z2,xy,yz,zx 

R z I X2 + ~,Z2 
x2 - ~,xy 

} Rx' Ry } yz, zx 

W = exp (2ni/3) 

I 

I 
i R .~+~,Z2 

I = z 

}Rx' Ry } xl - ~, xy, yz, zx 

}X,y 

xl -~, xy, yz, zx 



190 

°4 E 2C4 Cl 2C; 2C; 

Al 1 1 1 1 1 
Al 1 1 1 -1 -1 z R z 

Bl 1 -1 1 1 -1 
Bl 1 -1 1 -1 1 
E 2 0 -2 0 0 x,y Rx' Ry 

Os E 2Cs 2C~ 5C~ cp = 2n/5 

Al 1 1 1 1 
Al 1 1 1 -1 z Rz 
El 2 a b 0 x,y Rx, Ry 
E2 2 b a 0 

a = 2 cos cp = 2 cos 4cp = (Vs - 1)/2 = 0.618034, 

b = 2 cos 2cp = -(Vs + 1)/2 = -1.618034. 

°6 E 2C6 2C3 Cl 3C; 3C;' 

Al 1 1 1 1 1 1 
Al 1 1 1 1 -1 -1 R z 

Bl 1 -1 1 -1 1 -1 
Bl 1 -1 1 -1 -1 1 z 
El 2 1 -1 -2 0 0 x,y Rx' Ry 
E2 2 -1 -1 2 0 0 

°2d E 2S4 Cl 2C; 2C;' Old = Vd 

Al 1 1 1 1 1 
Al 1 1 1 -1 -1 R z 

Bl 1 -1 1 1 -1 
Bl 1 -1 1 -1 1 z 
E 2 0 -2 0 0 x,y Rx' Ry 

Appendices 

.xl + yl, Zl 

x2 - yl, xy, yz, zx 

.xl+I,r 

yz,zx 
.xl -I, xy 

Xl+yl,zl 

yz, ZX 
Xl _ yl, xy 

xl+I,Zl 

.xl _ yl 
xy 
yz,zx 
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~-I -~---- -------------. ----
D3d E 2C3 3C; 2S3 3CJd 

A19 Xl+.1'1,Z2 
A tu -I -\ -\ 
A19 \ \ \ -\ R = 
Alu \ -I -\ -\ \ z 1x' -y', xy, y'," E 2 -\ 0 2 -\ 0 Rx ' Ry 9 
E 2 -\ 0 -2 0 X,Y u 

-~ 

2S3 
D4d I E 2Ss 2C4 8 C2 4C; 4CJd 

fI:~-------At 1 1 1 Xl + yl, Zl 

Alii 1 1 -I -I R z 

B I 1 --I 1 -I 1 -\ 
t I 1 -I 1 -I 1 -I z Bz 

Et 2 V2 0 -V2 -2 0 0 x,y 

El 2 0 :2 0 2 0 0 x2 ---.:.l,xy 

E3 2 -V2 0 V2 -2 0 0 Rx ' Ry y.::, zx 

--~--

2C; 5C~ 2Sio 2StO 5CJJ rp = 2n/5 DSd E 2Cs 

Atg 1 1 11 IX2+l,Zl 
Atu -I -I -I -\ 

I AZ9 -I 1 1 1 -1 R z 

Azu 1 1 -I -I -I -\ 1 -
Et9 2 a b 0 2 a b 0 Rx ' Ry y.::, zx 
Etu 2 a b 0 -2 -a -b 0 x,y 

EZ9 2 b a 0 2 b a 0 ~ -l,xy 
Elu 2 b a 0 -2 -h -a 0 
~_l -------- --1 

a = 2 cos rp = 2 cos 4rp = q/5- 1)/2 = 0,618034, 

,,= 2cos2rp = -(vis + 1)/2 = -1,618034. 
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D6d E 2S12 2C6 2S4 2C3 2Si2 C2 6C; 60"d 

AI 1 1 1 1 1 1 1 1 1 x2 + I,.i 
A2 1 1 1 I 1 1 1 -I -I R z 

BI I -I 1 -I 1 -I 1 1 -I 
B2 1 -I 1 -I 1 -I 1 -I 1 z 
EI 2 113 1 0 -I -0 -2 0 0 x,y 
E2 2 1 -I -2 -1 1 2 0 0 x2-I,xy 
E3 2 0 -2 0 2 0 -2 0 0 
E4 2 -I -I 2 -1 -I 2 0 0 Rx' Ry yz, zx 
E5 2 -113 1 0 -I 113 -2 0 0 

D2h E C2 C2 C2 i 0" 0" 0" D2h = Vh 

Z Y X xy zx yz 

A 1 1 1 1 1 1 1 1 xl, I, Z2 g 
A 1 1 1 

U 
1 -I -I -I -1 

Big 1 1 -I -1 1 1 -I -I R xy z 

B IU 1 1 -I -1 -1 -1 1 1 z 
B 2g 1 -I 1 -I· 1 -I 1 -1 Ry ZX 

B 2u 1 -I 1 -1 -1 1 -I 1 )' 

B 3g 1 -I -I 1 1 -I -I 1 Rx yz 
B3U 1 -I -I 1 -I 1 1 -1 x 

D3h E 2C3 3C; O"h 2S3 30"v 

A' 
I 1 1 1 1 1 1 xl+I,.i 

AI.' 
I 1 1 1 -1 -1 -1 

A' 
2 1 1 -I 1 1 -I R z 

A" 
2 1 1 -I -I -1 1 z 

E' 2 -I 0 2 -1 0 x,y xl -I,xy 
E" 2 -1 0 -2 1 0 Rx' Ry yz,zx 
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D4h E 2C4 C2 2C~ 2C;' i 2S4 (Jh 2(Jv 2(Jd 
-----_._---

A ig 1 1 1 1 1 1 1 1 1 1 .xl + T, Z2 
Alu 1 1 I 1 1 -I -I -I -I -I 
A29 1 1 I -I -I 1 1 1 -1 -I R z 

A2u 1 1 I -I -1 -1 -1 -1 1 1 Z 

B\II I -1 I 1 -I 1 -I 1 1 -I .~ _y2 

B\II 1 -I 1 I -I -1 1 -I -I 1 
B2g 1 --I 1 -I 1 1 -1 1 -1 1 xy 
B2u 1 -I \ -1 \ -1 1 -I 1 -1 
E 2 0 

9 
-2 0 0 2 0 -2 0 0 Rx' Ry yz, zx 

Eu 2 0 -2 0 0 -2 0 2 0 0 x,y 

-----

DSh E 2Cs 2C; 5C~ (Jh 2Ss 2S3 
S 

5(Jv <p = 2rr/5 

A' 
I .xl + T, Z2 

A" 
I \ -1 -\ -1 -\ 

A' -\ \ \ -I R 2 z 
A" 

2 1 -I -I -I -1 1 z 
E' 

I 2 a b 0 2 a b 0 x,y 
E" 2 a b 0 -2 -a -b 0 Rx ' R) .yz, zx I 

E' 2 b a 0 2 b a 0 x2 - T, xy 2 
E" 

2 2 b a 0 -2 -b -a 0 

a = 2 cos <p = 2 cos 4<p = (Vs- 1)/2 = 0,618034, 

b = 2cos2<p = -(Vs + 1)/2 = -1,618034. 
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T E 4C3 4C; 3C, I w ~OXP~~;/3) 
A x2+1+.::2 1 I 

E{ w lJi ! 
}x2 +1-2z2 

w* W*2 X2 -l 
F 3 0 0 -1 L'z R x , Ry , Rz xy,yz,zx 

~E __ 8~3_~~=~ 6S
4 
--6cr~-I---------------

Aj I 1 1 1 1 1 I X2 + l + Z2 

Az -1 -\ 
E 2 -1 2 0 0 X2 + y2 _ 2Z2, X2 _ y2 

F j 3 0-1 
F2 3 0-\ 
---1 ___________ _ 

1 -1 
I x, y, Z 

I Rx ' Ry' Rz 

-1 1 XY,YZ,zx 

Th E 4C3 4Cz 3Cz i 4S5 4S6 3cr I w = exp (2n i/3) 3 6 
n I 

----------

A 1 I XZ+y2+Z2 
9 

A -1 - 1 -1 -1 u 

}~~~ -2i Eg { 
w 0/ 1 w w2 1 
w* W*2 w* W*2 1 

Eu{ 
W w2 -1 -(I) -ol -1 

1 w* W*2 -1 -(1)* _(1)*2 -1 

F 3 0 0 -1 3 0 0 -1 Rx ' Ry ' Rz xy,yz,ZX 
9 

F 3 0 0 -1 -3 0 0 1 x,y,z u 

T 
0 E 8C3 3Cz 6C4 6C~ 

--'"'-~- -------~- --. ~~-.- ----.-~ ------,-_._-----

AI 1 \ x2+1+z2 

A2 -1 --1 
E 2 -\ 2 0 0 X2 + l- 2Z2, xl-l 
Fj 3 0 -\ -1 x,y,z Rx ' Ry' Rz 

F2 3 0 -1 -1 1 
~ 

xy,yz, zx 
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I E 12Cs ' 12~ 20C3 15C2 

A 1 1 1 1 1 I ~+y2+Z2 

F1 3 a b 0 -I x,y,z Rx ' Ry, Rz 

F2 3 b a 0 -I 
G 4 -I -I 1 0 

H 5 0 0 -I 1 {X2 + y2 _2Z2 

x2 - y2, xy, yz, zx 

a = (I + 0)/2 = 1,618034, 

b = (1 - 0)/2 = -0,618034. 

Coov E 2C'" 
00 

C2 oo(Jv O<qJ<n 

A1 = .r+ 1 1 ... I I z ~ + y2, Z2 
A =.r-2 . 1 1 ... I -I R z 

E1 = n 2 2 cos qJ ... -2 0 x,y Rx ' Ry yz,zx 
E2 = L1 2 2 cos 2qJ ... 2 0 ~ -/,xy 
E3 = tP 2 2 cos 3qJ ... -2 0 
... ... ... ... . .. . .. 
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Symmetric groups, Sn, n ~ 6 

S2 [If [2] 
1 1 

S3 [W [3] [1][2] 
1 2 3 

ro 1 
r 1 1 1 -1 
r2 2 -1 0 

S4 [It [1][3] [2]2 [If [2] [4] 
1 8 3 6 6 

ro 1 1 
r 1 1 -1 -1 
r2 2 -1 2 0 0 

r3 3 0 -1 1 -1 
r4 3 0 -1 -1 1 

SS [IP [5] [If [3] [l][2f [W[2] [2] [3] [1 ][4] 
1 24 20 15 10 20 30 

ro 1 1 
r 1 1 1 1 -1 -1 -1 
r2 4 -1 0 2 -1 0 
r3 4 -1 1 0 -2 0 
r4 5 0 -1 1 1 -1 
rs 5 0 -1 1 -1 -1 1 
r6 6 0 -2 0 0 0 
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Appendix 6 

The Symbols Used 

In the right-hand side column of the following list the chapter, section, paragraph 
or equation are indicated, where the respective notion has been defined. 

A TEMO subunit 13.1 
A, A(G) adjacency matrix (of the graph G) 4.3.1 
A(G) automorphism group (of the graph G) 9.2 
A, AI' A', Ag, AIg totally symmetric irreducible representation 7.2 and 8.1 
An altemant group 9.5 
ak coefficient of !p( G) Eq. (4.21) 
aij element of the adjacency matrix Eq. (4.12) 
B TEMO subunit 13.1 
B one-dimensional irreducible representation 8.1 
beG, k) coefficient of !peG) of bipartite graphs Eq. (6.56) 
Cn cycle with n vertices 4.1.6 
C n n-fold rotation axis 8.1 
Ci i-th eigenv(:ctor of the graph Eq. (4.15) 
C i symmetry group; C i ~ S2 8.2.1 
Cn, Cnv' Cnh symmetry groups 8.2.1 
Cn cyclic group 9.5 
Coov symmetry group 8.2.3 
c(S) number of cycles in the SACHS graph S 4.2.1 
cs(P) cycle structure of the permutation P 9.3 
cij LCAO coefficient Eq. (5.1) 
D(G) distance matrix of the graph G 4.1.4 
Dv distance vector of the vertex v 11.1.1 
Dn' Dnv' Dnh symmetry groups 8.2.1 
Dooh symmetry group 8.2.3 
D n dihedral group 9.5 
d(u, v) distance between the vertices u and v 4.1.4 
d(v), d(v, G) distance number of the vertex v 11.1.1 

~ element of the distance matrix Eq. (11.2) 
identity group element 7 

E, E. totaln-electron energy Eqs. (12.2) and (12.4) 
Ei energy of the i-th MO Eq. (5.1) 
~, ~(G) edge set (of the graph G) 4.1.4 
E two-dimensional irreducible representation 8.1 
En identic group of degree n 9.5 
e, ej edge 4.1.2 and 4.1.3 
G graph 4.1.2 
G group 7 
tS, tSn set of all graphs, set of all graphs with 

n vertices 4.1.2 
tS a. b set of all bipartite graphs with a + b vertices, 

a~b 6.3.1 
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y(G) degree of the automorphism group G 9.2 

{Iv degree of the vertex r 4.1 
if Hamiltonian operator 5 and 8.4.6 
H Hamiltonian matrix 5 
h number of hexagons in a benzenoid graph 6.4.1 
h, h(G) order (of the group G) 7.2 
I, In unit matrix (of the order n) Appendix 1 
I,Ih icosahedral groups 8.2.2 

inversion 8.1 
K number of KEKULE structures 6.4.2 
Kn complete graph with n vertices 4.1.6 
Ka . b complete bipartite graph with a + b vertices, 

a ;;:; b 6.3.1 

Kl.n~l star with n vertices 6.1.2 
k,k(G) number of components (of the graph G) 4.1.4 
L(G) line graph of the graph G 4.4 
Ii dimension of the i-th irreducible representation 7.3 
m number of edges; m = 10'1 4.1.4 
meG, k) number of k-matchings of the graph G 4.2.2 
n number of vertices; n = 1'1'1 4.1.4 
ni number of internal vertices of a benzenoid 

graph 6.4.1 
0, On zero matrix (of order n) Appendix I 
O,Oh octahedral groups 8.2.2 
Pn path with n vertices 6.1.2 

PUt· path between the vertices u and v 13.2 
R element of a symmetry group, symmetry 

operation 7.3 and 8 
Rx ' R y' R, rotation modes Eq. (8.27) 
S SACHS graph 4.2.1 
S topomer in TEMO 13.1 
Sn n-fold rotation-reflection axis 8.1 
.Cf';, .Cf'i(G) set of SACHS graphs with i vertices (contained 

in the graph G) 4.2.1 
Sn symmetry group 8.2.3 
Sn symmetric group 9.5 
T tree 6.1.1 
T topomer in TEMO 13.1 
Tx ' T,., T, translation modes Eq. (8.26) 
.Y n set of all trees with n vertices 6.1.1 
T, Td, Th tetrahedral groups 8.2.2 
u vertex 4.1.4 
'I', j/(G) vertex set (of the graph G) 4.1.4 
v,vi vertex 4.1.2 
W, W(G) WIENER index (of the graph G) Eq. (11.4) 
W weight matrix 6.5.2 
Z cycle 4.3.3 
Z, Z(G) HOSOYA'S index (of the graph G) Eq. (11.14) 

Ci HMO parameter 5 and 13.4 
Ci(G, x) matching polynomial Eq. (4.11) 
f3 HMO parameter 5 and 13.4 
r. representation of a group 7.2 , 
d(x) !peT) - !peS) in TEMO Eq. (13.2) 
b .. KRONECKER'S symbol; bi; = I and 

'J 
b;j = 0 if i "# j 

'1j . number of electrons in the j-th MO 12.1 
lj. ),/G) eigenvalue (of the graph G) Eq. (4.15) 
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Jl.(G, x) Jl.-polynomial Eq. (4.36) 
Gh, (lv' ad reflections 8.1 
rp(G, x) characteristic polynomial Eq. (4.18) 
X(R), Xi(R) character of the group element R 

(in the i-th irreducible representation) Eq. (7.22) 

t wave function, molecular orbital Eqs. (5.2) and (8.37) 

G complement of the graph G 4.4 
M- 1 inverse of the matrix M; 

M-1M = MM- 1 = I Appendix I 
R-1 inverse of the group element R; 

R-1R = RR-1 = E 7 
G1 U G2 union of the graphs G1 and G2 4.4 
G1 EfJ G2 compound of the graphs G1 and G2 4.4 
GI[G21 composition of the graphs GI and G2 4.4 
GIG G2 product (either direct or semidirect) of the 

groups GI and G2 7.5 
GI EfJ G2 direct product of the groups GI and G2 7.5 
GI QG2 semidirect product of the groups GI and G2 7.5 
GI[G21 wreath product of the groups GI and G2 9.6 
G1 ~ G2 the graphs GI and G2 are isomorphic 4.4 
GI >- G2 m(G1, k) ~ m(G2, k) for all k 6.1.4 
G1 >·G2 b(Gl' k) ~ b(G2, k) for all k 12.5 
GI ~ G2 the groups GI and G2 are isomorphic 7.7 
GI c G2 G1 is a proper subgroup of the group G2 7.5 

~ empty set 
I~I number of elements of the set ~ 
XE~ x is an element of the set ~ 
~ u OJ! union of the sets ~ and OJ! 
~nOJ! intersection of the sets ~ and OJ! 
~sOJ! ~ is a subset of the set OJ! 
.of ® OJ! cartesian product of the sets ~ and OJ! 
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