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Foreword

After more than 35 years in the semiconductor business, I find that custom inte-
grated circuit (IC) design continues to present extremely interesting challenges. In
this book, Trent McConaghy, Kristopher Breen, Jeff Dyck, and Amit Gupta, all
with Solido Design Automation, address the increasingly difficult design issues
associated with variation in advanced nanoscale processes.

The authors have put together what I believe will become an invaluable ref-
erence for best practices in variation-aware custom IC design. They have taken
theory and combined it with methodology and examples, based on their experi-
ences in supplying leading-edge design tools to the likes of TSMC and NVIDIA.
This book’s content is useful for circuit designers, CAD managers and CAD
researchers. This book will also be very useful to graduate students as they begin
their careers in custom IC design.

I have always felt that the job of a designer is to optimize designs to what the
requirements dictate, within the process capabilities. Circuits must trade off the
marketing requirements of function, performance, cost, and power. This is espe-
cially true for custom IC design, where the results are on a continuum. There is
never a perfect answer—only the most right, or equivalently, the least wrong.

Moore’s Law—the practice of shrinking transistor sizes over time—has tradi-
tionally been a no-brainer, since smaller devices directly led to improved power,
performance, and area. Several decades into Moore’s Law, today’s IC manufac-
turing has literally reached the level of ‘‘nanotech’’, with minimum device sizes at
40, 28, 20 nm, and most recently 14 nm. Variation in devices during manufac-
turing has always been around, but it has not traditionally been a big issue. The
problem is that variation gets exponentially worse as the devices shrink, and it has
become a major problem at these nano nodes. Designers must choose between
over-margining so that the circuit yields (taking a performance hit), or to push
performance (taking a yield hit).

Variation has made it harder to differentiate ICs on power or performance,
while still yielding. The use of common commercial foundries, such as TSMC,
GLOBALFOUNDRIES, Samsung, and even now Intel, makes it even more dif-
ficult to differentiate competitively. Performance hits are unacceptable, because all
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semiconductor companies are using the same foundries trying to produce com-
petitive chips. In turn, yield hits are unacceptable for high volume applications
since costs quickly skyrocket.

Moore’s Law and opportunities for differentiation are the lifeblood of a healthy
semiconductor industry. Variation is threatening both.

I’ve known Trent for several years now, since when he was co-founder of
Analog Design Automation (acquired by Synopsys) in the early 2000s. He earned
his Ph.D. at KU Leuven University under the supervision of Georges Gielen, and is
now currently co-founder and CTO of Solido Design Automation.

I love Trent’s personal story as well. He grew up on a pig farm in Saskatch-
ewan. As of this writing, Saskatchewan is 251,700 square miles with a population
of just over 1 million souls. In contrast, California is 163,696 square miles with a
population of 37 million souls. And Saskatchewan gets cold.

Trent once told me a story about farm life. When the weather gets to about
-40� (it is the same in Celsius or Fahrenheit), it freezes the valves for the pigs’
outdoor watering bowls. To prevent damage to the plumbing, he had to pour hot
water over the valves to thaw the ice, then re-fasten some tiny bolts. This latter
step required taking his gloves off. He had about 15 s to fasten the bolts and get his
gloves back on before freezing his fingers (and risking frostbite). Trent is a
fountain of amazing farm stories from his boyhood. I grew up in California, and
the biggest obstacle I had to starting the day was deciding if I was going to wear a
long or short sleeve shirt that day. These experiences surely had a huge influence
in building Trent’s character.

As I have come to know Trent, I have also learned that he has a broad range of
interests, from neuroscience, to music, to art. He complements his wife, who is an
art curator with world-class training (Sorbonne, Paris) and work experience (The
Louvre, Paris). Trent is truly a unique and entertaining renaissance man in the Da
Vinci tradition.

On the technical side, Trent has a unique ability to invent algorithms that solve
real design challenges, but not stop there. He takes the algorithms past the stage of
prototype software that solves academic problems, shepherding them into com-
mercial software usable by real designers doing production circuit design. At
Solido, Trent has worked closely with Jeff Dyck, Kristopher Breen, and Solido’s
product development team, to deliver industrial-scale variation solutions.

This book helps custom IC designers to address variation issues, in an easy-to-
read and pragmatic fashion. I believe this book will become an invaluable resource
to the custom IC designer facing variation challenges in his/her memory, standard
cell, analog/RF, and custom digital designs.

Enjoy the read… and never miss a chance to talk or listen to Trent!

Los Gatos, CA, July 2012 Jim Hogan
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Chapter 1
Introduction

Variation Effects, Variation-Aware Flows

Abstract This chapter introduces the problems of variation with respect to cus-
tom integrated circuit design. It then describes several design flows, and how well
they handle or fail to handle variation. The chapter concludes with an outline for
the rest of the book, which covers methodologies and tools for handling variation
in industrial design settings.

1.1 Introduction

Variation is an expensive problem. Failing to effectively design for variation can
cause product delays, respins, and yield loss. These are serious issues that directly
impact the revenues, profits, and ultimately, valuations of semiconductor com-
panies and foundries alike. The costs of variation problems trickle down the whole
supply chain in the form of product delays, inability to meet market demands,
finished product quality issues, and loss of customer confidence. This adds up to a
massive annual loss. Calculating this loss would be extremely difficult, as there are
many factors that contribute to the true cost of variation. However, we are aware of
cases where variation problems have led to single product losses in excess of $100
million, so given the large number of semiconductor products available, it is
intuitive that the annual losses due to variation are easily in the billions of dollars.

To make matters more challenging, physics and economics continue to co-
conspire to drive us toward smaller process geometries. As transistors get smaller,
performance targets increase, and supply voltages decrease, all making variation
effects more pronounced. The variation problem continues to get worse, and the
need to combat it with effective variation-aware design continues to become more
essential.

Designing for variation is also expensive. Collecting data using test chips and
building accurate models of variation is an intensive and complex procedure for
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foundries and design companies alike. Putting variation models to even basic use
requires CAD tool investment, compute cluster investment, and CAD and IT
support staff.1 To effectively design for variation requires considerable designer
expertise, additional time for careful analysis and design iterations, and time to
perform thorough verification across the range of variation effects. Reducing
variation effects at the design stage is a critical component to solving the overall
variation problem, and this is best done with thoughtful design methodologies that
are both rigorous and that can be completed within production timelines.

This book is for designers. It is a field guide to variation-aware design, outlining
fast and accurate methods for eliminating risks and costs associated with variation.
It is for people who design RF, analog, I/O, custom digital, digital standard cell,
memory, automotive, or medical blocks or systems. That is, it is for people who
work with schematics and SPICE simulators, rather than just RTL and related
system code.2 No revolution is necessary; this book describes minimal but spe-
cifically targeted extensions to existing corner-based, SPICE-based design meth-
odologies. Furthermore, this book does not ask the reader to learn or re-learn deep
statistical concepts or advanced algorithmic techniques; though for the interested
reader, it does make those available in appendices.

In short, this book is about developing custom circuit designs that work, despite
the effects of variation, and doing so within production timelines.

1.2 Key Variation Concepts

We begin by presenting an overview of key variation-aware design concepts: types
of variables, types of variation, and terminology.

1.2.1 Types of Variables

Two types of variables affect a circuit’s behavior:

• Design variables (controllable variables): These can be set by the designer, and
together their choice constitutes the final design. These include the choices of
topology, device sizes, placement, routing, and packaging.

• Variation variables (uncontrollable variables): These cannot be set by the
designer in the final design; they happen due to various mechanisms that the
designer cannot control. However, their values can be set during design, to

1 CAD = computer-aided design, IT = information technology.
2 RF = radio frequency, I/O = input/output, SPICE = Simulation Program with Integrated
Circuit Emphasis (Nagel and Pederson 1973), and RTL = Resistor-Transistor Logic.

2 1 Introduction



predict their effect on the design’s performance. This ability to predict is the key
enabler of variation-aware design.

1.2.2 Types of Variation

In integrated circuits, the variation variables may take many forms, which we now
review.

Environmental variation: These variables include temperature, power supply
voltage, and loads. In general, environmental variables affect the performance of
the design once the circuit is operating in the end user environment. The design
must meet target performance values across all pre-set environmental conditions;
said another way, the worst-case performances across environmental corners must
meet specifications. These pre-set conditions may be different for different circuits;
for example, military-spec circuits typically must handle more extreme
temperatures.

Modelset-based global process variation: These are die-to-die or wafer-to-
wafer variations introduced during manufacturing, by random dopant fluctuations
(RDFs) and more. Global process variation assumes that the variations affect each
device in a given circuit (die) in an identical fashion. These variations affect device
performance, for instance vth, gm, delay, or power, which in turn affect circuit
performance and yield.

Traditionally, modelsets are used to account for global process variation. In
modelsets, each NMOS model and each PMOS3 model has a fast (F), typical (T),
and slow (S) version, supplied by the foundry in netlist form as part of the Process
Design Kit (PDK). The foundry typically determines the models by Monte Carlo
(MC) sampling the device, measuring the mean and standard deviation of delay,
then picking the sample with delay value closest to mean -3 * stddev (for
F modelset), closest to mean (for T modelset), and closest to mean +3 * stddev (for
S modelset).

The modelset approach to global process variation has traditionally been quite
effective for digital design: F and S conservatively bounded the high and low
limits of circuit speed; and since speed is inversely proportional to power, F and
S indirectly bracketed power. The device-level performance measures of speed
and power directly translated to the key digital circuit-level measures of speed and
power. However, the modelset approach has not been adequate for analog and
other custom circuits since modelsets do not bracket other performances such as
slew rate, power supply rejection ratio, etc. When possible, designers have

3 NMOS = N-channel MOSFET, PMOS = P-channel MOSFET, MOSFET = metal-oxide-
semiconductor field-effect transistor.
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compensated using differential topology designs; and when not possible, they used
the modelsets anyway and hoped for the best.

Statistical global and local process variation: Whereas in the past, the modelset
approach to handling global process variation was adequate for most cases, the
situation is now changing. This is because gate lengths continue to shrink over
time, as Fig 1.1 shows. This phenomenon—Moore’s Law—is still happening:
devices will continue shrinking in the foreseeable future. While transistors keep
shrinking, atoms do not. For earlier technology generations, a few atoms out of
place due to random dopant fluctuations or other variations did not have a major
impact on device performance. Now, the same small fluctuations matter. For
example, typically the oxide layer of a gate is just a few atoms thick, so even a
single atom out of place can change device performance considerably. Statistical
models can capture these variations. Local variation occurs within a single die,
while global variation occurs across dies or wafers.

On modern process nodes, such as TSMC 28 nm or GF 28 nm, statistical
models of variation are supplied by the foundry as part of the PDK. Larger
semiconductor companies typically verify and tune these models with in-house
model teams. A statistical model typically specifies the global random variables,
the local random variables, and the distribution of those random variables. Another
approach is to use modelsets for global process variation, and a statistical model
for local variation only.

There are many approaches to modeling statistical variation. Probably the best-
known approach is the Pelgrom mismatch model (Pelgrom and Duinmaijer 1989).
In this model, matched devices are identified beforehand, such as devices in a
current mirror, and the variance in threshold voltage Vt between matched devices
is estimated. The theory is based on simple hand-based equations for transistors in
the saturation region, which makes them poorly suited for calibration from tester-
gathered MOS data, or for other transistor operating regions.

Since Pelgrom’s famous work, many improved models have emerged. An
example is the Back-Propagation-of-Variance (BPV) statistical model (Drennan
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and McAndrew 2003). It does not require specification of mismatch pairs. It is
more accurate because it directly models the underlying physical variables as
independent random variables (e.g. oxide thickness, substrate doping concentra-
tion) which can be readily calibrated by silicon measures. It can also account for
both global and local variation. Beyond BPV, research on more accurate models
continues, and foundries will continue to incorporate them into PDKs.

Figure 1.2 compares FF/SS variation versus statistical variation on a GF 28 nm
process for a performance output of a typical analog circuit. We see that the FF/SS
modelset does not adequately capture the performance bounds of the circuit,
reconfirming our claim that FF/SS corners are not adequate on modern geometries
for many types of custom circuits.

Layout parasitics: These resistances and capacitances (RCs) are not part of the
up-front design, but rather emerge in the silicon implementation. They form within
devices, between devices and interconnect, between devices and substrate,
between interconnects, and between interconnect and substrate. Their effects are
most concerning in circuits operating at higher frequencies (e.g. RF), or lower
power supply voltages which have less margin. The challenge with layout
parasitics is that one needs the layout to measure them, yet they affect electrical
performance, which needs to be handled during front-end design, the step before
layout. At advanced process nodes (e.g. 20 nm) where double patterning lithog-
raphy (DPL) is used, the parasitics between layers can significantly impact
performance.

Other types of variation: There are even more types of variation. Transistor
aging/reliability includes hot carrier injection (HCI) and negative bias temperature
instability (NBTI), which have been noted for some time, but are now becoming
more significant. New aging issues include positive bias temperature instability
(PBTI) and soft breakdown (SBD). There is electromigration (EM), which is aging
on wires. There are layout-dependent effects (LDEs), which include well prox-
imity effects (WPEs) and stress/strain effects. Thermal effects are becoming an

FF
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52                      51                      50                      49

Avg. duty cycle

FF/SS do not capture
the bounds of the distribution!

Fig. 1.2 FF/SS Corners
versus Distribution, for the
average duty cycle output of a
phase-locked loop (PLL)
voltage-controlled oscillator
(VCO), on GF 28 nm.
Adapted from (Yao et al.
2012)
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issue with through-silicon-via (TSV)-enabled 3D ICs, which have less opportunity
for air-based cooling. There are noise issues, crosstalk issues, and more.

Sometimes the various variation effects interact. For example, parasitics
themselves can have process variation, and aging and process variation have
nonlinear interactions.

Many recent books discuss the physical underpinnings of variation effects in
great detail, for example (Chiang and Kawa 2007; Kundu and Sreedhar 2010;
Orshansky et al. 2010; Srivastava et al. 2010). This book is complementary. It aims
to equip designers with intuition and straightforward-to-apply methodologies for
industrial-scale variation-aware design. In fact, the techniques in this book have
now been in use at some major semiconductor vendors and foundries for several
years.

Despite this long list of variation effects, we have found that many of these
effects can be handled with simple steps, such as with post-layout simulation, or
including aging in simulation (Maricau and Gielen 2010). Other types of variation
may be hidden from the designer, for instance, using design rules, or with tools
such as optical proximity correction.

In our experience, global process variation, local process variation, and envi-
ronmental variation must be managed more directly by the designer, because (1)
the effect on performance and yield is too large to be ignored, (2) they cannot be
simply revealed by a single simulation, and (3) as we will see, simplistic sets of
simulations such as comprehensive PVT corner analysis or thorough Monte Carlo
analysis are too simulation-intensive.

This book focuses on global and local process variation, and environmental
variation, with knowledge that many of the other effects are being adequately
addressed orthogonally via appropriate tools and problem setup.

1.2.3 Key Variation-Related Terms

PVT variation is a combination of modelset-based global process variation (P) and
environmental variation, including power supply voltage (V), temperature (T),
load conditions, and power settings (e.g. standby, active).

Corners: A corner is a point in variation space. For example, a traditional PVT
corner had a modelset value, a voltage value, and a temperature value, such as
{modelset = FF, vdd = 1.3 V, T = 15 �C}. The concept generalizes to include
other types of variation. For example, a corner may have a value for each local
process variable, such as {modelset = FF, vdd = 1.3 V, T = 15 �C,
M1_Nsub = 0.23, M1_tox = 0.12, M2_Nsub = 0.21,…}. Due to DPL, RC
parasitics are often modeled as corners too. As we will see, this generalized
concept of corners is crucial to pragmatic variation-aware design.

Yield is the percentage of manufactured circuits that meet specs across all
environmental conditions, expressed as a percentage, such as 95 %. Yield may
also be expressed in alternate units of probability of failure, sigma1, and sigma2.
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Probability of failure (pfail) is another unit for yield, defined as pfail = 1-

yield(%)/100. For example, pfail is 0.05 when yield is 95 %.
Sigma is a unit of yield, and can use either a single-tailed or two-tailed

assumption, referred to as sigma1 and sigma2, respectively. Sigma1 yield is the
area under a Gaussian curve from -? to +sigma. Sigma2 yield is the area under
the curve between -sigma and +sigma. Figure 1.3 illustrates the difference
between sigma1 and sigma2.

Figure 1.4 shows typical conversions among sigma1, sigma2, yield, and
probability of failure.

High-sigma circuits: For an overall chip to have a reasonable yield (2–3
sigma), replicated blocks like standard cells and memory bitcells need to have
much higher yields (4–6 sigma). The need to analyze and design such ‘‘high-
sigma’’ circuits introduces qualitatively new challenges compared to 3-sigma
design.

1.3 Status Quo Design Flows

We now review typical status-quo flows for designing custom circuit blocks.
Figure (1.5a) shows the simplest possible flow.

• In the first step, the designer selects a topology.
• In the next step, he does initial sizing by computing the widths, lengths, and

biases, typically from first principles equations against target power budget and
performance constraints.

• In the third step, he makes modifications to the circuit sizing to improve per-
formance. This step typically involves sensitivity analysis, sweeps, and other
design exploration techniques, getting feedback from SPICE simulations.

• Starting from the sized schematic or netlist, the designer then does layout:
device generation, placement, and routing.

At the end of this flow, the block is ready for integration into larger systems.
The flow also works for system-level designs and higher by applying behavioral
models or FastMOS/Analog FastSPICE simulators.

(a) Single-Tailed Sigma (b) Two-Tailed Sigma

-infinity to sigma value

0 1 2 3-1-2-3

84.1%

+/- sigma value

0 1 2 3-1-2-3

68.3%

Fig. 1.3 Converting between yield and sigma. a Single-tailed sigma. b Two-tailed sigma
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Of course, the flow of Fig. (1.5a) does not account for variations at all, leaving
the final design highly exposed.

Figure (1.5b) shows an example status quo flow that begins to address variation.
Starting with the simple flow of Fig. (1.5a), it adds user-chosen PVT corners, ad-
hoc statistical Monte Carlo sampling, and post-layout parasitic extraction with
SPICE-based verification.

While this is a big improvement in handling variation compared to the simple
flow, it falls short in many regards:

• First, the user might not have chosen the PVT corners that bound worst-case
performance, which means the design is optimistic and could fail in the field. Or,
to be on the safe side, he used all the PVT corners. This resulting large number
of corners means painfully long sizing iterations.

Fig. 1.4 Typical conversions
among sigma1, sigma2, yield,
and probability of failure

Set topology

Initial sizing

Sizing (for performance)

Layout

Set topology

Initial sizing

Sizing on corners

Verify
(ad-hoc statistical)

Layout

Extract parasitics

Verify with parasitics

Choose corners
(ad-hoc PVT)

(a) (b)

Fig. 1.5 Status quo design
flows. a A simple flow.
b Beginning to address
variation with user-chosen
PVT corners, ad-hoc
statistical (Monte Carlo)
sampling, and parasitic
extraction
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• Verifying statistical effects with a traditional Monte Carlo (MC) tool tends to be
highly ad-hoc. How many MC samples should the designer choose? How does
he measure whether the design ‘‘passes’’ or not? Furthermore, if he (somehow)
decides that the design does not pass the statistical verification, how does he
incorporate statistical effects into the sizing iterations? If he simply chose the
MC samples that failed, those samples may have been too improbable (leading
to an overly pessimistic design), or too probable (leading to an overly optimistic
design). Furthermore, simply running MC is not adequate for high-sigma
problems, which may require millions or billions of samples to verify a target
failure rate.

• When verifying with parasitics on the layout-extracted netlist, the traditional
flow ignores the effect of PVT and statistical variation. Conceivably, parasitics
alone may not make the circuit fail; however, when combined with other
variations, they could lead to failure.

In short, the status-quo flows are either slow or inaccurate with respect to PVT
variations, slow or inaccurate with respect to statistical process variations, and
inaccurate with respect to other variations.

1.4 A Fast, Accurate Variation-Aware Design Flow

Handling the many types of variation quickly yet accurately may seem like a
daunting task. One key is to start with a nominal design, and incrementally add in
the types of variation that may matter, at the appropriate times. The other key lies
in fast, automated analysis technologies (for speed), using SPICE-in-the-loop and
statistical confidence-based convergence (for accuracy).

Figure (1.6b) illustrates a fast, accurate variation-aware design flow. For easy
comparison, Fig. (1.6a) is the status quo flow presented earlier. The changes from
flow a to b are minimal yet precisely targeted, replacing ad-hoc steps with fast yet
accurate variation-handling capabilities.

We now give details on the fast-yet-accurate variation-aware design flow given
in Fig. (1.6b).

• The designer sets the topology and performs initial sizing in the usual fashion.
• After initial sizing, the designer runs a PVT corner extraction, which finds

worst-case PVT corners. He can then design against these PVT corners until the
specs are met across all corners. He may use sensitivity analysis, sweeps, and
other design exploration tools to accomplish this. Once met, the designer runs a
PVT verification, which finds worst-case PVT corners with confidence.
A specialized tool performs PVT corner extraction and verification, quickly but
accurately using SPICE-in-the-loop.

• [If appropriate] After PVT sizing, the designer runs a statistical corner extrac-
tion at a specified target sigma (e.g. 3-sigma, or a higher sigma value). He can
then design against these statistical corners until the specs are met across all

1.3 Status Quo Design Flows 9



corners. Once met, he runs a statistical verification, which automatically
determines with statistical confidence that the target sigma is met. Specialized
tools perform statistical corner extraction and verification, quickly but accu-
rately using SPICE-in-the-loop.

• [If appropriate] After layout, the designer simulates the parasitic-extracted
netlist against the pre-layout PVT and/or statistical corners.

A variation issue is ‘‘appropriate’’ if the circuit may be susceptible to that issue,
if adequate models exist to measure the issue, and (as a matter of unfortunate
practicality) if the schedule permits.

The preceding discussion focused only on the main variation issues. Other
variation effects may be inserted pragmatically as needed, as corners (like PVT or
statistical variation), or as post-layout measures (like parasitics).

1.5 Conclusion/Book Outline

This chapter reviewed key variation concepts and related issues, and discussed
status quo flows, and the issues with each flow. It then presented a pragmatic
variation-aware flow that is fast yet accurate, shown in Fig. (1.6b). One key to the
flow is to start with a nominal design, and incrementally add in the types of
variation that may matter, at the appropriate times. The other key is fast, auto-
mated analysis technologies (for speed), using SPICE-in-the-loop and statistical
confidence-based convergence (for accuracy).

Set topology

Initial sizing

Sizing on corners

Fast verification
(PVT / statistical / high-   )

Layout

Extract parasitics

Verify with parasitics
on corners

Extract corners
(PVT / Statistical / High-   )

Set topology

Initial sizing

Sizing on corners

Verify
(ad-hoc statistical)

Layout

Extract parasitics

Verify with parasitics

Choose corners
(ad-hoc PVT)

(a) (b)

Fig. 1.6 a The status quo ad-
hoc variation-aware flow is
slow and inaccurate. b A fast
yet accurate variation aware
flow leverages confidence-
driven automated analyses
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The rest of this book focuses on the methodologies and tools to enable the fast-
yet-accurate variation-aware flow. It has emphasis on techniques of corner
extraction and verification, which are central to these methodologies.

The first several chapters are grouped according to the type of variation. There
is a chapter for PVT-style variation, where global variation is accounted for using
modelsets like FF/SS, in addition to voltage and temperature variation. There is a
chapter for 3-sigma statistical variation, where global or local variation is modeled
with a distribution. There is a chapter for high-sigma statistical variation. Each of
these chapters discusses corner extraction and verification. We also include a
chapter to help gain insight into distributions. Finally, there is a chapter on design:
manual sizing, automated sizing, and the spectrum in between.

For the interested reader, deeper statistical concepts and advanced algorithmic
techniques are made available in appendices.

The specific chapters are:

• Chapter 2: PVT analysis: This chapter surveys other PVT-based approaches and
flows, then describes a novel ‘‘confidence-driven global optimization’’ technique
for PVT corner extraction and verification. It concludes with two design
examples from industry.

• Chapter 3: Primer on probabilities: This chapter takes a visually-oriented
approach for insight about probability densities. It is useful standalone, when
one is looking at histograms and normal quantile plots; and as a foundation to
the next two statistically-oriented chapters.

• Chapter 4: Three-sigma statistical analysis: This chapter reviews other
approaches and flows for three-sigma analysis, describes novel ‘‘density esti-
mation and Optimal Spread Sampling’’ techniques for 3-sigma statistical corner
extraction and verification, and concludes with industrial case studies.

• Chapter 5: High-sigma statistical analysis: This chapter surveys other high-
sigma approaches and flows, then describes a novel technique for high-sigma
statistical corner extraction and verification. It discusses full-PDF extraction and
system-level analysis, and concludes with several industrial case studies.

• Chapter 6: Variation-aware design: Whereas the previous chapters focused on
analysis techniques for corner extraction and verification, this chapter com-
plements them with a focus on design techniques. It discusses three comple-
mentary approaches to sizing: manual, automated, and a new idea that integrates
manual and automated approaches.

• Chapter 7: Conclusion: This chapter wraps up the book.
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Chapter 2
Fast PVT Verification and Design

Efficiently Managing Process-Voltage-
Temperature Corners

Abstract This chapter explores how to design circuits under PVT variation
effects, as opposed to statistical process variation effects. Process, voltage, and
temperature (PVT) variations are taken into account by individually varying P, V,
and T over their allowable ranges and analyzing the subsequent combinations or
so-called PVT corners. In modern designs, there can be hundreds or thousands of
PVT corners. This chapter reviews design flows to handle PVT variations, and
compares them in terms of relative speed and accuracy. It introduces a ‘‘Fast PVT’’
flow and shows how that flow has excellent speed and accuracy characteristics.
It describes the Fast PVT algorithm, which is designed to quickly extract the most
relevant PVT corners. These corners can be used within a fast and accurate
iterative design loop. Furthermore, Fast PVT reliably verifies designs, on average
5x faster than the method of testing all corners on a suite of benchmark circuits.
This chapter concludes with design examples based on the production use of Fast
PVT technology by industrial circuit designers.

2.1 Introduction

PVT effects are modeled as a set of corners. A PVT corner has a value for each PVT
variable. For example, a single PVT corner might have a modelset value of FF,
a supply voltage of 1.2 V, a temperature of 25 �C, and power setting of standby. A set
of PVT corners is created by enumerating the complete combinatorial set of varia-
tions. For example, if there are 5 values of modelset, 3 values of voltage, 3 values of
temperature, and 4 power modes, there would be a total of 5 9 3 9 3 9 4 = 180
combinations in the PVT corner set.

There are some cases in custom design where a PVT approach to variation may
be used instead of a statistical approach:

T. McConaghy et al., Variation-Aware Design of Custom Integrated Circuits:
A Hands-on Field Guide, DOI: 10.1007/978-1-4614-2269-3_2,
� Springer Science+Business Media New York 2013
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• Local process variation (mismatch) has negligible effect on the circuit’s
performance, and modelset corners (FF/SS) accurately bound global process
variation’s effect on circuit performance. This is often the case with digital
standard cells, especially for older process technologies.

• Sufficiently accurate models of statistical process variation are not available.
This is typically the case for older process technologies.

• PVT corners have tolerable accuracy in bounding performance, and statistical
analysis is deemed too simulation-intensive to complete. For example, many
signoff flows mandate a thorough PVT analysis.

• Local process variation affects performance or modelset corners do not bound
performance, statistical models are available, but there is no clear statistically-
based design methodology. This is sometimes the case with analog design:
designers know that FF/SS corners are inaccurate, but do not have a fast
statistically-based design flow. If this is the case, a PVT-based flow is not
appropriate. This book is here to help: the chapters that follow this chapter
describe flows to do fast-yet-accurate statistically-aware design.

The aim in PVT analysis is to find the worst-case performance values across all
PVT corners, and the associated PVT corner that gives the worst-case perfor-
mance. This is done for each output. In PVT-aware design, the aim is to find a
design that maximizes performance or meets specifications across all PVT corners.

Traditionally, it has only been necessary to simulate a handful of corners to
achieve coverage: with FF and SS process (P) corners, plus extreme values for
voltage (V) and temperature (T), all combinations would mean 23 = 8 possible
corners.

With modern process nodes, many more process corners are often needed to
properly bracket process variation across different device types. Here, ‘‘to bracket’’
means to find two corners for each spec, one that returns the maximum value and
another that returns the minimum value of the respective performance output.
Furthermore, transistors are smaller, performance margins are smaller, voltages are
lower, and there may be multiple supply voltages. To bracket these variations,
more variables with more values per variable are needed.

Adding more PVT variables, or more values per variable, quickly leads to a
large number of corners. Even a basic analysis with 4 device types (e.g. NMOS,
PMOS, resistor, capacitor) and 4 other variables (e.g. temperature, voltage, bias,
load) with 3 values each results in 3(4+4) = 6,561 corners.

The problem gets worse at advanced nodes that have double patterning
lithography (DPL), where the RC parasitics among the masks degrade perfor-
mance. To account for this, a tactic is to treat the bounds on RC parasitic variation
as corners by extracting different netlists that represent each possible extreme. This
results in a 10–15x increase in the number of corners.

Power verification needs corners for each power mode (e.g. quick boot,
cruising, read, write, turbo, and standby), which also increases the total number of
corners.
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The problem is that simulating each corner can take several seconds, minutes,
or even hours for longer analyses. To simulate all possible corners could take
hours or even days, which is too time-consuming for most development schedules.
Designers may try to cope with this limitation by guessing which corners cause the
worst-case performance, but that approach is risky: a wrong guess could mean that
the design has not accounted for the true worst-case, leading to a failure in testing
followed by a re-spin, or worse, failure in the field.

The technique of finding the worst-case PVT corners is most effectively
employed in the context of the design loop, where the engineer is changing circuit
design variables such as transistor width (W) and length (L) in order to find the
design with the best performance under the worst-case PVT conditions.

What is therefore required is a rapid, reliable methodology to quickly identify
the worst-case PVT corners when there are hundreds, thousands, or even tens of
thousands of possible corners. We define these attributes as follows:

• Rapid: Runs fast enough to facilitate both iterative design and verification
within production timelines.

• Reliable: Finds the worst-case corners with high confidence.

These attributes must be met in the context of a practical flow for PVT-aware
design.

This chapter first reviews various design flows to handle PVT variation,
including a flow using a Fast PVT corner approach. Next, it considers possible
algorithms to implement a Fast PVT corner approach, including a global opti-
mization-based approach that delivers on the rapid and reliable attributes. Finally,
it presents results of the chosen approach on real-world production designs. This
chapter’s appendix provides more details on the global optimization-based Fast
PVT approach.

2.2 Review of Flows to Handle PVT Variation

This subsection reviews various flows for handling PVT variation that a designer
might consider. These flows include simulating all combinations, guessing the
worst-case PVT corners, and a new approach that uses Fast PVT capabilities. This
section compares the flows in terms of speed and accuracy.

To illustrate each flow, we provide an estimated number of simulations and
design time for a representative real-world circuit. The real-world circuit is the
VCO of a PLL on a 28 nm TSMC process technology. It has two output perfor-
mance measures with specifications of: 48.3 \ duty cycle \ 51.7 %, and
3 \ Gain \ 4.4 GHz/V. Its variables are temperature, Vah,vdd, Va,vdd, Vd,vdd, and
model set (any one of 15 possible sets). All combinations of all values of variables
leads to 3375 corners. Since there are two output performance measures, and each
output has a lower and an upper bound, there are up to 4 PVT corners that cause
worst-case performances. We used a popular commercial simulator.

2.1 Introduction 15



Because the flows include changing the design variables, we need a way to
compare different approaches in a fair fashion, independent of designer skill and
level of knowledge the designer has about the circuit. To do this, we use a simple
assumption that in the design loop, the designer considers 50 designs. In our
comparisons, we consider time spent with simulations. We do not consider the
time spent modifying the design. Also, since multi-core and multi-machine parallel
processing is commonplace, for each approach we assume that there are 10 cores
running in parallel as our computing resource.

2.2.1 PVT Flow: Full Factorial

Full factorial is the simplest of all flows, shown in Fig. 2.1. In this flow, the
designer simply simulates all possible PVT corners at each design iteration. It is
comprehensive, and therefore perfectly accurate, to the extent that PVT variation
is an accurate model of variation. However, since each of 50 design iterations
takes 3375 simulations, it is very slow, requiring 13.7 days of simulation time
even when using 10 parallel cores.

2.2.2 PVT Flow: Guess Worst-Case

Figure 2.2 illustrates this flow. After the topology and initial sizing are chosen, the
designer uses expertise and experience to guess which PVT corners are likely to
cause worst-case performances, without any simulations. Then, the designer
simply designs against those corners.

The advantage of this approach is its speed, as it requires no simulations to
select corners, and each design iteration only requires simulating the selected
corners, which by the designer’s reckoning represent respectively the upper and
lower specification for each of two outputs. The disadvantages of this method are

50 designs x
3375 corners

x 70 s sim. time / corner
/ 10 cores = 13.7 days

Problems: 
Really slow

Initial topology / sizing

Layout, RCX

Fab

Test

Design on 
Full-Factorial 
PVT corners

Fig. 2.1 PVT flow: full
factorial
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poor accuracy and reliability. If the designer’s worst-case PVT guess corner is
wrong, then the known worst-case performance is optimistic. This can be a big
issue. For example in power verification, it could mean that the circuit may not
meet the required power budget, which in turn translates into poor battery life on
the mobile device it is built into.

2.2.3 PVT Flow: Guess Worst-Case 1 Full Verification

Figure 2.3 shows this flow. It is similar to the previous flow, but adds a step of
running all combinations of PVT corners (full factorial) after the design step. This
overcomes a key oversight of the previous flow, ensuring that the circuit is verified
to the target specs. However, it is possible that the additional verification step finds
new worst-case corners that make the design fail specs. To pass at these new PVT
corners, the design must be improved at the new corners and verified again. This
requires more simulations.

Overall, the flow is more accurate than before, but the full factorial steps are
quite slow, resulting in a long overall runtime (14.2 h on our example circuit).
Also, if extra design iterations are needed, it could also add substantially to the
overall design cycle time, and the long full verification would need to be repeated.

Problems: 
Inaccurate 

Which subset?
Confidence that
all corners will work?

50 designs x 4 corners
x 70 s sim. time / corner

/ 10 cores = 23 min

Initial topology / sizing

Layout, RCX

Fab

Test

Guess 
worst -case

PVT corners

Design on PVT
corners

Fig. 2.2 PVT flow: guess
worst-case
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2.2.4 PVT Flow: Good Initial Corners 1 Full Verification

Figure 2.4 illustrates this flow. This flow addresses the issue of the previous flow,
which is that incorrectly selecting worst-case corners initially can lead to addi-
tional design and verification iterations.

3375 corners
x 70 s sim. time / corner 

/ 10 cores = 6.6 h

23 min

14.2 h

23 min

6.6 h

Problems: 
Poor initial corners extra iterations
Slow!

Initial topology / sizing

Layout, RCX

Fab

Test

Guess 
worst-case
PVT corners

Design on PVT
corners

Full-factorial
PVT verify

Fig. 2.3 PVT flow: guess worst-case ? full verification

3375 corners
x 70 s sim. time / corner 

/ 10 cores = 6.6 h

13.6 h

23 min

3375 corners
x 70 s sim. time / corner 

/ 10 cores = 6.6 h

Problems: 
Slow!

Initial topology / sizing

Layout, RCX

Fab

Test

Full-factorial
to extract

PVT corners

Design on PVT
corners

Full-factorial
PVT verify

Fig. 2.4 PVT flow: good initial corners ? full verification
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The idea with this flow is to simulate all corner combinations at the beginning
to identify the correct worst-case PVT corners. Then, the user designs against these
corners. Then, in case there are strong interactions between design variables and
PVT variables, the user runs full factorial PVT. Usually, PVT corners identified in
the beginning will continue to be the worst-case corners; if not, the user designs
against the new worst-case corners and verifies again.

Overall, the flow has a comparable runtime and accuracy to the previous flow,
but typically only needs one design round because PVT design is done using
verified worst-case corners.

This flow is accurate, but still fairly slow because it involves running full
factorial PVT twice. On our example circuit, this would still require 13.6 h of
simulation time.

2.2.5 PVT Flow: Fast PVT

Figure 2.5 shows this flow. It includes a fast way to handle the two most expensive
steps: PVT corner extraction, and PVT verification. It is like the previous flow, but
replaces the full factorial PVT steps with fast factorial PVT steps.

The flow is as follows. First, the designer completed the initial topology selection
and sizing. Then, the designer invokes a fast factorial PVT tool, which we will refer
as Fast PVT. Fast PVT efficiently extracts good worst-case PVT corners. The user
then designs against these PVT corners. To cover the case where there are strong
interactions, he invokes the Fast PVT tool again, verifying that the worst-case PVT
corners are found. If needed, he does a second round of design and verification.

Initial topology / sizing

Layout, RCX

Fab

Test

Fast -factorial
PVT 

corner extraction

Design on PVT
corners

Fast -factorial
PVT verify

275 corners (vs. 3375 12.2x fewer)
X 70 s sim. time / corner

/ 10 cores = 32 min (vs. 6.6 h 12.2x faster)

371 corners (vs. 3375 9.1x fewer )
x 70 s sim. time / corner 

/ 10 cores = 43 min (vs. 6.6 h 9.1x faster)

23 min

1.8 h (vs. 13.6 h 7.5x faster)

Fig. 2.5 PVT flow: fast factorial PVT (or simply Fast PVT)
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Figure 2.5, top right, compares the number of simulations needed for corner
extraction using full factorial PVT against the number needed using Fast PVT,
where Fast PVT uses an algorithm described later in this chapter. Fast PVT finds
exactly the same worst-case corners as are found using full factorial PVT. We see
that Fast PVT needs 12.2x fewer simulations, and runtime is reduced from 6.6 h to
32 min.

Figure 2.5, center right, compares doing PVT final verification using full fac-
torial with using Fast PVT. Fast PVT again finds exactly the same worst-case
corners as full factorial PVT. We see that Fast PVT needs 9.1x fewer simulations,
and that runtime is reduced from 6.6 h to 43 min.

The time taken by design iterations is now comparable to the time taken by
PVT corner extraction or PVT verification.

In this circuit example, the overall runtime of a Fast PVT-based flow is 1.8 h,
which is about 7.5x faster than the 13.6 h required for the previous flow.

We will see later in this chapter how these results are illustrative of Fast PVT’s
behavior: it will nearly always find the worst-case corners with about 5x fewer
simulations than a full-factorial PVT approach.

Subsequent sections of this chapter will review how Fast PVT can be
implemented.

2.2.6 Summary of PVT Flows

Figure 2.6 summarizes the different PVT flows described above, comparing them
in terms of speed and accuracy. Guessing the worst-case PVT corners without any
further verification is the fastest flow, but heavily compromises accuracy. On the
flipside, full factorial PVT in the design loop is very accurate but very slow. There
are hybrid variants employing full factorial final verification, but replacing full
factorial in the loop with corner extraction using initial guessing or full factorial.

Accuracy, Trust

Speed

Guess
worst-case

Full-Fact
PVT

Fast
PVT

Guess
worst-case
+ full verify

Full-fact. for 
worst-case
+ verify

Fig. 2.6 Summary of PVT
flows
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However, the full factorial characteristic slows these approaches down. The Fast
PVT approach, in the top right, gives the best tradeoff between speed and accu-
racy, by using a fast factorial approach to extracting corners and to verifying
designs across PVT variation.

2.3 Approaches for Fast PVT Corner Extraction
and Verification

Fast PVT aims to find the worst-case PVT corners from hundreds or thousands of
candidate corners, using as few simulations as possible yet maximizing the
designer’s chances of finding the truly worst PVT corners. To be suitable for
production design, the approach needs to be both rapid and reliable. Engineers and
researchers have investigated a number of approaches to do Fast PVT corner
extraction. This section summarizes some of the popular approaches and highlights
challenges with each method.

2.3.1 Full Factorial

Running all combinations is not fast, but it serves as a baseline for comparison for
other methods. As discussed, this can be very time-consuming, taking hours or
days. On the positive side, it always returns the true worst-case corners.

2.3.2 Designer Best Guess

Guessing may not produce reliably accurate results, but it serves as a baseline.
Here, the designer makes guesses based on experience about what the worst-case
corners may be. The advantage of this approach is speed, as guessing requires no
simulations. The disadvantage is lack of reliability; a wrong guess can mean
failure in testing or in the field. Reliability is strongly dependent on the designer’s
skill level, familiarity with the design, familiarity with the process, and whether
the designer has adequate time to make a qualified guess. In practice, it is difficult
to consistently meet all of these goals, which makes a guessing-based approach
inherently risky.
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2.3.3 Sensitivity Analysis (Orthogonal Sampling, Linear Model)

In this approach, each variable is perturbed one-at-a-time, and the circuit is
simulated for each variation. An overall linear response surface model (RSM) is
constructed. The worst-case PVT corners are chosen as the ones predicted to give
worst-case output values by the linear model. This method is fast, as it only
requires n ? 1 simulations for n variables (the +1 is for typical case). However,
reliability is poor: it can easily miss the worst-case corners because it assumes a
linear response from PVT variables to output, and assumes that there are no
interactions between variables; this is often not the case.

2.3.4 Quadratic Model (Traditional DOE)

In this approach, the first step is to draw n 9 (n-1)/2 samples in PVT space using a
fractional factorial design of experiments (DOE) (Montgomery 2004), then sim-
ulate them. The next step constructs a quadratic response surface model (RSM)
from this input/output data. Finally, the worst-case PVT corners are the ones that
the quadratic model predicts as worst-case output values. While this approach
takes more simulations than the linear approach, it is still relatively fast because
the number of input PVT variables n is relatively small. However, reliability may
still be poor because circuits may have mappings from PVT variables to output
that are more nonlinear than simple quadratic.

2.3.5 Cast as Global Optimization Problem (Fast PVT)

The idea here is to cast PVT corner extraction and PVT verification as an
optimization problem: search through the space of candidate PVT corners x,
minimizing or maximizing the simulated performance output value f(x). Under that
problem specification, the aim is to solve the optimization problem reliably, with
as few simulations as possible. The optimization must be global: working
independently of any initial PVT corner values, and it must not get stuck in local
optima. This is a promising idea because it directly addresses the designer task of
finding the worst-case PVT corner, and if implemented well, delivers both good
accuracy and speed.

Figure 2.7 illustrates how PVT verification can be cast as a global optimization
problem. The x-axis represents the possible PVT values, which in this case is just
the temperature variable. The y-axis is the performance metric to maximize or
minimize, which in this case is the goal to maximize power. The curve is the
response of the circuit’s power to temperature, found via SPICE simulation. The
objective in optimization is to try different x-values, measuring the y-value, and
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using feedback to try more x-values, ultimately maximizing the y-value. In this
case, different values of temperature are being selected and simulated to find the
maximum value of power. The top of the hill in Fig. 2.7 right is a local optimum,
as none of the nearby x-values have a higher y-value. We do not want the Fast
PVT algorithm to get stuck in this local optimum; it should instead find the top of
the hill in Fig. 2.7 left, which is the global optimum. In other words, over all
possible values of temperature, Fast PVT should give the worst-case output
performance (in this case, maximum power).

With PVT verification recast as a global optimization problem, we can now
consider various global optimization approaches to solve it. Global optimization is
an active research area with a long history, spanning techniques with labels like
‘‘Branch & Bound’’ (Land and Doig 1960), ‘‘Multi-Coordinate search’’ (Huyer and
Neumaier 1999), and ‘‘Model-Building Optimization’’ (MBO) (Jones et al. 1998).
We focus our energy on MBO because it is rapid, reliable, and easy for users to
understand. Subsequent sections will validate these claims and describe the
approach in general.

In this work, by ‘‘Fast PVT’’, we refer specifically to the solution to the general
challenge of finding worst-case corners accurately and efficiently. Fast PVT is then
the approach that casts the problem as a global optimization problem, and uses the
MBO-based approach to solving the global optimization problem.

2.4 Fast PVT Method

2.4.1 Overview of Fast PVT Approach

The overall approach is to cast PVT corner extraction and PVT verification as a
global optimization problem, and solve it using Model-Building Optimization
(MBO). MBO-based Fast PVT is rapid because it builds regression models that
make maximum use of all simulations so far in order to choose the next round of
simulations. MBO uses an advanced modeling approach called Gaussian Process
Models (GPMs) (Cressie 1989). GPMs are arbitrarily nonlinear, making no
assumptions about the mapping from PVT variables to outputs. Fast PVT is

Fig. 2.7 PVT verification cast as a global optimization problem
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reliable because it finds the true worst-case corners, assuming appropriate stopping
criteria. Fast PVT is user-friendly and easy to adopt because it lends itself well to
visualization, and its algorithmic flow is easy for designers to understand.

As discussed, corner extraction and verification are actually two distinct tasks.
Fast PVT has slightly different algorithms, depending on the task:

• Corner extraction is for finding PVT corners that the designer can subsequently
design against. Corner extraction runs an initial design of experiments (DOE),
predicts all values using advanced modeling, then simulates the predicted worst-
case predicted corners for each output. There is no adaptive component.

• Verification keeps running where corner extraction would have stopped. It loops
to adaptively test candidate worst-case corners while updating the model and
improving the predictions of worst-case. It stops when it is confident it has
found the worst-case. Verification takes more simulations than corner extrac-
tion, but is more accurate in finding the worst-case corners.

Figure 2.8 shows the Fast PVT algorithm. Both Fast PVT corner extraction and
verification start by drawing a set of initial samples, X (i.e. corners), then simu-
lating them, y. A model mapping X ? y is constructed.

After that, corner extraction simply returns the predicted worst-case points.
Verification proceeds by iteratively choosing new samples via advanced modeling,
and then simulating the new samples. It repeats the modeling/simulating loop until
the model predicts, with 95 % confidence, that worse output values are no longer
possible. When choosing new samples, it accounts for both the model’s prediction
of the worst-case, as well as the model’s uncertainty (to account for model blind
spots).

Fast PVT is rapid because it simulates just a small fraction of all possible PVT
corners. It is reliable because it does not make assumptions about the mapping
from PVT variables to outputs, and explicitly tracks modeling error. Later in this

X = initial sampling DOE in 
PVT space

y = simulate(X )

ynew = simulate(xnew)
Update X, y

Stop if converged

Construct model mapping 
X 

Choose xnew: optimize on 
model, incorporating 

model uncertainty

Fig. 2.8 Fast PVT algorithm
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paper, results on several benchmark circuits will further validate the technique’s
speed and reliability.

For a detailed explanation of the steps in Fig. 2.8, and theoretical details, we
refer the reader to Appendix A. For further details on the GPM modeling approach,
we refer the reader to Appendix B.

2.5 Fast PVT Verification: Benchmark Results

2.5.1 Experimental Setup

This section catalogs Fast PVT verification benchmark results on a suite of
problems: 13 circuits with a total of 118 outputs, based on industry applications
and PVT settings. The circuits include a shift register, two-stage bucket charge
pump, two-stage opamp, sense amp, second-order active filter, three-stage mux,
switched-capacitor amplifier, active bias generator, buffer chain, and SRAM bit-
cell. The number of candidate PVT corners ranges from 130 to 1800. All circuits
have devices with reasonable sizings. The device models are from modern
industrial processes ranging from 65 to 28 nm nodes.

We performed two complementary sets of benchmarking runs. The method-
ology for each set is as follows.

Per-circuit benchmarks methodology. First, we simulated all candidate PVT
corners and recorded the worst-case value seen at each output; these form the suite
of ‘‘golden’’ reference results. Then, we ran Fast PVT verification once per circuit
(13 runs total) and recorded the worst-case values that were found for each output,
and how many simulations Fast PVT took.

Per-output benchmarks methodology. We obtained the ‘‘golden’’ reference
results by simulating all PVT corners. Then, we ran Fast PVT verification once for
each output of each circuit (118 runs total) and recorded the worst-case values that
were found for each output, and how many simulations Fast PVT took.

2.5.2 Experimental Results

In all the runs, Fast PVT successfully found the worst-case point. This is crucial:
speedup is only meaningful if Fast PVT can find the same worst-case results as a
full-factorial (all corners) PVT run.

Figure 2.9 shows the distribution of speedups using Fast PVT verification, on
the per-circuit benchmarks (left plot), and per-output benchmarks (right plot).
Each point in each plot is the result of a single run of Fast PVT. Speedup is the
number of full factorial PVT corners, divided by the number of PVT corners that
Fast PVT verification needs to find the worst case outputs and then to stop.
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On the 13 per-circuit benchmark runs (Fig. 2.9 left), Fast PVT found the true
worst-case corners 100 % of the time. The average speedup is 4.0x, and the
maximum speedup is 11.0x.

On the 118 per-output benchmark runs (Fig. 2.9 right), Fast PVT found the true
worst-case corners 100 % of the time. The average speedup is 5.0x, and the
maximum speedup is 21.7x.

We found that Fast PVT verification speedups are consistently high when the
total number of corners is in the hundreds or more; for fewer corners, the speedup
can vary more. A case of 1.0x speedup (i.e. no speed-up) simply means that Fast
PVT did not have enough confidence in its models to complete prior to running all
possible corners.

2.5.3 Post-Layout Flows

Post-layout flows are worth mentioning. Figure 2.5 shows a PVT-aware flow for
designing prior to layout. This flow can be readily adapted to handle post-layout as
well. Because post-layout netlists tend to be more expensive to simulate, there are
options we can consider, in order of increasing accuracy and simulation time:

• Just simulate on a typical PVT corner. If specs fail, adjust the design to meet
them, in layout space or sizing space, with feedback from the simulator on the
corner. Finally, if time permits, re-loop with verification.

• Simulate with worst-case pre-layout PVT corners. If specs fail, adjust design as
needed.

• Run Fast PVT verification. If specs fail, adjust design as needed.

Fig. 2.9 PVT verification
results, showing speedup per
problem. Left: Speedup on
per-circuit benchmarks (C1
outputs per circuit). Right:
Speedup on per-output
benchmarks
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As an example, we benchmarked Fast PVT on the PLL VCO circuit from
Sect. 2.2 in its post-layout form. Fast PVT on the post-layout circuit took 171
simulations to find the true worst-case corners and to achieve verification-level
confidence. Comparing this with the technique of simulating all 3375 combina-
tions shows a 19.7x speedup.

2.5.4 Fast PVT for Multiple Outputs and Multiple Cores

The algorithm just described is for a single output, assuming a serial process. It is
straightforward to extend the Fast PVT algorithm to handle more than 1 output, as
follows. All outputs use the same initial samples. In each iteration, the algorithm
for each output chooses a new sample. Model building for a given output always
uses all the samples taken for all outputs.

It is also straightforward to parallelize the Fast PVT algorithm. Initial sampling
sends off all simulation requests at once, and the iterative loop is modified slightly
in order to keep available parallel simulation nodes busy.

2.5.5 Fast PVT Corner Extraction Limitations

Recall that the corner extraction task of Fast PVT runs the initial DOE, builds a
model, predicts worst-case corners, and stops. It is not adaptive. Therefore, its
main characteristics are that it is relatively fast and simple, but not as accurate as
Fast PVT in verification mode in terms of finding the actual worst-case corners.

2.5.6 Fast PVT Verification Limitations

Stopping criteria and model accuracy govern the speed and reliability of Fast PVT
verification. The most conservative stopping criteria would lead to all simulations
being run, with no speedup compared to full factorial. On the other hand, stopping
criteria that are too aggressive would result in stopping before the worst-case is
found. Fast PVT verification strikes a balance, by stopping as soon as the model is
confident it has found the worst-case. The limitation is that the model may be
overly optimistic, for instance if it has missed a dramatically different region. To
avoid suffering this limitation, Sect. 2.5.7 provides guidelines on measurements,
since having the right measurements can result in improved model quality.

Model construction becomes too slow for[1000 simulations taken. In practice,
if Fast PVT has not converged by 1000 simulations, it probably will not converge
for more simulations, and will simply simulate the remaining corners. Appendix B
has details.
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Fast PVT performs best when there are fewer input PVT variables. For [20
variables, modeling becomes increasingly difficult and starts to require [1000
simulations. For these reasons, we do not recommend using Fast PVT with [20
input variables. Appendix B has details.

Fast PVT speedup compared to full factorial is dependent on number of
candidate corners: the more candidate corners, the higher the speedup. This also
means that if there is a small number of candidate corners (e.g. 50 or less), then the
speedup is usually not significant (e.g. 2x, or even 1x).

In summary, while Fast PVT does have some limitations, it nonetheless
provides significant benefit for production designs.

2.5.7 Guidelines on Measurements

Fast PVT’s speed and accuracy depend on the accuracy of the model constructed,
that is the model mapping from PVT input variables to outputs. The greater the
model accuracy, the faster the algorithm convergence.

In designing measurements and choosing targets, the user should be aware of
these guidelines:

• The outputs can be binary, and more generally, can have discontinuities.
Outputs with these behaviors however typically require more simulations to
model accurately.

• Some candidate samples can produce output measurement failures, as long as
those measurement failures correspond to extreme values of one of the outputs
being targeted.

• The outputs cannot contain simulator noise as the primary component of output
variation; this situation results in random mappings from PVT variables to
output. If this situation occurs, it usually means there is a problem with the
measurement. A well-implemented Fast PVT algorithm should automatically
detect random mappings from PVT variables to outputs.

2.6 Design Examples

This section presents two design examples based on production use of Fast PVT
technology by industrial circuit designers.
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2.6.1 Corner-Based Design of a Folded-Cascode Amplifier

In this example, we examine the PVT corner analysis of an amplifier circuit.
Figure 2.10 shows the amplifier schematic for this example.

Table 2.1 describes the required operating process and environmental
conditions for the amplifier.

Performance outputs for the amplifier design include gain, bandwidth, phase
margin, noise, power consumption, and area. PVT corner analysis and design are
performed using Solido Variation Designer (Solido Design Automation 2012).
Simulations are performed with the Cadence� Virtuoso� Spectre� Circuit Simu-
lator (Cadence Design Systems 2012).

First, Fast PVT analysis is used in ‘‘corner extraction’’ mode to establish worst-
case corners for each of the outputs of the design. The analysis needs to account
for each output individually because the worst-case corners are rarely the same for
all outputs. For this design, Fast PVT is configured to find worst-case corners
corresponding to minimum gain, bandwidth, and phase margin, and maximum
noise and power consumption.

From the 3645 combinations of process, voltage, temperature, bias, and load,
Fast PVT corner extraction runs approximately 30 simulations to find a repre-
sentative set of worst-case corners, resulting in a 122x simulation reduction for this
first analysis step over full factorial simulation.

The worst-case corners found by Fast PVT corner extraction result in poor gain
and phase margin performance for this design. Therefore, these corners are saved
for use in the next step of the flow. Note that worst-case corners for all outputs are
saved, not just those for poorly performing outputs. The corners for all outputs
need to be included during design iteration in order to ensure that no outputs go out
of specification under worst-case conditions when changes are made to the design.

Fig. 2.10 Folded-Cascode
amplifier with gain boosting
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For the next step in the flow, the corners found during the initial Fast PVT
corner extraction are used to examine the sensitivity of the design under worst-case
conditions. Several opportunities are available for modifying the design to
improve gain and phase margin under worst-case conditions, without trading off
too much performance, power, or area. Such opportunities include adjusting the
W/L ratios of the NMOS and PMOS bias transistors (the transistors with gates
connected to BIASN and BIASP), as well as the sizing of the second stage
differential pair and capacitors.

Once the sensitivity of the outputs is determined across the worst-case corners,
the design is modified and the performance is checked by simulating at each worst-
case corner. In this example, this iterative modify/simulate procedure is repeated
four times to achieve satisfactory performance across all worst-case corners and to
find an acceptable tradeoff between performance, power, and area.

After the design iterations are complete, Fast PVT verification is performed.
The analysis confirms that design performance is acceptable across the entire range
of PVT combinations. Fast PVT verification runs only 568 simulations to find the
worst-case corners for this design out of the total 3645 combinations of process
and environmental conditions.

Table 2.2 shows the number of simulations performed for each step in this flow.
For comparison purposes, two other approaches were used on this design and are
also summarized in the table. The first column summarizes the Fast PVT flow, the
second column summarizes the flow of running all combinations and the third
column uses the designer’s best guess for determining worst-case corners.
Although the ‘‘best guess’’ flow uses the least simulations, the resulting design
does not perform well across all corners.

Table 2.1 Required process and environmental conditions for amplifier design

Conditions Values Quantity

Process
MOS FF, FS, TT, SF, SS 5
Resistor HI, TYP, LO 3
Capacitor HI, TYP, LO 3

Total process combinations 45

Environmental conditions
Temperature -40, 27, 85 3
Supply voltage 1.45, 1.5, 1.55 3
Bias currenta 9.5u, 10u, 10.5u 3
Load capacitance 160f, 170f, 180f 3

Total environmental Combinations 81

Total combinations
(process and environmental)

3645

a Bias current variation affects the BIASN and BIASP voltages shown in the schematic
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In summary, using the Fast PVT design and verification flow with the amplifier
design reduces simulations, while achieving an overall robust design. Note that if
there are failures during verification, further iterations are required, which can
increase the number of simulations. However, the overall number of simulations in
that case is still much less than running full factorial PVT, and in practice, this
occurs relatively infrequently.

2.6.2 Low-Power Design

Low-power design is very important in mobile systems-on-a-chip (SoCs), due to
the demand for longer battery life in smaller, lighter devices. Power consumption
needs to be carefully analyzed across the different components in a mobile SoC to
ensure that power consumption is acceptable and that it does not become too large
under certain operating conditions.

A challenge in low-power design is that power consumption can vary signifi-
cantly under different process and environmental conditions. Furthermore, the chip
state has a dramatic impact on the power consumption. That chip state interacts
with the process and environmental conditions, such that a state that causes little
power consumption under one set of conditions may cause much more power
consumption under a different set of conditions.

For this reason, it is important to simulate the design under many different
process, environment, and state conditions. However, the number of combinations
that need to be taken into account for each cell can be very large. This is especially
problematic for circuits with long transient simulation times. The challenge is even
greater when designing below 28 nm, where additional simulation of RC parasitic
corners is required to capture interconnect variability. The analysis must then be

Table 2.2 Number of simulations required for Fast PVT design/verification flow

Step Number of
simulations
(Fast PVT flow)

Number of
simulations
(full factorial
flow)

Number of
simulations
(designer ‘‘best
guess’’ flow)

Initial corner extraction 30 3,645 5
Design sensitivity across worst-

case corners
115 115+a 115

Design iteration 20 20+ 20
Verification 568 3,645 5
Total 733 7,425+ 145b

a The full factorial flow simulation numbers assume that design sensitivity analysis and design
iterations are performed with manually extracted corners from a full factorial PVT analysis. If
design iterations are instead performed by running all corners, then the number of simulations
would be even larger
b The best guess flow does not correctly identify the worst-case corners, and the resulting design
performance is not satisfactory in that case
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repeated for each cell in the SoC and the results aggregated together. Finally, if
power consumption is too great under certain conditions, cells must be redesigned
and re-simulated, further increasing the simulation and time burden required for
complete power analysis for the chip.

In this example, a variety of conditions need to be taken into account, with the
following values for each:

• Temperature: -40, 27, 85 (in �C)
• Voltage: 2.5 V ± 10 %
• Power mode: 0, 1, 2
• Input state: 0, 1, 2
• Bias: 5uA ± 10 %
• Process corners: FF/FS/TT/SF/SS
• RC extraction corners: 1, 2, 3, 4, 5, 6, 7, 8, 9

The total number of combinations required to achieve full coverage of these
conditions is 13,122. For a simulation time of one day on a cluster of 200 machines
with 200 simulator licenses, it would take over two months to complete one full
analysis of this design. It is easy to see how the addition of more variables quickly
increases the number of combinations to well above 100,000.

To make the problem tractable, the number of combinations being simulated
needs to be reduced. One way to do this is to use design expertise to determine
combinations that are unlikely to have adverse power consumption. However,
even with this approach, the number of combinations can still be very large. For
the remaining combinations, the number of corners to be analyzed needs to be as
large as possible.

To achieve this, Fast PVT is used to adaptively simulate and predict the power
consumption under all of the required process/environment/state conditions. Fast
PVT reduces the total number of simulations for covering the 13,122 combinations
to 643, providing approximately a 20x simulation savings.

In summary, power analysis is key to designing successful mobile SoCs, but it
is important that variation effects are analyzed across process, environmental, and
power state conditions to ensure that the design stays within power constraints.
The method chosen to do this must reconcile the tradeoff between thoroughness,
available time, and computing resources.

2.7 Fast PVT: Discussion

We now examine Fast PVT in terms of the set of qualities required for a PVT
technology outlined in the introduction.

1. Rapid: Fundamentally, Fast PVT can be fast because it learns about the
mapping of PVT variables to output performances on-the-fly, and takes
advantage of that knowledge when choosing simulations. As the benchmarks
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demonstrated, Fast PVT verification has speedups averaging 4–5x; with
speedup up to 22x.

2. Reliable: Fast PVT is reliable because it uses SPICE in the loop, nonlinear
modeling technology, and takes measures to fill blind spots in the model. In
benchmark results, Fast PVT finds the worst-case corners in 100 % of cases
across a broad range of real-world problems.

In summary, Fast PVT is simultaneously rapid and reliable, which makes
possible a highly efficient and practical PVT design flow.

2.8 Conclusion

In modern semiconductor processes, the need to properly bracket variation has
caused the number of possible PVT corners to balloon. Rather than a handful of
corners, designers must test against hundreds or even thousands of possible
corners, making PVT-based design and verification exceedingly time-consuming.

This chapter described various possible flows to handle PVT variation, and
various ways to find worst-case PVT corners. It then presented the Fast PVT
approach, which casts PVT verification and corner extraction as a global optimi-
zation problem, then solves the problem using model-building optimization
(MBO). Benchmark results verified that Fast PVT delivers good speedups while
finding the true worst-case PVT corners in all benchmark cases.

Fast PVT enables a rapid PVT design flow, via fast extraction of worst-case
PVT corners and fast verification. It reduces overall design time and improves
reliability over conventional methods. This in turn promotes the reliable devel-
opment of more competitive and more profitable products.

Appendix A: Details of Fast PVT Verification
Algorithm

Detailed Algorithm Description

We now give a more detailed description of the Fast PVT algorithm. We do so in
two parts: first, by showing how we recast the problem as a global optimization
problem, then how this problem can be quickly and reliably approached with an
advanced model-building optimization technique.

We can cast the aim of finding worst-case corners as a global optimization
problem. Consider x as a point in PVT space, i.e. a PVT corner. Therefore, x has a
value for the model set or for each device type if separate per-device models are
used, Vdd, Rload, Cload, temperature T, etc. We are given the discrete set of NC

possible PVT corners Xall ¼ x1; x2; . . .; xNCf g, and a SPICE-simulated output
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response to each corner f(x). We aim to find x*, the optimal PVT corner which
gives the minimum or maximum f(x), depending on the output. Collecting this
together in an optimization formulation, we get:

x� ¼ argmin ðf ðxÞÞ
subject to x in Xall

Now, given the aims of speed and reliability, the challenge is to solve the global
optimization problem with as few evaluations of f(x) as possible to minimize
simulations, yet reliably find the x* returning the global minimum, which is the
true worst-case corner.

Fast PVT approaches this optimization problem with an advanced model-
building optimization approach that explicitly leverages modeling error.

We now detail the steps in the approach, as shown in Fig. 2.11.
Step 1: Raw initial samples: Fast PVT generates a set of initial samples

X ¼ Xinit in PVT space using design of experiments (DOE) (Montgomery 2004).
Specifically, the full set of PVT corners is bounded by a hypercube, then DOE
selects a fraction of the corners of the hypercube in a structured fashion.

Simulate initial samples: Run SPICE on the initial samples to compute all
initial output values: y ¼ yinit ¼ f Xinitð Þ:

Step 2: Construct model mapping X ? y: Here, Fast PVT constructs a
regressor (an RSM) mapping the PVT input variables to the SPICE-simulated
output values. The choice of regressor is crucial. Recall that a linear or quadratic
model makes unreasonably strong assumptions about the nature of the mapping.
We do not want to make any such assumptions—the model must be able to handle
arbitrarily nonlinear mappings. Furthermore, the regressor must not only predict an
output value for unseen input PVT points, it must be able to report its confidence in
that prediction. Confidence should approach 100 % at points that have previously
been simulated, and decrease as distance from simulated points increases.

(4) ynew = Simulate(xnew).
Update X, y

(2)   Construct model
mapping X y

(3) Choose xnew : optimize  
on model, incorporating

model uncertainty 

(1)       X= initial sampling DOE
y = simulate(X )

(5) Stop if converged   

Fig. 2.11 Fast PVT
verification algorithm
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An approach that fits these criteria is Gaussian process models (GPMs, a.k.a.
kriging)(Cressie 1989). GPMs exploit the relative distances among training points
and the distance from the input point to training points while predicting output
values and the uncertainty of the predictions. For further details on GPMs, we refer
the reader to Appendix B.

Step 3: Choose new sample xnew: Once the model is constructed, we use it to
choose the next PVT corner xnew from the remaining candidate corners Xleft = Xall\X.
One approach might be to simply choose the x that gives minimum predicted output
value g(x):

xnew ¼ argmin g xð Þð Þ subject to x in Xleft

However, this is problematic. While such an approach optimizes f(x) in regions
near where worst-case values have already been simulated, there may be other
regions with relatively fewer simulations, which have different simulated values
than model predictions. These are model blind spots, and if such a region con-
tained the true worst-case value, then this simple approach would fail.

GPMs, however, are aware of their blind spots because they can report their
uncertainty. So, we can choose xnew by including uncertainty s2(x), where Xleft is
the set of remaining unsimulated corners from X:

xnew ¼ argmin h g xð Þ; s2 xð Þ
� �� �

s:t: x in Xleft

where h(x) is an infill criterion function that combines both g(x) and s2(x) in some
fashion. There are many options for h(x), but a robust one uses least-constrained
bounds (LCB) (Sasena 2002). This method returns the xnew that returns the min-
imum value for the lower-bound of the confidence interval. Mathematically, LCB
is simply a weighted sum of g(x) and s2(x).

Step 4: Simulate new sample; update: Run SPICE on the new sample:
ynew ¼ f xnewð Þ. We update all the training data with the latest point:
X ¼ X U xnew; and y ¼ y U ynew.

Step 5: Stop if converged: Here, Fast PVT stops once it is confident that it has
found the true worst-case. Specifically, it stops when it has determined that there is
very low probability of finding any output values that are worse than the ones it has
seen.

Illustrative Example of Fast PVT Convergence

Figure 2.12 shows an example Fast PVT verification convergence curve, plotting
output value versus sample number. The first 20 samples are initial samples Xinit

and yinit. After that, each subsequent sample xnew is chosen with adaptive mod-
eling. The predicted lower bound shown is the minimum of all 95 %-confidence
predicted lower bounds across all unsimulated PVT corners (Xleft). The PVT
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corner with this minimum value is chosen as the next sample xnew. That new
sample is simulated.

The dashed line in Fig. 2.12 is the minimum simulated value so far. We see that
immediately after the initial samples, the first xnew finds a significantly lower
simulated output value f(xnew). Over the course of the next several samples, Fast
PVT finds even lower simulated values. Then, the minimum value curve flattens,
and does not decrease further. Simultaneously, from sample number 20–40, we see
that the predicted lower bound hovers around an output value of 30, but then after
that, the lower bound increases, creating an ever-larger gap from the minimum
simulated value. This gap grows because Xleft has run out of corners that are close
to worst-case, hence the remaining next-best corners are much higher than the
already-simulated worst-case. As this gap grows, confidence that the worst-case is
found increases further, and at some point we have enough confidence to stop.

Appendix B: Gaussian Process Models

Introduction

Most regression approaches take the functional form:

g xð Þ ¼
XNB

i

wigi xð Þ þ e

Where g(x) is an approximation of the true function f(x). There are NB basis
functions; each basis function gi(x) has weight wi. Error is e. Because gi(x) can be
an arbitrary nonlinear function, this model formulation covers linear models,

Fig. 2.12 Example of Fast
PVT convergence
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polynomials, splines, neural networks, support vector machines, and more. The
overall class of models is called generalized linear model (GLM). Model fitting
reduces to finding the wi and gi(x) that optimize criteria such as minimizing mean-
squared error on the training data, and possibly regularization terms. These models
assume that error e is normally distributed, with mean of zero, and with no error
correlation between training points.

In this formulation, the error distribution remains constant throughout input
variable space; it does not reduce to zero as one approaches the points that have
already been simulated. This does not make sense for SPICE-simulated data: the
model should have 100 % confidence (zero error) at previously simulated points,
and error should increase as one draws away from the simulated points. Restating
this, the model confidence should change depending on the input point.

Towards Gaussian Process Models (GPMs)

We can create a functional form where the model confidence depends on the input
point:

g xð Þ ¼
XNB

i

wigi xð Þ þ e xð Þ

Note how the error e is now a function of the input point x. Now the question is
how to choose wi, gi(x), and e(x) given our training data X and y. A regressor
approach that fits our criteria of using e(x) and handling arbitrary nonlinear
mappings, is the Gaussian process model approach (GPMs, a.k.a. kriging). GPMs
originated in the geostatistics literature (Cressie 1989) but have recently become
more popular in the global optimization literature (Jones et al. 1998) and later in
machine learning literature (Rasmussen and Williams 2006). GPMs have such a
powerful approach to modeling e(x) that they can replace the first term of g(x) with
a constant l, giving the form:

g xð Þ ¼ lþ e xð Þ

In GPMs, e(x) is normally-distributed with mean zero, and variance represented
with a special matrix R. R is a function of the N training input points X, where
correlation for input points xi and xj is Rij = corr(xi, xj) = exp(-d(xi, xj)), and d is

a weighted distance measure d xi; xj

� �
¼
P

h¼1n
hhjxi;h � xj;hjph. This makes intuitive

sense: as two points xi and xj get closer together, their distance d goes to zero, and
therefore their correlation Rij goes to one. Distance measure d is parameterized by
n-dimensional vectors h and p, which characterize the relative importance and
smoothness of input variables. h and p are learned via maximum-likelihood esti-
mation (MLE) on the training data.
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From the general form g xð Þ ¼ lþ e xð Þ which characterizes the distribution,
GLMs predict values for unseen x via the following relationship:

g xð Þ ¼ l þ rTR�1 y� 1lð Þ

where the second term adjusts the prediction away from the mean based on how
the input point x correlates with the N training input points X. Specifically,
r = r(x) = {corr(x,x1), …, corr(x, xN)}. Once again, this formula follows intui-
tion: as x gets closer to a training point xi, the influence of that training point xi,
and its corresponding output value yi, will become progressively greater.

Recall we want a regressor to not just predict an output value g(x), but also to
report the uncertainty in its predicted output value. In GLMs, this is an estimate of
variance s2:

s2 xð Þ ¼ r2� 1� rTR�1rþ 1� 1T R�1r
� �2

= 1T R�11
� �� �

In the above formulae, l and r2 are estimated via analytical equations that depend
on X and y. For further details, we refer the reader to (Jones et al. 1998).

GPM Construction Time

With GPMs, construction time increases linearly with the number of parameters,
and as a square of the number of training samples. In practical terms, this is not an
issue for 5 or 10 input PVT variables with up to � 500 corners sampled so far, or
for 20 input PVT variables and � 150 samples; but it does start to become
noticeable if the number of input variables or number of samples increases much
beyond that.

In order for model construction not to become a bottleneck, the Fast PVT
algorithm behaves as follows:

• Once 180 simulations have been reached, it only builds models every 5 simu-
lations, rather than after every new simulation. The interval between model
builds increases with the number of simulations (=max(5, 0.04 * number of
simulations)).

• If Fast PVT has not converged by 1000 simulations, it simply simulates the rest
of the full-factorial corners.
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Chapter 3
A Pictorial Primer on Probabilities

Intuition on PDFs and Circuits

Abstract This chapter aims to build intuition about probability density functions
(PDFs), Monte Carlo sampling, and yield estimation. It has an emphasis on
graphical analysis as opposed to equations. Such intuition will help in many design
scenarios, when one is observing actual PDF data in the form of scatterplots,
histograms, and normal quantile (NQ) plots.

3.1 Introduction

This chapter starts with very basic descriptions of probability distributions in one
dimension, and then moves to multiple dimensions. It then describes statistical
variation in circuits and Monte Carlo sampling. It builds insight on non-Gaussian
distributions, the propagation of distributions through linear and nonlinear func-
tions, and how this insight can be used to understand circuit behavior. The
remaining sections describe histograms and density estimation, statistical esti-
mators like average and yield, and NQ plots.

3.2 One-Dimensional Probability Distributions

A probability distribution (or just distribution) is simply a function that describes
how probable different input values are. As we will see, this simple description is
deceptively powerful.

Consider the statement: ‘‘x = 10, with 80 % probability, otherwise x = 20’’, as
shown in Fig. 3.1a. This is a probability distribution: it describes how probable
different input values (x) are. In this case, x can take just two different values, and

T. McConaghy et al., Variation-Aware Design of Custom Integrated Circuits:
A Hands-on Field Guide, DOI: 10.1007/978-1-4614-2269-3_3,
� Springer Science+Business Media New York 2013
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all other values have probability zero. Because it has a finite set of possible input
values, it is a discrete probability distribution. By definition, in a discrete proba-
bility distribution, the sum of all probabilities is 1.0.

Figure 3.1b is an example of a continuous probability distribution. The input
variable x can take continuous values. Note how the y-axis is not probability, but
rather probability density. What this means is that to get a probability, one must
compute an area (integrate) under the probability density curve. By definition, the
area under the whole curve must have a probability of 1.0. If we compute the area
for a range of x-values, that is the probability that the given range of x-values will
occur. For example, Fig. 3.1c computes that a value of x between 4.0 and 5.0 will
occur with probability 31.25 %.

It is worth emphasizing that for continuous probability distributions, the idea of
a probability for a given input x value is meaningless. For example, if we had an
x-value of 5.0, then since it’s just one value then we take its range as 5.0–5.0,
having a width of 5.0-5.0 = 0.0. With a width of 0.0, then the area (and prob-
ability) is also 0.0. For continuous-valued distributions, it is the probability density
that is meaningful for a given value of x, not probability. It works the other way
too: ‘‘density’’ is meaningless in discrete-valued distributions.

The label ‘‘PDF’’ is shorthand for ‘‘probability distribution function’’ (for
discrete or continuous distributions), or for ‘‘probability density function’’ (for
continuous distributions only).

Figure 3.2 shows two famous and widely-used continuous PDFs. Figure 3.2a is
a Gaussian, or normal, PDF. Normal PDFs have two parameters: the mean (l)
characterizes what values x tends to be near to, and the standard deviation (r)
characterizes the degree of dispersion from the mean. 68.27 % of the x values are
within one standard deviation of the mean, 95.45 % of values lie within two
standard deviations, and 99.73 % of values lie within 3 standard deviations. The

actual formula is pdf ðxÞ ¼ 1
�

r�
ffiffiffi
2
p

p
� �

exp � x� lð Þ2
.

2r2ð Þ
� �

: Shorthand nota-

tion for a normal distribution is N(l, r). Figure 3.2a shows the normal distribution
in N(0,1) which is standard form, when l = 0, and r = 1.

(a) (b) (c)

Fig. 3.1 a A discrete probability distribution b a continuous probability distribution c computing
a probability in a continuous probability distribution
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Figure 3.2b is a uniform PDF. Uniform PDFs have two parameters: the mini-
mum and maximum value. Outside the range of minimum and maximum values,
the density is 0.0, and within the range, the density is a constant value such that
overall area (probability) is 1.0. Figure 3.2b shows the uniform PDF with min = 0
and max = 1. In general, a uniform PDF follows the form:

pdfuniform xð Þ ¼
1:0

max � min

� 	
if x� min;max½ �

0:0 otherwise

8
<

:

9
=

;
:

3.3 Higher-Dimensional Distributions

Distributions may have more than one input dimension. Figure 3.3a is an example
of a two-dimensional continuous PDF: x1 and x2 are the input random variables,
and the z-axis is the probability density. The density function of Fig. 3.3a is an

(a) (b)

Fig. 3.2 a Gaussian (normal) probability density function, and b Uniform probability density
function

(a) (b)

Fig. 3.3 a Two-dimensional Gaussian PDF with mean = (0,0), standard deviation = (1,1) and
no correlation. Since its variables are independent, its pdf(x1, x2) is equivalent to b pdf(x1) *
pdf(x2)
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example of an ‘‘NIID’’ density function: both x1 and x2 are normally, identically,
and independently distributed1.

When random variables are independent, it means that the value of x1 does not
affect the probability distribution of values of x2, or vice versa. They are not
correlated. Independent random variables make dealing with higher dimension-
ality far more tractable: one can break apart the individual components of the PDF,
deal with them one dimension at a time, and multiply at the end:
pdf x1; x2; . . .; xnð Þ ¼ pdf x1ð Þ�pdf x2ð Þ�...�pdf xnð Þ: Figure 3.3b illustrates.

Figure 3.4a is an example of a more complex two-dimensional distribution, in
this case a mixture of three Gaussians. It is a multimodal distribution because it has
more than one peak. This means that when drawing random points from it, it will
tend towards one of the three peaks: the most likely peak is at (x1, x2) = (-2, -2),
with other peaks being (0, 3) and (3, 0). The distribution of Fig. 3.4(a) is not NIID
for several reasons. It is not normally distributed because it does not follow the
2-dimensional form of a normal distribution. Its random variables x1 and x2 are not
identically distributed because they follow different distributions. Finally, x1 and
x2 are not independent: the value of x1 affects the probability of different values
that x2 might take; and we cannot compute the PDF of x1 and x2 independently for
an overall density value.

Figure 3.4b shows the same distribution as Fig. 3.4a, just in contour plot form.
For illustrating certain characteristics of PDFs, contour plots are often better than
surface plots. For example, the spatial distribution across x1 and x2 is easier to read
in the contour plot in Fig. 3.4b, compared to the surface plot of Fig. 3.4a.

We can compute probabilities in two or more dimensions as well: it is integration
under the PDF curve. For example, the probability that (x1 \ 0.0 and x2 \ 0.0) in

Fig. 3.4 Mixture-of-Gaussians two-dimensional PDF a surface-plot version b contour-plot
version

1 For further clarification: Two identically distributed distributions have exactly the same
distribution shape (e.g., normal) and distribution parameters (e.g., same mean and standard
deviation). Two ‘‘independently distributed’’ distributions have no correlation with each other; if
we have a value for one distribution, that value does not change what the probable values for the
other distribution might be.
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Fig. 3.3a is the volume under the curve, which works out to 0.25. This is a simple
example with an analytical solution. But consider the challenge of calculating
integrals on Fig. 3.4a, but with more complex boundaries and with 1,000 dimensions
rather than 2. As we see later, this starts to approximate the central challenge for yield
estimation problems (and begins to hint where tools may help).

3.4 Process Variation Distributions

In modern PDKs supplied by the foundries, each locally–varying process
parameter of each device is modeled as a distribution. On top of this, global
process variation is either modeled as a distribution, or as ‘‘corners’’ bounding a
distribution.

We aim to give some intuition about modeling process variation by describing
one statistical model of variation, as an example. Of course, other models exist,
and this book does not preclude their use. What really matters from a design
perspective is simply ‘‘what’s in the PDK’’. With that in mind, we will describe a
model that is widely used, accurate, and logically designed: the back-propagation
of variance (BPV) model (Drennan and McAndrew 2003). The model continues to
be refined, for example (McAndrew et al. 2010) and (Li et al. 2010).

At the core of the BPV model is one n-dimensional NIID (normally, identically,
independently-distributed) distribution for each device, and an n-dimensional
NIID distribution for global variation. Each of the n variables captures how
underlying, physically independent process parameters change. These parameters
are flatband voltage Vfb, mobility l, substrate dopant concentration Nsub, length
offset DL, width offset DW, short channel effect Vtl, narrow width effect Vtw, gate
oxide thickness tox, and source/drain sheet resistance qsh. This is the list from
(Drennan and McAndrew 2003) but more physical parameters may be added to the
mix, and this often happens in practice. Figure 3.5 illustrates.

Variation of these physical process parameters leads directly to variation
(in silicon, and in simulation) of a device’s electrical characteristics like drain
current Id, input voltage Vgs, transconductance gm, and output conductance gd.

Fig. 3.5 There are &10 independent random variables to model variation of a device in the
widely-used BPV model (Drennan and McAndrew 2003)
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Some models of process variation are not normally distributed; for example,
some random variables are lognormally or uniformly distributed. In other models
of variation, the random variables are not independent (e.g., they have correla-
tions). In both cases, one can apply mathematical transformations to the distri-
bution such that the distribution becomes NIID (and therefore easier to work with).

As a rule-of-thumb, on modern foundries’ PDKs, one can expect at least 10
process variables per device (and perhaps 10 global process variables). Put another
way, the number of variables is 10 times the number of devices. This has wide
ramifications for variation-aware design, because it affects which algorithms and
tools may be useful. Even a 7-transistor Miller operational transconductance
amplifier (OTA) has 70 local process variables, as Fig. 3.6a shows. A 100-device
circuit like a big opamp has 1000 variables, and a 10,000 device circuit like a
phase-locked loop (PLL) has 100,000 variables. We will see the effect of this
number throughout this book.

Figure 3.6b shows a technique we will use to illustrate higher-dimensional
distributions.

3.5 From Process Variation to Performance Variation

One distribution can map to another via functions. In circuits, the distributions of
all physical local variations, and global variations, map directly to variations in a
circuit’s performance characteristics (e.g., power, delay).

(a) (b)

Fig. 3.6 a With &10 random variables for each transistor, even a simple Miller OTA has
7*10 = 70 random variables for just local variation; and several more for global variation and the
capacitor variation. b A simplified way of thinking about the 70-dimensional distribution
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Figure 3.7 is a simple one-dimensional example showing how an input PDF is
mapped to a new PDF. In this example, the final PDF is just a shifted and scaled
version of the original PDF, but more nonlinear transformations may happen.
(Sect. 3.7 will elaborate on different types of transformations.)

Figure 3.8 generalizes this concept to a more general circuit setting, where the
input is a high-dimensional PDF describing process variations, the mapping
function is a SPICE-like circuit simulator, and the output PDF describes perfor-
mance variations. The output PDF has one dimension for each output performance
(gain, BW, etc.).

3.6 Monte Carlo Sampling

Thanks to the statistical models that are part of modern foundry-supplied process
design kits (PDKs), we have direct access to the distributions of the process
variables. However, we do not have direct access to the distributions of the output

Fig. 3.7 This is a simple example showing how a PDF (e.g. process variation) is transformed
into another PDF (e.g., performance variation), via an intermediate function. In this case, a
Gaussian-distributed variable x (bottom) has a linear mapping y(x) to y, and therefore y is
Gaussian distributed too, but is shifted and scaled (left)

Fig. 3.8 The high-dimensional PDF of process variations maps into the high-dimensional PDF
of performance variation, via simulation (or silicon)
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performances, mainly because SPICE is a black-box function. It is these output
distributions that we care about, as they tell us how the circuit is performing, and
what the yield is.

Fortunately, we have at our disposal is the tried-and-true method of Monte Carlo
(MC) sampling, which can be used to learn about the output PDF and the mapping
from input process variables to output performance. In MC sampling, samples
(points) in process variable space are drawn from the process variable distribution.
Each sample (process point) is simulated, and corresponding output performance
values for each sample are calculated. Figure 3.9 shows the flow of MC samples in
process variation space, mapped via SPICE to MC samples in performance space.
This is like the flow of mapping PDFs in Fig. 3.8, except that the samples in output
space collectively form an approximation of the true output distribution2.

3.7 Interpreting Performance Distributions

As we have described, one distribution can map to another via functions. In
circuits, physical parameter variations map to performance variations, via the
‘‘blackbox’’ function of simulation (or of silicon).

This section aims to build insight into what mapping distributions is about, by
building knowledge of how different types of mappings (e.g., those with discon-
tinuities) transform the shapes of PDFs. This knowledge can be used to gain
insight from Monte Carlo sample data. If we know that that our initial distributions
are Gaussian-distributed, and if we observe certain distributions on our outputs,
then we can make inferences about the nature of the mapping. This is highly
useful: it provides a way to get insight about the mapping and the nature of the
circuit’s behavior, despite the blackbox nature of SPICE.

In all the figures, the reader may treat the input variable x as a process
parameter (e.g., flatband voltage), and the output variable y as a circuit perfor-
mance parameter (e.g., power) or a device performance parameter (e.g.,
transconductance).

Figure 3.7 illustrates a Gaussian PDF, passed through a linear mapping. The
result is a Gaussian PDF as well. The final PDF, however, is shifted (has a different
mean) because the linear function does not cross at the origin (0,0); and it is scaled
(has a different standard deviation) because the slope of the linear function is not
1.0. If we observe an output’s distribution to be approximately Gaussian-distrib-
uted, then we can assume that the mapping is approximately linear (at least in the

2 In the statistics literature, ‘‘Monte Carlo methods’’ are a broad set of algorithms, where the
unifying element is that each algorithm has some randomization. While we use the label
‘‘sample’’ to mean a single point in process variable space drawn from a distribution or its
corresponding output performance values, in the statistics literature such a point is an
‘‘observation’’ and a ‘‘sample’’ is a set of observations. The circuits community tends to use
‘‘sample’’ in the way we do.
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range of variation tested). Put another way, changes in output performance are
proportional to changes in process variation parameters. Linear or near-linear
mappings show up (unsurprisingly) in circuits with just linear devices, such as
passive filters. They may also show up in some outputs of some circuits where the
intent is linear behavior (e.g., opamps); though only when the process variation is
small enough so that the nonlinear transforms do not kick in (e.g., devices do not
turn off due to massive variation).

Figure 3.10 illustrates the mapping from a non-Gaussian PDF, through a linear
mapping, and the result is a PDF with the same shape as the original PDF, just
shifted and scaled. The point of this drawing is that linear mappings affect both
Gaussian distributions and non-Gaussian distributions in the same fashion—
shifting and scaling, but retaining the original shape.

Figure 3.11 illustrates how a Gaussian PDF becomes transformed into a non-
Gaussian PDF due to a nonlinear mapping. In this case, the nonlinear mapping is a
quadratic, which leads to a long tail. Therefore, if we observe that an output has a
longer tail, we can know that the mapping is quadratic; i.e. there is a

Fig. 3.9 The flow of Monte Carlo sampling, from process variation space via SPICE to output
space

Fig. 3.10 Non-Gaussian PDF(x) (bottom) has a linear mapping y(x) to y, and therefore retains its
shape, but is shifted and scaled (left)
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disproportionate effect on the output as some process parameters get larger or
smaller. As an example, read current of a bitcell typically has a quadratic response
across most values of process variables.

Figure 3.12 illustrates how a Gaussian PDF becomes transformed to a non-
Gaussian PDF as well, due to a nonlinear mapping. In this case, the nonlinear
mapping has a sharp change, nearly a discontinuity, then resumes a more smooth
mapping. This near-discontinuity causes a region of the output y-space to be
skipped, and the final result is a bi-modal distribution. Therefore, if we observe

Fig. 3.11 Gaussian PDF(x) (bottom) has a nonlinear mapping y(x), and therefore becomes non-
Gaussian (left). In this case, a quadratic mapping led to a long tail (top left)

Fig. 3.12 Gaussian PDF(x) (bottom) has a nonlinear mapping y(x), and therefore becomes non-
Gaussian (left). In this case, a discontinuous mapping led to a bimodal distribution (top left)
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that an output distribution is bimodal, then we know that the mapping has a near-
discontinuity. If we observe more than two modes (two ‘‘humps’’) in the output
PDF, then we know that there are even more discontinuities.

Figure 3.13 is an example where the mapping from process variable x to output
y is nearly flat. This results in an output distribution that is nearly constant (a near-
‘‘spike’’).

Fig. 3.13 From a Gaussian PDF(x) (bottom), the mapping has basically no response to x, and
therefore the output distribution is basically constant (left)

Fig. 3.14 Here, the mapping is a combination of a near-discontinuity, followed by a flat
response in the region after the discontinuity. The resulting distribution has a second mode
(top left) that is near-constant
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Figure 3.14 is an example where the mapping combines a near-discontinuity
and a flat response, which results in a bimodal distribution where one mode is a
constant value. A common circuit example is when variation gets sufficiently
extreme such that a device gets turned off, it essentially destroys the operation of
the circuit, with corresponding drop-offs in performance values (such as power
going to zero).

3.8 Histograms and Density Estimation

We previously described that while we have direct access to the distribution of
process variation, we do not have direct access to the output distribution, in part
because the mapping function, SPICE, is blackbox. However, we can still estimate
the output distribution in various ways. Histograms and density estimation esti-
mate the output distribution from the outputs’ Monte Carlo sample data. We now
elaborate.

There are many ways to visualize a probability distribution based on Monte Carlo
samples. Figure 3.15 illustrates typical visual representations of a 1-dimensional
distribution: as a scatterplot of the samples, or in some fashion that aggregates the
samples,suchasbinningthemintogroupsandcountingthenumberofsamplesperbin—a
histogram.

A histogram can be seen as a density estimation technique: from the existing
data, the binning process constructs a discrete distribution, as shown in Fig. 3.15
top right.

We can make a ‘‘smooth’’ histogram by continuous-valued density-estimation.
Let us explain by a simple example: assume a Gaussian distribution, and

Fig. 3.15 Visualizing 1-dimensional distributions
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characterize it via estimates of mean and standard deviation from the samples. This
is a density estimate of a (continuous) probability density function, or PDF. A PDF
returns a probability density value for any input value. To calculate a probability,
one measures the area under the PDF across a range of input values (i.e. inte-
grates); Sect. 3.9 elaborates on this for yield estimation.

Of course, a Gaussian model of a distribution does not do a good job capturing
characteristics of many distributions commonly encountered in custom ICs, such
as long tails (as shown), or multi-modal distributions where there is more than one
‘‘hump’’. Fortunately, the field of density estimation is long established and there
are many standard techniques to make better estimates.

Given a set of samples, a good density estimate maximizes the probability of
the data, given the density model. One very common approach is to use a mixture
of two or more Gaussian distributions, to make a so-called ‘‘Gaussian Mixture
Model’’. In the example of two Gaussians, one would have to estimate the mean
and standard deviation for each Gaussian, as well as the relative weight of one
distribution over the other.

One can take this to a logical extreme and have a Gaussian centered at each
datapoint, with a well-chosen standard deviation for each Gaussian; this technique
is called ‘‘Kernel Density Estimation’’ (KDE) (Parzen 1962; Rosenblatt 1956).
There are plenty of other techniques too; ‘‘density estimation’’ remains an active
research field (Hastie et al. 2009).

3.9 Statistical Estimates of Mean, Standard Deviation,
and Yield

An ‘‘estimate’’ is exactly what one would expect: a guess of what a value is, given
some (but not ‘‘all’’) data. A ‘‘statistical estimate’’ has a more precise meaning: it
is an estimate of a property of a distribution, given samples from the distribution.
Equivalently, the ‘‘population value’’ is the true value of the property, and the
‘‘sample value’’ is the value of the property estimated from the sample data.

Mean and standard deviation are the most-discussed properties of distributions.
Monte Carlo (MC) sampling is a common way to estimate their values.

Given a set of MC samples x1; x2; . . .; xi; . . .; xNf g; here are the estimators for
mean and standard deviation:

• Average, x, is the estimate of the mean, l. Average is computed as x ¼ 1
N

XN

i¼1

xi

• Sample standard deviation, s, is the estimate of the (population) standard

deviation, r; where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

XN

i¼1

ðxi � xÞ2
s

:
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It turns out that we can estimate the distribution properties in different ways,
with different benefits for each approach. For example, another estimate for
population standard deviation, r, is the standard deviation of the sample3, sN,

computed as sN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðxi � xÞ2
s

. Whereas sN tends to estimate r too low for a

small number of MC samples, s tends to estimate r too low for a larger number of
MC samples. The most common estimator is s.

Yield is another property of distributions. It has very specific physical meaning
for circuit designs. Physically, yield is the percentage of chips that meet specifi-
cation(s). Figure 3.16 illustrates yield in terms of distributions. Yield is the area
under the PDF in the region where the pdf meets the target specification(s), i.e.
where it is feasible. In the example of Fig. 3.16, there is a single specification:
delay must be B 10 ns. The area under the PDF where delay B10 ns is 0.9, or a
yield of 90 %.

Yield can also be estimated in different ways. Here are a couple of common
ways:

• Monte Carlo sampling. Given a set of MC samples x1; x2; . . .; xi; . . .; xNf g and
an indicator function I(x) which outputs a 1 if a sample x meets spec(s) and 0

otherwise. Then, yield ¼ 1
N

PN

i¼1
IðxiÞ.

• Density estimation. This involves making a density estimate of the PDF, then
yield is the volume under the PDF where it meets specifications. For some
PDFs, this may be analytical (e.g., using the Gaussian CDF4 formula); whereas
for other PDFs this may require a numerical technique (e.g., drawing a large
number of MC samples from the PDF, or applying bisection search).

Yield itself may have different units. In the estimates above, yield is in a range
0.0–1.0. Yield may be represented in percentage form, by multiplying the

Fig. 3.16 Computing yield
given a specification. Going
from spec to yield is
integration. In the 1-D case,
integration is equivalent to
computing the area under the
PDF in the range where the
output is feasible

3 We agree, the terminology is somewhat confusing!
4 CDF = Cumulative Distribution Function. CDF(x) is the area under the PDF from -? to x.
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fractional estimates above by 100 %. As described in the Introduction chapter,
yield may also be in units of probability of failure, or sigma.

It turns out that the percentile function is the inverse function to the yield
function, if there is one output specification. Given a PDF, the yield function takes
in a specification and outputs a yield estimate; and the percentile function takes in
a yield target and outputs a specification. Figure 3.17 illustrates. This has broad
usage, for example computing the ‘‘3-sigma value’’ of a given output; i.e. the value
of an output if it had 99.86 % yield.

In circuit design, yield may be measured at different points of the design and
manufacturing flow. Parametric yield refers to the yield estimate using circuit
simulation. Manufacturing yield is based on the actual number of manufactured
dies that meet specifications. Ideally, these measures would give identical values,
but that occurs only if simulation-level modeling sufficiently captures all the
electrical and physical effects. This requires good models of global variation
(wafer-to-wafer and die-to-die), local variation (within-die), temperature and other
environmental effects, layout parasitics and other layout effects, and so on. This is
the challenge of silicon calibration. In practice, this is very difficult to achieve
perfectly; however, designers do find that improvements in parametric yield
usually lead to improvements in manufacturing yield.

Partial yield is the yield of a single output performance measure. Overall yield
is the yield of all performance measures at once, i.e. the percentage of circuits that
meet all specs. The relation between overall yield and partial yield depends on how
closely different output values correlate. On one hand, if there is a perfect cor-
relation between all output measures (e.g., when an MC sample fails on one
output, it also fails on the other, and vice versa), then the partial yield is equal to
overall yield. At the opposite extreme, if there is no correlation between any output
measures, then the overall yield is much lower: yieldoverall = yield1 * yield2. For
example, if yield1 = 0.90 and yield2 = 0.80, then yieldoverall = 0.72. In general,
since overall yield is what really matters to the design, and since it is very difficult
to know the relation among outputs in advance, we advise a focus on overall yield.

It turns out to be challenging to estimate overall yield using density estimation,
when there are [1 outputs. Appendix A of Chap. 4 discusses the challenge, and
describes a resolution.

Fig. 3.17 The percentile
function computes a
specification, given a yield
target
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3.10 Normal Quantile Plots

A Normal Quantile (NQ) plot is an alternative view of a distribution that facilitates
easy comparison to Gaussian distributions, and enables detailed analysis of the
distribution’s tails, which is very useful in high-sigma analysis.

Figure 3.18 shows three views of the same distribution. The only difference
between each view is the y-axis. Each view has its unique advantages and dis-
advantages. Crucially, we can transform among the views in a fairly straightfor-
ward fashion. We now examine each view, one at a time.

PDF: The top plot in Fig. 3.18 has the PDF (probability density function) on
the y-axis. This is the plot used in the examples earlier in this chapter. The area
under the PDF must integrate to 1.0. The area under the curve between a given
range of x-values is the probability of that range of x-values. The PDF curve is
intuitive because its y-value for a range of x values is proportional to the number
of samples seen in that range of x-values. ‘‘Discretized’’ PDFs—histograms—are
intuitive and easy to compute.

But the PDF view has disadvantages. First, lower-probability regions run
extremely close to the x-axis, and have such small values that it is difficult to
distinguish one low-probability value from another (e.g. 1e-4 from 1e-5), because
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Fig. 3.18 Three views of the same distribution: PDF, CDF, and NQ views
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they are both hugging the x-axis. This is troublesome for high-sigma analysis.
Second, the ‘‘best-behaved’’ or ‘‘typical’’ distributions, namely Gaussian distri-
butions, have a highly nonlinear bell-shaped curve. This means that small non-
linear distortions of that curve are difficult to identify, and in general the nonlinear
curve is hard to work with. Compare this to many subdomains of electrical
engineering, from circuit analysis to control theory, where the ‘‘best-behaved’’
models or systems are linear or linearized models; and linear techniques are key
analysis and design tools. Nonlinear bell-shaped curves are not amenable to such
analysis.

CDF: The middle plot in Fig. 3.18 has the CDF (cumulative distribution
function) on the y-axis. A CDF value at x is the area under the PDF from ? to

x. That is, CDF xð Þ ¼
Rx

�1
PDF xð Þdx. Intuitively, the y-axis can be viewed as the

probability p that up to a given x-value can occur. CDFs are highly useful for
computing yield: CDF values are equal to yield values for ‘‘B’’ specs; and equal to
1-yield for ‘‘C’’ specs. Accordingly, one may inspect CDF plots to see the tradeoff
between yield values and spec values. To go backwards from CDF to PDF, one
takes the derivative.

However, CDFs have the same disadvantages of PDFs: it is hard to distinguish
among low-probability regions, and Gaussian distributions have highly nonlinear
curves which impedes analysis.

NQ: Suppose there were a view of a distribution that overcomes some of the
disadvantages described, while keeping key benefits. Specifically, suppose this
view had the following properties:

• The ‘‘best-behaved’’ distributions (Gaussian) are linear curves, and the larger the
deviation from Gaussian the more nonlinear the curve. Different types of
deviations indicate different nonlinearities.

• One can directly see the tradeoff between yield and performance.
• One can easily distinguish among different low-probability values.

Remarkably, such a view of a distribution exists: it is an NQ plot. An
example NQ plot is shown in the bottom of Fig. 3.18. An NQ plot is like a CDF,
but the y-axis is warped ‘‘just right’’ such that if the underlying distribution is
Gaussian, then the NQ appears as linear. The specific function doing the warping is
the ‘‘normal quantile’’ function, also known as the ‘‘inverse CDF of the Gaussian’’,
or ‘‘probit’’ function. It takes in a CDF value (a probability p), and outputs an NQ
value. The NQ function is not available in closed form, so must be numerically
computed as NQ pð Þ ¼

ffiffiffi
2
p

erf�1ð2p� 1Þ, where erf�1is the ‘‘inverse error func-
tion’’ and is typically provided in software packages and libraries.

The ‘‘normal quantile’’ value has a specific interpretation that aids intuition: the
number of standard deviations away from the mean, if the distribution was
Gaussian. Sigma is a unit for yield that is often simpler to use than percent yield or
probability of failure; and one quickly can build intuition about the units. Spe-
cifically, to build intuition:
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• 2 sigma represents about 1 failure in 20
• 3 sigma is about 1 in 1000
• 4 sigma is about 1 in 50 thousand
• 5 sigma is about 1 in a million
• 6 sigma is about 1 in a billion

Certain circuit types typically have particular target ranges of sigma values. For
example, non-replicated circuits like analog circuits are typically targeted for
meeting 2–4 sigma, and bitcells are typically targeted for much higher yields
around 6 sigma.

Density estimation: Recall the earlier discussion on density estimation, refer-
ring to estimating the probability density function (PDF) from data. There is
another way to do density estimation: we can curve-fit the mapping from output
performance value to NQ value, or vice versa. This may be considerably easier,
because the NQ curves will typically be far less nonlinear than the nonlinear
curves found in PDF space (even for Gaussian functions). When curve-fitting NQ
data, to guarantee mathematical consistency, the mapping from output value to NQ
value must be monotonically increasing. (McConaghy 2010) explores curve-fitting
on NQ space in more detail, and Chap. 5 employs a piecewise-linear (PWL)
density curve for statistical system-level analysis.

Random variates: A model mapping NQ values to output values has an
additional benefit: it can be used to generate random values for the output value
according to whatever arbitrary distribution the model has. That is, it can be used
as a ‘‘random variate generator’’. Here’s how: (1) draw a random value from a
uniform distribution in the range [0,1]; (2) convert it to NQ via CDF-1; and finally
(3) run it through the model to get the output value.

NQ for insight: We can use the teachings of this chapter to show how
inspection of NQ plots gives excellent insight into circuits. Figure 3.19 shows NQ
plots from real circuit simulation data. The chapter on high-sigma analysis (Chap.
5) has the details of the setup; here we focus on the analysis. Each plot has
approximately 1 million MC samples simulated. Each dot is a different MC
sample.

Fig. 3.19 NQ plot for bitcell read current (left) and sense amp delay (right)
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Let us first look at Fig. 3.19 left, which shows an NQ plot for bitcell read
current. First, we note that the curve does not follow a straight line, meaning it is
not Gaussian-distributed. We happen to know that the process variables follow a
Gaussian distribution, which therefore means that the mapping from process
variables to read current is nonlinear. The bend in the middle of the plot implies a
quadratic mapping. There is a vertical stripe in the lower left; this means that there
are region(s) of process variable space with a read current of 0.0, i.e. the bitcell has
turned off.

Let us now look at Fig. 3.19 right, which is of sense amp delay. Since this curve
is far from linear, it means the delay distribution is far from Gaussian. The three
near-vertical stripes mean that there are three modes to the distribution (tri-modal
distribution). The jumps between the stripes indicate discontinuities or ‘‘cliffs’’: at
these locations, a small step in process-variable space leads to a giant change in
performance. If we had taken just 1,000 samples, it would produce just dots in the
y-range of about -3 sigma to +3 sigma, and we would see just the inner region of
the center vertical stripe. That stripe has a slight slope, and would appear linear.
Therefore, a sample size of 1,000 might lead us to conclude that the delay distri-
bution is Gaussian. Of course, with more samples we see that it’s not Gaussian; the
other stripes start at about ±4 sigma, which means one needs about 1 million MC
samples and simulations to start to see those. (In the high-sigma chapter, we will
show how to get high-sigma information without needing 1 million simulations).

3.11 Confidence Intervals

In Sect. 3.9, we discussed how mean, standard deviation, and yield are estimated
from MC samples. Consider if we took 10 MC samples, and all 10 were feasible.
This gives a yield estimate of 100 %. Does that mean that we should trust the
design to really have 100 % yield? If not, then how do we properly interpret this
situation? The answer is in the use of confidence intervals: any statistical estimate
has a certainty attached to it. That certainty is in the form of an upper bound and a
lower bound for a given estimate. For example, if 10/10 samples are feasible, then
the upper bound is 100 %, but the lower bound will be 72.2 % (using the Wilson
estimate, which we will discuss in more detail later).

As more samples are taken, the width of the confidence interval (Cl) will tighten
up. For example, verifying that a circuit hits 2-sigma yield with 95 % confidence
takes about 80-100 samples. The exact number depends on the actual yield of the
circuit. Verifying that a circuit hits 3-sigma yield with 95 % confidence takes
about 1400 samples. If the circuit fails to hit the target yield, it will take fewer
samples, and substantially fewer samples if the circuit’s actual yield is very poor.
This is the key to statistical verification, which Chap. 4 will discuss in more detail.

We now explain how to compute CIs for mean, standard deviation, and yield.
Say we are given a list of output values x1; x2; . . .; xNf g; where N is number of
samples. For each statistical measure P (e.g., mean), we estimate the confidence
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interval by (a) estimating a distribution for the measure P, then (b) computing the
upper and lower bound from the distribution. Note that each measure has various
ways to estimate the confidence interval. We focus on the most common.

3.11.1 Confidence Interval for Mean (P1)

First, assume that the estimate P1 is normally-distributed. This is an acceptable
assumption for estimates of mean, from statistics theory. Since a normal distri-
bution is characterized by two parameters (mean and standard deviation), if we
compute those two parameters then we will have characterized the distribution of
the estimate of mean (P1).

• Estimate of P1’s mean = ‘‘average’’ = x ¼ 1
N

XN

i¼1

xi.

• Estimate of P1’s standard deviation = ‘‘standard

error’’ =
standard deviation sp

N
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1
xi � xð Þ2

r

p
N

. Note that standard

error is not standard deviation—a common source of confusion.

Now that we have estimated the two parameters for the distribution of estimate
P1, the lower and upper bound for the distribution are simply calculated via
statistics on the normal distribution. In particular, to get a CI with 95 % confidence
(correct 19 times out of 20), the calculations are:

• Estimate of P1’s lower bound = x� 1:96�standard error

• Estimate of P1’s upper bound = xþ 1:96�standard error

3.11.2 Confidence Interval for Standard Deviation (P2)

Statistics theory dictates that P2 follows a v2 (Chi-squared) distribution, not a
normal distribution. A v2 distribution is characterized by the parameters mean and
standard deviation. We will show how to calculate P2’s mean, then go straight to
the confidence intervals.

• Estimate of P2’s mean = ‘‘standard deviation’’ = s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN

i¼1
ðxi � xÞ2

s

.

Here are the estimates for the CI of P2. Note how they are best suited to
computer-based calculation.
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• Estimate of P2’s lower bound =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1ð Þs2

v2ð1� a
2
;N � 1Þ

vuut where v2ð1� a
2
;N � 1Þ is

the lower critical value of the v2 distribution, typically found by numerical
computation or by using a lookup table. a is 0.05 for a 95 % confidence level.

• Estimate of P2’s upper bound =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1ð Þs2

v2ða
2
;N � 1Þ

vuut where v2ða
2
;N � 1Þ is the

upper critical value.

3.11.3 Confidence Interval for Yield (P3)

There are several ways to estimate the confidence interval for yield. We describe
three approaches. The first, ‘‘normal approximation’’, is simple but makes strong
(dangerous) assumptions. The second, ‘‘bootstrapped density estimates’’ uses
output margin information for tighter confidence intervals, but carries some
extrapolation risk. The third, ‘‘Wilson score’’, is simple and makes no assumptions
at all.

Normal approximation interval: This approach is popular because it is simple.
It assumes that the binomial pass/fail distribution can be approximated by a
Gaussian distribution. This is reasonably accurate when the yield is moderate, but
breaks down when yield [99 %. Recall that typical yield targets are 3-sigma
(99.86 %) or higher, i.e. yield values where the normal approximation will be
inaccurate. This approach is also inaccurate when there is a low number of samples
N. Here is how the normal approximation calculates yield CI:

• Yield estimate (P3) =
number of successes

number of samples
¼ p
^

= proportion of successes in a

‘‘Bernoulli trial’’

• Estimate of P3’s upper bound = p
^
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
^

1� p
^

� 	

N

vuut
(to 95 % confidence)

• Estimate of P3’s lower bound = p
^
�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
^

1� p
^

� 	

N

vuut
(to 95 % confidence)

Bootstrapped density estimates: In this approach, one makes NB (e.g. 10,000)
estimates of the distribution of the output performance value. Each estimate is
made from a slightly different, ‘‘bootstrapped’’, version of the performance output
sample data. For each ‘‘density estimate’’ distribution, the yield is computed as
described in Sect. 3.8. This results in a list of NB estimates for yield. The upper and
lower bound are simply computed as percentile values from the list.
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‘‘Bootstrapping’’ (Efron and Tibshirani 1994) is a widely used technique in
statistics. It can be viewed as a way to take a list of objects, and draw new lists of
objects, where each new list can be viewed as a Monte Carlo (MC) sample from a
distribution characterized by the original list. To draw a new list, one simply
performs sampling with replacement from the original list. From each MC sample
of a list, one can perform higher-level calculations (such as our application, which
performs density estimation then yield estimation), to get a list of MC sample
estimates of yield. While it appears simple, bootstrapping has great value because
it enables computation of confidence intervals on a wide range of computational
problems where no other techniques are available, or where other techniques make
limiting assumptions.

This approach is better than the normal-approximation approach, because it does
not assume a normal distribution for pass/fail or for output values. It can give fairly
tight confidence intervals on yield, especially when there is high margin between
sample values and the spec value. There is actually a pragmatic way to make it work
for [ 1 performance output value (for details, see Chap. 4 Appendix A).

The biggest drawback of this approach is that it must extrapolate when there is
not enough data, and therefore carries the risks associated with extrapolation. We
illustrate with an example. Suppose that one has 100 MC samples of an output
value. This will have representative sample points out to about 2 sigma. Given that
data, this approach will report a confidence interval, and if there is high margin,
then the CI could be in the 3 sigma range. This is fine if one is willing to assume
that the samples so far adequately represent the distribution, i.e. they can be
safely extrapolated. However, if there is a rare failure mode in the distribution,
e.g., in 5/1000 samples the performance drops sharply, and none of those samples
have been taken yet, then the density estimation will not capture it, and instead
returns an overly optimistic CI.

Another drawback is that it takes non-negligible computational effort: for each
MC sample of a list, one must make a density estimate, then compute yield from
the density estimate. For example, in our experience with NB & 5000, kernel
density estimation on &1,000 output values, and yield calculation via bisection
search, this requires &20 s on a single 1-GHz core.

Wilson score interval: This approach (Wilson 1927) was developed as an
improvement over the normal approach in computing confidence intervals on a
binomial pass/fail distribution. Unlike the normal approach, it has good properties
even when the yield is high ([99 %) or when there is a low number of samples
N. Unlike the density-estimate approach, it does not assume that extrapolation is
acceptable. Therefore, it is the safest of the three approaches described.

• Yield estimate (P3) =
number of successes

number of samples
¼ p
^

= proportion of successes in a

‘‘Bernoulli trial’’
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• Estimate of P3’s upper bound (+) and lower bound (-), to 95 % confidence, is:

p
^
þ 1

2N
1:962 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
^

1� p
^

� 	

N
þ 1:962

4N2

vuuut

1þ 1
N

1:962

There are other approaches to computing CIs on binomial distributions, such as
the Jeffreys CI, the Clopper-Pearson CI, and the Agresti-Coull CI (Agresti and
Coull 1998; Ross 2003). Each of those, however, has stability issues in certain
cases; whereas the Wilson CI does not.
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Chapter 4
3-Sigma Verification and Design

Rapid Design Iterations with Monte Carlo
Accuracy

Abstract This chapter explores how to efficiently design circuits accounting for
statistical process variation, with target yields of two to three sigma (95–99.86 %).
This yield range is appropriate for typical analog, RF, and I/O circuits. This
chapter reviews various design flows to handle statistical process variations, and
compares these flows in terms of speed and accuracy. It shows how a sigma-driven
corner flow has excellent speed and accuracy characteristics. It then describes the
key algorithms needed to enable the sigma-driven corner flow, namely sigma-
driven corner extraction and confidence-based statistical verification. Some
enabling technologies include Monte Carlo, Optimal Spread Sampling, confidence
intervals, and 3r corner extraction.

4.1 Introduction

Chapter 2 addressed PVT variation, and its specific use where Fast, Typical, and
Slow (F/T/S) process corners could adequately model the effects of process var-
iation. These corners represent statistical bounds of global process variation for the
device-level performances of speed and power. The PVT approach to modeling
process variation is appropriate when the effects of local process variation
(‘‘mismatch’’) is minimal, and when the device-level performances of speed and
power directly relate to all circuit-level performances, such as digital standard cell
performances of speed and power. The PVT approach is also used when accurate
statistical models of process variation are not available. When these conditions are
not met (i.e. when device speed/power don’t directly relate to circuit output
measures of interest, or when local variation is significant), then a statistical
approach is more appropriate.

T. McConaghy et al., Variation-Aware Design of Custom Integrated Circuits:
A Hands-on Field Guide, DOI: 10.1007/978-1-4614-2269-3_4,
� Springer Science+Business Media New York 2013
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This chapter is concerned with designing circuits when global or local process
variations need to be handled statistically and the target yield is 2–3 sigma, i.e. 95–
99.86 % yield. This includes analog, RF, and I/O circuits. Such circuits can have
up to thousands of devices. Yield numbers of 2–3 sigma imply about 80–1,400
Monte Carlo (MC) samples are required for analysis. Since the target is typically
3-sigma, we will often just specify ‘‘3-sigma’’ when applying to other sigma
values.

Whereas this chapter is concerned with 2–3 sigma statistical design, Chap. 5
discusses high-sigma (3.5–6 sigma) design. High-sigma design is applicable to
circuits that are replicated many times on a chip. This includes memory building
blocks such as bitcells and sense amps, and digital standard cells. Because they
are replicated and their functionality is simpler, high-sigma circuits tend to be
smaller, typically with 4–50 devices. Yield numbers of 3.5–6 sigma imply about
50,000–5 billion Monte Carlo samples for analysis. High-sigma design is also
applicable where failure (even rare failure) is catastrophic, such as in some
automotive IC applications and medical applications.

Along the way, this chapter will resolve such designer questions as: How many
MC samples do I need? If I run 100 MC samples and they all pass, have I verified
to 3r? And most importantly: is there a way to design with rapid design iterations,
yet as accurately as if I were doing MC sampling at each iteration?

This chapter is organized as follows. First, it reviews various design flows
handling 3-sigma statistical variation and describes how the sigma-driven corners
flow gives the best combination of speed and accuracy. Then, it describes the
components that enable the sigma-driven corners flow: sigma-driven corner
extraction, and confidence-driven 3r verification. It then describes Optimal Spread
Sampling, which has lower variance than pseudo-random or Latin Hypercube
sampling approaches. Finally, it provides an example case study comparing design
of a D-flip-flop using four different variation-handling approaches, applying the
learnings from the rest of the chapter.

This chapter also includes an appendix on density-based yield estimation on
more than one output, and another appendix containing details of low discrepancy
sampling.

4.2 Review of Flows that Handle 3-Sigma
Statistical Variation

4.2.1 Introduction

This section reviews the flows handling 3-sigma statistical variation, comparing
them in terms of speed and accuracy. The flows range from simple PVT flows and
direct MC flows to more complex flows like worst-case distances and response
surface modeling. In the flows, the actual design iterations may be manual or
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otherwise (Chap. 6 discusses the options in detail). The final flow is a sigma-driven
corner flow, which as we will show, has the best tradeoff between speed and
accuracy.

Because the flows include changing the design variables, we need a way to
compare different approaches fairly, independent of designer skill and level of
designer-knowledge about the circuit.1 We do this with a simple assumption: in the
design loop, the designer will consider 200 designs (for all flows). Where appli-
cable, we assume that there are two performance specifications. Finally, where
applicable, we assume that there are 200 devices, and 10 local process variables
per device, as is common with the backward propagation of variance formulation
of process variation.

To better analyze certain flows, we will use the representative performance
distribution shown in Fig. 4.1. It is the distribution of average duty cycle, of a PLL
VCO, on Global Foundries’ 28 nm process. We note immediately that the dis-
tribution is not bell-shaped, and therefore it is not Gaussian.

4.2.2 Flow: PVT (with SPICE)

This flow, shown in Fig. 4.2 left, is representative of the variety of PVT flows
discussed in the PVT chapter. In the first step, the designer selects the topology and
performs initial sizing. Then, the designer improves the circuit against a set of
PVT corners, using SPICE simulation for feedback about circuit performance. The
PVT corners may have been set by the user, or extracted using a Fast PVT
approach. Once the designer is satisfied with the design’s performance, he pro-
ceeds to layout, RC extraction, final verification, tape-out, fabrication, and test.

FF

SS

52                      51                      50                      49

Avg. duty cycle

Non-Gaussian
distribution

Fig. 4.1 FF/SS corners
versus distribution, for the
average duty cycle output of a
PLL VCO, on GF 28 nm.
Adapted from (Yao 2012)

1 Or, if the designer is applying an automated sizer, we want to be independent of the
competence of the sizer.
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This flow’s advantages include familiarity, speed, and scalability. It is familiar
because most designers have worked with some PVT-style flow in their careers. It
is fast because it only needs one simulation for each PVT corner, at each candidate
design. Our example has 4 corners, which gives us a total of 200*4 = 800 sim-
ulations. The flow is scalable because the number of simulations is independent of
the size of the circuit: regardless of whether the circuit has 10 or 10,000 devices, it
requires the same number of simulations to analyze the design.

However, the flow does not accurately model variation. It completely ignores
local process variation, which is a dominant factor in many circuits, analog and
otherwise. It also does a poor job of approximating global process variation: the
F/T/S corners are only representative of performance bounds if the circuit’s target
performances correlate with device-level speed and power performance. This is
usually not true for analog circuits, and not true for many other circuits as well.
Figure 4.2 right illustrates how the FF/SS corners do not capture the bounds of the
distribution in the example PLL VCO circuit. Because the flow does not accurately
model variation, the resulting design could suffer significant yield loss.

4.2.3 Flow: PVT – 3-Stddev Monte Carlo Verify

Figure 4.3 left shows this flow. The key steps are in bold. First, the user designs
against the PVT corners, like in the last flow. Then, in order to measure the effect
of statistical process variation, the user runs a Monte Carlo (MC) sampling. He
runs just 100 MC samples, then estimates mean (mean) and standard deviation
(stddev) of the performance. Then, he measures the performance value at mean -

3*stddev and/or mean ? 3 * stddev. If those performance values are within the
specifications, then the designer is satisfied.

Pros: familiarity, speed, scalability
Cons: ignores statistical process 
variation  (e.g. mismatch) → hurts 
yield, performance

200 designs x 4 corners = 800 sims.

Initial topology / sizing

Layout, RCX

Fab

Test

Design on 
some PVT corners;
SPICE in the loop

FF

SS

52                      51                      50                      49

Avg. duty cycle

FF/SS do not
capture the bounds

of the distribution

Fig. 4.2 Flow: PVT (with SPICE)
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Figure 4.3 top right illustrates what is implicitly going on. When mean -

3*stddev and mean ? 3 * stddev are within specification bounds, it means yield
has met the target of 3-sigma (99.73 %), if the distribution is Gaussian. As we
discuss shortly, this is a very big ‘‘if’’.

This flow has the advantages of the previous flow: familiarity, speed, and
scalability. In addition, its verification step is more accurate, because it accounts
for local process variation, and for global process variation better. It is familiar,
because many designers design against PVT corners, then verify by running MC.
It is fast because both steps are fast: the PVT step is on a small set of corners, and
MC verification only needs 100 samples. It is scalable with the number of devices
and variables because both the PVT and MC steps are scalable.

However, this flow has several issues. First, it assumes that the distribution is
Gaussian. In Fig. 4.3 top right, we show samples from the example PLL VCO
circuit. On those samples, we overlay a Gaussian distribution (bold line), and a
more accurate non-Gaussian distribution estimated from the data.2 We see that the
distributions are quite different. In the context of the flow, this can lead to over-
optimism—the user may conclude that the design is fine when it is not.

Another issue is in fixing the design. When the design fails verification, there is
no obvious next action to perform, to improve the design.

mean mean 
+ 3 std. devs

mean
- 3 std. devs

Pros: familiarity, speed, scalability
Cons: when not Gaussian, +/- 3 stddev performances do not represent 99.73% 
yield (3σ).  No recourse when design fails verification.  Cannot handle >1 outputs 
collectively to 3σ yield.

200 designs 
x 4 corners 
= 800 sims.

100 samples 
x 1 corner 
= 100 sims.

900 sims.∑

If assume Gaussian, 
yield = 99.73% (3 σ )

BUT distribution
is not GaussianInitial topology / sizing

Layout, RCX

Fab

Test

Design on some PVT 
corners

Verify: Run MC, inspect   
+/- 3-stddev performances

FF

SS

52                      51                      50                      49

Avg. duty cycle

Fig. 4.3 Flow: PVT ± 3-stddev MC verification

2 To be precise, the non-Gaussian distribution is estimated with Kernel Density Estimation
(KDE).
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Finally, the approach does poorly on[1 outputs. To handle[1 output, the user
will test each output on 3 standard deviations. But that ignores the correlation
among outputs. When two outputs have weak correlation, different sample points
fail for different outputs, and the failure rate is approximately double what this
method might predict.

4.2.4 Flow: PVT+ Binomial Monte Carlo Verify

Figure 4.4 illustrates this flow. The key steps are in bold. First, the user designs
against the PVT corners, like in the last flow. Then, in order to measure the effect
of statistical process variation, the user runs a Monte Carlo (MC) sampling.
Whereas the last flow stopped at 100 samples and assumed Gaussian, this flow
uses an assumption-free binomial pass/fail distribution, and MC sampling only
stops sampling once statistically confident (according to the distribution) that the
design has passed or failed the target yield. Section 4.4 elaborates on this approach
to statistical verification.

Like the previous flow, this flow is fast, familiar, scalable, and accurate in the
sense it acknowledges local and global statistical process variation. Its verification
is even more accurate,3 because it does not assume that the performance distri-
bution is Gaussian. It is fast because both steps are fast: the PVT step is on a small
set of corners, and MC verification only needs &1,400 samples to verify to
3-sigma with 95 % statistical confidence. It is scalable with the number of devices
and variables because both the PVT and MC steps are scalable. MC accuracy only
depends on the number of samples, but is fully independent of the number of

Pros: familiarity, speed, accurate verification, 
scalability

Cons: inaccurate in design loop

200 designs x 4 corners
= 800 sims.

2200 sims.

1400 sims.

Initial topology / sizing

Layout, RCX

Fab

Test

Design on 
some PVT corners;
SPICE in the loop

Verify: Run MC until 
binomial confidence OK

Fig. 4.4 Flow: PVT ? binomial MC verification

3 It is accurate to the extent that the statistical MOS models are accurate.
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variables. MC always needs 1,400–5,000 samples for accurate 3-r verification,
regardless of whether a circuit has 10 or 10,000 devices. Finally, unlike PVT-only
flow, this flow includes accurate statistical verification due to its MC-sampling
step.

The main disadvantage of this flow occurs when the MC-based verification fails
to meet the target yield. As shown, this flow only has a PVT-based design loop,
which does not have Monte Carlo accuracy. It is possible to treat the worst-case
MC samples as corners, then design against them. However, these MC corners do
not imply any particular yield value, which means the user has no visibility into
the effect on yield as he improves the design against the MC corners. For example,
a worst-case MC sample may implicitly4 correspond to a target of 80 % yield. If
the designer solves for that corner, the yield will be 80 %. Section 4.3.2 demon-
strates this issue on several benchmark circuits.

4.2.5 Flow: PVT with Convex Models

Figure 4.5 illustrates this flow. The idea is for an expert in modeling to pre-
generate models that map design variables to performance. Then, at design time,
the designer runs an automated sizing ‘‘optimization’’ on the models to quickly
find the design that meets the target performances. The models are convex or
convexified and look like one big hill, so that even a fast hill climbing-style
optimizer can find the global optimum. For analog circuits, the convex-optimi-
zation approach was first published in (Hershenson et al. 1998), and has evolved

Pros: speed, scalability, some degree of topology
selection (depends on the class of circuit)

Cons: ignores statistical process variation,
not easy to add / tweak topologies,
convex(ified) models may not give optimal designs,
less familiar flow / model management effort, 
hinders designer insight / control

0 sims.

Long manual effort or many sims (but one-time 
effort per topology, + one-time effort per process) 

Layout, RCX

Fab

Test

Design on 
some PVT corners

(Pre-set model, not SPICE)

(Before) Generate model of 
Design vars. Perfs.

Fig. 4.5 Flow: PVT with convex models

4 We say ‘‘implicitly’’ because the designer has no clear way to see the sample’s relation to
yield.
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over the years to its current commercial incarnation (Magma Design Automation
2012).

The detailed flow is as follows. For each new process node or topology, a
modeling expert creates a convex model (e.g. a polynomial) mapping design
variables to worst-case performance across PVT corners. This is a semi-automated
flow; it typically requires the expert to have knowledge about the circuit behavior
and how to write analytical performance equations for it. The model is made
available for use by designers, within the context of the convex optimization tool.
Savvy designers can also input their own models.

The next steps are the designer’s work flow. There is no need for topology
selection and initial sizing. Instead, the user inputs the circuit type, process node,
and performance targets. Convex optimization is run on the convex model of each
model in that circuit type and process node. The tool outputs a sized net list for the
circuit topology that best meets the performance targets. Optimization takes sec-
onds for small circuits, or minutes to hours for very large circuits. Finally, the
usual steps of layout, fab, and test are performed.

The great advantage of this flow is its speed at design time: it takes no simu-
lations. It also scales well, as demonstrated on large ADCs, PLLs, and more.
Finally, the flow also bypasses the need for the designer to do topology selection
and initial sizing, which can be time-consuming.

This flow has several disadvantages. First, by only working on PVT corners, the
model of process variation is inaccurate. Second, it is not easy to add or even
adjust topologies because it requires manual creation of new models for each new
topology or topology change. Third, the designs returned may not be optimal even
for just PVT variation because the convex models themselves can be inaccurate;
though in practice the numbers come out surprisingly close if one does a careful
job of modeling. This flow is a large departure from the familiar design flow, and
gives up much designer insight and control; both characteristics make this flow
less palatable to many designers.

Pros: familiarity, accurate verification, scalability
Cons: way too many simulations

200 designs x 1400 samples 
= 280,000 sims.

Initial topology / sizing

Layout, RCX

Fab

Test

Design & Verify on
Larger MC

Fig. 4.6 Flow: direct MC
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4.2.6 Flow: Direct Monte Carlo

This flow, shown in Fig. 4.6, is a baseline flow that illustrates an extreme of good
accuracy but poor speed. In the design and verify step, shown in bold, the designer
runs full MC verification on every candidate design. For example, it typically takes
& 1,400 samples and simulations to achieve 3r accuracy. Given 200 design
iterations, this amounts to 280,000 simulations.

The direct MC flow actually has several advantages: it is very familiar and easy
to implement, it is accurate to 3r in both the design loop and in verification, and it
is scalable on circuit size due to the scalability of MC with dimensionality.
However, its fatal disadvantage is that it is simply too slow due to the large number
of simulations required.

4.2.7 Flow: Light 1 Heavy Direct Monte Carlo

Figure 4.7 illustrates this flow. It is a more pragmatic variant of the previous MC-
based flow. In the design loop, it runs just a small number of MC samples (e.g. 50
samples, good for nearly 2 sigma) on each design candidate. Once the designer is
satisfied with the performance and yield on the 50 MC samples, he verifies on a
larger MC run of 1,400 samples for 3r accuracy.

The advantages of this approach are: familiarity, statistically-aware design
iterations (but to \2 sigma), 3r-accurate verification, and scalability. But it has
significant disadvantages. First, inside the design loop, 50 simulations per design

200 designs x 50 samples = 10,000 sims

 11,400 sims.

1400 sims.

Initial topology / sizing

Layout, RCX

Fab

Test

Design on
Smaller MC

Verify on
Larger MC

Pros: familiarity, accurate verification, scalability
Cons: slow design loop, medium - accurate 
design loop (e.g. misses discontinuities at >2 sigma)

Fig. 4.7 Flow: light ? heavy direct MC
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leads to fairly slow iterations, and high overall simulation cost. Second, the design
loop is only accurate to 2 sigma. For example if performance dramatically drops
off at 2.5 sigma, the flow will miss it during design, leading to an expensive
iteration with design and verification.

4.2.8 Flow: Linear Worst-Case Distances

This flow, shown in Fig. 4.8, is based on Schenkel et al. (2001). One iteration of
linear Worst-Case Distances (WCD)-based sizing works as follows. The circuit is
simulated at the design point and nominal process values. Then, each process
variable and design variable is perturbed one at a time; at each perturbation, the
circuit is simulated. From the data at nominal and at perturbations, a linear model
is constructed. The linear model maps design variables and process variables to
output performances. Using the model, a new design point is chosen: it is the point
that maximizes the yield according to the linear model.

For an typical example circuit having 200 devices and 10 process variables per
device, the number of local process variables is much larger than the number of
global process variables or design variables. So, roughly speaking, each iteration
takes 200 devices 9 10 variables per device, or 2,000 simulations. According to
the literature, linear WCD typically needs about 5 iterations, for a total of 10,000
simulations in this example.

The advantages of this approach are its simplicity and ease of understanding. As
a bonus, it makes sensitivities of output performances to design variables and
process variables directly available. The major disadvantage is inaccuracy due to
the following three assumptions: an approximately linear mapping, a single region
where specifications fail, and weak or no interactions among variables in the

Pros: very simple technique / easy to understand,
sensitivities directly present
Cons: Assumes 
assumes a single failure region, 
assumes no interactions in vars. 
expensive on large circuits 

5 iterations x 200 devices x 10 vars. / device
=  10,000 sims.

Initial topology / sizing

Layout, RCX

Fab

Test

Linear WCD-based 
sizing

linear mapping, 

performance,

Fig. 4.8 Flow: linear worst-case distances
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mapping to performance. While the approach is very fast on small circuits with
few process variables per device, it gets expensive on medium-sized and larger
circuits because it requires one simulation for each process variable of each device.

4.2.9 Flow: Quadratic Worst-Case Distances

This flow, shown in Fig. 4.9, is quite similar to the linear Worst-Case Distances
(WCD) approach of the previous section. The difference is that each iteration
constructs a quadratic model rather than a linear model (Graeb 2007). Because it
does quadratic modeling in a sequential fashion, it can be viewed as a variant of
sequential quadratic programming (SQP) (Boggs and Tolle 1995).

Quadratic WCD is more accurate than linear WCD because a quadratic mapping
covers a broader range of circuit outputs. However, it takes 1 ? n(n-1)/2 simula-
tions per iteration rather than 1 ? n simulations, where n is number of variables.
This dramatically affects the scalability of the approach: for a design with 2,000
process variables and 5 iterations, it needs 10 million simulations. Furthermore, the
quadratic mapping is still not accurate enough for many circuits. For example,
quadratic mappings do a poor job of handling discontinuities. A discontinuity might
occur, for example, when a particular combination of process variation values
causes a transistor to shut off, which in turn makes circuit performance drop sharply.

4.2.10 Flow: Response Surface Modeling

Figure 4.10 illustrates the response surface modeling (RSM) flow. In the first step,
the user selects the initial topology and sizes as usual. Then, a tool automatically
constructs some form of response surface model, either quadratic or more general,

Pros: very simple technique / easy to understand,
sensitivities directly present
Cons: Assumes 
assumes a single failure region, 
assumes quadratic in vars. 
expensive on medium circuits,  
extremely expensive on large circuits 

5 iterations x (200 devices x 10 vars. / device)2 / 2
=  10,000,000 sims.

Initial topology / sizing

Layout, RCX

Fab

Test

Quadratic WCD-based 
sizing

performance,

quadratic mapping, 

Fig. 4.9 Flow: quadratic worst-case distances
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using feedback from SPICE. After that, all analysis is performed on the model,
which evaluates orders of magnitude faster than SPICE.

The automatic model construction usually has an initial phase and an adaptive
phase. The initial phase starts with some form of well-spread sampling or design of
experiments (DOE) in the space of design and process variables, and then simu-
lates each of those sampled points. Each iteration of the adaptive phase builds a
model using all samples and simulations so far, chooses one or more new design
and process points based on feedback from the model, then simulates the chosen
points. Models may be linear, quadratic, splines, or may incorporate more
advanced approaches such as feed forward neural networks, support vector
machines (SVMs) (Cortes and Vapnik 1995), Gaussian process models (GPMs)
(Cressie 1989), or fast function extraction (FFX) (McConaghy 2011). Each
modeling approach has its own advantages and disadvantages in terms of build
time, model accuracy, scalability to number of dimensions, and scalability to
number of samples.

In our experience and from the literature, if one has a sufficiently accurate and
sufficiently nonlinear modeling approach, as well as a competent adaptive sam-
pling algorithm, then to get a model with sufficiently accurate predictive abilities
takes at least 10 9 the number of input variables. Therefore, for a circuit with 200
devices and 10 process variables per device, or about 2,000 input variables total,
the approach will need about 2,000 9 10 = 20,000 simulations to build a suffi-
ciently accurate model. A circuit with 20 devices will need 2,000 simulations, and
a circuit with 2,000 devices will need 2,00,000 simulations.

The advantages of this approach include ease of understanding, high efficiency on
very small circuits, and, assuming a competent model and adaptive sampling algo-
rithm, good accuracy. The main disadvantage is its high to extremely high simulation
cost on moderate-sized and large circuits. Furthermore, developing a competent
model and adaptive sampling algorithm requires a high degree of expertise.

Initial topology / sizing

Layout, RCX

Fab

Test

Pros: easy flow to understand,
efficient for small circuits / few variables,
arbitrary nonlinear mappings
Cons: expensive on medium circuits,
extremely expensive on large circuits,
challenging to do a competent implementation 

200 devices x 10 vars. / device x 10 sims. / var.
=  20,000 sims.

 20,000 sims.

0 sims.

Build Response Surface
Model (using feedback 

from SPICE)

Design & Verify on 
All RSM-MC samples

Fig. 4.10 Flow: response surface modeling (RSM)
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4.2.11 Flow: Sigma-Driven Corners

Figure 4.11 shows the idea behind the sigma-driven flow and its three core steps.
In the first step, the designer extracts a corner for each output (e.g. gain AV),
where the corner is the 99.86th lower bound percentile of the AV distribution. This
is a sigma-driven corner. In the second step, the designer changes the circuit’s
sizings with feedback from SPICE, simulating at the sigma-driven corner until
meeting the specification(s). Note in the figure that as the corner’s AV increases,
the whole delay distribution is implicitly pushed upward without having to sim-
ulate the whole distribution. In the final step, the designer verifies the yield to see
whether the yield is C99.86 % within a statistical confidence limit (e.g. 95 %
confidence). If the yield passes, the designer is done; otherwise, he extracts a new
AV corner and re-loops.

Naturally, one may handle more than one specification by simply having one
corner for each specification. When corners are extracted, the overall yield must
meet the target sigma, and each of the partial yields needs to meet or exceed the
target sigma.

The sigma-driven design flow overcomes the issue where yield estimation
within the sizing loop is prohibitively expensive. Each sizing candidate within the
loop has just a handful of simulations on corners, rather than a full Monte Carlo
sampling.

Figure 4.12 shows an example of 3r corners extracted for the average duty
cycle output of a PLL VCO on a GF 28 nm process. Note how the 3r corners
accurately capture the upper and lower statistical bounds of the output’s distri-
bution, unlike the traditional FF/SS corners.

Figure 4.13 shows the sigma-driven corners concept in the context of an overall
design flow. Following the step of topology selection and initial sizing, there are
three core steps: extracting the 3r corners, designing on the corners, and verifying
to 3r yield. It turns out that enhanced versions of Monte Carlo are useful algo-
rithms for extracting 3r corners, and verifying to 3r yield in a fast, accurate, and
scalable fashion.

Usually, circuits will pass the 3r verification step because the sigma-driven
corners are extracted with good accuracy. This is the ‘‘1 design pass’’ flow in the
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Fig. 4.11 The idea of sigma-
driven corners
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center column of Fig. 4.13. Extracting the corners takes about 100 simulations,
design takes about 400 simulations, and verification takes about 1,400 simulations,
for a total of 1,900 simulations.

However, if there is significant interaction between process variables and design
variables in the mapping to output performances, then the more the design changes,
the more inaccurate the corners become, and the greater the risk the circuit does not
pass the 3r verification step. If this happens, then a second iteration is needed where
new 3r corners are extracted, the design is tuned, though more locally this time,
against corners from both iterations, and finally verified to 3r yield. The total number
of simulations remains modest at 2,280 simulations. Two rounds have only mar-
ginally more simulations than one round because (1) the first round of verification
stopped as soon as 3r verification failed (e.g. after 300 simulations); (2) corner
extraction for the second round is basically free because it reuses the first round’s
verification simulations; and (3) the second round has fewer design changes.

100 sims

200 designs x 2 corners 
= 400 sims

1400 sims

1900 sims

100 sims; 0 sims

200 designs x 2 corners
+ 20 designs x 4 corners 
= 480 sims

300 sims; 1400 sims

2280 sims

(1 design pass) (2 design passes)

Pros: speed, scalability, accurate design & verification, 
familiarity, works on all circuits, can explore perf. tradeoffs,
does not rely on auto sizing to accomplish variation-aware

Cons: no auto topology selection (if one cares)

Layout, RCX

Fab

Test

Extract 3 corners

Design oncorners

Verify to 3

Initial topology / sizing

Fig. 4.13 Flow: sigma-driven corners, with 3-sigma yield target
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Fig. 4.12 3r corners versus SS/FF corners for the average duty cycle distribution for a PLL
VCO on a GF 28 nm process. Adapted from (Yao 2012)
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We can perform a similar flow for a 2-sigma (95 % yield) target, with even
fewer simulations. Extracting 2r corners takes 50 simulations, and verifying to 2r
with 95 % statistical confidence takes &80 simulations.

The sigma-driven corners flow has many advantages:

• Fast: It is fast because each of its steps is fast: corner extraction needs just
&100 simulations, design iterations are on just a small set of corners (one per
spec), and verification stops as soon as it is statistically demonstrated that the
design has met or failed to meet the target yield.

• Accurate: The flow is accurate to 3r in both design and verification because the
corners are 3r accurate and the verification step is accurate to 3r. It uses SPICE-
in-the-loop, and does not make simplifying approximations.

• Scalable: The flow is scalable because each step is scalable: corner extraction
and verification are based on MC and are independent of circuit size, and
number of corners in the sizing step is also independent of circuit size.

• Easy to adopt and familiar: It uses a corner-based flow, just like the often-used
PVT corners flow. Only now, the corners are really good—they are finally
accurate to analog circuit performance boundaries rather than reflective of
digital device performances.

• Flexible: This flow works on all circuits; it does not rely on an approximately
linear or quadratic mapping. It is flexible another way: it can be used with either
automated or manual sizing flows. Put another way: contrary to some of the
literature, one does not need to resort to automated design to do statistically
accurate variation-aware sizing.

• Tradeoff exploration: This flow does not need any circuit specifications at all
because it extracts corners on the bounds of performance distributions. This
means that designers can explore tradeoffs among performance outputs, subject
to the target yield that the corners were extracted at.

The sigma-driven flow resolves designer questions as follows.

• Question: How many MC samples do I need? Answer: If you are doing veri-
fication, then adaptively decide when to stop, based on statistical confidence that
the design meets or does not meet the target yield. If you are doing corner
extraction, then &100 MC samples is about right.5

• Question: If I run 100 MC samples and they all pass, have I verified to 3r?
Answer: No. The key to answer this is with confidence intervals: given the
number of passes and number of MC samples, we can compute a lower and
upper bound for what the yield will be with 95 % confidence. Typically, you
need &1,400 MC samples to verify that a circuit has passed 3r yield; more if it
is very close to precisely 3r yield, and fewer if it fails 3r yield.

• Question: Is there a way to design with rapid design iterations, yet as accurate as
if I was doing MC sampling for each design? Answer: Yes, using the sigma-
driven corners flow.

5 Benchmarks in Sect. 4.3.2 elaborate on this statement.
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4.2.12 Summary of Flows for Three-Sigma
Statistical Design

Figure 4.14 summarizes the flows we just discussed in terms of speed and accu-
racy. The fastest (top left) is PVT convex since it does not use any simulations
during the design phase. However, it is quite inaccurate. The slowest (bottom
right) is direct MC, because it requires [1,000 simulations for each design can-
didate. On medium- and large-sized circuits, the WCD variants and RSM are quite
slow. In the far top right, in bold, is the sigma-driven corners flow. It is as accurate
as a direct MC flow, but very fast because it has corners in the iterative design
loop. We have also bolded the two PVT SPICE variants, because they have uses in
some contexts, for example when global variation and power and speed measures
matter the most.

The rest of this chapter focuses on the sigma-driven corners flow. This flow has
two key analysis steps: 3r sigma-driven corner extraction, and 3r verification. We
describe them in that order.

4.3 Sigma-Driven Corner Extraction

Sigma-driven corner extraction is a crucial element in the sigma-driven design
flow of Fig. 4.11. Sigma-driven corner extraction takes in a sized circuit and a
target yield, and outputs one or more corners, where each corner is a point in
process variation space. This section describes the general idea of corner extrac-
tion, and the specific approach we take.

In corner extraction, we aim to find a corner that represents the bounds of
performance. Since the performance is a distribution that typically has nonzero
density values extending from -? to +?, a minimum and maximum bound
would be -? and +?, which is not meaningful. Instead, we are concerned with a
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corner that represents a statistical bound: we want a corner at a 3r target yield,
such that if we were to measure the design’s yield (e.g. with MC), the yield will
come out as 3r.

Remember, these are for corners at the circuit level, not the device level.
Because they are specific to the circuit at hand, they cannot be pre-computed and
shipped in the PDK the way that device-level corners are.

There has been a small amount of research on circuit-level corner extraction.
(Silva et al. 2007) extracted the delay corner on digital cells, but it was restricted to
the delay output and specific topology characteristics of digital cells, and assumed
a linear mapping from process variables to output. (Zhang et al. 2009) makes a
quadratic mapping from process variables to output, which naturally restricts its
accuracy to circuits that can be modeled quadratically. It also relies on con-
structing an accurate model, which strongly depends on the number of process
variables. Finally, there is the practice of extracting 3-sigma corners for devices,
bounding the device speed and power (F and S model-sets).

4.3.1 Sigma-Driven Corner Extraction with 1 Output

4.3.1.1 Review: Yield $ Specification

This section reviews a building block of corner extraction: the functions that relate
yield and specification value to the probability density function (PDF) of an
output. Figure 4.15a shows that we can compute a yield given a target spec. It
computes via integration: yield is the area under the PDF in the region where the
spec is met. Figure 4.15b goes the opposite direction, computing a spec given a
target yield. The opposite of integration is the percentile function. For example,
if we want the spec given a yield of 90 %, then we compute the output value at
the 90th percentile.
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Fig. 4.15 Relation between yield and output specification for a 1-dimensional output case
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In the context of corner extraction, we will be using the latter flow, going from a
target yield to a target spec.

4.3.1.2 Sigma-Driven Corner Extraction: Algorithm

Figure 4.11 illustrated the overall flow for sigma-driven design. Its left figure also
started to hint at how 3-sigma corner extraction is done. The general idea is to take
some MC samples, estimate an output PDF, find a target spec via the percentile
function, and finally find a process point that has the target spec value.

Figure 4.16 shows details of the algorithm for sigma-driven corner extraction at
a fixed design point. It inputs a target yield, such as 3r (99.86 % yield).

The first step simulates 100 MC samples to get 100 output values, then esti-
mates a PDF from them using kernel density estimation (KDE) or another density
estimation technique.

The second step uses the percentile function to compute a target output spec-
ification value from the target yield. Where analytical percentile functions are not
available for the PDF, bisection search is a reasonable approach to compute the
percentile function to arbitrary accuracy.

The third step finds a process point that gives the target output specification.
The algorithm does this by (1) finding the MC sampled process point that gives an
output value closest to the target, then (2) performing one-dimensional search
between that process point and the nominal process point, using SPICE-in-the-loop
to measure output values, until the simulated output value is within a target tol-
erance of the target spec value. The one-dimensional search starts as a trust region
method. If that fails, then a bisection search is employed. If that fails, then more
MC samples are taken, and the one-dimensional search is restarted.

r1

r2

r1

corner

spec= 10 mW

yield 
= 0.90

Fig. 4.16 Algorithm for sigma-driven corner extraction with 1 output
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The algorithm is deceptively simple, fast, and scalable because it decomposes
the problem in an elegant fashion.

To illustrate, consider if Steps 2 and 3 were treated as a single problem. It
would search for an n-dimensional process point with maximum probability
density, subject to meeting the target yield. Each candidate process point is sim-
ulated to give a candidate spec value, from which candidate yield is computed. Put
another way, it performs optimization in n-dimensional process variable space
with SPICE-in-the-loop.

The single-problem approach is computationally expensive because it must
perform SPICE-in-the-loop optimization in n-dimensional process variable space.
In contrast, by decomposing it into two separate steps (step 2 and 3), we only need
SPICE-in-the-loop optimization on one variable. In our experiments, we found that
recasting this decomposition-based approach had negligible effect on the quality of
the results, yet had far faster runtime.

The target specification values used in step 2 and step 3 are not to be confused
with actual circuit specifications. They are simply the value of the output at the
3-sigma mark, as an intermediate step to find a corner process point at the output’s
3-sigma mark. The target specification can be ignored once the corner process
point is found.

The algorithm is fast, accurate, and scalable. It is fast because each of the three
steps is fast: step 1 needs just 100 samples (simulations), step 2 is nearly instan-
taneous because no simulations are needed, and step 3 typically needs just 5–20
simulations per output because it is doing a simple 1-d search. It is accurate
because each step is accurate, always using SPICE for feedback and avoiding
making simplifying assumptions. It is scalable to large circuits because each step is
scalable: step 1’s MC is independent of input dimensionality, and step 1’s density
estimation is just one dimension; step 2 only has one dimension to compute the
percentile on; and step 3 has only one dimension for its SPICE-in-the-loop
optimization.

These properties allow corner extraction to work well even for extremely large
circuits, having thousands of devices or more.

4.3.2 Benchmark Results on Sigma-Driven
Corner Extraction

This section assesses the accuracy of sigma-driven corner extraction. The main
research questions are:

• How accurate is sigma-driven corner extraction (CX), compared to (1) simply
picking the worst-case minimum or maximum from MC samples (WC) and (2)
compared to a target yield?

• How much does the number of MC samples affect accuracy in CX (and WC)?
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The experimental setup used to answer these questions is as follows. We had six
analog circuits: an opamp, a comparator, a low noise amplifier, and three more.
For each circuit, we compared two approaches: WC and CX. For each approach,
we compared four different numbers of MC samples: 30, 65, 100, and 200. For
each number of MC samples, we did 30 runs of both MC sampling and corner
extraction.

We established accurate reference values for the distribution by pooling toge-
ther all the MC samples for a given output and computing a density estimate. We
set our target yield as 99.73 %, which is 3r using a two-tailed assumption.

Figure 4.17 shows benchmark results for each combination of approach and
number of MC samples. For example, the box plot6 on the far left is for the WC
approach on 30 MC samples. For each circuit, it did 30 runs. On each run, it chose
the statistical process point that caused worst-case performance to be a corner, and
the corresponding corner’s output performance value. It then computes the yield of
this output performance value on the reference PDF. Recall that since the aim of
the corner is to be at the 99.73th yield percentile, the ideal corner output perfor-
mance value would give an output yield of 99.73 %. However, we see in the box
plot on the far left that the values range from 72.5 % up to 100.0 %, with most
values between 80.0 and 98.0 %. This means that individual runs gave values like
77.5, 82.5 %, etc. This is a big problem for users of the WC approach for corner
extraction: the designer is hoping for a yield &99.73 % when the corner is solved,
but when the corner actually gets solved, the yield is only 77.5, 82.5 %, etc.

If we increase the number of WC samples from 30 to 65 (Fig. 4.17, going from
the box plot on the far left, one to the right), we see that the box plot tightens up

Fig. 4.17 Benchmark results on sigma-driven corner extraction

6 A box plot is another way of visually representing a distributed set of sample data. The box
contains 50 % of the samples, from the 25th to the 75th percentile. The lines extending from the
box go to the maximum and minimum sample values seen.
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substantially. Then, going from 65 to 100 samples, the box plot loosens, then going
from 100 to 200 samples it tightens up more In general, the WC box plots are quite
scattered. This should not be surprising: the so-called corners are not extracted in a
way to be aware of yield at all. But the resulting problem is that when users design
against these statistical corners, they have no idea of the effect on yield.

Let us now examine the results for sigma-driven corner extraction (CX) in the
four box plots on Fig. 4.17 right. At N = 30 samples, most corners will result in
yields of [98 %. We see that as the number of MC samples increases from
N = 30–65, then 100, then 200 samples, the distribution tightens up significantly.
By the time it hits 100 MC samples, it is already near-perfect and aligning very
well with the target of 99.73 %, which is why we recommend that 3r corner
extraction should typically use &100 MC samples.

We can also compare the accuracy of WC to CX. We can compare them at the
same number of samples, such as WC N = 30 versus CX N = 30. Whereas yields
of corners for WC N = 30 mostly vary from 80.0 to 98.0 %, the yields for CX
N = 30 mostly vary between 98.0 and 99.5 %, a much tighter distribution. In fact,
WC N = 200 is about comparable to CX N = 30, a 200/30 = 6.69 speedup.
Furthermore, as WC gets more samples, it will not converge because it never has a
target yield, whereas CX will be able to take further advantage of the increased
amount of data.

This concludes the benchmarking of sigma-driven corner extraction. We have
demonstrated how sigma-driven corner extraction returns accurate corners, and
how using worst-case MC samples does not.

r1

r2

r1

corner

Overall margin

Overall 
yield 
= 0.90

Minimize max(PY1, PY2. …)
s.t. overall yield == target

Fig. 4.18 Algorithm for sigma-driven corner extraction, with [1 output
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4.3.3 Sigma-Driven Corner Extraction
with >1 Output: Summary

The aim here is to extract a corner for each output, such that the overall yield is 3r.
We can adapt the algorithm for a single output to[1 output, though there are a few
challenges to overcome. Whereas Fig. 4.16 illustrated the algorithm for a single
output, Fig. 4.18 illustrates the algorithm for [1 output. It has three steps, each a
revision from the single-output algorithm to handle [1 output. We now describe
the steps.

The first step of Fig. 4.18 simulates 100 MC samples to get 100 values for each
output. It estimates a PDF for each output, using KDE or another density esti-
mation technique.

The second step aims to compute a target specification value for each output,
given an overall target yield. This is actually a challenging problem, so we will
elaborate below.

The third step finds a process point that gives the target specification value for
each output. It uses the same 1-d search techniques as the single-output case
described earlier.

We now elaborate on the second step, which inputs a target yield and returns a
target spec for each performance output. This is actually an underdetermined
problem because it has more degrees of freedom (target spec values) than fixed
values (single target yield). To address that, we can cast this step as an optimi-
zation problem, where we minimize some objective, while meeting the constraint
that the final chosen specs give a yield equal to the target yield. The optimization
space is possible spec values.

In deciding what objective to use, let us consider the following. First, for all but
one output, pick very loose output spec values that lead to extremely high partial
yields (e.g. 6r). Then, compute the remaining output’s spec such that its partial
yield is equal to the target yield. The only output that will affect overall yield is the
remaining output, which means the target yield constraint is met. However, this is
a very poor solution, because most outputs will have extreme-valued output target
values, which will lead to very extreme-valued corner process points; those
extreme corners will have very poor performance on SPICE.

This thought exercise gives us intuition about what objective might be suitable:
we want to ensure that it is not too hard to design against any of the outputs’
corners. Put another way, all outputs’ corners should be balanced in terms of
difficulty. Since higher partial yields (PYs) lead to higher difficulty, we can
translate this insight into an objective: minimize the maximum of outputs’ PYs.
With this objective in hand, we have determined the overall problem formulation
of step 2, as shown in Fig. 4.18. We can solve the constrained optimization
problem with a competent off-the-shelf nonlinear optimizer such as an evolu-
tionary algorithm (EA). Optimization is relatively cheap because each evaluation
is cheap, as SPICE is not in-the-loop.

86 4 3-Sigma Verification and Design



One challenge in step 2 remains: when the optimizer considers a set of can-
didate spec values, it must calculate the overall yield. When there are�1 outputs,
this is not trivial: density estimation scales poorly on [1 dimensions. There is a
pragmatic solution, but the explanation is lengthy. So, we have inserted it into
Appendix A of this chapter for the interested reader.

The overall outcome of the algorithm is a set of 3r corners, with one corner for
the min and/or max of each output. Each individual corner might have different
partial yields, such as 3.1, 3.3, and 3.2r; but together they lead to an overall yield
of 3r. The approach inherits the excellent speed, accuracy and scalability prop-
erties of single-output 3r corner extraction. It is a key part of enabling the sigma-
driven corners flow of 3r corner extraction, rapid design iterations against the 3r
corners, and finally 3r verification.

Another key part of the sigma-driven corners flow is 3r verification, which we
now describe.

4.4 Confidence-Driven 3r Statistical Verification

Verification is a key step in the design flow, having the general aim to be satisfied
that that circuit will work under the conditions of interest.

How might we think about verification in a statistical sense? Recall the chal-
lenge posed in Chap. 3: Consider if we took 10 Monte Carlo (MC) samples, and all
10 were feasible. This gives a yield estimate of 100 %. Does that mean that we
should trust the design to really have 100 % yield?

As Chap. 3 described, the key is in confidence intervals (CIs). We can make a
statistically sound estimate of the lower bound for yield, and of the upper bound
for yield. For example, if 10/10 MC samples are feasible, then the upper bound is
100 %, but the lower bound is 72.2 % using the Wilson approach. If our yield
target is 99.86 %, then we have not yet demonstrated a pass or a fail yet. But as we
take more MC samples, then the confidence interval tightens.

Number of samples
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%
) target yield 99%

yield estimate 
upper bound

yield estimate 
upper bound

verified that 
yield hits 

target

wasted samples

Fig. 4.19 The confidence interval (CI) width tightens as more Monte Carlo (MC) samples are
taken. To prevent wasted samples and simulations, MC sampling should stop when the CI lower
bound C target yield, as shown here, or when the upper bound B target yield
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With enough MC samples, the circuit will be verified to pass or fail,7 in one of
two ways:

1. If the lower bound is higher than the target yield, then the circuit passes
2. If the upper bound is lower than the target yield, then the circuit fails

A reasonable question is: how many MC samples are needed to verify the yield?
There is no direct answer, because it depends on the circuit.8 However, we can reframe
the question towards the user task of verification. Specifically, the best response is to
simply run MC sampling until one of the two conditions above is met, then stop.
Figure 4.19 illustrates this concept. As the MC sampling tool runs and more MC
samples are simulated, the width of the yield-estimate confidence interval tightens.

A competently designed MC sampling tool should support this type of verifi-
cation behavior, rather than asking the user to monitor convergence. Also, the tool
should support[1 environmental points and[1 test benches for each MC sample;
a MC sample only passes if every output across all test benches passes spec on
every environmental point. A competently-designed tool would also show the
convergence over time, as in Fig. 4.19, automatically updated during the course of
the MC run, to give the user intuition about how close the circuit is to passing or
failing. Finally, the tool should make it easy to change the output specifications
‘‘on-the-fly’’ as the user learns about how well the circuit is yielding, and about the
sensitivity to different specifications.

4.5 Optimal Spread Sampling for Faster
Statistical Estimates

This section describes Optimal Spread Sampling (OSS), which reduces the average
number of samples needed to estimate mean, standard deviation, and yield accurately.

4.5.1 Pseudo-Random Sampling and Yield Estimation

As Chap. 3 introduced, Monte Carlo (MC) circuit problems model process vari-
ations as statistical distributions. A typical MC run draws process points from the
statistical distribution, then simulates those points using SPICE. Each simulated
point returns a vector of outputs such as power consumption, gain, slew rate, etc.
Using the returned output values from all process points, statistical estimates can

7 Within a target confidence level, such as 95 %; which means that 19 times out of 20 the
conclusion is valid.
8 Though an approximate number, making light assumptions, is &80 MC samples for 2r, and
&1,400 MC samples for 3r. Section 4.6.1 provides a detailed answer.
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be made based on the outputs, such as average power, standard deviation of power,
partial yield of power (percentage of samples that meet the power specification),
and even estimates across all outputs at once, such as overall yield.

Typically, device-level process variation is modeled as a Gaussian distribution.
Since most random number generators output uniformly-distributed values, they
must be converted to a Gaussian distribution via a transformation, such as using
the inverse CDF of the Gaussian, or the Box-Muller approach.

Figure 4.20 illustrates the overall flow, from generating uniform samples,
converting to normal (Gaussian), simulating, and estimating the distribution of
circuit performances, for the case of two random process variables.

Pseudo-random number generators (PRNGs) generate the uniform random
numbers. The ‘‘pseudo’’ means the numbers are not truly random; they must be
generated algorithmically to approach the ideal random. Linear congruental gen-
erators (LCGs)(e.g. Park and Miller 1988) are some of the oldest and best-known
PRNGs, and have traditionally been how ‘‘rand()’’ functions are implemented.
They work as follows. First, they start with a seed number, an integer. Then, each
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Fig. 4.20 The flow of pseudo-random sampling to estimate output yield, mean, etc. (a) Pseudo-
random sampling from a 2-dimensional uniform distribution, to create (b) uniformly distributed
samples. These samples are (c) transformed to be normally-distributed (d), e.g. via an the inverse
cumulative distribution function (CDF) of the normal distribution. (e) For each sample, a net list
is created by filling in the normally-distributed values into a template net list; and that net list is
simulated. (f) From each sample and simulation, one or more output values are measured (e.g.
power, gain, slew rate). All output values may be collected together to visualize the distribution,
such as in a histogram. Furthermore, statistical estimates such as yield, mean, and standard
deviation may be computed from the output values. Sensitivities of outputs to variables may be
computed from the sample and output values
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new integer number is generated by multiplying the previously-generated number
with a large integer A of &5–20 digits, adding a constant C, then taking a modulus
M. LCGs differ by choices of A, C, and M.

The ideal random number generator has low correlation among serial values in
the sequence of numbers, and can generate long sequences of numbers (long
‘‘period’’). LCGs do not perform well against these attributes, for example with
periods typically ranging from 104 to 109. A more recent PRNG is the Mersenne
Twister (MT) (Matsumoto and Nishimura 1998), which has low serial correlation
and a vastly larger period of 106000. MT is becoming more widely adopted; for
example, it has been in the Python programming language since version 2.3, when
it replaced the Wichmann-Hill LCG.

4.5.2 Issues with Pseudo-Random Sampling

Figure 4.21 highlights the issues with pseudo-random sampling. It is easy to
observe that the spread of the samples is very poor; some points cluster and nearly
overlap, whereas other regions have no points at all. This leads to estimates of
mean, standard deviation, and yield with higher estimation error than necessary.

For example, if making a yield estimate from 100 MC samples, the region with
failures might be over-represented, leading to more MC samples with failures, and
therefore a too-pessimistic estimate of yield. Or, it could under-represent failures,
leading to a too-optimistic estimate of yield. As the number of samples increases,
on average, each region will get represented more evenly; but it can take many
samples. This means that the confidence interval for the yield will shrink fairly
slowly, and therefore yield verification will take more simulations than needed.

4.5.3 The Promise of Well-Spread Samples

Monte Carlo sampling does not need to be random; it just needs to get a set (or
sequence) of points that best cover the distribution it is sampling from. By

Points clumping 
together in small 

region

Large region has 
no points

Fig. 4.21 This plot contains 101 samples drawn from a uniform distribution using pseudo-
random samples, and highlights the issues with pseudo-random sampling
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example, consider Fig. 4.22, which shows how a well-spread set of points may be
generated, and how it translates to better estimates of yield, mean, etc.

Let us return to our yield example. Recall how poorly-spread samples lead to an
over- or under-representation of the failure region, leading to a too-pessimistic or
optimistic estimate of yield, and how that translated into confidence intervals that
tightened slowly, taking more simulations than needed. If, on the other hand, we
had well-spread samples, then the failure region would be well represented (not
over- or under-represented), leading to a more realistic estimate of yield, leading to
confidence intervals that tighten more quickly, and therefore taking fewer simu-
lations than pseudo-random sampling.

4.5.4 The ‘‘Monte Carlo’’ Label

In our experience, the label ‘‘Monte Carlo’’ has taken two meanings in the circuit
design and CAD field:

1. ‘‘Monte Carlo’’ applies to the general tool and approach to estimate yield, etc.
by drawing samples from a distribution.

2. ‘‘Monte Carlo’’ is often also used to mean the pseudo-random sampling
approach, as opposed to other approaches which might be more well-spread,
such as Optimal Spread Sampling, discussed below.
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Fig. 4.22 Well-spread sampling replaces pseudo-random sampling (of Fig. 4.20) for better
estimates (lower variance) of the output distribution, yield, mean, stddev, etc. This example uses
Optimal Spread Sampling, which is described in a subsequent section
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The latter label is not quite technically accurate, but seems to be pervasive in
the field. When describing sampling approaches, we will use ‘‘Monte Carlo’’ and
‘‘pseudo-random’’ sampling interchangeably.

4.5.5 Well-Spread Sequences

In the course of performing a MC run using a well-spread sampling technique, we
want the run to be well-spread not just when it hits some final target number of
samples, but also during intermediate samples, so that representative estimates of
yield and yield CIs can be made during the run. We want a well-spread sequence.
Figure 4.23 shows a desirable behavior. Initial points in the sequence are broadly
spread throughout the space, as shown in the top left. The second round of points, in
the top right, doubles back to optimally fill in the gaps among the first round of points.
The third round of points optimally fills in the gaps among the first and second points.

We aim to use a technique that can generate such well-spread point sets and
sequences.

4.5.6 Low-Discrepancy Sampling: Introduction

In the literature, well-spread sampling is most commonly known as low-discrep-
ancy sampling. The lower the discrepancy, the better that samples are spread.
Sampling can be done to generate a single point set holding N items, or to generate
a point sequence one sample at a time, and continuously make estimates using
those samples. Common techniques include Latin hypercube sampling (LHS)
(McKay et al. 1979; 2000), and quasi-Monte Carlo (QMC) (Sobol 1967).

Fig. 4.23 Four steps of
sequential well-spread
sampling, starting in the top
left and going clockwise. Note
how each subsequent step
embeds the previous samples,
and optimally fills the rest of
the space with new samples.
This example uses Optimal
Spread Sampling, which is
described in a subsequent
section
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The CAD community has explored application of these techniques to circuits (e.g.
Singhee and Rutenbar 2010). However, LHS only gives payoff when the inter-
action among process variables is weak, and QMC scales poorly beyond 10 pro-
cess variables.

Optimal Spread Sampling (OSS) is a low-discrepancy sampling technique that
draws ideas from both digital nets and from lattice rules (L’Ecuyer and Lemieux
2000), drawing on advances from those fields rather than the older LHS and QMC
approaches tried in the CAD community. The recent advances give it properties
that are superior to older LHS and QMC techniques. OSS generates points with
good spread in all the dimensions simultaneously rather than just one dimension at
a time like LHS. It can scale to thousands or hundreds of thousands of input
variables without resorting to heuristics like the recent QMC circuit techniques
(Singhee and Rutenbar 2010, Veetil et al. 2011).

Appendix B gives a detailed review of low-discrepancy sampling, and details of
OSS.

4.5.7 OSS Experiments: Speedup in Yield Estimation?

This section compares OSS to pseudo-random sampling and Latin Hypercube
sampling (LHS), in the number of samples needed to estimate yield within 1 %
accuracy.

The experimental setup included five representative circuits: GMC filter,
comparator, folded opamp, current mirror, and low noise amplifier. Global and
local variation were captured via the back-propagation of variance (BPV) model
(Drennan and McAndrew 2003) on a modern industrial process. Each device had
approximately 10 local process variables. Each circuit had reasonable width and
length sizings. 1,500 pseudo-random (MC) samples were drawn and simulated
with Synopsys� HSPICE� (Synopsys 2012). Then, specifications on outputs (e.g.
gain, power) were picked such that yield was precisely 95 %. Then, a run of
pseudo-random sampling was done, simulating and estimating yield one sample at
a time. Being a Monte Carlo algorithm, as the sample size increases, the accuracy
of the estimate improves on average. As soon as the run’s estimate of yield was
less than 1 % different than the reference yield of 95 %, the run was stopped and
the number of simulations counted. This was repeated for a total of 30 runs of
pseudo-random samples. Similarly, 30 runs of LHS were done, and 30 runs of OSS
were done.

Table 4.1 shows experimental results comparing the average number of sam-
ples needed to reach an error within 1 % of the correct value. As we see, OSS has
average speedups ranging from 1.19x (19 % faster) to 10.09 (900 % faster)
compared to pseudo-random (MC) sampling. Recall that LHS does better when
there is little interaction among process variables in the mapping to outputs; in our
results it is the two amplifier circuits, which are known to have near-linear map-
pings. In contrast, LHS does considerably worse on the more nonlinear circuits,
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such as the current mirror where it took 440 samples on average compared to
OSS’s 55.

4.5.8 OSS Experiments: Convergence of Statistical Estimates

This section compares Optimal Spread Sampling (OSS) to pseudo-random sam-
pling by analyzing error convergence versus sample number for a variety of
representative circuits.

The experimental setup for each circuit was as follows. We did 30 runs of OSS,
where each run had 1,000 samples. We did 30 runs of pseudo-random sampling,
where each run had 1,000 samples as well. Each run had a different random seed.
We pooled together all samples from the 30 OSS runs and 30 pseudo-random runs,
and from the pooled data, we measured mean, standard deviation, and yield.9 We
treated these measures as our ‘‘golden’’ reference values of mean, standard devi-
ation, and yield.

On each run of either OSS or pseudo-random (MC), at a given number of
samples, we estimated mean, standard deviation, and yield. The relative error was
the estimated value, divided by its ‘‘golden’’ reference value. Then, the average
error is taken across 30 runs. We computed average error for both OSS and
pseudo-random, from 50 samples to 1,000 samples.

We plotted average error for OSS versus number of samples, as shown, for
example, in Fig. 4.24’s bottom solid line curve. On the same plot, we also plotted
average error for pseudo-random versus number of samples as the top solid line
curve. The plot is log–log so that the trends can be observed in linear form. To
further facilitate comparison, we also performed a least-squares linear fit on the
OSS curve, and the pseudo-random (MC) curve. These are shown as the dotted
lines in the plot.

Table 4.1 Summary of experimental results in estimating yield

# samples to hit average of 1 % error

Circuit # process
variables

# MC
samples

# LHS
samples

# OSS
samples

OSS speedup
= #MC/#OSS

GMC filter 1,468 285 215 65 4.38x
Comparator 639 325 255 180 1.81x
Folded opamp 558 295 250 245 1.20x
Current mirror 22 550 440 55 10.0x
Low noise amp 234 95 50 80 1.19x

9 In the case of yield, we actually chose a spec value such that the true yield value would be
&95 %.
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Figure 4.24 compares the convergence rate of OSS versus pseudo-random
sampling. This figure shows convergence of estimating the mean value of a var-
iable gain amplifier’s bandwidth (VGA bw). From the convergence curves, we can
estimate average speedup for a given accuracy. For example, if the target accuracy
is 2 %, we find where the OSS dotted line intersects y = 2 %, which is 100
samples. The pseudo-random dotted line intersects y = 2 % at 1,000 samples.
Therefore the speedup is 1,000/100 = 10x. In other words, OSS needed on
average 10 9 fewer samples than pseudo-random to estimate bandwidth within
2 % error.

We can also compare the accuracy achievable for a given simulation budget.
For example, with x = 100 simulations, OSS gets an error of y = 2 %, whereas
MC gets an error of 8 %. In other words, OSS had 49 lower error than pseudo-
random for estimating bw at 100 simulations.

The slope for OSS is steeper than the slope for pseudo-random sampling. This
means that the speedup of OSS over pseudo-random sampling gets exponentially
faster as the number of samples increases. At 0.5 % error, OSS would need 800
samples and pseudo-random would need 50,000 samples, giving a speedup of
50,000/800 = 62x.

Figure 4.25 left compares the convergence of OSS and pseudo-random sam-
pling on the VGA bw, in terms of estimating standard deviation. On the right, it is
in terms of estimating yield. In both cases, OSS converges exponentially faster
since its slope is steeper. Sometimes the curves jump around a bit, as in the left
plot. This is simply statistical noise; the curves become more linear as more runs
are done. Recall that we did 30 runs for each technique; with fewer runs the curves
jump around more, and with more runs the curves jump around less.

Figure 4.26 compares OSS and pseudo-random sampling on two other
problems—gain of the VGA, and delay of a ring oscillator. Once again, OSS
outperforms pseudo-random sampling. We have benchmarked a wide variety of
analog, custom digital, and memory circuits, and OSS always outperforms pseudo-
random sampling.

10x fewer samples
for same accuracy

Fig. 4.24 Convergence of
pseudo-random sampling
versus OSS in estimating
mean of bandwidth (bw) on a
variable gain amplifier. OSS
is the lower curve
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4.5.9 Assumptions and Limitations of Optimal Spread Sampling

To our knowledge, OSS makes no assumptions about the nature of the sampling
problem, and has no obvious theoretical limitations. One practical limitation
exists, which is that the amount of speed and/or accuracy improvement from using
OSS varies from circuit to circuit, and cannot be predicted in advance. However,
as the Experiments section demonstrated, OSS is superior to both pseudo-random
and Latin Hypercube methods in almost all cases. Even in the rare case where OSS
is not the superior sampling technique, OSS will still converge on the correct yield
estimate, just more slowly. This makes OSS a very safe, low-risk, high-reward
technique to employ.

In terms of circuit characteristics, there are no limitations with OSS. OSS works
on problems with a small or large number of samples. OSS also works on a small
or large number of variables; this is in contrast to most QMC approaches (e.g.
Sobol) which only have good spread for the first 10–15 dimensions. OSS works on
linear, weakly nonlinear, or strongly nonlinear circuits with significant variable
interactions; this is in contrast to Latin Hypercube sampling which does not
explicitly account for variable interactions. This also means that Latin Hypercube
is most competitive to OSS on problems with little variable interaction. If there
was a degenerate case, then OSS performance would simply reduce to that of
pseudo-random.

In terms of performance, the runtime cost for generating a set or sequence of
OSS samples is about the same as drawing pseudo-random samples. OSS takes
some up-front computational time to compute z (how to space each dimension).
After that, all the other computations are near-trivial. This time is not noticeable
from the user perspective, even for fast-simulating circuits. Pseudo-random sam-
pling has no up-front computation, but generating takes slightly more time than

Fig. 4.25 Convergence of pseudo-random sampling versus OSS in estimating standard deviation
of bw on a VGA (left), and partial yield of bw on a VGA (right). In both subplots, OSS is the
lower curve
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Fig. 4.26 Convergence of pseudo-random sampling versus OSS in estimating (a) mean of gain
on a VGA (b) std. dev. of gain on a VGA (c) partial yield of gain on a VGA (d) mean of delay on
a ring oscillator (e) std. dev. of delay on a ring oscillator (f) partial yield of delay on a ring
oscillator. In all subplots, OSS is the lower curve
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OSS in drawing samples because d pseudo-random values must be drawn, com-
pared to basically d calls to mod() for OSS.

OSS has been shipping as part of a commercial tool since 2010, and has been
applied to hundreds or possibly thousands of different circuits. OSS comes with a
usage caveat: one cannot conveniently measure its speedup. Upon learning about
OSS, users sometimes want to know the speedup on their circuit. To do so, they
may do a single run of OSS and a single run of pseudo-random sampling, then
eyeball the value of the estimate (e.g. mean) over a number of samples, then
sometimes be surprised to find that OSS may not have converged quite as quickly
as pseudo-random. Since it is a stochastic algorithm, a single run tells very little.
One should never expect to conclude anything significant about OSS, Monte
Carlo, or LHS convergence with a single run from each. We have found that there
is a fair amount of run-to-run variance in OSS, Monte Carlo, and LHS in esti-
mating mean, standard deviation, and yield, and to benchmark them with suffi-
ciently high precision, we needed to do 30 runs of each approach.

OSS does have benefit, but the benefit is averaged over many runs. Therefore, if
there is on average a 59 speedup, over the course of many circuit designs there will
be an average of 59 reduction in simulation usage for the same quality. But, it will
simply be hard for designers to reliably and qualitatively see the benefit on any
given run. For these reasons, we recommend OSS as the default sampling technique.

Doing 30 benchmarks of each approach is time-consuming and tedious, and at
the end, designers doing single runs will still not be able to qualitatively report that
OSS is better. If one is looking to benchmark the speed of Monte Carlo approa-
ches, then we recommend 3r corner extraction for far greater speed gains. By
designing with true 3r corners, at each candidate design, one only needs to sim-
ulate one corner for each output (say, 5 total). That can be compared to simulating
1,400 Monte Carlo samples at each design candidate; 1,400 samples is enough for
3r accuracy. This is a speedup of 1,400/5 = 280x. Even if one was comparing to
50 MC samples, that is a speedup of 10x. The designer benefit is qualitative and
tangible: it allows rapid design iterations with 3r accuracy.

4.6 Design Examples

This section discusses three design scenarios based on industrial application of
3-sigma design.

4.6.1 How Many Monte Carlo Samples?

When running a Monte Carlo analysis, how many samples are enough? 30? 100?
1,000? A common default is to use 100 samples; however, most of the time 100
samples is either too many or not enough.
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The correct number of samples to use depends on several factors, including the
design goal (e.g. design verification, statistical corner extraction, quick smoke test)
and the yield target for the design.

For example, consider the following scenario: A design is to be verified with
Monte Carlo to determine if it is robust to 3 sigma (approx. 99.7 % yield), within a
95 % statistical confidence. The minimum number of samples required to do this
successfully depends on the actual yield of the design. If the design is well above 3
sigma, then a minimum of &1,400 samples is needed in order to conclude with
sufficient confidence that the design meets its 3-sigma target using binomial pass/
fail statistics. However, if the design is well below 3 sigma, then only a very small
number of samples is needed; approximately 20 or so, enough to demonstrate that
there is no chance of ever reaching 3 sigma. If the design is very close to 3 sigma,
then the required number of samples increases significantly; thousands or even
tens of thousands of samples may be required. Figure 4.27 illustrates.

It is important to note from this example that the correct number of samples
cannot be determined a priori, since the correct number of samples is dependent
on the true yield of the circuit, which is not known until the Monte Carlo analysis
is started. Therefore, it is necessary to determine the correct number of samples
on-the-fly while Monte Carlo analysis is running.

In practice, the correct number of samples can be enforced either by: (1)
determining the relationship between the minimum number of samples and yield
for the desired sigma target, and then manually monitoring the simulation results
as they complete; or by (2) using design software that automatically determines
and simulates the correct number of samples on-the-fly and stops when exactly the
minimum required number of samples has been run. If a limited amount of time or
resources is available for simulation, an upper bound on the number of simulations
can be used in combination with one of these two methods. This approach provides
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Fig. 4.27 Average number of samples required to verify to 3 sigma

4.6 Design Examples 99



as thorough a verification as possible while staying within the available simulation
time/resource budget.

Running the correct number of samples can result in a significant simulation
saving, especially earlier in the design flow when the sizing and performance of
the design are still being adjusted and the sigma level of the design may be
fluctuating significantly with each design iteration.

4.6.2 Corner-Based Design of a Flip-Flop

In this example, using a flip-flop design, the circuit topology has been set and
initial transistor sizes selected, and it is now necessary to design for statistical
variation. Three different methods for doing this are compared. To facilitate a
reasonable comparison, the number of design iterations for each approach is
limited to no more than ten.

Method 1: Direct Monte Carlo. In this method, a direct Monte Carlo analysis is
used for both verification and design. As discussed earlier, to verify accurately to 3
sigma requires a minimum of approximately 1,400 samples. Therefore, to have
high certainty that the design is meeting the 3-sigma target, 1,400 samples need to
be run for each design iteration. Despite the accuracy of the result, this approach is
highly inefficient and impractical.

Method 2: Lightweight Monte Carlo. For this method, design verification is
done with a thorough Monte Carlo analysis, but design iterations are performed
using fewer Monte Carlo samples (100 samples per run). After ten design itera-
tions, verification shows that the final sigma level of the design falls short of the 3-
sigma target, meaning that either additional iterations are required, or the design
will not be sufficiently robust.

Method 3: Sigma-driven corners. In this method, design iteration is performed
using corners obtained from sigma-driven corner extraction. This results in fewer
simulations than the other methods, and provides a final design that meets the 3-
sigma design target.

Table 4.2 summarizes the number of simulations and final sigma level of the
flip-flop design for each method. Of the three methods, the sigma-driven corners
flow is the only one that is simultaneously fast (low number of simulations), and
accurate (hit 3 sigma).

Table 4.2 Result of corner-based design of the flip-flop for each method

Method # of simulations Final sigma level

Direct monte carlo 16,800 [3
Lightweight monte carlo 2,500 2.73
Sigma-driven corners 1,707 [3
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4.6.3 3-Sigma Design of a Folded-Cascode Amplifier

In this example, we revisit the folded-cascode amplifier design that was discussed
in Chap. 2. The schematic is shown again in Fig. 4.28 for convenience.

The goal for this design is now to find a good tradeoff among performances at 3
sigma. In particular, it is desirable to balance gain, phase margin, and power
consumption without adversely impacting other characteristics of the amplifier
(e.g. bandwidth, noise rejection).

First, sigma-driven corner extraction is used to find 3-sigma corners for the
design. This determines statistical corners for each output subject to the overall
sigma target of 3 sigma for this design. Figure 4.29 shows the 3-sigma extracted
corner for DC gain, along with the estimated probability density function (PDF)
obtained using sigma-driven corner extraction. Note that the DC gain distribution
is non-Gaussian, and that the extracted 3-sigma corner accounts for this.

Sigma-driven corner extraction for this design needs only 47 simulations to
obtain a representative set of five 3-sigma corners corresponding to the five key
outputs of interest.

Fig. 4.28 Folded-Cascode amplifier with gain boosting

70 72 74 76 78 80 82 84 86 88 90 92 94 96

DC Gain

Extracted 3-sigma corner

Estimated PDF

Fig. 4.29 3-sigma extracted corner for DC gain. The estimated probability density function
(PDF) for DC gain is also shown
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Next, the extracted corners are used to identify sensitive devices in the design.
Sweeping design parameters and simulating them across the extracted corners
reveals which design parameters (i.e. w, l, r, c, etc.) lead to the best tradeoffs
between design performances at 3-sigma. For this design, to sweep across key
devices, across 3-sigma corners, with five sweep steps per parameter, requires only
245 simulations. This is significantly fewer simulations than would be required to
perform a 3-sigma Monte Carlo analysis for each sweep point, yet it provides
effectively the same information.

Design iterations are then performed based on the sweep results. Each time a
change is made to the design, the five 3-sigma corners are re-simulated. This
makes it possible to observe 3-sigma tradeoffs while making changes to the design,
so that a proper balance between performances, power consumption, and area can
be achieved. Figure 4.30 shows the DC gain performance across the five 3-sigma
corners for four design iterations. Improvement can be seen with each iteration

70

75

80

85

90

95

0 1 2 3 4

D
C

 G
ai

n

Design Iteration
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except for the last one. Performing these four design iterations requires only 20
simulations (5 corners 9 4 iterations).

Once the design iterations are complete, statistical verification is performed to
confirm the final design performance to 3 sigma. Figure 4.31 shows the final DC
gain distribution from 1,420 Monte Carlo samples, which reflects the improvement
achieved by iterating with the 3-sigma corners. In this case, no additional iterations
are necessary.

3-sigma DC gain is improved by 8 %. Equally important, this improvement is
achieved while maintaining satisfactory performance for other design character-
istics, including phase margin, bandwidth, and power consumption, under 3-sigma
conditions. The entire process of sigma-driven corner extraction, sensitivity
analysis with the extracted corners, and design iteration, takes only 312 simula-
tions, followed by the single verification run with 1,420 simulations. This makes
for a very efficient yet accurate 3-sigma design flow for this design.

4.7 Conclusion

This chapter reviewed various design flows to handle 3r statistical variation and
described how the sigma-driven corners flow gives the best combination of speed
and accuracy. It then described the components that enable the sigma-driven
corners flow: sigma-driven corner extraction and confidence-driven 3r verifica-
tion. It then described Optimal Spread Sampling (OSS), which speeds up the
accurate estimation of mean, standard deviation, and yield. Finally, it presented
two design examples.

Appendix A describes density-based yield estimation on [1 output, which
enables 3r corner extraction on [1 output. Appendix B describes details of low-
discrepancy sampling and OSS.

Appendix A: Density-Based Yield
Estimation on >1 Outputs

Introduction

This section discusses the challenge of yield estimation, with a focus on the
application to corner extraction (Sect. 4.3.3). As we will see, density-based
approaches provide the necessary resolution, but need special consideration for[1
output. Of the possible approaches to handle [1 output, the ‘‘Blocking Min’’
approach provides the requisite speed, accuracy, and scalability.

Given a set of Monte Carlo (MC) sample output values, there are two main
ways to estimate yield: binomial and density-based. Chapter 3 introduced these
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approaches, and included a description of how confidence intervals for each
approach were calculated. It did not discuss how a corner extraction algorithm
might use yield estimates, or how density estimation might handle [1 outputs.
This section covers those topics.

Binomial-Based Yield Estimation on >1 Outputs

In the binomial approach to estimate yield, one counts the number of MC samples
that are feasible on all outputs, and the total number of samples. The yield estimate
is simply the ratio of (number feasible)/(total number).

From this simple description, Fig. 4.32 shows information flow in a more
detailed fashion. We will be using this view as a framework to present a new
technique for yield estimation. At the top of Fig. 4.32, we have 6 Monte Carlo
samples, each which has a value for output AV and for output PWR. Each Monte
Carlo value for AV and for PWR is compared to its spec, and marked as feasi-
ble = True (T), or feasible = False (F). Then, on each sample, the T/F value for
output AV is merged with the T/F value for PWR, via the AND operator (only T if
both input values are T). This is actually a blocking operation in the statistical
sense, because the blocks of data that are similar to one another—the T/F value for
each output within each MC sample—are kept together. Now we have one T/F
value for each Monte Carlo sample. The yield estimate becomes the ratio of
(number feasible, or T’s)/(total number, or T’s and F’s).
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Recall that we are estimating yield, with an eye towards the application of 3r
corner extraction. In 3r corner extraction, we want to be able to make small
changes to specifications out at &3r, and get back slightly different estimates for
yield. That is, it needs fine-grained precision at 3r. This is especially necessary in
an optimization formulation for corner extraction (Sect. 4.4.3). The problem is that
for the binomial approach to start to have good precision out at 3r, it needs 1,000
samples or so. While 1,000–2,000 samples are reasonable for verification, that is
quite an expensive demand for corner extraction, which does not need to be as
accurate as verification.

Since a binomial MC approach does not provide us with the desired resolution for
3r corner extraction, let us examine density estimation to see how well it might fit.

Density-Based Yield Estimation on One Output

We first discuss the density-estimation approach to estimate yield on one output,
then consider how we might handle[1 outputs. Figure 4.33 reviews how yield is
calculated from a density-estimated PDF. Quite simply, it is the result of inte-
grating under the PDF in the range from -? to the spec value (or spec value to
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)Fig. 4.33 Computing yield
from a one-dimensional
density-estimated PDF
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+?). Density estimation has more fine-grained precision at 3r than binomial:
small changes made to the spec value lead to small changes in yield estimate. This
makes it a better fit in the optimization formulation for corner extraction (Sect.
4.4.3). Density estimation will work fine out at 3r even with 50–100 MC samples;
it assumes that it can safely extrapolate. This will be accurate on some circuits,
where performance does not drop off sharply. On other circuits it will not be as
accurate, but for corner extraction that’s fine because the verification step will
catch it. (And if there is failure in the verification step, then the new corner
extraction round will have better accuracy because it will have more MC samples
to work from.)

Density-Based Yield Estimation on >1 Output

When we consider using density estimation to compute a yield across[1 outputs,
the discussion gets more complex. Figure 4.34 illustrates the target flow. At the
top, we have raw MC output values coming in. Out the bottom, we want to build
some sort of density model or models, and somehow integrate on that, to get an
overall yield estimate. The question is, what are the appropriate steps in between.
It turns out there are a few different options to accomplish this, with different pros
and cons. Let us examine the options.

One approach is to do n-dimensional density estimation across the n outputs,
then simply integrate directly. Figure 4.35 illustrates. The challenge with this
approach is that density estimation has poor scalability properties: the quality of
the density models degrades badly as dimensionality increases. Even 5 dimensions
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gives quite poor density models, and many circuit applications might even have
�5 outputs.

Another approach is to estimate the PDF of each output one at a time, then
combine them somehow. This is a subproblem in some approaches to do statistical
static timing analysis (SSTA), which need to combine two input delay PDFs into a
single ‘‘worst-case’’ (max) delay PDF. The idea is to approximate the ‘‘max’’
operator with a linear function, where the linear function is calibrated by the
incoming PDFs. This approach has been extended to analog circuits, and the
‘‘Linear Max’’ function extended to a ‘‘Quadratic Max’’ (Li and Pileggi 2008).
However, this approach only handles unimodal PDFs, and the ‘‘max’’ operator
induces error which degrades the overall accuracy of yield estimation.

The final approach is a novel technique which we call the ‘‘Blocking Min’’. It
does not suffer from the accuracy issues of the other approaches, and scales to an
arbitrarily high number of outputs. The core idea is as follows. Looking back to the
Linear/Quadratic Max approaches, we see that PDFs are estimated one at a time,
then combined. This ignores the natural groupings of outputs into individual MC
samples. In contrast, the Blocking Min exploits these natural groupings. The
general idea is to keep the natural groupings together and apply the ‘‘min’’
operator to real MC sample values, to compress [1 outputs into a single scalar
‘‘combined’’ output. Only at this point is a PDF estimated, from ‘‘combined’’
output.

Figure 4.36 illustrates the Blocking Min approach. At the top is the raw data,
with a value of AV and PWR for each MC sample. We want to apply a ‘‘min’’
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operator to these, but cannot do so directly because the AV’s units (dB) are not the
same units as PWR (amps). So, we rescale each set of output values to be margin
values in a Cpk-like formula where margin C0 if feasible,\0 if infeasible, and 0 if
on the boundary, and having a standard deviation of &1.0. Specifically,

margini;j ¼ min
USLi�Vi;j

brl
;

Vi;j�LSLi

brl

� �
; where vi,j is MC sample j of output i, USLi is

the upper spec limit of output i, LSLi is the lower spec limit, and brl is the estimated
standard deviation of output i.

Once we have computed the margin for each output of each MC sample, we can
apply the min operator across the outputs of an MC sample, to get the overall
margin for each MC sample. Then, we build a density model for overall margin,
from that set of samples. The overall yield is simply the area under the density
model for a value C0.

The Blocking Min is fast because it only needs to estimate a single 1-dimen-
sional PDF. It is scalable because it compresses the multiple outputs into a single
dimension. It is accurate because it does not make any linear or quadratic
approximations in the course of compressing to a single dimension, thanks to the
‘‘blocking’’ action to compute overall margin. Furthermore, it can handle multi-
modal distributions and other highly non-Gaussian distributions.

The Blocking Min suits the application of yield estimation for corner extraction
quite naturally. It is fast, accurate, and scalable as discussed; and because it uses
density estimation it provides high resolution to support an optimization-style
tuning of specifications.

Appendix B: Details of Low-Discrepancy Sampling

This section has three parts: a detailed literature review of low-discrepancy
sampling (Sect. B.1),followed by descriptions of Optimal Spread Sampling (OSS)
for point sets (Sect. B.2) and for point sequences (Sect. B.3).

B.1: Detailed Review of Low-Discrepancy Sampling

In the literature, ‘‘well-spread’’ sampling is most commonly known as ‘‘low-
discrepancy sampling’’. The lower the discrepancy, the better that samples are
spread. A simple example of a discrepancy measure is the (negative) minimum
distance between all points in a sample set; and more complex measures exist in
the literature. Sampling can be done to generate a single point set holding N items,
or to generate a point sequence one sample at a time, and make continuous
estimates using those samples.

Low-discrepancy sampling has origins from Quasi Monte Carlo (QMC)
methods as well as cubature methods, which were both developed with a focus on
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numerical integration. Modern low-discrepancy techniques can be classified into
two main categories: Digital Nets and Lattice Rules. Digital Nets encompass many
traditional QMC techniques, including Halton (1960), Sobol (1967), Faure (1982),
Hammersley (1960), Niederreiter (1987), and Niederreiter-Xing sampling (1998).
Lattice Rules encompasses many traditional techniques including orthogonal
arrays, Latin Hypercube Sampling (McKay et al. 1979; 2000), and Latin Super-
cube Sampling (Owen 1998). While Digital Net methods were traditionally
designed for point sequences, they can be used for point sets; and while Lattice
Rules methods were traditionally designed for point sets, researchers have shown
how to alter them for use as point sequences (Cools et al. 2006).

The CAD field has explored some low-discrepancy sampling approaches. Latin
Hypercube Sampling (LHS) (McKay et al. 2000) is quite simple and quite popular
(Keramat and Kielbasa 1997; Jaffari 2011; Tao 2011; Liu and Gielen 2012). It
works as follows. If one aims to generate n random samples in d dimensions, then
each dimension gets divided into n bins of equal probability. When drawing the
samples, each bin will get drawn from exactly once. Overall, this means that there
will be good spread for each dimension, independently of other dimensions.
However, LHS does nothing to ensure that there is good spread among points in
[1 dimension. This matters when there are interactions among random (process)
variables in the mapping to output variables. As we saw in Sect 4.6.7, LHS does
well on circuits where the interactions are weak, and not as well on circuits with
stronger or higher-order interactions. There are some techniques to improve LHS
on second-order interactions (e.g. Jaffari 2011), but these increase complexity,
increase runtime, and still do not handle higher-order interactions.

Other circuit CAD researchers have explored variants of QMC methods like
Sobol’ sampling. Many QMC methods do poorly in[10 or so dimensions, so the
research has focused on workarounds to handle hundreds or thousands of
dimensions. (Singhee and Rutenbar 2010) bypassed the issue by doing a short
‘‘pilot’’ run first to estimate the relative importance of each process variable, then
focused the QMC sampling on the most important 10 dimensions. (Veetil et al.
2011) was similar, focusing QMC methods to the most important variables. Of
course, this only helps if 10 process variables have most of the impact. (McC-
onaghy 2009) showed a representative circuit problem where the first 10 variables
only had 50 % of the impact, and it took 85 variables to get 95 % of the impact. A
further challenge is that most circuits have [1 output. With 5 outputs, each with
different high-impact variables, one would need 5 9 more ‘‘important’’ variables,
or to assign just 10/5 = 2 important variables per output.

Optimal Spread Sampling (OSS) is a low-discrepancy sampling technique that
draws ideas from both Digital Nets and from Lattice Rules, drawing on advances
from those fields rather than the older LHS and QMC approaches that other circuit
references used. The recent advances give it properties that greatly improve older
LHS and QMC techniques. It generates points with good spread in all the
dimensions simultaneously, rather than just one dimension at a time like LHS. It
can scale to thousands or hundreds of thousands of input variables, without
resorting to heuristics like the recent QMC circuit techniques.
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B.2: Creating a Point Set with Optimal Spread Sampling

This section describes how to create a set of uniformly-distributed n samples in d-
dimensional space using Optimal Spread Sampling (OSS).

OSS gives the point set

P ¼ k � z=nf g; k ¼ 0; 1; . . .; n� 1

where {x} is the fractional part of x, i.e. {x} = x - floor(x); and z = (z1, …, zd) is
the generating vector, a d-dimensional integer vector having no factor in common
with n.

Once a z is determined, generating a point set P is straightforward, using the
equation above. The challenge is to determine z for the given n and d. The OSS
algorithm implicitly holds a Fourier-series approximation of all possible functions,
and optimizes across all possible z to minimize the discrepancy measure of worst-
case error (Sloan 1994). This optimization has time complexity O(d n log(n)) and
memory complexity O(n), where d is the number of process variables and n is the
number of samples.

Like many low-discrepancy approaches, OSS samples can be ‘‘randomized’’ so
that it becomes a variance reduction technique taking samples in the uniform (0,1)
space, yet retains its high uniformity when taken as a point set. A simple way to do
this is with the random shift modulo technique (aka Cranley-Patterson rotation)
(Cranley and Patterson 1976), which draws a single d-dimensional point
u * unifd(0,1) and adds it to the point set P, modulo 1. This operation can
equivalently be incorporated into equation for the point set for the computation of
P. A second randomization, permuting z before generating a new point set, will
ensure that all variables are treated equally.

Table 4.3 presents the pseudocode to generate to generate a (randomized) set of
n points P in unifd(0,1) space.

The vector z is computed in step 1 of Table 4.3. There are many techniques to
accomplish this, from very early, simple techniques (Korobov 1959) to more
involved modern, complex, but scalable (Sinescu and L’Ecuyer 2011). Step 2 and

Table 4.3 Procedure UniformOssSet()

Input: number of points n, dimension d
Output: point set P (order does not matter)
1. z = minimize worst-case error on all functions
2. u * unifd(0,1)
3. z = randomly permute z
4. P = Ø
5. for k = 0, 1, …, n-1 // for each sample
6. for j = 1, 2, …, d // for each dimension
7. Pk,j = {k*zj/n ? uj}
8. return P
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step 7 accomplish Cranley-Patterson rotation for randomization; step 2 draws a
point from a uniform distribution using pseudo-random sampling, and step 7
performs the actual rotation via the addition of uj and the modulo operator {}. Step
3 ensures all variables are treated equally. Steps 4–8 iteratively build up the point
set P. Each entry in P is a value for one variable d of one sample k. The key
operation is step 7, where the base value is a multiple of k and zj, down-sampled by
the number of samples n (then ‘‘randomized’’ via the Cranley-Patterson rotation).

In our experience, the extra computational cost of this algorithm is negligible
compared to the cost of pseudo-random number generation.

B.3: Creating a Point Sequence with Optimal Spread Sampling

Figure 4.23 introduced the possibility that Optimal Spread Sampling (OSS) could
be used to generate not just sets, but sequences too. A sequence is desirable for
‘‘anytime’’ style algorithms, where each additional step of the algorithm provides
incremental value to the user, rather than relying on the algorithm to complete
fully before results are available. For Monte Carlo sampling, a sequence of well-
spread points is useful to give on-the-fly information to the user during sampling,
rather than waiting until a full sampling run is complete. This section describes
how OSS sequences can be generated.

OSS sequences are possible when the upper limit on n can be estimated; this
occurs in many practical problems such as when the user has pre-specified the
number of process points, or the target yield to verify a design (from which the
number of points can be estimated under mild assumptions). Then the core idea is
to embed smaller point sets in successively larger point sets, as Fig. 4.23 shows.

Table 4.4 Procedure UniformOssSequence()

Input: number of points n, dimension d, base b (e.g. 2)
Output: point sequence P (order matters)
1. z = minimize worst-case error (embedded)
2. m1 = 1
3. u ~ unifd(0,1)
4. z = randomly permute z
5. P = Ø
6. i = 0
7. for m = m1, …, m2

8. for k = randomly permute (0, 1, …, bm-1)
9. if mod(k, b) = 0 //point is new
10. i = i ? 1
11. for j = 1, 2, …, d
12. Pi,j = {k*zj/b

m ? uj}
13. return P
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In mathematical terms, if Pm is the point set from OSS with bm points, then P1 is
a subset of P2, is a subset of P3, etc.

To use this practically, we choose a base value b (e.g. 2), let m1 = 1, then
compute minimal m2 such that bm2 C n. Then, we compute a z which works across
a range of m values m = {m1, m1 ? 1,…, m2}, to account for many possible point
sets simultaneously. It has runtime O(dn(log(n))2). With z in hand, points are first
drawn from set P1, then set P2/P1, then set P3/(P2 U P1), and so forth. Each set’s
points can be ordered randomly, with gray codes, or with radical inverse (Nie-
derreiter 1987).

Table 4.4 presents the pseudocode to generate a sequence of n points. Com-
pared to the approach for sets (Table 4.3), it has an outer loop on exponent m (step
7), and each sample divides by bm rather than by n (step 12). It uses i for the
sample index (steps 6, 10, 12). Since each set Pm+1 embeds all smaller subsets, it
must avoid those; this turns out to be easy because the points in Pm+1 whose
indices k are multiples of b (step 9).

The Optimal Spread Sampling option in Solido Variation Designer draws
samples with an OSS sequence.
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Chapter 5
High-Sigma Verification and Design

The Accuracy of Five Billion Monte Carlo
Samples in Minutes

Abstract High-sigma IC designs are inherently difficult to create and verify. This
chapter reviews various approaches for high-sigma analysis. It then describes
High-Sigma Monte Carlo (HSMC), which is a high-sigma analysis approach that is
fast, accurate, scalable, and verifiable. This chapter presents example results for
representative high-sigma designs, revealing some of the key traits that make the
HSMC technology effective. It describes how to extract full PDFs from -6 to +6
sigma, for application to statistical system-level analysis (e.g. for memory arrays).
Finally, it presents industrial design examples.

5.1 Introduction

5.1.1 Background

High-sigma IC components can tolerate no more than a few defects in hundreds of
millions or billions of instances. This is because these components tend to be
replicated in large arrays, and therefore producing a single working product
requires that a large number of the replicated components all work correctly.
Common examples of high-sigma components are bitcells or sense amps in
memory designs, and replicated digital standard cells. Some products, such as
automotive or medical equipment parts, also have high-sigma requirements
because circuit failure can have catastrophic consequences.

High-sigma parts are inherently difficult to design and verify because it is
difficult to measure the effects of variation on high-sigma designs quickly and
accurately. When there are only a few defects in a very large number of samples,
Monte Carlo (MC) sampling requires a prohibitive amount of time to run in order
to obtain accurate information in the extreme tail of the distribution where the

T. McConaghy et al., Variation-Aware Design of Custom Integrated Circuits:
A Hands-on Field Guide, DOI: 10.1007/978-1-4614-2269-3_5,
� Springer Science+Business Media New York 2013
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defects occur. Other methods, such as extrapolating results from a smaller number
of MC samples or importance sampling, have other drawbacks such as long
runtimes, poor accuracy, or are only effective for trivial examples and do not scale
to the needs of production designs.

The result is that the actual sigma of high-sigma designs is often unknown, and
additional margin must be added to compensate for this uncertainty. This in turn
sacrifices power, performance, and area. Still, some designs may fail to meet their
high-sigma goals, resulting in poor yields and expensive re-spins.

5.1.2 The Challenge

What is required is a fast, accurate, scalable, and verifiable approach for measuring
high-sigma designs. We define these attributes as follows:

• Fast: Runs fast enough to facilitate both iterative design and verification within
production timelines.

• Accurate: Provides information in the extreme tails of the high-sigma distri-
bution, from real Monte Carlo samples.

• Scalable: Applicable to production-scale high-sigma designs with hundreds or
thousands of process variables. Since modern, accurate models of process
variation can have 10 or more process variables per device, typical rare-failure
event memory circuits have 50–200 process variables, and digital circuits have
thousands of variables.

• Verifiable: Results can be understood, pragmatically verified, and trusted. If the
approach fails, it will be apparent to the user, just as a SPICE failure is indicated
by non-convergence to DC operating point.

The High-Sigma Monte Carlo (HSMC) approach has been designed to meet the
above requirements. This chapter presents an overview of existing high-sigma
techniques, and then presents HSMC, including an overview of the technical
approach and sample results on real production designs.

5.2 Building Intuition on the Problem

To start to get a feel for the problem, we simulated 1 million Monte Carlo (MC)
samples for a 6 transistor (6T) bitcell, measured the read current, and examined the
distribution. The bitcell has reasonable device sizings. Some simple yet popular
models of local process variation, such as one DVth per device, are not accurate
(Drennan and McAndrew 2003). Modern models of statistical process variation are
more accurate, having 5, 10, or more local process variables per device. For our
examples, we use a 45 nm industrial process, with 5 process variables per device.
The bitcell has 30 process variables total.
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Figure 5.1 illustrates the distribution of bitcell read current (cell_i), in NQ plot
form, where each point is an MC sample point. NQ plots make it easier to see the
tails of a distribution, as Chap. 3 described in detail. In an NQ plot, the x-axis is the
circuit output and the y-axis is the cumulative density function (CDF) scaled
exponentially. In a circuit with linear response of output to process variables, the
NQ curve will be linear—a straight line of points from the bottom left to the top
right. Nonlinear responses give rise to nonlinear NQ curves.

In the bitcell NQ plot of Fig. 5.1, the bend in the middle of the curve indicates a
quadratic response in that region. The sharp dropoff in the bottom left shows that
for process points in a certain region, the whole circuit shuts off, for a current of 0.
The curve’s shape clearly indicates that any method assuming a linear response
will be extremely inaccurate, and even a quadratic response will suffer.

Figure 5.2 shows the NQ plot for delay of a sense amp, having 125 process
variables. The three vertical ‘‘stripes’’ of points indicate three distinct sets of

Fig. 5.1 NQ plot for bitcell
read current, with 1M MC
samples simulated

Fig. 5.2 NQ plot for sense
amp delay, with 1M MC
samples simulated

5.2 Building Intuition on the Problem 117



values for delay—a trimodal distribution. The jumps in between the stripes indi-
cate discontinuities: a small step in process variable space sometimes leads to a
giant change in performance. Such strong nonlinearities will make linear and
quadratic models completely fail; in this case they would completely miss the
mode at the far right at delay of about 1.5e-9 s.

In this analysis, we have shown the results of simulating 1M MC samples. But
that can be very expensive, taking hours or days. Furthermore, 1M MC samples
only covers enough to measure circuits to about 4 sigma. To find on average a single
failure1 in a 6-sigma circuit, one would need to do about 1 billion MC samples.
Figure 5.3 left illustrates, showing the mapping from process variable space (top) to
output space (bottom). Of course, it is not feasible to simulate 1 billion MC sam-
ples, unless someone has a giant compute cluster and a month of free time.

But of course, taking fewer MC samples means there will be no failures found,
as Fig. 5.3 right illustrates. In this scenario, we have essentially no information
about the high-sigma tails.

5.3 Review of High-Sigma Approaches

We aim to design and verify memory circuits and other circuits with rare failure
events. Engineers and researchers have proposed a number of approaches for rare-
event verification. To be applicable to production designs, an approach must be
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Fig. 5.3 Left 1 billion simulated MC samples will find failures on a high-sigma circuit. Right
10K simulated MC samples will not find failures

1 Where a failure is either failing a spec, or failing to simulate which also implies failing spec.
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fast, accurate, scalable, and verifiable. This section summarizes some of the
popular approaches and highlights challenges with these methods.

5.3.1 Giant Monte Carlo

As described in the previous section, MC would require hundreds of millions or
billions of samples in order to produce a handful of failures for a high-sigma
design; and simulating fewer samples means that no failures would be found.
Positive attributes of MC include its quantifiable accuracy, results that are trust-
worthy, and scalability that is independent of dimensionality. This latter attribute
is a truly remarkable property: MC accuracy is proportional to 1/HN, where N is
the number of MC samples; it is not related dimensionality or size of the circuit at
all!

5.3.2 Medium MC

As described in the previous section, drawing 10K samples and simulating may be
fast enough, but returns no information about the high-sigma tails.

5.3.3 MC with Extrapolation

This approach runs a large, but feasible number of MC simulations (e.g. 100K or
1M), then extrapolates the results to the region of interest. Extrapolation is typi-
cally done using curve fitting or density estimation. The benefits of this approach

Fig. 5.4 Extrapolation from 1M simulated MC samples. Left bitcell read current. Right Sense
amp delay
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are that it is simple to understand and implement, and the results are at least
trustworthy within the sampling region. Unfortunately, it is time-consuming to run
100K or 1M samples, and extrapolation assumes that the behavior in the extreme
tails of the distribution is consistent with that observed at lower sigma. This
assumption can be misleading, as there may be drop-offs or discontinuities in the
extreme tails; for example, if a device goes out of saturation when a given level of
variation is applied. Figure 5.4 shows extrapolation on 1M MC samples, for the
bitcell (left) and sense amp (right) examples given previously. Clearly, extrapo-
lation fails. The failure of quadratic extrapolation on the sense amp is tragically
humorous: the curve starts bending downwards which is mathematically impos-
sible. So much for extrapolation!

5.3.4 Manual Model

In this approach, one manually constructs analytical models relating process
variation to performance and yield. However, this is highly time-consuming to
construct, is only valid for the specific circuit and process, and may still be
inaccurate. A change to the circuit or process renders the model obsolete.

The approaches described so far are traditional industrial approaches. The
approaches that follow are more recent.

5.3.5 Quasi Monte Carlo

Also called ‘‘Low Discrepancy Sampling’’ (Niederreiter 1992), this variance-
reduction technique draws samples from the process distribution with better
spread, which in turn reduces the number of samples to get the same accuracy as
MC. However, this does not solve the core problem of handling rare failures: for a
1-in-a-billion chance of failure, even a perfect QMC approach will need on
average 1 billion MC simulations to get 1 failure.

5.3.6 Direct Model-Based

This class of approach uses models to evaluate a sample’s feasibility far faster than
simulation. The approach (Wang et al. 2009) adaptively builds a piecewise-linear
model; it starts with a linear regression model, and at each iteration it chooses a
higher-probability process point with known modeling error, simulates, and adds
another ‘‘fold’’ to the model. The approach (Gu and Roychowdhury 2008) is
similar, but uses a classification model rather than a regression model. With a
model in place, one may do Monte Carlo sampling directly on it, importance
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sampling (Wang et al. 2009), or for some models analytically integrate for a yield
calculation (Gu and Roychowdhury 2008).

The general problem of model-based approaches is that the model must be
trustworthy, and there is no pragmatic method for verifying the accuracy of a high-
sigma model; if the model is inaccurate, then the results will be inaccurate. Even if
the model error is just 1 %, that 1 % error can translate directly to improperly
labeling a feasible point as infeasible, or vice versa. Furthermore, these approaches
have only been demonstrated on problems of just 6–12 variables; producing a
reliable model for 60–200 variables is far more difficult.

5.3.7 Linear Worst-Case Distance

This approach (Schenkel et al. 2001) is a specific instance of the ‘‘Direct Model-
based’’ approach, where each output has a linear model mapping process variables
to performance (or feasibility). The n-dimensional model is constructed from
n ? 1 simulations: one simulation at nominal, and one perturbation for each of
n process variables. Fig. 5.5 illustrates.

The biggest (and obvious) limitation is that these models are linear; whereas
real-world high-sigma problems including bitcells are often highly nonlinear.
As an example, consider the NQ plot in Fig. 5.1; the mapping would be linear only
if the samples followed a straight line; but we see that the samples follow a
quadratic curve, and in fact drop off on the bottom left when the transistor switches
off (a very strong nonlinearity). Or in Fig. 5.2, a linear mapping will not capture
the sharp discontinuities between the vertical ‘‘stripes’’. A linearity assumption can
lead to estimates of yield that are dangerously optimistic.

Nonlinear WCD methods exist too; they are typically quadratic. Unfortunately,
these approaches only assume a single region of failure, and scale much worse
with the number of process variables.

5.3.8 Rejection Model-Based (Statistical Blockade)

This approach (Singhee and Rutenbar 2009) draws MC samples, but uses a
classifier to ‘‘block’’ MC samples that are not in the 97th percentile tails. It sim-
ulates the remaining samples, and uses the ones beyond the 99th percentile to
estimate yield or construct a tail distribution. The extra 2 percent is a safety margin
to account for classifier error, which avoids the need for perfectly accurate models,
via the safety margin. It avoids designers’ possible distrust of sampling from
alternate distributions by drawing directly from the process distribution. Figure 5.6
illustrates.

A problem is that the classifier model could easily have [2 % error (the
approach has no way to guarantee this), which means it could inadvertently block

5.3 Review of High-Sigma Approaches 121



samples that are in the tail, and there is no effective method to detect this failure
condition. Furthermore, this method was demonstrated using problems with just
6–12 variables; not the 60–200 needed for industrial practice, which is far more
difficult to do.

5.3.9 Control Variate Model-Based

This variance-reduction technique uses the assistance of a ‘‘lightweight model’’ to
reduce the variance of the yield estimate. It combines the model predictions with
simulated-value predictions. Because of this, CV models have no minimum-
accuracy needs, unlike the above model-based approaches. Rather, CV approaches
merely get faster with models that are more accurate.

However, like QMC, control variates do not solve the core problem of handling
rare failures: if failure drops off only one-in-a-billion times, then CV will not be
able to help.

5.3.10 Markov Chain Monte Carlo

The MCMC approach recognizes that we do not need to draw samples directly
from the distribution; instead, we can create samples that are infeasible more often,
so that decent information is available at the tails. The MCMC approach derives
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from the famous Metropolis–Hastings algorithm (Metropolis et al. 1953). In
MCMC (Kanoria 2010), the sampling distribution adaptively tilts towards the rare
infeasible events, and then stochastically uses or rejects each subsequent sample in
the ‘‘chain’’, based on a threshold.

Unfortunately, a stable ‘‘well-mixed’’ chain of MCMC samples is difficult to
achieve reliably in practice, especially for non-experts in MCMC (i.e. tool users).
Even more troublesome is the arbitrariness of the sampling PDF: in real-world
problems with dozens or hundreds of random process variables, it is difficult for
users to gain insight into the nature of the sampling distribution, and therefore
harder to trust the results or to know when MCMC may have failed.

5.3.11 Importance Sampling

In importance sampling (IS) (Hesterberg 1988), the general idea is to change the
sampling distribution so that more samples are in the region of failure. It is typ-
ically composed of two steps, as shown in Fig. 5.7. The first step finds the new
sampling region, which may be via uniform sampling, a linear/WCD approach, or
a more general optimization approach. The step typically finds a ‘‘center’’ which is
simply a new set of mean values for the sampling distribution. The second step
continually draws and simulates samples from the new distribution; it calculates
yield by assigning a weight to each sample based on the point’s probability density
on the original and new sampling distributions.

IS was first discussed for application to circuits in (Hocevar et al. 1983).
Archetypical IS approaches for circuit analysis are (Kanj et al. 2006; Qazi et al.
2010), in which ‘‘centers’’ are computed and subsequently used in importance
sampling, where the centers are the means of Gaussian distributions. To be more
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specific, importance sampling creates a new distribution g(x) such that a greater
proportion of samples are failures, compared to the original distribution p(x). It
then draws samples from g(x) and checks if the sample is feasible [i.e. meets
specifications, represented by h(x)], and then estimates yield by mathematically
unbiasing the samples.

To ensure a good proportion of samples that are infeasible (i.e. outside of
specifications), the centers-based IS shifts the mean of p(x) onto the failure
boundary, to get p(x-us), where x is a ‘‘center’’. Figure 5.8 illustrates.

Various approaches apply different heuristics to find the ‘‘center’’ or mean
shift (us). The overall goal is to find the most-probable-point (MPP) that still
causes a failure. (As we shall see, failure-causing points that are not as likely hurt
the quality of the final estimation.) In the first-order reliability method (FORM)
(Hohenbichler and Rackwitz 1982), each parameter is perturbed one-at-a-time, in
order to construct a linear response surface, from which the MPP is calculated via
simple geometry. In the mixture-IS method (Kanj et al. 2006), &30 centers are
computed by drawing samples from a uniform distribution in [-6, +6] standard
deviations for each process parameter, and keeping the first 30 infeasible samples.
Qazi et al. (2010) chooses centers via a spherical sampling technique.

Yield is calculated as follows. Each sample i has a weight (wi(x)), which is a
function of the true distribution p(x) and the sampling distribution g(x):

wi xð Þ ¼ g xð Þ=p xð Þ

Normalized weights are:

vi xð Þ ¼ wi xð Þ =
X

j

wj xð Þ
 !

Then, using the importance sampling ratio estimate (Hesterberg 1988), the
yield (Y) is:

Y ¼ 1=N�s
X

i

vi xð Þ� hi xð Þð Þ

where Ns is the number of samples, and hi(x) is 1 if x is feasible, and 0 otherwise.
hi(x) is determined via circuit simulation.

Fig. 5.8 The mean of the
true distribution (p(x)) is
shifted by us so that more
samples are outside of
specification
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The IS approaches described above were demonstrated on circuit problems of
6–12 random process variables. But recall that for accurate industrial models of
process variation such as (Drennan and McAndrew 2003), there are 5, 10, or more
process variables per device. This means that even for a 6T bitcell, there are C30
process variables; and our sense amp problem has 125 process variables. We have
seen industrial high-sigma analysis problems with 1,000 and even 10,000 process
variables.

While IS has strong intuitive appeal, it turns out to have very poor scalability in
the number of process variables, causing inaccuracy. Here’s why: step one of IS
needs to find the most probable points that cause infeasibility; if it is off even by a
bit, then the average weight of the infeasible samples will be too low, giving
estimates of yield that are far too optimistic. For example, in running (Kanj et al.
2006) on a 185-variable flip-flop problem, we found that the weights of most
infeasible samples were\1e-200, compared to feasible sample weights of 1e-2 to
1e-0. This resulted in an estimated probability of failure of &1e-200, which is
obviously wrong compared to the ‘‘golden’’ probability of failure of 4.4e-4 (found
by a large MC sample). Sometimes a few samples ‘‘get lucky’’ and have larger
weights than the rest, but that means that yield is being estimated from just a few
sample points. One has no guidance at all on whether the approach has succeeded
(found the global optimum) or failed (got stuck in a local optimum).

Reliably finding the most probable points amounts to a global optimization
problem, which has exponential complexity in the number of process variables—it
can handle 6 or 12 variables (search space of &106 or 1012), but not e.g. 30 or 125
as in the industrial bitcell and sense amp problems given before (space of 1030 or
10125), let alone problems with 1,000 variables (space of 101000).

IS has another issue: because the sampling distribution is different than the true
distribution, IS is harder for designers to trust and adopt.

5.3.12 Worst-Case Distance 1 Importance Sampling

This approach is a variant of importance sampling, where the ‘‘centers’’ are chosen
in a style similar to the ‘‘Linear Worst-Case Distances’’ (WCD) approach, or local
quadratic optimization variants.

Its issues are in accuracy and trustworthiness. Specifically, the linear version
assumes that the slope at the nominal process point will lead to the most probable
region of failure, which can easily be wrong, and leads to overoptimistic estimates
of yield. The quadratic approach makes a local quadratic assumption rather than
linear assumption, but is still susceptible to getting stuck on local optima and
therefore getting overoptimistic yield estimates. Like IS, one has no guidance at all
on whether the approach has succeeded or failed.

None of the approaches described so far meet all our goals: speed, accuracy,
scalability, and verifiability.
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5.4 High-Sigma Monte Carlo Method

5.4.1 An Idea to Break the Complexity Barrier

While importance sampling (IS) sounds promising, its reliability is hindered by the
need to solve a global optimization problem of order 1030–10125 (or 101000).

Perhaps we can reframe the problem and associated complexity, by operating
on a finite set of MC samples. If we have 1B MC samples, then that is an upper
complexity of 109. These are just 109 points to search across. While ‘‘just’’ 109 is
much better than the 10125 complexity of IS, it is still too expensive to simulate 1B
MC samples. But what if we were sneaky about which MC samples we actually
simulated? Let us use an approach that prioritizes simulations towards the most-
likely-to-fail cases. It never does an outright rejection of samples in case they
cause failures; it merely de-prioritizes them. It can learn how to prioritize using
modern machine learning, adapting based on feedback from SPICE. By never fully
rejecting a sample, it is not susceptible to inaccurate models; model inaccuracy
simply adds some noise to convergence, as we shall see later.

These are the central ideas behind the High-Sigma Monte Carlo (HSMC)
approach.

5.4.2 HSMC Overview

High-Sigma Monte Carlo (HSMC) is a fast, accurate, scalable, and verifiable
approach for verifying high-sigma designs.

HSMC works by generating a large number of MC samples, ordering the
samples, then running the worst-case samples until all failures are found or until
the extreme tails of the distribution are well established. This both generates a
SPICE-accurate view of the extreme tail and enables an accurate prediction of the
sigma value for the design.

Figure 5.9 shows the high-level algorithm of HSMC, which is summarized as
follows. The engine inputs Ngen, the number of samples to generate. The algorithm
draws Ngen samples from the process distribution. From these samples, it selects a
subset of Ninit samples and SPICE-simulates them. Assuming just one output, the
algorithm constructs a model, the Ninit points as training inputs, and the corre-
sponding Ninit performance values as training outputs. The candidate MC samples
are from the Ngen MC samples, the ones not simulated yet. The algorithm simulates
each point on the model to get predicted output values, then orders in ascending (or
descending) order of output value. The algorithm then starts to simulate the
samples in that order. Periodically, the algorithm will update the model with
training data, and re-order the remaining candidate samples. The algorithm either
stops manually when the user hits the ‘‘stop’’ button; or automatically when a stop
criterion is hit, such as having detected all failures found, or ran 5,000 simulations.
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5.4.3 Detailed Description

We now give a more detailed explanation of each of the steps.
Step: Draw samples: HSMC generates a large number of MC samples, enough

to estimate yield to the target sigma level. The number of samples to generate is
determined using a look-up table based on the target sigma value for the design.
For example, 6 sigma analysis would use 5 billion generated samples.

Step: Select and simulate initial samples: From the MC samples generated, a
subset is selected for use in building an ordering model. It selects the Ninit (e.g.
1,000) samples that are farthest from nominal. This covers the extreme values in
process variable space, while uniformly searching in the space of direction vectors
from nominal. This subsampling method implicitly searches for directions of
failures, with uniform bias to different directions. The subsample is then simulated
using SPICE.

Step: Build sample ordering model: A regression model is then created using
the patent-pending technology FFX (McConaghy 2011), which leverages advances
in machine learning to handle arbitrary nonlinearities and high dimensionality. A
separate ordering model is produced for each circuit specification.

Step: Order the samples: Using the ordering model generated in the previous
step, the full set of MC samples generated in the first step is ordered, from the
worst case to the best case. This is done for each specification. At this point, the
predicted order of the samples, from worst to best, is known for each specification.
Figure 5.10 illustrates.

Step: Simulate the predicted tails: The samples are then simulated using
SPICE in predicted order, starting from the worst case. For each specification, the
worst sample is run, then the second worst, and so on, until all failure cases are
detected. The SPICE simulator provides the real value for each sample, and so the

Draw Ngen Monte Carlo samples

Stop?

Select and simulate initial samples

Build sample ordering model

Order the MC samples that have not 
been simulated yet

Simulate Norder samples

Show NQ plot, 
output vs. sample, 

num. failures, etc.

Fig. 5.9 High-level HSMC algorithm
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real order of samples being run is also known. Differences between the predicted
order and the actual order are used to calculate the error in ordering.

Using this error, it is possible to calculate with 95 % statistical confidence when
all failures to meet specification are found. The simulations stop when all failures
are found. If the error in the predicted order is too great, the algorithm rebuilds the
model with the new samples added, re-orders the remaining samples, and runs
additional simulations. This iterative step can help to correct problems with the
ordering model. Figure 5.11 illustrates this step.

Step: Show NQ plot, etc: Assuming that all failures are found, HSMC predicts
yield (sigma) for a given spec value, or spec value for a given yield. It does this by
assuming that all samples that were not simulated meet specification. Specifically,
yield = (Ngen - Nfail)/(Ngen), where Ngen is number of samples generated, and
Nfail is the number of process points that failed to meet specifications. By sweeping
different spec values, one can compute the spec value for a given target yield.

NQ plots are generated in a similar fashion; these plots show the tradeoff
between yield (in units of sigma) and spec value.

HSMC also returns the 95 % confidence interval (lower and upper bounds) for
yield value, using Wilson’s score (Wilson 1927) for a binomial distribution.
Wilson’s score makes no assumptions about the shape of the distribution, it only
uses the count of number failed and number generated.

5.4.4 Output of HSMC Method

HSMC produces, typically in hundreds or a few thousand simulations:

• An NQ plot, giving an accurate view of the extreme tail of the output distribution.
Since this gives a tradeoff between yield and spec, one may get accurate yield
estimate for a given spec; or spec estimates for a given target sigma (yield).

• A set of high-sigma corners, which can be subsequently used for rapid design
iterations.

• A convergence curve, of output value vs. sample, which the designer can use to
verify the convergence of the algorithm.

Fig. 5.10 HSMC starts by
ordering the samples by
predicted output value:
1, 2, 3, …
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5.4.5 Example HSMC Behavior, on Bitcell Read Current

As HSMC runs, it is predicting which process points produce the most extreme
output values. If it does a perfect job of predicting, then on its very first simulated
sample it will get the very worst (maximum or minimum) value; on its second
simulated sample, it will get the second-worst value; and so on. One can plot the
output vs. sample value, and with perfect behavior the curve would be mono-
tonically decreasing (if maximum-first) or monotonically increasing (if minimum-
first).

But of course since the model predictions are not perfect, the predicted order
may not be perfect—and that’s ok! HSMC may make some erroneous guesses, but
with more simulations some of the guesses will be the worst-cases or near-worst
cases, and those are the most useful. This is the heart of the HSMC’s robustness:
the model can have high error, but as long as the trend is from extreme value
inwards, then HSMC will find the tails.

Figure 5.12 compares typical HSMC output value vs. sample convergence to
‘‘Ideal’’ and ‘‘Monte Carlo’’ behavior on a typical problem: bitcell read current
(cell_i). The detailed problem setup is given in Sect. 5.5, but here we focus on the
behavior. The aim is to find the samples with maximum values of cell_i first. In
this example, we have ideal data because we simulated all 1.5M of the generated
samples. The ‘‘Ideal’’ curve is computed by sorting the 1.5M cell_i values; the first
20K samples are plotted. We see that it monotonically decreases, as expected of an
ideal curve. The ‘‘Monte Carlo’’ curve is the first 20K simulations of MC sam-
pling. As expected, it has no trend because its samples were chosen randomly; its
output values distribute across the whole range. So of course, MC is very slow at
finding the worst-case values; we can only expect it to find all worst-case values
once it has performed all 1.5M simulations.

The HSMC curve in Fig. 5.12 has a general downward trend starting at the
maximum value, with some noise in its curve. The trend shows that HSMC has
captured the general relation from process variables to output value. The noise
indicates that the HSMC model has some error, which is expected. The lower the
modeling error, the lower the noise, and the faster that HSMC finds failures.
At about 2,000 samples, the lower-range values for HSMC jump upwards. This is

Fig. 5.11 HSMC simulates
samples in worst-case first
order 1, 2, 3, …, until all
failures are found
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because HSMC has rebuilt its model using more data, and it has made the ordering
more accurate. In a few sample points, such as at about 10,500 samples, HSMC
predicted that some points would have extreme-maximum values, but when
simulated they had extreme minimum values—that is acceptable because HSMC’s
success is not dependent on getting every sample predicted within an error tol-
erance. HSMC’s success is based on quickly finding the worst case samples in a
low number of simulations.

The HSMC curve of Fig. 5.12 provides transparency into the behavior of
HSMC, to understand how well HSMC is performing in finding failures. This is a
major part of the ‘‘verifiability’’ of HSMC: the user can tell if HSMC is having
difficulty. The width of the noise shows how much margin should be given prior to
concluding that all failures have been found for a given specification value. The
clear trend shows that HSMC is working correctly and is capturing the tail of the
distribution.

5.4.6 HSMC Usage Flows

HSMC is efficient both for verifying high-sigma designs and for finding high-
sigma design corners. As such, it is useful not only for verification, but also within
the design loop. This provides much more opportunity to tune designs, reducing
the need to over-margin, and producing more predictable results when verifying.

5.4.6.1 Sizing Circuits with the Help of HSMC

We first review the ‘‘generalized’’ corner concept discussed in earlier chapters,
then describe its application to high-sigma design.

The idea of corners has been around for a long time, and used broadly in many
classes of circuit design including memory. Typically, one thinks of corners as

Fig. 5.12 Output vs. sample
number for bitcell read
current (cell_i), with
maximum read-current first
and working downwards
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PVT corners: a model set value such as FF or SS, and environmental conditions
like voltage and temperature. The idea behind corners is sound: find some rep-
resentative points that bound the distribution of performance, and design against
those. This enables fast design iterations without having to do a full statistical
analysis at each candidate design. FF/SS corners bracket digital device perfor-
mance fairly well, which propagates to digital circuit performances of speed and
power fairly well (at least traditionally). However, FF/SS corners do a poor job of
bracketing the distributions of memory performances.

Let’s take the idea of corners—bracketing performance for rapid design iter-
ations—and make it more general than PVT corners in order to accurately bracket
memory performance distributions. Figure 5.13 illustrates the flow. (This is the
sigma-driven flow introduced in Chap. 4, but now the application is to high-sigma
design.)

The first step is to extract 6-sigma corners. This is done by simply running
HSMC, and selecting the process point with an output performance value closest
to 6 sigma.

In the next step, bitcell/sense amp designs with different candidate sizings are
tried, using whatever methodology the designer prefers. For each candidate design,
the user only needs to simulate on the corner(s) extracted in the first step. The
output performances are ‘‘at 6-sigma yield’’. The distribution of the output (SNM2

in the figure) is implicitly improved. This allows exploration of tradeoffs among
different performances, at 6-sigma yield, but only having to do a handful of
simulations (one per corner).

In the final step, the designer verifies the yield by doing another run of HSMC.
The flow concludes if there was not significant interaction between process
variables and outputs. Sometimes there is significant interaction, in which case a
re-loop is done: grabbing a new corner, designing against it, and verifying. Typ-
ically, only one re-loop at most is needed because the design changes in the re-loop
are smaller.

SNM

corner

Area = 
.9999.. 
(6σ) 

change WLs

Fig. 5.13 A six-sigma sizing
flow

2 SNM = static noise margin.
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5.4.6.2 Global vs. Local Variation

Here, we discuss how global (die-to-die, wafer-to-wafer) reconciles with local
(within-die) statistical process variation in an HSMC context. We consider five
different approaches.

Nested MC: This is given in Table 5.1. An outer loop simulates different wafers
or dies being manufactured, and an inner loop simulates the variation within the
die. The approach is simple, and handles all nonlinear responses and interactions
among global and local. But of course, it is far too slow, needing billions of
simulations.

No global + Local HSMC: The idea here is to simply ignore global variation,
by setting its variables to nominal; then to run HSMC with local variation. It is
simple, fast, convenient, and actually has many good use cases. But of course it
ignores global variation.

Global FF/SS Corner + Local HSMC: The idea here is to set global variation
to a digital modelset value such as FF or SS. This is also simple, fast, and
convenient, but is not a fully accurate reflection of the effect of global variation.

Global 3-Sigma Performance Corner + Local HSMC: First, extract a
3-sigma corner on global variation, e.g. using a ‘‘Monte Carlo’’ tool, which gives a
process point with output value at the 3-sigma percentile in performance space.
Then, run HSMC where the global variation is set to the values of the 3-sigma
corner.

This is simple, fast, and convenient, and a much better reflection of the effect of
global variation. It handles nonlinear responses to global variation and to local
variation, and interactions between the global process point and local variations.
Its relatively minor drawback is that it assumes that local variation does not affect
the choice of global process corner. This is a safe assumption for getting a
{global ? local} process for rapid design iterations, but may not be as safe for a
final verification step.

Nested HSMC: This approach, given in Table 5.2, is just like nested MC,
except the inner MC loop is replaced by HSMC. The approach is simple, and
handles all nonlinear responses and interactions among global and local. Its
drawback is that it takes about 100x more simulations than a single HSMC run.
However, given that typical HSMC runs are about 1,000 simulations, then 100K
simulations are often justifiable for a final detailed verification step.

The previous section described how HSMC is used in the context of a rapid-
iteration design flow, via corner extraction. This flow reconciles with glo-
bal ? local variation, as Fig. 5.14 illustrates. The first step, of corner extraction,

Table 5.1 Nested MC for global ? local

For each of 100–1,000 global MC samples
Draw a global process point
Run MC: For each of 1M-1B local MC samples, draw a local process point and simulate

netlist at {global, local}.
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uses the ‘‘Global 3-Sigma Corner’’ approach. The final verification step uses
‘‘Global 3-Sigma Corner’’ too, or ‘‘Nested HSMC’’, depending on the user’s time
constraints vs. design aggressiveness.

5.4.6.3 HSMC for High-Sigma Verification

For verifying designs, it may be desirable to measure accuracy more precisely,
while extending runtime in order to do so. Table 5.3 summarizes a methodology to
do so.

Step 1 of Table 5.3 is a pilot run to verify the ordering model accuracy by using
a smaller number of samples (e.g. 10K). Configure HSMC to run all 10K samples,
such that the entire distribution is known. Next, compare HSMC’s predicted order
with the actual order throughout the distribution using the plot included in the
HSMC app. As long as there is a very strong trend in the predicted order in the
worst-case tails of the distribution, and there is not a significant number of failures
found outside of the predicted worst-case tails of the distribution, HSMC’s
ordering model can be verified to be strong for the design in question, at least at
lower sigma values.

Step 2 is for yield estimation, using HSMC if step 1 showed it to be accurate,
and the prior status quo method if not (e.g. MC with extrapolation). The limit on
samples simulated should be set to a higher value (e.g. 20K), taking into account
project schedule. HSMC will stop sooner if it detects that all failures are found.

In step 3, if the design fails verification, then the corners found can be saved and
designed against, making the result of the next verification attempt more
predictable.

Table 5.2 Nested HSMC for global ? local

For each of 100–1,000 global MC samples
Draw a global process point
Run HSMC across local, using global process point just drawn.

or Nested HSMC

Fig. 5.14 A 6-sigma sizing
flow, that reconciles global
variation
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Using this verification methodology, HSMC can provide quality results up to
6-sigma.

Both the HSMC design flow and the HSMC verification flow methods can be
used on their own, or to complement other high-sigma techniques.

5.4.7 Other HSMC Attributes

PVT Corners: HSMC handles PVT corners in a similar fashion to handling
global variation. Just as it can take in a specification of 3-sigma global corners, it
can take in a specification of a PVT corner. Just as one can use a nested HSMC
configuration to loop on global MC samples, one can also loop on PVT corners.

RC Corners: RC parasitics in post-layout netlists can be treated similar to PVT
corners.

Parallel processing: HSMC is designed to work efficiently whether there is 1,
10, 100, or 1,000 cores or machines, by leveraging parallel processing such as LSF
and SGE. It uses parallel processing for simulation. Also, because sorting billions
of samples can take several hours on one core, HSMC parallelizes that as well.
Typically, speedup due to parallelization is nearly perfect, e.g. 10 cores runs about
10x faster and 100 cores about 100x faster.

Failed simulations: If the simulator fails to converge, or a measurement returns
a NaN, HSMC takes note rather than simply ignoring it. These points really matter,
because they may indicate a real circuit failure, and if not a real failure they need
further investigation by the designer. HSMC handles failed simulations as follows:

• Before constructing the ordering model that maps process point values to output
values, HSMC by default converts each failed simulation or NaN to a real
number that represents ‘‘poor’’ behavior. Therefore the ordering will prioritize
NaN numbers alongside real-valued ‘‘poor’’ output values.

• When yield is estimated, the failed simulations/NaNs are all treated as process
points that fail specifications.

• In output vs. sample plots, failed simulations/NaNs are shown as points along
the bottom or the top of the curve. Figure 5.15 illustrates.

• In plotted NQ curves, the failed simulations/NaNs are ignored, because there is
no meaningful way to incorporate them.

Table 5.3 High-sigma verification flow

1. Test HSMC accuracy on the circuit, by running 10K generated and 10K simulated samples. If
HSMC shows a strong trend from worst case to best case, the ordering model is strong for this
design.

2. If HSMC effectively models the design, run HSMC for verification, with xM/G generated and
xK simulated samples. If not, run previous method (e.g. extrapolating 1M MC samples).

3. If yield is not met, save failures as corners and fix design using DesignSense, etc. Go to step 2.
4. Yield is met, so stop (success).
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5.5 HSMC: Illustrative Results

5.5.1 Introduction

This section examines HSMC’s behavior on a suite of designs. The purpose of this
section is to show how HSMC works in practice on actual designs, and purposely
includes both cases where HSMC works very effectively and cases where HSMC
is less effective.

We show HSMC behavior on five different high-sigma problems: three circuits,
one with a single output and two that have two outputs each. We test on a bitcell
and a sense amp, which are representative memory circuits, and a flip-flop, which
is a representative digital standard cell. The circuits have reasonable device
sizings. The device models used are from a modern industrial 45 nm process,
having approximately 5–10 local process variables per device. The bitcell has 30
variables, the sense amp has 125 variables, and the flip-flop has 180 variables.

5.5.2 Experimental Setup

The experimental methodology is as follows. For each problem, we drew N & 1M
Monte Carlo samples and simulated them. These form our ‘‘golden’’ results. We set
the output specification such that 100 of the N samples fail spec. Then we ran HSMC
on the problem, with Ngen = N, using the same random seed so that it has exactly
the same generated MC samples. HSMC ran for 20K simulations. We repeat the
procedure with specs set such that 10 of the Ngen samples fail spec. N = 1.5M MC
samples for the bitcell, 1M for the sense amp, and 1M for the flip-flop.

5.5.3 Bitcell Results

Section 5.4.5 first described the output vs. sample behavior of HSMC, on the
bitcell read current (cell_i). For the reader’s convenience, we repeat the conver-
gence plot here, in Fig. 5.16. To summarize, we see that the HSMC convergence
curve has a general downward trend; and that its noise is perfectly acceptable.

Fig. 5.15 An output-vs.-
sample curve (max-first),
where the points along the
bottom indicated failed
simulations
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HSMC’s effectiveness in finding failures depends on the target specification.
A correct setup would typically include fewer than 100 failures to meet specifi-
cation within the number of samples generated. If there are more failures, then
either the design is not meeting its target sigma, or there were too many samples
generated for the target sigma. Similarly, if there are no failures to meet specifi-
cation, then either the design is over-margined or there were not enough samples
generated to verify to the target sigma. Therefore, HSMC only needs to be able to
find up to a hundred failures to meet specification, allowing a tolerance for
significant ordering error while still working within acceptable simulation budgets.
In the bitcell case, HSMC finds the first 100 failures within its first 5,000 predicted
samples (see Fig. 5.17). Note that with 1.5 million samples containing 100 fail-
ures, simple MC sampling will typically not find a single failure within 5,000
samples, as the bottom curve in Fig. 5.17 illustrates.

The bitcell results demonstrate one of the key strengths of HSMC, which is its
resilience to order prediction error. Since the context only requires finding up to
100 failures to meet specification, the ordering model does not need to be perfectly
accurate in order to deliver MC- and SPICE-accurate results in the extreme tails of
a high-sigma distribution within a reasonable number of simulations.

5.5.4 Sense Amp Results

Figures 5.18 and 5.19 show HSMC behavior on the sense amp’s power output. Its
behavior is similar to those seen in the bitcell, but it finds all 100 failures within its
first 1,000 samples (see Fig. 5.19). The effect of the ordering model can be seen in
Fig. 5.18, as the amount of noise shown in the HSMC curve is clearly lower
relative to the sampling region. The sense amp power example illustrates how
HSMC gains efficiency with a better ordering model.

Figures 5.20 and 5.21 show HSMC performance on the sense amp’s delay
output. This output has a bimodal distribution, with most sample values being
about 0.1e-9 s, and failure cases having a value of about 1.5e-9. We set the spec in
between; of the 1 million MC samples, there are 61 failing samples (rather than
100). Figure 5.20 shows that HSMC finds all failures within its first 9,000 samples.
HSMC’s behavior is to find failures with highest frequency in the earlier samples,
with decreasing frequency. We can see visually on the output vs. sample plot in
Fig. 5.20 that the ordering model is good because the frequency of failures is high
at first, then drops off. We can also see that all failures are likely found because
there are no new failures found over a large range of samples (i.e. from sample
#9000 to #15000). Figure 5.21 further demonstrates this behavior; we see that
HSMC finds all 61 failures within 9K samples, and that it finds most of the failures
within the first 1,000 samples.

In the case of a bimodal output distribution, HSMC’s behavior is still essen-
tially the same as in the previous cases, though the noise propagates in a different
manner. In this case, the upward trend in the output vs. sample number plot is
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replaced with a view of frequency of failures. Note that the frequency of failures
drops off as more samples are run, and that it becomes clear that it is unlikely to
find additional failures beyond 10K samples.

5.5.5 Flip-Flop Results

Figures 5.22 and 5.23 show HSMC’s behavior on the flip-flop’s Vh output. We see
that HSMC performs near-ideally in output vs. sample convergence, and HSMC
finds 100/100 failures in less than 500 samples.

Fig. 5.16 Output vs. sample number for bitcell read current (cell_i), with maximum read-current
first and working downwards

Fig. 5.17 Bitcell cell_i—number of failures found vs. sample number (100 failures exist)
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Note again how visibly tight the amount of noise is relative to the sampling
region. Again, the amount of noise is a good indicator of the effectiveness of the
sample ordering model.

Figures 5.24 and 5.25 show HSMC’s behavior on the flip-flop’s Id output.
Figure 5.24 shows that while the HSMC curve biases towards the extreme max-
imum, it has a high degree of noise. This means the underlying model is capturing
the global trend, but it has significant error in capturing local trends. Despite this
significant error, it is still finding failures with reasonable efficiency. Figure 5.25
shows that after 20K simulations, HSMC has found 26/100 failures.

This example shows how HSMC is self-verifying at runtime, and how even
with a very poor ordering model, HSMC can still produce useful results. In this
case, the designer would be able to clearly see that HSMC is not producing
dependable results within 20K simulations. Given this, the designer could opt to
either run additional simulations to gain more resolution, to complement the
HSMC verification with another technique, or to design with some added margin
to account for the uncertainty. The designer can also use high-sigma corners
discovered here to design against in a subsequent iteration. The key is that HSMC
is not misleading due to the inherent quality that it is largely self-verifying.

5.5.6 HSMC vs. Extrapolated MC

5.5.6.1 Introduction

One common method for verifying high-sigma designs is to take a large number of
MC samples, then extrapolate the output distribution to estimate the extreme tails.
The main problems with this method are:

Fig. 5.18 Sense amp power—output vs. sample number (max-first)
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Fig. 5.19 Sense amp
power—number of failures
vs. sample number (100
failures exist)

Fig. 5.20 Sense amp delay/
1e9—output vs. sample
number (max-first)

Fig. 5.21 Sense amp
delay—number of failures vs.
sample number (61 failures
exist)
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• It takes a long time to run enough samples to have a good chance at extrapo-
lating into the tails.

• Extrapolation quality depends on the extrapolation technique chosen.
• Circuit behaviours can change at higher sigma, and so the assumption that the

behavior at low sigma extrapolates gracefully is inherently risky.

This section compares the speed, accuracy, and verifiability of extrapolating 1
million MC samples with HSMC. These experiments use the same bitcell, sense
amp, and flip-flop circuits examined in the previous section.

All results are presented on a normal quantile (NQ) plot to facilitate extrapo-
lation. The plots compare the distributions estimated by 1 million MC samples
with the worst 100 from 5500 HSMC simulations on 100 million generated
samples. Note that the points appear to form lines due to their density, though they
are all in fact individual points representing individual simulations.

Fig. 5.22 Flip-flop Vh—
output vs. sample number
(max-first)

Fig. 5.23 Flip-flop Vh—
number of failures vs. sample
number (100 failures exist)
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5.5.6.2 Extrapolation Cases

The results shown in Figs. 5.26, 5.27, 5.28, 5.29, 5.30, 5.31 and 5.32 demonstrate
three main extrapolation cases.

MC results that extrapolate well: For the cases in Figs. 5.28, 5.29, and 5.31, MC
extrapolates well and is an effective predictor of the extreme tails of the distribution.

MC results that extrapolate questionably: In the case shown in Fig. 5.26, MC
provides an idea of what the extreme tail looks like, although the curve at the end
of the MC data does not suggest a definitive extrapolation. In this case, any kind of
prediction made will have some amount of error, which will depend on the
extrapolation technique used. For example, Fig. 5.27 shows the same data, but
with linear and quadratic extrapolation; both extrapolations capture the tail poorly.

Fig. 5.24 Flip-flop Id—
output vs. sample number
(max-first)

Fig. 5.25 Flip-flop Id—
number of failures vs. sample
number (100 failures exist)
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Similarly, for the case of Fig. 5.32, the MC data does not provide a clear indication
of how to extrapolate. Note that the HSMC results in Fig. 5.32 are off: HSMC had
missed some failures, and an NQ plot needs all failures to have correct x-axis
values. This inaccuracy would be revealed to the user by the amount of noise
shown in the output vs. sample number plot (see Fig. 5.24).

MC results that do not estimate the extreme tails: Some MC results simply do
not serve as an effective estimator of the extreme tails. For example, consider the
bimodality shown in Fig. 5.29. Imagine if, instead of 1 million samples, only
100,000 samples were run and the second mode was not revealed. Figure 5.30
illustrates this. It would not be possible to even know about the second mode,
much less to extrapolate from it. The challenge here is that there is no way to know
if this type of case will happen, and similarly no way to know how many MC
samples need to be run in order to estimate it. HSMC captures these cases.

Fig. 5.26 NQ plot for bitcell
cell_i: 1M MC samples and
5500/100M HSMC samples

Fig. 5.27 NQ plot for bitcell
cell_i: 1M MC samples and
5500/100M HSMC samples,
with linear and quadratic
extrapolation curves
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In summary, extrapolating MC results is best reserved for cases where HSMC
produces very high noise in its output vs. sample plot, such as in the flip-flop Id

case. Otherwise, HSMC is faster because it requires fewer simulations, more
accurate because it produces results in the extreme tails, and more verifiable
because it self-verifies its model of the extreme tails at runtime.

5.6 Binary-Valued Outputs and Adaptive Initial Sampling

This section describes a particular issue that arises in some circuits—binary-valued
outputs with rare failure modes; and a variation of HSMC that addresses it.

Fig. 5.28 NQ plot for sense
amp power: 1M MC samples
and 5500/100M HSMC
samples

Fig. 5.29 NQ plot for sense
amp delay: 1M MC samples
and 5500/100M HSMC
samples
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Fig. 5.30 NQ plot for sense
amp delay: 100K (not 1M)
MC samples and 5500/100M
HSMC samples

Fig. 5.31 NQ plot for flip-
flop Vh: 1M MC samples and
5500/100M HSMC samples

Fig. 5.32 NQ plot for flip-
flop Id: 1M MC samples and
5500/100M HSMC samples
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5.6.1 Default HSMC and Typical Successful Behavior

Let us label the HSMC variant, as described in the previous sections, as ‘default
HSMC’. In default HSMC, the initial samples are selected from the large set of
generated MC samples.

Figure 5.33 shows the behavior of default HSMC, on a problem where HSMC
behaves as expected and with success. The figure has emphasis on the initial
samples, from the perspective of process-variable space. In step (a), the initial
samples (dark dots) are chosen as the farthest-from nominal of generated MC
samples (all dots). Those samples are simulated. In step (b), a model mapping
initial input process-variable values to simulated output value is constructed. It is
shown as the contour lines. The top-right shaded region is the true infeasible
region, where any samples would not meet the output spec. It is up to HSMC to
prioritize simulations towards points in this region. In step (c), the samples are
ordered using the model, then simulated in that order. We see that this simulation
order is correct, because it will focus on simulating the generated samples in the
infeasible region.

5.6.2 Default HSMC on Binary-Valued Outputs

We now examine behavior of default HSMC on a specific circuit problem that
causes difficulty. In this difficulty-causing problem, the circuit outputs just one of
two values (binary-valued outputs), and the failing output is very rare (e.g. hap-
pens 1 in a billion times). Such problems can exist in practice; for example on a
bitcell, rather than measuring read current, one measures ‘‘was there a read
failure?’’

Figure 5.34 shows default HSMC behavior on such a problem. In step (a), the
initial samples (dark dots) are chosen as the farthest-from nominal generated MC
samples, and simulated. But now, the simulated output value for every single
initial sample is the same. Step (b) constructs a model of process variables to
output values, but since all the output values are constant, the model is simply a
constant too. Therefore, on Fig. 5.34b, there are no contour lines. The top-right
shaded region is the true infeasible region, where any samples would not meet the
output spec. On this circuit problem, this is the region that would return the other
binary-valued output value. It is up to HSMC to prioritize simulations towards
points in this region. In step (c), the samples are ordered using the model, then
simulated in that order. Since the model is flat, the model-based ordering is not
meaningful, and the ordered simulations will miss the samples in the infeasible
region.

This issue happens in ‘default HSMC’ on a specific set of problem types:

• It can occur on binary-valued outputs where one output value is extremely rare,
as described above.
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• It can also happen in a slightly more general case, where there is a sharp dropoff
in the output value (discontinuity) in the rare failure region, and contours of poor
output values in the non-failing region do not lead to rare failure regions.

We discuss below how these specific problem types are addressed with either
‘default HSMC’, or with ‘adaptive initial sampling’ HSMC.

To be clear, ‘default HSMC’ does handle the following cases just fine.

• Default HSMC behaves fine with binary-valued outputs where both output
values have more than negligible probability. In this case, default HSMC’s
initial sampling will find examples of both output values, and therefore construct
a model that orders samples well.

• Default HSMC handles sharp dropoffs in output values, when contours of poor
output values in the non-failing region do lead to rare failure regions. In this
case, HSMC’s ordered samples will find their way to failures, even if there were
no failures in the initial samples. In practice, this is quite common.

• Default HSMC handles sharp dropoffs in output values, when contours of poor
output values in the non-failing region do not lead to failure regions, but the
failure regions are less rare. In this case, default HSMC’s initial sampling will
find failing samples, and therefore construct a model that orders samples well.

We now describe how ‘default HSMC’ can still address most difficulty-causing
problem types, with a little more work on the part of the user. In practice, we have
found that users assess whether or not HSMC has found failures in the initial
sampling. If it has found failures, they let HSMC proceed with ordered sampling.
But if it has not found failures, then they increase the number of generated samples
or the number of initial samples, and run HSMC again. With a larger number of
generated samples, the initial samples are farther away from nominal and often

r1

r2

(True) 

Infeasible

(a) (b) (c)

Fig. 5.33 Default HSMC, where initial samples are a subset of generated MC samples; HSMC
behaves as expected. a The dark dots are initial samples in process variable space; all dots are
generated MC samples. b The model was built from initial samples’ simulation data; the contour
lines are its predictions. c Simulations are ordered according to the model predictions/contours
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have a higher chance of finding failing samples. With a larger number of initial
samples, the user is sampling more directions, increasing the chance of finding
failing samples.

5.6.3 HSMC with Adaptive Initial Sampling on Binary-Valued
Outputs

After some experience with the workarounds of more generated samples or initial
samples, we developed a technique that directly handles the difficulty-causing
problem types without the need for user iterations. The general idea is to find
failures adaptively in initial sampling, rather than choosing and simulating a fixed
set of generated MC samples. These revised initial samples do not even need to be
from the generated MC samples.

Figure 5.35 illustrates behavior of HSMC, revised to have adaptive initial
sampling, on binary-valued outputs. Step (a) is the initial sampling step. HSMC
performs adaptive initial sampling until adequate failing samples are found. With
non-failing and failing samples in hand, HSMC can build an ordering model. Step
(b) of Fig. 5.35 shows the contours of the ordering model, which has correctly
predicted different output values for the infeasible region. Finally, the generated
MC samples are ordered according to the model predictions/contours; we can see
that it correctly simulates the failing samples first.

r1

r2
Infeasible

(a) (b) (c)

Fig. 5.34 Default HSMC, where initial samples are a subset of generated MC samples; but the
outputs are binary-valued with rare failure cases, causing HSMC to miss the failing points. a The
dark dots are initial samples; all dots are generated MC samples. Each initial sample has the same
simulated output value. b There are no contour lines because the model has a flat response. c With
no model contours, the ordered simulations miss the samples in the infeasible region
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5.6.4 Details of Adaptive Initial Sampling Algorithm

This subsection describes exactly how adaptive initial sampling is performed. Note
that this is more detail on adaptive initial sampling than many readers would care
about; so it can readily be skipped.

The first-cut goal of the initial sampling algorithm is simply to find failing
samples. In early experiments, we found that this was insufficient on its own. If the
failing samples found were deep inside the infeasibility region, too far from
nominal, they would affect the ordering model but not in a region that mattered
because there were no generated MC samples that far out. The failing samples
needed to be close enough to nominal (high enough probability) to affect the
ordering model’s prediction on generated MC samples. Cast as an optimization
problem, this is: find the point(s) that minimize distance to nominal, subject to
being infeasible.

The approach to solve the optimization problem has two phases. The first phase
finds one or more failing samples, using ‘‘spherical sampling’’. The second phase
applies local optimization to each failing sample, to get it closer to nominal while
still failing.3 Figure 5.36 illustrates.

Figure 5.36a–c illustrates the first phase, which performs spherical sampling
adaptively. First, N samples are drawn as shown in Fig. 5.36a. Each sample has
distance d from nominal, but the samples have uniformly spread direction vectors
from nominal. Each of these samples is simulated. If the number of failures found
so far is less than the target number of failures Nthr, then the distance d and the
number of samples N are increased and the sampling is repeated. We see in

Infeasible
r2

r1

(a) (b) (c)

Fig. 5.35 HSMC, where initial sampling adapts to find failures. a Initial sampling is done until
there are adequate failures, i.e. black dots in the shaded infeasibility region. b The model contours
capture the feasibility boundary. c The generated MC samples are simulated in the correct
order—with failing samples first

3 Perceptive readers may see that a similar optimization problem exists in importance sampling
(IS); and that the spherical sampling phase bears resemblance to the IS technique (Qazi et al.
2010). However, the problem for HSMC is easier than IS, because as Sect. 5.4.1 describes,
HSMC only needs these points to influence its ordering of generated MC samples, rather than IS
needing to settle on the choice of sampling region(s).
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Fig. 5.36a that the samples did not hit the infeasible region, i.e. there were no
failures. So, d and N were increased, and spherical sampling was repeated in
Fig. 5.36b. After one more iteration, the sampling of Fig. 5.36c found enough
failures to proceed to the second phase. N is typically a value of 100–1,000, and
d is typically a value of 5–20 normalized standard deviations from nominal.

Figure 5.36d illustrates the second phase. Each of the two failing points was
optimized to be as close as possible to nominal while still failing, using SPICE-in-
the-loop. It has two steps:

1. One-dimensional bisection search between nominal process point and the
failing sample, then

2. n-dimensional local optimization. At the each iteration, it draws a set of
‘‘child’’ candidate points from the ‘‘parent’’ best point so far. It replaces the
parent with any child that is infeasible with lower magnitude. It generates
children with these operators: Gaussian perturbation about parent; zero some
values; halve some values; and model-building optimization. Model-building
optimization builds a logistic regression classifier (Hastie et al. 2009) from
nearby samples, and optimizes on the model in a restricted ‘‘trust region’’ (Celis
et al. 1985) to find the best point.

This concludes our description of the adaptive initial sampling approach, which
HSMC uses to handle binary-valued outputs with rare failure cases.

5.7 System-Level Analysis and Full PDF Extraction

5.7.1 Introduction

This subsection describes the challenge of statistical system-level analysis,
including memories and large digital systems. It then reviews various approaches
that have been proposed, with a focus on approaches for SRAM system analysis. It
turns out that the approach of mixing PDFs of circuit blocks’ performances is fast,
accurate, and easy to apply. The singular challenge in that approach is to generate

Infeasible

r1

r2

d

N=12

(a) (b) (c) (d)

Fig. 5.36 Details of adaptive initial sampling. (a–c) The first phase did three iterations of
spherical sampling, finally finding two failing points (d) The second phase minimized the
distance to nominal, for each failing point
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full performance PDFs from -6 sigma to +6 sigma, so we describe how HSMC is
extended to extract full PDFs. This subsection concludes with an example analysis
of an SRAM array.

5.7.2 The Challenge of Statistical System-Level Analysis

The discussion so far has considered high-sigma analysis where simulation time of
the circuit is low enough to perform a few thousand simulations in a practical
amount of time. However, consider the case of a whole SRAM memory slice
having thousands of bitcells, where a single simulation takes several hours on
modern Fast-SPICE simulators. Or, consider the case of very large digital circuits,
which need hours to days of simulation time.

For such system-level circuits, it is possible to perform a handful of simulations
on the system, but not enough for an accurate statistical analysis. Yet statistical
analysis is extremely useful, because it will show the tradeoff among yield, timing,
power, and area at the system level, making it easier to measure the SoC value
proposition.

5.7.3 Brief Review of System-Level Approaches, Focusing
on SRAM

Because of the usefulness of system-level statistical information, technologists
have explored many ways to do practical analysis of SRAM systems and other
systems. To give the reader a feel for the challenge, we review some approaches
used in industry or proposed in the literature, for analyzing read current in SRAM
systems.

• Use worst-case values to set system-level performance. This approach
computes the worst-case read current of the bitcell (e.g. 6-sigma value) and
worst-case offset voltage of the sense amp (e.g. 5-sigma value) via high-sigma
analysis. These worst-case values are used to directly estimate system-level
performance. However, there is an exceedingly rare chance that the very worst
sense amp will be share the same bitline with the very worst bitcell. This means
that the estimated system-level performance values will be exceedingly
pessimistic.

• MC sample whole slice, with simulation. This approach draws 100–1,000 MC
samples of the system, then simulates them. Clearly, this approach is too slow.

• Nested MC on sense amp and bitcell process points, with simulation. This
approach has two loops. The outer loop draws MC samples of the sense amp in
process variable space. The inner loop draws MC samples of the bitcell in
process variable space. In one variant, each {bitcell, sense amp} is simulated as
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a single netlist, connected in a bitline with the capacitance of thousands of
bitcells. In another variant, the bitcell and sense amp are simulated separately.
An outer MC sample passes if each bitcell has enough current to create a
sufficiently large bitline voltage for the sense amp of that MC sample. This
approach is slow, because it requires millions of simulations of the bitcell and
sense amp.

• Nested MC on sense amp and bitcell process points, with behavioral modeling.
This approach (Wang et al. 2009) has two steps. Its first step extracts a
behavioral model for the sense amp, and for the bitcell. The next step is just like
the previous approach, except now simulations are on the behavioral models.
The issue is that behavioral model extraction is complex, and not very mature.

• Loop-flattening MC on sense amp and bitcell process points, with simulation.
This approach (Qazi et al. 2010) employs statistical ‘‘law of large numbers’’
theory to reframe a nested Monte Carlo problem into a single flattened MC
problem. It then solves the problem using a high-sigma analysis technique.
Unfortunately, in our experience we have seen that this problem reframing is not
sufficiently intuitive to designers, making it hard to adopt.

• Information-theoretic. This approach (Li 2010, 2011) also reframes the prob-
lem and solves it. Here, the problem is reframed to ‘‘maximize density of bits’’.
While theoretically beautiful, this reframing is too complex and not sufficiently
intuitive for easy designer adoption.

• Nested MC/convolution on extracted Gaussian PDFs. This approach (Aitken
and Idgunji 2007; Abu-Rahma et al. 2008) estimates the bitcell read current PDF
by running &100 MC samples, then estimating mean and standard deviation
and assuming a Gaussian distribution. It estimates the sense amp PDF in a
similar fashion. Then, it combines bitcell and sense amp PDFs by either nested
MC sampling on the performance PDFs (Abu-Rahma Abu-Rahma et al. 2008),
or by Weibull statistics and convolution (Aitken and Idgunji 2007), which are
mathematically equivalent when dealing with Gaussian PDFs. Naturally, the
problem is the Gaussian assumption on the PDFs.

• Nested MC on extracted arbitrary PDFs. This approach (Zuber et al. 2010)
estimates the bitcell and sense amp performance PDFs using a high-sigma
technique. Then, it combines bitcell and sense amp PDFs by nested MC sam-
pling on the performance PDFs. Compared to the previous approach, this is an
improvement because it does not assume Gaussian performance PDFs. It is fast
because it only requires simulation-based high-sigma analysis at the bitcell and
sense amp level. Compared to other approaches, it is easy to understand and to
adopt into practical design settings. However, the approach in (Zuber et al.
2010) relied on the high-sigma technique of importance sampling, which scales
poorly with a realistic number of process variables.

As we have seen, technologists have dedicated significant effort to system-level
SRAM analysis. Of all the different techniques, the last one—Nested MC on
extracted arbitrary PDFs—was the most promising. Its greatest challenge was that
(Zuber et al. 2010) used a high-sigma technique that scaled poorly to medium- and
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high-dimensional circuits. However, we can apply HSMC, which has excellent
scaling properties; it just must be adapted to output full PDFs.

The next three subsections provide detail on the components for system-level
statistical analysis. The first subsection elaborates on Nested MC on extracted
arbitrary PDFs, the second subsection describes how to adapt HSMC to output full
arbitrary PDFs, and the third section describes how to draw samples from arbitrary
PDFs.

5.7.4 Statistical System Analysis Via Nested MC on Extracted
PDFs

This section elaborates on the nested MC on extracted arbitrary PDFs approach
for system-level statistical analysis.

Table 5.4 gives the flow, for the example of a simple SRAM column. Each
‘‘For’’ line initiates each nested loop. The outer loop iterates through NMCCOL

Monte Carlo samples of the column. Each column sample draws one value for
sense amp offset voltage (SA offset_v), invokes the inner loop, and determines
whether the overall column sample passes.

The inner loop iterates through NBIT (e.g. 4K) bitcells, drawing one value for
bitcell read current (cell_i) at each iteration, and updating the worst-case value
(wc_cell_i).

Back in the outer loop, worst-case read current gets converted to a voltage, by
assuming that current is charging the capacitance at a linear rate over time. The
column’s MC sample passes if the bitline drive voltage (bit_v) is large enough to
be detected by the sense amp, i.e. if bit_v [ offset_v. The column yield is simply
the proportion of column MC samples that pass. The system yield is simply
column_yieldNCOL where NCOL is the number of columns in the memory array
(assuming no redundancy).

Table 5.4 provided an example of the approach for analyzing a simple SRAM
column. The core of the approach is to mix PDFs that were extracted with a high-
sigma analysis. The mixing happens via drawing MC samples from the PDFs, and
applying simple logic and loops.

We can generalize Table 5.4 to broader SRAM space, to broader memory
space, and to more general circuit space simply by changing the logic and the
loops. Here are some example variants, in increasing order of generality:

• Sigma vs. timing. Edit Table 5.4 with a new loop for timing spec, that wraps the
outer loop. This makes it easy to find a table of system yield versus timing spec.

• Different interactions among components. The equation relating bitcell read
current to sense amp offset voltage is shown as bit_v = wc_cell_i * T/C. This
assumes that bitline voltage increases linearly with time, and is inversely pro-
portional to capacitance. But other equations could readily be incorporated.
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• Row redundancy. On a given column sample, track the number of bitcells
NBIT_FAIL that fail to have large enough read current to pass offset_v. Then,
column_pass = (NBIT_FAIL B NRED) where NRED is the degree of redundancy,
i.e. the number of bitcells that are allowed to fail before the column fails.

• Column redundancy. Rather than system_yield = column_yieldNCOL, we allow
some columns to fail before having yield loss, in a similar fashion to row
redundancy.

• Other SRAM architectures. Simply change the logic and loops to incorporate
multiplexers, error correction, delay chains, etc.

• DRAM. We can actually use the flow in Table 5.4 directly, by simply setting
C = 1 and T = 1, so that the bitline voltage will be passed directly to compare
with the sense amp offset voltage.

• Big digital circuits. We can extract PDFs of performance from digital standard
cells, then propagate them through a large digital circuit hierarchy by applying
logic and loops.

5.7.5 Full PDF Extraction via High-Sigma Monte Carlo

The last subsections provided the motivation to extract a full performance PDF,
from -6 sigma to +6 sigma. This subsection describes how to do so in a fast,
accurate, scalable, and trustworthy fashion.

So far, we have only applied HSMC for finding tails of distributions. It turns out
we can alter HSMC to find the whole performance PDF, in a straightforward

Table 5.4 Nested MC on extracted PDFs, on example of SRAM column analysis

Input: timing spec T, bitline capacitance C, number of bitcells in column NBIT,
number of column MC samples NMCCOL

Output: yieldcolumn

Extract PDF for bitcell cell_i
Extract PDF for SA offset_v

Npass = 0 
For i = 1, 2, ..., NMCCOL

offset_v = abs(Draw a sample from PDF for SA offset_v) 
wc_cell_i  = Inf    #worst-case cell_i
For j = 1, 2, ..., NBIT

cell_i =abs(Draw a sample from PDF for bitcell cell_i) 
wc_cell_i  = min(wc_cell_i, cell_i)   

 bit_v = wc_cell_i * T / C 
 column_pass = (bit_v > offset_v)
 if column_pass, increment Npass 

yieldcolumn = Npass / NMCCOL
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fashion. The general idea is to run HSMC at different numbers of generated MC
samples, and stitch together the results into one overall PDF.

We elaborate on the approach with the aid of Fig. 5.37, which extracts the PDF
for bitcell read current.

In this bitcell example, HSMC was run several times, and MC was run once.
Each run had different settings, as follows:

• HSMC, max-first cell_i, with Ngen (number of generated MC samples) = 10M.
Its 10 worst-case points were kept. The points are at the top right of Fig. 5.37,
having sigma (quantile) &4.5 and cell_i & 0.000019.

• HSMC, max-first cell_i, with Ngen = 1M. Its 10 worst-case points had sigma
&4.0 and cell_i & 0.0000175.

• HSMC, max-first cell_i, with Ngen = 100K.
• HSMC, max-first cell_i, with Ngen = 10K.
• MC, with Ngen = Nsim = 1K. These generate the points from -2 sigma to +2

sigma.
• HSMC, min-first cell_i, with Ngen = 10K.
• HSMC, min-first cell_i, with Ngen = 100K.
• HSMC, min-first cell_i, with Ngen = 1 M.
• HSMC, min-first cell_i, with Ngen = 50 M.
• HSMC, min-first cell_i, with Ngen = 10G. This returned the points at the bottom

left of Fig. 5.37.

The HSMC runs generated data for the 3.5–6 sigma range, and MC generated
data for the 0–2 sigma range (in positive and negative sigma space).

The final step is to stitch the points together into a PDF using a 1-dimensional
regression model that maps NQ to cell_i. The regression model can take any form,
though to be mathematically correct it must be monotonically increasing. In our
example, we use a piecewise linear (PWL) curve.

The outcome of full PDF extraction, for this example, is a PDF of read current
(cell_i).

Figure 5.38 shows the outcome of extracting the PDF for sense amp offset
voltage. Now that we have a full PDF for a bitcell (Fig. 5.37) and for a sense amp
(Fig. 5.38), we can mix them to get statistical system-level measures for an SRAM
column, as Sect. 5.7.4 described.

We have described a version of PDF extraction that includes several individual
runs of HSMC, plus one individual run of MC. Clearly, these combine into a single
run. Further efficiencies are gained via reuse of simulation data. From the user
perspective, full PDF extraction looks simply like a special run of HSMC.

5.7.6 Drawing Samples from Arbitrary PDFs

This section describes how to draw a sample performance value v from an arbitrary
nonlinear PDF, also known as random variate generation. The arbitrary nonlinear
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PDF is stored as a 1-dimensional regression model mapping normal quantile (NQ)
values to a performance output value.

To draw a performance value from the distribution:

1. Draw a sample x from a uniform(0,1) distribution.
2. Convert the sample value x to an NQ value using the inverse cumulative

distribution function (CDF) of the normal.
3. Use the PWL curve to map the NQ value to the final performance value v.

5.7.7 Example Analysis of SRAM Array

This section applies the building blocks of the previous sections—nested MC on
PDFs, PDF extraction, and random variate generation—to the analysis of a simple
256 Mb SRAM array.

We followed the steps outlined in Table 5.4. First, we extracted a full PDF for
the bitcell read current, using HSMC in full-PDF extraction mode, giving the
results shown in Fig. 5.37. Then, we extracted a full PDF for the sense amp offset,
using HSMC, to get the results shown in Fig. 5.38. Finally, we performed the rest
of the analysis according to Table 5.4, as a script. We set NCOL = 64K columns
(sense amps), NBIT = 4K bitcells per column (per sense amp), and bitline
capacitance to C = 51.75f. We swept across three timing specs T = {300, 400,
500 ps}.

Table 5.5 shows the results from the analysis. The results also include lower
and upper confidence intervals, at 95 % statistical confidence under the binomial
distribution. As the timing spec loosens, the weakest bitcells have more of a
chance to charge the bitline, and the overall column and system yields go up

Fig. 5.37 Full PDF extracted
by HSMC, for a bitcell read
current
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accordingly. Note how even with a &3 sigma column yield for T = 300 ps, the
system yield is nearly 0 % because there are so many columns. But as we loosen
the timing spec to increase the column yield, eventually we can bring system yield
towards &3 sigma.

5.8 HSMC Convergence/Limitations

HSMC’s effectiveness and accuracy are primarily limited by its ability to generate
an accurate ordering model. This section first discusses the implications of the
accuracy of the ordering model on the quality of results, as well as other secondary
limitations.

In the theoretical case where HSMC completely fails to order samples, HSMC
degrades to MC speed and accuracy. In this case, where there is zero correlation
between HSMC’s ordered samples and the actual sample order, HSMC’s samples
are plain, unordered MC samples by definition. In this case, HSMC’s error
detection indicates that not all failures are found and it will continue running
samples until asked to stop, producing a set of MC results, which may still be
useful, though certainly not what HSMC is designed to deliver.

At the other extreme, where the ordering model is perfect, HSMC finds the
actual, precise set of MC failure cases sequentially with SPICE accuracy. In this
case, HSMC finds the exact tail of the failure region of the output distributions
without wasting any samples, aside from those run to generate the ordering model.

The typical case is where HSMC’s predicted sample ordering model has some
amount of correlation, but it is not perfect. In this case, the order of predicted
samples in the tails of the distributions will be imperfect. The tail of the distri-
bution will be found, though not with optimal efficiency due to some error in the
order. One essential attribute of HSMC is that, since it is running its predicted

Fig. 5.38 Full PDF extracted
by HSMC, for a sense amp
offset voltage

156 5 High-Sigma Verification and Design



samples using SPICE and getting perfect accuracy, the amount of error is dis-
covered at runtime. Therefore, a poor correlation model implies that more simu-
lations will be required to find all of the failures, and not that the accuracy of the
result will be poor. Since a good high-sigma design with a well-chosen number of
samples will have a small number of failures (e.g. \100), some inaccuracy still
allows HSMC to complete verification of high-sigma designs in hundreds to
thousands of simulations.

Other notable limitations of HSMC are as follows:
Number of MC samples: Since HSMC is generating and sorting real MC

samples, the overhead becomes significant as the number of samples becomes
large. At the time of writing, the overhead is insignificant for 100 million or fewer
samples. The overhead begins to become a contributor to overall runtime past that.
However, HSMC leverages parallel processing not only for simulation, but also for
generating and sorting the samples. On modern machine(s) with 10 or more cores
total and &60 process variables, total runtime even for 5 billion samples remains
below 20 min. With a handful of process variables, runtime drops below 5 min.

Number of process variables: For reasons similar to the number of MC sam-
ples, the number of process variables is significant because each sample must
generate a random number for each process variable, and each process variable is
considered when sorting. Memory consumption also becomes a factor as the
number of process variables increases. We have found that HSMC works well for
hundreds of process variables, and recommend using it on designs with \1,000
process variables. We have observed industrial designers applying HSMC to
problems with [10,000 variables, where they are willing to wait the additional
time for simulation.

Not finding all failures: In some cases, HSMC may detect that it has found all
failure cases, but there is still the possibility that additional failure cases are within
those samples; it cannot be known for sure whether this has occurred. Fortunately,
HSMC provides transparency: missed failures are more likely when the ordering
model is poor, as shown by the noise in the output value vs. sample curve. For
example, Fig. 5.22 is a good curve, and Fig. 5.24 is a poor curve. Even in a case
where HSMC finds only half of the true failures, it nonetheless provides a rea-
sonable indication of the distribution tail’s behavior. Yield prediction is reason-
able; for example, reporting 20 failures per billion versus the actual 40 per billion
translates to a sigma difference of just 0.1 or so, which is still useful and suffi-
ciently accurate for many practical purposes. In addition, HSMC has a feature that

Table 5.5 Results from example analysis of SRAM array

Probe time T
(ps)

Column yield
(%)

[Column lower, upper]
(%)

System yield
(%)

[System lower, upper]
(%)

300.0 99.87 [99.868, 99.873] 1.1e-34 [2.6e-35, 4.5e-34]
400.0 99.99754 [99.99721, 99.99783] 20.712 [16.799, 24.917]
500.0 99.99999 [99.9999434,

99.9999982]
99.362 [96.439, 99.887]
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identifies ‘‘non-conforming points’’: sampled process points that are out-of-sync
with the ordering model’s prediction.

In summary, HSMC’s limitations are noteworthy, but do not preclude its use
with production designs.

5.9 HSMC: Discussion

This chapter presented HSMC’s method, as well as demonstrated its behavior
through several real circuit examples. We now examine HSMC in terms of set of
qualities required for a high-sigma verification technology outlined in the
introduction.

Fast: HSMC typically consumes \5,000 simulations, and often\1,000. These
simulations parallelize on a cluster nearly as well as regular MC samples. The
overhead required for HSMC depends on number of samples used and number of
process variables, and is typically\20 min for up to 5 billion samples. To speed up
the design loop further, high-sigma corners found using HSMC can be used to design
against iteratively. These high-sigma corners provide accurate information about the
behavior of the evolving design at the extreme tails with just a few simulations,
which in turn reduces design iterations and removes the need to over-margin.

Accurate: HSMC works by leveraging the same trusted technologies used for
lower-sigma verification, MC sampling and SPICE simulation. By generating a
large number of real MC samples, then simulating only the samples out at the
extreme tails, HSMC produces MC and SPICE accurate information at the high-
sigma region of interest in the distribution. By revealing any inaccuracy at runtime
by comparing the predicted order with the actual order, HSMC’s predictions are
reliable because it is transparent when there is inaccuracy in the sorting order.

Scalable: HSMC works for tens, hundreds and even thousands of variables.
This is easily large enough to work with production designs such as bitcells, sense
amps, and digital standard cells, on accurate process variation models. HSMC can
verify out to true 6 sigma with MC and SPICE accuracy, which is a reasonable
practical limit for high-sigma designs.

Verifiable: Since HSMC’s samples are all MC samples from the true output
distribution, the technology can be verified comprehensively against MC samples
if the same random seed is used to generate the samples. This is useful for veri-
fying the technology against smaller numbers of samples. Moreover, the output vs.
sample convergence curve provides the key information for the designer to judge
whether HSMC results has successfully found the output distribution tail yet.

In summary, to our knowledge, HSMC is the only method for verifying high-
sigma designs that is simultaneously fast, accurate, scalable, and verifiable. Its
availability as a CAD software product makes this effective technique easy to
adopt and apply in an industrial design environment.
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5.10 Design Examples

This section presents three design examples based on the production use of HSMC
by industrial circuit designers.

5.10.1 Flip-Flop Setup Time

Process variation can have a significant impact on flip-flop setup and hold time,
especially at low supply voltages. Because of the important role that flip-flops serve
in many digital designs, combined with the large numbers of them used in modern
Systems-on-Chips (SoCs), it is important to account for process variation when
designing and characterizing them in nanometer technologies (Bai et al. 2012).

In this example, a D flip-flop for a standard cell library is analyzed to determine
setup time under variation conditions. This example focuses on setup time, but the
procedure for other measurements (e.g. hold time) is essentially identical. Fig-
ure 5.39 shows the flip-flop schematic. Analysis is performed using Solido Vari-
ation Designer (Solido Design Automation Inc. 2012). Simulations are performed
with the Synopsys� HSPICE� circuit simulator (Synopsys Inc. 2012).

Section 5.3 described many possible approaches for high-sigma analysis. Here,
MC analysis with linear extrapolation and High-Sigma Monte Carlo (HSMC) are
considered.

For the first step in the comparison, MC analysis is run with 1,000 samples.
Figures 5.40 and 5.41 show the resulting distribution of setup time. Figure 5.40
shows the distribution in discrete PDF form (a histogram), and Fig. 5.41 shows the
distribution in normal quantile (NQ) form.

From the approximate bell shape of the PDF in Fig. 5.40, and the linearity of the
NQ form in Fig. 5.41, the setup time distribution appears to be approximately
Gaussian. MC extrapolation predicts a 5-sigma setup time of 188.9 ps (this is where
the linear extrapolation from the sampled data in the NQ plot reaches 5 sigma).

Fig. 5.39 D flip-flop schematic

5.10 Design Examples 159



HSMC is then run on the flip-flop, using 50M generated samples to accurately
capture the setup time at 5 sigma. Figure 5.42 plots the tail region of the distri-
bution found using HSMC. Figure 5.43 shows the tail region from HSMC plotted
together with the 1,000 Monte Carlo samples.

From Fig. 5.43, it is clear that MC extrapolation significantly over-predicts the
sigma level of the design. In fact, HSMC determines that the true sigma level of
the design at 188.9 ps is actually 3.54, which is much lower than the 5 sigma
predicted by MC extrapolation.

Table 5.6 shows the correct 4, 5, and 6 sigma setup times for this flip-flop,
along with the setup time predicted by MC extrapolation, and the actual sigma
level that would have resulted if MC extrapolation had been used to predict the
setup time.

Clearly, MC extrapolation aligns poorly with the actual samples in the tail of
the setup time distribution. This is because the distribution is not Gaussian, as was

Fig. 5.40 Distribution of flip-flop setup time, in histogram form. Data is from a Monte Carlo run
of 1,000 samples

Fig. 5.41 Distribution of flip-flop setup time, in NQ form. Data is from a Monte Carlo run of
1,000 samples
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assumed when extrapolation was performed. HSMC does not make assumptions
about the shape of the distribution, and therefore is able to establish the correct
sigma level for this design.

5.10.2 High-Sigma DRAM Design

DRAM requires high yield across millions or billions of bitcells, and employs a
write/read/restore operation that is particularly sensitive to process variability.
Therefore, DRAM is an important application area for high-sigma design.

Fig. 5.42 Tail of distribution of flip-flop setup time, in NQ form. Data is from an HSMC run
with 50M generated MC samples. The 100 most extreme samples are shown

Fig. 5.43 Tail of distribution of flip-flop setup time, in NQ form. Data is from both (1) MC with
1000 samples, and (2) HSMC with 50M generated samples and the 100 most extreme samples
shown
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This example describes the high-sigma analysis of a DRAM bit slice. The bit
slice includes the following components: bitcells/bitlines, sense amplifier, pre-
charge circuit, and data bus interface. Figure 5.44 shows the schematic for the
DRAM bit slice. The analysis performed in this example uses 256 cells per bitline
and a precharge voltage Vpre = Vdd/2; however, the analysis is equivalent for
other bitline lengths or for Vpre = Vdd. Analysis is performed using Solido Var-
iation Designer (Solido Design Automation Inc. 2012). Simulations are performed
with the Synopsys� HSPICE� circuit simulator (Synopsys Inc. 2012).

The design goal is to verify that the bit slice functions correctly at 6 sigma, by
measuring the bitline voltage difference after a write/read/restore operation under
statistical variation conditions. Because of the binary nature of this operation (i.e.
either a 1 or 0 is written successfully or not), the bitline voltage distribution is
discontinuous between a read success and a read failure. This means that failure
occurs suddenly in the output distribution, so it is not predictable by extrapolating
the distribution or by modeling a continuous-valued relationship between statis-
tical parameters and output performance.

To properly verify the design to 6 sigma, a very large number of samples is
required—generally at least 5 billion. In this example, 10 billion samples are used
to achieve a thorough verification.

HSMC analysis is performed on this design. The analysis is set up to run 10G
(10 billion) MC samples, using adaptive initial sampling (Sect. 5.6.3) to find an
initial set of reasonable failures, followed by 10,000 ordered simulations adap-
tively targeting failures. By adaptively sampling the design, HSMC is able to find
several failures that occur out of the 10 billion MC samples, and determine that the
sigma level of the design is 5.955 sigma. This is just below the target of 6 sigma;
some design iteration could be performed using one or more of the failing samples
in order to bring the design above 6 sigma.

Figure 5.45 shows the NQ plot generated from the HSMC run. It clearly shows
the discontinuous behavior described above. An output voltage of 1.2 V corre-
sponds to a successful read operation, while an output voltage of -1.2 V corre-
sponds to a failed read. HSMC successfully captures the failing samples even
though the failure mode is binary.

It is sometimes possible to define intermediate measurements that behave more
continuously, in an attempt to avoid binary output conditions. For example, in this
design, it may be possible to measure the pre-sense bitline voltage levels and the
sense amplifier offset independently. Doing so can often improve the efficiency of
HSMC. However, in many cases it is not possible to ensure that failures in these

Table 5.6 Sigma and corresponding setup times for the flip-flop

Sigma Setup time
(HSMC) (ps)

Predicted setup time (MC
extrapolation) (ps)

Sigma level if MC extrapolation
were used

4 196.7 184.9 3.34
5 212.1 188.9 3.54
6 232.7 193.0 3.79
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intermediate measurements are directly correlated with the true failure rate of the
design. Therefore, it is important to be able to properly simulate the true failure
mode of the design even when the key performance metrics are binary. The
adaptive initial sampling technique in HSMC (Sect. 5.6.3) makes this possible.

5.10.3 SRAM Sense Amplifier

The yield of an SRAM design is heavily dependent on the variation resilience of
both its bitcells and its sense amplifiers. Sense amplifiers are highly repeated
components, and they need to operate properly under variation conditions in order
to avoid read failures.

Fig. 5.44 DRAM bit slice schematic

Fig. 5.45 Tail of distribution of DRAM bit slice output voltage, in NQ form, from HSMC with
10G generated MC samples. The 100 most extreme samples are shown
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Consider the following example of how HSMC is used to analyze an SRAM
sense amplifier. The sense amplifier schematic is shown in Fig. 5.46. To achieve
sufficient chip yield, the sense amplifier needs to be verified to 5 sigma. As with
the previous two examples, analysis is performed using Solido Variation Designer
(Solido Design Automation Inc. 2012), and simulations are performed with the
Synopsys� HSPICE� circuit simulator (Synopsys Inc. 2012).

Three analyses are performed on this sense amplifier:

1. Traditional MC analysis with 1M samples
2. HSMC analysis with 1M samples
3. HSMC analysis with 100M samples

The first two runs are used to compare the result of traditional MC vs. HSMC
on this design; the third run is used to determine if the design is meeting the
desired 5-sigma specification.

Table 5.7 shows the results of each of these three runs.
For the MC run, it takes 8 days to simulate 1M samples, and all 1M samples

pass specification. For the same analysis using HSMC, only 900 simulations are
required and the analysis takes only 8 min and 11 s.

1M samples is only enough to verify to approximately 4.5 sigma, so the second
HSMC run is performed to verify to the target of 5 sigma. As shown in the table,
when 100M samples are run, the sigma of the design is found to be 4.790, which is
below the target of 5 sigma. Therefore, some changes will need to be made to this
sense amplifier in order for it to reach its robustness goal. These changes are
outside the scope of this example, but possible changes might include adjusting the
supply voltage, adjusting the offset specification, or resizing the sense amplifier.

The 100M-sample analysis takes only 9 min and 51 s to run, in contrast to the
800 days it would have taken using traditional MC analysis. Note that this is only
1 min and 40 s longer than the high-sigma run with 1M samples. This is because,
for this design, ordering and data processing time is much faster than the

Fig. 5.46 Sense amplifier
schematic
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simulation time, so very little additional time is required to increase significantly
the number of samples used.

For readers who are new to high-sigma analysis, it may appear surprising that
there are no failures in 1M samples while there are 167 failures in 100M samples.
The reason for this is simply that 1M samples are not enough to reach into the tail
of the distribution where the failures occur for this design. From the 100M-sample
run it can be seen that the failure rate is 167/100M = 1.67e-6, or 1.67 failures per
million. In this example, due to the nature of random sampling, it happened that
none of those failures occurred in the 1M samples that ran. If the run were repeated
with a different random seed, it is possible that one, two, or even more failures
could be found by chance in a 1M-sample run. But even then, without running
more samples as was done with HSMC, there’s no way to know the true sigma
level of the design with any certainty. HSMC makes it possible to properly
determine this sigma level.

5.11 Conclusion

Semiconductor profitability hinges on high yield, competitive design performance,
and rapid time to market. For the designer, this translates to the need to manage
diverse variations (global and local process variations, environmental variations,
etc.), and to reconcile yield with performance (power, speed, area, etc.), while
under intense time pressures.

With high-sigma designs, where failures are one in a million or a billion,
previous approaches to identifying failures and verifying those designs were either
extremely expensive, inaccurate, or not trustworthy.

High-Sigma Monte Carlo (HSMC) is a new approach for high-sigma analysis. It
generates millions or billions of MC samples, then simulates a small subset to find
extreme tail values. It is fast, accurate, scalable, and verifiable. It enables rapid
high-sigma design by enabling high-sigma feedback within the design loop and by
making high-sigma corners available to design against. HSMC also serves as an
excellent mechanism for verifying high-sigma designs, reducing verification time
and improving accuracy over conventional methods. This in turn promotes the

Table 5.7 Sense amplifier results for traditional MC and for HSMC

Total # of
samples

# of samples
simulated

Simulation
savings

Predicted
sigma

Predicted # of
failures

Run
time

Monte
Carlo

1M 1M N/A + ? 0 8 days

HSMC 1M 900 999,100 + ? 0 8 m
11 s

HSMC 100M 900 999,999,100 4.790 167 9 m
51 s
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reliable development of more competitive and more profitable products that rely
on high-sigma components. HSMC with full-PDF extraction enables practical,
accurate statistical analysis of memory systems and other large systems.
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Chapter 6
Variation-Aware Design

Manual Sizing, Automated Sizing,
and an Integrated Approach

Abstract Previous chapters focused on the analysis of a fixed design, and corner
extraction and verification in particular. Complementary to those chapters, this
chapter focuses on changing the design. Specifically, it explores three different
methodologies for changing device sizings, given accurate corners. First, it
explores manual sizing and the advantages and disadvantages of a manual
approach. Second, it explores automated sizing and its associated advantages and
disadvantages. Finally, this chapter introduces a new idea that integrates manual
and automated design techniques. This integrated approach incorporates the
benefits of both manual and automated design, providing fast and thorough design
exploration while allowing the designer to maintain full control over the design
and providing more insight than ever.

6.1 Introduction

Design is the central part of value creation in integrated circuits (ICs). It is through
design where circuits with wholly new functionality are created, or more com-
monly, where existing functionality is enhanced through faster, better, and smaller
circuits. In custom ICs, design is even more nuanced because the tradeoff among
different speed, performance, and area is a continuum rather than a small fixed set
of choices.

It is in design where creativity, insight, and experience can all make enormous
contributions to the quality of the final circuit. These factors may lead to better
choices of circuit topologies and architectures, and new topology designs, which
means better circuits. These factors also affect the choice of device sizes, which
have enormous impact on the circuits.

T. McConaghy et al., Variation-Aware Design of Custom Integrated Circuits:
A Hands-on Field Guide, DOI: 10.1007/978-1-4614-2269-3_6,
� Springer Science+Business Media New York 2013
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Variation effects can get in the way of the core task of design, of exploring
topologies and device sizings. Traditionally, designers have had poor visibility into
accurate effects of variation during their design cycle, especially if they wanted
design iterations to be fast. However, since variation has a big impact on per-
formance and yield, ignoring variation in the design loop hurts the final design.
The hard-won design effort to make a great circuit may be for naught. For a truly
good design, the effects of design choices (the controllable variables) and the
effects of variation (uncontrollable variables) must both be considered during the
design phase.

As first introduced earlier in this book, there is a way to achieve rapid design
iterations while accurately capturing variation effects. It does not require a radi-
cally new methodology. It simply requires accurate corners; corners that represent
the bounds of performance subject to PVT or to statistical variation. These corners
enable rapid design iterations that are accurate to variation. Other chapters of this
book described how those corners could be extracted and how the final design
could be verified in a trustworthy fashion. Those tools are meant to be as push-
button as possible: get the corners with minimal fuss, so that the designer can get
on with actually designing. Once design is done, verify the circuit, but also with
minimal fuss. The whole point of variation-aware analysis is to do just enough to
be variation-aware, then get out of the way so that the core design process can
happen.

Figure 6.1 illustrates the corner-driven variation-aware flow and shows how
this chapter fits in. Whereas the other chapters of this book explored corner
extraction and verification, this chapter explores design with emphasis on device
sizing. The design step occurs in two places: against corners, but also in initial
sizing where there is simply a single nominal corner.

Set topology

Initial sizing

Sizing on Corners

Fast Verify
(PVT / Statistical / High-σ )

Layout

Extract Corners
(PVT / Statistical / High- σ)

This
Chapter

Fig. 6.1 This chapter
focuses on design, whereas
other chapters focused on
verification and corner
extraction steps
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Traditionally, sizing of custom ICs has been a manual process. Automated
sizing has frequently been proposed as a means to accelerate the design cycle, but
adoption has been sporadic for various reasons. We believe there is third way that
builds on manual design, yet brings the benefits promised by automated sizing.
This is done by integrating manual and automated design.

It is useful to explore all three techniques in the context of a variation-aware
design flow. Accordingly, this chapter has three parts:

• First, it discusses manual approaches to design, which remain as valid and
useful as ever because they help the designer retain insight into the design.

• Second, this chapter discusses automated approaches with a focus on auto-
mated sizing.

• Finally, this chapter introduces an integrated approach, which, like automated
design, has fast and thorough design exploration, but like manual design, allows
the designer to maintain full control over the design and gain more insight than
ever.

Regardless of which of these three design approaches is used, the designer can
achieve high-performing, high-yielding designs, thanks to the corner-driven
methodology.

6.2 Manual Design

6.2.1 Introduction

Manual custom IC design includes two parts: topology selection and design, and
device sizing. Topologies are selected based on experience, design knowledge, and
analysis. Topologies are designed or modified based on the latter plus a healthy
dose of creativity. Creativity abounds. It is innovation in custom circuit topologies
that drives the whole field of custom IC design. This is perhaps best represented by
publications in the field’s conferences and journals such as the International Solid-
State Circuits Conference (ISSCC), the Custom Integrated Circuits Conference
(CICC), and the IEEE Journal of Solid-State Circuits (JSSC).

Sizing is another central aspect of manual design. There are two complemen-
tary tools in manual design: hand-based analytical methods, and SPICE-based
methods.

Hand-based analysis and design: Designers often use hand-based analytical
methods to find initial device sizings. Structured manual flows exist, in which the
designer incrementally reduces the number of free design variables by applying
reasonable rules of thumb and adding constraints (Sansen 2006). For example, in
designing an amplifier, the first step is to set all lengths to the process minimum.
Then, given an overall power budget and supply voltage, the next step is to
allocate currents to each current branch. Then, the designer allocates an overdrive
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voltage for each device channel. Then, the designer adds a performance constraint,
reducing the free variable count by one. The designer incrementally adds more
constraints until no free variables remain. Finally, the designer computes device
widths using first-order analytical equations.

SPICE-based analysis and design: Traditionally, designers have used hand-
based analytical methods to choose the sizings, then verified the design via a small
set of SPICE simulations. SPICE was not used for tuning. However, on modern
process geometries, the first-order equations of hand-based methods are less
accurate, especially when there are variation effects. Since SPICE can readily
model the second-order and variation effects, designers have turned to using
SPICE within the design loop. They invoke a series of SPICE runs to gain design
insight, for example, using sensitivity analysis, then use the results to decide what
design variables to change, and by how much.

6.2.2 SPICE-Based Analysis Techniques

A variety of SPICE-based analyses and tools are available to provide insight to
designers. Some examples include operating point analysis, waveform analysis,
eye diagrams, histograms, NQ plots, and sensitivity analysis. New techniques
continue to be developed, such as noise analysis of phase-locked loops (Mehrotra
2000) and nonlinear symbolic analysis (McConaghy and Gielen 2009a).

The most common SPICE-based analyses for measuring the effect of design
variables are sensitivity analysis, sweep analysis, and combinational sweep
analysis. These analyses have value because they are directly actionable: they
point to which design variables can be changed and by how much, which of course
has a direct effect on the circuit’s performance and yield. Each of these three
analyses reports increasingly more information, but at increasingly higher simu-
lation cost. Figure 6.2 illustrates the three analyses on two design variables W1 and
W2. Each dot is another analysis that is simulated. We now describe each analysis
in more detail.

Sensitivity analysis (Fig. 6.2a) perturbs a design variable by a small amount
from a reference design, while all other design variables are held fixed. SPICE is
run against corners at that new design point. This perturb-and-simulate process is
repeated for each design variable of interest. This analysis reports the sensitivity of
each output to each design variable in the local region near the reference design
point. This analysis can be viewed as a local linear approximation of the mapping
from design variables to performance. There are actually two variants: perturbing
in just one direction (+D), or in both directions (+D, -D). If nvar is the number of
design variables, then sensitivity analysis requires (nvar ? 1) simulations per
corner for one direction, or (2 9 nvar ? 1) per corner for both directions.

Sweep analysis (Fig. 6.2b) sweeps a design variable across several values, while
all other design variables are held fixed using the value of the reference design.
SPICE is run on each swept design value. This process is repeated for each design
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variable of interest. This analysis reports the local sensitivity to each design vari-
able, as well as the effect of each variable across a broad range, but for only one
variable at a time. It can be viewed as a broader model of circuit performance, with
the caveat that changes to [1 design variable will be assuming weak interactions
among the variables. If nval is the number of swept values per variable (including
the center value), then sweep analysis requires (2 9 nvar 9 (nval-1) ? 1) simu-
lations per corner.

Combination sweep analysis (Fig. 6.2c) considers all combinations (cross-
product) of all variables’ values. Each combination point is simulated. This
analysis reports not only the local sensitivity to each design variable and the effect
of design variable across a broad range, it also considers the non-additive inter-
actions among the design variables with respect to their influence on output per-
formances (e.g. W1 9 W2, or W1/L1). It accounts for all design variable
interactions for the whole range that is sampled. Combination sweep analysis
requires (nval)

var simulations per corner. It gives the most information, but because
it depends exponentially on the number of design variables, it gets extremely
expensive even at moderate numbers of variables. For example, with 10 values per
variable and one corner, then 4 variables would require 10,000 simulations, and 10
variables would require 10 billion.

(a) Sensitivity analysis (b) Sweep analysis (c) Combination sweep analysis

Fig. 6.2 The most common SPICE-based design analyses: a sensitivity analysis, b sweep
analysis, and c combination sweep analysis. Each top plot shows the samples taken in design
variable space W1 and W2. Each bottom plot shows the mapping from each design point to a
corresponding output performance value AV

6.2 Manual Design 173



6.2.3 SPICE-Based Design Tuning

We have observed designers using these three SPICE-based manual analysis tools
in a complementary fashion. A typical flow for corner-based sizing is the fol-
lowing. First, a designer will run a sensitivity analysis to identify the 5–20 most
important design variables. He will then run a sweep analysis on these most
important variables. Then, he will change the design variable with the biggest
improvement from sweep analysis to the best value returned in sweep analysis. He
will repeat this with a few more variables, sometimes simulating each design point
along the way to test the interaction effects. Finally, he may run a combination
sweep on the 2–3 highest-impact variables that are suspected to interact for a final
tuning.

6.2.4 Advantages and Disadvantages

Manual design flows have many benefits. They are familiar—designers have been
using them for a long time. Manual flows using modern tools are variation-aware:
by using accurate corners, designers may choose sizings that perform well, despite
significant performance variations caused by PVT or statistical process effects. Put
another way, one does not need to resort to automation just because there is
variation. Topology changes are easy and inexpensive: designers can modify an
architecture and keep using the same corners. The corner may lose some accuracy,
but that is fine because the final verification step will catch any inaccuracies.
Finally and most importantly, manual design flows allow the designer to maintain
insight and control: the designer has intimate understanding of how the choice of
topology and sizings affects performance; if there is ever an issue, he knows where
and how to take action. Building insight is typically part of the flow itself. For
example, hand-based analysis includes development of equations relating design
variables to performance, and SPICE-based analysis sweeps find the mapping from
design variables to performance.

Manual flows have some disadvantages. Most obviously, they require designer
time, which is always at a premium. Circuit quality will suffer if a designer cannot
spend sufficient time on design to explore the design space. Manual flows also
require designer expertise; inexperienced designers might not focus their efforts in
the most effective ways, and end up with suboptimal designs (but of course the
very act of designing will increase the designer’s level of experience). Finally,
some manual design flows may result in variation-sensitive designs.

Appropriate tools can largely moderate the disadvantages of manual flows. The
tools should make it easy to find accurate corners, to perform sensitivity and sweep
analyses across the corners, to visualize the results conveniently, to identify the
most important variables, and to act upon the insight gained.
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6.3 Automated Design

6.3.1 Introduction

While manual design is familiar to designers, supports variation-aware design,
promotes insight, and lets designers maintain control over their circuits, there are
cases where it might take longer than the time available in order to get a high-
quality circuit. An example is in porting a whole library of digital standard cells,
where there is a small design team, a tight schedule, yet a large number of circuits
that need to be moved to a new process. In scenarios like this, automated design
might be a reasonable consideration.

Automated design of custom circuits may be at the schematic (front-end) level,
layout (back-end) level, or both. Schematic-level design may involve automated
topology design or automated device sizing. Automated layout design includes
automatic device generation, placement, and routing. Here, we will focus on
schematic-level automated design.

6.3.2 Automated Topology Design

While automated topology design is not currently a practical possibility for
industrial-scale circuit design, we briefly review it in order to raise awareness and
for the sake of thoroughness.

Automated topology design may involve topology selection or topology syn-
thesis. Automated topology selection searches a set of trusted topologies to find a
topology most suitable to the design problem at hand. Topology synthesis auto-
matically chooses a set of devices and their connections to realize the behavior
most suitable to the problem at hand.

There has been a steady stream of research on automated topology selection and
synthesis over the years; (McConaghy et al. 2009) has a comprehensive survey,
and more recent work appears in (Meissner et al. 2012). Topology selection across
a sufficiently large set of topologies will start to feel like synthesis, such as
(Palmers et al. 2009), which searched a database of 101,904 possible topologies.
Research on topology analysis is now emerging, such as (Ferent and Doboli 2011).

Automated topology design tools are not commercially available yet, with the
exception of (Magma Design Automation 2012), which does topology selection
across a small set of pre-characterized topologies. Its roots trace back to
(Hershenson et al. 2001).
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6.3.3 Automated Sizing: Problem Types

In automated sizing, an optimizer automatically determines a design point (set of
device sizes) that best meets the circuit performance objectives and constraints.
Let us assume here that the designer is interested in using an optimizer. If he has
access to an optimizer, that optimizer will likely be designed for a certain set of
problem types. Since it will be instructive for the designer to be aware of the
possible problem types, we give the following dimensions for classifying problem
types:

• Constraint-satisfying versus single-objective versus multi-objective: A con-
straint-satisfying optimizer aims to find a design point that meets all constraints.
A single-objective optimizer aims for a design point that maximizes or mini-
mizes a given objective (e.g. minimize power), while meeting design constraints
(e.g. AV C 70 dB). A multi-objective optimizer aims for a set of design points
that collectively trade off a set of objectives (e.g. power versus AV), subject to a
set of constraints.

• Local versus global: Local optimizers ‘‘run up a hill’’, but get stuck in local
optima. In contrast, global optimizers aim to find the global optimum by
avoiding local optima. Ideally, a global optimizer is globally reliable—the user
should not need to worry about whether or not the algorithm is stuck at a local
optimum.

• Nominal versus variation-aware: Nominal optimizers only measure perfor-
mance under nominal and typical conditions, whereas variation-aware opti-
mizers consider PVT and/or statistical variations. Variation-aware optimizers
have many variants, including: optimize against a set of corners, maximize
yield, and maximize the distance from the design point to the closest spec
boundary (‘‘design centering’’).

• Equation-based versus SPICE-based: Equation-based optimizers measure
performance using symbolic models which were hand-generated or automati-
cally generated. SPICE-based optimizers measure performance using SPICE in
the sizing loop. Some optimizers may generate equation-based models or
response surface models during optimization, but since those models are based
on feedback from SPICE, the optimizers are nonetheless SPICE-based.

Many optimization algorithms have been proposed for different combinations
of problem dimensions above. For example, (Gielen and Sansen 1991) is single-
objective, global, nominal, and equation-based. (Krasnicki et al. 1999) is single-
objective, global, nominal, and SPICE-based. (McConaghy and Gielen 2009b) is
single-objective, global, variation-aware, and SPICE-based.

176 6 Variation-Aware Design



6.3.4 Automated Sizing: Optimizer Criteria

For any given type of optimization problem, there is a huge variety of algorithm
options, such as derivative-based Newton methods (e.g. Nocedal and Wright
1999), derivative-free pattern search (e.g. Kolda et al. 2003), simulated annealing
(Kirkpatrick et al. 1983), evolutionary algorithms (e.g. Hansen and Ostermeier
2001), convexified search (Boyd and Vandenberghe 2004), and response surface-
based/model-building optimization.

Accordingly, optimizers may have dramatically different behavior and perfor-
mance. The quality of the optimizer can be rated according to the following:

• Quality versus runtime: A good optimizer will deliver high quality circuits in
minimal runtime. Sometimes, a longer runtime is tolerable if it produces even
better quality circuits. While minimizing simulations matters, runtime is more
relevant because it accounts for parallelization across cores and machines.
Quality can be higher with global (versus local), variation-aware (versus nom-
inal), and SPICE-based (versus equation-based) problem types. For example,
convex equation-based optimization may return a circuit with good performance
on the convex model, but have poor performance when subsequently simulated
with SPICE.

• Flexibility: It should be easy for designers to set up optimization on a new
topology. It should be easy to choose which design variables to optimize on, and
what ranges those variables should have. It should be easy to set up measures of
performance, area, and yield; and assign those to objectives or constraints. For
example, automatic extraction of device operating constraints may be useful
(Graeb et al. 2001). Or, SPICE-based approaches tend to be more flexible than
equation-based approaches, because SPICE can be used off-the-shelf for a broad
range of circuit types, whereas equation-based analysis is highly dependent on
circuit type and likely requires setup effort for each circuit type and each new
topology.

• Scalability: A good optimizer will scale to handle the number of design vari-
ables for the target application without becoming unreasonably expensive.
Many response surface model-based optimizers are efficient, but scale poorly
beyond 25–50 dimensions. Good optimizers should also be able to handle a
large number of constraints, and, if doing multi-objective optimization, a large
number of objectives.

Research in automated sizing stretches back several decades in the analog CAD
literature (Rutenbar et al. 2002; Rutenbar et al. 2007). Starting in the late 1990s,
competent commercial offerings became available. Analog Design Automation
Inc. (ADA), Barcelona Design Inc., Opmaxx Inc., and Neolinear Inc. were among
the first. ADA and Neolinear are now part of Synopsys Inc. and Cadence Design
Systems Inc., respectively. Since that time, there have been offerings by MunEDA
GmbH, Orora Inc., and many others.
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The enthusiastic efforts in automated sizing by the CAD community has not
translated to widespread industrial adoption by custom IC designers. Looking
back, perhaps we should not be surprised: manual design has a great number of
benefits, and it is hard for automated design tools to meet some of those benefits.
Most importantly, doing design manually improves a designer’s insight and
maintains a designer’s control over the design. Doing design automatically does
neither.

6.3.5 Automated Sizing: Example on Digital Standard Cells

As discussed, there are some cases where automated sizing (versus manual) may
be palatable to designers. One example is in process migration of digital standard
cells, where hundreds of standard cells must be updated to the new process. We
illustrate the procedure to first classify the problem into the appropriate type,
consider optimizer criteria for the problem, and finally design an optimization
algorithm that does well according to the problem type and optimizer criteria.

Problem Type: For digital standard cells, a reasonable choice of optimization
problem type is: single-objective, global, variation-aware, and SPICE-based. It is
single-objective because most performance aims can be set as constraints. It is
global, variation-aware, and SPICE-based because the extra computational effort is
worth the improved design quality; the cells are used numerous times throughout
the design, and their quality can have a big impact on the overall circuit’s power,
speed, and area. Furthermore, standard cells are sufficiently small such that global
optimization and SPICE simulation have tractable computational requirements.

Optimizer Criteria: We want the optimizer to perform well with respect to the
criteria of quality versus runtime, flexibility, and scalability. Since digital standard
cells typically have fewer than 50 design variables, scalability will be less of an
issue compared to other circuit types.

Optimizer Design: To make the optimizer variation-aware, let it be the varia-
tion-aware sizing step in the flow of Fig. 6.1. Therefore, it will use accurate
corners that were extracted using PVT or statistical analysis.

For flexibility, we ensure that the user can readily construct an objective and
constraints from different output SPICE measurements. The SPICE-based char-
acteristic also helps flexibility.

To make the approach have good quality versus runtime, let the optimizer use
adaptive response surface modeling to make maximal use of simulations taken so
far when choosing promising new designs to simulate. The models will be arbi-
trarily nonlinear, to handle any type of circuit. To be global—to avoid local optima
in the form of model blind spots—the models report the confidence in their own
predictions. The optimizer will sample design regions that may be good, but not
enough is known yet to be certain. In the end, the optimization will return globally-
optimal designs with confidence.
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Figure 6.3 shows the exact steps of the model-based optimization.1 The first step
of the inner loop draws a set of initial samples in design space, X, then simulates
them to get estimates of each output, e.g. power (ypower) and delay (ydelay). Then, it
constructs a model mapping X ? y for each output; that model can predict its
uncertainties. Using those models, it computes a new candidate design that
combines the prediction of maximum performance, combined with some model
uncertainty. It simulates the new design, and updates the training data X, y accord-
ingly. It will re-loop back to building new models, until it converges (e.g. no recent
improvements), at which point it will return back to the outer loop (a).

In the optimization algorithm described, the optimization approach was on a
pre-set group of corners, maximizing the worst-case performance across the cor-
ners. But it can be applied to optimize yield as well, by including corner extraction
and verification as part of the loop, as in Fig. 6.1. These combined steps may be
fully automated; simply chain together corner extraction, optimization on corners,
and verification into the same script.

6.3.6 Advantages and Disadvantages

Manual approaches are widely used, but require dedicated designer time. Auto-
mated approaches have promised to improve sizing turnaround time and help find
optimal-quality designs, yet they have not been widely adopted. Some optimizers

ynew = simulate(xnew)
Update X, y

Converged?

Choose xnew: optimize on model, 
incorporating model uncertainty

X = initial sampling DOE in design space
y = simulate(X)

Construct model mapping X y

Fig. 6.3 Algorithmic flow
for model-based optimization

1 Discerning readers will see that the algorithm is similar to the algorithm for Fast PVT
verification in Chap. 2. This should not be surprising: both problems aim to maximize or min-
imize a performance with low computational effort, and have B50 dimensions, which makes
model-building optimization tractable. The big difference between the algorithms is in the
stopping criteria. In Fast PVT verification, the optimizer has to be really sure that the worst-case
is found; whereas automated sizing can stop anytime, but preferably with a big improvement to
the initial design.
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were clearly hard to adopt due to inefficient algorithms leading to long runtimes, or
requiring too much setup effort.

One disadvantage of automated approaches is the limited scalability of global
optimization. As the number of variables increases, the number of possible designs
in the global design space increases exponentially. At some point, it becomes
inefficient for optimization algorithms to gain even sparse coverage of the global
optimization space. A designer who understands how the design works may be
better equipped to optimize larger designs, leaving the job of the optimizer to do
no more than local tuning. Local tuning is still valuable, though most tools do not
facilitate an optimizer-assisted manual flow, and although potentially valuable, this
can be complex to make work.

A second major challenge faced by all optimizers is having adequate constraints
(Rutenbar 2006). If an optimization problem is not adequately constrained, then
the optimizer may adapt towards design regions that it believes are good, but by
the designer’s judgment are not. For example, the optimizer may return devices
with extreme aspect ratios if that constraint is not pre-constrained by the designer.
Some constraints can be automatically set, such as restrictions on device operating
regions (Graeb et al. 2001). But other issues are only noticed once the optimizer
returns an unacceptable design; at which point the user has to add another con-
straint and re-run the optimization. This cycle of filling ‘‘holes in goals’’
(McConaghy et al. 2009) can become very tedious, and can have a serious effect
on the usability of optimizers. This challenge can be somewhat mitigated with
sufficient support for manual and automatic constraint generation in the optimi-
zation tool for appropriate sub-problem domains (such as digital standard cell
sizing).

All optimizers share an even greater challenge: they do not afford opportunities
to learn about the mapping from design variables to outputs, which compromises
the designer’s insight. Furthermore, the optimizer ‘‘pushes’’ the sized circuit to the
designer, effectively taking control of the design from the designer. This loss of
insight and control really matters, because designers need to be equipped to solve
issues when things go wrong. The list of things that can go wrong is long. For
example, the existing topology is inadequate and must be changed; the simulator
does not converge; layout-induced parasitics heavily degrade performance; or
previously-ignored variation effects like well proximity (Drennan and Kniffin
2006) or aging (Maricau and Gielen 2010) affect the circuit.

6.4 Integrating Manual and Automated Approaches

6.4.1 Introduction

So far, this chapter has focused on manual and automated approaches for automated
sizing. Manual approaches are familiar to designers, support variation-aware
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design, and most importantly, allow designers to maintain insight and control over
their circuits. Automated approaches have promised to improve sizing turnaround
time and help find optimal-quality designs, but they compromise insight and con-
trol, are limited to small designs or designs with good starting points, and need good
constraints.

Intuitively, what designers really need is an approach that integrates ideas from
both manual and automated design, and delivers the best attributes of both tech-
niques. Specifically, an integrated approach that is all of:

Efficient: Helps the designer to complete their design with less effort and wall
clock time. In particular, it automates tedious sizing tasks, such as sizing for design
porting or trial-and-error iterations with SPICE to squeeze out the last bit of
performance.

Thorough: Reliably determines the optimal design, as long as the design space
is appropriately limited. Considers the global space, but able to follow design hints
input from the designer.

Insightful: The tool shares what it has learned about the design with the
designer in ways that are understandable and familiar. It comes with clear visu-
alizations that help to ensure that the designer not only still understands how the
design works, but actually understands it better than before. In particular, the tool
could improve insight into the mapping from design variables to output
performances.

Controllable: The designer has full control over the design outcome. Possible
changes are communicated clearly to the designer as suggestions with clear dis-
closure as to what would be changed and why. Design regions being sampled that
are not appropriate can be halted in real time, and the designer can interactively
guide the tool toward more promising improvements and design regions.

The user interface for an integrated approach is tricky, as it must be able to both
present insight and design suggestions to the designer in a useful and actionable
manner, as well as accept guidance from the designer efficiently. This section
presents an idea for what such a user interface might look like.

6.4.2 Design Exploration User Interface

6.4.2.1 The Complexity Problem

In sizing, the designer has to consider the effects of several design variables on
several output performance measures, subject to variation. Even if the information
about the effect of all design points was available for free, considering these all at
once is overwhelming. Let us consider if we had 200 design variables, 10 outputs,
and 5 corners to capture variation effects. Which output should we focus on
improving? Against which corner? And which design variables should we change
to improve it? If we ignored interactions among design variables and considered
just main effects, then there are 200 9 10 9 5 possible combinations of (design

6.4 Integrating Manual and Automated Approaches 181



variable, output, corner) that we might examine. If we also wanted to account for
two-variable interactions among design variables, there are (200)(200 - 1)/
2 & 20,000 interactions, and 20,000 9 10 9 5 = 1 million possible combina-
tions of (design variable, output, corner) that we might examine.

6.4.2.2 Achieving Tractable Complexity

Clearly, we need a way to reduce the complexity of the problem. To do so, we
state the tool interface design problem as: guide the user towards making the
greatest-benefit design choices first. We want to help the designer focus on the
design variables giving greatest improvement against the outputs and corners that
are causing the most problems. Put another way, we aim to reduce complexity on
three fronts: design variables, outputs, and corners. We can do this as follows:

• Reduce corner complexity by displaying the worst-case output performance
across corners, at any given design point.

• Reduce output complexity by creating a new surrogate output called ‘‘overall
margin’’ that combines all output values according to how well they have met,
or not met, specifications. Margin is[0 when specs are met,\0 when not met,
and =0 when precisely met but not exceeded. Specifically:

– For a given worst-case output value v, compute marginoutput(v) = (v - spec)/
range for ‘‘C’’ constraints, and marginoutput(v) = (spec - v)/range for ‘‘B’’
constraints, where range = max(max simulated v, spec) - min(min simulated
v, spec)

– We now have a margin value for each output. Because all outputs now have
the same units (for margin), we can compare across outputs to compute an
overall value marginoverall = min(marginoutput1, marginoutput2,…).

• Reduce design variable complexity by displaying the design variables in order
from highest to lowest impact (sensitivity) on marginoverall. Also include high
impact variable groups, for cases when interactions among design variables are
significant. This allows the designer to focus on the highest-impact variables or
variable groups first, and then change lower-impact variables or groups as
needed.

We have described how to reduce complexity of the visualized data on three
fronts: corners, outputs, and design variables. Now, we bring these three fronts
together into an interactive exploration framework, as follows:

• Relate ordered design variables to overall margin values: This brings all the
pieces together visually. We make each design variable or group in the ordered
list selectable. Then, if a design variable is selected, plot a 1-D sweep of
marginoverall versus design variable value. If a design group is selected, plot a 2-
D sweep (contour plot) of marginoverall versus the two (or more) design
variables.
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• Allow interactive design changes on sweep plots: Allow the designer to explore
designs directly by changing a ‘‘current design’’ value shown on the 1-D sweep
plots and 2-D contour plots.

6.4.2.3 Conceptual User Interface

Building from the interactive exploration framework just described, Fig. 6.4
illustrates a conceptual user interface. It includes the complexity-reducing ele-
ments on all three fronts. We now explain the figure.

Figure 6.4 left has a bar plot, where each design variable or variable group
corresponds to one horizontal bar. The bars are ordered top-down, starting with the
variable or group that has highest impact on the overall margin. In this case, W3
has the highest impact, L2 has second-highest-impact, and so on. Note that the
group (W3, L3) has a high impact. This can occur, for example, when a transistor
ratio (W3/L3) has high impact.

If the user clicks on the bar for L2 (Fig. 6.4 center), another plot shows the
curve of overall margin versus L2 (Fig. 6.4 right). Of course, the user can select
any bar, to select any design variable or group of design variables, but the impact-
based ordering makes it easy for the user to focus on the most important variables.

The plot of overall margin versus L2 (Fig. 6.4 right) shows specific design
points as vertical lines. There is a vertical line for the initial design point, or to be
specific, the value of L2 in the initial design point. There is another vertical line
corresponding to the current design. This is the design point that the designer
changes in order to improve the overall margin. The user can interactively change

0%
Impact of design variable / group on margin

10% 20%

W3

User clicks the “L2" 
bar to show overall 
margin vs. L2

L2

Cc

W3,  

L1

initial design value
current design value

overall
margin

L3  

R2

W1

L3 L2

At first, the bar “current design” is on top of the
L9

for the on bar
for “initial design”.  When the user moves the bar for 
“current design” on the sweep plot, it updates L2 in the 
overall “current design” point.

Fig. 6.4 Conceptual example of an interactive design exploration interface. It addresses
complexity of several corners, several outputs, and several design variables/groups
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the current design value for L2 on this plot. We see how the user has moved it to a
new value away from the initial design, such that the overall margin is higher.

The conceptual user interface of Fig. 6.4 performs visual complexity reduction
in a targeted fashion:

• Reduces corner complexity by displaying worst-case margin and performance
across corners

• Reduces output complexity by compressing outputs into overall margin
• Reduces design variable complexity by displaying impacts using ordered bar

plots
• Relates ordered design variables to overall margin values; design variables

on the bar plot are selectable, and selecting one plots overall margin versus
design value

• Allows interactive design changes on sweep plots by moving the sweep plot’s
‘‘current design’’ vertical bar

6.4.2.4 Integrated Approach Design Flow

The last section introduced a concept for an interactive design exploration inter-
face (Fig. 6.4). It reduces the complexity of multiple corners, outputs, and design
variables and groups by focusing towards design variables and groups that have
high impact on the overall (worst-case) margin.

Given this interface, there is a simple flow for users to achieve designs with
high overall margin in a small amount of time, yet gaining a large degree of design
insight and maintaining full control. The user starts by changing the highest-
impacting variable or group to maximize margin. He then proceeds to the next
highest-impacting variable or group and changes it to maximize margin. He
repeats down the list of design variables or groups, until he is satisfied with the
overall margin.

There are many other possible flows. Off the baseline flow, the user may focus
on a specific area for more information, such as visualizing the response across
each corner, the response of any output, and the effect of any design variable; or
even deeper yet such as with viewing waveforms or operating point analysis. The
user does not need to follow the streamlined path focusing on the variables
impacting overall margin; for example he can focus on variables impacting a
single output, while still tracking the effect on other outputs.

6.5 Conclusion

This chapter explored three high-level approaches to front-end design, with
emphasis on device sizing in the context of an accurate corner-based design flow.
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We first discussed manual approaches, which are familiar to designers, support
variation-aware design, and most importantly, allow designers to maintain insight
and control over their circuits.

We then considered automated optimization approaches, which can improve
sizing turnaround time and help find optimal-quality designs, but compromise
insight and control.

Finally, we discussed the concept of an integrated approach, which starts with
manual design but adds a highly interactive design exploration interface. It
improves sizing turnaround time and helps find optimal-quality designs, yet helps
designers to build more insight into the design-performance relation and leaves full
control in the designer’s hands.
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Chapter 7
Conclusion

Variation-aware design can be both fast and accurate. The key is to be able to pair
an appropriate variation-aware methodology with the design situation. To do so
requires that designers are aware of the options available and have access to a suite
of powerful variation-aware tools in their toolboxes. This enables the designer to
choose the correct variation-aware approach for the job, whether it is to efficiently
achieve comprehensive PVT corner coverage, to design precisely for 3-sigma
statistical design, or to achieve true high-sigma statistical designs without
unnecessarily spinning silicon or over-margining. Being able to select and apply
an appropriate methodology is an important component of being able to deliver
competitive, high yield products reliably and on time.

This book presented a suite of variation-aware design methodologies and tools
proven to be effective through commercial application. The main topics include:

• Variation-aware design foundation: Chapter 1 reviewed some of the most
important concepts that form the basis for all variation-aware design. This
includes types of variables and variation, useful variation-aware design termi-
nology, and an overview and comparison of high-level design flows, including
the fast, accurate variation-aware design flow promoted by this book.

• Fast PVT corner extraction and verification: Chapter 2 described and com-
pared a suite of approaches and flows for PVT corner-driven design and veri-
fication. It then presented Fast PVT, a novel, confidence-driven global
optimization technique for PVT corner extraction and verification that is both
rapid and reliable.

• Primer on probabilities: Chapter 3 presented a visually-oriented overview of
probability density functions, Monte Carlo sampling, and yield estimation.
These concepts serve as a foundation for understanding statistical design
methods and for interpreting statistical results.

• 3-sigma statistical corner extraction and verification: Chapter 4 reviewed a
suite of methods used for 2-3 sigma statistical design. It then presented a novel
sigma-driven corners flow, which is a fast, accurate, and scalable method

T. McConaghy et al., Variation-Aware Design of Custom Integrated Circuits:
A Hands-on Field Guide, DOI: 10.1007/978-1-4614-2269-3_7,
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suitable for 2-3 sigma design and verification. Components of this flow include
Optimal Spread Sampling, sigma-driven corner extraction, fast and accurate
iterative design over 3r corners, and confidence-driven 3r verification.

• High-sigma statistical corner extraction and verification: Chapter 5 reviewed
and compared high-sigma design and verification techniques. It then presented a
novel technique for high-sigma statistical corner extraction and verification and
demonstrated its fast, accurate, scalable, and verifiable qualities across a variety
of applied cases. Last, it presented full PDF extraction and system-level analysis.

• Variation-aware design: Chapter 6 compared manual design, automated sizing,
and introduced an integrated approach to aid the sizing step in PVT, 3r sta-
tistical and high-sigma statistical design.

Semiconductor profitability hinges on high yield, competitive design perfor-
mance, and rapid time-to-market. For the designer, this translates to the need to
manage diverse variations and to reconcile yield with performance, all while under
intense time pressures.

This book is a field guide to show how to handle variation proactively, and to
understand the benefits of doing so. Ultimately, it is a distillation of successful and
not-so-successful ideas, of lessons learned, all geared towards delivering better
designs despite variation issues.
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