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Preface

In recent years, numerous variable-structure approaches have been developed for
the control of nonlinear dynamic systems and for the model-based estimation of
non-measurable states and parameters. These approaches typically make use of
first-order as well as higher order sliding mode techniques and related procedures
that are characterized by a variable-structure nature. One of their main advantages is
the inherent proof of asymptotic stability. This stability proof is either performed
offline during the corresponding controller and estimator design or online by the
real-time evaluation of a suitable candidate for a Lyapunov function.

The methodological framework for variable-structure control and estimation
approaches is quite well developed in the case of continuous-time and discrete-time
systems, for which process models are accurately known.

Nevertheless, research efforts are still necessary to make the corresponding pro-
cedures applicable when only worst-case bounds are available for specific parame-
ters. This type of uncertainty is often caused by non-negligible, however, inevitable
manufacturing tolerances. Moreover, significant stochastic disturbances—for
example, as a result of measurement noise—may act as further system inputs in many
practically relevant applications. To enhance robustness in such cases, it is possible to
combine variable-structure approaches with techniques which are for instance based
on interval analysis, stochastic differential equations, or linear matrix inequalities.

This book aims at presenting current research activities in the field of robust
variable-structure systems. The scope equally consists in highlighting novel
methodological aspects as well as in presenting the use of variable-structure tech-
niques in industrial applications including their implementation on hardware for
real-time control.

Besides variable-structure approaches for the design of feedback control strate-
gies and state estimation procedures, computational techniques for simulation—as
included in predictive controllers—robustness and stability analysis, as well as for
the identification of system models which are characterized by an inherent
variable-structure behavior are included. Such models may result from a mathe-
matical representation of state-dependent transitions between various state-space
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representations, for example, due to faults of selected system components or due to
different system models depending on the current operating conditions of the
considered system.

Rostock Andreas Rauh
January 2016 Luise Senkel
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Part I
Sliding Mode Control for Continuous and

Discrete-Time Systems

In the first part of this book, scientific works are presented which focus on solving
control tasks for nonlinear and uncertain dynamic systems by the application as well
as the novel development of sliding mode control techniques. In Chap. 1, Saif Sid-
dique Butt, Hao Sun, andHaraldAschemann describe a comparison of backstepping-
based sliding mode techniques and adaptive backstepping approaches for the design
of robust controllers of a twin rotor helicopter. In contrast to the continuous-time
design in the first chapter, Chap. 2 authored by Piotr Leśniewski and Andrzej Bar-
toszewicz deals with the robust, discrete-time congestion controller design for a sin-
gle virtual circuit in connection-oriented communication networks. Andreas Rauh
and Luise Senkel develop and implement novel interval methods for the robust slid-
ing mode control synthesis of high-temperature fuel cells. Besides the influence of
uncertain but bounded parameters and disturbances, the handling of state and input
constraints is explicitly addressed in this Chap. 3. Further methodological extensions
of interval-based sliding mode controllers are presented in Chap. 4 by Luise Senkel,
Andreas Rauh, and Harald Aschemann. It deals with the experimental and numerical
validation of a reliable sliding mode control strategy considering uncertainty with
the help of interval arithmetic in a real-time capable implementation.

http://dx.doi.org/10.1007/978-3-319-31539-3_1
http://dx.doi.org/10.1007/978-3-319-31539-3_2
http://dx.doi.org/10.1007/978-3-319-31539-3_3
http://dx.doi.org/10.1007/978-3-319-31539-3_4


Comparison of Backstepping-Based
Sliding Mode and Adaptive Backstepping
for a Robust Control of a Twin Rotor
Helicopter

Saif Siddique Butt, Hao Sun and Harald Aschemann

Abstract In this contribution, two robust MIMO backstepping control approaches
for a twin rotor aerodynamic system (TRAS) test-rig are considered. The TRAS rep-
resents a nonlinear system with significant couplings. A nonlinear multibody model
of the TRAS with lumped unknown disturbance torques is derived using Lagrange’s
equations. Herewith, both a backstepping-based sliding mode control and an adaptive
backstepping control are designed to track desired trajectories for the azimuth angle
and the pitch angle. An explicit expression is derived for the reaching time in the
case of the backstepping-based sliding mode control. In order to estimate immeasur-
able angular velocities and unknown disturbance torques for the backstepping-based
sliding mode control, a discrete-time extended Kalman filter (EKF) is employed.
For the adaptive backstepping, a robust sliding mode differentiator is used instead
to estimate the angular velocities. Moreover, in the adaptive backstepping control
approach, the disturbance compensation is realised with the help of additional adap-
tive control parts driven by the tracking errors of the controlled variables. The overall
stability of the proposed controllers in combination with the corresponding estima-
tor is investigated thoroughly by simulations. Furthermore, in order to validate the
proposed control schemes, experiments are performed on the dedicated test-rig and
a comparison of the two proposed control structures is provided as well.

S.S. Butt · H. Sun (B) · H. Aschemann
Chair of Mechatronics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock,
Germany
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1 Introduction

A twin rotor aerodynamic system (TRAS) with two degrees of freedom (DOF) devel-
oped by INTECO [10], Poland, is depicted in Fig. 1. It consists of a beam with two
propellers—the main and the tail propellers—at both ends of the beam, driven by DC
motors. The beam is pivoted in a cardanic joint and can rotate within confined regions
in the horizontal and vertical planes. These limitations arise due to the mechanical
construction of the test-rig. Two levers with counter-weights at their ends are fixed
to the beam at the pivot. The counter-weights determine the steady-state pitch angle
without propeller actuation. Two velocity sensors are coupled with the PWM-driven
DC motors for the main and tail rotors. Moreover, two incremental encoders are
directly mounted at the pivot point of the beam in order to measure the relative angle
of the beam. Based on the mechanical construction, the TRAS test-rig possesses
2-DOF. The first DOF characterises the horizontal rotation of the frame using the
azimuth angle, whereas the second one is given by the pitch angle describing the
inclination of the frame. In a real helicopter the aerodynamic force is adjusted by
changing the angle of attack. The TRAS, however, uses a changing angular velocity
for this purpose.

The 2-DOF helicopter system imposes challenging control problems due to its
given nonlinearities and significant couplings between both degrees of freedom. To
remedy such drawbacks and achieve satisfactory control performance for the accurate
tracking of desired trajectories for the azimuth and pitch angles, a control-oriented
model of the system is useful. In the past decade, several contributions related to
the modelling and experimental identification of similar 2-DOF helicopter set-ups
have been published [1, 2, 7, 18, 19]. The methods proposed therein correspond to
typical set-ups provided by different manufacturers, various model-based and

Fig. 1 TRAS test-rig at the
Chair of Mechatronics

tail rotor

main rotor

DC motor
with tacho

counter-weight

beam encoder
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artificial-intelligence-based methods, e.g. radial basis function, neural networks and
genetic algorithms. In [18], a complete mathematical description of the TRAS based
on the both the Newton–Euler approach and Lagrange’s equations is presented. How-
ever, the mechanical construction of the test set-up therein differs from the TRAS
test-rig used in this contribution. A complete mathematical description of the TRAS
set-up is derived in the form of a detailed ninth-order model in the work of [8].
Regarding the control of the TRAS, the authors performed a simulation study using
a nonlinear predictive control for the ninth-order system model. In [16], a feedback
linearising control scheme is presented for the pitch motion only. Therein, the yaw
position is not considered as a DOF. Lopez et al. [15, 17] proposed an H∞-controller
for the helicopter dynamics. In [4], a nonlinear control-oriented model of the TRAS
manufactured by INTECO along with a multi-variable flatness-based control scheme
has been proposed for TRAS. However, the influence of the mass moments of inertia
of the rotating beam on the kinetic energy of the system has not been addressed. For
the estimation of disturbance torques and unmeasured states, the authors employed
a discrete-time EKF. In [3, 5], a sliding mode and an integral sliding mode control
are considered, respectively, allowing to deal with couplings inherent in the twin
rotor dynamics. Following the idea of a cascaded control structure, it is suitable
to employ backstepping techniques for the control design. Both the design and the
implementation of the separate controllers are simplified in comparison to a central
control structure. Disturbances are taken into account by an adaptive backstepping
control approach. Although an adaptive control scheme based on backstepping con-
trol is already proposed in [11], the authors focus especially on the derivation of
adaptive control laws for a set of uncertain parameters within the pitch and the
azimuth dynamics. The adaptive backstepping control design guarantees global sta-
bilisation. Nevertheless, due to the large number of adaptive laws, the convergence
of the parameter estimates to their true values cannot be guaranteed. This may lead to
unrealistic values of the parameters [20]. One possible way to handle this situation is
to introduce a lumped disturbance term that represents the overall parameter uncer-
tainty and to design a parameter update law for this lumped disturbance. Therefore,
in the given contribution, the parameter uncertainty and the model uncertainty are
combined together as a lumped disturbance torque for each axis. As a result, the
adaptive laws are needed only for these lumped disturbance torques rather than for
the individual parameter uncertainty.

As mentioned earlier, the TRAS system is affected by parameter uncertainty due
to the limited knowledge of the true parameter values and unknown disturbances.
Hence, a robust way of controlling such a system is the application of variable
structure control techniques [23]. For this purpose, a backstepping-based sliding
mode control scheme is proposed and investigated as well. Although many significant
contributions are already available for the control design of the TRAS, a lot of
questions are worth further investigations. This in particular includes the analysis of
a damping term in the sliding mode control law concerning the reaching time. One
of the main contributions regarding the backstepping-based sliding mode control is
the derivation of the corresponding reaching time which—according to the best of
the authors knowledge—has not been addressed in previous works.
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This chapter is structured as follows: in Sect. 2, the mathematical description of
the nonlinear control-oriented model of the TRAS based on Lagrange’s equations
is presented. Based on the derived system model, two alternative control strategies
are described in Sect. 3: a backstepping-based sliding mode control and an adaptive
backstepping control. For each control strategy, the asymptotic stability is shown
by Lyapunov techniques. Moreover, the overall closed-loop error dynamics for each
control scheme emphasise the asymptotic stability. In Sect. 4, a discrete-time EKF
is designed to estimate the angular velocities as well as the unknown lumped distur-
bance torques, which are required for the backstepping-based sliding mode control
structure. For the adaptive backstepping control structure, a robust sliding mode dif-
ferentiator is proposed that provides estimates for the angular velocities. The imple-
mentation of the proposed two control strategies together with their corresponding
estimators are explained as well in this section. In Sect. 5, relevant simulation results
and experimental investigations from the TRAS test-rig are presented and discussed.
Finally, conclusions and outlook are provided in Sect. 6.

2 Control-Oriented Model of TRAS

Dynamic system modelling plays a key role in modern control engineering. For
a model-based control design, an accurate mathematical description of the system
dynamics is essential to improve the overall system performance. For the control-
oriented modelling of the TRAS an inertial reference frame is defined and the
dynamic model is derived using Lagrange’s equations.

The multibody system model for the TRAS consists of a beam, point masses
for the two rotors and point masses for the two counterbalances. The mathematical
analysis starts with assigning a right-hand coordinate system with the origin O placed
at the pivot point of the beam as depicted in Fig. 2. The pitch angle is denoted by ψ

and the azimuth angle is given by φ. The distance of the main rotor from the origin
O is characterised by the length lm , whereas the distance of the tail rotor from the
origin O is given by lt . The lumped masses corresponding to the main rotor and
the tail rotor are denoted by mm and mt , respectively. Moreover, lcw represents the
relevant length of the two levers with a lumped mass mcw as counter-weight at their
end. The propulsive forces acting on the main rotor and the tail rotor are denoted by
Fψ and Fφ , respectively. The corresponding position vectors rm for the main rotor
and rt for the tail rotor are given by

rm =
⎡
⎣
lm cos ψ cos φ

lm cos ψ sin φ

lm sin ψ

⎤
⎦ , rt =

⎡
⎣

−lt cos ψ cos φ

−lt cos ψ sin φ

−lt sin ψ

⎤
⎦ . (1)

Likewise, the position vectors rcw1 and rcw2 for the counter-weights result in
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Fig. 2 Free body diagram of
TRAS

rcw1 =
⎡
⎣

−lcw sin ψ sin φ

−lcw sin ψ cos φ

−lcw cos ψ

⎤
⎦ , rcw2 =

⎡
⎣
lcw sin ψ sin φ

lcw sin ψ cos φ

−lcw cos ψ

⎤
⎦ . (2)

The overall kinetic energy T of TRAS is determined with the help of velocity
vectors as well as the mass moments of inertia of the rotating beam. The kinetic
energy of the TRAS in terms of the generalised coordinates is expressed as

T = mm

2
ṙ2
m + mt

2
ṙ2
t + mcw

2
(ṙ2
cw1 + ṙ2

cw2) + 1

2
Jz φ̇

2 + 1

2
Jx ψ̇

2

= 1

2

(
(mml

2
m + mtl

2
t )(φ̇2 cos2 ψ + ψ̇2) + mcwl

2
cw(φ̇2 sin2 ψ + ψ̇2) + Jz φ̇

2 + Jx ψ̇
2
)

,

(3)

where the square of the velocity components along the corresponding axes are calcu-
lated using the standard vector dot product identity, i.e. ṙ2 = ṙT · ṙ. The parameters
Jx and Jz denote the moment of inertias of the rotating beam w.r.t. the body-fixed
x-axis and z-axis, respectively. Similarly, the overall potential energy U of the point
mass system is given as

U = g

(
(mmlm − mtlt ) sin(ψ) + 2mcwlcw(1 − cos(ψ))

)
+ 1

2
kφ φ2. (4)

Here, g is the gravitational constant. The parameter kφ is used to model the restoring
energy due to the elasticity in the cable. The Lagrangian of the system is defined as
the difference between the kinetic energy and the potential energy, i.e.

L = T −U.
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Finally, Lagrange’s equations including non-conservative forces result in [9]

d

dt

(
∂L

∂ q̇

)
− ∂L

∂q
= τq − ∂R

∂q̇
, q = {φ,ψ}, (5)

where τφ and τψ are torques along the azimuth and the pitch axes, respectively. The
Rayleigh dissipation function R is given by [9]

R = 1

2
cφ φ̇2 + 1

2
cψ ψ̇2. (6)

Substituting (3), (4) and (6) into (5), the equations of motion for the system become

Jφφ̈ = τφ + J φ̇ψ̇ sin(2ψ) − kφφ − cφφ̇, (7)

Jψψ̈ = τψ − g

[
(mmlm − mtlt ) cos ψ + 2mcwlcw sin ψ

]
−J

φ̇2

2
sin(2ψ) − cψψ̇,

(8)

with the following definition of the mass moments of inertia

Jφ = Jφ(ψ) = (mml
2
m + mtl

2
t ) cos2 ψ + 2mcwl

2
cw sin2 ψ + Jz, (9)

Jψ = mml
2
m + mtl

2
t + 2mcwl

2
cw + Jx , (10)

J = mml
2
m + mtl

2
t − 2mcwl

2
cw. (11)

The dynamics of the beam w.r.t. the pitch angle and azimuth angle is strongly nonlin-
ear and contains couplings. The torques τφ and τψ are combined in the input vector
u = [τφ τψ ]T , with

τφ = Fφlt cos ψ and τψ = Fψ lm . (12)

Here, Fψ and Fφ denote the propulsive forces provided by the main rotor and the tail
rotor, respectively. To handle the parameter uncertainty and unknown disturbances,
the model is extended with two lumped disturbance torques z = [zφ zψ ]T acting on
the azimuth and pitch axes, respectively. With the state vector x = [φ φ̇ ψ ψ̇]T ,
the extended nonlinear state-space model ẋ = f(x,u, z) becomes

⎡
⎢⎢⎣

φ

φ̇

ψ

ψ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇
1

Jφ

(
−cφφ̇ − kφφ + J φ̇ψ̇ sin(2ψ)

)
+ lt cos(ψ)

Jφ

Fφ + 1

Jφ

zφ

ψ̇

1

Jψ

(
−cψψ̇ − J

φ̇2

2
sin(2ψ) − g

(
(mmlm − mtlt ) cos ψ

+ 2mcwlcw sin ψ
)) + lm

Jψ

Fψ + 1

Jψ

zψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)
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These disturbance torques, on the one hand, account for parameter uncertainty. On the
other hand, the unmodelled effects due to the supply cables and gyroscopic torques
as well as the couplings caused by the tail rotor and the main rotor in the case of
angular accelerations of the propellers are encompassed by the lumped disturbance
torques.

For trajectory tracking, the azimuth angle and the pitch angle are chosen as con-
trolled outputs. The measurement vector ym is given by

ym(t) = [
φ ψ

]T
. (14)

The nonlinear control-oriented model given in (13) represents a control-affine sys-
tem. The system under consideration has matched uncertainties, since the unknown
disturbance torques appear in the span of the control input. The systematic procedure
of backstepping control design, however, allows to achieve global stabilisation under
the influence of both matched and mismatched uncertainties. Therefore, in order to
track desired trajectories robustly for the azimuth angle as well as the pitch angle,
backstepping-based sliding mode control and adaptive backstepping approaches are
proposed and investigated thoroughly.

3 Tracking Control Design for the TRAS

The aim of a robust control approach is to accurately track desired trajectories for both
the azimuth angle and the pitch angle despite the parameter uncertainty and unknown
disturbances. For this purpose, a comparison between two alternative robust nonlinear
control strategies based on backstepping techniques—a backstepping-based sliding
mode control and an adaptive backstepping control—is carried out. Generally, the
backstepping control design is based on a recursive procedure by systematically
choosing appropriate control Lyapunov functions, and the corresponding stabilising
functions [12]. In the case of backstepping-based sliding mode control, the lumped
disturbance torques along with the immeasurable angular velocities are estimated
with the help of an EKF. The adaptive backstepping control design, however, includes
a dynamic part that involves the derivation of nonlinear adaptive control laws for the
estimation of unknown lumped disturbance torques. Thereby, both the robust per-
formance and the trajectory tracking accuracy are improved. For the state estimation
within the adaptive backstepping control strategy, robust sliding mode differentiators
are employed for the estimation of the angular velocities. The asymptotic stability of
the closed-loop systems for both feedback control approaches is proved using Lya-
punov methods. Moreover, the stability of the overall control structures—involving
the corresponding estimators—is investigated thoroughly by simulations and exper-
iments. The detailed design procedures for both control techniques are presented in
the following subsections.
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3.1 Backstepping-Based Sliding Mode Control

A backstepping control design is generally carried out in a recursive fashion. The
backstepping-based sliding mode control law can be derived in the two following
steps:

Step 1:
Given the continuously differentiable reference signals of class C2 for the azimuth
angle φd and the pitch angle ψd , the tracking errors eφ and eψ corresponding to the
azimuth angle and the pitch angle, respectively, are defined as

eφ = φ − φd and eψ = ψ − ψd . (15)

Introducing a so-called virtual control input α = [αφ αψ ]T , which has to be chosen
properly, the time derivatives of the error dynamics are given by

ėφ = φ̇ − φ̇d = αφ + rφ − φ̇d ,

ėψ = ψ̇ − ψ̇d = αψ + rψ − ψ̇d ,
(16)

with

rφ = φ̇ − αφ and rψ = ψ̇ − αψ. (17)

The stabilising functions αφ and αψ are chosen as

αφ = −kφeφ + φ̇d , αψ = −kψeψ + ψ̇d , (18)

with the strictly positive coefficients kφ and kψ . This leads to the error dynamics

ėφ = −kφeφ + rφ, and ėψ = −kψeψ + rψ. (19)

Consider a quadratic control Lyapunov function V1 and its corresponding time deriv-
ative,

V1 = 1

2
e2
φ + 1

2
e2
ψ,

V̇1 = eφ ėφ + eψ ėψ = −kφe
2
φ + eφrφ − kψe

2
ψ + eψrψ, (20)

where eφrφ and eψrψ will be eliminated in the next step. After elimination, the time
derivative of the Lyapunov function is negative definite, i.e.

V̇1 = −kφe
2
φ − kψe

2
ψ < 0, (21)

hence, the asymptotic stability can be easily established.



Comparison of Backstepping-Based Sliding Mode and Adaptive … 11

Step 2:
Now, the error dynamics rφ and rψ are given by

ṙφ = φ̈ − α̇φ, and ṙψ = ψ̈ − α̇ψ . (22)

From (18) and (19), the following relationships can be obtained, i.e.

α̇φ = k2
φeφ − kφrφ + φ̈d , and α̇ψ = k2

ψeψ − kψrψ + ψ̈d , (23)

resulting in

ṙφ = f2(x) + lt cos(ψ)

Jφ

Fφ + 1

Jφ

zφ − k2
φeφ + kφrφ − φ̈d ,

ṙψ = f4(x) + lm
Jψ

Fψ + 1

Jψ

zψ − k2
ψeψ + kψrψ − ψ̈d ,

(24)

where the functions f2(x) and f4(x) are defined using the nonlinear control-oriented
model (13). They are given by

f2(x) = 1

Jφ

(
−cφφ̇ − kφφ + J φ̇ψ̇ sin(2ψ)

)
,

f4(x) = 1

Jψ

(
−cψψ̇ − J

φ̇2

2
sin(2ψ) − g

(
(mmlm − mtlt ) cos ψ + 2mcwlcw sin ψ

))
.

(25)

For the backstepping-based sliding mode control, sliding manifolds need to be
defined. Mathematically, the sliding manifolds are expressed as

sφ(x) = cφeφ + rφ , sψ(x) = cψeψ + rψ . (26)

Here, strictly positive coefficients ci > 0, i ∈ {φ,ψ}, are employed. The sliding
manifolds sφ(x) and sψ(x) correspond to the azimuth axis and the pitch axis, respec-
tively. The time derivatives of the sliding manifolds are given by

ṡφ(x) = cφ ėφ + ṙφ , ṡψ(x) = cψ ėψ + ṙψ . (27)

To ensure that the manifolds are reached in a finite period of time and that they are
independent of the initial conditions of the system, sufficient reaching conditions

si (x)ṡi (x) < 0,∀s(x) �= 0 , i ∈ {φ,ψ} , (28)

have to be fulfilled. A necessary condition for the existence of a sliding mode implies
that, ∀t ≥ tr the output trajectory should remain on the sliding surface, i.e., si (x) =
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ṡi (x) = 0. Here, tr denotes the finite reaching time. Hence, to achieve finite-time
convergence, the time derivatives of the Lyapunov functions 1/2 · s2

i (x), i ∈ {φ,ψ},
have to fulfil the following reaching conditions

si (x)ṡi (x) ≤ si (x)(−hi si (x) − ηi sgn(si (x))) < 0, hi > 0 and ηi > 0 , i ∈ {φ,ψ} .

(29)

The parameters ηi determine the switching height and guarantee that the time-
derivative of the Lyapunov functions become negative definite. The introduction
of the additional damping terms −hi si (x) together with the switching terms ensure
a shorter reaching time in comparison to the case where only the switching func-
tions are employed. A detailed mathematical derivation for the reaching condition
discussed at the end of this subsection highlights the effectiveness of the damping
term.

Define a Lyapunov function V2 along with its corresponding time differentiation
as

V2 = 1

2
e2
φ + 1

2
s2
φ + 1

2
e2
ψ + 1

2
s2
ψ,

V̇2(x) = eφ ėφ + sφ ṡφ︸ ︷︷ ︸
V̇φ

+ eψ ėψ + sψ ṡψ︸ ︷︷ ︸
V̇ψ

. (30)

In order to make the analysis simple, the time derivative of the control Lyapunov
function V2(x) is split into two parts, V̇φ and V̇ψ . Considering

V̇φ = eφ ėφ + sφ ṡφ, (31)

= eφ(−kφeφ + rφ) + sφ

(
cφ(−kφeφ + rφ) + ṙφ

)
, (32)

= eφ(−kφeφ + sφ − cφeφ) + sφ

(
cφ(−kφeφ + rφ) + ṙφ

)
, (33)

= −(kφ + cφ)e2
φ + sφ

(
eφ + cφ(−kφeφ + rφ) + f2(x) + lt cos(ψ)

Jφ

Fφ

+ 1

Jφ

zφ − k2
φeφ + kφrφ − φ̈d

)
. (34)

With the following choice of the control input Fφ , i.e.

Fφ =
(

−hφsφ − ηφ sgn(sφ) − eφ − cφ(−kφeφ + rφ) − f2(x) − 1

Jφ

zφ

+ k2
φeφ − kφrφ + φ̈d

)
Jφ

lt cos(ψ)
, (35)
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the time derivative of the Lyapunov function is negative definite

V̇φ = −(kφ + cφ)e2
φ − hφs

2
φ − ηφsφ sgn(sφ) < 0. (36)

It is worth mentioning that the singularity condition due to ψ = ±π/2 does not
arise in the real set-up which is fortunately outside the range of feasible pitch angles
because of the mechanical design of the test-rig.

Likewise, the control input Fψ for the main rotor can be determined based on the
design procedure already described in detail for the control input Fφ . Therefore, the
following expression is obtained for the Fψ , i.e.

Fψ =
(

−hψsψ − ηψ sgn(sψ) − eψ − cψ(−kψeψ + rψ) − f4(x) − 1

Jψ

zψ

+ k2
ψeψ − kψrψ + ψ̈d

)
Jψ

lm
. (37)

With this choice of the control input, the time derivative of the Lyapunov function
Vψ is

V̇ψ = −(kψ + cψ)e2
ψ − hψs

2
ψ − ηψsψ sgn(sψ) < 0. (38)

Hence, the time derivative of the control Lyapunov function from (30) can be rewrit-
ten as

V̇2(x) = −(kφ + cφ)e2
φ − hφs

2
φ − ηφ|sφ| − (kψ + cψ)e2

ψ − hψs
2
ψ − ηψ |sψ | < 0.

(39)

Since all the coefficients are positive, the time derivative of the Lyapunov function
remains negative definite. As a consequence, the asymptotic stability of the system
is guaranteed.

In order to proof a convergence in finite time to the sliding manifold, i.e. s(x) =
ṡ(x) = 0, a detailed mathematical analysis is provided in the following.

Proof of Finite Reaching Time

For brevity, only the sliding manifold regarding the azimuth angle is considered.
According to Lyapunov’s stability theory, the existence as well as the reaching con-
ditions for a sliding mode can be summarised as follows: if there exists a Lyapunov
function Vs,φ with a negative-definite time-derivative [12, 20], i.e.

Vs,φ = 1

2
s2
φ, (40)

V̇s,φ = sφ ṡφ < 0 for sφ �= 0, (41)

asymptotic stability can be ensured. To achieve finite-time convergence, however,
the time derivative of the Lyapunov function has to fulfil the following reaching
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condition

V̇s,φ = sφ ṡφ ≤ sφ

(
−hφsφ − ηφ sgn(sφ)

)
< 0. (42)

The parameter ηφ > 0 determines the switching height and guarantees that the time
derivative of the Lyapunov function becomes negative definite. Moreover, the intro-
duction of the damping constant hφ > 0 leads to fast finite-time convergence to the
sliding manifold as shown in the sequel. To determine the reaching time tr , inequal-
ity (42) can be rewritten in terms of Vs,φ as

V̇s,φ + 2hφVs,φ ≤ −√
2ηφ

√
Vs,φ. (43)

This inequality is in the form of a generalised Bernoulli’s differential equation and can
be easily transformed to a first-order linear non-autonomous differential equation.

Multiplying both sides of (43) with
1√
Vs,φ

leads to

1√
Vs,φ

V̇s,φ + 2hφ

√
Vs,φ ≤ −√

2ηφ. (44)

Applying the transformation

Ṽ = √
Vs,φ, (45)

leads to a first-order differential equation of the form

˙̃V + hφ Ṽ ≤ − ηφ√
2
. (46)

Keeping in mind that the initial value of Ṽ (t) at time t = 0 is Ṽ (0), the solution of
this non-homogeneous linear differential equation results in

Ṽ (t) ≤
(
Ṽ (0) + ηφ√

2hφ

)
exp−hφ t − ηφ√

2hφ

. (47)

Transforming back this solution in terms of the original Lyapunov function Vs,φ(t)
leads to

Vs,φ(t) ≤
[(√

Vs,φ(0) + ηφ√
2hφ

)
exp−hφ t − ηφ√

2hφ

]2

. (48)
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Consequently, Vs,φ(t) reaches zero in a finite time tr bounded by

tr ≤ 1

hφ

ln

[√
2hφ

ηφ

(√
Vs,φ(0) + ηφ√

2hφ

)]
. (49)

Here, it becomes obvious that the reaching time is proportional to the natural loga-
rithmic of the square root of the initial value, i.e.

√
Vs,φ(0). This is in contrast to the

case where only the switching term is employed and reaching time is proportional
to the square root of the initial value

√
Vs,φ(0) only [12, 20, 22]. Therefore, condi-

tion (43) guarantees a fast finite reaching time. The same procedure can be repeated
for the sliding manifold for the pitch axis and a finite reaching time can be guaran-
teed. It is worth mentioning that the reaching time condition is generally applicable
for all sliding mode control design techniques where the finite-time convergence is
achieved using a combination of a damping term with a switching term as already
introduced in (42).

After reaching the sliding surface si = 0, i ∈ {φ,ψ}, in finite time t < tr , the
closed-loop error dynamics of the azimuth axis and the pitch axes are governed by
the following set of state equations

[
ėi
ṙi

]
=

[ −ki 1
−1 + ki ci −ci

] [
ei
ri

]
. (50)

The characteristic polynomial of the error dynamics results in

pBS-SMC(s) = s2 + (ki + ci )s + 1, (51)

which satisfies Hurwitz’s stability criterion for strictly positive control gains ki > 0
and ci > 0. The eigenvalues of the closed-loop error dynamics during an ideal sliding
mode are, hence, located in the left half s-plane, thus the asymptotic stability of the
overall closed-loop system is guaranteed.

The sliding mode control suffers from the chattering phenomenon caused by fast
switching actions introduced by the sgn(s) function and may lead to the excitation of
unmodelled high-frequency dynamics. To counteract this effect, smooth switching
functions tanh(si/ε) with a strictly positive constant ε—representing a boundary
layer thickness—are utilised. The chattering reduction depends on the value of ε

at the cost of robustness. By using a large value for the boundary layer thickness
ε the reaching time increases. This is due to the fact that the control input within
the boundary thickness changes in a smooth way rather in a fast switching way.
Therefore, the boundary layer thickness should be carefully selected. A typical value
of ε 	 1 is chosen for the boundary layer thickness.



16 S.S. Butt et al.

3.2 Adaptive Backstepping Control Design

To compensate the unknown lumped disturbance torques zφ and zψ , appropriate
adaptive control laws are designed for their estimation. On choosing single integra-
tors as disturbance models, which proved advantageous in many applications, the
corresponding dynamics are governed by the following relationship

żφ = 0 and żψ = 0.

Note that the integrators are driven by the output errors in observer or filter schemes.
Using the recursive nature of the backstepping control, the design procedure for the
adaptive backstepping control for TRAS is performed in two steps.

Step 1:
For brevity, any derivations in this step are omitted because this step is similar to the
first step of the backstepping-based sliding mode control design scheme presented
in Sect. 3.1.

Step 2:
To stabilise rφ and rψ dynamics as well as to carry out the design of the adaptive
laws for the lumped disturbances, the Lyapunov candidate V2 and the corresponding
differentiation V̇2 w.r.t. time are considered

V2 = 1

2
e2
φ + 1

2
r2
φ + 1

2
z̃φΓ −1

φ z̃φ + 1

2
e2
ψ + 1

2
r2
ψ + 1

2
z̃ψΓ −1

ψ z̃ψ, (52)

V̇2 = eφ ėφ + rφ ṙφ + z̃φΓ −1
φ

˙̃zφ︸ ︷︷ ︸
V̇φ

+ eψ ėψ + rψ ṙψ + z̃ψΓ −1
ψ

˙̃zψ︸ ︷︷ ︸
V̇ψ

. (53)

The strictly positive parameters Γφ and Γψ represent the adaptation gains and deter-
mine the convergence speed of the estimated values to their true ones. In order to
derive the control law in a simpler way, expression (53) is split into two terms denoted
by V̇φ and V̇ψ . The estimation errors and the corresponding time derivatives of the
disturbance torques are given by

z̃φ = zφ − ẑφ, ˙̃zφ = żφ − ˙̂zφ = −˙̂zφ,

z̃ψ = zψ − ẑψ, ˙̃zψ = żψ − ˙̂zψ = −˙̂zψ.
(54)

Regarding the lumped disturbance torque of the azimuth axis, a thorough analysis
will be presented in the sequel for the derivation of the control law and the adaptive
law. Considering

V̇φ = eφ ėφ + rφ ṙφ + z̃φΓ −1
φ

˙̃zφ, (55)
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substituting (13), (24) and (54) into (55) leads to

V̇φ = eφ(−kφeφ + rφ) + rφ

(
f2(x) + lt cos(ψ)

Jφ

Fφ + 1

Jφ

zφ − k2
φeφ + kφrφ − φ̈d

)

− z̃φΓ −1
φ

˙̂zφ,

= −kφe
2
φ + rφ

(
eφ + f2(x) + lt cos(ψ)

Jφ

Fφ − k2
φeφ + kφrφ − φ̈d

)

+ zφ

(
1

Jφ

rφ − Γ −1
φ

˙̂zφ

)
+ ẑφΓ −1

φ
˙̂zφ. (56)

Now, the update law for the estimation of the disturbance torque zφ can be stated as

˙̂zφ = 1

Jφ

Γφrφ. (57)

Substituting back the parameter update law into (56) leads to

V̇φ = −kφe
2
φ + rφ

(
eφ + f2(x) + lt cos(ψ)

Jφ

Fφ − k2
φeφ + kφrφ − φ̈d + 1

Jφ

ẑφ

)

︸ ︷︷ ︸
−k̃φrφ

< 0.

(58)

For asymptotic stability, the Lyapunov function must be negative definite. This con-
dition is ensured by replacing the term within the bracket with −k̃φrφ with the strictly
positive control parameter k̃φ > 0. Therefore, the control law Fφ is given by

Fφ =
(

−(k̃φ + kφ)rφ − (1 − k2
φ)eφ − f2(x) − 1

Jφ

ẑφ + φ̈d

)
Jφ

lt cos(ψ)
. (59)

Similarly, based on the same guidelines provided above for the azimuth axis, the
control law for the pitch motion can be derived. Thus, the corresponding disturbance
torque update law, the time derivative of the Lyapunov function and the control input
are summarised as follows

˙̂zψ = 1

Jψ

Γψrψ. (60)

V̇ψ = −kψe
2
ψ + rψ

(
eψ + f4(x) + lm

Jψ

Fψ − k2
ψeψ + kψrψ − ψ̈d + 1

Jψ

ẑψ

)

︸ ︷︷ ︸
−k̃ψrψ

< 0,

(61)

Fψ =
(

−(k̃ψ + kψ)rψ − (1 − k2
ψ)eψ − f4(x) − 1

Jψ

ẑψ + ψ̈d

)
Jψ

lm
. (62)
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Subsequently, the time derivative of the Lyapunov function V2 is stated as

V̇2 = −kφe2
φ − k̃φr2

φ − kψe2
ψ − k̃ψr2

ψ < 0. (63)

With the choice of the positive control parameters, the time derivative of the control
Lyapunov function is negative definite, and the asymptotic stability of the overall
closed-loop system can be guaranteed.

The closed-loop error dynamics with respect to the azimuth axis and the pitch
axes are governed by the following set of state equations

⎡
⎣
ėi
ṙi˙̃zi

⎤
⎦ =

⎡
⎢⎢⎢⎣

−ki 1 0

−1 −k̃i
1

Ji
0 − 1

Ji
Γi 0

⎤
⎥⎥⎥⎦

⎡
⎣
ei
ri
z̃i

⎤
⎦ , (64)

with i ∈ {φ,ψ}. The characteristic polynomial for the error dynamics is given by

pABS = s3 + (ki + k̃i )s
2 +

(
1 + ki k̃i + 1

J 2
i

Γi

)
s + ki

J 2
i

Γi . (65)

Since the parameters ki , k̃i , Γi as well as the moment of inertia Ji are strictly positive,
the Hurwitz stability criterion is satisfied. Therefore, the eigenvalues of the closed-
loop error dynamics are located in the left half s-plane and the tracking error goes
asymptotically to zero. Here, the control gains ki , k̃i and Γi determine the convergence
rate. Using large control gains, it is possible to increase the decay rate; an asymptotic
convergence characteristic, however, is always present. In contrast to this fact, the
backstepping-based sliding mode control guarantees a finite-time convergence based
on the reaching condition.

4 State and Disturbance Estimation

As the backstepping-based sliding mode control laws (35) and (37) require the knowl-
edge of the immeasurable angular velocities as well as the unknown lumped distur-
bance torques, a discrete-time EKF is employed for the estimation tasks. In the case
of the adaptive backstepping control laws (59) and (62), the angular velocities are
estimated with the help of a robust sliding mode differentiator, whereas the distur-
bance torques are estimated using the corresponding adaptive laws. The discussion
in this section focusses on the implementation of both the EKF and the robust sliding
mode differentiator.
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4.1 Discrete-Time Extended Kalman Filter

For the estimation of the lumped disturbance torques, the integrator disturbance
models are introduced according to

żφ = 0, and żψ = 0. (66)

Note that these disturbance models are excited in the case of output errors between
the measured and the estimated output variables. The state vector of the extended
system representation results in

xe = [
φ φ̇ ψ ψ̇ zφ zψ

]T
, (67)

and the measurement vector becomes

ym = Cm,e xe =
[

1 0 0 0 0 0
0 0 1 0 0 0

]
xe. (68)

Given the continuous-time state equation of the extended system

ẋe = f(xe,u), (69)

an explicit Euler time discretization of (69) and an introduction of additive noise
processes lead to the following discrete-time state-space representation used for the
EKF design

xe,k+1 = xe,k + Tsfk(xe,k,uk)︸ ︷︷ ︸
ϕk (xe,k ,uk )

+wk, (70)

ym,k = Cm,exe,k + vk . (71)

Here, Ts denotes the sampling time, xe,k the extended state vector, uk the con-
trol input vector, and ym,k the measured output at discrete-time tk . Furthermore,
the process noise and the measurement noise are given by wk and vk , respectively.
Both are assumed to be zero-mean Gaussian white noise processes with zero cross-
correlation. The vanishing cross-correlation leads to diagonal covariance matrices
Qk andRk characterising the process noisewk and the measurement noise vk , respec-
tively. Figure 3 shows that the implementation of the discrete-time EKF can be
divided into two stages, namely a prediction stage and an innovation stage [21].
The error covariance matrix is denoted by Pk . The algorithm for the discrete-time
EKF can be summarised at each time tk as follows, cf. [21]:

• State prediction

x̃e,k+1 = ϕk(x̂e,k,uk) (72)
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Fig. 3 Implementation of
the discrete-time EKF

Fig. 4 Implementation
scheme of the
backstepping-based sliding
mode control in combination
with the discrete-time EKF

• Prediction of the error covariance matrix P̃k+1

P̃k+1 = Φk P̂kΦ
T
k + Qk , with Φk = ∂ϕk(xe,k,uk)

∂xe,k

∣∣
x̂e,k

(73)

• Update of the gain matrix L̃k+1

L̃k+1 = P̃k+1CT
m,e

(
Cm,eP̃k+1CT

m,e + Rk
)−1

(74)

• Update of the state vector x̂e,k+1

x̂e,k+1 = x̃e,k+1 + L̃k+1
(
ym,k+1 − Cm,ex̃e,k+1

)
(75)

• Update of the error covariance matrix for the next sampling interval

P̂k+1 = (
I − L̃k+1Cm,e

)
P̃k+1 (76)

The block diagram of the backstepping-based sliding control along with the EKF
in depicted in Fig. 4.
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4.2 Robust Sliding Mode Differentiator

The real differentiation using a DT1-system is sensitive to input noise. On the one
hand, choosing a low cut-off frequency reduces the negative impact of high-frequency
noise. On the other hand, it introduces a significant and undesired time delay. Accord-
ingly, a high cut-off frequency results in small time delay at the cost of high-frequency
noise in the output signal. This trade-off between noise and time delay in the estima-
tion of the angular velocities could even lead to instability [13]. For the estimation
of the angular velocities as required for implementation of the adaptive backstep-
ping control, Levant’s differentiator—based on a robust exact differentiation via
sliding mode techniques—is employed [6, 13, 14]. The exact derivatives are calcu-
lated by successive implementation of a robust exact first-order differentiator based
on a second-order sliding mode control. The finite-time convergence of this robust
differentiator is proved in [13]. Provided that γ is the maximum magnitude of the
measurement noise, the accuracy of the differentiator is proportional to γ 1/2 for the
second time-derivative of the applied signal. The design procedure for the estima-
tion of the exact differentiation of the angular velocity φ̇ is outlined in the following.
Consider the azimuth angle φ as a basis signal with the third time-derivative having
a known Lipschitz constant L . The robust sliding mode differentiator aiming at the
estimation of φ̇(t), φ̈(t) and

...
φ(t) is such a way that it is exact in the absence of

measurement noise. A second-order differentiator for the input φ with |...φ(t0)| ≤ L
according to [14] is given by

ż0 = ν0, ν0 = −3L1/3|z0 − φ|2/3 sgn(z0 − φ) + z1,

ż1 = ν1, ν1 = −1.5L1/2|z1 − ν0|1/2 sgn(z1 − ν0) + z2,

ż2 = −1.1L sgn(z2 − ν1),

(77)

with [z0 z1 z2]T = [φ̂ ˙̂
φ

¨̂
φ]T . Similarly, the angular velocity for the pitch angle can

be easily estimated using the robust sliding mode differentiation.
Figure 5 shows the implementation scheme of the controller in combination with

the robust sliding mode differentiator.
The closed-loop stability of the overall control structure consisting of the nonlinear

control techniques along with the estimators has been investigated thoroughly in
simulations.

5 Simulation and Experimental Results

In this section, the proposed backstepping-based sliding mode control (BS-SMC)
and the adaptive backstepping (ABS) control laws in combination with the EKF
and the robust state differentiators, respectively, are investigated by both simulations
and experimental evaluations. To guarantee realistic simulation results, the system
model is extended with measurement noise concerning the incremental encoders for
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Fig. 5 Implementation
scheme of the adaptive
backstepping control along
with the robust sliding mode
differentiator

the azimuth and pitch angles. The mechanical construction of the TRAS permits the
azimuth angle and the pitch angle to lie in the following regions

−3.2 rad ≤ φ ≤ 3.2 rad and − 1 rad ≤ ψ ≤ 1 rad.

The counter-weights have been adjusted in such a way that the initial inclination of the
pitch angle vanishes. Moreover, the initial azimuth angle is set to 0 rad. The nominal
parameter values for the mass moments of inertia, the restoring spring coefficients,
and the viscous damping are identified experimentally by means of a nonlinear least-
squares minimization based on the available measurement data. The control inputs
and the measurements are updated with a sample time of Ts = 5 ms. This small
sample time makes it possible to realise a quasi-continuous implementation of the
backstepping-based sliding mode control in combination with the discrete-time EKF
as depicted in Fig. 4. In previous studies like [3, 4, 11], either relatively slow tra-
jectories or step changes are considered for the azimuth angle as well as the pitch
angle. In this contribution, however, fast but feasible trajectories are employed. The
desired—three times continuously differentiable desired trajectories of class C3 for
the azimuth and the pitch angles are depicted in Fig. 6. In order to gain insight of the
contour of the two rotor aerodynamic system in a real 3D space, the time evolution
of the desired trajectories is illustrated in Fig. 7. It can be seen clearly that the chosen
combination of the desired trajectories leads to quite general operating scenarios for
the azimuth angle and the pitch angle. Herein, the starting point of the trajectory is
marked with a black point, whereas the end point is indicated by a grey point.

Since the backstepping-based sliding mode control technique requires a discrete-
time EKF for the estimation of immeasurable states and unknown disturbance
torques, the covariance matrix Qk , P0 and Rk needs to be properly initialized. The
covariance matrix Qk and the initial error covariance matrix P0 are chosen heuristi-
cally to achieve fast error convergence rate as well as to minimise the effect of process
noise on the estimates. Furthermore, the covariance matrix Rk corresponding to the
sensor noise is parametrised based on the standard deviation of the incremental
encoders. It is worth mentioning that the covariance matrices Qk and Rk remain
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Fig. 6 Desired trajectories for the azimuth angle and the pitch angle

Fig. 7 Representation of the desired trajectory for the pitch angle and the azimuth angle w.r.t. the
time t

constant irrespective of the time argument k. After thorough simulation studies, the
control algorithm can be directly implemented on the TRAS test-rig. Nevertheless,
the design parameters of the model-based controller have been slightly adjusted due
to the influence of the disturbance torques at the test-rig in order to further improve
the tracking performance.

To make a fair comparison between the aforementioned robust nonlinear control
strategies, two performance metrics are introduced—the mean absolute tracking error
eMAE as well as the root-mean-square (RMS) error eRMS, which are defined as

eMAE = 1

N

N∑
k=1

|e(k)|, and eRMS =
√√√√ 1

N

N∑
k=1

e2(k),

where N is the length of the measurement vector.
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5.1 Simulation Results

The system model (13) shows that the disturbances zq , q ∈ {φ,ψ} are acting on the
system. Hence, in the simulations analysis, the disturbance torque zq is modelled as
follows

zq = zq,nom − c f,q sgn(q̇d). (78)

Here, zq,nom represents a constant disturbance torque acting on the system during the
whole length of the simulation. Moreover, the Coulomb friction torque represents a
time-varying disturbance acting on the system.

The desired and simulated trajectories for the azimuth angle as well as the pitch
angle along with the corresponding tracking errors are shown in Fig. 8. The desired
and simulated trajectories for the azimuth angle and the pitch angle are in good agree-
ment during both the transient phase and the steady state for both nonlinear control
approaches, cf. Fig. 8a, b. The magnitude of the tracking errors during the transient
phase for the backstepping-based sliding mode control is smaller in comparison to
the adaptive backstepping control, see Fig. 8c, d. Moreover, an excellent tracking
behaviour is obtained during the steady-state phase, where the steady-state errors for
both nonlinear robust control techniques converge to zero. The control inputs for the

(a) (b)

(c) (d)

Fig. 8 Trajectory tracking for the azimuth angle and the pitch angle with the corresponding tracking
errors. a Trajectory tracking using BS-SMC. b Trajectory tracking using ABS. c Tracking error for
the azimuth angle. d Tracking error for the pitch angle
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(a) (b)

Fig. 9 Control inputs for the main rotor and the tail rotor. a Control inputs using BS-SMC. b
Control inputs using ABS

(a) (b)

Fig. 10 Estimated lumped disturbance torques acting along the azimuth axis and the pitch axis.
a Estimated disturbance torque along the azimuth axis. b Estimated disturbance torque along the
pitch axis

main rotor and the tail rotor provided by the backstepping-based sliding mode and
the adaptive backstepping strategies are depicted in Fig. 9.

Figure 10 illustrates the estimated disturbances for both the azimuth axis and
the pitch axis. It can be seen clearly that the convergence speed of the estimated
disturbances in the case of EKF is faster in comparison to the adaptive backstepping
control law. Nevertheless, increasing the adaptation gain parameters makes it possible
to achieve a faster convergence of the estimated disturbance to their true values.
However, this introduces oscillations around the steady-state values of the desired
disturbances, which in turns generates oscillatory control actions that could even
lead to instability. The oscillations in the control input for the adaptive backstepping
method can be seen easily in the corresponding figure, cf. Fig. 9b. Hence, an upper
limit on the choice of adaptation gain parameters must not be exceeded during the
experiments.

For a quantitative comparison between the control strategies, the performance
metrics described earlier are considered. The numerical evaluation according to mean
absolute error eMAE and root-mean-square error eRMS in case of the simulation studies
are listed in Table 1.
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Table 1 Evaluation criteria
for the robust nonlinear
control laws

Tracking error MAE in rad RMSE in rad

eφ (BS-SMC) 0.0033 0.0077

eφ (ABS) 0.0034 0.0078

eψ (BS-SMC) 0.0031 0.0066

eψ (ABS) 0.0038 0.0083

Regarding the tracking errors, it becomes obvious that the backstepping-based
sliding mode control outperforms the adaptive backstepping control. In order to
validate the simulation results, a thorough experimental study on a dedicated test-rig
at the Chair of Mechatronics is conducted as well.

5.2 Experimental Results

The control laws are implemented on the TRAS set-up with a sampling time of
Ts = 5 ms. The covariance matrices Qk , P0 and Rk are initialized with the same
values as in the simulation study. Moreover, an identical parameter value L is used
for the robust state differentiator in both the simulation and the experiment. The
trajectory tracking for the azimuth angle along with the tracking errors using both
robust nonlinear control techniques are shown in Fig. 11.

The desired and measured trajectories are in good agreement during both the
transient and steady-state phases, see Fig. 11a, b. Furthermore, it can be clearly seen
that a superior error convergence is obtained for the azimuth angle in the case of the
backstepping-based sliding mode controller.

The tracking errors shown in Fig. 11c, d illustrate the excellent performance of
the backstepping-based sliding mode control. Herein, the magnitude of the transient
tracking error and the steady-state error are smaller for the backstepping-based sliding
mode control as compared to the adaptive backstepping approach.

The corresponding control inputs for the main rotor and the tail rotor for both
robust control strategies are depicted in Fig. 12.

Figure 13 shows that the estimated disturbances both for the azimuth axis and
the pitch axis. The discrete-time EKF provides slightly smoother estimates for the
disturbance torques in comparison with the ones of the adaptive backstepping control
law.

The estimates for the angular velocities—using the EKF in combination with the
backstepping-based sliding mode control and the robust sliding mode differentiator
(RSMD) in combination with the adaptive backstepping control—are depicted in
Fig. 14. The estimates are of comparable magnitude and quality.

Likewise to the simulation studies, the experimental results are also assessed
based on the same evaluation criteria, namely the mean absolute error eMAE and
the root-mean-square error eRMS. A quantitative comparison of the nonlinear control
techniques is stated in Table 2.
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(a) (b)

(c) (d)

Fig. 11 Trajectory tracking for the azimuth angle and the pitch angle with the corresponding
tracking errors. a Trajectory tracking using BS-SMC. b Trajectory tracking using ABS. c Tracking
error for the azimuth angle. d Tracking error for the pitch angle

(a) (b)

Fig. 12 Control inputs for the main rotor and the tail rotor. a Control inputs using BS-SMC. b
Control inputs using ABS

Obviously, the backstepping-based sliding mode control leads to an improved
performance in terms of the tracking error as compared to the adaptive backstep-
ping control. Thus, the experimental results comply with the simulation results and
validate both control approaches.
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(a) (b)

Fig. 13 Estimated lumped disturbance torques acting along the azimuth axis and the pitch axis. a
Estimated torque along the azimuth axis. b Estimated torque along the pitch axis

(a) (b)

Fig. 14 Estimated angular velocities using EKF and robust sliding mode differentiator (RSMD).
a Angular velocity along the azimuth axis. b Angular velocity along the pitch axis

Table 2 Evaluation criteria for the robust nonlinear control laws

Tracking error MAE in rad RMSE in rad

eφ (BS-SMC) 0.0187 0.0258

eφ (ABS) 0.0260 0.0381

eψ (BS-SMC) 0.0113 0.0173

eψ (ABS) 0.0175 0.0245

6 Conclusions and Future Work

In this contribution, a nonlinear control-oriented model is proposed for the tracking
control design of a two rotor aerodynamic system (TRAS). The control-oriented
modelling is based on Lagrange’s equations. Two alternative nonlinear robust con-
trol approaches are investigated: a backstepping-based sliding mode control and
an adaptive backstepping control. To deal with immeasurable state variables and
unknown disturbances, a discrete-time EKF is employed in combination with
the backstepping-based sliding mode control, whereas, the adaptive backstepping
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control uses a robust sliding mode differentiator to estimate the angular velocities. In
the latter case, adaptive laws are derived to estimate the lumped disturbance torques
acting on the system. An important conclusion of this chapter is the derivation of
the reaching condition for the backstepping-based sliding mode control. For both
control approaches, the asymptotic stability of the overall closed-loop error dynam-
ics is proven by Hurwitz’s stability criterion. Moreover, both control structures are
thoroughly investigated by means of simulations regarding the achievable tracking
accuracy and the estimation quality. A successful experimental validation points out
that both proposed approaches allow for an excellent tracking of the desired trajecto-
ries. Nevertheless, the backstepping-based sliding mode control in combination with
a discrete-time EKF slightly outperforms the adaptive backstepping control during
both the transient and the steady-state phases. The nonlinear control methods pro-
posed in this contribution can be easily applied to a general class of control-affine
system under the influence of the lumped matched disturbance.

In future work, the robust backstepping-based sliding mode control will be com-
pared with higher order sliding mode controllers which can elegantly cope with
the chattering phenomena. Furthermore, a comparison with a robust model predic-
tive control strategy will be performed as well. From the control point of view, the
proposed control strategies will be investigated for the nonlinear systems under the
influence of both matched and mismatched lumped disturbances.
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Robust Congestion Controller for a Single
Virtual Circuit in Connection-Oriented
Communication Networks

Piotr Leśniewski and Andrzej Bartoszewicz

Abstract In this contribution, we consider the problem of data flow control for a
single virtual connection in communication networks. The connection is described by
the maximum link capacity, the non-negligible propagation delay and an unknown,
time-varyingdata loss rate.Wepropose adiscrete-time slidingmode controller,which
generates non-negative and upper bounded transmission rates. In addition, it ensures
that the queue length in the bottleneck link buffer is always limited. Moreover, with a
sufficiently large memory buffer in the bottleneck node, it guarantees full utilization
of the available bandwidth. The controller uses a dead-beat sliding hyperplane in
order to ensure fast response to unknown changes of the link capacity and to an
unpredictable data loss rate. However, if the straightforward dead-beat paradigm
was used, unacceptably large transmission rates would be generated. Therefore, we
use the reaching law approach in this chapter to decrease excessive magnitudes of
the control signal at the start of the control process.

1 Introduction

In connection-oriented communication networks, data units are almost never sent
directly from their source to their destination. Instead, theymust pass through a series
of intermediate nodes. When one of those nodes cannot pass on all of the received
data, due to the limited bandwidth of its outgoing link, a part of the incoming data
is stored in the memory buffer of this node, awaiting for later transmission. Such an
event is called a congestion. In order to minimize queueing delays and to maximize
throughput, congestion controllers must be applied [4–6, 15, 17, 19, 24, 26]. The
difficulty in the design of congestion control algorithms is caused by rapid changes of
the available bandwidth, unpredictable packet losses, and long propagation delays.
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When the congestion of a specific link is observed, an information must be sent to
all sources that are transmitting data using this link. However, the delivery of this
information is not instantaneous, but occurs after the feedback propagation delays.
Then data sources adjust their transmission rates in order to reduce the congestion.
The adjusted rates begin to affect the congested link after the propagation delay of
the sent data. Thus, in modern communication networks that are characterized by
time delays and large bandwidth the need for efficient data flow control algorithms
cannot be neglected.

Sliding mode control is a widely recognized methodology [8, 10, 25, 27, 29],
suitable for a large group of nonlinear, time-varying and uncertain systems. The
main advantages of sliding mode control are its high computational performance
and robustness [9]. This technique was first designed for continuous-time systems.
However, as an overwhelming majority of control algorithms are nowadays imple-
mented in digital hardware, discrete-time sliding mode control [1–3, 7, 11, 14, 18,
20, 23, 28, 31] is an interesting and up-to-date research field. The main concept
of sliding mode control is to force the representative point (state) of the system
from its initial position towards the sliding hyperplane. The period when the state
approaches the hyperplane is called the reaching phase. The controller should then
enforce a sliding mode, during which the representative point moves on (“slides”
along) the hyperplane or in its vicinity.

The first step in designing a sliding mode control is selecting the parameters of
the hyperplane so as to obtain the desired performance of the closed-loop system.
This can be done in various ways such as dead-beat design, quadratic optimization
or the pole placement method. Then, a controller that guarantees the convergence
to the hyperplane and the stability of the sliding mode is designed. There are two
approaches to solving this problem. The first one begins with proposing a control
law, and then proving, that the properties mentioned above are guaranteed when it
is applied. However, in this contribution we will use the other approach, which is
based on the reaching law. Using this approach, one first defines the desired evolu-
tion of the sliding variable. Then, the sliding mode control that enforces this evo-
lution is derived. This methodology was presented for continuous-time systems in
[12], and then extended to discrete-time systems in [13]. The approach presented
in [13] has then become quite popular among sliding mode control researchers
[14, 16, 21, 22, 30].

In this work, we design a discrete-time reaching law-based sliding mode conges-
tion controller for connection-oriented networks. During the design process, we take
into account not only unpredictable bandwidth changes and inevitable propagation
delays, but also time-varying transmission losses.

The remainder of this work is organized as follows. In Sect. 2we present themodel
of the virtual circuit. Then, we design the reaching law-based sliding mode control in
Sect. 3. In Sect. 4 we demonstrate and prove analytically the important properties of
the presented controller. Section5 contains the results of computer simulations, that
verify the performance of the controller. Finally, Sect. 6 comprises the conclusions
of this work.
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2 Network Model

Let us analyze a virtual circuit of a connection-oriented network. The circuit consists
of a data source, some intermediate nodes and a destination. Figure1 depicts the
scheme of the model. There is a single bottleneck in the considered network, and
a congestion controller is placed at the bottleneck node. This controller generates
a signal (denoted by u), that determines the transmission rate of the source. This
signal arrives at the source after the backward delay TB, and upon receiving it, the
source transmits the specified amount of data. The data are passed from node to node,
until, after the forward delay TF they reach the bottleneck node. Inevitably, during
transmission, some data packets are lost, and so only αu data arrive at the congested
node, where

0 < αmin ≤ α ≤ αmax ≤ 1. (1)

The round trip time (RTT), which is the delay between generating the control signal
and the requested data arrival at the bottleneck node, can be expressed as the sum of
the backward and forward propagation delays

RTT = TB + TF. (2)

We denote the discretization period by T , the bottleneck queue length at time kT
by y(kT ), and its demand value by yd. There are no data in the buffer before the
start of the control process, i.e. y(kT < 0) = 0. Furthermore, it is assumed that the
round trip time is a multiple of the discretization period, i.e. RT T = mT , where
m is a positive integer. Since the first data will arrive at the queue after RT T , then
y(kT ≤ RT T ) = 0.

The available bandwidth of the bottleneck link is modelled as an a priori unknown
non-negative function of time d(kT ). Only the maximum value of this function
denoted by dmax is known in advance. As sometimes the amount of data stored in
the bottleneck node can be insufficient to fully utilize the bandwidth, an additional
function h(kT ) representing the amount of data actually leaving the buffer at time
kT is introduced. Therefore,

Fig. 1 Network model
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0 ≤ h(kT ) ≤ d(kT ) ≤ dmax (3)

for any k ≥ 0.
We can represent the queue length as the difference between incoming and out-

going amounts of data, i.e.

y(kT ) = α

k−1∑
j=0

u( jT − RT T ) −
k−1∑
j=0

h( jT ) = α

k−m−1∑
j=0

u( jT ) −
k−1∑
j=0

h( jT ). (4)

The system can also be expressed using the standard state-space notation

x[(k + 1)T ] = Ax(kT ) + δAx(kT ) + bu(kT ) + oh(kT )

y(kT ) = rT x(kT ), (5)

where x(kT ) = [x1(kT ) x2(kT ) . . . xn(kT )]T is the state vector, y(kT ) = x1(kT )

represents the queue length, and the remaining state variables are the delayed values
of the control signal, i.e.

xi (kT ) = u[(k − n + i − 1)T ] (6)

for i = 2, . . . , n, where n = m + 1. In (5)A is a n × n state matrix and δA is a n × n
model uncertainty matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

1 αmax 0 0
0 0 1 · · · 0

...
. . .

...

0 0 0 · · · 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, δA =

⎡
⎢⎢⎢⎢⎢⎣

0 δα 0 0
0 0 0 · · · 0

...
. . .

...

0 0 0 · · · 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (7)

where δα ∈ [αmin − αmax, 0], and b, o, and r are the following n × 1 vectors

b =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

, o =

⎡
⎢⎢⎢⎢⎢⎣

−1
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎦

, r =

⎡
⎢⎢⎢⎢⎢⎣

1
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎦

. (8)

The desired state of the system is denoted by xd = [yd 0 · · · 0]T , where yd =
const. The model may represent a single virtual circuit in Asynchronous Transfer
Mode (ATM) or MultiProtocol Label Switching networks.
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3 Non-Switching Reaching Law-Based SM Controller

We now derive a non-switching reaching law-based sliding mode controller, and
apply it to the system described in the previous section. We start by choosing the
sliding variable as

s(kT ) = cT e(kT ), (9)

where

e(kT ) = xd − x(kT ) (10)

is the closed-loop control error. With this choice of the switching variable s the
equation s(kT ) = 0 determines the sliding hyperplane. The vector c is chosen so
that cTb �= 0 and the closed-loop system exhibits the desired performance.We select
the vector c so that the closed-loop system exhibits dead-beat dynamics to obtain
finite-time error convergence to zero.We begin by calculating the value of the sliding
variable in the next time instant. As we are interested in the poles of the closed-loop
system, we omit the disturbance and the modelling uncertainty terms. Using Eqs. (5)
and (9) we arrive at

s[(k + 1)T ] = cT [xd − Ax(kT ) − bu(kT )] . (11)

We find that the control signal that satisfies s[(k + 1)T ] = 0 is given by

u(kT ) = (
cTb

)−1
cT [xd − Ax(kT )] . (12)

Let us point out, that control signal (12) is calculated only to find the form of vector c
that ensures dead-beat dynamics in sliding mode. This signal is not used in the final
reaching law-based sliding mode controller. By substituting the control signal (12)
into (5) we obtain the closed-loop system matrix as

Ac = [
In − b(cTb)−1cT

]
A. (13)

The matrix Ac has the following characteristic polynomial

det (zIn − Ac) = zn + cn−1 − cn
cn

zn−1 + · · · + c2 − c3
cn

z2 + αmaxc1 − c2
cn

z. (14)

A discrete-time system is asymptotically stable if and only if all of its eigenvalues are
located inside the unit circle. Moreover, to obtain dead-beat performance all of the
eigenvalues must be located in the origin of the z-plane. Therefore, the characteristic
polynomial must have the following form
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det (zIn − Ac) = kzn, (15)

where k is an arbitrary constant. We find that (14) simplifies to (15) when the fol-
lowing vector c is chosen

c =
[

1

αmax
1 1 · · · 1

]T

. (16)

The aim of the controller is to decrease the absolute value of the switching variable
until it reaches a band around s(kT ) = 0, which is further called the quasi-sliding
band. After entering this band, the switching variable should never leave it again.
Contrary to some previous works [13], in the chosen definition of the quasi-sliding
mode, crossing the hyperplane is allowed but not necessary. As it will be demon-
strated later, this modification allows us to eliminate the undesirable phenomenon of
chattering.

After determining the appropriate sliding hyperplane coefficientswe nowconsider
the following reaching law, which describes the desired evolution of the sliding
variable

s[(k + 1)T ] = {1 − q[s(kT )]}s(kT ) − F̃(kT ) − S̃(kT ) + F1, (17)

where

S̃(kT ) = cT δAx(kT ) = δαx2(kT )

αmax
(18)

is the impact of the model uncertainty (the unknown and time-varying transmission
losses). Function

F̃(kT ) = cT oh(kT ) = −h(kT )

αmax
(19)

represents the influence of the disturbance (in our case the outgoing flow of data) on
the sliding variable. The term

F1 = − dmax

2αmax
(20)

is employed to compensate for the mean value of F̃(kT ). The term
S1 = SU+SL

2 (where SU and SL are the upper and lower bounds of S̃(kT )), used
in some earlier works [13] to compensate for the mean value of the model uncer-
tainty, could lead to generating negative control signals. As in the considered system
this is not feasible, we discard this term. The variable convergence rate q[s(kT )] is
given by

q[s(kT )] = s0
s0 + |s(kT )| , (21)
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where

s0 >
dmax(2αmax − αmin)

2αmaxαmin
(22)

is a design parameter, that must satisfy the above inequality in order to ensure the
convergence to the vicinity of the sliding hyperplane. This is another modification of
the reaching law developed by Gao et al. [13] as in their work the parameter q was
constant. As we can observe from (21), the parameter q[s(kT )] decreases with the
increase of |s(kT )|. Therefore, the value of the control signal needed to ensure the
desired sliding variable evolution (17) will not change so dramatically for different
absolute values of the sliding variable. This allows us to find a better compromise
between acceptable control signal values when |s(kT )| is large and fast convergence
in the vicinity of the sliding hyperplane.

We now calculate the control signal that makes the sliding variable actually evolve
according to (17). We will start by using (5) to rewrite (9) as

s[(k + 1)T ] = cT xd − cT [Ax(kT ) + δAx(kT ) + bu(kT ) + oh(kT )] . (23)

By comparing the right-hand sides of (17) and (23) we obtain

u(kT ) = (cTb)−1

{
q[s(kT )]s(kT ) + dmax

2αmax
− cT (A − In)x(kT )

}
. (24)

We notice, that by choosing c according to (16), we have obtained

cT (A − In) = [0 . . . 0]. (25)

Using (8), (16), (21) and (25) we can rewrite (24) as

u(kT ) = s0s(kT )

s0 + |s(kT )| + dmax

2αmax
. (26)

In this way, we have completed the design of the reaching law-based sliding mode
congestion controller. It will be shown in the next section that control strategy (26)
as opposed to (12) ensures upper bounded transmission data rates, which is a highly
desirable property in the application considered in this chapter.

4 Properties of the System

In this section we demonstrate that the application of the proposed controller guar-
antees several important properties of the considered system.
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Theorem 1 The sliding variable satisfies

s(kT ) ≥ − dmaxs0
2αmaxs0 − dmax

(27)

for all k ≥ 0.

Proof The sliding variable in the initial time instant is equal to yd/αmax, and thus
satisfies (27). Therefore, in order to prove the theorem, it is sufficient to demonstrate
that if (27) holds for every k ≤ l, then it also holds for k = l + 1.

We observe from (26) that the control signal value always increases with the
increase of s(kT ). Therefore, substituting the right-hand side of (27) into (26), we
observe, that u(kT ) ≥ 0 for all k ≤ l. This in turn implies that S̃(kT ) ≤ 0 for all
k ≤ l. Moreover, we observe from (19) that F̃(kT ) ≤ 0 for all k ≥ 0.

Substituting the right-hand side of (27) and the worst-case scenario values
F̃(kT ) = 0, S̃(kT ) = 0 into (17), we notice that indeed if (27) holds for all k ≤ l
then it must also hold for k = l + 1. Using this observation and the principle of
mathematical induction we conclude, that (27) will hold for all k ≥ 0.

Since (27) holds for all k ≥ 0 then, following the reasoning from Theorem1, the
control signal is always non-negative. In the next theorem we show that this control
signal is also upper bounded by an a priori known value. As the amount of data sent
by the source during a single discretization period is limited by the capacity of the
outgoing link (and obviously cannot be negative) both of these properties are crucial
for applying the flow controller in a real network.

Theorem 2 The control signal satisfies the inequality

u(kT ) ≤ yds0
s0αmax + yd

+ dmax

2αmax
(28)

for any k ≥ 0.

Proof The outgoing amount of data h(kT ) is defined in such a way that x1(kT ) ≥ 0
for any k ≥ 0. Furthermore, since the control signal is always non-negative, then
we notice from (6) that xi (kT ) ≥ 0 for i = 2, . . . , n and all k ≥ 0. Using these
observations together with (9) and (16), we see that the sliding variable cannot exceed
its initial value, i.e.

s(kT ) ≤ yd
αmax

(29)

for all k ≥ 0. As already stated the control signal always increases with the increase
of s(kT ). Therefore, by substituting the right-hand side of inequality (29) into (26)
we obtain the greatest possible value of u(kT ) and find that (28) indeed holds.
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Theorem 3 Once the inequality

s(kT ) ≤
s0

[
(αmax − αmin)

(
yds0

s0αmax+yd
+ dmax

2αmax

)
+ dmax

2

]

αmaxs0 −
[
(αmax − αmin)

(
yds0

s0αmax+yd
+ dmax

2αmax

)
+ dmax

2

] (30)

is satisfied, it remains true for the remainder of the control process.

Proof As x2(kT ) is a delayed value of the control signal, using (28) with (18) we
get

S̃(kT ) ≥ αmin − αmax

αmax

(
yds0

s0αmax + yd
+ dmax

2αmax

)
(31)

for all k ≥ 0. Furthermore, we notice from (19) that

F̃(kT ) ≥ − dmax

αmax
(32)

also for all k ≥ 0.
Substituting these lower bounds of S̃(kT ) and F̃(kT ) and the right-hand side of

inequality (30) into (26), we conclude that indeed once (30) holds, it will remain true
for the remainder of the control process.

Remark 1 Taking into account the results of Theorems1 and 3, we observe that the
sliding variable will converge to the quasi-sliding mode band defined by

−dmaxs0
2αmaxs0 − dmax

≤ s(kT )

≤
s0

[
(αmax − αmin)

(
yds0

s0αmax+yd
+ dmax

2αmax

)
+ dmax

2

]

αmaxs0 −
[
(αmax − αmin)

(
yds0

s0αmax+yd
+ dmax

2αmax

)
+ dmax

2

] , (33)

and after entering it, it will never leave it again.

Buffer overflows occur when the incoming data and the current amount of stored
data exceed the buffer capacity of the congested node. As this event leads to data
losses and causes the need for retransmission, it is highly undesirable in communi-
cation networks. In the next theorem we determine the size, which the queue length
at the bottleneck node will never exceed. If the buffer capacity is equal to or greater
than this value, then there is no risk of buffer overflows.

Theorem 4 The queue length never exceeds the following value

y(kT ) ≤ yd + dmaxs0
2s0 − dmax/αmax

. (34)
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Proof Using (9) we can rewrite (27) as

y(kT ) ≤ yd + dmaxs0
2s0 − dmax/αmax

− αmax

n∑
i=2

xi (kT ). (35)

All of the state variables, except for the first one are the delayed values of the
control signal. As already demonstrated, the control signal is always non-negative,
therefore (35) implies (34).

In order for the flow control algorithm to be efficient, it should result in the greatest
throughput that is possible in the network. In Theorem5, we calculate the smallest
value of the demand queue length that guarantees, that the queue length remains
always strictly positive, after the first data reach it. This property corresponds to
100% utilization of the available bandwidth.

Theorem 5 If the demand queue length satisfies

yd >
αmaxs0dmax(2αmax − αmin)

2αmaxαmins0 − dmax(2αmax − αmin)
+ αmaxdmax(n − 1)

αmin
, (36)

then the queue length will be strictly positive for any k ≥ n.

Proof To keep the notation clear, we introduce

θ = 2αmax − αmin

2αmaxαmin
. (37)

In the proof we will consider two possible ranges of the sliding variable separately

Case 1 If

s[(k − n + 1)T ] >
s0dmaxθ

s0 − dmaxθ
, (38)

then the queue length for any k ≥ n − 1 can be calculated, using (4) as

y[(k + 1)T ] = y(kT ) + αu[(k − n + 1)T ] − h(kT )

≥ y(kT ) + αmin

[
s0s[(k − n + 1)T ]

s0 + |s[(k − n + 1)T ]| + dmax

2αmax

]
− dmax. (39)

The expression in square brackets in (39) always increases with the increase of
s[(k − n + 1)T ]. Therefore, substituting (38) we get

y[(k + 1)T ] > (s0 − dmaxθ)
dmaxθ

s0 − dmaxθ
+ dmax

2αmax

+ y(kT ) − dmax = y(kT ) + dmax − dmax ≥ 0. (40)
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Case 2 On the other hand, if

s[(k − n + 1)T ] ≤ s0dmaxθ

s0 − dmaxθ
, (41)

then the queue length for k ≥ n − 1 can be expressed as

y[(k + 1)T ] = y[(k − n + 1)T ] + α

n∑
i=2

xi [(k − n + 1)T ] −
k∑

i=k−n

h(iT )

≥ y[(k − n + 1)T ] + αmin

n∑
i=2

xi [(k − n + 1)T ] − (n − 1)dmax.

(42)

Furthermore, we obtain from (9) and (16) that

s(kT ) = yd
αmax

− y(kT )

αmax
−

n∑
i=2

xi (kT ). (43)

Multiplying both sides of (43) by αmin and rearranging the terms one obtains

αminy(kT )

αmax
+ αmin

n∑
i=2

xi (kT ) = αminyd
αmax

− αmins(kT ). (44)

As αmin/αmax ≤ 1, and the queue length cannot be negative, we can observe, that

y(kT ) + αmin

n∑
i=2

xi (kT ) ≥ αminyd
αmax

− αmins(kT ). (45)

Substituting (45) and (41) into (42), we get

y[(k + 1)T ] ≥ αminyd
αmax

− αmin
s0dmaxθ

s0 − dmaxθ
. (46)

We find, that if (36) holds, then the right-hand side of the above inequality is always
strictly positive. This conclusion, together with the result of Case 1 finalizes the
proof.

5 Simulation Results

To verify the properties of the proposed control strategy, computer simulations were
performed. The round trip time RT T =12ms and the discretization period T = 1ms.
Therefore,m = 12 and n = 13. The packet loss ratio is bounded by αmin = 0.82 and
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αmax = 0.96, and the actual transient of the loss ratio is depicted in Fig. 2. The
parameter dmax = 40 kb and the available bandwidth chosen for the simulation is
shown in Fig. 3. Both of the unpredictable functions exhibit rapid changes between
small and large values which correspond to the most difficult conditions that could
arise in the system. Note that we have taken into account both of the worst-case
scenario combinations, namely
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• d(kT ) is close to its maximum value, while α is close to minimum between 0.05
and 0.15 s

• d(kT ) is close to its minimum value, while α is close to maximum between 0.15
and 0.2 s.

Let us point out that irrespective of the chosen control algorithm, the upper bound
of the transmission rate of the data source must satisfy

umax ≥ dmax

αmin
(47)

in order to fully utilize the available bandwidth of the bottleneck node. This can be
observed as follows: imagine a situation, in which the available bandwidth is equal
to dmax, and the transmission loss parameter to αmin. Generating a constant control
signal, that would be smaller then the right-hand side of (47) would result in less
data arriving at the buffer, then leaving it in every discretization period. In this way,
the buffer would become empty after some time, and the available bandwidth would
not be fully utilized.

The choice of controller parameters yd and s0 will now be considered. The gener-
ated control signal will never exceed the right-hand side of inequality (28). As this
signal is upper bounded by umax we obtain the following condition on the controller
parameters

yds0
s0αmax + yd

≤ umax − dmax

2αmax
. (48)

The expression s0αmax + yd is always positive, therefore it follows from (48) that

yd

(
s0 − umax + dmax

2αmax

)
≤

(
umax − dmax

2αmax

)
s0αmax. (49)

Depending on the choice of s0, the term s0 − umax + dmax
2αmax

can be positive, negative
or equal to zero. We will now analyze these three cases separately.

Case 1 If

s0 > umax + dmax

2αmax
, (50)

then it follows from (49) that parameter yd must satisfy

yd ≤
(
umax − dmax

2αmax

)
s0αmax

s0 − umax + dmax
2αmax

(51)

so that the control signal will never exceed umax.
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Case 2 If

s0 < umax + dmax

2αmax
, (52)

then parameter yd must satisfy

yd ≥
(
umax − dmax

2αmax

)
s0αmax

s0 − umax + dmax
2αmax

(53)

so that the maximum value of the control signal will not exceed umax. It is easy to
observe using (47) and (52), that the right-hand side of inequality (53) is strictly
negative. Therefore, any positive value of the demand queue length yd satisfies this
inequality.

Case 3 We now consider

s0 = umax + dmax

2αmax
. (54)

Using (47) we notice that the right-hand side of (49) is strictly positive. Therefore,
for s0 given by (54) any value of yd ensures that the control signal will not exceed
umax.

To sumup the three cases: for all s0 ≤ umax + dmax
2αmax

any positive value of yd ensures

that the control signal will not exceed umax. On the other hand, if s0 > umax + dmax
2αmax

,
then the demand queue length yd must be selected according to (51).

It is assumed that the source can send a maximum of 54kb of data in a single
discretization period. Moreover, inequality (36) must be satisfied to achieve full
bandwidth utilization. The choice of parameters s0 and yd is depicted in Figs. 4 and
5. The dashed black line in Fig. 4 corresponds to s0 = umax + dmax

2αmax
. In both figures

the solid black line reflects the smallest yd that satisfies condition (36), while the
dotted black line represents the greatest value of yd that for a given s0 ensures, that
the control signal will not exceed umax = 54kb. Therefore, to achieve maximum
throughput and at the same time not exceed the data source capabilities, one should
select a combination of parameters that is below the dotted black line and above the
solid black one. The set of admissible parameter combinations is marked in grey. The
last question is which particular point from this set should be chosen. It is clear from
inequality (34) that the maximum bottleneck buffer queue length decreases with the
increase of s0 and decrease of yd. Therefore, to reduce memory requirements, one
should select the combination of parameters that is close to the intersection of the
solid and dotted lines. Motivated by this reasoning, we have selected s0 = 34.72 kb
and yd = 710 kb.

The results of the simulation are shown in Figs. 6, 7 and 8. Figure6 shows the
control signal. As predicted byTheorems1 and 2, it never exceeds 54kb and is always
non-negative. Furthermore, when comparing Figs. 3 and 6 we observe, that although
the control signal tracks the value of the available bandwidth, the rapid changes have
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been smoothed out, which is advantageous for the general transmission efficiency
in the network. The bottleneck queue length is shown in Fig. 7. It never exceeds the
value of 760kb predicted by Theorem4 and as shown in Theorem5, after the first data
reach it, it never drops to zero. Therefore, the risk of buffer overflow is eliminated
and full utilization of the available bandwidth is guaranteed. Figure8 depicts the
evolution of the sliding variable. As predicted by Theorem1 it is always greater
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Fig. 7 Bottleneck node queue length

than −52.08kb, and as demonstrated in Theorem3 once it drops below 370kb it
never exceeds this value again.

In the second simulation scenario the available memory capacity at the bottleneck
node is insufficient to enable full bandwidth utilization. The buffer capacity is ymax =
620kb. Therefore, in order to prevent buffer overflows, we have to select such values
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of yd and s0 that the right-hand side of inequality (34) does not exceed ymax. This
corresponds to satisfying the following condition

yd ≤ ymax − dmaxs0
2s0 − dmax

/
αmax

(55)

The choice of parameters for this simulation scenario is presented in Fig. 9. As
in the previous case, the dotted black line represents the greatest value of yd that
prevents from exceeding the admissible control signal range, and the solid black line
corresponds to the smallest values of yd that satisfy condition (36). Moreover, the
dashed black line corresponds to points in which the right-hand side of (55) is equal
to the left-hand side of this inequality. Therefore, one should select parameter values
that are below this line to eliminate the risk of buffer overflows. As we can observe
from Fig. 9 it is impossible to select a combination of parameters which satisfies all
the three requirements at the same time, namely there are no points that are at the
same time below both the dotted black line and the dashed black line and above
the solid black line. Therefore, in order to prevent buffer overflows, we select the
intersection of the dashed line with the dotted black line. In this way we fully utilize
the available control signal range without exceeding it. The risk of buffer overflows
is also eliminated. However, as this intersection point lies below the solid black line,
we do not obtain full utilization of the available bandwidth. This will be apparent in
the simulation results.

The results of simulations are shown in Figs. 10, 11, 12 and 13. Figure10 depicts
the control signal,which again is always non-negative and never exceeds the available
value of 54kb.When compared to the previous scenario, we observe, that the changes
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Fig. 10 Control signal for the reduced bottleneck node memory capacity

of the control signal are slightly more rapid. This is due to the fact, that the smaller
availablememory capacity can be used to smooth the changes in bandwidth to a lesser
extent. The bottleneck node queue length is shown in Fig. 11. It never exceeds the
value of 620kb predicted by Theorem4, but in contrast to the previous case, because
of the insufficient memory capacity, at some times the queue is empty. When this
occurs, the available bandwidth is not fully utilized, and we depict the unused part
of the bandwidth in Fig. 12. The unused bandwidth at the start of the control process
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Fig. 12 Unused bandwidth for the reduced bottleneck node memory capacity

occurs before the first data arrive at the bottleneck node, and therefore cannot be
eliminated by any control strategy. As we can notice from Fig. 12 the bandwidth
after the first round trip time passes is still utilized fairly well, despite the limited
buffer size. Figure13 shows the evolution of the sliding variable. Again, as predicted
in Sect. 4, it never drops below −51.14kb and once it gets smaller than 328kb it
never exceeds this value again.
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Fig. 13 Sliding variable evolution for the reduced bottleneck node memory capacity

6 Conclusions

In this chapterwehavepresented a robust slidingmode control strategy for congestion
control of a single virtual circuit in connection-oriented communication networks.
We have applied the reaching law methodology and the dead-beat control technique
in designing the control law. The presented controller enforces a chattering free quasi-
sliding mode. Furthermore, it eliminates the risk of data losses, and can ensure full
utilization of the bottleneck link bandwidth, in spite of rapid, unpredictable changes
of the transmission loss rate and the available bandwidth. In our future work we will
extend the presented approach to the case of multisource data transmission networks
with varying time delays.
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Interval Methods for Robust Sliding Mode
Control Synthesis of High-Temperature
Fuel Cells with State and Input Constraints

Andreas Rauh and Luise Senkel

Abstract Fuel cell systems provide a way to produce electric energy in future
decentralized power supply grids. In the case of using high-temperature fuel cells, it
becomes possible to exploit not only the provided electric power but also the process
heat in order to maximize the overall system efficiency. However, the efficiency
maximization goes along with a high flexibility with respect to temporal variations
of the electric power that is demanded by corresponding consumers. Such power
variations impose restrictions on intelligent fuel cell control systems. Such control
strategies do not only have to make sure that the supplied fuel gas (typically hydro-
gen and mixtures with methane or carbon monoxide) is stoichiometrically balanced
with the demanded electric power. It is also inevitable to control the fuel cell itself
from a thermodynamic point of view. This control has to make sure that sufficiently
smooth temperature trajectories can be tracked during the heating phase of the sys-
tem and that a priori unknown but bounded disturbances are robustly compensated
at high-temperature operating points. For this purpose, interval-based sliding mode
control procedures can be implemented. This contribution gives an overview of how
interval methods can be combined with the fundamental sliding mode methodology
in a variable-structure control synthesis. The efficiency of the presented methods is
highlighted for the control of solid oxide fuel cells in various simulations.

1 Introduction

The control of nonlinear dynamic systems is an important topic for many practi-
cal applications. Especially, in cases in which dynamic system models are signif-
icantly influenced by uncertain parameters and bounded (additive) uncertainty, it
is challenging to determine feedback control procedures that reliably stabilize the
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system dynamics and—at the same time—guarantee that specific state constraints
are not violated. As mentioned in the abstract of this contribution, the control of
high-temperature solid oxide fuel cell systems (SOFC systems) belongs to this class
of applications.

As shown in previous work, it is possible to use interval arithmetic techniques
for the implementation of feedback controllers that can be applied in real time
[19–27, 29]. On the one hand, these controllers have to fulfill the requirement of
robustness against bounded uncertainty and disturbances. On the other hand, the
asymptotic stability of the dynamics of the overall closed-loop control structure has
to be shown in a guaranteed way. The basic idea of the chosen control structure is
motivated by the principle of sliding mode control [31, 32, 36, 37].

In classical sliding mode techniques, so-called equivalent control strategies are
determined for the exact tracking of sufficiently smooth reference trajectories. These
equivalent controllers represent the control for states located exactly on the sliding
surface, which serves as a specification of the desired closed-loop system dynamics.
State values which are not (exactly) located on this sliding surface are forced to
converge toward it using a variable-structure control approach. The amplitude of this
variable-structure control component is usually selected as a constant in such a way
that the influence of uncertain parameters is overcompensated. However, the choice
of such constant variable-structure gains may have the drawback of unnecessarily
large chattering phenomena. Such chattering should be reduced as far as possible for
practical applications to avoid the associated non-advantageous actuator wear and
energy consumption [19].

In contrast to classical sliding mode approaches, the fundamental idea of interval-
based sliding mode control is the online adaptation of the variable-structure control
component with respect to both the current uncertain system state and uncertain
parameters, cf. [19, 23, 29]. This computation can be performed in real time using
software libraries for basic interval functionalities. For this purpose, the calculation of
the control signal is implemented in such away that asymptotic stability of the closed-
loop control system can be shown using suitable candidates for Lyapunov functions.
Such candidates were so far investigated for first-order sliding mode control without
and with one-sided barrier functions. These barriers serve as a guaranteed means to
avoid the violation of hard upper bounds for selected state variables. For example,
such upper bounds may represent the maximum admissible temperature of SOFC
stacks. One of the important generalizations presented in this contribution is the
extension of these techniques to an interval-based sliding mode control of second
order as well as a generalization to two-sided barriers.

Section2 gives an overview of fundamental first- and second-order sliding mode
control approaches, their generalization to interval-based implementations, and illus-
trating simulation examples that highlight the properties and advantages of the chosen
options. Thereafter, Sect. 3 describes a brief summary of the control-oriented mod-
eling of the thermal behavior of SOFCs. The control design for these systems is
described in Sect. 4 by the presented interval-based variable-structure methods. Rep-
resentative simulation results are summarized in Sect. 5. Finally, conclusions and an
outlook on future work are given in Sect. 6.
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2 Sliding Mode Control with Guaranteed State Constraints

In this section, a summary is given for fundamental sliding mode control approaches
that can be generalized in two different ways. First, they are generalized in such away
that violations of hard constraints on state variables and deviations of the states from
the sliding surface are penalized in a reliable way. This penalization makes use of
strict inequalities that are represented using a barrier Lyapunov function approach [9,
17, 35]. Second, techniques are introduced that allow for a verified treatment of
uncertainty in the state equations by means of interval arithmetic [11, 14, 16]. These
techniques aim at the online computation of control laws in such a manner that
chattering due to unnecessarily large switching amplitudes is reduced as much as
possible. The usage of these approaches is described for an illustrative example that
is similar to the dynamics of the considered fuel cell system after a suitable coordinate
transformation.

2.1 Fundamental Sliding Mode Control Laws

Both the treatment of strict inequality constraints and bounded interval uncertainty
can be combined with first- and second-order sliding mode techniques. The funda-
mental stages are the definition of appropriate sliding surfaces and the guaranteed
proof of asymptotic stability using suitable candidates for Lyapunov functions.

2.1.1 First-Order Sliding Mode Control

As an illustrative example, the nth-order linear system model

⎡
⎢⎢⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...

ẋn−1(t)
ẋn(t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x2(t)
x3(t)

...

xn(t)
u(t)

⎤
⎥⎥⎥⎥⎥⎦

(1)

with the state vector x(t) ∈ R
n and the scalar control input u(t) ∈ R is considered.

The system output is represented by the first state variable according to

y(t) = x1(t). (2)

Obviously, the dynamic system (1) with the output variable (2) has the relative
degree n [12, 15]. This is confirmed by the fact that the nth time derivative x (n)

1 (t) =
u(t) of the system output is the lowest-order derivative that explicitly depends on the
control input u(t). Therefore, the output y(t) corresponds to a (trivial) flat system



56 A. Rauh and L. Senkel

output [5] with which the complete system dynamics and suitable feedforward and
feedback control approaches can be parameterized for sufficiently smooth desired
trajectories x1,d(t).

Using this desired output, the corresponding tracking error (r = 0) and its r th
time derivative are given by

ξ̃
(r)
1 (t) = x (r)

1 (t) − x (r)
1,d(t) (3)

with r ∈ {0, 1, . . . , n}.
Using the definition (3) of the tracking error, the sliding surface

s := s(t) =
n−1∑
r=0

αr ξ̃
(r)
1 (t) (4)

with the normalized coefficient αn−1 = 1 can be defined. To guarantee asymptotic
stability of the system dynamics on this sliding surface, the parameters αr have to
fulfill the necessary and sufficient stability conditions for a Hurwitz polynomial [6]
of linear dynamic systems of the order n − 1.

First-order sliding mode control approaches can be derived with the help of the
quadratic radially unbounded candidate for a Lyapunov function

V 〈I〉 = 1

2
s2 > 0 for s �= 0. (5)

(Global) Asymptotic stability of the dynamic system corresponds to the (global)
negative definiteness of the corresponding time derivative

V̇ 〈I〉 = s · ṡ =
(

n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·
(

n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< 0 for s �= 0. (6)

During the derivation of the variable-structure sliding mode control approach [21,
27], the right-hand side of the inequality (6) is replaced by the more conservative
formulation

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·
(

n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< −η · |s| = −η ·

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
· sign (s)

(7)

which guarantees global asymptotic stability for arbitrary parameters η > 0. Note
that the actual choice of η significantly influences the dynamics and the maximum
absolute values of the control signal in the so-called reaching phase in which s �= 0
holds. As soon as the sliding surface s = 0 has been reached in a finite time, the
control amplitudes depend on the actual choice of the reference trajectory x1,d(t)
and on the coefficients αr . The latter values have the major influence on the control
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amplitudes as soon as non-modeled errors and disturbances influence the system
dynamics and if the error signals ξ̃

(r)
1 (t) are corrupted by non-negligiblemeasurement

noise or state reconstruction errors.
The derivation of the control law is completed by enforcing that the second factor

in (7) becomes proportional to the sign of the actual value of s according to

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·
(

n−2∑
r=0

αr ξ̃
(r+1)
1 (t) + u(t) − x (n)

1,d(t) + η · sign (s)

)

︸ ︷︷ ︸
−β·sign(s)

< 0 (8)

with β > 0. The definition of η̃ := η + β > 0 leads to the final control signal

u(t) = u〈I〉(t) = x (n)
1,d(t) −

n−2∑
r=0

αr ξ̃
(r+1)
1 (t) − η̃ · sign (s) . (9)

In principle, the robustness of the closed-loop control system can be improved by
adding the integral of the tracking error with a suitable gain value to the definition
of the sliding surface. Such additional measures are investigated in the following
subsection for the derivation of second-order sliding mode controllers.

2.1.2 Second-Order Sliding Mode Control

A second-order sliding mode is defined in the sense that not only s = s(t) = 0 but
also ṡ = ṡ(t) = 0 are ensured by the designed feedback controller [1, 4, 7]. This can
be achieved by additionally low-pass filtering (first-order lag dynamics) the left-hand
side of

γ1ṡ + γ0s =
n−1∑
r=0

αr ξ̃
(r)
1 (t). (10)

For the sake of asymptotic stability, the coefficients γ0 and γ1 need to be strictly
positive, while the coefficients on the right-hand side of (10) are again chosen as
parameters of aHurwitz polynomial of the order n − 1. As before, this sliding surface
has a PD (proportional, differentiating) characteristic.

To enhance steady-state accuracy, the sliding surface in (10) is extended by an
additional time integral of the tracking error with

γ1ṡ + γ0s = α−1

t∫

0

ξ̃1(τ )dτ +
n−1∑
r=0

αr ξ̃
(r)
1 (t). (11)
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For a short-hand notation, this extension of the sliding surface (11) is abbreviated by

γ1ṡ + γ0s =
n−1∑
r=−1

αr ξ̃
(r)
1 (t) with ξ̃

(−1)
1 (t) :=

t∫

0

ξ̃1(τ )dτ. (12)

The second time derivative of the PID-type sliding variable s, required subse-
quently for the control design, is given by the differentiation of (11), (12) and sub-
sequently solving it for s̈ with

s̈ = −γ0

γ1
ṡ + 1

γ1

n−1∑
r=−1

αr ξ̃
(r+1)
1 (t) = −γ0

γ1
ṡ + 1

γ1

n∑
r=0

αr−1ξ̃
(r)
1 (t). (13)

Here, the special case α−1 ≡ 0 corresponds to the case of a sliding surface of
PD type. In analogy to the previous subsection, an appropriate Lyapunov function
candidate needs to be defined to parameterize a variable-structure controller that
guarantees asymptotic stability of the closed-loop system dynamics. Because ṡ = 0
has to be ensured in addition to s = 0, the definition

V 〈II〉 = 1

2
· (s2 + λṡ2

)
with the scaling factor λ > 0 (14)

is employed. Its time derivative results in

V̇ 〈II〉 = s · ṡ + λ · ṡ · s̈

= s · ṡ + ṡ ·
(

−λγ0

γ1
ṡ + λ

γ1

n∑
r=0

αr−1ξ̃
(r)
1 (t)

)
< 0, (15)

where the special parameterizationλ = γ1 > 0 can be usedwithout loss of generality.
This is due to the fact that scaling of V̇ 〈II〉 in (15) can be performed by a suitable
choice of γ0 and αr .

Using λ = γ1 allows for simplifying the expression (15) under consideration of
the control-dependent term ξ̃ (n)(t) = ẋn(t) − x (n)

1,d(t) = u(t) − x (n)
1,d(t) according to

V̇ 〈II〉 = s · ṡ + ṡ ·
(

−γ0ṡ +
n−1∑
r=0

αr−1ξ̃
(r)
1 (t) + αn−1 ·

(
u(t) − x (n)

1,d(t)
))

< 0.

(16)

As before, a conservative stabilization of the closed-loop system is desired that
allows for a finite-time convergence toward s = 0. This can be achieved by setting

V̇ 〈II〉 < −η1 · |ṡ| − η2 · |s| · |ṡ| = −ṡ · sign (ṡ) · (η1 + η2 · |s|) (17)
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which finally leads to the nonlinear feedback controller [4, generalized form of
Eqs. (22), (23)]

u(t) = u〈II〉(t) = x (n)
1,d(t) + 1

αn−1
·
(

γ0 ṡ − s −
n−1∑
r=0

αr−1ξ̃
(r)
1 (t) − sign (ṡ) · (η̃1 + η̃2 · |s|)

)

(18)
with η̃i ≥ ηi > 0 for both i ∈ {1, 2}.

2.2 Extension by One-Sided Barrier Lyapunov Functions

Both the control laws u〈I〉(t) and u〈II〉(t) can be extended by a one-sided barrier
Lyapunov function approach in such a way that the generally time-varying strict
state (respectively output) constraint

x1(t) < x̄1,max(t) := x1,d(t) + Δx1,max(t) (19)

with Δx1,max(t) > 0 is guaranteed not to be violated for each point of time t > 0.
Note that the initial conditions for the state vector x(t) at the point of time t = 0
have to be compatible with this constraint. Moreover, it is necessary that the sliding
surface s = 0 for x1(t) = x1,d(t) lies within the admissible operating range that is
defined by (19).

Then, the extended Lyapunov function ansatz

V 〈 j,A〉 = V 〈 j〉 + V 〈A〉 > 0 for s �= 0 (20)

with

V 〈A〉 = ρV · ln
(

σV · x̄1,max(t)

x̄1,max(t) − x1(t)

)
and x1(t) < x̄1,max(t) (21)

is introduced for both alternatives j ∈ {I, II}. In (21), the parameter ρV > 0 needs
to be chosen in such a way that the singularity x̄1,max(t) − x1(t) = 0 represents a
repelling potential, where control constraints are not violated for usual operating
conditions, and that the term V 〈 j〉 has dominating influence in the neighborhood
of s = 0. In addition, the parameter σV > 0 can be utilized to adapt the steepness of
the barrier function near its singularity.

The time derivative of (20) can be computed as1

V̇ 〈 j,A〉 = V̇ 〈 j〉 + V̇ 〈A〉 < 0 with

V̇ 〈A〉 :=
(

∂V 〈A〉

∂x

)T

· ẋ(t) = ρV

x̄1,max(t)
·
(−x1(t) · ˙̄x1,max(t) + ẋ1(t) · x̄1,max(t)

x̄1,max(t) − x1(t)

)
. (22)

1Note that the expression V̇ 〈A〉 does not explicitly depend on the system input u in any of the
applications considered in this chapter.
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In analogy to the fundamental first-order sliding mode control law u〈I〉(t) derived
from (8), the inequality

s ·
(

n−2∑
r=0

αr ξ̃
(r+1)
1 (t) + u(t) − x (n)

1,d(t) + η · sign (s) + 1

s
· V̇ 〈A〉

)

︸ ︷︷ ︸
−β·sign(s)

< 0 (23)

has to be fulfilled to prevent overshooting the state constraint (19) and to stabilize
the error dynamics in a reliable way.

Under consideration of the term u〈I〉(t) defined in (9), the modified control law

u(t) = u〈I,A〉(t) = u〈I〉(t) − s

s2 + ε̃
· V̇ 〈A〉 (24)

is obtained, in which the rational term 1
s in (23) has been approximated by the

expression s
s2+ε̃

with the small positive constant ε̃ > 0. The approximation of this
rational term ensures that the control law u〈I,A〉(t) is regular on the sliding surface
s = 0 and that the barrier Lyapunov function becomes inactive as soon as the control
goal has been reached. This is especially true in the case that interval uncertainty
has a non-negligible influence on the system dynamics. This uncertainty leads to the
fact that the sign of s can usually no longer be determined unambiguously in the
close vicinity of s = 0. Hence, a good approximation of the rational term 1

s is only
necessary for |s| � 0, where 1

s ≈ s
s2+ε̃

holds.
For the special case of a time-independent state constraint x̄1,max = const with

˙̄x1,max = 0, the control law (24) simplifies to

u(t) = u〈I,A〉(t) = u〈I〉(t) − s

s2 + ε̃
· ρV ·

(
x2(t)

x̄1,max − x1(t)

)
. (25)

In a similar way, the second-order slidingmode control procedure can be extended
by the barrier function (21). Following the same steps as in Eqs. (22)–(25) yields the
control law

u(t) = u〈II,A〉(t) = u〈II〉(t) − 1

αn−1
· ṡ

ṡ2 + ε̃
· V̇ 〈A〉, (26)

that can again be simplified as in (22) to obtain the control signal

u(t) = u〈II,A〉(t) = u〈II〉(t) − 1

αn−1
· ṡ

ṡ2 + ε̃
· ρV ·

(
x2(t)

x̄1,max − x1(t)

)
(27)

for constant state constraints with ˙̄x1,max = 0.
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2.3 Extension by Two-Sided Barrier Lyapunov Functions

As for the case of one-sided state constraints, also two-sided barrier Lyapunov func-
tions can be combined with the fundamental first- and second-order sliding mode
controllers. For this purpose, the Lyapunov functions V 〈 j〉, j ∈ {I, II}, are extended
by an additive term V 〈B〉 according to

V 〈 j,B〉 = V 〈 j〉 + V 〈B〉 > 0 for s �= 0. (28)

In (28), the additive term V 〈B〉 can either be chosen to avoid state deviations∣∣x1(t) − x1,d(t)
∣∣ ≥ χ̄ or to avoid large tracking errors with |s(t)| ≥ χ̄ . In this con-

tribution, only the second option is considered, where χ̄ is assumed to be constant.
Note that all corresponding equations can be generalized in a straightforwardmanner
to the first option as well and to the case of time-dependent bounds χ̄ (t).

Penalizing errors with respect to the absolute value of s leads to the definition

V 〈B〉 = ρV · ln
(

χ̄2l

χ̄2l − s2l

)
with l ∈ N (29)

and the even powers 2l, enforcing symmetric bounds for the sliding variable s.
Increasing values for l typically lead to the fact that resulting state trajectories come
closer to the edges of the admissible operating range.

The time derivative of (29) is then given by

V̇ 〈B〉 =
(

∂V 〈B〉

∂x

)T

· ẋ = ρV · 2l · s2l−1ṡ

χ̄2l − s2l
. (30)

According to the previous subsections, the requirement V̇ 〈 j,B〉 < 0 for s �= 0 (and
ṡ �= 0, resp.) leads to the control laws

u〈I,B〉(t) = u〈I〉(t) − 1

s
· V̇ 〈B〉 = u〈I〉(t) − ρV · 2l · s2l−2ṡ

χ̄2l − s2l
(31)

in the case of the first-order sliding mode or to

u〈II,B〉(t) = u〈II〉(t) − 1

αn−1
· 1
ṡ

· V̇ 〈B〉 = u〈II〉(t) − 1

αn−1
· ρV · 2l · s2l−1

χ̄2l − s2l
(32)

for the second-order slidingmode. To preserve the additive superposition of a control
u〈I〉(t) with a correction term resulting from the barrier function as in (24) and (25),
the term ṡ is typically estimated by a suitable low-pass filtered differentiation or by
means of an observer for the implementation of (31).
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2.4 Interval Extensions of Sliding Mode Control Strategies

To guarantee asymptotic stability despite bounded uncertainty in system parame-
ters p, it is possible to apply interval techniques in real time for the implementation
of the before-mentioned slidingmode control approaches [21]. The fundamental pre-
requisite for the applicability of interval techniques is that all parameters (and a priori
unknown disturbances as well as measurement and state reconstruction errors) are
bounded by closed interval vectors

[
p
]
that are defined component-wise according

to p ∈ [
p
] =

[
p; p

]
with p

i
≤ pi ≤ pi , i ∈ {1, . . . , np}. Furthermore, it is assumed

that the dynamic systems are given as nth-order sets of ordinary differential equations
(ODEs) ⎡

⎢⎢⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...

ẋn−1(t)
ẋn(t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x2(t)
x3(t)

...

xn(t)
a (x(t),p) + b (x(t),p) · u(t)

⎤
⎥⎥⎥⎥⎥⎦

(33)

in nonlinear controller canonical form. These ODEs are a natural generalization
of the pure integrator chain in Eq. (1). Note that a suitable nonlinear coordinate
transformation of the fuel cell model in Sect. 4 leads exactly to this type of system
structure.

For the control synthesis it is assumed as before that the system output is given
by the first state variable according to

y(t) = x1(t) (34)

and that all state variables are known at each point of time in terms of guaranteed
interval bounds x(t) ∈ [x] (t) = [

x(t); x(t)
]
.

For the sake of controllability (and, therefore, also for the existence of the follow-
ing generalized control laws), it has to be guaranteed that

0 /∈ b
(
[x] (t),

[
p
]) := {

b (x(t),p) |b (x(t),p) for all x(t) ∈ [x] (t),p ∈ [
p
]}
(35)

holds.
These assumptions lead to the possibility to define the output tracking error and

its r th derivative by the interval expression

ξ̃
(r)
1 (t) ∈

[
ξ̃

(r)
1

]
(t) =

[
x (r)
1

]
(t) − x (r)

1,d(t) (36)

for each r ∈ {0, 1, . . . , n}. Furthermore, these tracking errors can be used to gener-
alize the first-order sliding mode control laws according to
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[
u〈I〉] (t) =

−a
(
[x] (t),

[
p
]) + x (n)

1,d(t) −
n−2∑
r=0

αr ·
[
ξ̃

(r+1)
1

]
(t) − η̃ · sign ([s])

b
(
[x] (t),

[
p
]) ,

(37)[
u〈I,A〉] (t) = [

u〈I〉] (t) − 1

b
(
[x] (t),

[
p
]) · [s]

[s]2 + ε̃
· [V̇ 〈A〉] (t), (38)

and [
u〈I,B〉] (t) = [

u〈I〉] (t) − 1

b
(
[x] (t),

[
p
]) · ρV · 2l [s]

2l−2 [ṡ]

χ̄2l − [s]2l
. (39)

Similarly, the interval-based generalization for the second-order sliding mode
approach is given either by

[
u〈II〉] (t) = −a

(
[x] (t),

[
p
]) + x (n)

1,d(t) + 1
αn−1

· [ν̃〈II〉] (t)

b
(
[x] (t),

[
p
]) (40)

with

[
ν̃〈II〉] (t) :=

(
γ0 · [ṡ] − [s] −

n−1∑
r=0

αr−1 ·
[
ξ̃

(r)
1

]
(t) − sign ([ṡ]) · (η̃1 + η̃2 · |[s]|)

)
, (41)

[
u〈II,A〉] (t) = [

u〈II〉] (t) − 1

b
(
[x] (t),

[
p
]) · 1

αn−1
· [ṡ]

[ṡ]2 + ε̃
· [V̇ 〈A〉] (t), (42)

or by

[
u〈II,B〉] (t) = [

u〈II〉] (t) − 1

b
(
[x] (t),

[
p
]) · 1

αn−1
· ρV · 2l [s]2l−1

χ̄2l − [s]2l
. (43)

The choice between these different options is made as before in dependence of the
type of barrier function to be taken into account by the robust control synthesis. Fur-
thermore, the expressions a

(
[x] (t),

[
p
])
, b

(
[x] (t),

[
p
])
,
[
V̇ 〈A〉] (t), [s] := [s] (t),

and [ṡ] := [ṡ](t) denote the interval-dependent evaluations of the corresponding
entries of the state equations, the time derivatives of the barrier function, the sliding
surface, and its time derivative, respectively.

For the actual control implementation in a real-time environment, the inter-
val expressions mentioned above are evaluated by means of the C++ toolbox C-
XSC [13]. To guarantee asymptotic stability for all possible operating conditions,
the corresponding interval variables have to be chosen in such a way that they include
the state and parameter uncertainties in a rigorous way. Assuming a quasi-continuous
implementation, in which the effect of time discretization errors is negligibly small,
the final control signal u(t) needs to be chosen from the previous intervals in such
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a way that it guarantees asymptotic stability regardless of the sign of b(x(t),p),
0 /∈ b([x] (t),

[
p
]
).

For this reason, the set of possible control variables, guaranteeing a minimum
signal amplitude, consists of the infima and the suprema of the before-mentioned
interval-valued control strategies. These values are given as u := inf{[u]} and u :=
sup{[u]}, respectively, where [u] is either of the control laws (37)–(40), (42), or (43).
To account for roundoff and representation errors, the infima and suprema are inflated
by a small positive value ε > 0 to obtain the final set of control candidates

U := {
u − ε, u + ε, u − ε, u + ε

}
. (44)

From this set, the control (with minimum absolute value) is chosen, which guar-
antees to satisfy the inequality V̇ < 0 (or its generalization for the barrier Lyapunov
function approach) despite the considered interval uncertainty.

2.5 Illustrative Simulation Examples

In this section, an illustrative benchmark example is used to visualize the effectiveness
of the before-mentioned fundamental sliding mode control approaches and their
interval-based extensions. The considered system model with n = 3 is given as

⎡
⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣

x2(t)
x3(t)

p1x1 + p2x2 + p3x3 + p4u(t)

⎤
⎦ (45)

with

(a) the nominal parameters p1 = p2 = p3 = 0 and p4 = 1 as well as
(b) the uncertain parameters pi ∈ [−0.1; 0.1], i ∈ {1, 2, 3}, and p4 = 1.

This system model corresponds to the dynamics of a point mass (position x1(t),
velocity x2(t)) and a normalized input force x3(t), where the underlying actuator
dynamics with the control input u(t) are characterized by both the nominal and
uncertain parameters p j , j ∈ {1, . . . , 4}.

In all simulations, the desired reference trajectory is given by

x1,d(t) = 1 − e−t , t ≥ 0, (46)

with the initial system states x(0) = 0. Note that these initial states do not satisfy
the sliding condition s = 0 at the initial point of time t = 0. Hence, even without
uncertainty, there exists a transition between the reaching and sliding phase.

A summary of the selected system parameters as well as of the parameterization of
the Lyapunov function candidates and the corresponding barrier functions is given for
all considered simulation scenarios in Table1. For the sake of simplicity, it is assumed
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in the non-interval implementations (Cases 1 and 2 for the first-order sliding mode)
that all states x(t) can be measured accurately for the quasi-continuous sliding mode
implementation. This simplifying assumption is removed in the simulation Case 3
and in the further course of this contribution for the application of sliding mode
techniques to the temperature control of a high-temperature SOFC system.

For both the first- and second-order sliding mode controllers u〈I〉(t) and u〈II〉(t),
the parameters of the sliding surface are chosen purposefully in such a way that the
roots of the associated characteristic polynomial, corresponding to

n−1∑
r=0

αrζ
r = α0 + α1ζ + ζ 2 = 0 (47)

in the first-order case, are conjugate complex. In such a way, the straightforward
sliding mode implementation without state barriers leads to an oscillatory behavior
in the reaching phase with overshooting the reference trajectory x1,d(t), see the
Cases 1 and 4 as well as Figs. 1 and 2.
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Fig. 1 Simulation results for the benchmark application with first-order sliding mode techniques.
a System output (Case 1). b Tracking error (Case 1). c State x3 (Case 1). d System output (Case 2).
e Tracking error (Case 2). f State x3 (Case 2). g System output (Case 3). h Tracking error (Case 3).
i State x3 (Case 3)
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Fig. 2 Simulation results for the benchmark application with second-order sliding mode (part 1).
a System output (Case 4). b Tracking error (Case 4). c State x3 (Case 4). d System output (Case 5).
e Tracking error (Case 5). f State x3 (Case 5). g System output (Case 6). h Tracking error (Case 6).
i State x3 (Case 6). j Variation of s(t) (Case 4). k Variation of s(t) (Case 6)

Introducing a strict time-varying barrier for the state x1(t) according to (19) in the
Cases 2 and 5 helps to reliably avoid the overshoot. This holds for both the first- and
second-order sliding mode controllers with u(t) = u〈I,A〉(t) and u(t) = u〈II,A〉(t).

In addition to using the state barrier according to (19), the two-sided constraint (29)
is employed in the Case 6 with u(t) = u〈II,B〉(t). Generally, the results for the first-
and second-order cases show the same behavior. Subsequently, only the second-
order result is depicted because it highlights the advantage of the extension V 〈B〉
more clearly for the considered application scenario: Although the two-sided barrier
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extension V 〈B〉 according to (28) does not allow for limiting the range of state vari-
ables explicitly, it allows for limiting the deviations of states from the sliding surface s
in a reliable way. This limits the variable-structure control amplitudes for the Case 6,
where fixed gains η̃1 and η̃2 are coupled with the absolute value of s in a multi-
plicative way. It has to be pointed out that the maximum admissible deviation χ̄ as
well as the necessary order l in the barrier term V 〈B〉 have to be chosen carefully to
make sure that the admissible operating range is not violated. This may happen for
specifying too tight operating ranges that inevitably lead to large control amplitudes.
Such large amplitudes may, on the one hand, not be compatible with actuator con-
straints in a real-life application. On the other hand, they may also lead to violations
of the admissible operating range if too large integration step sizes (resp. sampling
times) are specified for the numerical evaluation of the system ODEs in a quasi-
continuous control implementation. Especially due to the latter issue, future work
will deal with the direct consideration of time discretization phenomena within the
sliding mode design for continuous-time dynamic systems. Note that violations of
barrier terms—due to time discretization effects in a regularized control implemen-
tation that ensures finite control values in the second-order case (the same holds for
the one-sided barrier functions)—lead to nonlinear integrator wind-up phenomena
in the computation of s(t) and ξ̃ (−1)(t). These wind-up effects have to be avoided
by suitable parameterizations since their presence inevitably deteriorates the control
quality.

The robustness of the interval-based control extensions presented in Sect. 2.4 is
confirmed in the extended simulations in Case 3. It can be seen that the application of
the fundamental interval-based control approach (37) guarantees asymptotic stability
of the closed-loop dynamics after a careful setting of the controller’s parameters.
Here, uncertainties in the system parameters p j as well as additive bounded errors
in the measured state x1(t) were considered.

Note that the choice ofΔx1,max must bemade in such away that the sliding surface
is reachable despite the above-mentioned measurement errors for x1(t). Due to the
fact that the state barrier x̄1,max(t) is only considered explicitly in the Cases 2, 3,
and 5, the violation of this constraint is obvious in all remaining scenarios.

Simulation results for V 〈II,A〉 are not presented due to an identical behavior as
in Case 3. Note that the use of the second-order sliding mode is not advantageous
for the case of interval uncertainty with large diameters that are directly included in
the expression (11). Then, a definite statement about the signs of s and ṡ may no
longer be possible. Although the second-order sliding mode control approach leads
to more smooth control signals than the first-order one for the non-interval case, this
advantageous filtering property is lost as soon as ambiguities in the signs of s and
ṡ arise. Therefore and due to the fact that the uncertain parameters in the following
sections have a large influence, interval-based implementations currently focus on
first-order sliding mode techniques. Extensions to higher-order cases and toward
an improved systematic parameterization of interval-based control approaches are
subjects of ongoing work.
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Fig. 3 Simulation results for the benchmark application with second-order sliding mode (part 2).
a System output (Case 7). b Tracking error (Case 7). c State x3 (Case 7). d System output (Case 8).
e Tracking error (Case 8). f State x3 (Case 8). g System output (Case 9). h Tracking error (Case 9).
i State x3 (Case 9)

A detailed investigation of the influence of the parameters of the sliding surface
with andwithout variable-structure control parts can be found in Fig. 3 (Cases 7–9). In
general, increased gain values α0 lead to smaller tracking errors. However, accurate
trajectory tracking is only possible when the variable-structure part is active. The
same also holds in an analogous manner for the first-order sliding mode.

3 Control-Oriented SOFC Modeling

As described, for example, in [3, 10, 18, 33], SOFCs are characterized by a nonlin-
ear dynamic behavior if large domains are considered for the temperature operating
point as well as for the electric load of the system. Focusing on the temperature
distribution in the interior of high-temperature fuel cell stack modules, the corre-
sponding dynamics can be described by sets of partial differential equations. The
goal of control design for SOFC systems is to prevent local over-temperatures in the
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interior of the fuel cell stack module by a suitable actuation of the gas preheaters.
This helps to reduce mechanical strain of the SOFC components due to different
thermal expansion properties and thus avoids accelerated aging or in the worst case
the destruction of the SOFC. The control task consists in varying the enthalpy flow
provided to the fuel cell stack by changes in the temperature of the preheated gases
and by variations of the gas mass flows. Typically, only the enthalpy flow of the
cathode gas is used for this purpose, while the anode gas mass flow is employed to
specify the electric power that can be produced by the system.

However, system models given by partial differential equations are often too
complex to design controllers and state estimators that can be implemented in real
time. Therefore, a control-oriented modeling procedure is used in the following to
approximate the system dynamics by a finite-dimensional set of ODEs. For such
systems of ODEs, the design of feedforward as well as feedback controllers can
be performed by state-of-the-art approaches. Classically, this is done in the frame
of SOFC systems by (gain-scheduled) PI (proportional, integral) controllers as well
as by linear model-predictive control techniques [10, 34]. Since the applicability
of these techniques requires that the operating temperature of the SOFC stack does
not deviate too far from the point at which the nonlinear system model is linearized
for design purposes, they may not be well suited if larger operating domains are
considered in a flexible future power supply grid. Moreover, the use of classical
linear control approaches requires an accurate knowledge of the parameters of the
describing sets of ODEs. However, parameters such as heat conductivities of the fuel
cell material and specific heat capacities of the fuel gases are uncertain and cannot be
identified experimentally with absolute accuracy. Hence, robust control procedures
have to handle such uncertainties in a reliable way. For this reason, interval-based
sliding mode procedures [21, 27] are extended in this contribution to implement
robust control strategies under state, input, and input rate constraints.

The prerequisite for this type of control design is the derivation of control-oriented
system models. These models are derived from a spatial semi-discretization of the
SOFC stack which consists of a finite number of planar fuel cells in electric series
connection. The fuel cell stack is constructed in such a way that the electric current
through the individual cells is orthogonal to the gas mass flow. The control-oriented
model, described in detail in [27], assumes that all dynamic variables are spatially
homogeneous over finitely large domains. This homogeneity assumption holds for
the stack module temperatures, the electric currents as well as the corresponding
internal gas mass flows. In such a way, thermodynamic quantities such as heat con-
ductivities and specific heat capacities represent effective quantities holding in an
integral balance for each of the finite volume elements.

After setting up a parameterizable set of ODEs for the thermal behavior of the
SOFCstack, the parameterswere identified experimentally in previouswork either by
local or global optimization procedures. Note that the semi-discretization procedure
is based on integral heat flow and energy balances for each of the finite volume
elements I in the stack that is depicted in Fig. 4.
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Fig. 4 Spatial semi-discretization of the SOFC stack

These integral heat flow balances lead to the ODEs

ϑ̇I(t) =
Q̇I

HT(t) + ∑
G Q̇I

G,I−
j
(t) + Q̇I

EL(t) + Q̇I
R(t)

cImI
(48)

for the temperature ϑI(t) in each volume element I, where the index G ∈ {AG,CG}
denotes the anode gas (AG) and the cathode gas (CG). For the test rig, available at the
Chair of Mechatronics at the University of Rostock, the AG consists of a mixture of
hydrogen (H2), nitrogen (N2), and water vapor (H2O) which are jointly heated in the
electric AG preheater. The CG is further given as a preheated flow of air. Additional
parameters in (48) are the heat capacity cI of the volume element I and its local
mass parameter mI .

The heat flow term

Q̇I
HT(t) = Q̇I

HT,I−
i
(t) + Q̇I

HT,I+
i
(t) + Q̇I

HT,I−
j
(t)

+ Q̇I
HT,I+

j
(t) + Q̇I

HT,I−
k
(t) + Q̇I

HT,I+
k
(t) (49)

in (48) consists of heat transport between directly neighboring volume elements as
well as heat transfer to the ambiance. In (49), the heat flows

Q̇I
HT,J (t) = βI

J · (ϑJ (t) − ϑI(t)) (50)

are assumed to be directed from the volume elementsJ ∈ {I−
i , I+

i , I−
j , I+

j , I−
k , I+

k }
into the element I. Here, the coefficient βI

J is either the effective parameter for heat
conduction in the interior of the fuel cell or the convective heat transfer coeffi-
cient (containing radiation effects in a locally linearized form) between the ambient
medium and the elements at the stack boundary.
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In detail, the index set J consists of the following entries: I−
i := (i − 1, j, k),

I+
i := (i + 1, j, k), I−

j := (i, j − 1, k), I+
j := (i, j + 1, k), I−

k := (i, j, k − 1),
and I+

k := (i, j, k + 1). The temperatures ϑI−
i
(t) and ϑI+

i
(t) denote stack temper-

atures for i ≥ 2 and i ≤ L − 1. The same holds for ϑI−
j
(t) and ϑI+

j
(t) with j ≥ 2

and j ≤ M − 1 and for ϑI−
k
(t) and ϑI+

k
(t) with k ≥ 2 and k ≤ N − 1. In all other

cases, the values ϑJ (t) are set to the ambient temperature ϑA(t) = const.
In addition to these internal effects, the total enthalpy flow

∑
G

Q̇I
G,I−

j
(t) , G ∈ {AG,CG}, (51)

of AG and CG is included in the ODEs, where the mass flow ṁCG and its desired
temperature ϑCG,d are used to design a guaranteed stabilizing control strategy. Ohmic
heat production Q̇I

EL(t) and heat flows Q̇
I
R(t) due to an exothermic reaction between

AG and CG conclude the energy balance. Detailed models for the local variations
of the reacting gas mass flows and their temperature-dependent parameterizations as
well as explicit expressions for the reaction enthalpies are given in [27].

The finite volume model from (48)–(51) is coupled with the dynamics of the
AG and CG preheaters according to Fig. 5. As shown in [27, 28], it is essential
to account for the preheater dynamics during the control design for non-stationary
operating conditions to avoid unnecessary chattering of the system inputs.

According to [28], each preheater is described by two sets of first-order ODEs
(G ∈ {AG,CG}, χ ∈ {H2,N2,H2O,CG})

TG · v̇χ (t) + vχ (t) + d̃χ (t) = vχ,d(t) = ϑχ,d(t) · ṁχ,d(t) (52)

Fig. 5 Semi-discretization of the fuel cell stack module with gas preheaters
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and

TSL,G · v̇χ,in(t)

L · N + vχ,in(t)

L · N = vχ (t)

L · N = ϑχ(t) · ṁχ (t)

L · N (53)

with
vχ,in(t) := ϑχ,in(t) · ṁχ,in(t) and ṁχ,d = ṁχ = ṁχ,in (54)

as well as the time constants TG for the subsidiary temperature control and TSL,G for
the lag behavior due to transport phenomena in the gas supply lines (SL) between
the preheaters and the SOFC stack.

In (52) and (53), the desired preheater temperatures (index d, serving as control
inputs in addition to the desired mass flows ṁG,d), are given by

ϑχ,d(t) =
{

ϑAG,d(t) for χ ∈ {H2,N2,H2O}
ϑCG,d(t) for χ = CG.

(55)

Because the AG components H2,N2,H2O are mixed before entering the preheater,
all components of the AG have one temperature in the interior of the preheater and
one in the AG supply line. Analogously, the temperatures at the preheater outlets are
denoted by ϑχ(t), while the temperatures at the inlet gas manifold of the SOFC stack
are given by ϑχ,in(t). In good accuracy, it can be assumed during modeling that the
AG and CG mass flows can be changed instantaneously. This leads to the definition

of virtual control signals vχ,d(t) in (52). Integrator disturbance models ˙̃dχ (t) = 0 are
finally included in the description of the preheaters to account for non-modeled heat
losses, thermal storage effects, and imperfect behavior of the underlying temperature
control of the AG and CG preheaters.

According to [27], this control-oriented modeling approach leads to a set of input-
affine ODEs with the input vector

vd(t) = [
vH2,d(t) vN2,d(t) vH2O,d(t) vCG,d(t)

]T
(56)

of the AG and CG preheaters and the complete state vector

z(t) =
[
vH2(t) vH2,in(t) d̃H2(t) vN2(t) vN2,in(t) d̃N2(t)

vH2O(t) vH2O,in(t) d̃H2O(t) vCG(t) vCG,in(t) d̃CG(t)

ϑ(1,1,1)(t) . . . ϑ(L ,M,N )(t)
]T ∈ R

N , N = 12 + L · M · N . (57)

If it is assumed that the AG properties are predefined by a subsidiary controller,
the ODEs (48) which are extended by the preheater dynamics in (52)–(55) turn into



74 A. Rauh and L. Senkel

ż(t) = φ1 (z(t),p) + Φ2,AG (z(t),p) ·
⎡
⎣
vH2,d(t)
vN2,d(t)
vH2O,d(t)

⎤
⎦

︸ ︷︷ ︸
=: f1

(
z(t),p, vH2,d(t), vN2,d(t), vH2O,d(t)

)

+φ2,CG (z(t),p) · vCG,d(t)︸ ︷︷ ︸
=: f2

(
z(t),p, vCG,d(t)

)

= f (z(t),p, vd(t)) . (58)

Here, φ1 (z(t),p) is input-independent, whereas the expression f1 (z(t),p, . . .) fur-
ther contains information about the (desired) AG preheater actuation. The control
input vCG,d(t) is related to the CG enthalpy flow which is coupled with the system
dynamics by the vector

φ2,CG (z(t),p) = [
01×9

1
TCG

0 0 01×nx

]T
, nx = L · M · N , (59)

where 0i× j is a zero matrix of dimension i × j (nx = L · M · N : number of volume
elements in the SOFC stack).

If the simplifying assumptions described in [27] are exploited, the equality

∂f1 (z(t),p)

∂vCG,d
= 0 (60)

holds for all operating points. Moreover, choosing vCG,d(t) as the input justifies the

use of d
dt

[
vH2,d(t) vN2,d(t) vH2O,d(t)

]T ≈ 0 during control synthesis. Errors that are
caused by this simplification can be taken into consideration by an additive interval-
bounded disturbance variable in the state-space transformation that is introduced
in the following section. This transformation replaces the ODEs (58) by a nonlin-
ear controller canonical form in analogy to (33). Here, the Lie derivatives that are
necessary for the definition of the coordinate transformation are computed using
techniques for algorithmic differentiation of a corresponding C++ source code of the
state equations (58). For details concerning this state-space transformation, see [2,
8, 27].

4 Interval-Based Sliding Mode Control with State
and Actuator Constraints for the Thermal Behavior
of SOFCs

In this section, the interval-based sliding mode procedures derived in Sect. 2.4 are
employed for the robust control of the non-stationary heating phase of the SOFC and
for the compensation of disturbances at high-temperature operating points.
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4.1 Interval-Based Robust Variable-Structure Control

As shown in Sect. 2.4 and [21, 27], the interval-based variable-structure control
approachesmake use of systemmodels that are given in a nonlinear controller canon-
ical form.2 To transform the ODEs (58) into this type of system representation, it is
necessary to define the output variable

y(t) = h(z(t)) = ϑI∗ (61)

as a function of the state vector z(t) ∈ R
N . Throughout the remainder of this chapter,

the output is defined for each point of time as the maximum segment temperature

y(t) = ϑI∗(t) with I∗ = arg max
I

{ϑI(t)}. (62)

The corresponding segment index I∗, the temperature value y(t), and a suffi-
cient number of its time derivatives are estimated in real time by a suitable state
observer [24]. The goals of the following control approaches are the accurate track-
ing of sufficiently smooth desired temperature trajectories during the non-stationary
heating phase and the guaranteed prevention of violations of state constraints. For
the latter goal it is necessary that the maximum stack temperature does not exceed a
predefined upper bound in the high-temperature operating phase despite variations
of the electric power demand, variations of the AG properties, and uncertainties in
the temperature estimation as well as in the system parameters.

Using this output definition, the system model is transformed into the nonlinear
controller canonical form. For this purpose, the Lie derivatives

dr y(t)

dtr
= y(r)(t) = Lr

f h(z(t)) = L f
(
Lr−1
f h(z(t))

)
, (63)

r = 1, . . . , δ, are computed using techniques for algorithmic differentiation up to the
relative degree δ. The relative degree is defined as

∂Lr
fh(z(t))
∂vCG,d

≡ 0 for all r = 0, . . . , δ − 1 with
∂Lδ

fh(z(t))
∂vCG,d

�= 0. (64)

Here, y(δ)(t) is the smallest-order time derivative of y(t) that explicitly depends on
the control variable u(t) = vCG,d(t).

Using the state vector in transformed coordinates

x(t) = [
h(z(t)) L fh(z(t)) . . . Lδ−1

f h(z(t))
]T ∈ R

δ (65)

2Generalized sliding mode-type control procedures, which do not necessarily rely on a transforma-
tion into nonlinear controller canonical form, are, for example, described in [29, 30].
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with the transformed output variable x1(t) := h(z(t)), Eq. (58) is rewritten as

[
ẋ(t)
˙̃x(t)

]
=
⎡
⎣
[
L fh(z) . . . Lδ−1

f h(z) Lδ
f h(z)

]T
[
Lδ+1
f h(z) . . . LN

f h(z)
]T

⎤
⎦

=
[[

x2(t) . . . xδ(t) a(z(t),p, d(t))
]T

a♦(z(t),p, d(t))

]

+
[ [

0 . . . 0 b(z(t),p) · vCG,d(t)
]T

b♦(z(t),p, d(t), vCG,d(t), v̇CG,d(t), . . . , v
N−δ
CG,d (t))

]
(66)

with the constant but uncertain parameters p ∈ [
p
]
and the additive disturbance

d(t) ∈ [d] = [
d; d

]
. Both of these quantities are assumed to be bounded by closed

intervals for the robust sliding mode design.
In (66), the term a(z(t),p, d(t)) is defined by splitting up the Lie derivative

Lδ
f h(z(t)) into a purely state-dependent and an input-affine term [27] according to

Lδ
f h(z(t)) = a(z(t),p, d(t)) + b(z(t),p) · vCG,d(t). (67)

Here, the disturbance variable d(t) that is included in a(z(t),p, d(t)) is observed
in real time. The corresponding estimate d̂(t) is inflated—in analogy to the values[
ξ̃ (r)

]
(t)—to the interval [d] := d̂(t) + Δd · [−1; 1] with Δd > 0.

Now, all robust sliding mode techniques from Sect. 2.4 can be employed for the
SOFC system after setting the output y(t) equal to the state variable x1(t) = ϑI∗(t).
Note that variations of the location at which the maximum stack temperature is
expected lead to changes in the actual system output. In such a way, it is possible that
non-controllable internal dynamics with the corresponding states x̃(t), dim{x̃} > 0,
exist. These state variables are guaranteed to be bounded due to physical conservation
properties. This is described in detail in [21, 27]. Since these state variables can be
estimated in real time together with the controllable states, they can be treated like
time-varying disturbances or parameters during the control design.

During the application of this variable-structure control strategy, the input sig-
nal u(t) = vCG,d(t), determined according to Sect. 2.4 with (37)–(40), (42), or (43),
is decomposed into the desired preheater temperature and into the CG mass flow,
respectively. Both are optimal in the following sense: Unnecessarily large temporal
variations are prevented by soft penalty terms in an online-minimized cost function,
while bounds on the admissible minimum and maximum absolute values are treated
as hard actuator constraints. A suitable optimality criterion was introduced in [24]. If
the CGmass flow is predetermined by an underlying operating strategy of the test rig,
the virtual input vCG,d(t) is converted directly into the desired preheater temperature.
An overview of the complete control structure can be found in Fig. 6.
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Fig. 6 Structure diagram of the complete variable-structure control law

4.2 Handling of Input and Input Rate Constraints

To make sure that the control strategies derived above can be used on a real test
rig, input range as well as rate constraints have to be taken into consideration. On
the one hand, this requires—according to the previous subsection—that the control
variable vCG,d(t) is decomposed into a product of admissible gas mass flows and
desired preheater temperatures. On the other hand, compatibility of the system input
with actuator constraints has to be guaranteed by a suitable control parameterization.

In the offline control design of reasonable operating points, a nominal trajectory
x1,d(t) is determined for a fixed output segment I∗ with a predefined composition
and temperature of the AG. This time-dependent trajectory is selected in such a way
that control saturations are not reached for s = 0. In the following, this is explained
in detail for the case of the first-order sliding mode.

If the nominal state trajectory is compatible with the given constraints, the interval
control signal

[
vCG,d

]
(t) is split up into a continuous and variable-structure part

according to

[
vCG,d

]
(t) = [

v′
CG,d

]
(t) + η̃ · [v′′

CG,d

]
(t) ⊆ [

vCG,max
]
. (68)

For a suitable set of asymptotically stable eigenvalues for the dynamics on the slid-

ing surface s = 0 and intervals 0 ∈
[
ξ̃ (r)

]
(t) for the operating range, both inter-

vals [v′
CG,d](t) and

[
vCG,d

]
(t) have to be true subsets [v′

CG,d](t) ⊂ [
vCG,max

]
and[

vCG,d
]
(t) ⊂ [

vCG,max
]
of the maximum possible input range

[
vCG,max

]
. Besides an

offline adaptation of the variable-structure gain η̃ (or the gains η̃1, η̃2 in the second-
order case), also a real-time gain scheduling is possible. Both of them lead to adap-
tations of the parameters η̃ and αr according to the structure diagram in Fig. 7 [22].
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Fig. 7 Trajectory planning and gain scheduling procedure

A simultaneous treatment of hard input range and input rate constraints becomes
possible if the first-order lag element

Tr · v̇CG,d(t) + vCG,d(t) = v̌CG,d(t) with the time constant Tr > 0 (69)

and the new system input v̌CG,d(t), is appended to the input of the ODE system (58).
Equation (69) guarantees that the hard rate constraints

∣∣v̇CG,d(t)
∣∣ ≤ Tr

−1 · (sup {[vCG,max
]} − inf

{[
vCG,max

]})
(70)
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are automatically satisfied for

inf
{[
vCG,max

]} ≡ inf
{[
v̌CG,max

]}
and sup

{[
vCG,max

]} ≡ sup
{[
v̌CG,max

]}
.

(71)

5 Simulation Results

In this section, different simulation scenarios are compared for the use of interval-
based sliding mode controllers for the thermal behavior of SOFCs. In all scenarios, it
is assumed that the desired temperature profile for the heatingphaseof theSOFCstack
is given by a sufficiently smooth trajectory ϑd(t) with t ∈ [0; t∗]. This trajectory
remains constant at ϑd(t) = ϑd(t∗) for t > t∗, t∗ = 14,000 s.

Throughout the complete heating phase as well as while keeping the station-
ary high-temperature operating point, the AG mass flows and the AG temperature
correspond to those used in [27]. Up to the point t = t∗, the AG consists only of
preheated nitrogen, while hydrogen is included for the high-temperature phase with
ṁH2(t) �= 0 and d

dt ṁH2(t) �= 0 for t > t∗. This hydrogen mass flow enables the elec-
trochemical reaction with non-constant electric currents and leads to disturbance
heat flows Q̇I

EL(t) and Q̇I
R(t) that need to be counteracted by the temperature control

approach.
To account for the fact that the SOFC model is only an approximation of the real

system dynamics, the additive interval uncertainty [d] is included in the simulation
according to

[d](t) := [−0.1; 0.1] · (Lδ
f h(z(t)) − b(z(t),p) · vCG,d(t)

)
. (72)

Here, the term in round brackets is evaluated at each point of time t = tk with a sam-
pling time of 0.5 s. Additionally, it is assumed for all interval-based implementations
that the temperature values in the individual finite volume elements I are not per-
fectly measurable (or cannot be estimated with absolute accuracy). The correspond-
ing errors are included in the interval [−15; 15] K that is added to all temperature
values that are involved in the computation of the Lie derivatives in (63)–(66).

Although the two-sided barrier approach included in u〈I,B〉(t) and u〈II,B〉(t) can
generally be applied to the SOFC system with interval uncertainty, this approach
does not allow for a guaranteed handling of hard state constraints. Therefore, only
the following options for control parameterizations are considered in this section:

Case (a) u(t) = u〈I〉(t) with αr , η̃ = const and ϑd = 880K = const,
Case (b) u(t) = u〈I,A〉(t) with αr , η̃ = const and ϑd = 880K = const,
Case (c) u(t) = u〈I,A〉(t) with αr , η̃ = const and a time-varying reference signal,
Case (d) u(t) = u〈I,A〉(t) with online adaptation of the control parameters and a

time-varying reference signal.
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In the Cases (a)–(c), it is assumed that all coefficients αr and the variable-structure
gain η̃ (respectively η̃1 and η̃2) are constant for the complete simulation horizon. The
Cases (a) and (b) coincide with scenarios that were already investigated in [21].
In Case (d), an online gain scheduling approach is implemented according to the
structure diagram in Fig. 7.

For the Cases (b)–(d), the maximum admissible operating temperature included
in the barrier function V 〈A〉 is defined as the constant value x̄1,max = x1,d(t) +
Δx1,max(t) ≡ 885K with

V 〈A〉 = ρV ·
∑
I

ln

(
σV · x̄1,max

x̄1,max − ϑI(t)

)
. (73)

If actuator constraints are violated in the Cases (a)–(c), the system input u(t) =
vCG,d(t) is set equal to the corresponding violated input constraint. Due to the fact
that the control parameters αr , η̃ (respectively η̃1 and η̃2) are assumed to be constant
in the Cases (a)–(c), the input rate limitation introduced in Eq. (69) has not been
accounted for in the computation of the corresponding control signals. However,
to make sure that rate constraints are not violated at the actual plant, the control
signal is filtered by (69) before applying it at the system input. Ignoring the filter
time constant Tr during the design stage leads to some amount of chattering due to
a model inaccuracy. This inaccuracy is reduced in the scenario (d) by including the
filter (69) as an input rate limiter into the controller design. Moreover, the controller
parameters are adapted online in the Case (d). Together with the direct inclusion
of the input rate limiter (69), this leads to significantly more smooth control inputs
and less chattering in the control errors. Furthermore, it yields less conservative
choices of the system inputs, which becomes visible by reduced steady-state errors
at high-temperature operating points.

Note that all cases in which the barrier functions were active in Figs. 8 and 9 lead
to system outputs in which the maximum stack temperatures are compatible with the
given state constraint.

In summary, the control implementation that was used in Case (d) of Fig. 9 is
advantageous due to the following reasons from a practical point of view: First, the
offline design of the desired reference trajectory helps to avoid input saturations
for a nominal non-disturbed plant model. Second, the smooth desired reference tra-
jectory for the temperature profile is the major reason why the control in Fig. 9 is
generally less aggressive than for a step-like change of the reference signal that was
used in Fig. 8. Finally, the online gain adaptation procedure described below for
the variable-structure controller reduces chattering to a reasonable level and hence
avoids unnecessary actuator wear.

The online parameter adaptation summarized in Fig. 7—which has been applied
in Fig. 9—makes use of the following gain scheduling heuristics.

For the first-order sliding mode in the Cases (d), the gain adaptation is performed
according to the following:
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Fig. 8 Comparison of interval-based sliding mode controllers for L = N = 1, M = 3 without
barrier Lyapunov function approach (Case a) and with barrier Lyapunov function (Case b) for a
constant desired output x1,d = 880K. a Stack temperature (Case a). b Mass flow ṁCG (Case a). c
TemperatureϑCG,in (Case a).dStack temperature (Case b). eMassflow ṁCG (Case b). f Temperature
ϑCG,in (Case b)

Step 1. Define a desired eigenvalue λr of multiplicity δ − 1 on the sliding surface
with corresponding parameters αr

Step 2. Initialize η̃ with the desired value
Step 3. Adapt η̃ in a line-search approach (fixed number of Nη = 5 steps) to ensure

compatibility of u(t) = vCG,d(t) with the control constraints

• Stop, if admissible control is found;
• If no admissible control is found within Nη steps, adapt the eigenvalue λr and
restart with Step 2; Break after at most Nλ = 5 repetitions.3

For the second-order sliding mode, a straightforward extension of the online gain
scheduling is given basically by an extension of the previous Step 2.

Step 1. Define a desired eigenvalue λr of multiplicity δ − 1 on the sliding surface
with corresponding parameters αr

Step 2a. Initialize both parameters η̃1 and η̃2 with the desired values
Step 2b. Perform one adaptation step of η̃2 according to the sensitivities in Fig. 7
Step 3. Adapt η̃1 in a line-search approach (fixed number of Nη = 5 steps) to

ensure compatibility of u(t) = vCG,d(t) with the control constraints

3This limitation is necessary to guarantee real-time applicability of the adaptation procedure.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9 Comparison of interval-based sliding mode controllers for L = N = 1, M = 3 with barrier
Lyapunov function approach for constant (Case c) and variable controller gains (Case d) for a time-
varying desired output x1,d(t) �= const. a Stack temperature (Case c). b Tracking error (Case c). c
CG control inputs (Case c). d Stack temperature (Case d). e Tracking error (Case d). f CG control
inputs (Case d). g CG stack inlet temperature (Case c). h CG stack inlet temperature (Case d)

• Stop, if admissible control is found;
• Repeat the Steps 2b and 3 for a maximum of Mη = 5 times, where the restart of
Step 3 is performed with the originally desired parameter η̃1;

• If no admissible control is found within Mη · Nη steps, adapt the eigenvalue λr

and restart with Step 2a; Break after at most Nλ = 5 repetitions.

Note that both adaptation procedures ensure stability for �{λr } < 0 and η̃ > 0
as well as η̃1 > 0 and η̃2 > 0. However, simulation case studies have shown that
the control performance may become worse if sign (s) changes its value during the
parameter adaptation. This can be prevented by adding an additional term−ν(t)with
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ν(t)

⎧⎪⎨
⎪⎩

< 0 for inf{− [ϑI∗ ] (t) + x1,d}(t) < 0

> 0 for sup{− [ϑI∗ ] (t) + x1,d}(t) > 0

= 0 else

(74)

onto the numerators of (37) and (40), respectively. Note that the intervals on the
right-hand side of (74) reflect the measurement or state reconstruction tolerances of
the stack module temperatures. In cases in which the adaptation of the parameters
according to Fig. 7 leads to a change of sign (s), the absolute value of ν(t) needs to
be chosen in the followingmanner: If the Steps 1–3 yield no admissible solution with
the same sign of s as the initialization, the term −ν(t) is selected in such a way that
the control is set exactly to the respective bound of the input u(t) = vCG,d(t) that was
originally violated. According to the simulations in Fig. 9, this measure preserves the
desired stability properties and still prevents overshooting the maximum admissible
stack temperature, however, without a formal proof.

6 Conclusions and Outlook

In this chapter, various generalizations of sliding mode controllers were presented
toward interval-based implementations. These implementations focus on a guaran-
teed stabilization of sets of ODEs describing the dynamics of closed-loop control
systems with uncertain parameters and uncertain state variables. Both of these uncer-
tain quantities are assumed to be represented by closed intervals. Despite the aim of
a guaranteed stabilization of the control error dynamics in such uncertain settings,
further generalizations were discussed for a reliable treatment of state and actuator
constraints. Especially, the overshoot prevention of given upper state boundaries and
the treatment of input range and input rate constraints were visualized for the control
of the thermal behavior of a high-temperature fuel cell system.

It has been shown that the presented approaches lead to a guaranteed compatibility
of the closed-loop dynamics with the before-mentioned constraints as well as with
robustness and stability requirements. Moreover, an online parameter adaptation
approach was validated in simulations which allows for a reduction of chattering
if constant control parameters may cause the violation of input range constraints.
Classically, such violations are purely avoided by corresponding saturation elements.

Future work will deal with further generalizations of the controller, e.g., with
parameterizations of the system input by time-dependent polynomials. In such a
way, it is desired to further smoothen the inputs when treating the polynomial coef-
ficients as virtual inputs that are alternatively computed by sliding mode or predic-
tive control techniques. Moreover, generalizations of the presented quasi-continuous
variable-structure control approaches toward a discrete-time implementation may be
investigated in the future.
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Experimental and Numerical Validation
of a Reliable Sliding Mode Control Strategy
Considering Uncertainty with Interval
Arithmetic

Luise Senkel, Andreas Rauh and Harald Aschemann

Abstract Real applications are often affected by uncertainty caused by, for example,
unknown parameters, sensor inaccuracies, and noise processes. These effects influ-
ence control procedures in a significant way and have to be taken into consideration
in simulations and experiments to ensure stability of a real system. Often, the dynam-
ics of a considered system can be described by nonlinear equations. To control such
systems, sliding mode techniques are advantageous in compensating not explicitly
modeled disturbances that influence a system. In this contribution, common sliding
mode controllers are extended and combinedwith interval arithmetic to enhance their
performance. This can be achieved by an adaptive calculation of the state-dependent
gain stabilizing the variable-structure part of the system—the so-called switching
amplitude. Therefore, an exact knowledge of the system parameters is not neces-
sary because their true values are assumed to be located in specified range bounds.
Moreover, stochastic uncertainty is taken into consideration representing process and
measurement noise that affect practically every real system.

1 Introduction

For the applicability of control theory, suitable mathematical models are necessary
that describe a real system with good accuracy. Nevertheless, it is impossible to
include all dynamic effects and disturbances influencing the real application into a
model that behaves exactly as the real system. Thus, it is important tomake a trade-off
between model accuracy and computation time to overcome lack of knowledge as
well as to decrease the implementation effort.Nevertheless, a suitable control strategy
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ensuring the system’s stability in a robust way is necessary to overcome non-modeled
effects. This can be realized using sliding mode techniques for control—which are
the focus of this contribution—and also for estimation tasks. To employ slidingmode
techniques, the mathematical model of the considered system is split up into a linear
part and a variable-structure part. The latter one compensates nonlinear dynamics
as well as disturbances and non-modeled influences by a suitable calculation of a
variable-structure gain, the so-called switching amplitude. This can be done using
Lyapunovmethods to guarantee that the system converges to a defined sliding surface
onwhich stability of the closed-loop system can be ensured. Therefore, the switching
amplitude forces the system to overcome the distance to the desired trajectory (called
reaching phase). Afterward, the system will not diverge anymore and always stays
in the surrounding area of the sliding surface (called sliding phase). In the following,
deviations from this sliding surface are defined as the tracking error which should
be as small as possible to provide an efficient control.

To increase robustness and to overcome the problem that system parameters are
unknown or vary within some tolerances, a sliding mode control approach is devel-
oped including an online calculation of the switching amplitude. Therefore, uncertain
parameters specified in terms of range tolerances are included as interval variables.
Fundamental implementation steps are demonstrated for two control tasks: The first
one is a drive-train test rig available at the University of Rostock for which the
approach is realized in simulation and experiment. The second one is a model for the
thermal behavior of a solid oxide fuel cell (SOFC) stack in combination with two
gas preheaters with the focus on the heating phase.

The outline of this chapter is as follows: Sects. 2 and 3 summarize the basics
of interval arithmetics and stability methods provided by Lyapunov approaches.
Afterward, control theory for linear systems is discussed in Sect. 4 followed by two
sliding mode control approaches in Sect. 5: a common way and an extended one. For
the twomentioned application scenarios, the developed novel slidingmode controller
taking into account intervals and stochastic processes is applied, which is the topic
of Sects. 6 and 7. A summary and an outlook on further work conclude this chapter.

2 Interval Arithmetics and Stochastic Uncertainty

The characterization of bounded and stochastic uncertainty plays a major role in
control tasks aiming at describing real systems by mathematical models in order to
implement efficient and robust control strategies.

Bounded uncertainty affects real applications in different ways. Inaccuracy due
to manufacturing tolerances is one of them. Moreover, system parameters influence
the dynamics of a system and can often not be identified exactly. For this parameter
identification, measurements are necessary which are affected by limited accuracy
of, for example, sensors. This causes deviations between measurements and the true
system states of the considered mathematical model. Such errors can be taken into
consideration by specifyingmeasurement error intervals. In addition, parameters can
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be described by intervals in the sense of predefined tolerance bounds that enclose
the range of a parameter around its nominal value [22].

In general, an interval is defined as

[a] = [a ; a
]

(1)

with a lower bound (infimum) a = inf([a]) and an upper bound (supremum) a =
sup([a]). An interval vector of length l is defined component-wise as

[a] =

⎡
⎢⎢⎢⎣

[
a1 ; a1

]
[
a2 ; a2

]
...[

al ; al
]

⎤
⎥⎥⎥⎦ . (2)

In this contribution, intervals quantify worst-case influences of states (e.g., con-
trol errors) and parameters. Therefore, the standard arithmetic operations addition,
subtraction, and multiplication can be applied to intervals as for calculations with
point values [8, 9, 14]. Divisions, in which the denominator is an interval, are only
allowed, if the point value zero is not included in this interval. Due to this problem,
a case-sensitive evaluation of the switching amplitude is necessary as it is described
in Sect. 5.3.

Unfortunately, calculating with intervals can lead to overestimation caused by two
inconvenient effects: the dependency problem and the so-called wrapping effect.
The dependency problem is unavoidable, if one interval occurs several times in a
mathematical equation and cannot be factorized in a suitable way. An example is the
difference of a given interval [a] = [1 ; 2] with itself according to

[ f ]([a]) = [a] − [a] = [−1 ; 1] �= [0 ; 0] , (3)

where the exact solution should be a point value according to [0 ; 0] = 0. In fact,
this value is only a part of the larger enclosure [−1 ; 1] resulting from a naive
use of interval arithmetics. Because of the multiple occurrence of parameters in
a mathematical model of a real system, the dependency problem may lead to large
inclusions that cannot be used for further calculations ormayprovide too conservative
solutions. The second problem, the wrapping effect, occurs because in standard
interval arithmetics an interval is assumed to be an axis parallel box. In fact, such
boxes may include regions that result in too conservative enclosures of non-axis-
aligned solution spaces that may lead to unphysical computation results. Due to these
problems, verified solution methods have to be found to reduce overestimation. The
problem of overestimation in this contribution is overcome by a problem-dependent
implementation of the calculation of the variable-structure gain in the control law in
Sect. 5. Because this computation is repeated in each time step with the current state
information, the pessimism introduced by the dependency problem can be limited.
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Another class of uncertainty comprises stochastic or unknown effects on the
system dynamics. On the one hand, process noise can be understood as transfor-
mation errors between two subsequent time steps. On the other hand, measurement
noise may affect measurements of a system. Such stochastic uncertainty can be taken
into consideration by defining standard deviations for Brownian motions1 that can
be understood as probability distributions of both mentioned random noise effects.

3 Lyapunov Methods for Stability Analysis

Of course, real applications need to be controlled such that the system does not
become unstable. In fact, this means that the system states do not increase unlimited
over time. The special case of asymptotic stability is characterized by the fact that the
system dynamics converge over time to the system’s equilibrium. To ensure stability
of a system for control purposes, Lyapunov methods can be taken into consideration
which are the basis for the sliding mode control described in the next section.

Consider the ordinary differential equation of a linear time-invariant system
defined by a system matrix A and a state vector x(t) according to (see [7])

ẋ(t) = A · x(t) (4)

and a positive definite quadratic Lyapunov function candidate

V = 1

2
xT (t) · P · x(t) > 0 (5)

with a positive definite symmetric matrix P = PT � 0. Substituting (4) into the cor-
responding time derivative leads to

V̇ = 1

2

(
ẋT (t) · P · x(t) + xT (t) · P · ẋ(t)) < 0

= 1

2
xT (t) · (ATP + PA

) · x(t) < 0

!= −1

2
xT (t) · Q · x(t) < 0. (6)

In order to guarantee asymptotic stability in the near surrounding area of the equilib-
rium x = 0, the term in brackets needs to be negative definite to guarantee converging
behavior of the states. This results in the Lyapunov equation

ATP + PA = −Q (7)

1Normally distributed probabilities of stochastic effects are assumed as long as no further (more
detailed) information is available.
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with a positive definite matrixQ = QT � 0. Equation (7) has to be valid for all states
x(t) as long as the matrices A,P,Q are state- and time-independent. The matrix P
can be calculated if Q is defined (e.g., as identity matrix). If a positive definite and
symmetric matrix P exists, the system is proven to be asymptotically stable. Such
stability statements can also be made for linearized systems in order to analyze
and guarantee local asymptotic stability of the corresponding nonlinear system [13].
Guaranteed stabilizing control design by the definiteness requirement in Eq. (6) is in
the focus of Sect. 5 for uncertain nonlinear dynamic systems.

4 Control Theory for Linear Systems

The simplest methods to enforce trajectory tracking and steady-state accuracy for
linear systems are feedback controllers. Therefore, assume a linear system that can
be represented in state-space form (here, for a single-input single-output (SISO)
system) without external disturbances according to

ẋ(t) = f(x(t),u(t),p) = A(p) · x(t) + b(p) · u(t) (8)

with the system matrix A ∈ R
n×n , the input vector b ∈ R

n×1, the vector of system
states x ∈ R

n×1, the parameter vector p ∈ R
np×1, and the input u ∈ R

1×1. The output
equation is given by

y(t) = cT (p) · x(t) (9)

with the output vector c ∈ R
n×1. Note that A, b and c are parameter-dependent in

general. A suitable control law for system (8) can be stated as

u(t) = uFF(t) − kT x(t) (10)

with the gain vector kT and a feedforward control uFF(t) if the pair (A,b) is con-
trollable.

For the calculation of the controller gains, several methods are possible: pole
placement, solving the Riccati equation, or linear matrix inequalities [5, 23].

A feedforward control uFF allows for tracking a desired trajectory or to reach
a stationary working point using a static or a dynamic feedforward control [27].
Optimal tracking behavior can be achieved, if the transfer function of the closed-
loop system is equal to 1 according to (identity matrix I ∈ R

n×n , Laplace variable λ)

G(λ) = cT (λ · I − A + bkT )−1 · b · GFF(λ)
!= 1. (11)

This means that the system output follows the desired trajectory in the ideal case.



92 L. Senkel et al.

Using a static feedforward control law leads to steady-state accuracy (all time
derivatives are zero) according to

uFF(t) = uFF,stat(t) = S · yd(t), (12)

where yd(t) is the desired output trajectory and the gain S can be calculated by

S = GFF(λ = 0) =
(
cT · (bkT − A

)−1 · b
)−1

. (13)

A dynamic feedforward control for the closed-loop system can be easily computed
in the Laplace domain (controller gain kT = [k1 k2 . . . kn]) using

G(λ) = Y (λ)

W (λ)
= cT (λ · I − A + bkT )−1 · b · GFF(λ)

= γ0 + γ1λ + · · · + γmλm

a0 + a1λ + · · · + an−1λn−1 + λn
· GFF(λ), (14)

where the polynomial degree n of the denominator is equal to the system order andm
is the numerator degree. In order to achieve perfect trajectory tracking according to
G(λ) = 1, the numerator has to be extended, such that numerator and denominator

degrees become equal m
!= n. According to

G(λ) = Y (λ)

W (λ)

!= v0 + v1λ + · · · + vnλn

a0 + a1λ + · · · + an−1λn−1 + λn
, (15)

at least n − m time derivatives of the desired trajectory have to be specified in the
general case. This leads to

GFF(λ) = 1

γ0
· [a0, a1, . . . , 1] · [W (λ), λW (λ), . . . , λ(n)W (λ)]T (16)

in the special case that the original numerator degreem is equal to zero. The necessary
n − m coefficients vi for the dynamic feedforward control result from comparison
of the numerator and denominator coefficients of the same order by

vi = ai for i = 0, . . . , n − 1 if γ0 �= 0 and all γ1, . . . , γn = 0 , vn = 1. (17)

Since γ1 = · · · = γn = 0 holds for all applications in this chapter, the problem for
the realization of

uFF(t) = uFF,dyn(t) = 1

γ0
· v · [w(t), ẇ(t), ẅ(t), . . . ,w(n)(t)]T (18)
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with v = [v0, v1, . . . , vn]T is on the one hand, that consistency of the time
derivatives of the desired trajectory is necessary. On the other hand, the dynamic
feedforward control often depends on system parameters. Here, in this chapter, it is
assumed that these are not exactly known so that within the feedforward control the
midpoints of the parameter intervals have to be used. If these assumptions do not
describe the real system with good accuracy, the sliding mode part described in the
following section will minimize the remaining deviations.

Up to this point, the control law (10) is not applicable if not all system states
are measurable. Therefore, the non-measurable ones have to be estimated using an
appropriate observer. According to the duality principle, an observer for the estima-
tion of all system states x̂(t) can be realized in a similar way as it is done for state
feedback control. The adapted control law yields

u(t) = uFF(t) − kT x̂(t). (19)

The estimated state vector x̂(t) includes the reconstruction of non-measurable states
and amodel-based filtering of themeasurable ones. Therefore, the following ordinary
differential equations (ODEs)

˙̂x(t) = Â(p) · x̂(t) + b̂(p) · u(t) + hp · (ym(t) − ŷ(t)) with ŷ(t) = ĉT (p) · x̂(t)
(20)

can be used with the observer gain vector hp ∈ R
n×1. Moreover, the systemmatrix Â

as well as the input and output vectors b̂ and ĉ of the observer in (20) are equal to the
ones in (8) and (9). The observer gain can be calculated in analogy to the controller
gain [27].

5 Sliding Mode Control Procedures

The principle of sliding mode procedures—in control and estimation tasks—is to
define a stable operation mode, the so-called sliding variable or surface. Due to the
design of sliding modes, the system always tends to this stable mode and stays in
its surrounding area [3]. Generally, sliding mode procedures are well known to be
robust against uncertainty and to stabilize the system dynamics [26]. The control law
for a system in nonlinear controller canonical form is in the following divided into a
linear and a variable-structure part. The first one is already described in the previous
section. The latter one consists of a switching amplitude and the sign function of
the sliding variable which is in the following the difference between the desired
trajectories and the current states (tracking error). The sign function determines in
this context on which side of the sliding surface the system states are located in the
actual time step.
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The following sections describe, first, a common way to implement a sliding
mode controller by defining the switching amplitude which is done by trial-and-
error. Second, a possibility to calculate the switching amplitude online in each time
step will be proposed using Lyapunov functions. Moreover, these two approaches
differ in the dimensions of the sliding surface and switching amplitude (vector).

5.1 Common Approach for First-Order Sliding Mode Control

In this section, a common sliding mode control is shown for SISO (single-input
single-output) systems based on [16, 24]. For this purpose, a Lyapunov function
depending on the tracking error and its time derivative follow according to

V = 1

2
s2(t) and V̇ = s(t) · ṡ(t). (21)

In Eq. (21), s is the so-called sliding variablewhich can be defined as a Hurwitz poly-
nomial of order n − 1 for a system in nonlinear controller canonical formaccording to

s(t) = κ0 · (x1(t) − x1,d(t)) + κ1 · (x2(t) − x2,d(t)) + · · · + (xn−1(t) − xn−1,d(t)).
(22)

The output of the system is denoted by the first state y = x1 and its time derivatives
of order i − 1 by xi with i ∈ {2, . . . , n}. Analogously, the desired trajectory of the
output is yd = x1,d and the terms y(1)

d = x2,d, . . . , y
(n−1)
d = xn,d are associated with

its time derivatives.
In order to guarantee asymptotic stability of the system, the condition V̇ < 0 has

to be fulfilled for all s �= 0. This can be achieved by defining a scalar switching
amplitude η in a suitable way by enforcing proportionality of the time derivative
of the Lyapunov function and the absolute value of the sliding variable |s(t)| =
s(t) · sign(s(t)) according to

V̇ (t)
!≤ −η · |s(t)| with η > 0. (23)

This inequality is equal to

s(t) · ṡ(t) !≤ −η · s(t) · sign(s(t)). (24)

After factoring out s(t) on both sides and some reformulations [16], the expression

ṡ(t) + η · sign(s(t)) !≤ −ε · sign(s(t)) (25)
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can be obtained with a desired convergence rate ε > 0 which then can be stated as

ṡ(t) + (η + ε)︸ ︷︷ ︸
:=η̃>0

· sign(s(t)) !≤ 0. (26)

In Eq. (26), the sum of the switching amplitude η > 0 and the convergence rate ε can
be stated as η̃ > 0.

The sign function of the sliding variable can be evaluated in each time step using
the following cases in dependency of the positive or negative sign of the sliding
variable according to

sign(s(t)) =
⎧⎨
⎩
1, if s(t) > 0
−1, if s(t) < 0
0, else.

(27)

In such a way, the switching part can change its sign in the control law depending
on the system dynamics instantaneously in each time step which causes chattering.
However, after reaching the stable area s(t) ≈ 0, the systemwill not diverge anymore
and stay in a small enclosure around it.

To guarantee asymptotic stability denoted by V̇ < 0, the terms κi > 0 and η̃ > 0
have to be defined properly.

The control law of the dynamic system ẋn = x (n)
1 = u for the common sliding

mode yields

u(t) = x (n)
1,d(t) −

n−1∑
i=0

κi · (x (i)
1 (t) − x (i)

1,d(t)) − η̃ · sign(s(t)) (28)

with the constant scalar switching amplitude η̃ and the scalar sliding variable s(t).
Note that in the control law (28), which is used for the common sliding mode control,
a dynamic feedforward control is inherently included due to the choice of s(t) in
Eq. (22).

To replace the intelligent guess of η̃ by a systematic design procedure, the next
section describes a sliding mode controller that calculates a switching amplitude
vector—one switching amplitude for every state in each time step—in order to reduce
chattering. This is done adaptively by taking into account bounded uncertainty in
the sense of defined range enclosures (intervals, see next subsection) as well as by
considering stochastic noise processes in the system model.
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5.2 Interval Definitions in Sliding Mode Approaches

Intervals can be understood as range bounds for several purposes. First, not exactly or
also varying parameters can be defined as intervals. Then, the parameter-dependent
system matrix A(p(t)) is extended to an interval evaluation A := [A(p(t))] =
A([p](t)). The same also holds for the input vector B := [b(p(t))] = b([p](t)). In
the presented application scenarios, the output vector is parameter-independent, so
thatC := cT holds. Analog enclosures are taken into consideration in this chapter for
control errors (e.g., if the system states have not yet reached the desired trajectory),
estimation errors in an observer for the estimation of parameters and states (e.g., if
the reconstructed states do not coincide with the measured ones) and measurement
errors (due to sensor inaccuracies that provide measurements only with a limited
accuracy or resolution) as it can be seen in Fig. 1.

Taking into account such intervals, the sliding surfaces in control (and in analogy
also estimation) become range bounds around the value 0 (see Fig. 2). This aims at
reducing the calculated switching amplitude in regions, where the tracking error is
sufficiently small to avoid unnecessary large switching amplitudes and actuator effort.
Taking into account these definitions, the interval-based sliding mode controller
(ISMC) is described in the next subsection.

5.3 Sliding Mode Control Using Intervals (ISMC)

In the following, the control law (19) is extended to

u(t) = uFF(t) − kT · x̂(t) + ηT · sign(s(t)) (29)

Fig. 1 Interval definitions of control, estimation, and measurement errors illustrated for a system
with two states
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Fig. 2 Interval definition of the tracking error

with the vector of switching amplitudes η ∈ R
n×1 and a vector-valued calculation

of the sign function of the sliding surface vector s(t) = x̃(t) = x(t) − xd(t) ∈ R
n×1

which includes the tracking errors between the state variables and the corresponding
desired trajectories in a component-wise manner.

The extended controller can be applied to an uncertain system described by the
following stochastic differential equations for a SISO system [24]:

dx(t) = F(x (t) , [p],u(t))dt + Gp · dwp(t) and (30)

y(t) = cT ([p]) · x (t) + Gm · dwm(t). (31)

In Eq. (30), dwp ∈ R
n×1 is the standard Brownian motion of the process noise and

Gp ∈ R
n×nw the corresponding matrix of standard deviation (nw = dim(dwp)). In

Eq. (31), dwm is the standard Brownian motion that represents the measurement
errors with Gm as the related standard deviation for the system output (which is
scalar in this contribution, dim(y) = dim(dwm) = 1).

The uncertain SISO system

F(x (t) , [p],u(t)) = f(x (t) , [p],u(t)) + g(t) (32)

can be stated into the following form:

f([x](t), [p], u(t)) = A · [x](t) + B · u(t)

= A · [x](t) + B · (uFF(t) − kT · [x](t) + ηT · sign([x̃](t))),
(33)

where g (t) includes all influences, which do not fit into the linear form in Eq. (33).
In such a way, the term g (t) contains nonlinear dynamics and not explicitly modeled
terms, for example, deterministic parts of friction.
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Moreover, A and B are the interval notations for the system matrix and the input
vector (see Sect. 5.2). Analogously, the system states [x](t) are extended by some
tolerance bounds to include control errors due to Fig. 2.

For the guaranteed stabilizing calculation of the switching amplitude vector, the
Itô differential operator [12]

L([V ](t)) = ∂V

∂t
+
(

∂V

∂ x̃

)T
· (F([x] (t) , [p],u(t)) − ẋd(t)) + 1

2
trace

{
GT

p
∂2V

∂ x̃2
Gp

}

(34)

is employed with the Lyapunov function candidate

V (t) = 1

2
x̃T (t) · P · x̃(t) (35)

and its partial derivative with respect to the tracking error ∂V
∂ x̃ (for detailed informa-

tion, refer to the appendix). The tracking error x̃(t) serves as a generalization of the
sliding variable

x̃(t) = x(t) − xd(t) = [x1(t) − x1,d(t) , x2(t) − x2,d(t), . . . , xn(t) − xn,d(t)]T .

(36)

According to the definition of V , it is obvious that no explicit time dependency
occurs so that the term ∂V

∂t = 0 can be removed from (34). Moreover, the system
equations F([x](t), [p],u(t)) and the sliding variable are evaluated using a control
error interval [Δxc] for the deviation of the true unknown system states from the
desired trajectories according tox(t) ∈ [x](t) = x(t) + [Δxc] andwith the parameter
intervals p ∈ [p]. The term

TS = 1

2
trace

{
GT

p ·
(

∂2V

∂ x̃2

)
· Gp

}
= 1

2
trace

{
GT

p · P · Gp

}
(37)

denotes the trace of the stochastic processes, in fact process noise for control pur-
poses. Therefore, the matrix of standard deviation of the process noise Gp is taken
into consideration as well as the solution of the Lyapunov equation given by (7).

Inserting (33) into (34) yields

L([V ](t)) = [x̃]T (t) · P ·
(
A − B · kT

)
· [x](t) + [x̃]T (t) · P · B · uFF(t) − [x̃]T (t) · P · ẋd(t)

︸ ︷︷ ︸
[V̇a](t)

+ [x̃]T (t) · P · B · ηT · sign([x̃](t)) + TS (38)

with [x̃](t) = [x](t) − xd(t), g(t) = 0.
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Solving this relationwith respect to the switching amplitudevectorη byemploying

the condition L(V (t))
!
< −qT · abs ([x̃](t)) ∈ R

n×1 equals

[V̇a](t) + [x̃]T (t) · P · B · ηT · sign([x̃](t)) + TS < −qT · abs ([x̃](t)) (39)

which can be reformulated according to

[V̇a](t) + ηT · (sign([x̃](t)) · [x̃]T (t)︸ ︷︷ ︸
|[x̃]|T (t)∈Rn×n

) · P · B + TS < −qT · abs ([x̃](t)) (40)

with a user-defined piecewise non-negative convergence rate vector q ∈ R
n×1 > 0.

Moreover, the vector of the absolute values abs ([x̃](t)) is defined as

abs ([x̃](t)) =

⎡
⎢⎢⎢⎢⎣

∣∣[x1](t) − x1,d(t)
∣∣∣∣[x2](t) − x2,d(t)
∣∣

...∣∣[xn](t) − xn,d(t)
∣∣

⎤
⎥⎥⎥⎥⎦

. (41)

The matrix of the absolute values |[x̃]| (t) ∈ R
n×n with the definition of the track-

ing error interval [x̃i ](t) = [xi ](t) − xi,d(t) for all i ∈ {1, . . . , n} is defined as

|[x̃](t)| =

⎡
⎢⎢⎢⎣

[x̃1](t) · sign([x̃1](t)) [x̃1](t) · sign([x̃2](t)) . . . [x̃1](t) · sign([x̃n](t))
[x̃2](t) · sign([x̃1](t)) [x̃2](t) · sign([x̃2](t)) . . . [x̃2](t) · sign([x̃n](t))

...
...

. . .
...

[x̃n](t) · sign([x̃1](t)) [x̃n](t) · sign([x̃2](t)) . . . [x̃n](t) · sign([x̃n](t))

⎤
⎥⎥⎥⎦ .

(42)

Additionally, the sign function of the tracking error components is given by

sign([x̃i ](t)) =
⎧⎨
⎩
1, if inf([x̃i ](t)) > 0
−1, if sup([x̃i ](t)) < 0
0, else.

(43)

This sign function causes thementioned chattering phenomenon: if sign([x̃i ](t)) < 0
in time step tk , it is possible that sign([x̃i ](t)) > 0 may occur in the following time
step tk+1. Sliding mode theory assumes that the switching part can change arbitrarily
between two subsequent time steps [6]. In practice, this is not reasonable, because a
large switching amplitude vector involves a large value of the input signal. To prevent
wear or even damage of the actuator of the real system, the input signal is usually
limited, e.g., an electric motor with a limited motor torque and a corresponding
variation rate. Therefore, the frequency of the switching amplitude has to be limited
to a maximum value ηmax to ensure that its values do not vary arbitrarily between
two time steps.
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From Eq. (40), the expression

[V̇a](t) + ηT · |[x̃](t)|T · P · B︸ ︷︷ ︸
:=[M]

+ TS < − qT · abs ([x̃](t)) (44)

can then be solved with respect to the switching amplitude vector η. Its components
i ∈ {1, . . . , n} can be calculated in each time step by one of the following cases

ηi =
⎧⎨
⎩
sup
([M]+i · (−[V̇a](t) − qT · abs ([x̃](t)) − TS

))+ ε, if sup([M]i ) < 0
inf
([M]+i · (−[V̇a](t) − qT · abs ([x̃](t)) − TS

))− ε, if inf([M]i ) > 0
0, else

(45)

with the pseudoinverse (. . .)+ of the matrix [M]T := B
T · P · |[x̃](t)| which turns

out to be a row vector for SISO systems. Note, ε is a small value guaranteeing the
strict inequality (44) after solving for the switching amplitude. These three cases are
necessary to determine on which side of the sliding surface the system states are
located or if they have already reached the small area around it (case 3).

The i-th component of the switching amplitude depends on the corresponding
entry [M]i , where either the infimum or the supremum is relevant. As a consequence,
the switching amplitude entries are calculated separately as small as possible. More-
over, the switching amplitude is evaluated at each time step tk with actual information
about current states and desired trajectories. The case ηi = 0 means that the sliding
surface is practically reached or the system stays in its near surrounding area.

In general, there are different ways to calculate the pseudoinverse of [M] in
(45). If [M] is a matrix, then the minimum norm solution according to [M]+ =([M]T · [M])−1 · [M]T has to be used. If [M] is a vector as it is in both applica-
tion scenarios discussed in this chapter, the pseudoinverse can also be calculated by
general-purpose routines such as minv implemented in C- XSC [11]. However, for
the application scenario 2, the minimum norm solution provides too conservative
calculations so that the third case of (45) occurs unnecessarily often. Therefore, the
pseudoinverse for SISO systems can also be calculated component-wise according
to

[M]+i = [M]i
||[M]||2 = [M]i

n∑
i=1

[M]2i
(46)

which typically leads to less conservative results.
As already mentioned, the described approach ensures the system’s stability as

long as L(V (t)) < 0 or L(V (t)) < −qT · abs(| ˜[x](t)|) hold. The case L(V (t)) = 0
describes the boundary of the provable stability domain. Due to the chosen quadratic
Lyapunov function with the weighting matrix P, the boundary is shaped like an
ellipsoid. In order to reduce the non-stabilizable area, inwhich the positive or negative
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sign of the tracking error cannot be determined, the volume of L(V (t)) should be as
small as possible [23].

As already mentioned, in cases in which not all system states are measurable, it is
necessary to reconstruct them by a state observer. Alternatively, the control approach
discussed in this contribution can be applied to estimation tasks, as it is described in
[24] where not only non-measurable system states are estimated but simultaneously
also selected uncertain system parameters of the presented application scenario.

The described approach is implemented using Matlab/Simulink. Due to the
fact that the switching amplitude vector is calculated in each discretization step, s-
functions calling a C++ code are used to make the approach real-time applicable.
For the calculation with intervals, the toolbox C- XSC [11] is used in simulation.
However, this cannot be used in experiments of the first application scenario, because
the test rig is actuated by a real-time target systemwhich does not support the directed
rounding mode needed in C- XSC. Therefore, a self-defined structure is written in
C++ that is able to handle interval matrices and the standard operations {+,−, ·}.
The / operator, which is in this approach only needed for the calculation of the
pseudoinverse, is defined separately for both applications as it is already described
in this section. Due to the fact that the considered intervals for parameters and control
errors are at least ten orders ofmagnitude larger than rounding errors, the self-defined
data type provides results that practically cannot be distinguished from calculations
using C- XSC, where directed rounding is employed [11].

6 Application Scenario 1: Modeling and Experimental
Setup of a Drive-Train Test Rig

The first application scenario is a drive-train test rig representing the longitudinal
dynamics of a vehiclewhich is available at theChair ofMechatronics at theUniversity
of Rostock, as it can be seen in Fig. 3 [24].

Fig. 3 Photo of the test rig
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Fig. 4 Schematic visualization of the test rig

The principle is quite simple: an electric motor drives a shaft which is connected
via two deflector rolls and one toothed belt with another shaft. On this second shaft,
a velocity-proportional braking torque can be activated. Only the available mea-
surement of the angle of the drive side shaft is used for control purposes. Figure4
shows the schematic interpretation from the experimental setup in Fig. 3 with the
most important variables for the mathematical model.

If the mass moments of inertia of the motor JM, both shafts JDS,M and JDS,B as
well as of the brake JB are summarized into one common mass moment of inertia
J , and if a velocity-proportional friction coefficient d is considered, the test rig can
be modeled with two parameters, two system states, one input and one output (SISO
system). Friction has an important influence on the system, because it occurs between
the deflector rolls and the toothed belt as well as in all bearings. Moreover, static
friction has to be compensated in order to start a desired trajectory causing rotation
of the shafts without stick-slip effects.

Under these assumptions, the system ẋ(t) = F(x(t), [p], u(t)) = [ẋ1(t) ẋ2(t)]T
can be described by a set of two ordinary differential equations according to

ẋ(t) = A · x(t) + b · u(t) =
[
0 1
0 α

] [
x1(t)
x2(t)

]
+
[
0
β

]
u(t) (47)

with the system output

y(t) = cT · x(t) = x1(t). (48)

Physically, the first system state is equal to the angle of the drive side shaft
x1(t) = ϕM(t) and the second state represents its angular velocity x2(t) = ẋ1(t) =
ϕ̇M(t) = ωM(t). Note, only the first state is measurable ym(t) = x1,m(t) = ϕM,m(t).
The input signal is defined as the commanded motor torque u(t) = TM(t) and the
two parameters are defined by
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α = − d

J
∈ [α] and β = 1

J
∈ [β], (49)

both influencing the system dynamics in a significant way [24]. It is assumed that
the nominal system parameters are located in some intervals specified as range
enclosures [α] and [β] around nominal values, because they are uncertain, however,
knownwithin some tolerance bounds.Moreover, themultiplicative coupling between
parameters with the time-varying states and the system input is in the focus of the
described control procedure using sliding mode techniques with interval arithmetics
and uncertainty. Furthermore, the influence of friction is not explicitly modeled and
can be overcome by such robust control procedures.

6.1 Trajectory Tracking by Common Sliding Mode Control

The model of the application scenario described above is in controller canonical
form. Consequently, the sliding surface for the common sliding mode control (see
Sect. 5.1) is chosen according to

s(t) = κ0 · (x1(t) − x1,d(t)) + (x2(t) − x2,d(t))

= κ0 · (ϕM(t) − ϕM,d(t)) + (ωM(t) − ωM,d(t)). (50)

The corresponding time derivative yields

ṡ(t) = κ0 · (ẋ1(t) − ẋ1,d(t)) + (ẋ2(t) − ẋ2,d(t))

= κ0 · (ωM(t) − ωM,d(t)) + (ω̇M(t) − ω̇M,d(t)). (51)

After inserting the second state equation from (47)

ω̇M(t) = α · ωM(t) + β · u(t), (52)

in (51), the expression

ṡ(t) = κ0 · (ωM(t) − ωM,d(t)) + (α · ωM(t) + β · u(t) − ω̇M,d(t)) (53)

results. Inserting (47) and (53) into (26) results in the control law

u(t) = −κ0(ωM(t) − ωM,d(t)) − (α · ωM(t) − ω̇M,d(t)) − η̃ · sign(s(t))
β

(54)

including the switching part η̃ · sign(s(t)). Unfortunately, this common form of
sliding mode control does not work in the experiment. This might be caused by
the not modeled influence of the varying static as well as sliding friction, and the
two degrees of freedom that have to be predefined and cannot be calculated by
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model-based systematic procedures, namely the constant switching amplitude η̃ as
well as κ0. Moreover, noise processes cannot be considered explicitly. All these facts
cause too conservative results, whichmake large switching amplitudes necessary and
make the system unstable in experiments, where such large switching amplitudes are
not applicable due to the limited control input represented by the motor torque.

6.2 Trajectory Tracking by Interval-Based Sliding Mode
Control

The presented system model (47) is also applied to the interval-based sliding mode
controller for the two kinds of static and dynamic feedforward control. For the
dynamic one, the transfer function of (47) yields

Y (λ)

U (λ)
= X1(λ)

U (λ)
= β

λ2 + αλ
. (55)

The dynamic feedforward control can easily be computed with the control gain
kT = [k1 k2] using

G(λ) = cT (λ · I − A + b · kT )−1 · b · GFF(λ) = β

λ2 + λ · (βk2 − α) + βk1
· GFF(λ).

(56)

Because the order of the denominator is n = 2 and the order of the numeratorm = 0,
the numerator has to be adapted such that both orders are equal. Due of the fact that
the output of the given system model is also the flat one,2 this corresponds to solving
(56) with respect to the desired trajectoriesW (λ) and transforming back into original
coordinates. This leads to the dynamic feedforward control

uFF(t) = uFF,dyn(t) = ẍ1,d(t) + ẋ1,d(t) · (βk2 − α) + βk1x1,d(t)

β
(57)

with the desired trajectory x1,d(t) = ϕM,d(t) and the corresponding two derivatives
ẋ1,d(t) = ϕ̇M,d(t) and ẍ1,d(t) = ϕ̈M,d(t). For the parameters, the following assump-
tions are included α = mid([α]) and β = mid([β]) as the midpoints of the defined
range bounds.

2The output of a SISO system can be stated as flat output, if the system input affects explicitly the
n-th time derivative of the output but no smaller order ones.
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As alreadymentioned, also a static feedforward controlwhich leads to steady-state
accuracy (if all time derivatives are zero) is possible according to

uFF(t) = uFF,stat(t) = S · x1,d(t) (58)

with the gain S = k1 from Eq. (13).
Because only the angle and not the angular velocity is measurable, the duality

principle of controllers can be applied to estimate ϕ̇M(t) = ωM(t) using (20). The
adapted control law for the linear part yields again

u(t) = uFF(t) − kT · x̂(t) (59)

with x̂(t) = [x̂1(t) x̂2(t)]T = [ϕ̂M(t) ˙̂ϕM(t)]T = [ϕ̂M(t) ω̂M(t)]T denoting the esti-
mated state vector.

In simulation and experiment, the measurement noise is defined by the mea-
surement error of ΔϕM = 0.1167 rad according to Gm = 3 · ΔϕM = 0.35 rad. The
process noise is set to a diagonal matrix Gp = diag([0.7, 0.7]) which allows for
deviations of the angular velocity of about 5% and of the angular acceleration of
28%.

For the interval-based sliding mode control, the following interval notations of
the system matrix and the input vector are used:

A =
[
0 1
0 [α]

]
as well as B =

[
0

[β]
]

. (60)

The point values of the parameters are defined as α∗ = −4.22 and β∗ = 64.10 in
the linear control parts. The corresponding point-valued intervals are chosen
according to [α] = [0.2 ; 1.2] · α∗ = [−5.07 ; −0.84] and [β] = [0.2 ; 1.2] · β∗ =
[12.82 ; 76.92]. Moreover, the vector-valued sliding variable equals

[x̃](t) = [x](t) − xd(t) = [[ϕM](t) − ϕM,d(t), [ωM](t) − ωM,d(t)]T (61)

with [ϕM](t) = ϕM(t) + [Δxc,ϕ], [ωM](t) = ωM(t) + [Δxc,ω], and the control error
intervals for both states [Δxc,ϕ] and [Δxc,ω]. Note that ωM cannot be measured and
therefore needs to be estimated in experiment, so that it will be replaced in the
following by ω̂. The next section shows simulative and experimental results of the
interval-based sliding mode controller Eq. (29) as well as simulative results from the
common sliding mode controller.
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6.3 Numerical and Experimental Results

At first, numerical simulations are shown in this section for the following reason.
Due to the fact that the electric drive is affected by actuator constraints, the switching
amplitude in the control law has to be limited. Otherwise, it could happen that the
value of the calculated control law is larger than the actuator limit. The consequence
is that it would be no longer valid, because the exact value cannot be realized by the
described quasi-continuous approach. This would cause errors in trajectory tracking
which may even lead to an unstable closed-loop behavior. The calculated switching
amplitude is significantly influenced by the control error interval vector. In depen-
dency of the choice of this interval, the area in which the switching amplitude is
active or not varies. It needs to be taken into consideration that the switching control
part is based on the tracking errors of both states and not only of the controlled
variable (here the angle). This means that a trade-off between the choices of the two
components of the control error interval vector has to be made: a small control error
interval for the angle leads also to a small tracking error of the angle but to a larger
tracking error of the angular velocity. The same holds vice versa. To determine the
best choice of the control error interval, the root mean square error of the two states
can be calculated separately according to

μϕ =
√√√√ 1

N
·

N∑
k=1

(ϕd(tk) − ϕM,m(tk))2 and μω =
√√√√ 1

N
·

N∑
k=1

(ωd(tk) − ω̂(tk))2.

(62)

Figures5, 6, 7 and 8 show the simulation results for the common first-order slid-
ing mode controller in comparison with the interval-based approach (ηmax = 0.8,
dynamic feedforward control) assuming that both system states are measurable (no
state observer is included). Figures5 and 6 are obtained if the system is simulatedwith
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Fig. 5 Numerical results for the common slidingmode controller assuming all states aremeasurable
with nominal parameters α∗ and β∗ as well as η̃ = 40 and κ0 = 15



Experimental and Numerical Validation of a Reliable Sliding Mode … 107

0.2

0.3

0.1

0

-0.1

-0.2

-0.3
100 150

t in s
0 50

0.6

0.2
0

-0.2

-0.6

-1.0
100 150

t in s
0 50

1.0

-0.4

-0.8

0.4

0.8
M
,m
−

d
in

ra
d

M
,m
−

d
in

ra
d/
s

Fig. 6 Numerical results for the interval-based sliding mode controller assuming all states are
measurable with nominal parameters α∗ and β∗ as well as ηmax,i = 0.8
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Fig. 7 Numerical results for the common slidingmode controller assuming all states aremeasurable
with disturbed parameters α̌ and β̌ as well as η̃ = 40 and κ0 = 15
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Fig. 8 Numerical results for the interval-based sliding mode controller assuming all states are
measurable with disturbed parameters α̌ and β̌ and ηmax,i = 0.8
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undisturbed parameters, whereas Figs. 7 and 8 show the results from simulations in
which the system model is disturbed using α̌ = −3.37 ∈ [α] and β̌ = 51.28 ∈ [β].
The linear part of the controller is still evaluated with the nominal values α∗ = −4.22
and β∗ = 64.10. Obviously, the interval-based sliding mode provides much better
results, in fact the tracking errors of both states can be decreased significantly not
only in the undisturbed case but also in the disturbed one compared to the common
sliding mode control.

To show how the choice of the control error interval influences the tracking errors
of the system states, several simulations were performed. The corresponding root
mean square errors can be seen in Table1 taking into account dynamic feedforward
control and a limitation of the switching amplitude with ηmax = 0.8. It can be seen
that the smallest root mean square of the tracking error of the angle can be achieved
with [Δxc,ϕ] = [Δxc,1] = [−0.05 ; 0.05]. Simultaneously, the root mean square of
the tracking error of the angular velocitywith [Δx c,ω] = [Δxc,2] = [−1 ; 1] is larger
than in other specifications, as it can be seen in Table1.

Experimental results show a similar behavior: depending on the choice of the
control error interval, the root mean squares of the tracking errors interact as it
can be seen in Table2. Therefore, for comparison also the root mean square errors
resulting from pure state feedback control without switching part are included. Note
that the trajectory of the desired angle can be understood as a periodically repeated
driving cycle consisting of an acceleration phase, a constant velocity phase, and
a deceleration phase. One driving cycle has a duration of 40s and a final angle of
150 rad. Additionally, the common slidingmode controller leads to unstable behavior
in experiment. Therefore, only experimental results with the ISMC are shown.

In comparison to a control law with pure state feedback and without sliding mode
part, the best improvement is≈27% with static and 16% with dynamic feedforward
control. Including dynamic feedforward control, Fig. 9 shows the desired angle with
the correspondingmeasurement and the tracking error. In Fig. 10, the desired angular
velocity (resulting from differentiation of the desired trajectory of the angle) with

Table 1 Numerical root mean square errors for angle and angular velocity with dynamic feedfor-
ward control and different control error intervals

Δxc,ϕ Δxc,ω μϕ in rad μω in rad·s−1

±0.05 ±0.5 1.1003 0.5802

±0.05 ±0.3 1.4288 0.5533

±0.05 ±1.0 1.0677 0.5905

±0.05 ±0.1 2.8211 0.5069

±0.5 ±1.0 1.0770 0.5907

±0.5 ±0.5 1.1207 0.5773

±0.1 ±0.1 2.7414 0.5088

Desired angle ϕd =150 rad at the end of each driving cycle (repeated periodically), ηmax,i = 0.8,
angular velocity estimated using a state observer
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Table 2 Experimental root mean square errors for angle and angular velocity with static (top) as
well as dynamic (bottom) feedforward control, different control error intervals and comparison to
pure state feedback control (index SF)

Δxc,ϕ Δxc,ω μϕ in rad μω in
rad·s−1

μϕ,SF μω,SF Improvement
for angle in %

±0.05 ±10 1.11 4.11 1.53 4.12 22.67

±1 ±10 1.17 4.00 1.53 4.12 26.99

Δxc,ϕ Δxc,ω μϕ in rad μω in
rad·s−1

μϕ,SF μω,SF Improvement
for angle in %

±0.5 ±10 8.14 3.55 9.77 4.22 16.63

Desired angle ϕd =150 rad at the end of each driving cycle (repeated periodically), limitation of the
switching amplitude ηmax,i = 0.8. Angular velocity estimated using a state observer
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the estimated angular velocity can be seen as well as the corresponding deviation.
The estimated velocity is determined using a state observer.

In experiment, the ISMC using a static feedforward control provides better results
than with dynamic feedforward control according to Table2 which can also be seen
in Figs. 11 and 12 comparedwith Figs. 9 and 10. This is caused by the assumption that
the parameters are assumed to be constant over the whole driving cycle. Especially,
the parameter α including velocity-proportional friction is—in all likelihood—not
constant because of the high influence of static friction after each standstill. At these
points, it is important at which position the toothed belt comes to a standstill before
moving again. This effect is only indirectly included in the simple system description
in terms of the process noise. In future work, this effect and the influence of time
discretization errors have to be examined. In case that time discretization effects play
a mayor role, an interval evaluation of the ordinary differential equations describing
the system dynamics between two subsequent time steps would be necessary. More-
over, a discrete-time Lyapunov function could be taken into consideration instead of
neglecting the time discretization completely. The reason for this possible extension
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is that the switching amplitude is calculated in the experiment every 0.1 s to decrease
the computational effort while the control sampling time is 0.01 s. This means that
the values of η are assumed to be constant for 10 subsequent time steps.

Independently from the used type of feedforward control, knowledge about the
system parameters is necessary. Therefore, the duality principle of the interval-based
slidingmode control—namely an interval-based slidingmode observer—was used in
previous work for the simultaneous estimation of states and parameters. Especially,
the parameter identification provides better results than a state-of-the-art least squares
approach [24, 25]. To show that the ISMC is also applicable tomore complex systems,
the temperature control of a solid oxide fuel cell (SOFC) system is considered in the
next section.

7 Application Scenario 2: Thermal Subsystem
of a Solid Oxide Fuel Cell System

In this section, the applicability of the interval-based sliding mode control approach
is presented for the thermal subsystem of a high-temperature solid oxide fuel cell
system available at the Chair of Mechatronics at the University of Rostock. In this
chapter, only numerical results are presented. However, in future work an experi-
mental validation will be realized.

Usually, for the industrial control of such a complex system, PI (proportional,
integral) controllers are employed that only work for a specified operating point [20]
at which the model is linearized for design purposes. To enlarge the controllable
domain, sliding mode procedures provide the possibility to ensure robust control
performance also in regions that deviate from the operating point. Moreover, the
problems that parameters are not exactly known and non-modeled influences have
to be compensated in a robust way can be overcome using sliding mode approaches.

In Fig. 13, the thermal subsystem which consists of two preheaters (one for the
anode, one for the cathode gas) and the stack module is shown in a schematic way.

Fig. 13 Schematic visualization of the thermal subsystem of the SOFC stack with preheaters
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In the stack, several planar fuel cells are collocated in electric series connection. For
a complete modeling of the SOFC system, the reader is referred to [20]. The aim
in the following is the temperature control of the stack. This is necessary to prevent
over-temperatures in the stack material that may destroy the stack and to ensure
optimal operating temperatures for energy-efficient chemical reactions. Therefore,
the mathematical model considered in this contribution is based on [17, 20].

In general, the considered system is affected by several thermal effects and there-
fore by some distributed and not exactly known parameters. Usually, such a system is
described by a nonlinear partial differential equation due to large ranges of operating
temperatures [20]. However, these models are hardly suitable for real-time control
approaches. Therefore, a set of ordinary differential equations is applied in the fol-
lowing. For its derivation, it is assumed that all dynamic states are homogeneously
distributed in space. Because the ISMC is up to this point only applicable to sys-
temswhosemathematical model can be represented in nonlinear controller canonical
form for SISO systems, the nonlinear ordinary differential equations have to be trans-
formed using appropriate Lie derivatives of the system output. Because of the fact
that the time delay of the preheaters cannot be neglected, they have to be taken into
consideration in the system model as well. Since, in this chapter, only the heating
phase is considered, the influence of the anode gas (here pure nitrogen) is interpreted
as an external disturbance because the anode gas mass flow is significantly smaller
than the cathode gas mass flow. Consequently, only the cathode gas serves as direct
stack input. In future work, this special case of the heating phase will be combined
with the high-temperature exothermic phase with active chemical reactions in order
to take into account Ohmic losses and chemical reactions inside the stack [20].

The components depicted in Fig. 13 are briefly described in the following.

7.1 Nonlinear Dynamic Model

The preheater dynamics of the two supply gases are each described by two first-order
lag dynamics. To obtain a SISO system,3 the cathode gas can be described by

v̇CG(t) = 1

TCG
· (vCG,d(t) − vCG(t)) and (63)

v̇CG,in(t) = 1

TCG,SL
· (vCG(t) − vCG,in(t)) (64)

with the time constant TCG of the preheater and the time constant TCG,SL of the
supply line between the preheater and the stack. The second preheater for the anode

3In [20], the mathematical modeling was done as MIMO (multi-input multi-output) system, where
both the anode and cathode gases are independent inputs into the stack. Because this chapter only
considers the heating phase, the anode gas plays only a minor role and therefore can be interpreted
as an external disturbance.
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gas usually employs the gas mixture of nitrogen, hydrogen, methane, and carbon
monoxide (all mixed before entering the preheater) to regulate the produced energy
of the system. It is considered in analogy to the cathode gas during high-temperature
phases.During the heating phase, it is treated as an external disturbance-like influence
on the stack according to

v̇AG(t) = 1

TAG
· (vAG,d(t) − vAG(t)) and (65)

v̇AG,in(t) = 1

TAG,SL
· (vAG(t) − vAG,in(t)) (66)

with the time constant TAG of the preheater and the time constant TAG,SL of the
supply line between the preheater and the stack. Physically, all vi with the indices
i ∈ {CG,d; CG; CG,in; AG,d; AG; AG,in} are products consisting of a mass flow
and a temperature because these two values have to be specified at the considered
test rig for an experiment. Note that all mass flows are assumed to be constant in
the whole thermal system because the electrochemical reaction phase does not take
place in the heating phase. Therefore, the thermal behavior of the stack results from
the energy balance for the stack

ϑ̇FC(t) = 1

cFCmFC

(
Q̇HT(t) + Q̇AG(t) + Q̇CG(t) + Q̇EL(t) + Q̇R(t)

)
(67)

with Ohmic losses Q̇EL(t) = 0, exothermic heat production due to deactivated chem-
ical reactions Q̇R(t) = 0, the mass of the stack mFC, and its heat capacity cFC. The
temperature of the stack is assumed to be homogeneous. It is not discretized into
several volume elements each with own temperatures as it was done in [20]. In fact,
here the stack is assumed as one finite volume element. Therefore, heat convection
between the stack and the ambient temperature ϑA(t), conduction inside the stack
material, and heat radiation are lumped into

Q̇HT(t) = α · (ϑFC(t) − ϑA(t)) (68)

with the lumped heat transfer coefficient α. In addition, the anode and cathode gases
flowing through the stack lead to the enthalpy flows

Q̇CG(t) = CCG(ϑFC(t)) · (ϑCG,in − ϑFC(t)) (69)

Q̇AG(t) = CAG(ϑFC(t)) · (ϑAG,in − ϑFC(t)) (70)

with ϑAG,in = vAG,in

ṁAG
and ϑCG,in = vCG,in

ṁCG
. Moreover, the heat capacities result in

CAG(ϑFC(t)) = cAG(ϑFC(t)) · ṁAG(t) (71)

CCG(ϑFC(t)) = cCG(ϑFC(t)) · ṁCG(t) (72)
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Table 3 Overview of the nominal system parameters for the thermal subsystem of the SOFC
system

Parameter Point value (P) or
Interval (I)

Heat transfer coefficient α Ia

Time constant of the CG preheater TCG P

Time constant of the CG supply line TCG,in P

Time constant of the AG preheater TAG P

Time constant of the AG supply line TAG,in P

Product of mass and heat capacity of the stack cFCmFC P

Polynomial coefficients for heat capacity of CG cCG,0 Ia

cCG,1 P

cCG,2 P

Polynomial coefficients for heat capacity of AG cAG,0 Ia

cAG,1 P

cAG,2 P

Note the number of interval parameters can also be extended to all parameters
a±10% uncertainty of the corresponding nominal value

for the heating phase with the temperature-dependent second-order polynomials

cχ (ϑFC(t)) =
2∑

ν=0

γχ,ν · ϑν
FC(t) (73)

for both χ ∈ {AG,CG}.
The thermal system is then given by

ż(t) =
⎡
⎣

v̇CG(t)
v̇CG,in(t)
ϑ̇FC(t)

⎤
⎦ = F(z(t), [p], vCG,d(t), vAG,in(t)) (74)

with the state vector z(t) = [vCG(t), vCG,in(t), ϑFC(t)]T and the input variable
vCG,d(t).

Table3 gives an overview about the included system parameters which were iden-
tified experimentally in previous works [2, 10, 18, 19] and for which interval enclo-
sures are used in the ISMC.

7.2 Application of the ISMC

In order to apply the ISMC to the SOFC model, the system has to be described in
nonlinear controller canonical form so that Eq. (74) has to be transformed using Lie
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derivatives as it is done in [20]. These are defined for the output

y(t) = h(z(t)) = ϑFC(t) (75)

according to

dr y(t)

dtr
= y(r)(t) = Lr

f h(z(t)) = L f
(
Lr−1
f h(z(t))

)
, r ∈ {1, 2, . . . , δ} (76)

where δ = 3 holds for the relative degree in this application (because exactly the
third-order and no smaller order derivatives of the output depends on the system
input).

Using the new state vector

x(t) =
⎡
⎣
y(t)
ẏ(t)
ÿ(t)

⎤
⎦ =

⎡
⎣

h(x(t))
L1
f h(x(t))

L2
f h(x(t))

⎤
⎦ ∈ R

δ, (77)

the set of ordinary differential equations ż(t) = F
(
z(t),p, vCG,d(t), vAG,in(t)

)
can be

transformed into the following state-space representation using

ẋ(t) = [L1
f h(z(t)), L2

f h(z(t)), L3
f h(z(t))

]T
(78)

according to

ẋ(t) =
⎡
⎢⎣

x2(t)

x3(t)

ã(z(t),p)

⎤
⎥⎦+
⎡
⎢⎣

0
0

b̃CG(z(t),p) · vCG,d(t)

⎤
⎥⎦+
⎡
⎢⎣

0
0

b̃AG(z(t),p) · vAG,in(t)

⎤
⎥⎦

(79)

=
⎡
⎢⎣
0 1 0
0 0 1
0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
A

x(t) +
⎡
⎢⎣
0
0
1

⎤
⎥⎦

︸︷︷︸
b

u(t) +
⎡
⎢⎣

0
0

g(t)

⎤
⎥⎦+
⎡
⎢⎣

0
0

b̃AG(z(t),p) · vAG,in(t)

⎤
⎥⎦

︸ ︷︷ ︸
g(t)

(80)

with p ∈ [p], the assumption that dvAG,in

dt ≈ 0, and with the scalar output

y(t) =
[
1 0 0

]
︸ ︷︷ ︸

cT

x(t) = ϑFC(t). (81)
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Moreover, the linear control law for the transformed system is given by

u(t) = uFF(t) − kT x(t) (82)

and the overall system input containing the variable-structure part according to

vCG,d(t) = 1

b̃CG(z(t),p)
(−ã(z(t),p)uFF(t) − kT x(t) + ηT sign(x(t) − xd(t))).

(83)

Note that the Lie derivatives are evaluated using the C++ toolbox Fadbad++ [4]
for algorithmic differentiation. Moreover, the static feedforward control uFF(t) =
S · ϑ1,1,1,d(t) is used and the control gain k results from solving the Riccati equation
[27] for the nominal parameters p = mid([p]).

Figure14 shows the overall structure of the ISMC for the described scenario
assuming the original system states z(t) can be measured without using an observer.
The implementation was done in Matlab/Simulink using C++ templates in
s-functions as well as the toolbox C- XSC for interval arithmetic. Operator over-
loading techniques are employed to compute the required derivatives of the out-
put. As it can be seen, the Lie derivatives are calculated twice: once with and once

Fig. 14 Structure diagram of the control procedure for the thermal subsystem of the SOFC system
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without intervals. The difference compared to the first application scenario is that the
system matrixA = A and input vector B = b do not include any interval parameters
and therefore are only point-valued terms. Therefore, it is assumed that uncertainty
which is not expressed by parameter intervals is unknown from a structural point of
view and consequently summarized in the vector g(t). It represents for example the
following model assumptions that

• heat conduction in the interior of the separate fuel cells is not taken explicitely
into consideration,

• the anode gas serves as an external disturbance,
• heat radiation is not modeled,
• the transformation using Lie derivatives is affected by rounding errors, and
• the approach is quasi-continuous, where time discretization errors are neglected.

These effects have been neglected in the model to find a compromise between the
real model and the mathematical model for the control approach with an appropriate
trade-off between model accuracy and computational complexity. Therefore, the
unknown term g(t) is approximated by the previously mentioned process noise with
the interval-valued standard deviation

[Gp] =
⎡
⎢⎣
0 0 0
0 0 0
0 0 −[ã(z(t), [p])] + mid([ã(z(t), [p])])

⎤
⎥⎦ . (84)

Then, the control law is calculated according to Eq. (29) using Eq. (45) by taking into
account a control error for the states in transformed coordinates x(t) as it is also done
for the first application scenario. Note that the pseudoinverse in Eq. (45) is calculated
according to the less conservative possibility described in Sect. 5.2.

7.3 Numerical Results

In Figs. 15 and 16, the simulation results are depicted. It can be seen that the influence
of the anode gas is one order ofmagnitude smaller than the cathode gaswhich justifies
the assumption that the stack temperature can be controlled by the cathode gas in the
heating phase. Moreover, the resulting trajectory of the controlled stack temperature
follows its desired one with good accuracy which can be seen due to the maximum
control error of ±0.2K in Fig. 16. The trajectory planning for the stack temperature
was done with the help of Bernstein polynomials in order to ensure smooth time
derivatives ϑ̇FC,d and ϑ̈FC,d [21].
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Fig. 15 Simulation results provided by the interval-based sliding mode controller for the supply
lines of the gases which serve as input into the SOFC stack. a Anode gas supply line. b Cathode
gas supply line
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Fig. 16 Simulation results provided by the interval-based sliding mode controller for the SOFC
stack. a Stack temperature. b Tracking error (stack)

8 Conclusions and Outlook

In this chapter, an interval-based sliding mode controller was described for two dif-
ferent application scenarios. The advantage compared with a common approach is
the adaptive calculation of the variable-structure gain which reduces chattering and
unnecessarily large gains that may violate actuator constraints. Moreover, intervals
and stochastic influences are included to make the controller robust against uncer-
tainty.

In future work, the ISMC for the SOFC system will be applied in real time on
the test rig at the University of Rostock. Moreover, it will be extended to MIMO
(multi-input multi-output) systems in general. Another point is to couple the ISMC
with an online state and parameter estimation approach from previous work in terms
of a closed-loop control to include a more detailed knowledge about system parame-
ters. Furthermore, a discrete Lyapunov function candidate will be considered using
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specified bounding boxes to quantify the time discretization error. Therefore, the
state equations will be solved in a verified way with the help of a Picard iteration or
using verified solvers for initial value problems [15].

Appendix

A Derivation of the Itô Differential Operator

Consider the stochastic differential equation

dx = f(x, t)dt + Gp(x, t)dw, (85)

where f(x, t)dt can be understood as the deterministic part and Gp(x, t)dw as the
stochastic part. The latter one is described by a Wiener process dw from which it is
assumed that its finite increments are proportional to

√
dt [1]. Taking into account

the aim to guarantee stability of such a stochastic differential equation, a suitable
candidate of a Lyapunov function is used. In the case of control procedures, it depends
on the tracking error x̃ = x − xd. In the following, time arguments in states are
neglected. The Lyapunov function candidate is chosen as V = 1

2 x̃
T · P · x̃. Its time

derivative can be calculated for finite time increments Δt using the Taylor series
expansion of order 2 according to

ΔV = ∂V

∂t
· Δt +

(
∂V

∂ x̃

)T

· Δx̃ + 1

2
Δx̃T ·

(
∂2V

∂ x̃2

)
· Δx̃ + h.o.t. (86)

Here, higher order terms (h.o.t) can be neglected because their influence tends to
zero if the finite time increment Δt is replaced by an infinitesimally short time span
dt in the limit Δt → 0.

The incremental differentiation of the tracking error leads to

Δx̃ = f(x, t)Δt + Gp(x, t)Δw − ẋdΔt (87)

with the time derivative ẋd of the desired trajectories.
Inserting (87) into (86) yields

ΔV = ∂V

∂t
· Δt +

(
∂V

∂ x̃

)T

· (f(x, t)Δt + Gp(x, t)Δw − ẋdΔt)

+ 1

2
(f(x, t)Δt + Gp(x, t)Δw − ẋdΔt)T

·
(

∂2V

∂ x̃2

)
· (f(x, t)Δt + Gp(x, t)Δw − ẋdΔt) (88)
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which can be summarized according to

ΔV = ∂V

∂t
· Δt +

(
∂V

∂ x̃

)T

· (f(x, t)Δt + Gp(x, t)Δw − ẋdΔt)

+ 1

2

(
fTΔt

(
∂2V

∂ x̃2

)
fΔt + (Gp(x, t)Δw)T

(
∂2V

∂ x̃2

)
(Gp(x, t)Δw)

)

+
(
fTΔt

(
∂2V

∂ x̃2

)
(Gp(x, t)Δw)

)

= ∂V

∂t
· Δt +

(
∂V

∂ x̃

)T

f(x, t)Δt −
(

∂V

∂ x̃

)T

ẋdΔt

+
(
fTΔt

(
∂2V

∂ x̃2

)
(Gp(x, t)Δw)

)
+
(

∂V

∂ x̃

)T

Gp(x, t)Δw

+ 1

2

(
fTΔt

(
∂2V

∂ x̃2

)
fΔt + (Gp(x, t)Δw)T

(
∂2V

∂ x̃2

)
(Gp(x, t)Δw)

)
(89)

Due to the fact that the noise process is a zero mean process, its expectation value fol-
lows to E{Δw} = 0 while the expectation value of the scalar product of this Brown-
ian motion with itself yields the process covariance E{Δw · ΔwT } = IΔt (identity
matrix I). Moreover, the calculation of the trace of matrices can be reformulated
as tr{A · B · C} = tr{C · A · B} in general. Taking into account these conditions, the
expression

E{ΔV } = E

⎧⎪⎨
⎪⎩

∂V

∂t
· Δt +

(
∂V

∂ x̃

)T

f(x, t)Δt −
(

∂V

∂ x̃

)T

ẋdΔt

+
(
fTΔt

(
∂2V

∂ x̃2

)
(Gp(x, t)Δw)

)
+ 1

2

(
fTΔt

(
∂2V

∂ x̃2

)
fΔt

)

+ 1

2
trace

⎧⎪⎨
⎪⎩

(Δw)(Δw)T︸ ︷︷ ︸
E{(Δw)(Δw)T }=IΔt

(
Gp(x, t)T

(
∂2V

∂ x̃2

)
Gp(x, t)

)
⎫⎪⎬
⎪⎭
(90)
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and consequently

E

{
ΔV

Δt

}
= E

{
∂V

∂t
+
(

∂V

∂ x̃

)T

f(x, t) −
(

∂V

∂ x̃

)T

ẋd

+
(
fT
(

∂2V

∂ x̃2

)
Gp(x, t)

)
Δw + 1

2

(
fT
(

∂2V

∂ x̃2

)
fΔt

)}

+ 1

2
trace

{
Gp(x, t)T

(
∂2V

∂ x̃2

)
Gp(x, t)

}
(91)

results. If Δt → 0, then E
{

ΔV
Δt

}
can be replaced by E

{
dV
dt

}
. Consequently, the Itô

differential operator L(V ) = lim
Δt→0

(
E
{

ΔV
Δt

})
results according to

L(V ) = ∂V

∂t
+
(

∂V

∂ x̃

)T

f(x, t) −
(

∂V

∂ x̃

)T

ẋd

+ 1

2
trace

{
Gp(x, t)T

(
∂2V

∂ x̃2

)
Gp(x, t)

}
. (92)

In the same way, the Itô differential operator can be derived for the dual task of state
estimation using the estimation error in a suitable candidate of a Lyapunov function.
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Part II
Sliding Mode State Estimation

for Control Purposes

The second part of this book is concerned with sliding mode state estimation proce-
dures. These estimators are implemented in such a way that their results are directly
applicable within closed-loop control structures. In Chap. 5 by Manuel Schimmack
and Paolo Mercorelli, a sliding mode control strategy is presented which makes use
of a bang-bang observer for the detection of particle pollutions. As in the before-
mentioned contribution, Hao Sun and Harald Aschemann present a sliding mode-
based closed-loop control strategy in Chap. 6. The focus of this chapter is on the prac-
tical implementation and the experimental validation of the corresponding observer-
based control structure for a hydrostatic transmission system. Chapter 7, authored by
Tristan Braun and Johannes Reuter, focuses on the development of a sliding mode
observer that includes an iterative parameter adaption approach for the characteriza-
tion of a fast-switching solenoid valve. Finally, Chap. 8 by Horst Schulte and Florian
Pöschke thoroughly compares linear parameter-varying and Takagi–Sugeno model
approaches for the implementation of sliding mode observers that can be employed
in the frame of a reliable fault diagnosis.
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A Sliding Mode Control with a Bang–Bang
Observer for Detection of Particle Pollution

Manuel Schimmack and Paolo Mercorelli

Abstract This chapter presents a single-input single-output (SISO) adaptive sliding
mode control combined with an adaptive bang–bang observer to improve a metal–
polymer composite sensor system. The proposed techniques improve the disturbance
rejection of a sensor system and thus their reliability in an industrial environment.
The industrial application is based on the workplace particulate pollution of weld-
ing fumes. Breathing welding fumes is extremely detrimental to human health and
exposes the lungs to great hazards, therefore an effective ventilation system is essen-
tial. Typically, sliding mode control is applied in actuator control. In this sense,
the proposed application is an innovative one. It seeks to improve the performance
of sensors in terms of robustness with respect to parametric uncertainties and in
terms of insensibility with respect to disturbances. In particular, a sufficient condi-
tion to obtain an asymptotic robustness of the estimation of the proposed bang–bang
observer is designed and substantiated. The whole control scheme is designed using
the well-known Lyapunov approach. A particular sliding surface is defined to obtain
the inductive voltage as a controlled output. The adaptation is performed using scalar
factors of the input–output data with the assistance of an output error model. A gen-
eral identification technique is obtained through scaling data. To obtain this data,
recursive least squares (RLS) methods are used to estimate the parameters of a linear
model using input–output scaling factors. In order to estimate the parametric values
in the small-scale range, the input signal requires a high frequency and thus a high
sampling rate is needed. Through this proposed technique, a broader sampling rate
and input signalwith low frequency can be used to identify the small-scale parameters
that characterise the linear model. The results indicate that the proposed algorithm
is practical and robust.
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Nomenclature

A0 Nominal dynamic matrix
C0 Nominal capacity of the system
Ĉ0 Estimated capacity of the system

d(t) Voltage disturbance
e(t) Error vector

fm Maximal available frequency
fM Maximal value of the bandwidth
G Observer matrix
h Exponential scaling factor
H Output observer matrix

Hu Scaling factor of the input signal
Hy Scaling factor of the output signal

i(t) Current of the system
î(t) Observed current of the system
Ks Steady-state factor
L0 Nominal inductance of the system
L̂0 Estimated inductance of the system

Ls(k) Discrete gain matrix
Ps(k) Discrete gain matrix

R0 Nominal resistance of the system
R̂0 Estimated resistance of the system

s(t) Sliding surface
ts Sampling rate

tsm Scaled sampling rate
T Calculate factor

us(k) Discrete scaled input voltage of the model
uC(t) Capacitive voltage
uin(t) Input voltage
uL(t) Inductance voltage
ûL(t) Observed inductance voltage
ûLmax Maximal output voltage of the system

uout(t) Output voltage of the system
xe(t) Magnetic flux error
x̂2(t) Observed current

x2d(t) Desired current
ys(k) Discrete scaled current of the model

λf Forgetting factor
θs(k) Discrete parameter vector of scaled system

θus(k) Discrete parameter vector of scaled input signal
θys(k) Discrete parameter vector of scaled output signal
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1 Introduction

Sliding mode control is one of the most popular control approaches. Because of its
versatile ability to be applied in disturbance rejection, along with its ability to handle
uncertainty and its robust stability, sliding mode control is among the most suitable
control strategies in industrial applications.

In general, the theoretical literature in the field of sliding mode control points
to possible applications in mechanical systems and actuators for trajectory tracking
(e.g. [1]).More recently, there has been a notable interest in the applications of sliding
mode control for actuators. For example, in [2–4], position controls using a sliding
mode technique are proposed for various different actuator structures. The robust-
ness of this approach against parametric uncertainty is demonstrated. In more recent
publications, intelligent control designs have been proposed for electromagnetic sys-
tems; for example the development of a robust adaptive sliding mode controller in
[5] and the proposal of a cascade control system, which could be used in a maglev
train [6]. In [7], the authors proposed an optimal design with multiple objectives
and energy compensation controls to achieve a soft landing. The landing velocity
can be greatly reduced by adjusting the duty cycle of the landing current. It is worth
noting that the trend in controlling electromagnetic actuators with fast dynamics
is to avoid the systems using switching modalities, which can be attributed to two
main factors. The first is electromagnetic compatibility. In fact, switching signals
can generate dangerous interference. The second is that, if there is a high inductance
in the electrical circuit in which the switching signals are involved, it is known to
be difficult to switch the current quickly. This kind of problem has been considered
in recent literature. Particularly in sliding mode control, the phenomena associated
with a high switching frequency are referred to as chattering. Chattering properties
of various control approaches must be considered. These phenomena are classified
into three types. The first chattering phenomenon is classified as infinitesimal, which
is harmless and cannot be avoided. However, the second one is classified as bounded
and the third as unbounded. Both of them are dangerous, but it was demonstrated in
[8] that they can be eliminated by proper use of high-order sliding modes (HOSM).

In general, the variable of the sliding controller should be switched at a high
frequency to achieve a soft landing in actuator positioning problems. An applica-
tion concerning actuators is presented in [9, 10], where the author implemented a
switching extended Kalman filter in order to observe switching dynamics. Sliding
mode control is one possible technique for the guaranteed stabilisation of the sys-
tem by means of feedback control. This design approach makes use of a suitable
Lyapunov function with which parametric uncertainties can also be handled reli-
ably during the parameterisation of the control law. A classical design of sliding
mode control laws needs the adaption of the model’s estimation parameters in order
to influence uncertain variables, which commonly leads to large amplitudes in the
switching part of the sliding mode control law [11]. Unfortunately, this results in
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undesirable noise. In [11], an arithmetic interval extension of sliding mode control
is presented. This allows for a reduction in both chattering phenomena and control
amplitudes, but still stabilises the system dynamics in a demonstrable way. A huge
number of dynamic systems in control engineering are characterised by nonlinear
behaviour, which often include both state variables, that are not directly measurable,
and unknown or uncertain parameters. In [12], a novel interval slidingmode observer
providing point-valued estimates is described in this article, where an optimal input
design is explored in order to find an efficient operation. In recent literature, as in
[13], applications of sliding mode control are utilised to achieve robustness in the
sensor system against faults and disturbances. In [13], a new scheme for detection
and isolation of incipient sensor faults for a class of uncertain systems is proposed
by combining sliding mode observers with a Luenberger observer.

In a similar way to [14], two sliding mode observers are designed to estimate
actuator and sensor faults. An analogous idea is used in this contribution to make a
sensor insensitive to disturbances. Therefore, a sinusoidal voltage reference signal
with a resonance frequency of the sensor is given in order to be tracked indepen-
dently of disturbances. This permits the procurement of an axis intersect, which
should be insensitive to disturbances. In a very recent contribution [15], the author
addresses the problem of sensor fault diagnosis. The proposed solution is based on
a non-homogeneous, high-order, sliding mode observer used to estimate the faults,
theoretically in finite time and in the presence of defined disturbances.

In investigations related to that study, it became clear that an important prerequisite
for obtaining good control performance would be increased robustness against noise
and uncertainties in general. All these applications are related to the actuator control
or sensor fault detection and monitoring. In this context, the proposed application is
innovative. By applying a sliding mode control, it attempts to improve the perfor-
mance of sensors in terms of robustness, with respect to parametric uncertainties and
in terms of insensitivity to disturbances.

For an adaptive sliding mode control strategy to be obtained so that a robust
control scheme is guaranteed, an identification procedure using a scaled sampling
rate for the identification of the model parameters is used in [16].

This contribution intends to apply this control technique in order to improve
its versatility in harsh industrial environments. A metal–polymer composite sensor
is developed for the estimation of particle pollution in the study of welding fumes.
Breathingwelding fumes is extremely harmful and exposes the lungs to great hazards.
The welding fumes consist of a mixture of dust, gases and water molecules, which,
due to their small size, enter the respiratory system with ease. During the welding of
stainless steel, among others, chromium and nickel are released, which are harmful
to humans.
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2 Measuring System and Model of the Metal–Polymer
Composite Sensor

The sensory system ismodelled as consisting of two coils, in which themagnetic flux
from the primary to the secondary coil is amplified by the ferromagnetic particles in
thewelding fumes, which is depicted in Fig. 1. The convolutions of the secondary coil
are based on a polymer–metal composite fibre. The manufactured fibre is composed
of multiple filaments. A single filament of the conductive fibre consists of an organic
polyamide kernel, which is surrounded by a thin, metallic cover.

Let us consider that the induced terminal voltage of the sensor can be described
as

uL(t) = −N
dΦ(t)

dt
= −N A

dB(t)

dt
, (1)

with number of windings N and inner surface A, which is influenced by the magnetic
flux Φ(t). With the integration of (1), the relationship between the magnetic flux
densities B(t) at B(0) = 0, so the induced terminal voltage uL(t) can be formulated,
thus

B(t) = − 1

N A

∫ t

0
uL(τ ) dτ . (2)

In Fig. 1, the general schematic of the magnetometer circuit is depicted. The output
voltage is achieved by an inverter in the following manner:

u1(t) = −RN
uL(t)

R1
. (3)

Fig. 1 Schematic of the metal–polymer composite sensor
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Considering the transfer function of the subsequent integrator, which is combined
with (3), the expression

uout(t) = − 1

C1 R2

∫ t

0
−RN

uL(τ )

R1
dτ, (4)

with uout(0) = 0 is obtained. According to (2) and (4), it follows that

uout(t) = −N A
RN

R1 R2 C1
B(t). (5)

Thus, a linear relationship between the magnetic flux Φ(t) of the sensory element
of the secondary side and the output voltage uout(t) of the operational amplifier is
evident. Finally, let us take a look at magnetic coupling and the maximum output
voltage of the sensor of the secondary side. Assuming that the sensor head is detected
by a sinusoidal magnetic flux of

Φ(t) = Φmax sin(ω t), (6)

which is included in (1), it follows after differentiation that the maximum output
voltage is

ûLmax = N Φmax ω. (7)

The sensor can be modelled using a linear system of the second order, which repre-
sents a standard RLC circuit as follows:

[
duC (t)
dt

di(t)
dt

]
=

[
0 1

C0

− 1
L0

− R0
L0

][
uC(t)
i(t)

]
+

[
0
1

L0

]
uin(t) +

[
0
1

L0

]
d(t), (8)

in which the informative state is represented by the voltage uC(t) and the controlled
state is the inductance voltage uL(t). This leads to the equations

uC(t) = [
1 0

] [
uC(t)
i(t)

]
(9)

and

uL(t) = [−1 −R0
] [

uC(t)
i(t)

]
+ uin(t) + d(t), (10)

where d(t) represents an external voltage disturbance, which is a very common
sensory problem.
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3 Design of a Sliding Mode Controller

Considering the following controlled magnetic flux error as

xe(t) = Φ2d(t) − Φ(t), (11)

if the inductance is considered a constant, this means that the sensor works in the
linear region of its hysteresis characteristic. In this case, the equation

xe(t) = L̂0

(
x2d(t) − x̂2(t)

)
(12)

suggests that where L̂0 represents the estimated inductance, x2d(t) the desired current
and x̂2(t) indicates the observed current. Even though this analysis being the one of
the control schemes without including the observer, the observed current is never-
theless considered. This is done for sake of notation to be used in Sect. 6 in which
the analysis of the closed-loop control scheme includes also the observer. Figure2
shows the general block diagram of the system with a scaling process of the input
and output signal of the sensory system, which is described in Sect. 5.
If the following sliding surface is defined as

s(t) = xe(t) + ke

∫ t

0
xe(τ )dτ, (13)

where ke ∈ Rwith ke > 0 and uLd(t) and ûL(t) represent the desired and the observed
inductance voltages, then, by combining (14) and (12),

Fig. 2 General block diagram of the system and its components
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ṡ(t) = ẋe(t) + kexe = L̂0 ẋ2d(t) − L̂0
˙̂x2(t) + ke L̂0

(
x2d(t) − x̂2(t)

)
(14)

can be used. Equation (14) with ṡ(t) = 0 states the dynamics for the tracking of
the controlled system in terms of inductance voltage and ke states the rate of con-
vergence. By solving ṡ(t) = 0 formally for the control input, an expression for the
input known as equivalent control can be obtained, which in turn can be interpreted
as the continuous control law that would maintain ṡ(t) = 0 if the exact dynamics
were known. The case s(t) = 0 means that as the system state approaches the slid-
ing surface, recalling that xe(t) represents the magnetic flux error, one obtains the
following:

xe(t) + ke L̂0

∫ t

0

(
x2d(τ ) − x̂2(τ )

)
dτ = 0. (15)

Because of the derivation of (15), it follows that

ẋe(t) + kexe(t) = 0, (16)

which permits the solution
xe(t) = η exp−ket . (17)

The constant η is determined by the initial conditions. In order to create a region of
attraction around this sliding surface, a Lyapunov function can be considered. The
system model described in (8) turns out to be both controllable and observable. Con-
sequently, a Lyapunov function can be chosen to design the sliding mode controller,
as is typical, to which the following equation pertains:

Vsl(t) = 1

2
s2(t). (18)

The Lyapunov function defined in (18) considers the error in terms of magnetic flux,
which is essentially the error in terms of the current and does not consider the error of
the capacitor voltage. This is due to the fact that the matter of interest is the control
of the current. In this case the error of the current approaches zero, according to
(12), (17) and from (15), thanks to the equivalent control of (21), which consists
of a limited output, the inductance voltage error approaches zero. Therefore, it is
guaranteed that the capacitor voltage remains limited. After differentiation of (18),
it follows that

V̇sl(t) = s(t)ṡ(t) = s(t)
(

L̂0 ẋ2d(t) − L̂0
˙̂x2(t) + ke L̂0

(
x2d(t) − x̂2(t)

))
. (19)

Furthermore, using the second equation of the system model described in (8), it
follows that
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V̇sl(t) = s(t)
(

uLd(t) + uC(t) + R̂0 x̂2(t) − uin(t) − d(t)

+ ke L̂0x2d(t) − ke L̂0 x̂2(t)
)
. (20)

The control loop can be designed through the use of the equation

uin(t) = uLd(t) + uC(t) + R̂0 x̂2(t) + ke L̂0x2d(t) − ke L̂0 x̂2(t)

+ λs(t) + βsign
(
s(t)

)
, (21)

where λ ∈ R, λ > 0, β ∈ R and β > 0. If (21) is inserted into (20), then

V̇sl(t) = s(t)ṡ(t) = s(t)
(

− d(t) − λs(t) − βsign
(
s(t)

))

< s(t)
(

− d(t) − βsign
(
s(t)

))
. (22)

Therefore, it follows that

V̇sl(t) < −d(t)s(t) − β|s(t)|. (23)

The sufficient condition for the global asymptotic convergence, or

V̇sl(t) < 0, ∀t (24)

is guaranteed, if
β > |d(t)|. (25)

Remark 1 In the case of no correct estimation of themodel’s parameters being found,
the following expression can be considered for the asymptotic stability

β > max |d(t)| + max |Δ(R0, L0)|, (26)

where max|Δ(R0, L0)| is a function which represents the estimated maximal margin
of uncertainty due to the variations of the parameters,which influences condition (23).

A specific method is needed in order to accomplish such a sliding mode controller.
The same results are obtained if a specific version of the Lyapunov approach is used.
In particular, if a forward Euler approximation is used with the sampling time ts, the
control law in (21) is transformed into

us(k − 1) = uin(k − 1) = 1

(1 + ke)

(
(1 + ke)

(
uLd(k − 1) + uC(k − 1)

)

+ (1 + R̂0ke)x̂2(k − 1) + λs(k − 1) + βsign
(
s(k − 1)

))
. (27)
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Therefore, it is possible to see that condition (22) becomes

Vsl(k) − Vsl(k − 1) = tss(k − 1)
(

− d(k − 1) − λs(k − 1) − βsign
(
s(k − 1)

))

< tss(k − 1)
(

− d(k − 1) − βsign
(
s(k − 1)

))

(28)
and also that (25) still holds true. In fact, if (23) is specified, then

Vsl(k) − Vsl(k − 1) < ts
(

− d(k − 1)s(k − 1) − β|s(k − 1)|
)
, where k ∈ N.

(29)

It follows that the necessary condition for the discrete-timeglobal asymptotic stability
is

Vsl(k) < Vsl(k − 1), ∀k (30)

which is ensured by
β > max |d(k − 1)|. (31)

4 Bang–Bang Observer to Estimate the Inductance Voltage

The presented sliding mode control strategy needs, at the very least, the availability
of the inductance voltage of the scheme’s primary coil reported in Fig. 1 and above.
As already explained, the sensor can be modelled using a linear system of second
order which represents an RLC circuit with the following uncertainty:

[
duC (t)
dt

di(t)
dt

]
=

[
0 1

C0+δC

− 1
L0+δL

− R0+δR
L0+δL

] [
uC(t)

i(t)

]
+

[
0
1

L0+δL

]
uin(t) +

[
0
1

L0+δL

]
d(t), (32)

uL(t) = [−1 −(R0 + δR)
] [

uC(t)
i(t)

]
+ uin(t) + d(t). (33)

Figure1 shows the general block diagram of the sensor system with the uncertainty
of the RLC parameters. If the diagram of Fig. 3 is considered, which is also presented
in [17], then the following mathematical structure can be derived

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

C0

− 1
L0

− R0
L0

] [
x1(t)

x2(t)

]
+

[
0 0 0

−1 −1 −1

] ⎡
⎢⎣

q1(t)

q2(t)

q3(t)

⎤
⎥⎦

+
[
0
1

L0

]
uin(t) +

[
0
1

L0

]
d(t). (34)
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Fig. 3 Block diagram of the system with the uncertainty of the parameters

The bang–bang observer can be written as follows:

[ ˙̂x1(t)
˙̂x2(t)

]
=

[
0 1

C0

− 1
L0

− R0
L0

]

︸ ︷︷ ︸
A0

[
x̂1(t)

x̂2(t)

]
+

[
0 0 0

−1 −1 −1

] ⎡
⎢⎣

q̂1(t)

q̂2(t)

q̂3(t)

⎤
⎥⎦ +

[
0
1

L0

]
uin(t)

+
[

g11
g12

]

︸ ︷︷ ︸
G

[
0 1

]
︸ ︷︷ ︸

H

[
x1(t) − x̂1(t)

x2(t) − x̂2(t)

]
+

[
K1

K2

]

︸ ︷︷ ︸
K

sign
(

x2(t) − x̂2(t)
)
, (35)

whereH is the output observermatrix andA0 represents the nominal dynamicmatrix.
The error of the current e2(t) is obtained through the derivation of the capacity voltage
error. The proposed observer consists of two parts. The first one is a Luenberger
observer characterised by the matrix G and the second one is a switching signal,
which compensates errors in both states through the matrix K.

Theorem 1 Let us consider the bang–bang observer defined in (35) for the system
described in (34). There is a real constant K �

2 < +∞ such that, if K2 > K �
2 , then

lim
t→+∞ e(t) = 0, ∀K1,where e(t) =

[
e1(t)
e2(t)

]
=

[
x1(t) − x̂1(t)
x2(t) − x̂2(t)

]
.

Proof Let us define the following Lyapunov function:

Vob(t) = e21(t) + e22(t)

2
, (36)
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then it should be shown that

V̇ob(t) = e1(t) ė1(t) + e2(t) ė2(t) < 0. (37)

The error dynamics result in the following:

ė(t) = A0e(t) +
[
0 0 0

−1 −1 −1

] ⎡
⎣

q1(t) − q̂1(t)
q2(t) − q̂2(t)
q3(t) − q̂3(t)

⎤
⎦ −

[
g11
g12

]

︸ ︷︷ ︸
G

[
0 1

]
︸ ︷︷ ︸

H

e(t)

−
[

K1

K2

]
sign

(
x2(t) − x̂2(t)

)
+

[
0
1

L0

]
d(t) (38)

and thus

[
ė1(t)
ė2(t)

]
=

(
A0 − G H

) [
e1(t)
e2(t)

]
−

[
0 0 0

−1 −1 −1

] ⎡
⎣

q1(t) − q̂1(t)
q2(t) − q̂2(t)
q3(t) − q̂3(t)

⎤
⎦

−
[

K1

K2

]
sign

(
x2(t) − x̂2(t)

)
+

[
0
1

L0

]
d(t). (39)

Multiplying (39) from the left part by eT (t) it follows that

eT (t)

[
ė1(t)
ė2(t)

]
= eT (t)

((
A0 − G H

) [
e1(t)
e2(t)

]
−

[
0 0 0

−1 −1 −1

] ⎡
⎣

q1(t) − q̂1(t)
q2(t) − q̂2(t)
q3(t) − q̂3(t)

⎤
⎦

−
[

K1

K2

]
sign

(
x2(t) − x̂2(t)

)
+

[
0
1

L0

]
d(t)

)
. (40)

According to the well-known sufficient Lyapunov condition stated in (37), it should
be demonstrated that

[
e1(t) e2(t)

] [
ė1(t)
ė2(t)

]
= e1(t) ė1(t) + e2(t) ė2(t) < 0. (41)

It is known that if σi , where i = 1, 2, represent the eigenvalues of (A0 − G H) and
if the max

(�(σi )
)

< 0 for i = 1, 2, then the following inequality is true

eT (t)
(

A0 − G H
)

e(t) < 0. (42)
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Let us define e2q1(t) = q1(t) − q̂1(t), e2q2(t) = q2(t) − q̂2(t) and e2q3(t) = q3(t) −
q̂3(t), then it remains to be shown that

e2(t)
(

e2q1(t) + e2q2(t) + e2q3(t)
)

− e2(t) K2 sign
(

e2(t)
)

︸ ︷︷ ︸
K2|e2(t)|

+e2(t)
1

L0
d(t) < 0.

(43)
If

K2 > K �
2 = max

(
‖e2q1(t) + e2q2(t) + e2q3(t) + 1

L0
d(t)‖

)
, (44)

then (41) has been proven and the Lyapunov condition stated in (37) satisfied. This
estimation of the norm is performed offline and the selected values based on experi-
mental observations. �
Remark 2 A possible interpretation of such an observer structure is represented in
Fig. 4, in which it is possible to see the effect of the bang–bang action. In fact, the
estimation of the error due to parametric uncertainties,

eq(t) =
⎡
⎣

q1(t) − q̂1(t)
q2(t) − q̂2(t)
q3(t) − q̂3(t)

⎤
⎦ , (45)

turns out to be orthogonal, in a asymptotic way, to the dynamic plan of e1(t) and
e2(t) using only the condition K2 > K �

2 .

Remark 3 After the implementation, one is left with a discrete observer. The same
results are obtained if a discrete version of the Lyapunov approach is used. This

Fig. 4 Graphical interpretation of the bang–bang observer
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results in the same method as presented in Sect. 3. In particular, it is possible to see
that if the presented observer in (35) is specified using forward Euler with a sampling
time ts, condition (44) holds. In fact, if considering (43) and (44), it follows that

Vob(k) − Vob(k − 1) < ts
[
e2(k − 1)

(
e2q1(k − 1) + e2q2(k − 1) + e2q3(k − 1)

)

− e2(k − 1) K2 sign
(

e2(k − 1)
)

︸ ︷︷ ︸
K2|e2(k−1)|

+e2(k − 1)
1

L0
d(k − 1)

]
< 0,

(46)
then

K2 > K �
2 = max

(
‖e2q1(k − 1) + e2q2(k − 1) + e2q3(k − 1) + 1

L0
d(k − 1)‖

)
.

(47)

5 Adaptive Control Through an Identification Procedure
to Estimate Model Parameters

Obtaining an adaptive sliding mode control strategy in order to guarantee a robust
control scheme, which is depicted in Fig. 1 and an identification procedure proposed,
using a scaled sampling rate for the identification of the model parameters in (8) is
necessary.

Definition 1 The scaled input and output signal of the system can be described as
follows:

us(k) = Huu(k) and ys(k) = Hy y(k), (48)

where Hu and Hy represent known input and output scaling factors, respectively.

Consider that the SISO system is described through the scaled process model, which
is depicted in Fig. 2 with

A(q−1)H−1
y ys(k) = B(q−1)H−1

u us(k). (49)

The scaled input sequence of the system is us(k) and the scaled output sequence of
the system is ys(k). A(z−1) and B(z−1) are the polynomials in the unit backward
shift operator and are defined by

A(q−1) = 1 + a1q−1 + a2q−2 + · · · ana q−na , (50)

B(q−1) = 1 + b1q−1 + b2q−2 + · · · bnb q−nb . (51)

Assuming that the degrees na and nb are known and that us(k) = 0 and ys(k) = 0 if
k ≤ 0, the parameter vector θ(k) is defined as follows:
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θ(k) ∈ R
n, n = na + nb, (52)

where
θ(k) = [

a1 a2 . . . ana b1 b2 . . . bnb

]T
. (53)

If θ(k) represents the parameter vector of the system, then θ s(k) is the parameter
vector of a scaled system such that

ys(k) = ϕT
s (k)θ s(k). (54)

If Hu = H−1
y , with Hu(z−1) = 10h and h ∈ N being a great enough integer, then

θ y(k) = θ ys(k). (55)

It follows for the scaled parameter vector that

θus(k) = bi H−2
u , with i = 1, 2, . . . , nb, (56)

which can be simplified to

θ s(k) = [
θT

y (k) θT
us

(k)
]T

. (57)

The filtered information vector can be written as follows:

ϕs(k) =
[

ϕys(k)

ϕus(k)

]
∈ R

n, n = na + nb, (58)

with
ϕ ys(k) = [−ys(k − 1) −ys(k − 2) . . . −ys(k − na)

]T
, (59)

and
ϕus

(k) = [
us(k − 1) us(k − 2) . . . us(k − nb)

]T
. (60)

Transforming the scaled model, which can be seen as an equation error model, in the
following form results in

H−1
y ys(k) = [1 − A(q−1)]H−1

y ys(k) + B(q−1)H−1
u us(k). (61)

Considering that Hy = H−1
u , Eq. (61) can be written as follows:

ys(k) = −
na∑

i=1

ai ys(k − i) + H−2
u

nb∑
i=1

bi us(k − i). (62)
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According to (53) and (59), it can be concluded that

ϕT
s (k)θ y(k) = −

na∑
i=1

ai ys(k − i), (63)

and it can be deduced from (53) and (60) that

ϕT
s (k)θus(k) = H−2

u

nb∑
i=1

bi us(k − i). (64)

Having proved (55)–(57), it can be established that

ys(k) = ϕT
s (k)

[
θ y(k) θus(k)

]T = ϕT
s (k)θ s(k). (65)

If the values of the system dynamics are constant, a classical RLS algorithm is
suitable. However, if the system is given by

ys(k) = ϕT
s (k)θ s(k), (66)

where θ s(k) describes a time-varying parameter vector, a classical RLS method is
unsuitable. One way to obtain an estimation algorithm, which tracks parametric
changes, is to change the least squares criterion to

J =
N∑

k=1

λN−k
f (ys(k) − ŷs(k))2. (67)

In this criterion, a so-called forgetting factor λf (0 < λf ≤ 1) is introduced. A for-
getting factor less than one emphasises old prediction errors less than new ones (for
λf = 1 the standard least squares criterion is retrieved). The smaller the forgetting
factor is, the faster old prediction errors will be “forgotten”. The modified RLS based
on the model (66) and on criterion (67) is given by

θ̂ s(k) = θ̂ s(k − 1) + Ls(k)
(

ys(k) − ϕT
s (k)θ̂ s(k − 1)

)
, (68)

where

Ls(k) = Ps(k − 1)ϕT
s (k)

λf + ϕT
s (k)Ps(k − 1)ϕs(k)

(69)

and

Ps(k) = 1

λf

(
[I − Ls(k)ϕT

s (k)]Ps(k − 1)
)
. (70)
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For λf < 1, the gain matrix Ps(k) will not reach zero as time continues to infinity,
thereby allowing the algorithm to update the parameters when the system is time-
varying. A typical choice for λf < 1 is in the range of 0.94–0.999. More details on
this matter can be found in [18–20].

It follows the implementation of the scaled least square method. A system of the
second order is considered as follows:

Y (s)

U (s)
= Ks

1 + 2 ξ1
ωn1

s + s2
ω2

n1

. (71)

Let frequency fM be the maximal bandwidth value of a system described in (71),
and frequency fm be a possible scaled frequency, then consider

Hu = fM
fm

(72)

and

H−1
y = fm

fM
. (73)

A scaled sampling rate is considered equal to

tsm = 1

2p fm
, (74)

where the parameter p is typically between 1 and 10, and factor 2 guarantees an
anti-aliasing effect (Nyquist–Shannon Theorem). If (71) is scaled in the following
way:

Us(s) = fM
fm

U (s) and Ys(s) = fm
fM

Y (s), (75)

the following expression is obtained

Ys(s)

Us(s)
=

fm
fM

Ks

fM
fm

(
1 + 2 ξ1

ωn1
s + s2

ω2
n1

) . (76)

If we consider the feedforward Euler approximation using a sample rate ts, it follows
that

ys(t) = ys(k − 1), us(t) = us(k − 1), k = 1, 2, . . . , q, (77)

with q ∈ N and structuring the derivation based on Newton’s notation of differentials
for the output signal

ẏs(t) ≈ ys(k) − ys(k − 1)

ts
(78)
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and

ÿs(t) ≈
ys(k)−ys(k−1)

ts
− ys(k−1)−ys(k−2)

ts

ts
. (79)

If the system is represented by (76) and is transformed back in time, the following
expression is obtained

fm
fM

ω2
n1

Ksus(t) = fM
fm

ÿs(t) + fM
fm

2ξ1ωn1 ẏ(t) + fM
fm

ω2
n1

ys(t). (80)

The discrete form of (80) using feedforward Euler approximation is as follows:

fm
fM

ω2
n1

Ksus(k − 1) = fM
fm

(
ys(k) − ys(k − 1)

t2s
− ys(k − 1) − ys(k − 2)

t2s

)

+ fM
fm

2ξ1ωn1

ys(k) − ys(k − 1)

ts
+ fM

fm
ω2

n1
ys(k − 1) (81)

and

fm
fM

ω2
n1

Kst
2
s us(k − 1) = fM

fm
ys(k) − fM

fm
ys(k − 1) − fM

fm

(
ys(k − 1) − ys(k − 2)

)

+ fM
fm

2ξ1ωn1 ts
(

ys(k) − ys(k − 1)
)

+ fM
fm

t2s ω
2
n1

ys(k − 1)

(82)

which finally leads to

ys(k) = 1

1 + 2ξ1ωn1 ts

([
2 + 2ξ1ωn1 ts + ω2

n1
t2s

]
ys(k − 1) − ys(k − 2)

+ f 2m
f 2M

K1ω
2
n1

t2s us(k − 1)
)
. (83)

Let us isolate the estimation parameters

y(k) = −θ1 y(k − 1) + θ2 y(k − 2) + θ3u(k − 1). (84)

According to (84), the parameters Θ1, Θ2 and Θ3 can be identified as

θ1 = −2 + 2ξ1ωn1 ts + ω2
n1

t2s
1 + 2ξ1ωn1 ts

, (85)

θ2 = − 1

1 + 2ξ1ωn1 ts
(86)
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and

θ3 = f 2m
f 2M

Ksω
2
n1

t2s
1 + 2ξ1ωn1 ts

. (87)

6 Tracking Dynamics of the Closed-Loop System
and Discussion of the Results

The following result guarantees the convergence of the closed control loop consisting
of the system described in (34), the observer defined in (35) and the controller in
(21). Considering the error dynamics of the whole control structure in which the
equivalent control as in (21) and the bang–bang observer are used, then it follows

⎡
⎢⎢⎢⎢⎢⎢⎣

ėx1(t)

ėx2(t)

ėi (t)

ėx̂1(t)

ėx̂2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
C0

0 0 0

0 −(ke + λ) −λke 0 0

0 1 0 0 0

0 0 0 0 1
C0

− g11

0 0 0 − 1
L0

− R0
L0

− g21

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ex1(t)

ex2(t)

ei (t)

ex̂1(t)

ex̂2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

−1 −1 −1

0 0 0

0 0 0

−1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

Δq1(t)

Δq2(t)

Δq3(t)

⎤
⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

K1

K2

⎤
⎥⎥⎥⎥⎥⎥⎦
sign

(
ex̂2(t)

)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1

L0

0

0
1

L0

⎤
⎥⎥⎥⎥⎥⎥⎦

d(t) −

⎡
⎢⎢⎢⎢⎢⎢⎣

0

β

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
sign

(
s(t)

)
, (88)

where ex1(t) = x1d(t) − x̂1(t), ex1(t) represents the voltage capacitor error, ex2(t) =
x2d(t) − x̂2(t) represents the current capacitor error and the auxiliary variable ei (t) is
the integral variable of the current error as stated in (88), to be more precise it results
in ėi (t) = ex2(t). State variables ex̂1(t) and ex̂2(t) represent the observation errors
as follows: ex̂1(t) = x1(t) − x̂1(t), and ex̂2(t) = x2(t) − x̂2(t). And it is Δq1(t) =
q1(t) − q̂1(t), Δq2(t) = q2(t) − q̂2(t) together with Δq3(t) = q2(t) − q̂3(t).
If

AC =
⎡
⎣
0 1

C0
0

0 −(ke + λ) −λke

0 1 0

⎤
⎦ , (89)
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the error dynamics results to be

⎡
⎢⎢⎢⎢⎣

ėx1(t)
ėx2(t)
ėi (t)
ėx̂1(t)
ėx̂2(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ė(t)

=
[

AC 03×2

02×3 (A0 − GH)

]

︸ ︷︷ ︸
ACO

⎡
⎢⎢⎢⎢⎣

ex1(t)
ex2(t)
ei (t)
ex̂1(t)
ex̂2(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
e(t)

+

⎡
⎢⎢⎢⎢⎣

0 0 0
−1 −1 −1
0 0 0
0 0 0

−1 −1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎣

Δq1(t)
Δq2(t)
Δq3(t)

⎤
⎦

−

⎡
⎢⎢⎢⎢⎣

0
0
0

K1

K2

⎤
⎥⎥⎥⎥⎦
sign

(
ex̂2(t)

) +

⎡
⎢⎢⎢⎢⎣

0
1

L0

0
0
1
L 0

⎤
⎥⎥⎥⎥⎦

d(t) −

⎡
⎢⎢⎢⎢⎣

0
β

0
0
0

⎤
⎥⎥⎥⎥⎦
sign

(
s(t)

)
. (90)

It is known that if ρi , where i = 1, 2, . . . , 5 represents the eigenvalues of ACO and
if the max

(�(ρi )
) ≤ 0 for i = 1, 2, . . . , 5, then the following inequality is true:

eT (t) ACO e(t) ≤ 0. (91)

Through parameter ke and λ, it is possible to place in an arbitrary way just two
eigenvalues of the matrix AC defined by (89). In fact, the eigenvalues of the matrix
AC are ρ1 = 0, ρ2 = −λ and ρ3 = −ke. The eigenvaluewhich is not assignable using
this controller corresponds to the dynamics of the voltage capacitor. The eigenvalue
ρ2 = −λ states the velocity of limt→+∞ s(t) = 0, where s(t) is defined in Sect. 3
velocity of attraction of the sliding surface as explained later and ρ3 = −ke states
the dynamics of the current in case s(t) ≈ 0.

The dynamic of the observer, which is characterised by the eigenvalues of the
matrixA0 − GH, can be totally determined by placing its eigenvalues. For the analy-
sis of the error convergence the state variable s(t) defined in Sect. 3, which for reason
of notation is renamed sx2(t), can be suitably used. At the end of the calculation a
similar matrix expression is obtained. A similar matrix is obtained through similar
transformations and the final obtained matrix consists of the same eigenvalues as the
original one. Recalling that

s(t) = sx2(t) = xe(t) + ke

∫ t

0
xe(τ )dτ, (92)

with ex2(t) = xe(t) = L̂0

(
x2d(t) − x̂2(t)

)
. If (92) is differentiated, then the follow-

ing expression is obtained

ṡx2(t) = L0ėx2(t) + ke L0ex2(t). (93)
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From (88), the current error is obtained as follows:

ėx2(t) = −(ke + λ)ex2(t) − λei (t). (94)

If (92)–(94) are combined, the following obvious relation is obtained:

ṡx2(t) = −λsx2(t). (95)

In fact, the defined equivalent control (21) realises the sliding surface as an attrac-
tive one and the eigenvalue ρ2 = −λ, as already mentioned, states the velocity of
attraction of the sliding surface s(t). From (92) it follows that

ex2(t) = s(t)

L0
− keei (t). (96)

Thus, combining (92)–(94), the following relation is obtained:

ėi (t) = 1

ke L0
(ke + λ)s(t) − λ

1

ke L0
s(t) − (ke + λ)ei (t) + λei (t), (97)

and it follows that

ėi (t) = 1

L0
s(t) − keei (t). (98)

Being ėx1(t) = 1
C0

ex2(t) and combining (92)–(94), with similar calculations the fol-
lowing relation is obtained:

ėx1(t) = 1

C0L0
s(t) − ke

C0
ei (t). (99)

If the following system error is considered:

⎡
⎢⎢⎢⎢⎣

ėx1(t)
ṡx2(t)
ėi (t)
ėx̂1(t)
ėx̂2(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ė(t)

=
[

ACS 03×2

02×3 (A0 − GH)

]

︸ ︷︷ ︸
ACOS

⎡
⎢⎢⎢⎢⎣

ex1(t)
ex2(t)
ei (t)
ex̂1(t)
ex̂2(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
e(t)

+

⎡
⎢⎢⎢⎢⎣

0 0 0
−1 −1 −1
0 0 0
0 0 0

−1 −1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎣

Δq1(t)
Δq2(t)
Δq3(t)

⎤
⎦

−

⎡
⎢⎢⎢⎢⎣

0
0
0

K1

K2

⎤
⎥⎥⎥⎥⎦
sign

(
ex̂2(t)

) +

⎡
⎢⎢⎢⎢⎣

0
1

L0

0
0
1

L0

⎤
⎥⎥⎥⎥⎦

d(t) −

⎡
⎢⎢⎢⎢⎣

0
β

0
0
0

⎤
⎥⎥⎥⎥⎦
sign

(
sx2(t)

)
, (100)



146 M. Schimmack and P. Mercorelli

with

ACS =
⎡
⎣
0 1

C0L0
− 1

C0
ke

0 −λ 0
0 1

L0
−ke

⎤
⎦ . (101)

As already mentioned, matrix (89) and (101) are similar matrices, so they have the
same eigenvalues (ρ1 = 0, ρ2 = −λ and ρ3 = −ke).

Theorem 2 Let us consider the closed-loop control system which consists of the
system described in (34), the bang–bang observer defined in (35) and of the controller
in (21). There are two real and finite constants β̂ > 0 and K̂2 > 0 such that, if β > β̂

and K2 > K̂2, then the closed-loop control system is stable in the sense of Lyapunov
and

lim
t→+∞ ex2(t) = 0, ∀K1,where ex2(t) = x2d(t) − x̂2(t).

Proof Let us define the following Lyapunov function:

VCOS(t) = e2x1(t) + s2x2(t) + e2i (t) + e2x̂1(t) + e2x̂2(t)

2
, (102)

then it should be shown that

V̇COS(t) = ex1(t) ėx1(t) + sx2(t) ṡx2(t) + ei (t)ėi (t) + ei (t)ė(t)

+ ex̂1(t) ėx̂1(t) + ex̂2(t) ėx̂2(t) ≤ 0, (103)

and that
sx2(t) ṡx2(t) < 0. (104)

Multiplying (90) by eT (t) it follows that

eT (t)ė(t) = eT (t)ACOSe(t) − eT (t)

⎡
⎢⎢⎢⎢⎣

0 0 0
−1 −1 −1
0 0 0
0 0 0

−1 −1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎣

Δq1(t)
Δq2(t)
Δq3(t)

⎤
⎦ − eT (t)

⎡
⎢⎢⎢⎢⎣

0
0
0

K1

K2

⎤
⎥⎥⎥⎥⎦

× sign
(
ex̂2(t)

) + eT (t)

⎡
⎢⎢⎢⎢⎣

0
1

L0

0
0
1
L 0

⎤
⎥⎥⎥⎥⎦

d(t) − eT (t)

⎡
⎢⎢⎢⎢⎣

0
β

0
0
0

⎤
⎥⎥⎥⎥⎦
sign

(
sx2(t)

)
. (105)
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According to the well-known sufficient Lyapunov condition

eT (t)ė(t) = [
ex (t) ei (t) ex̂ (t)

]
⎡
⎣

ex (t)
ei (t)
ex̂ (t)

⎤
⎦

= ex (t)ėx (t) + ei (t)ėi (t) + ex̂ (t)ėx̂ (t) < 0, (106)

where ex (t) =
[

ex1(t)
sx2(t)

]
represents the dynamic error and ex̂ (t) =

[
ex̂1(t)
ex̂2(t)

]
the esti-

mation error of the voltage and current of the capacitor. Proceeding in a simi-
lar way as for the demonstration of Sect. 4, let us define e2q1(t) = q1(t) − q̂1(t),
e2q2(t) = q2(t) − q̂2(t) and e2q3(t) = q3(t) − q̂3(t). It remains to be shown that

0 > sx2(t)
(

e2q1
(t) + e2q2

(t) + e2q3
(t)

)
− sx2(t) β sign

(
sx2(t)

)
︸ ︷︷ ︸

β|ex2 (t)|

+ sx2(t)
1

L0
d(t) + ex̂2(t)

(
e2q1

(t) + e2q2
(t) + e2q3

(t)
)

− ex̂2(t) K2 sign
(

ex̂2(t)
)

︸ ︷︷ ︸
K2|ex̂2 (t)|

+ex̂2(t)
1

L0
d(t). (107)

From (107), if

β > β̂ = max

(
‖e2q1(t) + e2q2(t) + e2q3(t) + d(t)

L0
‖
)

, (108)

and if

K2 > K �
2 = max

(
‖e2q1(t) + e2q2(t) + e2q3(t) + 1

L0
d(t)‖

)
+ β̂, (109)

then (41) has been proven and the Lyapunov condition stated in (37) is satisfied. �

The estimation of the norm is performed offline and the selected values are based on
experimental observations. Relations (108) and (109) state two sufficient conditions
which guarantee the asymptotical convergence of the tracking of current, inductance
voltage and of the estimated variables using the bang–bang observer for the closed-
loop control scheme. As already explained, an eigenvalue of the error dynamics is
not assignable by the controller and remains equal to zero. This eigenvalue states
the dynamics of the capacitor voltage which remains limited. The structure of the
equivalent control of (21) and the bang–bang observer of (35) remain the same also
in their discrete forms already discussed.

Figure6 shows the tracking control obtained for the inductance voltage uL(t)
with K2 = 0 in presence of the disturbance d(t), which is depicted in Fig. 5. The
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Fig. 5 Graphical representation of the disturbance d(t)
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Fig. 6 Graphical representation of the obtained tracking control on variable uL (t) in case of K2 = 0

tracking control obtained in the same case for variable uL(t) is presented in Fig. 7 in
detail, in which the convergence of the tracking is not guaranteed. In fact, with the
configuration of K2 = 0 the observer is a Luenberger observer and, because of the
presence of the disturbance and the uncertainties, the observer does not guarantee
tracking convergence in terms of estimation. Figure8 shows the desired and observed
variable ûL(t). On the contrary, Fig. 9 shows a graphical representation of the tracking
control obtained for the inductance voltage uL(t) in the case of K2 > 0, also in
presence of disturbance d(t). Figure10 presents the observed variable ûL(t) in detail.
Figure11 indicates the controlling variable uin(t) in the sliding strategy. It is possible
to see that an initial tracking error occurred. This is due to the phase delay in the
relative observed voltage ûL(t), which is depicted in Fig. 12 together with Figs. 13
and 14 in detail. The tracking of the desired signals, observed and controlled, is
quite accurate. This is due to the known capability of the bang–bang observer and
sliding mode techniques to make the whole control loop robust. Figure15 shows the
switching signal sign

(
x2(k − 1) − x̂2(k − 1)

)
of the bang–bang observer in which a

filter is used to limit the chattering problem. The second reason for the phase delay is
connected with this filtered switching signal of the bang–bang observer, because of
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Fig. 7 Graphical representation of the obtained tracking control on variable uL (t) in case of K2 = 0
in detail
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Fig. 8 Graphical representation of the desired and observed variable ûL (t) in case of K2 = 0
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Fig. 9 Graphical representation of the obtained tracking control on variable uL (t) in case of K2 > 0
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Fig. 10 Graphical representation of the obtained tracking control on variable uL (t) in case of
K2 > 0 in detail
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Fig. 11 Graphical representation of the obtained controlling variableuin(t) from the sliding strategy
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Fig. 13 Graphical representation of the desired and observed variable ûL (t) in detail with visible
phase delay
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Fig. 14 Result of the desired and observed variable ûL (t) after a time sequence
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Fig. 16 Graphical representation filtered switching variable of the sliding mode control

the reduction of the switching frequency, due to the filter action, which manipulates
the controlling signal which becomes slower. Therefore, the controlled output signal
shows a delay. Figure16 shows a graphical representation of the filtered switching
sliding mode controller sign

(
s(k − 1)

)
.

7 Conclusions

This chapter presented a SISO adaptive sliding mode control, combined with an
adaptive bang–bang observer to improve a metal–polymer composite sensor system.
The proposed techniques improved the disturbance rejection of the sensor system and
thus their reliability in a harsh, industrial environment for the detection of particle
pollution. The proposed application is innovative, as it endeavours to improve the
performance of sensor robustness with respect to parametric uncertainties, as well as
insensibility to disturbances. The whole control schemewas designed using the well-
known Lyapunov approach and a particular sliding surface was defined in order to
obtain the inductive voltage as a form of controlled output. A generic identification
technique was obtained by use of scaling data. From this proposed technique, a
broader sampling rate and low-frequency input signal was adopted to pinpoint the
small-scale parameters. A further consideration might be based upon the reduction
of the measuring system’s transmitters themselves. The results of this study attest to
the practicality and robustness of the algorithm set forth.
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Sliding Mode Control for a Hydrostatic
Transmission in Combination
with a Sliding Mode Observer

Hao Sun and Harald Aschemann

Abstract Hydrostatic transmissions are continuously variable hydraulic power
converters, which provide lots of advantages and represent a characteristic drive
train component in, e.g. all types of working machines, city vehicles and renewable
energy plants. In high-performance motion control systems, however, hydrostatic
transmissions are less frequently used than electrical and mechanical drives due to
their nonlinear behaviour, the impact of unknown disturbances like leakage volume
flows as well as disturbance torques, and model uncertainty. In this contribution, a
sliding mode approach is applied to the tracking control of a hydrostatic transmis-
sion. Moreover—in order to robustly reconstruct the immeasurable system states and
the unknown disturbances—a gain-scheduled modified Utkin sliding mode observer
is proposed that is based on extended linearisation techniques. This observer-based
control structure is compared with an alternative approach, where a flatness-based
tracking control is combined with a nonlinear reduced-order observer. The efficiency
and the performance of the proposed control structure are highlighted by both sim-
ulations and meaningful experimental results.

1 Introduction

A hydrostatic transmission as depicted in Fig. 1 uses hydraulic oil to transmit power
from the power source to the drive mechanism. A basic hydrostatic transmission
consists of a hydraulic pump and a hydraulic motor, of which at least one must have
a variable displacement, operating together in a closed circuit. On the pump side,
the mechanical torque provided from the engine is transformed by the hydraulic
pump into a pressurised fluid flow that is transformed back to the mechanical torque
by the hydraulic motor on the motor side. By varying the tilt angle (changing the
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Fig. 1 Test bench of the hydrostatic transmission

displacement) of either pump or motor, any desired transmission ratio can be obtained
within the boundaries determined by the design, cf. [12]. Hydrostatic transmissions
are widely used as a characteristic component of drive chains practically in all types
of working machines like harvesters, wheel loaders, excavators, telehandlers and
agricultural tractors. They are typically operated in combination with diesel engines
for mobile applications and offer a variety of advantages in comparison to pure
mechanical transmissions. Besides the capability of a continuously variable trans-
mission with high power density and the generation of large traction forces at low
speeds, hydrostatic transmissions allow for reversing the direction of rotation without
changing the gear. Moreover, it is possible to perform wearless breaking manoeuvres.
Due to the significant advantages as compared to mechanical gearboxes, hydrostatic
transmissions have also attracted the attention of engineers from renewable energy
technology, cf. [5, 6].

However, hydrostatic transmissions are subject to several nonlinearities and char-
acterised by uncertain system parameters as well as unknown disturbances. Even so,
gain-scheduled PID-controllers are still widely used in current industrial practice for
controlling such a system, see [21]. Hence, to improve both the energy efficiency
and the control performance in practical applications, nonlinear model-based con-
trol approaches must be considered, for which plenty of work have been proposed
in the last two decades, see [1–4, 10, 11, 13–15, 18–20, 22–27]. A flatness-based
controller is proposed in [2, 20], in which only the unknown disturbance torque
was considered as a lumped parameter. A disturbance compensation is realised by
employing a nonlinear reduced-order disturbance observer. The simulation results
and the experimental evaluation show a good tracking accuracy as well as active
damping of pressure oscillations. The simplifying assumptions concerning the actu-
ator dynamics and a constant leakage coefficient, however, restrict the applicability of
this approach. In subsequent work [22–24], several advanced nonlinear approaches
like adaptive inverse dynamics, robust inverse dynamics and sliding mode control
have been investigated for the tracking control of the hydrostatic transmission sys-
tem, in which the actuator time constants and leakage volume flow are considered as
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uncertain parameters and a disturbance input, respectively. These centralised control
approaches have been evaluated by simulations only. A decentralised flatness-based
controller is presented in [1]. This innovative approach leads to a high tracking
accuracy for both controlled outputs, and a singularity due to the vanishing pressure
difference, cf. [2], can be avoided. Moreover, the implementation of the decentralised
control structure is even simpler than the implementation of the centralised versions.
Thereafter, different nonlinear control approaches based on the decentralised control
structure with experimental validations can be found in [3, 4, 25, 26].

In [15], Liu proposed an exact linearisation control for a hydrostatic transmission
with secondary regulation (SC-HST) and a good tracking performance is guaranteed
in simulation by using LQR design based on the linearised model. A nonlinear H∞
control in frequency domain via Generalised frequency response function (GFRF)
for SC-HST is proposed by Jiang, however, only simulation validation can be found
in [13]. Hoang, cf. [10], proposed an adaptive fuzzy sliding mode controller for a
SC-HST system, where the saturation and dead zone effect existing in the displace-
ment units are introduced into the system model and explicitly considered in the
control design. The optimal control input is approximated by using fuzzy logic sys-
tem. Moreover, a sliding mode control input is utilised to counteract the influence
caused by the approximation error, parameter uncertainty as well as the disturbances.
The implementation and experimental validation highlight the applicability of the
proposed approach. Control design based on neural network has been also applied
to hydrostatic transmissions, e.g. neural network based prediction control [19] and
radial basis neural network (RBNN) control [11].

The nonlinear model demonstrated in this contribution is characterised by para-
meter uncertainty and unknown disturbances. Therefore, based on the decentralised
control structure, a sliding mode control is proposed. Furthermore, in order to robustly
reconstruct the immeasurable system states and estimate the unknown disturbances,
the proposed control approach is extended with a modified Utkin sliding mode
observer. The complete control algorithm is thoroughly studied by means of simula-
tion and then implemented and validated by experiments for tracking control of the
hydrostatic transmission. This chapter is organised as follows: in Sect. 2, the control-
oriented nonlinear model of the hydrostatic transmission system is addressed. Based
on the derived system model, the decentralised control structure is introduced. Hence,
the control design procedure is divided into two sub-control loops according to the
controlled variables. The details of the control design for each sub-control loop can
be found in Sect. 3. In Sect. 4, two alternative state and disturbance observers: a
nonlinear reduced-order observer and a modified Utkin sliding mode observer are
introduced. The estimated immeasurable system states as well as unknown distur-
bances can then be used within the control structure. In Sect. 5, simulation results
considering both measurement noise and quantization error as well as the experi-
mental results form a dedicated test bench are presented. Finally, conclusions are
given in Sect. 6.
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2 Control-Oriented Model of a Hydrostatic Transmission

Dynamic system modelling plays a dominant role in modern control theory. An
accurate system model is the key to improve the overall system performance. The
model derivation of the hydrostatic transmission is based on the physical funda-
mentals of hydraulic systems, cf. [12]. A hydraulic scheme of the considered test
bench is depicted in Fig. 2. This system can be split into a hydraulic subsystem
and a mechanical subsystem, which are coupled by the torque τM generated by the
hydraulic motor.

2.1 Hydraulic Subsystem

2.1.1 Pressure Dynamics

The hydraulic pump and motor are considered as key components in the hydrostatic
transmission system, which are characterised by the volumetric displacement VP and
VM in m3 per revolution describing the fluid volume displaced within one complete
rotation of the connected shaft. The pump and motor flow rates are determined by
nonlinear functions

qP = VP(αP) nP , (1)

qM = VM(αM) nM , (2)

where nP and nM represent the rotational speed of the corresponding shaft in rpm.
The calculations of the volumetric displacement VP(αP) and VM(αM) depend on
the specific mechanical design. With the assumptions of a small swashplate angle
|αP | ≤ 18◦ of the hydraulic pump and a small bent-axis angle |αM | ≤ 20◦ of the
hydraulic motor, cf. [22], the volume flow (1) and (2) can be simplified as follows

Drive motorLoad motor

Volume flow
qB

Volume flow
qA

Pressure pA

Pressure pB

Pump angular velocity Motor angular velocity 
and torque

Fig. 2 Structure of the dedicated test bench
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qP = ṼP α̃P ωP , (3)

qM = ṼM α̃M ωM . (4)

Here, ṼP and ṼM are constant parameters resulting from the geometric structure of the
hydraulic pump and motor. The variable α̃P ∈ (−1, 1) is the normalised swashplate
angle of the pump, whereas α̃M ∈ (εM , 1), εM > 0, denotes the normalised bent-axis
angle of the motor. The angular velocities of the pump and motor are represented by
ωP and ωM , respectively.

Neglecting pressure losses in the hydraulic hoses, the high and low pressure sides
of the system can be described by the corresponding pressure value pA and pB ,
respectively. In fact, the applications of hydrostatic transmissions have a working
pressure in the range of hundreds of bar, hence, the hydraulic fluid cannot be simply
considered as incompressible fluid. Using a mass balance equation in combination
with an oil model, the pressure dynamics can be obtained as

ṗA = βA

VA
(ṼP α̃PωP − ṼM α̃MωM − qI − qE,A), (5)

ṗB = βB

VB
(−ṼP α̃PωP + ṼM α̃MωM + qI − qE,B). (6)

Here, βA and βB denote the effective bulk modulus of the fluid on high and low
pressure sides, respectively. VA and VB represent the total volume (hydraulic hose
and chamber) of the corresponding pressure side. Moreover, the internal leakage
volume flow due to the pressure difference between the high and low pressure side
is denoted by qI . The variables qE,A and qE,B represent the external leakage volume
flow of each pressure side, respectively, e.g. leakage volume flow due to imperfect
sealing in the pump and motor. Introducing a reasonable symmetry assumption, an
order reduction can be achieved regarding the pressure dynamics. This results in a
first-order differential equation for the pressure difference Δp

Δ ṗ = ṗA − ṗB = 2

CH

(
ṼP α̃PωP − ṼM α̃MωM

)
− qU

CH
. (7)

Here, the hydraulic capacitance is given by

CH = VA

βA
= VB

βB
.

The corresponding leakage volume flow qU results from internal and external leakage
volume flows in the system

qU = 2 qI + qE,A − qE,B .
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2.1.2 Actuator Dynamics

A detailed description of a hydraulic pump and motor can be found in [16, 17].
However, the complicated system model is not suitable in nonlinear control design.
For the pump or motor with electro-hydraulic control unit, the specific displacement
depends linearly on the input current of the solenoid-servo valves. In general, the
actuator dynamics of the displacement can be neglected in comparison with the
dynamics of pressure difference. Accordingly, the dynamics of the displacement
units for both pump and motor of the test bench are modelled by first-order lag
systems, respectively. The differential equation for the corresponding normalised tilt
angle becomes

TuP ˙̃αP + α̃P = kP uP , (8)

TuM ˙̃αM + α̃M = kM uM . (9)

The actuator time constants are denoted by TuP and TuM , and the input voltages uP

and uM of the corresponding proportional valves for the displacement units act as
physical control inputs. The parameters kP and kM represent the proportional gains
of the first-order lag systems. Saturation functions account for the limited outputs of
the actuators

satab(α̃i ) =

⎧⎪⎨
⎪⎩

a α̃i ≥ a

α̃i for b < α̃i < a,

b α̃i ≤ b

i ∈ {P, M}, (10)

where a = α̃imax and b = α̃imin represent the upper and lower output limits determined
by the mechanical design. In the simulation model, Eq. (10) is implemented with
limited integrators for α̃P and α̃M , respectively. Note that the tilt angles α̃P and
α̃M as well as the control inputs uP and uM represent normalised values, which are
dimensionless.

2.2 Mechanical Subsystem

The dynamics of the output side of the hydrostatic transmission, see Fig. 2, is gov-
erned by the following equation of motion

JV ω̇M + dVωM = ṼMΔp α̃M︸ ︷︷ ︸
τM

−τU , (11)

with the abbreviation JV = JM + JE . Here, JM represents the mass moment of inertia
of the hydraulic motor and JE the one of the electric motor on the load side. The
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parameter dV is the damping coefficient at the drive shaft. The driving torque of the
hydraulic motor is denoted by τM , an unknown disturbance torque by τU .

2.3 Models for the Decentralised Control Design

The overall system model comprises four first-order differential equations: the state
equations (7) for the pressure difference Δp, (8) and (9) for the normalised displace-
ment angles of the pump α̃P and the motor α̃M as well as (11) for the motor angular
velocity ωM . For the decentralised control design, they are partitioned as follows: the
first design model is linear and given by the differential equation for the normalised
motor bent-axis angle α̃M

˙̃αM = − 1

TuM
α̃M + kM

TuM
uM , (12)

where uM serves as the control input. Introducing the normalised pump tilt angle
α̃P , the pressure difference Δp, and the motor angular velocity ωM as state vari-
ables, the state vector of the second design model results in x = [α̃P Δp ωM ]T . The
corresponding nonlinear state-space representation ẋ = f (x, uP , τdis) becomes

⎡
⎣

˙̃αP

Δ ṗ
ω̇M

⎤
⎦ =

⎡
⎢⎣

− 1
TuP

α̃P + kP
TuP

uP

2ṼPωP
CH

sat1−1(α̃P) − 2ṼMωM
CH

sat1
εM

(α̃M) − qU
CH

− dV
JV

ωM + ṼM
JV

Δp sat1
εM

(α̃M) − τU
JV

⎤
⎥⎦ , (13)

ym = [
Δp ωM

]T
. (14)

The control input is given by uP , the disturbance vector by τdis = [qU τU ]T . The out-
put vector ym contains the pressure difference Δp as well as the motor angular veloc-
ity ωM . As a consequence, the multi-input and multi-output (MIMO) dynamic system
is considered as two single-input single-output (SISO) subsystems, where couplings
are taken into account by gain-scheduling techniques. Moreover, by exploiting the
flatness property of the decentralised system model, the saturation functions are not
explicitly considered in the control design in the following sequel.

3 Model-Based Decentralised Control Design

It is straightforward to prove that each SISO subsystem is differentially flat with the
corresponding flat output y f 1 = α̃M and y f 2 = ωM , respectively. The subsystem of
the normalised bent-axis angle α̃M is presented by a first-order differential equation
(12). It is obvious to obtain
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uM = Ω1(ẏ f 1, y f 1) = TuM ˙̃αM + kM α̃M , (15)

and dim(y f 1) = dim(uM). Therefore, y f 1 = α̃M represents the flat output of this
subsystem.

The subsystem of the motor angular velocity ωM is governed by Eq. (13). The
system states Δp and α̃P can be expressed as a function of ωM as well as its time
derivatives, i.e.

Δp = Ω2(ẏ f 2, y f 2) = JV ω̇M + dV ωM + τU

ṼM α̃M

, (16)

α̃P = Ω3(ÿ f 2, ẏ f 2, y f 2)

= JVCH

2ṼPωP ṼM α̃M

ω̈M + dVCH

2ṼPωP ṼM α̃M

ω̇M + ṼM α̃M

ṼPωP

ωM

+ CH τ̇U

2ṼPωP ṼM α̃M

+ qU

2ṼPωP

. (17)

Here, again, α̃M is considered as a gain-scheduling parameter. Moreover, the con-
trol input uP = Ω4(

...
y f 2, ÿ f 2, ẏ f 2, y f 2) can be determined by solving the third time

derivative of ωM for the input uP . Together with the condition dim(y f 2) = dim(uP),
it can be concluded that the subsystem for the control of the motor angular velocity
ωM is differentially flat with the flat output y f 2 = ωM .

The proposed decentralised control scheme is depicted in Fig. 3. A flatness-based
control with an integrator is employed to guarantee an excellent tracking performance
for the control of the normalised bent-axis angle α̃M of the motor. For the control of
the motor angular velocity ωM , a sliding mode control approach is applied to obtain a
robust tracking performance regarding the model uncertainty. The immeasurable sys-
tem states—the normalised tilt angles α̃P and α̃M—and the unknown disturbances—

Fig. 3 Scheme of the decentralised control structure in combination with a state and disturbance
observer
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the leakage volume flow qU as well as the unknown disturbance torque τU—are
estimated online by means of state and disturbance observers proposed in Sect. 4.

The proposed decentralised control structure outperforms an alternative cen-
tralised one published in [2], where the flat outputs given by the pressure difference
Δp and the motor angular velocity ωM are considered as controlled variables. It
avoids a tracking control of the pressure difference Δp, which

• leads to a stiff control system due to the small oil compressibility,
• causes a singularity in the control design, cf. [2].

The proposed decentralised control structure simplifies the control design procedure
significantly and, moreover, reduces the effort of the control implementation. In the
following, the control design for each subsystem is presented and discussed in detail.

3.1 Control Design of the Normalised Bent-Axis Angle

A flatness-based control (FBC) approach is employed for the tracking control of the
normalised bent-axis angle α̃M of the motor. Therefore, the inverse dynamics of the
corresponding design model (12) is considered

uM = α̃M + υM TuM
kM

, (18)

where the first time derivative ˙̃αM = υM is introduced as a stabilising control input.
The stabilising control law represents a combination of a feedforward and feedback
control as follows

υM = ˙̃αMd + kα0 · (α̃Md − α̃M)︸ ︷︷ ︸
eα̃M

+kα I ·
∫ t

0
(α̃Md − α̃M)︸ ︷︷ ︸

eα̃M

dτ. (19)

Therefore, a linear error dynamics is obtained and positive coefficients kα0 > 0 and
kα I > 0 can be chosen according to the desired characteristic polynomial

pα̃M (s) = (s + sα̃M ,1)(s + sα̃M ,2), (20)

to achieve asymptotic stability. Moreover, the steady-state accuracy is guaranteed by
the integral part despite the uncertainty in the system dynamics, e.g. uncertain time
constant TuM . Without loss of generality, desired trajectories α̃Md are specified only
within the admissible displacement range (εM , 1).
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3.2 Control Design of the Motor Angular Velocity

The motor angular velocity ωM represents a flat output for the second design model
(13) with a reasonable assumption that the normalised bent-axis angle α̃M , serving
as a gain-scheduling parameter, has a negligible time derivative. Moreover, the dis-
turbance models τ̇U = 0 and q̇U = 0 are considered accordingly in the subsequent
derivation. As a consequence, the third time differentiation of ωM results in

...
ωM = f (x, α̃M , τdis) + g(α̃M) uP , (21)

where f (x, α̃M , τdi s) and g(α̃M) represent state- and disturbance-dependent con-
tinuous nonlinear functions which can be expressed in the linear form of model
parameters as

f (x, α̃M , τdi s) = θT
1 (α̃M) x + θT

2 (α̃M) τdis = θT (α̃M) xE , (22)

g(α̃M) = θ3(α̃M). (23)

Here, θT (α̃M) = [θT
1 (α̃M)1×4 θT

2 (α̃M)1×2] denotes a state-dependent coefficient vec-
tor, and θ3(α̃M) is a state-dependent scalar function, i.e. the elements in θ as well as
the scalar θ3 are functions of physical parameters and the normalised bent-axis angle
α̃M . The extended state vector xE = [xT τ T

dis]T contains the states of the subsystem
as well as the disturbance inputs.

3.2.1 Flatness-Based Control

Equation (21) depends directly on the control input uP and can be solved for the
flatness-based control (FBC) input

uP = g(α̃M)−1
(
υP − f (x, α̃M , τdis)

)
, (24)

with an additional stabilising input υP . In the case that a perfect system model can
be obtained, the control input (24) can lead to a closed-loop system as

...
ωM = υP . (25)

Here, υP can be easily designed as

υP = ...
ωMd + kωM ,2(ω̈Md − ω̈M) + kωM ,1(ω̇Md − ω̇M) + kωM ,0(ωMd − ωM). (26)

Therefore, a linear error dynamics is imposed and the asymptotic stability can be
achieved by determining the coefficients kωM ,i , i ∈ {0, 1, 2} according to the Hurwitz
polynomial
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pωM (s) = (s + sωM )3. (27)

In practice, however, it is impossible to achieve a perfect knowledge of all the
physical parameters in the system dynamic model. The system dynamics with para-
meter uncertainty can be expressed as

...
ωM = f̂ (x, α̃M , τdis) + ĝ(α̃M) uP − f̃ (x, α̃M , τdis) − g̃(α̃M) uP , (28)

where ˆ(·) denotes the estimate value, i.e.

f̂ (x, α̃M , τdis) = θ̂T (α̃M) xE , ĝ(α̃M) = θ̂3(α̃M), (29)

and the difference between the estimate and real values is given by ˜(·) = ˆ(·) − (·).
Therefore, the dynamics (28) can be rewritten as

...
ωM = f̂ (x, α̃M , τdis) + ĝ(α̃M) uP − (θ̃T (α̃M) xE + θ̃3(α̃M) uP)︸ ︷︷ ︸

ψ(θ̃ , θ̃3, xE , uP )

, (30)

where ψ(θ̃, θ̃3, xE , uP) denotes the system uncertainty which is upper bounded
by |ψ |≤ ψmax. In this situation, it is obvious to see that Eq. (24) cannot guarantee a
perfect compensation of the system nonlinear dynamics. The compensation residue
ψ has a significant effect on the closed-loop tracking performance, which is, however,
not considered explicitly in the FBC. To achieve more robust performance, a sliding
mode control is considered, cf. [7], for the tracking control of the motor angular
velocity ωM represented in (30).

3.2.2 Sliding Mode Control

The design of sliding mode control starts with defining a sliding manifold as

s = ëω + c2ėω + c1eω, (31)

with the tracking error eω = ωMd − ωM . The candidate for a Lyapunov function can
be chosen as

V = 1

2
s2 ≥ 0. (32)

Substituting (30) into the first time derivative of (32) results in

V̇ = sṡ = s(
...
ωMd + c2ëω + c1ėω − ...

ωM)

= s(
...
ωMd + c2ëω + c1ėω − f̂ (x, α̃M , τdis) − ĝ(α̃M) uP + ψ). (33)
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The control input uP can be designed as

uP = ĝ(α̃M)−1
(...
ωMd + c2ëω + c1ėω − f̂ (x, α̃M , τdis) + usm

)
. (34)

Here, usm denotes the sliding mode control input introduced as

usm = λs + k sign(s), (35)

where λ is a positive scalar. The parameter k denotes the gain value of the switching
term, and it can be either constant or time-varying. Substituting (34) and (35) into
(33) leads to

V̇ = −λs2 + s(ψ − k sign(s)) = −λs2 + |s|(ψ sign(s) − k). (36)

To guarantee asymptotic stability, the following condition must be satisfied

k ≥ ψ sign(s). (37)

Considering the boundary condition of parameter uncertainty ψ , it is obvious to
conclude that the choice k ≥ ψmax leads to V̇ ≤ 0, which guarantees the asymptotic
stability of the system. Substituting the proposed sliding mode control inputs (34)
and (35) into the dynamic system (30) results in the closed-loop error dynamics

...
e ω + (c2 + λ) ëω + (c1 + λc2) ėω + λc1 eω + k sign(s) − ψ = 0. (38)

It can be seen that the positive parameters c1, c2 and λ can be chosen according to the
Hurwitz polynomial (27). The gain k of the switching term in the sliding mode control
input is determined by considering the upper bound of the uncertainty ψ . Therefore,
substituting the sliding mode control input usm (35) into (34) and reconsidering the
analytical expression ψ in (30) results in

ψ =L (
...
ωMd + c2ëω + c1ėω + λs + k sign(s)) + (θ̃ − L θ̂)T xE︸ ︷︷ ︸

φ

=L k sign(s) + L (c2ëω + c1ėω + λs) + L
...
ωMd + φ, (39)

with

L = θ̃3

θ̂3

= 1 − θ3

θ̂3

.

Since all the physical parameters of the hydrostatic transmission are positive and
bounded, a boundary condition for (39) can be derived as follows

|ψ | ≤ γ1|k| + γ2|eω| + γ3|eω|2 + γ4|ėω| + γ5, (40)
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where γi , i ∈ {1, 2, 3, 4, 5}, are positive constant scalars. With the fact that k is also
bounded by ψmax, the bound of the system uncertainty can be determined as

ψmax = 1

1 − γ1
(γ2|eω| + γ3|eω|2 + γ4|ėω| + γ5). (41)

The constant coefficients γi , i ∈ {1, 2, 3, 4} are the weighting parameters in (41)
and γ5 represents the upper bound of a nonlinear function of states and disturbances.
Therefore, simulation studies are performed to assess the magnitudes for the corre-
sponding parameters.

The sliding mode control presented so far still suffers from the chattering phenom-
enon. This undesirable phenomenon is caused by fast switching actions introduced
by the sign function and may lead to the excitation of unmodelled high-frequency
dynamics. To counteract this effect, a smooth switching function tanh(s/η) with a
strictly positive, small constant η—determining a boundary layer thickness—is used.
The chattering reduction depends on the value of η at the cost of robustness. The
larger the value of η, the more the chattering phenomenon is suppressed.

4 State and Disturbance Observer

For the implementation of the proposed control approaches, two alternative state
and disturbance observers are considered in this section—a nonlinear reduced-order
observer and a gain-scheduled sliding mode observer. Both provide estimates for
the immeasurable system states—the normalised swashplate angle α̃P of the pump
and the normalised bent-axis angle α̃M of the motor—and for the unknown system
disturbances—the leakage volume flow qU and a disturbance torque τU acting on the
hydraulic motor. For the observer design, the slowly time-varying disturbances are
assumed. Hence, integrator models are employed as disturbance models, i.e.

τ̇dis = [q̇U τ̇U ]T = 0. (42)

4.1 Nonlinear Reduced-Order Observer

The nonlinear state and disturbance observer as proposed in [8] is designed for the
hydrostatic transmission. Therefore, the state equations (12) and (13) are extended
with disturbance models given by (42). With the additional state variables for the
disturbances qU and τU , the vector of immeasurable system states can be stated as

xu = [α̃P α̃M qU τU ]T .
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Therefore, the extended system model for the nonlinear reduced-order observer
design becomes

ẏm =
[

Δ ṗ
ω̇M

]
=

[
2ṼPωP
CH

α̃P − 2ṼMωM
CH

α̃M − qU
CH

− dV
JV

ωM + ṼM
JV

Δp α̃M − τU
JV

]

︸ ︷︷ ︸
fm ( ym , xu)

, (43)

ẋu =

⎡
⎢⎢⎣

˙̃αP˙̃αM

q̇U
τ̇U

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

− 1
TuP

α̃P + kP
TuP

uP

− 1
TuM

α̃M + kM
TuM

uM

0
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
fu(xu , u)

. (44)

Here, u = [uP uM ]T represents the input vector. The estimated states x̂u follow from

x̂u = H ym + z, (45)

where H denotes the observer gain matrix. The state equations for the observer state
vector z are chosen as

ż = Φ
(
ym, x̂u, u

)
. (46)

The observer gain matrix with four unknowns

H =
[
h11 0 h31 0
0 h22 0 h42

]T

, (47)

and the vector of nonlinear functions Φ are determined in such a way that the steady-
state observer error x̃u = xu − x̂u converges to zero. The design proceeds by calcu-
lating the first time derivative of the observer error

˙̃xu = ẋu − ˙̂xu = ẋu − H · ẏm − Φ (ym, xu − x̃u, u) . (48)

Substituting (43) and (44) into (48) leads to

˙̃xu = fu(xu, u) − H · fm( ym, xu) − Φ ( ym, xu − x̃u, u) . (49)

With the stationary condition that the steady-state error becomes x̃u = 0, the vanish-
ing of the right hand side in (49) results in
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Fig. 4 Block diagram of the
nonlinear reduced-order
observer

HHH

ΦΦΦ (·) ∫∫∫

yyym

uuu zzz

x̂xxu

+

+

Φ
(
ym, x̂u, u

) = −H ·
⎡
⎢⎣

2ṼPωP
CH

ˆ̃αP − 2ṼMωM
CH

ˆ̃αM − q̂U
CH

− dV
JV

ωM + ṼM
JV

Δp ˆ̃αM − τ̂U
JV

⎤
⎥⎦ +

⎡
⎢⎢⎢⎣

−ˆ̃αP+kP uP
TuP

−ˆ̃αM+kM uM
TuM
0
0

⎤
⎥⎥⎥⎦ . (50)

To achieve asymptotic stability, the linearised error system

˙̃xu = ∂Φ
(
ym, x̂u, u

)

∂ x̂u
x̃u (51)

is considered. Therefore, all eigenvalues of the Jacobian are placed in the left complex
half-plane according to

det

(
s I − ∂Φ

(
ym, x̂u, u

)

∂ x̂u

)
!=

4∏
i=1

(s + sBi ). (52)

With positive values sBi > 0, i ∈ {1, 2, 3, 4}, the observer gain matrix H = H(Δp)
according to (47), follows directly from Eq. (52) and depends on the pressure differ-
ence Δp. A block diagram of the implementation can be found in Fig. 4.

4.2 Sliding Mode Observer Design Based on Extended
Linearisation

A modified Utkin sliding mode observer, cf. [7], in combination with extended lin-
earisation techniques, cf. [8], is proposed in this section to provide a robust state
and disturbance construction. For this purpose, the right hand side of the dynamic
equations (12) and (13) as well as the disturbance models (42) is rearranged. Follow-
ing the idea of extended linearisation, they are written in a quasi-linear form with a
state-dependent system matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̃αP

˙̃αM

Δ ṗ

ω̇M

q̇U
τ̇U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ẋEL

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
TuP

0 0 0 0 0

0 − 1
TuM

0 0 0 0

2ṼPωP
CH

− 2ṼMωM
CH

0 0 − 1
CH

0

0 0 ṼM α̃M
JV

− dV
JV

0 1
−JV

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A(α̃M ,ωM )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̃P

α̃M

Δp

ωM

qU
τU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xEL

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kP
TuP

0

0 kP
TuM

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

[
uP

uM

]

︸ ︷︷ ︸
u

,

(53)[
Δp

ωM

]

︸ ︷︷ ︸
ym

=
[

0 0 1 0 0 0

0 0 0 1 0 0

]

︸ ︷︷ ︸
C

xEL . (54)

Here, the system matrix A(α̃M , ωM) depends on the two system states—the nor-
malised bent-axis angle α̃M and the motor angular velocity ωM . The input matrix B
and the output matrix C are constant. Moreover, the system represented in (53) is
completely observable. As the measured outputs are states of the dynamic system, a
coordinate transformation

xc = Tc xEL

is reasonable to rearrange the order of the states according to

xc = [α̃P α̃M qU τU
... Δp ωM ]T = [xT

1

... yTm ]T .

The corresponding system matrix, input matrix as well as output matrix of the trans-
formed representation can be calculated as follows

Ac = Tc A T−1
c =

[
A11 A12

A21 A22

]
, Bc = Tc B =

[
B1

B2

]
, Cc = C T−1

c = [
0 I

]
.

After the coordinate transformation, the state-space representation of the system (53)
is given by

[
ẋ1

ẏm

]
=

[
A11 A12

A21 A22

] [
x1

ym

]
+

[
B1

B2

]
u. (55)

Then, the ansatz for the sliding mode observer has the form

[ ˙̂x1

˙̂ym

]

︸ ︷︷ ︸
˙̂xc

=
[
A11 A12

A21 A22

]

︸ ︷︷ ︸
Ac

[
x̂1

ŷm

]

︸ ︷︷ ︸
x̂c

+
[
B1

B2

]

︸ ︷︷ ︸
Bc

u −
[
G1

G2

]

︸ ︷︷ ︸
Gc

( ŷm − ym) +
[

L

−I

]

︸ ︷︷ ︸
Lc

υ, (56)
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where x̂1 and ŷm represent the state estimates. G1 and G2 denote Luenberger-type
gain matrices, whereas L ∈ R

4×2 denotes a feedback gain matrix, and I ∈ R
2×2 the

identity matrix. The discontinuous switching part is defined by the vector υ according
to

υ =
[
M1 0

0 M2

]

︸ ︷︷ ︸
Mc

[
sign(Δ p̂ − Δp)

sign(ω̂M − ωM)

]

︸ ︷︷ ︸
sign(·)

=
[
M1 sign(Δ p̂ − Δp)

M2 sign(ω̂M − ωM)

]
, (57)

where Mi , i ∈ {1, 2}, denote the positive constant gains. Considering the definitions
e1 = x̂1 − x and eym = ŷm − ym , the estimation error dynamics can be derived from
(55) and (56) as

[
ė1

ėym

]
=

[
A11 A12

A21 A22

] [
e1

eym

]
−

[
G1

G2

]
eym +

[
L

−I

]
υ. (58)

Introducing a new error variable ē1 = e1 + L eym , the resulting error dynamics w.r.t
a new state variable ē1 and eym becomes

[ ˙̄e1

ėym

]
=

[
Ā11 Ā12

A21 Ā22

] [
ē1

eym

]
+

[
0

−I

]
υ, (59)

where the submatrices are given by

Ā11 = A11 + L A21,

Ā12 = A12 − Ā11 L − G1 + L (A22 − G2),

Ā22 = A22 − G2 − A21 L.

Ā12 = 0 can be achieved by proper choice of the gain matrix G1. In the case of υ = 0,
asymptotic stability of the error dynamic system (59) can be obtained by choosing
the gain matrices L and G2 according to

A11 + L A21 = Ā∗
11, (60)

A22 − G2 − A21 L = Ā∗
22, (61)

where Ā∗
11 and Ā∗

22 denote asymptotically stable matrices with the following char-
acteristic polynomials

det(s I − Ā∗
11)

!= (s + sB1)(s + sB2)(s + sB3)(s + sB4),

det(s I − Ā∗
22)

!= (s + sB5)(s + sB6).
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BBBc

GGGc(ωM , α̃M)

MMMc tanh (·) LLLc(ωM)

∫

AAAc(ωM , α̃M)

CCCc

uuu

eeeym

υυυ

− x̂xxc ŷyymyyym

− + +

+

Fig. 5 Block diagram of the gain-scheduled sliding mode observer

In the original Utkin observer, the switching action υ guarantees a finite-time conver-
gence on the measurable states, and stabilises the observer error dynamics, cf. [9].
The additional Luenberger gain matrix Gc in the modified Utkin observer yields
asymptotic stability of the observer errors and offers the potential to provide robust-
ness against certain classes of model uncertainty by the switching part υ. Aiming
at an avoidance of chattering—caused by the discontinuous switching part, the sign
function vector sign(·) is replaced in the implementation by the tanh function vec-
tor tanh(·). As a consequence, the ideal sliding mode becomes a real sliding mode
within a resulting boundary layer. The block diagram of the implementation of the
sliding mode observer is depicted in Fig. 5.

5 Simulation and Experimental Results

In this section, the proposed sliding mode control in combination with the gain-
scheduled sliding mode observer is investigated by both simulations and experimental
evaluations. To guarantee realistic simulation results, the system model is extended
with measurement noise regarding the pressure sensors and with quantisation errors
of the encoders. After thorough simulation studies, the control algorithm can be
directly implemented on the corresponding test bench. Nevertheless, the design para-
meters of the model-based controller have been slightly adjusted at the test bench in
order to further improve the tracking performance regarding the controlled variables.
To point out the superior tracking properties of the proposed observer-based sliding
mode control, an alternative solution given by a flatness-based tracking control in
combination with a nonlinear reduced-order observer is considered as a reference
for a comparison.

In order to numerically evaluate the performance of the individual control
approach, two criteria are introduced—the maximum absolute tracking error emax

as well as the root-mean-square (RMS) error eRMS , which are defined as

emax = max(|e(k)|), eRMS =
√

1

N

∑
e2(k), k ∈ {1, 2, . . . , N }.
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Fig. 6 Desired trajectories for the controlled variables—the motor angular velocity ωMd (top) and
the normalised motor bent-axis angle α̃Md (bottom)

Figure 6 depicts the desired trajectories for the motor angular velocity ωMd and the
normalised bent-axis angle α̃Md , respectively. The synchronised desired trajectories
are designed based on smooth, several times continuously differentiable polynomials
and comprise a sequence of motions. It is important to note that—by exploiting the
flatness property of the system at trajectory planning—any saturation of the tilt angles
for the pump and the motor can be avoided.

5.1 Simulation Results

In this section, meaningful simulation results are presented: in the first scenario,
the flatness-based controller (FBC) is employed together with either the proposed
sliding mode observer (SMO) or the nonlinear reduced-order observer (NROO),
see Figs. 7, 8 and 9. In the second scenario—to improve the tracking performance
regarding the motor angular velocity ωM—the sliding mode control (SMC) is used.
Again, a comparison between the SMC and the FBC in combination with the gain-
scheduled SMO is carried out. It becomes obvious that a superior control performance
is achievable with the robust control approach proposed in this chapter, see Figs. 10
and 11. For the simulation studies, disturbance models are introduced: the unknown
disturbance torque is modelled as

τU = 0.1 JV ω̇Md + 7 tanh
(ωMd

0.1

)
,
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Fig. 7 Simulation results regarding the disturbance estimation: comparison between the nonlinear
reduced-order observer (NROO) and the sliding mode observer (SMO)

Fig. 8 Simulation results regarding the state estimation: comparison between the nonlinear
reduced-order observer (NROO) and the sliding mode observer (SMO)
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Fig. 9 Simulation results for the tracking errors of the controlled variables using flatness-based
control: comparison between the nonlinear reduced-order observer (NROO) and the sliding mode
observer (SMO)

which presents a static nonlinear friction torque as well as a load torque caused by
10 % mass of the rotation part at the motor side. The leakage volume flow qU is
assumed to be proportional to the pressure difference Δp which can be stated as

qU = kl Δp.

Here, kl > 0 denotes the constant leakage coefficient of the system. Moreover, to
evaluate the disturbance estimation of the proposed observers, parameter uncertainty
is not explicitly introduced in the simulation study. However, the residual of the
disturbance compensation—especially in transient phases—can be considered as
system uncertainty to be counteracted by the sliding mode control.

Figure 7 depicts a comparison of the simulation results of the estimated distur-
bances obtained from the two alternative observers. It becomes obvious that the SMO
leads to a significantly better estimation of the leakage volume flow qU , where the
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Fig. 10 Simulation results for the tracking errors of the controlled variables using alternative
controllers: FBC—flatness-based control; SMC—sliding mode control

Fig. 11 Simulation results for the control inputs of the alternative controllers: FBC—flatness-based
control; SMC—sliding mode control

estimation obtained from NROO has a certain deviation in comparison with the sim-
ulated signal. Both observers, however, are able to estimate the disturbance torque
τU with a high accuracy as shown in Fig. 7. The SMO provides a slightly smaller
maximum estimation error of 0.0236 Nm than the NROO with 0.0244 Nm. However,
the NROO possesses a relatively smaller RMS value, cf. Table 1. A comparison of
the estimation results for the immeasurable states—the normalised tilt angles α̃P

of the pump and α̃M of the motor—can be found in Fig. 8. It can be concluded that
both observers offer excellent estimation results. An improvement regarding the state
estimation can be obtained by using the SMO, especially for the normalised bent-axis
angle α̃M , cf. Table 1. The states and disturbances provided by the observers can be,
hence, directly applied to the controllers. The tracking performance of the FBC with
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Table 1 Numerical evaluation: maximum absolute errors and RMS errors for the combined state
and disturbance estimation

ωM (rad/s) α̃M α̃P

emax eRMS emax eRMS emax eRMS

NROO 0.3802 0.0989 1.3 × 10−3 0.3434 ×
10−3

0.0038 0.9844 ×
10−3

SMO 0.2518 0.0642 0.1090 ×
10−4

0.2637 ×
10−5

0.0022 0.5662 ×
10−3

qU (m3/s) τU (Nm)

emax eRMS emax eRMS

NROO 0.8685 ×
10−6

0.1902 ×
10−6

0.0244 0.0052

SMO 0.0680 ×
10−6

0.0178 ×
10−6

0.0236 0.0057

different observers is illustrated in Fig. 9, which depicts the tracking errors of both
controlled variables. The simulation results demonstrate that the FBC combined with
the SMO outperform the FBC combined with the NROO. By using the SMO, the
tracking error of the normalised bent-axis angle α̃M is controlled with a scale of 10−5,
in comparison to 10−3 by using the NROO. The numerical evaluation according to
maximum absolute tracking errors emax as well as root-mean-square errors eRMS of
the simulation studies can be found in Table 1.

Figure 10 depicts the tracking errors of the controlled variables—a comparison
between FBC and SMC in combination with the SMO. The tracking performance
of the motor angular velocity ωM is further improved by applying SMC. The same
conclusion is numerically indicated in Table 2. The control inputs of FBC and SMC
can be found in Fig. 11. The chattering of the SMC input has been well dealt with
by using the tanh(s/η) function instead of sign(s).

The thorough simulation study demonstrates that the SMO provides a better esti-
mation of the system disturbances, cf. Fig. 7, and a significant improvement on the
estimation of the normalised bent-axis angle α̃M , cf. Fig. 9. Moreover, a better track-
ing performance of the motor angular velocity ωM can be obtained by using SMC
instead of FBC. Hence, the proposed control structure—sliding mode control in com-
bination with the sliding mode observer—guarantees a superior result in comparison

Table 2 Numerical evaluation: maximum absolute errors and RMS errors for the controlled vari-
ables

ωM (rad/s) α̃M

emax eRMS emax eRMS

FBC + SMO 0.2518 0.0642 0.1090 × 10−4 0.2637 × 10−5

SMC + SMO 0.1822 0.0568 0.1083 × 10−4 0.2623 × 10−5
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with flatness-based control in combination with a nonlinear reduced-order observer.
In the following section, an experimental validation and comparison between two
alternative control structures will be carried out and discussed.

5.2 Experimental Results

The test bench consists of a hydrostatic transmission system, CANopen devices,
a real-time target PC and a host PC with Labview software. The proposed control
approaches and observers are implemented using Labview mathscript function in the
host PC and complied to the target PC for the real-time test. For the experiments, a
sampling time of Ts = 20 ms is chosen. The control parameters for each subsystem
are listed in Table 3. Both control structures are evaluated in two cases: without a
load torque or with a constant 30 Nm load torque generated by the electric motor. For
the comparison study, the same characteristic polynomials are chosen to determine
the coefficients of the stabilising control inputs for FBC and SMC as well as the
eigenvalues to determine the observer gains for the NROO and SMO, respectively.

5.2.1 Evaluation Without a Load Torque

Figure 12 depicts the comparison of the disturbance estimation between different
control structures. It can be seen that the SMO yields larger estimations both for
the leakage volume flow qU and the disturbance torque τU . The comparison of state
estimation can be found in Fig. 13, where both observers give similar estimation
results. The tracking performance of the alternative control structures is illustrated
in Fig. 14, which indicates that both control structures can guarantee an outstanding
tracking performance for both controlled variables. It is obvious that the SMC in
combination with the SMO leads to a superior tracking compared with FBC with
the NROO. Table 4 summarises the numerical evaluation of two different control

Table 3 Control parameters for the experimental validation

FBC (α̃M ) kα0 = 4, kα I = 2

FBC (ωM ) kωM ,0 = 343, kωM ,1 = 147, kωM ,2 = 21

SMO (ωM ) c1 = 49, c2 = 14, λ = 7, η = 0.02

γ1 = 0.05, γ2 = 0.01, γ3 = 0.001, γ4 = 0.001, γ5 = 0.01

NROO sB1 = 10, sB2 = 4.5, sB3 = 10, sB4 = 4.5

SMO sB1 = 10, sB2 = 4.5, sB3 = 10, sB4 = 4.5, sB5 = 5, sB6 = 10

M1 = 0.01, M2 = 0.01, η = 0.02
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Fig. 12 Comparison of disturbance estimation results without a load torque

Fig. 13 Comparison of state estimation results without a load torque

structures. Figure 15 depicts the control inputs uP and uM . The control inputs show
similar time behaviour as the corresponding tilt angles depicted in Fig. 13 where the
dynamic relationships are governed by (8) and (9). Moreover, chattering has been
well dealt with by using the tanh(·) function.
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Fig. 14 Comparison of the tracking errors for the controlled variables without a load torque

Table 4 Numerical evaluation: maximum absolute errors and RMS errors for the controlled vari-
ables

ωM (rad/s) α̃M

emax eRMS emax eRMS

FBC + NROO 1.1817 0.2408 0.1195 × 10−3 0.2898 × 10−4

SMC + SMO 0.6935 0.1577 0.0855 × 10−3 0.2114 × 10−4

5.2.2 Evaluation with a Load Torque of 30Nm

In this case, the electric motor on the load side generates a constant disturbance torque
of 30 Nm acting on the hydraulic motor. It becomes obvious in Fig. 16 that the SMO
estimates a slightly larger disturbance torque τ̂U , whereas the leakage volume flow
q̂U only has relatively larger estimates when the motor rotates at a high rotational
speed. Figure 17 shows a similar estimation of the immeasurable states between SMO
and NROO.

According to the tracking performance illustrated in Fig. 18 as well as the numer-
ical results listed in Table 5, the same conclusion can be obtained as that in the case
without a load torque, except that the tracking performance of the normalised motor
bent-axis angle is almost identical in case with a load torque of 30 Nm. Moreover,
the control inputs of both controllers can be found in Fig. 19.
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Fig. 15 Comparison regarding the control inputs without a load torque

Fig. 16 Comparison of disturbance estimation results with a load torque of 30 Nm
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Fig. 17 Comparison of state estimation results with a load torque of 30 Nm

Fig. 18 Comparison of the tracking errors for the controlled variables with a load torque of 30 Nm

5.2.3 Evaluation with Fast Trajectories Without a Load Torque

To further evaluate the robust performance of the control structures experimentally,
fast desired trajectories of the controlled variables are introduced as depicted in
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Table 5 Numerical evaluation: maximum absolute errors and RMS errors for the controlled vari-
ables

ωM (rad/s) α̃M

emax eRMS emax eRMS

FBC + NROO 1.0023 0.2989 0.8518 × 10−4 0.2106 × 10−4

SMC + SMO 0.8081 0.1896 0.8436 × 10−4 0.2096 × 10−4

Fig. 19 Comparison regarding the control inputs with a load torque of 30 Nm

Fig. 20. They are characterised by maximum accelerations of ω̇Md = 18.9 rad/s2,
which are much higher than those of the slow trajectory with maximum accelerations
of ω̇Md = 8 rad/s2.

The estimation results for the system disturbances as well as the immeasurable
states are depicted in Figs. 21 and 22, which indicate that both observers provide
accurate estimates. The corresponding tracking errors can be found in Fig. 23. Using
the fast trajectory, the SMC in combination with the SMO leads to a relatively
better tracking of the motor angular velocity ωM and a similar performance for the
normalised bent-axis angle α̃M in comparison with the FBC in combination with the
NROO.

The numerical values for the error measures are stated in Table 6. Figure 24 depicts
the control inputs of both controllers during trajectory tracking.
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Fig. 20 Fast desired trajectories for the controlled variables—the motor angular velocity ωMd (top)
and the normalised motor bent-axis angle α̃Md (bottom)

Fig. 21 Comparison of disturbance estimation results with fast trajectories
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Fig. 22 Comparison of state estimation results with fast trajectories

Fig. 23 Comparison of tracking error results for the controlled variables with fast trajectories
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Table 6 Numerical evaluation: maximum absolute errors and RMS errors for the controlled vari-
ables

ωM (rad/s) α̃M

emax eRMS emax eRMS

FBC + NROO 3.3263 0.9168 0.0027 0.5371 × 10−3

SMC + SMO 2.4796 0.7104 0.0028 0.5512 × 10−3

Fig. 24 Comparison regarding the control inputs with fast trajectories

6 Conclusion

In this contribution, a model-based decentralised control structure is proposed for the
tracking control of a hydrostatic transmission. A control-oriented modelling of the
hydrostatic transmission results in a dynamic system represented by four first-order
differential equations, which is structured in two sub-models for the decentralised
control design. The control structure consists of a flatness-based control of a first-
order model for the normalised bent-axis angle α̃M and a sliding mode control of a
third-order state-space representation for the motor angular velocity ωM . To deal with
the immeasurable states and unknown disturbances, a gain-scheduled sliding mode
observer is designed using extended linearisation techniques. The complete control
structure is thoroughly investigated by means of simulations regarding asymptotic
stability and the estimation quality w.r.t. simulated disturbances. Furthermore, the
control performance is analysed and compared with an alternative reference con-
trol structure—a flatness-based tracking control in combination with a nonlinear
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reduced-order observer. The experimental validation shows clearly that the proposed
sliding mode control combined with a gain-scheduled sliding mode observer outper-
forms the alternative reference solution. By replacing the nonlinear reduced-order
observer with the sliding mode observer, an improved tracking performance is achiev-
able for the flatness-based control as well.
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Sliding Mode Observation with Iterative
Parameter Adaption for Fast-Switching
Solenoid Valves

Tristan Braun and Johannes Reuter

Abstract Control of the armature motion of fast-switching solenoid valves is highly
desired to reduce noise emission and wear of material. For feedback control, infor-
mation of the current position and velocity of the armature are necessary. In mass
production applications, however, position sensors are unavailable due to cost and
fabrication reasons. Thus, position estimation by measuring merely electrical quan-
tities is a key enabler for advanced control, and, hence, for efficient and robust
operation of digital valves in advanced hydraulic applications. The work presented
here addresses the problem of state estimation, i.e., position and velocity of the arma-
ture, by sole use of electrical measurements. The considered devices typically exhibit
nonlinear and very fast dynamics, which makes observer design a challenging task.
In view of the presence of parameter uncertainty and possible modeling inaccuracy,
the robustness properties of sliding mode observation techniques are deployed here.
The focus is on error convergence in the presence of several sources for modeling
uncertainty and inaccuracy. Furthermore, the cyclic operation of switching solenoids
is exploited to iteratively correct a critical parameter by taking into account the norm
of the observation error of past switching cycles of the process. A thorough discus-
sion on real-world experimental results highlights the usefulness of the proposed
state observation approach.

1 Introduction

Switching solenoid valves or digital valves are used in a variety of automotive and
hydraulic applications. In digital hydraulics, where principles from power electron-
ics and digital circuits are transferred to hydraulics in order to increase efficiency
and diminish costs, solenoid valves are employed to operate as digital (on–off)
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fast-switching valves [19, 20]. In digital hydraulic applications, such as the hydraulic
switching converter, digital valves operate in a pulse-width modulated (PWM)mode
to control the volume flow rate of a fluid, comparable with power semiconductors
in DC–DC converters [19]. Control of the spool trajectory of those devices is highly
desired to reduce noise emission and wear of material, or to avoid impacts of the
spool at all via soft-landing control [6, 11]. Motion planning of the spool trajec-
tory regarding shape and travel time requires enhanced feedback-control strategies.
Feed-forward control is unsatisfactory due to nonlinear effects and uncertain para-
meters, and, therefore, infeasible with regard to robustness and precision. For full
state feedback, information of the position and velocity of the spool is necessary.
In mass production applications, position sensors are normally not desired due to
cost and fabrication reasons. Thus, position estimation based on electrical quantities
that are easy to measure is a key enabler for advanced control, and, therefore, robust
operation of digital valves in advanced applications. Solenoids are typically affected
by nonlinear magnetization properties, such as saturation of material and magnetic
hysteresis. In particular, modeling the effect of eddy currents is a key to represent
the systems dynamic correctly. To cope with these effects in a suitable model is a
formidable challenge, particularly if it should be as simple as possible for numeri-
cal efficiency and accessible for methodical observer design. Therefore, robust state
estimation must be achieved in the presence of uncertain parameters such as eddy
current resistance, modeling inaccuracy in electromagnetic characteristics as well as
the influence of possibly unmodeled force terms.

Several approaches are addressed in the literature to solve the state estimation
problem for solenoid valves, which can be divided into parameter estimation and
observer design. In the case of parameter estimation the valve position is typically
retrieved by the estimated position-dependent differential inductance, whereby the
solenoid is excited by a PWM signal [13, 27]. This approach, however, is more
favorable for relatively slow-moving actuators, where the convergence time is less
restrictive. Observer-based position estimation for different kinds of actuators is an
ongoing research activity, see [1], where an electro-pneumatic actuator is investi-
gated. However, observer design for fast-switching solenoid valves, where no addi-
tional sensors are used, instead of voltage and current measurements, can rarely be
found in the literature. In [21], a nonlinear observer based on extended linearization
for an idealized dynamic model is considered; however, merely simulation results
are shown. A sliding mode-based sensorless control scheme is investigated in [9] on
a special-type electromagnetic actuator, based on a sophisticated model. Although
experimental results are presented, poor information regarding the underlying esti-
mation approach is given.

In this work, the problem of robust position estimation for fast-switching valves
is tackled by the design of a sliding mode observer (SMO) for the nonlinear model,
based on an equivalent output injection method (cf. [8, 18]). In this regard, the work
presented in [4, 5] is improved and extended in various ways regarding performance
and validation aspects as well as analysis of error convergence in the presence of
modeling uncertainty and time-varying eddy current resistance.
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The type of digital spool valve considered here consists of two symmetric coils,
which are designed to control the spool by alternately energizing the coils for desired
acceleration and deceleration of the spool. A cut of the considered dual-coil solenoid
valve is depicted in Fig. 1. Since coils are alternately energized, it is beneficial to
exploit the information of the spool velocity and position from the induced voltage
in the non-energized coil.1

This contribution is structured as follows. The dynamic model of the solenoid
valve is addressed in Sect. 2. In this respect, in Sect. 2.1, the electromagnetic subsys-
tem is examined, and it is shown how the look-up tables for the magnetic charac-
teristics can be obtained by a nonlinear reluctance network. Furthermore, a detailed
time-varying model of the eddy current resistance is discussed in Sect. 2.2, which
yields better estimation results compared to a constant parameter. The mechanical
subsystem is briefly derived in Sect. 2.3. The corresponding observer-oriented model
approach is pointed out in Sect. 2.4, where the system equations are constituted and
system variables together with the observer output are defined. Some useful remarks
conclude this section. The nonlinear SMO approach is discussed in Sect. 3. The error
convergence in the presence of several sources of modeling uncertainty and inac-
curacy in the system equations as well as in the output equation are presented in
Sect. 3.1. It is shown in practical lab-bench experiments in Sect. 4 that the nonlinear
observer works robustly and achieves satisfying estimation results for both velocity
and position. Furthermore, in addition to the nonlinear SMO, the case of long-term
variation of the eddy current resistance is examined, which might occur due to tem-
perature variations in the material of the solenoid. To this end, in Sect. 5, an iterative
parameter correction scheme is proposed, whereby the periodic operation of the
digital valve is exploited.

2 Dynamic Model of a Fast-Switching
Dual-Coil Solenoid Valve

The dynamics of a solenoid valve are typically nonlinear. On the one hand, this
is due to saturation effects of the material, which is described by the magnetiza-
tion curve, and on the other hand, due to the Maxwell force being approximately
inversely proportional to the square of the air gap. Another effect that plays a cru-
cial role in modeling involves eddy currents that depend on the variation rate of the
energizing current, and the velocity of the spool, crossing magnetic field lines. Mag-
netic hysteresis can approximately be neglected since switching valves are in on–off
operation and the spool passes through the whole air gap. The model is divided into
two dependent subsystems, the electromagnetic system and the mechanical system,
which account for the spool dynamics. The electromagnetic subsystem is described
by the induced voltage [16]

1It should be noticed that standard solenoid valves with a single coil can be considered, too.
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Vi = Vdrv − Rcu i = dΨ (i, z)

dt
(1)

= ∂Ψ (i, z)

∂i
i̇ + ∂Ψ (i, z)

∂z
ż, (2)

with the current i, the driving voltage Vdrv, the copper resistance Rcu, the position z,
and the flux linkage Ψ (i, z). The partial derivatives are written as Ld(i, z) :=
∂Ψ (i, z)/∂i and Li(i, z) := ∂Ψ (i, z)/∂z, where Ld(·) is the differential inductance
and Li(·) is the incremental inductance. The latter is of particular interest in fast-
switching applications. The mechanical model can be derived by Newton’s second
law of motion, i.e.,

m v̇ =
∑
k

fk, (3)

with the lumped massm of the spool, the velocity v, and the force components fk that
consist of a magnetic force term, in the following denoted as F(i, z), plus friction
and contact force terms. Both subsystems are elaborated in the following in view of
an observer-oriented model.

2.1 Magnetic Characteristics

The characteristics Ld(i, z), Li(i, z) and the magnetic force F(i, z) can be obtained by
the magnetic flux Φ(i, z) = Ψ (i, z)/N , with N being the number of turns of the coil.
A common way is to create the look-up tables by rather tedious measurements. In
contrast, a model-based approach using just the magnetization curve of the material
is proposed here. The characteristic of the magnetic flux Φ(i, z) is determined by a
magnetic reluctance network (cf. [12, 25]). In Fig. 1, a sketch with dimensions of the
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Fig. 1 Sketch of the dual-coil solenoid valve
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Fig. 2 Magnetic circuit of
the dual-coil solenoid valve
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considered dual-coil solenoid valve is depicted. The corresponding magnetic circuit
is shown in Fig. 2 (cf. [25]). Here, R denotes the magnetic reluctance that can be
calculated using the geometry of the actuator and the permeability μ(Φ) by

R(Φ) = lm
Am μ(Φ)

, (4)

with the length lm and the cross-sectional area Am of the considered geometry [16].
Each reluctanceR corresponds to a certain areawith associated dimensions respective
to the magnetic flux path (A-B-C-D-A), as sketched in Fig. 1. Therefore, Rsp(μ(Φ)),
Rair(z), and RFe(μ(Φ)) correspond to the spool, the air gap, and the ferromagnetic
material, respectively. To obtain an equation for the flux Φ(·), the magnetic network
is set up by applying Hopkinson’s law

θ = RΦ = Ni, (5)

with the magnetomotive force θ . For nonlinear networks, the superposition law does
not hold. Thus, the network equations have to be solved numerically, which allows
for a consideration of magnetic properties like the nonlinear magnetization curve
and the flux-dependent permeability. Deploying a balance equation, the fluxes Φ1

and Φ2 can be obtained by

Φ1(i, z) = argmin
Φ1

[
(Φ1 − Φenc)RFe2(Φ2) + (Φ1 − Φenc)Rair2(z)

+ (Φ1 − Φenc)
1

2
Rsp(Φ2)

]2

+
[
N I1 − Φ1

(
RFe1(Φ1) + Rair1(z) + 1

2
Rsp(Φ1)

)]2
, (6)

with N I1 = θ2. The corresponding look-up tables for the characteristics Ld(i, z) and
Li(i, z) are obtained with Ψ (i, z) = N Φ(i, z) by computing the partial derivatives
as defined in (2), and the magnetic force by
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Fig. 3 Differential inductivity Ld(i, z) (a) and derivative of the flux linkage w.r.t. position Li(i, z)
(b) dependent on the current i and the position z

Fig. 4 Magnetic force
characteristic F(i, z)
dependent on the current i
and the position z
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F(i, z) = ∂

∂z

∫ i

0
Ψ (ι, z)dι. (7)

The results for Ld(i, z), Li(i, z), and F(i, z) are shown in Figs. 3a, b, and 4, respec-
tively.

2.2 Eddy Current Resistance

The effect of eddy currents ied can be described by including a lumped eddy current
resistance Red in parallel to the induced voltage Vi that yields the simple dependency
[16, 24]

ied = 1

Red

d

dt
Ψ (i, z) = Vi

Red
. (8)
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Fig. 5 Electrical equivalent
circuit of a solenoid with
eddy current resistance for
the non-energized coil

Ld(i,z)

∂Ψ(i,z)
∂z ż

i ≡ 0 ied

RedVi

Figure5 shows the equivalent circuit of the solenoid with eddy current resistance for
the non-energized case, i.e., merely the induced voltage Vi is present, and the copper
resistance Rcu can be neglected.

A relationship of Red for radially symmetric electromagnets is given by [16] as

Red = N2 led
σ Aed

, (9)

where σ is the electrical conductivity of iron, Aed is the effective eddy current area,
and led is the effective path of angular eddy current density N ied/Aed. Instead of
assuming a constant Red, it might be more realistic to express the effective eddy
current area Aed dependent on the spool position. In Fig. 6, the position-dependent
eddy current area Aed is depicted. Therefore, a possible expression for Aed is

Aed(z) = r (h + z0 − z), (10)

Fig. 6 Effective
cross-sectional area
dependent on the air gap

Φ

led
Aed

Spool

Cylinder
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where r is the radius of the spool and cylinder, h is the length of the cylinder, and z0
is the maximum air gap. With led = 2π r2, it follows that

Red(z) = N2 2π

σ (h + z0 − z)
. (11)

2.3 Mechanical Subsystem

Here, a simplifiedmodel of the spoolmotion is considered. Themagnetic forceF(i, z)
attracts the spool, which is stopped by the end-caps if the motion is uncontrolled.
Therefore, the limit stops might be modeled by an elastic impact model with the
contact force

Fc(z, v) = 1

2
(1 − sign(z))(cs z + cd v), (12)

with the position z, the velocity v, and constants cs and cd.2 Friction is taken into
account by a viscous friction term cμ v, with constant coefficient cμ. Taking into
account (3), the state-space model which describes the spool motion yields

ż = v, z(0) = z0 (13)

v̇ = − 1

m
F(z, i) − cμ

m
v − 1

m
Fc(z, v), v(0) = 0. (14)

The force Fc(z, v) solely affects the dynamics at the end of a trajectory, i.e., if the
spool motion starts at z = z0, then, at z = 0, bounces of the spool occur until it
returns to the idle state.

2.4 Observer-Oriented Model

The observer-oriented model results from the previous derivations, whereby the key
point is to define a suitable system output. Since the induced voltage Vi of the non-
energized coil contains information regarding the spool dynamics, it is exploited for
the observer model. This is advantageous since it is not perturbed by the energizing
current i and, therefore, the typically temperature-dependent copper resistance is not
needed to be taken into account when measuring the induced voltage. Therefore, in
the following, Vi is defined as the system output y := Vi. Considering the equivalent
circuit in Fig. 5, the induced voltage can be described by

Red(z) ied = −Ld(ied, z) i̇ed − Li(ied, z)ż, (15)

2Compare with [11], where a more sophisticated contact force model is used in this context.
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and the resulting nonlinear state equation for the electromagnetic subsystem, with
the state ied =: x1, the position z =: x2, and the velocity v =: x3 yields

ẋ1 = − Red(x2)

Ld(x1, x2)
x1 − Li(x1, x2)

Ld(x1, x2)
x3. (16)

Then, with (13)–(14), it can be obtained the dynamic system of the dual-coil solenoid
valve, with the input u := i

ẋ1 = − Red(x2)

Ld(x1, x2)
x1 − Li(x1, x2)

Ld(x1, x2)
x3, x1(0) = 0 (17)

ẋ2 = x3, x2(0) = z0 (18)

ẋ3 = − 1

m
F(x2, u) − cμ

m
x3 − 1

m
Fc(x2, x3), x3(0) = 0 (19)

y = [Red(x2), 0, 0] x,

or abbreviated as

ẋ = f(x, u), x(0) = x0 (20)

y = cT (x2) x. (21)

In this model, since the square of the current is proportional to the magnetic force,
the energizing current is used as the input, directly governing the attracting force
F(x2, u) without considering the electrodynamics. Therefore, the system order of
the attracting coil is reduced by one.

Before moving on to the observer design and convergence analysis, this section
concludes with some remarks that would be useful for the following.

Remark 1 All initial states of the real system are always known, which is derived
from practical considerations of digital valve applications. That is, where initially
the valve is either opened or closed, the armature is at rest and, thus, no eddy current
is flowing. Therefore, the major task of the state observer is to be robust against
modeling and parameter uncertainty. The observer might be considered as a (robust)
simulator [30].

Remark 2 Obviously, all states are bounded, and, therefore, ‖x‖∞ < d+ holds.
The considered bounded domain of the state space is denoted as D ⊆ R

3, whereby
D := {x ∈ R

3 : ai ≤ xi ≤ bi, i = 1, . . . , 3}, for some constants ai, bi.

Remark 3 All parameters and characteristics are bounded and the following prop-
erties hold: Ld(x1, x2) > 0, Li(x1, x2) < 0, F(i, x2) ≥ 0, Red(x2) > 0 ∀ x ∈ D, and
cμ > 0.

Remark 4 The system is locally observable, as discussed in [4].
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3 Sliding Mode Observer Design and Analysis
of Error Convergence

Due to an uncertainty in the parameter Red(·) and expectable inaccuracy in the mag-
netic characteristics Ld(·), Li(·), andF(·), a robust observer design is demanded. The
switching time of digital valves is normally smaller than 5ms; therefore, a fast and
finite time convergence of the estimated states to the real states has to be assured.
An SMO design seems promising due to its robustness against matched uncertainty
and model inaccuracy, as well as its fast convergence time [26, 28]. Other possible
observer approaches in this context,which are based on extended linearization, can be
found in [5]. There, it is discussed that these observers fail in practical experiments
due to poor numerical efficiency and robustness. Also, the extended Luenberger
observer in [21] fails in real-life experiments due to a lack of robustness.

In the sequel, first, the principle of the SMO approach for the system under
consideration is pointed out, assuming well-determined system dynamics. Then,
error convergence in the presence of modeling uncertainty is studied. The nonlinear
SMO is formulated as

˙̂x = f(x̂, u) + K sign(e), x̂(0) = x0, e(0) = 0 (22)

ŷ = cT (x̂2) x̂, (23)

with the observer error e := x−x̂, the observer gainmatrixK := diag ([k1, 0, k3]), the
discontinuous observer injections sign(e) := [

sign(e1), 0, sign(e3eq)
]T
, c(x̂2) =

[Red(x̂2), 0, 0], and the sign function

sign(ei) =
{

1, ei > 0,
−1, ei < 0, i = 1, 3.

(24)

The value e3eq is the equivalent value [8, 15] for the error e3 that can be obtained
by the collapsed dynamics [26] of the electrodynamic equation that is demonstrated
below. An equivalent value for the error e2 cannot be obtained, which is why the
corresponding injection is dropped. Indeed, an observer injection for the second
system equation is not needed, as it will be shown in the following.

Remark 5 Due to the purpose of trajectory observation, solely the states before
reaching the limit stops, i.e., the states of the set {x ∈ D : 0 < x2 ≤ z0}, are of
interest, where Fc(x2, x3) can assumed to be zero. Hence, for the sake of simplicity,
it is reasonable to neglect Fc(x2, x3) in (20) as well as in (22) for the observer design
and error analysis.

Then, the error dynamics of (22) yield
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ė1 = − Red(x̂2)

Ld(x̂1, x̂2)
e1 − Li(x̂1, x̂2)

Ld(x̂1, x̂2)
e3 + 	f1(e1, e2) − k1 sign(e1) (25)

ė2 = e3 (26)

ė3 = −ΔF(e2)

m
− cμ

m
e3 − k3 sign(e3), (27)

where, for the moment, fully determined dynamics are assumed, i.e., disturbances
	f1(·) and 	F(·), arising due to observation errors, can be considered as vanishing
perturbations. Then, e = 0 is an equilibrium point of (25)–(27). Furthermore, at this
step, possible additive disturbances in the arguments of the observer injections are
neglected, i.e., sign(y − ŷ) = sign(Red(·) e1) = sign(e1).

Remark 6 Since the error-dynamic system (25)–(27) is discontinuous at points
where e1 = 0 or e3 = 0, all solutions e should be understood in the sense of
Filippov [10]. In the considerations here, it is not necessary to go into detail with the
properties of Filippov regularization and associated differential inclusions; refer to
[7, 10, 22] for greater details and basic definitions.

The sliding variable for the electromagnetic subsystem is defined as e1. Hence, the
reaching condition e1ė1 ≤ 0 can be proved by the Lyapunov function V1(e1) =
1/2 e21. It follows for the derivative w.r.t. time

V̇1(e1) = e1ė1 = − Red

Ld(x̂1, x̂2)
e21 − Li(ê1, x̂2)

Ld(x̂1, x̂2)
e1e3 + 	f1(e1, e2)e1 − k1 |e1| (28)

≤
(∥∥∥∥

Li(x̂1, x̂2)

Ld(x̂1, x̂2)

∥∥∥∥∞
‖e3‖∞ + ‖	f1(e1, e2)‖∞ − k1

)
|e1| (29)

≤ −ν1 |e1|, (30)

for k1 = ∥∥Li(·)
/
Ld(·)

∥∥∞ ‖e3‖∞ + ‖	f1(·)‖∞ + ν1, ν1 > 0. Taking into account the
comparison principle [17], a finite reaching time

tr1 ≤ 2|e1(0)|
ν1

(31)

can be obtained. Since e1(0) = 0, convergence of e1, and, therefore, sliding occurs
immediately.Now, consider Eq. (25)with regard to the sliding condition ė1 = e1 = 0.
Then, the collapsed dynamics of the electromagnetic subsystem yields

0 = − Li(x̂1, x̂2)

Ld(x̂1, x̂2)
e3 + 	f1(0, e2) − k1 sign(e1). (32)

Due to the matching condition [26], the equivalent output injection,3 for small errors
e2, is given by

3Regarding equivalent output injection, compare [8], and see [18] for an application-driven design.
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(
k1 sign(y − ŷ)

)
eq ≈ − Li(x̂1, x̂2)

Ld(x̂1, x̂2)
e3, (33)

and one can obtain the equivalent value for the error e3 as

e3eq ≈ −Ld(x̂1, x̂2)

Li(x̂1, x̂2)
(k1 sign(e1))eq . (34)

This value can be used for the observer injection of the last system equation. Hence,
it is possible to define e3 as the sliding variable for (27). Taking V3(e3) = 1/2 e23 as
a Lyapunov function yields for the gradient along the trajectories e3

V̇3(e3) = e3ė3 = −	F(e2)

m
e3 − cμ

m
e23 − k3 |e3| (35)

≤
(∥∥∥∥

	F(e2)

m

∥∥∥∥∞
− k3

)
|e3| (36)

≤ −ν3|e3|, (37)

with k3 = ‖	F(e2)/m‖∞ +ν3, ν3 > 0. Therefore, a sliding motion on e3 = 0 occurs
immediately since e3(0) = 0, and since the finite reaching time can be calculated by

tr3 ≤ 2|e3(0)|
ν3

. (38)

Remark 7 It is worth noting that the sliding conditions are also fulfilled for bounded
disturbances of the dynamics since merely gains k1, k3 must be chosen large enough
[26]. However, disturbances that are too high principally corrupt the equivalent value
of e3; therefore, they will influence the position error e2 as well. The effect of distur-
bances is examined in the next section separately.

While e1 and e3 are in a sliding mode, the position error e2 is stable inside a positive-
invariant set {e2 : |	F(e2)/m| < k3, e3 = 0}, containing the zero-equilibrium point
of the error system. This can be obtained with a generalized Krasovskii–LaSalle
Theorem [3] by considering the discontinuity surfaces of the mechanical subsystem
(27) when the error system in e1 (25) is collapsed. The reader is directed to [3, 22]
for further details.

3.1 Analysis of Error Convergence in the Presence
of Modeling Uncertainty

The robustness of the observation error of the SMO (22) regarding the system
dynamics (20) in the presence of both uncertainty of the modeled characteristics
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Ld(·), Li(·), F(·) and of the observer injections is now examined. Errors in the
argument of the observer injections may arise, on the one hand, due to the eddy
current resistance Red(x2), which is contained in the output equation y = cT (x2) x
and is not exactly known. On the other hand, this leads to an inaccuracy in the argu-
ment of the equivalent output injection term sign(e3eq). It will be shown that the
reaching condition in the case of bounded disturbances of the output equation and
the system dynamics still holds for a uniform bound of the estimation error, which
can be diminished with increasing observer gains. Principally, the error of SMOs
in the presence of output noise effects is still bounded; however, it depends on the
bound of the output noise or disturbance. This is shown, e.g., for stochastic output
noise effects in [2], and for both stochastic and deterministic output disturbances
in [23, 29]. Here, solely deterministic output disturbances will be considered. The
error in the argument of the first switching term sign(y − ŷ), i.e., the error of the
measurement vector, will be written as

y − ŷ = cT x − ĉT x̂ = R̂ed(x̂2) e1 + 	Red(x2, x̂2) x1, (39)

where the disturbance term 	Red(x2, x̂2) x1 is nonvanishing. The equivalent value
e3eq in the case of modeling uncertainty will be defined as

e3eq = e3 + 	e3eq, (40)

which is also nonvanishing since the value is affected by modeling uncertainty in
the electromagnetic subsystem due to (33). Consequently, the output injection error
vector yields

ξ = [ξ1, 0, ξ3]
T := [	Red(·) x1, 0, 	e3eq

]T
. (41)

Then, the error dynamics with modeling errors 	f(x, x̂) = f(x) − f̂(x̂) is rewritten
in detail as

ė1 = − R̂ed(x̂2)

L̂d(x̂1, x̂2)
e1 − L̂i(x̂1, x̂2)

L̂d(x̂1, x̂2)
e3

+ 	f1(x, x̂) − k1 sign
(
R̂ed(x̂2) e1 + ξ1

)
(42)

ė2 = e3 (43)

ė3 = 	f3(x, x̂) − ĉμ

m
e3 − k3 sign(e3 + ξ3), (44)

where the ˆ above the modeled characteristics and the parameters indicates that they
are not exactly known.

Now, the following assumptions are made:

Assumption 1 Modeling errors, respectively disturbances due to structured uncer-
tainty in the system dynamics, are bounded, i.e.,
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‖	fi(x, x̂)‖∞ < 	f +
i < ∞, i = 1, 3. (45)

Assumption 2 Disturbances due to structured uncertainty in the arguments of the
observer injections are bounded, i.e.,

‖ξi‖∞ < ξ+
i < ∞, i = 1, 3. (46)

Remark 8 These assumptions are underpinned since the states and characteristics
are bounded.

Theorem 1 Provided that Assumptions 1–2 hold, the errors e1 and e3 of the uncer-
tain system (42)–(44) are uniformly bounded by

|ei| ≤ |ei|+ :=
√(

νi√
2 αi

)2

+ 2δi(νi)

αi
− νi√

2αi

, i = 1, 3, (47)

with constants αi > 0 and νi, δi ≥ 0. The bounds |ei|+ are decreasing for increasing
values νi, representing observer gains, whereby

lim
ν1→∞ |e1|+ = 2 ξ+

1

/
R̂ed min, (48)

lim
ν3→∞ |e3|+ = 2 ξ+

3 . (49)

Remark 9 Due to (9) and (10), the smallest value of R̂ed(x̂2) can be indicated for
x̂2 = 0, i.e., R̂ed min := R̂ed(0), and here R̂ed(0) > 1Ω .

Proof The reaching conditions are examined as before with the Lyapunov function
V1(e1) = 1/2 e21 for e1 and V3(e3) = 1/2 e23 for e3. For the error e1, it follows
with (42)

V̇1(e1) = − R̂ed(x̂2)

L̂d(x̂1, x̂2)
e21 − L̂i(x̂1, x̂2)

L̂d(x̂1, x̂2)
e1e3 + 	f1(x, x̂) e1 (50)

−k̃1R̂ed(x̂2) e1 sign
(
R̂ed(x̂2) e1 + ξ1

)
, (51)

where k1 = k̃1R̂ed(x̂2). Using the identity

x sign(x + z) = (x + z) sign(x + z) − z sign(x + z) (52)

= |x + z| − z sign(x + z), (53)

and the fact that |x + z| ≥ |x| − |z|, the following inequality can be obtained4

x sign(x + z) ≥ |x| − |z| − z sign(x + z) ≥ |x| − 2 |z|. (54)

4This is a scalar representation of the vector-valued identity in [23].
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This leads to

V̇1(e1) ≤ − R̂ed(x̂2)

L̂d(x̂1, x̂2)
e21 +

∣∣∣∣∣
L̂i(x̂1, x̂2)

L̂d(x̂1, x̂2)

∣∣∣∣∣ |e1| |e3| + ∣∣	f1(x, x̂)
∣∣ |e1| (55)

−k̃1R̂ed min |e1| + 2 k̃1 ξ1 (56)

≤ −α1 V1 − ν1
√
V1 + δ1(ν1), (57)

where

k̃1 =
(∥∥∥L̂i(·)/L̂d(·)

∥∥∥∞
‖e3‖∞ + 	f +

1 + ν1/
√
2
)/

R̂ed min (58)

=
(
k1min + ν1/

√
2
)/

R̂ed min, ν1 ≥ 0, (59)

δ1(ν1) := 2 k̃1(ν1) ξ+
1 = 2 ξ+

1 k1min
/
R̂ed min + √

2 ξ+
1 ν1

/
R̂ed min = const, (60)

α1 := R̂ed min/‖L̂d(·)‖∞ > 0. (61)

Remark 10 The value k1min denotes the minimal needed observer gain to bound
the observation error e1 in the case of modeling uncertainty 	f1(·) in the system
equations.

It follows for the equilibrium Ṽ∗
1 of

˙̃V1(e1) = −α1 Ṽ1 − ν1

√
Ṽ1 + δ1(ν1), (62)

that

Ṽ∗
1 =

⎛
⎝
√(

ν1

2α1

)2

+ δ1(ν1)

α1
− ν1

2α1

⎞
⎠

2

, (63)

which involves that V̇ = e1 ė1 is negative for

|e1| >

√(
ν1√
2 α1

)2

+ 2δ1(ν1)

α1
− ν1√

2α1

. (64)

Hence, it can be concluded that e1 is uniformly bounded [17, 29]. Similar assertions
can be made for the error e3 with V3(e3) = 1/2 e23. It follows with (44)

V̇3(e3) = − ĉμ

m
e23 + 	f3(x, x̂) e3 − k3 e3 sign (e3 + ξ3) (65)

≤ − ĉμ

m
e23 + 	f +

3 |e3| − k3 |e3| + 2 k3 ξ3 (66)

≤ −α3 V3 − ν3
√
V3 + δ3(ν3), (67)
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where

k3 = 	f +
3 + ν3/

√
2 = k3min + ν3/

√
2, ν3 ≥ 0, (68)

δ3(ν3) := 2 k3(ν1)ξ
+
3 = 2 ξ+

3 k3min + √
2 ξ+

3 ν3 = const, (69)

α3 := ĉμ/m > 0. (70)

As above, ∇V3 ė3 is found to be negative for

|e3| >

√(
ν3√
2 α3

)2

+ 2δ3(ν3)

α3
− ν3√

2α3

, (71)

which explains the uniform boundedness of e3. Now, the limit of |ei|+ for increasing
values νi is considered. Rewriting (47) as

|ei|+ = 1√
2αi

1
νi

⎛
⎜⎝

√√√√1 +
(√

2 αi

νi

)2
2δi(νi)

αi
− 1

⎞
⎟⎠ , (72)

and inserting (69) for i = 3 yields5

|e3|+ = 1√
2α3

1
ν3

⎛
⎝
√
1 + 8 k3minξ

+
3 α3

ν2
3

+ 4
√
2ξ+

3 α3

ν3
− 1

⎞
⎠ . (73)

Since the evaluation of (73) for ν3 → ∞ leads to an undefined expression of the form
0/0, l’Hôpital’s rule is applied. Independent differentiation of both the numerator
denoted by N(ν3) and the denominator denoted by D(ν3) w.r.t. ν3 leads to

N(ν3)
′

D(ν3)′
:=

(
8 k3min ξ+

3√
2 ν3

+ 2 ξ+
3

)
√
1 + 8 k3minξ

+
3 α3

ν2
3

+ 4
√
2ξ+

3 α3

ν3

, (74)

whereby, limν3→∞ N(ν3)
′/D(ν3)

′ = 2ξ+
3 . Similar calculations can be done for i = 1

with (60). Therefore, it can be stated that the limits of |e1| and |e3| yield

lim
ν1→∞ |e1|+ = 2 ξ+

1

/
R̂ed min, (75)

lim
ν3→∞ |e3|+ = 2 ξ+

3 . (76)

This completes the proof. �

5Calculation steps are shown for i = 3 due to a more compact notation.
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Fig. 7 Error bounds in the presence of modeling uncertainty dependent on the observer gains νi
and the bounds of the output disturbances ξ+

i

Remark 11 If the modeling errors 	fi(·) are small, then smaller values of νi lead
to smaller bounds |ei|+ < 2 ξ+

i . This would be the case for a parameter relation
αi ≥ 2ξ+

i kimin.

Remark 12 The errors e1 and e3 are also (uniformly) ultimately bounded (cf. [14,
17]), which can already be concluded by the steps above. This is not shown in detail,
since the initial errors are zero and, thus, (uniform) boundedness is sufficient here.

Remark 13 Since the states are solely observed in a small finite time interval T � 1
the maximal error e2 can be estimated by

‖e2‖∞ =
∥∥∥∥
∫ T

0
e3dt

∥∥∥∥∞
≤
∫ T

0
‖e3‖∞ dt = T‖e3‖∞. (77)

In Fig. 7, the error bounds |ei| dependent on the observer gains νi and the output
disturbances ξ+

i are depicted. The bounds |ei| clearly diminish for increasing observer
gains νi. It should be noted that the worst-case bounds of disturbances of the system
equations are considered, i.e., Δf +

i = 2‖fi(·)‖∞. The stability analysis exhibits that
the errors are still bounded in the presence of inaccuracy in the system equations
and the output equation, and a selection of higher observer gains will lead to better
estimation results. Since the limit of |ei|+ depends on errors in the output equations,
the use of a precise model of Red(x2) is mandatory, and an adaption of this parameter
is motivated.

4 Experimental Results

Experiments have been performed on a rapid prototyping environment. For validation
of the state estimates, a high-precision optical position sensor is used. Figure8 shows
the experimental setup with the dual-coil solenoid valve and an optical position
sensor.
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Measurement lug attached to the spool

Solenoid
actuator

Position sensor

Fig. 8 Dual-coil solenoid valve mock-up with optical position sensor
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4.1 Position and Velocity Observation Results

Observation results are presented for the uncontrolled case. That is, one coil is ener-
gized so that the spool is attracted, and at the same time the induced voltage is
measured at the non-energized coil, which provides the injection for the observer
system. The sample time of the SMO model is 20µs, and a fixed-step size solver
with third-order Runge–Kutta method is used. In Fig. 9a, experimental results for
the position observation are shown. The observed trajectory (black-dashed) matches
accurately themeasured trajectory (gray) in spite ofmodel and parameter uncertainty.
The moment of impact, at approximately t = 3ms, is also estimated correctly. The
whole flight time is less than 2ms. It should be mentioned that the estimation error
after the first hit, i.e., during the bouncing phase, is not of interest. The observer gains
k1 and k3 are chosen as 16×103 and 17×103, respectively. Experimental results for
the velocity observation are shown in Fig. 9b. The observed signal v̂ (light gray) is
obviously in a sliding motion; however, its chattering is rather strong, due to the high
values of the observer gains. This is compared to its low-pass filtered (LPF) value
(black-dashed) as well as to the differential quotient of the low-pass filtered mea-
sured trajectory z (gray). Although strong chattering is present, the filtered observed
velocity signal is rather smooth up to the point where the spool hits the end-cap.
The step-like gradations in the velocity signal are typical in the case of modeling
inaccuracy. They become notable due to the large gains. The same can be observed
in Fig. 10a, where the actual output, i.e., induced voltage Vi (dashed), and the corre-
sponding observer signal V̂i = R̂ed îed are shown. In Fig. 10b, the according error is
depicted. The observed signal is in a sliding motion, while the step-like chattering
shape can be ascribed to modeling inaccuracy. In the sequel, repeatability is demon-
strated and the effect of different models of the eddy current resistance Red(·) is illus-
trated. The constant observer gains have the same values as used for the experiments
above. In Fig. 11a, a histogram of absolute maximum position estimation errors of 75
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Fig. 11 Histogram of absolute maximum errors of consecutive switching cycles with Red ≡ const
(a), and with position-dependent eddy current resistance Red(z) (b)
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consecutive switching cycles is shown, with a constant modeled eddy current resis-
tance Red. The average observation error is approximately 5%. Figure11b depicts
another histogram of absolute maximum position estimation errors of 75 consecutive
switching cycles, but with a non-constant modeled eddy current resistance Red(z).
The position observations are considerably improved and the average observation
error is smaller than 2%.

It should be mentioned that the few outliers in Fig. 11a, b are ascribed to changing
magnetization levels, occurring after each switching cycle, which are not regarded
in the model. The fact that, in each switching operation with the position-dependent
eddy current resistance, the position is estimated with an acceptable magnitude of
estimation errors underlines the robustness of the observer.

5 Iterative Parameter Correction—An Experimental
Approach

The previous results have shown robust and repeatable behavior of the SMO in real-
life experiments. Now, the case of disturbances caused by a variation of the parameter
Red(x2) during long-term operation is examined. It is recalled that the eddy current
resistance depends on the conductivity σ of iron, sinceRed(x2) = N2 led/(σ Aed(x2)).
For the long-term case, a temperature dependency for the conductivity of iron is
considered. This is expressed as Red(x2, σ (T)) = θ(T)Red(x2), with an unknown
parameter θ that reflects a change in temperature. Due to the cyclic operation of
the solenoid, the parameter θ might be adapted dependent on the past measurement
errors y− ŷ. At first glance, extracting the information of the low-pass filtered value
of the switching term for parameter identification seems promising; however, this
fails when both parameter uncertainty and modeling inaccuracy are present [26].
Therefore, another approach is addressed that takes into account the behavior of the
switching term in the presence of time-varying uncertain arguments, i.e.,

sign(y − ŷ) = sign(y − θ R̂ed(x̂2) x̂1). (78)

Since R̂ed(x̂2) weights the chattering state x̂1, chattering of the residuum ey = y −
θ R̂ed(x̂2) x̂1 is also considerably influenced. In the following, K error-signal samples
over an entire switching cycle are collected in a vector ey, with the vector norm

‖ey‖ =
√√√√ K∑

k=1

ey(k)2. (79)

Ensuing from a proper operation, a greater weight θ will cause an increased error
norm ‖ey‖, whereas a smaller gain will cause a decreased error norm ‖ey‖ due to
increased or decreased chattering amplitudes, respectively. This is motivated by the
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observations of practical experiments and can be verifiedwith numerical simulations.
Thus, it can be defined the dead-zone function

DZ(‖ey‖) =
⎧⎨
⎩

−1, ‖ey‖ > UB,

0, LB ≤ ‖ey‖ ≤ UB,

1, ‖ey‖ < LB,

(80)

where LB and UB are the lower and upper bounds of ‖ey‖, respectively. Hence, the
empirical update law

θk = θk−1 + γ · DZ(‖ey‖), (81)

where γ > 0 indicates the size of the correction step, can be determined. In the
following, practical experiments are shown for a correction of a deviated eddy current
resistance. The experiments were conducted online together with the SMO in the
same test environment as described above. In a nominal operation, the value of θ is
equal to one. In Fig. 12a, consecutive and converging position estimates are shown
where a greater value of Red is pretended, i.e., weighted by θ > 1. Due to a smaller
value îed, a slower velocity v̂ is assumed by the observer; hence, it leads to a lag in the
position estimate ẑ. The first and last actual position trajectories are plotted for better
correspondence (black-dotted). The differences occur due to different magnetization
levels of the solenoid. Figure12b depicts the convergence of the parameter θ to its
nominal value with the update law (81), where a γ = 0.15 is selected. Appropriate
upper and lower bounds are obtained empirically. The position estimation error tends
proportionally to its minimum values, and remains there.
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6 Conclusion and Future Work

A nonlinear SMO approach for state observation of fast-switching solenoid valves
has been presented. Solely the measured induced voltage of the non-energized coil
is necessary to provide robust estimates of both position and velocity. It has been
shown by a Lyapunov stability analysis that the observation errors are uniformly
bounded dependent on the bounds of deterministic disturbances, arising due to an
uncertainty of the dynamic observer model and an uncertainty in the measurement
output. The robust performance of the proposed SMO has been demonstrated in
real-world experiments, where the estimates of position trajectories are validated
by a high-precision optical position sensor. This is, on the one hand, shown by the
fact that the proposed observer provides repeatedly satisfying position estimates for
consecutive switching operations. On the other hand, the case of robust long-term
performance has also been investigated. Since the eddy current resistance might
change dependent on the temperature of the iron, it is reasonable in this case to correct
its value dependent on the observer residuum. Therefore, the cyclic operation of the
solenoid valve has been exploited and an empirical iterative update lawwas found that
is able to correct slow or long-term variations of that critical parameter. Experimental
results were provided to verify that approach. In further research, the nonlinear
SMO will be combined with a feedback-control scheme to accomplish sensorless
soft landing of the moving spool. Therefore, the SMO will be combined with a
flatness-based approach [6]. Moreover, the application of the proposed approach
for other types of solenoid valves, particularly for standard (single coil) valves,
will be investigated further. Furthermore, the influence of combined disturbance
observers regarding the performance of the equivalent output injection method will
be investigated as well.
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Sliding Mode Observer for Fault Diagnosis:
LPV and Takagi–Sugeno Model Approaches

Horst Schulte and Florian Pöschke

Abstract This chapter investigates recently proposed fault reconstruction methods
by sliding mode observers defined by two different model classes: linear parameter
varying andTakagi–Sugenomodels. Bothmodel classes are used to design the sliding
mode observers. They may be considered as a polytopic extension of the canonical
form restricted to uncertain linear time-invariant systems originally introduced by
Edwards and Spurgeon. This approach is best suited for plants which can be thought
of as predominantly linear in the characteristics or for nonlinear plants which can
be modelled well (at least locally) by linear approximations. For highly nonlinear
plants which are operated in a large operating range, a structure restricted to uncer-
tain linear time-invariant systems is not ideal, as the sliding term would then have to
capture both: the nonlinear plant dynamics and the influence of the faults. The chap-
ter describes the observer design for linear parameter varying and Takagi–Sugeno
models, which are illustrated by the means of the inverted pendulum and the wind
turbine benchmark from the literature. Simulation results are shown to demonstrate
the capability of the designed observers.

1 Introduction

In the last decades there has been an explosion of interest in sliding mode observers
(SMOs) for fault detection and isolation (FDI), reconstruction and fault tolerant
control (FTC). The sliding mode concept based on variable structure control algo-
rithms can be used for controllers and observers. It includes a nonlinear switching
term, which establishes and maintains a motion on a so-called sliding surface, where
reduced-order dynamics compared to the normal system appears [25, 26].

For observers the sliding motion on the error between the output of the observer
and the measured plant output ensures that a SMO produces a set of estimated states,
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which are precisely correspondingwith the current output of the plant. To achieve and
maintain the sliding mode an injection signal has to be applied. The average value of
this signal, the so-called equivalent injection signal, can be evaluated to yield direct
fault estimates, because it contains useful information about the mismatch between
the control-oriented model used to define the observer and the actual plant. The
fault estimates or rather the reconstruction of the faults can be exploited for fault
tolerant control in the sense that sensor and actuator faults are corrected before the
measurements are used for the controller or rather the control signal acts on the plant.

Originally, the sliding mode method is based on linear time-invariant (LTI) sys-
tems with unknown but bounded terms [4]. An important extension to the sliding
mode observer concept is to introduce a convex combination of LTI systems. The
combination can be parameter varying and/or state varying. The parameter varying
conceptwas presented in [1] and is based on a class of linear parameter varying (LPV)
systems. In contrast, the state varying sliding mode concept was first proposed in [9],
where the observer is implemented within a Takagi–Sugeno (TS) model structure
to account for system nonlinearities. Both proposed approaches are extensions of
the LTI scheme of sliding mode observer design to a convex combination of LTI
systems, which is a suitable compromise between a full nonlinear design and the LTI
framework.

In this chapter, first, we introduce TS and LPV model structures and describe
them by means of an inverted pendulum and a wind turbine benchmark from the
literature [14]. Then, the underlying relations between the model classes are exposed
and discussed by comparing the necessary conditions and efficiency of the design
process. Finally, simulation results of two case studies, the inverted pendulum [3]
and a wind turbine benchmark from the literature [17], are presented to illustrate the
influence of the underlying design model on the quality of the fault reconstruction
and thus the quality of fault compensation.

Notation: Throughout this chapter, the notation ‖ · ‖ will be used to represent the
Euclidean vector norm or its induced matrix norm. The identity and zero matrix
of order n are represented by In and 0n . P > 0, (P < 0) means that P is a positive
(negative) definite matrix.

2 Model Structure

2.1 TS Model Structure

Takagi–Sugeno (TS) models provide a uniform framework for controller and ob-
server design of nonlinear systems. Methods based on linear matrix inequalities
(LMIs) using a Lyapunov function allow for a unified design for TS models [24, 27].
Introduced 30 years ago in the context of fuzzy systems [21], TSmodels are weighted
combinations of linear submodels. These can either be derived from measured data
using offline system identification techniques [20, 21] or from analytical models of
nonlinear systems.
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A general TS model structure is given by

ẋ =
Nr∑
i=1

hi (z)
(
Ai x + Bi u

)
,

y =
Nr∑
i=1

hi (z)Ci x,

(1)

where Nr denotes the number of linear state-space submodels, which share the com-
mon state vector x ∈ R

n , the input vector u ∈ R
m , and the output vector y ∈ R

p with
the constant matrices Ai ∈ R

n×n , Bi ∈ R
n×m and Ci ∈ R

p×n . The functions hi (z),
i ∈ {1, . . . , Nr } are normalised to fulfil the convex sum condition

Nr∑
i=1

hi (z) = 1 , 0 ≤ hi (z) ≤ 1 ∀ i ∈ {1, . . . , Nr }. (2)

The vector z ∈ R
Nl of premise variables may comprise state variables xk ∈ R, inputs

uk ∈ R, and external variables χk ∈ R: z = z(x,u,χ). To obtain a Takagi–Sugeno
form and a Takagi–Sugeno (TS) structure of a nonlinear model respectively, and
assuming the mathematical model is given by

ẋ = f(x,u), y = g(x), (3)

there are two different methods to derive (1). The first method is based on an ap-
proximation of (3) by local Taylor linearisation of the nonlinear model around Nr

stationary points and following fuzzy blending of the linear submodels {Ai ,Bi ,Ci }
to a weighted sum according to (1) with the normalisation condition (2). The second
method is the so-called sector nonlinearity approach [16, 23], which can be employed
to obtain an exact Takagi–Sugeno model representation of a given nonlinear model
(3).

In the following, we assume that the sector nonlinearity approach is used to
yield a nonlinear system in Takagi–Sugeno’s form. This has the advantage that the
switching term in the sliding mode observer (presented in Sect. 4) must only account
for the disturbances and faults and not for the approximation error caused by local
linearisations and fuzzy blending.

2.2 LPV Model Structure

Linear parameter varying (LPV) descriptions of dynamic systems have been shown
to be a powerful modelling approach for data-dependent systems, where the depen-
dence might be governed by a nonlinear term, cf. [13]. The idea emerged from the
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analysis of gain scheduling techniques and was presented by Shamma in [19]. In
[13], Shamma describes the LPV modelling as a framework, which results in linear
but non-stationary dynamics shown in (4):

ẋ = A(θ)x + B(θ)u,

y = C(θ)x,
(4)

where x ∈ R
n are the system states, u ∈ R

m the inputs and y ∈ R
p describes the

output of the system. θ denotes the exogenous (i.e. state independent) varying para-
meters of the system leading to the non-stationary behaviour. However, this model of
the system can be exploited for the description of nonlinear dynamic systems, where
the nonlinear behaviour can either be induced by an exogenous or an endogenous
(i.e. state-dependent) signal. Stability analysis and observer/controller synthesis have
been addressed in literature, for example in [1, 2, 13]. To the authors’ knowledge,
however, the obtainment of a LPV model from a nonlinear system description is
poorly described in a large quantity of the literature. For this reason, the next section
will provide an approach for the construction of an LPV model out of an analytic
nonlinear system description.

The basic idea of the LPV approach is to bring a nonlinear function z or an
exogenous signal under the exploitation of the knowledge of the range bounds of
functions values z = sup{z} and z = inf{z} into a certain structure. Consider the
nonlinear function z, which is unknown but bounded, described by

z = c1 + θ c2, (5)

where −1 ≤ θ ≤ 1 holds and c1, c2 are constant values depending on the upper z
and lower z bound of z. By the choice of c1 = z + Δz

2 , c2 = Δz
2 and θ = z−z−Δz/2

Δz/2
with the definition of Δz = z − z the aforementioned conditions are fulfilled and it
can be easily verified that

z + Δz

2︸ ︷︷ ︸
=:c1

+ z − z − Δz/2

Δz/2︸ ︷︷ ︸
=:θ

Δz

2︸︷︷︸
=:c2

= z. (6)

Since −1 ≤ θ ≤ 1 holds, a convex form is achieved. Consider a nonlinear system of
the form

ẋ = A(z)x + Bu,

y = Cx,
(7)

where z can either be an exogenous signal/function or an endogenous nonlinear
function depending on a state of the system. Let A be defined by

A(z) =
[
a11 + z a12

a21 a22

]
.
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Then, according to the scheme described before, the system can be described in the
LPV structure

A(z) =
⎡
⎣
a11 + c1 + θ c2︸ ︷︷ ︸

z

a12

a21 a22

⎤
⎦ =

[
a11 + c1 a12

a21 a22

]
+ θ

[
c2 0
0 0

]

= A0 + θ A1 = A(θ). (8)

If nonlinear functions or exogenous signals appear inB orC, the way for achieving a
LPV description can be applied analogously. Since the formulation leads to a convex
combination of matrices, this can be exploited in the synthesis of controllers or
observers accordingly.

3 Case Studies: Modelling

3.1 Case Study I: Inverted Pendulum

3.1.1 Physical Model

The inverted pendulum benchmark, in particular the cart version illustrated in Fig. 1,
has been considered in many references to solve the problem of designing controllers
around the unstable operating point or as a nonlinear control problem in the full
operating range of Θ ∈ [ 0, π ) [12]. In this chapter, we use the latter case to be able
to use advantageously the LPV and TS sliding mode observer approach.

The cart with inverted pendulum consists of a moveable carriage with one degree
of freedom on which a pendulum is mounted and freely rotatable in driving direction
(Fig. 1). The carriage is driven by a motor that exerts a force F through a belt-drive
transmission. Themain control objective is to swing up the pendulum from the stable
equilibrium to the unstable equilibrium, and then balance the pendulum at the upright
position, and further move the cart to a specified position along the track.

The process can be described by the state-space model

ẋ =

⎛
⎜⎜⎜⎜⎜⎝

Θ̇

g sin(Θ)−m l a Θ̇2 cos(Θ) sin(Θ)− a cos(Θ)

(
u−Ff

)
− dM f Θ̇

m l

2 l −m l a cos2(Θ)

ẋ

2a

(
m l Θ̇2 sin(Θ)− 1

2 m g cos(Θ) sin(Θ)+ u−Ff + 1
2l cos(Θ) dM f Θ̇

)

2−m a cos2(Θ)

⎞
⎟⎟⎟⎟⎟⎠

(9)

with the state vector x = [
Θ Θ̇ x ẋ

]T
, where a = 1/(m + M), Ff denotes the

unknown but bounded friction force between the cart and the track and g denotes the
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Fig. 1 Cart with inverted
pendulum

gravitational acceleration. The external force F is the input u := F and is limited
to |F | ≤ Fmax. The angular position of pendulum Θ , the linear displacement x , and
the speed of the cart ẋ are the outputs of this system. The parameters and variables
of the inverted pendulum on the cart are recorded in Table1.

3.1.2 TS Model

In order to prepare for the observer design, a TS model is derived using the sector
nonlinearity approach [22]. First, we rewrite (9) in the form

Table 1 Variables and parameters of cart with inverted pendulum

Symbol Description Value Unit

Θ Angular position of the pendulum – rad

x Linear displacement of the cart – m

u Input: external force on the cart – N

m Point mass of the pendulum 0.356 kg

M Mass of the cart 4.8 kg

l Distance from the joint to the mass point m 0.56 m

dM f Viscous friction of the joint 0.035 Nms/rad

Fc Coulomb friction coefficient 4.9 N

g Gravitational constant 9.81 m/s2

L Total length of rail 2 m

Fmax Maximum input value (actuator saturation) 120 N
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ẋ =

⎡
⎢⎢⎣

0 1 0 0
f1 f2(

g
l − m a f3 f4) − dM f

ml2 f1 0 0
0 0 0 1

m a f1 f2 (2 l f3 − g f4)
a dM f

l f1 f4 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A(x)

x +

⎡
⎢⎢⎣

0
− a

l f1 f4
0

2 a f1

⎤
⎥⎥⎦

︸ ︷︷ ︸
B(x)

(
u − Ff

)
. (10)

The scalar-valued nonlinear functions f j , j ∈ {1, . . . , Nl} in (10) are given by

f1(x1) = 1

2 − m a cos2(x1)
, f2(x1) = sin(x1)

x1
,

f3(x2) = x22 , f4(x1) = cos(x1),
(11)

where Nl = 4 denotes the number of nonlinearities. For the transition to the TSmodel
structure (1), these functions are written in a different form. Let f

j
and f j denote the

minimum and maximum values of each function f j . The following identities hold:

f j (x1) = wj1 (x1) f j + wj2 (x1) f
j
, j ∈ {1, 2, 4}

f3 (x2) = w31 (x2) f 3 + w32 (x2) f
3
, j = 3,

(12)

where the weighting functions wjk , k = 1, 2, are given by

wj1 (x1) :=
f j (x1) − f

j

f j − f
j

, wj2 (x1) := f j − f j (x1)

f j − f
j

, j ∈ {1, 2, 4}

w31 (x2) := f3 (x2) − f
3

f 3 − f
3

, w32 (x2) := f 3 − f3 (x2)

f 3 − f
3

, j = 3,

(13)

which satisfy the property wj1 + wj2 = 1. From this property and by defining the
sum of the membership functions as the product of the convex sums of weighting
functions wjk , we obtain the definition

Nr∑
i=1

hi (z) :=
Nl=4∏
j=1

(
wj1 + wj2

)
, (14)

where it directly follows that
∑Nr

i=1 hi (z) = 1, i.e. the convex sumcondition (2) holds.
In order to replace the nonlinear functions f j in (10) by (12) these are multiplied
first by an appropriate choice of the convex sum

f j (x2) = (
wj1 f j + wj2 f

j

)∏
i �= j

(
wi1 + wi2︸ ︷︷ ︸

=1

)
, i ∈ {1, 2, 3, 4}. (15)
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Using this formulation of f j , the nonlinearities have been shifted to the membership
functions, which are described in this case study by

h1(x1, x2) = w11(x1) w21(x1) w31(x2) w41(x1)

h2(x1, x2) = w12(x1) w21(x1) w31(x2) w41(x1)

h3(x1, x2) = w11(x1) w22(x1) w31(x2) w41(x1)

h4(x1, x2) = w12(x1) w22(x1) w31(x2) w41(x1)

...
...

h16(x1, x2) = w12(x1) w22(x1) w32(x2) w42(x1).

(16)

All other constant matrix entries of (10) are multiplied by
∑Nr

i=1 hi (z) = 1, such that
A(x) and B(x) can be written as a weighted sum of Nr = 16 matrices with constant
coefficients according to

A(x) =
Nr∑
i=1

hi (z)Ai , B(x) =
Nr∑
i=1

hi (z)Bi , (17)

where z = [
x1, x2

]T
. Thus, the matrices of the first submodel i = 1 are

A1 =

⎡
⎢⎢⎣

0 1 0 0
f 1 f 2(

g
l − m a f 3 f 4) − dM f

ml2 f 1 0 0
0 0 0 1

m a f 1 f 2 (2 l f 3 − g f 4)
a dM f

l f 1 f 4 0 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0
− a

l f 1 f 4
0

2 a f 1

⎤
⎥⎥⎦ .

The state-space model (9) can thus be transformed into the TS form (1)

ẋ =
Nr=16∑
i=1

hi (z)
(
Ai x + Bi ( u − Ff )

)
,

y = Cx.

(18)

Note that the friction force Ff is here considered as an additional unknown input.

3.1.3 LPV Model

Consider the nonlinear model of the inverted pendulum presented in Sect. 3.1.1. The
nonlinear model can be described by
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ẋ =

⎡
⎢⎢⎣

0 1 0 0
g
l z1 − m a z2 − dM f

ml2 z3 0 0
0 0 0 1

2mlaz5 − magz6
adM f

l z4 0 0

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

0
− a

l z4
0

2az3

⎤
⎥⎥⎦ (u − Ff ), (19)

where the nonlinear functions of the model are substitutions using (11) z1 = f1 f2,
z2 = f1 f2 f3 f4, z3 = f1, z4 = f1 f4, z5 = f1 f2 f3, and z6 = f1 f2 f4. Based on the
knowledge of the individual bounds of the nonlinear functions fi , the individual
bounds of the nonlinear functions zi = c1i + θi c2i can be obtained, cf. Table2. Using
the pattern described in Sect. 2.2 and especially the separation of constant matrices
and parameter varying components as shown in (8), the LPV model of the inverted
pendulum can be described in the form

ẋ =
(
A0 +

6∑
i=1

θiAi

)
x +

(
B0 +

4∑
i=3

θiBi

)
u, (20)

with, for example,

A0 =

⎡
⎢⎢⎣

0 1 0 0
g
l c11 − mac12 − dM f

ml2 c13 0 0
0 0 0 1

2mlac15 − magc16
adM f

l c14 0 0

⎤
⎥⎥⎦ and A1(θ1) = θ1

⎡
⎢⎢⎣

0
g
l c21 04×3

0
0

⎤
⎥⎥⎦ .

The sliding mode observer design for the inverted pendulum based on the LPV
problem description—contrary to the TS model—requires a model approximation
because of the structure of the fault distribution matrix F(θ), which is introduced
later in Sect. 4. As proposed by Alwi and Edwards in [1], the distribution matrix can
be factorised into

Table 2 Lower and upper bounds of the inverted pendulum

Function Calculation Upper bound f i , zi Lower bound f
i
, zi

f1 1/(2 − ma cos(Θ)2) 1/(2 − ma) 1/2

f2 sin(Θ)/Θ 1 −0.22

f3 Θ̇2 36π 0

f4 cos(Θ) 1 −1

z1 f1 f2 f 1 f 2 f 1 f 2

z2 f1 f2 f3 f4 f 1 f 2 f 3 f 4 f 1 f 2 f 3 f 4

z3 f1 f 1 f
1

z4 f1 f4 f 1 f 4 f 1 f 4

z5 f1 f2 f3 f 1 f 2 f 3 f 1 f 2 f 3

z6 f1 f2 f4 f 1 f 2 f 4 f 1 f 2 f 4
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F(θ) = HE(θ), (21)

where H ∈ R
n×q is fixed and a virtual fault is introduced by fv = E(θ)f . E ∈ R

q×q

varies dependent on the nonlinear terms and is assumed to be invertible. Thus, from
the knowledge of fv, f can be calculated by f = E(θ)−1fv. Anyhow, in case of the
inverted pendulum the distribution matrix F(z3, z4) = [

0 a
l z4 0 −2az3

]T = F(θ)

cannot be factorised due to the fact that two nonlinear functions are included in one
vector. A possible solution to this problem is the allocation of the distribution vector
into a matrix

F̃(z3, z4) =

⎡
⎢⎢⎣

0 0
0 a

l z4
0 0

−2az3 0

⎤
⎥⎥⎦ , (22)

where the presented factorisation can be accomplished by the matrix E(z3, z4) =[
z3 0
0 z4

]
, leading to a new distributionmatrix H̃ for the virtual fault fv = E(z3, z4)

[
fF
fF

]

H̃ =

⎡
⎢⎢⎣

0 0
0 a

l
0 0

−2a 0

⎤
⎥⎥⎦ . (23)

This factorisation violates the necessary assumption from Sect. 4 rank(H̃) = q =
rank(C H̃) in the design process. For this reason, a model approximation has to be
deployed to the LPV model of the inverted pendulum. The new distribution matrix
is set to F(z3)ap. =

[
0 0 0 −2az3

]T = F(θ3). Then, the factorisation can be applied
using E(θ3) = E(z3) = z3, the virtual fault fv = E(z3) fF and the distribution matrix
for the virtual fault

Hap. =

⎡
⎢⎢⎣

0
0
0

−2a

⎤
⎥⎥⎦ , (24)

which is used during the observer design. The observer reconstructs the virtual fault
f̂v. From this reconstruction, the estimated occurring fault f̂ = E(z3)−1 f̂v can be
calculated.

3.2 Case Study II: Wind Turbine

3.2.1 Physical Model

In the second case study, we use a wind turbine benchmark model presented in
[14], which describes a generic pitch-controlled three-blade horizontal variable-



Sliding Mode Observer for Fault Diagnosis … 223

speed wind turbine with a rated power of P = 4.8MW. The original purpose of
this benchmark was to provide a model on which researchers, who are working in
the field of fault diagnosis and fault tolerant control, can compare different FDI/FTC
methods to a wind turbine.

The model consists of four submodels: The mechanical submodel, which is re-
duced to the drive train dynamics, the aerodynamics, the pitch actuators and the
generator-converter dynamics. The coupling of these submodels is illustrated in
Fig. 2. The mechanical submodel with two degrees of freedom (rotor and genera-
tor rotation) is described by the motion equation

Jr ω̇r = Tr − Kdt θs − (Bdt + Br )ωr + Bdt

Ng
ωg,

Jg ω̇g = ηdt Kdt

Ng
θs + ηdt Bdt

Ng
ωr −

(ηdt Bdt

N 2
g

+ Bg

)
ωg − Tg,

(25)

where θs denotes the shaft torsion angle with the angular velocity Θ̇s = ωr − 1
Ng

ωg .
For sake of clarity, all parameters and system variables are summarised in Table3.
The aerodynamic submodel comprises the expression for the rotor torque Tr . This
torque depends on the aero map CQ for the torque coefficient [5]

Tr = 1

2
ρ π R3 v2

1

3

3∑
i=1

CQ(λ, βi ), (26)

Fig. 2 Schematic side-view and submodels of the complete wind turbine benchmark model with
the respective inputs and outputs
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Table 3 Variables and parameters of the wind turbine benchmark

Symbol Description Value Unit

Tg Applied generator torque – Nm

Tg,d Demanded generator torque – Nm

Tr Aerodynamic rotor torque – Nm

v Wind speed – m/s

βi Pitch angle of blade i = 1, 2, 3 – rad

βi,d Demanded pitch angle of blade i = 1, 2, 3 – rad

λ Tip speed ratio – –

ωg Generator angular velocity (generator speed) – rad/s

ωr Rotor angular velocity (rotor speed) – rad/s

θg Generator rotational angle – rad

θr Rotor rotational angle – rad

θs Shaft torsion angle – rad

Bdt Torsional damping coefficient of the drive train 775.49 Nms/rad

Bg Viscous friction of the high speed shaft 45.6 Nms/rad

Br Viscous friction of the low speed shaft 7.11 Nms/rad

CQ Aerodynamic rotor torque coefficient – –

Jg Generator inertia 390 kgm2

Jr Rotor inertia 55 × 106 kgm2

Kdt Torsional stiffness of the drive train 2.7 × 109 Nm/rad

Ng Gearbox ratio 95 –

R Rotor radius 57.5 m

ηdt Efficiency of the drive train 0.97 –

ρ Air density 1.225 kg/m3

τg Delay time constant for generator-converter dynamics 0.02 s

ωn Natural frequency parameter for second-order pitch
dynamics

11.11 rad/s

ζ Damping constant for second-order pitch dynamics 0.6 –

whereρ denotes the air density, R is the rotor radius, v is the averagewind speed at the
rotor, βi describes the individual pitch angle of blade i ∈ {1, 2, 3} and λ = ωr R/v
characterises the tip speed ratio.

In pitch-controlled wind turbines, the pitch angles of the blades are altered in
the full load region to keep the wind turbine at the desired nominal rotor speed by
reducing the aerodynamic rotor torque. The blade pitch system with three single
pitch drives is modelled by the second-order delay systems [14]

β̈i + 2 ζ ωn β̇i + ω2
n βi = ω2

n βi,d , (27)
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where βi and βi,d denote the actual and demanded pitch angles of blade i . To take
the generator-converter dynamics into account, and for the purpose of actuator fault
detection, a first-order delay model is used in [14]

Ṫg = − 1

τg
Tg + 1

τg
Tg,d , (28)

where Tg and Tg,d denote the applied and demanded generator torque.

3.2.2 TS Model

As in the first case study (inverted pendulum), a TS model is derived using the sector
nonlinearity approach [22]. Equations (25)–(28) are combined to a state-spacemodel
with the state and input vector

x = [
ωr ωg θs Tg β̇1 β1 β̇2 β2 β̇3 β3

]T
, u = [

Tg,d β1,d β2,d β3,d
]T

and rewritten in the form

ẋ =

⎡
⎢⎢⎣

Ã11(x1, v) 04×2 04×2 04×2

02×4 Ã22 02×2 02×2

02×4 02×2 Ã33 02×2

02×4 02×2 02×2 Ã44

⎤
⎥⎥⎦

︸ ︷︷ ︸
A(x1,v)

x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×4
1
τg

0 0 0

0 ω2
n 0 0

0 0 0 0
0 0 ω2

n 0
0 0 0 0
0 0 0 ω2

n
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u, (29)

with

Ã11(x1, v) =

⎡
⎢⎢⎢⎢⎢⎣

f1(x1, v)
Bdt
Ng Jr

− Kdt
Jr

0
ηdt Bdt
Ng Jg

−
(

ηdt Bdt
N2
g Jg

+ Bg
Jg

)
ηdt Kdt
Ng Jg

− 1
Jg

1 − 1
Ng

0 0

0 0 0 − 1
τg

⎤
⎥⎥⎥⎥⎥⎦

, Ã j j =
[−2 ωn ζ −ω2

n
1 0

]

for j ∈ {2, 3, 4}. The scalar-valued nonlinear function f1 is given by

f1(x1, v) = − 1

Jr

(
Bdt + Br

)
+ 1

ωr

1

Jr
Tr
(
λ(x1, v), v

)
, x1 ∈ [ x1 , x1 ], (30)

where x1 > 0 and x1 denote the lower and upper bounds of the rotor speed in the
wind turbine operating range. For the transition to the TS model structure (1) these
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functions are written in a different form. Let f
1
and f 1 denote the minimum and

maximum values of the function f1. The identity

f1 (x1, v) = w11 (x1, v) f 1 + w12 (x1, v) f
1

(31)

holds, where the weighting functions w1k , k ∈ {1, 2}, are given by

w11 (x1, v) := f1 (x1, v) − f
1

f 1 − f
1

, w12 (x1, v) := f 1 − f1 (x1, v)

f 1 − f
1

. (32)

Using this formulation (31), the nonlinearity has been shifted to the membership
functions, which in this second case study are described by

h1(x1, v) = w11(x1, v), h2(x1, v) = w12(x1, v). (33)

All other constant matrix entries of (29) are multiplied by
∑Nr

i=1 hi (x1, v) = 1, such
that A(x1, v) = A(z) can be written as a weighted sum of Nr = 2 matrices with
constant coefficient:

A(z) =
Nr=2∑
i=1

hi (z)Ai ,

where z = f1(x1, v). The state-space model (29) can thus be transformed into the
TS form (1)

ẋ =
Nr=2∑
i=1

hi (z)
(
Ai x + Bu

)
. (34)

3.2.3 LPV Model

Consider the nonlinear system of the wind turbine benchmark, where the nonlinear
function z = Tr/x1 is integrated into the system matrix A as follows:

A(x1, Tr ) =
[− Bdt+Br

Jr
+ Tr

x1 Jr
a12 a13 01×7

A(n-1)×n

]
, (35)

where a12, a13 andA(n-1)×n, n = 10 can be found in the descriptions in Sect. 3.2.2. Just
as described inSect. 2.2, the nonlinear function Tr

x1
can be represented by an affine term

θ and two constants resulting in a linear function by the use of its bounds. Note that
thismodel is valid for the operation range of thewind turbine, where it is assumed that
x1 > 0. The bounds of the nonlinear function Tr

x1
are z = sup{z} = 1.5458 × 1010 Nms

rad

and z = inf{z} = −3.8538 × 1011 Nms
rad , which are obtained from the information of
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the operating range of the wind turbine and the knowledge of the specific torque
coefficients of the benchmark model presented in [15]. Based on these bounds, the
description of the dynamics of the wind turbine can be altered to a LPV model of
the form

ẋ =
([− Bdt+Br

Jr
+ c1

Jr
a12 a13 01×7

A(n-1)×n

]
+ θ

[ c2
Jr

01×9

0(n-1)×n

])

︸ ︷︷ ︸
A(θ)

x + Bu

= A(θ)x + Bu, y = Cx, (36)

where the coefficients are again defined as c1 = z + Δz
2 , c2 = Δz

2 and θ = z−z−Δz/2
Δz/2 .

4 Fault Reconstruction by Sliding Mode Observation

4.1 System Description and Canonical Form

We consider two different norm-bounded uncertain model structures: The first is
based on the previously introduced TS model (1)

ẋ =
Nr∑
i=1

hi (z)
(
Ai x + Bi u + Fi fa

)
,

y = Cx,

(37)

where Fi ∈ R
n×a denotes the fault distribution matrix and the faults are presented by

fa ∈ R
a . The common C in (37) is only a small restriction, since many applications

[7, 12, 18] comprise outputs that are linear in the system states. The second exploits
the LPV modelling techniques based on the introduced structure (4)

ẋ = A(θ) x + B(θ)u + F(θ)fa︸ ︷︷ ︸
H E(θ)fa

,

y = Cx,

(38)

where fv = E(θ)fa denotes the virtual fault vector with the special form of the dis-
tribution matrix (cf. Sect. 3.1.3). Note that the special form of the distribution matrix
and the virtual fault is only needed if the original distribution matrix depends on an
affine term θi . This is due to the transformations discussed in the following part of
this discourse. Otherwise, this allocation can be ignored.
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For the observer design, three existence conditions have to be fulfilled [4, 9, 10]:

• Condition 1: The faults presented in (37) and (38) are unknown but norm bounded
by known positive constants Ξ fa ∈ R

q which satisfy ‖fa(t)‖ ≤ Ξ fa . Moreover,
the system states and inputs are assumed to be bounded.

• Condition 2:

– TS (37): Let qi = q ∀i be defined as the number of columns of Fi . Then the
condition q = rank(CFi ) = rank(Fi ) must be fulfilled and it must hold that
p > q, where p is the number of measurable system states.

– LPV (38): Let q be defined as the number of columns ofH. Then the condition
q = rank(CH) = rank(H) must be fulfilled and it must hold that p > q, where
p is the number of measurable system states.

• Condition 3:

– TS (37): All invariant zeros of (Ai ,Fi ,C) must lie in C−, which denotes the
open left half of the complex plane.

– LPV (38): All invariant zeros of (A(θ),H,C) must lie in C−.

The design of a sliding mode observer for fault reconstruction that is applicable
for the classes of TS systems (37) or LPV systems (38) is carried out in a special
canonical form. With a series of transformations Ti for each TS submodel

Ti = TL ,i Tb,i Tc, (39)

or for the LPV model with the common distribution matrix H

T = TL Tb Tc, (40)

the TS respectively LPV system is brought into a structure where, first, the last p
states of the systems are the outputs y and, second, the faults fa only act on the mea-
surable system states (for further details such as the description of the transformation
matrices (39) and (40) and proofs see [4, 6, 9]).

The TS model in canonical form is described by

ẋ1 =
Nr∑
i=1

hi (z)
(
AAA 11,i x1 + AAA 12,i y +BBB1,i u

)
,

ẏ =
Nr∑
i=1

hi (z)(AAA 21,ix1 +AAA 22,iy +BBB2,i u +FFF 2,i fa),

(41)

with the non-measurable states x1 ∈ R
(n−p) and the measurable states y ∈ R

p. The
transformed system matrices in (41) have the following block structures:
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AAA i = Ti Ai T−1
i =

[
AAA 11,i AAA 12,i

AAA 21,i AAA 22,i

]
, BBBi = Ti Bi = [

BBBT
1,i BBBT

2,i

]T
,

FFF i = Ti Fi = [
0T FFF T

2,i

]T
.

The LPV model in canonical form is described by

ẋ1 = AAA 11(θ) x1 + AAA 12(θ) y +BBB1(θ) u,

ẏ = AAA 21(θ) x1 +AAA 22(θ) y +BBB2(θ)u +HHH 2fv,
(42)

with the non-measurable x1 ∈ R
(n−p) and the measurable states y ∈ R

p. The trans-
formed system matrices in (41) have the following block structures:

AAA (θ) = TA(θ)T−1 =
[
AAA 11(θ) AAA 12(θ)

AAA 21(θ) AAA 22(θ)

]
, BBB(θ) = TB(θ) =

[
BBBT

1 (θ) BBBT
2 (θ)

]T
,

HHH = TH =
[
0T HHH T

2

]T
.

4.2 Sliding Mode Observation

TS Sliding Mode Observation

The TS sliding mode (TS SM) observer for the system (41) in transformed form is
given by

˙̂x1 =
Nr∑
i=1

hi (z)
(
AAA 11,i x̂1 +AAA 12,i ŷ +BBB1,i u −AAA 12,iey

)
,

˙̂y =
Nr∑
i=1

hi (z)
(
AAA 21,i x̂1 +AAA 22,i ŷ +BBB2,i u − (

AAA 22,i −AAA s
22

)
ey + ν

)
,

(43)

where ey = ŷ − y denotes the error vector andAAA s
22 is a common stable designmatrix.

An obvious choice forAAA s
22 is a diagonal matrix, where the elements are the desired

eigenvalues of the output error dynamics. Using the inverse transformation T−1
i , the

TS sliding mode observer can be obtained in the coordinates x of the original model
(37)

˙̂x =
Nr∑
i=1

hi (z)
(
Ai x̂ + Bi u − Gl,i ey + Gn,i ν

)
(44)

with the observer gains



230 H. Schulte and F. Pöschke

Gl,i = T−1
i

[
AAA 12,i

AAA 22,i −AAA s
22

]
, Gn,i = T−1

i

[
0(n−p)×p

Ip

]
.

LPV Sliding Mode Observation

The LPV sliding mode (LPV SM) observer for the system (42) in transformed form
is given by

˙̂x1 = AAA 11(θ) x̂1 +AAA 12(θ) ŷ +BBB1(θ)u −AAA 12(θ)ey,
˙̂y = AAA 21(θ) x̂1 +AAA 22(θ) ŷ +BBB2(θ)u − (

AAA 22(θ) −AAA s
22

)
ey + ν.

(45)

Using the inverse transformationT−1, theLPVslidingmode observer can be obtained
in the coordinates x of the original model (38)

˙̂x = A(θ) x̂ + B(θ)u − Gl(θ) ey + Gn ν (46)

with the observer gains

Gl(θ) = T−1

[
AAA 12(θ)

AAA 22(θ) −AAA s
22

]
, Gn = T−1

[
0(n−p)×p

Ip

]
.

The discontinuous term ν is necessary for both observer structures in (43), (44) or
(45), (46) to establish and maintain a sliding motion. The sliding motion is given by

ν = −ρ
P2 ey∥∥P2ey

∥∥ , if ey �= 0, (47)

where ρ is a gain factor and P2 is the symmetric, positive definite solution of the
Lyapunov equation

P2AAA
s
22 + AAA s

22
T P2 = −Q2, (48)

whereQ2 is a symmetric positive definite design matrix. Note that the discontinuous
term ν in (47) is undefined in the case of ey = 0 [6]. Once the sliding surface

SSS ={e(t) ∈ R
n := CCC [ eT1 eTy ]T︸ ︷︷ ︸

e

= 0 } (49)

with CCC = C T−1
c = [

0p×(n−p) Ip
]

(50)

is reached at the time t = tr , the TS SM observer attempts to maintain the sliding
motion on the surfaceSSS .

Actuator Fault Reconstruction by TS SM Observation

For the actuator fault reconstruction we consider first the TS model (41) and the TS
SM observer (43) in canonical form. The derivatives of the error of non-measurable
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and measurable states are ė1 = ˙̂x1 − ẋ1, ėy = ˙̂y − ẏ and substituting (41) and (43) it
can be verified that

ė1 =
Nr∑
i=1

hi (z)AAA 11,i e1 (51)

and

ėy =
Nr∑
i=1

hi (z)
(
AAA 21,i e1 +AAA s

22 ey + ν −FFF 2,i fa
)
. (52)

Assume the TS SM observer has been designed and a sliding motion has been es-
tablished from t ≥ tr . This means that ey = 0, ėy = 0. In this case the error equation
(52) is simplified to

0 =
Nr∑
i=1

hi (z)
(
AAA 21,i e1 + νeq −FFF 2,i fa

)
(53)

and the discontinuous term ν is replaced by the so-called equivalent output injection
signal [4]

νeq = νδ(t ≥ tr ), (54)

where νδ denotes an approximation of (47) by introducing a small positive scalar δ

νδ = −ρ
P2 ey∥∥P2ey

∥∥ + δ
. (55)

It should be noted that the value of δ should be chosen as small as possible, because
it influences the quality of the fault reconstruction [6]. Thus, the equivalent output
injection signal is given by rearranging Eq. (53) according to

νeq =
Nr∑
i=1

hi (z)
(
FFF 2,i fa −AAA 21,i e1

)
. (56)

Substituting the steady-state solution of (51) into (56), we get the relation

fa =
[

Nr∑
i=1

hi (z) FFF 2,i

]+
νeq , (57)
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where (·)+ denotes the pseudo-inverse of the convex combination of the matrices
FFF 2,i . Note that the pseudo-inverse of the convex combination of matrices exists if
the full rank characterization is satisfied by the theorem proposed in [11].

Actuator Fault Reconstruction by LPV SM Observation

Equal to the TS approach, the error equations are defined by ė1 = AAA 11(θ) e1 and
ėy = ˙̂y − ẏ. On the sliding surface it simplifies to

ėy = 0 = AAA 21(θ) e1 + νeq −HHH 2 fv. (58)

Substituting the steady-state solution of ė1 into (58), which is stable by the design of
the transformation matrix TL (cf. Sect. 6), leads to

fv = [
HHH 2

]+
νeq . (59)

5 Simulation Results for the Case Studies

After the canonical form of the observer and the existence conditions have been
shown, the main focus is directed on the degrees of freedom in the design process
having a direct impact on the reachability of the sliding surface. This is a necessary
assumption in the reconstruction of the faults. Furthermore, the quality of the fault
reconstruction directly depends on the chosen parameters. The design process can be
considered as an iterative procedure [8] using the simulation environment including
the nonlinear model and the constructed observer. Note that the simulation itself in-
fluences the quality of the reconstruction through parameters like the chosen solver,
the fundamental sample time and effects like chattering. The following descriptions
of the design process are based on the experiences of the authors and sketch a pos-
sible way of achieving a well-operating observer. Anyhow, there might be different
approaches, which work as well.

The design matrix AAA s
22 (cf. (48)) plays an important role in the design process,

since it governs the output error dynamics. One way to evaluate the influence of
AAA s

22 in the simulation is to operate the designed observer in the form similar to the
Luenberger observer without the switching term

ˆ̇x =
Nr∑
i=1

hi (z)
[
Ai x̂ + Biu − Gl,ieỹ

]
, ŷ = Cx̂, resp.

ˆ̇x = A(θ)x̂ + B(θ)u − Gl(θ)eỹ, ŷ = Cx̂

(60)

until the desired behaviour of the downgraded observer is achieved. Based on the
designed Luenberger-like observer and after enabling the switching term again, the
parameters ρ and δ for the equivalent output injection signal can be acquired. As a
first step, δ can be chosen as a small scalar (cf. Tables4 and 5) and creates an area
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Table 4 Design parameters for case study I

Parameter Value TS Value LPV

AAA s
22 −10 diag(1, 1, 1) −10 diag(1, 1, 1)

Q2 diag(1, 1, 1) diag(1, 1, 1)

ρ 1000 1000

δ 10−1.3 10−1.3

Resulting matrices from the design process

P2 0.05 diag(1, 1, 1) 0.05 diag(1, 1, 1)

Gl

⎡
⎢⎢⎢⎣

13.09 0 0

34.44 0 0

0 10 1

1.38 0 9.99

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

20.5 0 0

108.4 0 0

0 10 1

2.8 0 10

⎤
⎥⎥⎥⎦

Gn

⎡
⎢⎢⎢⎣

1 0 0

3.1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0

10.5 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦

around the sliding surface, which reduces effects like chattering. As an indication
of the magnitude of the gain matrix ρ, the proof of the stability of ė through the
Lyapunov function, presented for example in [8] for TS and in [1] for the LPV case,
can be utilised. Therefore, the maximum values of the errors, matrices, faults and
uncertainties have to be estimated. Afterwards, the magnitude of ρ can be altered
iteratively until the desired results are achieved. In case of thewind turbine observer, a
matrix ρ was used instead of a scalar, which takes account of the differentmagnitudes
of the outputs of the wind turbine. Especially for multiple faults to detect, the use of a
matrix can lead to an improvement of the performance. This allows a higher degree of
freedom in the design process, but increases the complexity of finding a combination
of entries in ρ, which leads to a good reconstruction accuracy. The entries in ρ have
to be well matched for a good reconstruction accuracy. To integrate the extended
switching term with ρ as a matrix, a weighting matrix W is introduced into the
switching term. The entries of W contain the reciprocal values of the maximum
estimated faults of the outputs and lead to a normalisation [6]. Note that the iterative
alteration of ρ (or ρ) does not depend on one specific fault, but rather on the accuracy
of the reconstruction over a range of faults is used as a criterion. A well-working
combination of parameters for the case studies is shown in Tables4 and 5. They
represent a possible solution for the fault reconstruction; however, other parameter
sets might lead to a good reconstruction of faults as well. In case study I the ODE3
Simulink® solver with a fixed sample time of 0.001s was used. Case study II was
calculated by an ODE4 Simulink® solver with a fixed sample time of 0.001s.
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Table 5 Design parameters for case study II
Para. Value TS Value LPV

AAA s
22 −100 diag(1, 1, 1, 1, 1, 1) −100 diag(1, 1, 1, 1, 1, 1)

Q2 diag(1, 1, 1, 1, 1, 1) diag(1, 1, 1, 1, 1, 1)

ρ diag(1.2e3, 75e3, 1e7, 1e4, 1e4, 1e4) diag(1.2e3, 75e3, 1e7, 1e4, 1e4, 1e4)

W diag(1/1.4, 1/20, 1/4000, 1/5, 1/5, 1/5) diag(1/1.4, 1/20, 1/4000, 1/5, 1/5, 1/5)

δ 0.005 0.005

Resulting matrices from the design process

P2 0.005 diag(1, 1, 1, 1, 1, 1) 0.005 diag(1, 1, 1, 1, 1, 1)

Gl

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.26e3 −0.0073 0

−10.5 110.4 −0.0026 04×3

0.99 0.0043 0

0 0 50

−123.4 0 0

100 0 0

0 −123.4 0

06×3 0 100 0

0 0 −123.4

0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Gl (hi = 1/Nr ∀i)

Gn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

−0.0001 0.0001 0 04×3

0 0 1

0 0 0

1 0 0

06×3 0 0 0

0 1 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

−0.0001 0.0001 0 04×3

0 0 1

0 0 0

1 0 0

06×3 0 0 0

0 1 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the observer matrix Gl depends on either the membership functions hi
or the affine term θi . The matrices shown in Tables4 and 5 are based on the operating
point, where hi = 1/Nr ∀i and θi = 0 ∀i , and give an idea of the structure of Gl .

5.1 Simulation Results for Case Study I

Figure3 shows the reconstructed fault f̂ F by the LPV sliding mode observer based
on the approximated model compared to the real occurring fault fF . In Fig. 4 the
reconstructed fault f̂ F of the TS slidingmode observer compared to the real occurring
fault fF is plotted. Both designed observers show a good accuracy of reconstruction.
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Fig. 3 Reconstructed fault f̂ F by the LPV SM observer of the inverted pendulum benchmark

Fig. 4 Reconstructed fault f̂ F by the TS SM observer of the inverted pendulum benchmark

5.2 Simulation Results for Case Study II

The benchmark model of the wind turbine by Odgaard et al., presented in [15], was
created for the evaluation of FDI and FTC methods. For this reason, fault scenarios
are implemented in the MATLAB model of the wind turbine. As an example, Fault
8 (cf. [15]), which results in an offset of fa = 100Nm on Tg and is active from
3800 s ≤ t ≤ 3900 s, was chosen to give an impression of the performance of the
designed sliding mode observer. The observers based on the TS and on the LPV
model were simulated in parallel to the nonlinear benchmark model of the wind
turbine with the faults included. From t = 3800 s to t = 3900 s an offset of 100Nm
on the generator torque Tg occurred. The benchmark provides additional noise to
the output of the model, which leads to a fluctuation in the fault-free and fault-
afflicted reconstruction signal, cf. Figs. 5 and 6. The reconstructed signals of the
faults are based on the signals of the noisy benchmark. This is handled by the use
of a filter with a transfer function H(s) = 10−5s2+129.33

s2+14.91s+130.83 , which is applied to the
noisy reconstructed signals. The plots in Figs. 5 and 6 show the filtered reconstructed
signals. Note that, for example in the moment of occurrence of the fault, the fault
to the nominal torque magnitude ratio is approx. fa/Tg = 0.8%. The sensor noise
itself can reachmagnitudes of 30Nm,whichmakes it harder for the used observers to
reconstruct the induced fault. Anyhow, the observers for the LPV and TSmodel show
an identical accuracy of reconstruction of approx. 95%. This result is not surprising,
since the LPV and TSmodels are an exact representation of the nonlinear model and,
as shown in Table5, the design leads to exactly the same sliding mode observer.
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Fig. 5 Reconstructed fault fa by the TS SMO of the wind turbine benchmark

Fig. 6 Reconstructed fault fa by the LPV SMO of the wind turbine benchmark

6 Stability of TS and LPV Systems: A Comparison

Consider the autonomous system in the LPV description as it was introduced in
Sect. 2.2

ẋ = A(θ) x. (61)

As described by Shamma in [13], the system is quadratically stable if there exists a
symmetric, positive definite solution P of

PA(θ) + A(θ)T P < 0 (62)

for all possible trajectories θ . This condition is based on the exploitation of the
characteristics of the Lyapunov function V = xTP x, which ensures quadratic sta-
bility. Since the LPV and TS system descriptions lead to a convex formulation, this
approach can be handled by the use of linear matrix inequalities (LMI). When com-
paring LPV and TSmodels the way they are introduced in this discourse (cf. Sect. 2),
it is possible to show that, with the same nonlinear functions, the LMI constraints
become the same. Consider the system matrix in (61), where the structure can be
arranged to

A(θ) = A0

∣∣
zi+ Δzi

2
+ A1(θ1) + A2(θ2) + · · · + Anl (θnl ). (63)

This model has nl nonlinearities (θ ∈ R
nl ). Note that due to lack of space in the fol-

lowing considerations A0

∣∣
zi+ Δzi

2
defines A0

∣∣
z1+ Δz1

2 , z2+ Δz2
2 ,..., znl

+ Δznl
2
. Since the prob-
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lemwas formulated as in Eq. (5), it holds that θi ∈ [−1, 1] ∀i . Because this is a convex
problem formulation, the LMI constraints are governed by the bounds of each θi .
Therefore, there are Nr = 2nl possible combinations. Setting the matrices according
to the possible combinations leads to

Ã1 = A0

∣∣
zi+ Δzi

2
+ A1(θ1 = 1) + A2(θ2 = 1) + · · · + Anl (θnl = 1)

Ã2 = A0

∣∣
zi+ Δzi

2
+ A1(θ1 = 1) + A2(θ2 = 1) + · · · + Anl (θnl = −1)

...
...

ÃNr = A0

∣∣
zi+ Δzi

2
+ A1(θ1 = −1) + A2(θ2 = −1) + · · · + Anl (θnl = −1).

(64)

From the definition of the LPV model in (6), it is easy to verify that Ai (θi = 1) =
Ai

∣∣
Δzi
2

and Ai (θi = −1) = Ai

∣∣− Δzi
2

holds. Using this knowledge, (64) can be de-

scribed by

A0

∣∣
zi+ Δzi

2
+ A1

∣∣
Δz1
2

+ A2

∣∣
Δz2
2

+ · · · + Anl

∣∣ Δznl
2

= Ã1

∣∣
z1, z2,...,znl

A0

∣∣
zi+ Δzi

2
+ A1

∣∣
Δz1
2

+ A2

∣∣
Δz2
2

+ · · · + Anl

∣∣
− Δznl

2
= Ã2

∣∣
z1, z2,...,znl

...
...

A0

∣∣
zi+ Δzi

2
+ A1

∣∣− Δz1
2

+ A2

∣∣− Δz2
2

+ · · · + Anl

∣∣
− Δznl

2
= ÃNr

∣∣
z1, z2,...,znl

.

(65)

Thus, the LMI constraints to solve equal

Ã1

∣∣T
z1, z2,...,znl

P + PÃ1

∣∣
z1, z2,...,znl

< 0

Ã2

∣∣T
z1, z2,...,znl

P + PÃ2

∣∣
z1, z2,...,znl

< 0

...
...

ÃNr

∣∣T
z1, z2,...,znl

P + PÃNr

∣∣
z1, z2,...,znl

< 0.

(66)

The comparison of the matrices Ãi , i ∈ {1, 2, . . . , Nr } to the individual matrices of
the submodels in the TS formulation

ẋ =
Nr∑
i=1

hi (z)Ai x (67)

leads to the realisation that they are the same. When using the Lyapunov function
approach for the TS model, it is easy to verify that LMI formulation of the TS and
the LPV system result in the same constraints.

As described in [1, 8], the error dynamics for the non-measurable states ė1 =
AAA 11 e1 are ensured to be stable by the use of an LMI problem formulation
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P1 > 0,

Aa,11(θ)P1 + P1Aa,11(θ) + Aa,211(θ)TNT + NAa,211(θ) < 0,

resp.

P1 > 0,

Aa,11,i P1 + P1Aa,11,i + Aa,211,i
TNT

i + NiAa,211,i < 0, for i ∈ {1, . . . , Nr }.
(68)

As outlined, the LMI constraints for the TS and LPVmodel are equal, when based on
the same nonlinear functions. However, there might be a difference in the solution.
This is due to the fact that for the TS observer the solver is allowed to find Nr different
solutions for Ni , since the resulting transformation from the design process can be
applied to each individual subsystem {Ai , Bi , Ci } of the TS system description.
In case of the LPV design process one solution for N is accepted based on the
same constraints. This is due to the fact that no obvious assignment of a solution to
individual matrices results from the design process.

7 Conclusions

In this chapter, a LPV andTakagi–Sugenomodel-based slidingmode observer design
approach was investigated. After a brief introduction of both model structures, the
entire modelling process for the observer design was studied in detail by means of
two case studies using LPV and TS techniques.

As a result, it can be noted that there exist wide similarities between the LPV
and the TS extension of the canonical LTI form of sliding mode observers. Both
approaches of the polytopic extension of uncertain LTI systems are suitable for
the consideration of nonlinearities of the nominal system dynamics. In particular,
there are few differences which can lead to different dynamics of the reconstructed
unknown inputs, respectively, occurring faults:

• In the case of non-factorizable fault distribution matrices F(θ) (inverted pendu-
lum), the use of the LPV approach requires a model approximation. In contrast,
the TS model approach does not require any approximation and it is therefore
straightforward to implement without loss of accuracy.

• TheTSmodel structure is characterised byweighted convex combinations of linear
submodels. This can be exploited in the design process, because the LMI problem
formulation allow for different solutions for Ni from which i ∈ {1, . . . , Nr } ob-
server gains Gl,i and Gn,i follow for each individual subsystem. In contrast, the
individual matrices in the LPV structure cannot be assigned to related submodels.
Based on this fact, the LMI problem formulation caused a common solution N
whereby the sliding mode observer design is also restricted to a common transfor-
mation matrix T.
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However, it must be noted that the performance of the LPV sliding mode observer
can be seen as equivalent to the TS sliding mode observer. In both case studies the
designed observers achieved a high accuracy of the reconstructed fault signals.
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Part III
Variable-Structure Methods and Models

in Control and Estimation

The focus of the first two parts of this book was set on the use of sliding mode
techniques, both in the frame of control synthesis and observer design. In addition
to these tasks, sliding mode and related variable-structure approaches are also rel-
evant for modeling and design of decentralized control systems, predictive control,
and further (stochastic) fault diagnosis techniques. In Chap. 9, Zheng Huang, Ron J.
Patton, and Jianglin Lan present sliding mode state and fault estimation for decen-
tralized systems, including a detailed case study highlighting the most important
methodological aspects. Hybrid estimation tasks, due to transitions between various
dynamic system models, are discussed by Dirk Weidemann and Ilja Alkov in Chap.
10 for the fault diagnosis of nonlinear differential-algebraic equation systems. Here,
Kalman filtering techniques are adapted in such a way that they become applicable
for systems of differential-algebraic equations with a variable structure. In order to
make a control design insensitive against faults, Piotr Witczak and Marcin Witczak
deal with fault-tolerant model predictive control techniques under consideration of
constraints for Takagi–Sugeno systems in Chap. 11. This book is concluded by a
contribution of Jens Tonne and Olaf Stursberg who focus on a constrained model
predictive control of processeswith an uncertain structure. This structural uncertainty
is described suitably by jump Markov linear systems.
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Sliding Mode State and Fault Estimation
for Decentralized Systems

Zheng Huang, Ron J. Patton and Jianglin Lan

Abstract The interconnection of dynamical systems gives rise to interesting chal-
lenges for control in terms of stability, robustness and the overall performance of
the global interconnected systems as well as the fault tolerance of the individual
subsystems. Interconnected systems can be developed either from a standpoint of
centrality of control based on the construction and design of a global system that
satisfies the above requirements. Alternatively, the interconnected system can be
decentralized which means that the stability, performance, etc., requirements are
achieved at the local (subsystem) levels. To develop a good “fault-tolerant control”
strategy for decentralized systems it is necessary to take account of various faults or
uncertainties that may occur throughout all local levels of the system. A powerful
way to achieve this is to use robust state and fault estimation methods accounting
for the model–reality mismatch that is inevitable when (a) systems are linearized
and (b) when faults occur in subsystem components such as actuators, sensors, etc.
The chapter develops a strategy for decentralized state and fault estimation based on
theWalcott–Żak form of sliding mode observer (SMO) with linear matrix inequality
(LMI) formulation. This strategy is shown to be advantageous when considering the
estimation problem for a large number of interconnected subsystems. After devel-
oping the design procedure a tutorial example of two interconnected linear systems
with nonlinear interconnection functions shows that the states as well as actuator and
sensor faults can be robustly estimated. Finally, an application-oriented example of
a three-machine power system is given which has actuator faults as well as nonlinear
machine interconnections.
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1 Introduction

The complexity of industrial, process, banking and IT systems increases rapidly as
modern technology makes more and more use of interconnected, embedded, net-
worked and distributed architectures [2, 16, 22, 25, 26, 28]. Šiljak [25] states that
the complexity of real systems might not be well organized, whilst for control to
be effective a good structural system organization is required. This can be achieved
using a decentralized system structure in which local interconnected subsystems are
well-defined.

A potentially significant number of variables can be involved in a decentralized
system, along with nonlinear interrelationships, and various kinds of uncertainty.
This means that mathematical models corresponding to the dynamics of the inter-
connected system may be hard to define precisely. Hence, in the control systems
community, methods of handling modelling uncertainty stand out as significant chal-
lenges for the design of model-based methods of control and estimation of intercon-
nected system. Some researchers state that the complexity and difficulties of control
of interconnected systems arise mainly from the dimensionality, uncertainty, delay
and information constraints [2, 25].

Decentralized control is economical and can be reliable. When the system is too
large to be dealt with by centralized control, it is computationally efficient to use
only local information, i.e. local states or outputs, to make the control decision. This
method is also economical since it is easier to implement and it can effectively reduce
the communication cost [26]. Decentralized control also facilitates the development
of good robustness and provides an opportunity to achieve good closed-loop system
stability. Furthermore, the decentralized system can be made robust to a broad range
of subsystem or interconnection uncertainties [26, 28].

However, the disturbance from interactions should be handled by combined use
of state estimation and control and some researchers use decentralized observer-
based control, e.g. [1, 3, 17–19, 23, 32], to achieve some control performance goals
(stability, robustness, time and/or frequency domain objectives, etc.), whilst making
use of joint robustness in control and estimation.

A further challenge arises, even for centralized systems, when actuator, sensor
or process faults are present. The design problem is further complicated by the
combined presence of faults and uncertainties. The fact that faults and modelling
uncertainties and/or disturbance may act together in a dynamical system leads to the
important requirement that all these unwanted system effects need to be minimized,
e.g. using estimation combined with control compensation. This challenge goes far
beyond the usual design requirements of robust control, since the faults have to be
considered as new forms of uncertainty/disturbance acting on the system. For inter-
connected and decentralized systems the combined presence of faults and modelling
uncertainty/disturbance becomes an even larger challenge.

Some studies in the control community focus only on the details of the decentral-
ized state estimation problem based on modern robust estimation methods [7, 27].
There is a requirement for this due to the difficulty of achieving good state estimation
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performance in the presence of unavoidable interactions. This is the motivation for
this current study. Interactions which act as uncertainties can be tolerated or com-
pensated by fault estimation. There are several powerful approaches in the literature
for robust fault estimation using specialized observers, e.g. [5, 11, 24, 36]. If a fault
signal can be reconstructed or estimated robustly then there is also a possibility of
making direct use of the fault estimate in a robust control scheme to compensate
the fault effect, providing an opportunity for good fault-tolerant control performance
[14]. Hence, the main challenge of fault estimation for interconnected systems is to
understand and take into account the separate effects and influences from interactions
and uncertainties.

The SMO can track the state trajectories with insensitivity to certain so-called
matched and bounded perturbations during sliding mode dynamic behaviour, which
may be considered as “actuator faults” and the SMOprovides an excellent framework
for robust estimation and reconstruction of faults [9], using the idea of equivalent
injection signals. During sliding the effect of the fault on the sliding motion is elim-
inated but it can be shown that the equivalent injection signal becomes a very good
estimate of the fault signal itself. The original formulation applies only to matched
actuator faults, which are matched in the sense that they act within one or more of
the system control input channels. The work of [9] was further developed by [31] to
enable sensor faults to be estimated using an augmented system to make the sensor
faults appear as matched actuator faults. Further research discussion on fault esti-
mation for decentralized systems based on the so-called canonical form SMO can
be found in [36] describing how local decentralized system faults can be estimated.
They also discuss the relationship between the effects of interactions and faults in
the estimation. The design procedure for the canonical form of SMO requires several
state transformations making the algorithm complicated and not easy to implement
for interconnected systems. This chapter describes an important development of slid-
ing mode fault estimation based on the Walcott–Żak SMO which does not require
state transformations and is also directly applicable to estimation for both actuator
and sensor faults.

The remainder of this chapter is organized as follows. Brief reviews of the canon-
ical and Walcott–Żak SMOs are given in Sect. 2. In Sect. 3 a decentralized SMO is
described. Section4 develops the fault estimation design. To illustrate the power of
the design approach a tutorial example and amultimachine power system application
example are given in Sects. 5 and 6, respectively. A conclusion to the chapter is given
in Sect. 7.

In the chapter the symbol † denotes the pseudoinverse; ‖ · ‖ denotes the Euclidean
vector norm and induced matrix norm; � denotes the symmetric part of a matrix; Im
denotes the m dimensional identity matrix; s.p.d. denotes that a matrix is symmet-
ric positive definite; λmin and λmax denote the minimal and maximal values of an
eigenvalue λ, respectively.
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2 Sliding Mode Observer

By duality with the sliding mode control (SMC), the introduction of a nonlinear
feedback component in the SMO allows the error system trajectories to reach the
sliding surface in finite time, such that the error system is insensitive to faults and per-
turbations satisfying certain conditions. As useful background, this section provides
an outline of two SMO methods: the canonical form of SMO and the Walcott–Żak
SMO. Both of these SMO strategies follow the same basic sliding mode concepts of
existence and reachability and design of a sliding surface with respect to the output
error. Once the sliding surface is reached, the state estimation error will be asymp-
totically stable, subject to bounded disturbance and uncertainty. When dealing with
systems with faults (sensors, actuators, etc.) the faults must also have prescribed
bounds.

Consider a linear system expressed in the following state variable form:

ẋ(t) = Ax(t) + Bu(t) + Gf(y, u, t)

y(t) = Cx(t) (1)

where x ∈ R
n is the state vector, y ∈ R

p is the output vector, u ∈ R
m is the control

input, and f(y, u, t) ∈ R
q represents the perturbation including all the disturbance

and uncertainty in the system. The system matrices A, B, G, C are of appropriate
dimensions. The following Assumptions are made here:

Assumption 1 The pair (A, C) is observable.

Assumption 2 The matrices B, C, and G are of full rank and q ≤ p < n.

Assumption 3 The perturbation f(y, u, t) is unknown but bounded by

‖f(y, u, t)‖ ≤ α(y, u, t)

where α(y, u, t) is a known continuous scalar function.

Assumption 4 rank(CG) = rank(G) = q and the invariant zeros of the triple
(A, G, C) are in the left-hand complex plane, that is,

rank

[
sI − A G

C 0

]
= n + q, ∀ R(s) ≥ 0.

For simplicity, the time index is omitted and f(y, u, t) is replaced by f in the
remainder of this section.
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2.1 Canonical Form Sliding Mode Observer

In this section, the canonical form of SMO is reviewed briefly. This type of observer
was first developed by Uktin [33], i.e. it can be referred to as the Uktin observer.
Later, it was extended by many other researchers, e.g. [8, 37].

Suppose there exists a linear non-singular change of coordinates: x �→ T0x where

T0 =
[

N	
0

C

]

and the columns of N0 ∈ R
n×(n−p) span the null space of the output distribution

matrix C. With this change of coordinates, the system matrices become

T0AT	
0 =

[
A11 A12

A21 A22

]
, T0B =

[
B1

B2

]
, T0G =

[
0

G2

]
, CT	

0 = [0 Ip].

Since T0x =
[

x1
y

]
, the new coordinate system can be written as

ẋ1 = A11x1 + A12y + B1u

ẏ = A21x1 + A22y + B2u + G2f .

Consider the observer of the form

˙̂x1 = A11x̂1 + A12ŷ + B1u − A12ey
˙̂y = A21x̂1 + A22ŷ + B2u − (A22 − As

22)ey + v (2)

where As
22 is a stable design matrix and ey = y − ŷ. The switching component v of

the observer is designed as

v =
{

−ρ(y, u, t)‖G‖ P2ey
‖P2ey‖ , if ey 
= 0

0, otherwise

where the scalar function ρ(y, u, t) should be chosen such that it is larger than the
upper bound of the perturbation f , i.e.

ρ(y, u, t) ≥ α(y, u, t) + η

with a positive scalar η. The matrix P2 is an s.p.d matrix satisfying the Lyapunov
equation

As
22

	P2 + P2As
22 = −Qs

where Qs is an s.p.d. matrix of compatible dimension.
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From (2), the reduced-order error dynamics can be derived

ė1 = A11e1
ėy = A21e1 + As

22ey + v − G2f . (3)

In [8], it has been proved that if the observer system has the form of (2), then
the error system (3) is quadratically stable. Defining the state estimation error as
e = x − x̂, then the canonical form SMO is summarized as

ẋ = Ax̂ + Bu − Gley + Gnv

with the linear gain

Gl = T−1
0

[
A12

A22 − As
22

]
,

the nonlinear gain

Gn = ‖G2‖T−1
0

[
0
Ip

]
,

and the nonlinear switching function

v =
{

−ρ(y, u, t) P2ey
‖P2ey‖ , if ey 
= 0

0, otherwise.
(4)

The existence conditions of the canonical form SMO are summarized in the fol-
lowing Lemma whose proof can be found in [8].

Lemma 1 Given the system (1) represented by (A, G, C) with p > q and rank
(CG) = q, then there exists a linear non-singular change of coordinates: x �→ T0x
such that the system (Ā, Ḡ, C̄) in the new coordinates has the following structure:

(1) The system matrix could be written as

Ā =
⎡
⎣

A11 A12[
A211

A212

]
A22

⎤
⎦ , A211 = [0 A0

21], A11 =
[

A0
11 A0

12
0 A0

22

]

where A0
11 ∈ R

r×r and A0
21 ∈ R

(p−q)×(n−q−r) for some r ≥ 0 and the pair (A0
22, A0

21)

is observable. Furthermore, the eigenvalues of A0
11 are the invariant zeros of

(A, G, C).
(2) The disturbance distribution matrix has the form

Ḡ =
[

0
G2

]

where G2 ∈ R
q×q is a non-singular matrix.
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(3) The output distribution matrix has the form

C̄ = [0 T]

where T ∈ R
q×q is an orthogonal matrix.

It follows from Lemma 1 that the system in the new coordinates is

˙̄x = Āx̄ + B̄u + Ḡf

ȳ = C̄x̄.

Recently, [30] developed the following LMI-based algorithm for the canonical form
SMO.

Step 1. Check that rank(CG) = q and the eigenvalues of A0
11 have negative real

parts. If not, the approach is not applicable.

Step 2. Define two symmetric matrices P̄ ∈ R
n×n and X̄ ∈ R

n×n , and an addi-
tional matrix Ȳ ∈ R

n×p for the linear gain matrix design.

Step 3. Form the following LMIs:

Minimize trace(X̄), subject to

P̄ =
[

P11 P12

P	
12 P22

]
> 0,

[−P̄ I
I −X̄

]
< 0

[
P̄Ā + Ā	P̄ − C̄	Ȳ P̄

� −W−1

]
< 0

where the matrices W and V are s.p.d. matrices.

Step 4. Part the resultingmatrix P̄ to obtainP11,P12 andP22 as defined in (5). Com-
pute L̄ = P−1

11 P12, P̄2 = P22 − P	
12P−1

11 P12 and P2 = TP̄2T	 where T is the orthog-
onal matrix defined in Lemma 1.

Step 5. The observer gain matrices (in the new coordinates) are calculated by

Gl = T	
0 P̄−1Ȳ, Gn = ‖G2‖T−1

0

[−L̄T	
T	

]
.

The nonlinear switching part is the same as (4).



250 Z. Huang et al.

2.2 Walcott–Żak Observer

The Walcott–Żak observer is first developed in [34]. It is also referred to as a
“Lyapunov-based” observer because the observer design is directly based on Lya-
punov functions. However, the Walcott–Żak observer includes, in addition to the
Lyapunov function formulation, an extra matrix equation constraint. In this section,
the basic idea of the Walcott–Żak observer is reviewed.

Consider an SMO for the system (1) as

˙̂x = Ax̂ + Bu + LCe + Knv

ŷ = Cx̂ (5)

where x̂ ∈ R
n and ŷ ∈ R

p are the estimate state and output vector, respectively,
e = x − x̂ is the estimation error. L and Kn are the matrices to be determined. v is
the switching component of the SMO gain with the following form

v =
{

ρ(y, u, t) σ
‖σ‖ , if σ 
= 0

0, others
(6)

where ρ(y, u, t) is chosen such that ρ(y, u, t) ≥ α(y, u, t) + η for a given positive
scalar η and a design matrix F. σ ∈ R

p is the sliding surface defined as

σ = FCe = F(y − Cx̂) = Fey. (7)

Combining (1) with (5) gives the error dynamics

ė = (A − LC)e + Gf − Knv. (8)

The basic idea of the Walcott–Żak observer is to calculate the matrices L and F
such that (A − LC) is stable and satisfies the conditions

G	P = FC (9)

P(A − LC) + (A − LC)	P = −Q (10)

where P and Q are s.p.d.matrices. The main problem of theWalcott–Żak observer is
how to develop the most effective solution approach for (9) and (10). In the original
paper [34], the solution of (9) was assumed to be known. Later, [6] pointed out
that the solvability of (9) and (10) was equivalent to the conditions outlined in the
following Lemma 2.

Lemma 2 ([6]) The solution to (9) and (10) could be found if and only if
rank(CG) = rank(G) and the invariant zeros of (A, G, C) are in the left-hand com-
plex plane.
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Design the switching gain matrix Kn of the observer (5) as

Kn = P−1C	F	. (11)

Theorem 1 is given to obtain the observer design gains.

Theorem 1 Given the system (1), design an observer of the form (5) with (6), (7),
and (11). If the conditions (9) and (10) are satisfied, the observer (5) will track the
system state trajectories robustly and become insensitive to the perturbations.

Proof 1 Following the derivation of the classical sliding mode system theory, two
steps are required to prove the Theorem: (1) Ensure that the sliding surface can
be reached and (2) Prove that the error system is stable after the sliding surface is
reached.

Consider a Lyapunov function

Ve = e	Pe.

It follows from Assumption 3, (6) and (9)–(11) that the time derivative of Ve along
the error dynamics (8) is

V̇e = e	[P(A − LC) + (A − LC)	P]e + 2e	PGf − 2e	PKnv

= −e	Qe + 2e	C	F	f − 2e	C	F	v

= −e	Qe + 2σ	f − 2σ	v

≤ −e	Qe + 2‖σ‖(‖f‖ − ρ(y, u, t))

Since ‖f(y, u, t)‖ ≤ α(y, u, t) andρ(y, u, t) ≥ α(y, u, t) + η, then V̇e can be further
written as

V̇e ≤ −e	Qe − 2‖σ‖η ≤ 0.

This implies that the error dynamics are quadratically stable, and it also explains the
reason why the solution of Eq. (9), i.e. G	P = FC, is required.

Next, consider the Lyapunov function for the sliding surface

Vy = 1

2
e	
y (CP−1C	)−1ey

whose time derivative along the error dynamics (8) is

V̇y = e	
y (CP−1C	)−1C(A − LC)e + e	

y (CP−1C	)−1CGf − e	
y (CP−1C	)−1CKnv.
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Note that G = P−1C	F	, it follows from (6) and (11) that

V̇y = e	
y (CP−1C	)−1C(A − LC)e + e	

y F	f − e	
y F	v

= e	
y (CP−1C	)−1C(A − LC)e + σ	f − σ	v

≤ e	
y (CP−1C	)−1C(A − LC)e + ‖σ‖(‖f‖ − ρ(y, u, t))

≤ ‖ey‖[(CP−1C	)−1C(A − LC)e − ‖σ‖η].

Define 0 < η̃ ≤ ‖σ‖η. Since the error dynamics (8) are asymptotic stable, the
trajectory of the error dynamics will enter the following domain in finite time

Ω = {e|‖(CP−1C	)−1C(A − LC)‖‖e‖ < η̃}.

Thus, V̇y < −‖ey‖η̃ < 0, which implies that the sliding surface σ = Fey = 0 can be
reached in finite time and remain there subsequently. This completes the proof.

2.3 Comparison of the Two Types of SMOs

The main differences between the canonical form SMO and Walcott–Żak observer
are as follows:

• The choice of the gain matrix in the sliding surface. In the canonical form SMO,
when the sliding surface is reached, it follows that ey = 0 since P2 is an s.p.d.matrix
(invertible and full rank). However, as F ∈ R

q×p in the conventional Walcott–Żak
observer, F is not required to be full rank. Hence, once the sliding surface is reached,
ey = 0 cannot be guaranteed when the system reaches the sliding surface. For this
reason, [8] pointed out that the Walcott–Żak observer does not necessarily track the
system outputs perfectly.

• Compared with the Walcott–Żak observer, the canonical form SMO does not
require the solution of (9), i.e. G	P = FC. However, the canonical form SMO does
require triple state transformations during the design procedure [8]. A consequence
of the use of these transformations is that after designing the observer gain matrices
the system state must be transferred back into the original coordinates. Although
the complexity of the triple transformation gives enhanced accuracy and a better
understanding of the observer structure [8], it does lead to the increased SMO design
complexity and this is particularly important when considering practical decentral-
ized system design problems. This is the main reason why theWalcott–Żak observer
is used here to achieve state and fault estimation for decentralized systems.

To summarize, the advantages of the Walcott–Żak observer, compared with the
canonical form SMO, is that it requires no state transformation and thus has simpler
structure if (9) can be solved. Recently, [4, 35] proposed a direct solution approach
via the use of LMIs to this problem. It can be shown that the observer parameters are
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determined by solving only a single LMI formulation. Although this method has less
design freedom compared with the canonical form SMO, to a certain extent it facili-
tates the solvability of the Walcott–Żak observer. In the next section, a modification
as well as an LMI formulation is given to the Walcott–Żak observer. Following that,
the Walcott–Żak observer is extended to decentralized system problems.

3 Decentralized Walcott–Żak Observer

3.1 A Modification and an LMI Approach
to Walcott–Żak Observer

It was stated in [8] that the null space of the sliding surface gain matrix F spanned
by ey in the original formulation of the Walcott–Żak observer is non-empty, i.e.
Fey = 0 for some ey 
= 0 (the trivial solution).Hence, if the sliding surface is designed
by σ = Fey, the observer does not necessarily track the system outputs perfectly.
Actually, this statement is not complete, as the system will still track the output
perfectly in finite time. But, when the sliding surface is reached, the output error ey
might not be identically zero.

In the method proposed in this section, instead of using Kn = P−1C	F	, the gain
matrix Kn = P−1C	 is chosen. The design of the Walcott–Żak observer directly
follows the procedure in Sect. 2.2. In this case, the sliding surface can be designed as
σ = ey. This modification does not change the essential properties of the Walcott–
Żak observer whilst guaranteeing that the output error becomes zero after reaching
the sliding surface.

It could be argued that the equality condition, i.e. G	P = FC, adds some com-
plexity to the derivation and solution approach of the Walcott–Żak observer. This
equality condition is complicated to solve using algebraic methods, for which more
details can be found in [15]. However, [4, 35] propose a structured LMI approach by
pre-structuring the s.p.d. matrices in a Lyapunov function. This leads to an effective
solution to the Walcott–Żak observer problem.

According to [4, 35], an LMI approach is given in Theorem 2 to obtain the design
matrices of the Walcott–Żak observer (5) with σ = ey.

Theorem 2 Equations (9) and (10) can be solved by finding s.p.d. matrices W1 ∈
R

(n−m)×(n−m), W2 ∈ R
p×p and a general matrix Y ∈ R

n×p such that

G̃W1G̃	 + C	W2C > 0 (12)

(G̃W1G̃	 + C	W2C)A + A	(G̃W1G̃	 + C	W2C) − YC − C	Y	 < 0. (13)
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Then one can get the solution

P = G̃W1G̃	 + C	W2C, L = P−1Y, F = G	C	W2

where G̃ is the orthogonal matrix of G, i.e. G̃	G = 0.

Proof 2 Following the design procedure in Sect. 2.2, the proof is similar to that given
in [4, 35] and the details are omitted here.

Remark 1 The LMIs (12) and (13) can be solved directly using MATLAB LMI
tools. Compared with [30], Theorem 2 simplifies the design algorithm significantly.
It should also be noted that the design of the matrices L and P can be separated.
From Theorem 2, it can be noted that the LMI (13) contains two variables. If there
exists a matrix L which makes (A − LC) stable, P can be obtained by solving

(G̃W1G̃	 + C	W2C)A + A	(G̃W1G̃	 + C	W2C) < 0.

This means that the linear component of the SMO and the discontinuous (nonlinear)
component of the SMO can be designed separately. However, although the design of
L does not affect the solvability of the LMIs (12) and (13), it does affect the feasible
solution region of (13).

3.2 Decentralized Walcott–Żak Observer Design

For the decentralized system problem, in contrast to the single (centralized) system
structure used in (1), there always exist interaction terms. However, the interaction
terms of the overall system can always be regarded as bounded uncertainties if
the overall system has proper local controllers. The influence of the interactions
in the estimation error of each local observer is unavoidable unless each interaction
satisfies the corresponding (local) rather restrictive observer matching condition:
rank(CG) = rank(G). The constraint of the known upper bound of the perturbations
can be relaxed by an adaptive mechanism described by [12, 13].

Now, assuming that for a decentralized system with N subsystems, the local
controllers arewell designed such that the overall system is stable and the interactions
are bounded. Consider the i th subsystem in the form of

ẋi = Aixi + Biui + Gi fi (xi , u, t) + Mihi (x, u, t)

yi = Cixi (14)

where xi ∈ R
ni is the state vector, yi ∈ R

pi is the output signal, and ui ∈ R
m is the

control input. fi (xi , ui , t) ∈ R
qi represents the system perturbation. The matrices

Gi , Mi and Ci are of compatible dimensions. hi (x, u, t) ∈ R
ri represents the inter-

action between subsystems, which do not satisfy the observer matching condition,
i.e. rank(CiMi ) 
= rank(Mi ). The following Assumptions are made here.
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Assumption 5 The invariant zeros of the triple (Ai , Gi , Ci ) are in the left-hand
complex plane, qi ≤ pi < ni , and rank(CiGi ) = rank(Gi ).

Assumption 6 The perturbation is bounded by a large enough unknown positive
scalar θi , i.e. ‖fi‖ ≤ θi < ∞.

Assumption 7 The interaction termhi (x, u, t) satisfies ‖hi (x, u, t)‖ ≤ 
i for some
unknown positive scalar 
i .

It follows from (14) that the overall system can be written as

ẋ = Ax + Bu + Gf(x, u, t) + Mh(x, u, t)

y = Cx (15)

where x = [x	
1 , . . . , x	

N ]	 ∈ R
n, y = [y	

1 , . . . , y	
N ]	 ∈ R

p, u = [u	
1 , . . . , u	

N ]	
∈ R

m , and

A = diag(A1, . . . , AN ), B = diag(B1, . . . , BN ), C = diag(C1, . . . , CN ),

M = diag(M1, . . . , MN ), f(x, u, t) = [f	
1 (x1, u1, t), . . . , f	

N (xN , uN , t)]	,

h(x, t) = [h	
1 (x, u, t), . . . , h	

N (x, u, t)]	, ‖h(x, u, t)‖ ≤ 
, 
 = diag(
1, . . . , 
N ),

‖f‖ ≤ Ψ < ∞, Ψ = [θ	
1 , . . . , θ	

N ]	.

Without causing confusion, fi (xi , u, t), f(x, u, t) and h(x, u, t) are replaced by fi , f
and h in the remainder of this section.

A local observer for the subsystem (14) is designed as

˙̂xi = Ai x̂i + Biui + Li (yi − ŷi ) + Knivi
ŷi = Ci x̂i (16)

with a nonlinear switching term vi ∈ R
pi and design matrices Li and Kni .

Thus, the observer system of the overall system is given by

˙̂x = Ax̂ + Bu + L(y − ŷ) + Knv

ŷ = Cx̂ (17)

where L = diag(L1, . . . , LN ), Kn = diag(Kn1, . . . , KnN ), and v = [v	
1 , . . . , v	

N ]	.
Define the estimation errors as e = x − x̂ and ey = y − ŷ, then the error system is

ė = (A − LC)e + Gf − Knv + Mh

ey = Ce. (18)

The LMI approach for the SMO (17) is designed using Theorem 3.
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Theorem 3 The aggregated state estimation error e is ultimately bounded if there
exist matrices W1 = diag(W1i , . . . , W1N ) and W2 = diag(W2i , . . . , W2N ) with
W1i ∈ R

(ni−mi )×(ni−mi ) andW2i ∈ R
pi×pi , and a matrixY = diag(Y1, . . . , YN )with

Yi ∈ R
ni×pi , such that

G̃W1G̃	 + C	W2C > 0

(G̃W1G̃	 + C	W2C)A + A	(G̃W1G̃	 + C	W2C) − YC − C	Y	 < 0. (19)

Then the observer gains are obtained by

Pi = G̃iW1i G̃	
i + C	

i W2iCi , Li = P−1
i Yi , Fi = G	

i C	
i W2i

and the nonlinear switching term is

vi = (‖Fi‖Ψi + ηi )
eyi

‖eyi‖ , Ψ̇i = ‖eyi‖, Ψi (0) ≥ 0 (20)

with a constant scalar ηi > 0.

Proof 3 The proof is achieved by contradiction in the following.
Consider the following Lyapunov function for the aggregate error system (18)

Ve =
N∑
i=1

e	
i Piei . (21)

It follows from (20) that the time derivative of (21) is

V̇e =
N∑
i=1

{
e	
i [Pi (Ai − LiCi ) + (Ai − LiCi )

	Pi ]ei + 2e	
i PiGi fi − 2e	

i C	
i vi

+2e	
i PiMihi

}

=
N∑
i=1

[
− e	

i Qiei + 2e	
yiF

	
i fi − 2e	

yivi + 2e	
i PiMihi

]

≤
N∑
i=1

[−e	
i Qiei + 2‖eyi‖‖Fi‖θi − 2‖eyi‖(‖Fi‖Ψi + ηi ) + 2e	

i PiMihi
]

≤
N∑
i=1

[−e	
i Qiei + 2e	

i PiMi
i + 2‖eyi‖(‖Fi‖θi − ‖Fi‖Ψi − ηi )
]

where −Qi = Pi (Ai − LiCi ) + (Ai − LiCi )
	Pi and according to (19), Qi is an

s.p.d. matrix.
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Since Ψ̇i = ‖ey‖ ≥ 0 and Ψi (0) ≥ 0, the adaptive gain Ψi is positive and increas-
ing (if ‖ey‖ ≡ 0, then the error system is already stable). Assume that the adaptive
gain Ψi is unbounded, then there exists a time t = t0 such that, for all t > t0, then
the adaptive gain satisfies

‖Fi‖Ψi ≥ ‖Fi‖θi − ηi

which implies that

V̇e ≤
N∑
i=1

(−e	
i Qiei + 2e	

i PiMi
i
)

≤
N∑
i=1

‖ei‖ [−λmin(Qi )‖ei‖ + 2‖PiMi‖
i ] . (22)

Note that the interaction term 
i is bounded and λmin(Qi ) > 0. If ‖ei‖ is
unbounded, then V̇e < 0 (i.e. ‖ei‖ is bounded), which leads to a contradiction. Thus,
‖ei‖ is bounded.

Moreover, define μ0i = λmin(Qi ) and μ1i =
√

λmax(M	
i PiPiMi ), it follows that

V̇e ≤
N∑
i=1

‖ei‖(−μ0i + 2μ1i
i ).

Following [30], the estimation error e is ultimately bounded with respect to the set

Ωε = {ei : ‖ei‖ < 2μ1i
i/μ0i + εi }

where εi > 0 is an arbitrarily small scalar.
Define the sliding surface as σi = Ciei . It follows from (18) that

σ̇i = Ci ėi = Ci (Ai − LiCi )ei + CiGi fi − CiKnivi + CiMihi . (23)

Bydefining anunknownpositive scalarϕi ≥ ‖(CiPiC	
i )−1FiCiMi‖
i + θi > 0, the

computation of the adaptive gain Ψi is equivalent to the computation of the estimate
of ϕi . Thus, consider the following Lyapunov function for the sliding surface

Vσ = 1

2

N∑
i=1

[
σ	
i (CiPiC	

i )−1σi + ‖Fi‖(ϕi − Ψi )
2
]
. (24)

Since ϕi ≥ ‖(CiPiC	
i )−1FiCiMi‖
i + θi > 0 and 
i > 0, ϕi ≥ θi and using

Assumption 6 and (20), the derivative of (24) along (23) is
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V̇σ =
N∑
i=1

[
e	
yi (CiPiC	

i )−1Ci (Ai − LiCi )ei + e	
yiF

	
i fi − e	

yivi

+e	
yi (CiPiC	

i )−1CiMihi − ‖Fi‖(ϕi − Ψi )‖eyi‖
]

≤
N∑
i=1

[
‖eyi‖‖(CiPiC	

i )−1Ci‖‖(Ai − LiCi )ei + Mihi‖

+‖eyi‖(‖Fi‖θi − ‖Fi‖Ψi − ηi ) − ‖eyi‖‖Fi‖(ϕi − Ψi )
]

≤ ‖eyi‖
[‖(CiPiC	

i )−1Ci‖(‖(Ai − LiCi )ei‖ + ‖Mihi‖) − ηi
]
.

From the above, define the gain ηi as

ηi ≥ ‖(CiPiC	
i )−1Ci‖

[
(Ai − LiCi )(2μ1i
i/μ0i + εi ) + ‖Mi‖
i

]
+ η0i

with a positive scalar η0i . Note that in finite time ei ∈ Ωε, which implies that ‖ei‖ <

2μ1i
i/μ0i + εi . It thus follows that

V̇σ ≤ −
N∑
i=1

η0i‖σi‖ ≤ 0. (25)

Integrating both sides of (25) from 0 to t yields

Vσ (0) ≥ Vσ (t) +
∫ t

0

( N∑
i=1

η0i‖σi (τ )‖
)
dτ ≥

∫ t

0

( N∑
i=1

η0i‖σi (τ )‖
)
dτ. (26)

Thus, for all t ∈ [0,∞),
∫ t
0

(∑N
i=1 η0i‖σi (τ )‖

)
dτ is always less or equal to Vσ (0).

Moreover, since Vσ (0) is positive and bounded, it follows from the Barbalat Lemma
that

lim
t→∞ (η0i‖σi (t)‖) = 0,

i.e. the sliding surface function is reachable. The error system trajectory converges
to the sliding manifold σi = eyi = 0. Furthermore, it should be noted that because
of (26), Vσ (t) ≤ Vσ (0), i.e. Vσ (t) is bounded. This also implies that ‖σi‖ and Ψi are
bounded for all t > 0.

The boundedness of the adaptive gain Ψi leads to a contradiction, since the
previous proof was achieved based on the Assumption that the adaptive gain Ψi is
unbounded. However, it can be shown below that the previous proof is valid, i.e.
the estimation error e is still ultimately bounded and the sliding surface function is
reachable with bounded Ψi .
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Assume that there is a semi-positive scalar such that Ψis ≥ 2‖Ci‖(‖Fi‖θi −
‖Fi‖Ψi − ηi ) and Ψis = 0 if the right-hand side of this inequality is less than zero.
Then the inequality (22) can be rewritten as

V̇e ≤
N∑
i=1

{
‖ei‖

[
− λmin(Qi )‖ei‖ + 2‖PiMi‖
i + Ψis

]}
.

Note that ‖ei‖ is still bounded and the set becomes

Ω̄ε = {ei : ‖ei‖ < (2μ1i
i + Ψis)/μ0i + εi } . (27)

Following the same proof procedure from (24) to (25), if

ηi ≥ ‖(CiPiC	
i )−1Ci‖

[
(Ai − LiCi )(2μ1i
i/μ0i + Ψis + εi ) + ‖Mi‖
i

]
+ η0i

is defined, then (25) still holds, leading to eyi = 0 in finite time. This completes the
proof.

Remark 2 From the proof above, it can be seen that the bounds for the interaction
and the perturbation are not required to be known a priori. This highlights the benefit
of using the adaptive mechanism.

Remark 3 The set (27) shows that the tracking accuracy is affected by (1). The
eigenvalues of Qi , i.e. the choice of the linear gain matrix L and s.p.d matrix P,
and (2) the norm bound of the interactions 
i and (3) the values of the sliding gain
functions Ψi and the parameters ηi . Thus, one can adjust the design strategy based
on these relationships.

3.3 Interaction Compensation

In Sect. 3.2, a decentralized Walcott–Żak observer was proposed for decentralized
systemwhose overall system contains interactions not satisfying thematching condi-
tion, i.e. rank(CiMi ) 
= rank(Mi ). However, in order to use the maximum capability
of the nonlinear term, a partition strategy is proposed in this section to divide the inter-
actions into two parts: matched part and unmatched part. In this way, the nonlinear
switching terms of the proposed decentralizedWalcott–Żak observer can compensate
both the perturbations and matched part of the interactions.

The partition strategy is as follows:

(1) Find matrices Gmi ∈ R
ni×pi and Ḡi ∈ R

pi×qi , i = 1, . . . , N , satisfying Gi =
GmiGi and rank(CiGmi ) = rank(Gmi ) = pi , such that for the i th subsystem, the
invariant zeros of the triple (Ai , Gmi , Ci ) are in the left-hand complex plane.
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(2) Find compatible matrices M̄1i , M̄2i ∈ R
pi×ri satisfying

Mi = GmiM̄1i + GmiM̄2i = M1i + M2i .

According to [35], there always exist matrices Pi and Fi such that G	
miPi = FiCi .

Thus, building an SMObased onPi andFi , it is easy to verify that the nonlinear terms
of SMO can compensate both the perturbations and interactions, i.e. Gmi fi (xi , ui , t)
and M1ihi (x, u, t). Therefore, the error domain is contracted because only parts of
the interactions M2ihi (x, u, t) need to be handled. However, it should be noted that
there sometimes exists more than one partition results, which might lead to different
obtained observer gains.

The switching nonlinear termof the decentralizedWalcott–Żak observer can reject
the perturbations and the matched part of the interactions in the error system. In this
respect, if the switching nonlinear part, the perturbations, and the matched part of
the interactions are taken off, then the observer design problem becomes an observer
that can deal with the remaining unmatched part of the interactions, for which H∞
optimization can be applied. Considering the overall system (15) and the observer
(17), the observer gain matrix L can be obtained by solving the LMI.

Minimize γ, subject to P > 0

⎡
⎣

A	P + PA − WC − C	W	 PM2 I
� −γ I 0
� � −γ I

⎤
⎦ < 0 (28)

where M2 = diag(M21, . . . , M2N ) and γ > 0 is a constant scalar. Then the observer
gain is determined by L = P−1W .

Note that the main problem of buildingWalcott–Żak observer is to find the matri-
ces P and F satisfying G	P = FC. Define P = G̃miW1G̃	

mi + C	W2C with

W1 = diag(W11, . . . , W1N ), W2 = diag(W21, . . . , W2N ), W = diag(W1, . . . , WN )

whereW1i ∈ R
(ni−pi )×(ni−pi ) andW2i ∈ R

pi×pi are s.p.d.matrices, andWi ∈ R
ni×pi .

The observer can then be designed using (17) and (20), with the observer gain L
obtained by solving the LMI (28). This approach can attenuate the worst case influ-
ence from interactions and perturbations acting in the state estimation error system,
which can be proved using a similar procedure as given for Theorem 2.

3.4 Optimal Observer Design

It should be noted that the LMI (28) is solved by minimizing the constant scalar γ

to a small value, which often leads to an observer gain L of large magnitude. For
practical application of an SMO, it is more acceptable that the size of the norm of
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the gain matrix L is minimized as much as possible, e.g. using an LMI formulation.
Therefore, a trade-off needs to be made between the observer gain magnitude and
the uncertainty attenuation level. To achieve this, the norms of W1, W2 and W are
restricted under some levels as follows.

Denote
W	W < βWI, βW > 0

and
G̃W1G̃	 + C	W2C < βpI, βp > 0.

These two inequalities can be written in the following LMI form:

[
βWI W
� I

]
> 0 and

[
βpI I

� G̃W̃1
˜̃G	 + C	W2C

]
> 0.

From these constraints, the desired bound could be given by

LL	 = P−1WW	P−1 < βWβ2
p I.

With these modifications, the H∞ optimization problem with respect to minimiz-
ing the effects (in the estimation error) of the unmatched perturbations and unmatched
interactions in the SMO becomes

Minimize γ + βW + βp, subject to P = G̃W1G̃	 + C	W2C > 0[
βWI W
� I

]
> 0,

[
βpI I
� G̃W1G̃	 + C	W2C

]
> 0

⎡
⎣

A	P + PA − WC − C	W	 PM2 I
� −γ I 0
� � −γ I

⎤
⎦ < 0. (29)

4 Decentralized Walcott–Żak Observer-Based
Fault Estimation

The mathematical representation of the i th subsystem of the LSS subject to actuator
and sensor faults is

ẋi = Aixi + Biui + Gi fai + Mihi (x, u, t)

yi = Cixi + Ei fsi (30)
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where fai ∈ R
qi and fsi ∈ R

li denote the actuator and sensor faults, respectively. The
other terms are defined the same as those in (14). Assume that ‖fai‖ ≤ θai < ∞ and
‖fsi‖ ≤ θsi < ∞ for some large enough unknown positive scalars θai and θsi .

In order to illustrate the fault estimation strategy better, it is assumed in the fol-
lowing design procedure that either an actuator or sensor fault is to be reconstructed
whilst the other (sensor or actuator fault) is absent. However, it is shown at the end
of this section that the proposed fault estimation strategy can estimate the actuator
and sensor faults simultaneously.

4.1 Actuator Fault Estimation

If the systems (30) contain only actuator faults, i.e. fai 
= 0 and fsi = 0, the decen-
tralized Walcott–Żak observer proposed in Sect. 2.2 can be used to reconstruct the
fault signals effectively. According to the description in Sect. 2.2, the local SMOs
are designed in the form of (16), and the local state estimation error system is given
in the form of (18).

Following the observer design procedure in Sect. 2.2, the reachability of the
decentralized Walcott–Żak observer is ensured and the state estimation error is
bounded: (1) In finite time, the sliding surface is reached and maintained, i.e.
Ciei = 0, and Ci ėi = 0. (2) After reaching the sliding surface, the state estimation
errors are bounded.

For simplicity, assume that after finite time, the state estimation error will enter
the domain

Ω̄ε = {ei : ‖ei‖ < ‖eBi‖}

where ‖eBi‖, i = 1, 2, . . . , N , are the estimation boundary constants which can be
calculated following the proof procedure in Sect. 2.2.

Since the expansion matrix Gmi for the i th subsystem is used, the rank condition
is satisfied, i.e. rank(CiGmi ) = rank(Gmi ) = pi . Moreover, Gi = Gmi Ḡi and Mi =
GmiM̄1i + G̃mi = M1i + M2i can be constructed. Thismeans that all the information
about the fai and some of the information about interactions, i.e. M1ihi (x, u, t), are
preserved in the output. In this case, using the equivalent output error injection signal,
after the sliding motion takes place, yields

0 = Ci (Ai − LiCi )ei + CiGi fai − CiKniveq,i + CiMihi (31)

where veq,i is the equivalent output error injection signal which plays the same role as
the “equivalent control” in sliding mode control [8]. The equivalent output injection
signal is represented by the values of the nonlinear switching terms vi defined by
(20), which is necessary to maintain the sliding motion.

Note that
CiGi = CiP−1

i C	
i F	

i Ḡi , CiKni = CiP−1
i C	

i
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and
CiMi = CiP−1

i C	
i F	

i M̄1i + CiM2i .

Multiplying each side of (31) by (CiP−1
i C	

i )−1, it follows that

veq,i = F	
i (Ḡi fai + M̄1ihi ) + (CiP−1

i C	
i )−1Ci [(Ai − LiCi )ei + M2ihi ].

Thus, the actuator fault is given by

fai = Ḡ†
i (F

†
i )

	veq,i − Ḡ†
i M̄1ihi − χi [(Ai − LiCi )ei + M2ihi ] (32)

where χi = Ḡ†
i (F

†
i )

	(CiP−1
i C	

i )−1Ci . Using the equivalent output injection, the
actuator fault estimations are f̂ai = Ḡ†

i (F
†
i )

	veq,i , i = 1, 2, . . . , N . Then consider
the following two cases:

Case 1. It holds that Ḡ†
i M1i = 0 and M2i = 0.

In this case, the interactions satisfy rank(CiMi ) = rank(Mi ) and they act within
a different channel of the system compared with the faults. It is easy to verify that the
switching nonlinear term of the observer can completely compensate the interactions.
Thus, the state estimation error e is quadratically stable and (32) can then be rewritten
as

fai = Ḡ†
i (F

†
i )

	veq,i − χi (Ai − LiCi )ei .

Since lim
t→∞ ei (t) = 0, it then follows that

fai = Ḡ†
i (F

†
i )

	veq,i = f̂ai

which means that the faults can be estimated precisely.

Case 2. It holds that Ḡ†
i M̄1i 
= 0 and M2i 
= 0.

It follows from (32) that

fai − f̂ai = −Ḡ†
i M̄1ihi − χi [(Ai − LiCi )ei + M2ihi ].

Following a similar procedure to Theorem 2, the local state estimation error system
reaches the domain recalled below in finite time

Ω̄ε = {ei : ‖ei‖ < ‖eBi‖}.

Meanwhile, as assumed in Sect. 2.2, ‖hi‖ ≤ 
i , it then follows that

‖fai − f̂ai‖ = (‖Ḡ†
i M̄1i‖ + ‖χiM2i‖)
i + ‖χi (Ai − LiCi )‖‖eBi‖. (33)
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If the distributionmatricesMi of the interactions do not satisfy the rank condition,
i.e. rank(CiMi ) 
= rank(Mi ), the reconstructed faults cannot track the real faults
precisely. However, according to (33), it can be seen that the fault estimation errors
are bounded.

Remark 4 It should be noted that the discontinuous part in (20), i.e. sign(ey) =
ey/‖ey‖ is either 0 or 1. This leads to the long-known twisting phenomenon of
the sliding mode theory. Edwards and Spurgeon [8] pointed out that by adding an
appropriate small positive scalar in the denominator, the twisting can be decreased
to an acceptable extent and thus a continuous fault estimation signal will result.
Following this idea, the nonlinear switching part of the observer (20) is modified
into

vi = (‖Fi‖Ψi + ηi )
ey

‖ey‖ + Δ
, Ψ̇i = ‖eyi‖, Ψi (0) ≥ 0.

where ηi > 0 is a constant scalar and Δ is a small positive scalar.

The proposed actuator fault estimation strategy based on the decentralized
Walcott–Żak observer for each subsystem can be outlined in Fig. 1.

Remark 5 The robust fault estimation given in the above analysis and design proce-
dure can be applied to a control system in which the uncertainties and/or faults can be
compensated within the feedback control structure [20, 21]. However, one powerful

Fig. 1 Actuator fault estimation strategy for the i th subsystem
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method of robust control, the sliding mode control (SMC) has a property capable of
compensating matched perturbations (complete compensation in the ideal case) [12,
13] or matched faults [14]. Since most of the actuator faults are matched, if the sys-
tem can tolerate the actuator faults with SMC, is it still valuable to use the proposed
fault estimation method? It seems that the functions of the actuator fault tolerance
using SMC and the actuator fault estimation using SMO overlap. However, looking
at the problem from a practical application standpoint, the answer to this question is
positive due to the following reasons:

(1) If the actuator fault is an actuator outage or the actuator is stuck, the actuator
is no longer able to function. Thus, even with powerful SMC, the fault cannot be
tolerated. Theonly solution to this problem is to replace the actuator. This is the reason
why practical plants must use redundant actuators. This is the case, for example in
aircraft where wing actuators are duplicated. Hence, the actuator fault estimation
using SMO is necessary to determine when the fault is significant for the second
actuator to be brought into action and to replace the assumed faulty one.

(2) If the actuator loses effectiveness, with SMC, the control input required by
the system stabilization or tracking makes the actuator overload. Thus, although the
actuator faults can be tolerated with SMC, it is still valuable to detect these faults so
one can decide whether the actuator should be replaced.

(3) If the actuator faults are considered as external disturbances (uncertainties),
and the compensation signal produced by SMC does not exceed the saturation of the
actuator, then there is no need to estimate the disturbance.

From the above discussion, it can be seen that for the case of actuator faults, the
best way is to detect (estimate) them instead of attempting to compensate them with
SMC. This deduction leads to another discussion about the capability of the SMC.
In practical problems, the actuator operates within practical bounds ±ω where ω

is a positive scalar. When applying SMC, since the choice of the gain ρ (the gain
of the nonlinear component of the SMO defined in (6)) should be larger than the
perturbation bound, i.e. ρ > ‖f‖, the actuator bounds ±ω limit the capability of the
SMC since ρ < |ω|. Thus, if an actuator fault occurs and its magnitude exceeds the
bounds±ω, the SMC cannot tolerate it. In this case, a fault detection function should
be considered to raise an alarm. When considering the combination of the SMC and
SMO, the SMC is designed to tolerate the disturbances and uncertainties while the
SMO is used to estimate the actuator faults in order to provide fault information to
the engineer.

4.2 Sensor Fault Estimation

In contrast to actuator fault estimation, the equivalent output injection is not suitable
to be used alone to reconstruct the sensor fault. The work by [8] proposed a case
when the sensor fault varies slowly, i.e. ḟsi ≈ 0, the equivalent output injection can
still be applied to get the approximate fault estimation. However, this constraint is
rather restrictive for sensor faults.
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An output filter is proposed by [31] as a compensator to reconstruct the output
signals based on use of the canonical form SMO observer. The idea of this strategy
is to use a filter to filter the outputs so that the augmented system (combination of
original system and filters) has reliable measurements. Thus, the sensor faults can be
treated as actuator faults. This section proposes a sensor fault estimation algorithm
using the decentralized Walcott–Żak observer as described in Sect. 2.2.

Consider the local subsystem state variables zfi ∈ R
pi for the filter

żfi = −Afizfi + Afiyi (34)

where (−Afi ) is a non-singular Hurwitz matrix and generally selected as Afi = aIpi
with a positive scalar a.

Substituting the system output Eq. (30) into the filter (34) yields

żfi = −Afizfi + AfiCixi + AfiEi fsi .

Then combining the filter and the state equation gives the following augmented
system:

[
ẋi
żfi

]
=

[
Ai 0

AfiCi −Afi

] [
xi
zfi

]
+

[
Bi

0

]
ui +

[
Mi

0

]
hi +

[
0

AfiEi

]
fsi

zfi = [0 Ipi ]
[

xi
zfi

]
. (35)

Denote zi = [x	
i z	

fi ]	, then the augmented system can bewritten in the following
system containing the actuator fault:

żi = A0izi + B0iui + M0ihi + G0i fsi
zfi = C0izi (36)

whereA0i ∈ R
(ni+pi )×(ni+pi ),B0i ∈ R

(ni+pi )×mi ,M0i ∈ R
(ni+pi )×ni ,G0i ∈ R

(ni+pi )×pi ,
and C0i ∈ R

pi×(ni+pi ).
The sensor faults become actuator faults in the augmented system (36). The same

algorithm described in Sect. 2.2 can be used to reconstruct the sensor faults. However,
considering thismethod, the following two crucial conditions still need to be satisfied:

(1) rank(C0iG0i ) = rank(G0i );

(2) All the invariant zeros of (A0i , G0i , C0i ) lie in the left-hand complex plane.

Inspired by [31], these two conditions are verified to be satisfied as follows. For
the satisfaction of the condition (1), it is easy to verify since that
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rank(C0iG0i ) = rank
(
[0 Ipi ]

[
0

AfiEi

] )
= rank

[
0

AfiEi

]
= rank(G0i ).

For the condition (2), construct the Rosenbrock system matrix P(z) based on the
matrices (A0i , G0i , C0i ) as

P(z) =
[
zI − A0i G0i

C0i 0

]
=

⎡
⎣
zI − A0i 0 0
−AfiCi zI + Afi AfiEi

0 I 0

⎤
⎦ .

Since the invariant zeros of (A0i , G0i , C0i ) are the values of z which make the matrix
P(z) loses rank. In this case, the matrix P(z) loses rank if and only if P̃(z) loses rank

P̃(z) =
[
zI − Ai 0
−AfiCi AfiEi

]
=

[
I 0
0 Afi

] [
zI − Ai 0
−Ci Ei

]
.

SinceAfi is invertible, the values of zwhichmake P̃(z) lose rank are the eigenvalues of
Ai . As the observer is designed to estimate the faults, the original system is expected
to be asymptotically stable. This means that if one can build a decentralizedWalcott–
Żak observer based on the original system, then a decentralizedWalcott–Żak observer
based on the augmented system can also be constructed.

It was stated in [31] that the choice of Afi does not affect the estimation signal but
affects the observer gains. Thus, the choice of Afi affects the accuracy of the sensor
fault estimation. As can be seen from the observer structure, the observer for the
augmented system estimates the filter outputs. The filtered outputs may not retain
a good sensitivity to the faults. If a low-pass filter is used in the presence of a high
frequency sensor fault, then the observer cannot estimate the fault properly. This is
because the fault effects appearing in the outputs of the filter are not the original
sensor faults. For this first-order filter, larger diagonal elements of Afi give better
estimation accuracy.However, large elements ofAfi might lead to high observer gains
and further lead to significant chattering effect on the observer state estimates. Thus,
the value of the diagonal elements should be chosen carefully so that the numerical
conditioning of the augmented system (35) can be maintained/established.

Remark 6 Note that since the sensor fault estimation can be converted into an actu-
ator fault problem, the combination of the proposed designs in Sects. 2.2 and 4.2
offers a way to simultaneously reconstruct the actuator and sensor faults.

5 Tutorial Simulation Study

To illustrate the observer and fault estimation algorithms, an example system com-
prising two interconnected linear subsystemswith nonlinear interconnections is given
as follows:



268 Z. Huang et al.

ẋ1 =
[
0 1
0 0

]
x1 +

[
0
1

]
u1 +

[
1 0
0 1

]
h1(x, t) + G1 fa1

y1 = [1 1]x1 + E1 fs1

ẋ2 =
⎡
⎣

−3 0 1
1 2 0
0 1 −1

⎤
⎦ x2 +

⎡
⎣
0
1
0

⎤
⎦ u2 +

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ h2(x, t) + G2 fa2

y2 =
[
0 1 0
1 1 0

]
x2 + E2 fs2 (37)

with the nonlinear interactions

h1(x, t) = α1 cos(x22)H1x, h2(x, t) = α2 cos(x11)H2x

where x = [x1; x2], α1 = 0.1, α2 = 0.5 and

H1 = 1√
10

[
1 1 1 1 1
1 1 1 1 1

]
, H2 = 1√

13

⎡
⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎦ .

Assume that the systems are already stabilized by the state feedback controller ui =
Kixi , i = 1, 2, whose gains are obtained as follows using pole placement:

K1 = [−70 − 19], K2 = [−22 − 17 − 43].

Consider the actuator and sensor faults using the fault estimation method proposed
in Sect. 2.2.

5.1 Actuator Faults Estimation

Assume that the system (37) is only affected by actuator faults, i.e. fsi = 0, i = 1, 2.
The actuator faults and their distribution matrices are assumed to be

G1 =
[
0
1

]
, G2 =

⎡
⎣
0
1
0

⎤
⎦ , fa1 =

{
0, 0 ≤ t ≤ 5

sin(2t), t > 5
, fa2 =

{
0, 0 ≤ t ≤ 8

1, t > 8
.

Defining an expansion matrix for the aggregated system leads to

Gm = diag(Gm1, Gm2) =

⎡
⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎦

.
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Fig. 2 System states (dashed lines) and their estimates (solid lines) of the Subsystem1with actuator
fault

A solution to the LMIs in (29) with γ = 2.1 gives

L1 =
[−0.2666

1.7987

]
, L2 =

⎡
⎣
0.0956 0.0974
1.5978 1.6081
0.0689 0.1334

⎤
⎦ .

TheMATLABsimulation results for the systemstate and actuator faults estimation
are shown in Figs. 3, 4, 5 and 6.

Figures2 and 3 imply that the system states are estimated with good accuracy
even in the presence of the actuator faults. Figures4 and 5 show that the actuator
faults are reconstructed with good accuracy.

5.2 Sensor Fault Estimation

Suppose there only exists sensor fault fs2 in the second subsystem. Following
Sect. 4.2 with a filter matrix Af2 = 20Ip2 , the new augmented subsystem is

[
ẋ2
żf2

]
=

[
A2 0

Af2C2 −Af2

] [
x2
zf2

]
+

[
B2

0

]
u2 +

[
M2

0

]
h2 +

[
0

Af2E2

]
fs2

zf2 = [0 Ip2 ]
[

x2
zf2

]
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Fig. 3 System states (dashed lines) and their estimates (solid lines) of the Subsystem2with actuator
fault
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Fig. 4 Actuator fault (dashed line) and its estimate (solid line) of the Subsystem 1
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Fig. 5 Actuator fault (dashed line) and its estimate (solid line) of the Subsystem 2

where E2 =
[
0
1

]
. The sensor fault fs2 is defined as

fs2 =

⎧⎪⎨
⎪⎩

0, 0 ≤ t ≤ 2

0.05(2 − t), 2 ≤ t ≤ 7

−0.1 sin(10(t − 7)), t > 7

.

The new matrix A02 for the augment system is given by

[
A2 0

Af2C2 −Af2

]
=

⎡
⎢⎢⎢⎢⎣

−1 0 2 0 0
1 2 0 0 0
0 1 −1 0 0
0 20 0 −20 0
20 20 0 0 −20

⎤
⎥⎥⎥⎥⎦

.

A feasible solution of the LMIs in (29) is

L1 =
[−0.1524

2.3168

]
, L2 =

⎡
⎢⎢⎢⎢⎣

0.3230 0.2860
2.0944 1.7770
0.4747 0.4023
2.5910 2.2790
3.1550 2.7050

⎤
⎥⎥⎥⎥⎦

.
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Fig. 6 System states (dashed lines) and their estimates (solid lines) of Subsystem 1 with sensor
fault
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Fig. 7 System states (dashed lines) and their estimates (solid lines) of Subsystem 2 with sensor
fault

The MATLAB simulation for the system states and actuator faults estimation is
carried out. Figures6 and 7 imply that the system states are estimated with good
accuracy even in the presence of the actuator faults. Figure8 shows that the proposed
observer in Sect. 4.2 can robustly reconstruct the sensor fault.
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6 Application to Multimachine Power System

A multimachine power system has been widely used to illustrate the decentralized
methods.The interactions of this systemare nonlinearwhichmakes itmore challenge.
Various research has been done based on this system recently, to list a few, [10, 18,
29, 32].

According to [32], an N -machine power system with steam valve control can be
described by the interconnection of N subsystems. Denote the state vector of each
machine as xi = [Δσi (t) ωi (t) ΔPmi (t) ΔXei (t)]	, then the dynamics of the i th
machine, i = 1, . . . , N , can be represented as

ẋi = Aixi + Bi ui + hi (x, t)

yi = Cixi (38)

where hi (x, t) = ∑N
j=1, j 
=i pi jGi j gi j (xi , x j ) is a nonlinear function vector charac-

terizing the interaction between subsystems.

Ai =

⎡
⎢⎢⎢⎣

0 1 0 0
0 −Di

2Hi

ω0
2Hi

0
0 0 −1

Tmi

Kmi
Tmi

0 Kei
Tei Riω0

0 −1
Tei

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎣

0
0
0
1
Tei

⎤
⎥⎥⎦ , C	

i =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ , Gi j =

⎡
⎢⎢⎢⎣

0

−ω0E
′
qi E

′
q j Bi j

2Hi

0
0

⎤
⎥⎥⎥⎦

and gi j (xi , x j ) = sin(σi − σ j ) − sin(σi0 − σ j0).
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The physical meaning of the system parameters of (38) are defined by

• ui is the control vector of the i th subsystem, ui = ΔXei ;
• yi is the output vector of the i th subsystem, yi = Δσi (t);
• σi is the rotor angle for the i th machine, in radians;
• ωi is the relative speed for the i th machine, in radians;
• Pmi is the per unit (pu) mechanical power for the i th machine;
• Xei is the pu steam valve aperture for the i th machine;
• pi j is a constant of either 1 or 0 (0 means no connection between the i th and j th
machines, while 1 means connection exists);

• Hi is the inertia constant for the i th machine, in seconds;
• Di is the pu damping coefficient for the i th machine;
• Tmi is time constant for the i th machine’s turbine, in seconds;
• Kmi is the gain of the i th machine’s turbine;
• Tei is the time constant for the i th machine’s speed governor, in seconds;
• Kei is the gain of the i th machine’s speed governor;
• Ri is the pu regulation constant for the i th machine;
• Bi j is the pu Nodal susceptance between the i th and j th machines;
• ω0 is the synchronous machine speed, ω0 = 2π f0, in radians;
• E

′
qi is the pu internal transient voltage for the i th machine, which is assumed to

be constant;
• σi0, Pmi0 and Xei0 are the nominal values of σi , Pmi and Xei , respectively;
• Δσi = σi − σi0 is the deviation of the rotor angle;
• ΔPmi = Pmi − Pmi0 is the deviation of the mechanical power;
• ΔXei = Xei − Xei0 is the deviation of the steam valve aperture.

Fig. 9 3-machine power
system
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In this simulation, a 3-machine system with the structure shown in Fig. 9 is used.
Using the method proposed in [18], one can determine that the interactions are in

the form of a quadratic constraint. The parameters of the 3-machine power system
(38) can be found in [18, 32].

Assume that the systems have been stabilized by the state feedback controllers
ui = Kixi , i = 1, 2, 3, with the following gains obtained via pole placement:

K1 = [−224.7592 − 21.7583 − 59.7609 − 2.4899]
K2 = [−217.7374 − 24.4425 − 52.6834 − 2.4268]
K3 = [−217.7374 − 24.4425 − 52.6834 − 2.4268].

Suppose that the system (38) is only affected by actuator faults fai , i = 1, 2, 3
with distribution matrices Gi , i = 1, 2, 3, respectively. The faults and distribution
matrices are defined as

G1 = G2 = G3 =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ , fa1 =

{
0, 0 ≤ t ≤ 5

sin(2t), t > 5

fa2 =
{
0, 0 ≤ t ≤ 3

0.5, t > 3
, fa3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ t ≤ 6

0.1, 6 < t ≤ 8

1.5, 8 < t ≤ 16

0.5, t > 16

.

A feasible solution of the LMIs in (29) is γ = 0.5 with

L1 =

⎡
⎢⎢⎣

0.6251
98.9215
−7.1268
3.0020

⎤
⎥⎥⎦ , L2 =

⎡
⎢⎢⎣

0.6251
86.9479
−7.2829
1.1291

⎤
⎥⎥⎦ , L3 =

⎡
⎢⎢⎣

0.6251
86.9479
−7.2829
1.1291

⎤
⎥⎥⎦ .

The MATLAB simulation for the system state and actuator faults estimation is
carried out. Figures10, 11, 12, 13, 14 and 15 imply that the system states are estimated
with good accuracy even in the presence of the actuator faults. Figure16 shows that
the actuator faults are reconstructed with good accuracy. It should also be noted that
the estimations of the actuator faults affect each other.

7 Conclusion

The purpose of this chapter is to develop a suitable framework for observer design for
decentralized systems based on the SMO. Both the Walcott–Żak and canonical form
SMOs are reviewed and to avoid the complicated transformations the Walcott–Żak
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Fig. 10 System states (dashed lines) and their estimates (solid lines) of the Subsystem 1
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Fig. 11 System states (dashed lines) and their estimates (solid lines) of the Subsystem 1
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Fig. 12 System states (dashed lines) and their estimates (solid lines) of the Subsystem 2
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Fig. 13 System states (dashed lines) and their estimates (solid lines) of the Subsystem 2
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Fig. 14 System states (dashed lines) and their estimates (solid lines) of the Subsystem 3
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Fig. 15 System states (dashed lines) and their estimates (solid lines) of the Subsystem 3
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Fig. 16 Actuator faults (dashed lines) and their estimates (solid lines)

SMO has been selected as the most appropriate state and fault estimation approach
for decentralized systems. The fact that state transformations are not required is a
big advantage for a complex decentralized system with a potentially large number of
interconnected subsystems. Furthermore, to simplify the design procedure, an LMI
strategy is used to develop the Lyapunov formulation. Furthermore, as a further con-
tribution theWalcott–Żak SMO is modified to avoid the inaccurate output estimation
when the sliding surface has been reached.

According to the SMO output injection property, the feedback switching term can
approximate the “matched” unwanted signal in the system. The so-called “equiva-
lent output injection” can then be used to estimate the actuator fault. Although the
canonical form observer has been researched extensively in the literature for the fault
estimation problem, a main contribution of this chapter is a discussion of the suitabil-
ity of the Walcott–Żak observer for state/fault estimation in decentralized systems.
For the sensor fault estimation problem and to keep to the standard form of SMO
(based on actuator faults), a filter is used to construct a suitable augmented system.
The sensor fault estimation problem is thus transferred into an equivalent actuator
fault estimation problem.

Both actuator and sensor fault estimation algorithms are applied in a tutorial exam-
ple to illustrate the effectiveness of the proposed estimation strategy. An example of
a three-machine system is then used to illustrate the feasibility of using this approach
on a physical system problem.
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Fault Diagnosis of Nonlinear
Differential-Algebraic Systems Using
Hybrid Estimation

Dirk Weidemann and Ilja Alkov

Abstract Modern technical systems often contain components capable for extensive
autonomous actions. Thus, an integrated system supervision is essential in enabling
an adequate reaction for compensation of unpredictable substantial variations. This
is addressed by fault detection, isolation and identification techniques discussed in
this article. Therefore, an overview is given about modelling of systems subject to
faults, continuous state estimation utilizing an unscented Kalman filter and hybrid
state estimation by the interacting multiple model approach. These methods are
generalized for application to nonlinear differential-algebraic equations, i.e. DAE
systems. DAE systems arise in such fields as discretization of partial differential
equations or optimization problems. However, the appearance of DAE systems most
often results from an object-oriented modelling (OOM) approach. Since OOM is
probably the most relevant approach for modelling complex systems, the general-
ization and adaptation of supervision methods to DAE is the principal subject of
this contribution. Finally, the proposed fault identification approach is applied to a
hydraulic system, and the related results are discussed in detail.

1 Introduction

As modern technical systems become more complex, often the likelihood that faults
occur increases. An appropriate way to compensate for effects of faults is to use
redundant hardware. For cost reasons, however, the deployment of redundant sys-
tems is uncommon if the faults do not lead to life-threatening situations. Rather, the
aim is to compensate for the effect of faults by diagnosing them and using an appro-
priate fault-tolerant control strategy. Thus, model-based fault diagnosis and (active)
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fault-tolerant control play an increasingly important role for complex systems and
are active research areas.

According to [6], active fault-tolerant control approaches usually require not only
to locate the fault, but also to estimate its type and magnitude, which is known as
fault identification. A significant amount of model-based approaches are proposed
for fault detection and fault isolation (cf. [6, 10, 12, 19]). However, there are fewer
approaches for fault identification. One of the first fault identification approaches
was proposed in [18] for linear systems and is based on the assumption that faults
lead to a change of the system parameters. Therefore, the faults can be identified
using online parameter estimation approaches. In contrast, in [29] a sliding mode
observer is proposed to identify actuator and sensor faults. This approach is also
only applicable to linear systems. Most systems, however, are characterized by a
significant nonlinear behaviour. An extension of the approach proposed in [29] to
a specific class of nonlinear systems is given in [9]. Though, the latter approach is
only applicable to identify actuator faults.

An alternative that offers the possibility to identify sensor, actuator and system
faults is a combined state and fault estimation in which the faults are modelled by
augmented state variables. A typical example of this kind of fault modelling is an
abrupt fault that is modelled as a constant parameter using a single augmented state
variable. Combined state and parameter estimation with a two-stage adaptive Kalman
filter is proposed in [31] as a basis for a fault-tolerant control scheme. If the system
is only subject to one fault, it is sufficient to use only a single model. However,
complex systems typically are subject to several faults such that not only a model
for the fault-free system but also an additional model for each fault has to be used.
In order to find which of these models fit best the actual system behaviour, a mode
estimation scheme is appropriate. As indicated in [17], mode estimation can be done
in the sense of hybrid estimation.

Common hybrid estimation schemes assume that a model is given in state-space
form. In the context of complex systems, object-oriented modelling (OOM) has
gained increasing attention within science and industry, since it reduces significantly
the effort needed to model technical systems of high complexity. This advantage is
obtained by hierarchical modelling, inheritance and the ability to interconnect com-
ponent models. As a consequence of connecting component models, the resulting
mathematical model describing the behaviour of complex systems consists not only
of ordinary differential equations but also of algebraic equations. Such sets of equa-
tions are called differential-algebraic equations (DAEs), also known as descriptor,
implicit, or singular systems. Note, however, that even though DAE systems are
the typical model class in the context of OOM, these systems also arise in such
fields as discretization of partial differential equations, optimization problems, or
approximation the fast dynamics of stiff ODE systems by algebraic equations.

In this article, we propose a hybrid estimation scheme for nonlinear DAE sys-
tems for fault identification purposes. Hence, the estimates consist of discrete- and
continuous-valued states. A hybrid modelling approach is given in which the discrete-
valued states represent the modes of the system, such that the discrete dynamics
include phenomena such as jumps in the states or switching of the vector field. The
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continuous-valued states represent the corresponding continuous dynamics of each
mode described by a nonlinear DAE system.

2 Differential-Algebraic Systems

Even though modelling of complex systems generally becomes easier if an object-
oriented modelling approach is used, this modelling approach typically leads to a
set of differential-algebraic equations. The class of DAE systems contains systems
given in the state-space form as a special case, but in general the properties of DAE
systems are more complex. Therefore, analysis of DAE systems and also synthesis
of controllers, observers and filters for DAE systems are more challenging than for
systems given in state-space form. This section discusses the difference between
DAE and ODE systems, giving a formal definition of a DAE system.

The most general form of a DAE system is a system of fully implicit first-order
DAEs

f(x, ẋ,u, t) = 0 (1)

where

det

(
∂ f
∂ ẋ

)
= 0 (2)

and f : Rnx × R
nx × R

nu × R → R
nx is a sufficiently differentiable vector-valued

function, implicitly dependent on the generalized states x ∈ R
nx of the DAE system,

the corresponding time derivative of the generalized states ẋ ∈ R
nx , time-dependent

input variables u ∈ R
nu and the time t ∈ R. The dimensions of the generalized states

and the input variables are given by nx and nu, respectively.
If (2) holds, according to the implicit function theorem, the fully implicit sys-

tem (1), which contains differential and algebraic equations, cannot be solved for ẋ
algebraically. Furthermore, the condition (2) may be satisfied only locally but not
globally, and the structural properties of the system may change significantly. For
the sake of simplicity, only DAE systems with invariable structural properties are
considered in the following.

2.1 Differentiation Index of DAE Systems

The core of the hybrid estimation presented in Sect. 5 consists of Kalman filters for
nonlinear DAE systems. Most Kalman filter approaches to nonlinear DAE systems
are applicable only to index-1 systems, whereas few approaches for higher index
problems exist (cf. [2]). Therefore, the concept of index is explained briefly. Several
concepts for the index of DAE systems are established in the literature. A detailed
overview of the concepts of differentiation, perturbation, geometric, strangeness,
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structural and tractability indices is given in [25]. However, the differentiation index
is the most widely used concept.

The differentiation index (cf. [8]) of a DAE system (1) is the smallest number of
differentiations μ ∈ N required to solve

⎡
⎢⎢⎢⎣

f(x, ẋ,u, t)
d
d t f(x, ẋ,u, t)

...
dμ

d tμ f(x, ẋ,u, t)

⎤
⎥⎥⎥⎦ = 0 (3)

algebraically for ẋ
ẋ = φ

(
x,u, u̇, . . . ,u(μ), t

)
(4)

as a function of the generalized states, the input variables, time derivatives of the
input variables and the time. The equation φ is referred to as the underlying ODE
corresponding to the original DAE system and may be an implicit equation alge-
braically solvable for ẋ. A frequently indicated disadvantage of the differentiation
index concept is the requirement of unique solvability making it unsuitable for over-
and underdetermined systems. In this contribution, it is assumed that the system is
uniquely solvable, which holds for most engineering problems.

2.2 Solution of DAE Systems

Solving nonlinear differential-algebraic systems is still a research subject, however,
several approaches are established in the literature. A number of direct integration
methods are applicable to specific classes of DAE systems (cf. [7, 11]). These meth-
ods often require a low differentiation index and/or a specific structure of the DAE
system. Probably, the most widely used solution method is a combination of an index
reduction technique (e.g. [24, 27]) and a direct numerical integration of an index-
reduced DAE formulation. This approach is implemented in popular commercial (e.g.
Dymola or MapleSim™) and open source (e.g. OpenModelica) simulation environ-
ments. Furthermore, solver implementations based on an equivalent strangeness-free
formulation of the DAE (cf. [22]), on Taylor series expansion (cf. [26]) and on nonlin-
ear programming (cf. [15]) are relevant for scientific as well as industrial applications.
The application of hybrid state estimation to DAE systems requires a description of
a solution concept, while computational aspects and the algorithmic implementation
of solution methods are less relevant. Therefore, a reformulation concept for a gen-
eral implicit nonlinear DAE system to the underlying ODE and algebraic constraints,
i.e. the restrictive manifold is given subsequently.
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Assume (1) is regular, i.e. uniquely solvable. The Jacobian ∂f/∂ ẋ is assumed to
be singular, and therefore two permutation matrices Px,0 and Pf,0 exist such that

Px,0x = [
xT

0 , zT
0

]T
, Pf,0f = [

fT
0 , gT

0

]T
, (5)

Pf,0
∂ f
∂ ẋ

PT
x,0 =

[
∂ f0
∂ ẋ0

∂ f0
∂ ż0

∂ g0

∂ ẋ0

∂ g0

∂ ż0

]
∧ det

(
∂ f0
∂ ẋ0

)
�= 0 (6)

hold and the DAE system can be decomposed to

f0(x0, ẋ0, z0, ż0,u, t) = 0, (7)

g0(x0, ẋ0, z0, ż0,u, t) = 0. (8)

Since ∂f0/∂ ẋ0 is regular, f0 can be solved locally for

ẋ0 = φ0(x0, z0, ż0,u, t). (9)

Furthermore, ẋ0 is substituted in g0 resulting in

g0(x0, z0,u, t) = 0, (10)

which does not depend on ż0, otherwise the previous decomposition would result in
additional components in x0.

Thereafter, g0 is differentiated with respect to time yielding

∂g0

∂x0
ẋ0 + ∂g0

∂z0
ż0 + ∂g0

∂u
u̇ + ∂g0

∂t
= 0. (11)

The Eq. (11) is an implicit DAE if ∂(d g0/ d t)/∂ ż0 is singular.
Again, proceeding with an equivalent decomposition, two permutation matrices

Px,1 and Pf,1 exist such that

Px,1z0 = [
xT

1 , zT
1

]T
, Pf,1

dg0

dt
= [

fT
1 , gT

1

]T
, (12)

Pf,1
∂

∂ ż0

dg0

d t
PT

x,1 =
[

∂ f1
∂ ẋ1

∂ f1
∂ ż1

∂ g1

∂ ẋ1

∂ g1

∂ ż1

]
∧ det

(
∂ f1
∂ ẋ1

)
�= 0 (13)

hold with

f1(x0, x1, ẋ0, ẋ1, z1, ż1,u, u̇, t) = 0, (14)

g1(x0, x1, ẋ0, ẋ1, z1, ż1,u, u̇, t) = 0. (15)
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Since ∂f1/∂ ẋ1 is regular, there exists a local solution

ẋ1 = φ1(x0, x1, ẋ0, z1, ż1,u, u̇, t). (16)

Moreover, ẋ0 and ẋ1 are substituted in g1 yielding

g1(x0, x1, z1,u, u̇, t) = 0, (17)

which is a function that does not depend on ż1, otherwise the previous decomposition
would result in additional components in x1.

Repeating this procedure with decomposition and differentiation μ times, where
μ is the differentiation index of the DAE, results in

fm
(
x0, . . . , xm, ẋ0, . . . , ẋm, zm, żm,u, . . . ,u(m), t

) = 0 ∧ det

(
∂ fm
∂ ẋm

)
�= 0, (18)

ẋm = φm
(
x0, . . . , xm, ẋ0, . . . , ẋm−1, zm, żm,u, . . . ,u(m), t

)
, (19)

gm
(
x0, . . . , xm, zm,u, . . . ,u(m), t

) = 0, (20)

dim
(
gμ

) = 0 ∧ dim
(
zμ

) = 0 (21)

for all m ∈ {0, 1, . . . , μ}. Furthermore, repeated substitution

zm−1 = PT
x,m

[
xT
m, zT

m

]T ∀ m ∈ {1, 2, . . . , μ}, (22)

ẋm = φm ∀ m ∈ {0, 1, . . . , μ} (23)

in (18)–(20) and reconstruction

x =
μ∏

m=0

[
Inx−dim(xm)−dim(zm) 0
0 PT

x,m

] ⎡
⎢⎣
x0
...

xμ

⎤
⎥⎦ (24)

yields

ẋ = φ
(
x,uμ, t

)
, (25)

g
(
x,uμ, t

) = 0, (26)

uμ(t) = {u, . . . ,u(μ)} (27)

with

φ =
μ∏

m=0

[
Inx−dim(xm)−dim(zm) 0
0 PT

x,m

] ⎡
⎢⎣

φ0
...

φμ

⎤
⎥⎦ , (28)



Fault Diagnosis of Nonlinear Differential-Algebraic Systems … 289

g = [
gT

0 , . . . , gT
μ

]T
. (29)

The presented reformulation determines the underlying ODE (25) and the restric-
tive manifold (26) corresponding to the DAE system given by (1). Since the restric-
tive manifold imposes an algebraic constraint on the generalized states, the system
obtained is obviously overdetermined. Consequently, only a subset of the general-
ized states can be initialized arbitrarily. According to the representation of the DAE
system as an underlying ODE and the associated restrictive manifold, the generalized
states x can be decomposed in the differential states xd ∈ R

nx,d and the algebraic states
xa ∈ R

nx,a with corresponding dimensions nx,d ∈ N and nx,a ∈ N. Hence, a common
form used for direct numerical integration is a semi-explicit index-1 DAE given as

ẋd = φd
(
xd, xa,uμ, t

)
, (30)

ga
(
xd, xa,uμ, t

) = 0 ∧ det

(
∂ga

∂xa

)
�= 0. (31)

This decomposition is not unique and is addressed by the index reduction procedure
(e.g. [13, 24, 27]). In this formulation the differential states can be initialized arbi-
trarily, whereas the consistent algebraic states are calculated in dependence of the
constraints. Thus, the corresponding state-transition function can be given directly
as

xd,k = xd,k−1 +
∫ tk

tk−1

φd
(
xd, xa,uμ, t

)
d t = ξd,k

(
xd,k−1, xa,k−1,uμ(·), tk−1, tk

)
,

(32)

xa,k = ξa,k
(
xd,k,uμ,k, tk

)
, (33)

where t{k−1,k} ∈ R with k ∈ N are the time instants, xd,{k−1,k} ∈ R
nx,d are the dif-

ferential and xa,{k−1,k} ∈ R
nx,a the algebraic states, ξd,{k−1,k} is the differential state-

transition function and ξa,{k−1,k} the algebraic state-transition function, at these time
instants. The deduced index-1 DAE formulation and the given state-transition func-
tions are utilized subsequently for estimation purposes.

3 Modelling of Systems Subject to Faults

Concerning modelling of systems subject to faults, it is necessary to distinguish
between the locations, where faults can occur, and between different fault charac-
teristics. Since faults can affect sensors, actuators and the system itself, these faults
commonly are referred to as sensor-, actuator- and system faults. Even though the
fault magnitude can posses an arbitrary characteristic with respect to time, it is often
modelled either by an abruptly changing signal (abrupt fault) or by a constantly
increasing signal (incipient fault).
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To identify the fault magnitude of an abrupt fault or the constant slope of an
incipient fault, it is appropriate to augment the differential states of the fault-free
system which is given by a nonlinear index-1 DAE system

ẋ(f)
d = φ

(f)
d

(
x(f)

d , xa,uμ, t
)

, (34)

g(f)
a

(
x(f)

d , xa,uμ, t
)

= 0 ∧ det

(
∂g(f)

a

∂xa

)
�= 0, (35)

y = h(f)
(
x(f)

d , xa,uμ, t
)

, (36)

where x(f)
d denotes the differential states of the fault-free system and φ

(f)
d the cor-

responding differential equations, g(f)
a the algebraic equations and h(f) the output

mapping.
Let x(ab)

d = [(x(f)
d )T, x(ab)

d,aug]T as well as x(in)
d = [(x(f )

d )T, x(in)
d,aug]T denote the aug-

mented state vector for a single abrupt and incipient fault, respectively. Then, mod-
elling an abrupt fault by ẋ(ab)

d,aug = 0 and the dynamics of an incipient fault by ẋ(in)
d,aug = s,

with s characterizing the slope, yields the augmented models

ẋ(ab)
d = φ

(ab)
d

(
x(ab)

d , xa,uμ, t
)

=
[
φ

(f)
d

(
x(ab)

d , xa,uμ, t
)

0

]
, (37)

g(ab)
a

(
x(ab)

d , xa,uμ, t
)

= 0 ∧ det

(
∂g(ab)

a

∂xa

)
�= 0, (38)

y = h(ab)
(
x(ab)

d , xa,uμ, t
)

, (39)

and

ẋ(in)
d = φ

(in)
d

(
x(in)

d , xa,uμ, t
)

=
[
φ

(f)
d

(
x(in)

d , xa,uμ, t
)

s

]
, (40)

g(in)
a

(
x(in)

d , xa,uμ, t
)

= 0 ∧ det

(
∂g(in)

a

∂xa

)
�= 0, (41)

y = h(in)
(
x(in)

d , xa,uμ, t
)

(42)

for the fault cases. As indicated by the superscripts (·)({f,ab,in}), each of these models
characterizes the behaviour of the system in the corresponding mode. Note that the
approach of state augmentation is not restricted to a single abrupt or incipient fault,
but can also be applied to represent more complex fault characteristics. In contrast
to simple fault characteristics, such as a single abrupt or incipient fault that can be
modelled by a single augmented state variable, complex fault characteristics typically
can only be modelled by more than one augmented state variable. The abrupt and
incipient faults are selected to illustrate the modelling of faults. Moreover, under
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the assumption that an appropriate estimation approach is used, it is possible to
distinguish between a large number of different faults if each fault model describes
only a single or a few faults. In contrast, if one fault model describes all faults, e.g.
the fault-free system is augmented by all faults, the augmented system model might
be unobservable. In general, the more faults are described by one model the more
likely it is that observability is lost.

Depending on whether a fault occurs or not, the system operates in different
modes. Let an operation mode m(·) be an element of the set M which contains all
fault modes as well as the fault-free mode. As the transitions between modes are
probabilistic but neither conditioned on the continuous states nor the continuous
inputs, the discrete behaviour is modelled by a Markov chain (cf. Sect. 5.1). The
continuous-time dynamics is integrated by associating a DAE system with each
state of the Markov chain. This yields a so-called probabilistic hybrid automaton.
A complete definition of a probabilistic hybrid automaton is omitted for brevity
but can be found in [16]. The state of the hybrid system is described by the triple
xh = (z, xd, xa) with z ∈ M , xd ∈ R

nx,d , xa ∈ R
nx,a and corresponding dimensions

nx,d, nx,a ∈ N. Assume, for the sake of simplicity, that the system is subject to one
abrupt and one incipient fault. Then the related hybrid automaton is depicted in Fig. 1
with M = {m(f),m(ab),m(in)}, where the labels of the arcs specify the transition
probabilities. Here m(f) stands for the behavioural mode of the fault-free system,
whereas m(ab) and m(in) indicate the modes if the system is subject to an abrupt and
an incipient fault, respectively. The continuous dynamics in each mode (or state) is
governed by a nonlinear index-1 DAE system.

Fig. 1 Hybrid automaton for a system subject to two faults
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4 Unscented Kalman Filter for Index-1 DAE Systems

The Unscented Kalman Filter (UKF) is an extension of the original Kalman filter
algorithm for the application to nonlinear systems, where the eponymous technique is
the Unscented Transformation (UT). The UT introduced in [21] is utilized for the cal-
culation of the mean and covariance of stochastic variables determined by a nonlinear
system (cf. also [20]). Therefore, deterministic sets of model-based state predictions
and output variables are evaluated. The number of elements in the evaluated sets is
relatively small in comparison to a particle filter with a comparable accuracy. Thus,
the key advantage of the UKF is the calculation method of the involved stochas-
tic moments avoiding a determination of any Jacobian of the state equations. As a
consequence, the estimation of highly nonlinear and stiff systems is typically more
accurate and reliable than by Kalman filter variants involving partial derivatives.
The computational complexity of the UKF is O(L3), where L is the dimension of the
vector of the estimated variables. However, the Extended Kalman Filter (EKF), prob-
ably the most frequently used and most simple Kalman filter variant for nonlinear
systems, has the same order of complexity (c.f. [30]).

The application and parameterization of model-based estimation methods to DAE
systems is substantially more complex than the corresponding techniques for ODE
systems. A dynamic state observer algorithm for nonlinear DAE systems is developed
in [3]. Moving horizon methods are utilized for state estimation to DAEs in [28] and
a variant of the EKF for DAE systems is described in [5]. Moreover, an approach
for the application of a particle filter to nonlinear index-1 DAEs is given in [14] and
an UKF variant for nonlinear DAE systems with index-1 is proposed in [23]. In the
following, a revised version of the latter filter, which has already been used for fault
detection (c.f. [1]), is presented.

The DAE formulation given by

xd,k = xd,k−1 +
∫ tk

tk−1

φd
(
xd, xa,uμ, t

)
d t + vx,d,k−1

= ξd,k
(
xd,k−1, xa,k−1,uμ(·), tk−1, tk

) + vx,d,k−1, (43)

ga
(
xd, xa,uμ, t

) = 0 ∧ det

(
∂ga

∂xa

)
�= 0, (44)

xa,k = ξa,k
(
xd,k,uμ,k, tk

)
, (45)

yk = hk
(
xd,k, xa,k,uμ,k, tk

) + vy,k (46)

is an index-1 system as discussed in Sect. 2.2, where t{k−1,k} ∈ R with k ∈ N are time
instants, xd,{k−1,k} ∈ R

nx,d are differential states, xa,{k−1,k} ∈ R
nx,a are algebraic states,

uμ,{k−1,k} ⊂ R
nu are input variables and corresponding time derivatives, y{k−1,k} ∈

R
ny are output variables, ξd,{k−1,k} is the differential state-transition function, ξa,{k−1,k}

is the algebraic state-transition function, h{k−1,k} is the output function, vx,d,{k−1,k} ∈
R

nx,d are stochastic differential state noise signals and vy,{k−1,k} ∈ R
ny are stochas-

tic output noise signals at these time instants. Furthermore, φd is the ODE part of
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the index-1 DAE system and ga is the restrictive manifold with the local solution
ξa for algebraic states. The stochastic processes vx,d,{k−1,k} ∼ N

(
0,Cvx,dvx,d,{k−1,k}

)
and vy,{k−1,k} ∼ N

(
0,Cvyvy,{k−1,k}

)
are assumed to be normally distributed white

noise processes independent of each other and other system quantities with zero
mean and known covariances at the corresponding time instants. Completing,
nx,d, nx,a, nu, ny ∈ N are corresponding dimensions and μ ∈ N is the differentia-
tion index of the original higher index DAE reduced to the given index-1 formula-
tion. Thus, xd,{k−1,k}, y{k−1,k} are stochastic quantities with E

[
xd,{k−1,k}

]
, E

[
y{k−1,k}

]
denoting the mean and Cxdxd,{k−1,k} = Cov

(
xd,{k−1,k} , xd,{k−1,k}

)
Cy y,{k−1,k} =

Cov
(
y{k−1,k}, y{k−1,k}

)
and Cxd y,{k−1,k} = Cov

(
xd,{k−1,k}, y{k−1,k}

)
the covariances.

As typical for Kalman filters, dual-time indices k − 1|k − 1, k|k − 1 and k|k are
introduced, denoting quantities that are determined considering model information
up to the time instant indicated by the left and actual system information, up to the
time instant indicated by the right index component. Furthermore, a function srm (·)
is introduced, denoting the matrix square root operation applicable to square positive
definite matrices as

srm (A) srm (A)T = A. (47)

The UKF for DAE systems is represented using matrix operations instead of con-
ventional set operations. Therefore, application of a function defined for a vector
argument to a matrix argument with equal number of rows means that this function
is applied to each column of the matrix. The result is a matrix with the same num-
ber of columns as the input matrix. If several matrix arguments are used instead of
vector arguments, the column numbers of the matrices have to be equal. The esti-
mation algorithm is structured as usual into the steps Initialization, Prediction and
Correction as given below. Thus, the initialization is executed at the beginning of
the estimation, whereas prediction and correction are repeated sequentially for each
taken measurement.

The weights for the scaled UT are defined by

wm =
[
2α2(nx,d + γ ) − 2nx,d, 11×2nx,d

]T

2α2(nx,d + γ )
(48)

and

wc = wm + [
(1 − α2 + β), 01×2nx,d

]T
, (49)

Ψ = I2nx,d+1 − wm11×2nx,d+1, (50)

Wc = Ψ diag (wc) Ψ T, (51)

where 0 < α ≤ 1, 0 ≤ β, 0 ≤ γ are scalar-valued set-up parameters of the UT,wm ∈
R

2nx,d+1 are the weights for the calculation of the mean and Wc ∈ R
2nx,d+1×2nx,d+1 is

the matrix-valued weight for calculation of the covariance. Further, I(·), 0(·) and
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1(·) denote identity, zeros and ones matrices of dimension specified in the index.
Remaining quantities are locally defined auxiliaries.

Initialization :
k − 1 = k0 (52)

E
[
xd,k−1|k−1

] = xd,0 (53)

Cxdxd,k−1|k−1 = Cxdxd,0 (54)

At the initial time instant tk0 , estimates of the initial differential states xd,0 and of the
corresponding covariance Cxdxd,0 are assumed.

Prediction :
Dxd,k−1|k−1 = [

0nx,d×1,− srm
(
Cxdxd,k−1|k−1

)
, srm

(
Cxdxd,k−1|k−1

)]
(55)

Sxd,k−1|k−1 = E
[
xd,k−1|k−1

]
11×2nx,d+1 + α

√
nx,d + γ Dxd,k−1|k−1 (56)

Sxa,k−1|k−1 = ξa,k−1
(
Sxd,k−1|k−1,uμ,k−1, tk−1

)
(57)

S∗
xd,k|k−1 = ξd,k

(
Sxd,k−1|k−1,Sxa,k−1|k−1,uμ(·), tk−1, tk

) + E
[
vx,d,k−1

]
11×2nx,d+1

(58)

E
[
xd,k|k−1

] = S∗
xd,k|k−1wm (59)

Cxdxd,k|k−1 = S∗
xd,k|k−1WcS∗T

xd,k|k−1 + Cvx,dvx,d,k (60)

Dxd,k|k−1 = [
0nx,d×1,− srm

(
Cxdxd,k|k−1

)
, srm

(
Cxdxd,k|k−1

)]
(61)

Sxd,k|k−1 = E
[
xd,k|k−1

]
11×2nx,d+1 + α

√
nx,d + γ Dxd,k|k−1 (62)

Sxa,k|k−1 = ξa,k
(
Sxd,k|k−1,uμ,k, tk

)
(63)

Sy,k|k−1 = hk
(
Sxd,k|k−1,Sxa,k|k−1,uμ,k, tk

) + E
[
vy,k

]
11×2nx,d+1 (64)

E
[
yk|k−1

] = Sy,k|k−1wm (65)

Cy y,k|k−1 = Sy,k|k−1WcSTy,k|k−1 + Cvyvy,k (66)

Cxd y,k|k−1 = Sxd,k|k−1WcSTy,k|k−1 (67)

In the calculation step (55)–(67), the means E
[
xd,k|k−1

]
, E

[
yk|k−1

]
as well as the

covariances Cxdxd,k|k−1, Cy y,k|k−1, Cxd y,k|k−1 are determined using the model and
the UT. The columns of the matrices composed of state and output values Sxd,k|k−1,
Sxa,k|k−1, Sy,k|k−1 are commonly referred to as sigma points. Remaining intermediate
variables are auxiliaries enabling a clear representation of the algorithm.

Correction :
Kxd,k = Cxd y,k|k−1C−1

y y,k|k−1 (68)

E
[
xd,k|k

] = E
[
xd,k|k−1

] + Kxd,k
(
ym,k − E

[
yk|k−1

])
(69)

Cxdxd,k|k = Cxdxd,k|k−1 − Kxd,kCy y,k|k−1KT
xd,k (70)
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In this final calculation step, the Kalman gain Kxd,k is determined. Thus, the mean
E

[
xd,k|k

]
and the covariance Cxdxd,k|k of the estimated differential states can be

obtained accordingly, considering the actual system measurements ym,k .
The substantial difference between the UKF variants for ODE and DAE systems

is the determination of the algebraic states Sxa,k−1|k−1 and Sxa,k|k−1 within the DAE
variant. This refers, first, to the consistent initialization of the differential state-
transition function for prediction in each considered discrete-time instant and second,
to the calculation of modelled outputs. Thus, the algebraic constraint imposed on
the generalized DAE states is satisfied by the estimation algorithm. Furthermore, the
modelled system measurements may depend on both the differential as well as the
algebraic states.

5 Hybrid Estimation for DAE Systems

As described in Sect. 3, it is appropriate to model systems subject to faults as hybrid
systems. Thus, in order to solve the fault identification task, both the discrete- and the
continuous-valued states have to be determined, which can be done using a hybrid
state estimation approach. Discussing the drawbacks of both the simplest and the
optimal hybrid estimation approach indicates why neither of them is applicable to
fault identification purposes. A suitable alternative is a suboptimal hybrid estimation
scheme such as the Interacting Multiple Model (IMM) approach. This approach
originated in the context of target tracking, but has also shown to be effective for fault
diagnosis if the continuous dynamics of each mode in the related hybrid automaton is
modelled by a set of ODEs, i.e. by an index-0 DAE system. Since the IMM approach
assumes that the discrete dynamics is modelled by a Markov chain of order one,
this will be introduced before proceeding with the aforementioned hybrid estimation
schemes for DAE systems.

5.1 Discrete-Time Markov Chains

A discrete-time Markov chain is a model for representing stochastic processes,
whereby state changes occur at discrete-time instants k ∈ N and the state-space is
either a finite or countable set. The characteristic property of a Markov chain is that
the value of the discrete state zk is only influenced by the value of the state zk−1, but
not by the values of the states zi with i ∈ {0, 1, . . . , k − 2}. In mathematical terms,
the Markov property is given by

P
(
zk = m(i)|zk−1 = m(j), . . . , z0 = m(	)

) = P
(
zk = m(i)|zk−1 = m(j)

)
(71)
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withm(·) ∈ M . The probability of zk being in the discrete state i or, if it comes to fault
diagnosis, in modem(i) given that the zk−1 is in modem(j) is called the state-transition
probability and denoted by

Pij = P
(
zk = m(i)|zk−1 = m(j)

)
. (72)

Assume that the number of discrete states nz = |M | is finite. Then the state-transition
probabilities can be arranged in a transition probability matrix T ∈ R

nz×nz , where
each element tij = Pij assigns the probability for a state-transition form zk−1 = m(j) to
zk = m(i) for all k ∈ N. Thus, the probability transition matrix possess the properties

tij ≥ 0 ∧
nz∑
i=1

tij = 1 (73)

for all i, j ∈ {1, . . . , nz}. Assume that the continuous dynamics in each state of the
automaton depicted in Fig. 1 are removed, then that automaton immediately reduces
to a Markov chain.

5.2 Hybrid Estimation Schemes

Non-switching hybrid estimation. The simplest hybrid estimation scheme is the
non-switching approach, which is also known as fixed model approach or static
case. In this approach, it is assumed that the system stays in one mode for the
entire time, i.e. the system does not switch to another mode during the estimation
process. Furthermore, a bank of q = |M | Kalman filters is implemented to perform
the estimation of the mode-conditioned mean

x̂(i)
k|k = E

[
xk|Yk,m(i)

]
(74)

and covariance

P(i)
k|k = E

[(
xk − x̂(i)

k

) (
xk − x̂(i)

k

)T |Yk,m(i)

]
(75)

of each modem(i) ∈ M , where xk = [xT
k,d, x

T
k,a]T denotes the concatenation of differ-

ential and algebraic states andYk = {y1, y2, . . . , yk} is the sequence of measurements
up to time instant k.

In order to estimate the discrete-valued variable, i.e. the mode the system is oper-
ating in, the most likely mode has to be determined. Applying Bayes’ theorem, the
probability of each mode at time instant k can be calculated recursively by

μ
(i)
k = P

(
m(i)|Yk

) = P
(
m(i)|yk,Yk−1

) = p
(
yk|Yk−1,m(i)

)
P

(
m(i)|Yk−1

)
p (yk|Yk−1)
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= p
(
yk|Yk−1,m(i)

)
μ

(i)
k−1∑q

j=1 p
(
yk|Yk−1,m(j)

)
μ

(j)
k−1

. (76)

The conditional probability density function p(yk|Yk−1,m(i)) in (76) can, according
to [16], be replaced by the likelihood function

Λ
(i)
k = e− 1

2 (r(i)
k )TS−1

k r(i)
k√

(2π)ny |S(i)
k |

, (77)

where r(i)
k = yk − ŷ(i)

k|k−1 is the residual of the i-th Kalman filter and S(i)
k is the cor-

responding residual covariance matrix. Thus, fault identification can be done by
exploiting the current hybrid estimate x̂h,k = (ẑk, x̂

(i)
k|k), where ẑk = m(i) is the most

likely mode with μ
(i)
k ≥ μ

(j)
k for all j ∈ {1, 2, . . . , q} and x̂(i)

k|k is according to (74) the
mode-conditioned mean.

Moreover, the mode probability μ
(i)
k is also used to determine the combined mean

x̂k = E [xk|Yk] =
q∑

i=1

P
(
m(i)|Yk

)
E

[
xk|Yk,m(i)

] =
q∑

i=1

μ
(i)
k x̂(i)

k|k (78)

and covariance matrix

Pk = E
[(
xk − x̂k

) (
xk − x̂k

)T |Yk
]

=
q∑

i=1

P
(
m(i)|Yk

)
E

[(
xk − x̂(i)

k

) (
xk − x̂(i)

k

)T |Yk,m(i)

]

+
q∑

i=1

P
(
m(i)|Yk

) (
x̂(i)
k|k − x̂k

) (
x̂(i)
k|k − x̂k

)T

=
q∑

i=1

μ
(i)
k P(i)

k|k +
q∑

i=1

μ
(i)
k

(
x̂(i)
k|k − x̂k

) (
x̂(i)
k|k − x̂k

)T
(79)

of the continuous-valued states.

Optimal hybrid estimation. Concerning the assumption of the non-switching
approach that the system has to stay in one mode, it is obvious that this approach is
only appropriate for faults, which occurred before the estimation process has been
started. In order to cope with faults, which occur during the estimation process, the
optimal hybrid estimation approach can be used. The switching between different
modes, or rather between different states of the hybrid automation, is modelled by a
Markov chain with known state-transition probabilities

Pij = P
(
m(i)

k |m(j)
k−1

)
, (80)
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where m(i)
k ,m(j)

k−1 ∈ M denote that the system is in mode m(i) at time k and in mode
m(j) at time k − 1, respectively.

Due to the switching, it is necessary to track all qk possible mode sequences

M(i)
k =

{
m(i0)

0 ,m(i1)
1 , . . . ,m(ik)

k

}
(81)

with i ∈ {1, 2, . . . , qk}, m(ij)
j ∈ M being the mode of the i-th mode sequence at time

instant j ∈ {0, 1, . . . , k}. In contrast to the non-switching case, the optimal hybrid
estimation does not require one Kalman filter for each modem(i) ∈ M but a filter bank

with one filter for each possible mode sequenceM(i)
k ∈ {M(1)

k ,M(2)

k , . . . ,M(qk)
k }. Note

that in this context the number of possible mode sequences increases exponentially
over time. These Kalman filters yield

x̂(i)
k|k = E

[
xk|Yk,M(i)

k

]
(82)

and

P(i)
k|k = E

[(
xk − x̂(i)

k

) (
xk − x̂(i)

k

)T |Yk,M(i)
k

]
(83)

for each mode sequence.
The estimation of the discrete-valued state is done by first calculating the proba-

bilities of the mode sequences as follows

υ
(i)
k = P

(
M(i)

k |Yk
)

= P
(
M(i)

k |yk,Yk−1

)
= 1

c
p
(
yk|Yk−1,M

(i)
k

)
P

(
M(i)

k |Yk−1

)

= 1

c
p
(
yk|Yk−1,M

(i)
k

)
P

(
m(ik)

k ,M(	)

k−1|Yk−1

)

= 1

c
p
(
yk|Yk−1,M

(i)
k

)
P

(
m(ik)

k |Yk−1,M
(	)

k−1

)
P

(
M(	)

k−1|Yk−1

)
(84)

with the normalisation constant c = ∑qk

j=1 p(yk|Yk−1,M
(j)
k )P(M(j)

k |Yk). Since the dis-
crete dynamics are modelled by a Markov chain, the probability of the current mode
depends only on the previous mode. Hence, (84) simplifies to

υ
(i)
k = 1

c
p
(
yk|Yk−1,M

(i)
k

)
P

(
m(ik)

k |m(	k−1)

k−1

)
P

(
M(	)

k−1|Yk−1

)

= 1

c
p
(
yk|Yk−1,M

(i)
k

)
Pi	 υ

(	)

k−1. (85)

Note that even though the Markov property has been exploited, the probability density
function is still conditioned on the entire mode sequence. The discrete-valued state
at time k is then given by the current mode m(ik)

k of the most likely mode sequence
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υ
(i)
k ≥ υ

(j)
k with j ∈ {1, 2, . . . , qk}, such that the hybrid state is given by x̂h,k = (ẑk =

m(ik)
k , x̂(i)

k|k).
Finally, the combined mean and covariance matrix are given by

x̂k = E [xk|Yk] =
qk∑
i=1

P
(
M(i)

k |Yk
)

E
[
xk|Yk,M(i)

k

]
=

qk∑
i=1

υ
(i)
k x̂(i)

k|k (86)

and

Pk = E
[(
xk − x̂k

) (
xk − x̂k

)T |Yk
]

=
qk∑
i=1

υ
(i)
k P(i)

k|k +
qk∑
i=1

υ
(i)
k

(
x̂(i)
k|k − x̂k

) (
x̂(i)
k|k − x̂k

)T
.

(87)

Hybrid estimation with interacting multiple model approach. Even though it is
possible to detect faults, which occur during the estimation process, a major drawback
of the optimal approach is the exponential grow of possible mode sequences. Thus,
the optimal approach cannot be realized in practice. An appropriate alternative is
a suboptimal hybrid estimation approach, such as the IMM approach that merges
mode sequences. As in the non-switching case, the IMM approach requires only a
filter bank with one Kalman filter for each mode. However, in contrast to the non-
switching approach, the Kalman filters share information with each other. For index-1
systems, this is done by calculating the initial mean and covariance of each mode
i ∈ {1, 2, . . . , q} according to the mixing step

[
x̃(i)

d,k−1

x̃(i)
a,k−1

]
=

q∑
j=1

λ
(ij)
k−1

[
x̂(j)

d,k−1|k−1

x̂(j)
a,k−1|k−1

]
(88)

and

P̃(i)
k−1 =

[
P̃(i)
xdxd,k−1 P̃(i)

xdxa,k−1

P̃(i)
xaxd,k−1 P̃(i)

xaxa,k−1

]

=
q∑

j=1

λ
(ij)
k−1

[
P(j)
xdxd,k−1|k−1 P(j)

xdxa,k−1|k−1

P(j)
xaxd,k−1|k−1 P(j)

xaxa,k−1|k−1

]
+ μij

[
�xd,ji�xT

d,ji �xd,ji�xT
a,ji

�xa,ji�xT
d,ji �xa,ji�xT

a,ji

]

(89)

at time instant k − 1 with �xd,ji = x̂(j)
d,k−1|k−1 − x̃(i)

d,k−1, �xa,ji = x̂(j)
a,k−1|k−1 − x̃(i)

a,k−1
and the mixing probability

λ
(ij)
k−1 = P

(
m(i)

k−1|m(j)
k ,Yk−1

)
= Pjiμ

(i)
k−1∑q

i=1 Pjiμ
(i)
k−1

(90)
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with i, j ∈ {1, 2, . . . , q}. As indicated by (88) and (89), neither the mixed mean nor the
mixed covariance matrix of the differential states depend on the algebraic states. Note
that the Kalman filter for index-1 systems only estimates the mean and covariance
matrix of the differential states, whereas the algebraic states are calculated such that
the algebraic constraints are met. Thus, the IMM algorithm only has to be set up for
the differential states and has the same structure as for systems given in state-space
form. Taking this into account, it seems reasonable to sketch briefly the steps of
the IMM algorithm and to illustrate one cycle of this algorithm in Fig. 2. A detailed
discussion can be found in [4].

1. Calculate all mixing probabilities λ
(ij)
k−1 with i, j ∈ {1, 2, . . . , q} according to (90).

2. Calculate the mixed initial mean x̃(i)
d,k−1 and covariance P̃(i)

xdxd,k−1 of the differential
states of each mode i ∈ {1, 2, . . . , q} according to the corresponding parts of (88)
and (89).

3. Perform Kalman filtering according to the algorithm given in Sect. 4 to calculate
x̂(i)

d,k|k , P
(i)
xdxd,k|k and the likelihood function Λ

(i)
k of each mode.

4. Calculate the mode probabilities

μ
(i)
k = P

(
m(i)

k |Yk
)

= Λ
(i)
k

∑q
j=1 Pijμ

(j)
k−1∑q

i=1 Λ
(i)
k

(∑q
j=1 Pijμ

(j)
k−1

) . (91)

Fig. 2 One cycle of the recursive IMM algorithm
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5. Calculate the combined mean and covariance matrix according to (78) and (79),
respectively, with the mode-conditioned mean values and covariance matrices
that have been computed in step 3 and the mode probabilities from step 4.

6 Numerical Results

The concept presented in the previous sections is particularly applicable to fault
identification of physical systems modelled as general DAEs which are representable
as an index-1 DAE system. Therefore, the faults considered for the supervision are
modelled in compliance with the described formalism. The essential substructure of
the supervision procedure is the appropriate physical state estimation performed by
a set of UKFs. In this section, the efficiency of the proposed approach is illustrated
with reference to a realistic simulated system.

The system considered is a hydraulic cylinder depicted in Fig. 3. The working
cycle is controlled by pressures imposed at the hydraulic ports pt1 and pt2 in order to
execute mechanical work at port pt3. Further, 5 energy storage elements are modelled.
These are compliances of the hydraulic compartments c1 and c2, an inertia of moved
masses aggregated to i1, a compliance of displacement limiting elements represented
by se2 and a compliance included in the mechanical load model. The transformation
from hydraulic to mechanical power takes place at the piston surfaces assigned
by tf1 and tf2. The dissipative elements in the hydraulic and mechanical domain
are involved by r1–r4 and r5–r6, respectively. Moreover, the ambient pressure is
represented by the element se1. The pressures in the hydraulic compartments and the
positions of the piston and mechanical port are measurable output variables (sample
time TS = 10 ms). These measurements are superposed additively by an appropriate
discrete-time white Gaussian noise process.

The nonlinear characteristics of the model are induced by equations describing
the mechanical load, hydraulic resistances as well as position limiting forces. Any
switching behaviour is avoided by the introduction of steep sigmoid functions. Fur-
thermore, the time characteristics of the differential states are significantly different.
As a consequence, the model exhibits a highly nonlinear and stiff behaviour.

Fig. 3 Simulated system:
Hydraulic cylinder
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The index-1 DAE model includes 5 differential and 41 algebraic equations. Hence,
the model is not presented completely here for sake of space but can be provided by the
authors on request. Subsequently, only the most essential equations are discussed in
detail. These are the differential equations as well as equations describing mechanical
load, position limiting forces and a typical implemented hydraulic resistance.

The energy storage elements mentioned before comply with the corresponding
differential constitutive equations

d

d t

⎡
⎢⎢⎢⎢⎣

pc,1

pc,2

vi,1

dse,2

dpt,3

⎤
⎥⎥⎥⎥⎦

= diag

⎡
⎢⎢⎢⎢⎣

ac,1

ac,2

ai,1

1
1

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

V̇c,1

V̇c,2

Fi,1

vse,2

vpt,3

⎤
⎥⎥⎥⎥⎦

(92)

giving the model of the differential states. In (92) pc,1, pc,2 indicate the pressures
in the hydraulic compartments, V̇c,1, V̇c,2 the corresponding volume flow rates and
ac,1, ac,2 the associated compliance coefficients. Moreover, vi,1 is the velocity of the
aggregated mass, Fi,1 the force applied to the mass and ai,1 the mass. Further, dse,2,
dpt,3 are the displacements of the piston and the mechanical port calculated as time
integrals over corresponding velocities vse,2, vpt,3.

The implemented mechanical load has a viscoelastic characteristic. Thus, the load
force Fpt,3 at the mechanical port pt3 is

Fpt,3 =
apt,3,3vpt,3

1 + e−apt,3,1vpt,3

1 + e−apt,3,1(dpt,3−apt,3,4)
+

dpt,3 − apt,3,5

apt,3,2

1 + e−apt,3,1(dpt,3−apt,3,5)
, (93)

where the previously introduced velocity vpt,3 and displacement dpt,3 of the port are
involved. Appropriate setting of parameters apt,3,{1,2,3,4,5} results in a realistic load
function. The piston position limiting force Fse,2 is modeled rather simple by

Fse,2 =
dse,2 − ase,2,3

ase,2,2

1 + ease,2,1(dse,2−ase,2,3)
+

dse,2 − ase,2,4

ase,2,2

1 + e−ase,2,1(dse,2−ase,2,4)
, (94)

i.e. it depends only on the displacement of the piston dse,2 but dampers at the end
positions are not considered. Again, the parameters ase,2,{1,2,3,4} are set in reference to
the technical system considered here. Both equations imply sigmoidal parts achieved
by exponential functions, which effect smooth activation and deactivation of the
forces according to the set parameter values.

Since all hydraulic resistances involved in the system are described by equivalent
models, the equations

�pr,1 = qr,1,2V̇r,1, (95)
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qr,1,1 = tanh(ar,1,1�pr,1)�pr,1 + ar,1,3

(
1 − tanh

(
tanh(ar,1,1�pr,1)�pr,1

ar,1,3

))
,

(96)

qr,1,2 = ar,1,2
√
qr,1,1 (97)

are given only for the component r1. Here, �pr,1 is the pressure drop across the resis-
tance, V̇r,1 the corresponding volume flow rate, qr,1,{1,2} are the auxiliary quantities
and ar,1,{1,2,3} the associated parameters. This model assure a numerically stable zero
crossing of the pressure drop when the flow direction changes, which is realized by
an approximation of the absolute value of the pressure drop in the calculation of the
hydraulic resistance coefficient using the tanh-function.

All remaining components are modelled object-oriented. According to the system
structure, a set of algebraic connection equations describes the power exchange
within the model. The set of non-differential constitutive and connection equations
are solvable for the algebraic states such that the hydraulic cylinder is modelled by
an index-1 DAE system.

The working cycle can be conveniently discussed considering the pressures at
the hydraulic ports u1, u2, the pressures in the hydraulic compartments pc,1, pc,2

and the displacement of the mechanical port dpt,3. A corresponding plot is given in
Fig. 4 where altering backgrounds indicate 4 distinctive phases of the working cycle.
During the first phase, the actuator moves forward until the mechanical load effects
a rapid deceleration. Then, in the second phase, the actuator executes effective work.
After an input pressure change, the actuator moves backwards. In the last phase, the
system is at rest in the initial position. Between these phases, characteristic transient
processes occur with significant high-frequency oscillations. These oscillations are
not apparent due to the scaling used in Fig. 4.

Three operation modes m(i) with i ∈ {1, 2, 3} are considered in the following:
m(1) stands for the fault-free operation, m(2) for the operation with an increased
internal leakage and m(3) for the operation with an increased external leakage. The
internal leakage can increase, if the piston sealing of the hydraulic cylinder is worn
or defective. If the piston rod sealing is affected, the system can lose hydraulic fluid
and operates with increased external leakage. The operation modes with increased
leakage are introduced in the simulated model by a modification of the resistance
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Fig. 4 Simulation results: Behaviour of the fault-free system
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coefficients of elements r3 and r4 by a factor 10sa,1 and 10sa,2 , respectively. Within the
hybrid state estimation concept, the quantities sa,1 and sa,2 are estimated by mode
allocated Kalman filters calculating the corresponding estimates xs,a,1 and xs,a,2. Thus,
fault identification is implemented by calculation of the quantities xs,a,1 and xs,a,2.

In order to rate how much the measurable system outputs are influenced by each
fault, measurable residua ey,i with i ∈ {1, 2, 3} are defined for each mode m(i) of the
noise-free system by

ey,i =
(
ys,inv

)T
absc (yi − y1)(

ys,inv
)T

absc (y1)
, ys = 1

τwc

∫ τ+τwc

τ

absc (y1) d t. (98)

Here yi ∈ R
ny with ny = 4 are the output variables of each mode, τwc = 1s denotes

the working cycle time range, ys,inv = [(ys,1)
−1, . . . , (ys,4)

−1]T is a component-
wise inverted output scaling factor with ys,i �= 0 for i ∈ {1, 2, 3, 4} and absc (·)
the component-wise absolute value function such that (ys,inv)

T absc (y1) �= 0 for
all t. Figure 5 gives the residua for the particular model and fault parameterisa-
tion.According to its definition ey,1 = 0 whereas ey,2 and ey,3 vary significantly within
the working cycle time range.

A hybrid state estimation is set up for the simulated system utilizing the IMM
approach. The simulation results are depicted in Fig. 6 for eight working cycles.
Altering operation modes (see Fig. 6a) are imposed to the simulated system in dif-
ferent working cycle phases by abruptly changing the fault magnitudes (see Fig. 7a).
Note that the performance of the algorithm strongly correlates with the previously
described residua. Or, worded differently, the larger the magnitude of ey,i, the better
is the ability to identify the related fault. Thus, the operation with increased external
leakage can be detected less accurate as the corresponding measurable residuum is
significantly smaller. The influence of the stochastic noise introduced in the measure-
ment is apparent when comparing the calculated mode probabilities in Fig. 6b, c. In
both cases the short response time of the estimation process enables operation mode
identification within approximately a fourth of the working cycle. The accuracy of
the mode estimation results from the efficiency of the implemented Kalman filters
and the small estimation error of the primary differential states x(·)

d .
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Fig. 5 Simulation results: Measurable residua ey,1, ey,2, ey,3
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Fault identification, however, does not only require to estimate the mode but also to
estimate the magnitude of the fault that is depicted in Fig. 7a. As shown in Fig. 7b, c, a
similar characteristic as for the mode estimation arise for the estimation of the fault
magnitude. In case of the noise-free system as well as in case of the system subject
to measurement noise, the ability to estimate precisely the fault magnitude correlates
with the measurable residua. Hence, the estimation of magnitude sa,1 is more accurate
than that of sa,2.

7 Conclusion

This article concerns advanced state estimation and fault identification methods. Par-
ticularly, the UKF and the IMM approach, which are well-known for systems given
in state-space form, are generalized to nonlinear differential-algebraic equations.
Therefore, properties of DAE systems and modelling of systems subject to faults
are discussed in detail. The key issue of the state estimation of DAE systems with
an UKF is the consideration of the model of the algebraic states within the estima-
tion algorithm. A suitable concept for index-1 DAE systems is the exclusion of the
algebraic states from the estimation procedure and its consistent calculation when
required. Augmenting this scheme, system supervision including fault identification
can be implemented utilizing the IMM approach. The applicability of the proposed
approach is illustrated by a numerical example that considers a working cycle of a
hydraulic cylinder. Even though the model properties of that system are challenging
and the induced faults have varying degrees of impact on the measured system out-
puts, the mode estimation as well as the magnitude estimation gives reliable results.
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Towards Robust Fault-Tolerant Model
Predictive Control with Constraints
for Takagi–Sugeno Systems

Piotr Witczak and Marcin Witczak

Abstract This chapter deals with the problem of a robust fault-tolerant model pre-
dictive control (RFT-MPC) for discrete-time nonlinear systems described by Takagi-
Sugeno models. The RFT-MPC is a mixture of the H∞-based parallel distributed
controllers and the fast model Predictive Control. The approach proposed in the
paper is based on a series of offline and online computations. For the given Takagi-
Sugeno system, PDC is designed without considering input and state constraints.
Moreover, the idea of robust invariant sets is employed to deal with both the input
and state constraints. This also provides an efficient way to introduce the MPC algo-
rithm. Therefore, enhancing the invariant set enlarges the domain of attraction. As
the robustness is achieved offline, the MPC is not employed until large enough faults
occur. Otherwise, it serves as a fault-tolerant control distributing any compensation
actions between actuators to avoid their saturation if possible. Finally, an illustrative
example is provided, proving the efficiency and quality of the proposed multi-stage
RFT-MPC.

1 Introduction

A continuous growth of the complexity, efficiency and reliability of industrial sys-
tems implies a continuous and rapid development in control and fault diagnosis.
An interconnection of these two paradigms is intensively studied under the name of
fault-tolerant control (FTC). The fault-tolerant control (FTC) systems are classified
into two distinct classes [32, 39]: passive and active. The passive FTC controllers [5]
are designed to be robust against a finite set of predefined faults and fault diagnosis
is needless. Such a design usually degrades the system performance. Contrary to the
passive ones, active FTC [9] schemes react to faults actively by reconfiguring control
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actions in such a way that the system stability and acceptable performance are main-
tained. To this end, the control system relies on the Fault Detection and Isolation
(FDI) [3, 19, 25, 33]. Most of the recent works treat the FDI and FTC problems
separately. Unfortunately, a perfect FDI is impossible and hence there always is an
inaccuracy related to this process. Thus, there is a need for integrated FDI and FTC
schemes for both linear and nonlinear systems [36].

A number of works have been published in the last decade on the FTC phenom-
ena. The book [17], which is mainly devoted to fault diagnosis and its applications,
provides some general rules for the hardware-redundancy-based FTC. In contrast,
the work [24] introduces the concepts of the active and passive FTC. It also goes
through the problem of performance and stability of the FTC under imperfect fault
diagnosis. The authors consider (under a chain of some, not necessary easy to satisfy
assumptions) the effect of a delayed fault detection and an imperfect fault identifica-
tion, but the fault diagnosis [20, 34] scheme is treated separately during the design
and no practical integration of the fault diagnosis and the FTC is proposed. The FTC
and FDI are also treated in the work [32, 37] where the author treats both prob-
lems simultaneously under one framework. Hence, in this work a similar integrated
approach is proposed.

The proposed approach deals with the above-mentioned difficulties by providing
an elegant way of incorporating fault diagnosis (particularly fault identification) into
the fault-tolerant control framework. A multi-stage procedure is proposed, which
begins with fault estimation, then the fault is compensated with a robust controller.
The robust controller is designed without taking into account the input constraints
related to the actuator saturation. Hence, the robust invariant set is employed, which
takes into account the input constraints. If the robust invariant set does not cover
the current state, then suitable predictive control actions are performed in order to
enhance the invariant set. This appealing property makes it possible to enlarge the
domain of attraction, making the proposed approach an efficient solution. Indeed, the
presented solution can be perceived as an extension of the recent developments in this
area [35], which shows a fault estimation and compensation strategy for nonlinear
systems. The novelty of the scheme consists of:

• introduction of robustness to disturbances, through theH∞ approach,
• introduction of the multi-stage procedure: fault estimation, fault compensation
with robust controller and predictive control enhancing the applicability of the
approach,

• extension of the work of [22] to the case with exogenous disturbances,
• incorporating a robust invariant set to coverH∞ controller design imperfections.

To fully present the reasoning path, the chapter is organized as follows. Section2
presents preliminaries regarding the problem taken under consideration. Robust fault
estimation and control approach is proposed in Sect. 3. Furthermore, Sect. 4 presents
the idea of a robust invariant set while Sect. 5 depicts an efficient robust predictive
fault-tolerant control strategy. The final part of the chapter contains the illustrative
example. For the readers convenience in a symbol list appears in the appendix.
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2 A General Description of the Fault-Tolerant Scheme

A nonlinear dynamic system can be described in a simple way by a Takagi-Sugeno
(TS) fuzzy model, which uses the sequence of linear models approximating nonlin-
ear behaviour in predefined regions, a parameter identification of an a-priori given
structure or transformation of a nonlinear model using the nonlinear sector approach
(see, e.g. [19, 27, 28]). According to this model, a nonlinear dynamic systems can be
linearized around a number of operating points. The fuzzy fusion of all linear model
outputs describes the global system behaviour. A Takagi-Sugeno model is described
by fuzzy IF-THEN rules. The presented structure may represent a nonlinear system
with a control-affine state equation. It has a rule base of M rules, each having p
antecedents, where i th rule is expressed as

Ri : IF s1k is F
i
1 and . . . and s pk is Fi

p,
THEN x f,k+1 = Ai x f,k + Biu f,k + Bi f k + W iwk,

(1)

where x f,k ∈ R
n stands for the state and u f,k ∈ R

r denotes the nominal control
input, f k ∈ R

r is the actuator fault, i = 1, . . . , M , Fi
j ( j = 1, . . . , p) are fuzzy sets

and sk =[s1k , s2k , . . . , s pk ] is a known vector of premise variables [19, 27]. It is of
course possible to employ the approach that can be dedicated for the case when
some of the premise variables are unmeasurable [2, 15]. Similarly, the approach can
be extended to the case when only some state variables are available, but this leads
to the need for employing observer-based schemes [35]. Although useful, for the
sake of presentation simplicity, the above-mentioned strategies are not included the
scope of this work; also, this can lead to more conservative solutions. Additionally,
wk ∈ l2 is an exogenous disturbance vector, while:

l2 = {
w ∈ R

n| ‖w‖l2 < +∞}
, ‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (2)

It is also assumed that the control limits are given in form:

− ūi ≤ ui,k ≤ ūi , i = 1, . . . , r. (3)

where ūi > 0, i = 1, . . . , r are particular control limits. Tomaintain the simplicity of
further deliberations, these limits are symmetrical around zero butwith an appropriate
scaling it is relatively easy to introduce non-symmetrical ones.

Given (sk, uk) and a product inference engine, the final output of the normalized
T-S fuzzy model can be inferred as:
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x f,k+1 =
M∑
i=1

hi (sk)[Ai x f,k + Biuk + Bi f k + W iwk],

= A(hk)x f,k + B(hk)uk + B(hk) f k + W(hk)wk, (4)

where hi (sk) are normalized rule firing strengths defined as

hi (sk) =
T p

j=1μFi
j
(s j

k )∑M
i=1(T

p
j=1μFi

j
(s j

k ))
, (5)

and T denotes a t-norm (e.g. product). The term μFi
j
(s j

k ) is the grade of mem-

bership of the premise variable s j
k . Additionally, the rule firing strengths hi (sk)

(i = 1, . . . , M) satisfy the following constraints

{∑M
i=1 hi (sk) = 1,

0 � hi (sk) � 1, ∀i = 1, . . . , M.
(6)

The main objective of the subsequent part of this contribution is to design the con-
trol strategy in such a way that the system (4) will converge to the origin irrespective
of the presence of the fault f k . The proposed control scheme is as follows:

u f,k = −K (hk)xk − f̂ k−1 + ck, (7)

while the predicted future input is described by:

u f, j =
{

−K (h j )x j − f̂ k−1 + c j , j = k, . . . , k + nc − 1,
−K (h j )x j − f̂ k−1, j ≥ k + nc.

(8)

where nc stands for the prediction horizon, K (hk) = ∑M
i=1 hi (sk)K

i is theH∞ Par-
allel DistributedCompensation (PDC) controller designed to achieve robustnesswith
respect to exogenous disturbances wk , f̂ k−1 is the fault estimate, which compensates
the effect of a fault, c j is a vector introducing additional design freedom, which
should be exploited when the fault compensation does not provide the expected
results due to the actuator saturation.

Alternatively in terms of online and offline layers of the proposed approach, the
procedure can be described as

Offline computation:

Step 1. for a predefined disturbance attenuation level μ > 0, design a robust
controller K (hk) by solving (28),

Step 2. determine the robust invariant set by solving (70) under the constraints
(61) and (69).
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Online computation: for each k,

Step 1. compute the fault estimate f̂ k−1 with (11),
Step 2. solve the optimisation problem (73),
Step 3. implement the first element of δk , i.e. ck .

An outline of the proposed scheme can be therefore depicted as in Fig. 1.
Note that beyond the prediction horizon, nc, c j is set to zero, which denotes the

feasibility of theH∞ control. Thus, the design of the proposed control strategy boils
down to solving the following problems:

• to design a robust PDC controller K (hk) in such way that a prescribed distur-
bance attenuation level is achieved with respect to x f,k while guaranteeing its
convergence to the origin,

• to estimate the fault f k ,
• to determine a set of states for which the robust PDC controller along with the
fault compensation (under the control constraints) is feasible,

• to determine c j in such a way as to enhance a set of states and, hence making the
control problem feasible.

Since the general scheme is given, the remaining part of this chapter is devoted to
solving the above-mentioned design problems.

Fig. 1 Proposed robust
predictive FTC scheme
outline



314 P. Witczak and M. Witczak

3 Fault Estimation and Robust Control

In this section, a fault estimation technique will be proposed, which along with the
robust PDC controller K (hk)will be used to compensate the effect of a fault and feed
the system in such a way that the state x f,k goes to the origin. Note that the designs of
the fault estimator and the robust PDC controller are realized for the unconstrained
case. Moreover, the free control parameter c j (cf. (8)) is set to zero. Following the
seminal paper [22] along with further developments, the constraints are introduced
during the development of the set of states, for which the robust PDC controller
along with the fault compensation is feasible as well as during the computation of
ck , which enhance a set of states, hence making the control problem feasible.

Thus, following [13, 31], by computing

H(hk) = B(hk)
+ = [

B(hk)
T B(hk)

]−1
B(hk)

T , (9)

and then multiplying (4) by H(hk) along with extracting f k , it can be shown that:

f k = H(hk)x f,k+1 − H(hk)A(hk)x f,k − u f,k − H(hk)W(hk)wk, (10)

while its estimate can be given as:

f̂ k = H(hk)x f,k+1 − H(hk)A(hk)x f,k − u f,k, (11)

with the associated fault estimation error

ε f,k = f k − f̂ k = −H(hk)W(hk)wk . (12)

The main difficulty of the above approach is related to the existence of H(hk),
which boils down to checking the full rank property of all convex combinations of
Bi , i = 1, . . . , M . Clearly, in a general case, H(hk) does not fulfil this condition.
Thus, to settle this problem within the framework of this chapter, the following idea
is employed [18] and it is assumed that the matrix BM has full rank. Note that it is
enough that for some i , 1 ≤ i ≤ M, rank(Bi ) = r and then the order of the matrices
can be rearranged to satisfy rank(BM) = r . Let us define

Q p,p = (B p)T B p, p = 1, . . . M (13)

Q p,a = (B p)T Ba + (Ba)T B p − (Ba)T Ba − (B p)T B p for p < a (14)

R p = R p
a,b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q p,p if (a, b) = (1, 1)
Qb−1,p if a = 1 ∧ b = 2, . . . , p
I if a = b ∧ 1 < b < p
−I if b = 1 ∧ a = p + 1
0 otherwise

(15)
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Theorem 3.1 The following statements are equivalent

(a) All convex combinations of B1, . . . , BM have full rank.
(b) BM has full row rank and the (M − 1)Mn-by-(M − 1)Mn matrix

V =

⎡
⎢⎢⎢⎢⎣

R1R
−1
M (R2 − R1)R

−1
M (R3 − R2)R

−1
M . . . (RM−1 − RM−2)R

−1
M−IMn IMn 0Mn . . . 0Mn

0Mn −IMn IMn . . . 0Mn

. . . . . . . . . . . . . . .

0Mn . . . 0Mn −IMn IMn

⎤
⎥⎥⎥⎥⎦

,

(16)

is a block P-matrix [18] with respect to the partition {F1, . . . , FM−1} of {1, . . . ,
(M − 1)Mn}, with Fi = {(M − 1)Mn + 1, . . . , iMn}, i = 1, . . . , M − 1.

Proof The proof can be derived by a direct application of Theorem 2 in [18].

Remark 1 Following [18], the matrix V is a block P-matrix with respect to any
partition if all its principal minors are positive. This feature makes it possible to
easily check the condition of Theorem 3.1.

Since the general framework for computing the fault estimate (11) is given, its
computational feasibility can be verified. Indeed, to obtain f̂ k it is necessary to have
x f,k+1. Thus, the only choice to compensate f k in (4) is to use f̂ k−1. This determines
the above-proposed control strategy

u f,k = − f̂ k−1 − K (hk)x f,k . (17)

Note that this strategy is derived by setting ck = 0 in (7). Bearing in mind that in any
physical system f k is bounded, without a loss of generality, it is possible to write

f̂ k = f̂ k−1 + vk, vk ∈ l2. (18)

For the purpose of further analysis, it is additionally assumed that the above bounds
have the following form

vk ∈ Ev, Ev = {v ∈ R
r | vT Qv ≤ 1}, Q 	 0. (19)

Thus, (17) can be written in an equivalent form, which will be used for further
deliberations

u f,k = − f̂ k + vk − K (hk)x f,k . (20)

Substituting (20) into (4) gives

x f,k+1 = A1(hk)x f,k + [I − B(hk)H(hk)]W(hk)wk + B(hk)vk, (21)

with A1(hk) = ∑M
i=1

∑M
j=1 hi (sk)h j (sk)(Ai − Bi K j ).
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Further analysis of (21), and in particular

[
I − B(hk)

[
B(hk)

T B(hk)
]−1

B(hk)
T
]
W(hk)wk

= W(hk)wk − B(hk)
[
B(hk)

T B(hk)
]−1

B(hk)
TW(hk)wk,

(22)

along with the fact that any vector W(hk)wk ∈ col(B(hk)), where col(B(hk)) =
{α ∈ R

n : α = B(hk)β} for some β ∈ R
r can be written as W(hk)wk = B(hk)w̄k

for some non-zero w̄(k), leads (22) to

B(hk)w̄k − B(hk)
[
B(hk)

T B(hk)
]−1

B(hk)
T B(hk)w̄k = 0 (23)

This significant simplification of (21) yields its new form:

x f,k+1 = A1(hk)x f,k + B(hk)vk (24)

Note: It is worth to see, if (23) does not hold, the (24) will take another form,
including Ww(hk) which then, needs to be known.

Before providing the PDC control design procedure, let us recall the following
lemma [4, 6, 7]:

Lemma 1 The following statements are equivalent

1. There exists X 	 0 such that

V T XV − W ≺ 0 (25)

2. There exists X 	 0 such that
[−W V TUT

UV X − U − UT

]
≺ 0. (26)

Remark 2 Note that the regularity ofU is ensured by the last block diagonal element
of (26), which implies U + UT 	 X 	 0. This property will be exploited in further
deliberations.

The following theorem constitutes the main result of this section.

Theorem 3.2 For a prescribed disturbance attenuation levelμ > 0 for the x f,k , the
H∞ controller design problem for the system (4) is solvable if there exist U , N i and
P i 	 0 (i = 1, . . . , M) such that the following condition is satisfied:

M∑
i=1

M∑
j=1

M∑
l=1

hi (sk)h j (sk)hl(sk+1)Υ
l
i, j ≺ 0, (27)
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where

Υ l
i, j =

⎡
⎢⎢⎣

−P i 0 UT A(i)T − N ( j)T B(i)T UT

0 −μ2 I r B(i)T 0
AiU − BiN j Bi P l − U − UT 0

U 0 0 −I

⎤
⎥⎥⎦ (28)

with N j = K jU .

Proof The problem of H∞ controller design (cf. [23, 38]) is to determine the gain
matrix K (hk) such that

lim
k→∞ x f,k = 0 for vk = 0 (29)

‖x f ‖l2 ≤ μ‖vk‖l2 for vk �= 0, e0 = 0. (30)

In order to settle the above problem it is sufficient to find a Lyapunov function Vk

such that:
ΔVk + xT

f,kx f,k − μ2vTk vk < 0, k = 0, 1, . . . , (31)

where ΔVk = Vk+1 − Vk . Indeed, if vk = 0 then (31) boils down to

ΔVk + xT
f,kx f,k < 0, k = 0, 1, . . . , (32)

and hence ΔVk < 0, which leads to (29). If vk �= 0 then (31) yields

J =
∞∑
k=0

(
ΔVk + xT

f,kx f,k − μ2vTk vk
)

< 0, (33)

which can be written as

J = −V0 +
∞∑
k=0

xT
f,kx f,k −

∞∑
k=0

μ2vTk vk < 0, (34)

Knowing that V0 = 0 for x f,0 = 0, (34) leads to (30).
Selecting the Lyapunov function as (cf. Remark 2)

Vk = xT
f,kU

−T P(hk)U−1x f,k, (35)

where

P(hk) =
M∑
i=1

hi (sk)P i , (36)
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the inequality (31) is

ΔV + xT
f,kx f,k − μ2vTk vk < 0, (37)

with

ΔV = Vk+1 − Vk = xTf,k

[
A1(hk)

TU−T P(hk+1)U
−1A1(hk) − U−T P(hk)U

−1
]
x f,k

+ xTf,k

[
A1(hk)

TU−T P(hk+1)U
−1B(hk)

]
vk

+ vTk

[
BT (hk)U

−T P(hk+1)U
−1A1(hk)

]
x f,k

+ vTk

[
B(hk)

TU−T P(hk+1)U
−1B(hk)

]
vk . (38)

Note that by Rayleigh quotient and Remark 2:

α ≤ λi (UTU) ≤ α, β ≤ λi (P) ≤ β i = 1, . . . , n,

where λ(·) stands for an eigenvalue of its argument. This implies that

αβxT
f,kx f,k ≤ Vk ≤ αβxT

f,kx f,k,

which clearly indicated that Vk is a proper Lyapunov candidate matrix. Thus, it can
be shown that (37) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1(hk)
TU−T P(hk+1)U−1A1(hk)

+In − U−T P(hk)U−1

A1(hk)
TU−T P(hk+1)U−1B(hk)

B(hk)
TU−T P(hk+1)U−1A1(hk) B(hk)

TU−T P(hk+1)U−1B(hk) − μ2 Ir

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0.

(39)

Pre- and post-multiplying it by diag(UT , I r ) and diag(U, I r ) respectively, gives

[
UT A1(hk)TU−T

B(hk)TU−T

]
P(hk+1)

[
U−1A1(hk)U U−1B(hk)

]

+
[
UTU − P(hk) 0

0 −μ2 I r

]
≺ 0. (40)

Applying Lemma 1 to (40) yields
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⎡
⎢⎢⎣
UTU − P(hk) 0 UT A1(hk)T

0 −μ2 I r B(hk)T

A1(hk)U B(hk) P(hk+1) − U − UT

⎤
⎥⎥⎦ ≺ 0 ⇔

⎡
⎣
UT

0
0

⎤
⎦ In

[
U 0 0

] +
⎡
⎣

−P(hk) 0 UT A1(hk)T

0 −μ2 I r B(hk)T

A1(hk)U B(hk) P(hk+1) − U − UT

⎤
⎦ ≺ 0, (41)

which by Schur complements leads to

⎡
⎢⎢⎣

−P(hk) 0 UT A1(hk)T UT

0 −μ2 I r B(hk)T 0
A1(hk)U B(hk) P(hk+1) − U − UT 0

U 0 0 −I

⎤
⎥⎥⎦ ≺ 0, (42)

Finally, substituting A1(hk)U = ∑M
i=1

∑M
j=1 hi (sk)h j (sk)(AiU − Bi K jU) =∑M

i=1

∑M
j=1 hi (sk)h j (sk)(AiU − BiN j ) gives (27), which completes the proof.

Note that (27) requires further relaxation procedure to be efficiently solved within
Linear Matrix Inequalities (LMI) framework. A sufficient solution to this problem
can be found in [30] and with some improvements in [14]. The conditions provided
by [29] lead to a decent compromise between complexity and conservatism. In the
case (27) it leads to:

Lemma 2 Condition (27) is fulfilled if:

Υ l
i,i ≺ 0, i = 1, . . . , M, (43)

2

M − 1
Υ l
i,i + Υ l

i, j + Υ l
j,i ≺ 0, i, j, l = 1, . . . , M, i �= j. (44)

Finally, the design procedure boils down to solving (43)–(44) with respect to U , N j

and P i (i = 1, . . . , M, j = 1, . . . , M), and then calculating

K j = N jU−1, j = 1, . . . , M (45)

The objective of this section was to provide a fault estimation and compensation
scheme without taking into the account the control limit. The subsequent section
provides a useful description of the invariant set, which takes into account the input
constraints, while the Sect. 5 presents an online optimization strategy that can be
used for enlarging this set.
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4 Derivation of a Robust Invariant Set

As it was mentioned in the previous section, in order to maintain a desired system be-
haviour, the idea of a robust invariant set of state variables is to be employed [10, 40].
To settle this problem theQuadraticBoundedness (QB) [1]will be recalled alongwith
its further extension called Extended Non-Quadratic Boundedness (EQNB) [41].

Let us assume that P(hk) = P in, P 	 0, which makes it possible to formulate
the following definitions (cf. [1]):

Definition 1 The system (24) is strictly quadratically bounded with P 	 0 for all
allowable vk ∈ Ev, k ≥ 0, if Vk > 1 implies Vk+1 − Vk < 0 for any vk ∈ Ev.

Definition 2 A set Ex f is a robust invariant set for the system (24) for all allowable
vk ∈ Ev if x f,k ∈ Ex f implies x f,k+1 ∈ Ex f , for any vk ∈ Ev.

In this section, the ellipsoidal bounding will be used for describing the robust
invariant set, i.e.

Ex f = {x f ∈ R
n| xT

f Px f ≤ 1}. (46)

The proposed ellipsoidal bounding strategy can be perceived as an inner bounding
of the exact invariant set [12]. An obvious drawback to the proposed approach is
that the obtained set is smaller than the exact one. However, the simplicity of the
ellipsoidal description will make it possible to use it for online optimization, which
will be described in Sect. 5.

Using the above definitions and assumptions, it is possible to recall results pro-
vided in [1] that can be directly applied to (24):

Lemma 3 The following facts are equivalent:

1. for all allowable vk ∈ Ev, k ≥ 0, the system (24) is strictly quadratically bounded
with P 	 0,

2. for all allowable vk ∈ Ev, k ≥ 0, the ellipsoid (46) is a robust invariant set for
the system (24).

Nonetheless, there exists a drawback related to the fact that P(hk) = P . To show,
how to avoid it, the notion of EQNB(introduced in [41]) should be recalled. In the
light of this framework Definitions1 and 2 can be suitably reformulated as:

Definition 3 The system (24) is strictly non-quadratically bounded for all allowable
vk ∈ Ev, k ≥ 0, if Vk = xT

f,k P(hk)x f,k > 1 implies ΔV = Vk+1 − Vk < 0 for any
vk ∈ Ev.

Definition 4 A set Ex f,k

Ex f,k = {x f,k ∈ R
n| xT

f,k P(hk)x f,k ≤ 1} (47)
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is a robust invariant set for the system (24) for all allowable vk ∈ Ev if x f,k ∈ Ex f,k

implies x f,k+1 ∈ Ex f,k+1 , for any vk ∈ Ev.

Following the above reasoning, Lemma 3 can be reformulated in a similar fashion:

Lemma 4 The following facts are equivalent

1. for all allowable vk ∈ Ev, k ≥ 0, the system (24) is strictly non-quadratically
bounded,

2. for all allowable vk ∈ Ev, k ≥ 0, the ellipsoid (47) is a robust invariant set for
the system (24).

Using Definition3 and the fact that vTk Qvk ≤ 1 (cf. (19)), it is possible to write:

vTk Qvk < xT
f,k P(hk)x f,k ⇒ xT

f,k+1P(hk+1)x f,k+1 − x f,k P(hk)x f,k < 0. (48)

which by Definition3 gives

vTk Qvk < xT
f,k P(hk)x f,k ⇒ ΔV < 0, (49)

which can be written in a matrix form
[−P(hk) 0

0 Q

]
≺ 0 ⇒ (50)

[
A1(hk)T P(hk+1)A1(hk) − P(hk) A1(hk)T P(hk+1)B(hk)

B(hk)T P(hk+1)A1(hk) B(hk)T P(hk+1)B(hk)

]
≺ 0. (51)

By applying the S-Lemma [8], the relations (50)–(51) can be written in the form:

[
A1(hk)T

B(hk)T

]
P(hk+1)

[
A1(hk)B(hk)

] +
[−(1 − α)P(hk) 0

0 −αQ

]
≺ 0, (52)

where α > 0 is some scalar. Thus, by applying Schur complement it can be written
as

⎡
⎣

−(1 − α)P(hk) 0 A1(hk)T

0 −αQ B(hk)T

A1(hk) B(hk) −P(hk+1)
−1

⎤
⎦ ≺ 0, (53)

and subsequently, multiplying it from left and right by diag(I, I, P(hk+1))

⎡
⎣

−(1 − α)P(hk) 0 A1(hk)T P(hk+1)

0 −αQ BT P(hk+1)

P(hk+1)A1(hk) P(hk+1)B(hk) −P(hk+1)

⎤
⎦ ≺ 0. (54)
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Applying Lemma 1 to (54) and then substituting A1(hk) = ∑M
i=1

∑M
j=1 hi (sk)h j (sk)

(Ai − Bi K j ) = ∑M
i=1

∑M
j=1 hi (sk)h j (sk)A

i, j
1 gives

M∑
i=1

M∑
j=1

M∑
l=1

hi (sk)h j (sk)hl(sk+1)Ψ
l
i, j ≺ 0, (55)

where

Ψ l
i, j =

⎡
⎣

−(1 − α)P i 0 A(i, j)T
1 P l

0 −αQ B(i)T P l

P l Ai, j
1 P lBi −P l

⎤
⎦ (56)

Similarly as in the previous section, this allows writing the following lemma:

Lemma 5 Condition (56) is fulfilled providing the following conditions hold:

Ψ l
i,i ≺ 0, i ∈ {1, . . . , M}, (57)

2

M − 1
Ψ l
i,i + Ψ l

i, j + Ψ l
j,i ≺ 0, i, j, l ∈ {1, . . . , M}, i �= j, (58)

0 < α < 1. (59)

Note that for a fixed α, the procedure is simply solving LMIs (57)–(58) with respect
to P i (i = 1, . . . , M).

5 Efficient Predictive FTC

The robust FTC from in Sect. 4 is based on the idea of estimating the fault, and
then compensating it with adapted control signal feeding the faulty actuator. Its main
drawback is that it does not take into account the fact that actuators are subject to
saturation rules. Therefore, the idea behind the approach presented in this section is
to prevent a saturation by fixing the control strategy of the remaining actuators in
a way increasing the robust invariant set. Thus, making the overall control problem
feasible. For this purpose, the efficient predictive control scheme introduced by [22]
is utilized. In particular, the proposed scheme is suitably extended to cope with the
noises and disturbances, and hence to achieve robustness. Thus, predictions at time
k are generated as follows [22]:

zk+1 = Z(hk)zk + B̃(hk)vk . (60)

where
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Z(hk) =
[
A(hk) − B(hk)K (hk) B(hk)T

0 M

]
,

B̃(hk) =
[
B(hk)

0

]
, M =

[
0(nc−1)r×r I

0r×r 0r×(nc−1)r

]
,

zk =
[
x f,k

δk

]
, δk =

⎡
⎢⎢⎣

ck
ck+1

. . .

ck+nc−1

⎤
⎥⎥⎦ , T =

[
I r×r 0

... 0
]
.

The stability of (60) is guaranteed by the stability of A(hk) − B(hk)K (hk). Af-
ter [22], it can be seen that if there exists robust invariant set Ex f (cf. (47)) for (60),
there must exist at least one robust invariant set Ez for (60). Thus, (56) can be easily
adapted for (60)

⎡
⎢⎣

−(1 − α)P i 0 Z(i, j)T P l

0 −αQ B̃
(i)T

P l

P lZi, j P l B̃
i −P l

⎤
⎥⎦ , 0 < α < 1 (61)

being a robust invariant set for FTC predictive scheme. Since the robust invariant
set for (60) is given, the input constraints (64) can be formulated. It can be done by
scaling δk in (60), i.e. δk is replaced by:

δ̄k =

⎡
⎢⎢⎢⎣

ck − f̂ k−1

ck+1 − f̂ k−1
...

ck+nc−1 − f̂ k−1

⎤
⎥⎥⎥⎦ . (62)

Let us define
M(hk) = [−K (hk) T ] , (63)

and hence
u f,k = M(hk)zk . (64)

Let ei denote i th column of the r -order identity matrix, which makes it possible to
rewrite the input constraints as follows

|eTi u f,k | ≤ ūi i = 1, . . . , r (65)

Subsequently, it can be observed that for zk ∈ Ez the above inequality implies
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|eTi u f,k |2 = |eTi M(hk)zk |2
= |eTi M(hk)P(hk)

−1/2P(hk)
1/2zk |2 (66)

≤ ||eTi M(hk)P(hk)
−1/2||2||P(hk)

1/2zk ||2
≤ ||eTi M(hk)P(hk)

−1/2||2,

and if there exists a symmetric matrix Y such that

M(hk)P(hk)
−1M(hk)

T − Y ≺ 0, Y i,i ≤ ū2i , i = 1, . . . , r (67)

then |ui, f,k | ≤ ūi , (i = 1, . . . , r ). Subsequently, using the Schur complement, in-
equality (67) can be written as

[ −Y M(hk)
M(hk)T −P(hk)

]
≺ 0, Y i,i ≤ ū2i . (68)

Finally to count also the input constraints, (61) should be supplemented with

[ −Y (M j )

(M j )T −P i

]
≺ 0, Y a,a ≤ū2a,

a = 1, . . . , r, i = 1, . . . , M, j = 1, . . . , M,

(69)

Since invariant sets along with input constraints are described by LMIs, they can
be solved along with maximization the invariant set. To accomplish this, different
criteria can be selected, e.g.:

• minimization of the determinant of P(hk), which corresponds to themaximization
of volume of the invariant set,

• minimization of the trace of P(hk), which corresponds to the maximization of the
sum of the axes of the ellipsoid describing an invariant set.

Considering the structure of P(hk), being a weighted sum of matrices, maximization
of the size of the Ex f , the following sum of traces is equivalent to:

min trace

(
M∑
i=1

(
T P iT T

)) = min trace
(
diag

(
T P1T T , . . . , T PMT T

))
(70)

with
x f,k = T zk, (71)

and constraints (61) and (69). The algorithm for finding ck in (60) is also inspired by
[22] and can be perceived as the following minimization
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δ∗
k = min

δk
δTk δk, s.t. zTk P(hk)zk ≤ 1, (72)

performed at each sampling time, which can be equivalently written as:

δ∗
k = min

δk
δTk δk, s.t. xT

f,k P1,1(hk)x f,k

+ 2xT
f,k P1,2(hk)δ̄k

+ δ̄
T
k P2,2(hk)δ̄k ≤ 1, (73)

where P1,1(hk), P1,2(hk) and P2,2(hk) are block partitions of P(hk) conformal to

the partition of zk = [xT
f,k δ̄

T
k ]T . Thus, if the H∞ control is feasible then δ = 0, if

not, the solution lies on the boundary of Ez described by (73). Therefore, when δ = 0
is contained in Ez , then optimization is not required and the optimal solution is δ = 0.
Otherwise, the above optimization problem has a unique solution [16, 21].

6 Illustrative Example

The exemplary nonlinear system is based on the Twin-RotorMIMOSystem (TRMS),
a laboratory set-up [11] developed by Feedback Instruments Limited. Research re-
garding TRMS itself can be found in [26] and the references therein. The TRMS,
as shown in Fig. 2, is driven by two DC motors. It has two perpendicular propellers
joined by a beam pivoted on its base. Chassis has 2 degrees of freedom, allows
movement the inside imaginary static sphere. The beam can be moved by chang-
ing the input voltages of motors that control the rotational speed of the propellers.
The system is equipped with a pendulum counterweight fixed to the beam and it

Fig. 2 Components of the
twin-rotor MIMO system
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determines a stable equilibrium position. The system is balanced in such a way that
when the motors are switched off, the main rotor end of the beam is lowered. The
behaviour of the TRMS system is similar to a helicopter [26]. For instance, there is
a strong cross-coupling between the main rotor (collective) and the tail rotor. At the
same time, the system is different from a helicopter in many ways, the main differ-
ences being the location of the pivot point (midway between two rotors in TRMS
vs. main rotor head in the helicopter), vertical control (speed control of main rotor
vs. collective pitch control), yaw control (tail rotor speed vs. pitch angle of tail rotor
blades) and lastly, cyclical control (none vs. directional control).

The model of the TRMS can be described by a set of four nonlinear differential
equations with two linear differential equations and four nonlinear functions [11].
Some of the parameters can be obtained frommanual [11], whereas others should be
collected as an experimental results, e.g. inertia,magnitudes of the physical propeller,
coefficients of friction and impulse force. The inputs are defined by the input vector
u = [uh, uv]T , where uh is the input voltage of the tail motor and uv is the input
voltage of the main motor. The input bounds are ū1 = 1 and ū2 = 1. The state vector
is defined as x = [Θh, φh, θh,Θv, φv, θv]T , where Θh is the angular velocity around
the vertical axis, φh is the azimuth angle of the beam, θh is the rotational velocity of
the tail rotor, Θv is the angular velocity around the horizontal axis, φv is the pitch
angle of the beam, θv is the rotational velocity of the main rotor. For the complete
physical model of such a system refer to [11, 26]. For the purpose of experiment the
nonlinear simulator of the TRMS was used.

A normalized TS model, which approximates the nonlinear TRMS system, is
obtained by linearising a system around five operating points [5]. The system can be
described in the following way:

x f,k+1 =
5∑

i=1

hi (sk)[Ai x f,k + Biu f,k + Bi f k + Wwk], (74)

The matrices Ai , and Bi , (i = 1, . . . , 5) are acquired by linearising the initial system
around five points chosen in the operating range of the system considered. A detailed
description of the model (74) can be found in [5]. Note also that, according to [5]
the constant bias arising from the linearization were removed due to their avoidably
small values. Moreover, it was verified that the matrices Bi , i = 1, . . . , M satisfy
the conditions of Theorem 3.1, which makes it possible to conduct the remaining
design procedure. Five local models guarantee a relatively good approximation of
the state of the real system by the TS model within the operating range, also the state
vector was used as a premise variables vector. The following numerical values, with
the sampling time 50ms, were used:
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A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9812 −0.0105 0.1847 0 0 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0152 −0.0254 0.9908 −0.1718 0
0 0.0004 0.1367 0.0498 0.9957 0

0.0495 0.0276 0.0047 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9814 −0.0103 0.1841 0 0.0004 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0200 −0.0254 0.9908 −0.1718 0
0 0.0005 0.1367 0.0498 0.9957 0

0.0495 0.0274 0.0046 0 −0.0010 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9818 −0.0098 0.1830 0 0.0007 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0405 −0.0254 0.9908 −0.1718 0
0 0.0010 0.1367 0.0498 0.9957 0

0.0495 0.0268 0.0045 −0.0001 −0.0020 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9826 −0.0090 0.1809 0 0.0010 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0734 −0.0254 0.9908 −0.1717 0
0 0.0018 0.1367 0.0498 0.9957 0

0.0496 0.0256 0.0044 −0.0001 −0.0030 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9837 −0.0079 0.1774 0 0.0013 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.1126 −0.0254 0.9908 −0.1712 0
0 0.0028 0.1367 0.0498 0.9957 0

0.0496 0.0239 0.0043 −0.0001 −0.0039 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0047333 −0.00026413
0 0.049137

0.046883 0
−0.00054491 0.00038216
0.0034973 6.3923 · 10−6

7.9866 · 10−5 0.00069499

⎤
⎥⎥⎥⎥⎥⎥⎦

, B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0047179 −0.00025932
0 0.049137

0.046883 0
−0.0005449 0.00050447
0.0034973 8.4382 · 10−6

7.8406 · 10−5 0.00069104

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0046897 −0.00024777
0 0.049137

0.046883 0
−0.00054487 0.001021
0.0034973 1.7078 · 10−5

7.6732 · 10−5 0.0006752

⎤
⎥⎥⎥⎥⎥⎥⎦

, B4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0046345 −0.00022722
0 0.049137

0.046883 0
−0.00054472 0.0018479
0.0034973 3.0909 · 10−5

7.4631 · 10−5 0.00064594

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0045431 −0.00019841
0 0.049137

0.046883 0
−0.00054422 0.0028368
0.0034973 4.745 · 10−5

7.2027 · 10−5 0.00060318

⎤
⎥⎥⎥⎥⎥⎥⎦

Experiments appear to show that sampling time of 50ms is small enough to represent
the dynamic and at the same time not overact the computational burden. The robust
H∞ controller gainmatrix K (hk) has been obtained by solving (28)with a predefined
attenuation level μ = 0.2 and

K (hk) =
[−0.66072 0.02514 18.5299 1.4495 −1.2791 −0.77947
−0.13447 19.6351 0.035917 −0.54517 0.60774 −0.34511

]

for W = 0.01I . While the prediction horizon was set to nc = 6, which guarantees
a good compromise between the complexity and quality of FTC (as a conclusion of
experiments). The actuator faults scenarios, i.e. a decrease in the performance of the
main rotor ( f 1,k) and a rotor misalignment in tail electric motor ( f 2,k) are described
as follows:

f 1,k =
{

−0.2 50 ≤ k ≤ 90,

0 otherwise

f 2,k =
{
0.5 sin(2π + 1 + 0.1π(k − 80)) 80 ≤ k ≤ 120,

0 otherwise

Figure3 presents the horizontal and vertical angular position of the beam, achieved
for the proposed FTC strategy. As a result, Fig. 4 clearly points out that the faults can
be estimated with a very high accuracy. The fault estimate exhibits some deviations
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Fig. 3 Selected states of the system with and without FTC
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from the nominal value due to exogenous disturbances and modelling errors (due to
the high nonlinearity of the system). Contrary to the non-FTC scheme, the proposed
method exhibits a small error only. Figure5 shows control signals for the chosen
fault scenario. Nonlinearities in TRMS have also influence on the faulty behaviour
of the system. Thus, Fig. 5 shows appropriate control that should be provided for both
inputs in order to stabilize the system behaviour. This case proves the efficiency of the
proposed control scheme for respectively large faults. Figure3 presents stabilization
of the beam position with FTC enabled while even small fault evolves into large
deviation in the beam position for the non-FTC scheme. Nonetheless, overshoots
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cannot be totally avoided nor suppressed. Their existence haveminor influence on the
overall performance of the system, and hence, the proposed scheme can be perceived
as a reliable one.

7 Conclusions

The essential contribution of the work is the fault-tolerant scheme for the Takagi-
Sugeno discrete-time systems. The presented approach undoubtedly fulfils the goals
presumed in the introduction and therefore deals with the actuator faults with given
performance limits. The multi-layer scheme consists of the robust controller, fault
estimator and predictive controller. The robust controller is designed to prevent in-
fluences of the disturbances on the system. Fault estimator allows the fault com-
pensation, while the predictive controller can employ remaining actuators to prevent
saturation on faulty ones. As indicated in the state-of-the-art, there have been no ef-
ficient solution to this problem so far. All the proposed approaches can be efficiently
implemented, i.e. the offline computations boils down to solving a number of linear
matrix inequalities while the online computation reduces to the application of the
Newton–Raphson method. The proposed approach was applied to the benchmark
example of the twin-rotor system. The achieved results show the performance of the
high performance of the proposed approach. In spite of the incontestable appeal of
the proposed approach, there are still some points which may further improve its
effectiveness.
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Appendix

Table of symbols:

A is a system matrix
B is an input matrix
W is a disturbance matrix
V is Lyapunov function
xk is a state vector
uk is an input vector
wk is a disturbance vector
k is a time instant
K is a controller gain matrix
E is an invariant set

•+ is a pseudo-inverse operation
Θh is the angular velocity around the vertical axis
Θv is the angular velocity around the horizontal axis
θh is the rotational velocity of the tail rotor
θv is the rotational velocity of the main rotor
φv is the pitch angle of the beam
φh is an invariant set
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Constrained Model Predictive Control
of Processes with Uncertain Structure
Modeled by Jump Markov Linear Systems

Jens Tonne and Olaf Stursberg

Abstract Linear systems with abrupt changes in its structure, e.g. caused by
component failures of a production system, can be modelled by the use of jump
Markov linear systems (JMLS). This chapter proposes a finite horizon model predic-
tive control (MPC) approach for discrete-time JMLS considering input constraints as
well as constraints for the expectancy of the state trajectory. For the expected value
of the state as well as a quadratic cost criterion, recursive prediction schemes are
formulated, which consider dependencies on the input trajectory explicitly. Due to
the proposed prediction scheme, the MPC problem can be formulated as a quadratic
program (QP) exhibiting low computational effort compared to existing approaches.
The resulting properties concerning stability as well as computational complexity
are investigated and demonstrated by illustrative simulation studies.

1 Introduction

In practice, component breakdowns, link failures and sudden environmental changes
abruptly affect technical systems like production lines or communication networks.
These effects often lead to significant changes in the system structure. Most of these
changes are random and their time of occurrence is unknown in advance, posing
significant challenges for control. On the other hand, failure rates or dropout proba-
bilities can typically be obtained from historical data. Hence, one possibility tomodel
the systems is to represent each possible system behaviour and structure by a separate
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time-discrete LTI-system. The random transitions between these LTI systems can be
modelled by means of a Markov chain, leading to the class of JMLS [1]. Especially,
when modelling as you did for modelled industrial processes, the resulting JMLS
are characterized by high system dimensions, e.g. resulting from discretizations of
spatially varying variables.

Furthermore, the facts that inputs are constrained due to actuator limits and that
system states have to be hold in safe ranges, renders the control of the systems even
more demanding. A common approach for constrained control is MPC, also called
receding horizon control (RHC) [2]. In MPC, the future state trajectory over a given
horizon is predicted as a function of the future inputs and expected disturbances. The
predictions are used to determine an input trajectory by solving a possibly constrained
optimization problem.

Due to the importance of both, the concepts of JMLS and MPC, for technical
applications, MPC of JMLS has been studied already to some extend in the current
literature, but mostly for low-dimensional systems. First approaches to constrained
control of JMLS propose to determine state-feedback control laws by minimizing
an infinite horizon quadratic cost function offline [3, 4]. While these approaches
consider polytopic uncertainties for the initial state and for the transition matrix of
theMarkov chain, external disturbances are not considered. The resulting controllers
can become quite conservative due to the offline determination of the control laws.

At the same time, first contributions to unconstrained RHC of JMLS which deter-
mine state-feedback controllers for each time step of the prediction horizon have
been proposed [5, 6]. In addition, a robust unconstrained one-step RHC approach
with polytopic uncertainties in the system dynamics and transition probabilities is
proposed in [7]. In [8, 9], RHC approaches considering constraints for the first and
second moments of inputs and states have been presented. These approaches make
use of an iterative procedure which involves solving a semi-definite program (SDP)
in each iteration. An approach to determine a set of time-dependent feedback laws
for a finite horizon considering second moment constraints for states and inputs is
presented in [10].

Particle control as proposed in [11, 12] presents an alternative control approach
to JMLS, in which the probability distributions of the Markov chain and distur-
bances are approximated by a finite set of samples (“particles”). This setting has
the advantage that chance constraints for the states can be considered easily by the
use of mixed integer linear programs (MILP) [11]. However, due to the sampling,
the performance and reliability of the proposed approach strongly depends on the
number of particles, which typically has to be chosen high in order to approximate
the underlying probability distributions properly.

Recently, a focus of attention has been drawn to MPC approaches considering
robust stability in case of uncertain dynamics [13, 14], as well as approaches that
ensure mean square stability and recursive feasibility [15]. In [16], this procedure is
extended to distributed JMLS.

All the aforementioned approaches for constrained control of JMLS are based on
SDP or MILP formulations, for which reliable solvers exist. However, the computa-
tional time, needed to solve these problems, increases sharplywith increasing number
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of variables and constraints. Thus, the online implementation of these approaches
is not possible for JMLS with fast system dynamics, high-dimensional state-spaces
and high numbers of Markov states. For these systems, simpler formulations of the
optimization problem are needed.

In [17, 18], MPC approaches resulting in QP formulations for random parame-
ter systems and systems with Markovian jumps of the input matrix are proposed.
However, both approaches are not suitable for general JMLS.

Onepossibility to reduce the computational burden is the truncation of the scenario
tree and to use anMPCscheme for the remaining scenarios. In [19], anMPCapproach
is presented in which the states are predicted on the basis of the most likely Markov
states due to the predicted probability distribution of the Markov chain. By means of
this prediction, a quadratically constrained QP (QCQP) is formulated. However, the
employed prediction schememayuseMarkov state trajectories that are not realizable,
since the transition probabilities are neglected. A more suitable approach for the
robust control of stochastic systems resulting in aQP formulation is presented in [20],
where a predefined number of the most probable realizable Markov state trajectories
are used for prediction. In [21], the scenario tree truncation approach from [20] is
referred to in order to be able to use dynamic programming and parametric piece-
wise quadratic optimization methods. However, if the scenario tree is not truncated,
both approaches lead to relatively high computational effort.

In [22, 23], the current input signal is determined by the combination of an offline
computed stabilizing state feedback law and a one-step MPC. The MPC problem
in [22] considers robust stability and probabilistic state constraints resulting in a
QCQP, while the concept in [23] aims at mean square stability and probabilistic state
constraints resulting in a QP. However, due to the restriction to a linear feedback
law for all future steps, the current control action can be suboptimal due to the state
constraints. In addition, both approaches do not consider input constraints.

In previous work [24], we proposed a constrained, finite horizon MPC approach
resulting in aQP (seeAppendix B for a brief description). It was demonstrated in [24]
that this approach is capable of controlling high-dimensional JMLS. This approach
introduced a new formulation of the cost function defining the costs of the expected
values of the states. The formulations of the prediction equations are compact at the
expense of specifying costs independently of the Markov state. In addition, mean
square stability does not follow from convergence of the costs, if the Markov state
is unknown. In contrast, a constrained, finite horizon MPC approach is proposed in
this contribution, considering the commonly used cost function formulating expected
values of a quadratic cost criterion. In opposite to many of the aforementioned con-
tributions, the proposedMPC is able to control large-scale JMLS and thus is suitable
for a variety of industrial applications. It is shown how prediction equations for the
expectancy of the state and the quadratic cost criterion can be formulated as a func-
tion of the future inputs. These results are used to formulate the MPC problem as a
QP similar to the condensed MPC formulations for LTI systems. For the proposed
approach, no truncation of the scenario tree is necessary.
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2 System Dynamics and MPC Formulation

In this chapter, we make different use of bold-faced letters and the bar as in the
rest of the book to obtain consistency with existing literature on MPC for JMLS.
The bar is used to denote expectancies as in x̄(k) := E [x(k)]. Bold-faced letters are
only used for the aggregation of quantities over the whole prediction horizon, e.g.:
u(k) := [

uᵀ(k), . . . , uᵀ(k + N−1)
]ᵀ

and not for vectors and matrices in general.

System Dynamics Let a discrete-time JMLS be defined by:

G :=
{
x(k + 1) = Aθ(k) x(k) + Bθ(k) u(k) + Gθ(k) w(k)

M = (
Θ,P,μ(0)

) , (1)

where x(k)∈R
nx denotes the system states, u(k)∈R

nu the inputs and w(k)∈R
nw

the disturbance inputs at time instant t0 + kT with t0 ∈ R
≥0, T ∈ R

>0 and k ∈ N.
The state of the Markov chain M and its probability distribution are denoted by
θ(k) ∈ Θ ⊂ N with nθ := |Θ| and μi(k) := P(θ(k) = i), respectively. The system
matrices are selected by θ(k) from the matrix sets A = {Ai : i ∈ Θ}, B={Bi : i∈Θ}
andG={Gi : i∈Θ}. The transition probabilities are defined by pi,m := P

(
θ(k + 1) =

i | θ(k) = m
)
for i,m ∈ Θ . All transition probabilities form the transition matrix

P := [pi,m]i,m∈Θ .

Assumption 1 The continuous state x(k) and the probability distribution μ(k) are
measurable. In addition, it is assumed that the expectancy w̄(k) of the noise process
is known and that the process is independent of x(k) and θ(k).

The measurability assumption is widely-used in the current literature on MPC
for JMLS (see for example [3, 8, 10, 14]). If this assumption is violated, the state
can be estimated by the use of one of the well investigated filters for JMLS [1].
The Markov state θ(k) and its probability distribution μ(k) are often used to model
component failures or link breakdowns. Since systems, as modern production lines,
communication networks, or energy distribution networks are equipped with highly
developed failure detection mechanisms, θ(k) or μ(k) can be measured in most
cases. Examples for disturbances affecting such systems can be ambient temperature,
humidity, vibrations, or load torque. Expected values are typically known for most
of these disturbances. Thus, for many applications, particularly in the context of
production systems and communication networks, Assumption1 is justified.

MPC Formulation Assume that recursive application of (1) can be used to predict
the expected future system states x(k + j|k) at time k as a function of the future inputs
u(k + l|k) with 0 ≤ l ≤ k. For the sake of a brief notation, quantities predicted by j
time steps in the future at time step k, are abbreviated as follows x�j� := x(k + j|k).
The same notation is employed for matrices utilized for the prediction, e.g. M�j�.

Based on the prediction model, MPC seeks to determine an optimal input trajec-
tory u(k) for the prediction horizonN based on the information available at time step
k. To this end, the following optimization problem is solved at time step k:
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min
u(k)

E

⎡
⎣

N∑
j=1

(
xᵀ�j�Qθ�j� x�j� + uᵀ�j − 1�Rθ�j−1� u�j − 1�

)⎤
⎦ (2a)

s.t. C u�j� ≤ c ∀ j ∈ {0, . . . ,N − 1}, (2b)

D x̄�j� ≤ d ∀ j ∈ {1, . . . ,N}. (2c)

Here,Qi > 0 andRi > 0 for all i ∈ Θ . The input u(k) = u�0� is applied to the system
and in time step k + 1, the procedure is restarted with the measured state x(k + 1)
and a prediction horizon shifted on step ahead.

Note that (2c) formulates constraints for the expectancy of the state x̄�j� instead
of x�j�, what is a common approach when using MPC for JMLS (cf. [8, 9]). If the
Markov state θ(k) is measurable, the one step prediction for x̄�1� is deterministic
except for the disturbance w(k). Thus, if bounds for the disturbance w(k) are known,
which is typically the case for many applications, the constraints for the first predic-
tion stepDx(k + 1) ≤ d become hard constraints. Due to the repeated application of
the optimization in each time step, this constraint is fulfilled at every instant k.

To solve (2) efficiently, the problem is reformulated as a standard QP problem.
To this end, the cost function and the expectancy of the states, have to be predicted
as a function of the input trajectory u(k). If these would be calculated by directly
predicting the states for all possibleMarkov trajectories, the computational complex-
ity would be O(nN+1

θ ). How the resulting complexity can be reduced by an efficient
recursive procedure is shown in the following sections.

3 Prediction of the Expected Value of the State

To be able to specify constraints for the expectancy of the state, a prediction scheme
for x̄�j� has to be stated. The deduction of the equations was already presented in
[24] by the authors. To ease the understanding of the following material, the main
results described in Sect. III of [24] are restated in a condensed form in this section.

3.1 Prediction Equation in Matrix Form

Let us define the following conditional expectancies:

x̄i�j� := E
[
x(k + j | k) | θ(k + j − 1) = i)

]
, (3)

describing the predicted expectancy of the state conditioned by the value of the
Markov state θ(k+j−1).

Remark 1 This definition differs from definitions in [1] and other papers: the pre-
dicted state for time step k + j is not conditioned on the Markov state in k + j but
one time step before. This conditioning is used since x(k + j) is determined by the
system matrices selected by θ(k + j − 1).
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By means of the indicator function:

1{θ(k)=i} :=
{
0, if θ(k) �= i

1, if θ(k) = i
, (4)

the conditional expectancy x̄i�j� can be expressed as follows [1]:

x̄i�j� := E
[
x�j� 1{θ�j−1�=i}

]
. (5)

Despite the different definition of the conditional expectancy, the following relation-
ship between expected value and conditional expectancies from [1] holds:

x̄�j� =
nθ∑
i=1

x̄i�j�. (6)

In order to express x̄�j� as a function of the inputs aswell as the expected disturbances,
the following prediction equation is used:

x̄�j� = Ā�j� x(k) +
j−1∑
l=0

(
B̄(l)�j� u�l� + Ḡ(l)�j� w̄�l�

)
. (7)

To determine the prediction matrices Ā�j�, B̄�j� and Ḡ�j�, the conditioned prediction
matrices Ãi�j�, B̃

(l)
i �j� and G̃(l)

i �j� are introduced. Here, matrices marked with a bar
describe the prediction of the expected state. Matrices marked with a tilde are used to
describe the prediction of the conditional expectancies of the state. The latter depend
on θ�j − 1� = i and describe the influence of the current state x(k), the inputs u�l�
and the disturbances w̄�l�with l ∈ {0, . . . , j − 1} on the conditional expectancy x̄i�j�,
respectively:

x̄i�j� = Ãi�j� x(k) +
j−1∑
l=0

(
B̃(l)
i �j� u�l� + G̃(l)

i �j� w̄�l�
)

. (8)

How these predictionmatrices can be calculated is shown in the following subsection.
Due to (6), x̄�j� can be determined by summation of the conditional expectancies.
Thus, the desired prediction equation (7) can be determined as follows:

x̄�j� =
nθ∑
i=1

x̄i�j� =
nθ∑
i=1

Ãi�j�

︸ ︷︷ ︸
=: Ā�j�

x(k) +
j−1∑
l=0

( nθ∑
i=1

B̃(l)
i �j�

︸ ︷︷ ︸
=: B̄(l)�j�

u�l� +
nθ∑
i=1

G̃(l)
i �j�

︸ ︷︷ ︸
=: Ḡ(l)�j�

w̄�l�

)
. (9)
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3.2 Recursive Determination of Prediction Matrices

For the sake of brief notation, the linear operator Vi(φ) is introduced for a set φ of
matrices depending on the Markov state. The operator is defined as the weighted
sum over all matrices φm, weighted by transition probabilities leading to the Markov
state θ(·) = i:

Vi(φ) :=
nθ∑

m=1

pi,m · φm , i ∈ Θ. (10)

Based on this definition, the following Theorem (derived in [24]) states a recursive
algorithm to compute the necessary prediction matrices:

Theorem 1 [24] Let the conditional expectancy x̄i�j� be defined as in (8). Then, the
recursion for the calculation of Ãi�j�, B̃

(l)
i �j� and G̃(l)

i �j� is initialized by:

Ãi�1� = μi(k)Ai, B̃(j−1)
i �j� = μi�j − 1�Bi, G̃(j−1)

i �j� = μi�j − 1�Gi, (11)

for all i ∈ Θ, j ∈ {1, . . . ,N}. Here, the probability distribution is predicted by
μ�j� = Pj μ(k). The remaining matrices can be calculated by:

Ãi�j + 1� = Ai Vi

(
Ã�j�

)
, B̃(l)

i �j + 1� = Ai Vi

(
B̃(l)�j�

)
, (12)

G̃(l)
i �j + 1� = Ai Vi

(
G̃(l)�j�

)

for all i ∈ Θ, j ∈ {1, . . . ,N − 1} and l ∈ {0, . . . , j − 1}.
Proof The theorem is proved by induction. Starting point is the prediction of the
expectancy for j = 1. By inserting the system dynamics (1) for x(k + 1|k) = x�1�
into the definition of the conditional expectancy (5) for j = 1, it follows that1:

x̄i�1� = E
[
x�1� 1{θ(k)=i}

] = E
[
(Ai x(k) + Bi u�0� + Gi w�0�) 1{θ(k)=i}

]
. (13)

Since θ(k), w�0� and x(k) are mutually stochastically independent, the expectancy
can be calculated by calculating the expectancies of all factors separately:

x̄i�1� = Ai x(k)E
[
1{θ(k)=i}

] + Bi u�0�E
[
1{θ(k)=i}

] + Gi E
[
w�0�

]
E

[
1{θ(k)=i}

]
.

(14)

It follows from (4) that E
[
1{θ(k+j)=i}

] = μi�j�. Hence, Eq. (14) equals:

x̄i�1� = μi(k)Ai x(k) + μi(k)Bi u�0� + μi(k)Gi w̄�0�. (15)

1The following equations differ from other work, like [1], due to the different definition of the
conditional expectancies x̄i�j� (cf. Remark1).
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The expressions μi(k)Ai, μi(k)Bi and μi(k)Gi coincide with the initializations in
(11). For a general prediction step j + 1 with j > 0, one gets the following equations
by analog derivations as for j = 1:

x̄i�j + 1� = E
[
x�j + 1� · 1{θ�j�= i}

]
= E

[(
Ai x�j� + Bi u�j� + Gi w�j�

) · 1{θ�j�= i}
]

= E
[
Ai x�j� 1{θ�j�= i}

]
+ μi�j�Bi︸ ︷︷ ︸

=:B̃(j)
i �j+1�

u�j� + μi�j�Gi︸ ︷︷ ︸
=:G̃(j)

i �j+1�

w̄�j�. (16)

It holds due to the Markov property (cf. [6]):

E
[
1{θ(k+j) = i}

] = E

[
nθ∑

m=1

pi,m 1{θ(k+j−1) =m}

]
. (17)

With this relationship, the first term in Eq. (16) can be written as:

E
[
Ai x�j� 1{θ�j� = i}

] = E

[
Ai x�j�

nθ∑
m=1

pi,m 1{θ�j−1� =m}

]
= Ai

nθ∑
m=1

pi,m x̄m�j�. (18)

Due to definition of x̄i�j� in (5), one can insert (8) in (18) to obtain:

E
[
Ai x�j� 1{θ�j�= i}

]
= Ai

nθ∑
m=1

pi,m

⎡
⎣Ãm�j� x(k) +

j−1∑
l=0

(
B̃(l)
m �j� u�l� + G̃(l)

m �j� w̄�l�
)⎤
⎦

= Ai Vi

(
Ã�j�

)
︸ ︷︷ ︸

=:Ãi�j+1�

x(k) +
j−1∑
l=0

[
Ai Vi

(
B̃(l)�j�

)
︸ ︷︷ ︸

=:B̃(l)
i �j+1�

u�l� + Ai Vi

(
G̃(l)�j�

)
︸ ︷︷ ︸

=:G̃(l)
i �j+1�

w̄�l�

]
. (19)

The labelled terms coincide with the recursions in (12). Thus, (19) completes the
induction if the prediction matrices are chosen as stated in Theorem1. �

By the recursive prediction established by Theorem1, all transitions leading to the
same Markov state i are combined and stored in x̄i�j� in each recursion. Hence, only
all combinations of i1 ∈ Θ and i2 ∈ Θ have to be considered for the prediction from
x̄i1�j� to x̄i2�j + 1�. Thus, not the whole set of possible Markov trajectories from k
to k + j have to be considered, since these are condensed in the set {x̄i1�j�}. There-
fore, the proposed approach reduces the computational complexity to O

(
n2θ · N2

)
,

compared to the direct calculation of all trajectories with the complexity O
(
nNθ

)
.

4 Reformulation and Computation of the Cost Function

This section shows how the cost function (2a) can be formulated as a function of
inputs u�j�, initial state x(0) and expected disturbances w̄�l�.
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The expected costs can be obtained by calculating the expected costs for each
prediction step separately. Since the expectancy of a sum equals the sum of the
expectancies of the summands and the inputs u�j� are deterministic quantities deter-
mined by the optimization, (2a) equals:

J(k) :=
N∑
j=1

(
E

[
x �Tj�Qθ�j� x�j�

] + u �Tj − 1�E
[
Rθ�j−1�

]
u�j − 1�

)
. (20)

Since the expression is a quadratic form of x�j� (which depends on x(k), u�l� and
w�l� with l < j), the expected cost can be expressed by quadratic and bi-linear terms
of x(0), u�l� and w�l�. The goal is to transform the expectancy in the form:

E
[
xᵀ�j� Qθ�j� x�j�

] = uᵀ(k)W ′�j�u(k) + (
qx�j� + qw�j�

)
u(k) + Ψ. (21)

Here, qx and qw describe the parts that depend on x(k) and u(k), as well as on w̄(k)
and u(k), respectively. The variable Ψ contains all costs that cannot be influenced
by the inputs (i.e. only depends on x(k) and w(k)). These costs will be neglected in
the following, since they do not affect the optimal input trajectory u(k).

Remark 2 Many W ′�j�, qx and qw are sparse, since the step costs at k + j can be
influenced only by the inputs u�l� with l < j. The resulting structure is as follows:

W ′�1� =
[∗ 0
0 0(N−1)·nu

]
, W ′�2� =

⎡
⎣

∗ ∗ 0
∗ ∗ 0
0 0 0(N−2)·nu

⎤
⎦ , . . . W ′�N� =

⎡
⎢⎣

∗ · · · ∗
.
.
.

. . .
.
.
.

∗ . . . ∗

⎤
⎥⎦

qx�1� = [∗ 01×(N−1)·nu
]
, qx�2� = [∗ ∗ 01×(N−2)·nu

]
, . . . qx�N� = [∗ . . . ∗]

,

where 0 denotes zero matrices of indicated or appropriate dimensions. The ∗ denotes
arbitrary matrices, dimensioned according to the size of x(0), u�l� and w�l�. �

The following demonstrates howW ′�j�, qx�j� and qw�j� can be determined recur-
sively. To illustrate the basic idea, the calculation is demonstrated for j = 1 and
generalized afterwards. Using the fact that costs are scalar, it follows that:

E
[
xᵀ�1�Qθ�1� x�1�

]

= E
[ (

Aθ(k) x(k) + Bθ(k) u�0� + Gθ(k) w�0�
)ᵀ Qθ�1�

(
Aθ(k) x(k) + Bθ(k) u�0� + Gθ(k) w�0�

) ]

= E
[
uᵀ�0�Bᵀ

θ(k) Qθ�1� Bθ(k) u�0� + 2xᵀ(k)Aᵀ
θ(k) Qθ�1� Bθ(k) u�0�

+ 2wᵀ�0�Bᵀ
θ(k) Qθ�1� Gθ(k) u�0�

]
+ Ψ. (22)

One obtains by calculating the cost for every possible combination of the Markov
states θ(k) and θ(k + 1) and the corresponding transition probabilities:
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E
[
xᵀ�1�Qθ�1� x�1�

]
=

nθ∑
i=1

nθ∑
m=1

μi(k) pm,i
(
uᵀ�0�Bᵀ

i Qm Bi u�0�

+ 2xᵀ(k)Aᵀ
i Qm Bi u�0� + 2w̄ᵀ�0�Bᵀ

m Qm Gi u�0�
) + Ψ

=
nθ∑
i=1

μi(k)
(
uᵀ�0�Bᵀ

i Ti (Q) Bi u�0� + 2xᵀ(k)Aᵀ
i Ti (Q) Bi u�0�

+2w̄ᵀ�0�Bᵀ
m Ti (Q) Gi u�0�

) + Ψ. (23)

Here, Ti denotes the following linear operator for the set of cost matrices Q:

Ti(Q) :=
nθ∑

m=1

pm,i · Qm, i ∈ Θ. (24)

In contrast to V (·), this operator uses all probabilities of transitions emanating from
the Markov state θ(·) = i as weights.

The following matrices are introduced to formulate (23) as a function of u(k):

B̂i[1] :=
[
Bi 0
0 I(N−1)·nu

]
, Ĝi[1] :=

[
Gi 0
0 I(N−1)·nw

]
, Q̂W,i[1] :=

[
Ti (Q) 0

0 0(N−1)·nu

]
,

Q̂qw,i[1] :=
[
Ti (Q) 0

0 0(N−1)nw×(N−1)nu

]
, Q̂qx,i[1] := [

Ti (Q) 0nx×(N−1)nu

]
. (25)

Here, In denotes the identity matrix of dimension n × n. The indices W, qw and qx
illustrate the relation of the corresponding matrices and the quadratic and bi-linear
terms in (23). Thus, it follows with these definitions:

E
[
xᵀ�1� Qθ�1� x�1�

]
=

nθ∑
i=1

μi(k)
(
uᵀ(k) B̂ᵀ

i [1] Q̂W,i[1] B̂i[1] u(k)

+ 2xᵀ (k) Aᵀ
i Q̂qx,i[1] B̂i[1] u(k) + 2w̄ᵀ (k) Ĝᵀ

i [1] Q̂qw,i[1] B̂i[1] u(k)
)

+ Ψ.

(26)

By comparing coefficients with (21), the equations for the cost matrices follow as:

W ′�1� :=
nθ∑
i=1

μi(k) B̂
ᵀ
i [1] Q̂W,i[1] B̂i[1], (27)

qx�1� :=2xᵀ(k)
nθ∑
i=1

μi(k) A
ᵀ
i Q̂qx,i[1] B̂i[1], (28)

qw�1� :=2w̄ᵀ(k)
nθ∑
i=1

μi(k) Ĝ
ᵀ
i [1] Q̂qw,i[1] B̂i[1]. (29)

Due to the special structure of the matrices defined in (25), the resulting prediction
matrices have the structure described in Remark1.
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The equations for j > 1 become quite lengthy. Hence, here just the principle of
deducing the formulas is described and the general result in terms of an recursive
algorithm is stated in Theorem2. For a detailed deduction of the formulas, the reader
is referred to the proof in Appendix A.

The underling principle for the deduction of equations for j = 1 can be general-
ized as follows: First, the expected costs E

[
xᵀ�j�Qθ�j� x�j�

]
have to be calculated

explicitly, like in (23), by summing up the costs for all possible Markov state trajec-
tories (θ(k), . . . , θ(k + 1)) considering the corresponding occurrence probabilities.
This involves computing j + 1 sums over all nj+1

θ possible Markov state trajectories.
To reduce the exponentially growing calculation effort, the Markov property can
be employed to reorder the sums. For the resulting nested sums, a recursive cal-
culation scheme for W ′�j�, qx�j�, and qw�j� can be deduced, resulting in equations
like (27)–(29). An algorithm implementing this principle is given in the following
theorem:

Theorem 2 Let the recursion matrices be defined for all l ∈ {1, . . . ,N} and i ∈ Θ:

Q̂qx,i[j] := [
Ti(Q) . . . Ti(Q)︸ ︷︷ ︸

j

0nx×(N−j)·nu
]
, (30)

Q̂W,i[l] :=
[
1l ⊗ Ti(Q) 0

0 0(N−l)·nu

]
, Q̂qw,i[l] :=

[
1l ⊗ Ti(Q) 0

0 0(N−l)·nw×(N−l)·nu

]
,

B̂i[l] := diag
(
Ai, . . . ,Ai︸ ︷︷ ︸

l−1

,Bi, I(N−l)·nu
)
, Ĝi[l] := diag

(
Ai, . . . ,Ai︸ ︷︷ ︸

l−1

,Gi, I(N−l)·nw
)
.

Here, ⊗ represents the Kronecker product and 1l denotes an l × l-matrix of ones.
Then, W ′�j�, qx�j� and qw�j� can be calculated with the following algorithm:

1. Initialization: Set m = 1 and calculate:

χ(1)
i := Aᵀ

i Q̂qx,i[j] B̂i[j], κ(1)
i := B̂ᵀ

i [j] Q̂W,i[j] B̂i[j] ∀i ∈ Θ, (31)

ζ(1)
i := Ĝᵀ

i [j] Q̂qw,i[j] B̂i[j] ∀i ∈ Θ.

2. Recursion:

(a) If m < j:

χ(m+1)
i := Aᵀ

i Ti
(
χ(m)

)
B̂i[j − m] ∀i ∈ Θ, (32a)

κ(m+1)
i := B̂ᵀ

i [j − m] Ti
(
κ(m)

)
B̂i[j − m] ∀i ∈ Θ, (32b)

ζ(m+1)
i := Ĝᵀ

i [j − m] Ti
(
ζ(m)

)
B̂i[j − m] ∀i ∈ Θ, (32c)

else: go to 3.
(b) Set m := m + 1 and go to (a).
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3. Calculation of qx�j�, W ′�j�, and qw�j� :

qx�j� := 2x (Tk)
nθ∑
i=1

μi(k) χ
(j)
i , W ′�j� :=

nθ∑
i=1

μi(k) κ
(j)
i , (33)

qw�j� := 2w̄ᵀ(k)
nθ∑
i=1

μi(k) ζ
(j)
i .

Proof See Appendix. �
It can be seen from the recursion equations and the deduction in the proof that the
cost prediction matrices can be constructed recursively from inside to outside . This
is necessary to guarantee that left and right matrix multiplications are performed
for matrices associated with the same Markov state. Due to this, the construction of
W ′�j�, qx�j� as well as qw�j� begins with the system matrices for the Markov state
θ(k + j − 1) andmoves back in time to θ(k) through the recursion. Finally, the current
information at time k, e.g. current state x(k) and probability distributionμ(k) are used
in the last step to calculate the cost matrices. Consequently, the initialization (1) and
recursion (2) describe the evolution of the costs and step (3) links this evolution with
the current information about continuous state and Markov state.

From the equation for the calculation of qw�j� in (33), it follows that a disturbance
with expectancy zero (w̄(k) = 0) does not affect any terms that can be manipulated
by the inputs u(k). Thus, the disturbance has no influence on the input trajectory
u(k) and the matrices qw�j�, ζ(m)

i , Q̂qw,i[l] and Ĝi[l] are not needed.
Computational Complexity of the Recursion Algorithm The computational effort
is larger than for the prediction of the expectancy of the state presented in Theorem1
due to the high dimension of the prediction matrices in (30) and the recursion in
(1) and (2). However, the special structure used in Theorem2 has the advantage that
the steps (1) and (2), which dominate the computational effort, are independent of
the current information. Provided that the transition probabilities pi,m and the system
matricesAi,Bi andGi are time invariant, these steps can be performed offline. Just the
final calculation (3) of the cost prediction matrices has to be performed online, if the
matricesχ

(j)
i ,κ(j)

i and ζ
(j)
i are calculated offline and stored.Hence, for the construction

of the cost function, very few computations have to be performed online prior to
solving the optimization problem. Thus, the presented prediction algorithm reduces
the originally exponentially increasing computational effort drastically, without any
truncation of the scenario tree.

One downside of the presented approach is that high powers of the systemmatrices
result for largeN . This can lead to numerical problemsdue to ill-conditionedmatrices,
similar as for the standard condensed MPC formulation of LTI systems [25].

Remark 3 The calculation time can be reduced considerably if the cost matrices
W ′�j�, qx�j� and qw�j� are divided into block matrices according to the inputs u�j�
for each time step and calculated separately. This reduces the dimension of the
multiplied matrices and avoids multiplications with identity and zero matrices.
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5 Formulation as Quadratic Optimization Problem

This section demonstrates how the results fromSects. 3 and 4 can be used to formulate
the optimization problem(2) as a QP in the following form:

min
u(k)

uᵀ(k)W(k)u(k) + q(k)u(k) (34a)

s. t. Hu(k) ≤ h. (34b)

To this end, the prediction equations, the cost function, and the constraints have to
be reformulated as a function of u(k).

The augmented state vector x̄�1� := [
x̄ᵀ�1� . . . x̄ᵀ�N�

]ᵀ
containing all expected

values of the states for the whole prediction horizon and Eq. (7) are used to formulate
the prediction equations:

x̄�1� = A(k) x(k) + B(k)u(k) + G(k) w̄(k) (35)

with:

A(k) :=

⎡
⎢⎢⎢⎣

Ā�1�
Ā�2�

...

Ā�N�

⎤
⎥⎥⎥⎦ , B(k) :=

⎡
⎢⎢⎢⎢⎣

B̄(0)�1� 0 . . . 0

B̄(0)�2� B̄(1)�2�
. . .

...
...

. . .
. . . 0

B̄(0)�N� . . . B̄(N−2)�N� B̄(N−1)�N�

⎤
⎥⎥⎥⎥⎦

,

(36)

G(k) :=

⎡
⎢⎢⎢⎢⎣

Ḡ(0)�1� 0 . . . 0

Ḡ(0)�2� Ḡ(1)�2�
. . .

...
...

. . .
. . . 0

Ḡ(0)�N� . . . Ḡ(N−2)�N� Ḡ(N−1)�N�

⎤
⎥⎥⎥⎥⎦

.

Once the prediction matrices have been calculated according to Theorem1, the pre-
dictionof the expectedvalues of the state x̄�j� is a simplematrix-vectormultiplication.
In addition, x̄�1� is a linear function of u(k).

Since Rθ�j� does only depend on the current Markov state, the cost function can
be rewritten by means of (20) and (21):

J(k) =
N∑
j=1

(
E

[
x �Tj� Qθ�j� x�j�

] + uᵀ�j − 1�

(
nθ∑
i=1

μi�j − 1� Ri

)
u�j − 1�

)

=
N∑
j=1

(
uᵀ(k)W ′�j�u(k) +

(
qx�j� + qw�j�

)
u(k)

)
+ uᵀ(k)R(k)u(k) + Ψ.

(37)
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The input cost matrix R(k) is defined as the block diagonal matrix aggregating all
expected values of the cost matrices Rθ�j�:

R(k) := diag

(
nθ∑
i=1

μi�0� · Ri, . . . ,

nθ∑
i=1

μi�N − 1� · Ri

)
. (38)

The following matrices are introduced in order to write the constraints (2b) and
(2c) as a function of u(k):

c :=[
cᵀ . . . cᵀ

]
,T d :=[

d
ᵀ

. . . d
ᵀ ]

,T C = diag(C, . . . ,C), D = diag(D, . . . ,D).

Using the aforementioned definitions and prediction equations, the QP can be
formulated in standard form, as stated in the following theorem:

Theorem 3 The optimization problem(2) is equivalent to the following QP:

min
u(k)

uᵀ(k)W(k)u(k) + q(k)u(k) (39a)

s. t. Cu(k) ≤ c, D (A(k) x(k) + B(k)u(k) + G(k) w̄(k)) ≤ d, (39b)

when matrices W(k) and q(k) are selected as follows:

W(k) =
N∑
j=1

W ′�j� + R(k), q(k) =
N∑
j=1

(
qx�j� + qw�j�

)
,

where W ′�j�, qx�j� and qw�j� are determined according to Theorem2.

Proof The absolute term Ψ in (37) can be neglected, since it does not affect the
optimizer. Thus, cost function (39a) directly follows from (37). The equality of the
constraints follows by the definitions ofC, c,D, and d, as well as the structure of the
prediction equation (35). �

Theorem3 shows that the stated MPC problem (2) for JMLS can be transformed
in a QP similar to that arising in standard condensed MPC formulations for LTI
systems. Efficient solvers exist for the resulting QP. In addition, the construction of
the matricesA(k),B(k),G(k) andW(k), q(k) is based on the recursive computations
of the prediction matrices as stated in Theorems1 and 2 that can be performed
offline to some extent. Thus, Theorems1–3 establish the desired MPC approach
with low computational effort, compared to approaches employing SDP or MILP
formulations.

Computational Complexity of the MPC The computation time results from the
calculation of the prediction matrices on the one hand, and from solving (39) on the
other hand. As stated above, the online computational effort grows with complexity2

2Only the dependencies on nθ and N are stated, since the statements are just meant to demonstrate
the improvement compared to the case where all nN+1

θ Markov state trajectories are calculated.



Constrained Model Predictive Control of Processes … 349

O
(
n2θ · N2

)
for the computation of the prediction matrices A(k), B(k), and G(k).

The computational effort of the online calculations for the cost prediction matrices
W ′�j�, qx�j� and qw�j� increaseswithO

(
nθ · N3

)
. The costmatrices can be calculated

also by:

W(k) =
N∑
j=1

nθ∑
i=1

μi(k) κ
(j)
i + R(k) =

nθ∑
i=1

μi(k)
N∑
j=1

κ
(j)
i + R(k), (40)

q(k) =
N∑
j=1

(
qx�j� + qw�j�

) = 2x (Tk)
nθ∑
i=1

μi(k)
N∑
j=1

χ
(j)
i + 2w̄ᵀ(k)

nθ∑
i=1

μi(k)
N∑
j=1

ζ
(j)
i .

In this formulation, the inner sums over κ
(j)
i ,χ

(j)
i and ζ

(j)
i can be calculated offline.

Hence, the online computational complexity can be reduced further to O
(
nθ · N2

)
.

If the Markov state is measurable, the sums over all Markov states can be replaced
by just selecting the corresponding matrices. In this case, the online computational
effort becomes independent of the number of Markov states.

The prediction matrices A(k), B(k) and G(k) are only needed to formulate the
state expectancy constraints in (39b). Thus, the pre-processing effort grows with
O

(
nθ · N2

)
when no state expectancy constraints are present, and with O

(
n2θ · N2

)
otherwise. Thus, despite the more involved reformulation of the cost function, this
approach results in a significantly lower calculation time for pre-processing as the
approach presented in [24], when no state constraints are considered. The compu-
tation time for solving the QP mainly depends on the number of decision variables
(N · nu), the number of constraints and the utilized solver. The resulting computation
times for different examples are displayed in Sect. 7.

6 Mean Square Stability

In this section, the presented approach is investigated and compared to the approach
presented in [24] concerning stability. As is common for JMLS, the notion of mean
square stability (MSS) is employed here. The convergence of the first and second
moments of the state x̄(k) and E [x(k) xᵀ(k)] respectively, is required for MSS.

Definition 1 The controlled JMLS is MSS iff for all x(0) and θ(0) and w(k) = 0
the following convergence properties hold [1]:

‖x̄(k)‖ → 0 and
∥∥E [

x(k) xᵀ(k)
]∥∥ → 0 as k → ∞ . (41)

Concerning stability, two questions arise and are answered below: Does the con-
vergence of the cost function (2a) to zero lead toMSS (Sect. 6.1)? Is the convergence
of the cost function guaranteed by the proposed MPC approach (Sect. 6.2)?
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6.1 Cost Convergence and MSS

The following result holds as a criterion for MSS:

Lemma 1 If the costs (2a) converge to zero, i.e. lim
k→∞

J(k) = 0, MSS is implied.

Proof J(k) → 0 implies u(k) → 0 and E
[
x �Tj� Qθ�j� x�j�

] → 0 for all
j ∈ {1, . . . ,N} due to Eq. (37). For the state-dependent step costs, it follows that:

E
[
x �Tj� Qθ�j� x�j�

] = E
[
tr(x �Tj� Qθ�j� x�j�)

] = tr
(
E

[
Qθ�j� x�j� x �Tj�

])
.

(42)

The matrices Qθ�j� and x �Tj� are not independent in general, since both depend on
μ(k). Hence, the expectancy of the product can be reformulated as follows:

E
[
x �Tj� Qθ�j� x�j�

] = tr
(
E

[
Qθ�j�

]
E

[
x�j� x �Tj�

] + Cov(Qθ�j�, x�j� x �Tj�)
)
.

(43)

If the cost matrices are independent of the Markov state, the covariance
Cov(Q, x�j� x �Tj�) is zero.

It holds E
[
Qθ�j�

]
> 0, since Qi > 0 for all i ∈ Θ . The second moment matrix

E
[
x�j� x �Tj�

]
and a covariance are always positive semi-definite.Hence, the argument

of the trace is positive semi-definite and the whole expression is zero if and only if
both summands of the argument are zero. Thus, it holds:

E
[
x �Tj� Qθ�j� x�j�

]
= 0 ⇒ E

[
Qθ�j�

]
E

[
x�j� x �Tj�

] = 0

⇒ E
[
x�j� x �Tj�

] = Cov
(
x�j�, x�j�

) + x̄�j�x̄ᵀ�j� = 0.

(44)

The last equation is only valid if the covariance and x̄�j� are zero. Hence, convergence
of the costs implies that the convergence of the first and the second moments to zero
and MSS follows from the convergence of the cost function (2a) to zero. �

Inserting the definition of the covariance matrix (cf. [26]) into (43) results into
the relation between the cost function (2a) and the cost function used in [24]:

E
[
x �Tj� Qθ�j� x�j�

]
= tr

(
E

[
Qθ�j�

]
Cov

(
x�j�, x�j�

) + Cov(Qθ�j�, x�j� x �Tj�)
)

+ x̄ �Tj� E
[
Qθ�j�

]
x̄�j�. (45)

In contrast to the approach in [24], the costs (2a) depend on the covariance matrix
of the state vector. This means that the MPC approach proposed in this contribution
seeks to minimize the expected value of the state as well as the covariance, while the
approach in [24] tries to minimize only the expectancy of the state (cf. Appendix B).
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Thus, Lemma1 holds for the approach presented here, but not for the cost function
in [24] in general. It is expected that the approach proposed in this contribution will
lead to a better performance and is capable of stabilizing a broader class of JMLS.

6.2 Discussion of Cost Convergence

The answer to the question of whether the proposed MPC approach with minimiza-
tion of (2a) subject to (1), (2b), and (2c) leads to converging costs (implying MSS
according to Lemma1) depends on the system structure, the cost matricesQi and Ri,
and the horizon length N . If the inputs are penalized too much by high values of Ri

compared toQi, the computed inputs can be too weak to counteract the uncertainties
and disturbances caused by the Markovian switching of the system dynamics. On
the other hand, in some rare cases where the inputs are penalized insufficiently by
low values of Ri compared to Qi, the computed inputs may run into the constraints
and lead to infeasible optimization problems. With respect to the prediction horizon,
an increase of N leads to additional information about the system available to the
MPC and a better controller performance. However, due to the increasing uncertain-
ties with increasing prediction horizon, the variance of the predicted states increases.
The variance becomes the dominating part of the cost function for larger values ofN .
Thus, the resulting control actions become more conservative in order to minimize
the variance in the system instead of the expected value of the states, and the con-
vergence deteriorates. Hence, the selection of the horizon length N has to establish
a compromise between convergence and the minimization of the variance.

However, if the cost matrices and the horizon are suitably selected for the system
under consideration, the MPC approach stabilizes the system and exhibits good
convergence results formost system structures (as demonstrated by the simulations in
Sect. 7). Thus, a simulation phase for the tuning of the cost matrices is recommended
to get the desired performance in terms of stability and convergence rates. In addition,
MSS stability can be enforced by additional constraints similar as in [20], or by the
use of terminal costs comparable to [22].

Uncontrollable SystemsAn unfavourable case for cost convergence should be men-
tioned: If the Markov state is not measurable while the JMLS is highly symmetric,
the costs cannot be influenced by the inputs. This means that all costs are subsumed
in Ψ in (21), and the optimizer is a zero vector. An example is a JMLS with:

A1 =
[
1.1 0
0 1.1

]
, A2 =

[
0 1.1
1.1 0

]
, P =

[
0.5 0.5
0.5 0.5

]
, (46)

B1 = B2 = I2, μ(0) = [
0.5 0.5

]ᵀ
, x(0) = [

1 −1
]ᵀ

.
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This special configuration leads to a stationary probability distribution μ(k) with
equal probabilities for both Markov states. For both, the system behaviour described
by A1 and A2 is very different. Thus, basically nothing is known about the system
behaviour, but the state x(k). However, this does only occur for very few artificial
systems, and is barely relevant for applications.

7 Simulation Results

When considering industrial production processes, the main requirements are mini-
mization of costs, stability of the controlled systemunder consideration of constraints
and disturbances. In addition, the applicability to high-dimensional systems, i.e. low
computation times of the MPC, are important. Especially, the last point is crucial
for applications, e.g. in hot sheet metal forming processes for car body parts, that
exhibit time delays and spatially distributed properties in terms of temperature dis-
tribution and geometry. Depending on the sampling time and the resolution of the
discretization, large-state space dimensions may result. According to these require-
ments, the properties of the proposed MPC approach have been investigated by sim-
ulation studies. These include a performance comparison with the approach from
[24], the demonstration of satisfying constraints, stability in case of disturbances,
and an evaluation of times for calculation.

Simulation Setup and Performance Measures In all simulations JMLS are con-
sidered where the matrices Ai,Bi and P are determined randomly, such that each of
the nθ LTI-systems is unstable with 1.1 ≤ max(|eig(Ai)|) ≤ 2. The components of
x(0) are taken from [−6; 9]. For each case Monte Carlo simulations with nsim = 200
runs and a simulation time of nk = 50 steps were performed. The simulations were
implemented withMATLAB and quadprog on a standard PCwith an Intel i5-4670
processor. The resulting control performance is measured by the average costs:

Js := 1

nsim

nsim∑
r=1

(
nk∑
k=1

xᵀ
r (k)Qθr(k) xr(k) +

nk−1∑
k=0

uᵀ
r (k)Rθr(k) ur(k)

)
, (47)

where xr(k), ur(k) and θr(k) with k ∈ {0, . . . , nk} are the trajectories of the states,
inputs and Markov states of the r-th simulation run. To analyze the convergence of
states and inputs, the following measures are introduced:

x̂(k) := 1

nsim · nx
nx∑
l=1

nsim∑
r=1

∣∣xr,[l](k)
∣∣ , û(k) := 1

nsim · nu
nu∑
l=1

nsim∑
r=1

∣∣ur,[l](k)
∣∣ ,

(48)

Here, xr,[l](k) and ur,[l](k) denote the l-th component of xr(k) and ur(k) respectively.
Since these measures describe the mean of absolute values of all states and inputs,
the convergence of the measures shows the convergence of all states and inputs.
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Table 1 Comparison of average costs Js,1 and Js,2 for A1 andA2 as well as relative cost differences
for 10 different JMLS and 200 Monte Carlo simulations each

No. 1 2 3 4 5 6 7 8 9 10

Js,1 117 178 87 312 181 1.2 × 105 143 2.0 × 109 365 111

Js,2 98 170 81 349 166 1.1 × 103 139 946 224 114
Js,2−Js,1

Js,1
[%] −16.7 −4.2 −7.0 11.6 −8.6 (−99.1) −2.5 (−100.0) −38.5 3.3

Performance Comparison In this section, the resulting performance of the pro-
posed MPC approach (referred to by A2) and of the approach described in [24] and
Appendix B (addressed byA1) are compared. To this end, both approaches have been
tested with 10 different JMLS with the dimensions nx = 10, nu = 4, nθ = 4. For all
tests, the prediction horizon N = 5 and the cost matrices Qi = 0.5I and Ri = I for
all i ∈ Θ have been used. The inputs are constrained component-wise with |u[i]| ≤ 7,
and θ(k) is assumed to be measurable. The resulting average costs for all systems
(denoted by Js,1 for A1 and by Js,2 for A2) are shown in Table1.

The results of the simulations show thatA2outperformsA1 for 8 of the 10 systems.
For two cases (6 and 8), A1 leads to an unstable closed loop behaviour, while A2
keeps the states bounded (6) or asymptotically stabilizes the system (8). For all cases
in which both approaches lead to an asymptotically stable closed loop system, A2
results in 7.8% lower costs in average. Thus, due to the use of cost function (2a),
the approach proposed in this chapter leads in most cases to a better performance
and exhibits better stabilizing properties, as expected by the results from Sect. 6. In
addition, A2 has an average computation time of 1.7 ms while A1 needs 4.0 ms. This
also demonstrates the advantages in terms of computational effort.

Some systems, like the example used in [4] and [24], exhibit high variances of
the predicted states. Since A2 tries also to minimize the covariance in the system
with an input trajectory independent of the Markov state, this approach leads to a
more conservative and slower control action than for A1, and thus in some cases to
higher costs. However, there are configurations for these systems in which A1 does
not stabilize the system at all, but A2 does. Thus, the developed approach is more
robust at the expense of a slower state convergence.

High-Dimensional Example, CalculationTimes, and ScalabilityAs stated before,
the capability of controlling JMLS with large state spaces as well as satisfying con-
straints even in case of disturbances are requirements for an application to produc-
tion processes. Therefore, the proposed MPC approach is tested in this subsection
for high-dimensional systems with nθ = 10, nx = 150, nw = 150, nu = 30, a predic-
tion horizon of N = 5, and the cost matrices Qi = 100I , and Ri = I for all i ∈ Θ .
The Markov state θ(k) is assumed to be measurable, and Gi = I applies for all
i ∈ Θ . To be able to constrain the states, it is assumed that all components i of the
disturbance w[i](k) are given by independent truncated normal distributions with
w[i](k) ∼ N (0, 0.05) and−0.4 ≤ w[i](k) ≤ 0.4. In addition, component-wise input
constraints |u[i]| ≤ 2.5 and state expectancy constraints |x̄[i]| ≤ 14.6 are considered
to keep the states within |x[i]| ≤ 15.
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Fig. 1 Results of Monte Carlo simulation showing the measures x̂ (left) and û (right) as well as
the envelopes containing all trajectories of x(k) and u(k) over all simulation runs. The measures x̂
and û are not converging to 0 due to the use of the absolute value in (48) and the disturbance w(k)

The results for the measures defined in (48) and the envelopes enclosing all com-
ponents of the states as well as the inputs for all simulation runs are shown in Fig. 1.
The results show, that the constraints for the state as well as the inputs are satisfied,
and the system is stabilized for all simulation runs in the presence of the defined
bounded disturbance. The average computation time is 62 ms.

The simulation of high-dimensional systems showed that the large number of high-
dimensional matrices used during the offline calculation as defined in Theorem 2 lead
to highmemory demands.However, due to the sparse structure of thematrices defined
in (30), the necessary memory size can be reduced considerably, if algorithms for
sparse matrices are used.

To investigate the scalability of the proposed approach, the computation times for
different system dimensions have beenmeasured. The resulting average computation
times in milliseconds for pre-processing and solving of the QP are shown in Table2
for the indicated dimensions, where nw = nu. The first computation time is for A2
with state constraints and the second one for A2 without state constraints, but both
with input constraints.

The simulation results show that the resulting computation times are very low
even for high system dimensions and large numbers of Markov states. This holds
especially for the case where no state expectancy constraints are present. In addition,
the computation time is independent of nθ since the Markov state is measurable.
This demonstrates the efficiency of the proposed cost prediction scheme. Thus, for
the cases where state constraints are present, the computation times are dominated
by the effort for the calculation of the prediction matrices according to Theorem1.
However, it is also possible to use a similar procedure as proposed in this chapter
to also calculate the prediction matrices Ā, B̄ and Ḡ mainly offline. In addition, the
resulting computation times outperform SDP andMILP formulations by far. Just the
calculation of stabilizing feedback controllers for a JMLS with nw = nu = 15, nx =
50 and nθ = 5 by the commonly used SDP formulations takes about 3min. Thus, the
simulation results show the applicability to large JMLS.
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Table 2 Comparison of average computation times for A2 in milliseconds for JMLS of indicated
dimensions

N nθ (nx, nu)

(50,15) (100,30) (150,45) (200,60)

SC No SC SC No SC SC No SC SC No SC

5 5 14 3 30 4 55 6 92 8

10 25 3 53 4 123 6 182 8

15 33 3 83 4 175 6 284 8

10 5 40 4 99 8 196 15 345 27

10 71 4 189 8 394 15 706 26

15 109 4 291 8 660 15 1167 27

The first computation time in each column is for the case with state constraints (SC) and the second
one for the case without state constraints (no SC)

8 Conclusions

In this chapter, an approach to constrained, finite horizonMPC for high-dimensional
JMLS has been proposed. These JMLS can be used to model linear systems with
abrupt and random changes in its structure. A new recursive prediction scheme for
the commonly used cost function, describing the expected value of a quadratic cost
criterion, was developed. Due to the special structure of the algorithm, the computa-
tional complexity is reduced drastically. Furthermore, most of the computations can
be performed offline, and for the proposed approach no truncation of the scenario
tree is necessary. By combining this algorithm and the prediction equation developed
in [24], the MPC scheme can be formulated as a standard QP.

The advantage of the proposed approach is that due to its recursiveness and the
QP formulation it is applicable to high-dimensional systems. These high-dimensional
systems often arise when modeling production processes, communication or energy
distribution networks. In addition, the proposed algorithms can be extended easily
to time varying system matrices and transition probabilities. For most of the existing
approaches, this is not possible or leads to quite conservative formulations.

It was shown that converging costs lead to MSS, but the convergence has to be
ensured by a careful tuning of the cost matrices. This may be considered a disad-
vantage of the proposed approach, and the solution is subject to current research.
One possibility to guarantee MSS is to add additional constraints enforcing a cost
decrease of a Lyapunov function. To this end, concepts proposed in [20] could be
used to extended the presented approach to ensure MSS. Future work will also focus
on extending the presented approach to be robust against bounded disturbances.
Furthermore, formulations guaranteeing recursive feasibility are investigated.



356 J. Tonne and O. Stursberg

Appendix A—Proof of Theorem2

This appendix states the proof of Theorem2. For sake of a brief notation, a certain
trajectory of the Markov chainM defined by (θ�0� = θ0, . . . , θ�j� = θj) is denoted
by (θ0, . . . , θj) in this proof. The corresponding realization probability is given by:

p(θ0,...,θj) := P
(
θ�0� = θ0, . . . , θ�j� = θj

) = μθ0(k) ·
j−1∏
l=0

pθl+1,θl . (49)

Let �j denote the set of all possible Markov state trajectories with j transitions.
By applying the systemdynamic (1) j times recursively and consecutive expansion

of the products, it follows for the expected cost at time step k + j:

E
[
xᵀ�j�Qθj x�j�

]

= E
[(
Aθj−1 x�j − 1� + Bθj−1 u�j − 1� + Gθj−1 w�j − 1�

)ᵀ
Qθj · . . .

. . . · (
Aθj−1 x�j − 1� + Bθj−1 u�j − 1� + Gθj−1 w�j − 1�

)]
(50)

...

=
∑
�j

p(θ0,...,θj)

(
2

j−1∑
l=0

xᵀ(k)
j−1∏
c=0

Aᵀ
θc
Qθj

j−l−1∏
c=1

Aθj−c Bθl u�l�

+ 2
j−1∑
l1=0

j−1∑
l2=0

w̄ᵀ�l1�G
ᵀ
θl1

j−1∏
c=l1+1

Aᵀ
θc
Qθj

j−l2−1∏
c=1

Aθj−c Bθl2
u�l2�

+
j−1∑
l1=0

j−1∑
l2=0

uᵀ�l1�B
ᵀ
θl1

j−1∏
c=l1+1

Aᵀ
θc
Qθj

j−l2−1∏
c=1

Aθj−c Bθl2
u�l2�

)
+ Ψ

=
∑
�j−1

p(θ0,...,θj−1)

(
2

j−1∑
l=0

xᵀ(k)
j−1∏
c=0

Aᵀ
θc

⎛
⎝

nθ∑
θj=1

pθj,θj−1Qθj

⎞
⎠

j−l−1∏
c=1

Aθj−c Bθl u�l�

+ 2
j−1∑
l1=0

j−1∑
l2=0

w̄ᵀ�l1�G
ᵀ
θl1

j−1∏
c=l1+1

Aᵀ
θc

⎛
⎝

nθ∑
θj=1

pθj,θj−1Qθj

⎞
⎠

j−l2−1∏
c=1

Aθj−c Bθl2
u�l2�

+
j−1∑
l1=0

j−1∑
l2=0

uᵀ�l1�B
ᵀ
θl1

j−1∏
c=l1+1

Aᵀ
θc

⎛
⎝

nθ∑
θj=1

pθj,θj−1Qθj

⎞
⎠

j−l2−1∏
c=1

Aθj−c Bθl2
u�l2�

⎞
⎠ + Ψ.

Here, the variable Ψ contains all costs that cannot be influenced by the inputs. The
sums over the cost matrices Qθj can be replaced byTθj−1(Q), like in (23). To express
the costs as a function of u(k), the sums over l, l1 and l2 are reformulated as matrix
multiplications:
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E
(
xᵀ�j�Qθj x�j�

) − Ψ

=
∑
�j−1

p(θ0,...,θj−1)

⎛
⎜⎜⎜⎜⎝
2 xᵀ (k)Aᵀ

θ0
· . . . · Aᵀ

θj−1

[
Tθj−1 (Q) . . . Tθj−1 (Q)

]

⎡
⎢⎢⎢⎢⎣

Aθj−1 · . . . · Aθ1 · Bθ0u�0�
Aθj−1 · . . . · Aθ2 · Bθ1u�1�

.

.

.

Bθj−1u�j − 1�

⎤
⎥⎥⎥⎥⎦

+ 2

⎡
⎢⎢⎢⎢⎣

Aθj−1 · . . . · Aθ1 · Gθ0 w̄�0�
Aθj−1 · . . . · Aθ2 · Gθ1 w̄�1�

.

.

.

Gθj−1 w̄�j − 1�

⎤
⎥⎥⎥⎥⎦

ᵀ⎡
⎢⎢⎣
Tθj−1 (Q) . . . Tθj−1 (Q)

.

.

.
. . .

.

.

.

Tθj−1 (Q) . . . Tθj−1 (Q)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Aθj−1 · . . . · Aθ1 · Bθ0u�0�
Aθj−1 · . . . · Aθ2 · Bθ1u�1�

.

.

.

Bθj−1u�j − 1�

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

Aθj−1 · . . . · Aθ1 · Bθ0u�0�
Aθj−1 · . . . · Aθ2 · Bθ1u�1�

.

.

.

Bθj−1u�j − 1�

⎤
⎥⎥⎥⎥⎦

ᵀ⎡
⎢⎢⎣
Tθj−1 (Q) . . . Tθj−1 (Q)

.

.

.
. . .

.

.

.

Tθj−1 (Q) . . . Tθj−1 (Q)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Aθj−1 · . . . · Aθ1 · Bθ0u�0�
Aθj−1 · . . . · Aθ2 · Bθ1u�1�

.

.

.

Bθj−1u�j − 1�

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(51)

= ∑
�j−1

p(θ0 ,...,θj−1)

⎛
⎜⎜⎜⎜⎝
2 xᵀ(k) Aᵀ

θ0
· . . . · Aᵀ

θj−1

[
Tθj−1 (Q) . . . Tθj−1 (Q)

]

⎡
⎢⎢⎢⎢⎣

Aθj−1 0 0 0

0
. . . 0 0

0 0 Aθj−1 0
0 0 0 Bθj−1

⎤
⎥⎥⎥⎥⎦

· · · ·

. . . ·

⎡
⎢⎢⎢⎢⎢⎢⎣

Aθj−2 0 0 0 0

0
. . . 0 0 0

0 0 Aθj−2 0 0
0 0 0 Bθj−2 0
0 0 0 0 Inu

⎤
⎥⎥⎥⎥⎥⎥⎦

· . . . ·
⎡
⎣
Aθ1 0 0
0 Bθ1 0
0 0 I(j−2)·nu

⎤
⎦

[
Bθ0 0
0 I(j−1)·nu

]
⎡
⎢⎢⎣

u�0�
.
.
.

u�j − 1�

⎤
⎥⎥⎦

+2
[
w̄ᵀ�0� . . . w̄ᵀ�j − 1�

] [
Gᵀ

θ0
0

0 I(j−1)·nw

] ⎡
⎢⎣
Aᵀ

θ1
0 0

0 Gᵀ
θ1

0
0 0 I(j−2)·nw

⎤
⎥⎦ · . . . ·

⎡
⎢⎢⎢⎢⎢⎣

Aᵀ
θj−1

0 0 0

0
. . . 0 0

0 0 Aᵀ
θj−1

0

0 0 0 Gθj−1

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎣

Tθj−1 (Q) . . . Tθj−1 (Q)

.

.

.
. . .

.

.

.

Tθj−1 (Q) . . . Tθj−1 (Q)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Aθj−1 0 0 0

0
. . . 0 0

0 0 Aθj−1 0
0 0 0 Bθj−1

⎤
⎥⎥⎥⎥⎦

· . . . ·
[
Bᵀ

θ0
0

0 I(j−1)·nu

]
⎡
⎢⎢⎣

u�0�
.
.
.

u�j − 1�

⎤
⎥⎥⎦

+ [
uᵀ�0� . . . uᵀ�j − 1�

] [
Bᵀ

θ0
0

0 I(j−1)·nu

] ⎡
⎢⎣
Aᵀ

θ1
0 0

0 Bᵀ
θ1

0
0 0 I(j−2)·nu

⎤
⎥⎦ · . . . ·

⎡
⎢⎢⎢⎢⎢⎣

Aᵀ
θj−1

0 0 0

0
. . . 0 0

0 0 Aᵀ
θj−1

0

0 0 0 Bθj−1

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎣

Tθj−1 (Q) . . . Tθj−1 (Q)

.

.

.
. . .

.

.

.

Tθj−1 (Q) . . . Tθj−1 (Q)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Aθj−1 0 0 0

0
. . . 0 0

0 0 Aθj−1 0
0 0 0 Bθj−1

⎤
⎥⎥⎥⎥⎦

· . . . ·
[
Bᵀ

θ0
0

0 I(j−1)·nu

]
⎡
⎢⎢⎣

u�0�
.
.
.

u�j − 1�

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

,
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where I and 0 denote identity and zero matrices of appropriate dimensions. With the
matrices defined in (30), Eq. (51) can be written as a function of u(k):

E
(
xᵀ�j�Qθj x�j�

) − Ψ

=
∑
�j−1

p(θ0,...θj−1)

(
2xᵀ(k)Aᵀ

θ0
· . . . · Aᵀ

θj−1
Q̂qx,θj−1 [j] B̂θj−1 [j] · . . . · B̂θ0 [1] u(k)

+ 2w̄ᵀ(k) Ĝᵀ
θ0

[1] · . . . · Ĝᵀ
θj−1

[j] Q̂qx,θj−1 [j] B̂θj−1 [j] · . . . · B̂θ0 [1] u(k)

+ uᵀ(k) B̂ᵀ
θ0

[1] · . . . · B̂ᵀ
θj−1

[j] Q̂W,θj−1 [j] B̂θj−1 [j] · . . . · B̂θ0 [1] u(k)
)
. (52)

Thus, one obtains for the cost prediction matrices:

qx�j� := 2xᵀ(k)
∑
�j−1

p(θ0,...,θj−1) A
ᵀ
θ0

· . . . · Aᵀ
θj−1

Q̂qx,θj−1 [j] B̂θj−1 [j] · . . . · B̂θ0 [1], (53)

qw�j� := 2w̄ᵀ(k)
∑
�j−1

p(θ0,...θj−1) Ĝ
ᵀ
θ0

[1] · . . . · Ĝᵀ
θj−1

[j] Q̂qw,θj−1 [j] B̂θj−1 [j] · . . . · B̂θ0 [1], (54)

W ′�j� :=
∑
�j−1

p(θ0,...θj−1) B̂
ᵀ
θ0

[1] · . . . · B̂ᵀ
θj−1

[j] Q̂W,θj−1 [j] B̂θj−1 [j] · . . . · B̂θ0 [1]. (55)

These equation describe a way to calculate qx�j�, qw�j�, and W ′�j�. However, in
this form the summation over all possible Markov trajectories is still employed. The
computational effort still depends exponentially on nθ and N . To reduce the compu-
tational effort, the sums are reduced to only the parts that depend on the summation
variable. Thus, a nested sum is formed which can be calculated recursively:

qx�j� = 2xᵀ(k)

nθ∑
θ0=1

. . .

nθ∑
θj−1=1

p(θ0,...,θj−1)A
ᵀ
θ0

· . . . · Aᵀ
θj−1

Q̂qx [j]B̂θj−1 [j] · . . . · B̂θ0 [1]

= 2x (Tk)

nθ∑
θ0=1

· · ·
nθ∑

θj−2=1

p(θ0,...,θj−2) · Aᵀ
θ0

· . . . · Aᵀ
θj−2

·
( nθ∑

θj−1=1

pθj−1,θj−2 A
ᵀ
θj−1

Q̂qx [j]B̂θj−1 [j]︸ ︷︷ ︸
=:χ(1)

θj−1

)
B̂θj−2 [j − 1] · . . . · B̂θ0 [1]

= 2xᵀ(k)
nθ∑

θ0=1

· · ·
nθ∑

θj−2=1

p(θ0,...,θj−2) · Aᵀ
θ0

· . . . · Aᵀ
θj−2

Tθj−2

(
χ(1)

)
B̂θj−2 [j − 1]

︸ ︷︷ ︸
=:χ(2)

θj−2

· . . . · B̂θ0 [1]
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= 2xᵀ(k)

nθ∑
θ0=1

· · ·
nθ∑

θj−3=1

p(θ0,...,θj−3) · Aᵀ
θ0

· . . . · Aᵀ
θj−3

Tθj−3

(
χ(2)

)
B̂θj−3 [j − 2]

︸ ︷︷ ︸
=:χ(3)

θj−3

· . . . · B̂θ0 [1]

.

.

.

= 2xᵀ(k)

nθ∑
θ0=1

μθ0(k)A
ᵀ
θ0
Tθ0

(
χ(j−1)

)
B̂θ0 [1]︸ ︷︷ ︸

=:χ(j)
θ0

= 2xᵀ(k)

nθ∑
θ0=1

μθ0(k)χ
(j)
θ0

. (56)

These transformations correspond to the steps defined in Theorem2. An analogous
procedure for W ′�j� leads to:

W ′�j� =
nθ∑

θ0=1

· · ·
nθ∑

θj−1=1

p(θ0,...,θj−1) · B̂ᵀ
θ0

[1] · . . . · B̂ᵀ
θj−1

[j]Q̂W[j]B̂θj−1 [j] · . . . · B̂θ0 [1]

=
nθ∑

θ0=1

· · ·
nθ∑

θj−2=1

p(θ0,...,θj−2) · B̂ᵀ
θ0

[1] · . . . · B̂ᵀ
θj−2

[j − 1] · . . .

. . . ·
( nθ∑

θj−1=1

pθj−1,θj−2 B̂
ᵀ
θj−1

[j]Q̂W[j]B̂θj−1 [j]︸ ︷︷ ︸
=:κ(1)

θj−1

)
B̂θj−2 [j − 1] · . . . · B̂θ0 [1]

=
nθ∑

θ0=1

· · ·
nθ∑

θj−2=1

p(θ0,...,θj−2) · B̂ᵀ
θ0

[1] · . . . · B̂ᵀ
θj−2

[j − 1]Tθj−2

(
κ(1)

)
B̂θj−2 [j − 1]

︸ ︷︷ ︸
=:κ(2)

θj−2

· . . . · B̂θ0 [1]

.

.

.

=
nθ∑

θ0=1

μθ0(k) B̂
ᵀ
θ0

[1]Tθ0

(
κ(j−1)

)
B̂θ0 [1]︸ ︷︷ ︸

=:κ(j)
θ0

=
nθ∑

θ0=1

μθ0(k)κ
(j)
θ0

. (57)

For qw�j�, the same procedure is used to obtain a recursive algorithm. With these
derivations, it is proven that the algorithm in Theorem2 calculates the cost prediction
matrices qx�j�, qw�j�, and W ′�j�. �

Appendix B—MPC Approach Proposed in [24]

This section gives a very brief description of the MPC approach given in [24]. The
following optimization problem is solved to determine the input trajectory:



360 J. Tonne and O. Stursberg

min
u(k)

N∑
j=1

(
x̄ᵀ�j�Qj x̄�j� + uᵀ�j − 1�Rj−1 u�j − 1�

)

s.t. xmin,j ≤ x̄�j� ≤ xmax,j, umin,j ≤ u�j − 1� ≤ umax,j ∀ j ∈ {1, . . . ,N}.
(58)

Here, the cost matrices do not depend on theMarkov state, but on the prediction step.
With (35) and results from Sect. 3 (58) can be formulated as a QP [24].
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