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Introduction

This is a book about the way filters work. For those who want to grasp what
is happening in filter circuits, this book provides relatively non-mathematical
explanations backed by a wealth of graphs. It is not possible to avoid maths
completely but the maths here is limited to helping the reader get the feel of
filter behaviour and go on to tackle more advanced texts with assurance and
understanding. A knowledge of maths up to GCSE level is assumed and any
aspect slightly above that level is briefly explained.

There are dozens if not hundreds of ways of building a filter to perform a
particular function but the principles on which filters operate are few. By exam-
ining a selection of filter configurations in detail and observing exactly how they
operate, the reader will become sufficiently familiar with filtering principles to
understand how most other types work.

It is important for the reader to master and understand each small step in what
may be a long discussion. To this end, discussions are broken into short, easily
managed steps with a batch of short questions at the end of each step, under
the heading Keeping up? Most chapters end with a collection of slightly more
demanding questions, headed Test yourself.

It is not easy for the reader to obtain hands-on experience of analogue filters
without access to a wide range of precision components and test-gear. This is
why the chapters on analogue filters have been so fully illustrated by printouts
obtained from computer simulations. On the other hand, digital filters can readily
be implemented on a computer and a number of digital filter programs in BASIC
are listed in Appendix A. These provide the reader with a basis for investigating
digital filters in action.

The author wishes to acknowledge the assistance so generously given by:
Those Engineers Limited, Mill Hill, London, publishers of SpiceAge®, the
electronic circuit simulation software; Wolfram Research Inc., Champaign,
Illinois, publishers of Mathematica®, the mathematical software; Goth, Goth
and Chandleri Limited, Herstmonceux, East Sussex, publishers of Nodal, the
electronic engineering package for use with Mathematica®, Samuel Dick,
co-author of Riddle, Alfred and Dick, Samuel, Applied Engineering with
Mathematica®, Addison-Wesley, 1995.

Without the computing resources provided by the above, this book could not
have been written,

vii
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Passive devices

Many of the filters described in this book are built from just three kinds of
electronic device: resistors, capacitors and inductors. These are often known
collectively as passive devices. This description is given to them because they
are acted upon by voltages or currents already existing in the circuit and are not
able to initiate any activity on their own account. The properties of these passive
devices when acted on by voltages or currents are the subject of this chapter.

Resistors

The action of a voltage on a resistor is explored by setting up the circuit shown
in Fig. 1.1. We would obviously need to connect meters to the circuit to measure
what is happening but these are left out of Fig. 1.1 to keep it clear. The circular
symbol on the left is a voltage generator. It produces a voltage or potential differ-
ence (pd) between its terminals. The pd is applied across the resistor. Suppose
for this example that the generator produces a pd, v, that begins at 4 volts, rises
steadily to 5volts, falls steadily to 3 volts and then rises steadily back to 4 volts.
This action takes 1 millisecond to happen and is repeated 1000 times per second.
The upper curve in Fig. 1.2 is a graph to show how v varies with time. The graph
covers a period of 5ms, during which the pd goes through its cycle five times.
A pd which varies regularly in this way is often called a triangular wave.

The pd makes a current flow through the resistor and this is shown by the
lower curve of Fig. 1.2. Because the numerical values of the current are much
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Figure L1 The current through the resistor depends on its resistance and the pd across
i produced by the voltage generator
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Figure 1.2 The current flowing through the resistor in Fig. 1.1 is at all times proportional
to the pd (v) across it

smaller than those of the pd, we have had to plot the current curve on a scale that
is 250 times the scale of the pd curve. The interesting result is that the current
curve is very similar to the pd curve. It has the same triangular shape and it goes
through 5 cycles in the same time. Also, the peaks of the current curve occur at
exactly the same times as those of the pd curve.

This table lists some of the pds and currents plotted in Fig. 1.2 (remember that
the current is plotted on a x250 scale):

time (ms) pd (V) current (A) pdjcurrent (V/A)

0 4 0.008 500
0.25 5 0.010 500
0.5 4 0.008 500
0.75 3 0.006 500
1.00 4 0.008 500

The curves repeat after this, so there is no need for further readings. In the
last column the pd at each instant has been divided by the current at the same
moment. An identical value, 500, is obtained on every occasion. There is a fixed
proportion between the pd across the resistor and the current flowing through it.
This is known as the resistance of the resistor. Its value, in volts per amp, is more
usually expressed in ohms (symbol ). In this example, the resistance is 500 2.

In general, if R is the resistance of the resistor in ohms, v is the pd across it
in volts, and i is the current flowing through it in amps, then:

R=v/i 1)
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We use a capital R to indicate that the resistance is a fixed quantity (for that
particular resistor). Both v and i may vary from time to time, so they are
printed in small (lower-case) letters. This convention is adopted throughout

the book.

Example: When a pd of 48V is applied across a resistor, the current flowing
through it is 4 A. Find the resistance of the resistor.

Answer: R=v/i =48/4 =12Q.
Equation (1) can be rearranged to produce two other useful equations:
v=iR )]
i=v/R 3)
Example: What is the pd across a 120 €2 resistor if the current through it is 0.25 A?

Answer: Using equation (2), v =iR = 0.25 x 120 = 30V.

Example: What current passes through a 22 Q resistor when a pd of 44V is
placed across it.

Answer: Using equation (3), i = 44/22 = 2 A.

Equations (1), (2) and (3) allow us to calculate any one of the quantities v, i and
R, given the values of the other two.

5.0000

4.0000
(@]
Yol
% 3.0000
<3 Current 7~
£ 7\ 7\ 7\ 7™ \
2000 N/ N/ N/ \ // \
é \\../ \v/ \v/ \/ \./
1.0000 |
0.0000 ] | ] | ]
0.0000 1.000m  2.000m 3.000 m 4.000 m 5m

seconds

Figure L3 The current flowing through the resistor in Fig. 1.1 instantly follows changes
in the pd across it
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Figure 1.4 The graph of y = sinx ranges between +1 and —1

The relationship between v, i and R always holds true. In Fig. 1.3, for example,
we have a sine wave instead of a triangular wave. Because i = v/R, the current
curve also has a sine wave shape, with the same number of ‘waves’ in 5 ms.

Sine waves

Figure 1.4 is the graph of the sine of an angle. Here we plot it from
0° to 1080° (three complete turns). An electrical signal which has this
shape when graphed is known as a sine wave, or a sinusoid.

Sine waves are important because it can be shown than any periodic
wave of any shape can be thought of as being made up of a mixture
of different sine waves (p. 22).

Keeping up?

1. In each example below, given two of the quantities, expressed in volts, amps
or ohms as appropriate, calculate the third:
(@ R=150,v =600, i =?
b)v=4,i=05R=?
(©OR=45i=01,v=?
(di=25v=5R=?
(&)v=10,R =80, i =?
2. When a resistor has a pd of 15 V across it, the current through it is 2 A. What
pd is developed across it when the current is decreased to 0.4 A?

Capacitors

Figure 1.5 is the same circuit as Fig. 1.1 except that it has an extra component, a
capacitor in series with the resistor. Current flowing through the resistor flows to
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Figure 1.5 Adding a capacitor to the circuit of Fig. 1.1 has a significant effect on the
current-pd relationship. Kirchhoff’s voltage law states that the sums of voltages (pds)
around any loop of a circuit is zero. Here v and v. are measured with polarities opposite
tov,s0v—v—v.=0,0rv=v+v,
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Figure 1.6 These curves show how the pds of Fig. 1.5 vary with time

Fhe capacitor. Because the dielectric of the capacitor is a non-conductor, current
1s unable to flow through the capacitor itself, so the capacitor becomes charged.
Kirchhoff’s voltage law applies here. At any instant, the pd across the capacitor
(vc) plus the pd across the resistor (v;) must be equal to the total pd (v) being
Produced at that instant by the generator. As an equation:

V=1 4+ 4)

When we measure these pds, perhaps by using an oscilloscope, we obtain the
Tesults shown in Fig. 1.6. The upper curve (v) of Fig. 1.6 is exactly the same
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as the pd curve in Fig. 1.3, because we are using the same sinusoidal voltage
generator. At the instant the generator is switched on, it produces 4 V. There
is no charge on the capacitor at this time so v. =0V and, by equation (4),
v =v — 0 =4V, Current begins to flow through the resistor into the capacitor,
charging it and causing an increasing pd to appear across it. The result is that
Ve rises very rapidly. More and more of the total pd appears across the capacitor
and less and less appears across the resistor. Eventually v, rises to its maximum
value after about 0.43 ms (the time when the curves for v and v cross). At that
time v = v, which means that by that time v; has fallen to zero, as can be seen
from its curve. There is now no pd across the resistor, and no current is flowing
through it to the capacitor. The capacitor has reached its peak charge. From now
on, v (which is already falling) falls further and becomes less than v,. If v is less
than v, then v, must be negative. As v; becomes increasingly negative current
flows through the resistor in the opposite direction, from capacitor to generator,
partially discharging the capacitor. This process continues until the v and v,
curves cross again (at about 0.88 ms). Now v; is zero again but is increasing in
the positive direction. Current begins to flow through it in the original direction
and the capacitor gradually regains the charge it lost during the previous 0.45 ms.
It actually gains a little more charge than it previously had because this time it
is already partly charged.

Current and charge

The unit of electric charge is the coulomb, which is defined as the
amount of charge carried past a point in a circuit while a current of
1A flows for a period of 1s. If a current i flows into the capacitor,
the charge accumulates at the rate of i coulombs per second. If the
current flows for ¢ seconds, the total charge g accumulating is:

g=it (5)

Accumulating charge causes an increasing pd across the capacitor
proportional to the amount of charge. The number of coulombs per
volt is defined as the capacitance C of the capacitor:

C=gq/v (6)

In other words, a capacitor of large capacitance is able to store a
large amount of charge with a relatively small pd across it. If g is
measured in coulombs and v in volts, the capacitance C is in farads,
symbol F.

Example: A current of 2.5 A flows for 8s into a capacitor, producing
a pd of 10 V. What is its capacitance?
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Answer: The total charge stored is given by equation (5). ¢ = it =
2.5 x 8 = 20 C. The capacitance is found by equation (6). C = q/v =
20/10 = 2F.

Although capacitors in the farad range do exist, the farad is too large
a unit for most practical circuits. Most capacitors have capacitances
rated in microfarads (1 uF = 10~®F), nanofarads (1 nF = 10~°F) or
picofarads (1 pF = 10712 F).

After about 2 cycles the curves settle to regular repetitions, with the capacitor
alternately being charged and discharged, as described above. Charging begins
when v rises above v, making v; positive. Discharging begins as v falls below
ve, making v; negative. The result is three sinusoidal waves all having the same
frequency but each being in a slightly different stage of its cycle. The charging
and discharging of the capacitor always lag a little way behind the increases and
decreases of the generator pd. The alternating flow of current is shown in Fig. 1.7.
Here we plot v, as in Fig. 1.6, together with the current (through the resistor and
to or from the capacitor; it is all the same current). Since i = v/R for a resistor,
the current curve of Fig. 1.7 has exactly the same shape and timing as the curve
for v; in Fig. 1.6. The interesting point to notice is that, except during the first
0.75 ms when the capacitor is gaining charge, the current curve is symmetrical
about the zero amp line. The mean flow of current is zero, confirming that no
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Figure 1.7  In the circuit of Fig. 1.5, the peaks and troughs in the current lead those in
the generator pd (v) by a quarter of a cycle. The mean current is zero
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current actually flows through the capacitor. On average, the capacitor behaves
as an open circuit between the resistor and the 0V line.

Measurements on the graph show that when the circuit has settled to regular

repetitions, the peaks of the current are 0.25ms in advance of the peaks of v,
The current to the capacitor leads the applied pd by a quarter of a cycle.

Keeping up?

3.

In each example below, given two of the quantities, expressed in amps,
coulombs or seconds, as appropriate, calculate the third:

@i=251t=35g=?
®)t=10,g=5,i=?
(Qi=4,g=5,1=2
(d)r=0.01,i=1.2,9=2
()g=2,i=51t=?

In each example below, given two of the quantities, expressed in volts,
coulombs or farads, as appropriate, calculate the third:

() q=0.048,v=2, C =?
b)g=2,C=02,v=?

(c) C =0.003,v=1.5,q9g=?
(d) C=0.002,g=1.6v=?
(e)v=15,¢g=0.03 C=?

. A constant current of 1.5A flows for 1ms into an uncharged capacitor, with

capacitance 0.0003F. What pd is developed across the capacitor?

Describe what is happening to the capacitor in Fig. 1.6 at (a) 3.7ms, (b) 2ms
and (c) 1.86 ms.

Cycles and angles

One cycle of a sine wave is the equivalent to a sine curve plotted
from 0° to 360° (see Fig. 1.4). We can use angles to say what stage
or phase a wave has got to in its cycle. We call this the phase angle,
and it is often given the symbol ¢. At the start of the cycle the phase
angle is 0°. Half-way through a cycle, the angle is 180°. A complete
cycle is 360°, which brings us back to 0°. Likewise a quarter-cycle
is 90°. Instead of stating that the capacitor current is a quarter-cycle
ahead of the applied pd, we can say that it leads the applied pd by
90°, or ¢ = +90°.
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Inductors

In Fig. 1.8 the capacitor of Fig. 1.5 is replaced by an inductor. Again we subject
the circuit to the sinusoidal voltage from the generator and Fig. 1.9 shows the pds
across the generator, the resistor and the inductor (v1). At first glance, this graph
looks exactly like Fig. 1.6. But closer inspection reveals that the curve which
descends rapidly from 4V and then oscillates about OV is not the pd across the
resistor. It is the curve for vy, the pd across the inductor. Conversely, the curve
which looks like curve v, of Fig. 1.6 is actually the curve for v;.
As in the capacitor circuit, Kirchhoff’s voltage law applies:

V=v:+W

The reason that v; is zero to begin with is that v starts at 4V and this sudden
rise of pd causes the inductor to generate an almost equally large back emf. Thus

R1
| 8
e
500 O
+
1 L1
480 mH

Figure 1.8 Adding an inductor to the circuit of Fig. 1.1 causes changes in the pd-current
relationship entirely different to those caused by a capacitor
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Figure 1.9 Showing how the pds of the circuit of Fig. 1.8 vary with time
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v &y, and v; = 0. As a result, the current through the resistor is practically zero,
But after that sudden change of v from 0V to 4V, it does not rise so fast and
the back emf is less than before. It falls from 4 V to zero and below. This allows
some current to flow and v, rises from 0V to about 4V. As in the capacitor
circuit, there are two stages in the current flow. In one stage v is less than v,
so v; is negative. In other words, the current is decreasing and the negative back
emf is acting to prevent it from decreasing. In the other stage v is greater than v,
current is increasing and the back emf goes positive to prevent further increase.
Current increases and decreases but in this circuit there is no reversal of current.
Correspondingly, v; increases and decreases but always remains positive. The
figure shows that it actually oscillates around 4V, the same as v. The average
pd across the resistor equals the average pd from the generator. This is because
the inductor has, on average, a negligible resistance and the pd across it is, on
average, zero. Typically, the inductor behaves as a short circuit between the
resistor and the 0V line.

Current and emf

A magnetic field is created when a current passes through a coil,
such as that of an inductor. When the size of the current changes,
the magnetic field strength changes proportionately. According to
Lenz’s law, a change of field strength is opposed by a magnetic field
generated within the coil. This opposing field induces in the coil an
emf, known as the back emf. The back emf generates a current in the
direction which opposes any change in the amount of current flowing
through the coil. The stronger the attempted current change the more
strongly it is opposed. For example, Fig. 1.9 shows the biggest effect
at the beginning, where the inductor opposes the attempt to pass an
initially large current through it.

The size of the back emf depends on the rate of change of current
and also on L, the self-inductance of the coil. A coil is said to have
a self-inductance of 1henry (symbol H) if a back emf of 1volt is
induced in it when the current changes at the rate of 1 amp per second.
The equation is:

v=—L. -di/dt

where v is the induced emf (or back emf) in volts, L is the self-
inductance in henries and di/d¢ is the rate of change of current in
amps per second (see next box). The negative sign indicates that the
back emf opposes the change in current. The henry is a large unit. The
inductors we use in practical circuits are usually rated in millihenries
(1mH = 1073 H) and microhenries (1 uH = 10~¢ H).




Passive devices 11

Rates of change

The expression di/dt expresses the rate at which current (i) changes
with respect to time (¢). For example, if the current is increasing at
the rate of 0.4 amps per second, di/dt = 0.4. Conversely, if current
is decreasing at 5amps per second, di/dt = 5.

In this notation, the ‘d’ is not an algebraic symbol (if it were, it
would cancel out, leaving i/t) but is short for ‘an infinitely small
change’. So di/dt is the infinitely small change of current occurring
during an infinitely small change of time.

In Fig. 1.10 the current increases from i; to i3 while time increases
from #; to t5. These are not infinitely small changes. The average
rate of increase between point A and B on the graph is the slope or
gradient of the straight line AB:

change in current  ir — iy

gradient = — =
change in time th— 1t

It is clear from the graph that the average rate of increase between A
and B is only an approximation to the actual rate at any given point
on the curve between A and B. If we want to know the exact rate
at a point on the curve, we must move the points closer together. At
CD we have selected an infinitely short length of the curve so that
C and D coincide. The gradient at CD is the infinitely small increase
of i for an infinitely small increase of ¢, in symbolic form, di/dt.

In calculus, di/dt is called the derivative or differential of i with
respect to t. Given the equation which relates i to ¢ (for example,
i = 65sin2t), we can calculate di/dr for any given value of ¢ and so
find the rate of change of i at any specified time.

The current through the inductor and the total pd are plotted in Fig. 1.11. As is
to be expected from equation 3, the shape of the current curve matches the shape
of v; in Fig. 1.9. Measurements on the graph show that when the current curve
has settled to regular repetitions, the peaks of the current are 0.25 ms behind the
peaks of v. In terms of angle, the current to the inductor lags behind the applied
pd by a quarter of a cycle, or ¢ = —90°.

Because of the particular values chosen for the capacitor and inductor in
Fig. 1.8, the sizes of the oscillations of v; and v in Fig. 1.9 are almost exactly
fhe same as those of v, and v; in Fig. 1.6. With other values of capacitance or
inductance, the curves still show the same overall appearance but the sizes of
the oscillations are greater or smaller. For example, if in Fig. 1.8 we double the
inductance to 160 mH we obtain Fig. 1.12. This has the same general pattern of
curves but the oscillations of v; are smaller and those of v, are larger. Also the
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current (j)

time (f)

Figure 1.10 Explaining the meaning of di/dt
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Figure 1.11 [In Fig. 1.7 the peaks and troughs in the current lag behind those in the

generator pd by a quarter of a cycle. Here they lead by the same amount. The mean
current is 0.008A
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Figure 1.12 If the self-inductance is doubled, the pds across the inductor and resistor
have greater amplitude, but the overall shapes of the curve are similar to those in Fig. 1.9

oscillations in Fig. 1.12 do not reach the steady repeating stage quite as soon as
in Fig, 1.9.

Keeping up?

7.

In each example below, given two of the quantities, expressed in amps per
second, volts or henries, as appropriate, calculate the third:

(@) di/dt =2, L =0.25,v=?

() v=>5, L =0.005, di/dt =?

(c) v=-12, di/dt = 500, L =?

(d) L = 0.6, di/dt = 1200, v =?

(e) di/dt = —25000, v = 2000, L =?

(a) In Fig. 1.8, the voltage generator produces a pd of 2 V when first switched
on, rising at the rate of 12000V per second. The inductor has self-inductance
of 15 mH. What is the back emf of the inductor when the generator is switched
on? (b) After 0.1 ms the generator output levels off to a steady value. What
is the steady value and what is the back emf?

- Describe what is happening in Fig. 1.9 at a time 3ms after the start.
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Summary

Resistor Capacitor Inductor
Opposition to  resistivity (fixed) accumulated charge  back emf
current flow (varies with charge)  (varies with
is due to ... change in current)
pd-current v=1iR v=it/C v=—L.di/dt
relationship (assuming

constant current)

Current peak  same time as leads voltage lags voltage
occurs at ...  voltage peak peak by 90° peak by 90°
Effective R almost infinite virtually zero
resistance

Test yourself

1.

2.

A current of 35mA flows through a 47 Q resistor. What is the pd across the
resistor?

The current through a 500 uH inductor is decreasing at the rate of 35 As!,
What back emf is generated?

. A 2.2F capacitor has a pd of 2.5V across it. What is the charge on the

capacitor? How long would it take to charge the capacitor to this level with
a constant current of 0.25mA?

In Fig. 1.5, the sinusoidal generator reaches its positive peak voltage every
2ms. What is the length of time between the voltage peak and the next positive
current peak?

. In Fig. 1.5 the generator is producing a sinusoidal voltage at 400 Hz, What is

the length of one cycle? If one of the positive voltage peaks occurs at 10ms,
when is the next positive peak in the current flowing to the capacitor?

Explain why a circuit such as Fig. 1.8 takes longer to reach a stable oscillating
state when L is 160mH (Fig. 1.12) than when it is 80 mH (Fig. 1.9).
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Electrical signals

Most electrical signals are periodic. That is to say, their variations in voltage or
current are repeated regularly and exactly. A signal is defined by its:

Period, P — the length of one cycle (Fig. 2.1), in seconds.

Frequency, f — the number of cycles in 1second (f = 1/P). Frequency is
usually stated in hertz, symbol Hz, where 1 Hz is the same as 1 cycle per second.
1000 Hz = 1kHz. 1000kHz = 1 MHz.

Amplitude, A — if the signal oscillates about zero, the amplitude is the height
of the peak above zero (Fig. 2.1). But some signals oscillate about a non-zero
value. For example, the voltage signals in Fig. 1.3 oscillate with an amplitude of
1V about an offset (or DC voltage) of 4V.

Keeping up?

1. Find the frequency of these signals, given their period: (a) 2ms, (b) 0.4s,
(c) 1s, (d) 5ns, (¢) 2min.

2. Find the period of these signals, given their frequency: (a) 5 Hz, (b) 2kHz,
(c) 0.1Hz, (d) 44 MHz, (e) 56 kHz.

3. For each of the signals in Fig. 2.2, state (a) the period, (b) the frequency,
(c) the amplitude, and (d) the offset.

JaWa=Ta\
BYAYA

la———period ——=

Flg“l‘e 2.1 The two most important attributes of an electrical signal are its period and
its amplitude

15
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Figure 2.2 These signals are the subject of question 3

Degrees and radians

Phase angle and the phase differences between one signal and another
are often measured in degrees (see box, p. 8). But a degree is an
arbitrary unit and equations are often made simpler if we use a more
fundamental unit, the radian (symbol, rad). A radian is the angle
subtended in a circle radius 1 by an arc of length 1 (Fig. 2.3). It does
not matter if the circle has a radius of 1m, 1inch or 1km, the ratio
between radius and circumference is the same and the radian is the
same size. A radian equals 57.296° (to 3 decimal places). This is a
little less than 60°, a fact that is worth remembering when checking
calculations. A complete revolution (or cycle) is a little over 6rad,
or 6.283 rad to 3 decimal places.

To be absolutely exact, 360° equals 27 radians. Using pi is a handy
way of avoiding using numbers with lots of decimal places and this
is why pi appears so often in calculations connected with electrical
signals. If we need to, we can substitute 3.142 (or a value with even
more decimal places) for pi at the end of the calculation. Or, if the
equation is a theoretical one, we can simply leave the pi as x.

Here are some useful equivalents:

Degrees 45 57296 90 180 270 360
Radians /4 1 /2 m 3x/2 2nm

Angles expressed in degrees usually have the degree symbol (°)
written after them. Angles expressed in radians may have the symbol
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¢rad’ after them, but often have no symbol, especially when expressed
in terms of pi.

1 radian

radius = 1

Figure 2.3 The fundamental unit of angle is the radian, depending as it does on the
geometric properties of a circle

Phase

When the peaks of two signals of the same frequency occur at exactly the same
times, we say that the signals are in phase. Examples are the pairs of signals
in Figs 1.2 and 1.3. By contrast, the signals in Fig. 1.6, although they all have
the same frequency, do not have their peaks at the same time. We say that they
are out of phase. The peaks in v, occur a quarter of a cycle (90°) ahead of the
peaks in v. In terms of radians, the peaks of v; lead those of v by /2. The phase
lead applies not only to the peaks but to all other stages in their cycles, such as
the troughs and the points at which the signals cross their offset levels. At every
stage, v; leads v by 7/2. Similarly v, lags v by 7/2, and v, leads v. by 7.

Equations for signals

::k graph of a signal helps us to visualize its exact shape but although we can
sube: measurements of :frequency and amplitude from a graph, we can not easily
‘ Ject a graph to detailed analysis. At some stage we need to be able to express

€ signal as an equation. We need an expression that specifies the value of the

\ ; ; ]
oltage or Current at every instant during one period.

[ ———
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The equation of a basic sine wave pd signal is:
v =sint

Compare this with the sine curve in Fig. 1.4. We have substituted pd (v) for
y, and time (r) for x. We now have an equation showing how pd varies with
time. The equation assumes that the amplitude is 1, but we can easily include
amplitude in the equation:

v=Vpsint

The amplitude Vo multiplies every value of sint, so that the signal now swings
between +Vj and —Vy.

The next step is to bring frequency into the calculation. Introduce another
constant w, which in the basic equation had the value 1:

v = Vj sinwt

The value of w is such that v goes through all its values (that is, a complete
cycle) during one period. Let ¢+ = 0 at the beginning of a period:

v="Vysin(w x 0) = Vysin0 =0
P is the length of a period so, at the end of that period, t = P:
v = VysinwP

But at the end of the period wP must have reached the value 27, so that a
complete cycle has occurred:

wP =2n
w=2n/P
Substituting 1/P = f:
w=2nf

Inserting this expression into the basic equation:
v=Vgsin2rft

This is a more useful equation, since it takes amplitude and frequency into
account. As an example, signal A of Fig. 2.4 has amplitude Vo =3V and
frequency f = 2Hz, so its equation is:

v = 3sindnt
Check this equation by calculating the value of v after 0.65s:
v = 3sin(4m x 0.6) = 3sin 7.540 = 2.853

This agrees with the value shown on the graph. For signal B, Vo = 1.8, f =5,
S0 its equation is;
v = 1.8sin 107t
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Figure 2.4 The equations of these signals are (A) v = 3sin4nt and (B) v = 1.8sin 107z

After 0.72s:

v =1.8sin(107 x 0.72) = 1.85in22.619 = —1.058

This too agrees with the graph.

Keeping up?

If you are using a calculator for questions 6-8, check that it is in radian mode.

4.
.
6.

Express these degree angles in radians: (a) 90°, (b) 45°, (c) 720°, (d) 36°.
Express these radian angles in degrees: (a) 7, (b) 2, (¢) 0.5, (d) 37/2.

For each of the signals in Fig. 2.5, find (a) its period, (b) its frequency, and
(c) its amplitude.

- For each of the following equations describing sinusoidal signals, find (a) its
frequency, (b) its amplitude, and (c) its value after 25 ms:
(@) v = 6sin 247t
(b) v = 0.35 sin 30007
(©) v = 8.8sin3142¢

For signals with the specified characteristics, write out the equation that
describes them:

@f=7,4=10
() f =30kHz, A = 0.25
(©) f=65Hz,A=1
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Figure 2.5 Three signals of different amplitude and phase for question 6

Pd or current?

The equations in this chapter are all pd equations, stating how pd
varies with time. But we could equally well describe circuit behaviour
by using current equations, such as i = Iysin4st. It just keeps the
descriptions simpler to refer only to pd equations.

Angular velocity

In the previous section we introduced a constant w, which is equal to 2z f, but
we did not say exactly what this constant represents. By definition of frequency, a
signal completes f cycles in a second. A cycle is equivalent to 2 radians so, in
terms of angle, f cycles per second is equivalent to 2z f radians per second.
Radians per second is another way of specifying frequency. With distances,
the quantity measured by metres per second is called velocity. Similarly, when
frequency is measured in radians per second we call it angular velocity. This
gives us an alternative form of the equation for a sine wave signal:

v = Vysinwt

It has been assumed in all the equations and questions above that all sinusoidal
signals have zero value when timing begins. Figure 2.5 demonstrates that this is
not necessarily so. Signal A is like signals we have described previously, with
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value when t = 0, but signal B begins when v = 2.5. In other words when

fe_ioo signal B is already a quarter of the way into its cycle. It is /2 ahead. If

we use the equation v = 2.5sin 4t to describe this signal, we shall be describing

a signal that lags /2 behind signal B. To calculate the correct value of v at a
iven time we need to add /2 to the angle before taking the sine. Adding 7/2
to the angle gives this equation for signal B:

v = 2.5sin(dnt 4+ /2)

The phase that a signal has reached when timing begins is known as the phase
angle. Often, when there are several signals out of phase with each other, one is
taken as a reference signal and said to have zero phase angle. The phase angles
of the other signals are calculated with reference to this. For example, with a set
of signals such as those in Fig. 1.9, it is conventional to take v as the reference
signal because it is the applied signal. It has an offset of 4V, its frequency is
1kHz and its amplitude is 1V, so its equation is:

v = 4 + sin 20007z

v has no offset, its frequency is 1kHz, and its amplitude is about 0.44 V. Also
it leads v by /2. Its equation is:

vi = 0.44 sin(20007t + 7/2)

By contrast, v; has 4V offset, f = 1kHz, Vo = 0.88V, and it lags v by 7/2. Its
equation is:

v = 4 + 0.88sin(2000mt — 7/2)

Sine wave equation
Given that:

v is the instantaneous pd (voltage)

Vy is the amplitude

S is the frequency

1 is the time elapsed since t = 0

¢ is the phase angle (positive for phase lead, negative for phase lag)

The full equation for a sine wave signal is:
v=Vgysin@nft+ ¢)
Or, using angular velocity w:

v = Vysin(wt + ¢)
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Keeping up?

9. Write the equations that describe the signals of Fig. 2.5.

10. If a voltage signal has f = 2500kHz, V¢ = 2.4, and ¢ = 37/2, find its valy,
when ¢t = 25 ms.

11. Calculate w corresponding to these frequencies: (a) 1kHz, (b) 240H;,
(c) 5Hz.

12. Calculate the frequency for which w equals the value given: (a) 2, (b) 18.85
(c) 100.

Synthesizing signals

Pure sine waves seldom occur in electronic circuits. More often a signal consists
of two or more sine waves added together. Combining two or more signals
to make one signal is called synthesis. In Fig. 2.6 two signal generators are
operating at the same time and their combined signal passes through R;. We
assume that the internal resistance of the generators is negligible. Because of
the principle of superposition in electronic networks, the pd across the resistor is
equal to the sum of the pds produced by the generators. For example, Fig. 2.7 is
obtained by summing a triangular signal and a sine wave. The triangular signal
has a frequency of 300 Hz and an amplitude of 5 V. Superimposed on this is the
sine wave with a frequency of 4kHz and an amplitude of 1V.

Combining more than two signals together can produce interesting results. As
an example, we begin by combining two sine waves:

v =sinz

A1

500 O

+

®
0

Figure 2.6 The outputs of two or more generators are added to produce a more complt
cated signal
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Figure 2.7 A triangular wave and a sinusoidal wave look like this when summed

sin 2t
2
The amplitude of v is 1V and its frequency is 0.1592Hz. The frequency of v,

is double that of v, and its amplitude is half that of v;. Note that v, is negative
so it is subtracted from v;. Figure 2.8(a) is the graph of the combined signal:

and VZ=—

sin 2t
2

v=v;+ v, =sint —

05

] |
2.5 5 7.5 10 125 151 17.5f seconds

volts

-05}

(@)
Fc
'8ure 2.8 As more and more sinusoidal signals are summed, the resulting signal

a
st{’P’WChes closer and closer to a sawtooth signal. (a) 2 signals, (b) 4 signals, (c) 12
8nals, (d) 100 signals

-
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The signal still has a recognizable sinusoidal shape, though its peaks are sharpe,
and it is flattened where it crosses the x-axis on the way up. The terms on th,
right of the equation have the general form:

sin nt

n

The term is positive for odd values of n and negative for even values of n, |
we continue this sequence for two more terms, we obtain the series:

sin2t sin3: sin4s

2 + 3 4
Figure 2.8(b) shows the result of combining the four signals; the signal still hg
the same frequency but now it shows a wavy rise followed by a very steep fal,
The rising part of the signal exhibits peaks produced by the fourth signal vy, at,
frequency of four times that of v;. These peaks are small because the amplitude
of v4 is only a quarter of that of vy,

Many of the peaks are flattened out by taking in eight more signals. The series
is now:

v=vi 4+ va+v3+v4 =sint —

i sin2¢t sin3¢z sin4t sinSt sin 12¢

vESsmim Tt 3 7 s 12
Except for a few slight undulations near its crests, the total signal (Fig. 2.8(c)) has
the appearance of a sawtooth signal. If we continue and add signals up to vygo, the
final term of which is — sin 100¢/100, the total signal is almost indistinguishable
from a true sawtooth signal (Fig. 2.8(d)). There is no point in going further
because the amplitude of vigo is only one hundredth of that of v; and subsequent
signals make virtually no difference to the sum. The result of this operation has
been to produce a signal that is far from sinusoidal in appearance, even though
it is composed of nothing but sinusoids.

15

1+

05

| 1 | i 1 1
25 5 75 10 125 15] 17.5f seconds

volts

-05F

-15k

Figure 2.8 (continued)
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Figure 2.8 (continued)

Why 0.1592 Hz?

The examples here and on the next few pages are all based on a signal
which has f = 0.1592 Hz. This is the same as 1 /2. The reason for
choosing this frequency is that substituting f = 1/2x into the sine
Wwave equation and making ¢ = 0 gives:

v = Vysint

This gives a simple equation which is made even simpler by making
Vo=1. Having made v, = sinz, we can g0 on to write v, and later
terms in the series in the most easily understandable form. Using
0.1592 Hz makes things simpler, but the same principles apply and
Comparable results are obtained whatever basic frequency we choose.

o
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For example, we get a sawtooth wave from:
v = 65in 507t — 3sin 1007t + 2 sin 2007zt — 1.55in 40077 + - - -

but now the frequency of the sawtooth is 25 Hz and its amplitude is
9.48V. The essential point is that we have kept the same relationship
between terms of the sequence, dividing the amplitude by —n, and
multiplying the frequency by n as we proceed along the sequence.

There are many different sequences that can be summed and, as another example
take the series:

cos3t cosS5t cosTt cos nt

25 49 n?
This series is based on cosines, but a cosine curve has exactly the same shap
as a sine curve. In this series all terms are positive and only odd values of # ar
included. The denominator of each term is n? instead of 7.

Figure 2.9a shows the signal obtained by summing the first two terms. It ha
the general appearance of a cosine curve, except that its rises and falls are muc
less curved and its peaks are sharper. Because n skips the even values, and
because the amplitude decreases as the square of n, the series converges toward:
virtually constant values after only a few terms. Figure 2.9b is the sum of th
first 6 terms, for which n is 1, 3, 5, 7, 9 and 11. The amplitude of vy; is onlj
1/121 that of vy, so there is no need to go further. The result is a practicallj
perfect triangular signal.

Figures 2.8a-d and 2.9a-b demonstrate that it is possible to synthesize angula
waves such as sawtooth and triangular signals from a series of rounded sinusoids

(WAWAW!

0 125 (15 17.5 seconds

v=-cost+

—_

(@

Figure 2.9 Adding sinusoidal signals belonging to a different sequence produces'
triangular signal. (a) 2 signals, (b) 6 signals
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Figure 2.9 (i continued)

signals. It can be proved that any periodic signal, even one of very complicated
shape, can be synthesized in this way.

Positive sines

Cosine terms and negative sine terms can all be written as positive
sine terms if we change their phase. To convert cosines to sines, use
the identity:

cosx = sin(x + 90°)
You can confirm this by checking values for a few angles using a
calculator. The cosine example in the text can be rewritten:
sin(3r +90°)  sin(5¢ + 90°)
9 + 5
To convert negative sines to positive sines, use the identity:

—sinx = sin(x + 180°)

v =sin(t + 90°) +

Check this on a calculator. The series for the sawtooth wave may be
rewritten with all terms positive:
sin(2¢ + 180° sin3t  sin(4r + 180°

( ), sindr sin )

Vv=sint+
2 3 4

Analysing signals
The kn,

ex lainOWIedge that periodic signals of all kinds can be built up from sine waves
Plains why there has been so much discussion of sine waves in this chapter.

[
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Now we are going to perform the reverse process of analysing a non-sinusoigy
signal to find out what sine waves are present. This is important when we gy,
designing filters because the action of a filter is to remove or reduce the amplitug,
of some of the sine waves while letting others pass.

The routine for analysing a signal into its sinusoidal components is known as ,
Fourier analysis. This can be done on paper but the calculations are lengthy apg
tedious. Fortunately a computer can easily perform such tasks. Electronics eng;.
neers use programs specially designed for this purpose. The programs simulag,
the action of electronic circuits, display the signals as graphs and then perform ,
Fourier analysis. To illustrate this technique, we set up a circuit on the compute
like that in Fig. 1.1, specifying that the voltage generator produces a sawtooty
signal frequency f = 1/27 = 0.1592 Hz, amplitude 1.58 V. Note that the sign]
produced by the computer is not obtained by summing sine signals of various
frequencies and amplitudes. Instead, it is obtained by a routine which directly
produces a sawtooth output. The Fourier analysis finds out which sinusoida
signals are present in the sawtooth signal and produces Fig. 2.10, in which 4
series of vertical lines are plotted to represent these sinusoidal components. Lines
are plotted for each of the frequencies present and the height of each line indicates
the amplitude. The tallest line plotted corresponds to vy which has a frequency
of 1/2m Hz, equal to 159 mHz on the x-axis of Fig. 2.10. The height of the line
shows that the amplitude of v; is 1 V. In other words the left-most line in Fig. 2.10
represents the first term of the Fourier series, sint. The next line represents v,
the second term, (sin 2¢)/2. It is plotted at 318 mHz, and its height is 0.5V, The
third line represents vs, the third term of the series, which is (sin3¢)/3, and is

1.0000
900.0 m

8000 m
7000 m

600.0 m

volts

500.0 m
400.0 m

300.0 m
2000 m
100.0 m

T

1 H II ll I JI |J| I J___J

0.0000 250.0 m 500.0 m 750.0 m 1.0000 1.2500 1.5000 1.7500 2
hertz

Figure 2.10 The frequency spectrum of a sawtooth signal having the same shape as tho ‘
in Fig. 2.8(d)
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jotted at 477 mHz, with height 0.333.V. The part of the anal){sis included.in
Fig. 2.10 represents all terms of the series up to the 12th term, (sin 12¢)/12, with
frequency 159 x 12 = 1908 mHz, and :?mpl_ltude 1/12 = 0.0833_V or 83.3mV.

Since Fig. 2.10 shows the frequencies found to be present in the sawtooth

:onal and their amplitudes, it is known as a frequency spectrum. A frequency
s1gnctmm is a very convenient way of representing a periodic signal and later we
zhall use frequency spectra to examine the ways in which filters affect signals
passed through them. . .

Figure 2.11 shows the frequency spectrum produced by a Fourier analysis of
a triangular curve similar to that shown in Fig. 2.9b. Once again, the triangular
wave is generated directly by the computer, not made up by summing sine waves.
The triangular wave used in the analysis has frequency 1/27 = 0.1592Hz, as
before, and amplitude 1.25 V. However, the analysis shows that a regular set of
sinusoids is present in the signal. The first term of the series is represented by
the line on the left of the spectrum. This has the same fundamental frequency as
in the previous analysis, 159 mHz and its amplitude is 1 V. The second line from
the left is at 477mHz and has amplitude 0.111V, so this represents the term
(cos 3t)/9. Because the divisor in each term is the square of n, the amplitudes
fall off very quickly, as can be seen in Fig. 2.11.

The Fourier analysis can also provide information about the phase of each term.
In Fig. 2.12 we have the same analysis as in Fig. 2.10, but with the addition of
phase information. The small squares on or above the lines of the spectrum indi-
cate the phase, according to the scale on the right. There is a slight complication
because, for reasons concerned with the analysis technique, phase is related to a
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re“l';p;c}ttslll The frequency spectrum of a triangular signal (Fig. 2.9(b)) differs in many
from that of 4 sawtooth signal

oy
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Figure 2.12 When a phase plot is added to Fig. 2.10, it demonstrates that the terms
the equivalent Fourier series are alternately positive and negative
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Figure 2.13 This phase plot shows that all terms of the Fourier series of Fig. 2.11
positive cosine terms

sine curve that has been shifted to the left by a quarter of a cycle, so that i’
symmetrical about the y-axis. Consequently, all phase values shown here and’
Fig. 2.13 are 90° too small. So we must add 90° to the displayed phase ang¥
to make them equivalent to the terms of the series. Taking this into account’
is seen that the odd terms in Fig. 2.10 have a phase angle of 0° while the ¢
terms have a phase angle of +180°. This corresponds with the equation in !

y |
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e
where terms with a phase angle +180° are those that were negative sine
box

rerms in the original equation for v.

Figure 2.13 shows the analysis of the triangular wave (Fig. 2.11) with added
ha;engormation. Here all frequencies have zero phase angle, which means that
fhe actual phase angle is 90°. A sine signal leading by 90° is the equivalent of

a cosine signal (see box) so this plot corresponds to a series of cosine terms, as

expected.

Fundamental and harmonics

The first term in the Fourier series (v{) is known as the funda-
mental. It has a greater amplitude than the other signals and has
the same frequency as the synthesized signal. Other components of
the signal, with smaller amplitude and frequencies that are multiples
of the fundamental, are known as harmonics. These are numbered in
order. For example, v, represented by the term (sin 2¢)/2, is known
as the first harmonic. v, represented by the term (sin3¢)/3, is the
second harmonic, and so on. Figure 2.12 shows the fundamental and
the 1st to 11th harmonics. If harmonics are missing, for example
the odd harmonics in Fig. 2.13, we still number the other harmonics
in the same way. Figure 2.13 shows the fundamental and the even
harmonics from the 2nd to the 10th.

Summary

A periodic signal is specified by stating these attributes:

Period — the length of a cycle, P, usually expressed in seconds.
Frequency — the number of periods in 1second, usually expressed in hertz (Hz),
Wher; f =1/P. 1t may also be expressed in terms of angular velocity, w, where
= nf_
Offset — the level about which a signal fluctuates, usually expressed in volts or
:mPS-. Most of the signals we deal with have zero offset.

mplitude — the maximum level above the offset reached by the signal, usually
;Xpressed in volts or amps.

hase angle — The extent to which the phase of the signal leads or lags a

ive : ) .
ig D reference signal, sometimes expressed in degrees, more often expressed
% Tadians. 1rad = 57,29¢°.

Periodic o
o ?dlc Signals can be analysed into the sum of a series of sinusoidal signals

ering amplitude and phase. Their frequencies are all multiples of a single
ental frequency.
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Test yourself

1. What are the frequencies, amplitudes, phase angles and offsets of these sip,
soidal curves: (a) v = 7.5sin12.57¢, (b) v = sin(10077 + 1), (c) v = 3.4
0.655in(28.27r + 4.712)?

2. List the attributes of the signals illustrated in Fig. 2.14, expressing their phag,
with reference to when r = 0.
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5.0000 \ 2 1
\ Signal A / \

4.0000

T

3.0000

T

volts

2.0000
1.0000
0.0000
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Figure 2.14 Some signals for questions 2 and 3
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Figure 2.15 A frequency spectrum for question 4
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Sketch the signal that is the sum of curves A and B in Fig. 2.14. Describe its
3. frequency spectrum.

Describe the frequency spectrum shown in Fig. 2.15, write out its series and
4 lot the curve obtained by summing the first 5 terms. What is the shape of

fhe composite signal?
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Reactance and impedance

This chapter begins by looking at the way capacitors behave when a sine wy
pd is applied across them. Chapter 2 demonstrated that any periodic signal ¢
be analysed into a set of sinusoidal signals so, if we know how a capacitor reay
to a given sinusoidal signal on its own, we can predict how it will behave wj
a combination of sinusoids making up any periodic signal. Figure 3.1 shows
capacitor being charged by a current generator. Note that, unlike the circuit,
Fig. 1.5, this circuit has no resistor. In Chapter 1 the capacitance C of a capacit
is defined as the amount of charge (g) stored in it for a given pd (v) betwes
its plates:
C=gq/v

This equation may be rearranged:
v=gq/C

g is the amount of charge carried by a current i flowing for time ¢ (equation (¢
p. 6) and:
qg=it

assuming that i is held constant. In Fig. 3.2 a constant current i flows for!
interval ¢. The current carried is iz, the product of i and . On the graph, t
product of i and ¢ is the shaded area beneath the curve. As a rule:

On a current-time graph, the area below the curve represents the total
charge carried by the current.

This rule can be applied to a current that is varying. In Fig. 3.3, the curve sho*
current varying in an irregular way. Think of the area as being divided into mé,
narrow vertical strips. Each strip represents the current being carried during 2 v
short period of time, which we will call Ar. The A symbol is not a quantity ‘?"‘
is multiplied by 7. It is a symbol indicating that the interval is very short. Dur
such a short period of time the current does not change appreciably. We ¢
consider that the upper end of the strip is not sloping but is at right angles to

length of the strip. In other words, each strip is almost a rectangle. The ared!
each rectangle is i multiplied by At, that is iAz. The total area beneath the C‘,m
is the sum of the areas of the strips, and this represents the total charge. Th

34 J
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Figure 3.1 The capacitor is being charged by a current generator

0 t time

Figure 32 The amount of charge is equal to the product of time and current, represented
by the area below the line

0 t time
Figure 33 7y, cha

: rge carried by an irregularly varying current may be found by
Summing the greqs of

the narrow strips

Written Mathematically as:

T
[HW t=0

“ﬂtil.(:z@s, 9 equals the sum (symbol, %) of the areas of the strips from when r = 0
infer = T. If we make the strips narrower and narrower, so that At becomes
»v Small, the fact that the tops of the strips are sloping makes less and less
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difference to the result. In the limit, the equation becomes:

T
q=/ ide
0

Now that we are dealing with infinitely small increments of ¢+ we replac .
(meaning ‘sum’) with another kind of S, the ‘long S’, [, and we replace A
by dt (compare with p. 11). The discussion above follows along the same lin
as the explanation of the meaning of integration. In mathematics we use the
symbol to express integration, which is the operation of summing all the infinty
narrow strips beneath the line of a graph to find the total area beneath the j,
Given that the equation of the curve is known, there are standard maths routiy
for finding out the area, or integral.

Integration is a practical way of calculating the total charge carried by a vary;
current. The total charge is the integral of the expression for the current over g
period of time for which current flows. Charge carried to the capacitor dur
that period is added to any charge already on the capacitor at the beginning,

the initial charge is g, then:
T
q= / idt + qo
0

As an example, consider Fig. 3.4 which shows the current produced by a gene
ator according to this equation:

=2t
The current ramps up steadily for an interval of 65, increasing from zero to 12/

To simplify the example we may assume that the capacitor is uncharged to beg
with. To find the value of ¢, integrate the expression 2¢ from ¢ =0 to ¢ = 6:

6
g= / 2tdr = [22/2]8 = [*]§ = [6° — 0%] = 36
0

The charge accumulating on the capacitor in 6seconds is 36 C. This probl
could have been solved graphically, using Fig. 3.4. The current is zero to beg

12

0 . 6 time .

gl
Figure 3.4 The triangle represents the charge carried by a current i = 2t duri" ‘
interval from 0s to 6s
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:th and is 12 A after 6s. The total charge is the area of the shaded triangle. [ts
wi

area is 3 X base X height = § x 6 x 12 = 36, which confirms the result obtained

by in(egration.

e
Rules for integrating

If an equation contains powers of a variable such as ¢, the integral is
found by increasing the power by 1 and then dividing by the value
of the increased power. For example, if i = 2¢, the power of ¢ is 1.
So increase this by 1 to make it 2, and divide by 2:

27
q=/2tdt=7+c=t2+c

where ¢ is an unknown amount, the constant of integration which we
are able to ignore (see below). The integral above is the indefinite
integral because it does not tell us the values of 7 to start with and
finish with. In the text we have a definite integral which tells us that ¢
starts at 0 and finishes at 6. To find the value of the definite integral,
evaluate it for the finishing value of ¢ and subtract its value for the
starting value of r:

g=1[6>+c]~[0*+c] =36
The cs have disappeared.

Since most electrical signals are sinusoids, filter equations often
contain the sine ratio. The integral of sin¢ with respect to ¢ is —cos #;

/sintdt:—cost

L . — cosat
Also, if g is a constant: / sinardr =
a
sin at
cosardr =
a

Including phase angle, we have:

/ sin(ar + ¢) dz = w
/cos(at +¢)dr = sini(t;;-_q&)

All_these integrals have the constant of integration, ¢, added to them,

Which can be jgnored if we are evaluating the integral as a definite
- ilitegra],
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Time in terms of pi

From now on, many of the graphs have the time axis marked in pi
instead of numbers of seconds. Figure 3.5, for example, shows a sine
wave from time = 0 to time = 2. This might mean that time runs
from Os to 6.232s, in which case P =0.62832s and f =1/P =
0.1592 Hz. But the graph covers many more cases than this. The
graph shows the sine wave for 1 cycle, no matter what its frequency
and how long a cycle may take. It applies equally to all sine waves,
not just those for which f = 0.1592 Hz. This convention allows us to
draw graphs and make deductions from them that apply irrespective
of frequency.

A second example is illustrated in Fig. 3.5, in which:
i =3sint

The interval is from ¢t =0 to ¢ =, that is to say it runs for half a cycl
Integrating 3sinz from t =0 to ¢t = 7:

T
qg= / 3sint dt = —3[cost]j = —3[cos 7w — cos 0] = —-3[—1 —1]
0

=-3x-2=6

The charge accumulating in one half-cycle is 6 C.

T 27 time

-3+

Figure 3.5 The current equation is i = 3sint and the shaded area represents the char?
carried during the first half-cycle
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TmHganving calculated the charge on the capacitor, we can find the pd across it.
ing the example of Fig. 3.4 and given that the capacitance is 1.5F, the pd
across the capacitor after 65 is:

v=yg/C =36/15=24V
In the example of Fig. 3.5, with the same capacitance, the pd after half a cycle is:

v=g/C=6/15=4V

Keeping up?

1. In each of the examples below, which refer to the circuit of Fig. 3.1, you are
given the equation for the current and the finishing time ¢. Assuming all timing
starts from ¢ = O and that the capacitor is uncharged at the start, sketch the
curve of current against time. Find the charge accumulating during that time.
(@ i=151=4
(b) i=15t1=0.5
©i=2*1=01
(di=4for0<t<1.2

i=10-5tfor12 <t <?2
(¢) i=3+4cos2t, t = /10 (Hint: put calculator in radian mode)

2. For each of the examples in question 1, the corresponding capacitances are
listed below. In each example find the pd across the capacitor at time .

(8) C =2F, (b) C = 2200 yF, (c) 470uF, (d) 0.5F, (¢) 10000 uF.

3. In the example of Fig. 3.5, calculate the charge on the capacitor after 2s.
Explain the reason for this result.

Current and pd

This section discusses the relationship between current flowing into a capacitor
and the pd appearing across the capacitor as charge accumulates there. Begin
with a circuit Iike Fig. 3.1, except that the current generator is replaced by a sine
Wave pd generator. At this stage we do not know the equation for current but
this does not stop us from using the equation for charge (p. 36) in which current
at any (unspecified) instant is represented by i. Convert this from an equation
Or charge into an equation for the pd across a capacitor by dividing by the

Capacitance:
1 /T q0
V= — idt+ —
C /0 C

This €quation contains both v and i and we will use this to find the relationship
CtWeen v and i in a circuit like Fig. 3.1. The first step is to get rid of the integral

[



40 Reactance and impedance

by differentiating both sides of the equation:
dv 1,

- c

More rates of change

Differentiation and integration can be thought of as opposite oper-
ations. Therefore, derivatives of trig ratios are the inverses of the
integrals of trig ratios given in the box on p. 37. The derivative
of sin(ax + ¢) is acos(ax + ¢). The derivative of cos(ax + ¢) is
acos(ax + ¢).

Differentiation has the opposite effect to integration, so differentiating the integra
of i with respect to ¢ simply produces i. Differentiating the constant value go/(
produces zero, since a differential is a rate of change and, by definition, a constan
has zero rate of change. This removes the initial charge go from the equation
demonstrating that any charge initially on the capacitor has no effect on wha
happens next. Rearranging:

[ = C(dv/dr)

This equation has a derivative expression in it and, if we assume the standar
equation for a sine wave, we can remove the derivative by actually carrying ou
the differentiation. If:

v = Vysinwt

Differentiating with respect to ¢ gives:
dv/dt = Vow cos wt
Substituting this in the equation for i:
i =CVowcoswt

Comparing the form of the expression on the right-hand side of the equatio
with the expression on the right-hand side of the sine wave equation (p. o
we see that this is the equation of a sinusoidal current signal, amplitude CVo¢
frequency w/2m. The expression for the amplitude may be replaced by a sing
symbol Iy, the maximum value (or amplitude) of the current, where Iy = CVot
All three quantities C, Vj and w are constants, so [ is a constant. Substituti?
I 0 for C Vow:
i =1ycoswt

For comparison here is the pd equation:

v = Vgsinwt
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Both current and pd are sinusoidal signals with zero offset, and both have the
same frequency. But the current signal is based on cosines. It has the same shape
as the pd signal but it is out of phase with it. According to the box on p. 27,
cosf = sin(6 + 7/2), so we can rewrite the current equation:

i = Iysin(wt + /2)

The current into a capacitor leads the pd by 7/2, a quarter of a cycle, as seen in
Fig. 1.7, and as summarized at the end of Chapter 1.

Reactance

There is a relationship between the amplitudes of the current and voltage equa-
tions, that is to say between Vg and Io. This can be found by remembering that
we substituted Iy for CVyw during the discussion above. [n other words:

10 = CVow
Rearranging:

Vo 1

Iy, Co

The ratio between the maximum pd and the maximum current is a constant,
1/Cw. There is a parallel statement to this in Chapter 1, which is expressed in
equation (1). There we said that the ratio between the pd across a resistor and the
current through the resistor is a constant, R, the resistance. The constant 1/Ce is
the equivalent of the resistance of the capacitor. Like resistance, it determines the
current for a given pd, or the pd for a given current. Because its unit is volts per
amp, the same as resistance, its unit is the ohm. But its action is entirely different
to that of resistance, so we give it another name, reactance. Reactance has its
own special symbol X¢, the suffix C indicating that it is capacitative reactance.
The definition of capacitative reactance is expressed in the equation:

Xc =1/Cw

This shows that reactance is inversely proportional to capacitance. The larger
the capacitance, the smaller the reactance. It is also inversely proportional to
frequency. It is in this respect that reactance differs most strongly from resis-
tance. The resistance of a resistor is the same at all frequencies. By contrast, the
Teactance of a capacitor is high at low frequencies and low at high frequencies.
Another important equation is:

We use this equation to relate the amplitudes of the pd and current signals.
A few examples will make these relationships clear. At 50Hz, @ = 27f =
X 50 = 314.2rad/s. The reactance of a 22 uF capacitor at that frequency is:

Xc=1/Co=1/(22 x 107 x 314.2) = 145Q
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Now increase the frequency to 1kHz. @ = 27 x 1000 = 6283. The reactance of
the same capacitor is:

Xc=1/(22 x 1078 x 6283) = 7.23Q

Having calculated reactance at a given frequency (there is no such thing ag
‘general’ reactance; the frequency must always be stated), we can use this to
calculate the amplitude of the voltage or current signal. For example, the 50 H;
signal applied to a 22 uF capacitor has an amplitude of 1.2 V. What is the ampli.
tude of the current signal? We have already calculated that X¢ = 145 Q. Thep
we can say:

Io=Vy/Xc =12/145=8.28mA

Increasing the frequency to 1kHz reduces the reactance and the current amplitude
becomes:
Iy =1.2/7.23 = 166 mA

Current flow is much more at the higher frequency.

Keeping up?

4. Write out the three equations which relate pd, current and resistance.

5. Write out the three equations which relate pd amplitude, current amplitude
and capacitative reactance.

6. Calculate the reactance of these capacitors at the given frequency:

(a) C = 0.5F, f = S00Hz
(b) C = 2F, f = 10kHz

() C =33 uF, f = 25kHz
(d) C = 27pF, f = 2.2 MHz
() C = 18nF, f = 10Hz

7. A pd signal of v = 5.4sin1000¢ is applied to a 180nF capacitor. Calculate
the amplitude of the current signal.

inductor behaviour

The behaviour of an inductor when a varying current flows through it is described
in Chapter 1. This is the result of the back emf e:

e=—-L- di/dt

where L is the self-inductance of the inductor, di/dr is the rate of change of
current and the negative sign indicates that the induced emf acts to oppost
changes in the current. If the current is increasing, di/dr is positive, making
e negative and so opposing the increase. This situation is illustrated in Fig. 3.6
If v is such that current is decreasing, the polarity of e is reversed. Taking th¢

)
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10 e

ov

Figure 3.6 Back emf, e, opposes the increase of current resulting from any increase in v

potential on the bottom line of the circuit to be 0V, then at all times ¢ must be
equal and opposite to v. If not, there would be two different potentials on the
top line of the circuit (A), which would be impossible. The consequence of this
is that:

v+e=0
Assume that the generator is producing a sinusoidal signal, v = V cos wt, and is

causing a varying current to flow through the inductor. This causes a back emf
such that:

di
Vocoswt — L - T =0
Rearranging:
diV
& = 20 cos o
dd L

Integrating both sides of this equation gives:

. Vo .

= —sinwt

oL

Remember that integrating a derivative gives back the original expression, in this
case simply i. The expression V/wL is a constant which can be taken to be the
amplitude 7 of a sinusoidal current. The current through the coil is therefore:

i =lIgsinwt
Compared with the equation of the voltage generator:

v = Vycoswt

Both current and pd have the form of a sinusoidal signal with zero offset, and both

Ve the same frequency. But the current is based on sines so it is out of phase
With the pd which is based on cosines. For comparison, we should turn the pd
quation into an equation based on sines. Use the identity cos 6 = sin(d + 7 /2),
3 explained in the box on p. 27:

v = Vysin(wt + 7/2)
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The pd leads the current by /2, a quarter of a cycle, as seen in Fig, 1.11. Or
taking the other viewpoint, we can say that the current lags the pd by a quarte
of a cycle, as stated in the summary at the end of Chapter 1.

Inductive reactance

In the discussion of capacitance we replaced the expression CVow by I, the
amplitude of the current signal. In this discussion we replace Vo/wL by Iq:

I 0= Vo/ wL
Rearranging:
Vo
T =
Once again we have a constant, this time wL, which can be said to correspon(

with resistance, for it expresses the relationship between pd and current. In the
case of the inductor, this constant is the inductive reactance, symbol X1 and:

XL=0)L

Because X1, is calculated by dividing a voltage by a current, its unit is the ohm,
The equation shows that reactance is directly proportional to inductance. The
larger the inductance, the larger the reactance. It is also directly proportional to
frequency, the effect of frequency on the inductor being the opposite to its effed
on a capacitor. The reactance of an inductor is high at high frequencies and low
at low frequencies.

As with X¢, we can use X1 to relate the amplitudes of the pd and curren
signals. Here are some examples. At 250 Hz, w = 27 f = 27 x 250 = 1571 rad/s.
The reactance of a 100 mH inductor at that frequency is:

XL=wL=1571x 100 x 1072 = 157 Q

Increasing the frequency to 200kHz has the following result. At 200kHz, o =
1.257 x 10°rad/s. The reactance of the same inductor is now:

XL =1.257 x 10° x 100 x 10~3 = 125.7kQ

The reactance has increased dramatically at the higher frequency.

As with capacitative reactance, we can use inductive reactance to calculate the
amplitude of a voltage or current signal. For example given that V, = 5V, if
the first example above, the current amplitude is:

Iy = Vo/XL =5/157 =31.8mA

In the second example, using the same inductor but increasing the frequency 1
200 kHz, the current amplitude becomes:

Iy = 5/(125.7 x 10%) = 39.78 uA

The current is much reduced at the higher frequency.

wlL
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Keeping up?

g. Write out the three equations which relate pd amplitude, current amplitude

and inductive reactance.

9, Calculate the reactance of these inductors at the given frequency:
(@ L=05H, f =20Hz
(o) L = 100mH, f = SkHz
() L=25puH, f =2MHz
(L =25pH, f =5Hz
(¢) L = 350mH, f = 300kHz

10. A current signal of i = 3.3 sin 44+ is applied to a 250 mH inductor. Calculate
the amplitude of the pd signal.

Phase angle

The reactance of a capacitor or inductor affects not only the relationship between
current and pd amplitude but the phase relationship between the two signals.
With capacitative reactance, the current signal leads the pd signal by =/2. In
question 7 above, for example, the pd signal is:

v = 5.45sin 1000¢

We calculated that the amplitude of the corresponding current signal is Iy =
972 uA. Not only does the current signal have a much smaller amplitude than
the pd signal but it leads the pd signal by 7/2. Writing out this signal in full:

i =972 x 107% x sin(1000¢ + 7/2)
In question 10 above, the current signal is
i = 3.3sin44¢

The amplitude of the corresponding pd signal is 5.778 V. But the pd signal lags
/2 behind the current signal, so the pd signal is:

v=>5.778sin(44t — 7 /2)

It is important to account for phase angles when calculating equations for pd and
Current. There is more about this topic in the next chapter.

Impedance

Resistance, capacitative reactance and inductive reactance all act to oppose the
OW of current. Resistance opposes current flow because of the resistivity of
€ conductor from which it is made. Capacitance reactive opposes current flow

use of charge present on the plates of the capacitor. Inductive reactance
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opposes current flow (when current changes) because of the electro-magnetj;
field within the inductor. A term that covers all these kinds of oppos1t19n to
current flow is impedance. The impedance offered to current flow in a circuj
is the sum of the resistances and reactances of its components. Impcdflnces iy
parallel or in series can be summed according to the usual rules for resistances
but the result always depends on frequency.

Summary

The three kinds of impedance are summarized in this table:

Resistance Capacitative reactance Inductive reactance

Symbol R Xc X1
Unit ohm ohm ohm
Definition R=v/i Xc=1/wC X1 = oL
Effect of frequency none greatest at greatest at

low frequency high frequency

Phase relationship
of v and i in phase i leads v by 7/2 i lags v by /2

Test yourself
(Answers to 4 significant figures)

1. What is the reactance of a 15 uF capacitor at 2.5 kHz?

. What is the reactance of a 25mH inductor at 75 kHz?

The reactance of a capacitor is 360 Q at 2kHz. What is its capacitance?
At what frequency does a 50 uH inductor have a reactance of 35 Q?

CEF NS

A current generator connected across a capacitor (as in Fig. 2.13) produces
a signal i =0.25sin100¢. If the pd across the capacitor varies as v =
3.5sin(100f — 7/2), what is the capacitance?

6. What value inductor has the same reactance as a 33 nF capacitor at 400 kHz’
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Working with phase

Figure 4.1 is a set of curves obtained from a circuit like that of Fig. 1.5. In this
example, the pd signal produced by the generator is v = 3sin 200077 (that is,
a 1kHz signal with 3V amplitude), the resistor is 680K and the capacitor is
330nF. The pds and also the current through the resistor are plotted from 2ms
onward, to give them time to settle down to steadily repeating values. The current
is plotted on a x250 scale. In accordance with the rules of circuit behaviour that
we have already described:

All signals have the same frequency.

At any instant, v, lags the current signal by 90°.
v is in phase with i; therefore v, lags v, by 90°.
At any instant, v = v; + v..

All this can be seen in Fig. 4.1. Since v, is out of phase with v., v must be out
of phase with both v, and v.. The task is to find the phase relationships of the
three signals and then calculate the amplitudes of v, v; and v..

2.0000

1.0000 H . \

0.0000

volts amps (X 250)

~1.000 7 A

-2.000 -

i 1 ! 1 !
2500 m 3.000m 3500m 4.000m 4500m 5.000m

seconds

F;gl-ll'e 4.1 These curves show the pds and current for a circuit like that of Fig. 1.5, as
Plotted by q circuit simulator. This chapter examines the relationships between these curves

47
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48 Working with phase

reference
direction

Figure 4.2 A phasor, like a vector, has both magnitude and angle

Phasor diagrams

One way of investigating phase is to draw a phasor diagram. A phasor is a kind o
vector, which represents a sinusoidal pd or current signal in diagrammatic form
The length or magnitude of the phasor represents the amplitude of the signal. Th
direction of the phasor represents the phase angle of the signal. This is illustrate
in Fig. 4.2, which shows a phasor A. The fact that the letter A is printed in bol
type indicates that it is a phasor. The length of A represents the amplitude of th
signal. In this example, the phasor is 4 units long, drawn to scale. The directior
of the phasor is measured from a reference line running across the page to th
right. In Fig. 4.2, this angle is 57°. If the phasor represents a sine wave pd signd
with amplitude 4V and phase angle 57°, then:

v = 4sin(ewt + 57°)

One attribute that the phasor does not represent is the frequency, which is wh)
we have written wt in the equation instead of quoting a numerical value. Th
phasor in Fig. 4.2 could represent a signal of any frequency. But the phasor
in any one phasor diagram all represent signals having the same frequency
which is taken into account when impedances (and hence amplitudes) are calcy
lated.

Keeping up?

1. What signals are represented by the phasors in Fig. 4.3?
2. Sketch the phasors which represent these signals:

(a) v = 3.1sin(50¢ + 45°), (b) v = 1.2sin(100¢ — 75°), (c) v = 2.2 sin(e! ~
140°).
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¢ = 200°

()

Figure 4.3 Some phasor examples for question 1

Adding phasors

Phasors are added in the same way as vectors. There are three cases relevant to
working with filters:

1. Phasors with the same phase angle (Fig. 4.4): draw them end to end and sum
their lengths. This is so simple to do that a diagram is not really necessary.
Since the phase angles are equal, these phasors correspond to two signals that
are in phase. Their sum is:

v = 3sin(wt + 48°) + 2 sin(wt + 48°) = 5sin(wt + 48°)
Sum the amplitudes and keep the same phase angle.

- Phasors with complementary phase angles (pointing in opposite direc-
tions, Fig, 4.5):

v = 5sin(wt 4+ 120°) + 2 sin(wt + 340°)
= 5sin(wt + 120°) — 2sin(wt + 120°)  (see box, p. 27)
= 3sin(wt + 120°)
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Figure 4.4 Summing two phasors that have equal phase angles

¢ = 300°

A-B=C

¢ = 120°

0

Figure 4.5 Summing two phasors with complementary phase angles

Find the difference between their lengths, and take the direction of the longer
phasor.

. Phasors which are 90° apart (Fig. 4.6): the two phasors are A and B; theit

sum is C, where C is the diagonal of the rectangle OPQR. We could use 2
scale diagram but it is simpler and more accurate to use geometry. Find the
length of C by using Pythagoras’ theorem, knowing that PQ = OR = 3. I
the triangle OPQ:

0Q’=0P’+PQ* =42 4+32=16+9=125
0Q=+25=5
Find the direction of C by using tangents:
tan QOP = QP/OP = 3/4 = 0.75
QOP = tan"10.75 = 36.9°
The phasor sum has length 5 and phase angle 36.9":
v = Ssin(wt + 36.9%)
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——————————————— Q
RE——" 7@ R
i !
8 P | A+B=C % !
| 5
5 yd — I
o |
b =99 ) |
4 : b = 36.9° !
0o ] 0] P
5=0 A

Figure 4.6 Summing two perpendicular phasors
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Figure 4.7

seconds

The signals produced by rotating the phasor diagram of Fig. 4.6

As a general rule, the amplitude is larger than that of either of the original

signals and

the phase angle is between their phase angles. Figure 4.7 shows the

two signals of Fig. 4.6 and their sum. Inspection by eye confirms that the addition

is correct,

Keeping up?

Sum these pairs of signals using phasor diagrams

3. v = 4sin(wr + 20°), vy = 2.5sin(wt + 20°).

4w =126 sin(100mt + 15°), vo = 4.5sin(1007t + 195°).
3. vy = 5sin(257r + 45°), vy = Tsin(357r + 45°).

6. vi = 3sinwr, vy = 2.5 sin(wr + 90°).

Hint: one of these pairs can not be summed.

.
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Relating v, and v to v

The phasor technique is used to solve the problem which began this chapte
(Fig. 4.1). The problem differs from the one in the previous paragraph becaus;
we know the amplitude of v, the resultant, and want to find the magnitudes ang
phase angles of v, and v;. The stages in drawing the phasor diagram are explaineq
in Fig. 4.8:

1. Find the impedance of C: from the definition of capacitative impedance, ang
given that the frequency is 1kHz:

w=2nf =2 x 3.1412 x 1000 = 6283 rad/s

The capacitance is 330nF and:
1
Xc= = 1/(6283 x 330 x 107°) = 482.3Q
w

If I is the amplitude of the current, the amplitude of the pd across the capacitor
is 482.31, and the pd across the resistor is 680/ (compare with equation (2),
V =IR).

2. Take the phasor v, to be the reference phasor, with a phase angle of 0°, draw
OP to represent this, pointing across the page to the right.

3. We know that v, lags v, by 90°. Sketch in OR to represent v, at right angles
to and clockwise of v;. This is not necessarily a scale diagram, but at leas!
draw v, so that the lengths of v, and v, are roughly in the ratio 680 to 480.
Complete the rectangle OPQR. This establishes the shape or proportions of
the rectangle (Fig. 4.8).

4. The pd phasor v is represented by the diagonal OQ. Its length is found by
Pythagoras’ theorem:

0Q? = OP? + OR2 = (6801()? + (482.31y)* = 695 013.291,>
00 = /695 013.291,% = 833.61,

680/,

0 - P
-90° v, I
|
|
2 |
. 4 S !
¥ |
Ve v :
|

R‘ —————————————— Q
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Figure 4.9 The amplitudes and angles calculated after the scale of Fig. 4.8 has been
established

5, The length OQ represents an amplitude of V3 = 3 volts. This fact makes it
possible to determine the scale of the diagram (Fig. 4.9). In proportion, OP
represents:

2X 680 _ 5 a47v
833.6
This is the amplitude of v;. Similarly, the OR represents the amplitude of v;:
3x 4823 _ ) 16v
833.6

6. The angle ¢ between v and v, is found by using tangents:
tan ¢ = —1.736/2.447 = —0.7090

¢ =tan~! —0.7093 = —35.3°
This is the angle by which v lags v,. Figure 4.9 shows that v, lags v by

=90 + 35.3 = —54.7°. We now have all the information we need to write out
the equations of the signals, the frequency of all three signals being 1kHz:
Given that vy = 2.447 sin 20007t

then ve = 1.7365in (20007t — 90°)

and v = 35in(20007t — 35.3°)

To simplify the diagram we have taken v, to be the reference phasor, with
zero phase angle. Often we prefer to make the generator pd the reference
Phasor, as in Fig. 4.1. We change the reference simply by rotating the phasor
diagram, as in Fig. 4.10. This makes no difference to the relative lengths of
the phasors or to the sizes of the angles between them. We have simply added
35.3° to the phase of each phasor and now the equations are:

ve = 2.447 sin(20007t + 35.3%)
ve = 1.7365in(20007r — 54.7°)
v = 3 sin 20007t
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Figure 4.10 Rotating Fig. 4.9 makes v the reference signal. The dimensions of the req
angle are unaltered but the phase angles are all increased by 35.3°

Current equation

Applying equation (3) and knowing that the current signal is neces-
sarily in phase with the pd across the resistor, calculate:

Iy = Vy/R = 2.447/680 = 3.599 mA
Write the current equation (in milliamps):
i = 3.5995in(20007t + 35.3°)

This gives the phase of the current signal with reference to v.

Phasor solutions

A summary of the stages in finding the relationship between v, v,

and v..

References:  Figures 1.5 and 4.8-4.10

Given: The sine wave equation for the voltage generator,
and the values of R and C.

Calculate: Impedance X of capacitor.

Pds across R and C, in terms of I;; their ratio
establishes the shape of the rectangle.
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/
Sketch: Phasors v, and v, at right angles to each other.
Complete the rectangle.
Draw the diagonal to represent v.
Calculate: Pd across generator, in terms of Iy (Pythagoras); its

ratio to Vp establishes the scale of the rectangle.
Actual amplitudes of signals across R and C.
Angle between v and v, (using tangents).
Angle between v and v (by subtraction).

write: Equations for v, v, and v., with v, as the reference.

If preferred:  ‘Rotate’ the diagram to make v or v, the reference.

Keeping up?

In the circuit of Fig. 1.5, given the equation for v and the values of R and C,
calculate the equations for v, and v, with v as the reference.

7. v = 4sin 10007, R = 8202, C = 470nF.
8. v=2.5sin10nt, R = 12k, C = 1.5uF.
9. v=15sin4007t, R = 1MQ, C = 22nF.

Root mean square values

The equations of sinusoidal pds and currents specify their magnitudes in two
different ways. As an example, take this standard equation for a pd signal:

v = Vysinwt

v tells us the size of the pd at a given instant in time; one of this infinite number
values of v is picked out in Fig. 4.11. V, also pictured in Fig. 4.8, tells us the
largest and smallest values the pd attains during a cycle. Neither of these values
are really typical of the signal. We need a more representative value for the pd,
asort of average value. Unfortunately the average value of any sinusoid is either
Zer0 or the value of its offset, if any. This is because v oscillates equally above
and below zero (or the offset) and all the positive values are exactly cancelled
Out by all the negative values.

e way around the problem is to calculate the root mean square pd, vims.
approximate method of calculating v.ms is to take several values of v (say,
Values) evenly spaced in time during one cycle. Square them (so making them

all Positive) and sum them, then divide by 20 to obtain the mean square. Finally
ke the square root of the mean square. In reality a sine curve is continuous
d v takes infinitely many values during a cycle, so the method is not really

e,
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Figure 4.11 Various ways of specifying the magnitude of a sinusoidal signal

practicable. Fortunately it can be shown that:

V = VO

ms — \/2
Vms i shown as the dashed line in Fig. 4.8. To 4 significant figures, vim =
Vo/1.414 = 0.7071V,. For example, given a signal v = 4.5sin 200¢, the valu
of Vg is 4.5, 50 vy = 0.7071 x 4.5 = 3.182 V.

Because there is a fixed ratio between amplitude and rms, we can use eithe
of these in phasor diagrams. Whether we use amplitude or rms affects the scal
of the diagram, but not its shape. The ratios between the lengths of phasors
or the angles between phasors, are not affected by whether we use amplitudt
or rms. The essential point is to keep to amplitude or rms for all stages in the
calculations.

Pd and current values

Given a pd signal, v = Vysin wt, or a current signal, i = I sin wt, we
declare the size of the signal by using:

the instantaneous value v i

the amplitude Vo Ig

the root mean square Vims = 0.7071Vy  imms = 070711

Keeping up?

10. Convert from amplitude to rms: (a) 25V, (b) 17 A, (¢) 7.5V.
11. Convert from rms to amplitude: (a) 7V, (b) 230V, (c) 13A.
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—
phasor shorthand

It is helpful to draw sketches of phasor diagrams, but the essential calculations
can be done without sketches. Instead of drawing the phasor as a line of specified
length pointing in a certain direction, we can simply write its length and direction
in a standard way, which is usually known as polar form. For example, the phasor
in Fig. 4.2 is written:

4/57°

The angle may also be expressed in radians. The phasor in Fig. 4.3(c) is written
cither as 1.3/310° or as 1.3/=50". Polar form is a convenient way of writing
phasors and it is easy to multiply phasors written in this way.

Complex numbers

The reason for using phasor diagrams is that a phasor is a way of representing
both amplitude and phase at the same time. Another way of representing two
quantities at the same time is to use complex numbers. The two techniques have
much in common. A complex number consists of two parts, a real part and an
imaginary part. As an example, take the complex number 3 + j2. The real part
is the 3, which simply is an ordinary number. The imaginary part is the j2. The
imaginary part always begins with a j, so here is a way of recognizing a complex
number.

There are two ways of thinking about j. One way is to consider it as the
Square root of negative 1. Another way of thinking about j is to say that it is
an operator. An operator is a symbol for an action, such as [, the symbol for
integration. j is the symbol for a quarter-turn anticlockwise. A complex number
can be taken as a set of directions for moving from one place to another in
a plane. Imagine yourself in such a plane. Begin at the origin, 0 (Fig. 4.12),
facing right. The complex number 5 + j2 can be interpreted as ‘5 steps forward,
Quarter-turn anticlockwise, two steps forward’. This brings you along the path of
the dashed line to point A. Similarly, the number 3 + j4 takes you along the path
of the dotted line to point B. Taken in this way, a complex number is nothing
More puzzling than a set of directions for getting from the origin to any point on
the plane.

Complex numbers can have negatives in them, the equivalent of backward
Steps. In Fig. 4.12, the number taking you to point C is —2 + j5, and to get to D
the number is 4 — j5. In the latter example the negative sign before the imaginary
Part can be taken to mean a quarter-turn clockwise, followed by 5 forward steps,
or the sign may be linked with the number 5, so that the imaginary part is a

02 e1-turn anticlockwise followed by 5 backward steps. In either case you get
O%oint D,

" 9
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Figure 4.12 Complex numbers give instructions for reaching any point on the compl
plane

Keeping up?

12. Express the phasors of Fig. 4.3(a) and (b) in polar form.
13. Write the complex numbers that direct you to points E and F in Fig. 4.12

Complex numbers and phasors

Complex numbers are used as another way of representing phasors. The phasor’
in Fig. 4.13 is described by the complex number 4 + j7. This number defines #
point at which the tip of A is located. Similarly, phasor B is described by -3+
and phasor C by 4 — j2. These two-part numbers simply give the co-ordin®®
of the tips of the phasors. If you find j difficult to understand or impossible!
believe in, just think of the real part of the complex number to mean steps’
an east-west direction and the imaginary part to mean steps in a north-$0
direction. "
Phasors are easy to add when expressed as complex numbers. Simply fol
the general rule for adding complex numbers, which is to add real parts to
parts and imaginary parts to imaginary parts. Since real and imagina!y t,
correspond to perpendicular directions, we can never add them to eaChJ
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Take the example in Fig. 4.14. The phasor A is 3 4 j7, and phasor B is 4 +j3
Their sum is:
347
+ 4452
7+i9
The result is the phasor C. We can never add the 7 to the j9 because one is reg|
(east-west) and the other is imaginary (north-south).

When a phasor is represented by a complex number, we have the two co.
ordinates needed to plot it on a grid. This way of representing a phasor is know
as rectangular form. In Fig. 4.15, the phasor A has magnitude r and phase ang]
¢. In polar form it is r/¢.. Use these equations to find the co-ordinates of P:

a=rcos¢
b=rsing
The rectangular form is:
a+jb=rcos¢+jrsing

For example, a phasor has polar form 3/50° | in which » = 3 and ¢ = 50°. From
these two values we calculate:

a=rcos¢ = 3cos50° = 1.928
b = jrsin¢g = j3sin50° = j2.298

The rectangular form is:
1.928 +j2.298

When converting from rectangular form to polar form, we are given a and b and
have to find  and ¢. The calculation is the same as on pp. 52-3.
