Trustworthy Systems
Through Quantitative
Software Engineering

LAWRENCE

BERNSTEIN
C. M.
YUHAS

Trustworthy Systems
Through Quantitative
Software Engineering

Lawrence Bernstein
C. M. Yuhas

F) WILEY:
@IEEE COMPUTER INTERSCIENCE

SOCIETY A John Wiley & Sons, Inc., Publication

Trustworthy Systems
Through Quantitative
Software Engineering

IEEE

COMPUTER
SOCIETY

$IEEE

Press Operating Committee

Chair Editor-in-Chief
Roger U. Fujii Donald F. Shafer
Vice President Chief Technology Officer
Northrup Grumman Mission Systems Athens Group, Inc.

Board Members
Mark J. Christensen, Independent Consultant
Richard Thayer, Professor Emeritus, California State University, Sacramento
Ted Lewis, Professor Computer Science, Naval Postgraduate School
Linda Shafer, Professor Emeritus, University of Texas at Austin
James M. Conrad, Associate Professor, UNC—Charlotte
John Horch, Independent Consultant
Deborah Plummer, Manager—Authored books

IEEE Computer Society Executive Staff
David Hennage, Executive Director
Angela Burgess, Publisher

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes
a wide variety of authoritative computer science and engineering texts. These books
are available from most retail outlets. Visit the CS Store at http://computer.org/
cspress for a list of products.

IEEE Computer Society/Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored
book program to produce a number of exciting new titles in areas of computer
science and engineering with a special focus on software engineering. IEEE Com-
puter Society members continue to receive a 15% discount on these titles purchased
through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals please e-mail
dplummer@computer.org or write to Books, IEEE Computer Society, 100662 Los
Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1-714-821-8380.
Additional information regarding the Computer Society authored book program can
also be accessed from our web site at http://computer.org/cspress.

Trustworthy Systems
Through Quantitative
Software Engineering

Lawrence Bernstein
C. M. Yuhas

F) WILEY:
@IEEE COMPUTER INTERSCIENCE

SOCIETY A John Wiley & Sons, Inc., Publication

Copyright © 2005 by the IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Bernstein, Lawrence, 1940-
Trustworthy systems through quantitative software engineering /
Lawrence Bernstein, Christine M. Yuhas.
p. cm.
Includes bibliographical references and index.
ISBN-13 978-0-471-69691-9 (cloth)
ISBN-10 0-471-69691-9 (cloth)
1. Software engineering. 2. Computer software—Reliability. 1. Yuhas, C. M.
II. Title.
QA76.758.B466 2005
005.1—dc22
2005007007

Printed in the United States of America

10 9 8 7 6 5 4 3 21

To our sons, daughters-in-law, and grandson

Contents

PREFACE xvii
ACKNOWLEDGMENT XXV
PART 1 GETTING STARTED 1

1. Think Like an Engineer—Especially for Software 3

1.1 Making a Judgment / 4

1.2 The Software Engineer’s Responsibilities / 6
13 Ethics / 6

1.4 Software Development Processes / 11

1.5 Choosing a Process / 12

1.5.1 No-Method “Code and Fix” Approach / 15
1.5.2 Waterfall Model / 16
1.5.3 Planned Incremental Development Process / 18
1.5.4 Spiral Model: Planned Risk Assessment-Driven
Process / 18
1.5.5 Development Plan Approach / 23
1.5.6 Agile Process: an Apparent Oxymoron / 25
1.6 Reemergence of Model-Based Software Development / 26
1.7 Process Evolution / 27
1.8 Organization Structure / 29
1.9 Principles of Sound Organizations / 31
1.10 Short Projects—4 to 6 Weeks / 33

vii

viii

CONTENTS

1.10.1 Project 1: Automating Library Overdue
Book Notices / 33

1.10.2 Project 2: Ajax Transporters, Inc.
Maintenance Project / 34

1.11 Problems / 35
2. People, Product, Process, Project—The Big Four 39
2.1 People: Cultivate the Guru and Support the Majority / 40
2.1.1 How to Recognize a Guru / 41
2.1.2 How to Attract a Guru to Your Project / 42
2.13 How to Keep Your Gurus Working / 43
2.14 How to Support the Majority / 43
2.2 Product: “Buy Me!” / 45
221 Reliable Software Products / 46
222 Useful Software Products / 47
223 Good User Experience / 48
2.3 Process: “OK, How Will We Build This?” / 49
231 Agile Processes / 49
232 Object-Oriented Opportunities / 53
233 Meaningful Metrics / 60
24 Project: Making It Work / 61
2.5 Problems / 65
2.6 Additional Problems Based on Case Studies / 67
PART 2 ETHICS AND PROFESSIONALISM 73
3. Software Requirements 75

3.1
32
33
34
3.5
3.6
3.7
3.8

39

What Can Go Wrong With Requirements / 75
The Formal Processes / 76

Robust Requirements / 81

Requirements Synthesis / 84

Requirements Specification / 86

Quantitative Software Engineering Gates / 87
sQFD / 88

ICED-T Metrics / 91

3.8.1 ICED-T Insights / 92

382 Using the ICED-T Model / 94

Development Sizing and Scheduling With Function Points / 95
3.9.1 Function Point Analysis Experience / 95

392 NCSLOC vs Function Points / 96

393 Computing Simplified Function Points (sFP) / 97

CONTENTS ix

3.10 Case Study: The Case of the Emergency No-Show Service | 98
3.11 Problems / 103

. Prototyping 107

4.1 Make It Work; Then Make It Work Right / 107

4.1.1 How to Get at the Governing Requirements / 108
4.1.2 Rapid Application Prototype / 108
413 What’s Soft Is Hard / 110

42 So What Happens Monday Morning? / 111

421 What Needs to Be Prototyped? / 111
422 How Do You Build a Prototype? / 112
423 How Is the Prototype Used? / 112
424 What Happens to the Prototype? / 114

4.3 It Works, But Will It Continue to Work? / 116
4.4 Case Study: The Case of the Driven Development | 116

441 Significant Results / 119
442 Lessons Learned / 122
443 Additional Business Histories / 123

4.5 Why Is Prototyping So Important? / 128

4.6 Prototyping Deficiencies / 130

4.7 Iterative Prototyping / 130

4.8 Case Study: The Case of the Famished Fish | 131
4.9 Problems / 133

. Architecture 137

5.1 Architecture Is a System’s DNA / 137
52 Pity the Poor System Administrator / 139
53 Software Architecture Experience / 141
54 Process and Model / 142
5.5 Components / 144
5.5.1 Components as COTS / 144
5.5.2 Encapsulation and Abstraction / 145
553 Ready or Not, Objects Are Here / 146
5.6 UNIX / 148
5.7 TL1 / 149
571 Mission / 150
5.7.2 Comparative Analysis / 151
573 Message Formatting / 152
5.74 TL1 Message Formulation / 152
5.7.5 Industry Support of TL1 / 152

5.8 Documenting the Architecture / 153

X CONTENTS

5.81 Debriefing Report / 154
5.8.2 Lessons Learned / 154
5.8.3 Users of Architecture Documentation / 154

5.9 Architecture Reviews / 155
5.10 Middleware / 156
511 How Many Times Before We Learn? / 158

5.11.1 Comair Cancels 1100 Flights on Christmas 2004 / 158
5.11.2 Air Traffic Shutdown in September 2004 / 159
5.11.3 NASA Crashes into Mars, 2004 / 159
5.11.4 Case Study: The Case of the Preempted Priorities |/ 160
5.12 Financial Systems Architecture / 163
5.12.1 Typical Business Processes / 163
5.12.2 Product-Related Layer in the Architecture / 164
5.12.3 Finding Simple Components / 165
5.13 Design and Architectural Process / 166
5.14 Problems / 170

6. Estimation, Planning, and Investment 173

6.1 Software Size Estimation / 174

6.1.1 Pitfalls and Pratfalls / 174
6.1.2 Software Size Metrics / 175

6.2 Function Points / 176

6.2.1 Fundamentals of FPA / 176

6.2.2 Brief History / 176

6.2.3 Objectives of FPA / 177

6.2.4 Characteristics of Quality FPA / 177

6.3 Five Major Elements of Function Point Counting / 177

6.3.1 El / 177
6.3.2 EO / 178
6.3.3 EQ / 178
6.3.4 ILF / 178
6.3.5 EIF / 179
6.4 Each Element Can Be Simple, Average, or Complex / 179
6.5 Sizing an Automation Project With FPA / 182
6.5.1 Advantages of Function Point Measurement / 183
6.5.2 Disadvantages of Function Point Measurement / 184
6.5.3 Results Common to FPA / 184
6.5.4 FPA Accuracy / 185
6.6 NCSLOC Metric / 186
6.6.1 Company Statistics / 187
6.6.2 Reuse / 187

CONTENTS Xi

6.6.3 Wideband Delphi / 189
6.6.4 Disadvantages of SLOC / 190

6.7 Production Planning / 192

6.7.1 Productivity / 192

6.7.2 Mediating Culture / 192

6.7.3 Customer Relations / 193

6.7.4 Centralized Support Functions / 193

6.8 Investment / 195

6.8.1 Cost Estimation Models / 195

6.8.2 COCOMO / 197

6.8.3 Scheduling Tools—PERT, Gantt / 205
6.8.4 Project Manager’s Job / 207

6.9 Example: Apply the Process to a Problem / 208

6.9.1 Prospectus / 208

6.9.2 Measurable Operational Value (MOV) / 209

6.9.3 Requirements Specification / 209

6.94 Schedule, Resources, Features—What to Change? / 214
6.10 Additional Problems / 216

. Design for Trustworthiness 223

7.1 Why Trustworthiness Matters / 224
7.2 Software Reliability Overview / 225
7.3 Design Reviews / 228

7.3.1 Topics for Design Reviews / 229

73.2 Modules, Interfaces, and Components / 230

7.3.3 Interfaces / 234

7.3.4 Software Structure Influences Reliability / 236

7.3.5 Components / 238

7.3.6 Open&Closed Principle / 238

7.3.7 The Liskov Substitution Principle / 239

7.3.8 Comparing Object-Oriented Programming With
Componentry / 240

7.3.9 Politics of Reuse / 240

7.4 Design Principles / 243

7.4.1 Strong Cohesion / 243

742 Weak Coupling / 243

7.4.3 Information Hiding / 244

7.4.4 Inheritance / 244

7.4.5 Generalization/Abstraction / 244

7.4.6 Separation of Concerns / 245

7.4.7 Removal of Context / 245

7.5 Documentation / 246

xii CONTENTS

7.6 Design Constraints That Make Software Trustworthy / 248
7.6.1 Simplify the Design / 248
7.6.2 Software Fault Tolerance / 249
7.6.3 Software Rejuvenation / 251
7.6.4 Hire Good People and Keep Them / 254
7.6.5 Limit the Language Features Used / 254
7.6.6 Limit Module Size and Initialize Memory / 255
7.6.7 Check the Design Stability / 255
7.6.8 Bound the Execution Domain / 259
7.6.9 Engineer to Performance Budgets / 260
7.6.10 Reduce Algorithm Complexity / 263
7.6.11 Factor and Refactor / 266
7.7 Problems / 268
PART 3 TAKING THE MEASURE OF THE SYSTEM 275
8. Identifying and Managing Risk 277
8.1 Risk Potential / 278
8.2 Risk Management Paradigm / 279
8.3 Functions of Risk Management / 279
8.4 Risk Analysis / 280
8.5 Calculating Risk / 282
8.6 Using Risk Assessment in Project Development: The Spiral
Model / 286
8.7 Containing Risks / 289
8.7.1 Incomplete and Fuzzy Requirements / 289
8.7.2 Schedule Too Short / 290
8.7.3 Not Enough Staff / 291
8.7.4 Morale of Key Staff Is Poor / 292
8.7.5 Stakeholders Are Losing Interest / 295
8.7.6 Untrustworthy Design / 295
8.7.7 Feature Set Is Not Economically Viable / 296
8.7.8 Feature Set Is Too Large / 296
8.7.9 Technology Is Immature / 296
8.7.10 Late Planned Deliveries of Hardware and Operating
System / 298
8.8 Manage the Cost Risk to Avoid Outsourcing / 299

8.8.1 Technology Selection / 300

8.8.2 Tools / 300

8.8.3 Software Manufacturing / 300

8.8.4 Integration, Reliability, and Stress Testing / 301

8.8.5 Computer Facilities / 301

8.8.6 Human Interaction Design and Documentation / 301

10.

8.9

8.10
8.11
8.12

9.1
9.2

9.3
9.4

9.5

9.6

9.7
9.8
9.9
9.10
9.11

CONTENTS

Software Project Management Audits / 303
Running an Audit / 304

Risks with Risk Management / 304
Problems / 305

. Human Factors in Software Engineering

A Click in the Right Direction / 309

Managing Things, Managing People / 312

9.2.1 Knowledge Workers / 313

922 Collaborative Management / 313

FA A Rationale for Human Factors Design / 316
Reach Out and Touch Something / 319

9.4.1 Maddening Counterintuitive Cues / 319
9.42 GUI / 319

9.43 Customer Care and Web Agents / 319
System Effectiveness in Human Factors Terms / 320
9.5.1 What to Look for in COTS / 320

xiii

309

952 Simple Guidelines for Managing Development / 322

How Much Should the System Do? / 323

9.6.1 Screen Icon Design / 324
9.6.2 Short- and Long-Term Memory / 326

Emerging Technology / 327

Applying the Principles to Developers / 334
The Bell Laboratories Philosophy / 336

So You Want to Be a Manager / 338
Problems / 338

Implementation Details

10.1
10.2
10.3
10.4

10.5
10.6
10.7
10.8
10.9

Structured Programming / 345

344

Rational Unified Process and Unified Modeling Language / 346

Measuring Complexity / 353
Coding Styles / 360

10.4.1 Data Structures / 360
10.4.2 Team Coding / 363
10.4.3 Code Reading / 364
10.4.4 Code Review / 364
10.4.5 Code Inspections / 364

A Must Read for Trustworthy Software Engineers / 365
Coding for Parallelism / 366

Threats / 366

Open-Source Software / 368

Problems / 369

Xiv CONTENTS

11. Testing and Configuration Management 372

11.1 The Price of Quality / 373

11.1.1 Unit Testing / 373
11.1.2 Integration Testing / 373
11.1.3 System Testing / 373
11.1.4 Reliability Testing / 374
11.1.5 Stress Testing / 374

11.2 Robust Testing / 374

11.2.1 Robust Design / 374

11.2.2 Prototypes / 375

11.2.3 Identify Expected Results / 375

11.2.4 Orthogonal Array Test Sets (OATS) / 376

11.3 Testing Techniques / 376

11.3.1 One-Factor-at-a-Time / 377

11.3.2 Exhaustive / 377

11.3.3 Deductive Analytical Method / 377
11.3.4 Random/Intuitive Method / 377

11.3.5 Orthogonal Array-Based Method / 377
11.3.6 Defect Analysis / 378

11.4 Case Study: The Case of the Impossible Overtime | 379
11.5 Cooperative Testing / 380

11.6 Graphic Footprint / 382

11.7 Testing Strategy / 384

11.7.1 Test Incrementally / 384
11.7.2 Test Under No-Load / 384
11.7.3 Test Under Expected-Load / 384
11.7.4 Test Under Heavy-Load / 384
11.7.5 Test Under Overload / 385
11.7.6 Reject Insufficiently Tested Code / 385
11.7.7 Diabolic Testing / 385
11.7.8 Reliability Tests / 385
11.7.9 Footprint / 385
11.7.10 Regression Tests / 385
11.8 Software Hot Spots / 386
11.9 Software Manufacturing Defined / 392
11.10 Configuration Management / 393
11.11 Outsourcing / 398
11.11.1 Test Models / 398
11.11.2 Faster Iteration / 400
11.11.3 Meaningful Test Process Metrics / 400

11.12 Problems / 400

CONTENTS XV

12. The Final Project: By Students, For Students 404
121 How to Make the Course Work for You / 404
122 Sample Call for Projects / 405
12.3 A Real Student Project / 407
12.4 The Rest of the Story / 428
12.5 Our Hope / 428
INDEX 429

Preface

This book advances the idea that standard principles of good engineering,
which have been honed through meticulous application, examination, revision,
and refinement, should be practiced in creating trustworthy software. It pro-
vides the student/practitioner with structured experiences that teach the
critical engineering skills needed to build reliable software products. Good
practices are illustrated with case studies and elicited through practical pro-
jects that apply stresses common in the business world after which student
responses and their logical consequences are examined. Quantitative analysis
is applied to software engineering principles. The course based on this book is
managed in a style modeled on industrial software development.

Lawrence Bernstein teaches in the Computer Science Department at
Stevens Institute of Technology in Hoboken, NJ. For more than 30 years, until
his retirement in 1996, he was a leading software executive and software
project manager at Bell Laboratories. He has more than 40 years of experi-
ence in developing, managing, and teaching software. He saw that developers
too often do not want to think about the downstream consequences of what
they do. To the extent that we can teach a code of ethics, we can raise the
quality of practice and reduce risks. This book confronts both new and expe-
rienced developers with the need for critical thinking during software devel-
opment and for making those engineering tradeoffs that will make systems
safe, secure, and reliable.

| HEAR AND | FORGET; | SEE AND | REMEMBER; | DO AND I
UNDERSTAND (CONFUCIUS)

The aim is to give the student/practitioner the intellectual and teamwork skills
needed to make practical engineering tradeoffs during product realization.

Xvii

xviii PREFACE

Too often, novice computer scientists jump into software development igno-
rant of proven tools, processes, and theory. Passing mention in a distant course
lecture hardly suffices to impress how critical to project success are such
practical tradeoffs. They learn from harsh on-the-job experience just how
important it is to plan, measure, and assess each stage of development. This
book captures these experiences and describes them in the context of real-life
examples. Rather than preaching how important software engineering is and
dwelling on the “Best Current Practices,” the emphasis is instead on problem
analysis, fitting the software engineering structure to the problem, and pro-
ducing products that are on schedule, within budget, and satisfactory to the
customer. The concepts of simplification, trustworthiness, risk assessment, and
architecture are stressed.

Software engineering, as opposed to hacking, is a key feature of this text.
Software engineering is the ability to make judgments based on measurements
to structure and monitor the development of a software product. Engineering
implies that limitations face the developer. In software, the issue of balancing
feature content, schedule time, system performance, and cost face the project
manager every day.

PERSPECTIVE STUDY

Two Stevens Institute of Technology professors examined the effects of the
course described in this book. They conducted a perspective study of 150 stu-
dents who took the course over a period of 3 years. Before beginning the
course, naive students were questioned concerning the use of software engi-
neering methods and the acceptance of constraints. Approximately 60%
voiced acceptance, which might have been colored by lack of experience and
malleability, but 40% vigorously opposed the constraints of the process,
perhaps dazzled by the glories of hacking. By the completion of the two-
semester course, most students were competent to function in design teams of
eight to ten people and to consistently apply the rigorous standards of engi-
neering to software. Of those students initially opposed, only 10% remained
opposed and opted to work in fields requiring small projects that would suit
their solitary natures. A significant measure of the teaching technique’s success
was the ability of the students to find jobs in large companies during difficult
economic times because of successful interviews. The students had mature
answers to situations posed by interviewers and reported that the course gave
them a differential advantage.

PREREQUISITES

The idea of project-based development drives the course. Assignments are
structured so that fundamental software engineering practices are provided

PREFACE Xix

exactly when the need arises. The student begins to appreciate the need to go
beyond the boundary of the small one-, two-, or three-person assignments that
were used to teach programming. This book expects the reader to know pro-
gramming and expands that perspective to include the real-world problems
facing projects requiring 10 to 25 people a year. Larger projects exist, but they
are not emphasized in this text.

It is important that software project teams consist of eight to ten students
working together for one, one and a half, or two semesters. Some students and
faculty object to this large size and long duration, but smaller projects do not
help students learn to deal with the problems of communication, priority
setting, risk assessment, and dealing with different personalities. On smaller
projects, students tend to self-select people who are like themselves and
thereby avoid conflicts.

METHOD

Students attempt a short initial project to experience the real-world environ-
ment. Then they work on a second project, longer in duration, that produces
a useful software product employing the best current software practices. The
practices show how the problems faced on the first project can be handled in
a systematic way.

Many computer science, information technology, computer engineering,
and software engineering courses require students to build a software product,
but building a system out of individual little products is brushed by in theo-
retical steps only, with little emphasis on how to manage the product realiza-
tion process. The complexity of project interactions is not emphasized. In this
course, it is actively experienced.

Regrettably, students often are taught how to use tools but not how to make
critical judgments about the appropriateness of when and where to use them.
There are many software engineering tools. Projects can fail by running after
the latest fad and therefore having no stability in their development environ-
ment. At the other extreme, projects become obsolete or too expensive when
new tools are fearfully shunned. How a software engineer decides whether to
adopt a tool is an important part of a software engineering education. UNIX
and Linux operating systems, the C, C++ and JAVA languages, software tools
that find memory leaks, fault tolerance, stress testing, regression testing, con-
figuration management, change control, informal project meetings, prototyp-
ing, visual programming, and the Spiral Model constitute a brief litany of some
that are successes. This book explains these and other tools and then provides
the criteria for deciding whether to use them. Students are then competent to
solve the inevitable problems they face developing a software product.

Supplemental materials are used in this course such as videotapes and
current news summaries. These materials can be accessed through the pub-
lisher’s website associated with this book.

XX PREFACE
AUDIENCE

Software professionals will refer to this book as a guide during their real-life
projects. Experienced project mangers share the common experience of failure
but do not often have the luxury of examining the causes that are common to
failures. The novice does not yet have this experience. This book follows a
logical path of increasing software engineering appreciation by the developer
in contrast to the common style of following a prescribed theoretical software
development process. It is not a complete compendium of all development
theories, but it serves as the foundation to the entire quantitative software
engineering series.

The emphasis of this book is on quantitative software engineering decision
making. It is geared toward the student who wants to know the “why” as well
as the “how.” Successful completion of the course described in this book makes
a software engineer valuable to a company both as a team member and as a
manager of outsourced developments.

Overall, it is shocking how few of the available tools or software engineer-
ing practices are actually used in software project development. With market-
ing people currently in ascendance and controlling development budgets,
there is no comprehension of the need to invest in tools and skills develop-
ment. Software professionals under marketing pressures have neither the
resources to grow nor to argue their cases effectively. Hope lies in the freshly
educated engineers emerging from colleges and universities who are fluent in
mathematics and programming and convinced by their own experience of the
utility of new methods and tools. The systematic adoption of software engi-
neering practices in industry requires that an appreciation of its importance
be conveyed to computer science students.

THE SOFTWARE CRISIS

In the fall of 1968, NATO convened a meeting to confront a crisis that did not
make the headlines—"“the software crisis.” Experts from a dozen countries,
representing industrial laboratories as well as universities, met in Garmisch,
Germany, to grapple with two basic questions that are still with us: Why is it
so hard to produce functionally correct and reliable software that meets both
users’ needs and performance requirements and still comes in on time and
within a projected budget? Where should software producers be looking for
solutions? The answers revolved around “software engineering,” a term coined
by the organizers of the Garmisch conference—somewhat controversial at
the time, and wholly inspirational—to focus on a missing discipline with the
potential to resolve the crisis. Software production should be “industrialized.”
Systems should be built from reusable components. Development processes
should be more systematic and predictable. The people who design, produce,
and maintain software should be better equipped to do what engineers do:
Make things that work to meet someone else’s needs.

PREFACE XXi

There have been significant advances. Programmers are better now, most
code is written in high-level languages, better tools exist, development is done
online, better design models exist, and standards have been established in
some key areas. Several recently developed or recently successful innovations
include object-oriented programming, client/server and thin client applica-
tions, application programming interfaces, graphical user interfaces and devel-
opment tools, prototyping, and source-level debugging. Components exist and
are widely used, which belies the common wisdom that software components
are rare. The C libraries with all their richness of fundamental or atomic func-
tions provide 20% reuse in most industrial strength UNIX-based applications.
Software that makes a library of graphical elements, or a text-processing tool,
available to multiple applications, with a major reservation, is also in wide use.
IBM and others are using software libraries providing generic fault avoidance
and recovery.

The industry has been much less successful in creating larger reusable com-
ponents or “bricks” than in reusing some kinds of “mortar” to hold programs
together—such as UNIX pipes and filters or object-oriented programming
techniques. There have been significant advances in software process—in areas
such as incremental development, inspection, change control, and testing—and
in software tools such as test drivers, profilers, and configuration management.

These process advances have helped software producers gain ground on the
elusive goal: timely, cost-effective development of reliable, user-friendly soft-
ware. Yet as far as software research and development have come since 1968,
there is still a long way to go, in part because progress in the field tends to
have an amplified effect on rising expectations. The central problems discussed
in Garmisch persist. Software design and production still do not resemble engi-
neered industrial processes. Maybe they never will. Reuse is still an issue, more
promise than practice. Complexity has been compounded by networking and
distributed applications.

Like the problems, some of the most promising ideas and techniques have
been around for a while. The idea of cleanly separating design intent from the
method of implementation is a powerful one with a lot of mileage left in it.
Modularity based on the Parnas concept of information hiding has been a key
to progress in software and will continue to be applied broadly and on many
levels. The idea of layered architectures—with software on one layer con-
necting to software on another—is a proven aid to interoperability in network
systems and is working its way through all sorts of applications. Browsers are
a familiar kind of layer that users see; platforms and middleware are typical
uses of layered software behind the scenes. Domain engineering embodies key
insights for large-scale software reuse: Think in terms of families of software
components within a domain, and determine what common elements can be
reused in several generations; develop reusable components and establish
a process for using them to build new applications—new product line
members—rapidly, efficiently, and with confidence in their reliability and per-
formance. Experiences with domain engineering indicate that it could help
software producers realize the promise of reuse.

xxii PREFACE

All approaches to problems in software continue to benefit from program
notation and formal methods, remedies that come from software’s mathemat-
ical roots. Programming languages have long provided precise notations for
specifying computations. There is movement toward the use of specifications
to capture inter-relationships as well, which makes it easier to reason about
the behavior of complex software such as distributed systems.

Complementary work emphasizes the human side of software engineering.
An early insight repeatedly confirmed by experience is that development
problems have as much to do with people as with technology. In programming
languages, a trend exists toward more intuitive notations. Discovery tools such
as data visualization can make it easier for members of a development team
to get their heads around millions of lines of code. Another prime example of
the human focus is the patterns discipline (sometimes called the patterns
“movement” to distinguish it as an idea taking hold in a community). Devel-
opers are recording design insights and experience in “patterns”—more a lit-
erary form than a kind of documentation—each pattern capturing “a solution
to a problem in a context.” Collections of patterns that work together are said
to form a “pattern language.” The patterns discipline assumes that most knowl-
edge needed to build and maintain a reliable system already resides in the
development community. But people tend to move around, taking expertise
with them, and projects can go on for a long time. Many developers must work
with code that has been around longer than they have. That fact produces
questions: What was the software architect’s original intent? What lessons did
the developers learn? How can I get inside the experts’ minds?

It will be important to experiment with various software tools and practices
to see how much better the technical solutions fare in concert with approaches
that focus on the people who build the software systems.

WHO CAN PROFIT FROM THIS BOOK

This book presents the basic skills needed to apply these software technolo-
gies to the realization of software products on time, within budget, and with
known quality. It is especially useful for those who must produce trustworthy
software systems. It is geared toward several kinds of readers:

+ The formally educated computer professional who aspires to a manage-
rial career and wants comprehensive hands-on knowledge in the skills
needed to identify customer requirements, develop software designs,
manage a software development team, and evaluate the resulting soft-
ware product relative to customer specifications.

« The formally educated computer professional who wants to remain an
individual contributor, yet wants a solid foundation in the practical appli-
cation of computer science technology to the realization of software
products.

PREFACE xxiii

« The computer professional whose educational background is not in
computer science or computer engineering, but who has learned software
skills on the job and who now wants to begin to understand software
engineering.

 The systems engineer and software project manager who wants to under-
stand software engineering technology.

+ The venture capitalist who wants to assess the likelihood of a software
company’s success.

« The CEO who finds software fundamental to the company’s products and
services.

The book may be used for a one- or two-semester undergraduate course in
software engineering. The one-semester course should meet 3 hours/week for
14 weeks with weekly project meetings outside of class. Class meetings are for
project presentations, presentation of case histories and technologies, and
discussions. Each project presents a requirements review, an architecture and
design review, a code and test review, and a final product demonstration.
Weekly progress reports are suggested. Monthly updates to the development
plans are helpful. If the instructor wishes to have the project meetings during
scheduled class time and to provide time for a larger, more realistic and richer
project experience, then a two-semester sequence such as that used at Stevens
is recommended. Intensive 6-day professional short courses can be tailored to
specific needs.

THE ISSUE OF TRUSTWORTHINESS

Software trustworthiness, which refers to the attributes of reliability, security,
and safety, is the next major area in which academia and industry must focus.
Software trustworthiness is critical for medical devices, plant control systems,
and weapon systems; for management of sensitive records; for critical infra-
structure; for new accounting requirements; and for dependable cybersecurity.
As practitioners of such a pervasive part of so many lives, we have a serious
ethical responsibility. This course will help make you ready to assume your
responsibility for trustworthiness in our young profession. Additional infor-
mation is available on the publisher’s website at ftp://ftp.wiley.com/public/sci_
tech_med/trustworthy_systems.

LAWRENCE BERNSTEIN

Industry Research Professor
Stevens Institute of Technology
Hoboken, New Jersey

C. M. YUHAS

Freelance Writer
Short Hills, New Jersey

Acknowledgment

There is an Italian saying, “All roads lead to Rome.” In writing this textbook,
we became acutely aware that for much of the innovation in our field, all
mental roads lead to Barry Boehm. We are grateful for his inspiration, his
advice, and his friendship.

XXV

Part 1

Getting Started

Think Like an
Engineer—Especially
for Software

Software engineering as a discipline needs a sturdy underpinning of classic
engineering principles and discipline. Societies depend on engineers to keep
bridges from falling down, factories from exploding, and generally to protect
us from our carelessness and ignorance. Software now drives much of our lives,
so computer scientists need to accept the engineer’s responsibility to produce
something that will work reliably and protect human life and work. Engineers
do pretty well now with the nuts and bolts of daily life, but that wisdom did
not come cheaply. It was built up from thousands of individual experiences of
success and analyses of failures, codified, and passed on to new people in the
profession. Computer scientists can learn to be engineers in the same way,
although our materials are less tangible and our constructs and stresses are
measured in different ways.

It is possible to experience the principles and theories of quantitative
software engineering in a controlled environment before applying them in a
live business project. “Quantitative” is the operative word. Software engi-
neering practices are designed to make the development of software less
chaotic, reliably repeatable, and more humane, but unless there are specific
measurements to apply, volumes of good practices would make better
doorstops. Extraordinary people who are highly motivated can make any
process work, but dream teams are rare and burning out talent is shortsighted,
cruel, and expensive. Heroics in software development are an indication of
process failure that leads to dysfunctional behavior in both organizations and

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

4 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

individuals.! Worst of all, the resulting projects are difficult to maintain, diffi-
cult to upgrade, and the developers have little learning to bring to the next
project.

We will use a model-based approach to software development. Models will
be used to calibrate, bound, and validate your estimates. There will be cost-
estimation tools, risk definition and analysis, and prototyping. System models
and scenarios will produce test results with actual system performance. You
will find problems and solutions, case studies, and “magic numbers” in each
chapter. The latter are easy-to-remember rules gleaned from the experiences
of people who have earned the right to call themselves engineers of software
or from explanations of folklore whose meanings are buried in the mists of
early computing.

1.1 MAKING A JUDGMENT

Engineering is a balancing act. When applied to software, the spinning plates
are functions provided, time to produce, cost, and complexity. The fundamen-
tal software reliability equation is as follows:

Reliability = e ™,

where k is a normalizing constant, A is complexity/ effectiveness x staffing, and
t is the time the software executes from its launch.

This model equation only approximates reality, but it is useful for making
engineering tradeoffs if it is stipulated that software fails at a constant rate. It
is reasonable, if unorthodox, to model the software engineering process based
on this model. Field failure rates for IBM and Microsoft products show a con-
stant failure rate 10 months after product release.”

The complexity factor incorporates the elements the software project
manager controls through the development process. The software engineer
might alter effectiveness by providing better software tools, such as higher
level languages, to designers and thereby increase the reliability of the final
product. By reusing reliable components, the software engineer reduces the
complexity of the system, which again makes it more reliable. By adding staff
beyond the minimum predicted by staffing models, more effort can be placed
on such activities as diabolic testing and system audits in the interests of
improving reliability.

' Yourdon, Edward. Death March: The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects, Prentice Hall, Englewood Cliffs, NJ, 1997.

% Chillarege, Ram, et al. “Reflections on Industry Trends and Experimental Research in Depend-
ability,” IEEE Transactions on Dependable and Secure Computing, IEEE Computer Society, Vol.
1, No. 2, April-June 2004, Figure 5, www.computer.org.

MAKING A JUDGMENT 5

The reliability equation is the framework for quantitative analysis and
making tradeoffs. The software project manager must invest in these ongoing
activities: measuring complexity, measuring effectiveness through investments
in tools and technology, and measuring staffing requirements.

On your way through several approaches to software design, you will
acquire a background in why systems fail and how to avoid failure with risk
containment techniques. Topics include risk identification and analysis, design-
ing for reliability, design simplification, and testability. The merits of top-down
and bottom-up design are compared. Code reviews and inspections are used
with static quality assessment techniques. Testing approaches include unit,
integration, stress, reliability, and diabolic testing. Rapid prototyping, top-
down, bottom-up, successive refinement, extreme programming, design con-
straints, and data abstraction are presented. You, the quantitative software
engineer, are responsible for producing studies for each activity.

Optional organizational structures can help with ways to manage suppliers,
determine span of control, identify key employees and retain them, examine
staff churn, and conduct performance evaluations. The economic drivers of
diminished defect leakage, earned value, and economic value-added can help
to evaluate project viability. The capability maturity model for software (SW-
CMM) was created in the early 1990s by the Software Engineering Institute
at Carnegie Mellon University to gauge the sophistication and reliability of
software products coming out of any given organization. When applied to an
organization’s methods of developing software, SW-CMM assigned a level of
sophistication and reliability to the process and product ranging from a low of
1, initial; through 2, repeatable; 3, defined; 4, managed; to a high achieved at
the time only by NASA of 5, optimized. Most organizations were rated only
a 1. For most, level 3 was a sufficient goal.

In 2000, SW-CMM was upgraded to the capability maturity model integra-
tion (CMMI). CMMI is now being adopted worldwide, including North
America, Europe, India, Australia, Asia Pacific, and the Far East to provide
models for process improvement.

The CMMI best practices help organizations to more explicitly link man-
agement and engineering activities to business objectives. The product or
service is the center of engineering activities to make sure it meets customer
expectations. CMMI also encourages robust, high-maturity practices in areas
such as measurement, risk management, and supplier management. Businesses
are helped to comply more fully with relevant International Standards Orga-
nization (ISO) standards.

Because this is a quantitative book, occasionally there will be examples with
solutions in addition to problems at the end of each chapter. Keeping in mind
that, as Hamming remarked, “The purpose of computing is insight, not
numbers,” consider the ramifications of the following example.

* Hamming, Richard. Numerical Methods for Scientists and Engineers, McGraw-Hill, New York,
1962.

6 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE
EXAMPLE:

A software system is designed so that after every hour of normal operation,
it stops and relaunches from its initial state. This process is called software
rejuvenation. Assume that the mean time to failure for the software is 10 hours
and the mean time to repair is 5 minutes. Repair means restoring the software
to an operating condition by relaunching it from its initial state.

What is the probability that the system fails within 30 minutes of opera-
tion? Note that e* is approximately (1 + x) for small x.

SOLUTION:

R(30) = 1/eP10 x 60— =005 y15ing the approximation, e* = 1 + x for small x, we
get R(30) =0.95, probability of failure =1 — R(30) = 0.05. This means that there
is a 5% chance that the software system will fail in its first 30 minutes of oper-
ation. Without doing the quantitative analysis, the software engineer would
not understand the risks of releasing such buggy software.

1.2 THE SOFTWARE ENGINEER’S RESPONSIBILITIES

The software engineer uses critical judgment and analysis to make informed
decisions. These decisions typically involve making engineering tradeoffs, but
this analysis is meaningful only when supported by project data. You will learn
a framework for exercising informed engineering on software products. Skilled
software project managers produce systems that meet customers’ needs within
budget and on schedule. This framework captures, in a quantitative way, the
thought processes of skilled managers. This approach uniquely weaves soft-
ware engineering theory and case histories, quantitative analysis, and technol-
ogy into the project effort.

This textbook models industrial software development. Teamwork and
cooperation are encouraged. Teamwork is one of the hardest lessons for stu-
dents because they have been schooled in competing for so long. Quantitative
analysis is required. Knowledge of, and sensitivity to, software engineering
ethics are stressed.

1.3 ETHICS

The ethical software engineer makes sure that a product solves the customer’s
problem, that it is tested, that good software engineering practices are used in
its development, and that any limitations of the product are clearly stated.
Professions are defined by the willingness of their practioners to establish
and abide by a code of ethics. Human nature being variable as it is, meaning-

ETHICS 7

ful disciplinary action is necessary to make ethics stick. There is currently
no penalty for software engineers who are unethical, but new laws may change
this. What follows is the ratified ACM/IEEE-CS Joint Task Force on Software
Engineering Ethics and Professional Practices (Reprinted by permission). It
defines the minimum behavior one must exhibit to be truly professional.

ACM/IEEE Software Engineering Code of Ethics and Professional Practice
(Short Version)

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstrac-
tion; the clauses that are included in the full version give examples and details of
how these aspirations change the way we act as software engineering profession-
als. Without the aspirations, the details can become legalistic and tedious; without
the details, the aspirations can become high sounding but empty; together, the aspi-
rations and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification,
design, development, testing and maintenance of software a beneficial and
respected profession. In accordance with their commitment to the health, safety
and welfare of the public, software engineers shall adhere to the following Eight
Principles:

1. PUBLIC—Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER—Software engineers shall act in a manner
that is in the best interests of their client and employer consistent with the public
interest.

3. PRODUCT—Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

4. JUDGMENT—Software engineers shall maintain integrity and independence
in their professional judgment.

5. MANAGEMENT—Software engineering managers and leaders shall sub-
scribe to and promote an ethical approach to the management of software devel-
opment and maintenance.

6. PROFESSION—Software engineers shall advance the integrity and reputation
of the profession consistent with the public interest.

7. COLLEAGUES—Software engineers shall be fair to and supportive of their
colleagues.

8. SELF—Software engineers shall participate in lifelong learning regarding the
practice of their profession and shall promote an ethical approach to the practice
of the profession.

These goals are exemplary, but in the rough and tumble of business, they
can be overruled in the interests of expediency. Customers, as half of the part-
nership, must insist that every product have a named software architect and

8 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

software project manager to assign responsibility specifically and to have a
firm point of control. The same person may perform both roles.

The software architect affirms that the software product solves the cus-
tomer’s problem; affirms that the software product is suitably reliable, easy-
to-use, extendible, not harmful, and robust; and affirms that the requirements
are valid.

The software project manager affirms that the software was successfully
tested against the requirements; affirms and identifies that good software engi-
neering processes were used in the software development and integration; and
affirms that the project is within budget, on time, and performs satisfactorily.

Case Study’: The Case of the Sacrosanct Date

You are a successful project manager. The boss of the boss of your boss wants
you to assume the management of a project in deep trouble. It is a mission-
critical, complicated store-and-forward message switching system requiring a
large database and significant communication software for computer-to-
computer interfaces. The following issues have confounded the current project
manager:

+ The software is fragile. Its mean-time-to-failure is 2 hours, measured by
field-reported crashes.

« This is a large project with 100 people. There are 30 developers and 10
testers. There are five human factors designers helping the users cope with
the system deficiencies. They cannot alter the design, to which they had
little input.

+ The next release of the software is scheduled next week. This schedule
has been in place for 1 year, and the customer purchased the system with
the assurance that the feature package in this upgrade would not be
delayed. The schedule is now in jeopardy.

+ Release testing is going poorly; developers and testers are often diverted
to find and fix field problems.

Question: Do you accept the position?

Answer: Only if you have the authority to fix the situation. The best time to
have a clear understanding of job expectations is when you agree to take on
new responsibilities. You need to understand your authority, the resources
available, and the consequences of failure. Responsibility without authority
leads to frustrations.

Question: You cannot resist a challenge and take the job. Now what do you
do?

* Thanks to Associate Professor A. David Klappholz of the Stevens Institute of Technology for
helping to write several of these case studies.

ETHICS 9

Answer: Delay the release and stabilize the software (debug it!). Talk directly
to the customer and say you need time to make the system stable because you
will not ship faulty software just to meet a schedule.

Question: The customer wants a special utility that recovers the system after
a crash. To implement such a utility, you need 4 months and two of your best
developers. So what do you do?

Answer: Explain that it is better to fix the system so that it does not crash in
the first place. Tell the customer that he will get his recovery utility, maybe in
8 months, after you do a quantitative analysis of the resources required for all
the tasks facing you.

Question: The customer is angry. At a follow-on meeting with you and your
boss, the customer says, “I do not want to do business with your company if
you can’t see that that recovery utility is my highest priority.” Your boss wants
to keep the customer happy. What is the ethical thing to do?

Answer: Explain the situation to your team. Focus the team on fixing the sta-
bility problems, plan for the utility, and keep your boss, the customer, and the
customer’s people aware of the steps you are taking.

Question: The crisis is under control so far; however, the pressure from the
customer continues. The customer uses the progress data you supplied against
you. Your reputation is at stake. What do you do?

Answer: Continue sending progress data to the customer and your boss.
Review the situation with your boss’s boss to make sure you still have inter-
nal support. Work to establish your credibility with your team; otherwise, they
might attempt heroics to placate the customer. If that happens, they will not
be working to stabilize the software, and you will lose control of the project.

Question: How do you get the team’s compliance?

Answer: 1T professionals already have high salaries and benefits, so these
things will not motivate them. Fear of job loss will keep some loyal, but not
necessarily the best. You must keep the team well informed of the steps you
are taking and your reasons for taking them. You might invest in a small study
for new technology. Giving the team the chance to advance their skills excites
them and builds loyalty to your stabilize-then-add-features plan.

Question: Some developers on the team are happy with the current situation.
They like the thrill of solving problems and being a hero. But every
time they put in a fix, several other things go wrong. How do you deal with
them?

10 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

Answer: Explain the reality of this magic number at your next group meeting.
Post copies of it everywhere. Stop rewarding “heroic” behavior by turning to
these people in a crisis.

\\\‘//

i& /\l MAGIC NUMBER!

It takes ten times the effort and money to find and fix a problem in the test
and integration laboratory than it would have taken the developer to fix it
during the unit test. If the bug gets out the door and the customer has to
report it, the fix costs 30 times what it would have taken the developer to
fix it originally. Field fix:developer fix::30:1!

Then give the testers the “right of rejection.” Explain that their job is to
assure stability and quality and that it is the developers’ job to fix problems
on time. Insist that testers reject software that testers judge to be unreliable.

Question: Before you took charge, your team shipped blank tapes on the pre-
vious release date to buy time. They reasoned that the customer would take a
week to install the software in their test site and that integration testing could
continue. The entire release would then be sent as a large fix. Based on this
unethical behavior, the customer, quite rightly, does not believe that you will
deliver on your schedule commitments. How do you restore that confidence?

Answer: Establish regular meetings with the customer to show progress. Make
it clear that the persistent addition of features creates an atmosphere that
breeds desperate measures. Therefore, the only person who can commit to
additional features is you.

Question: People are afraid of talking about the problems in the software
because they fear that, as the bearer of bad news, they will get into trouble.
How do you get these people to speak?

Answer: Celebrate the courage and perceptiveness of people who find prob-
lems. Each discovered problem is a problem that the customer will not have
to face.

Conclusion: Make sure you stabilize the software, deliver it on the revised
schedule, and deliver the utility as promised. Divide and conquer by forming

SOFTWARE DEVELOPMENT PROCESSES 11

a crisis team and a next-release team. Commit based on this two-team
approach. Set goals that exceed the commitments, leaving the difference
between the customer commitments and your team goals as slack that you, as
project manger, can use to handle unforeseen situations.

1.4 SOFTWARE DEVELOPMENT PROCESSES

There is no best approach to software development. As is true for all engi-
neering disciplines, the approach used and the tools chosen depend on the
problem, the skill of the engineer, and the money available. What is the best
choice? It depends! Quantitative software engineering is aimed at gathering
data so that each choice can be insightful.

New development processes evolve as problems become more complex and
engineers become more adept at handling software. One of the first develop-
ment processes defined was the Waterfall Model. Current processes are the
agile method, including commercial off-the-shelf (COTS) based and open
source-based development, but new and better methods are always being
created to adapt to new developments.

Bitter experience with building software that did not do what the client
wanted inspired the creation of methods for requirements development. These
methods examine ways to distinguish vital requirements from the merely
important and to tease out hidden requirements. Descriptively stated require-
ments must be translated into firm specifications that include an expected
operating point and the expected range of performance.

EXAMPLE:

A descriptive requirement might be, “The Customer Resource Management
System must respond to online customer Web inquiries for account status.”
What can a designer do with this requirement?

SOLUTION:

It must become a specification before it can be a design objective. Let us take
just one element of this descriptive requirement—respond. In what way? If
there are errors, how shall they be described? Suppose the customer needs
help? How much of the account should be shown? How fast must something
appear after the customer presses ENTER?

Consider only the issue of speed of response. Jones remarks that, “The
meanings of various lengths of elapsed time do not vary widely from one
person to another: Less than 1/3sec is ‘instantaneous’, Less than Isec is ‘fast’.
Less than Ssecis a “‘pause’ and Greater than 10sec is a ‘wait.” Transaction inter-

12 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

actions should be without ‘wait.” 7> Today, human factors research describes
three levels of human cognitive experience.” “Perceptual processing time
(about 0.1 second) is the time the human perceptual system spends integrat-
ing and processing signals. Two stimuli within this time seem fused, and
responses feel instantaneous. . . . Immediate response time (about 1 second)
is the smallest time needed to react to a new situation—for example, the
appearance of a new form on a screen. Unit task time (about 10 seconds) is
the time scale of simple tasks.”’

This bit of data gathering has often been translated into a 3-second response
time specification. Other studies show that variability of the response time dis-
satisfies users more than an average response time. A good designer seeks to
relax the 3-second operational specification to 6 seconds with a 1-second
bound. Most companies would accept this compromise. This discussion is just
one part of one simple requirement.

“Respond” to the mind of the software developer means the execution time
needed to retrieve and format the information inside the computer. A hidden
requirement is that the communications link to the data server must support
the speeds of data transfer needed. A hardware engineer would check to make
sure that the data links have enough capacity. But whose responsibility is it to
make sure that the communications software within the data server is config-
ured properly and that the software communication drivers can support the
transmission links, the protocols, and provide any needed buffering?

Too many developers are unaware of the need to perform this engineering
function. Without a good job here, exhausting buffer pools could lead to inter-
mittent delays in the response time to the customer. A prototype is the best
way to validate specifications and to let the customer understand the interface
before major investments are made in implementation.

1.5 CHOOSING A PROCESS

The software project manager must choose the process the team will follow
to produce the software product. The choices range from the top-down, doc-
ument-driven Waterfall Model and similar planned methods to flexible and
responsive agile methods. Each process evolved out of whatever process was
in use at the time in response to a core element that was deemed critical, but
missing. At various times, those core elements have been documentation,
schedule, functions, risk analysis, or hierarchical control, but no one process
was meant to totally replace what came before. As each process evolved, layers

* Jones, T. Capers. Four Principles of Man Computer Dialog Computer Aided Design, Vol. 10, No.
3, May 1978, p. 197.

 Newell, A. Unified Theories of Cognition, Harvard University Press, Cambridge, MA, 1990.

" Obrenovic, Zeljko and Stancevic, Duse. “Modeling Multimodal Human-Computer Interaction,”
IEEE Computer, Vol. 37, No. 9, Sept. 2004, p. 67.

CHOOSING A PROCESS 13

have been added, emphases have shifted, and the result is a continually
improving, responsive mixture of tools. Sometimes the business constraints
will direct the choice of method and sometimes the project manager’s personal
style will dictate the most comfortable choice. There have been analyses of
management styles that favor structure, control, and authority versus those
that favor team-building, collaboration, and flexibility, variously called Types
A and B or Theories X, Y, and Z°, but ultimately each process will emphasize
one core element and include the others to a lesser extent. Proponents tend
to argue for their own (most comfortable) approach, but it is best to fit the
solution to the problem.

The only true failure is to create a software product without any method at
all. Novices will want to restrict the size of the product to what three or four
people can do, create a set of features as they go along, and then deliver a
working system to a customer. Typically they have special domain knowledge
that is built into the product and delights the customer. They have found what
they think is the silver bullet of software development (Fred Brooks to the
contrary!). When they try to build a follow-on system, they find that it is bigger
than the tight-knit team can handle, key members of the team have moved on,
or their tool base changes. Then they must adapt. Unfortunately, the more
technically competent a team is, the more resistance they have to new tech-
nology. The organizational device of an “Office of Technology Planning” helps
organizations adopt technology and keep current.

When teams are successful, they are asked to build other systems or to
extend the first system. As the number of customers grows, they are asked to
add customer-peculiar features. These features may be incompatible with other
features of the original system, so the number of system versions grows. There
are no economies of scale. To handle a growing business, the only thing most
entrepreneurs can think to do is hire more people like themselves who also
have no knowledge of process, configuration control, or release control. When
a customer calls with a serious problem, like total system failure, there is a mad
scramble to reproduce the problem. First the developers must reproduce the
configuration the customer is using. If they do not know it, a designer is quickly
dispatched to the customer site to fix the problem. Without change control, the
problem is not recorded and other customers may report similar problems. This
Keystone Cops routine was true in the 1960s and still occurs today.

There are too many design and development methodologies to discuss them
all. The particular method a project adopts should provide some structure and
discipline while being compatible with the abilities of the designers and devel-
opers. The best methods tighten the structure and discipline as the project pro-
ceeds through the development cycle. Loose control at first encourages several
cycles of design synthesis and analysis before the developers commit to

8 Leavitt, Nancy and Bahrami, Homa. Managerial Psychology, University of Chicago Press,
Chicago, IL, 1988. Peters and Waterman. A Passion for Excellence, Random House, New York,
1985. Ouchi. Theory Z, McGraw-Hill, New York, 1981.

14 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

production code. Table 1.1 shows some methods. Simplicity in design is an
important element of successful systems development, whatever the process.

TABLE 1.1. Popular Software Development Processes

Method Description

Evolutionary Software requirements and design will change and grow throughout the
development process. Often associated with user-oriented systems or
systems not yet fully understood—nhigh volatility.

Incremental A linear model of the software development process that allows the
software developer to iterate among the activities within each life-cycle
phase for each increment defined for the system.

Object Oriented The use of all object-oriented techniques for requirements analysis, design,
coding, and testing by a development team that is experienced and
motivated to use object-oriented approaches.

Prototype Informal development process applicable for prototypes, proof of concept,
or demonstration software. Development is iterative, with minimal up-front
requirements effort.

Spiral A cyclical model of the software development process in which a repeating
set of activities is performed on an increasingly more detailed
representation of the product. A risk assessment must be performed at the
end of each cycle and before starting a new cycle.

Waterfall A linear model of the software development process in which the activities
of each phase of the life cycle must be completed before continuing to the
next phase.

With highly skilled and experienced developers on a small team, subjective
evaluation criteria can be used, but for everyone else, the following advice
applies: “Manage critical goals by defining direct measures and specific targets,
assure accuracy and quality with systematic project document inspections, and
control major risks by limiting the size of each testable delivery.”

Large projects with several teams, each having a mixture of inexperienced
and skilled people, need more structure and metrics. Boehm and Turner'
define five project dimensions that affect method and metric selection:

Size: Agile methods do not scale well. These work for projects with ten or
fewer team members. Management structures, however, can incorporate
teams into a large project.

Dynamism: Measured as the rate of recruitments change per month.

People Skills: The ration of highly skilled to journeyman developers.

° Christensen, Mark J. and Thayer, Richard H. The Project Manager’s Guide to Software Engi-
neering’s Best Practices, IEEE Computer Society, New York, 2001.

' Boehm, Barry and Turner, Richard. Balancing Agility and Discipline: A Guide for the Perplexed,
Addison-Wesley, Reading, MA, 2004.

CHOOSING A PROCESS 15

Culture: The ratio of people that thrive on chaos to those people who need
order to work productively.

Criticality: The potential loss of life or money because of failure.

The primary responsibility for a manager is to regularly review metrics and
take action based on them. If the manager is unwilling or unable to interpret
the metrics, it would be better to never require them. Forcing people to accu-
mulate data from which there will never result analysis and action leads to low
morale and problematic accuracy. Figure 1.1 shows the degree of software
engineering needed under various circumstances, and it can be assumed that
the degree of metrics would be comparable.

e
\\\\\\\\\\\V Workstation

User Programs

Vendor s'ware

Application Server

Reusable

Data Server
(Pictures and Interaction)

Figure 1.1. Degree of software engineering needed under various circumstances.

Another way of thinking about choosing a process is to look at the results
that can be expected from any given process. Six processes follow, each with
an explanation of the core element that caused their creation, along with a
rationale of when each might be feasible.

1.5.1 No-Method “Code and Fix” Approach

Programmers sketch an idea in their heads or on a napkin and then immedi-
ately code and test at their workstations. Once they have a program that sat-
isfies them, they give it to the customer. The customer is left to integrate the
solution. There is no overhead, so the programmer can respond quickly. This
approach is undisciplined, although many programmers have used it. It was

16 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

the way they learned to program in their earliest classes, or it was the way
they experimented with their hobby systems. This is not to be confused
with agile methods, which are disciplined. This no-method process is simply
Code — Use — Debug — Fix.

This approach results in unstable systems. It can work in the short term but
is not sustainable as projects grow. Although it may satisfy immediate user
needs, it does not keep up with evolving user requirements. Other methods
and processes are in reaction against this approach. The reason it is dignified
with a name and listed first is that it is still used in crises when the chosen
process breaks down. It is important to recognize this process for what it is—
the bankrupt choice born of desperation.

1.5.2 Waterfall Model

In the early days of software development, computing resources were scarce,
so the Waterfall Model was formalized to reduce the computer time needed
to develop and test a program (Figure 1.2). The scarcity of computer time
forced reliance on documents—Ilots of them, all subjected to meticulous
review—to organize thinking and chart progress. The steps of the method are
separated by the production and review of documents. Software development
can proceed through these steps; other steps may be added or deleted. Exten-
sive literature exists on the Waterfall Model that will not be repeated here.

Requirements
Document & w_
~a | Design = Completion

Criteria
Document v

Needs —»|

[C]
~a Program
Flowchart \
~a | Integration
Plan AN
,\\ ~ Te§t .
Description

Cl

Figure 1.2. Stages of the Waterfall Model.

The Waterfall Model proved to be too document-intensive. The time needed
to update documents often exceeded the time needed to update the code,
which caused documents to be out of date and negated their value. This careful
systematic approach led to long development cycles. Companies that needed
short time-to-market cycles abandoned the dogmatic Waterfall Model even as
they kept elements of it deep within their development methods. Last, the
need for elaborate documentation tends to discourage the use of COTS, which
increases development costs, slows development, and lengthens delivery time.
On the other hand, high license fees of COTS components can drive up the

CHOOSING A PROCESS 17

cost of systems. This concern encourages the use of internally developed com-
ponents or open-source modules.

MAGIC NUMBER!

A good practice is to have no more than 20% of the ultimate staff partic-
ipate in the requirements and architecture steps of the Waterfall Model.

A key assumption in the Waterfall Model is that requirements can be
defined and carefully controlled. Unfortunately, in real life, requirements
emerge as the project proceeds. That realization forced further evolution, as
Barry Boehm, the prophet of the Waterfall Model, quickly realized.

Case Study: The Case of the Mandatory Requirement

Let us return to the modest store-and-forward message switching system from
the Case of the Sacrosanct Date. We have now chosen to use the Waterfall
Model. The customer’s requirements (remember that a key assumption of this
process is that requirements can be defined and carefully controlled) are as
follows:

Requirement 1: Do not lose a message.
Requirement 2: 10-second response time is critical.

Concerning Requirement 1, the software designers were told that if they
were uncertain about losing a message, they should cause the system to stop.
But in a mission-critical system, there is an implied requirement that the
system should not stop. High availability is needed. Availability is calculated
as Mean-Time-to-Failure/(Mean-time-to-Failure + Mean-time-to-Repair).

Here the mean time to repair is the time to recover any messages that might
be lost, save them, and relaunch the software. The design choice that preserved
every message caused a system availability requirement to emerge.

Question: How do you resolve this contradiction?

Answer: Implicit requirements like availability are often forgotten during the
writing of requirements and the implementation of a system. Sometimes to
avoid a complicated design flaw, it is necessary to relax what at first seems to
be a firm requirement.

18 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

Question: To satisfy Requirement 2 and reduce system costs, the archi-
tects decide to have a common buffer pool for those messages coming into
the system and those going out. The input buffer requests are given higher
priority to preserve the 10-second response time, which allowed users to
always input messages. This solution worked and gave the required response
time until more output buffers were needed than were available. The
system then hung as the input process captured all the buffers. Now what can
you do?

Answer: The right solution is to invert the priorities of the system. Instead of
“Accept input—Drain output” change to “Drain output—Accept input.” The
customer was only convinced that this change was wise after seeing the new
buffer request strategy demonstrated in a controlled prototype environment
where that was the single change made and the system was driven with high
traffic loads.

\‘//

\‘//

MAGIC NUMBER!

Only 40-60% of the system requirements are known at the start of the
project. The rest emerge from studies of system use. Barry Boehm coined
the phrase “emergent requirements” to describe them.

1.5.3 Planned Incremental Development Process

Staff and resources are never infinite. To compensate for less than ideal, i.e.,
normal, conditions, this process evolved to allow the separate packaging of
individual functions. Here time is not necessarily critical. The idea is to divide
the project into parts and apply the Waterfall Model to each part, which is
sometimes called the incremental development method or the parallel devel-
opment process. Each increment becomes a project unto itself, the ultimate
system emerging when all the individual projects are in place.

1.5.4 Spiral Model: Planned Risk Assessment-Driven Process

The Spiral Model grew out of the incremental model, its advantage being that
at each point, we have a partial view of the product. Each cycle in the Spiral
could be one stage of the project processes described in the Waterfall Model.
The focus is on continuous risk assessment. At each cycle, project risks are
reassessed and plans are modified to contain them. The Spiral Model reduces
risk, allows feedback, and is not derailed by failure because individual failures
are small and constrained by the method (Figure 1.3).

Do

Define problem
Gather metrics
Identify risks

CHOOSING A PROCESS 19

Cost

Check

Evaluate
alternatives
Resolve risks

-

Commit

Implement
Update development plan .
v Verify T\
Release ‘\
Act
Develop and verify
Deliver next increment

Legend

* Start

RA Risk Analysis

Proto Prototype

MOV Measurable
Operational
Value

Increment

SQFD Simplified Quality
Function Deployment

FP Function Points

SM Staff Months

Figure 1.3. Boehm’s Spiral Model of the software process.

Case Study: The Case of the Threatened Bottom Line

You are the project manager of a 20-person team. Your customers love your
product. Suddenly, a competitor offers a product with similar features but for
half your price. You do an analysis and determine that the only way to meet
the price point is to reduce the team to ten people (which can be accomplished
by moving ten people to another exciting project).

Question: How do you maintain quality with only half the staff?

Answer: Run your problem through several spins of Boehm’s Spiral

Model.

20 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

Spiral Round 1

Objective:
Constraints:

Alternatives:

Risks:

Risk resolution:

Result:
Discoveries:

Plan for next phase:

Spiral Round 2

Objective:
Constraints:

Alternatives:

Risk:

Risk Resolution:

Plan for next phase:

Identify cost reduction items

Meet annual profit estimates

Meet customer commitments

Object-oriented libraries — increased productivity
Object-oriented database — increased productivity
Find an existing product and tweak it

Improve organization/communication issues

Object-oriented database is not widely used
Difficult to quantify improvements
Customers may not accept the change
Have a pilot or prototype

Do a cost analysis

Hire a consultant

. Benchmarking

e e e

We discover that alternative 1 is the best

It takes 6 months for programmers to learn the
object-oriented approach

Investment: $10,000 (software tools) + $10,000
(hardware) object-oriented databases (alternative
2) are not mature

Introduce object-oriented technologies

Double to triple maintenance productivity

Payback or profitability has to happen within 1 year
Results must be scalable to other projects

Feature deployment has to be reduced from 2 years to
3 months

Variety of compilers, debug tools, test tools
Workstations

Investment costs
Finding an expert may be difficult
One team resists object-oriented approach

N e

Jump-start with an object-oriented expert in the
team

2. Adopt older, more stable tools

3. Drop object-oriented databases

4. Develop features in parallel in C

Build the next version of the software using object-
oriented techniques

Have monthly progress reviews

CHOOSING A PROCESS 21

Spiral Round 3
Objective: Calibrate productivity achieved
Deploy first object-oriented team
Constraints: Schedule
Features and requirements
Alternatives: Procedural programming
Object-oriented approach
Risk: Compiler may produce unreliable code

Six-month learning curve

Risk resolution: Develop critical features in C
Train team
Add object-oriented experts

Reduce reporting

PR DbDE D

Plan for next phase: Integrate into development plan

Results: You attracted better staff.
Customer got desired quality and price.
Less documentation, more comments.
Code reuse doubled.
30% less code to write.

Interestingly, even though change costs are a third of what they were, there
was only a 50% overall cost reduction because code changes accounted for
70% of the costs: 0.3 +(0.7 x 0.33) = 0.53.

The Spiral Model demands knowledge of project objectives, constraints, and
preferred architectures. The customer knows only the features required to do
a subset of the job—the subset the customer thinks is most important. Special
aspects of the problem, well known to problem domain experts, are frequently
unstated. Ideally, the developer would simply ask the customer what was
required and the customer would provide sufficient detail to proceed; the cus-
tomer would be totally familiar with the expert’s unstated constraints. This
expectation is unreasonable, and significant negotiations between both parties
are required to balance functionality, performance, and reliability with cost
and schedule considerations.

Boehm’s WinWin Spiral Model, shown in Figure 1.4, derives its name from
the objective of these negotiations. The client wins the product that satisfies
most needs, and the developer wins by working to realistic and achievable
budgets and deadlines. To achieve this objective, the model defines a set of
negotiation activities at the beginning of each pass around the spiral. The fol-
lowing activities define the customer communication:

Identification of the system stakeholders—those in the organization that
have a direct business interest in the product to be built and will be

22 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

2. |dentify Stakeholders’
win conditions

1. Identify next-level

Stakeholders 3. - Reconcile win conditions.

- Establish next-level objectives,
constraints, alternatives

7. Review, commitment 4 Evaluate product and

process alternatives.

6 Validate product Resolve Risks

and process
definitions

5. Define next level of product and
process—including partitions

Figure 1.4. Boehm’s WinWin Spiral Model.

rewarded for a successful outcome or criticized if the effort fails (e.g.,
user, customer, developer, maintainer, interfacer, etc.).

Determinations of the stakeholders’ “win conditions.”

Negotiations of the stakeholders’ win conditions to reconcile them into a
set of win—win conditions for all concerned (including the software
project team).

In addition to the early emphasis placed on the win—win condition, the
model also introduces three points that help establish the completion of one
cycle around the spiral and provide the decision milestones before the soft-
ware project proceeds:

Life-Cycle Objectives (LCO): Defines a set of objectives for each major
software activity (e.g., a set of objectives associated with the definition
of top-level product requirements).

Life-Cycle Architecture (LCA): Establishes the objectives that must be met
as the software architecture is defined.

Initial Operational Capability (IOC): Represents a set of objectives asso-
ciated with the preparation of the software for installation/distribution,
site preparations before installations, and assistance required by all
parties that will use or support the software.

The WinWin process is a framework for distributed asynchronous decision
making when there are many stakeholders. It provides a model useful for
negotiation. It allows architecture constraints to override a particular require-
ment once the stakeholder understands its cost or schedule impact. This
approach is similar to the agile method of intimate customer interaction in the
same workplace. WinWin provides a structured model for capturing all

CHHOOSING A PROCESS 23

stakeholder concerns. WinWin speeds software development by eliminating
rework that occurs from misunderstandings and results in better products by
exposing architecture options early in the development.

1.5.5 Development Plan Approach

An effective process for large projects requiring more than 10 people is to
write a development plan that answers these questions and is updated at the
end of each step:

What will you do?

How will you do it?
What do you depend on?
When will you be done?
Who will do what?

All disciplined methods recognize the need for these steps, if not in this
order or with the same mandatory documents. Therefore, all tasks needed to
deliver the software product should be identifiable. It is most useful to trans-
form your task list into a table similar to the one shown in Table 1.2 that will
reflect the project schedule.

TABLE 1.2. Development Plan Chart
Task Who When Current Estimate

Task: A description of what is to be done with a measurable output
Who: The person in charge of the task

When: Planned completion date that can be modified only by the project
manager

Current Estimate: Estimated completion date by the “Who” person.
This unique feature makes this more useful than any PERT or Gantt
chart."

The use of the “current estimate” date permits task owners to report trouble
in a way the rest of the project can understand without upsetting the entire
project plan. Without the current estimate feature, a late task could cause total
project replanning when the manager might have been able, with early
warning, to resolve the problem without delaying project completion. The
early warning of the current estimate feature allows developers to be honest
about where they stand while giving the project manager time to expedite or
replan incrementally.

The core element of the development plan is hierarchical control via the
itemization of concrete signposts that indicate to every project member the
health and condition of the project (Figure 1.5). This nonjudgmental

" L. Bernstein developed this approach while working for Victor Vyssotsky at Bell Laboratories.
Mr. Vyssotsky described it to Fred Brooks, who was pleased to use it in his book, The Mythical
Man-Month.

‘yoroudde ugid juswdojerag G°| ainbi4

suoneoiyoads

uoneinByuod
asempIeH
souauah
aleMy0S mnﬁw__%__“ spnpoid
81 sueid weishs o uojjejuawnaop
spodai ueyd uonealnuap! uoneoyoads dos o6 Borereo erep SOUOISIN . |ouo)
obesn ayg 159} 8lIS uojeinbiuon ued 1s0). ping SHodes OBUELY pue SY00LOM Sy uoly
- pue spodal 8|qnoi]. wa)sAs yusuodwo) sue|d uonejuswa)du|
MBINBI
dnoub sesn
uonouny
Mmainal MalAeI uopewnse
uBisap iod smalnay
21NNy uojouny
Mmainal SMaIABL MOINBI MaINDJ S8} MOINDI sbuneaw
suoneledo ssaulpeas uone|ejsul Mmonal ubisep mainal Mainal Maln8l 88puwLod
w_.,m S : ueyd 1s9| _aovz_‘_o aInaNyoly Juswaiinbay uommoi Buusalg
Juswdojensp Buussuibus
o | e
bl 0 juawdojanaqg

Bunse!
1eu| mo:E«n_mwum uolje|jejsul Buunjoejnuew uoneibajul | 6 Buueauibua Buusauibus Juswabeuew Jabe
uonesado Jowoisng aysuo aremyjos washg aremyjos aremyjos _lj ubiseq anpapyory swashg jonpoud Jawolsny

CHOOSING A PROCESS 25

reporting tends to focus all team members on the person’s responsibility to
the larger objective of project completion. The hazards of this method are that
it may lead to functional boundaries that are too sharply defined, that task
divisions may lead to suboptimization, or that it may discourage risk man-
agement. Figure 1.5 is an elaborate schematic, used to manage a project with
500 people. Select only those elements that fit your project.

1.5.6 Agile Process: an Apparent Oxymoron

Agile advocates are not antimethodology. They embrace modeling, but not
merely to file some diagram in a dusty corporate repository. They embrace
documentation, but not to waste reams of paper in never-maintained and
rarely used tomes. They insist on planning, but recognize the limits of plan-
ning in a turbulent environment. The core element that agile process propo-
nents emphasize is the schedule. It is the most important criterion of success.
Agile methods drive organizations to schedule containment.

Those who brand proponents of XP, SCRUM, or any of the other agile
methodologies as hackers are ignorant of both the methodologies and the orig-
inal definition of the term (a “hacker” was first defined as a programmer who
enjoys solving complex programming problems, rather than someone who
practices ad hoc development or destruction).'

Early proponents of agile methods felt sufficiently beleaguered by the rigid
enforcement of oppressive process that they actually voiced a “manifesto”
declaring their values. These were as follows:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

If we look at one agile process, extreme programming (XP), we find that it
is highly disciplined. It is not chaotic, even though some slipshod programmers
hide behind the term and slovenly software shops describe their approach as
XP. On the contrary, it involves considerable emphasis on disciplined planning:

Close and teaming customer interactions
Documented user stories and use cases
Paired programmers working closely together
Testing before coding

Simplicity in design

Relatively frequent small releases

Iteration planning

2 www.agilemanifesto.org/hisoty.html.

26 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

XP demands devotion to agreed-on standards, frequent integration,
deferred optimization, and unit tests before integration release and for every
bug. Acceptance tests are run often, and the results are published and made
available to all project team members, including the customer.

1.6 REEMERGENCE OF MODEL-BASED
SOFTWARE DEVELOPMENT

This approach is from the early days of large system development when com-
puter resources were limited and expensive. With the need to use components
to speed software development, the use of architecture patterns, frameworks,
and models became popular. Components could be evaluated in terms of how
well they fit into an integrated software system.

The Model-Driven Software Development (MDSD) paradigm supports
development teams with 20 or more developers. It evolved from software
product line engineering where families of applications for a specific market
segment are built. Emphasis on agile software development sets MDSD apart
from the earlier Waterfall Model, planned incremental development, and the
Spiral Model. MDSD, like prototyping, produces working software early in the
development cycle, but MDSD also provides the scalability that is not inher-
ent in popular agile methodologies.

The Safeguard Anti-missile Missile System in 1968 is an example. Devel-
oping its software was a major challenge. No configuration control guidelines
or standard software processes existed. The National Academy of Sciences
opined that such software could not work. Only NASA faced similar com-
plexity and performance demands. Although Safeguard borrowed many tech-
niques from NASA’s Apollo project, a unique approach to software
development evolved spontaneously. Many projects modeled and simulated
system performance, but Safeguard was the first to use the models and simu-
lations to drive its software development. After some early false starts, the
entire software effort fell into lockstep with the model and simulation
program.

Once the decision was made to develop a tactical anti ballistic missile
(ABM) system, a system evaluation department was formed to provide quality
assurance. Its objective was to ensure that the design met the system objec-
tives and that the implementation met the system requirements." To carry out
that objective, the department designed field tests. This effort emerged as so
important that it became the driving force for the software development
effort. Typical mission scenarios measured software progress throughout the
entire development cycle. These scenaries are now called use cases.

3 Bernstein, L., Burke, E. H., and Bauer W. F. “Simulation- and Modeling-Driven Software Devel-
opment,” Crosstalk: The Journal of Defense Software Engineering, Vol. 9, No. 7, July 1996, pp.
25-217.

PROCESS EVOLUTION 27

The system evaluation team took the approach of developing a family of
simulations to predict and confirm system performance. The highest-level sim-
ulation predicted the performance of the entire system to a full-scale attack.
To facilitate the design of the simulation, the models of subsystems (missiles
and radars) were only as detailed as was required to enable the system simu-
lation to model overall system performance. Detailed simulations of all major
subsystems validated the high-level models. In some cases, the phenomena
modeled in those subsystem simulations were based on even more detailed
simulations accounting for the fundamental physics involved.

Being able to produce several models simultaneously for different subsys-
tems is fundamental to model-based development. The appropriate model iter-
ates and validates each small increment of the system. There is no attempt to
create a single, all encompassing model for the entire scope of the desired
system. Models are merely abstract representations of software and therefore
may not be completely accurate. They must be validated with realistic data, but
the focus should remain on only the uncertain aspects of the subsystem.
Attempts to create a highly detailed model should be avoided; good engineer-
ing judgment and problem domain expertise are essential for deciding just how
detailed the model needs to be. Test cases evolve from the modeling efforts. The
major benefit of model-based development is that discrepancies between the
model and the test results efficiently point to specific areas to correct.

During the 1980s and 1990s, projects became schedule-driven to the exclu-
sion of other needs. Faster time-to-market became the way to success, and
models were seen as delaying product deployment. As the need for trustwor-
thy systems captured the imagination of the public, model-based development
gave developers a way to understand safety, reliability, schedule, and per-
formance concerns while meeting their schedule commitments.

1.7 PROCESS EVOLUTION

Suppose one or another of the processes described appeals to a design team, or
a new technology bursts on the scene, but middle management seems to
stonewall any suggestions to adopt new ways. Software developers and
company executives are favorably disposed toward anything that speeds devel-
opment and reduces bugs, but there is no incentive for middle managers to risk
using a new approach. This position is astonishing initially, especially if those
middle managers were themselves software developers in recent memory, but,
on examination, it is perfectly rational. Training and staffing are cost items in
their budget against a method with which they have no experience. If their
organization does not deliver, they are to blame. If they are successful, the exec-
utives take the credit for having the vision to move to a new technology. So how
can an organization ever evolve to using more sophisticated processes?

The answer is to invest in corporate-funded investigations of technology,
training, and shared risk. Companies can move to new technologies by making

28 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

informed decisions. An organization with more than 250 technical people
needs a well-defined “someone” to encourage the adoption of new software
processes.

An office of technology planning (OOTP) could encourage the adoption of
new technology. Table 1.3 shows how such an office might work. The Chief
Technology Officer (CTO) leads the office and has some discretionary funds
for evaluating, trialing, and deploying technology throughout the organization,
which plugs the drain on middle managers’ profits as their people’s skills are
improved. The CEO determines how much the company can and should invest
and the CTO makes the investment pay off.

TABLE 1.3. Technology Deployment Processes

Market Input —> Technology Initiatives Processes &
Ideas —| Metric: percent of new product revenue for the last Eroducts with
Technology —/three years and royalties Embedded New
Assessment Technology

Technology Initiatives Subprocesses

Technology Acquire Technology Prioritize Contract Deploy
Plan (Make/Buy) Applied Applied Research Technology
Development Research Initiatives
FUNCTIONS

CEO — Review technology plan for consistency

with strategic plan
CHIEF — Provide technology vision
TECHNOLOGY — Facilitate and accelerate technology transfer/diffusion
OFFICER — Lead the Office of Technology Planning

— Recommend technology initiatives

— Integrate 2- to 5-year product line initiatives
— Ensure consistency with personnel policies
— Chair Intellectual Property Study team

OFFICE OF — Drive to asset-based business
TECHNOLOGY — Professional societies
PLANNING — Recommend technology priorities
— Manage and implement the technology plan
— Assess R&D capability and technology for benchmarking
Tool Providers — Provide technology base and roadmap technologies

Bernstein was the CTO from 1991 to 1994 for the Bell Laboratories
network management development organization comprising 2000 people. The
technology transfer process was aimed at creating new products and services
for the customer base and for making software development more effective
and cheaper. Input came from customers, sales teams, internal and external
researchers, developers, and formal, chartered technology assessment efforts.

The OOTP held monthly meetings that the CTO chaired to determine tech-
nology priorities. For example, a study of object-oriented database technology

ORGANIZATION STRUCTURE 29

in 1992 showed it to be too immature for wide use. Two projects stopped using
it before they reached the point of firm commitment to the method. On the
other hand, tools to find and fix memory leaks were found to be effective and
were deployed to every project within 4 months of completion of the tech-
nology assessment report. The OOTP managed the technology budget for
the organization, funded initiatives, and produced a technology plan. It also
managed the adoption of the technology project by project, providing experts
as needed to expedite adoption of the new tool, process, or component. The
ratio of revenue from new products doubled in the interval, while productiv-
ity increased fourfold.

1.8 ORGANIZATION STRUCTURE

There are two possibilities for deploying the staff talent that any company
engaged in software products must confront. Each has its benefits and draw-
backs. The functional organization is efficient because each functional group
does only its job for every product produced. For example, people expert at
writing requirements will do only that for every product produced. The draw-
back to this style is that communication problems can develop among func-
tional groups. Also, a sense of the whole product, and the concomitant sense
of satisfaction in its ultimate success, is lacking. Project organization is less effi-
cient but generally more effective in encouraging personal growth and reduc-
ing professional burnout. This style does foster a commitment to the success
of the project as a whole and a sense of broad responsibility to the customer.

No right answer exists. Functional organization is efficient for manufactur-
ing an established product. Project organization tends to be successful for
software, especially when either the problem or the technology is not well
understood. Firm commitment to one or the other style of organization is best
made after a working prototype is achieved and risks are assessed (Table 1.4).

TABLE 1.4. Functional vs. Project Organization

Functional Project
Requirements Customer interface
Design Program design

Code Integration

Test Validation and verification

Project organizations form teams more easily because their members
are focused on a common goal. In functional organizations, most people are
assigned to several teams to take advantage of their special skills. As a result,
they can be distracted when there are unexpected problems and some of their
teams are necessarily shortchanged.

What is the difference between a mediocre and a championship team? Is it
train-train-train, secure the best talent available, or devise innovative strategy?

30 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

These are important, but the most important factor is commitment to quality.
Members of a championship team, whatever the game, share similar qualities:

Want to be in the game. They are not content to sit on the sidelines and
watch the action; they want to participate in the effort and share in the
victories.

Are highly and visibly enthusiastic. It is contagious. Contributions are
recognized and rewarded, resulting in increased confidence.

Desire to be top performers and realize that open and honest feedback
among coaches and other team members is critical to individual and
group success. Asking, “How am I doing?” or “How can I do my job
better?” ensures that opportunities are available to always improve
knowledge and skills.

Use the word “we” rather than “L,” realizing that strategies are developed
for group action.

Respect the talents and abilities of fellow teammates, while analyzing the
strengths and weaknesses of rivals.

Understand the value of communication—that it is important to know
where the team is going and how individual action can attain the goal.

Anticipate change and react quickly while continuing to drive toward the
goal.

Have confidence in their team, their managers, and themselves.

Another dimension of organization structure is hierarchical versus
network. Hierarchical organizations reduce the number of communication
paths among people. Pair-wise communication requires n(n-1)/2 between n
people. A small shop of 7 people requires 21 paths, so everybody tends to know
what is going on. A shop of 50 people would require 1225 paths, a much more
difficult situation for maintaining a fully informed team.

A hierarchical organization might group together everyone defining
requirements in one group, those creating the architecture in another, soft-
ware developers, human/computer interface experts, testers, and integrators in
yet other discrete groups. Each group would have a supervisor reporting to
next-level managers, and so on to the highest corporate executive. If everyone
was focused on a single product, it would be both a project and a functional
organization of the hierarchy. More likely, specialized skills would be shared
by more than one product line. To understand how an organization really
works, a network view is necessary. Software manufacturers are the common
communication point that pulls together each product line and reduces the
number of communication paths. Figure 1.6 illustrates this.

Software manufacturing is a systematic approach to system building, deliv-
erable documentation production, configuration identification, change control,
and packaging for delivery. Software manufacturing is in-line, not overhead.
Software developers do not do the job of system building; people with pro-

PRINCIPLES OF SOUND ORGANIZATIONS 31

/

SYSTEM

BASELINE FEATURE —

REQUIREMENTS ENGINEERING SOFTWARE
DEVELOPMENT

ALGORITHMS

/ SOFTWARE o
ARCHITECTURE MANUFACTURING lg— NTEGRATION
ENGINEERING >
HUMAN
> FACTORS
DEVELOPMENT 1O SITES

TRAFFIC
ENGINEERING >

L—’ ENGINNERING SUPPORT AND OPERATIONS
REPORTS - COMPUTER CENTER

- DEVELOPMENT MACHINE

- TEST MACHINE

TRAFFIC
PROJECTIONS

=

AN

Figure 1.6. Network organization.

duction skills and specially trained expediters, in numbers amounting to
approximately 5% of the programming staff, build systems.

The software manufacturing group runs the computers for the project. All
releases to system integration and the field must go through software manu-
facturing. When schedules get tight and the resident wunderkind is sure that
running to the customer with a fix or two will save the day, the discipline of
software manufacturing stands between fiscal sanity and chaos.

1.9 PRINCIPLES OF SOUND ORGANIZATIONS

People make the difference. Hire good people and respect their individual
talents. People are not interchangeable. Software people thrive on challenge
and new technology. Some experts can produce ten times more than journey-
man programmers. Because customer service and innovations are increasingly
important competitive weapons, it does not pay to create a sullen, dispirited,
or burned out workforce.

Here are some ways to “turn down the heat:”

Work is NOT an endurance contest.

Be flexible in work hours.

Ask your people how to restructure the work.

Reserve overtime hours for true crises, not part of the standard day."

4 O’Reilly, Brian. Fortune Magazine, March 12, 1990.

32 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

Make the customer and your supplier your teammates and you can halve the
development time by reducing confusion and misunderstanding. Before the
first release, customers want lower prices, more features, and shorter schedules.
When the system becomes operational, they want better reliability, throughput,
and response time. Your suppliers can ruin your hard-won teaming relation-
ship. To make sure that your suppliers understand the importance of your cus-
tomer, it is vital that you let them participate in all phases of the project.

Understand the requirements: Validate, prototype, and make sure there are
numeric operating and bounds specifications for every requirement. Customers
need some features and want others. A successful project manager distills the
needs from the wants and satisfies the needs while delivering a reliable system
at reasonable cost. Firm commitments are best made after a prototype works.

Configuration management, the control of changes to the software, is essen-
tial in all projects, large and small. Quality and simplification in the earliest
steps save time and money.

Finally, none of these will work unless our profession recognizes the next
core element in the evolution of software processes as a fundamental princi-
ple. Software trustworthiness is the next major area in which academia and
industry must focus—both for national security reasons as well as to ensure
that the U.S. software industry maintains its leadership. The three attributes of
software reliability, security, and safety comprise trustworthiness. Fostering
these attributes can spark another round of American software innovation
that will stem the wholesale outsourcing of our industry.

Companies and people will act to assure trustworthiness only if there are
economic consequences to not doing so. Evaluation and liability, both cor-
porate and individual, are the only means to bring awareness to the impact
of negligence. Software trustworthiness is critical for medical devices, plant
control systems, and weapon systems; for management of sensitive records;
and for critical infrastructure. Dependability is fundamental to cybersecurity.

Doctors and lawyers are members of old professions and as such recognize
that being an important part of many peoples’ lives carries with it ethical
responsibility and liability. This course will help make you ready to assume
your responsibility for trustworthiness in our young profession.

Case Study: The Case of the Dissed Discount

Once upon a time, a computer manufacturer offered 10% price discounts for a
volume purchase. The cost of the computers was 25% of the cost of the system.

Question: The value of the system to the customer was 50 times the cost of
the system if it could be available by a critical date. Would you accept the dis-
counts and run the risk of having no leverage over your supplier’s scheduling?
If not, what else might you do?

Answer: In this case, the best strategy was to let the manufacturer charge list
price, but to insist on premium service, delivery without a contract in hand,
and a guarantee to have spare parts on-site.

SHORT PROJECTS—4 TO 6 WEEKS 33

The manufacturer shipped the computer to the operational site while the
customer’s purchasing organization processed the paperwork. Insurance con-
cerns prevented them from installing the computer, but they could leave it
on their moving van, and they did. They left the van containing the com-
puter sitting at the loading dock for 2 days, and the installers were kept on
immediate call. Within 15 minutes of getting the signed contract, the waiting
installers set to work and had the computer operational in record time. This
saved the normally scheduled 2-week installation time and helped make up
for other schedule slips.

The moral of the story is that you must be a world-class customer before
you can be a world-class supplier!

1.10 SHORT PROJECTS—4 TO 6 WEEKS

1.10.1 Project 1: Automating Library Overdue Book Notices

An elementary school of 500 students is using a manual method for tracking
books on loan. As books are taken from the library, the book card is taken
from the book jacket and filed by date. Books may be borrowed for 2 weeks.
As books are returned, the card is put back into the book jacket. Books that
are not returned in 2 weeks are considered overdue, and an Overdue Book
Notice is sent to the students. Students who do not return a book within 3
weeks are given a second notice. Books not returned in 4 weeks have a third
notice and are reported on a special “Critical Overdue” librarian’s report. This
report is sent to the student’s teacher and to the principal. The book card is
given to the librarian.

Clerks write overdue book notices on half-sheets of paper for about 200
books each week. These are distributed weekly. This form has been used for
many years:

Glenwood School Overdue Book Notice

Book Title:

Student Name:

Teacher Name:

Date of Notice:

Notice 1 2 3 (circle one)

This book is overdue. Please return it promptly.

PROBLEM:

Automate the overdue book notice process with a computer borrowed from
the computer class. The computer room is next to the library. This is the first

34 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

computer automation project in the school. Data may not be left on the com-
puter from week to week. The computer is not networked.

1.10.2 Project 2: Ajax Transporters, Inc. Maintenance Project

Ajax Transporters, Inc. manufactures exactly one size of one model of one
product, the Ajax Personal Transporter, which they sell directly to customers.
Ajax’s computer system consists of an order entry (sub-)system and an inven-
tory/order fulfillment (sub-)system (“inventory system,” for short).

Orders arrive by phone or by mail and are entered into the order entry
system by clerks. The order entry system’s main, although not its only func-
tion is to check the validity of each incoming order, retain a copy of each valid
order in its database, and send valid orders to the inventory system.

The inventory system checks whether there are enough personal trans-
porters to satisfy an incoming order. If there are, the warehouse workers
remove the required number of personal transporters from inventory and
bring them over to Schlepper Shipping, Inc., which ships the order to the cus-
tomer. The inventory system also sends a message to the order entry system
indicating that the order has been filled. If there are not enough personal
transporters to fulfill the order, the inventory system puts the order into its
database as a “back order.” Warehouse workers check back orders each day
and fill as many as possible, given inventory on hand, which is increased when-
ever Ajax’s Manufacturing Division manufactures more personal transporters
and delivers them to the warehouse.

Ajax currently uses a COTS software package for its order entry/inventory
system. It is manufactured by So-So Software, Inc. Because it is a proprietary
product, it is distributed only as an executable; nobody outside of So-So gets
to see the source code.

The following transactions are recognized, from terminals or the website,
by the order entry/inventory system:

Place New Order
View All Orders
Cancel Order by Order Number

You have access to the system’s main customer/order file. Many pages detail
the transactions and access to the file.

PROBLEM:

The system is working well, and Ajax’s sales are increasing when they are told
that Schlepper Shipping, Inc. is going out of business because of the economic
downturn. The U.S. Post Office agrees to contract for the shipping, but So-So
Software, Inc. has accidentally forgotten to include the customer name with
other customer information in the file and the Post Office will do the shipping
only if the customer name is added to the address. Ajax has asked So-So Soft-

PROBLEMS 35

ware to make this change in the system, but So-So wants far more money than
Ajax feels is reasonable to make so small a change.

You work for Amber Consulting, Inc., and your group at Amber has just
been given the job of making the change to Ajax’s system, but without chang-
ing the COTS product currently in use. (You will do this work by building one
or more new modules that interact with the COTS system.) Ajax is getting one
of their in-house groups to completely rewrite their system, but it needs the
upgrade that you have been contracted to do well before the rewritten system
can be delivered because they need to continue doing business or they will go
bankrupt. Your task is to upgrade the system in 5 weeks.

1.11 PROBLEMS

1.11.1 You have two releases of the system in the hands of four customers.
Each customer wants their changes but does not want to be burdened with
the changes of the other customers. Your budget is tight.

a. You insist that there is one release for all and that the customers must
upgrade and accept all changes.

b. You adopt a versioning configuration management system.
c. You break the system into four systems and customize each.

d. You refer the problem to the product manager for a business analysis of
the best strategy.

1.11.2 You are eager to improve the long-term productivity of the group of
developers you are managing, so you

a. ask them to work overtime.

b. measure their work.

c. manage them more closely.

d. provide them with new tools.

1.11.3 Your program has worked for several months and all users are pleased
with it. Suddenly it crashes, so you

a. blame the user for not being properly trained.

b. seek program dumps and begin debugging.

c. determine what changed in the run that crashed.
d. quit and find a new job.

1.11.4 You find it helpful to discuss your program with a colleague; you
review each other’s code. This process is called

a. code inspections.

b. code reviews.

c. extreme programming.

d. a waste of time impacting productivity.

36 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

1.11.5 You are asked to produce a program on a tight schedule. Your boss
tells you what is needed. To meet the schedule you

a. begin coding immediately.

b. research other solutions.

c. discuss the program with the software architects.
d. design the interfaces.

1.11.6 You see that you need a new tool, so you
a. ask your boss to get one.
b. build it yourself because it would take too long to purchase one.
c. borrow one from a colleague by copying a CD.
d. work around getting it and stick to your development schedule.

1.11.7 When developers use the incremental model to organize their releases
in into products, they

a. deliver a full set of modules with limited functionality, and then gradu-
ally change the functions of the modules with each new release.

b. deliver a subset of the modules that perform a limited set of functions,
and then deliver more modules with each new release.

c. deliver the full set of functions and modules with the first release.

d. deliver a limited set of functions and wait for customer input to add
functions.

1.11.8 This problem continues the first example in this chapter. A software
system is designed so that after every hour of normal operation, it stops and
relaunches from its initial state. This process is called software rejuvenation.
Assume that the mean time to failure for the software is measured to be 10
hours and the mean time to repair is 5 minutes. Repair means restoring the
software to an operating condition by relaunching it from its initial state.

a. What is the reliability of the system after 4 successful hours of execution

and four successful rejuvenations?

b. What is the probability of failure of the system for any 4 hours of
operation?

c. What is the availability of the system where R(¢) = ™, where R is reli-
ability, ¢ is the reciprocal of the mean time to failure, and 7 is the execu-
tion time. Note that e* is approximately (1 + x) for small x.

1.11.9 You are asked to be the architect for the development of a customer
resource management transaction system. The system must be fast so that
there are no bottlenecks when the system is executing. The agents using the
system are trading millions of dollars an hour so transaction speed and system
availability are paramount. System cost is of secondary importance. The cus-
tomer agrees to a margin of three times the required transaction speed. Once

BIBLIOGRAPHY 37

you have a first version of the system in your integration laboratory, you run
expected use case scenarios and trace transaction execution time. You find that
average transaction execution uses 1 million processor instructions with a 100-
instruction standard deviation. You have a balanced design in your system. The
computer chosen for the production system executes an average instruction
in 500 ns.

a. Assess the risks in the system architecture for the first version.

b. What design changes are needed to conform to the system performance
constraints?

c. What alternatives to software redesign are possible?

1.11.10 You are the project manager for a client/server system. Your respon-
sibility is for the server. The server software has successfully completed system
test and is certified to support 100 clients. The software architect has designed
a safety margin of two into the client support requirement. You know that the
system will reliably support 200 clients with satisfactory performance, but
because of the safety margin, the server software is rated at 100 clients. Your
customer calls in a panic. A merger has occurred, and his job is on the line.
His server must support 175 clients, or the company will convert to a similar
server acquired in the merger. What will you do?

1.11.11 You own a software company that has several projects underway. You
need to deliver a system so that you can bill your customers and meet your
payroll. Your project manager for one system reports an outstanding problem
list of 200 unrelated and uniformly distributed critical problems. Each critical
problem is estimated to take 1 week for a tester and a developer working
together to resolve. Software developers can fix problems in 2 days if they can
resubmit their modules instead of submitting problem fixes. There are five
modules that make up the system, and the five system testers working as a test
team can fully test a module in 1 day when no critical problems are found.
There are five testers and 20 developers on this project. After all problems are
fixed, a 2-week regression test period is needed before product ship. Cus-
tomers are willing to accept software with noncritical problems outstanding.
Because the other systems are just entering system test, you need to obtain a
loan to cover the time needed to get this system in shape to cover your payroll.
What is the shortest time before you can ship the software and therefore the
time you need to have the loan? What risks are you taking? Assume no other
critical problems are found once these 200 are fixed.

BIBLIOGRAPHY

Bernstein, Larry. “Software in the Large,” AT&T Technical Journal, Vol. 75, No. 1,
Jan./Feb. 1996, pp. 5-14.

Binder, Robert V. Testing Object-Oriented Systems—Models, Patterns, Tools, Addison-
Wesley, Reading, MA, March 2003.

38 THINK LIKE AN ENGINEER—ESPECIALLY FOR SOFTWARE

Boehm, Barry W, et al. Software Cost Estimation with COCOMO 11, Prentice Hall,
Englewood Cliffs, NJ, 2000.

Crowley, Thomas. “Safeguard Data—Processing Subsystem,” The Bell System Techni-
cal Journal, Special Supplement, 1975.

Carnegie Mellon University Software Engineering Institute. The Capability Maturity
Model: Guidelines for Improving the Software Process, Addison-Wesley, Reading,
MA, 1995.

Fowler, Martin. Refactoring Improving the Design of Existing Code, Addison-Wesley,
Reading, MA, 2000.

Hatton, Les. Safer C-Developing Software for High-Integrity and Safety-Critical
Systems, McGraw-Hill, New York, 1997.

Hoffman, Daniel M. and Weiss, David M. Software Fundamentals Collected Papers by
David L. Parnas, Addison-Wesley, Reading, MA, 2002.

Jones, T. Capers. Estimating Software Costs, McGraw-Hill, New York, 1998.

Leavitt, Harold J. and Bahrami, Homa. Managerial Psychology: Managing Behavior in
Organizations, 5th ed. University of Chicago Press, Chicago, IL, 1988.

Martin, Robert C. Agile Software Development, Prentice Hall, Englewood Cliffs, NJ,
2003.

Maxwell, Katrina D. Applied Statistics for Software Mangers, Prentice Hall, Englewood
Cliffs, NJ, 2002.

McConnell, Steve. Software Project-Survival Guide, Microsoft Press, Redmond, WA,
1998.

Peters, James F. and Pedrycz, Witold. Software Engineering—An FEngineering
Approach, John Wiley and Sons, New York, 2000.

Pressman, Roger S. Software Engineering: A Practioner’s Approach, McGraw-Hill, New
York, 2002.

Van Vliet, Hans. Software Engineering—Principles and Practices, 2nd ed. John Wiley
and Sons, New York, 2000.

Voas, Jeffrey and McGraw, Gary. Software Fault Injection: Inoculating Programs
Against Errors, John Wiley and Sons, New York, 1998.

Wallnau, Kurt, et al., Building Systems from Commercial Components, Addison-Wesley,
Reading, MA, 2001.

People, Product, Process,
Project—The Big Four

The Council on National Software Studies warns that the United States con-
tinues to have major problems developing large and complex software
systems.! Part of the problem is knowing where to put money to be most effec-
tive in creating the desired product. Each case needs assessment. The software
project manager must examine the productivity factors that experience has
shown to make a difference. One would not get the most return on the salary
of a world-class designer except on cutting-edge projects. The investment in
the process to produce real-time, safety-critical systems is higher than that
needed for simple systems because if the schedule for an order entry system
slips there is potential economic loss, but if a medical or defense system slips
there is potential for injury or death.

When the city of Denver was refurbishing its airport, errors in the software
that controlled the automatic baggage system persisted for 9 months. The
airport’s planners watched their bond rating fall to junk status because the
project hemorrhaged red ink at the rate of $1.1 million a day in interest and
operating costs. The impact of similar stories repeated over time is that poor
software causes major cost overruns, exposes companies to potential liability
for defects, and jeopardizes economic opportunity.

The wise project manager knows that four factors correlate to productivity
in sophisticated systems: people, product, process, and project. In this chapter,

! http://www.cnsoftware.org/issues/trustworthy/.

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

39

40 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

we will examine each to be able to weigh its value for a given product, and
thereby give you the basis to develop a rationale for the apportionment of
available money.

2.1 PEOPLE: CULTIVATE THE GURU AND SUPPORT THE MAJORITY

The skill and dedication of software developers continues to be the most crit-
ical factor in reducing schedule and quality risks. The long-term survival of a
software business depends on the productivity of its best designers, because
people endure across projects and can uplift the entire organization. On a
single project, the investment in this skill can reduce cost by factors of 10 to
as much as 20, but the ongoing benefit can be much greater. The landmark
book, Peopleware,” by DeMarco and Lister explains how to manage software
people. We begin where DeMarco and Lister leave off. Everyone can spot the
person with uncanny ability, insight to problems, and the easy grace to teach
others. Their peers refer to them as gurus, and we will too.

The best programmers can be as much as 20 times more productive than
average ones. A simple example will illustrate the cost effectiveness of a guru
programmer. Assume a group of 100 programmers, 99 who are average and
competent, but that last one being a guru. If the average programmer’s
weighted cost is $100k, the guru should be paid twice as much, $200k, and
have whatever special tools and technology he or she needs, at a one-time cost
of $50k. The cost of the group is (99 x $100k) + $200k + $50k = $10,150k,
or $150k more than a group of 100 ordinary people. The effectiveness of
the group, however, is conservatively that of 119 average programmers or
$11,900k (conservatively because gurus tend to teach others by example and
bring up the work of others). The presence of a guru produces the equivalent
of $1750k or almost $2 million more work than an organization of 100 com-
petent programmers.

\‘//

\ ‘ / e
~ MAGIC NUMBER!

=i

1 guru = 10 average programmers, in addition to bringing up the quality of
the entire organization.

2 DeMarco, Tom and Lister, Timothy. Peopleware: Productive Projects and Teams, 2nd ed., Dorset
House Publishing Co., New York, 1999.

PEOPLE: CULTIVATE THE GURU AND SUPPORT THE MAJORITY 41

But there is a problem with the notion of gurus. When asked to rank them-
selves, over 50% of programmers consider themselves to be in the “best” cat-
egory. In fact, only 1% is actually in this class. What do real gurus, not just
want-to-be gurus, look like, so that all managers can have a way to spot them,
attract them, and keep them working?

2.1.1 How to Recognize a Guru

Gurus have unusually broad competency. They have usually worked across
the board, in hardware and software, in applications and systems. They are not
just generalists, however. This broad range is coupled with depth and profound
innovation in at least one area.

Gurus are often, but not primarily, engaged in teaching on the job. Their
colleagues recognize their ability to simplify and illuminate problems and so
go to them as sounding boards.

Gurus can do bottom-up design. They can do the textbook top-down design
that is important for broad system layout, but they also have the higher skill,
insight, and experience it takes to do bottom-up design. The ultimate use of a
system can rarely be foreseen, so the best programmer is one who builds the
best platform for growth. They build systems that are robust for a wide range
of input types and loads. They are sensitive to the wide variability in traffic
their software may be asked to handle.

Gurus have a mental spatial map of the system and an uncanny nose for
bugs. They will go almost straight from symptom to cause, using debuggers as
tools for quick critical verification rather than as instruments for aimless
poking around. Their fixes rarely hang or crash the system.

Gurus can iterate the design, both during the design phase and during
restructuring of deployed systems, to make it “as simple as possible, but no
simpler,” as Einstein once remarked. They can cite quantitative measures of
the “goodness” of the system. They assume individual responsibility for main-
taining their code.

Gurus have lively, flexible, independent intellects. They are intensely focused
on problem solving. They tend to insist on doing the right thing, regardless of
other business concerns. They do not suffer fools gladly. They can be hard to
manage, especially by the nontechnical bottom-line focused boss.

The secret for attaining guru status: mastery as a mindset. Masters tend to
work intensely at the start of a project or introduction of new technology to
reap the long-term rewards of greatest result with the least total amount of
energy and time expended. They display deep intellectual curiosity. However,
a master knows that it is always possible to make things better and tries several
approaches for accomplishing any task. The master is savvy about judging
which approaches are likely to be the more “elegant” and then experiments
with those finalists to get the best result. A master of any tool has usually
invented new purposes and techniques that even its creators had not
envisioned.

42 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR
2.1.2 How to Attract a Guru to Your Project

The culture of the organization can attract master programmers. The manager
can lay bait to attract a guru. An organizational reputation for high-quality
software arrests their attention. A good manager knows that system stability
and reliability during design and coding produce a 30 to 1 advantage in effi-
ciency (remember that Magic Number from Chapter 1) as compared with the
chaos and crises typical of finding and fixing bugs exposed by customers. Good
design and code go further to meeting schedules and budgets than any
harangues or draconian methods possibly could. Additional bait could be pro-
vision for discretionary work and the tools to explore where the guru’s intel-
lect leads.

Sometimes good managers can stimulate latent gurus to bloom by preparing
the ground properly. Managers can use prototyping to delay code optimization
and iterative development to encourage orderly development. Managers can
insist on maximal change, rather than on minimal change. Replacing whole
modules instead of a few lines here and a few lines there reduces paperwork and
bureaucracy. Managers can make humane schedules by using graveyard shifts
only for automated test, reliability, and stability runs. Managers can support
effective code inspections, so that a budding guru is not driven to distraction.
Selective code inspections tend to work best; few object to having their code
inspected when first joining a software shop. If the inspection shows guru poten-
tial, then removing the requirement for code inspections is reasonable as long
as the code submitted to the test team is of the highest caliber. Another way to
choose the modules that will be inspected is to use a program that computes a
complexity metric on the source code, and then select for inspection the
modules having results that are ten times worse than the average.

One might object that such pampering and protection would surely cause
jealousy and dissension in a group because the manager is not even-handed.
On the contrary, those programmers who are good clearly recognize the guru’s
talent and aspire to excellence when it is obviously recognized and rewarded.
The manager’s job is to protect the company assets, and the guru is a major
asset. The Software Engineering Institute has done work in codifying levels of
achieving organizational technical competence and has created models to
identify and encourage the spread of excellence.

What separates the entry-level developer from the guru? Certainly experi-
ence, but hours logged do not necessarily track with level of proficiency. Some
developers spend 10 years on a job and have only 1 year of experience,
repeated ten times. Someone with an inquisitive nature who is willing to chal-
lenge the status quo with questions such as “Sure, it’s tradition but remind me,
why do we do it this way?” may well hold a key to mastery over software.
However, a true master may go further than mere “What if . .. ?” questions
and attempt to answer them with innovative solutions. With software, you will
find a wide range of proficiency from one practitioner to the next.

The skilled project manager has software groups with gurus having
specific skills that contribute directly to the success of the project. Devel-

PEOPLE: CULTIVATE THE GURU AND SUPPORT THE MAJORITY 43

opers, testers, and architects are handpicked by the project manager provide
the project with key guru-level technical people. The gurus must have
previous large-scale development expertise and/or extensive functional
expertise within the problem domain. This combination of experience and
knowledge provide the technical expertise to implement things properly and
the assurance that the proper things were being implemented. The gurus train
those new to software development and provide a foundation for reasoned
technical decisions.

2.1.3 How to Keep Your Gurus Working

One pays a guru more in job satisfaction and collegial esteem than in dollars,
although dollars can help. The manager must move the guru with the new work
to keep the challenge high. Many must be protected from an unfortunate
promotion to a management position, because this rarely suits such a
temperament.

Disciplined and motivated people develop quality software. The common
mistake that drives gurus away is an attempt by a boss to micromanage their
work. The problem is that the guru’s discipline seems like no discipline at all
to the document-focused manager. Gurus meet regularly with others to discuss
the project, and they ask others to review their work. They are intolerant of
poor quality work. They know that meeting a short-term milestone with poor
quality software too often leads to crises. Gurus focus on the substance of
meetings and artifacts, whereas many managers are occupied with procedural
form. The software guru must be allowed to hold the sort of meetings and
reviews that are appropriate to the state of the project. The status of the
project needs to be derived from the natural progression of the development
cycle. The manager lucky enough to be blessed with a guru should humbly rec-
ognize that the managerial function is one of stewardship and respect sub-
stance over form.

2.1.4 How to Support the Majority

Most computer science degrees require intensive individual work. When a
graduate moves to an industrial project, the most difficult challenge is shifting
from working alone to working on a project with ten or more people. The pre-
vious premium on individuality has cultivated an attitude that it is easier to
do tasks alone rather than work with others. This attitude is both so ingrained
and so unexamined that new programmers automatically tend to break a
project into isolated modules. This is especially true in startup companies. Each
member takes a distinct module to design and develop that will later be inte-
grated with the others’ modules. This approach results in each group member
having knowledge of only one aspect of the project. The ability to identify and
resolve risks, to integrate the components into one working project, and to
assist members in need of help is severely limited. When the size of the team
exceeds three, this human tendency leads to chaos. The need to avoid this sit-

44 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

uation is a fundamental driver for the capability maturity model (CMM)?® and
for agile programming methods.

Once programmers are assembled for a project, a structure must be created
to truly form a team. A deliberately structured communication network keeps
everyone aware of the project progress as a whole and their part in it; regu-
larly scheduled review meetings, e-mail progress reports, and instant messag-
ing can all be used. If programmers or designers are newly appointed to
supervise groups, they must be taught first how to manage people and, only
after learning that, how to manage projects. By using a simple queuing analy-
sis study, it can be shown that if a team leader wanted to spend an hour per
week with each person in the group, six is the maximum number of employ-
ees that the supervisor could coach, manage, and still get the job done.

The following table assumes that the team leader works in a matrix organ-
ization. The team leader reports to a functional manager and is assigned to
several project mangers. Table 2.1 shows probable allotments of time.

TABLE 2.1. Typical Week in the Life of a Team Manager

Team Manager Importance of Requests per Week Time per
interacts with: Interaction Request (hours)
Functional Manager 1 1 4
Project Managers 2 4 1
Technical Direction 3 4 2

for Team of 6
Career Development 2 1 0.5

for Team of 6
Administrative 2 1 0.25

Assume all service times are exponentially distributed. The queuing analy-
sis (Table 2.2) will answer this question: How many software developers can
the technical leader supervise?

TABLE 2.2. Results of Queuing Analysis

Employees Hours/Week used for Number of Average number of
Reporting to a Technical Direction employees awaiting hours/employee
Team Leader technical direction awaiting career
at any time development

6 8 1.1 10

8 12 2.2 35

10 14 3 332

12 15 5 Absurdly high

This analysis shows that if the team leader is expected to provide career
development to every software developer, eight is the maximum that the team
leader can supervise. When eight people report to the technical leader, two
developers are idle awaiting technical direction.

* CMM is a product of the Software Engineering Institute of Carnegie Mellon University.

PRODUCT: “BUY ME!” 45

One solution to the time crunch is having subteams of three or fewer, so
supervisors can grow their teams to 10 to 12 people. Technical subteam leaders
have no administrative responsibility but are the project interface with the
supervisor. Another alternative is to use matrix organizations with project
managers focused on getting the job done and functional managers focused
on developing their people and sharpening their skills. There is no best
approach; the structure depends on the nature of the people and the project.
Executives of productive companies understand that any organization is
imperfect and that reorganizations help to invigorate teams by trying new
combinations of personalities and perhaps methodologies.

N vy

i\ /\’ MAGIC NUMBER!

When the size of a group, or the number of groups, exceeds three, con-
sciously structure communication methods.

Once a project requires the work of more than three supervisory groups,
formal project meetings and a project newsletter must be put in place. Every-
one on the project needs to know how things are going. The “power of the
press” can be applied to project communications by reporting the minutes of
project meetings, including customer letters of plans, praise, and complaint.
Usually this is a written newsletter, but Bernstein, as CTO for a 2000-
developer organization, effectively broadcasted voice mail announcements. It
is easy and efficient to compose a message weekly and distribute it Sunday
night so that the people could hear a 4-minute summary of successes, prob-
lems, new technology directions, and changes first thing on Monday morning.
To be effective, these communications in whatever form must be scrupulously
honest in containing “the good, the bad and the ugly.” The communication
must discuss project problems and troubles to convey the management belief
that such things must be brought to light promptly and dealt with rationally.
All projects have problems; those that do not (because people are afraid to
reveal them) are in deep trouble.

2.2 PRODUCT: “BUY ME!”

A customer presents a business problem and your corresponding marketing
colleague feels sure we have just the thing to suit their needs—or we can build
it in short order. What shall this product do and how, exactly, shall it do it? Let

46 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

us hold for a moment the whole question of determining the validity of the
customer’s view of the objectives and the vendor’s input concerning the prac-
ticality of the enterprise. What characteristics can we reasonably expect of a
finished product? Fred Brooks defines a programming product as “a program
that can be run, tested, repaired, and extended by anybody [and further
describes a programming system as] a collection of interacting programs, coor-
dinated in function and disciplined in format, so that the assemblage consti-
tutes an entire facility for large tasks.”* The software product is both a
programming product and a programming system.

\\\‘///

"~ MAGIC NUMBER!

Fred Brooks points out that it takes nine times the effort that was required
to get a program working to make it into a supportable software product,
because problems are hard to find and hard to fix.

Software products are packages of systems designed and integrated to work
together in a particular architecture to perform a set of tasks. Software prod-
ucts have become increasingly more complicated. With a higher level of com-
plexity and functionality comes a higher risk of failure. To handle complexity,
product developers have resorted to a system of systems that can be scaled to
meet the demand of a given task set.

Functional and structural partitioning is fundamental to this way of creat-
ing software products. The necessary corollary to partitioning is some way to
achieve software component integration. When we partition to manage com-
plexity, there is an implied need to integrate. There is a tendency to brush off
the product integration as no more than the purchasing of commercial off-the-
shelf (COTS) products and binding them together, but integrating a software
product so that it will be reliable, useful, and provide a good user experience
is the not-so-easy task of the manager and each designer.

2.2.1 Reliable Software Products

How can we guarantee that a software product does not contain any bugs and
will not malfunction? Thorough testing is only part of the answer. Careful
design and honoring design standards is another.

* Brooks, Frederick P, Jr. The Mythical Man-Month, Addison-Wesley, Reading, MA, 1995, p. 6.

PRODUCT: “BUY ME!” 47

\\‘//

i\ /\l MAGIC NUMBER!

More than 60% of the errors in a software product are committed during
the design and less than 40% during coding.

Errors in early design phases are contained in the basic building blocks of
the software. Programmers can spend more time testing a few lines of code
than in writing them, although the error detection work is most efficiently done
at this point. Consider two lines of code dealing with one 1F—THEN-ELSE state-
ment, processing an array of 100 elements. There are 2100 different outcomes.
Even on a fast machine, testing all combinations would take far too long. One
modern way of dealing with this problem is to consider what would be
required to prove the system before any code is written. There is an idea in
hardware methodology of designing against testability requirements. Extreme
programming has elaborated on this idea to create the technique of “pair”
programming. One programmer writes the tests while the partner program-
mer writes the code.

No matter the technique, however, we cannot guarantee that a software
product is fault-free under every circumstance and for all time. We can test,
keep a record, and fix faults that are found, but we cannot guarantee that there
are no more faults beyond the boundaries of those tests. The aim then becomes
to eliminate as many faults as possible, given time limits, effort costs, and how
critical certain needs are to the customer.” Testing is expensive, budgets are
tight, time is limited, and most attention is given to the design and product
implementation. Testing must be smart and thoughtful to resist shortchanging
this ethical requirement in the face of great pressure to deliver the product at
the end of the system production cycle.

2.2.2 Useful Software Products

The existence of many software product development companies, small and
large, ensures a healthy competition as those companies strive to outdo one
another. Clients want to choose the provider who offers the best deal in terms
of maximum benefit, minimum cost, and shortest time to delivery to ensure
the profitability of their companies.

> The authors advocate a technique called software rejuvenation to keep critical systems operat-
ing only within an exhaustively tested range. NASA uses this technique for space missions.

48 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

The nature and use of the software product influence the need for trust-
worthiness, and the degree of trustworthiness required increases the time and
effort needed to build the software product. As the size of the project grows,
time and effort grow exponentially unless the product is partitioned into com-
ponent subproducts. To estimate the effort required, estimate the effort for
each subproduct and then add a 10% planning and integration effort. If COTS
products are used, then there is a 5% integration effort required.

A product must be on time, within budget, and adequate to the problem
domain to be useful.

\‘//

\‘//

MAGIC NUMBER!

=i

Software for controlling operating systems, communications, or drivers to
fit the peculiarities of a hardware device is twice as hard to write as soft-
ware for online transactions products. Online transaction software is five
times more difficult to write than data processing or report generation
software.

2.2.3 Good User Experience

In a fast-paced environment where technological advantage can be a deciding
factor in the life of a company, time to delivery is as important as cost and
benefit. Often, however, the initial estimates of cost and time to delivery of
software products are underestimated with the pressure of competition. The
result is that after a couple of extensions of the deadline for delivery, the client
gets frustrated, the developers get pressured to complete the project, and there
is little time left for proving the system against the requirements. There is a
tradeoff between exhaustive testing and letting the customer find out the bad
news in real time. Customer testing is not a new approach. In fact, the cus-
tomer may accept “good enough” because the push to early market presence
seems to reward this low-quality approach. The customer is frustrated by fail-
ures but can be willing to continue if sufficiently impressed with the attention
the developers give to finding and fixing faults. Some projects have been
nimble at staying one step ahead of massive failure. But eventually, low quality
equals low satisfaction and a crisis occurs that, in the absence of a history of
good faith and performance, results in a lawsuit.

The responsible software developer engages the customer in a partnership
to solve a problem. This requires some human factors analysis to ensure that
the problem being solved is the problem that exists and that the elements of
the solution fit the customer’s environment.

PROCESS: “OK, HOW WILL WE BUILD THIS?” 49
2.3 PROCESS: “OK, HOW WILL WE BUILD THIS?”

Processes describe how a project will be produced; they do not deal with what
the ultimate software product will do. Agile processes and object-oriented
design are efficient processes that can adjust to the current state of a project.
Processes provide a framework for control, the degree of which can vary as
the project evolves.

2.3.1 Agile Processes

Agile processes change rapidly to meet project needs. They are characterized
by dynamic changes in the amount of control as the project matures. In the
early inventive stages, control is loose, but as the product takes form, more
formal control is enforced. No process should rigidly insist on the same level
of control through the entire life cycle.

Until the mid-1990s, most software processes were rigidly planned because
software organizations wanted to mimic traditional product manufacturing
and gain legitimacy by increasing process predictability. The most significant
problems were deployment delays or cancellations, which led to excessive
reliance on questionable software metrics. The result was bureaucratic soft-
ware development without any corresponding increase in software quality. A
major issue was metrics that gave no insight to the real progress of software
development.®

2.3.1.1 Great processes can never be a substitute for incompetent managers.
The principle cause of project failures is poor management. Martin Fowler and
Jim Highsmith, gurus of the agile method philosophy, said, “Facilitating change
is more effective than attempting to prevent it. Learn to trust in your ability
to respond to unpredictable events; it’s more important than trusting in your
ability to plan for disaster.”

New approaches to software development (extreme programming, crystal
methodologies, SCRUM, adaptive software development, feature-driven
development, and dynamic systems development methodology, among them)
are the current stage of process evolution. Agile methods recognize the impor-
tance of process and tools, with the additional recognition that the interaction
of skilled persons is of even greater importance. Similarly, comprehensive doc-
umentation is not necessarily bad, but the primary focus must remain on the
final product—delivering working software. Therefore, every project team

S This cavil is neither new nor unique to software. Scott expressed it in 1911 in his book, Increas-
ing Human Efficiency in Business: “The service in more than one company has been made intol-
erable for people of spirit and creative ability by the arrogant and dominating spirit of the
management. Those who continue to sacrifice their individuality to the whim or the arbitrary rule
of their superiors, in time lose their ambition and initiative; and the organization declines to a
level of routine, mechanical efficiency only once removed from dry rot.”

50 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

needs to determine what documentation is essential. Contract negotiation,
whether through an internal project charter or external legal contract, is not
a bad practice, just an insufficient one. Contracts and project charters may
provide some boundary conditions within which the parties can work, but only
through ongoing collaboration can a development team hope to understand
and deliver what the client wants.

The highest priority is to satisfy the customer through early and continu-
ous delivery of valuable software. A software development manager once
questioned the feature or story approach to iterative cycle planning. “But
aren’t requirements specifications and architecture documents important?” he
asked. “Yes,” Jim Highsmith replied, “They are important, but we need to
understand that customers don’t care about documents, diagrams or legacy
integration. Customers care about whether or not you’re delivering working
software to them every development cycle—some piece of business function-
ality that proves to them that the evolving software application serves their
business needs.”

2.3.1.2 So welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage. Rather
than resist change, the agile approach strives to accommodate it as easily and
efficiently as possible, while maintaining an awareness of its consequences.
Although most people agree that feedback is important, they often ignore the
fact that the result of accepted feedback is change. Agile methodologies
harness this result, because their proponents understand that facilitating
change is more effective than attempting to prevent it.

Deliver working software frequently, every couple of weeks or months, with
a preference for short timescales. For many years, process experts have
stressed the use of the incremental or iterative style of software development,
with multiple deliveries of ever-growing functionality. Although the practice
has grown in use, it is still not predominant; however, it is essential for agile
projects. Furthermore, business realities push hard to reduce delivery cycle
time. Deliver is not the same as release. Your customer may have valid busi-
ness reasons for not putting code into production every few weeks. Some proj-
ects do not achieve releasable functionality for a year or more, but that does
not exempt them from the rapid cycle of internal deliveries that allows every-
one to evaluate and learn from the growing product.

Customer and developer work together daily throughout the project. Many
customers want to buy software the way they buy a car. They have a list of
features in mind, they negotiate a price, and they pay for what they asked for.
This simple buying model is appealing, but for most software projects, it does
not work. Agile developers use a radical change to the requirements process.
For a start, they do not expect a detailed set of requirements to be signed off
at the beginning of the project; rather, they see a high-level view of require-
ments that is subject to frequent change. Clearly, this is not enough to allow
design and coding, so the gap is closed with frequent interaction between the

PROCESS: “OK, HOW WILL WE BUILD THIS?” 51

customer and developers. The frequency of this contact often surprises people.
Prototyping is a wonderful tool that expedites this approach.

2.3.1.3 Agile processes respect the power of human interaction by building
projects around motivated persons, giving them the environment and support
they need, and trusting them to get the job done. Managers must still deploy
the tools, technologies, and processes, even in agile processes, but people make
the difference between success and failure.

The most efficient and effective method of conveying information with and
within a development team is face-to-face conversation. Inevitably, when dis-
cussing agile methodologies, the topic of documentation arises. The issue is not
documentation—the issue is understanding. Physical documentation has heft
and substance, but the real measure of success is abstract: Will the people
involved gain the understanding they need? Project teams can and should use
the most effective communication techniques. “Tacit knowledge cannot be
transferred by getting it out of people’s heads and onto paper,” writes Nancy
Dixon. “Tacit knowledge can be transferred by moving the people who have
the knowledge around. The reason is that tacit knowledge is not only the facts
but the relationships among the facts—that is, how people might combine
certain facts to deal with a specific situation.”” So the distinction between agile
and document-centric methodologies is not one of extensive documentation
versus no documentation, but a differing concept of the blend of documenta-
tion and conversation required to elicit understanding.

2.3.1.4 Working software is the primary measure of progress. Project teams
cannot afford to realize they are in trouble just before delivery. It can be a
nasty surprise to see that even though they did the requirements on time, the
design on time, maybe even the code on time, the testing and integration took
much longer than expected. Iterative development provides milestones that
cannot be fudged, which imparts an accurate measure of the progress and a
deeper understanding of the risks involved in any given project.

Continuous attention to technical excellence and good design enhances
agility. When many people look at agile development, they see reminders of
the “quick and dirty” rapid application development (RAD) efforts of the
1990s. But although agile development is similar to RAD in terms of speed
and flexibility, there is a big difference when it comes to technical discipline.
Agile approaches emphasize quality of design, because design quality is essen-
tial to maintaining agility. One tricky aspect, however, is the fact that agile
processes assume and encourage the alteration of requirements while the code
is being written. As such, design cannot be a purely up-front activity to be com-
pleted before construction. Instead, design is a continuous activity that is per-
formed throughout the project. Every iteration has design work.

" Dixon, Nancy. Common Knowledge, Harvard Business School Press, Cambridge, MA, 2000.

52 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

Simplicity—the art of maximizing the amount of work not done—is essen-
tial. Any software development task can be approached with a host of
methods. In an agile project, it is particularly important to use simple
approaches, because they are easier to change. It is easier to add something to
a process that is too simple than it is to remove steps from a complicated one.
Hence, there is a strong taste of minimalism in all agile methods. Include only
what everybody needs rather than what anybody needs. The same principle
applies to the product. “Simple, clear purpose and principles give rise
to complex, intelligent behavior,” says Dee Hock, former CEO of Visa
International. “Complex rules and regulations give rise to simple, stupid
behavior.” No methodology can ever address the complexity of a modern soft-
ware project. Giving people a simple set of rules and encouraging their
creativity will produce far better outcomes than imposing complex, rigid reg-
ulations.

The best architectures, requirements, and designs emerge from self-
organizing teams. The best designs emerge from iterative development and
product use rather than from early plans. The second point of the principle is
that emergent properties (emergence, a key property of complex systems,
roughly translates to innovation and creativity in human organizations) are
best generated from self-organizing teams in which the interactions are high
and the process rules are few.

Case Study: The Case of the Late (but Great!) Operating System

In the 1980s, there was a service crisis in the U.S. telephone industry. To resolve
it, a high-risk, high-payoff, large-scale telecommunications business system,
which affected all Regional Bell Operating Companies, was designed using a
supplier-provided operating system (SOS). It saved $1 billion a year in reduced
operating costs from the mid-1980s to the present, at a development cost of
$500 million, 5 years, and 300 to 400 team members, including 40 persons ded-
icated to systems planning and testing.

It arrived pretty much on schedule with functionality that exceeded the
original requirements, despite late delivery of the communications subsys-
tem by the vendor and early architecture problems. How was this feat
accomplished?

Solution: Processes and organizational structures to cope with uncertainty
were put in place from the start. The design consisted of five major subsys-
tems, each of which could be deployed alone as well as integrated with the
others. Architectural problems emerged immediately. New technology was
needed to create databases, integrate the systems, and track customer orders.
The system architect shifted the project from COBOL to C language to attract
the best designers and to take advantage of the extensive C run time libraries.
The libraries were an early example of software reuse and reduced the design
effort by 15%.

PROCESS: “OK, HOW WILL WE BUILD THIS?” 53

Then it became apparent that although most of SOS was world-
class, efficient, and reliable, the communications subsystem was obsolete.
SOS agreed to provide an upgrade, but because of the difficulty of the task, it
delivered it 18 months behind schedule. Because of the delay from SOS, the
project team was inspired to create an environment that allowed testing the
core application logic without the underlying operating system. Gurus devel-
oped an “adaptive layer” to run the application on a temporary UNIX OS,
which allowed testing logical code performance. The five major subsystems
were built so that the data structures and relations were independent of the
operating system.

The project schedule became a dynamic tool for project management.
The variables that counted were resources, time allocation, and dependencies.
To meet the final deliverable dates, the project team implemented a new,
cooperative testing process. As each module was completed, it would be
tested in the UNIX environment. The integration team, idled by the wait
for SOS, helped to do subsystem functional testing. They tossed out defect
tracking with all its attendant overhead and paperwork. Instead, a buggy
module would be entirely replaced with a new one. These actions applied
Boehm’s precept of “Start with loose controls and tighten as the project
evolves.”

Conclusion: When timelines and cost are not greatly affected, new and inno-
vative solutions to project goals can be entertained. This was especially useful
in the project when development teams were stuck at some roadblock. When
traditional methods failed, the freedom to “try anything” allowed new
methods to be explored without condemnation. Therefore, allow experimen-
tation when there is little to lose.

Foster an atmosphere of cooperation. Cooperation is empowerment. This
is not only stated to the team members explicitly, but it is encouraged through
the actions of management. The recognition of their value to the project and
their trustworthiness to make appropriate decisions gives team members a
sense of ownership and control. Through this support, the team participates
more actively and works together to achieve results.

Learn that success breeds success. Never change a development plan until
a significant milestone is achieved. Continual redefinition not only destroys
morale and self-confidence, but it leads to sloppy work habits. Everyone needs
closure to see that something has been accomplished.

2.3.2 Object-Oriented Opportunities

When was the first time a computerized system really got it right and changed
a company for the better? And how have we been doing since? Let us begin
with the answer to the first question and then spend some time on the second
question.

54 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

Case Study: The Case of the “Lion’s Share” at Tea Time

The Lyons catering company in England supplied small teashops with cakes
and sandwiches in the 1950s. They ran their business with fleets of women who
would call each retail shop every day to calculate their needs. The far-sighted
management became convinced that the power of computers could be har-
nessed to increase their profits and serve their customers better. They actually
built a computer and succeeded in deploying an enterprise-wide automation
system. The changes ranged from anticipating orders based on past patterns
to defining the order of loading the trucks for maximum efficiency in delivery.
They came to dominate the take-home cake and sandwich business in the
United Kingdom. Everyone ate Lyons cakes and sandwiches! This heady
success led to the spinoff of a computer company that eventually became
ICL.

Conclusion: The history of Lyons is noteworthy because it is the exception.
Most software projects fail to live up to expectations. Often developers under-
stand neither the business practices they are automating nor the business
changes they will cause. The developers have also been known to do a poor
job of producing the software. Lyons’ developers started from scratch. They
controlled the requirements, and they worked closely with the hardware devel-
opers to build a system suitable for them. Force-fitting this system to others
proved problematic.®

2.3.2.1 Thomas Landauer points out that, in the telephone industry, com-
puters have led to measurable productivity gains.” The telephone companies
achieved a 2% per year productivity gain with the introduction of computer
technology, a gain not seen in other industries. Telephone companies have
spent 50% of their annual capital investments in information technology prod-
ucts and services since the mid-1960s. This long-term commitment has paid off.
Today, information technology is at the core of the telephone business. The
telephone companies took a giant step to assure success of their overall
program when they invested in standardizing their businesses processes. They
produced the Bell System Standards that defined how telephone companies
would operate. As the business changed, these practices were updated. After
the 1984 breakup of the Bell System, Bellcore maintained them. These busi-
ness practices became the basis for the subsequent automation. Of course, not
every system worked. Some missed the mark, but many served to increase the
productivity of the telephone worker. Because there was a carefully main-
tained set of practices, there were many opportunities to redo the systems that

8 ACM, Computer Pioneers and Pioneer Computers Dawn of Electronic Computing 19481950,
The Computer Museum, 1996, www.acm.org.

° Landauer, Thomas, K. The Trouble with Computers Usefulness, Usability and Productivity, MIT
Press, Cambridge, MA, 1995, p. 24.

PROCESS: “OK, HOW WILL WE BUILD THIS?” 55

failed. With this habit of designing business practices first, it was natural
for the telephone industry to quickly adopt object-oriented technology.
Enterprise-wide object classes were derived from the practices. These object
classes speeded the introduction of object-oriented technology.

2.3.2.2 One modern telephone software system is enlightening. The system
supports the use of new, very fast broadband networks in the telephone
company plant. Because this was clearly a large-scale development effort, the
designers adopted the use of objects early. The size of the project in its first
release was 12,600 function points contained in 22 software modules with 47
interfaces and 12 databases. This complexity was organized into 278 object
classes and 1200 objects. The developers adhered to four overarching princi-
ples in making their design decisions. System synthesis melds methods and
business objects from the customer’s, not the developers’, viewpoint. Modular
architecture separates data from applications and enforces strong data stew-
ards. Object-oriented analysis includes extensive domain analysis, rigorous
requirements, business usage scenarios worked out with the user, formal exter-
nal and internal interface agreements, and an integrated data model. Object-
oriented design uses client/server architecture and industry-wide telecom-
munications management standards.

The most serious problem on this project, which may be extrapolated to
most projects, is the need to keep data consistent. Older design methods used
convoluted error paths to do this; error paths often use more code and time
than building new systems, adding features to existing systems, or building
bridges to vintage systems. Object-oriented technology can lead to predictable
system developments with fast time-to-market and solid performance. It
allows system updates in a timely manner without waiting 9 to 12 months for
the next big release. It lets developers make frequent and important changes
to the human interface and to accommodate changes in business processes. It
makes reuse easy and drives system designs to better reflect the problem than
older procedural methods.

Until object-oriented design becomes a habit, an enforced object encapsu-
lation strategy with centralized object libraries is vital. Skilled project man-
agers must insist that all subsystems and modules use the same operation,
administration, and management software, which achieves meaningful reuse
and results in huge savings, as much as $5000 per client.

With object-oriented approaches, the developers delivered in 18 months
what would have taken 36 to 42 months by other means. A record level of
reuse among customers was achieved; the most tailored system required 15%
custom code, and the least customized required none. The time to market for
new customers is now 90 days, and productivity, measured in terms of func-
tion points per staff, continues to increase 25% with each release."

!0 Bernstein, Lawrence and Yuhas, C. M. Basic Concepts for Managing Telecommunication Net-
works, Plenum Press, New York, 1999, Chapter 7.

56 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

2.3.2.3 That these wonderful results can be attributed to a disciplined use of
object-oriented technology is supported by other experiences. The Swiss Bank
Corporation saw a 50% productivity improvement during its reengineering
that started in 1991.

In 1994, at a conference in Japan, engineers described installing their
new object-oriented system. Reuse was the key to their success. The benefits
of prototyping and adherence to clean object class definitions exceeded
expectations. They managed risks by adhering to standard enterprise object
classes and gluing them together. They anticipated some performance
problems, and these did occur. The cost/performance improvement of new
computer servers more than compensated for the 10% performance overrun
they saw.

Foster Wheeler reports that using objects with their business rules drives
the applications development. A decision-making process is modeled and then
iteratively modified. Rule bases are made part of the object methods so that
the rules can be applied dynamically. This approach allows the inheritance and
distribution of intelligence among objects at various levels. As changes are
made to the rules, they naturally migrate to the affected objects. By using this
approach, they reduced the time for projects from 12 months to 8 weeks, which
may herald the reawakening of the expert system technology that held so
much promise in the 1980s.

AT&T developed more than 50 object-oriented systems using a unique
“objects in memory” approach. The objects are locked in memory while the
system runs. One such system may be biggest and fastest object-oriented
network management system in the world. It uses 1 GB of memory for its 15
million objects and thousands of transactions per second on a high-end work-
station. It has been in production for several years with no significant prob-
lems. It replaced a vintage host-centric provisioning system. This exciting new
approach will become widely used as computer memory is extended to 64-bit
addresses and added to the natural structure of object-oriented databases. This
will open virtual memory machines to objects and regain the freedom from
memory constraints enjoyed by application developers in earlier transaction
systems. Objects tend to drive designers to single-threaded solutions, so exe-
cution platforms that encourage multithreading are the next step in decision
making for reliable components.

2.3.2.4 The MCI Data Warehouse Project relied on off-the-shelf relational
databases rather than object-oriented bases. It is a textbook example of the
use of a gateway and client/server relational databases to gather information
from many databases to produce reports. The multiplatform distributed set of
databases consisted of IBM DB/2 as well as others. It has the look and feel of
a single SQL server. This project was not trivial. The challenge was to analyze,
organize, normalize, link, and migrate data onto a database that end users
could easily access without having to formulate complex SQL queries or write

PROCESS: “OK, HOW WILL WE BUILD THIS?” 57

code. This is wholly different from developing databases that meet the strin-
gent performance needs of network management systems. They routinely
download data from network management systems to populate their data-
mining server. Here is a situation where object-oriented databases can live in
harmony with relational ones. The performance needs are met with the object-
oriented ones, whereas the flexibility for inquiries is met with a relational
database.

In the MCI case, data analysts were called on to model data in a way that
maximized usefulness to service planners, which meant rethinking the data
model so that data availability and flexibility were maximized while retaining
sensitivity to long inquiries. This data modeling job was hard because of the
several layers of indirection required to use the relational database manage-
ment systems in the source systems. Direct use of object modeling and object-
oriented databases, instead of relying on relational databases in most source
systems, could have simplified this task and made the data models more flex-
ible for unanticipated use. Without MCI’s earlier and large investment in data
management, this project could have easily failed because research into
a complex web of poorly modeled and documented databases is nearly
impossible.

2.3.2.5 Large-scale evolving software presents a special challenge to object
architects. Typically, an application consists of a network of objects con-
nected through compatible interfaces. The need to meet new requirements
or fix defects often results in new interfaces and object versions. In this
dynamic environment, there is a premium in keeping all modules consistent.
Often this is left to the test teams, where, as we recall from the Magic
Number in Chapter 1, it is an expensive activity. Object-oriented technology
opens the door to dynamic checking of interface states and internal con-
sistency. Projects can effectively use libraries of interface object classes to do
this job.

When a new version of an object is created, it must be dynamically installed
without causing disruption to existing software. Objects must be intelligent
enough to handle the problems of dynamic reconfiguration, coordinate inter-
module communication, and track the internal states of both the objects and
the links. This process increases the complexity of objects and can prevent
them from being reused in different contexts. One solution is to not allow
interface changes. This harsh rule often makes the application difficult to build.
Often application-level interfaces are imprecise because of timeouts and
repeated transmissions triggered by buffer losses in asynchronous communi-
cation. The interface specifications are vague and not amenable to analysis.
Creating a design that allows for easy testing is difficult to achieve. It leads to
a loss of confidence in the system. Developer productivity falls rapidly because
so much time is spent resolving interface problems. Object-oriented technol-
ogy within modern platforms can solve this problem.

58 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

2.3.2.6 The Common Object Request Broker Architecture (CORBA) object
standard is becoming one way to do distributed computing. CORBA is the
object middleware standard, but CORBA has not yet provided the tools and
methods needed for large applications. It locks the sender until the receiver
gets and acknowledges the message, which makes concurrency difficult to
achieve for distributed applications. CORBA does not support multicycle
transactions. CORBA’s object module is evolving and may become the stan-
dard of choice. Network Computing magazine reported in 1997 that Object
Request Brokers are ready to use for development, but they lack sufficient
services and ties to existing networks to deploy them. Meanwhile, the DCOM
object standard sponsored by Microsoft for Windows offers an object
approach to communications. Another group, the Message Oriented Middle-
ware Association, extends CORBA by using message-oriented middle-
ware (MOM). They add asynchronous communication, scalability, and
quality-of-service features to CORBA through MOM. Most organizations
are using CORBA or DCOM in combination with uniquely developed
interfaces.

2.3.2.7 Getting started in object-oriented design cannot be done by simply
saying so or by selecting a demonstration project in the hope that its success
will spill over to the rest of the organization. Resistance is most strong among
middle managers because they see the need to retrain themselves and their
people while they try to meet tight schedules and cost goals. Managing unfa-
miliar new technology is difficult.

A successful approach is to reinvent business practices using object-
oriented design techniques. It demands that object-oriented technology be at
the heart of the enterprise architecture. With middleware being widely
adopted for building robust enterprise-wide applications and with companies
moving to thin clients, or at least thick ones controlled from a central systems’
management organization, the time is ripe to embrace objects. Object tech-
nology ties the desktop, the Web, legacy, and client/server applications into a
coherent whole.

With the spread of JAVA and the adoption of component technologies,
applications can be developed rapidly. By coupling an object approach with
rapid prototyping, development is reduced from years to months. The formal
adoption of Boehm’s spiral approach with its focus on getting the require-
ments right early in the development cycle adds another tool for rolling out
applications quickly.

PROCESS: “OK, HOW WILL WE BUILD THIS?” 59

Transparent computing using JAVA interpretive programming gives a
three-fold increase in productivity and regularly achieves 80% reuse.

MAGIC NUMBER!

Jump-starts have proven remarkably effective. Two people experienced in
object-oriented design are assigned to a development group for 3 months. They
answer the questions developers struggle with in the transition from proce-
dural programming to object programming.

All parts of a system do not need to be simultaneously converted to object
technology. A good approach is to start with the system administration and
human interface functions, then move on to the core objects that model the
enterprise. A gradual evolutionary approach is best.

2.3.2.8 Here is a typical pattern of the transition experience.

The first object-oriented release has no increase in productivity. Exten-
sions are two to four times cheaper and faster than before. Defect-free
code is produced.

Software build times grow exponentially until object classes are nested.

A software process team is essential throughout the development cycle.

C4++/00 experts are critical during the move from procedural program-
ming. Keeping the architecture team small is important. A throw-away
prototype is important.

Software middle managers are appointed once the architecture exists and
the first development iteration begins.

Design rules constrain the use of memory, language constructs, object
classes, and communications.

Engineers staff the complex real-time embedded portions of the system.

Incremental development and phased releases work well with object-
oriented technology.

Templates for object classes work well.

Limiting the number of objects works to produce a manageable number
of global objects.

Staff accepts object-oriented technology.

A rich integration of object and relational databases with a strong focus on
module interactions is a good technical practice. Organizations adopting

60 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

object-oriented technology eventually gain a three-fold productivity advan-
tage over those that stay with procedural methods.

2.3.3 Meaningful Metrics

Remember, projects that have no problems are in deep trouble. If there are
no problems, either the staff is afraid to speak for fear of their jobs or the
metrics are defective. In the first case, the project manager is a fool and should
be fired. In the second case, meaningful metrics help bridge the gap between
perception and reality. If the metrics are rosy but the customers complain,
something is wrong with what is being measured or how it is measured.

When the metrics warn of a serious problem, the first step is to make sure
you understand what the numbers are telling you. Then you can decide on a
plan of action. The problem with meaningful metrics is that they are not always
measurable. The metric “percent of code completed” cannot be measured. The
metric “module delivered to test team” is measurable. However, the measur-
able metric could mean that a module is under change control, the code has
been reviewed, or the code follows commenting conventions and has been unit
tested. To make this metric meaningful, acceptance criteria must be defined
for both the test team and the developers.

Meaningful metrics drive the development process to reduced time, lower
cost, and better quality testing. Analysis of metrics can show the current state
and trends in the software development process and whether a project is fol-
lowing its plan. But for metrics to be effective, management must use them,
analyze the reasons behind the numbers, and understand their context.

\\\‘///

"~ MAGIC NUMBER!

=i

Things to measure:

Defects found during development versus 1 year of deployment.
Testing hours required to find a defect.

Percent of tests showing no defects.

The skill of the tester and the form of the test affect the results as much as
the objective quality of the software. Consistently high- or low-pass rates and
the subsequent performance of the passed modules can suggest actions to
management. Table 2.3 shows actions that can be effected before it is too late
to change the course of testing.

PROJECT: MAKING IT WORK 61

TABLE 2.3. Actions in Response to Challenging Test Results

Unreliable Modules Passed Reliable Modules Only Passed
High-Pass Alter and strengthen the testing See if good methods can be
Rate program because: further automated. If yes,
1. Tester does not recognize redeploy resources as needed.
problems or
2. Tester does not test
correctly.
Low-Pass Refocus testing and testers. Continue in the same direction
Rate 1. If multiple symptoms of the and keep improving the
same problem, STOP until software.

root cause is fixed.
2. If unintended uses tested,
STOP for clarification.

The continuing challenge of software metrics will yield a more cost-
effective process by optimizing resource utilization. In other words, the job
will be continually refocused toward efficiency. The necessary condition for
optimal operations is the positioning of evaluation checkpoints inside the
phases of the current process. The need to challenge applies not only to testing
but also to reviews, code walkthroughs, and simulations.

Given limited resources, it is important to focus these resources on the most
important tasks. For instance, if we know that a particular requirement mod-
ifies a fragile set of modules, the activity in all phases for this set of modules
should be given high priority, from system requirements to field delivery. Con-
versely, a reasonably sound area in the hands of experienced developers can
be given lower priority. This prioritization should occur dynamically so
resources freed from low-priority tasks can be moved to high-priority ones.

2.4 PROJECT: MAKING IT WORK

Finally a customer comes through the door with a business need for you to
meet and you must start THE PROJECT with your background, experience,
tools, and essentially a blank slate. You know the broad objectives and realize
that building a prototype is often the best way to get started.

As you assemble the design team, be aware that people do not bring the
same level of commitment, reliability, or competency to a job. In many organ-
izations, the top performers usually are tapped for several important projects.
To recruit these people to your project team requires defining the benefits of
being on the team, such as recognition, uniquely challenging work and pro-
fessional development, as well as reallocating their time from ongoing job
responsibilities and other projects. An All-Star team may not necessarily guar-
antee smooth functioning. People with other talents, such as group communi-

62 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

cations, problem mediation, or patience for working through gritty details are
also needed.

Projects are plagued with developing the wrong functions, designing poor
user interfaces, overengineering, and shifting requirements. Prototyping is an
excellent technique for getting the design right, as long as we do not get so
caught up in the prototype that we think it is the product. If the customer finds
the prototype exciting, the temptation is to package it for sale without any
redesign. The redesign phase takes into account the needs of more than one
market, scaling for different sizes, and the peculiarities of local conditions. The
prototype can also be too good at showing the system concept. Customers who
love the concept but hate the price might develop a system themselves if the
design cannot be protected with patents.

With these caveats in mind, put the prototype into the customer’s business
situation (or a mock-up of the conditions) and allow the team and the cus-
tomer to play with it. From this experience, you can judge the accuracy of your
understanding of the objectives and estimate the size of the job by using func-
tion points and an estimation tool such as COCOMO.

After an analysis of the prototype, the organization can be enlarged based
on the size estimate. Large projects often require bringing together a multi-
disciplinary group of people with varied skills, areas of expertise, and roles in
the organization. As you assemble these people, keep the following questions
in mind: What expertise will be needed—technological, operational, financial,
legal? Which affiliated departments will be needed? What information will be
needed and who has access to it? In addition to the obvious technical skills,
are human relations skills, including persuasion, negotiation, research, and
written and verbal communication identified?

Using top-down design, partition the project into modules, define and
control interfaces, and appoint module owners. Use modern software interface
conventions such as object classes, pipes, and tag value data.

Reduce complexity in the design with a formal “design simplification”
effort. Establish a simplification target by maximizing reuse, eliminating
redundancy, and simplifying algorithms. Specific approaches useful for this
effort include

(1) Refactoring

(2) Validating requirements with prototypes

(3) Relaxing design constraints

(4) Eliminating generality

(5) Finding COTS to eliminate development effort

(6) Firm interface contacts or standards that normalize data and control
exchanges.

Implement designs, using structured programming techniques, only after
they have been inspected. Submit tested software and work practices through

PROJECT: MAKING IT WORK 63

an independent manufacturer (or builder) to the quality assurance and inte-
gration organization.

Test incrementally. Create a simple working system, and then add sets of
changes to gradually increase capability. Do regression tests on each new
increment using test cases developed for the previous increment.

Using the good relationship you have developed with your customer
through the prototyping experience, together identify a friendly operational
site where workers are willing to try out new features before they are formally
released. This may also be the soak site for new product releases.

Do not juggle too many areas at once. Avoid developing a new application
on new hardware and/or new operating system software. Have maintainers
share some of the continuing development responsibility.

Case Study: The Case of Stabilizing the Aegean Stables

You, Hercules, are a successful project manager. Mr. Eurystheus, the boss of
the boss of your boss, asks you to manage a troubled project. This is a career
enhancement opportunity for you. You will gain the experience to balance
short- and long-term customer needs, project goals, and the changing focus of
work, but only if you are clever and strong.

The project is a customer resource management system, which handles all
customer purchase orders. The current project team consists of 50 people who
are torn apart by destructive internal politics and favoritism. The existing man-
agers are unskilled in software, and as a result, the software is very buggy. The
current measure of system performance is the time between crashes. Planning
amounts to daily 8:00 am “stand up” meetings to assign firefighters for the day.
The date for the next release of the software is in 1 week.

Question: What do you do?

Answer: Delay the release and stabilize the software (debug it!). Talk to the
customer and say that you need time to make the system stable.

Conclusion: You get the crisis under control. Your team is allowed to focus
on the critical bugs without customer interference. When your management
asks why you ignore customer requests for a technical meeting, you reply, “The
customer will not let the technical people make the technical decisions.” Now
your career and the reputation of your company with this important customer
are on the line. There is tremendous tension between the customer’s staff and
your staff.

Problem: You must first establish your credibility with your development
team; otherwise each person will decide alone what the best course is and
pursue it alone. If that happens, you will lose control of the project and the

64 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

system will continue to crash. The developers have been working long, hard
hours under a “forced march” project philosophy and have learned this way
to survive.

Question: How do you win developers’ acceptance?

Answer: More pay will not work; software developers already have high
salaries and benefits. You do know, however, that by allowing the developers
to choose their technology and tools, they will be committed. They want to
work on a time-sharing system, so you decide to risk all by allowing the project
to jump from a batch development environment to a time-sharing system.

Problem: Many developers on the project like to be heroes. They enjoy the
excitement of crises. They do not like to plan or design. You know that people
whose values do not match those of the organization become malcontents, but
you need their talents and would rather not confront them head-on.

Question: How do you deal with them?

Answer: Empower the testers to reject code that they judge to be not reliable
enough or that does not conform to standards you define. An ancillary benefit
is that the testers, who had neither power nor respect previously, suddenly have
both and search for bugs with a vengeance.

Question: How do you restore confidence between you and the customer?

Answer: Establish regular meetings between your people and the customer’s
staff charged with installing and operating the system to discuss only the con-
tents of the next release and not any changes or improvements or “while
you’re there” extras. You must prevent “creeping featurism.” Too much was
being attempted without a configuration system. Make it clear to all that you
and you alone have the authority to commit to features and schedules.

Problem: People are afraid to talk about software problems because they fear
that, as the bearer of bad news, they will get into trouble.

Question: How do you get people to speak up about legitimate problems?

Answer: Celebrate each problem found in house as being one less found by
the customer. Praise the diligence of those who find problems. People need
lots of stroking with just a little poking.

Lessons Learned: Employ project managers skilled in software. Choose the
right people and nurture them; treat them with respect. Create an open envi-
ronment. Encourage problem identification.

PROBLEMS 65

For a troubled project, stabilize the organization, fix the problems, and then
grow. The long-term strategy is to mortgage sales for management discipline,
because without a today, there is no tomorrow; without a tomorrow, why
bother? Quality is vital: Set and enforce high standards for software delivered
to the test team.

Create a good relationship with the customer. Control commitments. Honor
the four P’s of project management: People, Product, Process, and Project.

2.5 PROBLEMS

2.5.1 You are developing a system in which code will be written in C++ and
Perl; mySQL will be used for the system’s database. All three people in your
group are skilled in C++ and in Perl, but not in mySQL. You estimate that there
is enough work for the three to do 2 months each of C++ work, 1 month each of
Perl work and possibly 2 months each of mySQL work. You cannot hire any
additional software developers, and you have decided there is ongoing benefit
to sending all three to mySQL training. Which is the safest plan to start with?

a. Do the C++ and Perl coding first, and then send the three people for
mySQL training.

b. Send the three to mySQL training after they have done about half of
the C++ and Perl coding.

c. Send the three to mySQL training before doing any C++ or Perl work.

d. Send one or two people to mySQL training while the remaining
person/people start the C++ and Perl coding. Send the other(s) to
mySQL training at a later point.

2.5.2 Your team is developing a system for a small company that sells one-
of-a-kind antiques on the Web. The system will contain modules for creating
and editing descriptions of items for sale, uploading descriptions to the
website’s database, taking orders over the Web, validating and processing
credit card payments, maintaining the status—for sale, ordered, or shipped—
for each item, creating records of ordered items for mailing by the shipping
department, and performing accounting activities for tax and other purposes.
Completion on the various modules is as follows:

+ Creating and editing descriptions of items for sale: 80%
« Uploading descriptions to website’s database: 90%

+ Taking orders over Web: 75%

+ Validating and processing credit card payments: 65%

+ Maintaining the status for each item: 95%

+ Creating records of ordered items shipping: 80%

+ Performing accounting activities: 60%.

66 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

This process puts you about 2 months behind schedule. You will have to tell
that to the client, but the client understands that scheduling software is not a
precise science and will probably agree to a 2-month extension if you have
something to show. You are meeting with the client soon. You estimate that
you can accomplish one of the following by the time of the meeting. Which
one do you do?

a. Work on all the modules to get them all, with any luck, to 90%
completion.

b. Get the editing and uploading functions 100% complete and working.
Leave five modules at the current completion levels.

c. Get status maintenance, shipping order, and accounting functions 100%
complete. Leave four modules at the current completion levels.

d. It does not matter as none of the above three alternatives is any better
than the others.

2.5.3 A software shop is concerned with the productivity of its developers,
so they do a time study. They survey 22 software people for a typical 40-hour
workweek. The results are shown in Table 2.4.

TABLE 2.4. How Developers Keep Busy

Activity Hours Spent
Nonproject meetings 3.0
Field problems 3.0
Meetings 3.0
Administrative chores 0.5
Equipment problems 0.25
Junk mail 1.0
Customer interaction 0.0
Training 0.0
Testing 8
Documenting 5
Analysis 4
Design 4
Coding 7.25
Idle 1.0

The 22 people surveyed work on transaction-based systems. They use the
document-focused Waterfall Model for development. The organization aver-
ages 200 NCSLOC per staff month and wants to increase productivity to 250
NCSLOC per staff month.

ADDITIONAL PROBLEMS BASED ON CASE STUDIES 67

a. What technical changes would you try?
b. What organizational changes would you try?
c. What management changes would you try?

2.5.4 You are developing a transaction processing software system for a large
international bank. The system will receive transactions 24 hours a day, 7 days
a week. Research has indicated that the average daily transaction rate, with
95% probability, will be about 240,000 transactions per day. You are con-
structing a test plan for the system. You should be safe if you test the system
for performance at up to 40,000 transactions per hour, i.e., for four times the
expected transaction rate.

a. Agree strongly

b. Agree

c. Disagree

d. Disagree strongly

2.5.5 You are project manager for a safety-critical software system. Your test
team finds two test cases out of 1000 producing some unexpected results in
areas of the system not critical to its prime functions. In fact, the customer
does not plan to use the features that are problematical for a year. The cus-
tomer is demanding delivery as promised, a competitor company has offered
an equivalent system to your customer at a significant price reduction, and
your management questions your judgment in wanting to reveal the flaws.
What do you do?

a. Explain the problem to the customer and recommend that they let you
find and fix the problem before you ship it.

b. Explain the problem to your management and recommend that they let
you find and fix the problem before you ship it.

c. Hold up shipment to isolate and understand the extent of the problem
before you ship the software.

d. Label the system “provisional” and include a description of the problem
in the release letter.

e. Ship the system on-time and continue testing because you know the cus-
tomer will not use the faulty functions for a year.

2.6 ADDITIONAL PROBLEMS BASED ON CASE STUDIES

Case Study: The Case of Putting the Application before
the Middleware

A project team needs to develop a system using tools and components that
were delivered late and were still being changed by the supplier. The supplier
happens to be the customer. The team needs to build the system on top of a

68 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

moving foundation. They need to identify the problem, assess the risk, and
develop a way to cope with shortcomings in their supplier turned customer.

The customer has a highly intensive database transaction system to track
customers and the computers they buy. An earlier attempt failed because the
software technology chosen proved unable to convert and track all the infor-
mation and replace paper systems and records.

Design is the primary concern of the project. The project team wanted a
system that was scalable and robust. They required that it accept and share
data with any of the customer’s legacy systems. To this end, the project
manager decided against a traditional mainframe system and opted for the
newer UNIX system, using C for the development language. It was thought
that by using UNIX, the system would be more flexible and implementation
would be cheaper.

One aspect of the development environment was homogeneity. The entire
environment was UNIX with C, which greatly reduced integration issues, and
the flexibility of C allowed any to be corrected quickly when they develop.
Constant communication across the project team led to a reduction in inte-
gration issues, as plans and tactics were discussed openly and early enough for
all to adapt.

The subsystems were to run on new middleware tuned to database per-
formance. However, it slipped and was projected to be 10 months behind
schedule. Despite this delay, system development moved forward because of
the flexibility that was built into the system. With the delay in the operating
system, the project team constructed a workaround that would allow for
testing the core application logic.

Problem: You are the process design engineer for this team. What four
processes might you include to compensate for the delivery problems?

Case Study: The Case of the No-Service Service Request

BU&U is a statewide company with headquarters in Delaware. Part of
BU&U’s business is to satisfy service requests for equipment installations,
repairs, and so on. at customer sites. Each request is handled by dispatching a
BU&U technician to the customer site, from the BU&U work center nearest
the customer location. BU&U has ten work centers.

The service request system was completely manual until the VP for Cus-
tomer Service at BU&U telephoned the Director of BU&U’s software devel-
opment team (SDT) to see if the SDT could design and implement a
computerized version of the service request system as a potential cost-saving
measure. The SDT delivered an automated service request system that oper-
ated as follows:

« A clerk enters a service request into BU&U’s central service request
computer. Each transaction requires some processing by this central
computer.

ADDITIONAL PROBLEMS BASED ON CASE STUDIES 69

+ Customers sometimes call to inquire about the progress made on their
as-yet-unsatisfied service requests. Each call requires that an average of
two inquiry transactions to the service request computer.

« Each work center has 10 clerks. They process, on average, four service
requests and two inquires per hour. Each work center is open daily from
8:00 am until 10:00 pm.

+ At each BU&U work center, a dispatcher is responsible for scheduling
service visits to customer sites by BU&U technicians. Each dispatcher has
a new computer connected via BU&U’s intranet to the BU&U central
service request computer from which the Dispatcher periodically
requests a service request report that is a list of service requests that must
be satisfied within 48 hours by the requesting work center. Two summary
service request reports a day are normally wanted.

« The dispatcher uses the service request report to dispatch technicians to
customer sites and to determine if overtime is necessary to satisfy all
service requests on time.

At the end of each day, a daily transaction profile (DTP) is sent back to
the SDT for analysis. The DTP includes the transaction type, its arrival
time, and the time at which its processing was completed.

The system is delivered, and at the end of the first week, acceptance testing
goes smoothly. The first center is put online at the start of the second week.
The system performs well. The second center is put online at the beginning of
the third week.

At the end of the third week, everything has gone smoothly, except that on
Wednesday of that week, the Operations Manager, the BU&U employee
responsible for all ten work centers, mentions that the inquiry transactions are
taking longer to process than during the first and second weeks. As far as the
SDT can tell, all transactions are being processed well within the response time
specified in the requirements document, but the operations manager is correct.
There is no explanation for this subtle increase in response time. Other work
distracts the SDT, and they do not pursue this glitch. So the operations
manager signs the software acceptance form and thanks them for a job well
done. It was on schedule and within budget.

The third work center goes online on the first day of the fourth week. On
Tuesday, the Director of the SDT gets an irate call from the operations
manager. “The system died yesterday at about 3:00 pm, and nobody at the three
work centers has any idea why! When we restarted, it worked, but very slug-
gishly; transaction response times were sometimes not within specification, but
they got better late in the day.” The operations manager demands an imme-
diate solution, or she will return to the old manual system. “We can’t run a
business this way,” she says.

Problem: What do you, as director of the SDT, do first?

70 PEOPLE, PRODUCT, PROCESS, PROJECT—THE BIG FOUR

Problem: At about 3:00 pm the next day, the system hangs again in your pres-
ence. What is happening here?

Problem: What short-term actions do you take?

BIBLIOBRAPHY

Barton, John J. and Nackman, Lee. Scientific and Engineering C++, Addison-Wesley,
Reading, MA, 1995.

Bernstein, Lawrence and Yuhas, C. M. “And the Walls Come Tumblin” Down,” IEEE
Communications Magazine, Dec. 1992.

Boehm, Barry. Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ,
1981, Sections 26.3 and 33.6.

Booch, Grady. Object Oriented Analysis and Design with Applications, Benjamin Cum-
mings, Redwood City, CA, 1994.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley,
Reading, MA, 1992.

DeMarco, Tom and Lister, Timothy. Peopleware: Productive Projects and Teams, 2nd
ed. Dorset House Publishing Co., New York, 1999.

Frey, Anthony. “Into ORBIt, Object Request Brokers: Servers of the 21% Century,”
Network Computing, Vol. 8, No. 4, March 1, 1997, pp. 51-60.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns:
Elements of Reusable Object Oriented Software, Addison-Wesley, Reading, MA,1995.

Gaudin, Sharon. “Object Stamp of Approval,” ComputerWorld, Vol. 31, No. 11, March
17,1997, p. 1.

Goldberg, Adele and Rubin, Kenneth S. Succeeding with Objects: Decision Frameworks
for Project Management, Addison-Wesley, Reading, MA, 1995.

Graham, Ian. “Making Progress in Metrics, Task-Point Analysis Can Be Performed at
the Requirements Stage,” Object Magazine, Vol. 6, No. 8, October 1996, pp. 68-73.

Highsmith, James A. III. Adaptive Software Development, Dorset House Publishing,
New York, NY, 2000.

Korson, Tim and McGregor, John D. “Understanding Object Oriented: a Unifying
Paradigm,” Communications of the ACM, Sept. 1990, pp. 41-60.

Landauer, Thomas, K. The Trouble with Computers: Usefulness, Usability, and Produc-
tivity, MIT Press, Cambridge, MA, 1996, pp. 13-35.

Levy, Leon. Taming the Tiger—Software Engineering and Software Economics,
Springer-Verlag, New York, 1987, ch. 4.

Mancl, Dennis and Havanas, William. “A Study of the Impact of C++ on Software Main-
tenance,” Proceedings IEEE Conference on Software Maintenance, Nov. 1990, pp.
63-69.

McGregor, John D. and Sykes, David A. Object Oriented Software Development: Engi-
neering Software for Reuse, Van Nostrand Reinhold, New York, 1992.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs,
Addison-Wesley, Reading, MA, 1992.

BIBLIOGRAPHY 71

Murray, Robert B. C++ Strategies and Tactics, Addison-Wesley, Reading MA, 1993.

O’Donnell, Debra. “Hello MOM and OOP Shops,” Software Magazine, April 1997,
p. 25.

Shneiderman, Ben. Software Psychology-Human Factors in Computer and Information
Systems, Winthrop Publications, London, UK., 1980, Sections 1.3.5 and 3.5.

Software Engineering Institute, Carnegie Mellon University. The Capability Maturity
Model: Guidelines for Improving the Software Process, Addison-Wesley SEI Series
in Software Engineering, Reading, MA, 1995. See www.sei.cmu.edu/cmmi/general
for updates on CMMI.

Taylor, David. Object Oriented Technology: a Manager’s Guide, Addison-Wesley,
Reading, MA, 1990.

Van Vliet, Hans. Software Engineering-Principles and Practices,2nd ed., John Wiley and
Sons, 2000.

Vaughan-Nichols, S. “Corporate Success Stories: Integrating Objects With Rules,”
Object Magazine, Vol. 7, No. 1, March 1997, p. 66.

Weinberg, Gerald. The Psychology of Computer Programming,Van Nostrand Reinhold
Company, New York, 1971, pp. 135-136.

Wilkinson, Nancy M. Using CRC Cards, SIGS Books, New York, 1995.

Wirfs-Brock, Rebecca J., Wilkerson, Brian, and Wiener, Lauren. Designing Object Ori-
ented Software, Prentice-Hall, Englewood Cliffs, NJ, 1990.

Part 2

Ethics and
Professionalism

Software Requirements

When customers present ideas that need system solutions, developers have an
ethical and professional obligation to help customers define their problem.
You must build the best solution to the customer’s problem, even if the cus-
tomer does not yet understand how to ask for it. The customer should be
encouraged to write a short prospectus that states the purpose of the system,
its value, and any constraints essential to making it useful. This prospectus
should not be confused with a complete set of requirements, which will emerge
only through an iterative process. This chapter will lead you through the steps
necessary to arrive at refined requirements and help you resist the eager
impulse to plunge ahead and build a system that might not meet the customer’s
needs. A formal requirements understanding, verification, documentation,
and control process is essential for delivering software systems that delight
customers.

3.1 WHAT CAN GO WRONG WITH REQUIREMENTS

The requirements and design phases are important steps in a software project.
If these steps are not well done, the quality of the final product will almost
certainly be low. It is good to perform these steps with paper designs to
maintain a fluid, dynamic design methodology. Any production computer
investment activity during this interval, including early coding, imposes a psy-

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

75

76 SOFTWARE REQUIREMENTS

chological reluctance to change anything already created. Unrestrained ability
to change is necessary to developing a quality design. Investing in prototyp-
ing and modeling at this stage is helpful, but both customer and designer must
remember that the artifacts produced will not necessarily find their way
directly into the product.

Without an iterative plan for approaching the development of require-
ments, the design organization can find itself, months along on the project,
developing the wrong software functions. The designer of a stock ordering
system for a grocery could not guess that suppliers’ invoices would not be
directly related to orders because suppliers grouped orders for their delivery
convenience. The customer would not mention this because “Mildred always
knew how to square things” and nobody ever thought about it.

A formal process has a cutoff point, which prevents the continuing stream
of requirements changes that can prevent coding and testing from moving
along. Changes can be made in an orderly way in future releases after evalu-
ation, but not by altering the requirements document.

The sales team can sometimes infect both the customer and the design
organization with the desire to gold plate the product and provide what is
desired rather than what is required. The design team needs to be fully aware
of this tendency born of enthusiasm and resist it, without being negative or
disheartening. The attitude must be to get the core functionality right.

Finally, many design organizations do not have the necessary human factors
specialists to analyze the users’ tasks. Without specific attention to the people
who will use the product, the organization can develop the wrong user
interface.

3.2 THE FORMAL PROCESSES

The requirements engineering shown in Figure 3.1 provides a foundation for
staffing and planning the rest of the project. Explicit synthesis and analysis of
the various input elements can prevent these issues from undermining the
software project development. The requirements process starts with a system
prospectus. Here are steps the design organization can use to help the cus-
tomer construct a good prospectus:

(1) Elicit feature or functional requirements from the customer’s people.

(2) Understand the constraints on the project such as performance, recovery,
administration,and availability needs. These nonfunctional requirements
come from the environment in which the software product will operate.

(3) Analyze the requirements to make sure they mesh and there are no
contradictions. This analysis derives the business flows and results in a
set of use cases. Software architects will use these cases to define the
components of the system and their interactions. System testers will
also use them to create the system test plan.

THE FORMAL PROCESSES 77

(4) Develop a prototype to understand and validate the requirements.

(5) Produce and control a requirements specification. This core document
is variously called the system or software requirements specification
(SRS) or the functional requirements specification (FRS).

Opportunity Market
Analysis Analysis Prospectus

Business
Flows

Technology
Strategy

Project, Process
Requirements & Documentation
Specification Standards

Software Develop Testing; |I:-|uman‘
o ot QA Markoting:
Operations

Figure 3.1. Components of requirements engineering.

Boehm and his colleague Farquhar developed a technique that has been
highly successful in combining the free discussion advantages of group dis-
cussion with the advantages of anonymous estimation. They called the tech-
nique Wideband Delphi (wideband because it calls on the expertise of several
experts and Delphi from the location of the ancient Greek oracle who was the
predictor of future occurrences). A coordinator calls a group meeting to which
all are asked to bring written estimates to discuss. The private estimation and
group discussion cycles for as many rounds as are necessary.'

! Boehm, Barry. Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981,
pp- 333-336.

78 SOFTWARE REQUIREMENTS

\\‘//

/<) "~ MAGIC NUMBER!

Boehm suggests that as much as 40% of the features that become part of
the production system are not in the requirements when development
begins. Requirements must be revisited, reviewed, and revised to make the
SRS or FRS as complete as possible.

As an ethical professional, you must help the customer understand how his
business procedures must change to realize the benefits of the new software.
This is the source of emerging requirements. Your customer may not fully
appreciate the ripple effect the introduction of a new software system may
have. Figure 3.2 shows the elicitation-analysis-specification aspects of teasing
out accurate specifications.

[Elicitation
O Prospectus
O Prototype

Requirements
Elicitation

Requirements
Analysis

O Environment

| Analysis
O Modeling
O Economics
O Task Analysis

| Specification

Requirements
Specification
O Baseline
O Quantitative

Figure 3.2. Finding hidden or emerging requirements (with the permission of Rand Edwards).

Case Study: The Case of Creative Consulting—Automated
Customer Service

The prospectus for a new decision support system says to create software that
will diagnose problems in real time and provide dynamic solutions to requests

THE FORMAL PROCESSES 79

or problems. The fundamental architecture employs the concept of an “error
tree.” Your customer’s clients will be asked to answer a series of questions, and
based on their responses, the system will provide solutions.

Some commerecial off-the-shelf (COTS) products are available, but they are
narrowly defined. We would like to create flexible software that could be con-
figured to meet the requirements of all kinds of industries in the hope of
having a widely marketable product for ourselves. Our marketing department
sees the following possibilities:

(1) Hospitals can use for diagnosis
(2) Technical firms can use to provide troubleshooting help to users
(3) Service firms can solve or appropriately route user problems

The software indicated by the description of the system in the prospectus
includes the following:

(1) Front-end Web service using ASPNET
(2) Middle tier architecture using C#
(3) Backend database system SQL Server 2000

Step 1 Requirements Elicitation: The first thing we need is an adequate
description of the problem, which will begin with the prospectus and inter-
views with both the customer and the users. A business flow or process is a
defined sequence of tasks required to perform some function that must be per-
formed frequently across the enterprise. They combine people, systems, and
data and are consistent, repeatable, and measurable.

Understanding the business flows, business interactions, and user interac-
tions is essential when creating software requirements. It is also important to
heed Fred Brooks’ warning, “Don’t automate an undisciplined work flow. The
computer won’t solve what the customer’s management can’t.” The prospec-
tus wants us to create software that will diagnose problems in real time and
provide dynamic solutions to requests or problems.

The next thing we need is a description of the environment, which includes
the legacy systems and this new system that together form the system of
systems comprising the customer’s business. The roles of the operational users
and the information technology staff as well as system administration policy
and the expectation of customers would be included here. The prospectus
describes the environment simply: The fundamental architecture employs the
concept of an “error tree” . .. clients will be asked to answer a series of ques-
tions, and, based on their responses, the system will provide solutions. A proto-
type may help the transition to the next step in finding all requirements.

Step 2 Analysis: The analysis models the complexity of the solution. Consis-
tency in the “face” the system presents to the user will make it more readily

80 SOFTWARE REQUIREMENTS

accepted. Mixes of complex and simple features cause user disaffection
because it causes the user to become impatient with the simple (Couldn’t the
software do this?) or flummoxed by the random complex feature (Where’s the
guru to answer this?). Here is the scope:

There are some COTS available, but they are narrowly defined. We would like
to create flexible software that could be configured to meet the requirements of
all kinds of industries in the hope of having a widely marketable product for our-
selves. Our marketing department sees the following possibilities:

(1) Hospitals can use for diagnosis,
(2) Technical firms can use to provide troubleshooting help to users,
(3) Service firms can solve or appropriately route user problems.

A detailed task analysis for each user of the present method of operation
(PMO) is necessary. The requirements engineers then model the environment
as the user will see it once the new system is installed. This is the vision of the
future method of operation (FMO). Some rough economic predictions may
be made at this point.

Step 3 Specification: The customer must be able to quantify the specific set
of changes that the system will make to the current baseline. A specific meas-
urable operational value (MOV) needs to be identified that all developers
understand. An MOV might be “Reduce the need for human handling of
medical payment applications to a maximum of 10%.” The project goal for
such an MOV would be, “Direct payments for medical payment applications
without human intervention.”

Specification also includes any constraints on the behavior or structure of
the solution. If there were organization standards for the choice of hardware,
networks, or software tools, they would be detailed in this step. The prospec-
tus has these technical constraints: Front-end Web service using ASPNET,
middle tier architecture using C#, backend database system SQL Server
2000.

Conclusion: So what is missing from the prospectus? The interfaces that are
needed for the wide variety of medical databases, adherence to privacy laws,
and the user interactions are missing. These will emerge as critical require-
ments necessary to transform the project from a prototype feasibility model
to a commercial product. Implications of legal liability to the development
organization and adherence to the new medical privacy laws are missing.
Features emerging from these concerns can dwarf the original system con-
cept. When this project was undertaken in a software engineering class, the
system produced could not be sold commercially because of the emerging
requirements.

ROBUST REQUIREMENTS 81

3.3 ROBUST REQUIREMENTS

The requirements for a system must be robust and not aim at a narrow point
solution. The ideal solution shown in Figure 3.3 provides the performance at
the specified load and the same performance over a wide range of input. Typ-
ically, software requirements and the systems built based on them work at a
point solution and quickly lose performance when unexpected traffic levels
occur.

Performance
A Discrete Specifications

<«~— |deal

—_——

Y

Dynamic Range

Figure 3.3. System performance resulting from robust requirements.

The software requirements engineer must make needed tradeoffs between
performance and range so that the system becomes appropriately robust.
These tradeoffs require an understanding of the business flows and rules that
are incorporated into the environment in which the system will operate. Pro-
totypes are an excellent tool for understanding these tradeoffs. Building and
using prototypes are a fundamental part of the requirements analysis process.

High or low loads can cause a system to crash or hang. A test that all systems
need to pass is the no-load test, that is, bringing the system up and entering
no transactions. Many systems fail while in this state. Microsoft Windows 95
could tolerate the absence of activity for only 49.7 days before it hung. A new
system used by the FAA to control ground-to-air communication fell victim
to this same problem.

Case Study: The Case of the Puzzling Patriot

During the Gulf War, the U.S. Patriot missile defense system was widely hailed
as a savior of the war. News reports and government sources alike attributed

82 SOFTWARE REQUIREMENTS

to it a nearly perfect success rate in destroying Iraqi Scud missiles. Not until
the war was over did observers begin to express doubts regarding the success
of the Patriot. Although controversy persists concerning the actual effective-
ness of the Patriot missile in the Gulf War, one thing is certain: The Patriot
failed to intercept a Scud missile that hit an American military barracks in
Dhahran, Saudi Arabia, on February 25, 1991. In fact, no Patriot missile was
launched to intercept the Scud that day—28 people were killed, and 97 were
injured. Why did the Patriot fail to respond to this threat?

Eventually, the Army attributed the Patriot missile failure in Dhahran to
“a software failure in the . .. computer” as a result of “long use of the radar
system.” But, as is the case in any failure of a complex system, many factors
may have contributed to the failure of the Patriot missile to reliably perform
its duty. The Patriot problems likely stemmed from one fundamental aspect of
its design: The Patriot was originally designed as an anti-aircraft, not as an anti-
missile, defense system. With this limited purpose in mind, Raytheon designed
the system with certain constraints. One such constraint was that the Patriot
system was not to operate for more than a few hours at a time. It was designed
for use in a mobile unit rather than at a fixed location.

At the time of the Scud attack on Dhahran, the Patriot battery had been
running continuously for 4 days—almost 100 hours. This fact alone probably
explains why the Patriot failed to intercept the Scud that hit the American
barracks, but some more discussion is required to understand why extended
operation caused the Patriot to fail.

When the Patriot system is in operation, it must have a way of determin-
ing whether “targets” it finds in the air are actually incoming missiles rather
than false alarms. The Patriot makes this determination by tracking the target
to determine whether it is following the expected path of a ballistic missile.
Ballistic missiles travel at extremely high speeds, so that the time interval
between radar “sightings” of the target must be very small. The Patriot tracks
a target by first noting the location of the original radar sighting and then by
using knowledge of the characteristics of a ballistic missile in flight to antici-
pate where the target should be at the next radar sighting—a fraction of a
second later. If, at the second radar sighting, the target does not appear in the
“range gate,” the calculated zone in which the target will appear if it is a bal-
listic missile, then it is classified a false alarm and subsequently ignored by the
Patriot.

To make this path calculation, the Patriot depends on its internal clock.
Because the memory available to the program was limited, the clock value was
truncated slightly when stored. Prof. Arnold writes insightfully:

It turns out that the cause was an inaccurate calculation of the time since boot
due to computer arithmetic errors. Specifically, the time in tenths of second as
measured by the system’s internal clock was multiplied by 1/10 to produce the
time in seconds. This calculation was performed using a 24 bit fixed point regis-
ter. In particular, the value 1/10, which has a non-terminating binary expansion,

ROBUST REQUIREMENTS 83

was chopped at 24 bits after the radix point. The small chopping error, when mul-
tiplied by the large number giving the time in tenths of a second, led to a signif-
icant error. Indeed, the Patriot battery had been up around 100 hours, and an
easy calculation shows that the resulting time error due to the magnified chop-
ping error was about 0.34 seconds . .. A Scud travels at about 1,676 meters per
second, and so travels more than half a kilometer in this time. This was far enough
that the incoming Scud was outside the “range gate” that the Patriot tracked.
Ironically, the fact that the bad time calculation had been improved in some parts
of the code, but not all, contributed to the problem, since it meant that the inac-
curacies did not cancel.?

Therefore, the Patriot classified the incoming Scud as a false alarm and
ignored it, with disastrous results.

The Israeli military, analyzing data from Patriot batteries operating in
Israel, found the clock drift error. They calculated that after only 8 hours of
continuous operation, the Patriot’s stored clock value would be off by 0.0275
seconds, causing an error in range gate calculation of approximately 55m.

On February 11, 1991, after determining the effect of the error over time,
the Israelis notified the U.S. Patriot project office of the problem. Once they
were notified, the programming team set to work solving the problem. Within
a few days, the Patriot project office made a software fix correcting the timing
error and sent it out to the troops on February 16, 1991. At the time of the
Dhahran attack, the software update had yet to arrive in Dhahran. That
update, which arrived in Dhahran the day after the attack, might have saved
the lives of those in the barracks. In the meantime, they had sent out a warning
that very long run times could affect the targeting accuracy. On the day of the
Dhahran attack, two Patriot batteries were deployed to cover the Dhahran
area. One battery was having trouble with its radar, a problem unrelated to
the clock drift error. For this reason, the other battery had been running
continuously for 4 days to provide uninterrupted coverage over Dhahran.
Additionally, the phrase “very long run times” was not specific, so the Patriot
operators could not know that they were operating under dangerous condi-
tions when the attack occurred.

Conclusion: There are several lessons to be learned from analyzing the
Patriot failure. First, testing in computer-controlled systems must be robust,
especially when safety is at stake. If the Patriot had been tested under varying
conditions, including long periods of continuous operation, the clock drift
error would likely have been discovered long before the Patriot was used in
the Gulf. Also, special care must be taken when redesigning a system for a new
use; when the uses seem similar, as an anti-aircraft versus anti-missile weapon,
there can still be unexpected difficulties in adaptation. Software fault toler-
ance techniques that reset the system periodically could have prevented the
2 http://www.ima.umn.edu/~arnold/disasters/patriot.html, Douglas A. Arnold, Professor of

Mathematics and IMA Director, Institute for Math. and its Applications, University of Minnesota,
Minneapolis, MN. E-mail: arnold@ima.umn.edu.

84 SOFTWARE REQUIREMENTS

problem.’ Last, communication among the designers, programmers, and oper-
ators of a safety-critical system is imperative. Once the fix was known, expe-
dited change management could have had it installed before it was needed.
Even if the other suggestions were not implemented, better communication
might have saved lives in Dhahran both by informing users of specific limits
(reboot every 8 hours) and by expediting the software upgrade.*

3.4 REQUIREMENTS SYNTHESIS

The requirements engineers now must begin to list, evaluate, and bound the
features for the new system. The WinWin Spiral Model developed by Boehm is
a way to capture features systematically and include the views of all the “stake-
holders,” who are all those who will be affected by the new system’s presence
(Figure 3.4). Negotiation techniques are a critical success factor in getting the
requirements right and improving the outcome of software projects.

Prospectus

Decision Point:
Accept
Document or
re-enter spiral

- Requirements Analysis

Requirements
Elicitation

Simple QFD

Requirements

Document & ., Agreed
Validation " Requirements
Report
Prototype Baseline Document

Requirements v Requirements
Validation Specification

Figure 3.4. Elements of the WinWin Spiral Model.

The USC Center for Software Engineering developed a negotiation-based
approach to software system requirements engineering.” Their approach has
three primary elements:

* Bernstein, L. “Software Fault Tolerance Forestalls Crashes: To Err is Human; To Forgive Is Fault
Tolerant,” Advances in Computers, Elsevier Sciences, New York, 2003, pp. 239-285.

* http://www.fas.org/spp/starwars/gao/im92026.htm.

* http://sunset.usc.edu/cse/.

REQUIREMENTS SYNTHESIS 85

(1) Theory W, a management theory and approach, which says that making
winners of the system’s key stakeholders is a necessary and sufficient
condition for project success

(2) The WinWin Spiral Model, which extends the spiral software develop-
ment model by adding Theory W activities to the front of each cycle

(3) WinWin, a groupware tool that makes it possible for distributed stake-
holders to negotiate mutually satisfactory (win—win) system specifications

The WinWin Spiral Model is likely to be useful for software projects that
must deal with rapidly moving technology, little user or developer experience
with similar systems, and the need for rapid completion.

The original Spiral Model uses a cyclic approach to develop increasingly
detailed elaborations of a software system’s definition, culminating in incre-
mental releases of the system’s operational capability. Each cycle involves
elaborating product and process objectives and constraints, evaluating alter-
natives, identifying risk, redefining the product and process, and finally plan-
ning the next cycle. The life-cycle plan is then updated, including partitioning
the system into subsystems to be addressed in parallel cycles. This process can
include a plan to terminate the project if it is too risky or infeasible. Manage-
ment must then commit to proceed as planned. Since its creation, the Spiral
Model has been successfully applied in numerous projects. However, deter-
mining where the features, constraints, and alternatives come from drove
extensions that became the WinWin Spiral. At the front of each cycle, these
activities are added:

(1) Identify the system or subsystem’s key stakeholders.
(2) Identify each stakeholder’s win conditions for the system or subsystem.
(3) Negotiate win—win reconciliations of the stakeholders’ win conditions.

The problem statements in a customer’s prospectus are much less volu-
minous than a typical requirements set in a contractual agreement, even
though both can be just as obscure. Requirements engineers can range in
extremes from short statements to a consistent set of prototypes, plans, and
requirements specifications. The WinWin approach fosters trust between
developers and the customer, but transitions from WinWin stakeholder
agreements to requirements specifications can be difficult. A WinWin group-
ware tool helps smooth this transition and makes it easy to have frequent
contact with the customer. The use of an agreed prospectus with an MOV as
a checklist for developing WinWin agreements effectively focuses stakeholder
negotiations.

The most important outcome of product definition is not a rigorous speci-
fication, but a team of stakeholders with enough trust and shared vision to
adapt effectively to unexpected changes. A list of features will be the product
of these efforts.

86 SOFTWARE REQUIREMENTS
3.5 REQUIREMENTS SPECIFICATION

With a list of features, a specification can be written. Each feature needs to be
quantitatively qualified and should state how it contributes to the MOV.
Complex projects often need benefits modeling at this stage to assure that the
features are well understood. The features deal with explicitly stated customer
needs. System “needs” become a structured list of requirements and a set of
relevant and measurable product characteristics.

There are many suggestions for the contents of a requirements specifica-
tion. At minimum, the following elements should be stated:

(1) Project title, revision number, and author
(2) Scope and purpose of the system
(3) Measurable operational value
(4) Description
(5) Feature list
(6) Interfaces
(7) Constraints
(8) Change log and expected changes
(9) Responses to the unexpected
(10) Glossary
(11) References

To do requirements modeling well, the project team needs to be allowed
to succeed, and many times this unfortunately is not the case. Requirements
modeling efforts are often undermined by less than ideal circumstances. For
example, it is the rare stakeholder who has the creative imagination to fully
understand the implications of a decision.

Problems common to the effort to synthesize requirements are common to
many human endeavors. The demands of their jobs may make your access to
project stakeholders limited, or they may be geographically dispersed. On the
other hand, there may be too many stakeholders who want to participate and
they will either not know what they want or change their minds. Stakeholders
are afraid to be pinned down or have conflicting priorities.

The stakeholders are not necessarily disciplined in engineering or creative
in design. They may be good at their jobs but woefully unable to see beyond
the current situation. They may remain overly focused on one type of require-
ment to the exclusion of its relationship to the larger system. Some stake-
holders cannot describe the problem to be solved, but they jump immediately
to prescribing the technology solution.

Stakeholders are not requirements engineers, so expect that they will need
significant formality regarding requirements. Do not assume an understand-
ing of modeling artifacts.

QUANTITATIVE SOFTWARE ENGINEERING GATES 87

Finally, to maintain a certain balance and humility, the requirements engi-
neer should remember that the common fault of the developer is arrogance
about the problem domain and the nature of the requirements. You may
understand neither.

3.6 QUANTITATIVE SOFTWARE ENGINEERING GATES

At this point, a reasonable set of requirements specifications are available, but
the requirements process is not finished. The requirements must be quantified
in the context of the development project so that as new requirements emerge
and as existing requirements change, the software project manager can make
reasoned engineering tradeoffs. Without this quantifying, evolving the features
becomes a political rather than an engineering process. This approach can
avoid the problem of creeping featurism and misplaced priorities.

For the requirements stage, and every other stage of the project, a quanti-
tative analysis of the feasibility of accomplishing the project on time and
within budget is made. The results of this analysis are compared throughout
the life of the project to discover trends. So, before any stage of software devel-
opment is deemed complete, these quantitative techniques should be exercised
to manage emerging software requirements:

(1) Perform an ICED-T analysis of the software system represented in
the Requirements specification (intuitive, consistent, efficient, durable,
and thoughtful).

(2) Perform a simplified quality function deployment analysis (sQFD).

(3) Compute function points (FPs).

(4) Estimate staff and development time.

(5) Revise the requirements specification to fit the development costs and
time into the given budget and schedule. Increases to the budget and
longer developments are possible, but not probable.

(6) Recompute function points based on changes made to the Require-
ments specification.

(7) Replan with a Gantt chart.

(8) Repeat sQFD analysis.

(9) Recompute ICED-T to make sure the system still solves the cus-
tomer’s main problem.

(10) Review the MOV to make sure it is still attainable.

The sQFD analysis (Section 3.7), ICED-T techniques (Section 3.8), and sim-
plified function point (Section 3.9) are explained, followed by an illustrative
example.

A critical review meeting of all stakeholders to review the results is rec-
ommended and becomes a gate before proceeding to the next stage of devel-

88 SOFTWARE REQUIREMENTS

opment. These gates occur at the end of the requirements, architecture, imple-
mentation, and quality assurance stages of the software process, which applies
to the first release and, most importantly, to all future releases whatever their
size.

3.7 sQFD

Quality function deployment (QFD) is an analysis technique for assigning pri-
orities to requirements. It was developed for use in hardware-intensive and
large system projects. It is so extremely complicated that it becomes cumber-
some and counterproductive in all but the most highly critical software project
situations. A simplified version of the concept, however, can be useful and easy
to apply repeatedly to sort out the relative importance of each requirement
as the project continues. We will take a quick look at the House of Quality
matrix that is the product of the complicated technique and then concentrate
on the simplified technique as a more readily useful way to check priorities
through the life of a software project.

The House of Quality matrix is the most recognized form of QFD. It trans-
lates a set of requirements, drawing on market research and benchmarking
data, into an appropriate number of prioritized requirements features. It has
been used extensively for complex hardware systems. There are many slightly
different forms of this matrix, and this ability to be adapted constitutes one of
its major strengths. Its most general form is too complex for software projects.
The House of Quality matrix has six major components:

1. Customer requirements (HOWSs): a structured list of requirements fea-
tures derived from customer statements.

2. Technical requirements (WHATS): a structured set of relevant and
measurable product characteristics that are called software functions.

3. Planning matrix (illustrates customer perceptions observed in market
surveys and interviews): includes relative importance of customer
requirements, company and competitor performance in meeting these
requirements. The matrix is populated with weights based on the mapping
of qualitative opinions to quantitative metrics using Wideband Delphi.

4. Interrelationship matrix: illustrates the QFD team’s perceptions of inter-
relationships between technical and customer requirements. An appropri-
ate scale is applied, illustrated with symbols or figures. Filling this portion
of the matrix involves discussions and consensus building within the team
and can be time consuming. Concentrating on key relationships and mini-
mizing the numbers of requirements are useful techniques to reduce the
demands on resources. This is skipped in the simplifications for software
projects and accounted for explicitly during the architecture phase.

5. Technical correlation (Roof): used to identify where technical require-
ments support or impede each other in the product design; can highlight

SQFD 89

innovation opportunities. With dynamic change, this process is too
complex to use throughout the software process.

6. Technical priorities, benchmarks, and targets: used to record the priori-
ties assigned to technical requirements by the matrix, measures of tech-
nical performance achieved by competitive products, and the degree of
difficulty involved in developing each requirement. The final output of
the matrix is a set of target values for each technical requirement to be
met by the new design, which are linked back to the demands of the cus-
tomer. A simplified approach is to judge the ease of implementation of
each feature and map that into a set of numbers from one to nine, one
being the hardest to nine being the easiest. The product of the ease of
implementation and the requirements feature metric can rank the fea-
tures. This metric gives the project manager insight to where features can
be dropped in the event of projected slippages.

The House of Quality as shown in Figure 3.5 is a feature by requirement
matrix.

Technical Correlation
Matrix

Technical/Design
Requirements

Cust ¥ Planning Matrix/
Rus omer t Customer
equirements Perceptions
N "

/
Prioritized Requirements
Interrelationship Competitive Benchmarks
Matrix Technical Targets

(Importance)

Figure 3.5. House of quality matrix.

The Importance rating is entered in the Interrelationship cells and is the
most salient feature of QFD for software projects. A simplified technique that
arrives at this rating is useful for software projects to decide which require-

90 SOFTWARE REQUIREMENTS

ments features to drop. Because 40% of the features of a software product are
identified after the requirements specification is baselined, the sQFD analysis
needs to be redone at every stage of software development. Software engi-
neers use this, as shown in Figure 3.6, to discover the features most important
to the customer and to place them on an ordinal scale. By forcing this quan-
tifying with Wideband Delphi, engineering tradeoffs become possible. Without
concrete definition, the opinions of stakeholders get lost in a muddle of sub-
jective emotion. Software engineers can find it impossible then to distill real
needs from the wants and desires of the stakeholders, whether they are end-
users, purchasing agents, or their own marketing organizations. The example
in Figure 3.6 shows a 100-page request for proposal (RFP) for a new military

Importance Rating

9 Voice of the Customer
< Customer Participation or
5 Customer Adrocate
g— Consultants
= Sales & Marketing
Customer needs Methods
Easy to Use 4 Use a 1-9 rating system
2 - Not break easily 3 Rate on initial pass
5 g £ |Versatile controls 2 To Refine
¢ = = |Affordable 3 Rank Order
Good visual effects 5 Distribute 100 points
" é S [Everybody can use it 3
8 g & [Sturdy Controls 4
= Gy
3 E ‘§ Interruptable Play 2
o O W |Wide Assortment of Action | 5
< |No eye strain 3
Q@ 2 [Dontt get hurt using 4
34

Voice of the Customer
Military RFP for new Plane

100 (A7 (R iR o0 o0 o0 o0 000 com
Page q Fly Faster... o oo oo
RFP Carry more Weight...

Be more Maneuverable... .

Figure 3.6. Rating requirements for military airplane.

ICED-T METRICS 91

airplane reduced to four key features. This scenario is hypothetical but not
unrealistic.

Next, an sSQFD matrix will compare the importance and ease of imple-
mentation for requirements features. Table 3.1 continues the airplane example,
mapping the ease of implementing software functions against the four features
that resulted from the exercise in Figure 3.6. A generic weighting scale,
designed to produce numbers large enough to show clear differences
when multiplied, applies these numbers to perceived importance: 1 Weak, 3
Moderate, 5 Strong, 7 Very Strong, and 9 Extremely Strong.

TABLE 3.1. Implementation Ease vs. Feature Importance

Software Function Feature Feature Feature Feature
Ease Fly Fly Weigh More

of Implementation Higher Faster Less Maneuverable
Reliability 1 1 1 9 3
Faster Software 3 3 3 1 9
Memory Reduction 5 1 1 9 1

Multiply ease by feature for each cell. Add the products, first across each
row (14,48, and 55) and then down each column (15, 15, 52, and 35). The idea
is to drop the lowest scoring elements, but Reliability (14) would then be sac-
rificed, which is not feasible when a pilot’s life is at stake. Therefore, a judg-
ment override is applied to the outcome and the Fly Faster feature (15) is
dropped. The Memory Reduction function may have to be dropped also if
enough function points are not eliminated from the project.® The judgment
override concept is dangerous because it can be used too frequently and too
cavalierly, which undermines the whole point of this exercise. Each judgment
override must be carefully and completely documented to prevent abuse.

3.8 ICED-T METRICS

The ICED-T model is a way to measure the quality of a system by mapping
its qualitative characteristics on a quantitative scale even before a system is
built. The same measures can be taken throughout the development cycle to
see how the software improves. Testers can compare their evaluations to the
original requirements engineers’ evaluations to determine where to stress
their testing and suggest improvements. Most importantly, stakeholders can be
brought into the process with easy-to-conceive numeric scores to project their
assessment of how the software will work at requirements time and then again
once the software is operational.

¢ Dalcher, Darren and Tully, Colin. Centre for Systems Forensics and Capability School of
Computing Science, Middlesex University, Trent Park, Bramley Road, London N14 4YZ,
U.K. d.dalcher@mdx.ac.uk; c.tully@mdx.ac.uk.

92 SOFTWARE REQUIREMENTS

ICED-T breaks down the overall subjective measure of the software’s
quality into five separate groups of related measures. These groups are intui-
tive, consistent, efficient, durable, and thoughtful. They reflect how a customer
would subjectively feel about the software. Categorizing these measures has
two main benefits. First, by calling attention to each group separately, it
encourages requirements engineers to focus on each aspect of software
quality. Second, customers give more worthwhile feedback. Instead of simply
saying, “This software design doesn’t fit my needs,” customers say how the
product must be improved for them to deploy it. This process can be done
before the software is developed, which allows the requirements engineers and
managers to focus their attention more precisely on how to build a better
product. The model is also useful during the architecture and test phases of
development. Tracking the ICED-T metrics at each stage gives customers and
managers insight on how the quality of the software is evolving.

3.8.1 ICED-T Insights
The ICED-T model asks the following questions:

Intuitive: Does the use of this product make sense?
Consistent: Does the product operate in a uniform manner?
Efficient: Is the product quick and agile to use?

Durable: Does the product respond reliably without breaking?
Thoughtful: Does the product anticipate the users’ needs?

The first category (I) asks whether all actions produce a logical result, which
does not mean only that the application produces the result it is supposed to,
but goes beyond that to look at whether that result really makes sense and
responds to the user’s expectation. For example, a user pressing a button
labeled Back expects the application to return to the previous screen. If some
other screen appears, even if by design, this might not be intuitive. The
Microsoft silliness of selecting Start to shut down a system would not pass this
test. Another aspect that affects an application’s intuitiveness is whether the
software’s design implies its use. In other words, can users look at a screen and
understand how they are supposed to use the interface and what actions
should result? Such things as the layout of controls and the amount of on-
screen information can affect intuitiveness. Intuitiveness of the requirements
is best evaluated by a observing a naive user operate a prototype.

The second category (C) measures how uniformly the software operates.
Consistency can be measured though several aspects. If the software is con-
sistent within itself across time, the user can expect that doing an action today
and doing the same action tomorrow will get the same results—provided there
were no changes to the system or its environment. If the software is consis-
tent throughout its user interface, the same standards for design and function

ICED-T METRICS 93

have been followed throughout the product. For example, the same field will
always have the same name or abbreviation no matter in which window it
appears. If the software is consistent with other applications, the user can
expect to transfer learning to this product, which can apply to other software
from the same company, as well as to general standards for platforms or oper-
ating systems. For example, if the operating system is Windows and the product
does not use Ctrl-X to mean cut, then the software has a consistency problem.

The third category (E) uses modeling, analyzing, and prototyping to deter-
mine whether the application is nimble. Efficiency of the interface and navi-
gation would involve, for instance, the number of keystrokes and mouse clicks
it takes to accomplish a given task. Are shortcuts and hot-keys used effec-
tively? Can any redundancies be eliminated? Is the application designed so
that it requires a minimal amount of action and time to navigate? Efficiency
of the code deals with response time—how quickly the software responds to
the user’s input or how long it takes to complete a task. This characteristic
should be evaluated in the context of the customer’s environment and FMO
business flows. Therefore, it is important to have the customer’s computing
and networking environment in mind when estimating efficiency. The time it
takes to accomplish a task within these parameters is what users must judge
acceptable.

The fourth category (D) addresses software reliability. Objective measures
such as crash rate and mean time to failure (MTTF) can affect this subjective
evaluation, but it is the overall feeling of solidity that is of concern to this
model. Three aspects of durability are evaluated for a given piece of software.
First, how often does the software crash under normal use? If a certain func-
tion causes a crash one time, most users would probably consider it a fluke. If
the function causes a crash regularly, however, users would think the applica-
tion was poor quality. Second, how catastrophic are the crashes? Does the user
lose data, or was the program designed to auto-save data? Was the exception
trapped? Can the application be restarted without restarting the operating
system or rebooting the machine? How well does the software hold up under
extraordinary use? This is the robustness of the software. Users will innocently
attempt things with the software that it was never designed to do. Testers need
to imagine what these uses might be, try them out, and see what happens. Even
if the product was not conceived for that use, it should not cause undue prob-
lems for the user who tries it.

The final category of subjective software qualities (T) is perhaps the most
subjective of all. It looks at how thoughtful the software is. This category also
has the most overlap with the other categories. When evaluating an applica-
tion’s thoughtfulness, the requirements engineers determine if the product
provides users with everything they need. Is anything missing from the
program that would make it better? This goes beyond evaluating whether the
software meets users’ needs and examines whether it is as useful and as
friendly as it could be. A great example of a thoughtful addition to software
is the Browse button on a file access dialog. Without this button, users could

94 SOFTWARE REQUIREMENTS

still specify the file they wanted and the software would work. By adding this
button, programs become much more efficient because it is easier for a human
to select a choice from a series than it is to retrieve from one’s memory the
actual file name, properly spelled. Memory-challenged users everywhere bless
the kindness of that engineer. A good way to evaluate an application’s
thoughtfulness is to adopt a use case-based method. A combination of features
models a business flow. With this mindset, better ways to help users accom-
plish their tasks will emerge.

ICED-T metrics are a good way to map the qualitative understanding of the
system into a quantitative analysis. After a first draft specification is
articulated, the entire projected system needs to be quantitatively evaluated.
With the ICED-T metrics, requirements engineers can investigate specific
issues before making a heavy investment in producing formal software require-
ments specifications (SRS) or functional requirements specifications (FRS).

3.8.2 Using the ICED-T Model

To weigh the implications of each metric in the ICED-T model, each category
must be assigned a numeric value. This task, by its nature, is somewhat prob-
lematic. How exactly is one supposed to assign a number to a subjective
feeling? In this situation, professional experience is important. An experienced
requirements engineer brings to the task the ability to look at a piece of soft-
ware and make an informed judgment about the software’s quality as it is
likely to be perceived by the customer. When the customer disagrees with a
numeric value, it signals the need for additional analysis and understanding.
This is one of the real values of having professionals evaluate a set of software
requirements before the system is built. Software engineers, designers, and
testers rate the set of requirements on how intuitive, consistent, efficient,
durable, and thoughtful it is, and then they assign a numeric value to these
subjective ratings. Then a Wideband Delphi approach converges on a collec-
tive judgment. For example, testers should have enough experience using
various pieces of software to make an informed judgment about how intuitive
the software will be. For these ratings to be meaningful across evaluators and
across time, a scale should be set in place that gives guidance on what the
numbers mean. A simple continuum from one to five with these meanings has
proven useful:

(1) Worst I have ever seen

(2) Worse than average

(3) Same as other applications I have used
(4) Better than average

(5) Best I have ever seen

When all is said and done, the customer’s evaluation of software is the only
one that counts. When they form their evaluation, they probably will not make

DEVELOPMENT SIZING AND SCHEDULING WITH FUNCTION POINTS 95

a list of the defects they find or time how long it takes to accomplish a task.
Instead, they will use the software to accomplish whatever it is they bought
the software for in the first place, and through this use, they will form an
opinion of how good the software is. This opinion will be subjective. An impor-
tant part of our job is to do whatever we can to ensure that this opinion is a
favorable one. That means that we need to go beyond our objective tests and
measures and consider the subjective quality of software. The ICED-T model
is a tool that puts subjective responses into a form that can be more easily
evaluated and tested and allows us to consider the broader picture of the soft-
ware’s quality. This process gives important feedback to engineers, developers,
managers, and testers. By making these subjective qualities an integral part of
every stage of our project, starting with the requirements stage, we can
improve the software quality. Quality software is the goal.”

3.9 DEVELOPMENT SIZING AND SCHEDULING WITH
FUNCTION POINTS

Given a refined feature list and an understanding on the parts of both cus-
tomer and requirements engineer of what this means, the next question is
whether there are enough development resources and time to build it.

The name Bell Laboratories is associated with such breakthroughs of
modern computing as the UNIX operating system, parallel processing, C and
C++ languages, and many others. To keep this focus on software, Bell
Laboratories managers, including Bernstein, regularly reevaluated the way
software was built into its products and services. Its software initiative strongly
emphasized continuous process improvement and effective use of software
metrics. AT&T spent several billion dollars in software development and sold
billions of dollars of software products every year. Software added value to
virtually everything AT&T did. In the 1980s, function point metrics became
the foundation of some measurement programs and was used for estimating
staffing and development time as well as defect rate in many projects.
Measurements such as function points per staff month, cycle time, and defects
per delivered function point provide insight into the feasibility of building a
system on time and within budget.

3.9.1 Function Point Analysis Experience

AT&T support was crucial to the creation of the International Function Point
Users Group (IFPUG). By 1990, AT&T had more than a dozen certified func-
tion point specialists.

Even though much was accomplished in AT&T’s odyssey through software
measurement, function point analysis (FPA) was not easy. It required an

7 Roth, Andy. “Using the ICED-T Model to Test Subjective Software Qualities,” International
Conference on Software Testing, Analysis & Review, November 1-5, 1999, San Jose, CA.

96 SOFTWARE REQUIREMENTS

investment in people to establish comprehensive expertise. Experts from
outside a project performed function point analysis. Project managers
resisted having these outsiders invade their turf and worried that their per-
sonal shortcomings would be exposed. With differences in the capability of the
software developers, the complexity of the software produced, and the rela-
tions with the customer not measured, it was impossible to draw comparisons
among projects based on function points. Meaningful FPA should be done by
an expert; the introduction of the technology was slowed.

Bell Laboratories defined a set of metrics based on FPA for the entire
development process using these principles:

(1) Measurements must be used to measure processes, not people.
(2) The measurement process must have clearly stated objectives and goals.

(3) The measurement process has to be tightly coupled to an overall quality
management process.

(4) Data collection must be simple, and automatic tools for extracting data
should be used whenever possible.

(5) The measurements must be repeatable and independent of the observer.

(6) The measurement process is an ongoing process and subject to
improvement.

(7) The results of the metrics must be shared with the developers.
(8) The measurement process must be integrated into budgets and plans.

Bell Laboratories experts have counted over one million function points in
more than 600 projects. These make up more than 20% of all their early 1990s
software projects. Analysis shows that productivity as measured by function
points per staff month varies as a function of the type of software being built.
The complexity of the software alone accounts for a 10:1 difference in soft-
ware productivity. Operating system or hard real-time software sensitive to the
peculiarities of its environment is ten times more difficult to produce than
administrative software. Figure 3.7 shows the productivity in function points
per staff month for projects that use different database managers or operat-
ing systems. The data are drawn from 80 projects in 1990 and 98 projects in
1991. It shows that productivity of the projects based on the UNIX operating
system, especially using the fourth-generation INFORMIX database, is four
times higher than projects based on mainframe systems, especially those that
use IBM’s Information Management System database.

3.9.2 NCSLOC vs. Function Points

The culture of many software organizations is more comfortable with ad hoc
estimation based on previous experience or with counting new or changed
source lines of code (NCSLOC). As in almost every other software organiza-
tion, the Bell Laboratories metrics program was deeply rooted in a culture

DEVELOPMENT SIZING AND SCHEDULING WITH FPS 97

20
18
16 -
14
12

{1

IDMS IMS MVS INFORMIX UNIX VM Composite

Function Points/Staff Month

onNn MO
1

11990 EOY (80) [HH 1991 EOY (98)

Figure 3.7. Technology comparisons: operating system and database manager new
development projects.

that used SLOC. Endless discussions raged as to what SLOC actually meant:
physical or logical, with or without comments. Bell Laboratories software engi-
neers developed dozens of tools to count the different kinds of lines of code.

Historical data based on C code became useless with the wide introduction
of the C++ language and JAVA languages in the 1990s. Developers now often
use sophisticated Wideband Delphi analysis methods to predict the number
of SLOC, based mostly on their previous experience. Even with this sophisti-
cation, early estimations of size and effort using NCSLOC, especially those
that involve a new language or methodology, are inaccurate and often lead to
significant cost and time overruns.

Function points are a logical (functional) unit measure of system software
functions as seen by the user. They provide the essential value of what the soft-
ware does with data from a user’s point of view. The requirements engineer
creates a first-cut understanding of the system structure and counts internal
logical files, external interface files, external inputs, external outputs, and exter-
nal inquires. Counts can be made during the requirements stage because the
effort and cost estimation based on adjusted function points does not depend
on language and technology. Function points can prevent requirements creep
from customers and management because the additional effort to satisfy “just
this one little thing” can be quantified.

3.9.3 Computing Simplified Function Points (sFP)

At this point, it is difficult to apply the entire function point technique because
so little is known about the software design and architecture. A first-cut archi-
tecture is available, and the architect is still evaluating alternative approaches.
Nevertheless, it is useful and insightful to compute the number of function

98 SOFTWARE REQUIREMENTS

points this early in the project life to allow a rough sizing. FPA requires a com-
plexity determination to be affixed to various aspects of the project, but at this
early stage, we assume an average complexity for all aspects. In the equation
below for determining the value for the unadjusted function points, Albrecht
determined the coefficients for average complexity through trial and error and
curve fitting in the development of his theory. All projects are also deemed
average complexity in the simplified FP (sFP) approach.

sFP = (UFP)(VAF),
where UFP is the unadjusted FP and VAF is the value adjustment factor.
UFP =41+50+4E +10L +7F,

where I is the number of inputs that change data, O is the number of outputs
that arise from a data change, E is the number of inquires that do not change
data, L the number of logical internal files, and F is the number of interfaces.

VAF =0.65 + 0.01(Zc;), where ¢; is calculated based on 14 adjustment factors
that take into account the nature of the application. These factors measure the
difficulty of the development job. For example, communications software is
twice as hard to produce as transaction software. We will return to function
points in Chapter 6.

3.10 CASE STUDY: THE CASE OF THE EMERGENCY
NO-SHOW SERVICE®

The story of the London Ambulance Service (LAS) began in the mid-1980s.
The background to the story had two key features. First, LAS was falling short
of recently established national standards of performance for ambulance
mobilization and arrival times. Second, the introduction of the so-called
“internal market” to the National Health Service in the United Kingdom,
together with chronic shortages from long-term under-investment, led to
relentless pressure to squeeze budgets while improving performance.

The LAS is the largest ambulance service in the world. It covers an area of
just over 600 square miles and serves a resident population of about 6.8
million, boosted by commuters and visitors to as many as 10 million. In the
mid-1980s, the LAS owned over 300 accident and emergency ambulances (two
thirds of which might be in use at any one time), operating from 70 ambulance
stations, with a central control room at LAS headquarters. It received a daily
average of over 2000 calls, resulting in ambulances attending about 1200
incidents. It transported a daily average of over 5000 patients, about 1400 of
which were emergency cases.

8 We thank Darren Dalcher and Colin Tully for these insights.

CASE STUDY: THE CASE OF THE EMERGENCY NO-SHOW SERVICE 99

In the early 1980s, a national standard of 3 minutes was established for
ambulance dispatch in response to emergency calls. The LAS decided that a
computer-based system was essential to enable them to meet that standard. It
was also decided to commission a system to handle not just dispatch but the
whole range of control room functions, involving mobile radio (voice and data)
transmission. The prospectus called for the following features:

(1) A computer-aided dispatch system, with incident record-keeping

(2) An automatic vehicle location system, with mobile data terminals, that
minimizes response time by positioning units optimally and tracks long-
term asset performance

(3) A computer map display system

In October 1990, the project was terminated after two peak load tests failed.
The project was severely behind schedule and had already overrun its budget
by 200%. LAS sought damages from the prime suppliers, claiming the sup-
pliers did not understand the requirements. The vendors replied that
specifications were ambiguous, lacked clarity, and were subject to constant
change. An out-of-court settlement was eventually reached.

The LAS chief executive sponsored an independent assessment of the
failed project to be conducted by Arthur Andersen Consulting. It was based
on the original statement of requirements, excluding mobile data capability.
Arthur Anderson recommended acquiring a packaged system on a turnkey
basis, estimating a cost of $2 million and a 19-month development time. Several
packages were evaluated, including some operated by other UK. ambulance
services, but none were judged satisfactory. LAS then embarked on specifying
requirements for a new custom system.

The proposed system would automate not only manual tasks but also deci-
sion making. Once information from callers was fed into the system, it would
take over allocating and mobilizing ambulances, interacting with crews, and
monitoring vehicle positions and performance. The control room would no
longer communicate with vehicles by radio or with ambulance stations by tele-
phone because the system would handle all communications. Intervention by
controllers would be required only in exceptional cases, such as failure to
dispatch an ambulance within 11 minutes, failure of an ambulance crew to
acknowledge a message, or an ambulance going to the wrong location.

The requirements specification was completed in early February 1991, less
than 4 months after abandoning the old system. It now required the system to
be operational in 11 months. The requirements specification was detailed and
prescriptive, leaving little opportunity for suppliers’ judgment. The Present
Method of Operation (PMO) included the following functions:

(1) Call Taking: Emergency calls are received by ambulance control.
Control assistants write the details of incidents on preprinted forms.
The location of each incident is identified, and the reference coordi-

100 SOFTWARE REQUIREMENTS

nates are recorded on the forms. The forms are then placed on a con-
veyor belt system that transports all forms to a central collection point.

(2) Resource Identification: Other members of ambulance control collect
the forms, review the details on the forms, and based on the informa-
tion provided, decide which dispatcher should deal with each incident.
The dispatcher examines the forms for a particular sector, compares the
details against information recorded for each vehicle, and decides
which unit should be sent. The status information on these forms is
updated regularly from information received via the radio operator.

(3) Resource mobilization: The dispatcher either telephones the nearest
ambulance station or passes instructions to the radio operator if an
ambulance is already mobile.

The major rationale expressed for automation was the time-consuming and
error-prone nature of current activities such as identification of the precise
location of an incident, the physical movement of paper forms, and maintain-
ing up-to-date vehicle status information. Writing was illegible, and forms were
sometimes lost. The functions envisioned in the FMO for the computer-aided
dispatch system were as follows:

(1) Call Handling: British Telecom (BT) operators would route all medical
emergency calls to headquarters (HQ). HQ receivers were then
expected to enter the name, telephone number, and address of the
caller, and the name, destination address, and brief details of the
patient. This information would then be transmitted over a local area
network to an allocator subsystem.

(2) Allocator: The system would pinpoint the patient’s location on a map
display of areas within London. The system was expected to monitor
continuously the location of every ambulance via radio messages trans-
mitted by each vehicle every 13 seconds. The system would then deter-
mine the nearest ambulance to the patient.

Experienced ambulance dispatchers were organized into teams based on
three zones (south, northwest, and northeast). Ambulance dispatchers would
be offered the details of the three nearest ambulances by the system and the
estimated time each would need to reach the scene. The dispatcher would
choose an ambulance and send patient details to a small terminal screen
located on the dashboard of the ambulance. The crew would then be expected
to confirm that it was on its way. If the selected ambulance was in an ambu-
lance depot, then the dispatch message would be received on the station
printer. The ambulance crew would always be expected to acknowledge a
message. The system would automatically alert HQ of any ambulance that
made no acknowledgment. A follow-up message would then be sent from HQ.
The system would detect each vehicle’s location messages and determine
whether an ambulance was heading in the wrong direction. The system would

CASE STUDY: THE CASE OF THE EMERGENCY NO-SHOW SERVICE 101

then alert controllers. Additional messages would tell HQ when the ambu-
lance crew arrived on the scene, when it was on its way to a hospital, and when
it was free again.

Several meetings were held with prospective suppliers covering questions
on the specification and resolving other potential technical and contractual
issues. It was clear that most suppliers raised concerns over the required dead-
line. They were all told that this timetable was non-negotiable.

To prepare the requirements specification for the proposed new system, a
team was assembled under the leadership of the director of support services
with the systems manager, a contract analyst, and the control room services
manager. Other persons were also involved representing training, communi-
cations, and other areas. There was little involvement with the ambulance
crews, although invitations to participate were given to union representatives.

Work progressed on the SRS, which was finally completed in February 1991.
The work was done primarily by the contract analyst with direct assistance
from the systems manager. The proposed new system would impact signifi-
cantly the way in which staff carried out their jobs; yet as in the case of the
ambulance crews, there was little consultation on this new work.

The SRS was detailed and contained a high degree of precision on how
the system was to operate. It provided little scope for additional ideas to be
incorporated from prospective suppliers. However, as is usual in any SRS,
certain areas were yet not fully defined. In particular, there were few details
on the relationship with, and interface to, other LAS systems, including the
communications interface.

The system was lightly loaded at startup on October 26, 1992. Staff could
effectively manage any problems caused particularly by the communications
systems (such as ambulance crews pressing the wrong buttons, or ambulances
being radioed in weak signal areas). However, as the number of ambulance
incidents increased, the amount of incorrect vehicle information recorded by
the system increased. This problem had an avalanche effect, and the system
made incorrect allocations based on the information it had. For example, mul-
tiple vehicles were sent to the same incident, or the closest vehicle was not
chosen for dispatch. Consequently, the system had fewer ambulance resources
to allocate. The system also placed calls that had not gone through the appro-
priate protocol on a waiting list and generated exception messages for those
incidents for which it had received incorrect status information. The number
of exception messages increased to such an extent the staff could not clear the
queue. It became increasingly difficult for staff to attend to messages that
scrolled off the screen. The increasing size of the queue slowed the system.
As a result, with fewer resources to allocate, and the problems of dealing
with the waiting and exceptional queues, it took longer to allocate resources
to incidents.

Conclusion: Several nonfunctional feature issues typical of large systems
were apparent:

102 SOFTWARE REQUIREMENTS

(1) No backup procedure
(2) Haphazard design of user interfaces
(3) No provision made for system overload

At the receiving end, patients became frustrated with the delays in ambu-
lances arriving at incidents, which led to an increase in the number of calls
made back to the LAS HQ relating to already recorded incidents. The
increased volume of calls, together with a slow system and an insufficient
number of call-takers, contributed to significant delays in answering calls that,
in turn, caused more delays to patients. At the ambulance end, crews became
increasingly frustrated at incorrect allocations. This frustration may have led
to an increased number of instances in which crews failed to press the right
status buttons or took a different vehicle to an incident than that suggested
by the system. Crew frustration also seems to have contributed to a greater
volume of voice radio traffic, which in turn contributed to the rising radio com-
munications bottleneck that caused a general slowing in radio communications
that, in turn, fed back into increasing crew frustration. A reorganization of
sector desks caused loss of local knowledge.

Claims were later made in the press that 20 to 30 people died as a result of
ambulances arriving too late on the scene. The LAS chief executive resigned.

This case history shows the importance of the participation of key stake-
holders. Senior management (of the enterprise for whom the system is being
developed), the system developers/suppliers (either in-house or external), the
subcontracting group (where the developers/suppliers are external), and the
system users must fully participate. It is essential that those (and other) stake-
holder groups are integrated into the system process using a process like
WinWin, with each having an effective voice to express both their needs and
their knowledge. Poor intergroup communication increases risk, and success
relies on establishing stakeholder ownership and commitment. Examples of
dysfunctional relationships among groups in this case study are as follows:

(1) Failure of senior management to understand issues, get involved and
committed, organize for the systems effort, and undertake properly
informed and joined-up decision making

(2) Failure of senior management to relate the systems effort to other con-
current problems/changes within the enterprise (such as restructuring
of sectors)

(3) Unreasonable pressure by senior management on development teams
and lack of attention by senior management to staff concerns (both devel-
opers and users) exacerbated by major overspending of scarce resources
on glossy brochures, management consultants, and corporate image.’

° Dalcher, Darren and Tully, Colin, Learning from Failures, Software Forensics Centre, School of
Computing Science, Middlesex University, London, U.K., http://www3.interscience.wiley.com/
cgi-bin/abstract/102529019/ABSTRACT.

PROBLEMS 103
3.11 PROBLEMS

3.11.1 Overdue Book Notices

The librarian of a relatively small elementary school of 500 students is still
using a manual method for tracking library books on loan. As a book is taken
from the library, its card is taken from the pocket and filed by date. Books may
be borrowed for 2 weeks. When a book is returned, its card is put back into
the pocket. A book that is not returned in 2 weeks is considered overdue, and
an Overdue Book Notice is sent to the student. Volunteer clerks write overdue
book notices for about 210 books each week. It is getting hard to attract vol-
unteers, and the librarian proposes the need to hire two full time clerks at
$2000 per month ($20 per hour) to track and recover overdue books. The
average cost of a book is $25. The school prides itself on the reading skills of
its students and expects half the students will take out one book per week.
There are 2000 reading books in the library. Assume that any student will take
out any reading book. The notices are distributed weekly. The manual system
induces a book loss of 5% per week. A book that is out for 4 weeks is deemed
lost.

This format has been used for the Overdue Book notice for many years:

Glenwood School Overdue Book Notice

Book Title:

Student Name:

Teacher Name:

Date of Notice:

Notice Number 1 2 3 (circle one)

This book is overdue; please return it promptly

A student who does not return a book within 3 weeks is sent a second
notice. A book not returned in 4 weeks results in a third notice to the student,
the entry is purged from the system, and the book is entered on the princi-
pal’s “Critical Overdue Report”; the book’s card is kept by the head librarian.
The book is declared lost. Your task is to perform the requirements engi-
neering to automate the overdue book notice process, using a computer in the
computer classroom. The computer is only available to the librarian one lunch
hour per week. The computer teacher does not commit to providing the same
machine to the library, only the same computer configuration. The replace-
ment cost of the computer is $500. This is the first automation project in this
school. Data may not be left on the computer from week to week. The com-
puter is not networked. Cost factors for a good business case are as follows:

(1) Assume that each clerk costs $2000/month.
(2) Assume that the computer was not broken so there is no operational cost.
(3) Assume that the paper cost is insignificant.

104 SOFTWARE REQUIREMENTS

(4) Assume that the librarian can accomplish the computer tasks, give the
school secretary the overdue notices within the current school day, and
will not demand a raise to reflect the new skill level.

You need not actually implement the system. Instead, answer the following
four questions with all the required tables, charts, and so on:

(1) Identify five project stakeholders and their roles.

(2) Write an MOV in a clear and concise statement, and provide support
with quantitative analysis.

(3) List at least two use cases that need to be developed for the require-
ments analysis.

(4) Identify and explain at least five gaps in the prospectus that will emerge
as requirements during development.

3.11.2 Prospectus

Enhance an existing customer relations manager system using distributed
client/server and thin client architecture to maintain a record of all customer
transactions. Use an accounting style double-posting database, and make sure
the system does not lose a message and is fast and nimble. Always be avail-
able to accept a user’s screen input. The primary access key is a telephone
number.

Your Task: ldentify at least four gaps in this prospectus.

3.11.3 You are appointed product manager and project manger for the fol-
lowing prospectus:

Your company is hired by a new bed-and-breakfast (B&B) chain to build
a software system. There are four B&Bs in the chain. They each have five bed-
rooms for guests. They want a system to manage the reservations and the
arrival times for guests. Checkout is noon, and check-in is two o’clock, but
guests may request later checkout times. The chain wishes to track gross
revenues. They accept credit cards. They negotiate room price and 1-night
deposit with the customer for guaranteed reservations. They hold reservations
without deposits for 1 month.

Your Task: Write five functional and nonfunctional qualitative feature
requirements for this system.

3.11.4 List four requirements risks that face software requirements
engineers.

3.11.5 Compare the characteristics of evolutionary prototypes with those of
throwaway prototypes.

BIBLIOGRAPHY 105

BIBLIOGRAPHY

“Best Current Practices: Software Architecture Validation,” AT&T, Murray Hill, N.J.,
1993.

“Function Points as Asset Reporting to Management,” IFPUG Conference Proceed-
ings, 1990.

“Process Engineering with the Evolutionary Spiral Process Model: Version 01.00.06,”
Tech. Report SPC-93098-CMC, Software Productivity Consortium, Herndon, VA,
1994.

Bachman/Function Point Analyst, Product Announcement, Bachman, Inc., 1994.

Bernstein, Lawrence. “Where to Invest Your Software Bucks,” IEEE, Piscataway, NJ
Feb. 1995.

Boehm, B. and Bose, P. “A Collaborative Spiral Software Process Model Based on
Theory W,” Proceedings of the International Conference of Software Process, IEEE
CS Press, Los Alamitos, CA, 1994, pp. 59-68.

Boehm, Barry et al. “Software Requirements as Negotiated Win Conditions,” Pro-
ceedings of the International Conference on Requirements Engineering, IEEE CS
Press, Los Alamitos, CA, 1994, pp. 74-83.

Boehm, Barry, et al. “Prototyping Versus Specifying: A Multiproject Experiment,”
IEEE Transactions on Software Engineering, May 1984.

Boehm, Barry. “Software Risk Management, Principles, and Practices,” IEEE Software,
Jan. 1991.

Boehm, Barry. “A Spiral Model of Software Development and Enhancement,” Com-
puter, May 1988, pp. 61-72.

Boehm, Barry. Software Engineering, IEEE CS Press, Los Alamitos, CA, 1990.
Boehm, Barry. “Anchoring the Software Process,” IEEE Software, July 1996, pp. 73-82.

Carleton, Anita D., Park, Robert E., and Goethert, Wolfhart B. “The SEI Core
Measures: Background Information and Recommendations for Use and Imple-
mentation,” CrossTalk, May 1994.

Fisher, R. and Ury, W. Getting to Yes, Penguin Books, New York, 1981.

Flowers, Stephen. “Software Failure: Management Failure,” Report of the Inquiry into
the London Ambulance Service, Feb. 1993.

Frazier, T. and Bailey, J. “The Costs and Benefits of Domain-Oriented Software Reuse:
Evidence from the STARS Demonstration Projects,” IDA Paper P-3191, Institute
for Defense Analyses, Alexandria, VA, 1996.

Jones, T. Capers. Applied Software Measurement, McGraw-Hill, New York, 1991.

Lusher, Paul W. “Function Point Analysis for Real-Time Weapons Control,” IFPUG
Conference Proceedings, Sept. 1992.

Neumann, Peter G. Computer-Related Risks, ACM Press, New York, 1995.

Neumann, Peter G. “Inside Risks,” ACM SIGSOFT Software Engineering Notes, Vol.
16.3, 1991, pp. 19-20.

Neumann, Peter G. “Inside Risks,” ACM SIGSOFT Software Engineering Notes, Vol.
16.4, 1991, pp. 17-18.

Neumann, Peter G. “Inside Risks,” ACM SIGSOFT Software Engineering Notes, Vol.
17.2,1992, pp. 4-5.

106 SOFTWARE REQUIREMENTS

Neumann, Peter G. “Inside Risks,” ACM SIGSOFT Software Engineering Notes, Vol.
18.1, 1993, p. 25.

Royce, W. E. “TRW’s Ada Process Model for Incremental Development of Large
Software Systems,” Proceedings of the 12th International Conference of Software,
1990, pp. 2-11.

Samadani, Hamid, et al. “Army Reuse Center Tackles CASE-Based Reuse,” CrossTalk,
May 1994, Vol. 5, p. 10.

Shneiderman, Ben and Plaisant, Catherine. Designing the User Interface, 4th ed.
Pearson Addison Wesley, Reading, MA, 2005.

Simpson, Moira. “999!: My computer’s stopped breathing!”, The Computer Law and
Security Report, March—April 1994, pp. 76-81.

The National Software Council Charter, April 1995.

Prototyping

Software prototyping has become the backbone of most software develop-
ment. The technique goes a long way toward solving the dual problems of
uncertainty in requirements and the early establishment of a close relation-
ship between developer and customer. Prototyping is so important a tool and
so useful throughout the development process that we treat it here, early in
your learning experience. The prototyping process validates the requirements
for a system, which includes finding those requirements that are so obvious
the customer did not even think of stating them. Customers have things they
want and things they need. Prototyping helps project managers distill cus-
tomers’ needs from their wants to provide the former and as much of the latter
as is consistent with delivering the system on time and at reasonable cost.

4.1 MAKE IT WORK; THEN MAKE IT WORK RIGHT

Very early in the drive to industrialize software development, Royce pointed
out the following truths:

There are four kinds of problems that arise when one fails to do adequate
requirements analysis: top-down design is impossible; testing is impossible; the
user is frozen out; management is not in control. Although these problems are
lumped under various headings to simplify discussion, they are actually all vari-

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

107

108 PROTOTYPING

ations of one theme—poor management. Good project management of software
procurements is impossible without some form of explicit (validated) and
governing requirements.’!

4.1.1 How to Get at the Governing Requirements

Boehm conducted experiments to compare the efficacy of written specifica-
tions to prototyping. His experiments, which are discussed in more detail in
Section 4.5, showed that prototyping and specification-driven methods each
have valuable advantages that are complementary. For most large projects and
many small ones, a mixture of prototyping and specification is preferable to
the exclusive use of either. Prototyping became the foundation for Boehm’s
spiral risk-driven development method because of its efficiency. In addition to
clarifying requirements, prototyping is used to simplify software design, to
evaluate user interfaces, and to test complex algorithms. Be prepared to expect
resistance from management; even though the economics of making the initial
high investment in prototyping equipment is still small in comparison with the
huge amount spent later to fix unsuitable products in the field, these economics
are either not a part of the cultural wisdom or are irrelevant because of the
length of many projects. The manager who starts the project and takes the hit
for the initial money is not there 3 to 5 years later when the benefits accrue.

\‘//

\‘//

MAGIC NUMBER!

=i

For every dollar invested in prototyping, expect a $1.40 return within the
life cycle of the system development.

4.1.2 Rapid Application Prototype

A rapid application prototype is a dynamic visual model providing a commu-
nication tool for customers and developers. It is more effective than docu-
ments or static charts for portraying functionality. It provides users with a
physical representation of key parts of the system before implementation, and
modifications require small efforts.

Rapid application prototypes do not necessarily represent a complete
system. Without prototyping, fully 30-40% of all requirements will change
before the system is delivered. Prototyping throughout the development
process reduces the requirements churn to no more than 10%. Rapid appli-

! Royce, Winston. Practical Strategies for Developing Large Software Systems, Addison-Wesley,
Reading MA, 1975, p. 59.

MAKE IT WORK; THEN MAKE IT WORK RIGHT 109

cation prototyping provides a look at the dynamic states of the system before
building, whereas most other software engineering focuses on source code. The
special problems of reliability, throughput, and response time as well as system
features are best addressed in prototypes. The prototype can be used to under-
stand the dynamics of performance under various loads, where bottlenecks
might occur, and how design algorithms actually function. This process can be
done before the much more costly effort is made to actually build a system.

Luqi at the Naval Postgraduate School in Monterey, California coined the
term computer-aided prototyping® to describe an approach to rapid applica-
tion prototyping that relied on a specially designed tool—in effect, software
to help design software. Luqi is particularly interested in software automation,
because it can improve software productivity and reliability. Her work involves
automating development tasks currently carried out by engineers. She and her
Prototyping Research Group are trying to use specifications and abstractions
to make prototypes easier to construct, understand, and analyze. They use
advances in software modeling to produce tractable formal models of
problems and criteria for evaluating solutions. Computer-aided prototyping
systems (CAPS) demonstrate the feasibility of automation in software devel-
opment. Once domain models are formulated, artificial intelligence technol-
ogy automates the solution processes in relatively narrow areas of tool
development.

In rapid prototyping, interactive prototypes are developed that can be
quickly replaced or changed with design feedback. This feedback may be
derived from colleagues or users as they work with the prototype to accom-
plish set tasks. This method is concerned with developing different proposed
concepts through software or hardware prototypes and with evaluating them.
The development of a simulation or prototype of the future system can be
helpful, allowing users to visualize the system and provide feedback on it. Thus,
it can be used to clarify user requirements options. Later on in the life cycle,
it can also be used to specify details of the user interface to be included in the
future system. Here is a procedure for adopting the rapid prototyping method:

(1) Schedule 20-30% of the project development time to create the proto-
type. If the prototype is to be evaluated with users, then allow additional
time to design relevant tasks, recruit the users, evaluate the prototype,
and report the results. A good approach is to set up a model of the cus-
tomer business operation in the software development laboratory
where the prototypes can be tried in a simulated business environment.

(2) Assemble the necessary equipment, including the hardware and soft-
ware tools necessary to create the interactive prototype.

(3) Develop the prototype in a specialized language if the only goal is to
rapidly understand the feature’s needs and the user interfaces. If the

2 Luqi, Yeh R.“Computer-Aided Software Prototyping,” IEEE Computer,Sept. 1991, pp. 111-112.
Luqi, Yeh R. “Rapid Prototyping in Software Evolution,” Encyclopedia of Software Engineering,
John Wiley and Sons, Inc., New York, 1994, pp. 1-21.

110 PROTOTYPING

goal includes understanding the technology for the final project, then
use the computer language planned for the product.

(4) Select appropriate users to test the prototype, trying to cover the range
of users within the target population. Hire a facilitator to instruct the
users and run the evaluation.

(5) Prepare realistic tasks to occupy the users as they work with the prototype.

(6) Pilot the evaluation procedure, and ensure the prototype can be used
to accomplish the tasks.

(7) Provide recording facilities.

(8) Conduct each session. The facilitator instructs the user to work
through the allocated tasks, interacting with, and responding to, the
system as appropriate.

(9) Interview users after their use of the prototype. Debrief the users.

(10) Analyze the obtained information, and then summarize the observa-
tions and user evaluations. Determine the themes and severity of the
problems identified.

(11) Summarize design implications and recommendations for improve-
ments and feedback to design team. Video recordings can support this
process.

(12) Refine the prototype, and repeat the above process.

(13) Avoid spending too long on the development of initial prototypes as
user evaluation often results in substantial changes.

(14) Avoid making the prototype too polished as this may induce users and
their bosses to insist that it is finished.

(15) Do not put in features that will raise the users’ expectations but that
are unlikely to be achieved with the real system (e.g., too fast response
times, too sophisticated graphics), and do not put too much effort into
particular features (e.g., animations) that may not be required.

Many tools exist for producing rapid prototypes ranging from a sequence
of Microsoft PowerPoint screens to script-based programming systems, such
as Visual Basic and Visual C++, that can help to create a software prototype.
A cost of prototyping is the level of human expertise required to master the
supporting development tools, along with the time necessary to implement a
software prototype. Helpful websites include http://www.uidesign.net/2000/
papers/evangelize.html and http://www.humanfactors.com/downloads/jul042.
htm#susan.

4.1.3 What’s Soft Is Hard

Software is hard because it has a weak theoretical foundation. The limited
theory that does exist focuses on analysis of static behavior, i.e., the source
code. To avoid serious problems, software systems are overengineered with a

SO WHAT HAPPENS MONDAY MORNING? 111

capacity for two or three times the expected load because designers have no
idea what resources will be needed in actual operation. This guesswork is
expensive, unlike the known security of overengineering a bridge or a building.

Software has the awful propensity to fail with no warning. Even after we
find and fix a bug, how do we restore the software to a known state, one where
we have tested its operation? For most systems, this is impossible except with
lots of custom design that is error prone. Software prototyping has proven its
worth in helping designers avoid these problems in production systems.

Much has been written about the best way to develop software applications,
much of it with a bit of truth, but there is no “best way.” A requirements-driven
approach is successful when the requirements are well known, but it cannot
work when the situation makes specifying requirements in advance difficult.
This result happens most frequently in human-machine interface systems
when users cannot specify what they have never seen.

A prototype may be tossed aside once it has served to provide system insight,
or it may evolve to become the foundation of the production system. Both
prototyping and requirements are necessary because both synthesis and analy-
sis solve software engineering problems. Bottom-up is synthesis. Top-down is
analysis. Bottom-up is creating a prototype. Top-down is developing require-
ments. Working with a tangible prototype creates an invaluable dynamic expe-
rience for both customer and designer. Formal written requirements are needed
to establish a clear definition of the job, to control changes,and to communicate
the system capabilities between the customer and the developer.

4.2 SO WHAT HAPPENS MONDAY MORNING?

The first step is to capture the customer’s and your statement of the problem,
written in human language, and to develop a broad outline of its solution. A
rough sizing of the job in terms of the ultimate staff required to build the
working product follows this. Approximately 30% of the full staff will build
one or two prototypes for elements of the problem that are not well under-
stood or for which there is no existing technology.

The running prototype can be analyzed with computer-aided prototyping
technology. The results can be synthesized to produce a new solution either
by refining the existing prototype or by building a new one.

When you and the customer agree that the prototype addresses the
problem, requirements that include features, performance goals, product costs,
product quality, development costs, and schedule estimates can be mutually
developed.

4.2.1 What Needs to Be Prototyped?

Customers need to see and touch new features that have never existed in their
business environment. Multiple windows, for example, need to be tried with

112 PROTOTYPING

the tasks that surround their use. Pilot projects use prototypes to explore new
technologies. They focus on letting the development staff gain experience with
a new approach while working in the problem domain of the project. Pilot
projects using object-oriented programming to build a prototype for transac-
tion customer interface systems have been effective. The prototype is not pro-
duction code. It may eventually become preproduction code, or it may be
completely discarded. In the prototyping effort, we are not concerned with
ease of maintenance or with formal documentation. These concerns are
extremely important, however, to a deliverable product. Code resulting from
prototyping is often used to train programmers, and this is where the corpo-
rate ethic of thoroughness and quality in the final product can be emphasized.

Only after we have written specifications resulting from the experience with
the prototype should we start the formal development process. If some of the
prototype’s code can be carried forward, that is a bonus. If not, there is no loss.
A prototype may produce running software, whereas the production devel-
opment produces reproducible, maintainable, saleable software.

4.2.2 How Do You Build a Prototype?

Only a few developers and system engineers need to work together in an
unstructured way to gain the insight of the prototype. This team can be much
smaller than the development team. Communication among people in proto-
typing is less of a problem than it is on a large development effort. Because
the development schedule does not rely on the use of the prototype’s code, it
need not be industrial strength nor require change controls. The prototype will
reflect the excitement and freewheeling nature of a small project.

A prototype may be a storyboard to display the user interface expected for
a transaction system. Some of these transactions should be programmed to
gain an understanding of how the system will work, which may be done in a
rapid prototyping environment that provides elaborate tools, but the per-
formance overhead renders the resulting system impractical for production
use.

A prototype may be built in the expected production environment as a way
to train the developers and familiarize them with a new set of programming
tools. This opportunity is best taken when an organization is upgrading its
technology.

A prototype may be an analytical model built in a higher level language to
gain algorithm understanding, all the while understanding that the exercise
will not produce code that will fit in to a production system.

4.2.3 How Is the Prototype Used?

Nimbleness to market drives the development business. This pace is set by the
customer’s willingness to adopt new technology more readily and by increased
expectations from both your customer and your customer’s customers. A

SO WHAT HAPPENS MONDAY MORNING? 113

typical cycle from conception to product delivery requires complete system
development and fielding in less than 18 months. Prototyping makes this pos-
sible. Faster technology adoption means trying new technology with existing
products faster to determine its effectiveness. Increased user expectations
require the user to be more involved in the requirements engineering process.
Even this is not sufficient to satisfy some customers. If the demonstration
of a prototype results in validation of the requirements for that system, the
customer may want to take the prototype as is. Because most prototypes are
not tested to critical limits nor integrated with existing systems, this may not
be possible, practical, or reasonable. A professional will resist this pressure.
A new software evolution paradigm is needed to accomplish speed, accu-
racy, and reliability, along with the automated tools. Luqi’s CAPS incorporates
the goals and opinions of the user from the beginning of the software evolu-
tion process, throughout the life cycle, and into retirement. Automated
tools like CAPS assist the software developer in building executable proto-
types of a software system quickly, involving the user in an iterative
build-execute-modify loop until the user is satisfied with the demonstration
of the prototype. The prototype is then used to build the final version of the
software through the use of the architecture included in the prototype, as well
as the validated set of requirements constructed during the prototyping
process. The resulting final version is delivered relatively quickly, hopefully
before the user’s requirements have an opportunity to change (Table 4.1).

TABLE 4.1. Evolutionary vs. Throw-Away Prototypes

Evolutionary An initial prototype is produced and refined through several stages resulting in
when the final system.
Development starts with those requirements that are best understood.
Best choice when a specification cannot be developed in advance.
Based on techniques that allow rapid system iterations.
Verification is impossible because there is no specification.
Validation means demonstrating the adequacy of the system.
Accelerates delivery of the system.
End users engaged early in design are more likely to use the product.

Throw-away A prototype is developed from a prospectus.
when A prototype is produced only to discover requirements problems and then is

discarded. The system is developed using another development process.

The prototyping process starts with those requirements that are poorly
understood.

The process reduces requirements risk.

Some system characteristics can be been left out, especially long-term
operation.

The prototype is usually poorly structured and therefore difficult to maintain.

Luqi, along with many graduate students and visiting researchers, spent
years developing CAPS. Their efforts have resulted in a system that can be
used to build executable prototypes of embedded real-time systems. The

114 PROTOTYPING

approach uses prototype demonstrations to determine and update the require-
ments of a proposed system during both requirements analysis and the evo-
lutionary life cycle. Misunderstandings emerge clearly, allowing developers
and customers to arrive at an accurate formulation or a reasonable estimate
of the system’s goal. Prototyping tools provide decision support for formulat-
ing a design and establishing system feasibility. An example might be evalu-
ating hard real-time deadlines for software functions relative to proposed
hardware configurations.

These prototypes are useful for validating requirements through demon-
strations to customers, but they are not practical for providing deliverable
products. CAPS rely on external support for building graphical user interfaces
and manual translation of requirements into prototypes. This manual transla-
tion is problematic. The possibility of misinterpretation by the designer could
lead to wasted effort in the prototype building process. Prototypes generated
using CAPS generally lack robustness and portability. It is easy to build pro-
totypes as long as proper inputs are made and use follows the designer’s expec-
tations. If messy reality intrudes and the designer has not built sufficient error
handling into the prototype, execution can halt unexpectedly. Robustness can
be built into CAPS prototypes, but automated methods for testing these qual-
ities are not included. Manual methods are possible, but they would severely
increase development time. This classic problem is typical of these tools. The
demands of the product far exceed the ability of the support tool to produce
software that will meet the constraints of the execution environment for the
product.

4.2.4 What Happens to the Prototype?

Current software development methods and tools are insufficient to produce
usable code in a reasonable amount of time, but rapid prototyping methods
approach the needed capability. An incremental software development
methodology, using the rapid prototyping paradigm, reduces development
time and puts subsets of usable functions in the hands of the customer quickly.
For example, Junction Solutions® uses a software prototyping approach called
a “conference room pilot” to rapidly configure a system for business. The pro-
totype models exactly how the software will work in the business. This
approach manages project risk by evaluating exactly how the software will
function when it is implemented.

The only purpose for throw-away prototypes is to help the customer iden-
tify requirements for a new system. Only the derived requirements will be
maintained. The prototype is destroyed because the tools that created the pro-
totype are unsuitable for use or unacceptable to the customer’s IT organiza-
tion as a production system.

* http://www.junctionsolutions.com/spc/spfa.html.

SO WHAT HAPPENS MONDAY MORNING? 115

Quick and dirty prototypes bring up a version of a system that is modified
repeatedly until the customer can grant minimal approval. Care must be taken
that something intended to be temporary does not actually become permanent.

Detailed design-driven prototypes are the intellectual children of engi-
neering disciplines in which “prototype” means a preproduction model of a
system. Like the concept car at an auto show, the model is “test-driven” to
uncover defects.

Nonfunctioning mock-ups provide the customer with visual examples of
system process inputs and outputs. No data are actually input, nor are results
computed and output. The difference between throw-aways and mock-
ups is the presence or absence of real data. Mock-ups are not definitive in
identifying functional requirements because of the lack of interactive
experimentation.

Evolutionary prototypes are easily modifiable and extensible working
models of a proposed system, although not necessarily representative of the
complete system, which provides customers with a physical representation of
key parts of the system before implementation. They are easily built, readily
modifiable, ultimately extensible, partially specified working models of the
primary aspects of a proposed system. As a cost-effective means of discover-
ing the true and complete set of system functional requirements that will opti-
mally satisfy the legitimate business needs of the user, given a level of funding
acceptable to the customer and software developer, the goal is to evolve the
prototype into the final system. Evolutionary prototyping techniques can be
applied effectively to all phases of the software development cycle.

Detailed analysis and design do still take place. The techniques of evolu-
tionary prototyping are applied concurrently with structured analysis at the
beginning of the project and with structured design during the tuning phase.
Evolutionary prototypes are characterized by real-world data used during pro-
totyping, their easy modifiability, and the probability that they should, in most
cases, develop into the final system.

The risks of rapid prototyping are that mistaken concepts concerning
definitions, objectives, and correct application of the technique can lead to
poor design, and those disagreements with customers regarding methodology,
standards, and tools can lead to insurmountable conflict. Customers need sen-
sitive and firm management to prevent them from becoming pseudo-engineers
who want to iterate and evolve the prototype into a system that does every-
thing for everyone all of the time. Budget slashes and attempts to shortcut
appropriate efforts are also some temptations engendered by use of the word
“rapid” beyond the group of professional software engineers who acknowl-
edge its limited interpretation. The ethical engineer might be in the position
of having to refuse premature delivery of a prototype because only a
thoroughly documented and tested final product should be released. The final
risk can afflict the customer, the engineer, and the management. That is the
lure of the overevolved prototype. Elegance and efficiency, the ultimate
specialization, can trump the need for flexibility in real-world environments.

116 PROTOTYPING

Operational scenarios can be understood by prototyping a proposed
system. This approach works well where there are complex interactions among
systems and between software and people. A high-fidelity prototype models
each user’s functions, which includes menus, commands, screen formats, screen
and operational navigation sequences, response times, error messages, and
help messages. The frequency and use of features are modeled in the
prototype.

4.3 IT WORKS, BUT WILL IT CONTINUE TO WORK?

When we finally get a system to work, how do we know it will continue to
work? As its load grows, can we be sure that it will respond properly to out-
of-range data, that it will handle data that arrives when it should not, and that
its performance degrades predictably? The prototype that is used throughout
the life cycle affords the opportunity to answer these questions.

Prototyping in more traditional engineering disciplines is the common
approach to demonstrating the feasibility of the functionality of a system early
in the life cycle. Prototyping is also used for risk assessment and to validate
end user requirements. Software engineers began to recognize the benefits of
prototyping software systems in the early 1980s. The benefit of establishing a
standard against which the end user needs are validated is that it reduces the
number of problems manifesting late in the life cycle. In addition, the stan-
dard serves as a means of design validation. Executable requirements and
specification techniques allow for the dynamic demonstration of functionality
of a software system.

On the other hand, prototyping has not been as successful as anticipated in
some organizations. Unreasonable expectations, the rush to market, poor
training, and costs can each have a negative impact on using software proto-
typing techniques. A common problem with adopting prototyping technology
is high expectations for productivity with insufficient effort. In addition to
training for the use of a prototyping technique, there is an often-overlooked
need for developing a corporate and a project-specific underlying structure to
support the technology. When this underlying support structure is missing, soft-
ware shops experience low productivity as product developers are distracted
by the need to perform the support roles. Nevertheless, the prototyping
approach is a good software practice. Its use should become the expected way
software development is done. Figure 4.1 shows the savings in terms of devel-
opmental time and effort with prototyping.

4.4 CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT

Today many projects model and simulate system performance, but the Safe-
guard antimissile missile system was early to use prototypes and simulations

CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT 117

Total Effort Using Old Process

Systems
Engineering Development Deployment
o 60% 30%
10%
Reduced with User-centered Design
Systems
Engineering Devezlgc;;ment Dep1lo¥);nent
20% ° 5%
40%
Reduction
in Effort

Figure 4.1. Cost of software system development.

to drive its software development. After some false starts, the entire software
effort fell into lockstep with the prototype and simulation program. This is the
story of the effectiveness of this approach.

Bell Laboratories was responsible for the design and development of the
Safeguard System from 1967 to 1977. It was to defend U.S. ICBM silos by inter-
cepting ballistic missile attacks. The intention was to deter enemy ICBMs. The
successful development program resulted in the SALT II treaty, which slowed
the arms race by halting deployment of ABM systems. It also demonstrated
the wisdom of an extensive simulation program calibrated with actual field
data.

Safeguard employed long-range and short-range interceptor missiles. The
missile site radar (MSR) performed atmospheric target tracking and defen-
sive missile guidance. The radar used phased array technology to form and
steer radar beams at electronic speeds under software control. Bell Labora-
tories designed a computer capable of multiprocessing as many as ten proces-
sors in parallel to run the software. A table-driven operating system achieved
efficient parallel performance by capitalizing on the predictable sequence of
tasks the Safeguard system used to find, track, and intercept enemy reentry
vehicles (RVs).

Shortly after the government decided to deploy an ABM system, Bell
Laboratories formed a System Evaluation department to provide quality
assurance. Its objective was to ensure that the design met the system objec-
tives and that the implementation met the system requirements. To carry out
that objective, the department designed field tests to conduct on the Kwajalein

118 PROTOTYPING

test range in the Marshall Islands in the South Pacific, using a prototype of the
tactical system. Typical mission scenarios were used to measure software
progress throughout the entire development cycle.*

The prototype was elaborate, including computers, software, missiles, and
radars. This effort became the driving force for the software development
effort. An early test showed that the computer design was faulty. There were
negative timing margins in some logic chains, which required a redesign of the
architecture. The prototype revealed serious support shortfalls in the operat-
ing system, the main problem being that it took 5 days to compile the soft-
ware to get the intermodule references correct and build a working executable
software system.

The system evaluation team took the approach of developing a family of
simulations to predict and confirm system performance. The highest-level sim-
ulation predicted the performance of the entire system in response to a full-
scale attack. To facilitate the design of the simulation, the models of
subsystems (missiles and radars) were only as detailed as was required to
enable the system simulation to model overall system performance. Detailed
simulations of all major subsystems validated the high-level models. In some
cases, the phenomena modeled in those subsystem simulations were based on
even more detailed simulations accounting for the fundamental physics
involved.

This approach depended on the validity of the simulations used at all levels
of system analysis. Real data taken during subsystem and system tests vali-
dated and calibrated the simulations. Extensive simulations were run before
the field tests. This approach predicted system performance, found software
errors, and eliminated surprises. Before any test, multiple simulations were run
to obtain a statistical distribution of predicted performance. Because there
were many variables in each test, the precise results could only be predicted
statistically. Once the test ran and real data were obtained, the simulation was
rerun using the measured data. The simulations reconstructed actual missile
flight history and miss distance. Differences were noted, and the models were
recalibrated. This method worked well and gave high confidence in simula-
tions of battles against Soviet ballistic missiles.

Each system test cost $5M to $10M. For this reason, the test program design
maximized meaningful information obtained per test and minimized the
number of tests, which resulted in a program that stressed the entire system
and its components in specific areas separately. It validated total system per-
formance. In every case, exhaustive simulations were conducted before the
field test so there was high confidence that it would be successful.

* Bernstein, L, Burke, E. H., and Bauer, W. F. “Simulation- and Modeling-Driven Software Devel-
opment,” CrossTalk: The Journal of Defense Software Engineering, Vol. 9, No. 7, July 1996, pp.
25-217.

CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT 119
4.41 Significant Results

The radar had to track ballistic missiles at short range, which was a special
challenge to the System Evaluation Department. When a warhead reenters
the atmosphere, the friction between the ballistic missile and the increasingly
dense atmosphere generates tremendous heat as the ballistic missile descends.
This heat ionizes the atmosphere, producing a wake of ionized air trailing
behind the ballistic missile. The radar pulse is reflected by this ionized wake
as well as by the ballistic missile. Consequently, the radar return is a com-
posite of the “clean” reflection from the ballistic missile and an irregular reflec-
tion from the extended wake. The task faced by the evaluation team was to
model the physics associated with the generation of wake with sufficient
fidelity to evaluate the effectiveness of the radar tracking before tests with real
ballistic missiles.

The radar used a software closed-loop feedback system to maintain the
range gate (a window in time during which the radar would look for the target)
and the azimuth and elevation of the radar beam pointing at the target. The
design of the range gate assumed a clean target return. As long as a sufficient
gap existed between the clean return from the target and the extended ir-
regular return from the wake, the algorithm worked well. However, if there
was no gap between the two returns, the range gate would drift back onto the
wake and the software would lose track of the target.

This modeling was extremely complex. It had to account for the interaction
of the radar pulse that employed a range of frequencies to improve range re-
solution (known as “chirp”) with the reflections from the stationary ionized
particles of the wake and the reflections from a fast-moving ballistic missile.
The Doppler effect shifts the echo of a chirp pulse from a stationary target
away from the echo from a moving target. This shift had a significant impact
on the degree of separation, or gap, between the target and the wake reflec-
tions and consequently was critical to the evaluation of the tracking software.

After months of painstaking effort to model the effect of wake on the radar
tracking scheme, the simulation showed the radar would consistently lose
track during the interval of peak wake. This result was unexpected. Had it not
been for the simulation, it would have remained obscure until the first system
tests on Kwajalien a year later. This analysis prevented a software crisis. The
discovery that the tracking algorithm was flawed resulted in a focused effort
to redesign it. A threshold scheme insensitive to the gap between target and
wake reflections was developed. Simulation results were used to tune and test
the new algorithm that would maintain track on a waking target.

The new tracking scheme was not available in time for the initial system
tests, which therefore were conducted using the original tracking algorithm.
The radar lost track of the target at the altitude that the simulation predicted.
Later tests conducted with the revised tracking scheme were successful, again
as predicted by the simulation. The new algorithms were implemented in the

120 PROTOTYPING

operational software. The simulation results were then used to check that the
algorithms were implemented correctly. The benefit of the evaluation effort
was that the development of the revised tracking algorithm began about a year
earlier than it would have if the problem had first surfaced during system tests,
which advanced the overall system test program by 1 year because low-
altitude target tracking was a prerequisite for most system tests. Predicting the
problem and having a solution ready before the first system tests preserved
the credibility of the System Evaluation Department.

The software development schedules were based on the need to meet the
field tests. Each capability was carefully defined, and detailed software verifi-
cation tests were run to assure that each capability was available in the next
software load. After software was assembled for a field test, special software
certification tests were run to make sure that the system operated properly for
combinations of possible target and interceptor conditions. This approach led
to incremental development. Progress in the development of the software
modules was tracked by measuring readiness for field tests. The module devel-
opment plans and tests reflected field test needs as defined by the system
simulation engineers.

The newest tracking algorithms for the ballistic missile were validated in
the field. The simulations anticipated the failure of the first tracking test
because of errors in the software tracking programs. The developers, to their
everlasting regret,ignored the simulation results. It took another failure before
the software developers took the simulation results seriously.

Computer round-off errors led to a second tracking problem. Early simu-
lations were conducted on a commercial computer, but the computer used in
Safeguard was a special-purpose computer. Of particular concern were the
algorithms used to track the incoming ballistic missiles. The simulations pre-
dicted that the tracking algorithms would work well under the expected tac-
tical situations. However, system evaluation engineers grew suspicious of the
difference in the computers and suspected it would affect the validity of the
simulations. The commercial computer represented numbers with 36-bit accu-
racy, whereas the special-purpose computer used in Safeguard had 32-bit accu-
racy. When the simulation was modified to model the 32-bit accuracy of the
Safeguard computer, round-off errors emerged. The tracking algorithms
required the inversion of a 9 by 9 matrix. This matrix was characterized by
very large diagonal terms and very small off-diagonal terms. At first, it seemed
that the algorithms would be adequate, but it was just because the initial target
trajectories came directly at the radar. Only after “fly-by” trajectories that
were characterized by having high angular velocities relative to the radar were
simulated did the discrepancy between the 36-bit and the 32-bit accuracy
become apparent. On such trajectories, the off-diagonal terms became impor-
tant in predicting the target position and, with the 32-bit accuracy, the soft-
ware would lose track of the ballistic missile target as it began to fly by the
radar. The simulations showed the need for double-precision arithmetic in the
matrix inversion operation, which was discovered at the same time the field

CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT 121

test was conducted. The software lost track of the ballistic missile as predicted.
The software was then changed to conform to the model. The model and
simulations became the standard for software performance.

After several years of validation with data from live tests, confidence grew
in the ability to predict test outcomes. One parameter predicted was target
impact. As the difference between predicted and actual target impact was
plotted for ten tests, a bias became apparent in one direction. By now the
quality of the simulation and the accuracy of the tactical software in all other
respects were highly regarded, so other sources of error were suspected. The
location of the Kwajalein atoll relative to Vandenberg Air Force Base was in
error. A resurvey, treated with great skepticism by the contracting officer,
showed that the location was off by precisely the bias detected by the
simulations.

In another instance, the quality of the simulations saved a missile test that
might otherwise have failed. After intercept, special tests were performed on
the interceptor missiles to see how they performed under the greatest stress.
An order to the interceptor to turn right as fast as it could was followed after
2 seconds by an order to make a sharp left turn. This maneuver was called the
“tail wag” algorithm. The direction of the tail wag was changed to avoid a tight
flight safety boundary. Instead of ordering right turn-left turn, the opposite,
left then right, was ordered. If the interceptor chosen for the field test
happened to be faster than average, it had room to avoid the range safety
boundary.

Whenever an order to self-destruct was sent to an interceptor missile, the
missile tracking software continued to track one of its fragments so that the
fragment would not fall into an inhabited area. The simulation showed that if
the sine of an angle became greater than 1, the software would abort. This
would not stop the computer because special code was available to handle
recovery from abends, but software checks were added to prevent the abort.

The field test scenarios were run hundreds of times before each live test
with only random noise generators changing the details of the scenario. These
were Mission Reliability tests designed to stress the computer hardware and
software before each field test. There was some controversy about the need
for these extensive tests until an operating system race condition was found
in the 108th running of one scenario. This latent bug could have stopped data
recording during a live field test, which would lead to failure. There was no
more discussion about the need for such software testing.

The results of the simulation runs were compared with tests of the tactical
software to ensure software correctness. When there was a difference between
the simulation and the software tests, comparative tests would be run to isolate
the problem, which moved debugging from detective work to analysis. The
data reduction approaches invented for the simulations were a model for
testing the software loads and eventually led to automated analysis for the
software reliability tests. When exceptionally stressful multiple ballistic missile
and multiple interceptor scenarios were run, a design error was found in the

122 PROTOTYPING

software scheduler. It did not show up in the simulators, but it caused a system
failure when software tasks were improperly dispatched in the Safeguard com-
puter. The simulation data helped to isolate the problem rapidly.

Near the end of the test program, the simulations became so trustworthy
that a major catastrophic problem was almost overlooked. Designers would
tune the range gates’ size in the tracking algorithm for each field test based
on the simulation results. Early tests in the program stressed ballistic missile
tracking with low-altitude intercepts. Those conducted later stressed intercep-
tor guidance with high-altitude intercepts. As the altitude of the intercepts
increased, designers tightened the range gates to decrease miss distance. The
software became tuned for high-altitude intercepts, and the software could
lose track of the ballistic missile at low altitudes, thereby invalidating all pre-
vious tests. When this problem was found, the tracking software was fixed and
all the tests were resimulated to validate system operation. Repeating the field
tests was avoided because of the quality of the simulation.

In one test, the interceptor actually hit the ballistic missile! The 1970s
antimissile system hit a bullet with a bullet.

4.4.2 Lessons Learned

The system evaluation experience validated the overall approach of predict-
ing system performance by extensive analysis and simulation. Validating the
simulations with data from live system tests worked. The approach proved
effective in four ways:

(1) Exhaustive and detailed simulations revealed requirements flaws and
made them easy to fix. There were no schedule slips caused by these
flaws.

(2) The number of tests was minimized.

(3) The family of simulations was validated, which modeled the perform-
ance of the Safeguard system under full enemy attack.

(4) Scenarios successfully tested the tactical software, found bugs, and
tracked software development progress.

This simulation and modeling technique evolved spontaneously during the
development of the Safeguard system. It can be used to good effect in
the development of any large complex system. It was used successfully in the
development of systems used to operate telephone networks. At the Univer-
sity of Florida during the 1980s, Mills’ showed that scenario-based testing is
30 times better than classic coverage testing.

The technique is to model system components and the entire system in a
hierarchy of models. The models are then used to systematically simulate

5 Mills, Harlan. http.//www.stsc.hill.af.mil/crosstalk/1996/07/simulati.asp.

CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT 123

system performance with typical operational scenarios. The operational soft-
ware design is based on functional requirements embedded in the models and
the operational scenarios run against the production software. The results of
the simulation are compared with results from the operational tests, and any
differences are resolved.

Validating requirements and providing them to developers unambiguously,
moving debugging from detective work to comparative analysis, and measur-
ing software development progress in terms of completing scenario tests led
to a successful Safeguard software development program. This approach
became known as model-driven software development.

4.4.3 Additional Business Histories

The following case histories are brief summaries of actual problems and their
solutions experienced in a business environment.

4.4.3.1 Order Reading and Analysis Software

Purpose: Find a method for order reading and analysis that is applicable to
variable formats.

Prototype: The size of the prototype was 12,000 new or changed source lines
of code (NCSLOC) written in C, which was 10% of the final system module.
This was created and used by four people for 8 months.

Rationale: The software team was being converted from COBOL program-
ming to C programming and had experience in the application domain.
They were unfamiliar with finite-state machine design, and the complexity
of the control structure was identified as risky. A poor choice would lead to
complicated control logic. The modules of the system would be highly
coupled and be inflexible. The prototype approach was chosen to get a start
on program development ahead of the final definition of the system interfaces
and requirements. It was to be an evolutionary prototype. The developers
would also become facile in C and its tools and libraries.

Results: Final requirements were written based on prototype results. The
experience introduced the possibility of a tunable system to the developers.
Early evaluation of functional decomposition and performance was made. The
prototype was thrown away because of decomposition and performance prob-
lems. The prototype succeeded in the sense that it showed that the finite state
machine needed to be based on order activity and not on inventory. Tracking
the flow was far more critical than the decomposition of the order. This was
not obvious to the developers at the beginning of the project. System de-
signers eliminated usable code alternatives as difficult to change.

124 PROTOTYPING

4.4.3.2 Store and Forward Message Switch
Purpose: Evaluate a new scheduling algorithm for an existing system.

Prototype: The size of the prototype was 2% of the total system of 500 K
NCSLOC. One person used the prototype for 4 months. The production code
development required 1 year and 3 staff years.

Results: In a store-and-forward message switching system, the buffer overload
strategy was unstable. After the system went into overload and returned to
normal processing, it would immediately poll for more traffic. Polling had a
higher priority than distributing the messages already queued, in the mistaken
belief that polling must be the highest priority task to meet the response time
requirement. This exhausted even more buffers, drove the system into overload
again, and caused it to stay in overload longer than before. To convince the cus-
tomer that lowering the priority of polling would solve the problem, a proto-
type system was created in the test laboratory. It demonstrated stable overload
response with an increase in response time that was imperceptible even at ten
times the expected load. With the prototype evidence as demonstrable proof,
the customer agreed to a system release with improved overload response.
Demonstrating with the prototype avoided an emotionally charged battle over
response time. The prototype became preproduction code.

4.4.3.3 Evolutionary Prototyping for Order Entry

Purpose: Evaluate human interface, validate economic assumptions, and train
software developers before firm requirements are available.

Prototype: The size was 10% of the final project. The prototype took 9 months
to build and required seven people for 9 months.

Results: The human interface was changed to put more data on a single screen
because the users preferred to see all transactions that could be completed
with a single entry. The screens became dense. The table structures were
changed for easier maintenance and change. The economics proved in for the
system. A high sensitivity of the economics to response time was established.
An earlier version had been rushed into production without adequate analy-
sis, which resulted in project termination because of difficulties in operating
the system and lack of capacity.

4.4.3.4 Evolutionary Prototyping of an Outside Plant Database System
Purpose: Evaluate database structures for an outside plant database. Ex-

periment with approaches to handling multiple future states of equipment
usage.

CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT 125

Prototype: The size of the prototype was 5% of 500 K NCSLOC and required
three people for 15 months.

Results: A new database structure using hyper-graph theory was invented,
and an algorithm was developed to explain why the heuristic approach being
used worked. The prototype became the production code. UNIX was used to
model loop plant by way of a directed graph. The prototype was ported to
demonstrate the transportability of the code.

4.4.3.5 Estuary Water Flow Models

Purpose: Computer modeling of harbor water tides and currents is now prac-
ticed largely by physicists, who are often untrained as programmers and learn
to code in FORTRAN as they go. Therefore, the code they produce is not
sophisticated, hard to modify, and obscure. The models require large amounts
of computer time and long elapsed times to execute because they are largely
unoptimized. This project optimizes the processing of the equations, while
letting physicists write in the FORTRAN structures that make sense to them.
The goals are as follows:

(1) Thirty percent shorter processing time with a dual-processor system.

(2) Fifteen percent less processing time with standard equation rearrange-
ment.

(3) Forty percent less elapsed time on a dual-processor system.

Rationale: A requirements analysis resulted in a simplified quality function
deployment analysis that showed that the equation rearrangement goal was
more important than the multiprocessing goal.

The numbers in Table 4.2 are the mapping of subjective judgments by the
customer and developers of the importance of each feature toward reaching

TABLE 4.2. sQFD Analysis Sorts Priorities

Feature/ Ease of Correctness Functionality Consistency Reduction Reduction Total
Function Implementation in Execution in elasped Score
time time

Analyze 8 9 9 3 9 8 304
syntax

Rearrange 3 5 8 8 9 5 105
equations

Insert forks 8 3 8 3 0 9 184
for parallel

processing

® Goldstein, A. J., et al. Hyperedge Entity-Relationship Data Base, U.S. Patent 4,479,196, October
23,1984.

126 PROTOTYPING

the project goals. A Wideband Delphi approach was used to scale the judg-
ments on a 1 to 9 scale, with 9 being most important. These optimizations
became the focus of the design for execution time reduction:

(1) All constants must be grouped together: (cl)(a)(c2)(b)(c3), where a
and b are variables and cl, c2 and c3 are constants. Then let:

c4 =(c1)(c2)(c3) — (c4)(a)(b).
(2) Factor all equations:

x = (a)(bc)+(a)(ef) = x = (a)(bc +ef).

(3) Remove zeroes from additions and subtractions:
a+b+cl, where cl=0—a+b.

(4) Remove ones from multiplication and division:
(a)(b)(cl), where c=1—(a)(b).

(5) Remove all values in multiplications and divisions when a zero is present:
(a)(b)(c1)+d, where c¢1=0—d.

The focus on syntax requirements led to the design that the new syntax
must capture the information necessary to optimize equations:

(1) Data types should be defined in such a way that indicates some
variables change frequently, whereas other variables remain the same.

(2) Syntax must allow definition of high, medium, or low precision for vari-
ables.

(3) Variables may be declared as constant (one, zero, or other) or changing.
(4) Syntax should look like FORTRAN.

(5) Compiler must be able to dynamically insert and configure multipro-
cessing code to satisfy user preferences.

Then an estimate of the size of the system was made based on the require-
ments using function point algorithms (Table 4.3). The effort was almost the
same for the equation rearrangement and the ability to run the code simulta-
neously in parallel processors. The developers felt that the equation
rearrangement was the greater risk and chose to develop it in their first incre-
ment. Parallelism was left for the second increment because it was deemed of
less importance and might be sacrificed if development schedules were missed
because of unforeseen events.

CASE STUDY: THE CASE OF THE DRIVEN DEVELOPMENT 127

TABLE 4.3. Function Points for Estuary Code Optimizer

Simple Medium Complex Subtotal

External Inputs 3 2 1 6

Notes: Syntax
External Outputs 4 1 2 7

Notes: Parallelism
External Inquiries 0 0 0 0
Internal Logical Files 0 0 0 0
External Logical Files 5 5 0 10

Notes: Code Production

SUBTOTAL UNADJUSTED FP 23

FP ADJUSTMENTS
Requires Backup/Recovery 0
Data Communications 0
Distributed Processing Functions 0
Performance Critical 5
Run on existing heavily used environment 4
Requires online data entry 0
Multiple screens for input 0
Master fields updated online 0
Inputs, outputs, inquiries of files complex 5
Internal processing complex 4
Code designed for reuse 5
Conversion and installation included 0
Multiple installation in different organizations 2
Must facilitate change and ease of use by user 0

TOTAL FP ADJUSTMENTS

N
)]

ADJUSTED FP = UNADJUSTED FP x (0.65 + 0.01 TOTAL FP ADJUSTMENTS)
ADJUSTED FP = 23 x (0.65 + 0.01 x 25)
ADJUSTED FP = 20.7

ESTIMATED SIZE OF ESTUARY CODE OPTIMIZER:

Approximate NCSLOC = JAVA SLOC/FP x Adjusted FP
Approximate NCSLOC = 53 x 20.7 = 1000

Prototype: A prototype was built in the JAVA language for both the equa-
tion rearrangement and the multiprocessing approach to achieve goals. The
choice was made to familiarize the developers with the problem and with the
development environment.

128 PROTOTYPING

Results: The prototype showed that parallelism alone would reduce process-
ing time and elapsed time by 60%. This result would exceed project goals by
a factor of two. The prototype led the developers to revise their understand-
ing of the importance of both approaches and revise their development plan.
They made parallelism their first increment, even though they knew that the
equation rearrangement would be more fun and let them use their compiler
expertise. The prototype became a step toward capturing the final set of formal
requirements. It let the system engineer, the developer, and the customer deal
with the problem statements and potential solutions in concrete terms and
work on the most important part of the project first.

4.5 WHY IS PROTOTYPING SO IMPORTANT?

In the 1980s, advocates of firm specifications argued against the emerging pro-
totyping technology. They felt that prototypes led to unstructured projects and
a loss of control. Prototype advocates claimed that detailed specifications were
no longer needed. Both sides went too far. Prototypes are needed to help
understand the technology and to understand the problem. Specifications are
needed to manage customer expectations and developer commitments.

In 1984, UCLA wanted to determine if there were any advantages of pro-
totyping over a top-down specification process. Barry Boehm conducted these
studies.” He divided students into seven teams, each to develop a version of
the same product. Four used the specifying approach, denoted as teams S1, S2,
S3, S4, and three used the prototyping approach, denoted as teams P1, P2
and P3.

A score of 5 was considered satisfactory in the product evaluation. The
product was evaluated by a panel of customers, except for the ease of main-
tenance category, which was evaluated by the developers sitting as a panel.
The factors evaluated for maintenance were design, programming style, size
of product, documentation, and product performance at acceptance test.

The overall productivity for all teams was the (sum of NCSLOC)/(sum of
staff hours)/7 = 44.04531/7 = 6.2921 NCSLOC/staff hour with a standard devi-
ation of 1.8. But the average productivity for the teams that did top-down spec-
ifications was 6.25 with a standard deviation of 2.4, whereas the average
productivity and standard deviation for the prototyping teams was 6.34 with
a standard deviation of 0.21. The average productivity for the prototyping
approach is 37.5% higher than the specification approach with an order of
magnitude tighter standard deviation. The prototyping approach is more pro-
ductive, and the staffing required is more predictable because the prototyping
approach led to an average system size of 2064 NCSLOC and the specifica-

" Boehm, Barry W., Gray, Terence E., and Seewaldt, Thomas. “Prototyping Versus Specifying: A
Multiproject Experiment,” IEEE Transactions on Software Engineering, Vol. SE-10, No. 3, May
1984, pp. 290-301.

WHY IS PROTOTYPING SO IMPORTANT? 129

tion approach led to an average system size of 3391 NCSLOC, a difference of
40%. The three prototyping projects were more maintainable than the speci-
fication projects. Table 4.4 summarizes the results of the experiment.

TABLE 4.4. Specification vs. Prototyping Experiment Results (with IEEE permission)

Team Name S1 S2 S3 S4 P1 P2 P3
Team Size 3 3 2 3 2 3 2
NCSLOC 2985 3164 4606 2809 1952 2726 1514
Staff Hours 589 498 459 789 323 422 232
Functionality* 6.33 7 5 6 5.33 5 4
Robustness* 4.67 55 6 4.33 4.33 4.33 3
Ease of Use” 2.33 4 2.67 4 6 5.33 2.67
Ease of Learning* 3.67 3.5 4 3.67 5.67 5.33 3.67
Ease of Maintenance* 5.5 4.3 4 4 8 7.3 5.5

* Evaluation of product on a scale from 1, worst, to 10, best. S teams used specifications only, and P teams
used prototyping only. A better approach is to use both processes for validating and communicating the
requirements specification. NCSLOC was used to measure the size of the product as the experiment was
conducted before function points became popular, and in this case, they were counted the same way so they
can provide the basis for comparison.

Product size is the driver for determining productivity and maintainability
because large projects are hard to design efficiently and maintain effectively.
The smaller the product, the easier it is to maintain and the faster it is to
develop. We will see that productivity is a nonlinear function that increases
with the size of the software developed.

On the other hand, the specification projects had more features and were
more robust than those produced with the prototyping approach. Industrial
systems need to evolve with business changes and emerging needs, so both
approaches are needed. The reasons why prototyping is so important can be
summarized as follows:

(1) Provides a vehicle for system engineers to better understand the envi-
ronment and the requirements of the problem being addressed

(2) Demonstrates what is actually feasible with existing technology and
where weaknesses exist

(3) Efficient mechanism for the transfer of design intent from system engi-
neer to developer

(4) Permits developers to meet earlier schedules for the production version

(5) Allows for early customer interaction

(6) Demonstrates to customer what is functionally feasible and challenges
imagination,leading to more creative inputs and a forward-looking system

(7) Provides an analysis test-bed and a vehicle to validate and evolve
system requirements

130 PROTOTYPING
4.6 PROTOTYPING DEFICIENCIES

For balance, we now consider prototyping blind spots. If the initial prototype
is too far off the mark, we can get some disastrous results, such as souring the
customer on the prospect for a responsive system. We could concentrate on
short-term needs, tinker with algorithms, or develop suboptimal systems. To
avoid these pitfalls, we should write requirements that force us to do a careful
analysis of the users’ overall problem before plunging into the code. It is dif-
ficult to manage and schedule prototyping and hard to get people off the pro-
totype and onto the real system. Specifically, getting them to deal with size,
performance, the build constraints, and the practicalities of a production
system can be a real management problem.

In one project, we tried to use structured system analysis and failed. Even
though it is an excellent analysis tool, it is a painful way to communicate with
the customer. The customer sees no need to learn the language of structured
system analysis. System engineers, delighted with the tool, tend to jump from
the general to the detailed, thereby adding more confusion. Human language
feature memos provide a convenient way of communicating across the
customer-engineer boundary, but they are hard to keep current and leave too
much to the imagination. This is where the power of the Spiral Model comes
in. The customer sees what the engineer heard and is in a good position to
correct false impressions. With the corrections in mind, the engineer spins
anther cycle on the Spiral, getting it right before investing in implementation.

Those who use prototyping see it as highly effective (93%), but it fell off in
2000 during the technological bubble when time-to-market was all that mat-
tered from 50% usage to a mere 20% usage. The fear of widespread down-
sizing or litigation might also make managers reluctant to challenge
unreasonable budgets and schedules and therefore not wish to have the tan-
gible evidence of unreasonableness indicated by a prototype. Prototyping will
regain favor when there is more pressure to produce quality software because
the enormous costs of postrelease repair and high failure rates of untrust-
worthy software can no longer be borne.

4.7 ITERATIVE PROTOTYPING

The iterative prototyping process examines the trustworthy behavior of the
software architecture.

The process, as shown in Figure 4.2, starts with use case analysis to identify
user needs. Based on the use cases, an object-oriented, distributed architecture
of the system is augmented with formal specification of timing requirements
in terms of a time-series temporal logic. Then the internal structures of the
modules are factored until they can be mapped to a prototype. A time-series
model executes temporal rules for the target application instrumented with
probes used to compare with data from running the prototype.

CASE STUDY: THE CASE OF THE FAMISHED FISH 131

Use Case
Analysis

Domain Model
Construction

:

Simulation Requirements
> q

—>

Analysis Development
. . System
Simulation .
Development] Archltgcture
Design

Architecture
Refinement

Figure 4.2. The iterative prototyping process.

4.8 CASE STUDY: THE CASE OF THE FAMISHED FISH?®

A Fish Tank Control System controls the fish food dispenser and water quality
in a fish tank. The tank has a mechanical feeder that drops pellets of fish food
from a feeder tube suspended above the tank. The feeder can be turned on and
off by computer software. The tank also has a water inlet pipe and a drain pipe
with valves controlled by the computer, and sensors that measure the water
level in millimeters from the bottom, the oxygen level in the water measured
in parts per million (ppm), and the ammonia level in the water (ppm).

The software must deliver fish food at scheduled feeding times, which are
repeated every day. The times when each feeding starts and stops are displayed
in a console and can be adjusted from the keyboard.

The software must keep the oxygen level to a minimum of 8 ppm, and the
ammonia level below 9 ppm. Fish will die if left in an environment with low
oxygen or high ammonia for 1 minute or more. The fish tank is 1 m wide, 2m
long, and 1m deep (1-mm level = 2-L volume). The software must keep the
water level between 60 and 90cm at all times. The fill/drain valves allow a
maximum flow of 0.5 L per second when the valve is fully open. The fresh water
coming in the inlet valve contains 30 ppm of oxygen and contains no ammonia.
The fish in the tank consume oxygen at a rate of 0.1 mL/s and generates
ammonia at a rate of 0.0015 mL/s while resting and at a rate of 0.003 mL/s while

Thanks to Doron Drusinky and Man-Tak Shing of The Naval Postgraduate School. www.time-
rover.com/ftp/rsp2003.pdf.

132 PROTOTYPING

they are eating. The software should minimize water flow subject to the above
constraints. Whenever the water level is below 88 cm for at least 3 minutes, the
drain valve settings should be at most 10% of the maximum setting per second.

Central to the design is the control water flow operator, which controls the
inlet and drain water flow based on Table 4.5.

TABLE 4.5. Water Flow Decision Table

Water <65cm 65 to 85cm >85cm
Level

Oxygen Don’t O, <8ppmor O,>8ppmand | O, <8ppmor O, > 8ppm or
(0,) & care NH; > 9ppm NH; < 9ppm NH;z; > 9ppm NH; < 9ppm
Ammonia
(NHs)
Level

Inlet Valve open open close open close
Setting

Drain close close close open open
Valve
Setting

What do the requirements mean? Does the software compute an average
water level? How precise must the measurements be? Build a prototype to
answer these questions and check to make sure that it meets the requirements.
The DBRover tools set and system (http://www.time-rover.com) is one way to
do this modeling. The prototype implements these temporal rules:

Rule 1: The water level must be between 60 and 90cm at all times.

Rule 2: The oxygen level cannot be less than 8 ppm for more than 60
seconds.

Rule 3: The ammonia level cannot be more than 9 ppm for more than 60
seconds.

Rule 4: If the water level has been below 88cm for 180 seconds, then the
change of the drain valve setting must be less than or equal to 10% of
the maximum setting per second (100).

Now, add four probes to the prototype to verify meeting the timing con-
straints of these operators. Rapid prototyping and run-time verification
methods are usually thought of as two separate phases of the design process.
Rapid prototyping has traditionally been used in the early stages of the design
process, for the purpose of early system evaluation and demonstration, before
implementation and coding. In contrast, formal and run-time verification
methods have been used in later stages of the design process to validate and
debug code that has already been written. But run-time monitoring and veri-
fication can be used as part of rapid prototyping and helps identify errors early
in the design and validate the requirements.

PROBLEMS 133

Conclusion: Structured system analysis can make sure that our thinking is
clear. It is a valuable tool for the system analyst (just do not share the analy-
sis with the customer or the developer). Demonstrating the system concept
with a prototype shows that it is possible to build such a system, irons out con-
fusion in the requirements, and makes the discussions fun and effective. The
prototype lets developers “fail small” so that they can “succeed big.”

4.9 PROBLEMS

4.9.1 You are offered a short-term software development job with tight
schedules and loose requirements in a new problem domain requiring tech-
nology similar to that you have used successfully on a project nearing comple-
tion. You have 20 people in your department who are experienced in the
technology. Each person has a fully loaded cost (includes salary, benefits, and
overhead) of $144,000 per year. You must negotiate a fixed price for your work.
You estimate that the project will take 1 year and 10 staff months using an
incremental development process based on specifications. In your experience,
it costs one staff week to find and fix problems reported by customers once the
system is deployed. If you use prototyping, you will need one support person
half time. How much will the prototyping approach cost, if productivity is linear
with the size of the system and that because of external dependencies you
cannot compress the schedule? Would you use the incremental approach or the
prototyping approach? Support you answer with numerical analysis.

4.9.2 Your company’s best client employs 1000 agents at a call center to
handle customer complaints. Call center managers have the authority to hire
and fire agents and can purchase incidental equipment for the operation of
the center. Purchases of more than $100,000 require corporate approval, which
includes a review by the chief information officer (CIO). The CIO is charged
with reducing information technology costs and the number of suppliers.

Typically, an agent uses a predefined script to capture the customer’s
problem. Once the problem is defined, it is resolved or handed off to a second-
tier expert. The agents must follow strictly a script that can resolve 50% of the
problems. For example, if a customer claims that he has already paid a bill, the
agent asks for the invoice number and checks the accounting database. If the
customer’s payment has been recorded since the bill was mailed, the agent
cancels the bill. If payment has not yet been recorded but this is the first com-
plaint from this customer and the bill is less than $10, the agent forgives the
charge.

You prototype the use of new speaker-independent voice-recognition
systems and find that customers prefer the clarity and patience of the computer
to that of many agents. Reliable and consistently friendly agents that exercise
good judgment are hard to find and train at the wages companies are willing to
pay. An agent is paid $30,000 yearly, and the overhead is twice the salary.

134 PROTOTYPING

Desktop computers equipped with voice-recognition equipment, commu-
nication hardware, and platform software cost $10,000. These computers can
replace one agent. Server computers can share the voice-recognition equip-
ment; communications hardware and platform software cost $120,000. Each
server can replace 30 agents.

Your client will buy systems that have a 2-month or less break-even time
where the cost of money is not considered because the annual interest rate is
1%. The cost of developing the software is $800,000. This is true for either the
server or the desktop solution.

You have a few political problems with this offer:

(1) The CIO does not want to add any new systems in order to stay within
the budget.

(2) The CIO is upset about your company’s long-term performance.

(3) Local managers are under intense pressure to reduce costs while
improving productivity.
(4) Your company just delivered another system late and with bugs.

You are appointed the product manager and the project manager for this
program. Your challenge is to maximize the success of this program.

+ Using a flow diagram, show the business flows you would model in your
prototype and explain each link.

« Compare the economics of the server and the desktop approach. Do not
consider maintenance, operations, and administration costs of either the
server or desktop approaches.

4.9.3 It is not useful for a software developer to spend time learning about
how to evaluate an algorithm’s time and space complexity because memory is
cheap these days and chips are very fast. Do you agree or disagree and why?

4.9.4 This is the story of an application that was built before its operating
system was ready.

Background: A project needs to use tools and components that were de-
livered late and were being changed by their suppliers. The suppliers also
happen to be the customer. The project needs to build a system on top of a
moving foundation. They need to identify the problem, assess the risk, and
develop a way to cope with shortcomings in their suppliers.

Project Overview: A highly intensive database transaction system tracks
computers purchased and customers. This is the seventh attempt at the project;
the previous six attempts failed because of the custom nature of the computer
configurations. Earlier software technology proved unable to convert and
track the information and replace paper systems and records.

An over-riding concern of the project was design. The project members
wanted a system that was scalable and robust. They required that it be able to

BIBLIOGRAPHY 135

accept and share data with any of the client’s legacy systems. To this end, when
initially planning the system design, the project manager decided against a tra-
ditional mainframe system and opted for the newer UNIX system, using C for
the development. It was thought that by using UNIX, the system would be
more flexible and implementation would be cheaper.

Reducing Technical Uncertainty: One aspect of the development environ-
ment during the project was homogeneity. The entire environment was UNIX
with C, which greatly reduced integration issues because of uncooperative
systems. The flexibility of C contributed to integration issues being corrected
quickly when they arose. Constant communication among and between
project members led to a reduction in integration issues, as plans and tactics
were discussed openly and early enough for other teams to adapt.

Operating System Delivery: The subsystems were to run on a new operat-
ing system tuned to database performance. However, the operating system
slipped and was projected to be 18 months behind schedule. Despite this,
system development moved forward because of the flexibility that was built
into the system. With the delay in the operating system, the project team con-
structed a work-around that would allow testing of the core application logic.
A team of technical gurus developed an “adaptation layer” that would allow
the application to run on a temporary UNIX OS. The inter-subsystem testing
used an innovative “Cooperative Testing” approach.

Your task: Assume you are the process design engineer for this team. State
four processes that you would include in your innovative “Cooperative
Testing” approach.

4.9.5 You are offered a short-term software development job. You must
negotiate a fixed price for your work. How would you go about arriving at a
reasonably accurate estimate of how long the job should take?

a. Keep track of previous experiences to extrapolate new estimates.
Use wideband Delphi estimation with your development team.
Use a formal estimation model.

. Build a prototype.

Hire experts with experience.

Negotiate a cost-plus-fee contract because of the risks.

Refuse the job.

@ -0 200 O

BIBLIOGRAPHY

Andrews, D. C.“JAD: A crucial dimension for rapid applications development,” Journal
of Systems Management, March 1991, pp. 23-31.

Appel, J. J. and Bernstein, L. “Requirements or Prototyping? Yes!,” Proceedings
of the Sixth International Conference on Software Engineering for Telecommunica-
tions Switching Systems, Eindhoven, The Netherlands, April 14-18, 1986,
pp. 170-175.

136 PROTOTYPING

Bernstein, L. and Yuhas, C. M. “Software Engineering in Telecommunications Systems,”
Encyclopedia of Software Engineering Volume 2, 2nd ed., John Marciniak, Editor-
in-Chief, Wiley-InterScience, New York, 2002, pp. 1497-1507.

Bernstein, L. “Foreword: Importance of Software Prototyping,” Journal of Systems Inte-
gration, Vol. 6, No. 1/2, March 1996, pp. 9-14.

Boehm, B. W. “Spiral Model of Software Development and Enhancement,” Computer,
Vol. 2, No. 5, May 1988, pp. 61-72.

Boehm, B. W. Software Risk Management, IEEE CS Press, Los Alamitos, CA, 1989.

Boehm, Barry W. and Sullivan, Kevin J. “Software Economics,” University of Southern
California and University of Virginia, Dec. 1999, boehm@cs.usc.edu.

Boehm, Barry. Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981.

Connell, John L. and Shafer, Linda Brice. Structured Rapid Prototyping, Yourdon Press,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

Drusinsky, D. and Shing, M. “Verification of Timing Properties in Rapid System
Prototyping,” Proceedings of Rapid System Prototyping Conference,2003.

Drusinsky, D., Michael, J. B., and Shing, M. “Behavioral Modeling and Run-Time
Verification of System-of-Systems Architectural Requirements,” International Con-
ference on Computing, Communications and Control Technologies, 2004.

Luqgi and M. Shing. “Real-Time Scheduling for Software Prototyping,” Journal of
Systems Integration, Special Issue on Computer Aided Prototyping, 1996, pp. 44-72.

Luqi, Berzins, V., Shing, M., and Nada, N. “Evolutionary Computer-Aided Prototyping
System (CAPS),” Proceedings of the TOOLS USA 2000 Conference, Santa Barbara,
CA, July 30-Aug. 3, 2000.

Lugqi, Yeh, R. “Rapid Prototyping in Software Evolution,” Encyclopedia of Software
Engineering, John Wiley and Sons, New York, 1994, pp. 1-21.

Luqgi. “Computer-Aided Software Prototyping,” IEEE Computer, Sept. 1991, pp.
111-112.

Rapid Application Development, Center for Software Engineering at the University of
Southern California, workshop report.

Architecture

Software architecture is the body of instructions, written in a specific coding
language, that controls the structure and interactions of software modules. It
embodies the structure of a system and provides the framework for the soft-
ware modules to perform the functions of the system. The design of the inter-
faces between modules and the constraints on the size and execution of the
modules affects the ease with which they can be integrated into a working soft-
ware system. The architecture of a system enforces constraints on the modules
and the properties of capacity, throughput, consistency, and module compati-
bility are realized at the architectural level.

5.1 ARCHITECTURE IS A SYSTEM’S DNA

Within the system are architectural modules, whether the core operating
system, or in the middleware, or custom-designed, that govern how the pro-
cessing modules work together to do the system functions. Application calls
these modules through special interfaces called application programming
interfaces (APIs). In the early days of computing, these interfaces were simply
the system calls made to operating system functions, like “dispatch a program.”
The communication architecture is code that governs the interactions of the
processing modules with data and with other systems. The data architecture is
code that controls how data files are structured, filled with data, and accessed.

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

137

138 ARCHITECTURE

Once the architecture is established, functions may be assigned to processing
modules and the system may be built. Processing modules can vary greatly in
size and scope depending on the function each performs, and the same module
may differ across installations. In every case, however, the processing ar-
chitecture, communication architecture, and data architecture constitute the
software architecture that is this system’s—and this system’s only—unique and
unchanging “DNA.”

When systems share a common architecture, they are as alike as identical
twins, regardless of superficial differences in name or in site-peculiar configu-
rations or adjunct functions. When several sites use software systems with a
common architecture, they are considered to be using the same software
system even though they may do somewhat different things. No two instances
of a software system are exactly the same, despite their shared architecture.
When a system is installed at two or more sites, localization is always required.
Tables are populated with data to configure the software to meet the needs
of specific customer sites. The customer may have special needs that require
more than minor table adjustments. Customization of some modules may
be required. New modules may be added.

Two systems with differing architectures can perform the same function in
alternative ways. These systems would be different, even if they were named
the same. Function and output do not define a system. Only its architecture
can describe and identify a system.

Case Study: The Case of The Double Header Development

In the late 1980s, Bell Laboratories needed to develop a system to control a
critical congestion situation. The system was called NEMOS. It used a distrib-
uted database with several unique database schemas. Some data overlapped.
The schemas were designed to speed processing time. Architecture reviews
revealed that this architecture was extremely complex and broke new theo-
retical ground. Because there was no history of similar development to provide
a guideline and the need was urgent, Bell Laboratories decided to develop a
second system with a different architecture in parallel to mitigate the archi-
tectural risks identified. The insurance system was also called NEMOS
but instead used an integrated database architecture, which means a single
database for everything. The result was two systems with the same name,
performing the same function.

The system with the distributed database architecture could not be scaled
to handle network growth and was discarded. The architecture with the inte-
grated database architecture was successfully deployed and demonstrated its
robustness when it managed telephone calls during the famous “1989 World
Series Earthquake” in California.'

' On October 17, 1989 at 5:04 PM, a major earthquake struck the San Francisco Bay area. The
earthquake was nicknamed the World Series Earthquake because it occurred just before a World

PITY THE POOR SYSTEM ADMINITSTRATOR 139
5.2 PITY THE POOR SYSTEM ADMINISTRATOR

One of the most common failures of architecture design for software systems
is not attending to features needed by system administrators. They have
myriad responsibilities:

(1) Training users

(2) Configuring the computer to run the software

(3) Defining network requirements for the network manager
(4) Setting up data files

(5) Maintaining adequate response time

(6) Troubleshooting

System startup is a treacherous time. The system administrator is intimi-
dated by the new system and does not immediately suspect software errors in
a freshly tested installation. For example, in the request-response model in
Figure 5.1, several host computers are connected to a local area network
(LAN) using Ethernet and share the transmission media. Some host comput-
ers are servers, and many more are clients. When one server and one client
were connected, the system worked well. As several clients were added, the
system continued to operate satisfactorily until there was a sudden stop. No
messages could be transmitted among any servers and clients. This is an
example of a conditionally stable system.

Servers

O)

Clients

Figure 5.1. Request-response model.

Series baseball game was scheduled to begin in Candlestick Park. Millions of people witnessed
the motion of the earthquake on television. Sixty-seven people lost their lives, and property
damage was estimated at $6 billion, but the telephones worked.

140 ARCHITECTURE

A system is conditionally stable as long as any one of its critical resources
is not exhausted. Frequently there are early warning symptoms of slow res-
ponse time or lost messages before the system halts, but other times there is
no warning at all.

In this example, clients were added and the system performed to specifica-
tions for a time. Then when the 101st client sent a message, the system stalled.
There were so many message clashes on the transmission media that the com-
puters spent all their time resending lost messages. The system administrator
had to turn off all hosts, bring up the server, and limit the number of clients
until faster transmission media could be installed.

With many computers sending messages, the likelihood of two messages
trying to use the transmission media simultaneously increases. When Ethernet
LANSs detect clashes, Ethernet aborts transmission. When this happens, the
applications can timeout. If n is the number of clients on a LAN and p is the
probability a client could be sending a message, with a Poisson probability dis-
tribution, the optimal number of clients to minimize clashes is n = 1/p. For
example, if a client is sending 60 messages an hour or one every minute and
the messages contain 1500 characters, then it will take 1500 characters x 8
bits/character/1,000,000 bits/sc = 12ms to send one message. Allowing ample
margin for capturing the transmission line it will take about 15 ms per message.
If the probability of a message being on the line from only one client is 0.015,
the optimum number of clients is about 60.

Case Study: The Case for Minding Your Mother

A system administrator could not start up the new system. It had been tested
successfully, accepted by the company brass, and was fresh off the loading
dock. She had two thick handbooks to rifle through and could not find the
command that would let her install the database.”

The developers believed their software was superior and their system was
great. They had documented it fully, and still the system administrator was
ungrateful and inept. Hard feelings ensued.

Conclusion: The commands to edit configuration files are considered well-
known UNIX library commands. The system administrator was unfamiliar
with these commands even though she had been trained in UNIX-based appli-
cations. The folklore about the basic steps needed to load the command files
is not provided in the user manuals. The commands were listed in a reference
book that had no index and was so thick that it was hard to handle and hard
to find basic commands.

There is the (possibly apocryphal) story of the mother of one of the origi-
nal gurus. He tried out his latest and greatest on her, there being no subject
more naive. Mom gave it a try, but when she wanted to shut the computer off
at the end, she exclaimed, “It’s confusing to have to click START to turn it

2 A video of this situation is on the course website.

SOFTWARE ARCHITECTURE EXPERIENCE 141

oft.” Her guru son pooh-poohed, saying everybody knew that’s how it worked.
And so began a long tradition of counterintuitive confusion.

5.3 SOFTWARE ARCHITECTURE EXPERIENCE

The architect, as the ancient Greek word connotes, is the guardian of the key-
stone technology. All else rests on it. It is a pity that brilliant software archi-
tects do not get the same fame and glory as architects of more visible
structures, because the number of lives affected by their work is probably
greater. The architecture is the basis for all technical decisions. It must be
documented in a clear and concise way and then communicated to everyone
on the project. The process of developing the architecture begins with the
prospectus, as shown in Figure 5.2. A first cut is created during the require-
ments process to see that the system is feasible. Once the requirements
are complete, an architecture discovery review makes explicit all non-
feature-based requirements. Then the architecture process begins. It is an iter-
ative process that focuses on evaluating design alternatives and simplifying the
system. Simplifications are possible when duplicate features are eliminated,
when object classes match the problem domain, when existing libraries or
components are used, or when algorithms are simplified. An architecture
review’ at the end of the architecture process makes sure that the system can

It encompasses the requirements, architecture and high level design phases of the
typical waterfall diagram. It also continues throughout the life of the project
(someone continues to wear the architect’s hat).

Planning and

Architecture Phase
-
lterative process

Y until consensus
is reached

[F|Reauirements Carries through the
Discovery \v life of the project
Review \

Architecture

N
-
o4

Level
Design

Low
Level

Design

Architecture
Review

System Architecture Reviews?

Figure 5.2. Architecture in a project’s life cycle.

* Maranzano, J. F, et al. “Architecture Reviews: Practice and Experience,”IEEE Software,
March/April 2005, vol. 22, No. 2, pp. 34-43.
* Thanks to Joe Maranzano for permitting the use of his insightful diagram.

142 ARCHITECTURE

be built and that it will solve the problem. A specific goal of the review is,
again, simplification. One way to measure the degree of simplification
achieved in the architecture process is to count the function points at the end
of the requirements specification process and again at the end of the archi-
tecture process. There should be fewer function points, which is accomplished
by simplifying the interpretation of the requirements, eliminating redundan-
cies, simplifying designs, dropping complex features, and employing already
working components.

\\\‘///

MAGIC NUMBER!

The goal for the architecture process is to reduce the number of function
points by 40%.

The architecture process continues throughout the development life of a
software system to assure that the integrity of the architecture is preserved as
new features and functions are added.

5.4 PROCESS AND MODEL

In 1757, Benjamin Franklin was sailing from New York to London and had
lots of time to speculate on the common nautical wisdom that it could never
be known how a ship would sail until she was built and could be tested. The
trouble was, our philosopher decided, that “one man builds the hull, another
rigs her, a third lades her and sails her. No one of these has the advantage of
knowing all the ideas and experience of the others, and therefore cannot draw
just conclusions from a combination of the whole.” Franklin thought that a set
of accurate experiments on all such matters, jointly undertaken and carried
out to a common end, would be far more efficient than trial and error. He
would have made a superb system architect. The industry was just beginning
in the decade of the 1990s to act on the understanding that it is important to
have structure before jumping into program requirements.

Kruchten® describes a “4+1” model of software architecture using five con-
current views, each addressing a specific set of concerns of interest to differ-

5 Kruchten, P. and Thompson, C. “An Object-Oriented, Distributed Architecture for Large Scale
Ada Systems,” Proceedings of the Tri-Ada 94 Conference ACM, Baltimore, MD, November 6-11,
1994, pp. 262-271.

PROCESS AND MODEL 143

ent stakeholders in the system. The end users embody the first view, the logical,
which creates the object model for object-oriented design. This view acts as a
driver to help system integrators and programmers discover architectural ele-
ments during the architecture design. The end user describes the service that
must be supplied. The system integrators embody the second view, the process,
which considers concurrency and synchronization aspects. This view validates
and illustrates the architectural design and is the starting point for tests of the
prototype and drives the system engineers. How the software will execute on
its target machine in terms of throughput, response time, and availability is its
concern. System engineers embody the third view, the extended machine,
which maps software onto hardware and operating system and considers
distributed processing implementations, utilities, middleware, and database
systems often called the extended machine. Programmers embody the fourth
view, the development, which is the software’s build organization and the tools
used to compile, configure, and assemble the components into an executable
system. The software is organized into manageable chunks that can be created
with well-defined interfaces.

The idea is to organize a description of architectural decisions around these
four views and then illustrate the workings of the system with a few use cases,
called scenarios, which are the “+1” or the fifth view, as shown in Figure 5.3.
These scenarios are developed around the functions that are the most impor-
tant, the most used, and that represent the most significant technical risk. The

1 Business
Scenario

View 1 View 2

Logical Process
used by used by + 1 Business
End User Systern Scenario

Integrator

View 3

View 4

Development Extended
Machine
used by a4b
Programmer used by
Engineer

This is an innovative and

comprehensive integration

of the abstractions needed to

+ 1 Business design the structure of a
Scenario soffware system.

Figure 5.3. “4+1” architecture model. (with permission of Phillipe Kruchten)

144 ARCHITECTURE

experience of running the scenarios from all four views gives the basis for
refining requirements.’

5.5 COMPONENTS

A software component is a set of formal constraints on a software module.
Software component technology builds on prior theories of a software object.
An object is a unique, concrete instance of an abstract data type (that is, a con-
ceptual structure including both data and the methods to access it) whose iden-
tity is separate from that of other objects, although it can “communicate” with
them via messages.

5.5.1 Components as COTS

Doug McllIroy, the Bell Laboratories guru who invented the pipes and fil-
ters architecture of UNIX and widely used UNIX tools, such as spell, diff,
sort, and join, as long ago as 1968 talked about the need to have software
components as well-constructed black boxes, with sizes and robustness ratings
and prices all available as easily as nuts and bolts and wrenches. His full white
paper is linked on the course website, but the following bits are excerpted
from it:

Software components (routines), to be widely applicable to different machines
and users, should be available in families arranged according to precision,
robustness, generality and time-space performance. Existing sources of com-
ponents—manufacturers, software houses, users’ groups and algorithm collec-
tions—lack the breadth of interest or coherence of purpose to assemble
more than one or two members of such families, yet software production in
the large would be enormously helped by the availability of spectra of high
quality routines, quite as mechanical design is abetted by the existence of
families of structural shapes, screws or resistors ... The market would consist
of specialists in system building, who would be able to use tried parts for all
the more commonplace parts of their systems. The biggest customers of all
would be the manufacturers. .. The ultimate consumer of systems based on
components ought to see considerably improved reliability and performance,
as it would become possible to expend proportionally more effort on critical
parts of systems ... I would like to see components become a dignified branch
of software engineering ...l want to have confidence in the quality of the
routines.”

¢ Juran, Joseph M. and Godfrey, A. Blanton, Eds. Jurans Quality Handbook, 5th ed. McGraw-Hill,
New York, 1999, Section 20.7.
" MclIroy, M. D. “Mass-Produced Software Components,” NATO Science Committee, Garmisch,
Germany, 7-11 October 1968.

COMPONENTS 145

5.5.2 Encapsulation and Abstraction

Parnas et al.® explained the need for modularity and the effectiveness of infor-
mation hiding. He defined a software structure with minimum connections to
other modules, called coupling, and a maximum of cohesion within modules,
meaning that the subtleties of the software design and data interactions are
hidden from other modules. This process is called encapsulation and lays the
foundation for object-oriented design. Each view of the 4 + 1 architecture is
subdivided into modules with minimum coupling.

It includes the concept of abstraction, which is the ability of a program to
ignore some aspects of the information it manipulates. This simplifies pro-
gramming, because it becomes possible to express a software solution with
fewer computer instructions. Each object in the system serves as a model of
an abstract “actor” that can perform work, report on and change its state, and
“communicate” with other objects in the system, without revealing its struc-
ture. It adheres to some interface description language, which is a computer
language or simple syntax for describing the interface of a software compo-
nent. It is essentially a common language for writing the “manual” on how to
use a piece of software from another piece of software, in much the same
fashion that a user manual describes how to use a piece of software to the
user.” Functionality is encapsulated in the form of an object, which is a unique
conceptual structure including both data and the methods to access it, whose
identity is separate from that of other objects although it can “communicate”
with them using messages. Some objects can be considered a subprogram that
can communicate with others by receiving or giving instructions based on its,
or the other’s, data or methods. Data can consist of numbers, literal strings,
variables, or references. An object also can be thought of as a region of stor-
age. The set of constraints that transforms a module into a component is as
follows:

(1) The methods of an object class and procedural programs conform to the
principles of structured programming. Namely, each component is a pro-
gram that can be decomposed into assignment, do_while or if_then_else
segments, and a counter having one entry and one exit point.

(2) Interfaces are always through formal structures that normalize data
definitions as defined in the Jackson design methodology.

(3) The execution time and space of the component are bounded by reju-
venation technology, and boundary conditions are set limiting the
domain of execution of the component. See Sha’s pioneering work on
bounding software execution on the course website.

8 Parnas, David, et al. “The Modular Structure of Complex Systems,” Software Fundamentals
Collected Papers by David L Parnas, edited by Daniel M. Hoffman and David M. Weiss,
Addison-Wesley, London, U. K., 2001, pp. 319-336.

? http://ei.cs.vt.edu/~cs2604/Standards/Standards.html. (with permission)

146 ARCHITECTURE

(4) The dynamics of the component are forced to be periodic. On a regular
basis, the component states are reinitialized, and upon failure, the states
are restored to a well-defined initial state that has the property R(0) =1.

(5) The module is limited in size to reduce defects, as explained by Les
Hatton, to the range of 100 to 1000 instructions.

(6) System and reliability testing are performed for ten times the rejuvenation
period to reduce the likelihood of executing defect states thereby causing
hangs or crashes. Special tests are needed to assure that the component
is stable within its constrained execution domain. These tests reduce the
liklihood that a small input does not induce a large unbounded output.

(7) A module can only be a component after its third release and 8-10
months of operation when the failure rate becomes constant with time.

(8) A component is documented in the preface of its source listing with a
performance worksheet that specifies what the component does, its
domain of execution, its inputs and outputs including the data value
bounds, and any other special constraints.

Software components provide a common and convenient means for inter-
process communication, either within the same computer or over a network.
It implies a protocol that guarantees a response to a request. Examples are
TCP/IP sockets' and Microsoft Windows .NET. There are different forms of
software components such as CORBA and .COM." Microsoft paved the way
for actual deployment of component software with object linking and embed-
ding (OLE) technology. It was initially used primarily for copying and pasting
data between different applications. It later evolved to become architecture
for software components. Figure 5.4 shows two schematics for software com-
ponents. The top is the Unified Modeling Language (UML) diagram, and
the bottom is the schematic commonly used by Microsoft .NET objects. The
“lollipops” are their interfaces.

5.5.3 Ready or Not, Objects Are Here

Bjarne Stroustrup, the inventor of C++, says that adopting object-oriented
programming is not painless, but it is worthwhile. It forces one to think about
architecture and design from the beginning, not just as an afterthought. Pro-
grams will be modular, hence, easier to maintain and extend. If the system is
designed as a collection of classes with clean interfaces, others can use them.
And to ease the pain, a new generation of design and implementation tools
are becoming available.

10 Donahoo, Michael and Calvert, Kenneth. The Pocket Guide to TCP/IP Sockets C Version,
Morgan Kaufman, New York 2001.

I Tallman, Owen and Kain, J. Branford. “.COM versus CORBA A Decision Framework,”
Distributed Computing, Vol. 1, No. 11, Nov. 1998, pp. 33-36.

COMPONENTS 147

() Receive Data
() Send Data

Interface

Receive Data ()
Send Data ()

Figure 5.4. Two component schematics.

Every significant change carries risk, however. Middle managers will have
to learn new techniques to manage object-oriented development well. When
a process is not fully mature, it requires education and reworking of legacy
systems. There is general agreement, however, that the use of object-oriented
design leads to more concise programs and maps the solution domain more
easily into the problem domain, which results in a three-fold increase in pro-
ductivity over time as experience is gained.

\\‘//

7:& /} MAGIC NUMBER!

Contain your enthusiasm for new toys. The number of objects should be
no more than 0.1% of the NCSLOC, and no more than one third of those
should have an inheritance level of more than 3.

148 ARCHITECTURE
5.6 UNIX

The early development of the most influential operating systems in history was
unique. Its goal was to demonstrate the portability of software among differ-
ent hardware architectures. It was successful and was the first demonstration
of portable software implementing the operating system as a layer of software
separating the application from the unique designs of a supplier’s computer.
Here was the germ of the idea of the extended machine. It contained the
concept of a pipe that signifies that the output of one program feeds directly
as input into another program. In contrast, a file in a computer system is a
sequence of bits stored as a single unit, typically in a file system on disk or
magnetic tape. Although a file is usually presented as a single stream, it most
often is stored as multiple fragments of data at different places on a disk (or
even multiple disks). One architectural service of operating systems is to
organize files in a file system. The pipe is one such service and provides input
or holds the output. In the pipe metaphor, a file is a container. A UNIX shell,
also called “the command line,” provides the traditional user interface for the
UNIX operating system and uses the pipe character “I” to join programs. A
sequence of commands joined by pipes is known as a pipeline that represents
the concept of splitting a job into subprocesses in which the output of one sub-
process feeds into the next, much as water flows from one pipe segment to the
next. For creating this mechanism, all UNIX tools have access to three distinct
special files:

stdin—the standard input file
stdout—the standard output file
stderr—the standard error file

By joining one tool’s stdout to another tool’s stdin, a pipeline is formed. Errors
are accumulated in stderr.

A filter program is a UNIX program that is part of a pipeline between two
or more UNIX tools. Generally a filter program will read its standard input,
write to its standard output, and do little else. Conventionally a filter program
is distinguished by being fairly simple and performing essentially one opera-
tion, usually some sort of simple transformation of its input data. An example
of a pipeline follows:

cat*| grep “crime” | grep - v “punishment” | wc-1

This command will print out the number of lines in all files in the current direc-
tory that contain the text “crime,” but not the text “punishment.”
The pipeline has four parts:

(1) cat * concatenates the text of all files to its stdout

(2) grep “crime” reads its stdin as lines and prints on its stdout only those
lines that contain the word “crime”

TL1 149

(3) grep -v “punishment” reads its stdin and prints on its stdout only those
remaining lines that do not contain the word “punishment” (note that
-v inverts the selection)

(4) wc -l counts the lines on its stdin, and prints a line count on its stdout.

The basic idea in object-oriented programming is that software should be
written according to a mental model of the actual or imagined objects it rep-
resents. Object-oriented programming and the related disciplines of object-
oriented design and object-oriented analysis focus on modeling real-world
interactions and attempting to create “verbs” and “nouns” that can be used in
intuitive ways, ideally by end users as well as by programmers. Software com-
ponent architecture, by contrast, makes no such assumptions and instead states
that software should be developed by gluing prefabricated components
together. It accepts that the definitions of useful components, unlike objects,
can be counterintuitive and that performance overhead results. This notion has
led to many academic debates about the pros and cons of the two approaches.
We consider component technology to have evolved from object-oriented
technology. It takes significant effort, time, and awareness to write a software
component that is effectively reusable, more than twice as much effort. The
component needs to be fully documented, undergo more thorough testing,
have robust input validity checking, pass back useful error messages, and be
flexible for unforeseen uses. There should not be unexpected consequences for
using it.

5.7 TL1

At the beginning of any system development, laying out the architecture and
defining the way system components will exchange data and work together is
critical. These early design decisions lay the foundation for the reliability and
the extendibility of the system. In this section, we examine a specific case that
influenced the development of the telephone software infrastructure for
setting up and managing services. Landauer writes, . . . the most important
factor in the success of telephone operation mechanizations was the way . ..
[the systems] were designed and evolved.”*? The decisions described here
about designing the interface architecture led to the relatively easy introduc-
tion of systems that worked together to save telephone companies billions of
dollars annually.

TL1 is the realization of critical system interface structures within an archi-
tecture that became the standard for the telecommunications industry.” A

2 Landauer, Thomas K. The Trouble with Computers, MIT Press, Cambridge, MA, 1996, p. 70.

'3 Man, Fu-Tin. “A Brief History of TL1,” Journal of Network and Systems Management, Vol. 7,
No. 2, June 1999, pp. 143-148. Material here appeared in the Thresholds column and is reprinted
with kind permission of Springer Science and Business Media.

150 ARCHITECTURE

feature article in Telephony' states that, “Most telecom network elements in
North America today can be managed using TL1, and no serious telecom man-
agement system developer can ignore it.”

5.7.1 Mission

Before the 1984 breakup of AT&T, Program Documentation Standards was
the predominant operations language used to centrally manage the network
equipment in the Bell System. It was used by operation support systems
such as the switching control center system to manage the AT&T Electronic
Switching Systems and other network equipment.

In early 1985, Bellcore commissioned a task force" to recommend a non-
proprietary set of network management messages to be exchanged between a
network management system and a network element to perform operations,
administration, maintenance, and provisioning functions. The members of the
task force were subject matter experts in operations requirement, software
systems, network management and network elements, and communication
protocols.

To help narrow the language candidates under consideration, the task force
identified attributes for a viable operations language'® candidate:

(1) It cannot be owned by any company except Bellcore, who would make
it a telecommunications industry standard.

(2) It should be well known in the industry.

(3) It should have good documentation.

(4) Tt can quickly become public domain.

(5) It can be used by network equipment vendors with little guidance.
(6) It has a good record of accomplishment.

Guided by this list, the task force narrowed the field to two operations lan-
guage candidates. The first was Bellcore’s Flexible Computer Interface Form
(FCIF) that was used among Bellcore-developed operations support systems
such as between the components of facility assignment and control system
(FACS)" and between FACS and other systems. It proved so robust that it
was extended and used throughout the telecommunications industry. The
second one was CCITT" Man-Machine Language (MML).

4 Dowling, Connor and Egan, Gerry. “The Story of TL1 provides many lessons about the future
of telecom management,” Telephony, Vol. 233, No. 9, September 1, 1997, pp. 34-36.

5 Fu-Tin Man was the chair.

16 Specifically, an operations language is only a language syntax, whereas an operations message
contains both language syntax and semantics.

7 The previous description of the FCIF acronym was the FACS Component Interface Form.

¥ Now renamed the International Telecommunications Union-Telecommunication (ITU-T).

TL1 151

5.7.2 Comparative Analysis

MML was an international standard language adopted for network manage-
ment in late 1970s. It was documented as a family of Z.300 recommendations
in the 1980 CCITT Red Book. Even though FCIF had been a working oper-
ations language among Bellcore-developed systems, it lacked documenta-
tion."

Both FCIF and MML were character-based and were judged inefficient
for communications to network equipment. However, because the command
language dialog was a requirement for a local craft interface,” the cost of
developing two interfaces in network equipment, one for human and one
for machine, was considered the greater risk. Inefficient machine-to-machine
communication could be solved with faster communication links.

FCIF was less efficient because its parameters were keyword-defined,
whereas those in MML could either be keyword-defined or position-defined.
Keyword-defined parameters provide flexibility for decoupling software
systems and specifying parameter values, whereas position-defined fields use
fewer characters.

MML was human-readable as its parameter fields were distinctly separated.
FCIF was less human-readable than MML because of its nesting syntax that
was designed to capture customer name, address, telephone numbers, and so
on.

Both FCIF and MML offered no semantics that could be reused to support
a generic set of functions, but MML had several semantic definitions that help
specify the semantics. For example, in its input commands, MML reserved the
first parameter field for command code (i.e., action to be taken). It also
assigned the word “REPORT” (abbreviated as REPT) for network equipment
to autonomously report self-detected events and conditions.

Although FCIF had a good record of accomplishment and a wealth of
support tools, MML had none (Table 5.1).

TABLE 5.1. Pros and Cons of Operations Language Candidates

Feature MML FCIF
Recognition International Little known
Documentation 1980 CCITT Red Book Little
Machine communication efficiency Poor Poor
Human communication efficiency Excellent Good
Availability of reusable semantics Little None
Working track record None Excellent
Software support tools None Abundant

" A Bellcore special report, “FCIF Language Definition,” SR-STS-002603, Issue 2, Oct. 1993, was
later published.

2 Tt is also a current American National Standard as documented in “OAM&P—G Interface
Specification for Use with the Telecommunications Management Network (TMN),” ANSI T1.232-
1993.

152 ARCHITECTURE

5.7.3 Message Formatting

MML became the operations language, and the task force eliminated its
human-oriented features to the extent possible without violating the MML
recommendations. Examples of these are white space, line feed, and carriage
return. The next task involved formulating the formats for input command,
output response, and autonomous message. The formatting task for an input
command involved assigning mandatory parameter fields after the command
code in an input command. Later, the parameter field after CTAG was desig-
nated as a general block, which was reserved for such special bulk transmit-
ted data.

5.7.4 TL1 Message Formulation

Once the language definition was completed, the remaining task was to spe-
cify actual TL1 messages (including semantics) that are used to implement
functions and publish them in the public domain. The task force selected
provisioning, maintenance, and testing functional categories that would
be presented in Technical Advisories TA-TSY-00199, TA-TSY-00200, and TA-
TSY-00201, respectively.” It also named the selected operations language
Transaction Language One or TL1, with a view to providing TL2 and subse-
quent versions, but there was to be no future for TL1.

Bellcore has published hundreds of TL1 messages for different operations
domains and network technologies. To provide a roadmap to all of them, GR-
811-CORE? presents, on an ongoing basis, a listing of, and pointers to, the TL1
messages that have been published in various technical advisories, technical
references, and generic requirements documents.

5.7.5 Industry Support of TL1

Most TL1 messages in TA-TSY-00199 are currently used to remotely set cross-
connections and channel unit settings as well as to send recent change mes-
sages to network elements. Many surveillance and testing systems have also
adopted TL1 as their communication language with network elements. They
have implemented many TL1 messages documented in TA-TSY-00200 and
TA-TSY-00201, respectively. In addition to the Bellcore systems, others use
TL1 messages to manage network elements.

Various companies have developed object servers that provide an adapta-
tion between TL1-based and object-oriented technologies. A virtual manage-
ment information base (MIB) for TL1 exists for translation to the simple
network management protocol (SNMP) used in local area networks and to

! The bulk of the TL messages in these three TAs have now been migrated to GR-199-CORE,
GR-833-CORE, and GR-834-CORE, respectively.

“OTGR: Operations Application Messages—TL1 Messages Index,” GR-811-GORE, Issue 3,
June 1997.

DOCUMENTING THE ARCHITECTURE 153

the common management information protocol (CMIP) used in metropolitan
and wide area networks. The virtual TL1 MIB provides an abstraction of
managed information compatible with those presented by the SNMP or CMIP
MIB. Unification among managed information is crucial to managing a multi-
protocol, multivendor network.

The net result of a seemingly simple decision was to tightly couple systems
with TL1. As it becomes more difficult to manage network elements, the
telecommunication industry is adopting the loosely coupled Internet layered
technology. The decision makers in the original task force discounted the archi-
tectural advantages of the FCIF software-focused approach and the earlier
successful experience of FCIF users. Those who ignored TL1 to continue to
use FCIF built robust decoupled systems.

5.8 DOCUMENTING THE ARCHITECTURE

Useful architecture documents are succinct, usually fewer than ten pages.
They contain the following items:

(1) One or two paragraphs stating the problem scope, that its requirements
are valid, and how the architecture solves the problem.

(2) The major functions that the system will provide and a high-level view
of how they will be performed.

(3) Assumptions and constraints that bound the solution including special
precedence concerns, the rationale for the choice of solutions, and the
interactions with the external environment.

(4) The 4+1 views of the solution with a calculation of function points con-
sidering the logical and process view and coupling and cohesion for all
the other views.

(5) Performance parameters and analysis relating to critical events that
occur in the system.

(6) Documents that the software product is suitably reliable, easy-to-use,
extendible, not harmful, and robust, that is, trustworthy.

(7) Current risks are identified with solutions.

(8) Defines the interface language, technology, and conventions among the
components.

(9) References to supporting documents or Web pages.

The architecture document describes the selected approach and is used by
members of the project to ensure that their activities are consistent with the
major direction of the project. It is made available to members of the review
team before any architecture review.

The architecture document is an adjunct to the existing documentation (for
example, requirements, prospectus, etc.) on the project. For some projects,

154 ARCHITECTURE

there will be a hierarchy of documents, comprising a top-level architecture
document for the system with separate architecture documents for the
subsystems.

5.8.1 Debriefing Report

This document contains a record of architectural decisions, including why a
particular alternative was chosen and, more importantly, why an alternative
was not chosen. It provides a history of the project and is invaluable to people
who join the project later and want to understand the status of the project.
The debriefing is not typically done by most projects but should be.

5.8.2 Lessons Learned

When the project is complete, the debriefing report becomes a lessons learned
document so other project teams can benefit from the experiences, both pos-
itive and negative. The “lessons learned” include the following:

(1) Things that were done especially well that may apply to other projects
(for example, design, programming or other techniques that were inno-
vated, refined, or improved on, or simply existing techniques that were
used with particular success)

(2) Things that should have been done differently

(3) Problems encountered and recommendations about how future proj-
ects might avoid or solve them

5.8.3 Users of Architecture Documentation

The architecture document keeps all stakeholders aware of the system design
and system design changes throughout development. It is used for up-front
design analysis to validate (or uncover deficiencies in) architectural design
decisions and refine or alter those decisions as necessary. This perspective on
architecture is, in some sense, inward-looking. It involves making prospective
architectural decisions and then projecting the effect of those decisions on the
system or systems that the architecture is driving. Where the effect is unac-
ceptable, the relevant decisions are rethought, and the process repeats. This
process occurs in tight cycles (most architects project the effect of each of their
decisions) and in large cycles (in which large groups of decisions, perhaps even
the entire architecture, are subjected to formal validation).

Architecture documentation is both prescriptive and descriptive. That is, it
prescribes what should be true, and it describes what is true, about a system’s
design. The same documentation can serve both purposes. When the “build-
as” documents differ from the “as-built” documents, there is a breakdown in
the development process.”

» Borrowed with permission from Software Architecture Documentation in Practice at the
Carnegie Mellon Software Engineering Institute.

ARCHITECTURE REVIEWS 155

5.9 ARCHITECTURE REVIEWS

With the architecture documented, the project is ready for formal architecture
reviews. A colleague, Joe Maranzano, provides a checklist for these reviews in
Table 5.2.

TABLE 5.2. Maranzano Checklist

Checklist for Architecture Reviews

—_

OO wWN

10.

11.

. Starting with the “4 + 1” overall architecture diagrams use additional diagrams to describe

all components of the system.

. List major components of the system and the functionality provided by each component.
. Trace scenarios of how data/information flows through components.

. Describe and list the special data error handling flows.

. Describe the user interfaces.

. List all interfaces with other systems, and for each interface describe:

a. The IPC mechanism to be used for data and for control

b. Any expected issues with the IPC mechanism (e.g., performance degradation at some
capacity level, problems with overload control, new technology)

. Failure modes and error handling for each type of failure

. Error recovery to prevent lost data, if needed
. Effective bandwidth of the interface mechanism

© Q0

. Examlne strategies used to keep design simple and avoid unnecessary complexity.
. Examine robustness of component choices, COTS, or custom-made including:

a. available support

b. defect records

c. Licensing costs

d. performance under load
e. extensibility

f. flexibility

. Review local databases or data stores used for temporary data storage or reference data

storage.

Examine performance and capacity budgets by considering the expected traffic and
background processing in terms of:

a. The average load and busy hour of the transaction profile

b Number of simultaneous users

c. Expected system response time in terms of its average, variance, and bounds
d. Peak arrival rates

e. Overnight processing and calculations

f. Database sizes

g. Network demands including congestion strategy

Examine the operations, administration, and maintenance approach, including:

a. Operational environment

b. Interfaces to external sources and systems

c. System availability

d. Failure avoidance and handling

e. Error handling

f. Disaster recovery

g. Security

h. Data consistency and accuracy

By Joe Maranzano, with permission.

When the checklist is used rigorously, problems tend to fall into typical

groupings. Half of all problems are the result of incomplete requirements,

156 ARCHITECTURE

which can be undefined usage scenarios, unidentified customers, lack of accept-
ance criteria, and vague statements. Another 25% can be called performance
issues. The customer and/or designers have neglected to provide specified
traffic profiles, a model of offered load, data volumes, night or batch process-
ing loads, or a resource budget. The customer may also have an unwarranted
expectation of linear scalability.

The final 25% can be divided into four areas. Ten percent is from unspeci-
fied operations, administration, maintenance, or provisioning (OAM&P); no
analysis of system availability or the recovery system lags the online system
so that there is no possibility of database catch-up upon major outage; or data-
base tools are inadequate or conversion tools are missing. Five percent are
from no error recovery. Five percent are from using an immature technology.
The final 5% are from a lack of analysis of subsystem and module
dependencies.

5.10 MIDDLEWARE

Middleware provides a reusable architectural component that solves the dis-
tributed application problem. An early 1980s example of middleware was the
Tuxedo product used with distributed UNIX applications.”* Middleware gets
its name from being the software component that provides simple access to
operating system functions by applications. In an architectural hierarchy, it sits
between the low-level operating system and the application software. It helps
the programmer easily and quickly build distributed business applications by
isolating them from complex design issues, such as working with multiple oper-
ating systems, data communication protocols, and transaction recovery across
multiple applications and computers. The Open Software Foundation’s Dis-
tributed Computing Environment (DCE), Object Management Group’s
Common Object Request Broker Architecture (CORBA), Microsoft’s Dis-
tributed Component Object Model (DCOM), Enterprise’s Java Bean (EJB)
and BEA’s Tuxedo are widely used middleware products.

Upscale architecture middleware supports the construction of sophisticated
systems by assembling a collection of modules with the help of visual tools or
programmatic interfaces. These interfaces are called application program
interfaces (API) and are the subject of intense design efforts between vendors
and customers. Keeping them stable and standard makes it easy to develop
some applications but limits growth to new application areas and eliminates
the software provider’s perceived competitive advantage.

A new concept of a piped dispatch makes it easier to upgrade middleware
when necessary. Previously, middleware components were tightly coupled.
In piped workflow, a special metadata channel exchanges data among all
modules. Whenever the module needs data to continue its operation, it

* A video showing how it uses two-phase commit technology is linked on the course website.

MIDDLEWARE 157

accesses this data channel. Pipes are one way for data channels to exchange
data. The pipe consists of many independent subpipes that interface pair-wise
adjacent modules. Each subpipe contains a pair of interface objects that trans-
fer data between the modules and pipes. In one object class, pipes share the
same temporary memory, so the intermediate result can be transferred from
the nonadjacent modules in an orderly progression of steps. Another approach
is to use dynamic dependency to manage components in an already running
system. Every component may have a set of hooks to which other components
can attach. Some other components (called clients) might depend on server
components. Through the communication and event interfaces between
hooked components, reconfiguration is possible.

Middleware is intended to mask the problem of building distributed appli-
cations among heterogeneous environments, but the complexity of distributed
networks and unanticipated requirements make the construction of middle-
ware difficult. There are many standards for overcoming this quandary, but
none is perfect.

Case Study: The Case of The Muddled Middleware

You are the architect for a software team developing a customer resource
management application. Your architecture review shows that the middleware
transaction recovery component is buggy.

A new release of the middleware is scheduled for June. This release is prom-
ised to be robust, bug-free, and industrial strength. The new transaction recov-
ery scheme requires minor changes to all application modules. Table 5.3 shows
your committed schedule.

You consider the following issues:

(1) Version 3.0 delivery might be later than estimated.

(2) Will Version 3.0 really fix the transaction recovery problem as adver-
tised?

(3) Are the code changes to the application modules needed to interface
with the new recovery scheme as simple as advertised?

(4) If people are reassigned from development to test case design, will they
look for more satisfying work on other projects or in other companies?

TABLE 5.3. Committed Schedule

March April May June July August
Middleware 2.0 3.0
Version
Application SHIP
DATE
Test Inventory Simple Test All

Retest Test Transactions

158 ARCHITECTURE

You explored these options at the architecture review:

(1) Ship Version 2.0, and upgrade to Version 3.0 later. This field upgrade
requires special conversion software and is probably extremely
complicated.

(2) Ship Version 3.0.The project manager has conducted a detailed schedule
analysis and predicts a 6-week delivery delay with a 1.5-week standard
deviation with this option. Your executives will be angry because delayed
payments will cause the company to show a profit loss for the year.

(3) Ship Version 3.0, and insist that the middleware supplier provide on-
site testing support to avoid project delays. The supplier would have to
delay important future middleware features, impacting the supplier’s
profitability, so the supplier wants premium payments to provide this
support. The project manager projects a 50% reduction in profitability,
and the company will go from being profitable to breakeven.

Conclusion: This decision is not easy. All options are risky. You, as architect,
evaluate the features of Version 2.0 and the risks. Working closely with the
project manager and the customer, you decide to ship Version 2.0 and slip
future releases while investing in field conversion to Version 3.0.

The architect cannot be distracted by marketing hype such as “Version 3.0
is solid as a rock and has great features!” Risks must be managed carefully
and conservatively. The customer must be a participant in the decision.

This seemingly simple decision could have had huge repercussions. The
architectural review gave the team the opportunity for thoughtful technical,
schedule, and risk analysis. The field conversion took 6 months longer than
projected and delayed the next set of features. The customer understood the
risks, having participated in the decision, but needed a reliable system and
trusted the architect to deliver systems in good order. Business increased as
other customers heard about the care and thoughtfulness of the architect in
assuring trustworthy products.

5.11 HOW MANY TIMES BEFORE WE LEARN?

Time and again we hear in the news of failures and crises affecting lives or
costing fortunes. Natural disaster or human malevolence causes many of these
problems, but we, as professional software practitioners, have the ethical
responsibility to prevent the ones caused by ignoring basic good practices.
Examples taken from Comair, Microsoft, and NASA, all in recent history, are
worth studying.

5.11.1 Comair Cancels 1100 Flights on Christmas 2004

Comair, a system for assigning crews to commercial airline flights, was running
a 15-year old scheduling software package from SBS International. The soft-

HOW MANY TIMES BEFORE WE LEARN? 159

ware had a hard limit of 32,000 schedule changes per month. Bad weather for
a week and the upcoming holiday apparently caused Comair to reach this limit
and fail catastrophically. The supposition is that 16-bit integers were being used
to identify transactions in the scheduling software. Given that the software was
15 years old, this design decision perhaps was made to save on memory.

Where does the responsibility lie for this failure that affected so many
people and cost so much in confusion, irritation, and bad will? Should SBS
International have been aware of the use Comair made of its software, realize
that the airline industry had changed significantly in 15 years, and upgraded
its product? Were the airlines responsible for mission-critical software? Should
the hard limit been prominently announced by the developer so that periodic
checks could be standard procedure to see if the limit was approached during
peak times? Should software rejuvenation have been used?

5.11.2 Air Traffic Shutdown in September 2004

A bug in a Microsoft system, compounded by human error, was ultimately
responsible for a 3-hour radio breakdown that left hundreds of aircraft aloft
without guidance on September 14, 2004. Nearly all of Southern California’s
airports were shut down, and five incidents where aircraft broke separation
guidelines were reported. In one case, a pilot had to take evasive action.

A Microsoft-based replacement for an older UNIX-based system needed
to be reset every 30 days “to prevent data overload,” as a result of problems
found when the system was first rolled out. However, a technician failed to
perform the reset at the right time, and an internal clock within the system
subsequently shut it down. A backup system also failed.

Rejuvenation must not depend on human intervention, and the domain
within the operating boundaries must be completely bug-free. A mere
warning, often at the lowest level of responsibility, relies on human interven-
tion with all its frailties.

The problem could have been avoided if ANY ONE of these actions had
taken place:

(1) If Microsoft had included rejuvenation in its original solution

(2) If Harris, the supplier of the system to the FAA, had included rejuve-
nation in its application

(3) If Harris had applied the available Microsoft patch

(4) If the FAA had applied the available Microsoft patch

(5) If the FAA had built a script to periodically restart the system

(6) If software engineers had been taught to design to avoid such problems.

5.11.3 NASA Crashes into Mars, 2004

The $165 million Mars Polar Lander was most likely doomed by a sensor that
mistook a spurious signal for landing when the legs deployed, causing the soft-

160 ARCHITECTURE

ware to stop the descent engines 130ft above the planet’s surface. The problem
could have been easily resolved by beaming new software to the lander during
its 11-month cruise, if only it had been noticed.

Two reports were released on the Mars fiasco. They found mismanagement,
unrealistic expectations, and anemic funding were to blame as much as the
mistakes that actually doomed the mission. Too many risks were taken by skip-
ping critical tests or overlooking possible faults. Nobody noticed or mentioned
problems until it was too late.

NASA Administrator Dan Goldin took the blame for the botched Mars
missions, saying he pushed too hard, cut too much, and made it impossible for
spacecraft managers to succeed. But Goldin said he will not abandon NASA’s
“faster, better, cheaper” approach. “We’re going to make sure they have ade-
quate resources, but we’re not going to let the pendulum swing all the way
back,” he told employees of NASA’s Jet Propulsion Laboratory, where Mars
Polar Lander and the failed Mars Climate Orbiter were managed.

There is a breathtaking management statement: What we are doing does
not work, but we will keep on doing it. Unfortunately, when management is
irrational, the ethical architect and designer must be even more adamant about
not taking risks by skipping critical tests or overlooking faults. The most telling
indication of bad management was the fear of mentioning problems. We had
said it before: If a project has no list of problems, it is in terrible trouble.

Even the earlier successful Pathfinder mission had a software problem.
Unfortunately, NASA did not invest in the good software processes of archi-
tectural discovery after that first problem appeared. It was an architectural
deadlock problem and is worth examining as a case study.

5.11.4 Case Study: The Case of the Preempted Priorities

The Pathfinder lands successfully, gathers data on Mars, and sends pictures
back to Earth (Figure 5.5). Then it occasionally stops sending images, and as
times goes on, these stoppages occur more frequently and for longer periods.
The mission software engineers note that when this happens, the computers
reboot the software.

Three software tasks were involved in the problem. One task rebooted the
computer whenever it was idle for a period. A second sent images to Earth,

Antenna
Sensors | l— >

_ - Shared Bus

I <
Computer \

Figure 5.5. Mars Pathfinder.

HOW MANY TIMES BEFORE WE LEARN? 161

and a third took pictures on Mars. All three tasks used the common shared
bus for communication and the computer processor.

A software task dispatch conflict was the cause of the problem. The prior-
ities should be:

T1. Reboot
T2. Send images
T3. Gather data

But because of a faulty use of preemptive multithreading, they were actually:

T1. Reboot
T2. Gather data
T3. Send images

There was a mismatch in priorities set in the hardware, the software, and the
software that controlled the bus. A watchdog counter rebooted the system
after it had been inactive for some time, by issuing an interrupt. This is why
the probe was rebooting after being silent for too long. This is a fail-safe
system. The problem is shown in Figure 5.6.

Task a -
Conflict

CPU T1 T2 T1 T2 T3 | aT2

Bus T2 T2 T3 (T2

X =idle Time

Figure 5.6. Fail-safe system.

Conclusion: This problem is a typical deadlock that can happen when access
to a resource is not managed. It is similar to the deadlocks studied in database
management systems or operating systems courses. Once it was discovered, it
could be resolved. The lessons learned were valuable, but the subsequent Mars
exploration missions demonstrate how rapidly essential sound practices can
deteriorate.”

1. Design defensively. The Jet Propulsion Laboratory team did this by
leaving in the debug code and the fail-safe resets. Build fail-safe systems.

» March, Steve. “Learning from Pathfinder’s Bumpy Start,” Software Testing and Quality
Management, Sept./Oct. 1999, Vol. 1, No. 5, p. 10, www.stqemagazine.com.

162 ARCHITECTURE

2. Stress test beyond the limits established in the requirements. It is best to
test to the breaking point. The difference between the breaking point and
the maximum design load is the system margin. The stress tests for the
Mars Explorer were actually thought to be the worst case, but because the
data gathering went better than imagined possible on the actual mission,
there were more data to process than expected. This resulted in the
shared bus not being released. Had testers pushed the system to its break-
ing point, there is a good chance, although not a guarantee, that they
would have found and fixed the fault before it became a failure.

3. Explain all anomalies that show up during system test. Sometimes you
must release the software for its intended use even though you have not
been able to discover the cause of the anomaly. In these cases, treat the
release as “provisional” and continue to work on understanding the
anomaly. The Mars Explorer anomaly was thought to be a hardware
problem even though there were no data supporting this belief. When
resets occur, even once, during system test, developers must understand
and solve them. Sometimes managers want to classify a problem as a
“chance occurrence.” These are especially difficult times for the testers.
They must insist on having a plan to find and fix the fault before it
becomes a failure to avoid sleepless nights, panic, and project bankruptcy.

Mars is close enough to Earth for the Explorer to have enough fuel
to complete the trip once a year. So the testers faced the awesome
responsibility of holding the mission for a year or explaining away an
anomaly that occurred two or three times. The hardware people were
already blaming the software people for schedule delays, and the soft-
ware people rationalized that if there was a hardware problem, it was
not their job to find it.

In any event, NASA might have chosen to launch on schedule to meet
the window of opportunity. They could have called the launch “provi-
sional” because there was a known fault. While the Explorer flew to
Mars, the Jet Propulsion Laboratory and NASA engineers might have
worked to discover the reset problem in test laboratories well before it
occurred on the planet.

Should the testers have delayed launch until the fault was found and
fixed? A management team could have evaluated the risks and decided
to “launch or hold” with data about all potential problems.

This philosophy moves teams from crisis management to problem
avoidance. By simply writing off the anomaly, the NASA team shielded
their management team from reality. In light of their administrator, it
might have been understandable, but it was still inexcusable.

The most difficult step to take in any project is to change the agreed-to plan,
but plans are worthless unless they change to meet newly discovered condi-
tions. Beware of both extremes, those who thrive on the thrill of crisis or those
who are rigidly committed to “holding the course” despite the data. Architec-
ture reviews with special attention to performance issues are critical. Process-

FINANCIAL SYSTEMS ARCHITECTURE (WITH KIND PERMISSION) 163

scheduling algorithms need detailed analysis. All shared resources must be
understood, and interaction must be analyzed through simulated scenarios.
Only data, proof, and the playing out of “what if” scenarios will convince man-
agement of the need for an ethical stance because, as the cases in this section
all show, to ignore it costs money, reputation, and possibly lives.

5.12 FINANCIAL SYSTEMS ARCHITECTURE®
(WITH KIND PERMISSION)

Financial systems need to be secure and safe. They usually use a combination
of application servers and clients with distributed processing technology.

5.12.1 Typical Business Processes

A bank performs management functions such as asset and liability manage-
ment (ALM) and commercial management. In addition, there are several
innovating functions such as product and market development and support
functions. The core of the bank consists of the operational functions, in which
financial contracts (such as those for saving, mortgages, etc.) are taken out and
managed and where transactions are executed, according to those contracts.
Finally there are the business functions, which are responsible for client
contact and client management via a range of distribution channels and media.
Naturally, communication must be possible between all of these business func-
tions. Figure 5.7 provides a view of the business processes for a typical bank.

Separate systems may be developed for every component of a banking busi-
ness operation. These systems have to be “fed” by what goes on elsewhere in

Strategic
Management
Commercial Operational
Management Management

Support Trading Service Innovation
Int. auditing Prod. Dev.
Cash mngt Market Dev.

Fin. adm. Acquisition Client Mngt Mngt. Dev.
Distribution Mngt

Figure 5.7. Bank business processes.

% Arnold, Bertand, Engels, Ariane, and Optland, Martin. “FPS: another way of looking at com-
ponents and architecture in the financial world: a quest for radical reduction of IT time-to-
market,” Dutch National Architecture Congress, 2000.

164 ARCHITECTURE

financial
administration ALM CM oM
=4
\K ”
business private
mortgage bond/MTN mortgage

Figure 5.8. Common application architecture.?” (with kind permission)

the bank. A contract system for medium-term notes, for example, must serve
to keep other systems up to date about what has been laid down or changed
in the contract. In other words, countless links are required, which together
form a huge web. This web immediately expands whenever a new product is
added or as soon as the organization undergoes change. For example, the bank
may decide to identify a “business mortgage system” and a “private mortgage
system,” as two separate systems for either strategic or administrative reasons,
despite the fact that their underlying product, namely the mortgage, is
common to both (Figure 5.8).

5.12.2 Product-Related Layer in the Architecture

A product layer will reduce interactions by adding a level of indirection. Each
layer represents a virtual machine, that is, a collection of software that together
provides a cohesive set of services that other software can use without
knowing how those services are implemented. This may cost in performance,
but the benefit is in the clarity of the relations between components.

A layer has the properties of cohesion and interface. It provides a cohesive
set of services and a set of public interface facilities that may be invoked or
accessed by other software. On the other hand, it might add overhead.

Layers are part of the blueprint role that architecture plays for construct-
ing a system. Layers are part of the communication role played by architec-
ture. In a large system, the number of dependencies among modules expands
rapidly and layering is an important tool to manage complexity and commu-
nicate structure to developers. Layers can be used for analyzing the impact of
changes to the design.

In this product-related layer, all knowledge and information relating to the
nature of a single product is actually combined. Each banking product there-
fore can have its own product layer. Refactoring the functions simplifies the
architecture and subsequent implementation (Figure 5.9).

7 www.serc.nl/lac/LAC-2001/lac-2000/3-realisatie/fps.doc

FINANCIAL SYSTEMS ARCHITECTURE (WITH KIND PERMISSION) 165

financial

administration ALM CcM oM

— ——

/”${

~
business private
mortgage bond/ MTN mortgage

Figure 5.9. Separate product layer. (with kind permissoin)’

5.12.3 Finding Simple Components

Good architecture has clear product-related layers. The components that
reside in this layer reduce coupling and increase cohesion. New components
can be rapidly added, and processes made up of these components can imple-
ment new features. The trick is to maximize the general nature of the compo-
nent while minimizing the interactions with other components. Object class
refactoring is an important development process that makes this possible.

Components are modules that are limited in size, use single entry and exit
points, have an explicit error recovery strategy, and are bounded in time and
space and interfaces that normalize data structures between components.
Components need to be made linear in the sense that they only interface to
other components through well-defined structures. Object classes specially
defined for interface support are the most flexible. In practice, three or four
iterations at the object class definitions with heavy constraints placed on the
number of object classes is vital. The components are easiest to test if they
have one entry point and one exit point. The underlying idea is that the speed
for adding and altering products can be achieved by composing these prod-
ucts in their specification, using such components.

Now let us consider component size. Should they be small, comprising
elementary building blocks such as a simple interest calculation (principal
amount times term times percentage)? The product would then consist of
many small building blocks. Or should components be larger blocks, such as
“complete straight-line repayment lending construction, including variable
interest calculations?” The risk is that many similar, but in detail different, con-
structions might be required. The best size is a mixture of the two in the range
of one to ten function points. Hatton points out that this lowers defects;
therefore, a vast library of microfeature components does not overwhelm
application engineers.

A range of components is needed for the principal amount and interest
computation. For example, for principal amounts, the situation may develop
in which the principal amount remains the same throughout the term (as is

166 ARCHITECTURE

the case in an interest-only mortgage) or the principal amount becomes less
throughout the term (as is the case in a linearly amortizing mortgage). This
knowledge resulted in the identification of at least two different components
for principal amounts. Similarly, there are two different building blocks for
interest components, an interest construction for daily-variable interest and an
interest construction for a rate-bounded system.

5.13 DESIGN AND ARCHITECTURAL PROCESS

The requirements phase of the project begins with the prospectus. During this
phase, prototypes are used to understand and validate the requirements. A
first-cut functional and physical architecture is synthesized to determine the
feasibility of the project and understand its size. Based on the prospectus and
a colloquial language description, a formal product requirements specification
is prepared. This specification is readable by financial or other problem domain
experts. They therefore determine whether the product specification describes
the product as precisely as they intend. This formal specification lays out the
components of the system and their interaction. It identifies which components
are to be purchases or drawn from a product line library of components and
how they will work together.
Some guidelines for synthesis are these:

(1) Use operating system software and hardware familiar to the develop-
ers. If this is impossible, invest in extensive training and include extra
development iteration.

(2) Partition the software into separate modules. Modularize with well-
defined interfaces to simplify testing and feature packaging.

(3) Estimate performance, and then measure it in the prototype. Track
module performance during the entire development cycle. Establish
performance margins and manage to them.

(4) Maximize the reuse of common modules within and across product lines.

(5) Minimize cross-feature dependencies, and create components from
modules.

(6) Isolate hardware and data structure dependencies from the logical
functional modules. Understand and allow for levels of indirection that
induce performance penalties to reduce development risk.

(7) Simplify the product by refactoring and reusing existing components.

Now the intense architecture and design phase begins. The four views of
the 441 model are synthesized, and a set of independent use cases are created.
A good architecture readily accommodates changes based on new or mod-
ified business functions. Examples are the supervision carried out by banking
regulatory bodies, or the change in internal management, or a more detailed

DESIGN AND ARCHITECTURAL PROCESS 167

TABLE 5.4. Business Changes vs. System Impact

Change in reality Typical system changes
o
o O
P > X
\ S0 &K
6° (0 6\ ° \{b @6\ & \\\&
«“ Sty (*‘ & “\" @Q &
Frequency Reason N < 0 ¢ (o)
0 ++ 0] ++
external objective ++ ++ ++
external requirements 0 ++ 0
internal management +) ++ +
structure 0 + +
Information Technology (+) (+) +)

0 = no or little change.
(+) = possible change.
+ = some change.

++ = major change.

method of cost allocation based on market value rather than book value. The
result of business changes is new system requirements. Existing kernel objects
or components may need to be expanded, and reporting system components
will need to be added. New components need to be added to the system con-
figuration through a registration process. Furthermore, changes in technolog-
ical design can drive changes to the architecture. They usually relate to changes
in the information technology operating environment. See Table 5.4. These
tools can be divided into the following categories:

(1) Hardware, including network technology

(2) System and network software

(3) Storage technology in a database system or storage area network
(4) System development tools, such as new database systems

A good architecture anticipates these changes so that more frequently
occurring changes have lower impact than those occurring less frequently. The
frequent changes in hardware and software technology led to layered archi-
tectures so that the changes can be shielded from the applications and the
users.

Case Study: The Case of The Banker’s Benefits

In the 1990s, banks observed that rapid developments in the financial world
and within IT necessitated a review of the architecture of their software
systems. One bank placed emphasis on the need to correctly register the
various financial products according to type of product and to prepare accu-
rate risk and accounting reports.

Implementation was done in phases, by transferring products gradually
from existing systems to the new system. While development was underway, a
bank merger occurred. The newly formed bank adopted the partially featured

168 ARCHITECTURE

system, which was expanded intermittently with a group of new specific appli-
cations. This showed that new applications could be quickly added and incor-
porated into the new architecture.

In subsequent years, treasury front-office systems and reporting systems
were connected to the new system. This boosted the quality of information
considerably that was available to the financial administration and to the risk
management departments. The information was more manageable, verifiable,
and reliable. It contained interest-related contracts, derivatives, and bond port-
folios. It was linked to front-office systems and other reporting systems. The
concept of a system composed of systems that communicated with each other
in the form of messages was implemented successfully through the flexible
architecture.

When the European Union countries switched to one currency (euro) in
1999, the bank quickly adapted contracts in pre-euro currencies to contracts
in euros (allowing the customer to choose the moment of conversion for each
contract separately). For each application, a few new methods were added
to the specification and the product kernel component was recompiled and
loaded.

User departments saw improvement in the quality and consistency of the
information in the reporting systems with this architecture in place. Financial
product-related calculations were removed from the reporting systems, and
specified calculation rules in the kernel calculations are used for the reports.
Although front-office staff have dedicated applications, the back-office staff
are relieved of many reconciliation problems, thanks to the consistency of the
information.

However, the story was different when this architecture was implemented
at the savings division of a large retail bank. The initial situation here was
entirely different. Within an existing environment that included communica-
tion with the network of local branches, the central component containing
balance and interest calculations needed to be replaced by a new system. The
system had to offer support for the flexible and rapid introduction of new
savings products. The environment would need to be adapted further at a later
stage. The emphasis was the introduction of the application components within
the existing architecture.

The assignment was to link up with many payment-oriented legacy systems
for a wide variety of savings applications, with premiums, brackets, and levels,
but also for the savings components of mortgage constructions. In parallel, the
balance and interest calculations of the current account system such as inter-
est calculation and overdraft identification were centralized into a core kernel.
Messages from the applications had to maintain their existing interfaces so
that the incoming and outgoing interfaces could maintain their batch charac-
ter. The account concept remained primary: A withdrawal or deposit is first
registered in the account system and then reported to applications. Figure 5.10
shows the required interactions.

The direct benefit is that the kernels contain all rules for the application
products in one place. Updates to these calculations now will take place uni-

DESIGN AND ARCHITECTURAL PROCESS 169

[Application Control } " omomow

\ >
E’rinting-information J

)

Client- and
contract-data

Al nt .
4 5 Ag‘r:l:’ilrj\ Calculating &2\
Message o)
Component. <
4 ponept, ~
Kernels /{0 g\ '@\ Account
\QO’ N
-
interface
data

Balance-updates

L gtz

Figure 5.10. Savings applications of a large retail bank.

formly. The flexibility introduced could be used in the future to provide online
information to front-office staff on the phone with the customer or to Web-
based applications. This architecture let the bank introduce new financial prod-
ucts and product variations to the market quickly. The challenge was to handle
the more than 1 million accounts and more than 60 million payment transac-
tions a year without degrading performance while changing the applications.
These demands were met.

The first phase lasted 20 months. During this time, the new infrastructure
was designed, 10 existing applications were upgraded, and two new retail
savings applications were added. The architecture’s flexibility quickly proved
useful. Previously, at the counters of the local branches, calculations of bal-
ances and accrued interest were performed manually. Shortly after the imple-
mentation, this time-consuming and error-prone procedure was replaced by
an application program, which directly used information methods from the
kernels, thus guaranteeing the same calculation rules were applied in the front
office as in the back office. By doing this, a uniform handling of product rules
could be enabled and enforced throughout the bank.

Conclusion: The benefits offered by integrated software architecture go
beyond the “sum of the parts.” Specifications for new or modified financial
products may be specified in financial terms, using financial kernel components
as building blocks. Automatic software generation is then possible for quick
creation of a prototype. The architecture ensures that the prototype applica-
tions created fit into its environment immediately. Applications can be speci-
fied, evaluated, developed, and embedded quickly. A formal development
phase is needed because generating from a specification language results in

170 ARCHITECTURE

software so inefficient that users do not tolerate it. Careful domain analysis
ensures realistic scheduling. When products are specified within the same
domain, it will quickly become clear which components overlap and which are
reusable. Components may be developed or purchased for the money market
and capital market business units and for retail front-office offerings of credit,
savings, and payment services. When a new domain is entered, new compo-
nents may be required and their development will slow the development
process. Careful domain analysis and component purchases can help prevent
unnecessary delays and ensure that the scheduling is realistic.

5.14 PROBLEMS

5.14.1 Let us return to “The Case of the Puzzling Patriot” from Chapter 3.
Review the particulars. What architecture changes could be made that would
prevent this problem from occurring?

5.14.2 Defensive design means recognizing dangerous coding practices and
knowing how to avoid them. Provide an architecture constraint that would
help avoid these problems.

5.14.3 Let us return to “The Case of the No-Service Service Request” in
Chapter 2. Review the particulars. What possible shortcomings in the require-
ments specification led to this crisis?

5.14.4 David Parnas teaches that you should encapsulate modules of code
with well-defined interfaces. The interior of such a module is the private prop-
erty of its programmer and must not be discernable from the outside. This
is called module ownership. Programmers are most effective when they are
shielded from, not exposed to, the innards of modules not their own. Indicate
true or false for each of the following statements.

(a) Parnas’ teaching is robust to changes in design.

(b) Parnas’ teaching is called “information hiding.”

(c) Parnas’ teaching defines object oriented programming.

(d) Using Parnas’ teaching prevents software project disasters.

(e) Extensive testing of previously built modules is sufficient to permit
them to be reused.

BIBLIOGRAPHY

“Krutchen 4+1 Systems,” Proceedings of the TRI-Ada ‘94 Conference ACM, Baltimore,
MD, November 6-11, 1994.

“Software Architecture Documentation in Practice: Documenting Architectural Layers,”
The Software Engineering Institute (SEI) Carnegie Mellon University, 2004,

BIBLIOGRAPHY 171

http://www.sei.cmu.edu/publications/documents/00.reports/sr004/00sr004chap02.
html.

Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J. “Awk—A Pattern Scan-
ning and Processing Language,” Software—Practice and Experience, Vol. IX, No. 4,
April 1979, pp. 267-279.

Arnold, B. R. T., van Deursen, A., and Res, M. “An Algebraic Specification of a
Language for Describing Financial Products,” M. Wirsing (Ed.), Proceedings of the
ICSE-17 Workshop on Formal Methods Applications, Software Engineering
Practice, Seattle, WA, April 1995, pp. 6-13.

Astley, Mark, Sturman, Daniel C., and Agha, Gul A. “Customizable Middleware for
Modular Distributed Software,” Communications of the ACM, Vol. 44, No. 5, May
2001, pp. 99-107.

Bass, Len, Clements, Paul, and Kazman, Rick. Software Architecture in Practice,
Addison-Wesley, Reading, MA, 1998.

Bernstein, Lawrence. “Software Fault Tolerance Forestalls Crashes: To Err is Human,;
To Forgive Is Fault Tolerant,” Advances in Computers, Elsevier Science, New York,
2003, pp. 239-285.

Buschmann, Frank, et al. A System of Patterns, John Wiley and Sons, New York, 1996.

Cameron, John. JSP & JSD: The Jackson Approach To Software Development,2nd ed.
IEEE Computer Society, New York, 1989, Section 5.

Donahoo, Michael and Calvert, Kenneth. The Pocket Guide to TCP/IP Sockets C
Version, Morgan Kaufman, New York, 2001.

Gacek, Christina, Abd-allah, Ahmed, Clark, Bradford, and Boehm, Barry. “On the
Definition of Software System Architecture,” ICSE 17 Software Architecture
Workshop, April 1995, Center for Software Engineering, University of Southern
California, Los Angeles, CA.

Garlan, D. and Shaw, M. “An Introduction to Software Architecture,” Advances in Soft-
ware Engineering and Knowledge Engineering, Vol. 1, World Scientific Publishing,
Singapore, 1993.

Hall, Jane (Ed). Management of Telecommunication Systems and Services, Springer,
New York, 1991.

Hatton, Les. Safer C: Developing Software for High-integrity and Safety-critical Systems,
McGraw-Hill International, London, 1997.

IEEE Software, Vol. 12, No. 6, Nov. 1995. Entire issue devoted to architectural ques-
tions and developments.

IEEE Software, Vol. 22, No. 4, July/August 2005. Entire issue devoted to COTS
Integration.

Jackson, M. A. Principles of Program Design, Academic Press, New York, 1975.

Kruchten, Philippe B. “The 4+1 View Model of Architecture,” IEEE Software, Vol. 12,
No. 6, Nov. 1995, pp. 42-50.

Landauer, Thomas K. The Trouble with Computers, MIT Press, Cambridge, MA, 1996,
p- 70.

Leavens, Gary T. and Sitaraman Murali. Foundations of Component-Based Systems,
Cambridge University Press, Cambridge, U.K., 2000.

Lenzi, Marie. “Conduit and Content,” Object Magazine, Oct. 1996, pp. 4-6.

172 ARCHITECTURE

Linger, R. C., Mills, H. D. and Witt, B. L. Structured Programming: Theory and Practice,
Addison-Wesley, Reading, MA, 1979, ch. 4.

Morris, Charles R. and Ferguson, Charles H. “How Architecture Wins Technology
Wars,” Harvard Business Review, March—April 1993, pp. 86-94.

Parnas, David. “Concurrency and Scheduling,” Software Fundamentals Collected Papers
by David L Parnas, edited by Daniel M. Hoffman and David M. Weiss, Addison-
Wesley, London, 2001.

Schmidt, D. C. and Cleeland, C. “Applying Patterns to Develop Extensible ORB Mid-
dleware,” IEEE Communications Magazine, IEEE CS Press, Los Alamitos, CA, Vol.
37, No. 4, 1999, pp. 54-63.

Sha, Lui. “Using Simplicity to Control Complexity,” I[EEE Software, Volume 18, No. 4,
July/Aug. 2001, p. 27.

Shaw, Mary and Garlan, David. Software Architecture: Perspectives on an Emerging
Discipline, Simon & Schuster, New York, 1996.

Siewiorek, D. P, Chillarege, R., and Plank J. K. “Reflections on Industry Trends and
Experimental Research in Dependability,” IEEE Transaction on Dependable and
Secure Computing, IEEE Computer Society, Vol. 1, No. 2, April-June 2004, p. 120.
software@computer.org.

Wallnau, Kurt, et al. Building Systems from Commercial Components, Addison-Wesley,
Reading, MA, 2002.

Witt, B. I, Baker, F. T., and Merritt, E. W. Software Architecture and Design—Principles,
Models, and Methods, Van Nostrand Reinhold, New York, 1994.

Estimation, Planning,
and Investment

With a prototype, a validated set of requirements specifications, and architec-
ture available, the project manager faces the task of estimating what can be
done in the time allotted, how many people it will take, and the order of tasks.
Staff training, upgrading tools, building test beds, or any other investment
needed for project success is best made now. This is also the best time to make
feature, schedule, and cost commitments, but usually these are made well
before this point. This push for early commitment often leads to project prob-
lems and failures. In the United States, the Standish Group reports, “We’re
losing ground. Only 28% of IT projects succeed these days, down from 34 %
a year or two ago. Outright failures—IT projects canceled before comple-
tion—are up to 18% from 15%. The remaining 51% of IT projects are “chal-
lenged”—seriously late, over budget and lacking expected features.”' In the
United Kingdom, canceled government projects plus others that have run over
budget—such as tax and child benefit computer systems—cost the United
Kingdom £1.5 billion over 6 years, according to a 2003 report from the Office
of Government Commerce.”

The quantitative approach to software engineering reduces the likelihood
of these problems by careful analysis of the requirements and architecture
before development begins.

' http://www.standishgroup.com. (with kind permission of The Standish Group International, Inc.)
2 http://www.computing.co.uk/news/1139418.

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

173

174 ESTIMATION, PLANNING, AND INVESTMENT
To recap the preceding chapters:

(1) Start with a system prospectus.
(2) Write a set of requirements with quantitative specifications.

(3) Validate the quantitative specifications with a prototype and with the
customer.

(4) Use ICED-T metrics to evaluate the proposed system as a whole.

(5) Develop a simple quality function deployment set of metrics showing
the importance and ease of implementation for each feature.

(6) Synthesize a first-cut architecture from the prototype and requirements
specification using the 4 + 1 model.

(7) Conduct an architecture discovery review to make sure that the project
is feasible.

(8) Size the project by computing the function points as explained in this
chapter.

Now realistic development planning can begin. This chapter will explain how
to estimate the staffing and time required for development. With this informa-
tion, the project manager can plan tasks and set intermediate mileposts.

6.1 SOFTWARE SIZE ESTIMATION

Intuitively, one might suppose that development effort is proportional to soft-
ware size, but size of what? Size may be measured by the number of program
instructions, the number of function points, the amount of computer memory
the program will occupy, the number of interactive screens in an online soft-
ware system, the number of equations in the computer game physics, or the
number of pages in the requirements document. Estimating software size is
fundamental to quantitative project planning. A good size estimate leads to
good development plans and provides a basis for determining the staff effort
and elapsed time needed for software development. With these estimates,
project costs can be calculated and projected into a price.

6.1.1 Pitfalls and Pratfalls

The problem with most size estimates is that they are too optimistic. Size
estimates are commonly well under the final actual size because they do not
consider many nonfunctional requirements, nor do they account for the com-
plexity of the problem. For example, most software people would not imagine
that the length of time tomatoes sat on freight cars could impact the quality
of tomato soup. If tomatoes sit in open cars in the rain, adding even a small
amount of water during cooking yields watery soup, but if there was a
dry spell, not adding enough water yields a soup that is too thick. The need

SOFTWARE SIZE ESTIMATION 175

for a time and weather module to handle a calculation that is obvious to the
chef (but not to the developer) adds several new interfaces and many software
modules to the software system hoping to do the chef’s job. One chef always
parked his car on the far side of the train yard to get some exercise on the
walk to the kitchen. Checking the weather was second nature to him, but it is
difficult to do automatically. Knowing this business rule for making soup is
vital when making computer resource estimates, cost quotations, and sched-
ules. The software effort needed to collect and correlate weather data added
significantly to software size estimates.

Software size also becomes an important metric in process measurements.
Many metrics like productivity and defect rates are a function of software size.
Good managers keep metrics data from previous projects in a software data-
base and use the data for similar elements of new projects. High-level language
compliers, fourth-generation languages, software platforms, tools, and software
components allow developers to provide more functions with fewer lines of
code. The problem is that high-level tools are not always suitable for building
performance-sensitive applications. Even though most of any application is
not performance sensitive and only 1-2% of the total software needs to be
quick, this small percentage must be processed either by the tools used for the
entire application or the source code for the application must be divided
among different software technologies. This introduces a discontinuity in the
architecture view depicting the development process and software tools. The
discontinuity presents a serious problem to application maintainers and
stresses the configuration control processes. Projects often fail when their
source code is split among different languages.

6.1.2 Software Size Metrics

The two most often used size metrics are source lines of code (SLOC) and
function points. Counting lines of code has its problems, not the least of which
is that you often must build the component before you can count SLOC. Esti-
mators rely on extrapolating from similar components from other projects at
the beginning of a new project and then track SLOC to see how good their
estimates are. Function point estimation has made great strides and can be
used throughout the development cycle to track project schedules and costs.
Function point tracking is used to assure design simplicity and the under-
standing of redesign implications. Function point metrics have problems too,
but they are proving to be effective in size estimation. Function points isolate
the estimates from the idiosyncracy of the programming language and allow
the estimator to focus on the nature of the problem rather than on the imple-
mentation details of the solution. They are not well suited to computation-
intensive applications or real-time software development.

SLOC and function points may not be valuable for every project. The
number of user screens might more naturally measure a Web-based applica-
tion or other highly interactive, data-intensive application. The number of dif-

176 ESTIMATION, PLANNING, AND INVESTMENT

ferent reports or analyses it must produce best gauges analytical software. A
computer game can often be the work of a small team of fewer than five people
and is best estimated by considering the experience of the developers, the tools
and components available, and the complexity of the physics required for the
game dynamics. Web application development is difficult to estimate using
function points because the tools simplify integration. Function implementa-
tion estimators must be careful to include only the work required by the
particular application in the estimate, not the efficiency of the tool suite used
for implementation.

6.2 FUNCTION POINTS

Function points can be counted from requirements. This alone led to its wide-
spread use. Early on, unsuccessful attempts were made to estimate project-
staffing profiles. Today, managers, function point experts, and technical
educators strongly emphasize that function point analysis (FPA) is not appro-
priate for measuring either individual productivity or monitoring day-to-day
progress. The following excellent overview can be accessed in its entirety at
www.softwaremetrics.com/fpafund.htm. This excerpt is presented with the per-
mission of the author, David Longstreet.’?

6.2.1 Fundamentals of FPA

Function Point Analysis (FPA) is a structured technique of problem solving.
It is a method to break systems into smaller components, so they can be better
understood and analyzed. Function points are a unit measure for software
much like an hour is to measuring time.

Human beings solve problems by breaking them into smaller understand-
able pieces. Problems that may seem to be difficult are simple once they are
broken into smaller parts. In the world of FPA, systems are divided into five
large classes and general system characteristics. The first three classes or
components are external inputs (Els), external outputs (EOs), and external
inquires (EQs). Each of these components operates on data in files, and they
are called transactions. The next two, internal logical files (ILFs) and external
interface files (EIFs), are where data are stored that is combined to form
logical information. The general system characteristics assess the general func-
tionality of the system.

6.2.2 Brief History

FPA was developed first by Allan J. Albrecht in the mid-1970s. It was an
attempt to overcome difficulties associated with lines of code as a measure of
software size and to assist in developing a mechanism to predict effort asso-

3 www.softwaremetrics.com.

FIVE MAJOR ELEMENTS OF FUNCTION POINT COUNTING 177

ciated with software development. The method was first published in 1979 and
then later in 1983. In 1984, Albrecht refined the method, and since 1986, when
the International Function Point User Group (IFPUG) was set up, several ver-
sions of the Function Point Counting Practices Manual have been published
by IFPUG. A full function point training manual can be downloaded from
these websites: http://www.ifpug.org/ or www.SoftwareMetrics.Com.

6.2.3 Objectives of FPA

Because function points measure systems from a functional perspective, they
are independent of technology. Regardless of language, development method,
or hardware platform used, the number of function points for a system will
remain constant. The only variable is the amount of effort needed to deliver
a given set of function points. This becomes the basis for determining if a new
tool, a better programming environment, a new software process, or a differ-
ent language will increase productivity. Comparisons can be done carefully
between organizations or the same organization developing different kinds of
software applications. This is a critical point and one of the greatest values of
FPA.

6.2.4 Characteristics of Quality FPA

FPA requires training and experience. If FPA is attempted without training,
it is reasonable to assume the analysis will be poor. An expert in FPA will
help the software architect by finding feature duplications, inconsistent use of
design rules, poor interface designs, and software modules that need further
review. The best FPA experts have the perspective and insight to be excellent
system engineers.

6.3 FIVE MAJOR ELEMENTS OF FUNCTION POINT COUNTING

Because it is common for computer systems to interact with other computer
systems, a boundary must be established according to the architect’s point of
view indicating the border between the project or application being measured
and the external applications or user domain. Once the border has been estab-
lished, elements can be classified, ranked, and tallied.

6.3.1 EIl

El is an elementary process in which data cross the boundary from outside to
inside from a data input screen or another application. The data may be used
to maintain one or more internal logical files. The data can be either control
information or business information. Control information does not have to
update an internal logical file. Figure 6.1 represents a simple EI that updates
two ILFs. In this case, EI = 2.

178 ESTIMATION, PLANNING, AND INVESTMENT

Figure 6.1. EI.

6.3.2 EO

EO is an elementary process that sends derived data across a module bound-
ary. Additionally, an EO may update an ILF. Such data create reports or output
files sent to other applications from one or more ILFs and EIFs. Figure 6.2
shows three outputs labeled EO, two are derived from data within an ILF and
then passed directly to the EO from their ILFs, but one derives data from each
ILF, processes it, and then sends it to EO. In this case, EO = 3.

[} | Derived Data

Figure 6.2. Simple and derived EO.

6.3.3 EQ

This is an elementary process with both input and output components that
result in data transfer between ILFs and EIFs. In this case, as compared with
the previous case, the input process does not update ILFs, and the output side
does not contain derived data. Figure 6.3 represents an EQ with two ILFs and
no derived data. In this case, EQ = 2.

6.3.4 ILF

This file is an identifiable group of logically related data that reside entirely
within the application boundary. In Figure 6.3, ILF = 2.

EACH ELEMENT CAN BE SIMPLE, AVERAGE, OR COMPLEX 179

EQ

Figure 6.3. Simple EQ.

6.3.5 EIF

This file is an identifiable group of logically related data that are used for ref-
erence purposes only. The data reside entirely outside the application and are
maintained by another application. Note that the EIF is an ILF for another
application.

6.4 EACH ELEMENT CAN BE SIMPLE, AVERAGE, OR COMPLEX
The simplified function point equation given in Section 3.9.3 was as follows:
FPs = (UFP)(VAF),

where UFP is the unadjusted function point and VAF is the value adjustment
factor.

Avoid using adjusted function points to compute staff estimates in order to
not count complexity twice. For the function points, we assumed an average
system complexity, but the complexity of each element need not be average.
It may be simple, average, or complex. Here, complexity is a subjective judg-
ment made by the architect and developers. For EI, EO, or EQ transactions,
the complexity ranking is based on the number of files updated or referenced
and the number of data structures in the files. For both ILF and EIF files, the
ranking is based on record classes and data element classes. Other measures
of complexity are possible. A record element class is a recognizable, nonre-
cursive field. The coefficients for the UFP can be taken from the function point
complexity table in Table 6.1.

The coefficients represent weights. Theoretically, 15 different possible equa-
tions may be used. Each element may have a different degree of complexity
and demand a different weight reflected in the coefficient. The VAF coeffi-
cients for the equation used in Section 3.9.3 were selected from the average

180 ESTIMATION, PLANNING, AND INVESTMENT

TABLE 6.1. Coefficients for UFP

Element/ El EO EQ ILF EIF
Complexity

Simple 3 4 3 7 5
Average 4 5 4 10 7
Complex 6 7 6 15 10

row. When FPA is first attempted, it is easiest to choose the coefficients
corresponding to the overall application complexity. With experience, each
element can have its own level of complexity. The counts for each level of com-
plexity for each element can be entered into a worksheet as in Table 6.2.

TABLE 6.2. Element Complexity Counts to Calculate Total Adjusted Function Points

Type of Component Complexity of Components
Low Average High Total
External Inputs _ x3=___ _ xX4=__ __xX6=__
External Outputs _ x4=___ _ x5=___ _XT7=__
External Inquiries _ X3=___ _ x4=__ __X6=__
Internal Logical Files _ XT=___ _ x10=__ __x15=___
External Interface Files _ X5=___ _ XT7=___ _ x10=___

Total Number of Unadjusted
Function Points

Multiplied Value Adjustment Factor
Total Adjusted Function Points

The VAF is based on 14 general system characteristics (GSC) that rate the
general functionality of the application being counted. Each characteristic has
associated descriptions that help determine the degrees of influence of the
characteristics. The degrees of influence range on a scale of zero to five, from
no influence to strong influence. The IFPUG Counting Practices Manual pro-
vides detailed evaluation criteria for each of the GSCs. The value assigned to
each characteristic is based on the opinion or the judgment of the architect
and the developers. Wideband Delphi is a good technique for doing this value
assignment. Table 6.3 is an overview of each GSC.

Then a factor reflecting the complexity of software needed, called either
the technical complexity factor (TCF) or the VAF, is computed using the value
adjustment equation:

TCF = VAF = 0.65+ Y (C(i))/100,

where i = 1 to 14 and represents each GSC that can have a value from zero
to five.

TABLE 6.3. Weighting GSCs for VAF

EACH ELEMENT CAN BE SIMPLE, AVERAGE, OR COMPLEX 181

General System Description Value range 0 to 5
Characteristic (0 = irrelevant;
5 = fundamental)
1. Data How many communication

10.

1.

12.

13.

14.

communications

. Distributed data

processing

. Performance

. Heavily used

configuration

. Transaction rate

. Online data

entry

. End-user

efficiency

. Online update

. Complex

processing

Reusability

Installation ease

Operational ease

Multiple sites

Facilitate
change

facilities are there to aid in the
transfer or exchange of
information with the
application or system?

How are distributed data and
processing functions handled?

Did the user require response
time or throughput?

How heavily used is the
current hardware platform
where the application will be
executed?

How frequently are
transactions executed—daily,
weekly, monthly, etc.?

What percentage of the
information is entered online?

Was the application designed
for end-user efficiency?

How many ILFs are updated
by online transactions?

Does the application have
extensive logical or
mathematical processing?

Was the application developed
to meet one or many users’
needs?

How difficult is conversion
and installation?

How effective and/or
automated are startup, backup,
and recovery procedures?

Was the application
specifically designed,
developed, and supported for
installation at multiple sites
for multiple organizations?

Was the application
specifically designed,
developed, and supported to
facilitate change?

182 ESTIMATION, PLANNING, AND INVESTMENT

The final function point count is obtained by multiplying the UFP by the
VAF.

Function Points (FP) = (UFP)(VAF)".

6.5 SIZING AN AUTOMATION PROJECT WITH FPA

Example: A new tool is needed to automate new hire processing. It will be
called the employees startup program (ESP) and should reduce the work of
the Human Resources Department by 90% and make every step of hiring
secure. Audits of the decisions made throughout the process are an essential
requirement.

The ESP automates these tasks:

(1) File applications.

(2) Schedule drug tests.

(3) Confirm appointments with new hires.

(4) Access and file results from the medical department computer.

(5) Communicate results to managers.

(6) Negotiate and assign start date.

(7) Enter background check results.

(8) Capture fingerprinting results.

(9) Organize, format, and send new hire data to administrative computer.
(10) Track Human Resources person who decides/commits.

The architecture has been designed, as a first cut, and the function points have
been counted for this specific architecture. This is how the first multipliers in
the low, average, and high columns in Table 6.4 were determined.

TABLE 6.4. UFP as Calculated from the Requirements
and First-Cut Architecture

Low Average High Results
ILF 3 (X7) 2 (x10) 0 (x15) 41
EIF 0 (x5) 0 (x7) 0 (x10) 0
El 3 (x3) 2 (x4) 1 (x6) 23
EO 1 (x4) 2 (x5) 1 (x7) 21
EQ 3 (x3) 0 (x4) 0 (x6) 9

UFP = 94.

* Adapted from an excellent article by David Longstreet, with permission. David@
SoftwareMetrics.Com and www.SoftwareMetrics.Com.

SIZING AN AUTOMATION PROJECT WITH FPA 183

Now compute the degrees of influence by filling in the values on the chart
from Table 6.3 and totaling the 14 values. The values for this example are shown
in Table 6.5. The GSC is 23 and is used to modify the function point calculation
by accounting for the complexity of the sofeware development.

TABLE 6.5. GSC Chart—Ratings Determined by
Wideband Delphi

General System Characteristic Degree of Influence
(scale 0 to 5)

o

Data communications
Distributed data processing
Performance

Heavily used configuration
Transaction rate

Online data entry
End-user efficiency

Online update

Complex processing
Reusability

Installation ease
Operational ease

Multiple sites

Facilitate change

W= PO =2 =N PWLOWO

N
w

Total degrees of influence—GSC

VAF = 0.65 + 23/100 = 0.88.
FP = (UFP)(VAF) = 94 x 0.88 = 82.7.

Now the project manager for the ESP project must refer to a database
of previous projects to estimate the productivity of the development staff
to estimate how long the project will take and how many developers are needed.
Alternatively, the project manager can use the Constructive Cost Model
(COCOMO) model explained later in this chapter to make this projection.

6.5.1 Advantages of Function Point Analysis

Researchers provided the insight that during the design phase of a project, its
function point content should actually decrease. Based on Boehm’s prototyp-
ing experiments, the goal of 40% reduction was chosen. Another benefit was
the elimination of feature creep experienced by most projects. Typically, pro-
jects experience 40% average growth in product size because of the users’
changes in requirement (on average 2% to 3% per month) from original esti-
mation to final release. Using FPA greatly improved communication between
developers and product management by giving developers the ability to quan-
tify product size, constrain feature growth, and reduce design complexity. FPAs
were performed for modern software technology, such as object-oriented,
client/server, and event/response. They may be computed in early in the life
of the project. The recommendation is to first compute them during the
requirements stage and then to compute them at every subsequent develop-
ment stage. The demonstrated advantages are summarized as follows:

184
1
@)
®)

(4)
®)

ESTIMATION, PLANNING, AND INVESTMENT

They provide a consistent and abstract measure of size, independent of
language and design.

The client more easily understands them than new or changed source
lines of code (NCSLOC).

They provide system-wide insight, finding redundant functions and
ambiguous requirements.

They avoid the temptation to fudge the number of NCSLOC.
They allow management decisions to be quantitative.

6.5.2 Disadvantages of Function Point Measurement

1
(@)
©)
(4)
®)
(6)

™)

6.5.3

FP counting is labor intensive; yet it should not be automated.

FP counting requires highly skilled and thoughtful practitioners.
Inexperienced people produce inconsistent counts.

Extensive training in FP counting is required.

FPs are heavily weighted to file manipulation and transaction applications.

The lack of historical data limits the improvement of estimation, but
software developers are unwilling to count FP for completed products.

The practice is subject to systematic error peculiar to the person doing
the counting. A good practice is to have an FP counting expert
assigned to a project for a period of time. Then as misestimates are
found, they can be corrected. This helps the project’s FP counting
expert to improve.

Results Common to FPA

The prediction accuracy for 20 network management systems proved to be
better than twice that of the counting NCSLOC approach. Hundreds of func-
tion points for redundant functions were discovered and eliminated. These
redundancies had crept into the architecture as designers planned an inte-
grated product offering from a library of existing assets (Figure 6.4). By elim-
inating these redundancies early in the project lifecycle, developers could focus
on new feature development.

User
Specs

Compute Organization ~ Development
TCF Particulars Process
Count | UFp Prsqduct Estimation
) 1ze tool Planning Project
—>| Function Apply (Checkpoint,| | Tool | Plans
Points COCOMO
or SLIM)

Figure 6.4. FPA process yields project plans.

FPA ACCURACY 185

6.5.4 FPA Accuracy

A Bell Laboratories study showed that estimates of project size with FPA are
twice as accurate as those obtained from traditional methods. This study was
conducted in a controlled environment for three different types of projects;
all three types used the same development processes in the same environment,
which had a 2.9 SEI rating. Figure 6.5 shows that although estimates for the
effort, costs, productivity, and fault removal were reasonably on target,
the schedule estimating was poor because the Waterfall Model is built into the

350
5 300 — Il Expert System
2 [oA&Mm
% 250 — [_] Online Application
3 200 —
o
g
o 150 —
©
L Actual*
© -
£ 100
@
50
0 —
Effort Cost Calendar Productivity Fault
Interval Removal

Project Measure

* Accuracy is acceptable, except for Calendar Interval.

Figure 6.5. How accurate were FP estimates?

estimation model. New time estimation models incorporating the Spiral Model
would produce more accurate results.

Paul W. Lusher of the Navy Dahlgren Division has been using FPA for real-
time weapons systems development. He finds that the “backfire” method,
which is used to compute function points directly from the source code, must
be avoided as it gives poor estimates. He said that “It is more appealing on a
philosophical level to measure system functionality vs. source programming
language; users, in general, do not care about the source code but do care about
the job the system is built to perform.” Overall, extensive experience with soft-
ware metrics shows that no one metric can solve the serious problems of
software development. As Capers Jones emphasized, “To become a true engi-
neering discipline, many metrics and measurements are needed: accurate
effort, cost, and schedule data; accurate defect and quality data, etc.”

186 ESTIMATION, PLANNING, AND INVESTMENT
6.6 NCSLOC METRIC

Probably the most-used direct measure of software size is to count of the
number of lines of code that have been implemented. These were originally
called LOC. Then to distinguish them from the executable code produced by
a complier, they were called SLOC. With the advent of reuse and commercial
off the shelf (COTS), it became important to distinguish the code that had to
be developed from that reused, and so the term NCSLOC was adopted.
NCSLOC is the size used for staffing and schedule estimating. Note that many
actual physical lines in the source code file may be blank or comments and
not contain any language statements. When a project adopts NCSLOC for its
size metric, counting rules attempt to make the counts consistent. Here is one
such a set of rules:

(1) Counting standard: Define logical LOC.
(2) Limit module size: 50 LOC to 1000 LOC.

(3) Code configuration management: Store source and object code for each
module as a file. Use a PIDENT (program identifier) to name the
module. A good format is logical_name@type.version, where type is
source, object, or even documentation. The logical name may follow
some hierarchical breakdown structure based on the logical view of the
software architecture. PIDENT can name more than programs.

(4) Codingstandard: Good practice applies a ratio of one logical LOC to one
physical line in the file. The coding standard also incorporates format
matters like indenting. A quality coding standard makes readable code
and provides for a more easily designed counter. Use only one language
within a file. When more than one language is used in an environment,
separate PIDENTS are used and historical data banks are kept for each
language.The version field of the PIDENT can be used to track language.

(5) Use checklists: Rules are enforced by software auditing programs fol-
lowing firm checklists. For example, a standard for counting C code
could count each instance of the following as one LOC, but not com-
ments and blank lines: each brace, closing and opening; each executable
line; each declaration of a variable or function, including a function
header; each for (loop), if (condition), do, return (value), or while (con-
dition); each instance of a compiler directive.

Case Study: The Case of the Bard’s Bulge

A metric popular in the 1970s was the ratio of comment lines to LOC. The
goal was a ratio of 1, but a project with a 0.5 ratio or higher was considered
well documented. Bernstein was once appointed project manger for a project
with a ratio of 2. He was duly impressed until he began to read some of the
code. There were long quotes from Hamlet included in the commentary.
After a quiet meeting with the offending programmer where the project
manager made it clear that, although he would not be fired, project policy

NCSLOC METRIC 187

would henceforth expressly limit the content of comments to relevant soft-
ware issues. The programmer’s dramaturgical tastes were admirable but con-
stituted unhelpful help.

Word spread through the land that the new project manger actually read
code! There was a flurry of documentation activity for the next several weeks.

Result: The next time the code was read, the ratio was 0.9, but the commen-
tary was cogent. The exercise on everyone’s part revealed that too much in-
line commentary obscures the code. Programmers were encouraged to include
narratives and design information in preface sections to modules and to use
few in-line comments.

It is essential for the manager to look beyond the metric to gain insight and
understanding. This technique is sometimes called “management by walking
around.”

6.6.1 Company Statistics

Lines of code can also be easily applied to company statistics such as pro-
ductivity (NCSLOC per programmer hour); defect rates (defects per 1000
NCSLOC). NCSLOC can also be used in determining the effectiveness of
product reviews and inspections. The problem is that there is little agreement
about what to count. A good practice is not to count comments and track one
LOC for each carriage return. To emphasize that you are estimating the effort
required, do not count LOC of operating systems or platforms in the devel-
opment estimation. One should also count the LOC in reused components,
but use different effort estimation algorithms than for new development. A
reason for using LOC is the ease of counting them and sorting them into these
categories. But LOC tends to reward the wrong behavior. Crisp, clear, and
concise programs are the objective, not lengthy ones.

6.6.2 Reuse

With some extra effort, new modules can be declared reusable. Reuse can cut
down on defect counts if care is taken to test them exhaustively, define their
interfaces well, and assure compatibility.

Uy

\‘//
ERN

MAGIC NUMBER!

Three times the effort is needed to transform a single system module into
a reusable component, so know beforehand its likely frequency of reuse.

188 ESTIMATION, PLANNING, AND INVESTMENT

It takes 1.5 to 2.2 times the effort to write a software module in a way to
be a reusable asset for these reasons:

(1) Standard interfaces to the operating system must exist and be followed.
For example, kernel changes to UNIX are not acceptable. This reduces
flexibility in handling new communication protocols.

(2) Standard approaches to module interfaces must apply universally.
Abstract mechanisms, such as self-describing tag-value interface design,
can penalize performance.

(3) Application generators need to produce about 25% of the product,
especially for user interfaces.

The keeper of a reusable module faces the formidable task of having to
know all users when the owner must change it. Take, for example, “diff” in
UNIX, the most reused module on Earth. Not many understand how it works,
and fewer still try to change it.’ Here is a fable for our time, told by Doug
Mcllroy, the AT&T Bell Laboratories inventor, with permission.

The Tale of “Diff”’: A Cautionary Fable for Developers of
Reusable Modules

Once upon a time, there was a mathematical problem of finding the longest
subsequence of lines common to two files. “No sweat,” thought the developer.
A dynamic programming technique that takes time mn and space mn to
compare an m-line file to an n-line file would do the trick. But space mn was
unacceptable on the small machines of yesteryear. “OK, we’ll fly by the seat of
our pants,” thought our hero. So he read both files until he found a line that dis-
agreed, and then figured he would somehow search forth in both until he got
back in accord. Somehow was the killer. Suppose the second line in one file
agreed with the fourth line ahead in the other and vice versa. How to choose?

Then news came from afar in Princeton that Wizard Hirschberger had seen
a way to reduce space mn by a mathematical method to space m, while only
doubling the time. “Good deal!” thought our guy. “Now we can afford to run
it. It was slow, but it did work and gave an explainable right answer in a clearly
defined way.”

But the people complained. When they moved a paragraph, it showed up
as two changes, a deletion here and an addition there. So our hero made a
“diff” that found moves. It was again seat of the pants, but it ran pretty well.
Yet, sometimes, an evil occurred. If the people ran it on stuff where the same
line occurred in many places, like assembly language or text processing, it dis-
covered lots of deletions and additions that could be explained as moves. Our
hero was filled with consternation.

° Aho, Alfred V. and Ullman, Jeffrey D. Foundations of Computer Science, W. H. Freeman, San
Francisco, CA, 1992, p. 307.

NCSLOC METRIC 189

Then along came a shining knight, Harold Stone, with a dynamic program-
ming technique that reduced the running time from the product to the sum of
the file lengths, except in unnatural cases. Now here was something fast enough
to use on big files, efficient in space and time, mathematically justifiable as
giving a good answer, and experimentally shown to be physiologically useful.
“O frabjous day! Calloo, callay!” he chortled in his joy.

But then the people tinkered. Three times they altered output. They added
features. They added stars! And the tinkering caused the code to increase and
the manual to swell to half again its size. “Well,” said our guy. “It is important
to know when to stop.”

Analyses of reuse of 2954 modules of NASA programs point to the shock-
ing conclusion that to reap the benefits of the extra original effort to make a
module reusable, it must be reused virtually unchanged. No change costs 5%;
the slightest change drives the cost up to 60%. The clear message is that when
you reuse a module, do not modify it. The issues of who pays the differential
and who pays for ongoing support remain serious barriers to reuse. Within an
organization, however, success is possible. At AT&T, the use of a platform
resulted in significant reuse in Network Management Software Systems. To
recap, these are the problems with reuse:

(1) We have been unable to systematically reuse software across applica-
tion domains.

(2) Reuse is successful only when throughput and response time are not
overriding concerns.

(3) We have been unable to maintain an asset base of software modules
except when they are in C libraries and when they are utility functions.

(4) We have had to maintain a high level of management attention to detail
to assure reuse success.

(5) We have been unable to sustain an investment in making application
components reusable.

(6) We have been unable to avoid exhaustive retesting when reusing modules.

(7) We have trouble deciding to shift to new technology when we have a
library of reusable modules.

6.6.3 Wideband Delphi

As explained previously, Wideband Delphi combines the knowledge of several
experts to produce an estimate of project size. It is an iteration of meetings and
anonymous estimates and is led by a moderator. Its process goes as follows:

(1) A meeting involving the estimators and the moderator is held to discuss
requirements.

(2) Each estimator makes an estimate of the project.

190 ESTIMATION, PLANNING, AND INVESTMENT

(3) Estimates are anonymously tabulated by the moderator.
(4) Sheets showing the range of estimates are returned to the experts.

The process repeats until the estimates are within an acceptable range. When
the process is completed and the estimates have converged, the interval of pre-
diction is the range of all estimates. The confidence level of this estimate range
cannot be directly calculated. Its historical performance has been positive, but
bias can play a role in Wideband Delphi. It can be time consuming. Nobody
can make perfect estimates every time, but estimation is a skill and people can
learn to become consistent. To become more accurate over time, an estimator
must follow a defined estimation process. Part of this process involves track-
ing accuracy in a historical database. The size estimate should be an interval
with a maximum and a minimum bound. Even having such a historical record,
with the wide introduction of the C++ language in the early 1990s, it became
apparent that historical data based on C code was no longer insightful.

6.6.4 Disadvantages of NCSLOC
There are real disadvantages to using NCSLOC:

(1) There is no standard for an LOC, and LOC vary from language to
language.

(2) Itis very difficult to visualize LOC early in the development.

(3) An automatic code counter may not work for all programming styles
in the same language.

(4) LOC is a strange term to most people outside the software field, espe-
cially customers.

(5) Statistics calculated using NCSLOC could be misleading. Programmers
can easily manipulate LOC to enhance their reputations.

Productivity statistics such as “units per person month” and “cost per unit
produced” are helpful and common statistics in many fields. For software pro-
duction, using LOC can make these statistics misleading in a multiple language
environment. Table 6.6 shows the costs to implement the same program in two
programming languages of significantly different levels.

Using a higher level language reduces the number of NCSLOC and there-
fore shortens the time needed for coding and testing. Smaller systems are
easier to deploy and maintain. Regardless of implementation, the fixed costs
of requirements, design, and documentation remain the same. When the total
cost for the system is divided by SLOC, the use of the high-level language
seems more expensive, because the fixed costs are distributed over fewer
NCSLOC. The total cost is lower, and the elapsed time is shorter for the
FORTRAN implementation, because the higher level language has a higher
expansion factor.

NCSLOC METRIC 191

TABLE 6.6. Figures Lie and Liars Figure

Measure Assembler FORTRAN
Size—SLOC 10,000 3,000
Function point count 30 30
Requirements (Time in months) 2 2

Design ” 3 3

Code ” 10 3
Integration and test ” 5 3
Documentation ” 2 2
Management/support ” 3 2

Total Time—months 25 15

Cost per month $5,000.00 $5,000.00
Total cost $125,000.00 $75,000.00
Cost per source line $12.50 $25.00
Source lines per month 400.00 200.00
Cost per function point $4,166.67 $2,500.00
Function points per month 1.20 2.00

The expansion factor is essentially an independent variable. The benefits of
improving the expansion factor can be gained in any application area because
it focuses on making the expression of the solution more concise. The expan-
sion factor represents a capital investment in terms of higher level languages
and tools to promote a 100 : 1 improvement every 20 years, as shown in Figure
6.6.

1000

T 238
475 A—
142
113
81 |
100 7 "
Expansion ‘”75
375
Factor 30
The ratio of] T
Source line 5+
of code to a //
machine 10 =
! -
level line of
code
3
Order of Magnitude
Every Twenty Years
Technology1 L | |
. T ir t |
Change: o5, 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Machine Macro High Level Database On-Line Prototyping Subsec Object Large Scale
L Dev Time Oriented Reuse
Sharing Programming
Regression 4GL Small Scale
Testing Reuse

Each date is an estimate of widespread use of a software technology

Figure 6.6. Expansion factor vs. technology change.

192 ESTIMATION, PLANNING, AND INVESTMENT
6.7 PRODUCTION PLANNING

Now with the size of the project estimated, the project manger can plan the
development staff and the time needed to develop the project on time and
within budget. Most software projects are customized and therefore are labor
intensive. Salaries, overhead benefits, computing resources, and tools consti-
tute the most of the project’s costs. These factors depend on the number of
people assigned to the project. As component-based development and reuse
mature, this picture will change. It is essential to project the number of devel-
opers from the size estimates using productivity factors peculiar to the
problem and the organization.

6.7.1 Productivity

The factors affecting the productivity of an organization are the skill and talent
of the staff, the nature of the problem, the relationship with the customer, and
the tools and processes used in the development. Spending money on each
factor reduces the cost of software development.

Because productivity is linear for small projects, a good project manage-
ment practice is to break a large project into a collection of small ones. But to
make this work, people need to be added to coordinate the activities of the
many smaller projects. Well-structured interfaces must be used between the
modules so that the components developed from the smaller projects are easy
to integrate. System performance reduction of up to 10% can occur, which is
a small price to pay for a predictable and orderly development cycle.

6.7.2 Mediating Culture

Bad managers are the biggest cause of software project bankruptcies. Success
in large projects requires the creation of a culture, with people at key inter-
face points. Many tools have been developed with the intention of automat-
ing processes and eliminating the need for people, which is not sensible in
practice. The development staff should not have to learn each new configura-
tion management tool, for instance, that comes down the pike to do their jobs.
Rather, the tools should support a separate technical staff whose explicit job
it is to build systems, test systems, and get them out the door. The people who
define and implement processes are not the same as those who develop the
system. The critical limiting resource is top-notch first-line supervisors who can
act as lead technical advisors. The goal is to free them from overhead tasks.
Management does not have to be in control of every detail. It is more effec-
tive to delegate decision making. With dedicated support staff having
line responsibility and in-line functions, managers are free to manage by
exception.

Another aspect of culture that has proven beneficial in software develop-
ment is the “Farmers’ Market” approach. The idea is to periodically pull

PRODUCTION PLANNING 193

together people with specific talents and leave long periods of time for inter-
action, which allows a sense of community to develop and collaborative
interfacing to occur. The easiest way to accomplish this is within scheduled
meetings. This is the story of how Bernstein created this environment.

Biweekly project meetings were scheduled from 8:30 to 3:00, with an agenda
prepared in advance. Bernstein deliberately intended that nothing in that
agenda extend past 1:30, but kept this intention to himself. The remaining 1'/,
hours were to function as the Farmers’ Market where no telephone calls or
other meetings could intrude. The uplifting feeling of finishing the agenda
“early” gave a subtle message of confidence that the project too could be on
time. Regularity and familiarity were important. After the project meetings
were successfully held for several months, the local deli that had been deliv-
ering the sandwiches for lunch raised their prices, and the administrative assis-
tant who handled the arrangements looked for a different deli to deliver the
same kind of sandwiches—turkey, tuna, roast beef. But people complained that
the project was starting to have troubles. The meetings were somehow not as
productive. After one month of vague fears and undefined angst, Bernstein
ordered a return to the original deli. Suddenly everything was back to normal,
although nobody really knew why.

This could be an important body of research. An anthropological and culi-
nary study of software development would be fascinating.

6.7.3 Customer Relations

Projects with teaming relations with customers are twice as productive as those
with contractual ones. The most productive organizations build to cost rather
than to specification and insist on monthly demonstrations with the customer.
For fixed-price contracts, the risk is that customer expectations will exceed the
available resources, but it is best to discover this early. Creating close relations
with the end user and thereby training the programmers in the problem
domain is necessary.

6.7.4 Centralized Support Functions

We recall that project organization is better when the problem or technology
is new, but that functional organization is cheaper and more efficient. As part
of the decision to centralize functions, special funding must be set aside to
accomplish the centralization. Project schedule delays may occur during the
transition, and their acceptance is vital to successful centralization. The project
senior leadership team must support the centralization and monitor their
operations. Even then, constant vigilance will be needed to eliminate redun-
dant work. Consider the “Geary Two-Step.” Mike Geary, a successful Bell
Laboratories project manager, set up centralized functional teams in his 500-
person software shop. When he detected project personnel duplicating the
functional team’s responsibilities, he would immediately and without discus-

194

ESTIMATION, PLANNING, AND INVESTMENT

sion transfer those doing redundant tasks to the appropriate functional organ-
ization. This made the point. Functional organizations have been effective
doing the following jobs:

1

2
©)

4)

®)

(6)

™)

Technology selection: Many product teams are in the habit of selecting
their technology, which often leads to systems that cannot work together.
Components cannot be shared among teams, and basic functions such as
human interface, systems administration,and parameterization are dupli-
cated. For example, three related but separate projects can have incom-
patible human interfaces and their own administration schemes, which
allows no opportunity for code sharing. Without being able to share
platforms, tools, and assets, duplicate development of similar functions
is inevitable. With separate technology selection, every project must
employ skilled people devoted to meeting with suppliers, selecting tech-
nology, and training new team members on their selected technology.

Tools: If every project builds or purchases its own tools, it is difficult to
obtain volume discounts from tool suppliers.

Manufacturing: This includes trouble tracking, system builds, configura-
tion control, and release packaging. If each team has their own approach
to system builds, there are no opportunities for economies of scale. Too
often, products in the same product line must work on different physical
computers because their installation software is arbitrarily different.

System Testing: System test processes and tools should be standardized.
Testers are best kept separated from developers so that they may be
objective in their evaluations.

Computer Facilities: The hidden cost of administering clients and
servers spread throughout an organization is high. Volume purchases
are difficult to obtain, and computer operators cannot be shared. There
can be significant wasted space and duplicate machines. This function
should be organized by the physical building occupied, not by project.
Standard development environments should be defined. Inadequate
desktop tools impact the entire development community and are one
root cause of delays in many projects.

Documentation: About 25% of effort in program release is documen-
tation. Standard approaches to producing the documentation and to
controlling it are mandatory.

Human Factors Design: The design of screens, user manuals, perform-
ance aids, and system operation is best done by a central organization
with people skilled in human behavior. These people are frequently left
out of decision making when they are embedded in small projects.

Case Study: The Case of the Well-Shod Management

The Ajax Software Development Company has 1500 people doing technical
work. One of its projects has 500 technical people assigned to 22 subprojects

INVESTMENT 195

located in nine separate facilities across five states. Each subproject team has
an average of three people doing configuration, build, and change control
work—call this configuration management. That means 66 technical people
are not doing the design work for which they were hired. Ms. Ajax, herself an
efficient person, is distressed by this situation. After a whirlwind tour across
five states, she realizes that centralizing configuration management really
requires just two people at each location to handle location-specific needs and
eight people at one central location to provide common functions and design
the new configuration management process. How does this look on the cor-
porate balance sheet?

Solution: By centralizing, the 66 people now doing configuration manage-
ment can be reduced to 26 people, i.e., two people at each location and eight
people in one centralized location. This would amount to a saving of 40 staff-
years, which at a loaded cost of $170K per staff-year results in a $6.8M annual
saving. This saving scaled to the three product teams and six integration teams
that comprise Ajax yields a $20.4M saving annually just for centralizing con-
figuration management. Ms. Ajax buys herself another pair of Ferragamo
shoes on the way home.

6.8 INVESTMENT

So where should you put your bucks? You should invest in gurus and equip
them with the best tools. Build prototypes. Team with customers. Reuse com-
ponents, and employ object-oriented technology. Centralize key functions. But
most of all, hire good, experienced managers and support them with a thought-
fully designed organizational structure. Contain investments with good man-
agement. Share librarians, function point counters, cost and schedule
estimators, human factors experts, and object-oriented design engineers,
among others, as roving paladins across projects to save time and money.

Advancing new technology is a tricky business. Professor Ed Richter of the
University of Southern California points out that the more technologically
competent an organization is, the more difficult it becomes to adopt new tech-
nology. Therefore, one subtle way to encourage adoption would be to explore
a new tool or process in a prototype, and if it looks promising, try it out on a
few projects. With this experience, it could be deployed by suggesting that proj-
ects prove it out rather than prove it in. There is considerable risk in being
leading edge adopters, but vast rewards are available to those who meet the
challenge.

6.8.1 Cost Estimation Models

Several automated cost estimation models are available. The two most popular
are COCOMO and the Software Life-cycle Model (SLIM). The problem with

196 ESTIMATION, PLANNING, AND INVESTMENT

models is that they are not normally calibrated to the experience of the organ-
ization, which leads to errors in estimations. Unfortunately, these results are
often accepted and the ensuing project plan is poorly done. Automated models
should not be used in isolation to estimate costs, but they do provide a basis
for estimates, schedule planning, and staff planning and permit periodic risk
assessment. Models are effective when they are used by experienced estima-
tors and when supported with historical data and previous experience. Models
are developed from curve fits to productivity data from many projects. It is
important to calibrate the curve fits to the specific problem, the actual devel-
opment skills, and the available tools. All models need to be calibrated, qual-
ified, and used with good judgment based on experience and measurements.

SLIM is based on Quantitative Software Management’s Software Equation
derived from the Rayleigh-Norden model. It has been validated with thou-
sands of real, completed projects.® The equation is the product of productiv-
ity, effort, and schedule:

Quantity of Function = (Productivity)(Effort)(Schedule).

This result means that the product of the time and effort coupled with the pro-
ductivity of the development organization determines how much function can
be delivered. Extensive empirical study of software data has shown that strong
nonlinearity exists in software behavior. This is taken into account by the form
of the software equation:

Size = (Process Productivity Parameter) (Effort/ B)l/3 (Time)4/3,

where

« The process productivity parameter is the development productivity of
the organization calibrated from historical data.

« Size is the quantity of function created in NCSLOC, function points,
objects, or other measures of function.

 Effort is the development staff months required. It includes all categories
of labor used on the project.

+ B is a complexity adjustment factor. It provides for specialized skills for
integration testing, documentation, and management as the size of the
system increases.

+ Time is the elapsed calendar development time from the start of detailed
design until the product is ready to enter into operational service nor-
mally with 95% reliability.

® All theory behind the model has been published by Prentice Hall in 1992 in the book, Measures
for Excellence: Reliable Software, on Time, Within Budget by Lawrence H. Putnam and Ware
Meyers.

INVESTMENT 197

SLIM is applicable to all types and sizes of projects. It computes schedule,
effort, cost, staffing for all software development phases, and reliability for the
main construction phase. Because the software equation effectively models
design intensive processes and is not methodology dependent, SLIM works
well with waterfall, spiral, incremental, and prototyping development method-
ologies. It works with all languages and function points as well as with other
sizing metrics. The model clearly shows the inefficiency of rapid staffing.
Putnam and Meyers made this seminal contribution showing how sensitive
costs are to tight schedules and that there is a limit to just how fast a software
product can be built.

6.8.2 COCOMO’

The COCOMO cost estimation model is used by thousands of software project
managers and is based on a study of hundreds of software projects. COCOMO
is an open model, so all details are published, including the following:

(1) The underlying cost estimation equations

(2) Every assumption made in the model (e.g., “the project will enjoy good
management”)

(3) Every definition (e.g., the precise definition of the product design phase
of a project)

(4) The costs included in an estimate are explicitly stated (e.g., project man-
agers are included; secretaries are not)

(5) COCOMO estimates are more objective and repeatable than estimates
made by methods relying on proprietary models

(6) COCOMO can be calibrated to reflect any software development envi-
ronment, to produce more accurate estimates

COCOMO allows you to define a software structure that meets project
needs. Initial estimates might be made for a system containing 3K NCSLOC.
A second estimate might be more refined as the system really consists of two
subsystems with more accurate size estimates for each subsystem. The next
estimate continues the process of decomposition and estimation until staff
estimates converge from iteration to iteration.

The fundamental calculation in the COCOMO model is the effort equation
to estimate the number of staff months required to develop a project. Most
other COCOMO results, including the staff estimates for determining require-
ments and doing maintenance, are derived from this quantity. The effort equa-
tion is Effort in Staff Hours = aNCSLOC", where a is the inverse of the
productivity of a software shop measured in NCSLOC/1000 staff hours and

7 http://www.softstarsystems.com/overview.htm More details can be found at http:/sunset.usc.
edu/research/ COCOMOII.

198 ESTIMATION, PLANNING, AND INVESTMENT

the exponent b reflects the diseconomy of scale for different types of projects.
Efforts for reused components are counted with a different but similar model.
The Bernstein model, explained in the magic number following, provides
rough estimates for this productivity depending on the type of software being
developed.

\\‘//

i\ /j MAGIC NUMBER!

In the 1960s, Bernstein needed to estimate the size of the staff that would
be needed to develop the SAFEGUARD antimissile missile system. This
succinct model resulted.

(1) Limit PIDENT size to 1000 LOC to avoid the nonlinear effects of
the diseconomies of scale.

(2) Define a formal PIiDENT interface tool and process. Isolate the
PiDENT interactions to this interface mechanism.

(3) For code that is close to the architecture of the computer or com-
munications hardware or those that have hard real-time constraints,
estimate that a good designer will produce 50 LOC per staff month.
This is typical for operating systems, communication protocols, or
time-constrained, hard real-time systems.

(4) For code that is transaction-oriented, Web-based, or online, estimate
250 to 500 NCSLOC per staff month.

(5) For code that is processing-intensive, estimate 500 to 1000 NCSLOC
per staff month for normal applications (low risk, online).

(6) For reused code, estimate 10,000 NCSLOCs per staff month. Some-
times reusing code that does not provide the exact functionality
needed can be achieved by reformatting a module’s input and
output. This decreases performance but dramatically shortens devel-
opment time and effort.

(7) A staff month is 126 staff hours of actual project work (or 75% of
time clocked). Estimates based on number of staff months avoid
variables like inflation and currency exchange rates.

(8) Multiply the staff estimate by 1.1 to account for the infrastructure
staff needed for build support, coordination, and communications.

Typical values for a and b in the COCOMO model for various circumstances
are as follows:

INVESTMENT 199

(1) Embedded, operating system, hard real-time software: a = 3.6,b = 1.2
(2) Semidetached online transaction software: a = 3.0, b = 1.12
(3) Application report generation and processing software: a =2.4,b =1.05

The b coefficient reflects the variation in scale for different types of projects:

b < 1.0 means that economies of scale exist (hardware manufacturing
and component-based software development)

b > 1.0 means that diseconomies of scale exist (software development)

b = 1.0 means that a linear relation exists and holds for small software
projects or components)

Example: The staff needed to develop 100K NCSLOC for an embedded
system is 3.6 x 1001.2 = 900 staff-hours.

COCOMO was enhanced so that projects could tune the exponent to their
type of software and risk factors. The enhancement, COCOMO 1I, allows
estimators to calibrate the exponent b for their organization and problem
domain:

1.0997
)

Effort =2.94(1.0) (8 =28.9

where b =1.01 + 0.01 + ZSF(j) , 1.01 < b £ 1.26 and SF() are five scale factors

representing risk factors for the project and EAF(7) is 1 of 17 cost drivers.
The COCOMO calculations are based estimates of NCSLOC, with the fol-

lowing parameters:

(1) Only source code DELIVERED as part of the product is included—
test drivers and other support software are excluded.

(2) The project designers create source code. Code created by applications
generators is excluded.

(3) Declarations are included in NCSLOC.

(4) Comments, COTS, reused, and open source code are not counted as
NCSLOC.

The original COCOMO was defined in terms of delivered source instruc-
tions, which are similar to NCSLOC. The major difference between
delivered source instructions and NCSLOC:s is that a single SLOC may include
reused code. Note that an “if-then—else” statement could be counted as one
LOC, but might be counted as several delivered source instructions, leading
to confusion in counting rules.

6.8.2.1 COCOMO and Function Points Versions of COCOMO that
support the use of function points have been available since 1987. COCOMO

200 ESTIMATION, PLANNING, AND INVESTMENT

IT supports the use of either function points or SLOC. In both cases, this is
done via “backfiring” tables of SLOC per function point for source languages
at different levels. This approach is suspect and must be used with care to get
a ballpark estimate. Then the estimates can be refined as the project evolves.
To translate function points into NCSLOC for use by COCOMO 11, the UFPs
are used. The UFP is multiplied by a calibrated conversion factor to get an
estimate of the NCSLOC. Typical conversion factors for popular languages are
shown in Table 6.7.*

TABLE 6.7. COCOMO Il UFP Conversion Factors by
Language (http://www.qsm.com/FPGearing.html)

Language Typical Conversion Factor
(SLOC/Function Point)
C 128
C++ 53
HTML 53
JAVA and JAVA 63
script
Perl 21
UNIX Shell 21
Visual Basic 29
Visual C++ 34

Organizations should develop their own conversion factors from their his-
torical project data. These conversion factors are consistent with the expan-
sion factor of languages. The lower the conversion factor, the higher the
expansion.

6.8.2.2 Scale Drivers SF(j) In COCOMO II, some of the most important
factors contributing to a project’s duration and cost are the Scale Drivers. You
set five Scale Drivers to describe your project; these Scale Drivers determine
the exponent used in the Effort Equation. The Scale Drivers are as follows:

(1) Precedentedness measures the amount of experience an organization
has in the application domain. As new versions of a software product
are developed, a software product line emerges. The longer the organ-
ization works on the product line, the higher the precedentedness.

(2) Development Flexibility.

(3) Architecture/Risk Resolution.

(4) Team Cohesion.

(5) Process Maturity.

8 This table is adapted from Boehm, Barry. Sofiware Cost Estimation with COCOMO 1II, Pren-
tice Hall, Englewood Cliffs, NJ. Appendix lists “typical” conversion factors for 46 source languages.

INVESTMENT 201

6.8.2.3 Cost Drivers EAF(i) COCOMO II has 17 cost drivers. You assess
your project, development environment, and team to set each cost driver. The
cost drivers are multiplicative factors that determine the effort adjustment
factor (EAF) needed to finish a software project. For example, if your project
will develop software that controls an airplane’s flight, you would set the
required software reliability (RELY) cost driver to very high. That rating
corresponds to an effort multiplier of 1.26, which means that your project will
require 26 % more effort than a typical software project. COCOMO II defines
each cost driver and the EAF associated with each rating.

6.8.2.4 COCOMO Il Effort Equation The COCOMO II model makes its
estimates of required effort in staff months, based primarily on the estimate
of the software project’s size: Effort = (2.94) (EAF) (KSLOC)’, where EAF
is derived from the cost drivers and the coefficient b is an exponent derived
from the five scale drivers. Here, 2.94 is derived from calibrating the small
module productivity as 1000 LOC/2.94 = 340 LOC/staff month. We switch to
staff months because for larger projects, it is easier to plan in staff months.

Example: A project with all nominal cost drivers and scale drivers would have
an EAF of 1.00 and coefficient, b, of 1.0997. Assuming it is projected to consist
of 8000 NCSLOCs, COCOMO II estimates that the project requires 28.9 staff
months:

1.0997

Effort =2.94 (1.0) (8) =289

If the project did not have a nominal EAF, but is rated very high for com-
plexity (effort multiplier of 1.34), and low for language and tools experience
(effort multiplier of 1.09), and all other cost drivers are rated to be nominal
(effort multiplier of 1.00), the EAF is the product of 1.34 and 1.09:

Effort Adjustment Factor = EAF = (1.34)(1.09) = 1.46,
Effort = (2.94)(1.46) (8)""” =42.3 Person-Months.

6.8.2.5 Scheduling with COCOMO Il Once a project is sized in terms of
the number of NCSLOC or function points and the number of staff months
required is computed, the nominal elapsed time in months to develop the
project may be estimated (Tyomina)- Studies of many projects show that devel-
opment schedules set at less than 0.75 T,omina fail most of the time.

The schedule model is Tpomina = 2.5 (staff months)'® and, once knowing time
and the number of staff, the plot shown in Figure 6.7 may be drawn.

The project manager can now develop a staffing plan by dividing the
number of staff months needed by the nominal time. The staffing plan must
allow for some indoctrination and training time initially and for phasing staff

202 ESTIMATION, PLANNING, AND INVESTMENT

Tnominal

Time 75% Tnominal

T » Staff-month

Impossible time

Figure 6.7. Nominal time to project completion. Barry Boehm. Software Engineering Econom-
ics, 1982. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ.

N

"~ MAGIC NUMBER!

Barry Boehm points out that “A project cannot be done in less than 75%
of theoretical time.”

onto and off the project in addition to straightforward development. Another
staffing consideration, as we have seen in the calculation of Bernstein’s model
in Section 6.8.2, is that people tend to spend 25% of their work time on non-
project activities.

COCOMO 1II has a slightly different schedule equation. The constant
permits a different curve fit. The duration is based on the prediction of the
effort equation:

Duration =3.67 (Effort)*",

where Effort is derived by the COCOMO II effort equation and SE is the
schedule equation exponent derived from the five scale drivers.

Example: Substituting 0.3179 for the exponent SE that is calculated from
the scale drivers yields an estimate of just over a year, and an average

INVESTMENT 203

staffing of between three and four people: Duration = 3.67 * (42.3)"7° = 12.1
months, and then Average staffing = (42.3 Person-Months)/(12.1 Months) =3.5
people.

6.8.2.6 SCED Cost Driver The COCOMO cost driver for the required
development schedule (SCED) is unique and requires a special explanation.
The SCED cost driver is used to account for the observation that a project
developed on an accelerated schedule will require more effort than a project
developed on its optimum schedule. A SCED rating of very low corresponds
to an effort multiplier of 1.43 (in the COCOMO I1.2000 model) and means
that you intend to finish your project in 75% of the optimum schedule (as
determined by a previous COCOMO estimate).

Example: Continuing the example used earlier, but assuming that SCED has
a rating of very low, COCOMO produces these estimates:

Duration = (0.75)(12.1 Months) = 9.1 Months,
Effort Adjustment Factor = EAF = (1.34)(1.09)(1.43) = 2.09,

Effort=2.94 (2.09) (8)""” =60.4 Person-Months,
Average project staffing = (60.4 Person-Months)/(9.1 Months) = 6.7 people.

Notice that the calculation of duration is not based directly on the effort
(number of staff-months); instead, it is based on the schedule that would have
been required for the project assuming it had been developed on the nominal
schedule. Remember that the SCED cost driver means “accelerated from the
nominal schedule.”

The NASA module reuse analyses mentioned in Section 6.6.2 are shown
graphically in Figure 6.8. Notice the nonlinear relationship between the
amount of change and the cost of making the change.

Example: The software engineer can trade off duration for effort. Let us
estimate the staffing needed for a new customer relations manage-
ment project. Project architecture is client/server with online transactions.
About 20% of all modified modules are changed. From Figure 6.8, changing
them would cost half of the original development, so a coefficient of 0.5 is
used. The reused “as is” modules and the COTS are estimated to require
5% of the cost of original development for transaction systems suing the
Bernstein model. The size of the modules and project is shown in SLOC in
Table 6.8.

204 ESTIMATION, PLANNING, AND INVESTMENT

1.2

% 0.8
3 Real Co%
° 06 e
B - Usual Linear Assumption
2 o4
0.2
0 T T T |
0 0.25 0.5 0.75 1

Amount Modified
Figure 6.8. Cost of modifying modules for reuse—NASA data for 2954 modules.

TABLE 6.8. Example Project Size in SLOC

New Modified Reused COTS
Modules Modules “as is”
Client 25k 5k 10k 0
Server 13k 15k 10k 100k
Total 38k 20k 20k 100k

Size = new code + 0.5 (modified modules) +
0.05 (reused modules + COTS modules) = 54k SLOC.

Using the likely estimate from Table 6.9, the project requires about 11 people
for 20 months. Then the nonproductive time must be included, (11) x (1.25) is
about 14 people, and if we include 1 month for training and orientation and 1
month phase-out, the project needs 14 people for 20 months. Rather than
having a flat staffing plan, it is better to bring a few people on early and then
add people as you need them.

TABLE 6.9. COCOMO Yield

Time Effort
Optimistic estimate 18 months 172 staff months
Likely estimate 20 months 216 staff months

Pessimistic estimate 21 months 270 staff months

INVESTMENT 205
6.8.2.7 Recap Follow these steps to apply an estimation model:

(1) Understand and validate the requirements, and sketch out a first-cut
architecture.

(2) Estimate the size of the product.

(3) Estimate the staff-months needed using COCOMO II or SLIM, Wide-
band Delphi, and Bernstein’s model.

(4) Compare the results, and understand significant differences.
(5) Iterate until estimates tend to converge.
(6) Account for expansion provided by Web toolset.

6.8.3 Scheduling Tools—PERT, Gantt

We have decided what is to be done and have planned the order of doing it.
Now names must be put to tasks. Plan by using a chart of activities in the form
of a network, called a PERT chart. It shows dependencies and elapsed time
for each task. For each milestone, keep two dates, one the “schedule” that you
own and the other, a “current estimate” that the developer owns. Critical path
analysis (CPA) can be used in conjunction with PERT analysis to identify crit-
ical tasks in the project. Gantt charts, which are named for their inventor, are
bar charts that display the project status and results of PERT in a format that
can be readily understood. Planning is not complicated, but it is tedious; that
is why the temptation is so strong to avoid it or to do it once and then not
keep the plan current.

A project is a set of activities that ends with a specific accomplishment and
that has (1) nonroutine tasks, (2) distinct start/finish dates, and (3) resource
constraints (time/money/people/equipment). Tasks are activities that must be
completed to achieve project goal. Therefore, break a project into tasks and
subtasks. Tasks have start and end points, are short relative to the project, and
are significant with measurable end points. Use verb-noun form for naming
tasks, e.g., “create drawings” or “build prototype.” Use action verbs such as
“create,” “define,” and “gather” rather than “will be made.” Each task has
duration. It is good to estimate a likely, optimistic, and pessimistic duration for
each task and then compute an estimate using the PERT approach as

Estimate = (optimistic duration + 4 likely duration + pessimistic duration)/6.

Milestones are important checkpoints or interim goals for a project. They are
used to detect scheduling problems early. Name milestones using noun-verb
forms, e.g., “test plan due,” “computer ordered,” or “prototype complete.”

6.8.3.1 Work Breakdown Statement A work breakdown statement
(WBS) is a categorized list of tasks with an estimate of resources required to
complete the task. A small sample of a WBS appears in Table 6.10.

206 ESTIMATION, PLANNING, AND INVESTMENT

TABLE 6.10. Work Breakdown Statement

WBS # Task Description Est. Staff Hrs Who Resources

5 Profile operating system Target computer

5.1 Design test driver 20 SE, JM

5.2 Build test driver 15 SE, JM Frame & brake parts
5.3 Test 3 components 3 SE, JM Data reduction

5.4 Plot torque vs. speed 2 JM Excel

6.8.3.2 Gantt Chart Basics Make a big project into lots of small ones. A
Gantt chart is a project-planning tool that represents the timing of all tasks
required to complete a project. Gantt charts are used by most project man-
agers for all but the most complex projects because they are simple to under-
stand and easy to construct.

In a Gantt chart, each task takes one row. Dates run along the top in incre-
ments of days, weeks, or months, depending on the total length of the project.
The expected time for each task is represented by a horizontal bar whose left
end marks the expected beginning of the task and whose right end marks
the expected completion date. Tasks may run sequentially, in parallel or
overlapping.

As the project progresses, the chart is updated by filling in the bars to a
length proportional to the fraction of work that has been accomplished on the
task. This way, one can get a quick reading of project progress by drawing a
vertical line through the chart at the current date. Completed tasks lie to the
left of the line and are completely filled in. Current tasks cross the line and
are behind schedule if their filled-in section is to the left of the line and ahead
of schedule if the filled-in section stops to the right of the line. Future tasks
lie completely to the right of the line.

In constructing a Gantt chart, keep the tasks to a manageable number (no
more than 15 or 20) so that the chart fits on a single page. More complex proj-
ects may require subordinate charts that detail the timing of all subtasks that
make up one of the main tasks. Have a column with initials that identifies who
is responsible for the task.

Often the project has important events that you would like to appear on
the project timeline, but that are not tasks. For example, you may wish to high-
light when a prototype is complete or the date of a design review. You enter
these on a Gantt chart as “milestone” events and mark them with a special
symbol, often an upside-down triangle. Decide what resolution to use in the
timeline. For projects of 3 months or less, use days, for longer projects use
weeks or months, and for very short projects, use hours.

You can create Gantt charts using a project management computer package
or Excel. A sample chart made using Microsoft Project, the most widely used
scheduling tool, appears in Table 6.11. It is easier to track progress daily using
a table of events with name, schedule date, and current estimate. Then the
Gantt need be updated only monthly or quarterly.

INVESTMENT 207

TABLE 6.11. Sample Gantt Chart

Rl e 3[6]9] 13?2?% [21[24]27] 3(|) [2]5 IF;bIr:J:rrm [17 20

1 | Define specifications —

1.1 Identify customer

1.2 Interview 10 customers

1.3 Interpret requirements

1.4 Benchmark products 118

15 Define target PDS 119 1/21

1.6 Target PDS Released *1/21
2 | Generate concepts v

2.1 Review comp products 119 ’2,1/21

22 Search patents 1/20 p] 1/22

2.3 Brainstorm concepts 1/20 1/28
3 Select top 2 concepts 120 1 2/8
4 MQ Presented *2/2
5 Profile motor power v v

5.1 Design test stand 114 ::Ig

5.2 Build test stand 1/28 :l—lZ/S

6.8.4 Project Manager’s Job

A project manager must be responsible for the technical integrity of the
system and must have the authority to make tradeoffs among the three main
ingredients of project planning, which are like the three sides of a pyramid.
These are resources, schedule, and features. If the project as a whole is to
retain its shape, your boss or the customer can control any two, but you as the
project manager must control the third.

Believe that nobody lies! When you get contradictory reports, bring those
involved together and hash it out. People have their own, sometimes differ-
ent, perceptions of the same situation.

Pay attention to details. Successful software managers track the details and
are seen regularly in the thick of things. Do collect appropriate data, but never
collect data that you do not use. When things are the worst and nothing is
working, the leader is required to show unwarranted optimism.

These points are a “Road Map to Success:”

(1) Start with a small team with broad objectives and build a prototype.

(2) Put the prototype into the field, and use it. Estimate the size of the
job. Use function points and an estimation tool such as COCOMO.

(3) After an analysis of the prototype, enlarge the organization from a

small team to a large one. If necessary, write detailed requirements
and control them.

208 ESTIMATION, PLANNING, AND INVESTMENT

(4) Using top-down design, partition the project into modules, define and
control interfaces, and appoint module owners. Use modern software
interface conventions such as object classes, pipes, tag value data, etc.

(5) Reduce complexity in the design with a formal “design minimization”
effort. Establish a target of 40% simplification by maximizing reuse,
eliminating redundancy, and simplifying algorithms.

(6) Implement designs, using structured programming techniques, only
after they have been inspected. Submit tested software, and work prac-
tices through an independent manufacturer (or builder) to the quality
assurance and integration organization.

(7) Test incrementally. Create a simple working system, and then add sets
of changes to gradually increase capability. Do regression tests on each
new increment using test cases developed for the previous increment.

(8) Find a friendly operational site where the operators are willing to let
developers try out new features before they are formally released.
(9) Have a soak site for new product releases.

(10) Avoid developing a new application on new hardware and/or new
operating system software.

(11) Have maintainers share some continuing development responsibility.

6.9 EXAMPLE: APPLY THE PROCESS TO A PROBLEM

We will take a project from the prospectus though first-cut architecture and
the resolution of its first major crisis in confronting a business reality. Along
the way, we will apply the processes that have been discussed.

6.9.1 Prospectus

A service company currently lacks an online system to allow their clients to
access billing information. They recently renovated their company extranet
to provide their customers with personalized content. The company needs to
aggregate data from various sources including their Microsoft CRM system
and QuickBooks Online to provide online invoices and statements. Microsoft
CRM stores specific account information, whereas QuickBooks Online houses
invoices. The purpose of this new Web system, cleverly called NWS, is to
provide a unified programming interface that allows customers to access their
account information and invoices without worrying about their underlying
details.

The scope of this system is to create a Web service to aggregate accounting
information primarily from QuickBooks Online and secondarily from
Microsoft CRM. The aggregation of data will be done by interactions among
ASPNET vl.1, Microsoft CRM, and QuickBooks.

EXAMPLE: APPLY THE PROCESS TO A PROBLEM 209

NWS supports account inquiries, outstanding invoices, and overdue
invoices. Note that this does not include invoices being processed. NWS will
support simultaneous access for a minimum of 168 customers and a maximum
of 1000 customers with an average of 250.

6.9.2 Measurable Operational Value (MOV)

The present method of operation (PMO) requires a clerk to spend an average
of 15 minutes per call for 60 calls per month, or 15 hours/month, handling
invoice inquiries. NWS must reduce calls to the clerk by half.

6.9.3 Requirements Specification

There are several assumptions. First, NWS will be written in ASPNET v1.1.
Also, the CRM database will be updated to include information that will help
to access invoices, and customer authentication will be done by the CRM
administrative module and login.

These assumptions are constrained in certain ways. The system will respond
to principle customers only, and they will be permitted to view only their
invoice information. NWS will support only Windows 2000 and 2003 advanced
server. NWS must comply with these standards: Hungarian notation (The
types of variables are encoded into their name; see http://c2.com/cgi/
wiki?HungarianNotation), XML document standards for return data, and
NUnit testing (see http://www.nunit.org/).

The external interface requirements affect both user and software inter-
faces. As far as the users are concerned, the invoice interface will look just like
what they currently see when they look at their paper invoices. The style of
the website will be formatted according to style sheets that are currently being
used. This platform-independent application programming interface (API)
aggregates data from NWS.

Functional requirements are the same for direct users and for gatekeeper
users. Each can view the following:

(1) Single invoices

(2) Outstanding invoices
(3) Overdue invoices

(4) Historical invoices

(5) Next invoice’s due date

(6) Add-ons requested from a list that must include core product (license
and maintenance), fund of funds, directs, benchmarking, private inform-
ant, archivist, and analyst (developers, runtime)

(7) Contract terms

Performance requirements demand that the system can handle multiple
logins, which means that more than one user should be able to access NWS

210 ESTIMATION, PLANNING, AND INVESTMENT

simultaneously. A user already logged into the system cannot log in again. The
invoice request turnaround time should be no longer than 15 seconds, depend-
ing on the bandwidth and network used.

System attributes can be described in terms of availability, security, and
maintenance effort. The Web service is available 24/7, with scheduled down-
time for administrative purposes. The downtime will be scheduled during times
when the website will not incur heavy traffic. NWS securely connects to
Microsoft CRM and the QuickBooks API using SSL shown in Figure 6.9.
Security keys ensure that only authorized customers can make calls to NWS.
Concerning ease of maintenance, the software modules code must be loosely
coupled, allowing scaling as the customer base grows. The project must be well
documented and follow coding conventions. The project must provide a
defined normalized interface. The project development will be driven by a
combination of prototyping/unit test-driven development through NUnit. The
NWS API will be defined using WSDL. Finally, NWS does not modify any
existing customer data on either QuickBooks Online or Microsoft CRM.

QUiCkBOOkS Local Area Network MS
Online CRM
Server

Web CRM
Server Admin

Internet

Customers

Figure 6.9. First-cut architecture.

Table 6.12 tallies the various elements that are counted for UFPs. For EI
and EQO, customer access is critical because NWS is a Web service. Customers
enter requests as data on a screen and get a screen for every request. A single
invoice could be queried by entering a client name, invoice number, or date.
The client has the additional option of choosing whether to retrieve an invoice
that is historical, outstanding, or overdue. These are four Els and four EOs.
As development proceeds, these may change if new requirements emerge. EQ
concerns the fact that NWS must maintain the format of the interface of the
current billing system, which can query by customer name, invoice number,

EXAMPLE: APPLY THE PROCESS TO A PROBLEM 211

TABLE 6.12. Calculating Unadjusted Function Points for

NWS

Els 4 x4 16
EOs 4x5 20
EQs 3x4 12
ILFs 0x10 14
EIFs 4x7 28
Total UFP 90

and date. It will have to deal with the added component of an authentication
token to ensure that the customer has permission to access the database. There
are three EQs. ILFs are simple internal caches and not counted because they
are deemed trivial. EIFs from Figure 6.10 are shown to be CRM, Quick Books,
Schematic, and Process/Rules, so there are four.

D I
Quick
Books CRM

S—
- —
Schematic| Extractor

Format

Process

and

R B

Figure 6.10. Function points for NWS.

Table 6.13 shows the degrees of influence ranging on a scale of zero, no influ-
ence, to five, strong influence, for each of the 14 general system characteristics.

Technical Complexity Factor =0.65+0.01 * GSC
=0.65+0.01 = 29
=0.94.

Function Points=UFP = TCF
=90 x0.94
=~ 85 FPs.

212 ESTIMATION, PLANNING, AND INVESTMENT

TABLE 6.13. Ranking of General System Characteristics for NWS

General System Characteristics

Degree of Influence

Explanation

Data Communication

Distributed Data/Processing

Performance Objectives

Heavily Used Configuration

Transaction Rate

Online Data Entry

End-User Efficiency

Online Update

Complex Processing

Reusability

Conversion/Installation Ease

Operational Ease

Multiple Site User

Facilitate Change

5

This has a strong

influence because this has to
be high because we are
constantly communicating
with the CRM.

Data will be distributed
between two separate sources,
but little processing is needed
on data.

The response time and the
throughput are required for
this Web service.

N/A

The current transaction is
extremely critical to the Web
service; hence, it has a higher
degree of influence.

Very low operational inputs
to software.

This application has been
designed to improve about
50% efficiency for the clients.

N/A

It has little mathematical
or logical processing.

This application is being used
for many clients; hence, it is
given a higher degree of
influence.

N/A

Simplicity of deploying and
operating the Web service.
This service must maintain

integrity when accessed by
multiple users.

N/A

Total Degree of Influence VAF 29

Result of Requirements Specification: The project manager decides to use an
incremental development approach with five intermediate prototypes and
finds that the customer schedule needs cannot be met. When the Gantt chart
in Table 6.14 is developed, however, it is clear that there is trouble. The product

213

EXAMPLE: APPLY THE PROCESS TO A PROBLEM

| abed
$ S _....................._ uds [Arewuwng
[Arewwng Ag dnoin ssaiboid dn pejjoy ’ ENOLEI YO/b2/LL POM :o1eq
[Arewwng 10801 AV suojselIy dn pejioy ssaiboid ouelx3 ssifing :josloid
— T o emcneecs [e
%0 #uo x14 Jouny pue 8Zeai4 apo) P i 2t
%0 g4 adkioloid m _ _ H
%0 'L edAiojoid EE | o
%0 EZ | s
: ik 8
1'LA sedAiproid i L
uBisaq pue soadg i 9
ﬂso__ow__ SAD B JoAag AeQ Va S
anojioy A pue 8100j5 / 4
%EY Buiuueld 1eloid ’ €
co_umw_ oA sjuswalinbay Va 4
i 9dool uoneyong sjuewdiinbay| A L
8] t|ve[z]or] e ze]oe[er] 9fze[oe[er] ofoc[ec[or] 6] z]oz[e6r]et] s[se]te|vt] 2] te[ve[ZL[OL] €926} PN al
S0, Jdy | S0, ey | S0, 994 | S0, uer | 0, 900 0. AON | 70,10 |

SMN 10} Yeyd nuey ‘y1'9 379vL

214 ESTIMATION, PLANNING, AND INVESTMENT

has to be delivered in 15 months, and only 3 developers are available. Notice
the aspirations for work in November. Too many tasks were scheduled for the
staff available, making the development plan unrealistic. Adjustments can
be made to reduce the features, find components to reuse, or hire more staff.

6.9.4 Schedule, Resources, Features—What to Change?

The only option left to the project manager is to drop some features. The
simplified quality function deployment (sQFD) approach helps decide which
features are expendable. The customer and the developers weigh various
requirements as shown in Table 6.15.

TABLE 6.15. sQFD for NWS

System Requirements Historical Outstanding Overdue Ease of
Features/ Invoices Invoices Invoices Implementation
Software Functions

Fast Turnaround Time

Constant Availability

Ease of Use

Security

Usage

Total 2

NW O oNw
N o OO s
W o ©ul oo,

g0 Wwu o

The principle requirements features used as columns in the sQFD for NWS
were based on feedback from the customer. They said that NWS must retrieve
these three types of invoices. The developers defined the software functions
that make up the rows in the sQFD:

(1) Fast Turnaround Time: Turnaround time is the measure of a request to
the service and a response (round-trip). Higher priority indicates to us
that the system and code must be given attention to optimization.

(2) Constant Availability: The service must maintain high availability while
allowing some maintenance time. NWS must be available to respond
to customer requests.

(3) Ease of use: Usability is a concern for customers and other developers
who will be using the Web service interface. Ease of use should be
uniform throughout the feature set so that consistency can be
maintained.

(4) Security: Safeguarding customer information is a high priority that must
be addressed for all features because NWS accesses and distributes
private data.

(5) Usage: The frequency of features use.

Before dropping any feature, a check of the ICED-T analysis is important
to consider the overall view of the system as seen by the customer (Table 6.16).

EXAMPLE: APPLY THE PROCESS TO A PROBLEM 215

TABLE 6.16. ICED-T Analysis for NWS

Intuitive Consistent Efficient Durable Thoughtful
Present Business 2 4 2 1 1
Process (PMO)
NWS as an 4 5 4 5 5
Extranet Future
Method of

Operation (FMO)

The ICED-T compares the process in place for invoice retrievals with an
NWS-based process. The PMO requires a person to retrieve invoices by man-
ually searching through Quick Books files. Once the invoice is retrieved, it is
mailed, e-mailed, or faxed to the customer. NWS allows customers to forego
the call and access their invoices. The ICED-T analysis for the PMO is as
follows:

(1) Intuitive (I): The business process currently in place is not intuitive. If
the current clerk leaves, the replacement would not easily learn the
tricks for finding invoices.

(2) Consistent (C): The business process in place is rated at a high consis-
tency level because the same process is always used when an invoice is
requested.

(3) Efficient (E): The current process is not efficient because on average 15
minutes is required to retrieve an invoice. Also, once the invoice is
retrieved, there is no guarantee that the customer will not call back and
request the same invoice again because it was lost in the mail.

(4) Durable (D): The current process is not durable because it relies on one
person to retrieve all invoice requests.

(5) Thoughtful (T): The current process is not thoughtful because by
retrieving invoices manually, the time required means that despite best
efforts, there are long delays.

Based on the first-cut architecture, an ICED-T evaluation of the future
method of operation (FMO), i.e., NWS, showed these results:

(1) Intuitive (I): NWS is intuitive because it uses standard inquires and
simple formats. If it was not, the customer would disdain the service we
have created and would continue to call for invoices.

(2) Consistent (C): NWS is consistent because queries are made against
CRM and QuickBooks. Coding standards and documentation stan-
dards will also be consistent because developers need to be able to
enhance the system.

216 ESTIMATION, PLANNING, AND INVESTMENT

(3) Efficient (E): NWS must be efficient because it must be able to serve a
large number of users and have fast turnaround time for invoice
inquiries.

(4) Durable (D): NWS must be durable because it must be essentially
available to customers 24/7, excluding any scheduled downtime.

(5) Thoughtful (T): NWS is thoughtful because it speeds the current busi-
ness. Also, unlike the manual invoice retrieval process, there is no lost
time retrieving the same invoice multiple times and tracking paper
invoices. The use of the CRM system and the QuickBooks without
modification is vital to easy introduction of the system and eliminates
database conversions.

6.10 ADDITIONAL PROBLEMS

6.10.1 Your team is developing a system for a small company that sells one-
of-a-kind antiques on the Web. The system will contain modules for creating
and editing descriptions of items for sale, uploading descriptions to the
website’s database, taking orders over the Web, validating and processing
credit card payments, maintaining the status—for sale, ordered, or shipped—
for each item, creating records of ordered items for mailing by the shipping
department, and performing accounting activities for tax and other purposes.
Completion on the various modules is as follows:

TABLE 6.17. For Problem 6.10.1

Development Task Percent Complete
Creating and editing descriptions of items for sale 80%
Uploading descriptions to website’s database 90%
Taking orders over the Web 75%
Validating and processing credit card payments 65%
Maintaining the status for each item 95%
Creating records of ordered items’ shipping 80%
Performing accounting activities 60%

You estimate that you are about 2 months behind schedule. You will have
to tell the client, who understands that scheduling software is not a precise
science and will probably agree to a 2-month extension if you have data to
show. You are meeting with the client soon. You estimate that you can accom-
plish one of the following by the time of the meeting. For each possibility, state
if you would or would not choose it. Support your answer with a reason based
on the mantra: In all cases do the right thing!

a. Work on all modules to get them, with any luck, to 90% completion.

b. Get the editing and uploading functions 100% complete and working.
Leave five modules in their current state of development.

ADDITIONAL PROBLEMS 217

c. Get status maintenance, shipping order, and accounting functions
100% complete. Leave the four other modules at the current state of
completion.

d. It does not matter as none of the three alternatives is any better than
the others.

6.10.2 A software organization builds four products. The first one takes 40
staff-months in 4 months’ elapsed time. The second takes 10 staff-months in 2
months. The third takes 30 staff-months in 10 months. The fourth assigns two
people to it for 2 years.

a. What is the average number of people assigned to a project for this
organization?

b. What is the standard deviation of the number of people?

c. What is the median time interval for these projects?

d. If all projects together comprised 10,000 LOC and there were 100 LOC
per function point in the language chosen, what is the productivity of the
organization in function points per staff-month?

e. What is the range of productivity expressed in function points/
staff-month?

6.10.3 A software project is estimated to take 12 months to deliver a release
with a four-person team. Three staff-months are devoted to project coordina-
tion. In an effort to push forward the delivery date, the client insists that an
eight-person team be employed. How long, giving a range of a number of
months (min, max), would you now estimate the development time? Provide
your analysis.

6.10.4 You are the project manager for a software project with the following
statistics:

TABLE 6.18. For Problem 6.10.4

Item Size

Online Application 100K NCSLOC

4 GL Support Software 250K NCSLOC

Test Drivers S0K NCSLOC
Comments 40% of delivered code
Total Effort 1200 staff-months
Coding and Unit Testing 250 staff-months
Management and Administration 20%

Compute the productivity for the project, and estimate the effort and time it
will take to complete the project, making sure to qualify your answer.

218 ESTIMATION, PLANNING, AND INVESTMENT

6.10.5 You work for a firm that develops software, under contract, to firms
in a variety of business areas. You are the project manager of a team working
on a 9-month project to develop a new marketing system for a large manu-
facturing firm. Installation of the system is projected to begin in the middle of
month 9. React to the following statement. The best time to raise the question
of postinstallation maintenance of the new software is just before installation
of the new system (explain your position quantitatively).

a. agree strongly

b. agree

c. disagree

d. disagree strongly

6.10.6 You are working for Optimistic Software Inc. The company is doing
fairly well, but it has been over budget and past deadline on too many proj-
ects in the past few years. The problem would most likely be corrected by
hiring:
a. More good programmers
b. More requirements engineers. (A requirements engineer deals with the
customer to determine and specify exactly what the software to be
developed by Optimistic Software Inc. should do and how well it must
perform, in terms of response time, transaction rate, up-time, etc.)

c. More code testers
d. A management consultant

6.10.7 You are working for Superior Software Inc., a software company that
is small enough to have software developers deal directly with customers. The
Superior Software sales staff has been talking to Delicious Bakery Inc., a large
baked-goods company about developing software to automate one of Deli-
cious Bakery’s business operations. You have been assigned to be lead soft-
ware developer on the Delicious Bakery project. When you determine how
much work it will be to develop the software, you decide that you will need
one or two of your Superior colleagues to work on the project with you. The
best thing to do before you begin to write the software is to:

a. Have the Superior Software sales people who brought the work to
Superior spec out the details of the software to be developed and give
you the specifications.

b. Discuss the details with the sales staff’s Delicious Bakery contact.

c. Discuss the details with the supervisor of the Delicious Bakery depart-
ment that will be using the software.

d. Discuss the details with the supervisor of the Delicious Bakery depart-
ment that will be using the software and with the clerks who will be using
the software.

ADDITIONAL PROBLEMS 219

6.10.8 You are solving a critical software problem at a customer location.
The customer has given you everything you need to do the job, including a
comfortable office. The customer asks you to implement an additional new,
easy-to-implement feature in the module you are working on. React to the
following statement. The best thing for you to do is to reciprocate the
customer’s kindness and implement the feature.

a. Agree strongly

b. Agree somewhat

c. Disagree somewhat
d. Disagree strongly

6.10.9 Adding competent programmers late in a project when it is in trouble
(explain your answer and cite references) . . .

a. delays project completion.
b. speeds project completion.
c. has no effect on project completion.

6.10.10 Which type of error typically takes the greatest amount of time and
effort to correct once a piece of software has been released to the customer?

a. An error in requirements specification
b. An error in design

c. An error in implementation

d. An error in testing

6.10.11 As a software engineer, you use a PERT chart to plan your project.
A segment is shown here:

Example
Task (3,6)

Requirements
Baselined

Architecture
Reviewed

Figure 6.13. For Problem 6.10.11.

220 ESTIMATION, PLANNING, AND INVESTMENT

TABLE 6.19. For Problem 6.10.11

Time
Task Description Min. Likely Max.
(3,6) Staff Project 8 weeks, 12 weeks, 16 weeks
(3.4) Gather Field Data 1 week, 3 weeks, 5 weeks
4,5) Design Scenarios 2 weeks, 4 weeks, 6 weeks
(4,6) Design Processes 4 weeks, 6 weeks, 8 weeks
(5,6) Purchase Test Lab equipment 2 weeks, 2 weeks, 2 weeks

(1) Use average times for each task to find the critical path. [Hint: Average
time for a task = (Minimum Time + 4 *Likely Time + Maximum
Time)/6]

(2) You now have to decide where to invest resources to get your product
to market in 8 weeks. Which tasks would you invest in and how would
you make the investment?

6.10.12 As asoftware engineer, you use a PERT chart to plan another project
similar to that in 6.9.11. A segment of the PERT chart is shown in 6.10.11.

(1) Use average times for each task, and find the critical path(s).

(2) What is the standard deviation of the critical path? Hint: [standard devi-
ation]* = [(upper bound of estimate — lower bound of estimate)/6] and
[1.414]* =2 and [1.732])* = 3.

Max Task (3,6) = 12; Min Task (3,6) = 8.

(3) Your manager decides to shift an existing organization from its current
work to work on your project, cutting the staffing time of task (3,6) in
half. Now what is the critical path(s)?

(4) You now have to decide where to invest resources to get your product
to market. Which task would you invest in and why?

6.10.13 Your organization produces five function points per staff-month. You
are asked to develop a project with a TCF of 0.9. You size the project in terms
of a UFP count of 1000. Qualify your answers. How many people are needed
to complete the project if you can fully staff it instantly?

BIBLIOGRAPHY

Albrecht, Allan J. “Software Function, Source Lines of Code, and Development Effort
Prediction: A Software Science Validation,” IEEE Transactions on Software
Engineering, Vol. SE-9, No. 6, Nov. 1983, pp. 639-647.

Arthur, Lowell Jay. Programmer Productivity: Myths, Methods, and Murphology
A Guide for Managers, Analysts, and Programmers, John Wiley and Sons, 1983,
pp- 25-27.

Bachman/Function Point Analyst, Product Announcement, Bachman, Inc., 1994.

BIBLIOGRAPHY 221

Bernstein, Lawrence and Lubashevsky, Alex. “Living with Function Points” AT&T.

Bernstein, Lawrence and Yuhas, C. M. “Software Investment Strategy,” Engineering
Management Journal, Vol. 7 No. 4, Dec. 1995, pp. 15-21.

Boehm, Barry et al. “Prototyping Versus Specifying: A Multiproject Experiment,”
IEEE Transactions on Software Engineering, May 1984.

Boehm, Barry W., Gray, T. E., and Seewaldt, T. “Prototyping Versus Specifying: A Mul-
tiproject Experiment,” IEEE Transactions on Software Engineering, Vol. SE-10, No.
3, May 1984.

Boehm, Barry. “Software Risk Management, Principles, and Practices,” IEEE Software,
Jan. 1991.

Carleton, Anita D., Park Robert E., and Goethert, Wolfhart B. “The SEI Core Mea-
sures: Background Information and Recommendations for Use and Implementa-
tion,” CrossTalk, May 1994.

Desmond, John. “IBM’s Workgroup Hides Repository,” Application Development
Trends, April 1994, p. 25.

Dijkstra, E. “The Humble Programmer,” 1972 ACM Turing Award Lecture in Classics
in Software Engineering, 1979.

Fairley, Richard. “Risk Management for Software Projects,” IEEE Software, May 1994,
pp. 57-67.

“Function Points as Asset Reporting to Management,” IFPUG, 1990.

Garmus, Dave. “Function Point Counting,” Software Development, Sept. 1993, pp.
67-69.

Humphrey, Watts. A Discipline for Software Engineering, Addison-Wesley, Reading,
MA, 1995.

Humphrey, Watts. Managing the Software Process, Addison-Wesley, Reading, MA, 1989.

International Function Point Users Group.

Jones, T. Capers. “What are Function Points?” Software Productivity Research.

Jones, T. Capers. Applied Software Measurement, McGraw-Hill, New York, 1991.

Jones, T. Capers. Programming Productivity, McGraw-Hill Book, New York, 1986,
pp. 83-210.

Kemerer, Chris F. “Reliability of Function Points Measurement,” Communications of
the ACM, Feb. 1993, pp. 85-97.

Lusher, Paul W. “Function Point Analysis for Real-Time Weapons Control,” IFPUG
Conference Proceedings, Sept. 1992.

Mills, Harlan. Software Productivity, Dorset House Publishing, New York, 1988,
pp. 13-18.

Poulin, J. S., Caruso, J. M., and Hancock, D. R. “The Business Case for Software Reuse,”
IBM Systems Journal, Vol. 32, No. 4, 1993, pp. 567-594.

Pressman, Roger. “Hackers in a Decade of Limits,” American Programmer, Jan. 1994,
pp. 7-8.

Samadani, Hamid, et al. “Army Reuse Center Tackles CASE-Based Reuse,” Cross Talk,
May 1994.

Selby, R. “Empirically Analyzing Software Reuse in a Production Environment,” in
Software Reuse: Emerging Technology, W. Tracz (Ed.), IEEE Computer Society
Press, New York, 1988, pp. 176-189.

222 ESTIMATION, PLANNING, AND INVESTMENT

The National Software Council Charter, April 1995.

Tomayko, James E. Sizing Software, Carnegie Mellon University, Pittsburgh, PA.

Walston, C. E. and Felix, C. P. “A Method of Programming Measurement and Estima-
tion,” IBM Systems Journal, No. 1, 1977, pp. 54-60.

Yourdon, Edward Nash. Classics in Software Engineering, Yourdon Press, New York,
1979, p. 122.

Design for
Trustworthiness

Software design usually means a description of the implementation of a soft-
ware system after it is finished. This “bottom-up” approach can result in
working systems, but they are difficult to enhance and it is even more difficult
to determine how trustworthy they are. By trustworthy we mean that a soft-
ware product or component is safe, reliable, and secure. Software design is an
important first step, not the final step, when creating trustworthy systems. This
chapter provides design techniques and constraints on the software imple-
mentation that will lead to making a system trustworthy. The goals of the
design process are to create a simple and concise solution. Simplicity improves
reliability, and conciseness reduces the time and cost of implementation.

Software system development is often dominated by schedule and cost.
Sometimes performance and functional technical requirements become an
issue. Rarely has trustworthiness been considered in any but the most critical
systems, but this is changing. Society as a whole is beginning to recognize that
not only must software designers consider how the software will perform,
but also they must account for the consequences of failures. Trustworthiness
encompasses this concern.

This issue is so important that it is a fundamental theme taught in all courses
in the quantitative software engineering program at Stevens Institute of
Technology and in the Graduate School on Trustworthy Software Systems
(TrustSoft) at the University of Oldenburg, Germany. Ph.D. fellowships are
being offered for the study of trustworthy software; see http:/trustsoft.uni-

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

223

224 DESIGN FOR TRUSTWORTHINESS

oldenburg.de. Les Hatton, now Professor of Forensic Software Engineering at
the University of Kingston in London, developed the study of software foren-
sics to get to the root causes of system failures. Colin Tully has done seminal
work analyzing software system failures; his report on the London Ambulance
Dispatch System was the basis for the case study in Chapter 3. Professor Sha
of the University of Illinois has written eloquently on how simple software
leads to reliable software.

The dependency on software systems intensifies the consequences of soft-
ware failures. The need for trust is gaining industry awareness. Several soft-
ware vendor consortia plan to develop “Trusted Computing” platforms. These
initiatives focus primarily on security, but trustworthiness is a much broader
concept. The hope for the software industry rests with people who recognize
this responsibility and embrace it.

This chapter departs from the usual approach of software design literature
that focuses on describing tools, data layouts, and object classes." Although
these issues are important, they are not sufficient to deal with the issue of
getting the design right. Everything may be done brilliantly without a thought
to high complexity. Complexity is always expensive in terms of staff, time, and
reliability. The approach we take is to apply the concept of design simplifica-
tion to software because it will give you a system that is stable and trustwor-
thy, cheaper and sooner.

7.1 WHY TRUSTWORTHINESS MATTERS

The software industry seems to be exempt from liability suits and from the
legal need to practice due diligence. The underlying problem with making
systems trustworthy is not technical—it is the legal and business structure of
the software market. This tacit exemption slows the adoption of trustworthy
technology because every business responds primarily to what the customer
demands in order to prosper and conversely to what will damage the business
if it is not provided. The state-of-the-practice lags the state-of-the-art by a wide
margin. There are few financial consequences to companies that produce dan-
gerous software, but their survival is at stake for companies that are slow to
market. The software industry operates on the caveat emptor principle.

Corporate fraud has stimulated the call for corrective action. The Sar-
banes—Oxley Act (SOX) is driving a wider interest in trustworthy software.
Over half of Fortune 1000 companies are still using spreadsheets or other
manual methods to manage and control commissions and other types of vari-
able pay. These methods are error-prone and raise concerns under SOX.
Enterprise incentive management software must enable the financial control
cleanup required by SOX, Sections 302 and 404 of which are reprinted in the
Bibliography.

! Van Vliet, Hans. Software Engineering—Principles and Practices, 2nd ed., John Wiley and Sons,
New York, 2000, ch. 10-12.

SOFTWARE RELIABILITY OVERVIEW 225

Trustworthiness is a holistic property, encompassing security, safety, and
reliability. It is not sufficient to address only one or two of these diverse dimen-
sions, nor is it sufficient to simply assemble components that are trustworthy.
Integrating the components and understanding how the trustworthiness
dimensions interact is a challenge. The increasing complexity and scope of
software will make trustworthiness a dominant issue. Microsoft claims to have
undertaken a Trustworthy Computing initiative. Bill Gates sent a memo to
his entire workforce demanding “. . . company-wide emphasis on developing
high-quality code that is available, reliable and secure-even if it comes at the
expense of adding new features.”

Software fault tolerance is at the heart of the building trustworthy software,
although it seems a contradiction in terms at first blush. Trustworthy software
is stable. It is sufficiently fault-tolerant that it does not crash at minor flaws
and will shut down in an orderly way in the face of major trauma. Trustwor-
thy software does what it is supposed to do and can repeat that action time
after time, always producing the same kind of output from the same kind of
input. The National Institute of Standards and Technology (NIST) defines
trustworthiness as “software that can and must be trusted to work dependably
in some critical function, and failure to do so may have catastrophic results,
such as serious injury, lost of life or property, business failure or breach of secu-
rity.”? Some examples include software used in safety systems of nuclear power
plants, transportation systems, medical devices, electronic banking, automatic
manufacturing, and military systems. To repeat, trustworthy software is soft-
ware that is appropriately dependable. The architect working with the engi-
neer determines what constitutes appropriateness. A committee of the
International Federation for Information Processing, IFIP WG-10.4, defines
dependability as, “the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers.”™

A study sponsored by the NIST in 2001 found that software errors cost the
U.S. economy an estimated $59.5 billion annually, or about 0.6% of the gross
domestic product. Much effort has been expended in developing methods for
reliability, safety, and security analysis, as well as methods to design these
systems; yet the “good practice” results of this work are often not used in
system development. This chapter integrates these design methods within a
trustworthiness framework.

7.2 SOFTWARE RELIABILITY OVERVIEW

The most common reliability model is R(t) = e, where 1 is the failure rate.
This equation is valid when the failure rate is constant over time and implies

2 Information Week, Jan. 21 2002, No. 873, p. 28.
* NIST SP 500-204 High Integrity Software Standards and Guidelines, July 1992.
* http://www.dependability.org/wg10.4.

226 DESIGN FOR TRUSTWORTHINESS

a Poisson probability distribution of failures. This assumption is reasonable if
we constrain the design of the software, even though faults tend to cluster in
a few software components. A constant failure rate was reported in the second
issue of the IEEE Dependability Magazine based on IBM and Microsoft data.’
To paraphrase their results, if good change control and attentive corrective
maintenance is practiced, 10 months after the third release, the failure rate is
a constant.

\\\‘///

"~ MAGIC NUMBER!

First, make it work.
Then, make it work right.
Finally, make it work better.

Software execution is sensitive to initial conditions and the external data
driving it. What seem to be random failures are actually repeatable. The
problem in finding and fixing these problems is the difficulty of doing the
detective work needed to discover, first, the particular initial conditions and,
second, the data sequences that trigger the fault so it becomes a failure.

In a two-state continuous-time Markov chain, the parameters to be esti-
mated are failure rate A and repair rate v.

The Mean Time Between Failures (MTTF) = 1/A.
The Mean Time To Repair (MTTR) = 1/v.
The steady-state availability is

Availability = MTTF/(MTTF + MTTR) = 1/(1+ A/v).

The goal of software testing is to make R(0) = 1.
The goal of Software Fault Tolerance is to make Availability = 1.

Professor Sha’s model of reliability is based on these observations:

(1) Complexity introduces faults and faults lead to failures. For a given
execution time software reliability decreases as complexity increases.

(2) Faults are not equal; some are easy to find and fix and others are not.
Faults are not random, but they are sometimes obscure and make fail-
ures intermittent.

(3) All budgets have limits, so there is not unlimited time or money to pay
for exhaustive testing.

° Siewiorck, Daniel P, et al. “Reflections on Industry Trends and Experimental Research in
Dependibility,” IEEE Transactions on Dependable and Secure Computing, Vol.2,No. 2, April/June
2004, p. 120.

SOFTWARE RELIABILITY OVERVIEW 227

Sha chooses the MTTF as equal to E/kC. Then the reliability of the system is
R(t) = e*“"E where k is a scaling constant, C is complexity, E is the develop-
ment effort, and ¢ is the continuous execution time for the software. Deter-
mining complexity (C) is the challenge in establishing the reliability of a
software system. The development effort (E£) can be estimated by such tools
as Checkpoint, Constructive Cost Model (COCOMO), or the Software Life-
Cycle Model tool (SLIM). These estimators give a lower bound to the staff
and time needed. Project managers can choose to staff beyond these estimates
to improve the reliability of the software. Development effort is a function of
the complexity of the software in the models, so average complexity should be
used. R(0) = 1 because all startup failures are assumed to be removed through
classic unit, block, and system testing.

Bernstein extends the equation by adding an effectiveness factor (¢€) to the
denominator: R(r) = e*“"%¢ where ¢ reflects the investment in software engi-
neering tools, processes, and code expansion that makes the work of one pro-
grammer more effective. Let € be the expansion factor that expresses the
ability to solve a program with fewer instructions with a new tool such as a
complier.

The longer the software system runs, the lower the reliability and the more
likely a fault will be executed to become a failure. Reliability can be improved
by limiting the execution time #; by investing in tools, thereby increasing &; by
simplifying the design to reduce C; by increasing the effort £ in development
to do more inspections or testing than required; or by a combination of these
factors.

A software engineer can make tradeoffs among schedule, level of effort,
complexity, tools, and execution time by using this equation, so we call it the
Unified Equation of Software Engineering. It is reasonable, if unorthodox, to
model the software engineering process based on this model. The longer the
software executes, the more likely it is to execute a latent fault that soon
becomes a failure. A fault is an external human error that becomes incorpo-
rated in the software. Failure is a state of no response to external stimuli
because a fault executes.

The difference between a fault and a failure can be understood through a
concrete example. Suppose a civil engineer decides that a bridge needs to bear
no more that 10 tons in the form of any single vehicle. The size and strength
of the materials are based on this, as is the design. There is a sign at both ends
of the bridge that says “MAX 10 TONS.” A truck with a 25-ton load goes onto
the bridge and the bridge collapses. The bridge had a fault, the 10-ton limit
based on a traffic analysis that the civil engineer could not know was wrong,
but the bridge did not fail until the fault was executed.

The A incorporates the factors a software project manager controls through
the development process. By providing better tools (such as higher level lan-
guages) to the designer, the reliability of the final product is better. The project
manager reduces the complexity of the system by reusing reliable components
and properly integrating them, again making it more reliable. Adding staff
beyond the minimum staff predicted by models so that effort can be placed

228 DESIGN FOR TRUSTWORTHINESS

on such activities as diabolic testing and system audits is another way to
increase trustworthiness. Specific technologies like software rejuvenation can
bound software execution to make it less vulnerable to latent faults.

Trustworthiness has the implied quality of “no surprises.” Users (end user
or developer integrating a component into a system) have good reason to
expect to understand the behavior of the software under all anticipated ranges
of inputs and environments, which raises questions about how well the oper-
ational context and likely evolution of the system are understood. It also
implies that to be trustworthy, software probably has to be robust in the face
of unexpected uses and evolutionary change, or at the least, if it is fragile, it
has to fail in understood ways. Current software is too surprising, and the
sources of these surprises are poorly understood. The software engineer must
design for transparency and for better characterization of robustness and the
expected operational environment.® For example, an air traffic control system
that occasionally just stops working is clearly less trustworthy than one that
stays alive. If another stays alive but occasionally displays hazardous or mis-
leading information, is it more trustworthy than the one that crashes? The first
is unreliable, and the second is unsafe. Both are untrustworthy.

7.3 DESIGN REVIEWS

In our industry, there is a lack of expertise, expensive unproven tools, and ques-
tionable practices. The focus on design analysis and simplification offers a low-
cost way to introduce trustworthy design principles. The most important step
any software organization can take is to conduct design reviews before coding
for the production system begins.

The introduction of design reviews in software engineering originated at
NASA after the tragic fire on January 27, 1967 during the first major dress
rehearsal for the first manned Apollo space flight. Gus Grissom, the first
person in space flight; Edward White, the first person to walk in space; and
Roger Chaffee all died. Although the unmanned Apollo flights continued on
schedule, the manned flights were delayed 18 months for design reviews. On
July 16, 1969, Neil Armstrong and Buzz Aldrin on Apollo 11 executed the first
lunar landing mission. NASA achieved the national goal set by President
Kennedy in 1961 to land on the moon and return to Earth safely within the
decade of the 1960s. They did it by developing rigorous design methodology
and by capturing the support and hopes of the country.

At Bell Laboratories, the Safeguard Anti-Ballistic Missile (ABM) project
adopted NASA’s reviews that were developed from 1966 to 1976. Manage-
ment worked hard to make sure that the reviews did not become pro forma.
Two levels of management frequently participated in reviews with engineers,
and occasionally higher level managers did.

¢ http://www.nap.edu/readingroom/books/trust/.

DESIGN REVIEWS 229

The reviews dealt with critical issues in a nonthreatening way. Those engi-
neers who found serious problems were publicly lauded and financially
rewarded. The culture of the project became one of open discussion of prob-
lems before they became crises. Hiding problems was frowned on. At first, it
was difficult for managers to understand that the reviews were not a forum
for evaluating people. Rather, the reviews were a place to define problems and
introduce discipline to the process. Some managers never learned this lesson,
and their projects suffered. Another problem was that programmers rebelled
at reviews conducted by those whom they could not respect. Whenever man-
agement tried to enforce a review but did not participate, it led to a waste of
time and poor morale.’

IBM Federal Systems Division honed the process of identifying action
items and periodic project reviews as a means to follow-up on the problems
found during reviews. A top-ten list prepared by the project manager was a
valuable tool in focusing the project on the most important problems and
allowed all project members to understand how these were solved through
written responses that were published in the project meeting reports. These
reports became the “newspaper” for the project. The process of reporting on
design problems and changes in a project newsletter is good. The project
manager gains the “power of the press” through these regular reports.

\\‘//

t\ /j MAGIC NUMBER!

A project with no problems is a project in deep trouble.

7.3.1 Topics for Design Reviews

The modules that make up the system are identified and mapped into exe-
cutable processes; their interface data structures are defined, and user inter-
faces and interactions are specified. Before entering the design review, it is
essential to have a reasonably complete set of use-case business scenarios
available against which designs can be mapped along with the intent of the
requirements.

During the review, select the most important processes; describe how they
work together and how data and control logic are exchanged among them.
Within each process, select the most important modules and describe their
data structure and how they work. Pseudo-code, the prototype, or program

" Crowly, Thomas H. “Safeguard Data Processing System,” Bell System Technical Journal, Special
Supplement, AT&T, 1975, Section VI.

230 DESIGN FOR TRUSTWORTHINESS

commentary are useful expressions of the design for these reviews. It is some-
times important to describe complex designs several ways.
These topics need to be covered at the design review:

(1) Modules and their interactions
(2) Process structures
(3) Performance budgets
(4) Data structures and flow
(5) Control structures and flow
(6) Interfaces between processes and with humans
(7) Critical modules including reuse and design patterns
(8) Design for testability
(9) Design for maintainability
(10) Design for reliability
(11) Design for simplicity
(12) A new computation of function points
(13) A new computation of sSQFD
(14) A new computation of ICED-T

(15) A current Gantt chart based on the project sizing estimates derived
from the design

The design review makes the system more reliable because the process aims
at removing complexity, thereby reducing the numerator of the exponent in
the universal software engineering equation.

\\‘//

i\ / "~ MAGIC NUMBER!

=1

The function points calculated after the design review should be at least
20% less than when the requirements were baselined.

7.3.2 Modules, Interfaces, and Components

The architecture gave a view of allocating software functions to subsystems or
modules that are relatively self-contained. The product of this effort is a logical
block diagram. Each block contains a set of functions that are logically
grouped into modules. The modules hide details of their structure from one
another. The features, performance, and trustworthiness of each module need
to be understood. Then the module can in turn be subdivided into smaller
logical modules.

DESIGN REVIEWS 231

MAGIC NUMBER!

The lowest level module will contain software that implements one to five
function points.

Each module will have a design specification, a schedule, and estimates of
staff and performance. Modules may be objects consisting of data structure
and procedures or methods with states and defined behavior. The modules are
tracked throughout the development process. If incremental programming is
used or if there are multiple releases, a module vs. release matrix is useful for
planning and tracking.

Case Study: The Case of the Personal Transport Pile-Up

Magilla Transporters, Inc. manufactures one model of the Magilla Personal
Transporter that they sell directly to customers. Magilla’s computer system
consists of an order entry subsystem (OESS) and an inventory/order fulfill-
ment subsystem (I/OFSS).

Orders arrive by telephone or snailmail and are entered into the OESS by
clerks. The website also enters orders directly into OESS. The OESS’s main
function is to check the validity of each incoming order, retain a copy of each
valid order in its database, and send valid orders to the I/OFSS.

I/OFSS checks whether there are enough Personal Transporters to satisfy
an incoming order. If there are not enough Personal Transporters to fulfill the
order, the inventory system puts the order in its database as a “back order.”
Warehouse workers check back orders each day and notify Magilla’s Manu-
facturing Division whenever the backorders start to pile up.

Magilla currently uses Commercial off-the-shelf (COTS) software packages
for its OESS and I/OFSS. They are proprietary products, distributed only as
an executable; customers do not get the source code. The following are the
transactions recognized from terminals or the website by the OESS:

Place New Order
View All Orders
Cancel Order by Order Number

You also have access to the system’s main customer/order file. Manual pages
detail the transactions and access to the file.

The system was working well and Magilla’s sales were increasing nicely
when they suddenly got word that Schlepper Shipping, Inc. is going out of

232 DESIGN FOR TRUSTWORTHINESS

business. Mr. Schlepper is retiring to Florida. The U.S. Post Office (USPO)
agrees to contract for the shipping, but So-So Software, Inc. has neglected to
include the customer name in the file and the USPO will do the shipping only
if the customer name is added to the address. Mr. Schlepper was kind enough
to ship without customer names, even though it caused some problems (he
liked talking to people and working things out). Magilla asked So-So Software
to make this small change in the system, but So-So wants far more money than
Magilla feels is reasonable.

You are the CIO heading the Magilla IT shop. You are asked to upgrade
the system and free Magilla from So-So’s control. Your people need to make
the changes without modifying So-So’s code so as not to void the 5-year service
warranty that Magilla bought from So-So. You assign a top-notch team of five
people, and after 2 weeks, they produce a prototype of the upgraded system
with this “4 + 1” view (Figure 7.1).

Physical view Server----DB
|

| | |
clerk client warehouse client manager client

Logical view

Order subsystem Inventory subsystem
transactions transactions
Addr Order Order Order Order Inventory Label
entry entry verification management implementation management print
DBMS

Process view
Order(+addr) Order Order Order Inventory Print

entry —> verification - mgmt < implementation « mgmt - shipping label

Development view

Experience &
Outside Knowledge

Test Live Thru: | > Save Tests
® Use Case CisssssmsssssssEsEas
| C2)[Good Fer)

® Diabolical | ooc e | New
|:> Unimplemented |:> .

® Exhaustive Features Design
|:> Bugs/Design Flaw |:>

Fixes

| e

Figure 7.1. 4 + 1 views of Magilla case study.

DESIGN REVIEWS 233

Your people have benchmarked the system and are well on their way to
meeting Magilla’s needs. You have just committed the version for operation
in 3 weeks to the CEO and the board of directors showing that the IT shop
meets the needs of the business. Then So-So releases a new version of the
system to save their contract. So-So insists that all their customers upgrade to
the new version, because the older version is no longer supported. The con-
tract allows for such upgrades, and if customers demure, So-So may discon-
tinue support. Your people have developed the simplified quality function
deployment (sQFD) in Table 7.1 and ask for a 1-month extension to the sched-
ule to fold in the new So-So feature set. The SQFD shows that So-So’s fea-
tures are fundamental to Magilla’s business.

TABLE 7.1. sQFD For So-So’s Feature Set

Features/ Ease of So-So Feature Zip Search Shut Multiuser

Functions Implementation Set code down

Software 1 10 0 0 0 6
Stability

Label 8 3 10 10 10 0
Changes

New 8 5 10 6 1 5
Inventory
Pending

More 4 10 0 0 0 5
efficient

TOTAL 28 20 16 11 16

You decide to hold to the committed schedule and hope that because So-
So wants to keep the business, they made sure the new release works. Your
test team does regression testing, and all goes well. You release the system with
great fanfare, and 1 month later, it fails because of a memory leak and a
counter overflow. The memory leak failure was a fault in the original So-So
code that happened never to be executed previously.

Conclusion: Even if your development shop can produce trustworthy systems
on schedule and within budget, there are things out of their control:

(1) Do not trust legacy code.

(2) Do not expect fixes from the supplier if you fire them.

(3) A new module delivery requires exhaustive testing.

(4) Do not compromise your development processes to meet a date.

(5) Never make two changes at once. Minimize risk by relying on your
previously tested configuration and upgrade the supplier’s in a later
release.

234 DESIGN FOR TRUSTWORTHINESS

7.3.3 Interfaces

A single entry and a single exit point make updating interfaces easier (Figure
7.2). The module starts with a text preface explaining its functions, inputs,
outputs, and containing change control information. A jump table follows to
gain access within the module. All control and all data are passed to the jump
table that then transfers execution to the appropriate place in the module dic-
tated by the input parameter. If this transfer is too expensive in execution time,
direct transfers and passing data through memory is possible, but this obscures
the dependency and makes it more difficult to reduce coupling. The goal of
the design is for high cohesion within a module and low coupling between
modules.

Single Entry Point
JUMP Table

Preface

|

Single Exit Point
Figure 7.2. Ideal interface.

Parnas points out that design can be the assembly of many modules. The
modules can be connected together and may have interchangeable parts, but
they must be able to be designed, implemented, and tested independently. A
software module is a cohesive collection of data and procedures that provides
a set of services to other modules. The module provides an interface that allows
other modules to use the services the module provides or pass data between
modules, where the interface is language for requesting services. For a low-
coupled design, add a level of indirection passing data and control parameters
through a special interface object class, which makes the system harder to
understand but easier to evolve.

In Figure 7.3, let C stand for the module order entry from the Magilla case
study, let M stand for order management, and let S stand for inventory man-
agement. They all use the same parameters. This requires code in each of the
three modules to handle two parameters—six interfaces. We can refactor
the interfaces to create a single interface object that C, M, and S use to reduce
the code. The added benefit is that the structure of the parameters can be elim-

DESIGN REVIEWS 235

TelNo: 555-999-6716
C "M

Name = Larry

Telephone No. Telephone No.

Figure 7.3. Canonical form.

inated by using a canonical form so that we avoid the undesired interactions
described in Jackson’s design methodology.

Now if a change is made to the definition of the parameters between C and
M but not S, all modules and use cases require retesting. To avoid affecting S
and further decoupling the modules, a tag/value language can be used for
parameter passing (Figure 7.4). The tag carries the definition of the parame-
ter, and similar code is added to each module to interpret the parameter’s
structure.

Single Entry Point

JUMP Table ;
Parameter Object

| Method 1
— Method 2

|

Single Exit Point

Figure 7.4. Parameter passing.

Consider the problem caused when using a method that runs different paths
depending on the type of parameter. We create a separate method for each
type of parameter as shown in the following example:

236 DESIGN FOR TRUSTWORTHINESS

Set value (String Name, Value){
If Name.equals (“height”)
Height = value
if Name.equals (“width”)
Width = value
if Name.equals (“Anything else”)
Error (“Input should be width or height”)

If the units change from integers to floating point, all modules will have to
change. A better arrangement is

Set height (integer, argument)
Height = argument

Set width (floating point, argument)
Width = argument

Now when C and M change, a new data item can be added to the object along
with changes to parameter handling code in C and M, but S remains unscathed
by the change. This decoupling avoids the cascading problem that makes it so
difficult to changes modules and their interfaces.

7.3.4 Software Structure Influences Reliability

Parnas uses structure to mean how a software system is divided into modules
and the assumptions that the various modules make about each other. A
module is intended to be a unit of work assigned to groups of programmers
or individual programmers. If the module is also a component, it can be con-
structed with no knowledge of the internal structure of other modules.

Parnas explains that reliable software need not be correct software. “We
may consider the system reliable in spite of faults if either (1) the program-
ming errors do not make the system unusable (e.g. format of output, erroneous
output which is easily detected and corrected by the user) or (2) the situa-
tions in which the errors have an effect do not occur very often, and the situ-
ations are not especially likely to occur at moments when the need for the
system is very great.”® If the domain of execution of the software is bounded
so that a fault is not executed, the system cannot fail because of that latent
fault.

Unreliability occurs when modules are designed on the assumption that
nothing will go wrong. The software structure may assume that everything

8 Parnas, D. L. “The Influence of Software Structure on Reliability,” Proceedings of the Interna-
tional ~Conference on Reliable Software, ACM Press, Los Angeles, CA, 1975,
http//portal.acm.org/citation.cfm?id=808458.

DESIGN REVIEWS 237

outside the software behaves correctly; software faults will not be executed.
Alternatively, the structure can assume an “all or nothing” approach with no
definition of degrees of imperfect behavior. These precautions must be taken
to avoid problems:

(1) Specifications for the system and each module must define the desired
behavior and what to do when perfect behavior is not obtainable.

(2) Interfaces between the system and its environment and the interfaces
between modules require the programs to be suspicious. Specify not
only what the interfacing elements should do in the normal case, but
also which assumptions should be verified by run-time checks and
which actions are required when an error is detected.

(3) Include in the interfaces conventions for informing affected modules
about things that have gone wrong elsewhere in the system.

Table 7.2 below shows a possible checklist. It is possible to generate an arbi-
trarily long checklist of such questions, ending when the risk exposure is

acceptable.

TABLE 7.2. Parnas Design Checklist for Reliability

Event

Does the architecture define:

On interfaces

Does the system
keep message
logs?

Fault Tolerance

Communications
equipment failures
during transmission

Operator error

Secondary storage or
storage area network
failure

Memory error

. How will the system be informed?
. How much information about the failure

will be supplied?

. How should the system respond?

. What action should the system take if an

operator inputs a message with a priority
beyond the operator’s privileges?

. How can an operator indicate that an

error was made?

. What corrective action should the system

take if the mass storage device or storage
area network loses the logs?

. How fast must messages be recovered

from any backup?

. How can the system detect the failure of

part of the main memory?

. Does the interface to the memory

allocation module allow it to be informed
that a part of the memory is malfunctioning
and should not be allocated?

. What is the response to a detected

deadlock?

. If a program erroneously asks for

resources without returning them, how
should modules be informed of this
problem? How should they react?

238 DESIGN FOR TRUSTWORTHINESS

A strong module interface language makes it easy to handle designs that
deal with problems identified from using the checklist. The interface proce-
dures may share data structures and layers of software services. The Flexible
Computer Interface Form (FCIF) and TL/1 are examples of such interface
languages.

The principles of modular design separate solution details with horizontal
decomposition, letting different parts of the problem be handled by different
modules. The interface design provides vertical decomposition as modules call
one another. Some key ideas are as follows:

(1) Abstraction that leaves things unlikely to change in the interface and
implementation details likely to change are left out of the interface.

(2) Information hiding shields design decisions likely to change from other
modules, and each module’s implementation is a “secret.”

(3) Little languages method makes the interface a language that can solve
a family of problems instead of just a single problem.

7.3.5 Components

A component is a module that is independent, with clearly defined small inter-
faces using a highly expressive interface language. Its implementation details
are hidden from other modules, and data structures are accessible only
through the interface language. It follows a standard. If two components need
to transfer data directly because of performance reasons, they are no longer
separate components but may be integrated into one component. Components
may evolve without requiring a complete set of system tests, but module
changes typically require exhaustive release testing.

\‘//

\‘//

MAGIC NUMBER!

Testing takes 40% as much time as development for a software release.

7.3.6 Open&Closed Principle

Software components are open for extension and repair but closed for modi-
fication.” When a component is opened to make a modification, it becomes a
new component. Although the notion of components is more limiting than the
generality of object-oriented modules, they are the building blocks for stable

? http://hjem.get2net.dk/nimrod/tipdesign.htm.

DESIGN REVIEWS 239

and reliable software design. Components isolate software modules. Compo-
nents are less likely to be unstable.

A module is open if it is still available for extension by adding new code.
For example, it should be possible to add fields to the data structures it con-
tains or new elements to the set of functions it performs. A module is closed
if it is available for use by other modules and it has a well-defined, stable
description in addition to an interface that follows the principles of informa-
tion hiding. The source code of such a module is inviolate. The only source
code changes permitted are those needed to fix a problem, and even these
must be carefully controlled.

For programming languages, a closed module is one that may be compiled
and stored in a library for others to use. The C run-time libraries are the best
example of such libraries. For an application module, closing a module simply
means having it approved by management, adding it to the project’s official
repository of accepted software items, and recording its interface for the
benefit of other designers.

The tension between closed and open creates problems in many develop-
ment approaches. With inheritance and polymorphism, a class can be closed
(in the sense that it is complete and delivers what its interface description
promises) and open (because you can specialize it). When new subclasses are
introduced, neither the original class nor its clients need to be edited or recom-
piled. This is the open&closed principle. When a single change to a program
results in a cascade of changes to dependent modules, that program becomes
fragile, rigid, unpredictable, and not reusable. This is bad design. The
open&closed principle requires that you design modules that never change.
When requirements change, you extend the behavior of such modules by
adding new code, not by changing old code that already works.

It would seem that the open&closed principle is at odds with itself. The
normal way to extend the behavior of a module is to make changes to that
module. A module that cannot be changed is normally thought to have a fixed
behavior. In C++, it is possible to create abstractions that are fixed and yet rep-
resent an unbounded group of possible behaviors. A module can manipulate
an abstraction. Such a module can be closed for modification because it
depends on an abstraction that is fixed. Yet the behavior of that module can
be extended by creating new derivatives of the abstraction. It is by using inher-
itance that we can create derived classes that conform to the open&closed
principle.

7.3.7 The Liskov Substitution Principle

The Liskov Substitution Principle states that pointers or references to a class
should be able to use objects of derived classes without knowing it. The impor-
tance of this principle is illustrated when one considers the consequences of
violating it. If there is a function that does not conform to the Liskov Substi-
tution Principle, then that function uses a pointer or reference to a base class

240 DESIGN FOR TRUSTWORTHINESS

but must know about all derivatives of that base class. Such a function violates
the open&closed principle because it must be modified whenever a new deriv-
ative of the base class is created and leads to cascading changes.

7.3.8 Comparing Object-Oriented Programming With Componentry

The basic idea in object-oriented programming is that software should be
written according to a mental model of the actual or imagined objects it rep-
resents. It attempts to create “verbs” and “nouns” that can be used in intuitive
ways, ideally by end users as well as by software developers.

Software componentry, by contrast, makes no such assumptions, and
instead, it states that software should be developed by gluing prefabricated
components together. This process would create a “compile, integrate, and
test” software process akin to the “assemble, wire, and test” hardware facto-
ries. The definitions of useful components, unlike objects, can be counterintu-
itive. In general, it discourages anthropomorphism and naming, and it is far
more pessimistic about the potential for end-user programming.

It takes significant effort and awareness to write a software component that
is effectively reusable. Here is a checklist for a software component:

(1) Does it only send and receive data through formal and normalized
interfaces?

(2) Is it fully documented?

(3) Has it been tested for its functions and reliability and has it been put
under stress?

(4) Are the test plans and results available?

(5) Does it do robust input validity checking?
(6) Does it pass back useful error messages?

(7) Does it anticipate unforeseen uses?

(8) Is building the component financially viable?

Another way to simplify is to use proven software components. For
example, projects that want to build their own file manager would need a com-
pelling performance reason to do so. Projects use commercial database
systems to avoid the complexity of building their own. Dave Thomas points
out that the 1970s table-driven programming approach is an excellent way to
build components.'

7.3.9 Politics of Reuse

A good idea lives or dies not solely on the basis of its merit, but also by several
factors that surround it. “Politics of reuse” means the acceptance of the idea
of standardized parts in terms of the creative culture of programming, the busi-

' Thomas, Dave. “Design to Accommodate Change,” IEEE Software, Vol. 22, No. 3, May/June
2005, pp. 14-16.

DESIGN REVIEWS 241

ness environment in which it is practiced, and the mathematical theory that
supports it. The productivity gains promised by reusing software are prob-
lematical. Executives want to see reuse to be competitive; they tend to think
it is a matter of discipline in the programming ranks. Engineers, although his-
torically fond of standardized parts, know that reuse without sound theory and
control leads to disaster. Everyone is willing, but the application and rewards
remain stubbornly elusive. The specter of using a critical billing subsystem that
propagates a poor algorithm still lurks.

Many trends, however, suggest that reuse will become commonplace, even
though large-scale reuse of software modules is difficult today. There are some
successes with reuse to suggest that some projects are getting shorter devel-
opment intervals at lower cost. Projects that use LINUX, UNIX, and its C
libraries get 20% reuse without extra effort. The goal is to reuse software
modules as if they were interchangeable parts of hardware.

One big obstacle is that software revision is difficult without the origina-
tor’s help because so much code is obscure. Designers must work hard to get
the logical organization right at every level. It is even more difficult with
object-oriented code because the long-reaching effects of early decisions in
bottom-up design demand greater insight than top-down design. Managers do
not praise their product’s internal clarity. Yet only clear code can be modified.

Preserving clarity through cycles of modification is labor-intensive. During
Norman Wilson’s 5-year tenure as the primary maintainer of research UNIX,
he wrote a negative amount of code. The system became more capable, more
maintainable, and more portable. Imagine a major software project subtract-
ing code in the course of adding a feature. A four-fold increase in productiv-
ity is projected once 80% reuse is achieved, but that percentage is as yet
unrealistic. PORTAL provides a set of billing components that can be reused
in network management systems to bill for Internet services.! PORTAL
designers had the foresight to keep the interfaces clear and simple and limit
the size of their object libraries. COTS components can lead the software
industry to better system designs.

7.3.9.1 Qualified Successes Using network management platforms has
resulted in significant reuse in software. Fifty percent reuse became common-
place by 1995 after widespread use of platforms, although in 1985 reuse was
the exception. Now, however, only a few situations lend themselves to this kind
of success.

First, the financial payoff for reuse comes only after a module is used three
times. The investment needed to make a module reusable increases the cost
of the first use to no benefit for the sponsoring project. The incremental cost
for reusability needs somehow to be borne by future users.

Second, today’s software development processes are defective because they
treat everything as new development. There is no recognition of or funding

" Buchultz, Chris. “Elevating the Platform,” Telephony, April 7, 1997, pp. 32-33.

242 DESIGN FOR TRUSTWORTHINESS

for module owners in one application area to maintain modules for develop-
ers in other areas. The “you use it, you own it” philosophy implicit in most soft-
ware groups makes a self-sustaining reuse culture impossible. I have an
example close to home. My son reused a string package to track his school
library’s overdue book notices. The index scheme needed to be changed. After
2 weeks of failure, he left the package to compute its own worthless index and
added a postprocessor to compute the proper index. This processor added a
20% performance overhead, but there was no way to modify the module reli-
ably and the module owner was nowhere to be found. The system was used
cheerfully for years, consuming more computer resources than strictly neces-
sary. When his system was expanded to another library, he was long graduated,
so the administrators wisely decided not to tinker. If you ever come across a
“Glenwood Library Overdue Notice” from some place other than the Glen-
wood School, you will know that reuse constraints prevented a name change.
The lesson learned is that when you reuse a module, do not modify it. Get the
module owner to make it more general, live with it as is, or develop it from
scratch.

7.3.9.2 Conditions Fostering Reuse The literature, IBM’s experience,
and our work shows that the following criteria must be met to create a reusable
module that is an asset:

(1) Standard interfaces to the operating system must exist and be followed.
For example, kernel changes to UNIX are not acceptable. This reduces
flexibility in handling new communication protocols.

(2) Standard approaches to module interfaces must apply universally.
Abstract mechanisms, such as self-describing tag-value interface design,
can penalize performance.

(3) Application generators need to produce about 25% of the products,
especially for user interfaces.

7.3.9.3 Reuse “As Is” Data collected on the reuse of 2954 modules of
NASA programs (see Figure 6.8) clearly demands the shocking conclusion
that to reap the benefits of the extra original effort to make a module reusable,
it must be reused essentially unchanged. No change costs 5%; the slightest
change drives the cost up to 60%. Within an organization, however, success is
possible.

In the category of currently intractable problems, it has been impossible to
systematically reuse software across application domains. There is ongoing
work in modeling application domains to capture the relationship between
requirements and object types so that selecting these features can reuse soft-
ware architectures. Also, reuse even in the same application domain is suc-
cessful only when throughput and response time are not overriding concerns.
Finally, it is not yet possible to maintain an asset base of software modules
except when they are in packaged libraries and when they are utility functions.

DESIGN PRINCIPLES 243

Where reuse is successful, there is a high level of management attention to
detail and a willingness to invest in design for reusability. Software configura-
tion management assumes that there is an existing base of software compo-
nents from which the components of a specific system are chosen, assembled,
tested, and distributed to a user. Even then, exhaustive retesting is still
required to root out what Jackson called “undesired interactions.”

7.4 DESIGN PRINCIPLES

Poor design introduces unnecessary dependencies and makes components
more difficult both to understand and to integrate into products. Good design
is essential to eliminating barriers to multiuse. Good multiuse design requires
good software design, using well-known software design principles as well as
newer multiuse principles:

(1) Strong cohesion

(2) Weak coupling

(3) Information hiding

(4) Inheritance

(5) Generalization/abstraction
(6) Separation of concerns

(7) Removal of context

7.4.1 Strong Cohesion

When code is cohesive, each code module contains a well-defined set of related
functions and does not contain extraneous functions. Strong cohesion reduces
the chance that a multiuse component will contain features that are useless or
unwanted by other products. For example, a component that intermingles
database access statements with data manipulation functions will not be
attractive to a product that uses a different database or no database at all.

Even worse, if the data manipulation algorithms in this component depend
on the specific type of database access, the component will be unusable in
products that store data in different ways. Highly cohesive code would have
isolated database access from data manipulation and cleanly separated the two
types of code into two modules. Following the practice of strong cohesion will
help you to keep invariant features, such as data manipulation, separate from
variant features, such as the type of data storage a product uses.

7.4.2 Weak Coupling

Strong cohesion and weak coupling usually go hand in hand. Weak coupling
between modules promotes the independence of each module, so that one

244 DESIGN FOR TRUSTWORTHINESS

module does not require knowledge of another. Weak coupling keeps a multi-
use component self-contained and more portable, both at compile time and at
run-time.

For instance, highly coupled code is likely to bring extraneous include files
and functions into the compile; and it is likely to produce overly large run-
time components that will port poorly. High coupling usually means unneces-
sary and unwanted features, more complex product customization, and a
greater possibility of disruptive side effects.

7.4.3 Information Hiding

Information hiding and the use of abstract data types allow a product to access
a multiuse component without needing to know how the component repre-
sents and handles its internal data. Information hiding is the principle that the
internal data and operations of a module should remain hidden from other
modules. Modules should communicate with each other only through clearly
defined interfaces and only communicate what external modules need to
know. Information hiding promotes a clear external interface and enhances
the ease of use of the component.

Abstract data types are a special case of information hiding, in which a data
structure and the functions to manipulate it are encapsulated within a module.
Abstract data types provide an important simplification for the product devel-
oper, by hiding the details of data handling in the multiuse component.

Another benefit of information hiding is that the multiuse component and
product can maintain independent development cycles, where changes to the
internal data and operations of one do not affect the other. Information hiding
is an important aspect of object-oriented programming.

7.4.4 Inheritance

Inheritance is another important object-oriented principle. Inheritance is the
ability of an object to include characteristics of a parent, or class, object in an
object instance. Inheritance lets developers separate general and common
characteristics from specialized and variable characteristics. Using the princi-
ple of inheritance, a component developer can place commonalities in class
objects, and let product developers specify variabilities in individual object
subclasses.

7.4.5 Generalization/Abstraction

To generalize or abstract a component is to ensure that the component will
handle general, rather than specific, conditions. For example, if a list algorithm
has been written specifically for byte data, the algorithm could be generalized
to handle short, long, or double data as well. In some cases, the algorithm could
be generalized even more to handle any type of data.

DESIGN PRINCIPLES 245

As another example, suppose that array manipulation depends on hard-
coded array boundaries. In almost all cases, you want to generalize this code
to accept user-defined array boundaries. However, the range of acceptable
user-defined boundaries is determined by the domain analysis.

Generalizing database access functions to handle records of any type or
length is a significant step toward creating a multiuse database component.
Generalizing these functions to also handle any number of index keys, or to
handle keys located at any record offset, would greatly increase the range of
use of this database component.

Generalization is the process of removing unnecessary detail and nonessen-
tial restrictions from a component. Generalizing a component is limited by the
effort required to reengineer the component, and by the range of variability
shown in the domain analysis. If the domain analysis indicates that current and
future products will use single key data access, it may not make sense to gen-
eralize database functions to handle multiple keys.

7.4.6 Separation of Concerns

Separation of concerns is the principle of organizing software so that you need
handle only one issue at a time. Separation of concerns is what distinguishes
a multiuse component from a single-use, or product-specific, component. Sep-
arating concerns lets the component developer see which decisions are inte-
gral to the component and which decisions should be deferred to the product
developer. The decisions the component developer makes concern the com-
monalities and range of variability of the domain. The decisions the product
developer makes are the selection of the appropriate values for the variabili-
ties and the determination of when to use the values.

Separating concerns will dictate the design of the component by showing
what can be fixed in the component and what must be customized. Keeping
product development concerns strictly separate from component development
concerns is the way in which you help to remove or reduce the dependencies
that will prevent multiuse.

7.4.7 Removal of Context

Removal of context is similar to generalization, but it applies to the compo-
nent interface rather than to the component internals. Context, in this sense,
refers to the assumptions the component makes about what is outside of it:
services, resources, infrastructure, and hardware platform. Infrastructure
includes the operation system and available communication mechanisms.
Context also includes assumptions about surrounding components and the
messages, or information, they will pass.

An effective way to remove context is to design weak preconditions into a
component’s interface. Preconditions are expectations that a component, or
interface function, has about the data that are passed to it or its state when it

246 DESIGN FOR TRUSTWORTHINESS

is called. For example, expecting that an input parameter will always contain
valid data is a strong precondition. This precondition requires external com-
ponents to check the validity of the parameter before they pass it and may
make it hard to integrate this component into different products. To weaken
this precondition, the component should verify the validity of the input data
before continuing.

Expecting a particular order of events is also a strong precondition. For
instance, a component may assume that an external component will call its ini-
tialization function before any other functions or that a passive component
may assume that its caller will call entrance and exit functions for it. To weaken
such preconditions, the component can store information about its current
state in global flags. For example, an initialization function could set an INIT
flag that would be checked by all subsequent functions that require
initialization.

Removal of context can be a difficult effort. The domain analysis deter-
mines which context, and how much of it, should be removed for the compo-
nent to have multiple uses. The available development resources will certainly
influence how much context is actually removed.

7.5 DOCUMENTATION

Documentation promotes multiuse because it improves the product devel-
oper’s understanding of a component and thus makes the component easier
to use in products. Good documentation is particularly essential to multiuse
components because of the following:

(1) Many developers may use this component and will need to know its
behavior, external interfaces, and required resources.

(2) The component cannot be properly integrated into a product unless the
component dependencies are clearly known.

(3) Product developers need to know how to build and test the component
within the product’s own build and test environment.

In the single-use development process, design documents, code comments,
and module or function headers provide the information needed to test and
maintain a component. This type of documentation is equally important for
the maintenance and test of a multiuse component. However, a multiuse
process requires a second type of documentation: the information needed to
select, customize, and integrate the multiuse component into products. You can
think of this second type of information as customer documentation for the
multiuse component’s users, the product developers.

To use a component effectively, the product developer needs this informa-
tion:

ey
)

®)
(4)
)
(6)

)

DOCUMENTATION 247

The component requirements

The external interface specifications, including visible data types,
parameter types, and their order and special constraints, limitations, and
assumptions

The prescribed sequence of operations and events
How the component handles exceptions and errors

How the component handles control; is it re-entrant, passive or active,
synchronous or asynchronous

The required run-time resources, such as memory, peripheral device, file
systems, CPU usage, and other services

The component performance properties and real-time constraints

To review, a well-designed component that has weak coupling, strong cohe-
sion, weak preconditions, and a clear external interface is usually easier to
understand than a poorly designed component. Ideally, a product developer
does not need to know a great deal about a component to use the component
correctly in a product. In particular, the product developer should not need to
know the internals of a component to integrate the component into a product.

The format document that can be used to satisfy the above needs contains
the following general terms':

M

)

S)
(4)
)
(6)
()

Title: This is the name of the system component being specified or
described. It must be unique among all system components. This
requirement is imposed both by system coordination and by design
considerations.

Heading: This contains a variety of entries identifying the person
responsible for the design and key descriptors of the component or doc-
ument. One such descriptor is the type of document that would be
Functional Specification, Design Specification, or Design Description.
Purpose: A one- or two-sentence narrative stating the purpose of the
component within the system.

Description: An approximately 500-word discourse on the functions the
component performs.

Inputs: The data and/or control information a component provides and
the name of the component where it goes.

Outputs: The data and/or control information a component provides
and the name of the component where it goes.

References: The connectivity information identifying the relation of
this block to other blocks in the system as well as references in the lit-

" The list of terms is derived from Bernstein, L. and Slokowski, F. E. “An information system for
the coordination of program design,” Proceedings of 21" National Conference Association for
Compution Machinery, ACM Publication P-66, Thompson Book Company, New York, 1966.

248 DESIGN FOR TRUSTWORTHINESS

erature. One set of references reflecting the program production struc-
ture consists of “uses” and “sends outputs to” and their inverses “used
by” and “receives inputs from.”

(8) Diagrams or Pseudo-code: Data flow and control charts or pseudo-code
describing how the component works internally. For object-oriented
programs, class diagrams should be included.

(9) Block Test Plan: An account of how this block will be or was tested as
a separate unit. It would include the test procedures and test results
necessary to verify the operation of the block.

7.6 DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY

Most current software theory focuses on its static behavior by analyzing source
listings. There is little theory on its dynamic behavior and its performance
under load. Often we do not know what load to expect. Dr. Vinton Cerf, inven-
tor of the Internet, has remarked “applications have no idea what they will
need in network resources when they are installed.” As a result, we try to avoid
serious software problems by overengineering and overtesting.

Software engineers cannot ensure that a small change in software will
produce only a small change in system performance. Industry practice is to
test and retest every time any change is made in the hope of catching the
unforeseen consequences of the tinkering. The April 25, 1994 issue of Forbes
Magazine pointed out that a three-line change to a 2-million line program
caused multiple failures because of a single fault. There is a lesson here. It is
software failures, not faults, that need to be measured. Design constraints that
can help software stability need to be codified before we can hope to deliver
reliable performance.

7.6.1 Simplify the Design

Before getting to the design review, a design simplification process eliminates
“gold plating” that was identified as one of the top ten risk items for project
success. Gold plating is producing software embodying the most complicated
interpretation of the requirements, which occurs when designers have limited
domain knowledge and do not understand the few places in the design where
generalizations are critical, so they generalize everywhere. It is also the con-
sequence of not using prototypes during the requirements phase. For example,
in his seven-team experiment cited earlier, Boehm remarked:

the comparisons of the relative sizes of the products and the relative effort
required to develop them produced a striking result: the prototyping teams’
products were 40% smaller, on the average, and required 45% less effort to
develop, with roughly equivalent performance. The specifying people indicated
that it was very easy to over promise and over generalize in their specifications.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 249

For example, when confronted with a request such as, “Some users would like to
enter data by rows as well as columns,” the developers who relied on specifica-
tions would tend to say, “Sure, that’s just another sentence in the spec.” When
confronted with this sort of comment in their prototype review, prototypers had
a better feel for the programming implications and tended to say, “We’ll put that
in if we have time.” The 3:1 range in product sizes is remarkable, considering
that each team was developing essentially the same product. The main reason
for this effect appeared to be that prototyping fostered a higher threshold for
incorporating marginally useful features into a software product. The process of
prototyping gave software developers a more realistic feel for the amount of
effort required to add features to a project, and the lack of a definitive specifi-
cation meant that prototypers were less locked into a set of promises to deliver
capabilities than were the specifiers. In the somewhat rueful words of one of the
specifiers, remarking on his team’s efforts to fulfill the promises in their ambi-
tious specification, “Words are cheap.”'?

\\‘(/

i\ /\’ MAGIC NUMBER!

Only 60% of the features in a system are actually used in production.

7.6.2 Software Fault Tolerance

If we cannot avoid a failure, then we must constrain the software design so
that the system can recover in an orderly way. Every software process or object
class should provide special code that recovers when triggered. A software
fault-tolerant library with a watchdog daemon can be built into the system.
When the watchdog detects a problem, it launches the recovery code peculiar
to the application software. In call processing systems, this usually means drop-
ping the call but not crashing the system. In administrative applications where
keeping the database is key, the recovery system may recover a transaction
from a backup data file or log the event and rebuild the database from the last
checkpoint. Designers are constrained to explicitly define the recovery method
for each process and object class using a standard library.

Many highly available and reliable applications are deployed on Microsoft’s
Windows NT. Transaction processing and process replication technologies
make these applications industrial strength and resistant to failures.

2 Boehm, Barry W., Gray, Terence E., and Seewaldt, Thomas. “Prototyping Versus Specifying: A
Multiproject Experiment,” IEEE Transactions on Software Engineering, Vol. SE-10, No. 3, May
1984, pp. 290-301.

250 DESIGN FOR TRUSTWORTHINESS

Transaction processing is the most widely used technique for fault tolerance
among commercial fault-tolerant products. With a transactional processing
system, applications usually have a well-defined transaction boundary, such as
updating a record or keeping a communication channel operating in the face
of bit errors. When a fault occurs, both the client and the server abort the
ongoing transaction and roll back to a clean state. This approach was used in
the Safeguard ABM system in its “mission mode.” Special code was added to
each transaction to rationally respond to failures. For example, on a divide by
zero abort, the processor would clear tracking data for a target that might have
vaporized during atmospheric re-entry.

Process replication allows faster recovery than transactional processing
and provides recovery for nontransactional processes. It is ideal for military,
avionics, and telecommunication applications that must continually manage
or monitor some physical device.

A cold replication assumes there is only one active copy of a fault-tolerant
process. The order of priority is when the active copy fails, recover the failed
process locally; if the local recovery fails, migrate the process to another
machine. This process can be done with a cold, warm, or hot replication design.
In warm replication, one or more backup processes run on a network, and the
primary process periodically checkpoints its state to its backup processes. Only
the primary process can provide services to client applications; the backup
process receives only checkpoint messages from the primary process. If the
primary process fails, one backup quickly becomes the primary and resumes
services. A hot replication scheme monitors all replicas of a fault-tolerant
process. When a failure occurs with one server, the failure is masked and the
computation continues if there is one server running. No rollbacks are neces-
sary on either the client or the server.

To successfully implement the checkpoint technique, one needs facilities
not provided by Windows, these being application monitoring, application
failure recovery, application checkpoint/message logging, file replication,
Windows events logging/replay, IP packets dispatching, and IP address
fail-over.

Avaya (http://www.research.avayalabs.com/project/swift/) offers a reusable
library called Software-implemented Fault Tolerance (SwiFT). It is a set of
reusable software modules for building reliable, fault-tolerant Windows NT,
LINUX, UNIX, and JAVA applications. These modules can either stand alone
or be integrated into existing software products to provide fault tolerance.
Therefore, SWiFT is designed especially for object, process, and application
replications using cold, warm, and hot replication schemes. SWiFT detects hang
failures in addition to crash failures. These modules emerged from funda-
mental Bell Laboratories research in fault-tolerant software pioneered by
Bernstein and Kintala."

% Bernstein, L. and Kintala, C. “Components for Software Fault Tolerance and Rejuvenation,”
AT&T Technical Journal, Vol. 75, No. 2, Mar./Apr. 1996, pp. 29-37.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 251

SwiFT’s library modules include:

(1) Watchd for process failure detection, recovery, replication manage-
ment, and distributed system services. It detects application process fail-
ures and machine crashes. This watchdog daemon process can run on
either a single machine or on a network and uses an adaptive diagno-
sis protocol to detect machine failures so each Watchd pings its neigh-
bor Watchd; if its neighbor fails, Watchd pings its next neighbor; and so
on. Once Watchd detects a failure with an application program, it will
restart the application program automatically. If the client application
fails more than the threshold given to Watchd, Watchd will reboot the
system and restart the application. It also is used to restart an applica-
tion for rejuvenation purposes.

(2) Winckp for transparent process checkpointing and mouse/keyboard
events logging and replaying.

(3) Libft for data checkpointing, communication messages logging, and
recovery.

(4) REPL for online incremental file replication and disaster recovery.
(5) Onme-IP for IP packets dispatching, fail-over, and rerouting."

7.6.3 Software Rejuvenation

The third constraint is to limit the state space in the execution domain. Today’s
software runs nonperiodically, which allows internal states to develop chaoti-
cally without bound. Software rejuvenation is a new concept that seeks to
contain the execution domain by making it periodic. An application is grace-
fully terminated and immediately restarted at a known, clean, internal state.
Failure is anticipated and avoided. Nonstationary software processes are trans-
formed into stationary ones. One way to describe this is rather than running
a system for 1 year with all of the mysteries that untried time expanses can
harbor, run it only 1 day, 364 times. The software states would be reinitialized
each day, process by process, while the system continued to operate. Increas-
ing the rejuvenation period reduces the cost of downtime but increases over-
head. One system collecting online billing data operated for 2 years with no
outages on a rejuvenation interval of 1 week.

A Bell Laboratories experiment showed the benefits of rejuvenation. A
16,000 line C program with notoriously leaky memory failed after 52 itera-
tions. Seven lines of rejuvenation code with the period set at 15 iterations were
added, and the program ran flawlessly. Rejuvenation does not remove bugs; it
merely avoids them with incredibly good effect.

4 For a complete description of these technologies, please refer to Huang, Y. and Kintala, C. M.
R. “Software Implemented Fault Tolerance: Technologies and Experience,” Proceedings of 23rd
Intl. Symposium on Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 2-9. watchd, libft,
and REPL are registered trademarks of AT&T Corporation.

252 DESIGN FOR TRUSTWORTHINESS

This phenomenon was first recognized in the 1970s in the software devel-
opment for the BISCOM store-and-forward message switching system used
by five telephone companies to process customer service requests. The
problem then was that hash tables were used to index into a file system. The
service requests were different sizes, and the service request numbers followed
a structured pattern. The original design tried to maintain the file structures
for 30 days or more, which led to many clashes and secondary indices. When
service requests were fulfilled, they were deleted. The garbage collection soft-
ware that tried to reclaim file space was complicated. After months of system
aborts, angry customers and frustrated software developers, rejuvenation was
born. The system was shut down every night for backup, report generation,
and other administrative tasks and the file structure was maintained from shut-
down to startup. At startup, the file manger would accept all existing files as
new input, recompute the hash tables, and restore the messages. Hash table
conflicts became rare. Garbage collection problems were insignificant. The
system was more reliable. This added 10 minutes of elapsed time to the startup
process and was easily accommodated in the administration procedures. The
execution life of the file system was 1 day.

The idea of rejuvenation was applied to Lucent’s Billing Data System
(BILLDATS) in the 1980s when it was ported to UNIX. There were no
reported outages for at least the first 10 years of use at over 50 customer sites.
Rejuvenation worked and then was extended to a UNIX library of features.
BILLDATS collects billing information from automatic message accounting
transmitters situated in or close to switching offices. BILLDATS is the “mid-
dleman” in the billing process. The system collects, validates, and adds identi-
fication information regarding origination and destination. This information
is transmitted directly to the Revenue Accounting Office, which processes the
billing information. Some of BILLDATS more interesting features are as
follows:

(1) Runs under UNIX

(2) Rejuvenates daily

(3) Can store 12 to 44 million calls

(4) Inserts the switch type and ID onto every call record
(5) Collects data from up to 600 switches

The FAA’s Voice Switching Communication System (VSCS) was upgraded
in 2003 from UNIX to WinNT. Harris Corporation supplied VSCS. As a result,
the Microsoft problem of clock expiration after 49.7 days became an FAA
problem that led to a massive failure as described in Section 5.11.2. Harris did
not use rejuvenation technology that could have prevented this failure. During
VSCS development, the issue of WinNT as an industrial strength, reliable plat-
form raged in the telecommunications software trade press. Even though

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 253

Microsoft had upgraded WinNT with clustering technology in a two-node fail-
over configuration, industry skeptics argued against the risk of moving away
from UNIX.

The Harris website reports:

The Voice Switching and Control System (VSCS) provides the Federal Aviation
Administration (FAA) with a computer-controlled, highly distributed commu-
nications and control system to support air traffic management into the 21st
century. The Harris-developed VSCS allows air traffic controllers to establish all
Air-to-Ground and Ground-to-Ground calls for current and projected traffic
volumes. The VSCS has completed design, development, testing, production and
installation of the system for all 21 FAA ARTCC locations . . . Software design
and development, using SEI Level 3 methodologies; test plan development; soft-
ware testing; data analysis; various legacy systems and tools ... VSCS is based
on independent distributed processors and switches, fault-tolerant databases,
redundant high-speed bus interconnections, and extensive switching for real-time
reconfiguration and redundancy to achieve an operational availability of
0.9999999. Switchovers during fault detection, isolation and resolution are done
without breaks in communications, so failures are transparent to the ATC. ..
Production completed achieved 100% on-time system delivery, installation, test,
and acceptance of all 23 systems. [Harris was] contractor of the year [and won
an] award from the Human Factors Engineering Society for excellence in human-
machine interface design. Customer quote: ‘In my association with Harris on
the VSCS project, they have shown a dedication towards providing excellence.
Their people are professional[s] who reflect pride in their company and their
products.”

The Microsoft software contained an internal clock designed to shut the
system down after 49.7 days to prevent it from becoming overloaded with data.
Shutdown is better than allowing an overloaded system to keep running and
potentially give controllers wrong information about flights. This strategy was
the right one given the design and uncertainty of the traffic load. When we try
to run software beyond its specified domain, we often fail in obscure ways. A
better strategy would have been to use rejuvenaiton technology weekly and
roll over to backup hardware to eliminate the risk of the this fault becoming
a failure. Greg Martin, the chief FAA spokesman in Washington, said the
failure was not an indication of the reliability of the radio communications
system, which he described as “nearly perfect.” Harris programmers were
operating at, or better than, the state-of-the-practice. They were SEI 3, and
apparently the application was robust. The problem is that the software indus-
try is not aware of nor using available tools that would prevent many failures.
Even worse, the same problems reoccur because we rarely study software fail-
ures with the intention of teaching better methods.

'S http://www.harris.com (and search for VSCS).

254 DESIGN FOR TRUSTWORTHINESS

7.6.4 Hire Good People and Keep Them

This constraint might have been the first because it is so important, but any
software organization can adopt the first three constraints as they set about
improving the quality of their staff. Hiring good people is not easy. Every shop
claims to have the “very best’ people”; obviously, very few actually could.

\‘//

\‘//

MAGIC NUMBER!

It takes 16 weeks to bring a new hire onboard: 8 to fill the job, and another
8 to train the person in the ways of the project and the company.

The high correlation between defects in the software product and staff
churn is chilling. Defects are highly correlated with personnel practices.
Groups with ten or more tasks and people with three or more independent
activities tended to introduce more defects into the final product than those
that are focused. Large software changes are more error-prone than small
ones, with changes of 100 words of memory or more being considered large.
Hatton reports that defects grow exponentially with size, which may have
some relationship to the average size of human working memory. The high
0.918 correlation between defects and personnel turnover rates is telling.
When Boeing improved their work environment and development process,
they saw 83% fewer defects, gained a factor of 2.4 in productivity, improved
customer satisfaction, and improved employee moral.

7.6.5 Limit the Language Features Used

Most communications software is developed in the C or C++ programming
languages. Les Hatton’s book, Safer C,'® describes the best way to use C and
C++ in mission-critical applications. Hatton advocates constraining the use of
the language features to achieve reliable software performance and then goes
on to specify instruction by instruction how to do it. He says, “The use of C in
safety-related or high integrity systems is not recommended without severe
and automatically enforceable constraints. However, if these are present using
the formidable tool support (including the extensive C library), the best avail-
able evidence suggests that it is then possible to write software of at least as
high intrinsic quality and consistency as with other commonly used languages.”
For example, a detailed analysis of source code from 54 projects showed that
once in every 29 lines of code, functions are not declared before they are used.

' Hatton, Les. Safer C: Developing Software for High Integrity and Safety-critical Systems,
McGraw-Hill International, London, 1996.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 255

Cis an intermediate language, between high level and machine level. There
are dangers when the programmer can drop down to the machine architec-
ture, but with reasonable constraints and limitations on the use of register
instructions to those very few key cases dictated by the need to achieve per-
formance goals, C can be used to good effect. The alternative of using a mix-
ture of assembly language and high-level language code brings with it the
headaches of managing configurations and integrating modules from different
code generators. The power of C can be harnessed to assure that source code
is well structured. One important constraint is to use C function prototypes or
special object classes for interfaces.

7.6.6 Limit Module Size and Initialize Memory

Uy

\‘//
ERN

MAGIC NUMBER!

The optimum module size for the fewest defects is between 100 and 1000
NCSLOC. Smaller modules lead to too many interfaces, and larger ones
are too big for the designer to handle. Structural problems creep into large
modules.

All memory should be explicitly initialized before it is used. Memory leak
detection tools should be used to make sure that a software process does not
grab all available memory for itself, leaving none for other processes. This
creates gridlock as the system hangs in a wait state because it cannot process
any new data.

7.6.7 Check the Design Stability

Software developers know that their systems can exhibit unexpected, strange
behavior, including crashes or hangs, when small operational differences are
introduced. These are not random events. They may be the result of new data,
execution of code in new sequences, or exhaustion of some computer resource
such as buffer space, memory, hash function overflow space, or processor time.
Fixes and upgrades create their own errors. The fact that the only recourse
has been exhaustive retesting limits the growth of software productivity in
enhancements to existing systems and modules. Experienced software man-
agers know to ask, “What changed?” when a system that has been perform-
ing reliably suddenly and catastrophically fails. Under current methods of

256 DESIGN FOR TRUSTWORTHINESS

software production, systems are conditionally stable only for a particular set
of input and a particular configuration.

A software system is stable if a bounded input creates a bounded output.
Instabilities develop in the following circumstances:

(1) Computations cannot be completed before new data arrive.

(2) Round-off errors build or buffer usage increases to eventually domi-
nate system performance.

(3) An algorithm embodied in the software is inherently flawed.

Feedback control theory makes it possible to design adaptive software that
meets prespecified performance requirements. Design controllability and
observability are possible with feedback control. Controllability is a measure
of the ability to use a system’s external inputs to manipulate its internal state.
Observability is a measure of how well internal states can be inferred by
knowledge of external outputs. Many real-time systems make control deci-
sions. These decisions are usually made by software and based on feedback
from the hardware under its control (termed the plant). Such feedback com-
monly takes the form of an analog sensor that can be read via an A/D con-
verter. A sample from the sensor may represent position, voltage, temperature,
or any other appropriate parameter. Each sample provides the software with
additional information upon which to base its control decisions.

7.6.7.1 Closing the Loop Systems that use feedback are called closed-
loop control systems (Figure 7.5). The feedback is used to make decisions
about changes to the control signal that drives the system. An open-loop
control system does not have or does not use feedback. A basic closed-loop
control system can describe a variety of control systems, including those
driving elevators, thermostats, and cruise control.

Controlled System

Control
Actuator manipulated
e > Actuaor gy manip

variable

Controller

control
function

| . —1 . |Sampled
Monitor | p coqtrolled
1 data | variable

setpoint

Figure 7.5. Closed-loop control system.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 257

7.6.7.2 Bang Bang Control How much should the software increase or
decrease the drive signal? One option is to just set the drive signal to its
minimum value when you want the plant to decrease its activity and to its
maximum value when you want the plant to increase its activity. This strategy
is called on—oFF control, and it is how many thermostats work.

oN—OFF control does not work well in all systems. If the thermostat waits
until the desired temperature is achieved to turn off the heater, the tempera-
ture may overshoot. See Figure 7.6. The same amount of overshoot and ripple
is not acceptable when stopping an elevator.

A
Temperature
(room)
Overshoot .
Ripple
70° Fommoea. oLy 10 N i /e Setpoint -
65° Heater Heater | Heater Heater
On Off On Off
Time

Figure 7.6. Overshoot and ripple in ON—OFF control system.

Proportional control is the primary alternative to oNn—orF control. If the dif-
ference between the current plant output and its desired value (the current
error) is large, the software should probably change the drive signal a lot. If
the error is small, it should change it only a little. In other words, we always
want a change like:

y(n+1)=c(y - y(n)),

where y is the desired output or setpoint, y(n) is the actual output at sample
n, and c is a constant proportional gain set by the system’s designer.

If the proportional gain is well chosen, the time the plant takes to reach a
new setpoint will be as short as possible, with overshoot (or undershoot) and
oscillation minimized. oN—0FF and proportional controls are two basic tech-
niques of closed-loop control.

Consider the open loop system in Figure 7.7, where:

x(n) is a sampled sequence of inputs
y(n) is a sequence of outputs computed by the program
h(n) is the difference equation coded in the software module

258 DESIGN FOR TRUSTWORTHINESS

x(n) o) y(n)
,(Z i) n
H(z)
X@) Y(2)

Figure 7.7. Open-loop system example.

It may be the moving average difference equation:
h(n)=7/8 h(n—-1)+1/8 (n),
and the Z transform is
Z({x(n)}) = X(2),
X(z)=Y x(n)z™ forn=0to .
Consider the closed-loop system in Figure 7.8, where:
Y(z)=H(z) [X(2)- Y(2)],

Y(z)+H(z)Y(z) = H(z) X(2),
Y(z) = X(z) H(z)/[1+H(2)],

but H(z) cannot equal —1 or the output is infinite for any input!

y(n)=Z{Y(2)}.

x(n) y(n)
— H(z)
X(z) Y(z)

Figure 7.8. Closed-loop system example.

Note that n >0 for real casual systems.
As an example, we are asked to implement the following innocent-looking
difference equation by the specification:

y(n)=4[y(n-1)-y(n-2)]+x(n-1)
or
y(n)=5y(n—1)—4y(n -2)+x(n-1)—y(n —1).

Programming it would not be hard, but is it stable? Take the Z transform and
factor out the z" term:

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 259

Y(z)=Y(z)[5z7" -4z |+ X(Z)z' - Y(z)z"",
Y(2)/X(z)=z"/4z2 -4z +1.

Now find the values for Z when the demoninator is zero.

477 -4z +1=0,
727 —4z+4=0,

with two roots at z = 2.

Because the roots exceed 1, the system will grow without bound near Z =
2.1t is unstable and will lead to an unreliable and unsafe system.'” The ethical
software engineer would not implement this specification as it stands.

This feedback control technique is being used to analyze these software
problems:

(1) Web caching QoS

(2) Active queue management in networks
(3) Processor thermal controls

(4) Online data migration in network storage
(5) Real-time embedded networking

(6) Control middleware

(7) Real-time scheduling

(8) Target tracking

We must learn to approximate nonlinear systems with linear ones to use this
technique widely. Be aware that modeling mapping control objectives for a
system to feedback control loops is challenging.

7.6.8 Bound the Execution Domain

Software needs to perform reasonableness checks on all inputs and outputs.
For example, the system should not accept a result of an altitude calculation
that claims that an aircraft is at 67 ft off the ground when the plane is warming
its engines on the ground. The domain experts specify a range of acceptable
values for all inputs and outputs, and the software needs to validate that the
values fall within their defined ranges. When they do not, then fault-tolerant
software is invoked.

Input validation on all data coming from user fields on an input screen is
now common. A good design approach is to have two stages of abstraction.
The first allows the human factors designer to arrange the fields to best fit the
task. The second allows domain experts to validate the data.

7 The details of this analysis are beyond the scope of this book; see Feedback Control of Com-
puting Systems, which is listed in the Bibliography, for an excellent treatment of the subject.

260 DESIGN FOR TRUSTWORTHINESS

Then data pass through an interface object or structured language to the
processing software. The processing programs receive data that are normal-
ized and validated, which isolates the processing programs from the idiosyn-
cratic behavior of the human operator and of the external environment. It
reduces the need to change the application to stay in lock step with screen
changes. If the resulting system does not provide the required performance
because of this indirection, it is best to buy a faster machine. This is a hard-
ware problem, not a software problem. Should this argument fail with the
budget manager, then the designer must invent Fast Path processing to bypass
the overhead of indirection. The architecture becomes more tightly coupled
and therefore more complex, which causes the software to become harder to
fix and extend. Fast Path processing is used for just this purpose, to bypass the
overhead of indirection, by IBM in their database access system.'®

Unfortunately designers are not always as careful as IBM was in bounding
and qualifying their interface. Here is a case in which a simple index was not
bounded. We have the ethical responsibility to teach the cause of the failure
to our colleagues so that designers can avoid it in the future.

Remember the Comair story in Section 5.11.1. The crew-scheduling appli-
cation was not written in-house at Comair, but by another large aerospace
company—SBS, which is owned by Boeing (http://www.sbsint.com/). This bit
of software does not use an external database; it tracks everything itself. It is
a dedicated system responsible only for flight crew assignments. Most of
Comair’s traffic flows through the Midwest, and the central base of operations
is in Cincinnati. The Midwest was hit by a major snowstorm during the week
in question, which caused many crew reassignments. It seems that the appli-
cation had a hard limit of crew changes per month. Consider that Comair runs
1100 flights a day and there are usually three crew members on each aircraft.
That is a lot of crew changes.”

7.6.9 Engineer to Performance Budgets

Understanding the performance implications of a design is critical when decid-
ing if there is a risk of not fitting the application onto the target computing
resources or network. Simple estimates of CPU usage and memory occupancy
from instruction counts can be helpful. This is a static view of the system per-
formance. A dynamic view, using simple queuing models, is necessary to under-
stand bottlenecks.

Case Study: The Case of Heigh Ho, The 1/0!

A distributed system with many servers to handle more than one million
requests a day was built but could not handle the load. Forty percent of the

¥ http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp?topic=/com.ibm.ims9.doc.as/
sagl2.htm. Explains the use of fast path.
1 http://www.informationweek.com/shared/printable Article.jhtml?articleID=56700162.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 261

traffic arrived during the busy hour from 10:00 am to 11:00 am. That meant
400,000 transactions arrived in 1 hour, or 400,000 transactions per busy
hour/3600 seconds/hour = 111 transactions/busy second.

Each request took on average 25ms to process, so designers assumed (111
transactions/second) (0.025 seconds/transaction) and planned to use three
servers. They did not account for queuing buildup and the need to design for
60% server utilization to avoid unacceptable response times. They actually
needed more like five servers (a processing capacity of 2.7 servers at 60%
utilization requires 4.5 actual servers).

Simple queuing theory could have told them that.

Conclusion: When sizing an application, consider not only the CPU utiliza-
tion but also the input/output (I/O) bandwidth and random access memory
(RAM) utilization, the end-to-end response time for frequently used transac-
tions, and the number of concurrent users expected during the busy hour.

Transaction instruction counts can be put into a model and calibrated with
test data from the prototype and eventually from the production system. The
offered load is based on the specified use cases and then on measured traffic.
In general, the number of transactions a system can handle is the minimum
number of transactions that fit within the CPU cycles, RAM, and I/O of the
target computer considering the traffic profiles. In some severe cases, the need
to recover every transaction limits the number of transactions to what the
backup system can recover. A detailed accounting of RAM occupancy and I/O
channel utilization considering potential memory thrashing also gives insight
to system capacity. These are static views of system capacity.

Studying the growth of queues gives the most important insight into the
effects of load on system performance. Queue occupancy dominates system
capacity planning, so the idea is to empty queues quickly. However, some
transaction schedulers ask for more work even when their queues are almost
full in the mistaken belief that they are honoring the requirements specifica-
tion. The additional processing required to manage the queues under these
conditions grows exponentially, and the system slows to a crawl or crashes. A
better strategy is to set a higher priority for software processes doing the work
than for the processes requesting the work, such as screen handlers, even
though this seems to violate the requirements specification.

To understand this effect, assume transaction arrival times and transaction
processing times are both random. How could a queue of significant length
ever develop? If the arrival times were correlated with the processing times,
a queue might be very short, but transaction arrival and processing times are
uncorrelated. A cluster of transaction requests with very short interarrival
times might well contain many that require long processing times. That is when
a queue of significant length would develop. If the mean interarrival time is
shorter than the average processing time (T), the queue will grow without
bound, overflow, and become useless. Another way of expressing this is to

262 DESIGN FOR TRUSTWORTHINESS

introduce a new parameter defining the load (L) or the occupancy of the queue
and calculate the average delay (T,,,) for a message to pass through a queue.

\\\‘///

"~ MAGIC NUMBER!

Tae = Ty/1-L/100, where L is the percentage occupancy of the queue.
L = 100(arrival rate/server rate), where rate = 1/time.

Example: A processor sends ten exponentially distributed disk 1/Os per
second. The average disk service time is 20 ms. Then the disk utilization or load
is

Load = arrival rate/server rate = 10 requests/1 request services/0.02
seconds x 100 = 20%

The delay in the system is

Tae = T./1-L/100
=20ms/1-0.02 =25 ms.

As the queue exceeds a load of two thirds of the capacity, the delay seen by
the user as response time becomes unacceptably long.”

A promising software engineering process called performance aware soft-
ware development (PASD) combines requirements specifications with archi-
tecture and resource demand budgets. It moves the focus of performance
engineering from just predictions to goal setting, tracking, and prediction. The
budgets are planning figures created by estimates and measurements. Budgets
are planned and analyzed statically and dynamically for resource demands with
a validation check using the prototype. Unified Modeling Lange (UML) use
cases can drive the process. The use of current estimates tracked along with
project budgets for each module works as well here as it does for scheduling.

In PASD, demand budgets are allocated to modules and a performance
model verifies the entire budget. The nonfunctional as well as the functional
requirements are included in the analysis for operating system, database
manager, middleware, the environment, and competing application overheads.
Finding bottlenecks indicates budget adjustments.

» To pursue this analysis, see Wilbur Highleyman’s Performance Analysis of Transaction
Processing Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 263

A budgeting approach to performance applies a “divide and conquer”
policy. First, it divides the problem into parts that correspond to module
responsibilities and to the work of separate developer groups, and then it esti-
mates the overall performance that will result if all budgets are met. The effects
of the execution platform, such as contention, queue, overheads, and latencies
are included. The budgeting process adds a layer of procedures and reasoning
to the techniques of predictive modeling in software performance engineer-
ing. PSAD uses the performance model to set performance goals as well as to
predict outcomes with the ability to evaluate design changes and provides a
tool for the automatic generation of performance models.

Case Study: Magilla Transporters Redux

Let us return to the case study on Magilla Personal Transporters from Section
7.3.2 and check the transactions against the budgets the developers laid out.
First the developers measured the performance of the existing system using
an expected mixture, based on the traffic profiles in the requirements specifi-
cation. They repeated the performance measurement after the upgrade. Table
7.3 contains module processor times using a nominal use case mixture. Legacy
is the system before upgrading.

TABLE 7.3. Magilla Module Execution Times (MS)

Module Legacy Upgraded
New Order 54 51
View Order 12 13
Modify Order 1255 47
Cancel Order 1221 24
Search Customers 1223 26
Delete Customers 1213 22

The developers detected a 1200-ms loop in the legacy system that they
bypassed to make a 25-fold reduction in processor utilization. This change
impacted four of the six modules and contributed to meeting the customer’s
desire for a 3-second response time. From this analysis and in discussions with
the customer, they set response time performance budgets for each module.
Even though not every transaction is less than 3 seconds, the upgraded system
meets user needs as confirmed by detailed operator task analysis. Then the
developers examined the implication of porting to different operating systems
and noted that Linux is more efficient than Windows, with WinXP adding the
most overhead (Table 7.4).

7.6.10 Reduce Algorithm Complexity

One way to simplify computations is by making reasoned approximations. This
concept is illustrated in the following case study with several examples from

264 DESIGN FOR TRUSTWORTHINESS

TABLE 7.4. Comparison of Various Operating Systems in

Seconds

Module Budget Win2k WinXP Linux
New Order 2.0 1.74 1.82 1.51
View Order 25 2.57 2.71 2.44
Modify Order 4.0 3.1 3.14’ 3.06
Cancel Order 2.0 1.92 2.01 1.84
Search Customers 4.0 2.92 2.84 2.71
Delete Customers 5.0 2.84 2.88 2.81

code that all Internet uses invoke hundreds of times a day, automatic repeat
request (ARQ).*

Case Study: The Case of Get Me to The Host on Time

The transmission control program (TCP) uses an ARQ protocol for flow and
error control. TCP divides a message into segments, and the network layer
Internet protocol (IP) subdivides the segments into packets. These packets are
sent across the Internet and then assembled into segments at the receiver. The
receiver returns an acknowledgment message back to the sender. Once the
acknowledgment gets to the sender, it clears its buffers so that it can send new
segments. When the sender transmits a segment, it sets an RTT that counts
down to zero. If the acknowledgment does not get back to the sender before
the RTT times out, the sender resends the segment. The schematic of TCP/IP
in Figure 7.9 shows how the RTT works.

The problem is to set the RTT timer so that it is long enough to allow seg-
ments to travel across the network and the acknowledgment to return, but
short enough so that the network is not idle. Too short an RTT leads to many
extra retransmissions, and too long an RTT leads to wasted network capacity.
If one packet of a segment is lost, TCP resends the entire segment. The Inter-
net architects decided that they had to measure the RTT for each segment and
then average the measurements to reduce the effect of the variance of the
RTT. For example, if a route changes during a transmission, queues may
momentarily delay the message of one router (R). They decided to average
the last ten measurements to set the RTT countdown clock:

10
Average RTT =1/10Y RTT()).

i=1

This equation requires dropping the previous eleventh measurement from a
file of RTT measurements, inserting the current measurement, and then

! Yao, Yu Dong, Bernstein, Larry, and Yao, Kevin. Special Topic: Software Engineering Study of
the Reliability of Wireless ARQ Protocols, Technical Report 2003-5, Stevens Institute of Technol-
ogy, 2003. This is available on the course website.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 265

Receiver
Sender RTT
C Integnet TCP
TCP
A
Ethernet Client & @
Sender’s Receiver’s
Buffer Buffer
AN
X , 7
Space Available for packets Segments
Packets Segments waiting received
ready to acknowledgement but not sent to
send

Figure 7.9. TCP/IP—RTT.

accessing and adding them. The result is then divided by 10. The RTT clock
after the first 11 transmissions would be

11
Average RTT(11)=1/10Y RTT()).
i=1
In general for the j + 1 transmission:

j+1
Average RTT(j+1)=1/10 Y, RTT().

i=j-9

The simple idea of averaging becomes a complex software design. The first
simplification is to make this approximation using a recursive equation known
as a moving-average filter:

Average RTT(j)=9/10 (Average RTT(j-1))+1/10 RTT()).

266 DESIGN FOR TRUSTWORTHINESS

This equation is a filter with infinite memory, but by the time the eleventh mea-
surement’s value affects the result, it has been reduced by (0.1)(0.9)°= 0.028.
This design simplification eliminates managing a ten-item buffer of measure-
ments and indexing the measurements. It still requires computers to divide by
ten. The second simplification is to approximate ten measurements on average
by eight because computers naturally deal with powers of two by shifting

Average RTT(j)=7/8 (Average RTT(j-1))+1/8 RTT(j).

This moving-average equation is used in TCP to compute the setting for the
RTT countdown timer. The moving average takes in one new sample and
drops the oldest sample each sample period. The moving-average filter reduces
random variations in RTT by the square root of 8, or 2.8.

7.6.11 Factor and Refactor

Factoring is the mathematical technique of finding common terms in an equa-
tion. Software designers need to look for common requirements, functions, and
code throughout software development. “Refactoring” tweaks the factoring
concept and applies it to software design. Refactoring defines the software
technology aimed at reducing the size of the software by finding and elimi-
nating redundant functions and code and dead-end code. Refactoring is the
redesign of software in ways that do not change its functionality. The idea is
that the first and second iterations of the software design and implementation
stressed understanding the feature, the problem domain, and getting the soft-
ware to work. Refactoring is left to the third iteration—"make it work better.”

Refactoring can be used for small changes to incrementally improve struc-
ture. As defined by Martin Fowler:

Refactoring is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior. Its heart
is a series of small behavior preserving transformations. Each transforma-
tion (called a “refactoring”) does little, but a sequence of transformations
can produce a significant restructuring. Since each refactoring is small, it’s less
likely to go wrong. The system is also kept fully working after each small refac-
toring, reducing the chances that a system can get seriously broken during the
restructuring.”

Refactoring can also be used to make major changes to a module by indi-
cating it needs to be rewritten, but by keeping its functions and its interfaces
constant while changing its internal structure. One approach is “refactoring to
patterns” that marries refactoring—the process of improving the design of
existing code—with patterns, the classic solutions to recurring design prob-
lems. Refactoring to patterns suggests that using patterns to improve an exist-

2 http://www.refactoring.com.

DESIGN CONSTRAINTS THAT MAKE SYSTEMS TRUSTWORTHY 267

ing design is better than using patterns early in a new design. In the last case
study in Section 7.6.10, we simplified the equations to reduce complexity.
Network managers noted that even with averaging, there were too many
resends. The network designers needed to compute a variance for RTT and
combine it with the average RTT:

RTTein, = Average RTT +40,

where 4 gives a reasonable margin and ¢ is the standard deviation. Taking a
standard deviation requires computing a square root, so once again an equa-
tion simplification is made to approximate the average standard deviation by
an average of the absolute deviation:

10
Average Deviation =1/10), |Average RTT(j)—RTT(j),

i-1
and here we can see a pattern. So we create a design pattern
Average Parameter (j) = 7/8 Average Parameter (j —1)+1/8 Parameter (j)

and use it for both computing the average and for the deviation by refactor-
ing and eliminating, or not implementing in the first place, the duplicate code
for the moving average equation. This pattern was generalized further by
making the smoothing constants seven-eighth and one-eighth parameters.

Refactoring was used to great effect in the early 1970s when it was applied
to the redesign of a very buggy radar controller. The software was redesigned
and reimplemented to make it robust with exactly the same functionality and
interfaces. The project was called “Radar Control Maintainability Improve-
ment.” The idea was embraced by the customer because of catastrophic prob-
lems with the existing code. By not changing the functions or the interfaces,
new features in other modules could be integrated without close release coor-
dination with the new radar controller. The radar controller size was reduced
from 5355 LOC to 2681 LOC, and the concept of “design for maintainability”
was created. The goal of the designers and implementers was to reduce CPU,
RAM, and I/O use while delivering a failure-free module. They accomplished
their goal.

Allocating as much as 20% of the effort on a new release to improving the
maintenance of the system pays large dividends by making the system perform
better, avoiding failures induced by undesired interactions between modules,
and reducing the time and space constraints on new feature designs. The goal
is to reduce the amount of processor time old modules use, the amount of
memory they occupy, the amount of I/O they trigger while holding their inter-
faces fixed. Other modules may be modified or new ones added to provide
new features. This strategy naturally leads to reuse within the system. The
greatest economic benefit is to reuse software at the application level.

268 DESIGN FOR TRUSTWORTHINESS

Unfortunately this process is not widely deployed because of the emphasis
on new features. A bug-ridden store-and-forward system did use this concept
through the 1970s and as a result grew to be extremely reliable. Rather than
being tossed out and replaced with the next new thing, it continued to switch
messages until 1995, when spare parts could no longer be obtained for the
hardware. An unexpected benefit of “design for maintainability” was that new
modules and those being upgraded for new features were also more reliable
because developers did not face harsh space or time constraints. They could
focus on getting their module to work while others concerned themselves with
reducing the size of modules that did not contain new features.

\\‘//

i\ /j MAGIC NUMBER!

Once a system is deployed, 20% of the development effort should be
devoted to improving the maintainability of failure-prone modules that do
not undergo feature enhancements.

7.7 PROBLEMS

7.7.1 A server is responding to a request from a client. The server has three
queues, shown in Figure 7.10 with a “Q.” There is an input queue, a disk access
queue, and an output queue. The disk queue only accepts one message at a
time from input processing. The local area network operates at 10Mb per
second. The sum of all protocol overheads is 100 bytes. The chain of queues in
Figure 7.11 models the flow of the transactions.

The slow processor in the server requires 10 ms per instruction, and it takes
800 instructions to process an average input request, 500 instructions to access
data from the disk for this request, and 200 instructions to send the result back

Server

-

Q Q

=,

Client
Figure 7.10. Network for Problem 7.7.1.

PROBLEMS 269

Process Input

Disk Retrieval
— T :
Process Output
—— T —

Figure 7.11. Transaction model for Problem 7.7.1.

:

to the client. The message from client to server contains 1000 bytes and from
server to client contains 2000 bytes. If there is no other transaction, what is
the response time?

7.7.2 Now the load increases in the client server system in Problem 7.7.1 as
three clients try to access the server with the same transaction requests every
second. Assume that the messages do not clash. Now what is the response time
for a message?

7.7.3 A server sends 1000 byte messages to a client using buffers and
acknowledgments. It takes 225.3ms to process and send the message when
there is no other traffic on the line. Each message is uniformly distributed in
time. If there are two applications on the server sending messages to the client
and the load on the queue for the line is 96.5%, what is the expected response
time?

7.7.4 Define coupling and cohesion. What should you strive for when design-
ing any software components in terms of coupling and cohesion (i.e., high or
low)?

7.7.5 What is the Parnas information hiding and encapsulation principle?

7.7.6 A company wants to adapt its configuration tracking software, which
was previously used to configure its network, to configure connections
between computers. A connection is used to connect two computers. (A com-
puter can be connected to only one other computer at any given time.) Each
of the two computers is attached to a post of a cross-connection box, and the
two posts are connected with a jumper. Figure 7.12 shows a cross-connection
box with six posts; a system will consist of multiple cross-connection boxes,
and different boxes may have different numbers of posts, half on the left, or
west, side, and half on the right, or east, side.

270

DESIGN FOR TRUSTWORTHINESS

link 1 iumper 1 link 2

O O
O O O

O

Figure 7.12. Cross-connection box for Problem 7.7.6.

Note: The circles inside the cross-connection box are called “posts.” In this example, link 1 is
used to attach computer A to the top west post of the cross-connection box and link 2 is used
to attach computer Z to the top east post of the cross-connection box; jumper 1 is used to estab-
lish the connection between A and Z.

The following relevant extracts are from the requirements document:

1)

2
®)

4)

®)

“There are two major operations, connect (X, Y) and disconnect (X,
Y). ... In the initial state of the system, there are no computers con-
nected through links to posts and there are no jumpers between posts.”

“Jumpers may only connect east posts to west posts.”

“Because it is hard to close and lock a cross-connection box that con-
tains too many long jumpers, when a connection is being established,
the software must choose the east post and west post, from among all
available east posts and west posts, in such way that the sum of the
lengths of all jumpers is small as possible.”

“If a link (to a computer) is attached to a post that has no jumper
attached to it, and there are no unattached posts in the box, then the
link (and the computer) may be replaced by a new link (and computer)
to facilitate the establishment of a new connection.”

“If all posts in a cross-connection box are already being used for con-
nections, then a new connection must find another cross-connection
box that has available posts or has posts that can be made available. If
no such cross-connection box exists, the software will repost the pro-
blem to a technician and request human assistance.”

As an example of the principle conveyed in requirement ¢ above, the config-
uration of Figure 7.13 would be preferable to that of Figure 7.14.

The project has been running for 6 months and is in deep trouble. Perfor-
mance of the software is unacceptably slow, and the code is buggy. The former
architect had been reporting that his team had 80% of the code complete and
there were no known problems.

PROBLEMS 271

Cross-Connection Box

link 1 i 1 link 2
~ jumper)
A N / Y4
link 3 ~ jumper 2 ~ link 4
B o/ / Y
link 5 i 3 link 6
~ jumper)

C / / X
Figure 7.13. Preferable configuration for Problem 7.7.6.
Cross-Connection Box
link 1 link 2
A o Z

.\\,«Qé
link 3 link 4
M) (M)
B k/jumper 2 N Y
%,
link 5 s, link 6
C X

Figure 7.14. Less desirable configuration for Problem 7.7.6.

You have been asked to be the new architect. What step(s) do you take?

a. You may ask for a design review.

b. You may ask for performance measurements on the existing code to find
the hotspots.

c. You may institute code inspections.

d. You may look on the Web for a new job.

7.7.7 A careful consideration of the data structure in Figure 7.15 leads you
to realize that it contains unnecessary information. What information in the
data structure is unnecessary and how is it causing a problem?

7.7.8 Given this pseudo-code, extract the algorithm:

procedure connect (X, Y)
begin

min_available_length = distance between maximally - distant east - west
post pair in any Cross - Connection Box

272 DESIGN FOR TRUSTWORTHINESS

Connection
Computert Computer2 Cross-ConnectBox | EastPort | WestPort JumperlLength
Computer
/
Name Manufacturer | ModelNumber | RAMCapacity DiskCapacity ClockRate

Cross-Connection Box

BoxNumber Location NumberOfPostPairs

Figure 7.15. Data structure for Problem 7.7.7.

min_box =0
min_free_west_post=0
min_free_east_post =0
for each i from 1 to number of Cross-Connect Boxes do
for each j from 1 to number of post pairs in Cross- Connect Box i do
if (west post j in Cross- Connect Box I has no jumper connected)
for each k from 1 to number of post pairs in Cross- Connect Box i do
begin
let d = the length of a jumper from west post j of Cross-Connect
Boxito
east post k of that box
if (d < min_available_length)
end
begin
min_available_length =d
min_box =i
min_free_west_post =j
min_free_east_post =k
end

7.7.9 You simplify the design by eliminating the jumper length. Why isn’t it
necessary to store the jumper length?

BIBLIOGRAPHY 273

7.710 Write pseudo-code, in the style of the pseudo-code in Problem
7.7.8, for the simplified version of the algorithm that makes this revelation
possible.

BIBLIOGRAPHY

“Trust in Cyberspace” Committee on Information Systems Trustworthiness, National
Research Council, 1999.

Braude, Eric-, Software Design From Programming to Architecture, John Wiley and
Sons, New York, 2004.

Finegold, Ed. “Microsoft NT Makes its Move on Telcom IN,” Billing World, Jan. 1998,
pp- 16-19.

Fowler, Martin. Refactoring: Improving the Design of Existing Code, Addison Wesley,
Reading, MA, 2000.

Hellerstein, Joseph L., Diao, Yixin, Parckh, Sujay, and Tilbury, Dawn. Feedback Control
of Computing Systems, Wiley-Interscience, New York, 2004.

IEEE Software, Vol. 22, No. 3, May/June 2005. Entire issue devoted to adapting
agility.

Liskov, Barbara. “Data Abstraction and Hierarchy,” SIGPLAN Notices, Vol. 23, No. 5,
May 1988.

Man, Fu-Tin. “A Brief History of TL1,” Journal of Network and Systems Management,
Vol. 7, No. 2, June 1, 1999, pp. 143-148.

Meyer, Bertrand. Object Oriented Software Construction, Prentice-Hall, Englewood
Cliffs, NJ, 1988, p. 23.

Parnas, D. L. “Information Distribution Aspects of Design Methodology,” Proceedings
of IFIP Congress, 1971.

Parnas, D. L. “On the Criteria to be Used in Decomposing Systems into Modules,”
Communications of the ACM (Programming Techniques Department), Dec. 1972.

Parnas, D. L. “On the Response to Detected Errors i~ Hierarchically Structured
Systems,” Technical Report, Carnegle-Mellon University, 1972.

Parnas, D. L. “Some Conclusions from an Experiment in Software Engineering,” Pro-
ceedings of the 1972 FJCC.

Sha, Lui. “Using Simplicity to Control Complexity,” IEEE Software, Vol. 18, No. 4,
July/Aug. 2001, p. 27.

Shaw, Mary and Garlan, David. Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, Englewood Cliffs, NJ, 1996.

Siddiqui, Khalid H. and Woodside, C. M. “Performance Aware Software Development
(PASD): Using Resource Demand Budgets,” Workshop on Software and Perfor-
mance Proceedings of the third international workshop on Software and perform-
ance Rome, Italy SESSION: Extending Performance Approaches to New Application
Domains, 2000, pp. 275-285.

Trivedi, Kishor, et al. “On the Analysis of Software Rejuvenation Policies,” Compass

‘97, Proceedings of the 12" Annual Conference on Computer Assurance, June 16-19,
1997, pp. 88-96.

274 DESIGN FOR TRUSTWORTHINESS

Sarbanes-Oxley Act of 2002

Phillip Armour, a senior consultant at Corvus International, Inc, in Communi-
cations of the ACM June 2005/vol 48, No. 6, (pp 15-17) points out that not only
do a company’s accounting and financial software systems come under the juris-
diction of Sarbanes-Oxley but also any systems that feed them data. He goes on
to suggest that the software that comprise these systems may themselves become
assets that must be managed as part of a companies portfolio. With SOX in place
there is a need for trustworthy software systems.

Here are relevant sections of the Sarbanes-Oxley Act of 2002 to software
engineers:

Title 3 section 302
“. .. The signing officers
(A) are responsible for establishing and maintaining internal (financial) controls

(B) have designed such internal controls to ensure that the material informa-
tion relating to the issuer . . . is made known.

(C) have evaluated the effectiveness of the internal controls . . .
(D) have presented their conclusions about the internal controls.”
Section 404: Management Assessment Of Internal Controls.

Requires each annual report of an issuer to contain an “internal control report,”
which shall:

(1) state the responsibility of management for establishing and maintaining an
adequate internal control structure and procedures for financial reporting; and

(2) contain an assessment, as of the end of the issuer’s fiscal year, of the effec-
tiveness of the internal control structure and procedures of the issuer—for finan-
cial reporting.

Each issuer’s auditor shall attest to, and report on, the assessment made by
the management of the issuer. An attestation made under this section shall
be in accordance with standards for attestation engagements issued or adopted
by the Board. An attestation engagement shall not be the subject of a separate
engagement.

The language in the report of the Committee which accompanies the bill to
explain the legislative intent states, “—the Committee does not intend that the
auditor’s evaluation be the subject of a separate engagement or the basis for
increased charges or fees.”

Directs the SEC to require each issuer to disclose whether it has adopted a code
of ethics for its senior financial officers and the contents of that code.

Directs the SEC to revise its regulations concerning prompt disclosure on Form
8-K to require immediate disclosure “of any change in, or waiver of,” an issuer’s
code of ethics.

Part 3

Taking the Measure
of the System

Identifying and
Managing Risk

Software is a risky business. Recall from the previous chapters the spectacu-
lar software project failures: the plight of people needing ambulance services
in London, aircraft trying to land without radio contact, and NASA probes
missing Mars. Software project mangers tend to ignore or minimize risks in
their enthusiasm to convince stakeholders to fund or participate in a project.
There are great personal rewards for winning project support and little penalty
for software project failure. Often a project’s first manager is promoted or
moved to a new project and is long gone before risks become crises. Neither
praise nor blame—and certainly no legal responsibility—devolves back to the
original decision maker, but this is commonly accepted business practice. The
lack of risk analysis does not lead to a judgment against the vendor whose
software project is canceled. If we wish to have the respect and rewards of
being professionals, we must accept the responsibility that comes with affect-
ing people’s lives.

Software risk management deserves its own chapter because risks tran-
scend the life of projects. The hallmark of successful projects is the ability to
identify risks and develop contingency plans to deal with them. Reviews of
failed projects typically find that problems would not have become crises if
there had been a systematic review of high-risk areas at the start of a project
and, more importantly, throughout the life of the project. At the start of each
task, circumstances that may prevent the accomplishment of the task, called

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

277

278 IDENTIFYING AND MANAGING RISK

an event, need to be identified. Every event needs a corresponding risk con-
tainment and contingency plan.

8.1 RISK POTENTIAL

A risk is the possibility that an undesirable event in the life of a project can
happen. Risks involve uncertainty and loss. Events guaranteed to happen are
not risks. Events that do not negatively affect the project are not risks. Proac-
tive risk management is the process of trying to minimize the potential bad
effects of events.

Risks can affect the project plan and are therefore project risks. They can
affect the quality of the product, and these are technical risks. They can affect
the viability of the product, and these are business risks. Calculated risk-taking
is vital to gain competitive advantage or to pioneer new technology. Rewards
await bold and thoughtful risk-takers; obscurity awaits those who take risks
blindly and without fallback, also called contingency, plans. Sarbanes-Oxley
(SOX) compliance introduces legal risks if the elevator injures someone and
the cause is traced to the software.

\‘//

\ ‘ / e
"~ MAGIC NUMBER!

=i

Boehm’s hypothesis: Project risks can be resolved or mitigated by address-
ing them early.

Example: Suppose a project manager is asked to deliver trustworthy software
for new high-performance hardware that will be used to control an elevator.
This is already problematical because both hardware and software are untried.
Table 8.1 provides some risks the project manager identified and classified
once the architecture was in place.

With the risks identified, the project manager can keep the project risks and
delegate the technical risks to the architect and the business risks to the
product manager. All three must determine the likelihood that risk events will
occur and estimate potential loss, but at this stage the risks are too general
and need to be decomposed into detailed risk events.

FUNCTIONS OF RISK MANAGEMENT 279

TABLE 8.1. Risk Identification in Early Stages

Risks Project Product Business Legal
Incomplete and fuzzy requirements X X X X
Schedule too short X X
Not enough staff X X
Morale of key staff is poor X
Stakeholders are losing interest X
Untrustworthy design X X
Feature set is not economically viable X
Feature set is too large X
Technology is immature X
Late planned deliveries of hardware X X

and operating system
Sarbanes-Oxley (SOX) compliance X

8.2 RISK MANAGEMENT PARADIGM

“While we can never predict the future with certainty, we can apply structured
risk management practices to peek over the horizon at the traps that might be
looming, and take actions to minimize the likelihood or impact of these poten-
tial problems.”" The goal of risk management is to make risk-taking a thought-
ful and quantitative process. Both short-term and long-term risks need to be
considered. The project manager makes sure that the project can succeed if
the risk event happens. If the consequences are too great, then a new strategy
is needed. One strategy is the early cancellation of a project so that the soft-
ware organization can fail small and succeed big on some future project,
having established their probity.?

The Software Engineering Institute (SEI) Risk Management paradigm is
shown in Figure 8.1. The paradigm illustrates a set of functions that are iden-
tified as continuous activities through the life of the project.

8.3 FUNCTIONS OF RISK MANAGEMENT

Each risk event is examined periodically and formally discussed at project or
subproject meetings. This is an important fixed agenda item for these meet-
ings. Risk assessments are assigned as action items and tracked, and new risks
are identified and analyzed. The contingency or containment plan for one risk
event may yield another risk throughout the project life cycle. The processes
for each step of risk management illustrated in Figure 8.1 are enumerated in
Table 8.2.

! Keil, M., et al. “A Framework for Identifying Software Project Risks,” Communications of the
ACM, 1998, Vol. 41, No. 11, pp. 77-83.
? http://www.sei.cmu.edu/programs/sepm/risk/risk.mgmt.overview.html.

280 IDENTIFYING AND MANAGING RISK

Figure 8.1. SEI risk management paradigm.

TABLE 8.2. Processes for Risk Management Steps

Step Process Description

Identify Search for and locate risk events before they become crises. Assign
risk analysis to a project member as a tracked action item.

Analyze Transform risk data into decision-making information. Evaluate risk
likelihood, loss, exposure impact, and timeframe; classify risks;
and prioritize risks.

Plan Translate risk information into decisions and actions for containment
and contingency and implement those actions.

Track Monitor risk indicators and actions.
Control Correct for deviations from the risk management plans.
Communicate Provide information and feedback internal and external to the project

on the risk activities, current risks, and emerging risks. Project
meetings, progress report, project meeting minutes, and
newsletters are effective tools for this communication.

The sophistication of the risk analysis tools depends on the nature of the
system, its complexity, the availability of data, cost and schedule constraints,
and trustworthy and performance constraints. Modeling is a powerful tool that
can predict outcomes and consequences, as well as analyze the interrelation-
ships of subsystems and components. For example, simulation models can
analyze failure modes and the consequences of specific risk events. They can
be used to conduct “what if” analyses to make engineering tradeoffs.

8.4 RISK ANALYSIS

In 1988, Barry Boehm provided this list of the top-ten software risk items in
his seminal Spiral Model paper:

RISK ANALYSIS 281

(1) Personnel shortfalls
(2) Unrealistic schedule and budgets
(3) Developing the wrong software functions
(4) Developing the wrong user interface
(5) Gold plating
(6) Continuing stream of requirements changes
(7) Shortfalls in externally furnished components
(8) Shortfalls in externally performed tasks
(9) Real-time performance shortfalls
(10) Straining computer science capabilities

Since then, he re-examined this list of risks in light of newer agile develop-
ment methods in his 2004 “Guide to the Perplexed” paper. The risks still hold
true. Additionally, he and Richard Turner identified five project factors that
influence the choice of development methodology: size, complexity, dynamism
of the environment and software function, personnel, and culture. These
factors have remained remarkably consistent over time.

We saw that product size dominates the estimates for staffing and sched-
ule. Product size also dominates project risk. Large products require more
people, take longer to produce, and are riskier than small ones. The project
manager needs to manage these project risk items: project size, project struc-
ture, and selection of project technology. Table 8.3 shows how we define size.

Large and huge projects must be decomposed into medium projects with a
firm architecture, interface discipline, and formal frequent human communi-
cations. Highly structured projects that follow an established development
plan are less risky than unstructured projects. The introduction of new tech-
nology is always risky.

Based on the risk factors, we can draw Table 8.4 and map the qualitative
risk assessment onto a five-ordinal scale (zero through four). This process
yields a quantitative estimate of the probability of project success, in which
four is likely success and zero is certain failure. Then we map to the range by
dividing by five and rounding appropriately.

TABLE 8.3. Project Size Parameters

Size Developers Function Points
Small fewer than 10 150 or fewer
Medium 10to 25 150 to 750
Large 25 to 200 developers 750 to 6000

Huge 200 Beyond 6000

282 IDENTIFYING AND MANAGING RISK

TABLE 8.4. Risk Analysis

If Size is And Structure is And Technology is Then the Project Risk is Probability
of project
success is

Large High Low Low 0.8

Small High Low Lowest 0.9

Large High High Medium 0.4

Small High High Low-med 0.6

Large Low Low High 0.2

Small Low Low Medium 0.4

Large Low High Highest 0.1

Small Low High High 0.2

8.5 CALCULATING RISK

The probability that a favorable event (E) in a task will occur is
P(E)=m/n

where

P is the probability operator and 0 < P < 1.

m = 1is the total number of favorable events.
n = total events.

Risk =1 — P(E) is the probability that an unfavorable event will occur.

Risk exposure is the expected value or loss of the risk event, which is calcu-
lated by multiplying the risk probability by the cost of the risk event.

Risk Exposure (RE) = (Risk) (loss expected if risk happens).

Example: Given that there is a 0.5% probability that a latent fault will execute
and lead to failure, and that such failure would cost the customer $100,000,

then

RE =(0.005)(100,000) = $500.00.

To manage this risk, we consider holding a design review. We estimate that
the cost for holding this design review in terms of professional time is $100
and that it will halve number of faults and a new risk exposure (NRE) calcu-

lation. Should we hold the review?

NRE = (0.005/2)(100,000) + (0.9975) (100) = $350,

CALCULATING RISK 283

where the second term is the cost of the review times the probability that the
problem will not happen.

Risk reduction leverage (RRL) is calculated as (RE — NRE)/cost of risk
reduction. Therefore, in this example,

RRL =(500-350)/100 or 1.5.

Although a failure may not be avoided, design reviews tend to reduce their
occurrence. Even if the RRL = 0, there may be intangible benefits for improv-
ing the product, such as making it easier to install, operate, or enhance. One
benefit is preventing the erosion of the software structure. Designing for easy
maintenance makes room for new modules and enhancements while relieving
developers from the harsh resource constraints of fitting into the target com-
puting environment. This effort reduces the risk of implementing future
enhancements.

Sy

i\ /\l MAGIC NUMBER!

=i

In practice, it is hard to quantify risk probability precisely. Data having a
precision greater than its accuracy invites skepticism and mistrust.

A good practice is to qualify the likelihood of a risk event not occurring
(because it seems easier for designers to think in terms of success rather than
failure). A handbook entitled Software Risk Abatement® used by the U.S. Air
Force offers a reasonable way of qualifying both the probability and the
impact of risks. First, the probability of the risk event not occurring is catego-
rized as very low, low, medium, high, or very high. Second, the loss to the
project for that risk event is estimated using an ordinal scale and Wideband
Delphi to do the mapping. Third, the loss is evaluated as negligible, marginal,
critical, or catastrophic. Using the second and third subjective measures, an
impact/probability matrix is developed to rank order the risk. The matrix
should be unique to the problem domain and development organization.

Here are guidelines for assessing risk impact. The definitions of the impact
parameters are from Boehm and the quantitative thresholds in Table 8.5 are
based on the authors’ experience.

Catastrophic: If the risk event occurs, the mission fails or customers refuse
to purchase. If the risk event is a project issue, then the cost or schedule over-
runs exceed 50% of commitments.

* http://www.eas.asu.edu/~riskmgmt/intro.html.

284 IDENTIFYING AND MANAGING RISK

TABLE 8.5. Risk Priority Matrix

Impact/Probability Very High High Medium Low Very Low
Catastrophic 10 10 6 5 2
Critical 9 9 5 2 0
Marginal 6 5 2 0 0
Negligible 5 2 0 0 0

Critical: If the risk event occurs, the mission might fail or the product might
be only a marginal, unprofitable market success. If the risk event is a project
issue, then the cost or schedule overruns exceed 30% of commitments.

\\‘//

i\ }j MAGIC NUMBER!

Reality check: 65% of all software projects suffer catastrophic or critical
risk events.

Marginal: If the risk event occurs, the product may miss a secondary or ter-
tiary objective, or it would yield a return on investment of 10% or less. If the
risk event is a project issue, then the cost or schedule overruns exceed 10% of
commitments.

Negligible: If the risk event occurs, there would be an inconvenience or non-
operational mission impact. Although the early technology adopters would
buy the product, the general market would wait for future releases. If the risk
event is a project issue, then the cost or schedule overruns exceed 5% of
commitments.

Once the analysis is complete, some risks can be chosen and assigned for
action. As each is addressed, the next highest priority would be added to the
list. The project manager should expect that there would always be action risk
studies underway for a medium or large project because, as we have stated
several times already, a project with no problems is in deep trouble.

\\‘//

i\ }j MAGIC NUMBER!

=i

Projects should have ten active risk studies underway, unless they are small
projects.

USING RISK ASSESSMENT IN PROJECT DEVELOPMENT: THE SPIRAL MODEL 285

The Constructive Cost Model II (COCOMO 1II) provides a risk level entry
screen for each module and computes risk as the sum of the entries:

Total risk = schedule risk + product risk + process risk
+ platform risk + reuse risk.

COCOMO 1I also provides a heuristic risk assessment capability using the
screen in Table 8.6 as input for postarchitecture stage risk assessment.

8.6 USING RISK ASSESSMENT IN PROJECT DEVELOPMENT:
THE SPIRAL MODEL

Now that we know some ways to determine the risk and risk exposure for a
project and we understand that it is an imprecise science because we are esti-
mating the likelihood of future events, let us examine how we can systemati-
cally use these results.

TABLE 8.6. COCOMO II Risk Assessment Capability

Size
% % % Ass:sxfgl I T—
SLOC Design Code Integration Assimilation Understanding (0-1) Y
Modified Modified Required (0%—-8%) (0%-50%)
0 — ‘0

New I

Reusedl I 0 I 0 I |
Modified
e | | I |

Rate each cost driver below from Very Low (VL) to Extra High (EH). For HELP on
each cost driver, select its name.

Very Low Nominal High Vfry Ex.tra
Low (L) N) (H) High High
(VL) (VH) (EH)
Scale Drivers
Precedentedness S yL © *N “H “ve © xu
Development Flexibility © vyp, © “*N “"H “ve ¢ xm
Architecture/Risk c c & o c -
Resolution VL L N H VH XH
Team Cohesion v "L N “H “va ° xm

286 IDENTIFYING AND MANAGING RISK

TABLE 8.6. (Continued)

Very Low Nominal High erry Ex‘tra
Low (L) (N) (H) High High
(VL) (VH) (EH)
Process Maturity C VL ¢ L & N CH ¢ VH ¢ XH
Product Attributes
Required Reliability c VL ¢ L & N ¢ H € VH
Database Size L & N C H C VH
Product Complexity c VL L & N ¢ H ¢ VH € EH
Required Reuse C L ® N CH ¢ VH ¢ EH
Documentation C VL C L & N C H € VH
Platform Attributes
Execution Time Constraint # N ¢ H ¢ VH ¢ EH
Main Storage Constraint # N ¢ H ¢ VH ¢ EH
Platform Volatility L & N C H ¢ VH
Personnel Attributes
Analyst Capability C VL ¢ L & N C H C VH
Programmer Capability ~ vy, ¢ L ¢ N ¢ H ¢ VH
Personnel Continuity c VL ¢ L & N © H ¢ VH
Applications Experience ¢~ vy, ¢ L ¢ N ¢ H ¢ VH
Platform Experience c VL ¢ L @ N © H C VH
Language and Toolset
Experience ¢V ¢ L €N CH C VH
Project Attributes
Use of Software Tools Cc VL C L & N € H € VH

Multisite Development C VL CL & N €CH € VH ¢ XH

Required Development
Schedul e C VL ¢ L & N € H ¢ VH

Submit | Reset

USING RISK ASSESSMENT IN PROJECT DEVELOPMENT: THE SPIRAL MODEL 287

Boehm’s Spiral Model proposed a risk-driven software development
process. The idea was to identify risk, build prototypes, and evolve software
reliability. As originally envisioned, the iterations were typically 6 months to
2 years long. Each stage is a normal development project producing a super-
set of the prior stage, which will be a subset of the final system. Planning for
each successive stage is structured to exploit the experiences of the former
stages and to reduce risk factors in the current and future iterations. Although
numerous Spiral projects have succeeded splendidly, the Spiral approach has
not achieved universal acceptance and has not always produced the results its
proponents predict. This model was not the first to discuss incremental design,
but it was the first model to explain why iteration matters.

Each development cycle starts with a design goal and list of risk events and
ends with a risk assessment and a stakeholders’ review of the progress thus
far. Analysis and engineering efforts are applied to each phase of the project,
with an eye toward the end goal of the project.

For a typical application development, you might build a minimal set of fea-
tures, without the the user interface. Once there is a usable application, devel-
opers add feature sets in increments that correspond to each cycle of the
Sprial. Within each cycle there is a mini-Waterfall development and a collec-
tion of risk action items. Features are added cycle-by-cycle until the deliver-
able product is complete.

Typically there will be feature sets left for future releases of the product as
the project manager trades off features to meet schedule commitments. A
good process is for the project manager to define two sets of features for each
release: those that are commitments and those that are goals. The difference
between the sum of goals and commitments and commitments alone is the
project manager’s safety margin. The commitments need to consitutue an eco-
nomically viable software product.

Using the Spiral Model schedule, and cost estimates are accurate because
a risk analysis explicitly addresses budget and schedule problems. The esti-
mates get more realistic as work progresses because the ongoing analysis uses
the most current project information. The spiral method copes well with the
inevitable changes that face software developers.

Software engineers sometimes become bored and restless with protracted
design. The Spiral Model allows coding for the prototype earlier than in a
document-driven method. It may be just experimental code to try new algo-
riothms or to understand performance complexity. This aspect of the Spiral
Model deals with the problem of retaining and attracting top-notch people to
the project. Using the Spiral Model becomes a risk containment step in itself.

The Sprial Model is ill suited to small and moderate hard-drivng, schedule-
focused projects where there is an experienced team in place. When time-to-
market is the overriding concern, project managers define lean feature sets
and use agile methods.

The Spiral Model is effective in addressing such challenges as rapid devel-
opment, commercial off-the-shelf (COTS) software integration, new tech-

288

IDENTIFYING AND MANAGING RISK

nologies, and product line management. However, some organizations have
experienced difficulties with Spiral development because of overly relaxed
controls as compared with document-driven approaches, poorly estimated
risks, existing sequential development policies, inflexible financing mecha-
nisms, ingrained cultures, and confusion about what Spiral development is and
how to apply it.

Some of the critical success factors for Spiral development are as follows:

1
@)
®)
(4)

®)

(6)

7

Schedules cannot be overly compressed.
Risks must be managed.
Stakeholders must be involved.

The technology must be ready. Combining research with technology
adoption and shakedown can be part of a spiral cycle, but adding
product development inhibits thoughtful risk assessment. Prototype
demonstrations must be in an operationally relevant environment
before proceeding to the next cycle.

Requirements must be flexible. Consider an information query and
analysis system. The contract was written to require a 1-second
maximum response time, which turned out, after 2000 pages of design
and documentation were written, to cost $100 million. At that point, a
prototype, which would have been created sooner had the requirement
been more flexible, showed that a 4-second response time was accept-
able and would cost one third as much.

The culture must be supportive. “Buyer, user, and vendor are a
team. There is an attitude of partnership, trust and cooperation.
There is a presumption of trustworthiness for reputable commercial
organizations. Purchase decisions are heavily influenced by personal
relationships.”*

A significant inhibitor is that stakeholders are wary of taking a deliv-
ery that only partially satisfies requirements, even though this is their
usual software product experience. Retraining at a rapid pace is diffi-
cult to tolerate. Good spiral project managers balance training time
with the time the release will be used when grouping features into
sets.

In one company, field fault densities per 100,000 new or changed thousands
source lines of code (NCSLOCS) declined by 62% over 3 years using the
Spiral Model, this in an organization already having attained Capability
Maturity Model® Level 5 status. This is charted in Figure 8.2, where it is worth
noting the industry average of 500 defects per 100K NCSLOC and where the
industry best in class lies.

* http://www.sei.cmu.edu/cbs/spiral2000/february2000/BoehmSR .html.

CONTAINING RISKS

500 Industry Average
450 +
[e) 414
O 400 +— 388
o ~—3
&8 350 + — &
=
x 300 T 270
S o504+ Industry Best In Class \
- 200
8 200 +
7] 155 154
o 150 + _
2
8 100 + —=—Data Points are a 4 month rolling average
50 +
0 t t t t t t i

4Q93 2Q94 4Q94 2Q95 4Q95 2Q96 4Q96 2Q97
Figure 8.2. Cumulative field fault density (unpublished data).

8.7 CONTAINING RISKS

289

Having the right people and meeting schedules are the most frequently occur-
ring risks to software projects. We will examine the risk containment steps that
the project manager can take. Let us return to the risks listed in Table 8.1 in

the first section and discuss how to contain each one:

(1) Incomplete and fuzzy requirements
(2) Schedule too short

(3) Not enough staff

(4) Morale of key staff is poor

(5) Stakeholders are losing interest

(6) Untrustworthy design

(7) Feature set is not economically viable
(8) Feature set is too large

(9) Technology is immature

(10) Late planned deliveries of hardware and operating system

8.7.1 Incomplete and Fuzzy Requirements

Different stakeholders in a software development project have their own
agenda that often conflicts with the objectives of another stakeholder. For
instance, users may require a robust, user-friendly system with many functions
that can support their tasks, whereas development team members hope to
encounter interesting technical challenges. These differing expectations create
fundamental conflicts when simultaneously approached, resulting in unclear

or misunderstood requirements.

290 IDENTIFYING AND MANAGING RISK

It may be time consuming and difficult to collect and record all of the
required details from all prospective users, resulting in the project team not
knowing enough about what is required to complete the project successfully.
This may lead to developing a system that cannot be used, mainly because a
proper systems analysis to develop a complete and accurate set of require-
ments has not been performed. Often developers and analysts think of addi-
tional capabilities or changes, gold plating, which they think would make the
system better and more attractive in their view. These deviations may result
in unsatisfied users and unnecessary costs.

Boehm found that a continuous stream of requirement changes is a signif-
icant risk. As the users’ needs change, so do the requirements of the project.
The system will drive changes to business practices that in turn will dictate
changes in the requirement. One risk containment approach is to freeze a set
of features and a delivery date, but a frozen design does not accommodate
changes in business practices. With a frozen design, the developer has little
flexibility to change the specifications. Continuous and uncontrolled changes
in requirements, however, will inevitably lead to a delay in the project
schedule. The software engineer balances these needs.

8.7.2 Schedule Too Short

Yourdon describes the consequences of impossible deadlines and relentless
rush, “The key point is to recognize and understand your own motivations at
the beginning of a death march project, so that you can make a rational deci-
sion to join the team or look elsewhere for your next job. Since many of these
projects are initiated during periods of great corporate stress and emotion,
rational decisions are not as easy to make as you might think; it’s all too easy
to be swept away by the emotions of your fellow colleagues or your manager.”

Obviously for any important system, other things being equal, the sooner
it can be delivered the better. Sometimes circumstances dictate an absolute
deadline, like Mother’s Day or Y2K. Often some arbitrary deadline, often
motivated by political considerations or personal ambition, is proposed,
accepted without proper estimating or planning to establish its viability, and
then becomes a fixed part of the landscape for managers and developers alike,
to be defended at all costs. Where there is a client—contractor relationship,
contractors are all too willing to collude with their clients’ delusions. Even as
the deadline gets nearer and common sense would seem to dictate that it is
increasingly unachievable, there is no review and no attempt to change either
the deadline or the solution. Shortcuts are taken, and essential processes
(such as testing, reviews, problem resolution, and training) are ignored in
the rush to complete essential technical tasks. Senior managers rarely take
action to prevent this; on the contrary, they are often the prime sources of
pressure.

CONTAINING RISKS 291

\\‘//

/& } "~ MAGIC NUMBER!

=t

Sixty percent of all projects suffer from compressed schedules.

8.7.3 Not Enough Staff

Product managers, executives, and customers are not impressed with a project
manager’s strident claims of not enough people to do the job. They want to
see analysis supported by credible data. To make matters worse, the various
estimating processes can yield different staffing estimates by as much as 50%
and there is a highly nonlinear relationship between staffing and schedule
time, based on the Rayleigh curve.’

Example: Consider a 310 function point project with a second-generation lan-
guage that expands to 107 instructions per function point.® The software life-
cycle model tool (SLIM) yields an estimate of 144 staff-months of effort. With
eight people assigned to the project, a linear extrapolation will indicate that
18 months are needed, but SLIM shows that only 15 months are required. If
the schedule is relaxed to 21 months, then four people are needed. If the fully
loaded cost of a developer, including salary, benefits, and general and admin-
istrative costs is $70/hour or $12,000 per month, the conventional schedule will
cost with linear extrapolation: (18 months)(8 developers/month)($12,000) =
$172,800. Similar calculations show results for the nominal schedule and the
relaxed schedule in Table 8.7.

TABLE 8.7. Staffing vs. Schedule Time
Developers Schedule (Months) Cost ($12k/SM)

Conventional Linear Extrapolation 8 18 172,800
Nominal Schedule 8 15 144,000
Relaxed Schedule 4 21 100,800

5 Putnam, Lawrence H. and Myers, Ware. Industrial Strength Software: Effective Management
Using Measurement, IEEE Computer Society Press, Piscataway, NJ, 1997, Ch. 18 for discussion of
SLIM and Rayleigh curve.

% http://www.spr.com/products/programming.shtm.

292 IDENTIFYING AND MANAGING RISK

Considering that most project cost estimates are low by a factor of 2 or 3,
these costs estimates, and remember that is all they are, are reasonably close.
The SLIM tool exaggerates the effects of compressing schedules, but the point
is valid and within reasonable estimating bounds. Without this analysis, the cost
estimates become a matter of opinion. Bosses tend to trust their own opinions
unless they are given the facts.

In an atmosphere of internal or external pressure to cut or control costs,
cost reduction becomes the single-minded goal of the boss. Low development
cost is deemed essential to gaining project approval or the prime criterion in
bid selection. Just as there is resistance to changing deadlines, there is often a
natural reluctance to cancel projects with runaway costs. Investment already
made in the project feeds the escalation cycle and results in throwing more
money after bad, rather than a re-evaluation of the return on continuing
investment.

8.7.4 Morale of Key Staff Is Poor

Experienced project managers understand that containing risks is an effective
way of keeping the morale of the staff high. Project managers who do not
actively manage risks before they become crises rely on heroic efforts to keep
the project on track, which burns out the staff and lowers morale. Developers
will tend to stay to complete the current feature set and then leave the project
when it is released.

Studies of risk management show that as the number of projects managed
increases, the risk factors “unrealistic schedules and budgets” and “misunder-
standing the requirements” occur less often. Managers can learn. No similar
conclusions are possible for the other risk factors. Middle managers need to
nurture the development of project mangers with formal training and educa-
tion in software project management skills. Assigning novice project managers
to small subprojects is a good first step. These might be leadership in devel-
oping a feature set requiring the coordinated work of two to four people. This
builds confidence and esteem from colleagues. A proven record of accom-
plishment of project success is the best recommendation for a project manager.
Having active project managers participate in reviews of other projects is
effective in giving the project manager insight without having to suffer
“trial by error” learning. It also encourages technology transfer between
projects.

Software developers need to feel that they are growing in their field. They
fear becoming obsolete and like to try new approaches and new technology.
By providing life-long education and discretionary money for exploration,
executives will manage this morale risk. These personal goals and values con-
trast with those of the executive. Once people are comfortable that they are
being paid fairly and are satisfied with their standard of living, then different
reward systems seem to motivate people in different jobs:

CONTAINING RISKS 293

(1) CEOs seek compensation.

(2) Managers seek promotions.

(3) Salesmen seek commissions.

(4) Administrators seek appreciation.

(5) Software developers seek opportunities to tinker.

8.7.4.1 Agile Methods Agile methods are a risk containment process for
the restless programmer. Agile methods encourage collaboration with people
they respect and with whom they can grow.

Microsoft Program Manager David Anderson started as a game developer
in the 1980s; he was involved in emerging agile techniques such as pair pro-
gramming and short lead times. He later went on to help develop feature-
driven development and comments:

Agile is really catching on all over the company, within product groups and the
internal IT organization. We’re seeing . . . experiments with test-driven develop-
ment and program managers running Scrum-like 30-day sprints and daily stand-
up meetings. There’s a growing community of agile believers. .. program
managers at Microsoft don’t have direct reports, so they don’t manage pro-
grammers — development managers do that. However, both program managers
and development managers need to be technical. It’s all about respect. Devel-
opers need to respect the technical ability of their leader. Without respect, you
cannot lead; and without leadership, software projects tend to fail ... I’'m not a
believer in measuring individuals by their code production. Developing software
is a team sport; it requires interaction and mutual support across the team. It’s
knowledge work and is best done in an environment of knowledge sharing. When
you reward people for individual effort relative to their peers, you encourage
them to hoard knowledge rather than share it. The manager should be measured
by the productivity of the team, not the individual team members for their indi-
vidual efforts ... I reward people to learn and share. It’s behavior compatible
with team success . . . People won’t follow unless they see and understand where
they’re going, and see confidence and resilience in their leadership . . . strong
management is essential. Management must be prepared to instill and enforce
discipline. Discipline in software development is what delivers high-quality, low-
defect code.”

Philippe Kruchten, the inventor of the “4 + 1 architecture model, points
out that the agile process “sweet spot” is for small teams of 10 to 15 develop-
ers who are colocated and communicate verbally as opposed to with docu-
ments. The customer representative on site is domain literate and empowered
to make decisions. The projects have short life cycles of weeks or months (not
years), and they use powerful development tools including automated rapid
development, frequent (usually daily) builds, and automated test drivers and
regression test suites.

7 http://click.sd.email-publisher.com/maac2NEabc3WmbdnjEbb/.

294 IDENTIFYING AND MANAGING RISK

\‘//

\‘//

MAGIC NUMBER!

Agile processes are tuned for ten-person projects.

8.7.4.2 Best for Small and Medium Applications Agile methods seem
to work best for small- and medium-sized business applications rather than
for high-performance embedded and real-time systems. New developments
rather than maintenance projects are well suited to the agile methods. But
maintenance, high performance, and large 200-staff projects are not going
away. These large teams are geographically distributed, have few development
tools, and an empowered customer is never present; they rely on documents
for communication and strive to minimize changes. With a component-based
architecture, a large project can be broken into a collection of medium
projects and then decamped again into small projects. The architecture
relies on a strong interface language that restricts how components exchange
data and control; this constraint may be relaxed by skilled gurus, but it is
inadvisable to do so. Then agile methods can be happily used to build the small
components, and then their source code is transferred to the manufacturing
team.

The manufacturers build a system following the instructions of the inte-
gration team. The components are recompiled and then linked, loaded, and
regression tested. The integration team then performs functional tests based
on use cases, reliability, and stress tests. If even more trustworthiness is needed,
the system can be handed to a specialized team of diabolic testers. The inte-
gration team verifies that the system is ready for release. Even after release
they may continue to test the release certifying the ability of the release to
handle anticipated customer demands as the release is deployed. In this
scheme, developers are related to agile method-based teams to build compo-
nents. Then the realization for the software system becomes an integration
process. Various software foundries build software components using agile
methods. They feed their source code to carefully controlled libraries, and the
technical integration team gives build instructions to the software manufac-
tures who compile the source, load it into a system test machine, link the com-
ponents, and run regression tests. Then the integration team tests the system
to make sure it is ready for release. This Compile, Link, and Test metaphor for
building software systems requires substantial support and emphasis on non-
coding activities.

CONTAINING RISKS 295

MAGIC NUMBER!

Five percent of a large project’s staff is needed for communication among
small agile teams, preparing system-wide documentation and packaging
software for release.

8.7.5 Stakeholders Are Losing Interest

Users become more involved when there is a steering committee in place and
they are informed of the impact of scope changes. They need to be welcome
at all project meetings and have access to project information. The project
manager who builds trust with the stakeholders increases the productivity of
the organization and is more apt to build products that will be bought and
used. The steering committee’s goal is to stabilize requirements and specifica-
tions and to select feature sets proposed by the project manager.

When all stakeholders from customer to user to developer to supplier iden-
tify themselves as a member of the project before they identify their organi-
zation or role, the project manager will know that the stakeholders are not
losing interest. It is a warning sign of trouble when stakeholders consistently
miss steering meetings or send ineffective delegates. The risk containment
action is to visit the stakeholder one-on-one and face-to-face to discuss their
concerns. If this is impossible, then the project manager needs to find new
stakeholders. Experienced project managers sometimes “fire a customer.”
Project managers need to report to their bosses and project team members
the results of their periodic and frequent meetings with their customers.
Another risk containment strategy is for the project manager to visit the users’
workstations and see how the system is operating. On-site observations build
confidence in the customer’s staff that you care about them.

8.7.6 Untrustworthy Design

Requirements creep can subvert assumptions that underpin the architecture.
New requirements need to be carefully controlled. Loose talk by developers
quickly leads to commitments in the minds of customers. Although it is impor-
tant to encourage open and complete communication between developers and
users, it is just as important to be clear that only the project manager can make
project commitments. Do everything to ensure common understanding of
requirements among stakeholders.

296 IDENTIFYING AND MANAGING RISK

Reuse can be a key issue. Systematic and well-managed reuse of elements of
previous systems/solutions can bring great benefits, but without proper under-
standing and analysis, they can be high risk. Wrong decisions on technology
infrastructure can have massively damaging effects. Distributed computing
rather than large computers requires middleware and complex programming to
share workloads, which adds risk to overcommitted software activities.

8.7.7 Feature Set Is Not Economically Viable

The risk of developing the wrong software functions and of doing the features
wrong is reduced when the project is divided into separately controlled sub-
projects and requirements specifications are stabilized.

8.7.8 Feature Set Is Too Large

This is known as the Big Bang implementation. The attempt to leapfrog to a
system that delivers the expected functionality and benefits in a single-shot
implementation is fraught with risk. With complex systems, phased imple-
mentation of each phase delivers some useful functionality and builds on what
already exists. This offers a controlled approach to dealing with risk. The Spiral
Model offers one way to contain this risk. The overall effort can be assessed
based on results to date, and it becomes easier to spot trouble earlier and to
adjust overall effort if necessary. This approach also gives users a flavor of what
the system can do for them, can generate enthusiasm and support, and can
reduce resistance. On system cutover from a legacy process or system, a tried
and true fallback system provides risk containment. Of course, the necessary
cutover procedures with staff trained in their use are always important, but it
is even more so when the Big Bang is attempted.

8.7.9 Technology Is Immature

Blind optimism that novel technology solutions are achievable is contagious
and dangerous. Developers by their nature tend to innate technological opti-
mism, and this is not always counterbalanced by management realism.
Management is often technically obsolete. High levels of system complexity,
ambition, and innovation are not recognized, and necessary steps to manage
them are not taken. Many projects fail because they seem to be always adopt-
ing the latest and greatest before they capitalize on their last investment. Tool
suppliers know to sell their new products to the developers and let them cham-
pion the tool to their management.

The prospect of enormous benefits and the splendor of technical achieve-
ment mask the scale of the challenge and the risks of failure. Experience with
smaller simpler systems, or in other domains, makes software people believe
that they are qualified to take a leap of faith. The required knowledge for
attempting such a breakthrough in technology does not exist, and the need to

CONTAINING RISKS 297

extend budgets and schedules to allow for research and experiment to acquire
that knowledge is critical.

How can project managers choose technologies? Refusing all technology
changes leads to obsolescence. Need, expertise, and experience influence a
technology choice. To manage the risk, the project manager assigns specific
resources to explore the technology, then tries it in a few isolated cases in the
environment of the project, and finally trains the full staff to adopt the chosen
technology.

Case Study: The Case of Trouble in Paradise

At Paradise Software, C++ is de rigueur, but lately there has been trouble in
Paradise. Many field problems have been traced to pointer arithmetic errors.
The new kid proposes shifting to JAVA. Some developers like the idea because
they can learn a new language and programming environment. It will make
them more attractive should they ever need to find a new job, not that they
are eager to leave Paradise.

The project manager is old and battle-scarred. He lost 6 months of pro-
duction from every staff member when they converted from C to C++ 10 years
ago. After 18 months the loss was recovered, but it was a difficult 18 months.
True, his software shop did gain a reputation for world-class, low-defect, on-
time software afterward. JAVA will probably yield higher productivity even-
tually, but not immediately.

The project manager reflects with pain on the earlier transition and sighs.
He knows JAVA produces better code, but he wonders if it yields acceptable
application performance and if the tool base is stable. Is this the right time to
switch from an old technology to a new one? He decides to hedge his bets this
time around.

The project manager agrees to set up a pilot program of no more than three
people for no longer than 6 months. Their job is to qualify, quantify, and for-
mally report the performance impact of the new language and the quality of
the support tools. In addition, the project manager does his homework
researching the experience of other projects with JAVA and finds this amazing
graph, Figure 8.3.

Productivity

Transition

Figure 8.3. Productivity vs. learning curve re C++, JAVA.

298 IDENTIFYING AND MANAGING RISK

Conclusion: The pilot program reports are satisfactory, and the project
manger sets up and pays for trials with training and technology experts
assigned to work in the trials. Once the trials are complete, a decision for
project-wide deployment may be reached. If at any point the risk of adopting
the new technology is too great, the technology can be dropped. The new kid
thinks Paradise is a pretty good place to work. They listen.

\\\‘///

"~ MAGIC NUMBER!

One pilot plus three trials equals informed decisions.

8.7.10 Late Planned Deliveries of Hardware and Operating System

Alerts to potential problems may come from a variety of sources: past experi-
ence, warnings from knowledgeable sources, feedback from reviews, jeopardy
reports, observation of events, or just plain common sense. Deafness to such
alerts may afflict any stakeholder group including executives, customers, product
management, project management, and developers. When those capable of
sounding the alert observe that deafness or punishment is the usual outcome,
then the alert will be sounded less frequently.

Dysfunctional relationships among stakeholder groups can develop. These
key stakeholder groups may include executives, middle managers, developers,
the project sponsors, or the system users. Agile methods and the WinWin Spiral
Model demand that all stakeholder groups be integrated into the development
process. Everyone needs an effective voice to express both their needs and
their knowledge. Poor intergroup communication increases risk, and success
relies on establishing stakeholder ownership and commitment. Examples of
dysfunctional relationships between groups include:

(1) “Range Chicken,” a concept that originated during missile tests and
carries over to enterprises that require the cooperation of several inde-
pendent organizations. As launch time or due dates draw near, organ-
izations having problems delay reporting their problem in the hope that
they will find a fix before they must confess to not being ready. They
do not want to be blamed for delays.

(2) Unwillingness of executives to understand issues, get involved and
committed, organize for the systems effort, and undertake properly
informed decision making.

(3) Resistance of middle management to relate concurrent problems or
changes within the enterprise and to understand and deal with their

MANAGE THE COST RISK TO AVOID OUTSOURCING 299

interactions. For example, computer systems cannot automate chaotic
processes.

(4) Unreasonable pressure by customers or senior management on devel-
opment schedules.

(5) Lack of attention to staff concerns of both developers and users exac-
erbated by overspending of scarce resources on glossy brochures,
management consultants, and corporate image, or by perceptions that
it is lying to the public. Several systems have failed when union workers
perceived that the objective of the system was to eliminate their jobs.
They made sure it did not work. People want software systems that
enhance their positions, not replace them.

(6) A climate of fear, blame, and low morale among developers, vendors,
Or Users.

(7) A culture of strong internal politics, improper relationships, and vested
interests among customer agents, developers, or suppliers.

8.8 MANAGE THE COST RISK TO AVOID OUTSOURCING

Although project teams are effective in determining customer needs and
satisfying them, they are not efficient in their use of resources. There is
much duplication between teams in the areas of tool selection, technology
evaluation, process design, software manufacturing, computer administra-
tion for both clients and servers, and in setting up and operating system test
environments.

\\\‘///

~ MAGIC NUMBER!

=

Up to 20% of the budget for large multiproject organizations is wasted in
redundant activities or lost because they do not receive volume discounts
for hardware or software COTS tools and components.®

Software shops can gain the efficiency they need to be competitive and
avoid the outsourcing risk by forming some functional departments to serve
across all projects. Introducing centralized functional departments often fails,
so it must be done with great care and middle management buy-in. Choosing
the tasks to centralize and full commitment by the entire leadership team are

8 Internal Bell Laboratories study of a 2000-person, 150-project software shop led by Bernstein.

300 IDENTIFYING AND MANAGING RISK

vital. On the other hand, centralized departments too often become bureau-
cratic and lose the sense that their mission is to serve the projects. To manage
this risk, rotate middle and first-line managers through the functional organi-
zation periodically.

\\\‘///

& /\l MAGIC NUMBER!

Rotate managers in functional organizations to project organizations every
2 to 3 years. Staying longer tends to make the functional organization less
responsive to the current needs of the projects. Fresh managers update the
centralized activities.

8.8.1 Technology Selection

Centralized functional organizations are more effective at choosing technol-
ogy because uncontrolled diversity often leads to systems that cannot work
together. Components cannot be shared among teams, and basic functions
such as systems and network management are duplicated. Even worse, any
resemblance among systems administration for different product lines is
purely coincidental. Without being able to share the platform rules, tools, and
assets, it is ndive to think that application areas can be shared. Each project
loses skilled people to meeting with suppliers, selecting technology, and train-
ing new team members on their selected technology.

8.8.2 Tools

When every project team does this, it duplicates the efforts of the others. It is
difficult to obtain leveraged purchases on favorable terms from tool suppliers
when each team buys for themselves.

8.8.3 Software Manufacturing

A duplication of effort to control changes and build releases across projects
without adherence to cross-project standards leads to difficult system integra-
tion. Often products must work on different physical computers from the same
manufacturer and with the same configuration because the software executa-
bles are arbitrarily different. Each team has its own approach to system builds,
and there are no opportunities for economies of scale This increases testing
costs as well as cost to the customer. Software manufacturing activities include
trouble tracking, system builds, configuration control, and release packaging.

MANAGE THE COST RISK TO AVOID OUTSOURCING 301

Centralize these functions, and include a trained set of program administra-
tors whose job is to adhere to standard processes so that the programmers
learn to trust the professional software builders.

8.8.4 Integration, Reliability, and Stress Testing

This area should come under centralized functional management, and the
system testers should be placed on loan to product teams for specific tasks.
System test processes and tools should be standardized. Subject matter experts
need to remain with the project teams, but software testing technologists
and their tools may be centralized. The new concept of software component
foundry and “Compile, Link, and Test” software factory is an effective way to
gain economies of scale, in which component is a technical definition con-
straining the characteristics of a software module.

8.8.5 Computer Facilities

The administration of the client and server computers spread throughout the
organization is a hidden expense. Volume purchases are difficult to make, and
systems administrators with the knack of keeping the computers operating are
not shared. There is significant wasted space and duplicate machines. Inade-
quate desktop tools can impact the entire development community and were
one root cause of delays in several projects.

8.8.6 Human Interaction Design and Documentation

Almost 25% of the total staff is devoted to ease of use and user documenta-
tion. Standard approaches to doing the design, producing, and controlling the
documents can be centralized. Skilled human performance engineers and tech-
nical writers can be loaned to projects as needed, which improves their morale
because they are not lost in a program design organization and have a path
for career growth.

All six of these functions can be separated from the project teams and
managed in a single integrated support department. This matrix organization
works when funding for their funding is not within each project team. The cen-
tralized team has its own budget with usage-based charge-backs to the project
teams. Cost under-recoveries reduce profits for all projects inversely propor-
tional to their use of the centralized activities, and over-recoveries increase
project profits based on their use of centralized activities. They are a cost
center; the project teams are the profit center.

This centralization would not only improve productivity but also would
reduce time to market and improve quality. Many project teams cannot make
incremental builds. They always deliver their whole product package to the
customer. This is costly to both the projects and the customers. It is a major
customer dissatisfaction as they expect products from the same software shop
to “look and feel” the same, share file storage and networks, and have a

302 IDENTIFYING AND MANAGING RISK

common system administration. The centralized team may in turn sell their
services and tools outside the organization, but only through a project estab-
lished for that purpose.

This approach is the foundation for establishing a climate for reuse that
leads to a significant increase in productivity. The essence of the these
standards is to define and implement a set of engineering rules that make it
possible to practically integrate products into customer-specified solutions
through reuse and commonality of processes, development methodology, and
tools. The engineering rules encompass four categories: software architecture
and platform; environment and tools; integrated product offers, and docu-
mentation, including sales-ware.

Case Study: The Case of the Perpetual Pendulum

A classic management problem is how to determine the best structure for an
organization that must be nimble, yet at the same time stable enough to get
the work done. Change renews and invigorates, so long as it does not happen
too often. This risk management technique prevents the ossification of a
company. Remember The Case of the Well-Shod Management in Chapter 6;
this is the next episode.

The manager found that 20% more savings were possible by adhering to
engineering rules. This amounts to a saving of 40 people x 0.20 = 8 people or
another $1.3 million annually. This leads to a 50% cost reduction.

Arriving back at corporate headquarters, the manager delivers this good
news. The Executive Council has been infected with “outsourcing fever” ever
since their CIO attended a 2-day seminar. Not only do they applaud the news,
but they leap to send every last employee out the door by outsourcing
everything.

The manager pauses to reflect that successful outsourcing by a company
requires dedicated company project managers and software engineers, special
testing, travel, communications, and equipment costs.

Conclusion: This letter to the Executive Council by the project manager suc-
cessfully argued against outsourcing this project. The project is still staffed
domestically today.

To: Vice President, Operations Support Systems Business Unit

There is no need to outsource to gain competitive advantage. Our develop-
ment team is in place, is skilled, and has gained extensive problem domain
knowledge. There is significant opportunity to further improve our productiv-
ity and quality while reducing time-to-market. Introducing centralized func-
tional organizations is a vital part of this effort. Action is being taken to obtain
an immediate 10% elimination of redundant effort, which is expected to grow
to 20% in 3 years. Specific areas that will to be addressed include:

SOFTWARE PROJECT MANAGEMENT AUDITS 303

(1) Engineering rules conformity
(2) Reuse
(3) Platform and library use across projects

(4) Use of a software fault-tolerant library to reduce testing efforts and
produce a better production product

(5) Software project management training

(6) Move to “buy instead of build” culture and create a “link, compile and
test” software shop

(7) Migrate to JAVA and JAVA platforms
(8) Set a 40% design simplification goal
(9) Reward developers for writing less code per feature
Yours truly,
The Project Manager

8.9 SOFTWARE PROJECT MANAGEMENT AUDITS

Management malpractice is a serious risk to project success. When a software
project is in trouble, a software project audit can help. Audits are for the
project manager and not for higher management. The audit team needs to gain
the trust of the software developers. Audits should be a regular action taken
early in the development process before implementation begins. McDonald
writes that with this approach, “The audit became relatively painless for the
project team; it is likely to cause a much more positive change in the software
development environment. . . .”

Software project management audits address the risk of management mal-
practice and pressure the project leaders to create a realistic project plan early
in the development cycle. Audits crisply identify the highest project risks and
estimate their probability of failure.

The audit is requested by the project manager. McDonald recommends, and
we agree, that the best “. . . time for conducting a project management audit is
during the definition phase of a project, shortly after the business case or con-
tract has been baselined, a solid project plan has been developed, the architec-
ture has been baselined and at least some of the detailed requirements have
been developed.” But an audit can be useful anytime. A software project man-
agement audit includes a review of the business case, the development plan, the
architecture, and the requirements specification. If a prototype is available, the
audit team examines it also. They visit the development team in their workplace
and at their desks. They observe activity in the test laboratories. Fundamental
to the audit is one-on-one interviews with a cross section of the project team by an
independent set of experienced managers who have managed similar projects.

The audit produces feedback only to the project team; they may in turn
comment on it and forward it to their executives or customers as they see fit.
It is their intellectual property.

304 IDENTIFYING AND MANAGING RISK

Audits have contributed to project success when the project manager
embraces them and uses the results constructively. The project manager and
the development team members get the most benefit when they view the
auditors as fellow developers interested in their success, not as part of an
inquisition.

8.10 RUNNING AN AUDIT

Before an audit takes place, the project leaders spend time learning about the
project and creating their measurable operational value and development
plan. The project manager and the audit team leader jointly clarify the scope
and the objectives of the audit and schedule it. It is not a surprise visit by an
outside set of professional auditors. The project manager helps the audit team
leader recruit audit team members and communicates audit findings with
follow-up actions to the entire project team.

The audit team leader is an experienced software project manager who has
previously participated in audits and will choose three or four other audit team
members, who are skilled project managers. The audit team leader structures
a detailed time schedule for the audit and a questionnaire. The project
manager approves these.

McDonald reports the results of 21 audits of medium- to large-scale soft-
ware projects. He was on each audit team. As predicted by Boehm, project
schedule and requirements management issues were the most frequently cited
risks.

8.11 RISKS WITH RISK MANAGEMENT

All software engineering processes have advantages and disadvantages. Risk
management is no exception. The project manager reaches a balance between
control and productivity so that the development staff can be effective and
efficient. Risk management is a worthwhile process, but it can intimidate an
organization when risks are “overestimated.” Then too many resources may
be diverted to contingency planning and containment steps and too much
money may be spent on the most vocal risk identifier’s pet part of the project.
Experienced project managers are needed to contain this risk. When software
shops approach schedule deadlines, a nervous tension close to panic is
observed. Managers seek delays identifying all possible risks. The project man-
agers use the top-ten problem list to manage these risks and judge the state
of the project by examining the nature of the problems. The mantra at this late
stage switches from “What’s the problem?” to “Plan on Success.” This requires
delicate and experienced judgment at a critical phase. On one project, the
reports of problems reached such a crescendo that the customer suggested that
the project be delayed. The project manager cautioned not to revise the project

PROBLEMS 305

plan until after the next critical milestone. Then, if necessary, have a critical
schedule review. In addition, minor adjustments were made in staff assign-
ments setting up a task force of testers and developers to help in component
testing. Happily the dates were made, and there was no need for the review.
Keeping firm in times of project turmoil is essential, but not easy.

Risks may be dismissed and their impact underestimated, which gives the
stakeholders a false sense of security. This risk can be contained by the use of
project audits. Software shops that underestimate risks become victims of reac-
tive crisis management. Blame must be avoided when a project gets into this
state. Public recognition and appreciation for those identifying problems is
necessary to establish the open and trusting project environment needed to
deal with crises.

Choosing projects that minimize all risk can lead to dull projects and drive
away the gurus. These projects are typically less profitable. Risk management
can be expensive and, as with all processes, needs to be managed to make sure
it is finding real problems, inspiring quality solutions, closing risk items, and
not breaking the bank.

8.12 PROBLEMS

8.12.1 Given that there is a 0.1% probability that a latent software fault will
execute and lead to failure, and if a failure occurs the customer would lose
$100,000, what is the RE?

8.12.2 To manage the risk found in Problem 8.12.1, we consider a holding a
formal design review. How much can the project manager afford to spend on
the design review and break even? (Hint: Break even means the RE without
design reviews equals the RE with design reviews.)

8.12.3 List four principle requirements risks as defined by Boehm in the
development of software products.

8.12.4 You are the project manager for a customer resource management
system. Your sales force tells you that the architecture impacts their ability to
sell your software product. Here is the prospectus:

Department stores, software companies, and utility companies all have call
centers that handle customer complaints. Your primary customer employs
1000 agents. Call center managers have the authority to hire and fire agents
and can purchase incidental equipment for the operation of the center. Pur-
chases of more than $100,000 require corporate approval including a review
by the CIO. The CIO is charged with reducing information technology costs
and the number of suppliers. Typically an agent uses a predefined script to
capture the customer’s problem. Once the problem is defined, it is resolved or
handed off to a second-tier expert. The agents must strictly follow the script

306 IDENTIFYING AND MANAGING RISK

that can resolve 50% of the problems. For example, if a customer claims that
they have already paid a bill, the agent asks for the invoice number and checks
the accounting database. If the customer’s payment has been recorded in the
time since the bill was mailed, the agent cancels the bill; if this is a first cus-
tomer complaint and the bill is less than $10, the agent forgives the charge.
The system must be generally available in 9 months.

An existing customer for your software company badly needs such a system
to automate these business tasks. They want to purchase the system in 6
months. This customer has had serious problems with another system they
recently bought from your company, and their CEO has formally complained
to your CEO about late delivery, “obvious” bugs, and poor support.

For the CRM system, your staff of five developers prototype a new speaker-
independent voice recognition system, using JAVA, and find that customers
prefer the clarity and patience of the computer to that of many agents. Reli-
able and consistently friendly agents that exercise good judgment are hard to
find and train at the wages companies are willing to pay. An agent is paid
$30,000 yearly, and the overhead is twice the salary.

Based on the prototype, you size the project at 50 function points. Desktop
computers equipped with voice recognition equipment, communication hard-
ware, and platform software costs $10,000. These computers can replace one
agent.

Server computers can share the new speaker-independent voice recogni-
tion equipment, and communications hardware and platform software costs
$120,000. Each server can replace 300 agents, which results in a cost of $4000
per agent.

Financial times are hard, and your likely first customer, the CIO, is insist-
ing that new systems yield a 2-month or less break-even time where the cost
of money is not considered because interest rates are 1% annually. The cost
of developing the software is $800,000. This is true for either the server or the
desktop solution.

Identify the top-ten risk events that you need to put on the agenda for the
next CRM project meeting:

8.12.5 You are asked to build a system that is priced to yield a profit of 10%
of the cost of the system in 3 years if it is successfully deployed. Use a con-
stant interest rate of 5%. (Hint: To discount the cash flow, compute today’s
value of future money by using this formula:

NPV = CF/(1+1R)",

where

NPV = Net present value

CF = Cash flow

IR = Interest rate (3%, for example)
n = Number of years

BIBLIOGRAPHY 307

a. What is your return on investment in the third year?

b. The schedule is known to be tight, and the nominal schedule is estimated
to be 44 months. A schedule with 95% confidence is estimated to be
60 months. Estimate the probability that the system will be delivered
on the 3-year schedule if all delays are assumed to be uniformly
distributed.

c. What is the expected profitability of the system?

8.12.6 Recall the case study about Ajax Transporters, Inc., which manufac-
tures exactly one size of one model of one product, the Ajax Personal Trans-
porter, in Chapter 7.

You work for Amber Consulting, Inc., and your group at Amber has just
been given the job of making the change to Ajax’s system, but without chang-
ing the COTS product currently in use. You are required to keep the COTS
subsystems current.

Define five risks for this project, and calculate a risk exposure for each. State
your estimate of risk likelihood and risk cost.

8.12.7 You are the project manager for a large transaction system with access
to a large database. You estimate that the development will take 3 years, and
you propose to provide annual releases. You estimate that you will need 40 to
60 people per year, and you request a budget for 55 people. Your boss chal-
lenges the accuracy of your estimates. You respond that they are accurate to
about +20%. He reduces your budget request by 11 people. What is your
response?

a. Accept the change and try harder.
b. Look for a new job.

c. Point out that just as you may have estimated high, you may have esti-
mated low and that you might be overbudget by 11 people.

BIBLIOBRAPHY

Addison, Tom and Vallabh, Seema. “Controlling Software Project Risks—an Empiri-
cal Study of Methods used by Experienced Project Managers,” Proceedings of
SAICSIT, 2002.

Department of the Air Force, Software Technology Support Center. “Guidelines for
Successful Acquisition and Management of Software Intensive Systems: Weapon
Systems, Command and Control Systems,” Management Information Systems, Vol.
1, Version 1.1, Department of the Air Force, Software Technology Support Center,
Salt Lake City, UT, 1995.

Asaravala, Amit. “Managing at Microsoft,” SD PEOPLE & PROJECTS, Jan. 2005.

Bernstein, L. “Software Project Management Audits,” Journal of Systems and Software,
Vol. 2, 1981, pp. 281-287.

308 IDENTIFYING AND MANAGING RISK

Boehm, Barry. Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981, Chs. 19 and 20.

Boehm, Barry. “A Spiral Model of Software Development and Enhancement,” I[EEE
Computer, May 1988, pp. 61-72.

Boehm, Barry. Software Risk Management, IEEE Computer Society Press, New York,
1989.

Boehm, B. and Ross, R. “Theory-W Software Project Management Principles and
Examples,” IEEE Transactions on Software Engineering, Vol. 15,1989, pp. 902-916.

Boehm, Barry W. “Software Risk Management: Principles and Practices.” IEEE Soft-
ware, Vol. 8, Jan. 1991, pp. 32-41.

Boehm, Barry, et al. Software Cost Estimation with COCOMO 1II, Prentice-Hall,
Englewood Cliffs, NJ, 2000, p. 403.

Buckle, J. K. Managing Software Projects, American Elsevier, New York, 1977.

Endres, Albert and Rombach, Dieter. A Handbook of Software and Systems Engi-
neering—Empirical Observations, Laws and Theorems, Pearson Addison Wesley,
Reading, MA, 2003, p. 201.

Keil, M., et al. “A Framework for Identifying Software Project Risks, Communications
of the ACM, Vol. 41, 1998, pp. 77-83.

McDonald, James. “Software project management audits—update and experience
report,” The Journal of Systems and Software, Vol. 64, 2002, pp. 247-255.

Putnam, Lawrence H. and Myers, Ware. Industrial Strength Software: Effective Man-
agement Using Measurement, IEEE Computer Society Press, New York, 1997,
Ch. 18 for discussion of SLIM and Rayleigh curve.

Yourdon, Edward Nash. Death March: The Complete Software Developer’s Guide to
Surviving ‘Mission Impossible’ Projects, Prentice-Hall, Englewood, Cliffs, NJ, 1997.

Human Factors in
Software Engineering

The study of human factors ranges across a continuum from the philosophi-
cal meaning of the nature of work to the details of optimal screen design. The
product and process aspects of this study greatly influence the acceptance of
the product by the user and the cost of development. The details of human
factor design for end users have received the most attention, perhaps because
of the work of pioneers like Henry Dreyfuss at Bell Laboratories whose
elegant design of everyday things enriches our lives, Alan Kay who made com-
puters comprehensible to nonprogrammers, and Steve Jobs whose iPod was
the hot 2004 product.

9.1 A CLICK IN THE RIGHT DIRECTION

Apple’s iPod is handy, and its ease of use makes it a best seller. It is upgraded
to have the same touch-sensitive Apple Click Wheel that debuted on the iPod
mini. With it you can easily select play lists, scroll through thousands of songs,
and start the music playing. Just a single click is all you need.!

Human factors specialists do more than design friendly icons, however.
They bring two important kinds of knowledge to bear on systems develop-
ment: first, human abilities and limitations and second, empirical methods for

! http://www.apple.com/ipod/.

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

309

310 HUMAN FACTORS IN SOFTWARE ENGINEERING

collecting and interpreting data from people. They define criteria for ease of
use, ease of learning, and user acceptance in measurable terms. New technol-
ogy demands much thought about the role of the tool. The distress and aver-
sion many people manifest toward computerization is perfectly rational in the
presence of ill-conceived design. Figure 9.1 shows some poor design; while
driving toward West Street in New York City, we faced this daunting decision
as we approached the intersection. It became clear eventually that there was

tjll
A

™~

\ k|
i

Figure 9.1. So many signs, so little clarity.

A CLICK IN THE RIGHT DIRECTION 311

a second street. Too many of our systems confuse the operator without pro-
viding an opportunity for clarification.

The story of software development is as uniquely American as the west-
ward expansion. It is rough and tumble, driven by a get-it-done attitude. It is
studded with heroic figures who make brilliant leaps into new territory. Its
products have amazed and astonished the population at large and created a
mystique of invincibility. Only a moment ago have its predecessors, the lone
gunslinger, the paladin troubleshooter, and the flashy but inefficient Pony
Express, come under some civilizing rule. It has been the place to be for the
last three decades, and this is just the beginning. Every kid in an earlier time
watched Westerns; now they plug into the Internet. The reason is simple. Cre-
ating and using the magic stuff called software is emotionally engaging, diffi-
cult, and wildly exciting.

At the risk of belaboring the Wild West analogy, we might say that the Mark
Twain of programming is Fred Brooks. He wrote The Mythical Man-Month 20
years ago and recently reissued it with updates. He is a clear-eyed, astringent
observer of both strengths and foibles in programming. He says, “A clean,
elegant programming product must present to each of its users a coherent
mental model of the application, of strategies for doing the application, and
of the user-interface tactics to be used in specifying actions and parameters.
The conceptual integrity of the product, as perceived by the user, is the most
important factor in ease of use ... managing large programming projects is
qualitatively different from managing small ones, just because of the number
of minds involved. Deliberate and even heroic, management actions are nec-
essary to achieve coherence.”

There are elements of coming full circle back to the much-maligned
intractable individualist in the concepts for the future. The cottage industry
mentality used to be the bane of team programming, but prototyping calls for
a small team with a coherent view. Boehm’s Spiral Model starts with a kernel
of an idea that expands. The Internet is the ultimately diversified large system
made from small parts. This brings attention back to the guru or master pro-
grammer, which is an issue for software project managers. Quality theory pre-
sumes low variances in productivity, but, in fact, several studies have found
wide variance in individual performance.

One benefit of this circling back to an emphasis on the individual or small
group might be in the area of ethics. A large project with hundreds of peer
workers belongs to nobody. A large project conceived by a few has an owner,
someone who is ultimately answerable for choices. Here are examples of what
results from a lack of ownership that should be dear to taxpayers’ hearts.

The U.S. Army stopped the development of a system that was supposed to
replace 3700 older systems by the year 2002. After $158 million and 3 years of
effort, the new system was far behind schedule and well over budget. The
method for choosing the developer encouraged low bidding to get the con-
tract, and then throwing money at a slipping schedule. The Army failed in
having specified no way to know if the project was on track. The developer

312 HUMAN FACTORS IN SOFTWARE ENGINEERING

failed in not knowing the scope of the problem better than the customer.
Both failed in that nobody was ultimately responsible. Appointing a project
manager, splitting projects into pieces for which individuals are responsible,
and enforcing risk management could produce a more logical approach.

The second example is worse because it is life threatening. The Department
of Energy (DOE) keeps a record of every ounce of plutonium, enriched
uranium, and other highly radioactive materials created, transported, or sold
in the United States, which amounts to several hundred tons. The tracking
system was obsolete, and the DOE contracted for a replacement. When Con-
gress asked the General Accounting Office (GAO) to check up on the project
a year later, the GAO reported that the developer had started programming
without adequately analyzing the problem, the user needs, or the final cost of
operation. Furthermore, the developer could provide no specifications, no test
results, and no status reports. The GAO recommended canceling the project
because “the history of software development is littered with systems that
failed under similar circumstances.” Nevertheless, the DOE switched over to
the new system without ever requiring that the software pass any acceptance
tests. Clearly there are ethical issues on the part of all three organizations, but
individuals, not organizations, practice ethics.

9.2 MANAGING THINGS, MANAGING PEOPLE

It is important to distinguish between the management of things, like data, and
people. Say the word manager and most people will think of a Peter Drucker
clone, that is, an intermediary between the executive and people who actually
perform physical work. Drucker’s idea was that managers would benevolently
pursue the interests of society. Given the turmoil in many large companies and
the resonance that Dilbert cartoons have with many people, it would seem that
this idea did not work out well, and some major change is happening. Perhaps
the ground swell is coming from the barely perceived impression that com-
puters should augment workers, not substitute for them. Knowledge that is
freely available flattens office hierarchies and increases the total amount of
work it is possible to achieve. A Drucker-type manager need no longer
exist when the computer does that job better and faster as, for example, in
Customer Relations Management (CRM).

\\\‘///

"~ MAGIC NUMBER!

There is a 10:1 difference in productivity among software shops.

MANAGING THINGS, MANAGING PEOPLE 313

The best performers tend to be in the same organizations. They migrate to
work environments where they can be most productive and help each other
grow. Private offices and large workspaces are essential to having a produc-
tive organization. IBM studies of software developers led them to build their
Santa Teresa facility with the goal of 100 square feet of dedicated space per
worker, 30 square feet of work surface per person, and noise protection with
enclosed offices for half the staff, each accommodating only one or two people.

These guidelines were first adopted at Bell Laboratories, when they built
their Holmdel facility in 1962. They made no distinction between developers
and researchers. Invention and innovation thrived. Saving money on space is
a false economy,” and the ubiquitous open cubicle is unsuitable for chickens,
not to mention thinking humans.

9.2.1 Knowledge Workers

So what job must be done? It is the job of considered judgment, creative ideas,
and efficient problem resolution. Better, faster, more intelligent technology
actually serves to minimize the less desirable hostile tendencies in human
nature and nurture the more collegial tendencies.

Shoshana Zuboff® foresaw the changing nature of work two decades ago.
A powerful new technology fundamentally reorganizes the infrastructure of
the work world, especially in the distribution of knowledge in the workplace.
Information technology renders events and processes visible and knowable in
a way that must be shared and interpreted by workers who exercise judgment.
The human factors problem is to design sufficient feedback into computer
systems to allow people to function effectively. Zuboff remarks, “The psycho-
logical discomfort that gives rise to doubt reflects the loss of an immediate
knowledge for which there is as yet no replacement. Knowledge had depended
in large measure upon the body and its experience of concrete cues. Now the
operator feels both personally diminished and weakened by a loss of crucial
contextual information. A new sense of certainty depends first upon clarifying
the referential function of the data. Deductions are not read off the face of
appearances; they are not transparent features of the terminal screen. Rather,
they depend upon understanding, and understanding can be developed only
from a solid intellective skill base that recognizes what icons are supposed to
represent and that has invented mechanisms for validating that they really do
carry such force.”

9.2.2 Collaborative Management

As software becomes more sophisticated, problems, when they occur, will be
complex. Guru software developers gravitate to managers who encourage the

> DeMarco, Tom and Lister, Timothy. Peopleware-Productive Projects and Teams. 2nd ed., Dorset
House, New York, 1999, p. 53.

? Zuboff, Shoshana. In the Age of the Smart Machine, Basic Books, New York, 1988.

4 Zuboff, Ibid., pp. 83-84.

314 HUMAN FACTORS IN SOFTWARE ENGINEERING

spirit of hypothesis generation, testing, and “playful” manipulation that is
above all a collegial one. To software developers, new software technology is
exciting. The more technical leadership shown by software managers, the
higher the productivity of the organization.

End users do not want a computer that will steal their jobs; they want a
computer that will enhance personal status. Computerization broadens and
expands the available work, but how acceptable this kind of problem-solving,
decision-making work is to people who have no experience or preparation for
it will be the staff management challenge.

The overall quality of the body of work depends on the totality of individ-
ual judgments. Military historians understand that the outcome of a war
depends on the cumulative effect of many individual decisions, each made in
the heat of battle, in a split second, based on some subset of the whole truth.
Decisions that looked good at the time can turn out later to have been not so
good. The only tool to minimize the bad collective decision is widely distrib-
uted relevant and accurate data in an easily recognizable form. It is a liberat-
ing idea that wars, history, economies, businesses, and software projects are not
deterministic, that things do not have to turn out in only one particular way,
and that choices might be different if bits of data were presented more clearly
to a wider audience. If information technology improves a work environment
by giving a larger and clearer view of the truth of a situation, better individ-
ual decisions can be made in moments of crisis. Individual and group judg-
ments can improve. This style of management is worth cultivating in a rapidly
changing world for which there is not much of a template.

Individual designers move quickly between the concrete and the abstract.
They work in the problem domain and the solution domain at the same time.
The role of the human in the system is not always obvious, and too often devel-
opers leave it to users to make up for automation shortfalls. These are called
“workarounds” and are an indication of design flaws. Top-down may be a good
way to describe how a system works once it is built, but collaborative, inter-
active efforts are used to come up with the design. The prototype gives the
designers the opportunity to evaluate designs. They are especially useful for
evolving the human interface design.

Examples of people dealing with the unknown and unpredictable are the
FAA, the former Bell System, and NASA human factors specialists. NASA
teams preparing for early space missions developed specific techniques of
group interaction that fostered optimal group problem solving. It was a colle-
gial style that involved much exchange and repetition of information for
maximum clarity. It also involved practice in simulated situations and much
hypothesizing of alternatives. These specialists made sure that human capa-
bilities and limitations were properly reflected in the system requirements. The
astounding success of the early missions and commercial flight safety demon-
strates the value of human factors applications.

Human factors are relevant to meeting system performance and functional
requirements:

MANAGING THINGS, MANAGING PEOPLE 315

(1) Human performance (e.g., human capabilities and limitations, workload,
function allocation, error rates, hardware and software design, decision
aids,environmental constraints,and team versus individual performance)

(2) Training (e.g.,length of training, training effectiveness, retraining, train-
ing devices and facilities, and embedded training)

(3) Staffing (e.g., staffing levels, team composition, and organizational
structure)

(4) Personnel selection (e.g., minimum skill levels, special skills, and expe-

rience levels)

(5) Safety and health aspects (e.g., hazardous materials or conditions)

One example of a human capability, time perception, can be shown to affect
the functional requirements of a software design. Table 9.1 shows time per-

ception across various tasks and media.

TABLE 9.1. Time Perceptions Across Media

Human Transaction Application Preferred
Perception Time Physical
Architecture
instantaneous Less than 1/3 Software Personal
second Development computer
or workstation
fast Between 1/3 and Simple query Client/server
1 second
pause Between 1 and 5 Complex query Thin client
seconds and
application
launch
wait Greater than 5 Action Request Background
seconds Batch

Transaction interactions should be without a perceived wait, and the stan-
dard deviation of all transactions should be less than 50% of the mean.

\\‘//

/& } "~ MAGIC NUMBER!

=i

one person to another.

The meanings of various lengths of elapsed time do not vary widely from

The human factors specialists on a requirements engineering team provide
the support for the integration of human factors engineering throughout the

316 HUMAN FACTORS IN SOFTWARE ENGINEERING

development of a software system. They find problems that might otherwise
go undetected for their obscurity, complexity, or elaborate interrelationships.
The human performance considerations are developed for staffing levels, oper-
ator and maintainer skills, training strategies, human—computer interface,
human engineering design features, safety and health issues, and workload and
operational performance considerations in procedures and other human-
system interfaces.

9.3 FAA RATIONALE FOR HUMAN FACTORS DESIGN

The FAA recognizes that growth in air traffic means imminent overload of the
air traffic control system and its controllers. The retirement of a large per-
centage of the current controllers in the next 10 years with not nearly enough
new controllers in training to replace them exacerbates the situation.
There are practical limits to adding more controllers, so the place to look for
improvement is in technological changes. To evaluate competing solutions, it
will be important to identify requirements important in supporting human per-
formance and to determine system performance criteria necessary to enhance
human problem solving and effective decision making. Risks associated with
system and human reliability become increasingly important as automation
begins to greatly expand the potential to support problem detection and error
management. Systems that consider human factors pay off in improved acqui-
sition decisions, reduced training and maintenance costs, fewer human errors
and improved safety, higher probability of system success, and improved user
acceptance. The FAA considers it highly unlikely that an effective air traffic
control system can be developed without applying systematic human factors
analysis. The FAA takes seriously Glib’s advice, “Don’t try to correct poor
software design with good documentation.”

To date, the FAA’s experience has been that consideration of human factors
issues and their mitigation in project development and deployment has varied
in cost from approximately $1 million for a small project to $100 million for
the Voice Switching and Communication System (VSCS). In these projects,
human factors considerations were an integral part of the design process and
in no way delayed the project schedules.

In addition, there is a projected $175 million outlay for the Standard Ter-
minal Arrival Route System (STARS). STARS started as a conmercial off-the-
shelf (COTS) effort, but later it was discovered that human factors issues
required an extension in project implementation by 2 years. Clearly, says the
FAA, the required effort to address human factors issues and its costs will
depend on how complex the system is, how much it will directly impact day-
to-day operations, and the skill required by the workforce to learn the new

* Glib, Tom and Weinberg, Gerald M. Humanized Input Techniques for Reliable Keyed Input,
Winthrop, Cambridge MA, 1977, p. 62.

FAA RATIONALE FOR HUMAN FACTORS DESIGN 317

system. Complexity impacts the level of skills required, which is directly
related to the issue of usability. The greater the usability, the lower the
cost.®

The FAA on some level understands what needs to be done and is aware
of the science that must be addressed to accomplish trustworthy systems.
However, as the following case study shows, “there’s many a slip ‘twixt cup

29

and lip’.

Case Study: “Ground Control, Speak Up! I Can’t Hear You!”
Paul Cox of the FAA Seattle Center describes this case.

‘I'm an air traffic controller. . .. To do their job, air traffic controllers need one
thing above all: They need the ability to communicate with the aircraft they’re
controlling.

The VSCS puts all of our communications into one spot including air-to-ground,
ground-to-ground calls to other facilities and calls within our own facility. It’s a
purely digital system; all the incoming feeds are converted to bits and bytes and
switched through a series of servers and such until they’re turned back into
analog and put into the controller’s ear through a headset.

The VSCS system was designed and built by Harris Corporation, but their con-
tract ran out some time ago. The FAA, coming to the end of the contract, decided
to go a much less expensive route and replace all the servers with Dell boxes
and their own programming.

In theory, there’s nothing wrong with this; perform the required maintenance,
and there’s no problem. But the system does have design flaws. The system needs
to be reset about once a month—or more specifically, once every 30 days or so.
There’s a risk right there; “once a month” probably means “once every 30 or so
days”, not “once in a calendar month” which could leave an interval as long as
nearly 60 days in between resets . . .

Now, there’s a backup system for VSCS. It’s called VTABS, and is basically a
reduced-capability server that normally runs the VSCS system on the air traffic
control simulator that’s used to train students. The VTABS system . . . cannot run
the entire control room on all of the frequencies that the control center has, so
it’s a hassle to go to VTABS.

Whenever the reset on VSCS is done, you have to run on VTABS for a while,
which usually means it’s done on graveyard shifts to reduce the impact on live
traffic. The downside to this is that the VTABS system also doesn’t get a full
workout. So the next risk pops up: the backup system wasn’t fully checked out
... when air traffic control needs it, it might not work.

Sure enough, that happened. When VSCS died, LA Center switched to VTAB
and it also didn’t work right. Big trouble, now.

5 http:/fast.faa.gov/human/htm/specialtopic.htm.

318 HUMAN FACTORS IN SOFTWARE ENGINEERING

Finally, the FAA ... a while back removed a last-ditch backup system called
EARS. EARS was . .. a hard-wired, all-analog system that only provided the
most crucial thing: air-to-ground communications. EARS . . . had a big advantage
over VSCS or VTABS. If the power died for, say, 20 seconds, as soon as the power
was back on EARS would work with no . .. startup time. VSCS takes up to 45
minutes to completely start up, and VTABS has a significant delay in startup time
as well.

The LA failure was both ridiculous and scary. It’s ridiculous [because] the fact
that the system is designed to shut itself down is silly . . . [In effect] the system
crashes to protect itself from crashing. When suddenly you can’t talk to the air-
planes, you don’t much care whether it’s an intentional shutdown or an accidental
buggy shutdown. Therefore, the designers might as well remove this intentional
design . .. It’s ridiculous that the first backup system didn’t work right simply
because people did not test it properly.

And it’s scary to think that this could’ve happened in an even busier airport than
LA. For example, the morning crush of traffic in New York or Boston. .. has
more traffic packed into less airspace than out west in LA.”

Conclusion: These steps could have prevented the human factors problems
from becoming a crisis:

(1) Software rejuvenation libraries could have been used to prevent a shut-
down and thereby eliminate the human restart task, which makes the
system more reliable.

(2) Understand that “once a month” actually means “once every 30 days,”
and ensure that a critical job is done, on time, and correctly.

(3) Have a tested backup system that can actually do the job.

The FAA had the knowledge to do the job properly, but it was not com-
municated to the people who actually took over the work on VSCS when the
Harris Corporation contract ran out. The FAA management did not actually
require that a human factors specialist be part of the in-house team, which was
a grave error.

Another common design failure is not attending to features needed by
system administrators. They have responsibilities for diverse tasks:

(1) Training

(2) Configuring the computer to run the software
(3) Defining network requirements

(4) Setting up data files

(5) Maintaining adequate response time

(6) Trouble shooting

" http://www.interesting-people.org/archives/interesting-people/200409/msg00284.html.

REACH OUT AND TOUCH SOMETHING 319
9.4 REACH OUT AND TOUCH SOMETHING

Humans make mental maps through tangible input to our senses. We want to
see, hear, touch, feel, and to a lesser extent, smell the environment to make
logical order of it and draw conclusions. Purely intellectual understanding is a
level removed and therefore slower to translate to action. The efficient soft-
ware system activates as many senses as possible to provide input to the human
for decision making.

9.4.1 Maddening Counterintuitive Cues

Too many operating systems are counterintuitive as we recall from the case
study in Chapter 5, The Case for Minding Your Mother. Everyone has a
favorite example of this. Why do you edit the header in the view menu and
not the edit window in Word? Linux is not easy for the naive user either. Dif-
ficult software installations frustrate users. At first, there were two ways to
install software on Linux: building from source or installing from using a pack-
aging system. Each had its faults: Average users cannot or will not install from
source; packaging systems are fragmented without easily downloadable pack-
ages. Today, wizards make the task less daunting. Latex is a lovely language
that requires initiation into a cult of users who hand the knowledge out to
chosen initiates. There is no Latex in the “. . . for Dummies” series of self-help
books. The list is endless.

9.4.2 GUI

The graphical user interface (GUI) is a particularly apt style of interaction
because of the possibility of a flexible approach to the organization of tasks
through multiple windows and graphics.® The human capacity to perceive pat-
terns is enormous, and GUTIs try to capitalize on it by promoting visualization.
To understand a problem with visualization, a person must collect data and
have some intuition about data interaction.

9.4.3 Customer Care and Web Agents®

Customer Care modules integrate the customer contact function in CRM
systems. They provide interfaces for agents or customers to access ordering,

8 Cunningham, James P., Blewett, C. Douglas, and Anderson, J. Scott. “Graphical Interfaces for
Network Operations and Management,” User Interface Design and Development Issue, AT&T
Technical Journal, Vol. 72, No. 3, May/June 1993, pp. 57-66.
’ Krulwick, Bruce. “Automating the Internet: Agents as User Surrogates,” IEEE Internet Com-
puting, July/Aug. 1997, pp. 34-38.

Huhns, Michael N. and Singh, Munindar P. “Workflow Agents,” IEEE Internet Computing,
July/Aug. 1998, pp. 994-996.

320 HUMAN FACTORS IN SOFTWARE ENGINEERING

billing, and shipping data. CRM platforms interface with many systems to
reduce the number of screens a user must handle. Software encapsulates busi-
ness process knowledge in executable form. Expert systems capture the
decision-making processes concerning customer credit worthiness, combina-
tions of services, and appliances. With object-oriented design and distributed
object modules connecting information sources, databases can be updated
online, and groups of people can work more easily together. The growing com-
plexity and the need for mass customization place enormous demands on the
architecture of the system. Many companies provide CRM access via the Web.
The Web provides easy, standard access to multiple servers via a protocol call
Hypertext Markup Language (HTML). If the customer has a computer, an
Internet service provider, a Web browser, and some Internet literacy, he or she
can place orders.

Access brings dangers, constraints, and obligations along with convenience.
Rather than allow all users access everywhere, software agents'’ have been
developed to handle transactions. An agent is software that is proactive, per-
sonalized to the user, and adapted to a specific function. It allows indirect man-
agement of the customer’s foray into the company’s database in that the agent
selects and assembles data for the particular customer and oversees any
changes the customer makes. Web applications rely on workflow agents, which
take a set of tasks and develop an appropriate workflow." Firewalls'? must be
built at two levels, protocol and application, to deter hackers. Another con-
sideration is that the Web allows one session per transaction, a constraint that
must be accommodated by leaving information in the user’s computer as
“cookies” to pass user data between transactions.

9.5 SYSTEM EFFECTIVENESS IN HUMAN FACTORS TERMS

Effective systems appropriately assign to the computer those tasks that com-
puters do best and to humans those tasks that humans do best. Determining
which is which requires prototyping, user-centered design, user testing, itera-
tive design, usability-based enhancements, and usability testing laboratories,
all under the aegis of human factors specialists.

9.5.1 What to Look for in COTS

System operation should be tolerant of the user’s skill and experience. A
minimal amount of documentation and training should be required. A system

10 Krulwick, Bruce. “Automating the Internet: Agents as User Surrogates,” IEEE Internet Com-
puting, July/Aug. 1997, pp. 34-38.

"' Huhns, Michael N. and Singh, Munindar P. “Workflow Agents,” IEEE Internet Computing,
July/Aug. 1998, pp. 994-996.

2" Amoroso, Edward and Sharp, Ronald. PCWEEK Intranet and Internet Firewall Strategies, Ziff-
Davis Press, Macmillan Computer Publishing, Emeryville, CA, 1996.

SYSTEM EFFECTIVENESS IN HUMAN FACTORS TERMS 321
should not be idiosyncratic and should be tolerant of missing or noisy data.
The system should have an error strategy that detects errors at the earliest
possible point in system processing. The user should not be required to repeat
information, which the system already has; this is the minimal input principle.

These criteria seem self-evident, but they are difficult to satisfy. For
example, among widely used software for lay people is Microsoft’s Word for
Windows, which has been through several iterations; yet its use still requires
knowledge of programming folklore and the purchase of a 2-in thick manual.
Unless human factors specialists are involved in the earliest stages of design
specification, the difficulty of programming causes these major criteria to be
sacrificed. Table 9.2 summarizes the usability principles to which a buyer
should demand any software or system product adhere.

TABLE 9.2. Software Usability Principles

Principle

Explanation

Simplicity

Speak the users’
language

Be consistent

Minimize what users
must remember

Design for flexibility
and efficiency

Design aesthetic and
minimalist graphics

Satisfaction

Recognize the power
of chunking

Promote clarity and visual simplicity using:

(1) Subtractive design—reduce clutter by eliminating unneeded
icons, pictures, and text.

(2) Visual hierarchy—through task analysis, understand users’
tasks and establish a hierarchy of them. Give important tasks
special visual prominence. Relative position and contrast in color
and size can be used, but be sensitive to partial color blindness
and stay away from red on blue.?

Use familiar words, data labels, and concepts. Present information
in a natural and logical order in the user’s context. The use of
concepts and techniques that users already understand from their
real-world experiences allows them to get started quickly and make
progress immediately.

Indicate similar concepts through identical terminology and
graphics. Adhere to uniform conventions for layout, formatting,
typefaces, and labels.

Rely on recognition, not recall. Do not force user to remember
information across documents. Rely on human factor specialists to
determine appropriate levels of memory demand based on context
and user skill.

Accommodate a range of user sophistication and diverse user goals.
Allow redundant ways of doing tasks. Provide drop-down menus,
function keys, and command lines for the same function.

Create visually pleasing, efficient displays that capitalize on known
human capabilities in pattern recognition and color differentiation.

Create a feeling of progress and achievement. Reflect the results of
actions immediately; any delay intrudes on users’ tasks and erodes
confidence in the system.

The capacity of human short-term memory is small, but it can be
amplified by grouping subsets of information around keywords, by
completing single thoughts in one document, and by keeping tasks
short but information-rich.

322 HUMAN FACTORS IN SOFTWARE ENGINEERING

TABLE 9.2. Continued

Principle Explanation

Predictability Let users easily determine the action that should be taken with an
object, such objects usually mimic real-world objects.

Screen Layout Design screen layouts that map to each user motif and let the user
customize it. Do not eliminate extra space just to save space. Use
white space to provide visual “breathing room.”

Naturalness Build on users’ prior knowledge. Users should not have to learn new
things to perform familiar tasks.

Structure progressive Organize information hierarchically, with more general information
levels of detail appearing before more specific detail. Allow the user to stop when
sufficient information is received.

Navigation Allow user to determine the current position in the program
structure. Make it easy to jump among related tasks. Make it easy
to return to an initial state.

Safety Keep the user out of trouble. Users should be protected from
making errors. The burden of keeping the user out of trouble rests
on the designer. The interface should provide visual cues,
reminders, lists of choices, and other aids. Make the help helpful.
Test the help with naive users.

2http://www-306.ibm.com/ibm/easy/eou_ext.nsf/publish/6.

9.5.2 Simple Guidelines for Managing Development

If the system or software will be developed, not purchased, the opportunity
exists to do it correctly in human factors terms from the start. The following
are some simple guidelines a manager can consider to allow the process to
occur. But the overarching principle is that human factors work requires spe-
cialists. Design does not happen based on programmers’ intuition, managers’
instincts, or luck. Systems that are difficult to use are an ongoing expensive
exercise in programming arrogance and are unworthy of computer design
professionals.

Hire human factors professionals. A large body of research in human per-
ception, measurement, and user-centered design can be practically applied.
Integrate the human factors specialist into the design team. If there is a human
factors department in your organization, view it as a resource to support the
specialist devoted to your design team, not as a marketing frill to mention in
a sales brochure.

Expect the human factors specialist to test the product on specific, meas-
urable criteria for usability and to develop testing scenarios. Such criteria
include rate of human error, time to learn specific functions, speed of task per-
formance, subjective user satisfaction, and human retention of functions over
time. Expect to devote resources to prototype trials, field trials, and user
surveys.

HOW MUCH SHOULD THE SYSTEM DO? 323

Explicitly assign resources to address usability. Test laboratory time, and
space must be allotted for evaluating prototypes and system releases based on
human factors criteria.

Do not relegate the human factors specialist to the publications depart-
ment. Although good graphic design of supporting documentation is a part of
system usability, the major contribution of the human factors specialist is iden-
tifying software usability problems and working with programmers to arrive
at functional solutions.

Support technology transfer for human factors specialists as you would for
any other member of the design and development teams.

9.6 HOW MUCH SHOULD THE SYSTEM DO?

One of the most difficult design tasks is to anticipate the ultimate uses of a
system. It seems that users will happily manipulate a simple system to provide
outcomes that were not conceived by its designers (in the law, this is a loop-
hole), but they expect that if it can do some tough analysis, it should be able
to do it all. Zuboff identified this as a “trough of disillusionment,” which hints
at a certain anthropomorphizing of the machine. Users want it to communi-
cate and “think” like a human being.

Review the design to discover opportunities for user error and confusion.
Users should never have to rely on their memory for something the system
already knows, such as previous settings, file names, and other interface details.
If the information is in the system in any form, the system should provide it.
Once data are entered into any computer, they should be automatically
retrievable, with appropriate safeguards, by any systems.

\\\‘///

"~ MAGIC NUMBER!

Never force data to be entered twice.

Two-way human/computer communication is sometimes needed to clarify
or confirm requests, or to remedy a problem. In the past, many interfaces have
made communication one-way, computer-to-user. Communications should be
interactive and as rich in presentation and interaction capabilities as the rest
of the interface. It should present relevant information, provide access to
related information and help, and allow users to make task-specific decisions
to continue. Implement a “did you mean?” feature. Observe patterns of use,
automatically encapsulate the pattern, and offer it to the user. Support alter-

324 HUMAN FACTORS IN SOFTWARE ENGINEERING

native interaction techniques. Allow users to choose the method of interaction
that is most appropriate to their situation. Interfaces that are flexible in this
way can accommodate a wide range of user skills, physical abilities, interac-
tions, and usage environments. Table 9.3 shows some steps for gathering
insight.

TABLE 9.3. Steps for Extracting Insights From Data

Define the problem Set objectives and data required

Data access Retrieve the data.

Data scrubbing Assure consistency and accuracy of data.

Data mining Extract information.

Data presentation Show results in a form that eases decision making.

Business impact State the impact and value of the discovery on specific business
processes.

Indecisive Findings Discover changes from earlier operational state. Ask with intense

perseverance, “What's changed” until the change is found.

Floods of data are useful only when transformed into knowledge. Visual-
ization and Expert System are the best techniques to understanding massive
amounts of data that are often largely ignored because of lack of time or analy-
sis tools. Data visualization exploits the sophisticated visual acuity humans
have for pattern detection by using color, position, and texture to display
encoded data on a graphics workstation. There are design guidelines for build-
ing information-rich visualizations of business data. Visualizations work best
if they are task-oriented, domain-specific, and colorful; they must also have
high information density controlled by interactive filters, linking to other
views, and animation. Figure 9.2 perfectly illustrates the concept with a graphic
display of overloaded telephone lines.

Figure 9.2 shows the visualization of traffic on AT&T’s Long Distance
network minutes after an earthquake in Los Angeles. With one glance, you can
see long-distance calls overloading trunks, which caused the network man-
agement systems to automatically limit calls to the West Coast and avoid a
network crash. The picture also shows a problem between Harrisburg,
Pennsylvania and Kansas that the network managers would have missed in
the deluge of data stimulated by the earthquake. Manual steps were taken to
reroute this traffic away from the earthquake-induced overloads as the soft-
ware kept the network functioning in the face of loads that exceeded all ver-
ification tests.

9.6.1 Screen Icon Design

Most icons consist of a pictorial image surrounded by a shape with a distinct
border. Some also include a text label. Each component is critical to effective
design. The picture should be an effective metaphor, providing an analogy that
the user infers the behavior of the system. Using different background shapes
behind a pictorial image is effective for warning and information icons.

MAJOR U.S. CITIES

326 HUMAN FACTORS IN SOFTWARE ENGINEERING

Although shape coding is not used frequently for computer icons, it can be an
effective method of increasing the amount of information conveyed to the user
without increasing the number of overall icons.

Coding conventions such as color and flashing are components of an icon
used as the users interact with it. Color acts as an enhancer in search tasks and
identification tasks and improves recognition performance and allows for
faster and more accurate responses."

9.6.2 Short- and Long-Term Memory

Sy

~

i& /\l MAGIC NUMBER!

7 + 2 chunks of information is the range of human working memory.

This magic number is well used, but is it valid? Ben Shneiderman writes,
“Miller identified the limited capabilities people have for absorbing informa-
tion. People can rapidly recognize approximately 7 chunks of information at
a time [this value was contested by later researchers, but serves as a good esti-
mate]."* Bob Bailey reports that “...in the early 1970s, investigators began
broadening their view of short-term memory to a more useful one that became
known as “working memory.” The current concept of working memory
describes a memory system that does more than just temporarily store small
amounts of information.””® We conclude that 7 + 2 is still a good design rule
for making system easy to use, but less is more.

Miller, who wrote the paper defining 7 + 2, also wrote “The span of absolute
judgment and the span of immediate memory impose severe limitations on
the amount of information that we are able to receive, process, and remem-
ber. By organizing the stimulus input simultaneously into several dimensions
and successively into a sequence or chunks, we manage to break (or at least
stretch) this informational bottleneck . . . the concepts and measures provided
by the theory of information provide a quantitative way of getting at some of
these questions. The theory provides us with a yardstick for calibrating our
stimulus materials and for measuring the performance of our subjects. . . .

1 http://ht.tc.faa.gov/technotes/dot-faa-ct-tn02-12.pdf.

14 Shneiderman, Ben and Plaisant, Catherine. Designing The User Interface, 4th ed. Pearson
Addison-Wesley, Reading, MA, 2005, ch. 11, also p. 459.

' http://www.humanfactors.com/downloads/sep00.asp.

1% http://www.well.com/user/smalin/miller.htm.

EMERGING TECHNOLOGY 327

The World Wide Web has made it possible for consumers to access com-
puters. Some studies of interactions are available, and those that are recurring
will become guidelines. The data are still too raw to be considered design rules.
Nevertheless, these findings give insight to Web application design in 2005.
Ease of use, trustworthiness, and a low perceived degree of risk increases pur-
chases through the Web, and satisfied customers are more loyal to websites
than to brick-and-mortar stores. Consumer product sites that invest in good
writers and artists who produce dynamic graphics increase the willingness to
purchase online, enhance site loyalty, and even improve consumers’ attitudes
about company stores.

Rapid blast messages are more likely to be noticed and noticed faster than
ticker messaging or slowly fading messages, but the content of ticker alerts is
remembered better than rapid blast or slowly fading messages.

Conventional blue-colored links are the most frequently used. Customers
have learned to use them, and so they are most recognizable for navigation
and are easier to click than black ones, even though black ones have higher
visual contrast and are easier to see. Keyboard shortcuts are significantly faster
and more accurate than mouse clicks. Despite having practiced using a mouse,
nearly all users prefer using keyboard shortcuts."’

9.7 EMERGING TECHNOLOGY

The ability of computers to detect and interpret human body gestures decou-
ples people from input devices. This opens the possibility of new applications
where an input device can be cumbersome. Teaching the computer to under-
stand American Sign Language, augmented with standard keyboard function
key gestures, will allow widespread use of a new generic interface with com-
puters using gestures of the human body, typically hand movements.

In gesture recognition technology, a camera reads the movements of the
human body and communicates the data to a computer that uses the gestures
as input to control applications. For example, a doctor or emergency medical
technician signals “open EKG” to see a plot of the patient’s heartbeat during
a medical procedure when the gesture is fed through a computer.

Gesture recognition helps the physically impaired to interact with com-
puters, such as interpreting sign language. The technology changes the way all
users interact with computers by eliminating input devices such as joysticks,
touch pads, mice, and keyboards. This allows the unencumbered body to give
signals to the computer through gestures such as finger pointing. Gesture
recognition does not require the user to wear any special equipment or attach
any devices to the body. A camera instead of sensors attached to a device reads
the gestures of the body. Gesture recognition technology also can be used to
read nods, expressions, and eye movements.'®

' http://www.humanfactors.com/downloads/dec04.asp.
'8 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/COHEN/gesture_overview.html.

328 HUMAN FACTORS IN SOFTWARE ENGINEERING

Case Study: The Case of Higgins vs. Hoover

Congress raised concerns in 2002 about the development of a new system the
FBI was developing. For this case study, we will allow the project manager,
Sherry Higgins, to speak for herself. Read her testimony carefully for trust-
worthy concepts. Then read the New York Times news article that follows it,
dated 3 years later.

Testimony of Sherry Higgins, Project Management Executive for the Office of
the Director, FBI

Before the Senate Judiciary Subcommittee on Administrative Oversight and the
Courts

July 16, 2002
“FBI Infrastructure”

Good morning. I'm Sherry Higgins, the FBI’s Project Management Executive for
the Office of the Director. I have been asked to talk to you about how the FBI
is fixing old problems and building a collaborative information infrastructure to
better support our mission. I have also been asked to share with you some per-
sonal perspectives on how the FBI differs from the private sector in developing
our computing infrastructure. . . .

The FBI’s problems with information technology didn’t occur over night and
they won’t be fixed over night either. That is because it is more important to get
it right and know that we have the systems and capabilities that precisely fit our
mission as well as cure past problems.

The first major step in this direction is our Trilogy Program. The Trilogy
Program was designed as a 36-month effort to enhance our effectiveness
through technologies that facilitate better organization, access and analysis of
information.

The overall direction of the Trilogy Program is to provide all FBI offices with
improved network communications, a common and current set of office automa-
tion tools, and easy-to-use, re-engineered, web-based applications. . . .

The Information Presentation Component relies primarily on commercial-off-
the shelf (COTS) hardware and software products that provide a modern
desktop environment and connectivity, thus facilitating employees’ ability to
input, retrieve, manipulate and present information in text, image, audio and
video formats. The Information Presentation Component is replacing our anti-
quated computer workstations, providing an updated e-mail capability, and
includes simple things like additional printers and scanners that increase pro-
ductivity. This component is nearing completion . ..

The User Application Component is replacement of user applications that will
enhance our ability to access, organize and analyze information. Specifically, the
Trilogy Program will migrate five investigative applications into a “Virtual Case
File” (VCF),to provide user-friendly, web browser access to mission critical infor-
mation. A web-based interface will enable our users to have a graphical interface

EMERGING TECHNOLOGY 329

with investigative information. It will eliminate the cumbersome aspects of our
current system; greatly enhance our collaborative environment . . .

Under the FBI’s old legacy investigative information system, the Automated
Case Support (ACS), users navigate with the function keys instead of the point
and click method common to web based applications. Simple tasks, such as
storing an electronic version of a document today, require a user to perform
twelve separate functions,in a “green screen” environment. That will soon change
with Trilogy. Automated workflow will allow for a streamlined process to com-
plete tasking. Storing a document for the record will occur with a click of the
mouse button. This will make investigative and intelligence information imme-
diately available to all personnel with appropriate security.

Enhanced ad hoc reporting, online information sharing and state-of-the-art ana-
lytical tools will permit those conducting investigations and analyzing data to
easily organize and filter events and trends. Representatives from our field offices
who are defining the VCF user needs are also challenging current FBI business
practices to improving workflow and to ensure that archaic business rules are
not automated.

Multimedia functionality will allow for the storage of information in its
original form. Under the old system, agents cannot store non-compatible forms
of digital evidence in an electronic format, instead having to describe the
evidence and indicate where the evidence is stored in a control room.
Multimedia functionality will facilitate electronic storage of digital evidence and
media to the investigative case file, allowing access to the information from the
desktop . . .

The User Application development is now planned in two increments. ..
Release One has a targeted completion date of December 2003. This release
will allow different types of users, such as agents, analysts, and supervisors,
to access information from a “dashboard” that is specific to their individual
needs. ..

The VCF Team is currently using an industry-standard process called Joint Appli-
cation Development (JAD) planning, to define and prioritize the users’ opera-
tional requirements. By joining the application developers with the users (agents,
analyst, and support personnel), applications will be built that will reflect the
items needed by these individuals to perform their jobs. This approach differs
from the old way of doing business: figuring out how to do your job with the
tools you already have. JAD is not a rebuild of the old system. It has brought
users, designers, future systems operators together to develop applications that
are operationally sound and maintainable. JAD sessions started at the end of
January this year and are expected to conclude next week. Additional JAD ses-
sions will take place as part of the process for VCF Release Two.

As with any automation project, a number of risks must be managed to a have
a successful Trilogy Program deployment. The top three are all related to our
aggressive deployment schedule. I believe all are manageable . . .

Our aggressive schedule also leaves little time for . . . preparations in support of
the deployed infrastructure . . .

330 HUMAN FACTORS IN SOFTWARE ENGINEERING

Interoperability with legacy applications is another risk area. There is currently
a lack of documentation in place that captures the old legacy system functions
and operations. Therefore, the UAC team is still identifying new interfaces and
modifications to existing interfaces. Our schedule allocation for engineering and
testing may not be adequate for successful integration infrastructure deployment
with the current applications and servers. To mitigate this risk, the test team is
also prioritizing these test requirements and developing a common understand-
ing of system acceptance test coverage, conditions and criteria.

Once we catch up to a standard PC environment, the future looks very
positive. We are planning for a technology refreshment program (TRP) which
will replace Trilogy network and workstation hardware, network data storage,
server hardware, and embedded software on a periodic basis to prevent system
performance degradation and rising O&M costs due to obsolescence. The TRP
also envisions the incorporation of new technology as it becomes available in the
private sector and the study of emerging technologies to evaluate potential
future uses and benefits and to better anticipate future resource needs. In
essence, a viable infrastructure technology refreshment plan is essential to main-
tain the benefits of the Trilogy investment, the efficiency and capabilities of
FBI investigative support systems and to better plan and budget for out year
expenditures.

I have been asked to provide my personal perspective on what I have changed
since reporting to the FBI this March, and how the FBI contrasts with my expe-
rience in the private sector.

Before my arrival at the FBI, the Trilogy Program was overly focused on achiev-
ing an accelerated schedule. Although the Trilogy Program will still be brought
in ahead of its original schedule, we have begun allowing for more test time to
ensure we deliver a quality product to the field. Industry best practices recom-
mend “building in quality”, instead of “inspecting it in”. Using quality standards
and compliance up front will allow us to identify and prevent mistakes that would
require expensive fixes later on down the line.

Effective communications within and without the Trilogy Program is also essen-
tial to our success. I am in the process of developing a Trilogy Communications
Plan that will promote effective communications across our business enterprise,
so that valuable development information is not retained in pockets.

I am also developing an integrated master schedule for the Trilogy Program,
which will reflect the program’s critical path, dependencies and integration tasks
between our three components. We will constantly review this schedule to capi-
talize on efficiencies and schedule improvement opportunities.

One of the striking differences between the private sector and the FBI is the
Bureau’s lack of a dedicated corps of acquisition specialists with which to plan,
develop and manage large projects. The FBI has many talented people with some
of these requisite skills; we have pockets of expertise in program management
disciplines, such as financial analysis, budgeting, contract management and

EMERGING TECHNOLOGY 331

system engineering, residing in different divisions. However, the FBI has oper-
ated for too long without an organization responsible for proper development
business practices, which would ensure that FBI systems under development are
responsive to our users’ requirements.

Private industry and most government agencies recognize the advantages of
instituting a project management executive with a project management office to
manage complex, expensive, high-risk development efforts. According to the
Gartner Group, “enterprises utilizing a project office to manage the growing
complexity involved with creating or acquiring—and then implementing and
managing—these applications have a distinct advantage over those that do not.”
Perhaps the most frustrating experience I have had since coming to the FBI from
private industry is trying to work information technology issues that cut across
the FBI'’s organization. “Stove piped” communications internal to the FBI pre-
vents information and communications flow that is required to be responsive to
our users and oversight. Successful project development and implementation at
the FBI requires constant and accurate communications across our entire busi-
ness enterprise.

To make this a reality, I have recommended, and Director Mueller has approved
of the establishment of an Office of Programs Management. This office will
develop, manage, and deploy high-priority,complex and high-risk projects of high
dollar value, to successfully support the FBI’s operational mission. The office will
have a staff of subject matter experts in key program management functions,
matrixed to development project managers. These project managers will be
“loaned” from their sponsoring divisions to the Office of Program Management
during the development of the project, from the concept phase until the project
is ready to be transitioned to operations.

In addition, the Office of Program Management will be charged with using
repeatable processes for these efforts; in other words, we will implement a busi-
ness approach to our large acquisition efforts, by instituting core program man-
agement disciplines from a project’s concept phase until it is transitioned to
operations and maintenance. We will train a skilled corps of FBI PM subject
matter experts, and advise the FBI Director on program management and
acquisition-planning related organizational issues, proposals, and strategies.

Because of its user/management orientation, the Office of Program Management
will be in a position to make the most informed recommendations concerning
trade-offs between performance, schedule, and costs of projects, to determine the
best course for return on the FBI’s investment in IT. This office will also gauge
the impacts of delays of delivered functionality for the field divisions and head-
quarters, and develop budget justifications for the acquisition of required
resources to support approved systems projects.

In summary, Trilogy gives the FBI workable standards and a base it can build
upon. Trilogy is being built to allow for interchanges with different systems, inter-
nal and external, so that the historical problem of “not putting the pieces
together” is no longer an issue. Trilogy will provide the resources and tools the
FBI needs to support investigations and the critical building blocks for future

332 HUMAN FACTORS IN SOFTWARE ENGINEERING

improvements. The Trilogy Program is focused on getting these critical resources
to our Special Agents and field support personnel as quickly as possible."

New York Times, January 14, 2005

F.B.I. May Scrap Vital Overhaul of Its Outdated Computer System (reprinted
with permission of The New York Times Company)

By Eric Lichtblau

WASHINGTON, Jan. 13—The Federal Bureau of Investigation is on the verge
of scrapping a $170 million computer overhaul that is considered critical to the
campaign against terrorism but has been riddled with technical and planning
problems, F.B.I. officials said on Thursday.

In a last-ditch effort to save the program, the bureau has hired a research firm
at a cost of $2 million to evaluate the mounting problems in creating a “paper-
less” work system and to determine whether any parts of the project can be sal-
vaged, officials said. One idea under strong consideration is for the bureau to use
[commercial] off-the-shelf software instead of the expensive customized features
it has unsuccessfully sought to develop.

The development is a major setback for the EB.L. in a decade-long struggle to
escape a paper-driven culture and replace antiquated computer systems that
have hobbled counter terrorism and criminal investigations . . .

“It’s immensely disappointing to learn of this type of failure,” Lee H. Hamilton,
the vice chairman of the Sept. 11 commission, said in an interview. “The EB.I.
cannot share information and manage their cases effectively without a top-flight
computer system, and we on the commission got assurances again and again from
the FB.I. that they were getting on top of this problem. It’s very, very disap-
pointing to see that they’re not.”

While other intelligence agencies like the C.I.LA. and the National Security
Agency developed sophisticated and secure computer systems long ago, the
bureau has been much maligned for years for its failure to develop a modern
system. Members of Congress have joked that their grandchildren could send
e-mail messages and search databases more easily than F.B.I. investigators could.

Among other problems, officials blame technical and financial missteps, a rapid
turnover among the bureau’s information-technology personnel, difficulties in
developing a system that is both secure and accessible to investigators, and,
perhaps most critically, a resistance among some veteran agents who favor pens
and pads over computers.

“I am frustrated by the delays,” Mr. Mueller said Thursday in Birmingham, Ala.,
according to The Associated Press. “I am frustrated that we do not have on every
agent’s desk the capability of a modern case-management system.”

The bureau said that it had made some significant inroads in the last few years
in overhauling its computer capabilities, with the installation of 30,000 new
desktop computers and the development of a secure, high-speed network.

¥ http://www.fbi.gov/congress/congress02/higgins071602.htm.

EMERGING TECHNOLOGY 333

But the FB.I's “virtual case file” system, the last in a three-part computer upgrade
totaling more than half a billion dollars, has proved the most difficult. The system
was designed to give the bureau’s nearly 12,000 agents around the country instant
access to F.B.I. databases, allowing speedier investigations and better integration
of information both within the bureau and with other intelligence agencies that
must coordinate national security matters.

But the project is over budget and behind schedule, and F.B.I. officials acknowl-
edged on Thursday that they were uncertain whether it would ever be completed.
Only about 10 percent of the project, delivered by the Science Applications Inter-
national Corporation of San Diego, is now in use, officials said.

A draft report from the Justice Department’s inspector general, first reported
last month by the industry publication Government Computer News and again
on Thursday by The Los Angeles Times, concluded that the case file system as
now designed and conceived would not work and could not be put into use.

A senior FB.I official, who gave reporters a formal briefing on the issue on
Thursday on the condition of not being named, was not willing to go that far but
acknowledged “a number of deficiencies” and frustrations in the project and said,
“The application, the way it’s built now, is under evaluation . ..”

Problems with the “virtual” case file project have been well documented for
many months, but the acknowledgement Thursday from the FEB.IL. offered the
clearest indication yet that the system may be headed for extinction.

As it stands now, the bureau’s counter terrorism files are largely online, but inves-
tigators often may not have immediate access to data from other parts of the
bureau. So, for instance, an agent may not be immediately aware of information
from an investigation into credit-card fraud that could be relevant to a terror-
ism case. In addition, the bulk of the internal reports and documents produced
at the bureau must still be printed, signed and scanned by hand into computer
format each day, officials said.

“I did not get what I envisioned” from the project, the senior official acknowl-
edged. But he said the FB.I. today had a better understanding of its computer
needs and limitations as a result of the effort.” The lesson we have learned from
this $170 million is invaluable,” he said . . . after a series of failed computer proj-
ects at the F.B.I. dating back to the mid-1990’s, many members of Congress say
they are hesitant to give the bureau more money without clearer assurances of
success.

Lawmakers have asked the Government Accountability Office, the investigative
arm of Congress, to conduct an inquiry into failings in the bureau’s computer
systems . .. Mr. Leahy said lawmakers had pushed the bureau for “realistic
assessments” of the Virtual Case File’s performance, amid increasingly glum
reports in the news media and in government about its chances for success.

“As recently as last May, the F.B.I. was still claiming that V.C.F. would be com-
pleted by the end of 2004, and that it would at last give the FB.I. the ‘cutting-
edge technology’ it needs,” the senator said.

334 HUMAN FACTORS IN SOFTWARE ENGINEERING

“The F.B.I. needs to stop hiding its problems and begin confronting them early
on,” he said, adding, “Bringing the F.B.I.’s information technology into the 21st
century should not be rocket science.””

Conclusion: As late as July 2004 the FBI claimed that the job would be done
and would help their agents. But influential agents resisted the system—notice
the January 2005 comment on using paper and pen as a preference—and the
focus is on the geeky details rather than on VCF usability. Then a review
showed that the system was in trouble and various areas were playing “range
chicken.” A detailed problem list was not provided in July and contingency
plans were not in place. Notice there is no mention in the New York Times
article of Sherry Higgins standing up to take personal responsibility as project
manager. She seems to be gone. It would seem, because of the extreme resist-
ance to the new system throughout the Bureau, that there was no strong
human factors presence on the design team. Perhaps, if no funds were avail-
able for human factors analysis, they could instead have afforded an exorcist
to purge the ghost of J. Edgar Hoover and break the old cult of the lone indi-
vidual, fighting for freedom.

9.8 APPLYING THE PRINCIPLES TO DEVELOPERS

People who like to solve problems, try new tools, and tinker are attracted to
the software industry. They like the excitement of interacting with the com-
puter. They like to see their programs work. They discuss clever solutions end-
lessly and are happy to debug a program that eluded others. Programmers like
to learn and grow; they need change.

Programmers want to document, comment, and have a controlled devel-
opment process—it is just that they are ill suited to repeatedly do the neces-
sary detailed clerical work if bosses do not provide the tools or support staff.

\\\‘///

"~ MAGIC NUMBER!

Programming is hours of frustration interspersed with moments of ecstasy.

Agile methods institutionalize the work habits of the highly skilled pro-
grammer. They allow for experimentation and revision. They demand flexibil-

% Copyright 2005 The New York Times Company. Reprinted with permission.

APPLYING THE PRINCIPLES TO DEVELOPERS 335

ity and loose work structure. The focus of these methods is meeting schedules.
Agile methods are schedule-driven in comparison with the Spiral risk-driven,
incremental feature package-driven, and Waterfall document-driven
approaches to software development. The difference between them is how
bureaucratic they are in achieving the planning and control needed to assure
product quality. Agile methods trust the developers to honor the control and
deliver features when required. Programmers like these agile methods because
they put the burden on them, not on management or a control group to do
the right thing. The problem is that many developers need more structure to
their lives than agile methods provide. Nevertheless, agile methods attract the
best and can be used on small teams to great effect. The accomplished project
manager knows how to integrate the products of these loosely controlled
teams into a tightly controlled system. The development first-line and middle
managers must be technically competent for this to work. They need to make
sure that the developers are solving the right problem, and they need to leave
it to others to provide the structure that makes sure the project comes together
in the right way.

Agile methods build a spirit of competence and pride. This is the core of
human factors design.

In the turbulent world of business and technology, scrupulously following
a plan can have dire consequences, even if it is executed faithfully. However
carefully a plan is crafted, it becomes dangerous if it blinds you to change. Suc-
cessful projects rarely delivered what was planned at project inception; yet
they succeeded because the development team was agile enough to respond
repeatedly to external changes.

Contract negotiation, whether through an internal project charter or exter-
nal legal contract, is not a bad practice, just an insufficient one. Contracts and
project charters may provide some boundary conditions within which the
parties can work, but only through ongoing collaboration can a development
team hope to understand and deliver what the client really needs.

Welcoming changing requirements, even late in development, lets agile
processes harness change. Turbulence—in both business and technology—
causes change, which can be viewed either as a threat to be guarded against
or as an opportunity. Rather than resist change, the agile approach strives to
accommodate it as easily and efficiently as possible, while maintaining an
awareness of its consequences. Although most people agree that feedback is
important, they often ignore the fact that the result of accepted feedback is
change.

“Tacit knowledge cannot be transferred by getting it out of people’s heads
and onto paper,” writes Dixon. “Tacit knowledge can be transferred by moving
the people who have the knowledge around. The reason is that tacit knowl-
edge is not only the facts but the relationships among the facts—that is, how
people might combine certain facts to deal with a specific situation.”*" So the

! Dixon, Nancy. Common Knowledge, Harvard Business School Press, Cambridge, MA, 2000.

336 HUMAN FACTORS IN SOFTWARE ENGINEERING

distinction between agile and document-centric methodologies is not one of
no documentation versus extensive documentation; rather, it is a differing
concept of the blend of documentation and conversation required to elicit
understanding.

Agility relies on people who are alert and creative and who can maintain
that alertness and creativity for the full length of a software development
project. Sustainable development means finding a working pace of 50 to 60
hours a week that the team can sustain over time and remain healthy. Suc-
cessful professionals neither expect nor experience 35-hour workweeks.

\‘//

\‘//

MAGIC NUMBER!

“Ninety percent of success is showing up.” Woody Allen

Continuous attention to technical excellence and good design enhances
agility. Although agile development is similar to rapid prototyping’s speed and
flexibility, there is a big difference in technical structure. Agile approaches
emphasize quality of design. Agile processes assume and encourage accept-
ance of feature changes while the code is being written. Design cannot be a
purely up-front activity to be completed before implementation. Every itera-
tion requires design work.

“Simple, clear purpose and principles give rise to complex, intelligent
behavior,” says Dee Hock, former CEO of Visa International. “Complex rules
and regulations give rise to simple, stupid behavior.” No methodology can ever
address the complexity of a modern software project. Giving people a simple
set of rules and encouraging their creativity will produce far better outcomes
than imposing complex, rigid regulations. To be challenged is to be uncom-
fortable. Managers tell their people that they believe in challenge and they can
expect to change jobs when they master their current jobs. They explain that
with this opportunity for growth, they have the obligation to help if there is
trouble in their former jobs that their successors cannot solve. So, rotate devel-
opers’ assignments. Software people should not be doing the same thing for
more than 3 years.

9.9 THE BELL LABORATORIES PHILOSOPHY

Many wonder at the accomplishments of Bell Laboratories, its Noble Prize
winners, its inventions and its innovations. Dealing with people issues were

THE BELL LABORATORIES PHILOSOPHY 337

vital to the past success of Bell Laboratories. There was a sense of mission,
stability of direction, constancy of purpose and closeness to customers in the
daily work life with a sense of a first-rate professional community.

Developers at Bell Laboratories could impact their destiny, and there were
stressful but meaningful management mechanisms to couple diverse organi-
zations. There were common reviews, centralized support staffs, and a
company-wide problem escalation procedure. After some horrific experiences
of losing entire organizations, management realized that it was better to move
the work to the people than the people to the work. This meant transferring
projects between organizations. The stress came when managers fought losing
some of their people and responsibility. The goal was to establish a synergy
between personal goals and company needs.

The future quality of a company depends on the quality of new hires. Bell
Laboratories attracted excellent college graduates by offering them a free
graduate education. It was a sort of signing bonus. It involved a high-energy
recruiting process that occupied line managers with visiting universities and
interviewing candidates. During hectic hiring periods, line managers might
spend 6 or more hours a week for 3 to 4 months interviewing. Choosing future
employees was the responsibility of the best people because the executives of
that time understood that people never hire anyone better than themselves—
they simply cannot recognize the value before their eyes. Specific measures
taken to maintain the Bell Laboratories technical excellence were equally
important and were recognized, preserved, and enhanced. When these policies
changed, the Bell Laboratories culture degraded and lost its competitive edge.

These overriding values at Bell Laboratories fostered the respect of the
individual and individual excellence, but the individuals worked on teams.
These teams were empowered to let the core value be brought to bear on
complex projects. These were the core values, as shown in Table 9.4.

TABLE 9.4. Bell Laboratories’ Core Values

Enhancing the reputation of individual departments and their professional work environment.

Insisting on high-quality technical supervision.

Providing quality education, training, and personal development.

Having first-class reward systems benchmarked, including merit pay, compensation,
promotion, and technical recognition.

Providing an opportunity to rise by excelling in function.

Fostering mechanisms for intergroup learning such a project management and architecture
reviews.

Having a critical mass of highly skilled people in needed technologies.

Having stimulating coworkers available for informal discussions; an important role of Bell
Laboratories researchers was visiting development shops. Often the brightest developers
spent a year working with the researchers.

Insisting on challenging work, full utilization of capabilities, and access to needed information.

338 HUMAN FACTORS IN SOFTWARE ENGINEERING
9.10 SO YOU WANT TO BE A MANAGER

Here are the approved and expected ethical responsibilities of the software
manager; we need say no more:

Software engineering managers and leaders shall subscribe to and promote an
ethical approach to the management of software development and maintenance.
In particular, those managing or leading software engineers shall, as appropriate:

1. Ensure good management for any project on which they work, including
effective procedures for promotion of quality and reduction of risk.

2. Ensure that software engineers are informed of standards before being
held to them.

3. Ensure that software engineers know the employer’s policies and proce-
dures for protecting passwords, files and information that is confidential
to the employer or confidential to others.

4. Assign work only after taking into account appropriate contributions of
education and experience tempered with a desire to further that educa-
tion and experience.

5. Ensure realistic quantitative estimates of cost, scheduling, personnel,
quality and outcomes on any project on which they work or propose to
work, and provide an uncertainty assessment of these estimates.

6. Attract potential software engineers only by full and accurate description
of the conditions of employment.

7. Offer fair and just remuneration.

8. Not prevent someone from taking a position for which that person is suit-
ably qualified, without cause.

9. Ensure that there is a fair agreement concerning ownership of any soft-
ware, processes, research, writing, or other intellectual property to which
a software engineer has contributed.

10. Provide for due process in hearing charges of violation of an employer’s
policy or of this Code.
11. Not ask a software engineer to do anything inconsistent with this Code.

12. Not punish anyone for expressing ethical concerns about a project.??

9.11 PROBLEMS

9.11.1
a. A software shop is concerned with the productivity of its developers, so
they do a time study. They survey 22 software people for a typical 40-
hour workweek. The results are shown in Table 9.5.

2 This code was developed by the ACM/IEEE-CS Joint Task Force on Software Engineering
Ethics and Professional Practices (SEEPP): Executive Committee: Donald Gotterbarn (Chair).

PROBLEMS 339

TABLE 9.5. How Developers Keep Busy for Problem 9.11.1a

Activity Hours Spent
Nonproject Meetings 3.0
Field Support Problems 3.0
Planning Meetings 3.0
Administrative chores 0.5
Equipment Problems 0.25
Junk Mail 1.0
Customer Interaction 0.0
Training 0.0
*Testing 8
*Documenting 5
*Analysis 4
*Design 4
*Coding 7.25
Idle 1.0

*Task contributes to productivity.

The 22 people surveyed work on transaction-based systems. They use
the document-focused Waterfall Model for development. The organiza-
tion averages two function points per staff-month and wants to increase
productivity to three function points per staff-month. The tasks without
asterisks are overhead.

You use Table 9.6 describing software productivity increases in terms
of the expansion factor defined as the ratio of the number of lines of
executable code obtained from the number of lines of source code.”

What management policies changes would you try? Support your
answers quantitatively.

b. An analysis of the time spent is shown in Table 9.7.
A simple solution is to increase the time on the project by

28.25 project hours/ x 50% = 14.125 hours.

What do you think?
c. What process changes would you try?
d. What product changes would you try?
e. What project management changes would you try?

9.11.2 You are asked to become the project manager for a project in deep
trouble, but they report no development problems. The schema for the soft-
ware is defined in Figure 9.3. When you review the design, you find one module

» Bernstein, Lawrence and Yuhas, C. M. “Software Investment Strategy,” Engineering Manage-
ment Journal, Vol. 7, No. 4, Dec. 1995, p. 20.

340 HUMAN FACTORS IN SOFTWARE ENGINEERING

TABLE 9.6. Expansion Factor for Problem 9.11.1a

Improved Technology: Current Technology Expansion
Factor
Macro Assembler: Machine Instruction 3:1
FORTRAN / COBOL: MACRO Assembler 5:1
Database Mgmt: File Manager 2:1
Regression Testing: Big Bang Testing 1.25:1
Online: Batch Development 1.25:1
Prototyping: Waterfall (Top-Down Design) 1.6:1
AGL: In-line Reports 1.08:1
Subsecond Time Sharing: Online Dev 1.4:1
Reuse UNIX™ Libraries: No Reuse 1.35:1
Object-Oriented: Procedure Programing 3:1
Large Scale Reuse: Small-Scale Reuse 1.5:1

TABLE 9.7. Activity Analysis for Problem 9.11.1b

Activity Hours Spent Time Spent on Development
Nonproject Meetings 3.0 0
Field Problems 3.0 0
Meetings 3.0 0
Administrative Chores 0.5 0
Equipment Problems 0.25 0
Junk Mail 1.0 0
Customer Interaction 0.0 0
Training 0.0 0
Testing 8 8
Documenting 5 5
Analysis 4 4
Design 4 4
Coding 7.25 7.25
Idle 1.0 0
Total 40 28.25

with a data structure that does not map the physical problem well. As a result,
there are many thousands of lines code written to manipulate the data struc-
ture to perform the need functions.

Physical Problem: In the cross-connect box shown in Figure 9.3, the software
is to assign connections to links so that the length of the jumpers is minimized.
In this diagram, the jumper is the largest it can be. The software is expected
to move A’s connection down or Z’s connection up.

You find that to fit within the constraints imposed by the customer, a hier-
archical data model is used. The database schema is shown in Figure 9.4.

PROBLEMS 341

Cross-Connect Box

A Link 1 O
Jumper

O \O
O Link 2 Z

O Ports

Figure 9.3. Cross-connect box for Problem 9.11.2.

Connections

Links Cross Connect

Port Jumper

Figure 9.4. Database schema for Problem 9.11.2.

a. List three problems you might expect to find.
b. List five steps you might take to improve morale and productivity.

9.11.3 You are developing a system in which code will be written in C++ with
mySQL for the database access. As usual your schedule is tight. Marketing
needs to have the product released in 6 months. Three people report to you.
They are skilled in C++, but not in mySQL. You estimate that there are six
staff-months of C++ work and four staff-months of mySQL work needed to
get the product to system testing. Your staff has a record of being 50% effec-
tive when they first use a new technology. System testing estimates that 1
month is required for testing and release packaging. You cannot hire any more
people, so you have decided to send all three to 1 week of mySQL training.
Explain the advantages and disadvantages of each strategy and your best
estimate, assuming there are no task dependencies, on how long it will take to
get the product released. Which is the best software engineering strategy?

342 HUMAN FACTORS IN SOFTWARE ENGINEERING

a. Do the C++ first and then send the three people for mySQL training.

b. Send the three to mySQL training after they have done about half of
the C++ and Perl coding. History shows they lose a week of work when
they are interrupted.

c. Send the three to mySQL training before doing any C++ work.

9.11.4 You are eager to improve the long-term productivity of the group of
developers you are managing so you:

a. ask them to work overtime.

b. provide them with new tools.

c. manage them more closely.

d. measure their workload and typical day.

9.11.5 You are asked to produce a program on a tight schedule. Your boss
tells you what functions are needed. You are free to use the tools of your
choice. To meet the schedule you:

a. begin coding immediately.

b. meet with the user.

c. research other solutions.

d. design the interfaces.

9.11.6 How does the human engineering coupled with prototyping reduce
the effort and time needed to build the system?

BIBLIOGRAPHY

Arthur, Lowell Jay. Programmer Productivity: Myths, Methods, and Murphology A
Guide for Managers, Analysts, and Programmers, John Wiley and Sons, New York,
1983, pp. 25-27.

Bailey, Robert. Human Performance Engineering A Guide for System Designers,
Prentice-Hall, Englewood Cliffs, NJ 1982.

Bernstein, L. “Software Project Management Audits,” The Journal of Systems and Soft-
ware, Vol. 2, No. 4, Dec. 1981, pp. 281-287.

Bernstein, L. and Yuhas, C. M. Basic Understanding of Telecommunications Networks:
Copper to Sand to Glass to Air, Kluwer Academic Publishing, New York, 2000.

Bernstein, Lawrence and Yuhas, C. M. “Software Investment Strategy,” Engineering
Management Journal, Vol. 7, No. 4, Dec. 1995, pp. 15-21.

Boehm, Barry W. “Software Engineering,” Classics in Software Engineering, Yourdin
Press, New York, 1979, p. 325.

Boehm, Barry W., Gray, T. E., and Seewaldt, T. “Prototyping Versus Specifying: A
Multiproject Experiment,” IEEE Transactions on Software Engineering, Vol. SE-
10, No. 3, May 1984.

BIBLIOGRAPHY 343

Brooks, Frederick P, Jr. The Mythical Man-Month: Essays on Software Engineering
Anniversary Edition, Addison-Wesley, New York, 1995.

Chen, Stephen. “From Software Art to Software Engineering,” Engineering Manage-
ment Journal, Vol. 7, No. 4, Dec. 1995, pp. 23-27.

Cunningham, James P, Blewett, C. Douglas, and Anderson, J. Scott. “Graphical
Interfaces for Network Operations and Management,” User Interface Design and
Development Issue, AT&T Technical Journal, Vol. 72, No. 3, May/June 1993, pp.
57-66.

DeMarco, Tom and Lister, Timothy. Peopleware-Productive Projects and Teams,2nd ed.
Dorset House, New York, 1999.

Fogg, J. (Ed.). “Persuasive Technologies,” Communications of the ACM, Vol. 42, No. 5,
May 1999.

Glib, Tom and Weinberg, Gerald M. Humanized Input Techniques for Reliable Keyed
Input, Winthrop Publishing, Cambridge, MA, 1977.

Miller, G. A. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” The Psychological Review, 1956, pp. 81-97.

Pascale, Richard Tanner. “Zen and the Art of Management,” Harvard Business Review,
March-April 1978, pp. 153-162.

Shneiderman, Ben and Plaisant, Catherine. Designing The User Interface, 4th ed.
Pearson Addison-Wesley, Reading, MA, 2005, ch. 11 and p. 459.

Vredenburg, Karel. “Increasing Ease of Use,” Communications of the ACM, Vol. 42,
No. 5, May 1999, pp. 67-69.

10

Implementation Details

We include here those important implementation details that are not usually
addressed in software engineering. Van Vliet’s excellent book on traditional
software issues' can be used in conjunction with this book. Some topics are
from the early days of computer science, but as Brooks wrote in No Silver
Bullet, “There is no single development, in either technology or management
technique, which by itself promises even one order-of-magnitude improve-
ment within a decade in productivity, in reliability, in simplicity”.> Many good
processes and tools speed implementation and reduce defects. The software
engineer’s job is to select those appropriate to the problem. Our software
friends love to make bold statements, and here is ours:

\‘//

\‘//

MAGIC NUMBER!

No method, process, or technology is best, current, or universally practiced.

! Van Vliet, Hans. Software Engineering: Principles and Practice, 2nd ed. John Wiley and Sons,
New York, 2000.

2 Brooks, Frederick P. The Mythical Man-Month, anniversary edition, Addison-Wesley Longman,
Reading, MA, 1995, p. 179.

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

344

STRUCTURED PROGRAMMING 345

Too many managers spend too much time looking for a silver bullet that
will end software crises, when engineers know that the approach chosen to
solve a problem depends on the problem and the problem solver.” Engineers
understand many different processes and have the critical judgment to know
when and, more importantly, when not to use them. There are so many good
software implementation processes and technologies that they fill a six-course
graduate program in Quantitative Software Engineering at Stevens Institute
of Technology.*

There are some implementation details that every accomplished software
engineer should know. These are topics we selected for emphasis or because
they are misunderstood, ignored, unfamiliar, or emerging.

(1) Structured programming
(2) RUP and UML

(3) Coding styles

(4) Code reviews

(5) Attacks

(6) Open source

10.1 STRUCTURED PROGRAMMING

Structured programming has been with us since the 1970s. It is a foundation
for building trustworthy systems. The fundamental principle of structured pro-
gramming is that at all times and under all circumstances, programmers must
keep the program within their intellectual grasp. The ideas of structured pro-
gramming are lost to many younger software engineers.

sl
i\ /\’ MAGIC NUMBER!

=t

Structured programs are prime proper programs that can be separately
complied and are no smaller than 50 SLOC or larger than 1000 SLOC.

* Brooks, Frederick P. “No Silver Bullet: Essence and Accidents of Software Engineering,” Mile-
stones in Software Evolution, edited by Paul W. Oman and Ted G. Lewis, IEEE Computer Society
Press, Los Alamitos, CA, 1990, pp. 293-300.

* http://www.cs.stevens.edu/Programs/Grad_Master_Science.shtml.

346 IMPLEMENTATION DETAILS

Early work at IBM by Rick Linger, Harlan Mills, and B. Witt found that
reliable systems were more likely if they were constructed from prime proper
programs. A prime program is a software module with one entry and one exit
point. A proper program has a path from the entry to the exit through every
node of the program, where a node is a segment of code that implements only
one of these operations:

(1) Assignment and calculation
(2) If_then_else
(3) Do_while,

A compound or traditional program is structured if it is functionally equiv-
alent to a set of proper programs plus a counter. The seminal paper explain-
ing the need for such structure is Dijkstra’s “GoTo Statement Considered
Harmful,” from which the following excerpt is taken.

For a number of years I have been familiar with the observation that the quality
of programmers is a decreasing function of the density of GoTo statements in
the programs they produce. More recently I discovered why the use of the GoTo
statement has such disastrous effects, and I became convinced that the GoTo
statement should be abolished from all “higher level” programming languages
(i.e. everything except, perhaps, plain machine code) . . . Our intellectual powers
are rather geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For that reason we
should do...our utmost to shorten the conceptual gap between the static
program and the dynamic process, to make the correspondence between the
program (spread out in text space) and the process (spread out in time) as trivial
as possible.’

Dijkstra’s insight supported Mills’ early work on structured programming
design constraints in the metaphor of the 1960s when Mills’ idea was being
attacked. Although GoTo’s have disappeared in modern programming lan-
guages, the need for structured programs has not. This lesson frequently falls
through the cracks in our rush to teach the latest technology. Software engi-
neers are not taught the failures of unstructured programming of the past.
Dijkstra’s provocative warning jolts us so that we avoid the trap of producing
unmaintainable, unstructured code in object class methods or in procedural
programs.

10.2 RATIONAL UNIFIED PROCESS AND UNIFIED
MODELING LANGUAGE

The Rational unified process (RUP) is a framework that incorporates many
good software practices suitable for a wide class of software developments.

° http://www.acm.org/classics/oct95/.

RATIONAL UNIFIED PROCESS AND UNIFIED MODELING LANGUAGE 347

RUP solves many problems endemic to software development. Its unique con-
tribution is that it is architecture-driven and provides the 4 + 1 view of soft-
ware architecture that is the foundation for creating comprehensive software
products. Philippe Kruchten explains that RUP consolidates processes

...1into a form suitable for a wide range of projects and organization. In partic-
ular, it covers six practices:

(1) Develop software iteratively,

(2) Manage requirements,

(3) Use component-based architecture,
(4) Visually model software,

(5) Continuously verify software quality,
(6) Control changes to software.’

RUP includes the powerful Unified Modeling Language (UML). This
diagramming language allows developers to visualize and document models
of software systems. It is targeted for object-oriented systems but is useful for
all systems, especially online transaction ones. UML is not a development
method. UML is an industry standard for graphically describing software
products.

UML consists of diagrams that model different aspects of a software
product. A subset of these diagrams coupled with the 4 + 1 architecture views
are a reasonable way to start using UML. As designers become more familiar
with the UML approach, they can use other diagrams to visualize and design
their product.” This startup set of diagrams is the following:

(1) 4+ 1 architecture views show a logical, physical, process, and develop-
ment diagram of the system.

(2) Use case diagrams show users of the system and the business scenar-
ios of how they will use the system.

(3) Class diagrams show the object classes and their interrelationships. For
procedural programs, this will be the hierarchy of components and sub-
components, called the work breakdown structure in configuration
management.

(4) Sequence diagrams show the method calls made by one object to
another on a time-based chart. It is an easy-to-follow view of the flow
of messages through a software system.

% Kruchten, Philippe. The Rational Unifies Process—An Introduction, 2nd ed. Addison-Wesley,
Reading, MA, 2000.

” http://www-306.ibm.com/software/rational/uml/.
http://www.informit.com/articles/article.asp?p=347699&seqNum=3tpo.

348 IMPLEMENTATION DETAILS
Case Study: The Case of the Pokey JiftyLOOP

Prospectus: Telephone companies have dreamt of integrating data about how
the network is constructed and how it is used. Making this dream a reality has
eluded them for 30 years. The benefits of such integration are widely known.
The introduction of high bandwidth connections for WWW access makes such
integration even more important. An integrated engineering/provisioning
system is needed to replace legacy systems and to allow the telephone com-
panies to offer new copper-based mid-band technology without suffering the
cost penalty of special service processing.

Today an inefficient array of stand-alone systems connects and disconnects
customers, installs new equipment, and adds new services to existing cus-
tomers. Entrenched organizations stand in the way of the introduction of tech-
nology that threatens to disenfranchise them. The tools and systems for
network managers are hard to use and are not integrated, but once learned
they are hard to abandon. Any provisioning system, regardless of its sophisti-
cation, is the intellectual descendant of the shoebox full of 3 x 5 cards that
Alexander Graham Bell used to keep track of all the details of the logical
network when he first strung wires in Boston. He kept track of the physical
equipment with standard engineering drawings. A single computerized data
model is the foundation for a new integrated engineering/provisioning system.

MOYV: JifftyLOOP almost eliminates the craft time required to provision a
special service line by making data easily accessible and, even more impor-
tantly, accurate. Table 10.1 illustrates the expected savings.

TABLE 10.1. Functional Area/Savings With JiffyLOOP

Functional Area Savings/
Assigned Line
Two-wire special (installation time reduction) $2.43
Four-wire special (installation time reduction) $4.79
Automated line rearrangements $3.00
Automated equipment rearrangements $0.75
Calculating Engineering Characteristics $0.53
Routine work order generation $1.45
Elimination of engineer $10.16
TOTAL $23.11

Requirements Specification: JiffyLOOP is the system designed to enhance
the existing engineering, construction, and provisioning process. Specifically,
JiftyLOOP will perform the following functions:

« Electrical designs to assure customer service

« Automated equipment rearrangement as a transaction for five or fewer
related changes

RATIONAL UNIFIED PROCESS AND UNIFIED MODELING LANGUAGE 349

« Automated equipment rearrangement running in background for more
than five related changes

« Repository of the result of electrical designs

+ Automated update of legacy systems

« Plant location drawings using satellite data

+ Online inquiries based on address and telephone number

Four existing products are integrated to meet these requirements. Table 10.2
names each product and states its role.

TABLE 10.2. Product/Functionality for JiffyLOOP

Product Functionality

PRIS * Automates design and engineering
¢ Rearranges equipment
* Posts changes to drawings

Mediation & ¢ Legacy interfaces

Admin. JiffyLOOP system administration

DB-Able » Stores logical, physical, and graphical data
* Map generation

LDB ¢ Provides drawing and plotting tools
* GIS
¢ Windows GUI

Translates graphics

A JifftyLOOP logical view, physical view, UML use case, a class diagram,
and sequence chart demonstrate the visualization power of UML. A complete
and detailed architecture description is beyond the scope of this case study.

Logical View: Figure 10.1 is a component diagram of the system showing its
parts and their relationships. As functions are assigned to subcomponents, the
diagram will be decomposed and eventually become a UML chart called a col-
laborative diagram. Designers use these charts to understand the coupling
between subsystems.

Physical View: Figure 10.2 is the physical view for JiffyLOOP. It shows the
hardware and operating systems compatible with all component systems.
There are many possible client/server configurations. The physical view limits
customer selections to a subset. Customers whose IT shops do not support any
of this subset can easily see that they cannot use JiffyLOOP.

UML Case Diagram: Figure 10.3 is a high-level use case diagram showing the
business flows for a customer requesting service. In this case, the needed
equipment is not in place, so instructions go to a constructions crew to
rearrange existing equipment and install necessary equipment.

350

IMPLEMENTATION DETAILS

DB-Able
< Get/Post DB-Able
i Plant Plant Data
<. ~--=>| Records
V\:\’ BREN - \
R PRIS
——] DB Determine Pending
h . | Field Changes Change
schematic Drawings Post Pending
Work Orders Post As built
= Provision Service
g \‘ Legac
Installer Construction Medi.ation & Sygster}:”ls
Foreman Admin
Figure 10.1. JiffyLOOP logical view.
Server C||ent
Hardware Operating Hardware Operating
e HP ® Solaris ® |ntel-based ® MS Windows
e |BM ° HP Pentium
166 MHz PC/ 32
® Pentium 133 MHz
UNIX Client
Server
Database Network
e Oracle o Microsoft — @
)

Figure 10.2. JiffyLOOP physical view.

RATIONAL UNIFIED PROCESS AND UNIFIED MODELING LANGUAGE 351

Request
Service

I

Provision
Service

}

Activate
Service

n Bill for
Service

Install
Equipment
as Needed

A

Figure 10.3. JiffyLOOP use case diagram.

Class Diagram: It is surprising how difficult it is to create an object class for
familiar things. Consider the simple idea of a telephone number that is fun-
damental to the design of JiffyLOOP data structures and algorithms. If
you know my telephone number is 555-999-1111 and dial just that, it is
unlikely that my phone will ring. If you are calling from your office, you might
need to dial 9 first. In New Jersey, you would need to dial 1 before the ten-
digit number.

Here is a simple diagram for a class called telephone number. Consider a
North American phone number 555-999-1111. The first three digits, 555, is the
area code that informs the geographic location of the telephone. The second
three digits, 999, inform the local switch in the neighborhood central office and
link to the proper interoffice trunk for routing a call. The last four digits, 1111,
point to the individual termination on the local switch attached to the line con-
nected to the telephone. Figure 10.4 shows the information so far.

This telephone number class is still incomplete:

(1) It does not allow calls from North America to Europe, you need to
prefix an “11” to a country code.

352 IMPLEMENTATION DETAILS

Assign Service

Telephone Number

3 Digit ..
. Central 4 D,lglt
3 Digit Office Line
Area Code Code Number
Location Equipment
Street Zip

Figure 10.4. Class diagram for telephone number.

(2) It does not anticipate ten-digit dialing in New Jersey.

(3) It does not anticipate calls originating from telephones attached to a
PBX that require a prefix of “9,” “8,” or even “7.”

(4) It does not anticipate the special numbers “0” for operator, “411” for
information, “611” for repair services, or “911” for emergency services.

Such a seemingly simple concept can become a complex class structure.
Figure 10.5 shows the sequence diagram for this wire change.

Conclusion: By tracing this case history, you see the usefulness of the 4 + 1
views and the UML diagrams. They give you insight to how the system will
work and into how difficult it will be to build and extend it before any code
is written. Design changes can be made in this fluid state to simplify the system
so that it is more likely to be delivered on time and within budget. Visualiz-
ing the interfaces identifies dependencies, potential bottlenecks, and risk expo-
sures. Any bottlenecks or potential deadlocks will be apparent. The design
objective is to transform the details of the JiftyLOOP features from the real
world to the computer world.®

Notice DB-Able’s complex interfaces in the JifftyLOOP logical view.
A race condition between different interdependent transactions could develop
that will impact the system performance. This problem also occurs in the
sequence diagram. Redesign is needed. The JiffyLOOP project never
produced a product because the stakeholders could not afford the necessary
redesign.

% Bernstein, L. “Get the Design Right!” IEEE Software, Sept. 1993, pp. 61-63.

MEASURING COMPLEXITY 353

DB-Able
Legacy M* Server Client Map Generator LDB Database
\ « Redister
Place in
Queue ? Check & Request
Data
Format
Legacy
Legacy Legacy
| Request(s) Request(s)
Legacy Legacy
Data Data
Loop LDB
Report Request
Loop LDB Report Request
Create Loop
Loop LDB Report Completion Notice LDB Report
| Loop LDB Report
Completion Notice Loop Computation

& Loop Value Analysis

Determine if
LMU is possible

Return Y/N

Figure 10.5. Sequence diagram for complex class structure.

10.3 MEASURING COMPLEXITY

We have urged you to keep problems simple. The challenge to software engi-
neers is how to measure complexity to tell where simplification is needed.
Complexity is an area of software metrics that is focused on direct measure-
ment of software structures. Complexity measures are used to predict the
effort and time it will take to build a software product and its reliability and
maintainability. Complexity measures help control the development process
in a software project. During design, they point to tightly coupled modules.
During implementation, they identify the modules most in need of formal code
inspections. During maintenance, they provide detailed information about
software modules to help pinpoint areas of potential instability.
Software complexity is a function of each of the following:

(1) The type of application, characterized as real-time, online, or report
generation. Table 10.3 contains definitions for each type of software.

(2) The nature of the computations performed including the precision of
the calculations.

(3) The component’s size, measured in function points.

(4) The cohesion of the component. Cohesion is a measure of the mutual
affinity of subcomponents within a module.

354 IMPLEMENTATION DETAILS

(5) The coupling within and the coupling between components. Coupling
measures the component’s external references and dependencies.

(6) The steps needed to assure a component’s correctness.

(7) The component’s trustworthiness separately and when integrated into

a system.

(8) The program control flow.

TABLE 10.3. Defining the Type of Software

Type Characteristics Examples
Real-time (1) Key tasks must be Operating Systems,
executed by a hard communication drivers,
deadline or the system disk controllers, hardware
will become unstable. diagnostics, and embedded
(2) Software must be aware software that must deal with
of the details of the all states of the hardware.
hardware operation. Games, avionics, and
The most difficult are automotive control and
the “don’t care” states. military systems are typical
(3) Generating bit stings to real-time systems
test, configure, or
control hardware.
Online Multiple transactions are run Customer Relationship
transactions concurrently. Fast response Management, Enterprise
applications time is important. Database Resource Planning,
and transaction recovery is Customer Care, network
required. Virus protection management, provisioning,
and GUIs are needed. and order-entry systems are
typical online systems.
Database inquiry systems
are also typical of this type.
Report These programs run in the Scientific programs such as
generation, background. They can be those written in FORTRAN
analysis, and computationally intensive. or business programs are
script typical of this type. Most

programming

software libraries fall into
this category. Examples:
fulfillment and off-line
inventory management
software.

Lui Sha’s work relates simplicity to high reliability. His view is that effort
to simplify designs and implementation assures the correctness of a compo-
nent and greatly influences software product reliability. He advocates designs
that eliminate singularities in the execution of the component.’

? Sha, Lui, “Using Simplicity to Control Complexity,” IEEE Software, Vol. 18, No. 4, July/Aug.

2001, p. 25.

MEASURING COMPLEXITY 355

Another set of metrics is based on the structure of the program. The most
widely used is McCabe’s Cyclomatic Metric'” that measures the number of
independent control paths within a program. This metric looks for loops and
effectively finds components that are orders of magnitude more complex than
others. Trustworthy system design demands that these components be
redesigned because reliability increases by reducing complexity. Software tools
to measure a program’s cyclomatic complexity are commercially available at
www.mccabe.com, which states this definition:

The McCabe Cyclomatic complexity measure is versatile and widely used. It is
based purely on the decision structure of the code; it is uniformly applicable
across projects and languages and is completely insensitive to cosmetic changes
in code. Many studies have established its correlation with errors, so it can be
used to predict reliability. More significantly, studies have shown that the risk of
errors jumps for functions with a cyclomatic complexity over 10, so there’s a val-
idated threshold for reliability screening. Also, this assessment can be performed
incrementally during development and can even be estimated from a detailed
design.

For an individual software module, the programmer can easily calculate cyclo-
matic complexity manually by counting the decision constructs in the code. This
allows continuous control during implementation. It is completely independent
of text formatting and nearly independent of programming language."

Figure 10.6 shows the control flow graph of a simple software module.
Figure 10.7 shows a complex, moderate-risk software module. Figure 10.8
shows an extremely complex, high-risk module. The software functions repre-
sented in Figures 10.6, 10.7, and 10.8 have cyclomatic complexity measures of
7,16, and 22, respectively.

Cyclomatic complexity can be specialized to measure essential complexity
that finds the amount of a program’s unstructured decision logic. Unstructured
code, typically caused by using Dijkstra’s harmful GoTo statements or in
modern programming languages by breaking out of loops, is error prone and
hard to understand. Such unstructured control logic cannot be decomposed,
understood, and modified by itself. Essential complexity can measure mainte-
nance risk exposure with a threshold value of four. Cyclomatic complexity
increases gradually when code is added during maintenance. Essential com-
plexity can increase dramatically by the addition of a single software patch.
The patched code is then risky code. Using essential complexity to screen
modules after each modification during maintenance can manage this risk.
Although Figures 10.7 and 10.8 both have high cyclomatic complexity, Figure
10.8 has high essential complexity and thus carries a significantly higher main-
tenance risk."

!0 See Van Vliet, as cited in footnote 1, p. 308.
" http://www.mccabe.com.
2 http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp.

356 IMPLEMENTATION DETAILS

Program: Graphs r0

Low risk (A) -1
Cyclomatic Graph 2,
Cyclomatic 7 ! 3
Essential 1
Design 4 N4
5 £
-6
-7
8 <
-9
-10
11<
-12
13
14
15
16 17
18
19

20

Figure 10.6. Simple module cyclomatic complexity of 7 (with permission of McCabe Inc).

MAGIC NUMBER!

N

=i
The goal of design simplification is to reduce complexity, measured by the
number of function points that must be implemented. Eliminate 40% of
those counted at the start of the architecture phase by eliminating gener-
ality and using the technologies of reuse, refactoring, equation simplifica-
tion, and reducing the cyclomatic signature of the pseudo-code of a
component.

Once the architecture is synthesized, coupling and cohesion measurements
begin for each view of the system and within the components. If pseudo-code
is used as part of the design, cyclomatic measures can be taken. Then devel-
opers can make their measurements as code is produced. This process gives
the programmer direct and objective feedback about the module. The test
group measures the complexity of every component with every release.
Frequent measurements prevent complexity from creeping into the software
structure as it evolves.

MEASURING COMPLEXITY

Program: Graphs
Unreliable (B)
Cyclomatic Graph
Cyclomatic 16

Essential 1

Design 3

30

Figure 10.7. Moderate-risk cyclomatic complexity of 16.

357

Code inspection and redesign are required for every component with a
cyclomatic complexity greater than ten times the median of all components

MAGIC NUMBER!

or with an essential complexity greater than five times the median.

358 IMPLEMENTATION DETAILS

25

Program: Graphs
Unmaintainable (C)
Cyclamatic Graph

Cyclamatic 22
Essential 22
43 Design 6
46
50
---L4d

Figure 10.8. High-risk module cyclomatic complexity 22.

The form shown in Figure 10.9 is one of many ways to estimate complex-
ity at all development stages. The measures are tracked throughout the life
cycle of a software product to observe trends and justify work needed to keep
the product simple. Wideband Delphi® is used to map qualitative judgments
into an ordinal range of 1 to 5.

5 Boehm, Barry. Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981, pp.
335-336.

MEASURING COMPLEXITY 359

Project or Component Name: Development Stage:
Project type: real-time, online transaction or background Software Engineer
(Circle one) Date
Metric for Complexity (1 is simple and 5 is complex)
Factor Points | Score
Problem Domain
¢ All algorithms and calculations are simple. 1
* Most algorithms and calculations are simple. 2
* Most algorithms and calculations are moderately complex. | 3
* Some algorithms and calculations are difficult. 4
* Many algorithms and calculations are difficult. 5
Architecture Complexity
* Code ported from one known environment to another. 1
Application does not change more than 5%.
* Architecture follows an existing pattern. Process design is 2
straightforward. No complex hardware/software interfaces.
* Architecture created from scratch. Process design is 3

straightforward. No complex hardware/software interfaces.

* Architecture created from scratch. Process design is complex.
Complex hardware/software interfaces exist, but they are well 4
defined and unchanging.

* Architecture created from scratch. Process design is complex.
Complex hardware/software interfaces are ill defined and
changing.

Data Structure Design

e Simple well-defined and unchanging data structures. Shallow | 1

inheritance in class structures. No object classes have
inheritance greater than 3.

e Several data element types with straightforward relationships. | 2
Less than 5 object classes have inheritance greater than 3.

* Multiple data files, complex data relationships, many libraries,
large object library. No more than 10% of the object 3
classes have inheritance greater than three. The number of
object classes is less than 1% of the function points

¢ Complex data elements, parameter passing module-to-module,
complex data relationships, and many object classes have 4
inheritance greater than three. A large but stable number of
object classes.

¢ Complex data elements, parameter passing module-to-module,
complex data relationships, and many object classes have
inheritance greater than three. A large and growing number of
object classes. No attempt to normalize data between modules.

Figure 10.9. Measuring software complexity.

360 IMPLEMENTATION DETAILS

Code Design
¢ Nonprocedural code (4GL, generated code, screen skeletons). 1
High cohesion. Programs inspected. Module size constrained
between 50 and 500 SLOCs
* Program skeletons or patterns used. Programs inspected. 2

Module size constrained between 50 and 500 SLOCs. Reused
modules. Commercial object libraries relied on.
Coupling/cohesion ratio < 2.

e Well-structured, small modules. Object class methods well 3
focused and generalized. Modules with single entry and exit
points. Programs reviewed.

¢ Complex but known structure randomly sized modules. Some 4
complex object classes. Error paths unknown.
Coupling/cohesion ratio > 2. s

¢ Code structure unknown, randomly sized modules, complex
object classes, and error paths unknown. Coupling/cohesion
ratio > 2.

Total Score
Complexity

Complexity = (Total score / 4) x (Type Factor), where
Type Factor = 10 for real-time or high-performance software
5 for online transaction software
1 for background software

Figure 10.9. Continued

10.4 CODING STYLES

“Coding skill is just one small part of writing correct programs. The majority
of the task is . . . problem definition, algorithm design and data structure selec-
tion,” wrote Jon Bentley." A coding style that leads to correct and maintain-
able code emphasizes putting a straightforward mapping of the program and
data structures to the problem structure. Efficient and cryptic code with mul-
tiple levels of indirection might be fun to write, but it is difficult to fix and
enhance.

Tweaking a component with the smallest possible change on the theory, “If
it ain’t broke, don’t fix it,” is counterproductive. Code degrades with any
change, so effort must be made to leave it better structured than you found it.

10.4.1 Data Structures

Any software system is just one interpretation of the reality of the problem it
is solving. Both data structure clashes with the problem and careless use of data
structures are principle causes of unacceptable throughput and response time.

4 Bentley, Jon. Programming Pearls, 2nd ed. Addison-Wesley, Reading, MA, p. 33.

CODING STYLES 361

One problem associated with database systems is the lingering death asso-
ciated with corrupted databases. Unfortunately, the program that first discov-
ers the corruption is usually the victim and not the perpetrator. Two tedious
processes then ensue. First, the result must be corrected, and then the cause
must be found and fixed. Finding such problems is difficult because the per-
petrator is long gone and leaves few clues. These coding styles can mitigate
against corruption:

(1) Putin early alarm systems to detect some problems as they occur, and
try to contain them; for example, validity check all records as they are
received.

(2) Reduce potential problems by consolidating database access routines
that handle inverted files and capture files needed for transaction
recovery.

(3) When something does not work that worked before, find “what’s
changed.” Be relentless in searching for the change because there lies the
problem.

(4) The coding style for the component interfaces will determine how easy
it is to test and enhance a system. Inspect the levels of indirection in
data references to make sure they are needed. Root out extraneous
levels of indirection in component interfaces.

MAGIC NUMBER!

You can change all of the interfaces some of the time,

You can change some of the functions all of the time,

But you cannot change all of the functions and all of the interfaces at the
same time.

With apologies to Abraham Lincoln

Decouple conversion system databases from application system databases
by using application system transactions to initialize the database. Otherwise,
unnatural coupling and constraints of freezing the database design prema-
turely seep into the development program. This simplifies the code and pre-
vents design interactions aimed at eliminating performance bottlenecks and
potential deadlocks.

Example: The problem is to create data structures about employees that
contain name and number of dependents. There are two options:

362 IMPLEMENTATION DETAILS

Option 1 Explicitly code an employee’s name and number of dependents
in one object class:

Class Person
Attributes: Last_Name; First_Name; Number_of_Depen-
dents;
end
Data Definition:
Yuhas = Person.new;
YuhasFirstName= “Chris”;
YuhasLastName= “Yuhas”;
YuhasNumberofDependents= “1”;
Print
YuhasFirstName, “/b” YuhasLastName, “has b” YuhasNum-
berofDependent, “dependents”

This approach yields clear and understandable code, but if the Human
Resources people need to add another attribute, the code must change. This
code is awkward to enhance.

Option 2 Carefully use a level of indirection, makeing the code difficult to
understand but easy to enhance.

Class Person

Attributes: data table

define initialization (); / this is a wvital step
too often ignored;

end
definition for entry

Yuhas =Person.Name

Yuhas.data[“FirstName”] = “Chris”
Yuhas.data[“LastName”] = “Yuhas”
Yuhas.data [“NumberofDependents”] = 1;

Print
Yuhas.datatable[“FirstName”], “/b”
Yuhas.datatable[“LastName”], “has /b”
Yuhas.datatable[“NumberofDependents”], “dependents”

A new attribute can be added to the definition of enfry and change the print
statement. However, there is not a clean mapping from the statement of the
problem to the coding of the solution, and it is not easily understandable.

So, which coding style is correct? As usual, the correct software engineer-
ing response is “It depends.” The second approach is preferred if many changes
are expected because making the changes will be easier. When there are many
complex classes, the first option makes for straightforward reading and
understanding.

CODING STYLES 363

10.4.2 Team Coding

Programmers need a consistent coding style and process when there are many
programmers building a system. Quality cannot be tested in; quality must be
designed in.

10.4.2.1 Testers’ Right of Refusal The programmer finds and fixes all
possible defects before delivering code to the test team. The test team is the
arbiter of the “all possible” standard and has the right of refusal because it is
expensive for the test team to find defects. If disagreements arise between the
test team and the programmers, the manager reviews and adjudicates. This
invokes the management technique called management by exception.

10.4.2.2 Program Standard Programmers use a written standard:

(1) Naming convention for variable.
(2) Agreement between comments and code.

(3) Commenting conventions. Comments state the intent of a set of instruc-
tions and not what they do. Extensive prefaces are the best way to doc-
ument the algorithms in the code."”

MAGIC NUMBER!

When Lines of Comments exceed Lines of Code, code is hard to read.

10.4.2.3 Wild Transfers Programmers must explicitly prevent wild
transfers.

(1) Check every entry and exit transfer.
(2) Bound the inputs and the outputs.

(3) Unconstrained pointers can result from poor array bounds that lead to
memory leaks.

10.4.2.4 |Initialization Programmers must initialize memory, data, point-
ers, and arrays before they are used.

10.4.2.5 Subscripts Programmers must check code subscripts to keep the
program bounded. Consider an array x of i: X[i].

15 http:/ei.cs.vt.edu/~cs2604/Standards/Standards.html.

364 IMPLEMENTATION DETAILS

iis defined as 4 <i < 6. How many elements are there in the list, two or
three? There are three, but too often programmers subtract four from six and
forget to add one, which leads to an error. The recommended approach is to
define the lower bound as “less than or equals” and the upper bound as “less
than” in all cases. Here i is 4 <1 < 7; then it is clear that the number of ele-
ments is the difference 3. Not following this standard often leads to the
common off-by-one error."°

10.4.2.6 Loops Terminate Make sure that every loop terminates. In fact,
make sure that all programs and methods are structured.

10.4.2.7 Review the Code

10.4.3 Code Reading

Everybody on the team is involved in this technique. Code is distributed so
everyone has somebody else’s code to read. Then a team meets to discuss their
findings. This process improves the coding ability of the group. Vic Basili has
pioneered and promulgated code-reading techniques. He and Richard Selby
report, “At NASA/CSC, code reading was more cost effective than functional
and structural testing, but there was no significant difference between func-
tional and structural testing. Code reading found 3.3 faults per hour on the
average while each of the testing techniques found 1.8 faults on the average.”"’
Code reading is difficult, tedious, and important. Even gurus extend and
receive this courtesy.

10.4.4 Code Review

The programmer who wrote the code tends to find the most bugs by testing
for syntax errors, logic errors, and incompleteness errors. User requirements
specifications and coding standards are applied as checks. Code reviews are
part of the team programming of the agile methods. A two-person team writes
tests, fixes problems, and then jointly reviews the code. This approach speeds
development.

10.4.5 Code Inspections

Code inspections are a formal process with teams of two to five code inspec-
tors. The module owner is not part of the initial inspection team. A code
inspection is held to improve code and not to evaluate developers. Formal code
inspections are a six-step process:'®

10.4.5.1 Prepare To get ready for the inspection, print separate hard-
copies of the source code for each inspector. The hardcopy should contain a
count of the NCSLOC.

' http://cm.bell-labs.com/cm/cs/tpop/warstory.html.
7 http://www.cs.umd.edu/~mvz/mswe609/book/chapter4.pdf.
8 http://www.sei.cmu.edu/str/descriptions/inspections_body.html.

A MUST READ FOR TRUSTWORTHY SOFTWARE ENGINEERS 365

10.4.5.2 Scope The module owner spends 20 to 40 minutes explaining the
general layout of the code to the inspectors. The inspectors are not allowed to
ask questions; the code is supposed to be self-explanatory.

10.4.5.3 Individual Inspections Each inspector uses a project coding
standard checklist and inspects 80 to 120 NCSLOC per hour.

\\\‘///

~ MAGIC NUMBER!

=

One person can inspect no more than 125 NCSLOC/hr.

10.4.5.4 Code Inspection Session All code inspectors for the code
at issue attend the meeting. Managers are not present. An experienced
mediator chairs the code inspection sessions, which lasts no more than
2 hours.

10.4.5.5 Follow-Up The defects list is submitted to the programmer for
rework. Suggestions can include such avenues as changing code, adding or
deleting comments, or restructuring to effect solutions. Inspection meetings
are for problem finding, not for problem solving. It is the moderator’s respon-
sibility to see that all defects are satisfactorily reworked afterward by the
programmer.

10.4.5.6 Record Keeping Objectively track success in detecting and cor-
recting defects. Count the number of defects and categorize them by type.
Eliminate both the perception and the reality that the inspections will be used
to evaluate developers.

10.5 A MUST READ FOR TRUSTWORTHY SOFTWARE ENGINEERS

Les Hatton maintains that the best way to use C and C++ in mission-critical
applications is to constrain the use of language features to achieve reliable
software performance. He gives specific instruction-by-instruction guidance
for the constraints. His theme is “The use of C in safety-related or high
integrity systems is not recommended without severe and automatically
enforceable constraints. However, if these are present using the formidable
tool support (including the extensive C library), the best available evidence
suggests that it is then possible to write software of at least as high intrinsic

366 IMPLEMENTATION DETAILS

quality and consistency as with other commonly used languages.”"* We applaud
his instruction-by-instruction analysis of the C language. Hatton restricts
safety to “freedom from danger or risks” and reliability to “of sound and con-
sistent character or quality.”

10.6 CODING FOR PARALLELISM

We start with an example to illustrate the problem. Consider a process with
two threads

Process
thread A thread B
initialize k = 4
1A.load k into T 1B.load k into T
2A.ADD 1to T 2B.ADD2to T
3A. store T into k 3B store T into k

What is the value of k?

(a) kis 7 if thread A is executed before thread B.
(b) kis 5 if thread B is executed first.
(c) kis5,6,or 7 if the two threads are run in parallel.

The value of k depends on the particular order of the instructions executed in
thread A and thread B.

This simple example demonstrates that synchronization is required
between merely two threads. As the number of threads increases, the number
of execution steps increases exponentially and synchronization problems
become intractable unless steps are taken to be able to trace the execution
flow of the program, the number of threads are minimized, the threads are
carefully identified, and the threads can be directed to run sequentially.

10.7 THREATS

Trustworthy systems are secure systems, but from the beginning of computing
there have been malicious tricksters who try to violate them. As early as the

1 See Hatton, Les. Safer C: Developing Software for High-Integrity and Safety Critical Systems,
McGraw-Hill, New York, 1997, p. ix.

THREATS 367

1970s there were traps surreptitiously inserted into the kernel of operating
systems that deleted users’ files.

The possibilities are myriad. Pointers can be corrupted, so JAVA hides
pointers from programmers. Service denial attacks take advantages of a design
flaw in the Internet TCP/IP protocol standards that allow flooding input
buffers. Hackers can send large numbers of message segments during startup.
It is well known that many functions provided by the standard C library are
unsafe and the C programming language does not automatically perform
bounds-checks on arrays and pointer references. Poor programming practices
such as assuming input data are valid or misusing pointers permit security
breaches.

Recently more general buffer overflows and SQL injection attacks have
allowed hackers entry to software systems. These two threats are mentioned
to give the software developer insight into the need for design and coding con-
straints that thwart attacks, even if the cost is performance degradation.

The symptoms of a buffer overflow are an unexpectedly large amount of
data written to the buffer, thus overflowing it and overwriting the memory
immediately after the end of the buffer. The overflow injects additional code
into an unsuspecting process and then hijacks control of that process to execute
the injected code. The hijacking of control is usually accomplished by over-
writing return addresses on the process stack or by overwriting function point-
ers in the process memory. Therefore, buffer overflow vulnerabilities in process
stacks are a security threat. A hacker can use a static buffer overrum to execute
damaging code. One way to detect and thwart such attacks is to check the size
of the data strings being loaded into a buffer against the size of the buffer. This
approach requires all programmers to know the potential threat and take pre-
ventive steps. Legacy systems are a particular problem because it is unreason-
able to expect that their programmers were sensitive to these buffer concerns.
A software engineering preventive measure adds code to intercept all calls to
library functions. The substitute version implements the original library func-
tions with the added advantage that any buffer overflows are contained within
the current stack frame at an overhead of no more than 15%.

A threat similar to a buffer overflow is SOL injection. SOL is the standard
Structured Query Language (SQL) for accessing and manipulating databases.
The threat occurs when data tailored for mischief is included in a database
query as a simple string at be added at the end of a legitimate query. It is a
simple matter to create a string where anything is possible: deleting data,
adding data, and even executing arbitrary harmful code. This is a threat to the
database if the application has unlimited data privileges. Preventing SQL
attacks requires inspecting user input for suspicious substrings and unexpected
SQL query requests and query encodings. When a Web server allows multiple
encoding schemes in its input arguments, it is possible to encode attacks and
bypass checks. Preventing SQL injection attacks requires the coding discipline
to use only stored procedures and not to return SQL database error messages
to end users.

368 IMPLEMENTATION DETAILS

SQL injection and buffer overflows are subsets of vulnerability to invalid
user input. The idea is to convince the application to run code that was not
intended. If an application is creating SQL strings ndively on the fly and then
running them, it is child’s play for a hacker to gain entry and be evil. This nasty
bit of warped creativity is called a worm.”” Preventing SQL injection attacks
requires coding discipline to use only stored procedures and to not return SQL
database error messages to end users.

As an example, the Computer Emergency Readiness Team (CERT)
reported in 2003:

... self-propagating malicious code that exploits vulnerability in the Resolution
Service of Microsoft SQL Server 2000 and Microsoft Desktop Engine (MSDE)
2000. This worm is being referred to as the SQLSlammer, W32. Slammer, and
Sapphire worm. The propagation of this malicious code has caused varied levels
of network degradation across the Internet and the compromise of vulnerable
machines.”

Then again in 2005, CERT reported a new worm known as “Santy” that com-
promises Web servers with hypertext preprocessing (PHP) enabled and
running certain bulletin board software. It is believed that this worm is exploit-
ing...a lack of input validation...that may allow a remote attacker to
execute arbitrary commands on a vulnerable server. The problem occurs
because phpBB bulletin board software does not scan incoming Internet
Uniform Resource Locators (URLSs) for malicious content . . .”*

10.8 OPEN-SOURCE SOFTWARE

Open-source software development practices are giving rise to a new view of
how complex software systems can be constructed, deployed, and evolved.
Open software development does not adhere to the traditional software engi-
neering life-cycle models or to prescriptive standards. It relies on the contri-
butions of geographically dispersed developers. The Internet is used to
communicate and collaborate. The availability of source code is a necessary
condition for an open-source project, but it is not sufficient. The Open Source
Initiative insists that such software be distributed freely, that the source code
be readily available to all, and that developers are free to create derived
works.” Developers can obtain significant open-source tools and components
for their projects.

The developers who contribute to an open-source project are always users
of the software. But all users need not be developers. Cristina Gacek and Budi

% http://www.unixwiz.net/techtips/sql-injection.html.

! http://www.cert.org/advisories/CA-2003-04.html.
http://www.us-cert.gov/current/current_activity.html#Santy.
http://opensource.org/docs/def_print.php.

23

PROBLEMS 369

Arief examined the motivations for this approach and found that meritocracy
and a sense of community encourage participants. They also profit from using
open-source software to solve their problems, packaging and selling the
derived software and working on a common platform.*

Open-source software projects tend to be small, less than 20 developers.
They have no contractual deadlines, and they rely on the users to test.” This
harkens back to the early days of software development when developers
“threw programs over the wall” and let the users find the problems. The key
to their success and to open-source is small teams of gurus, clever design, solid
problem understanding, and rapid bug fixing. Open-source users must take
steps to prevent unexpected source changes from causing working software to
crash.

This entire course is about what happens when small projects grow up.

10.9 PROBLEMS

10.9.1 A sorting program was written to sort members in a health club. There
are 446 members; an ID number was assigned to each member. Members
belonging to the same family have the same ID number. The sorting program
is required to sort the members based on ID numbers into ascending order.
Members with the same ID numbers must be kept in the same order as they
were entered.

System testers were informed that there was a known problem in the sorting
program. Testers were asked to work around this problem during testing.

bubble—bubble sort v(l) .. .v(n) increasing
void doSort(int n, int vI[]I[])

{

int 1,7,k;
for (1 = n; 1 > 1; 1 = 1-1)
{ for (3=1; j<di; J = j+1)

{
if (v[J1[0] > vI[3j+1]1([0])

{ k = v[3jl[0]; // swap key
v[jl[0] = vI[Jj+1]1[0];
v[j+1]1[0] = k;
k = v[jlI[1] // swap data

v[3l[1l] = vI[Jj+1][1];

2 Gacek, Cristina and Arief, Budi. “The Many Meanings of Open Source,” IEEE Software Devel-
oping with Open Source Software, www.computer.org/software, Jan./Feb. 2004, pp. 34-40.
» Op. cit.

370 IMPLEMENTATION DETAILS

v[j+1][1] = k;

}

(1) Inspect the code to find two bugs.

(2) What boundary conditions need to be checked to ensure correct
operation?

(3) How would you stress test the sorting program?

(4) How would you test to ensure it meet the requirements? If it did not
meet the requirements, please explain. Please show test cases.

BIBLIOGRAPHY

Basili, Victor R. and Salwa, K. Abd-El-Hafiz. A Knowledge-Based Approach to
Program Understanding, Kluwer Academic Publishers, New York, July 1995.

Bentley, Jon. Programming Pearls, 2nd ed. Addison-Wesley, Reading, MA, 1999.

Bernstein, L. “Get the Design Right!” IEEE Software, Sept. 1993, pp. 61-63.

Bernstein, L. “Software Fault Tolerance Forestalls Crashes: To Err is Human; To Forgive
Is Fault Tolerant,” Advances in Computers, Elsevier Science, 2003, pp. 239-285.

Blaha, Michael and Rumbaugh, James. Object-Oriented Modeling and Design with
UML™ 2nd ed. Pearson Prentice-Hall, Englewood Cliffs, NJ, 2005.

Boehm, Barry. Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981.

Brooks, Frederick. “No Silver Bullet-Essence and Accidents of Software Engineering,”
IEEE Computer, Vol. 20, No. 4, pp. 10-19, 1989.

CrossTalk Open Source Software—Sharing From a Well of Ideas, 4, Vol. 18, No. 1, Jan.
200s.

Hatton, Les. Safer C: Developing Software for High-Integrity and Safety-Critical
Systems, The McGraw-Hill International Series in Software Engineering, New
York, 1997.

IEEE Software Developing with Open Source Software, www.computer.org/software,
Jan./Feb. 2004, pp. 34-40.

Kernighan Brian W. and Plauger P. J. The Elements of Programming Style, McGraw-
Hill, New York, 1974.

Koenig, Andrew. C Traps and Pitfalls, Addison-Wesley, Reading, MA, 1989.

Kruchten, Philippe. The Rational Unifies Process—An Introduction, 2nd ed. Addison-
Wesley, Reading, MA, 2000.

Leveson, Nancy G. Safeware System Safety and Computers, Addison-Wesley, Reading,
MA, 1995.

Lewis, Ted G. and Oman, Paul W. Milestones in Software Evolution, IEEE Computer
Society Press, Los Alamitos, CA, 1990.

BIBLIOGRAPHY 371

Linger, R. C., Mills, H. D., and Witt, B. L. Structured Programming: Theory and Practice,
Addison-Wesley, Reading, MA, 1979.

Martin, Robert C. Agile Software Development Principles, Patterns, and Practices,
Prentice-Hall, Englewood Cliffs, NJ, 2003.

Sha, Lui. “Using Simplicity to Control complexity,” IEEE Software, Vol. 18, No. 4,
July/Aug. 2001.

11

Testing and Configuration
Management

Software is our lifeblood and the source of profound advances, but no one can
deny that much of it is error-prone and likely to become more so with increas-
ing complexity. Useful software is the abstraction of a problem and its solu-
tion, conditionally stable for the operational range that has been tested. That
definition has spawned thousands of viewgraphs and millions of words, but still
the stuff hangs and crashes. It may be obvious, but not trivial, to restate that
untested systems will not work.

Today testing is an art, whether it is the fine, meticulous art of debugging
or the broader-brush scenario testing. The tools already exist for moving test
design theory from an art form to the scientific role of integration and quality
assurance. What problems to look for, how to count them, and the most desir-
able graphic footprint of the test team’s work are still open questions.

Dijkstra voices the frustration of system testers when he remarks that
“testing can show the presence of bugs, but not their absence.” The number of
tests needed for a finite state machine depends on the number of states. The
length of the test trajectory depends on the memory of the system. Then there
is the whole question of software dynamics. At some point, it becomes imprac-
tical to do further testing, so we had best learn to choose our tests wisely for
maximum effect.

Each of these various ideas about testing has merit. A testing definition
would have to include the following:

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

372

THE PRICE OF QUALITY 373

(1) Exercising a system to see that it does what it should do and does not
do what it should not.

(2) Looking for areas of misconception or misinterpretation rather than
for random individual bugs.

(3) Validation across a spectrum of values such as content, function, stress,
performance, reliability, stability, and ease of use.

11.1 THE PRICE OF QUALITY

Testing consumes the most computer resources of all development phases. At
this point, the static testing of the earlier phases gives way to dynamic testing.
Dynamic testing has five parts: unit testing, integration testing, system testing,
reliability testing, and stress testing.

11.1.1 Unit Testing

Each module is tested individually with data chosen by examining its source
code. The details of the program internals are critical, so unit testing (or
“white-box” testing) is performed most efficiently by its owner. The data are
chosen to ensure that each branch of the program is executed. Additional
stress is applied by introducing data outside the specified data range with at
least one point well beyond the range and one point at or near the boundary
condition. The module should operate as specified. It is good practice to keep
test data and test results with the module’s source code.

As programs become complex, there can be too many branches to test. The
test data should then be selected by examining scenarios of the expected
system use and by considering potential failure modes. Again, it is imperative
to test within the specified data range, outside the range, and at the boundary.
Unit testing also applies to purchased components, whose source code struc-
ture and comments should be inspected.

11.1.2 Integration Testing

Several modules are run concurrently in a string based on a use case defined
during the requirements phase. Because a logical sequence may require the
presence of modules that are still in development, dummy programs called
“stubs” can be used to generate calls to the string being tested or to accept
and check its results. As those missing modules become available in the project
library, the stubs are replaced and string testing continues.

11.1.3 System Testing

Hardware and software are integrated and challenged to determine if the
requirements are satisfied during system testing. The test cases presented to

374 TESTING AND CONFIGURATION MANAGEMENT

the system are those that were developed in parallel with the program design,
using data from the system requirements and scenarios based on the expected
use of the system. Because this is a “black-box” process in that the code is not
examined, the system test is best done by an independent group. Because the
documentation is delivered along with the hardware and software, it is also
reviewed during the system test. Robust testing is a form of system testing that
mathematically minimizes the number of tests that is required to exhaustively
cover combinations of configuration or parameter changes.

11.1.4 Reliability Testing

Software is run repeatedly with the same test cases to find timing problems
and smoke out the undesired consequences of changes. Regression testing is
a form of reliaibility testing. The C++ complier has more than 3000 self-
contained tests that are run weekly. Built into the regression test is the ability
to determine if a test ran correctly.

11.1.5 Stress Testing

Software is stressed by offering more than the maximum anticipated loads, by
offering no load at all, and by offering the appropriate load in a very short
time frame. Software is also stressed by running it longer than the specified
run times. Systems fail when arrays or files run out of allotted space or the
physical capacities of tapes, disks, or buffers are exceeded. Short-term buffer
capacities may be exceeded, or temporary arrays may overflow. This type of
failure can be a problem in real-time data acquisition and control systems or
in batch systems that must turn around in a fixed time. Special reliability tests
are based on expected operational scenarios.

11.2 ROBUST TESTING

Robust testing is a way to move the art to science and is a technique aimed
primarily at system testing. Using it can reduce the number of test cases by an
order of magnitude and yet achieve the same confidence in the release.

Robust testing means exercising robust requirement specifications in a sci-
entific way. Orthogonal arrays allow testing across a dynamic range. An
orthogonal array is a matrix of carefully selected values. When an orthogonal
array is used to select test data, each row represents one test case. Each column
represents one parameter. The resulting set of tests is capable of detecting all
faults resulting from one or a combination of two parameters.

11.2.1 Robust Design

Robust testing uses robust design, also called the Taguchi method. It minimizes
the effects of variations, without controlling the cause itself. The methodology
can be applied to software tests to eliminate overlap. When it was applied at

ROBUST TESTING 375

Bell Laboratories to a system that did cross-country network monitoring, the
results were compelling. The robust software test design exercise was run after
the software had passed the conventional tests for that time. Robust testing
identified new design-related faults:

(1) There was no message to an operator on link failure.
(2) The system did not switch back to a primary link after link restart.
(3) A process could hang on link disable.

These finds are impressive for a system that was certified for field use by a
prestigious organization.

11.2.2 Prototypes

Prototypes continue to play a vital rule in efficient system development, both
in determining robust system requirements and in testing. This experience is
from one Bell Laboratories project, a network management system:

TRANSVU introduces a high resolution, multi-window, mouse-controlled user
interface. Before TRANSVU, its users were accustomed to working largely from
a printer which printed alarms as they were detected. To understand the impact
of this major change, a prototype simulated the TRANSVU version of the exist-
ing system with a modified database and 24 hours of actual alarm data. The user
prototype interaction was very similar to, but not the same as, the one ultimately
used. Demonstrations were given at five locations to approximately 100 users of
the soon to-be-replaced system and reports were written to document their reac-
tions. The results demonstrated full user understanding of the new features, with
most appreciating its advantages The users also saw the demonstrations as valu-
able training, and they freely offered suggestions for improvements (literally
hundreds)—many of which found their way into the actual design.

As TRANSVU was being developed, portions of the prototype code were imple-
mented as a testing driver. Alarms were “pumped in” TRANSVU to be tested
with actual alarm data before being deployed. This was also very effective in
finding problems.

Prototypes invite the customer’s input in describing the environment in
which the system will operate and the priorities of activities. Software must
match customer expectations, both explicit and implicit, of accomplishing
some objective in a larger business activity. Both these expectations and the
system functions can become somewhat elastic. Moving from prototype into
production code requires assurance testing. Expert users can be involved in
custom testing in the lab and in acceptance testing in their own environment.

11.2.3 Identify Expected Results

The idea of pregenerating expected results, storing the results in files with the
test input and then automatically comparing the results of the tested software

376 TESTING AND CONFIGURATION MANAGEMENT

with the stored results was used in Safeguard. The system prototype is used to
generate the test results for comparison in software testing. This idea can move
testing from intuitive detective work to scientific analysis.

11.2.4 Orthogonal Array Test Sets (OATS)

Consider the example in Table 11.1 of testing the function “command,” which
has four possible arguments, A, B, C, D, each with three possible values. The
total number of combinations is 81, but with orthogonal array testing, only
nine cases are needed. The properties of such testing are as follows:

(1) Balanced coverage of all pair-wise combinations
(2) Fewer test cases than the one-factor-at-a-time method
(3) Detection and identification of all single-mode failures

(4) Detection of all double-mode failures and, in many cases, identification
of the specific double-mode failure

TABLE 11.1. Orthogonal Array-Based Tests'?

Test Case Command

A B C D
1 A1l B1 C1 D1
2 A1 B2 Cc2 D2
3 A1 B3 C3 D3
4 A2 B1 C1 D1
5 A2 B2 Cc2 D2
6 A2 B3 C3 D3
7 A3 B1 C1 D1
8 A3 B2 Cc2 D2
9 A3 B3 C3 D3

11.3 TESTING TECHNIQUES

One approach in minimizing the number of test cases that some organizations
use is to test the most common, or important, configuration and then vary one
or more parameters for the next test configuration and then test that. The
concern is to test for possible bad interactions between parameters. That basic
fault model is the foundation for using the OATS technique:

(1) Interactions and integrations are a major source of defects.

(2) Most defects are not a result of complex interactions such as, “When
the background is blue and the font is Arial and the layout has menus

! Our test parameters at three levels each: total number of combinations = 81.
% Use L, orthogonal array to assure pair-wise compatibility of the test program.

TESTING TECHNIQUES 377

on the right and the images are large and it’s a Thursday, then the tables
don’t line up properly.”

(3) Most defects originate from simple pair-wise interactions such as,
“When the font is Arial and the menus are on the right, the tables don’t
line up properly.”

With so many possible combinations of components or settings, it is easy to
miss one. Randomly selecting values to create all pair-wise combinations is
bound to create inefficient test sets and test sets with random, senseless dis-
tribution of values. The following testing techniques elaborate on this basic
fault model.

11.3.1 One-Factor-at-a-Time

This method varies one factor at a time and would require more than the
minimum number of tests, but this makes it easier to identify the defective
parameter. However, this technique does not expect to encounter any bad
interactions between the given parameters because it does not attempt to cover
all pairs of parameters. It finds only what Phadke’ calls single-mode faults.

11.3.2 Exhaustive

For any nontrivial system, this will not be possible. Even if all test configura-
tions were tested, which would find nearly every bad interaction between the
given parameters, there will be many more tests with varying circumstances
that could be conceived that could take a lifetime and more to conduct.

11.3.3 Deductive Analytical Method

This method attempts to cover all important paths in the code. Any testing
strategy should be augmented by some of this type of testing. In fact, this is
one type of testing that developers should conduct on their new components
before integration testing.

11.3.4 Random/Intuitive Method

This is the most common method used by independent test organizations. This
method can be effective at finding defects, but the level of coverage is often
questionable.

11.3.5 Orthogonal Array-Based Method

This method finds all double-mode faults that are two parameters conflicting
with each other. An example of a double-mode fault is one parameter over-

* Phadke, M. S., Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, NJ
1989.

378 TESTING AND CONFIGURATION MANAGEMENT

shadowing another, inhibiting required processing of that other parameter. It
is not easy to create nontrivial orthogonal arrays (OAs) that have more than
three factors. The difficulty of determining the array limits the technique’s use.
See aetgweb.argreenhouse.com/brochure./shtml.

Some automated tools that produce sets of tests covering all pairs of para-
meters do not try to minimize the number of tests. It is a difficult, discrete
mathematics problem to create OAs. These tools may come fairly close to a
minimum set, but if you can save having to run even one more test, you want
to find that minimal set. Some expensive tools can compute OAs, or all pair
combinations, resulting in a minimal set of tests for all reasonable numbers of
factors and options. Augmented tools eliminate absurd tests.

The OATS manual technique produces a smaller set of tests that exercise
all pair-wise combinations of parameters. OATS is simple and straightforward
and includes the following steps:

(1) Decide the number of factors to test.
(2) Decide which options to test for each factor.

(3) Find a suitable OA with the smallest number of runs to cover all factors
and options.

(4) Map the factors and options onto the array.

(5) Choose values for any options that are not needed (call them leftovers)
from the valid remaining options, and delete any columns (factors) that
are not needed. A given test situation may not need all factors or all
options that a particular OA provides.

(6) Transcribe the runs into test cases, adding additional combinations as
needed.

The selection of which OA to use can pose a challenge. The good news is
that you do not generally need to compute a new OA for many test situations.
If there is not a specific OA for your test situation, you can use one that is
similar, delete extra factors (columns), and choose values for the extra options
consistent with your test situation. In other words, the real work in creating
the arrays has already been done. It takes only a few minutes to apply the
array to a specific test situation.

11.3.6 Defect Analysis

Some researchers suggest defect analysis after the completion of system
testing to determine the root causes of failure to find faults during the system
test. This kind of analysis could help set guidelines for initial turnover to the
test team and improve the test team’s record of accomplishment. An interest-
ing result of defect analysis is that few faults are the result of tester oversight.
Using only system requirements and customer documentation would not
expose all problems that turn up in the field.

CASE STUDY: THE CASE OF THE IMPOSSIBLE OVERTIME 379

11.4 CASE STUDY: THE CASE OF THE IMPOSSIBLE OVERTIME*

Your manager assigns you a new testing project. “I want you to take over the
system integration testing of TCS. We’ve got three weeks to get it out the door
and we’re concerned about the integration of all the Web-TCS components.”

The Web time charging system (T'CS) must run on standard Brand X and
Brand Y central processing units (CPUs) and the company’s current operat-
ing systems (OSs): Win 98, Win N'T, Win 2000, and Win XP. Each platform must
support these browsers: Microsoft Internet Explorer Version 5.5 and 6.0 and
Netscape Version 7.0.

Your manager continues, “And I don’t have to remind you about what that
last delivered bug cost us.”

The Web TCS has two operational network modes: internal intranet and
modem remote. Employees can log their time in both modes. Various default
parameters are established depending on the user’s type of employee classifi-
cation, including salaried, hourly, part-time, or contractor. These parameters
include default shift, available paid holidays, and so on. Also, the user can set
the time increment in minutes to 6, 10, 15, 30, or 60.

These features and parameters will be combined into various test configu-
rations, however, one key question is what is the most effective, smallest set
of test configurations that will find most parameter interaction defects?

The test group has already defined 15 test cases. Test cases for Login include:

Successful logins on first attempt
Successful logins after one failed attempt
Unsuccessful logins after three failed attempts

Twelve similar test case were defined.

Management has expressed concern about integration defects delivered in
recent releases. Any seriously defective interactions between features and
various user-assigned and system configuration parameters could prove fatal
to the Web TCS upgrade effort and the future of your group (as your boss just
emphasized). At any rate, you need to test each parameter paired with every
other parameter to be sure that there are no incompatibilities.

“What is the most effective, smallest set of test configurations that find most
serious parameter interaction defects?” Notice the qualification “most serious
defects.” No amount of testing can find all defects. Effective testing techniques
can lead to increased confidence and to fewer delivered defects and happier
customers, but there are no absolutes.

There are six test parameters with their associated options. To test all com-
binations of these parameters,2 x4 X 3 x 2 x 4 x 5 or 960 test configurations

* With permission, Daich, Gregory T. “New Spreadsheet Tool Helps Determine Minimal Set
of Test Parameters Combinations,” CrossTalk, Aug. 2003, http://www.stsc.hill.af.mil/crosstalk/
2003/08/.

380 TESTING AND CONFIGURATION MANAGEMENT

are needed. Because each test configuration requires 15 system-level test cases,
the result is a total of 960 x 15 = 14,400 test cases that must be executed. It is
impossible to execute all 14,400 test cases in 3 weeks. It takes about 3 hours
to execute the 15 test cases for each configuration, including setup and report-
ing. There are about 6 hours per day of productive test execution time, not
counting unpaid overtime that you hope to minimize, which gives you 90 hours
or 30 test configurations that you have time to perform. Looks like you need
2850 hours of overtime! Is there hope? Can you test all important combina-
tions of parameters in less than 30 test configurations?

TABLE 11.2. Test Parameters for TCS Case Study

A B C D E F

CPU oS Browser Network Type of Employee Time Increment
Brand Y NT IE 6.0 Modem Salaried 6

Brand X 98 IE 5.5 Internal Hourly 10

— 2000 NS 7.0 — Part-Time 15

— XP — — Contractor 30

— — — — — 60

The time increment factor has five options, and the OS factor has four
options. Thus, we know that there must be at least 5 x 4 = 20 runs to cover all
combinations of those two options. The trick is to cover all other pair combi-
nations in those 20 runs.

Conclusion: Fortunately, as you agonize at your desk, your eye falls on your
August 2003 copy of Cross Talk where Gregory Daich explains a tool to deter-
mine a minimal set of test parameter combinations. You create a set of 20 test
configurations. You have time to run 15 test cases in each of the 20 test con-
figurations within the schedule. The number of test runs is reduced from 960
to less than 30, and there is life after testing.

11.5 COOPERATIVE TESTING

Cooperative testing evolved in several large projects from necessity, which is
done among departments outside the test group by any designer who must
touch another’s software module. This testing is low-profile, friendly and inter-
module, with no configuration control. It fosters cooperation among subsys-
tem designers using test beds that may have been provided by the system
testers. This approach eliminates problems before they see the harsh glare of
the test team’s searchlight. This is helpful, but only at the far “art” end of the
art-to-science continuum of testing techniques.

Figure 11.1 is typical of the plans of a large system. This is the actual plan
of Bellcore’s Facilities Assignment and Control System (FACS) in the early

COOPERATIVE TESTING

381

SEPTOCT NOV DEC, K JAN FEB MAR APR MAY JUN JUL AUG SEPT

LEACS i f f
sPL cosmos so 2P

o 18 i COSMOS 9.0 3P
11170 COSMOs 10 W20 (AP PLsh X
June I gy v SoA 1 i—soc;\ 10 soc»x1 v
COMPONENT SYSTEM TEST
SOFTWARE SYSTEM EVALUATION
1980 TEST DESIGN DEVELOPMENT INTEGRATION
Plan DATE BASE LOADING BOCI | BOCII_| BOCIlI
TS FACS AUTO ASSION
1st OUTEA LOOP OADEA
15t FLOW TMAU OADEA SHIP
1st COSMOS RMA
1‘?1/% LFACS | TstHMEA LOOP OADEA
COSMOS cosmos9.01p 11 LFACE 12
11/70 WM 1.0 SPL20 COSMOS 9.0 2P
SPL LFACS (AHP) WM 1.1
l 1.5 1.0 S;g' lSSQ,C l lSOAC 0 SO"“Cl SZP5L COSMOS 9.0 2P
v v 'RR v v
September | compONENT SYSTEM TEST SOFTWARE SYSTEM EVALUATION
1980 COOPERATIVE TESTING INTEGRATION WIODEL | MODEL | MODEL
Plan | BOC | BOC Il BOC Il
111,
11 AS ABOVE sHiP
SAOC 11
o e e SoRG 10 COSMOS 0.02p | BenS 1, LFACS 1.20
o WMl cosmos g.03p COSMOS9.04P
COSMOS UNIVAC SPL SOAC| sPL20
11770 1100/61 LFacs 20 E&V | (AHP) U:AZ‘;S SPL25
April 1981 v IR 2 2
Plan COMPONENT SYSTEM TEST SOFTWARE
(with) COOPERATIVE TESTING ! INTEGRATION B(IJ W W
actuals s
1st LFACS RMA SHIP
¥ 1st FLOW TMAU OADER
. sonc '-F‘Az(i)s SOAC 1.2.a
AC 1.1 R
1770 COT) 1P HASS LPACS 1 osmos s02p COSMOS CoMEMOS o6 4
UNIVAC WM 1.1 9.0 3P SPL25.2
COSMOS 1100/61 SPL SOAC| sPL20 LFACS SOAC| SPL SPL
n LFACS__ 20 E&v (AHP) l 12a 12 | 251 l UPDATES 253
July 1981 { 10y v v
Plan” [couonerereren ree
(wi) INTEGRATION_— [JEVAIUATION]

1st FACS AUTO ASSION BOC | INT. EXT.
1st OUTEA LOOP OADEA 1st COSMOS BOC BO(
1st LFACS RMA ?S":IﬁVNER SHIP
* 1st FLOW TMAU OADER | 55p oADER

actuals

Figure 11.1. Diagram fails to reflect level of activity.

UPDATE
SHIP

1980s. The details of this plan are unimportant; the point is to show that even
this level of complexity does not properly represent the activity. Notice the

plan shows neatly defined and cleanly boxed cutoff points.

In real life, testing had to proceed in parallel with incremental releases
being given to the test teams when they were ready. Several different types of
testing were needed: component function, component performance, system
compatibility, system assurance, and system performance. The Spiral Model of
software development is more realistic about the way projects actually work,
but it relies heavily on having a way to assess the risk in moving to the next

levels of development or enhancement.

Currit® suggests that debugging is not the correct focus of test activity,
because no matter how many errors are removed, neither does one know how
many remain nor does the customer care. The critical measure of quality is

> Currit, P. A., Dyer, M., and Mills, “Certifying the reliability of software,” IEEE Transactions on

Software Engineering, Vol. SE-12, No. 1, Jan. 1986, pp. 3-11.

382 TESTING AND CONFIGURATION MANAGEMENT

how long the system will run before it fails and the operational impact when
it does fail. As in the FACS example, product development is considered a
sequence of executable product increments that can be tested as they mature.
An approach that gives the odds for staying alive obviously has more meaning
to a customer.

Test cases reflecting statistical samples of user operations start with exter-
nal risk and work backward to module exposure to provide software failures
that relate to the operating environment. All else is anecdotal and irrelevant.
Instead of randomly testing a system until the likelihood of failure is judged
small enough for release, you can test systems until the magnitude of the oper-
ational risk of failure no longer justifies the cost of testing.

\‘//

\ ‘ / e
~ MAGIC NUMBER!

=i

Statistical testing uncovers failures by a factor of 30 to 1 over random
searches. Failure-free execution intervals are the goal.

11.6 GRAPHIC FOOTPRINT

A system that is successfully tested will show a characteristic graphic “foot-
print” of tests passed. It is not the even, linear progression that is so intuitively
satisfying and seems to show steady progress up to a goal. If the number of
test cases, planned and started, were plotted against time, a straight linear pro-
gression would actually show that there were problems between modules and
they were not of sufficiently good quality to use to start integration. There will
always be latent integration problems. These are the only ones that should be
left for the test team to find. When this is the case, several tests will fail because
of a common cause and will be passed with the introduction of a common fix.
The test completion curve will look like a series of step functions with rapid
progress being made each time an integration problem is found, as in Figure
11.2. If progress is linear, the test team is finding bugs within modules that
should be left to the developer to find and fix.

Successful systems leave the footprint in Figure 11.3. It looks like a human
skills acquisition graph, with plateaus during which competence is acquired
followed by sudden jumps in capability. Statistical failure analysis each phase
in software development pinpoints the largest areas that are most likely to be
defective. Bugs are not evenly distributed, but instead tend to cluster in spe-
cific parts of a system. Eliminating clusters is economical and efficient. Addi-
tionally, clustering information can be used to position tests in areas that are
likely sites of residual defects. The quality of a functional area is too low when

GRAPHIC FOOTPRINT 383

Second Increment

(ideal)
6007 Planned —--—--—- _
5507 Started ---eeeeeeeees ;
500+ Finished ———

Number of test cases

111 11/211/13 11/2211/23 12/1 12/13 12/2812/27 1/3 1/10 1/17 1/24 1/31
TEST DATE

Figure 11.2. Sample test execution status.

Completion

f Run Stress &
Reliability tests

Number
of test
cases Planned —--—--
Finished

—
Send back to ime
Development

Figure 11.3. Generic test footprint.

the initial test pass rate is too low. It is then appropriate to stop and examine
a functional decomposition of the defective area and redesign what is most
likely a large design hole. When successful testing gives a linear footprint, it is
time to stop testing and return the modules to the individual designers so that
system testers are not reduced to debugging.

The ideal slope for the test team is vertical; the worst-case slope is hori-
zontal—nothing works. The slope is limited by the rate of finding and fixing
problems. Testing must eventually stop at the point where sufficient stability

384 TESTING AND CONFIGURATION MANAGEMENT

is achieved for the field, but all systems carry errors. Poor systems have linear
progression slopes in the field also, just as they did in the test laboratory,
because the test teams were engaged in bug-by-bug detective work. Success-
ful systems show step functions in the field and are generally satisfactory to
their users.

11.7 TESTING STRATEGY

It is helpful to have separate system integration and test groups to make sure
that the developers do not fool themselves into thinking that the system works
or that some situation is too unlikely to deserve its own test case. The test team
assures that the system can be duplicated and delivered.

Certainly it is preferable to design reliability into systems, rather than test
it in, but testing can move from randomly and ineffectively poking around to
truly ensuring that a system performs as expected. The following practices
must be observed.

11.7.1 Test Incrementally

Package functions into increments, and validate functions into prototypes.
Once the function increment is implemented in the production system, repeat
the tests used in the prototype. Compare the results of the tests, and com-
pletely account for all differences in the results.

11.7.2 Test Under No-Load

This elementary and easy reliability test is useful for transaction and real-time
systems. It induces faults such as memory leaks to trigger failures. The idea is
to launch the system and not to enter input. Let it run for ten times the reju-
venation interval, called the “reliability interval.” If the system has no such
interval, designers must add one. This test can then be enhanced to input one
transaction and check its result after the system runs for the reliability inter-
val. The next enhancement is to input one of every possible transaction with
expected data and then at the boundary conditions.

11.7.3 Test Under Expected-Load

Use the traffic profile expected during the busy hour to run a series of expected
use cases. This is the conventional functional testing effort.

11.7.4 Test Under Heavy-Load

This volume stress test drives the system to its specified maximum traffic. The
input is the expected traffic profiles and dispersions around the desired
operating point. Make sure to check the test results for validity and physical

TESTING STRATEGY 385

appearance (e.g., do all charts, tables, lists, etc. fit properly). People do not
always look at the output from stress tests when they run into high numbers,
but simply running without hanging or crashing does not constitute success.

11.7.5 Test Under Overload

Stress testing is not complete until the points where the system breaks are
found. Design margins are the difference between the breaking point and the
operating point. This test case is generated by defining a set of transactions
and running the set every second, then doubling the set every second for the
next test, and doubling again for every subsequent test until the system fails.
The selection of the test transactions is varied to stress different parts of the
system.

11.7.6 Reject Insufficiently Tested Code

Spend more time testing stability and performance than features. Demand that
the developers thoroughly test the features and reject increments that show
signs of insufficient testing. The criteria for acceptance and continued testing
by the test team are that the developers find and fix all bugs within the limits
of their ability to reproduce the system environment. The test team is the judge
of their limits. Have a “friendly” user site where developers and testers can do
some feature testing before the software is released.

11.7.7 Diabolic Testing

Exercise use case combinations over a range of normal and extreme condi-
tions with test cases defined using the OA analysis. Use data you do not expect
the program to see for diabolic testing.

11.7.8 Reliability Tests

Use reliability tests to estimate the number of faults in the rejuvenation inter-
val of the system.

11.7.9 Footprint

Look for the characteristic “stepped footprint” of tests passed to indicate fruit-
ful testing of requirements, remembering that linear footprints indicate most
likely the presence of a large design hole.

11.7.10 Regression Tests

Regression testing means to use the same test cases against each release of
the system, building a larger set with each release as new features are added.
Use regression testing to execute all previous test cases whenever there is a

386 TESTING AND CONFIGURATION MANAGEMENT

new release. Some tests will be expected to fail because of known system
changes. Any unexpected result demands a full investigation.

\‘//

\‘//

MAGIC NUMBER!

Testing efforts consume 50% of development time and 20% of project
costs. Regression testing halves the time and costs.

11.8 SOFTWARE HOT SPOTS

The distribution of defects in the software is not homogeneous. Defects tend
to concentrate in particular areas of the software that are driven by a range
of differences in the component complexity, developer’s skill, and the coupling
of the software architecture. Some components will have far more changes
than others. These areas may yield more productive testing.

Figure 11.4 is a SeeSoft display showing code coverage for a program exe-
cuting its regression tests. The color of each line is determined by the number
of times that it executed. The colors range from red (“hot spots”) to deep blue
(for code executed only once). There are two special colors: The black lines
are nonexecutable lines of code such as variable declarations and comments,
and the gray lines are nonexecuted (not covered) lines. The figure shows that
generating regression tests with high coverage is difficult.” The display is repro-
duced here in shades of gray, but it appears in full color in the original publi-
cation cited in the footnote.

Criteria need to be developed for the allocation of limited resources
while managing risk. One criterion will be the relative rate of change of the
code.

Case Study: The Case of the New Kid’s Test Kit

You are asked to program a new Automatic Repeat Request (ARQ) algo-
rithm for a wireless communication protocol. Your boss assumes you know all
about ARQ, because that is why you were hired. You research the algorithm
and create the use cases in Figure 11.5.

® Eick, S. G. “Graphically Displaying Text,” Journal of Computing Graphical Statistics, Vol. 3, No.
2,1994, pp. 127-142.

SOFTWARE HOT SPOTS 387

o
0 Y 5o «\\f’
, buanew vﬁ\() w‘w st\ Bn\“ \“\m S a o R Na\“ wz* s%v 9 («\5 m\%“ 1‘«\5“ ﬂ«\ 1“05“ ‘\@“ @eﬁp (\\9/

I I I Y\
I I I I 1
1.5~ i 2
3
400
-
500
600
0.5~
700

2
3

3
3

8
3

Lines: 9365/ 9365 12t

Indent - 2 0.5

Reader

Slow

Figure 11.4. SeeSoft display of code execution. (with permission of S. G. Eick)

You create this logical view in pseudo-code for the sender side:

1. Generate data messages

a. Each message is a 20-byte-long string.

b. Generate the number of messages specified for the test case.
2. Encapsulate message into frames

a. Use the high-level data link control format under a certain format.

b. Create a sequence number, acknowledgment number (ACK), check-
sum, and a message string, and insert them in their proper place in
the frame.

3. Control the window

a. Create a window of a specified number of frames.

b. Send frames in the window.

c. When the first n frames are acknowledged, delete them from the
window and add n + 1 to the message frame start pointer. The new
end point will be pointer + WindowSize. No other condition can cause
the window to change.

388 TESTING AND CONFIGURATION MANAGEMENT

Sender Receiver

Successful data
transmission without

retransmission

\ Retransmission /

because of
late ACK

Retransmission /

because of
packet loss

Retransmission
because of
ACK loss

Figure 11.5. ARQ use cases.

4. Timer control
a. Create a countdown timer for the sending window.

b. Reset the time for each acknowledgment and sent frame. If the timer
counts down to zero, it means that earliest frame has been sent and
not acknowledged in the allotted time.

c. If the timer reaches zero, the sender resends the earliest frame in its
window.

d. No timer limit is set to quit the program when the same frame has
been resent many times.

Transmission simulation:

(1) Simulate data transmission from sender to receiver.
(2) Simulate nominal and delayed frame transmission times.

SOFTWARE HOT SPOTS 389

(3) Simulate frame loss during transmission.
(4) Simulate ACK transmission from receiver to sender.

Receiver side window control:

(1) When the receiver gets the specified number of correct frames
(WindowsSize), it transfers them to its application.

(2) Otherwise, the receiver should just wait.

(3) Receiver sends an ACK to the sender when an error-free frame is
received.

(4) Using the sequence number, the receiver determines if the frame is a
duplicate. It discards duplicate frames that have been already correctly
received. This can happen when the acknowledgment is late getting
back to the sender and the sender sends a copy of the original frame.
The engineering tradeoff is setting the countdown timer is long times
leave the link idle and lower throughput, but short times keep the link
busy and increase throughput with duplicate frames.

(5) Discards any frames it detects that are corrupted.

(6) Reassembles messages from frames and sends them to the network
layer.

Development view:

(1) MS Visual C++ 6.0
(2) Windows 2000 Professional
(3) PC PIII 866, 512MB RAM

Physical view:

(1) Windows NT 4.0 with SP6a
(2) PC PIII 866, 128MB RAM

One sequence chart for the architecture is shown in Figure 11.6.

In the sender, the processes A_output sends the frames and A-input
receives the ACKs. In the receiver, the processes B_input receives the frames
and B_output sends the ACKs.

Test cases:

All tests were executed under the fixed window size of 8. The number of
frames in the message varied from 0 to 100 with the probability of a lost or
corrupted frame varying from 0% to 100%. Here are two bugs uncovered in
testing:

TESTING AND CONFIGURATION MANAGEMENT

390

‘LuBYo 8ousnbas 8injosyyoly 9°LL ainbi4

1s0p	
[eubls MOV	uoiSsiwsuel} [NJSSE00ONS--0SB))
[eubis YOV <«	
)ho Buipues >	abessaw auo Inq Buipusg
_ _ >	
uolsslwsuesas Bupisy
_ _ N0 awi|
-
JaAe| saddn <t ! !
01 BUIPUSS [19x0ed 2uo | |
: | Buinieosy < m
19)0€ed auo
! _ o Buipuas Jawi Yeis
T ! d ! d ! abessaw suo
| | 0 | 3 | no Buipuesg
CQUWMME | 1 _ W _ (1apliag)
] 1 B v B I _ G Jahe
(andurg 1 ()mndur"y 1 ()indino™y
n
N
3

(1s0] MIV) uoissiwsue.l}ay -- 8se) asf

SOFTWARE HOT SPOTS 391

1. In the functional tests of 100 frames to a message, a variable used for
window control that points to the next frame to send exceeded the
window size. This led to sending the wrong frames. During the tests, this
bug never crashed or hung the program.

2. Under the stress of 100% lost or corrupted frames, a memory leak hung
the system. The memory leak fault is present whenever the ARQ system
runs but does not cause a failure except under the most stressful condi-
tions. If the system was used in production, a gradually increasing
amount of memory would have been used. Other programs running in
the same memory space might have intermittently run out of memory
and failed through no fault of their own because of ARQ’s insatiable
thirst for memory. The fault becomes coupled from one program to
another and the failure seems random, even though it is perfectly pre-
dictable. The stress tests were effective in detecting the fault so that a
potential system failure could be avoided.

Conclusion: The next step was to use software rejuvenation without fixing the
bug in the code, by employing the fault tolerance library. The test cases were
repeated. At the situation with 100% loss rate, the program performed cor-
rectly. It never stopped sending messages. The memory usage was bounded.
The memory leak failure was avoided. Even with a stressful 98% frame loss
rate, 100 frames were successfully transmitted. Figure 11.7 shows the result of
the testing.

You write your results for your boss, who is duly impressed with his new
hire. Your future looks bright.

—e— Without rejevenation

—=— with rejevenation

Memory Usage (KB)

B
38965 \ \ \ \

0 20000 40000 60000 80000 100000
Lost frames

Figure 11.7. Perfect test results with software rejuvenation.

392 TESTING AND CONFIGURATION MANAGEMENT
11.9 SOFTWARE MANUFACTURING DEFINED

Our objective is to create a software system, package it, deliver it to one or
more customer sites, and keep it working. Organizing software development
along the lines of using gurus with the aid of librarians and production coders
is a notion calculated to improve innovation and productivity within the
concept of programming as an art. This may be well and good for the “create”
part of the objective, but who shall handle the remainder? Clerks are tradi-
tionally concerned with keeping established information orderly. The key word
is “established.” A new software release is not a piece of established software
because it is not working, and it will undergo many changes once it is passed
from the developers to the testers. The software manufacturers sit between
these groups and at a minimum perform these coordination, production, and
configuration management tasks:

(1) Accept individual components from designers
(2) Update and maintain source code files
(3) Check the software static structure of for compliance with format and
documentation standards
(4) Compile to produce official executables
(5) Build systems for use by test team
(6) Install on test machines
(7) Create a library of user documents
(8) Track problem reports
(9) Track changes
(10) Document the configuration of each system build
(11) Configure the software for user groups
(12) Reproduce software for each site
(13) Ship software to sites with inventory lists

Concurrently, someone must worry about purchasing computers, issuing
management reports, and all other activities that keep the production wheels
oiled. Even a cursory glance at these tasks suggests that these activities can
impede the actual design function if not done properly; yet they are too
complex for clerical levels. The process of building software and controlling it
demands a technician with some software training. Skills in shell languages,
database control, and machine scheduling are needed. Additionally, to develop
tracking, testing, and report production subsystems, system analysis skills
are necessary. Finally, volume production and quality control demand an
assembly-line, product-oriented frame of reference, with emphasis on
scrupulous adherence to procedures and inventory control.

A professional software manufacturing group helps developers get the
product to market by performing these tasks:

CONFIGURATION MANAGEMENT 393

(1) Freeing developers to concentrate on software development

(2) Giving confidence to the developers that they are working with a
common base

(3) Allowing many development groups work on the same products in
parallel

(4) Providing tools that allow concurrent maintenance of old releases while
testing and shipping new releases

(5) Channeling product changes and eliminating inclusion of unknown
changes in the delivered product

(6) Reporting data that provide management and developers with insight
into the product and the problems it is facing

(7) Running analysis programs on the source code to find troubled com-
ponents that are too big or too complex

(8) Gathering productivity, process, quality, and cost statistics that meas-
ures the processes with continuous coverage through a centralized pool
of resources

(9) Managing communications about problem reports, defects, and change
implementation.

11.10 CONFIGURATION MANAGEMENT

Configuration management is a systematic process that controls and tracks all
changes to a software product over its lifetime. Managing the flux in projects
results in improved quality. Knowing the answer to the “what changed” ques-
tion is the first step in problem solving. Rather than constraining your team,
these controls free team members to focus on the job they do best: bringing
your product to market in a timely, cost-effective manner. The software man-
ufacturers perform the configuration management functions that maintain the
current project information while enforcing the change management process.
With good software manufacturing in place, you can get answers to these
questions:

(1) Requests for Change What changes were requested, and by whom?
How important is the change, and what is the deadline? If the change
will fix a bug, where and how was the bug introduced?

(2) Implemented Changes What changes have been accepted? What
product areas—user interface, database, and training—are affected by
the change? Which release will contain each change, and what system
components were modified?

(3) Staff Assignments Who is responsible for making, testing, and
approving the change? How much work is yet to be done for the next
release?

394 TESTING AND CONFIGURATION MANAGEMENT

(4) Communication among Workgroups Who is notified when a change
request is made? How are developers assigned to implement a change?
How do testers know what to test and when? What changes will be
delivered to the customer, and which ones will be held until the next
build?

(5) Quality and Process Metrics Are problems detected at the expected
rate? Is the product ready for delivery? What are the root causes of
bugs in the product, and which areas are most error prone? What level
of quality is really being delivered to the customer?””’

The software manufacturing tasks occur at two points in the software pro-
duction cycle. First, software manufacturing builds the releases for the test
team. Then at the completion of integration and test, software manufacturing
does the tasks concerned with preparing and shipping the system. Software
manufacturing tasks are shown in Figure 11.8.

When we consider the functions that must be performed in creating and
delivering a software system, the issue is fraught with difficulty. Those neces-
sary functions of configuration management documentation, change control,
and actual software production tend to be viewed by designers and managers
as lesser work. These functions are often relegated to clerks who are ill suited
to perform them, or they are done haphazardly at the expense of the design
work and the customer, or they are not done at all.

Work tasks that get the product out the door and keep it working efficiently
require a unique organization and a different mental set from design
processes. Organizing and staffing for the production of deliverable software-
based systems can leverage assembly-line techniques. Although these produc-
tion activities are common to most projects, software manufacturing is defined
here as an inline, rather than as a support, task that requires special skills.

Once software manufacturing has a firm grip on its raw materials, this group
can help with testing. Testers can select from this database according to their
test schedules and be supplied with test data and various configurations. The
software used to produce the test data may be under the control of the soft-
ware manufacturers and operated by them. The testers’ ability to be selective
in the matter of system builds frees the design programmers from being tied
to a test schedule. Because software manufacturing tracks and releases each
unit and update, designers may turn over whatever they have available when-
ever they have it, regardless of test order, thereby avoiding that insidious
disease, file rot. The software manufacturing group can maintain and run
regression tests after each major milestone.

One special help to testing is a subgroup within software manufacturing,
called the quality improvement team (QIT). When the testers identify a par-
ticular hot spot during their testing, they refer it to QIT who generates a
schematic drawing from MAKE files of module relationships, as in Figure 11.9.

7 http://www.att.com/spt/cms.html.

395

CONFIGURATION MANAGEMENT

'ss800.d buunjoegjnuew 81emyos g L ainbi4

(HW)

1S3no3d
NOILVOIdIdON

S3alls

S1s3l
N3LSAS

1S3l
1N3INOJINOD

S3OVMOVd
3Sv313d

*

1NINNOHIANT NOILNO3X3

NOILVHDILNI >
pue HNILSIL \
DNIHNLOVANNYIN
IHVYMLI0S
A/
NOILVLNIINNDOQe
ONIHNLOVANNYIA 53HNA300Hd.
IHYMLHOS [< 3000
a usuodwo)

_o 3ITINAON
m suodwon

_ V usuodwo)

SdOHS
1N3INdOTIAIA

LNINNOHIANT LNINJO13IA3IA

396 TESTING AND CONFIGURATION MANAGEMENT

%
|
il
v

S
\i
(
|

1

|

I
I

i!
-y

/]
i

=
'

Iy

W

el Ly

r,\‘ r’i\
bt
10

=

1
!
p
i RN
' <7

e

?]U
V7

(
i
LS

Figure 11.9. Before QIT.

Software manufacturing sends this picture back to the design team who
created the modules for their consideration. When the designers have simpli-
fied the interactions, QIT generates another schematic. Often it looks
considerably better, as in Figure 11.10.

It might help to consider the organization of software manufacturing in the
familiar schema of hardware manufacturing, where there are line functions

CONFIGURATION MANAGEMENT 397

Figure 11.10. After QIT.

for day-to-day production and staff functions for monitoring the general
well-being of the product. The software manufacturing line functions can now
be recognized as those tasks we had earlier identified as necessary in getting
from the source code to the product.

The project management must make software manufacturing and configu-
ration management an honest profession by committing a respectable amount

398 TESTING AND CONFIGURATION MANAGEMENT

of resources and attention to it. Software manufacturing provides a process
that is generic to the software development effort. Its introduction leads to
systematizing the production of software, making software development
people more productive, and therefore to better managed software efforts.
This approach differs significantly from a cottage industry approach that relies
on developers to perform all functions equally well.

The ultimate release document contains these features:

(1) Highlights feature content
(2) Describes corrections to problems and lists problem reports closed
(3) Specifies the machine and support software
(4) Specifies limitations or deficiencies
(5) Installation instructions
(6) Specifies commercial off-the-shelf required
(7) Specifies training
(8) Lists component
(9) Data conversion instructions
(10) Product configuration lists for each site

11.11 OUTSOURCING

Outsourcing is changing the software industry. Companies have moved from
developing and maintaining their systems to buying them from third parties.
The split of Lucent Technologies from AT&T in 1996 was the ultimate expres-
sion of this policy. With outsourcing comes the challenge of evaluating just how
well vendor systems work before making a purchase decision and then con-
trolling changes once they deliver. Strong project management and change
control are essential ingredients to successful outsourcing.

11.11.1 Test Models

One company met this challenge with an innovative use of an automated test
design and coding tool, which was used for building an object-oriented model
of the outsourced system. The model was based on the specifications contained
in their Request for Proposal and from system descriptions provided by the
supplier. Engineers used this model to first map the functions they wanted
against the system description and then against the system itself. This assured
them that the contracted functions were present and that they could under-
stand how the new software fit into their business environment. This approach
showed how giving modeling tools to the customer allowed system engineers
to head off unintended consequences well before the system is even
developed.

OUTSOURCING 399

The model of the service node gave the customer engineers insight into the
dynamics of the complex system of systems that made up their business flows.
Use cases were developed along with an architectural description and placed
under configuration control. With the model, the systems engineers studied the
unique call flow for every variation of the business flow. For example, their
customers can use 1 of 12 languages to interact with their website. Manual
evaluation of the interaction of language selection based on the object libraries
with its many variations would have been a huge task without the model and
supporting evaluation tools. In traditional manual methods, the system engi-
neers would study the system specifications and then develop a test case to
verify that the system worked as expected. Finding the error paths is always a
challenge. Typically many review meetings are needed among the system engi-
neers and then with the vendor’s technical people to ferret out the potential
incompatibilities. With this approach, serious problems are often overlooked,
which at best show up in system testing and at worst are found by the paying
customers.

The model-based test creation method permits the early involvement of the
test organization in the development process and is a powerful tool for facil-
itating communication between customer and supplier engineers. For example,
the customers may use several different database technologies in their busi-
ness flow. To install one particular new feature, a database of customers was
needed that contained administrative data and their service requests. The
database initialization process was modeled, such that the database records
were automatically generated from the model. Once the testers saw the
strength of the model, they adopted it as their test case database repository.
Consequently, the model of the databases was used both for populating the
component databases in the target system as well as serving as the input data
for the test creation process. Expected results from the model were kept and
later compared with the results from running the test cases against the pro-
duction system. When there were differences, analysts would compare the flow
in the model with the flow in the service offering and find the problem. This
moved debugging from detective work to analysis. Problems were found in the
object libraries, component systems, the model, and even the system design.

The model assures all features are present, not just the headliners. Once the
software product is installed in the evaluation laboratories, the model pro-
duces test suites for automatic test drivers. These tests verify that that the
system performs as expected.

The test scripts from the model resulted in high coverage rates for feature
testing. Testers are pressed for time and do not have the resources for exhaus-
tive load testing and reliability testing. While testers focus on full load testing,
they often do not have the time to run no-load tests. These tests set up one or
two simple transactions and then let the system idle, waiting for new work.
With the model, setting up such a script was easy to do and pointed to relia-
bility problems in the software system. It was clear from the data that the
offered load was triggering reliability problems and there was no argument

400 TESTING AND CONFIGURATION MANAGEMENT

that this traffic was unrealistic. A long-term benefit is that once the system is
installed, the model may be used for regression testing.

11.11.2 Faster lteration

Faster software development depends on speeding the iteration, not its elim-
ination. Penalizing the innate iterative aspect of human thinking will result in
lower productivity, because it will delay the discovery of a significant number
of defects. The role of testing during most development phases should not be
underestimated as a means of speeding the iterations.

11.11.3 Meaningful Test Process Metrics

Meaningful metrics drive the process to lower cost and higher quality. These
metrics drive the process to identify defects earlier and in larger numbers:

a. Ratio of number of defects found during development to number of
defects found during 1 year of field deployment

b. Number of hours to find a defect by testing
c. Percentage of tests discovering no defects

11.12 PROBLEMS

11.12.1 Let us return to the same sorting problem we saw in Chapter 10. A
sorting program was written to sort members in a health club. There are 446
members; an ID number was assigned to each member. Members belonging
to the same family have the same ID number. The sorting program is required
to sort the members based on ID numbers into ascending order. Members
with the same ID numbers must be kept in the same order as they were
entered.

System testers were informed that there was a known problem in the
sorting program. Testers were asked to work around this problem during
testing.

bubble - bubble sort v(1l) .. .v(n) increasing

void doSort(int n, int vI[]I[])

{
int i,5,k;
for (i =n; 1 > 1; 1 =1 — 1)
{ for (3 =1; J <1i; 3 =3 + 1)
{
if (v[31[0] > v[3+11[0])
{ k = v[jl[0]; / swap key

PROBLEMS 401

v[jl[0] = v[3+11[0];
v[j+11[0] = k;
k = v[jl[1l]; // swap data
v[jll1l] = vI[3+11[1];
v[j+11[1] = k;
}
}
}
}

(1) What are quantitative boundary conditions that must be checked to
ensure correct operation?

(2) State three qualitative boundary conditions that may impact perform-
ance and availability and should be checked.

(3) How would you stress test the sorting program?

(4) Show test cases to demonstrate that the program does not meet the
requirements.

11.12.2 You use an inception, elaboration, implementation/testing, deploy-
ment model for software development. You are the project manager of a team
working on a project to develop a new marketing system for a large manu-
facturing firm. The best time to discuss the question of post-installation main-
tenance of the new software is:

a. at the start of the inception phase.

b. at the end of the elaboration phase.

c. at or near the end of the deployment stage.

d. it does not make any difference.

11.12.3 You are developing a transaction processing software system for a
large international bank. The system will receive transactions 24/7. Research
has indicated that the average daily transaction rate, with 95% probability, will
be about 240,000 transactions per day. You are constructing a test plan for the
system. The project manager feels it safe to test the system for performance
at up to 40,000 transactions per hour, i.e., for four times the expected trans-
action rate. At a project meeting, this point is discussed. Do you:

a. agree strongly.

b. agree.

c. disagree.

d. disagree strongly.

402 TESTING AND CONFIGURATION MANAGEMENT

11.12.4 You are the project manager for a software product. You have staffed
an independent test team. The test team has defined and executed 2000 tests.
All but two have been run successfully. You check the test plans and test cases
and convince yourself that the 2000 tests cover the expected operational
domain of the software product. The product ship date is 2 weeks away. There
are severe financial penalties for missing the date and rewards for shipping
early. You would:
a. increase the testing staff by transferring experienced testers from other
projects to discover why two test cases failed.
b. ship the software immediately and continue testing because all of the
functionality defined by the requirements works.
c. delay shipment to isolate the problem.
d. increase the testing effort by teaming the product developers with the
testers even though it will jeopardize the delivery of the next release of
your company’s most profitable product.

11.12.5 You have two releases of the system in the hands of four customers.
Each customer wants their own changes but does not want to be burdened
with the changes of the other customers. Your budget is tight, so you:

a. insist that there is one release for all and that the customers must
upgrade and accept all changes.

b. adopt a versioning configuration management system.
c. break the system into four systems and customize each.

d. refer the problem to the product manager for a business analysis of the
best strategy.

11.12.6 Your program has worked for several months and all the users are
pleased with it. Suddenly it crashes, so you:

a. blame the user for not being properly trained.

b. seek program dumps and begin debugging.

c. determine what changed in the run that crashed.
d. look for a new job.

BIBLIOGRAPHY

“Open Source Software: Sharing From a Well of Ideas,” CrossTalk, 2005 Vol. 18, No. 1.
Entire issue is devoted to aspects of Open Source.

Bernstein, Lawrence and Yuhas, C. M. “Software Manufacturing” UNIX Review, Vol.
7, No. 7, July 1989, pp. 38-45.

Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools,
Addison-Wesly, Reading, MA, 2000.

BIBLIOGRAPHY 403

Culbertson, Robert, et al. Rapid Testing, Software Quality Institute Series, Prentice-Hall,
Englewood Cliffs, NJ, 2002.

Currit, P. A., Dyer, M., and Mills, “Certifying the reliability of software,” IEEE Trans-
actions on Software Engineering, Vol. SE-12, No. 1, Jan. 1986, pp. 3-11.

Gacek, Cristina and Arief, Budi. “The Many Meanings of Open Source,” IEEE Soft-
ware, Jan./Feb. 2004, pp. 34-48.

Humphrey, W. S., Snyder, T. R., and Willis, R. R. “Software Process Improvement at
Hughes Aircraft,” IEEE Software, July 1991, pp. 11-23.

Kulak, Daryl and Guiney, Eamonn. Use Cases-Requirements in Context, 2nd ed.
Addison-Wesley, Reading, MA, 2004.

Kusumoto, S., Matsumoto, K., Kikuno, T., and Torii, K. “Approaches to Improving Effec-
tiveness of Review Activities in Technical Review Process,” International Software
Quality Exchange 92 Conference Proceedings, Juran Institute Inc., 1992, pp.
7B1-7B16.

Lam,John.“Painless SCM,” Software Development,Vol.12,No. 12, Dec. 2004, pp. 23-26.

Leon-Garcia, Alberto and Widjaja, Indra. Communications Networks—Fundamental
Concepts and Key Architectures, 2nd ed., McGraw Hill, New York, 2004, Sections
5.2 and 5.4.

Levendel, Y. “Improving Quality With a Manufacturing Process,” IEEE Software,
March 1991, pp. 13-25.

McFarlane, M. L. and Sutton, A. Structured, Automatic Testing: A Hard Slog, Cadence
Design Systems, Santa Clara, CA, Dec. 22, 1989.

Perry, William. Effective Methods for Software Testing, 2nd ed. John Wiley and Sons,
New York, 2000.

Phadke, M. S. Quality Engineering Using Robust Design, Prentice-Hall, Englewood
Cliffs, NJ, 1989, pp. 5-6.

Phadke, Madhav S. “Planning Efficient Software Tests,” CrossTalk, Oct. 1997.

Proceedings of the 2" International Workshop on Software Configuration Management,
ACM SIGSOFT, Vol. 17, No. 7, Nov. 1989, ACM Order NO. 594891, IEEE Order
No. 2014.

Sherer, S. A. “A Cost Effective Approach to Testing,” IEEE Software, March 1991, pp.
34-40.

Staknis, M. E. “Software Quality Assurance Through Prototyping and Automated
Testing,” Information and Software Technology, Vol. 32, No. 1, Jan./Feb. 1990, pp.
26-33.

Whittaker, James A. How to Break Software: A Practical Guide to Testing, Addison-
Wesley, Reading, MA, 2003.

Yoshida, T. “Attaining Higher Quality in Software Development—Evaluation in Prac-
tice,” Fujitsu Science Technical Journal, Vol. 21, July 1985, pp. 305-316.

12

The Final Project:
By Students, For Students

The objective of this course of study is to educate the people who will provide
the scalability, robustness, and reliability needed to manage tomorrow’s
heterogeneous systems. The techniques provide insights to people, processes,
projects, and products from leading thinkers' in software issues and our expe-
rience. Our goal is to excite the next crop of thinkers to produce trustworthy
software on time and within budget.

12.1 HOW TO MAKE THE COURSE WORK FOR YOU

We describe how to close the gap between great expectations and realistic
projects. These processes have been used successfully for industrial projects at
Bell Laboratories and Telcordia. The processes also work for teaching under-
graduate and graduate students the principles of software engineering while
they develop a real project for a legitimate customer. Students report that the
experience helps them get jobs and advance quickly. They telescope what takes
most people years of on-the-job learning into a two-semester project-based
course. They are supported by the ideas of the best practitioners of software
engineering technology from around the world.

' The preceding 11 chapters each cite references to major authors in the specific area under dis-
cussion. The most relevant books on each topic were selected for reference.

Trustworthy Systems Through Quantitative Software Engineering,
by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

404

SAMPLE CALL FOR PROJECTS 405

Students work on projects sponsored by companies, government agencies,
and academic departments. Projects range from managing patient records on
flash memory devices sponsored by FujiPhotoFilm USA, Inc. to speeding soft-
ware that predicts tides in New York Bay, to Web-based order entry systems,
to games, to an administrative tracking tool for the FAA, to a new client/server
tool for students to use to schedule classes, and to an online E-banking project,
which is presented in this chapter.

The project work demonstrates the power of “just-in-time” teaching. The
students learn how to build a software product as they develop it. Text mate-
rial meets students’ need for help as the project moves though its develop-
ment cycles.

Sponsoring organizations are also happy with the experience. They try ideas
with little risk and work with students before hiring them. Sometimes they get
software that they can use directly or use as a basis for future work. The students
produce almost 5 staff-months of work in teams of seven to ten students. The
size of the teams is chosen to give students an understanding of human dynam-
icsin large groups. Other classes demand individual work. Here they experience
the challenges of dealing with communication, coordination, motivation, and
planning problems on technical, risky product development with firm due dates
to real customers. If they miss the delivery date, they miss graduation.

Sponsors gain 5 staff-months of student time on a project of their choos-
ing. Companies may declare a project proprietary, and students sign nondis-
closure agreements. Companies have free access to and complete control of
any intellectual property that emerges from the project. The students build
what the sponsor wants, and the software engineering instructor defines how
the work is done following material from this book. Most projects come from
professional contacts and from companies that students have worked with,
especially during their internships. On-campus projects emerge from oppor-
tunities students identify from their campus jobs and activities. Some projects
originate from the fertile imagination of the instructor or the students. Stu-
dents select the project they work on, and sponsors compete for student atten-
tion. There is no fee to the sponsor. As a suggestion for a format for a call for
projects, the following is used by the author to explain the objectives and
responsibilities on both sides.

12.2 SAMPLE CALL FOR PROJECTS
Subject: Requirements for a Stevens Institute of Technology senior class
project.

Objective: All Stevens Institute of Technology computer science students
must complete a software project to fulfill the requirements for their B.S.

Overview: Students are divided into seven to ten-person teams after they
complete a 5-week short project that prepares them for understanding and

406 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

applying good software engineering practices. They are organized into project
teams, conduct weekly project meetings, and write project progress reports
weekly, conduct in-class requirements reviews, architecture and design
reviews, code and test reviews, and final product demonstrations. These
reviews are formal presentations and are accompanied by written project
development plan updates.

The project starts on or about October 15 and is completed by May 1. Given
student schedules and vacations, about 5 staff-months of effort are available.

Project sponsors from industry and government are needed so that students
can face real-world project problems such as:

(1) Managing creeping requirements

(2) Avoiding compressed schedules

(3) Understanding customer needs and desires
(4) Dealing with missing or late dependencies
(5) Facing changing and unavailable sponsors

Sponsor: A project sponsor is the face of the customer. The sponsor defines
“what” the project will do. The instructor defines “how” the students will do it.
The sponsor is expected to:

(1) Define the project with a project prospectus of one to two pages.

(2) Meet with the project team at least once a month.

(3) Create a good working relationship, including telephone and e-mail
access, with the student project manager.

(4) Agree to the written requirements, and negotiate changes with the
student project manager.

(5) Attend the final product review.

(6) Provide any special equipment or software needed for the project in a
timely fashion as mutually agreed to and documented in the project
development plan.

Sponsors are invited to attend all project meeting and reviews. Attending
the reviews is encouraged, but not mandatory. Sometimes sponsors attend the
early project meetings regularly to make sure there are no misunderstandings.
These meetings are held during weekly class meetings. Progress reports and
project plan updates are shared with the project sponsor who may read and
comment on them.

To maximize the educational experience, all students on all projects have
access to all project information except that clearly identified as proprietary.

Sponsors are encouraged to invite students to their workplace.

Sponsors may ask students to respect their proprietary information. Spon-
sors own any intellectual property emerging from the students’ work. Spon-
sors can restrict access to their private information.

A REAL STUDENT PROJECT 407

The instructors will not contribute to the design or functionality of the
project. This intellectual work is left to the students and their sponsor.

There is no fee for sponsoring a project. Sponsors are encouraged to hire
students who fit in their organizations.

Prospectus Outline:
Name of project:
Name of sponsor and organization:
Contact information for sponsor
Project value: (25 words or less)
Project description: (500 words or less)

Project constraints: Outline the technology required, special equipment
needs, or software needs. Specify any algorithms, database, or execu-
tion project needs.

Project directions: (50 words or less) Explain how this project fits with
other organization projects either as part of a product line or as part of
automating operational or management processes or in any other way.

12.3 A REAL STUDENT PROJECT

With the permission of the technical sponsor and the team who produced this
project, we offer the following development plan exactly as submitted by the
students. The team members subsequently entered the architecture phase of
their project. They have generously provided the development plan as an
opportunity to view a sample result of this course of study. It is provided by
students, for students.

Pocket Banking Development Plan Revision 2 1/27/2005

By John Fajardo, John-Paul Kosmyna, Nathan Olcott, Brijesh Patel, Robert
Volk, Seung-Ho Won, and Giuseppe Zappia

Contents
1 Project Overview
1 MoV

Il Management Structure

1V Functional and Nonfunctional Requirements with Quantitative Analysis
V' Gantt Chart

X ICED-T

VI Architecture

VII UML Diagrams

VIII Function Point Analysis

IX COCOMO

408 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

X Schedule Time
XI Demonstration Plan
XII Product Testing Plan

By Jonathan C. Fajardo

We chose the online pocket banking project. The ultimate goal of this
project is to write a program that will enable a pocket PC to do online banking.
It should mimic the online banking that can be done from a computer and
have the basic banking functions. To ensure luxury and convenience to the end
user, everything will be done through vocal commands. The program will use
a regular browser on a pocket PC that is SALT enabled for voice recognition.

SALT stands for speech application language tags. It is multimodal so
various modes of input can be used (such as speech or keyboard). It works by
extending the existing markup languages like HTML. SALT is meant to be
embedded into other applications, which makes it flexible and platform inde-
pendent. It also is compact because it can use functions that already exist in
the hosting language.

This project was chosen because it will help us to learn many new things.
We get to understand how banking systems work and learn about SALT.
Writing this program for a pocket PC offers everyone a faster and easier way
to do online banking.

I. Project Overview

II. MOV
By Seung-Ho Won and Nathan Olcott

Our product is designed to be fast, efficient, and portable. We will show that
our product is much more efficient than both in-person banking and telephone
banking. Although online banking is capable of doing more, our software is
slightly more efficient because we are using voice navigation, and less options
means the ability to navigate faster.

Times different services are accessible
Our product operates 24 hours a day by telephone, and most transactions are
available 24 hours a day on the Internet and during banking hours in person.

The time to complete an everyday transaction

Our product—2 minutes (using voice navigation and inputs tool); Telephone—
5 minutes (calling the bank in person); Internet—3 minutes (using online
banking tool); In person—10-15 minutes (meeting the bank in person).

Number of possible transactions completed in 1 day:

Our product: 720 (24hr x 60min/2min = 720 transactions); Telephone: 288
(24 hr x 60 min/5 min = 288 transactions); Internet: 480 (24 hr x 60 min/3 min =
480 transactions); In person: 96 (8hr x 60 min/15min = 32 transactions)

A REAL STUDENT PROJECT 409

Notice that our product is projected to be 33% more productive than normal
online banking and 1800% more productive than in person. This 33% may
seem like a small fraction, but for someone who is constantly on the move and
wants to perform simple banking tasks, this 33% can add up to a lot of saved
time over a long period.

III. Management Structure
By Brijesh Patel and Nathan Olcott

We have seven people in our team. Every member has been assigned a role
on the project. The assigned roles to team member are subject to change as a
contingency plan in urgent situations as the project progresses.

Developers

John-Paul Kosmyna—Senior Developer [Grammar Developer]

Brijesh Patel—Developer, [Project Manager]|

Robert Volk—Developer, [Architect, Code Auditor, Interface Designer]
Giuseppe Zappia—Developer, [Server Admin, UI Developer]

Testers

Nathan Olcott—Senior Tester [Senior Documenter]
Jon Fajardo—Tester

Seung-Ho Won—Tester

Documenter
Nathan Olcott—Senior Documenter [Senior Tester]

Team meets once a week and at other times as necessary. Although we have
defined roles among our group, and those people are ultimately responsible
for their jobs, we find it beneficial to have group input at certain points of our
project, especially in regard to requirements. Because we were not given any
requirements by our sponsor, it was up to us to create our requirements.
Having the entire team give their input on requirements and development
made for better and more realistic requirements. Also, although the architect
has the final say in the product architecture, it is beneficial to have many
members debate the architecture, leading to a well-developed architecture.

IV. Functional and Nonfunctional Requirements with Quantitative Analysis
By Nathan Olcott

Functional Requirements
Users must Login/Logout
Be able to view all bank accounts

410 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

User maintenance

Help Screen

Ability to transfer funds between accounts, and schedule those transfers
Users should navigate via speech

Nonfunctional Requirements

Intuitive interface

Reliable system performance

Runs on pocket PC with SALT-enabled browser
Must scale bank’s current and future user base

Quantitative Functional Requirements

Users must Login/Logout. The process must take no more than 3 seconds.*
All accounts that are viewed on the main screen must be displayed in no

more than 5 seconds.*

When the user changes anything under the user maintenance screen, all
changes must be updated in the database in no more than 30 seconds.

The main help screen must load in under 3 seconds.*
Any transfers made between accounts must be changed in the database
within 20 seconds.

Speech navigation must be 15% faster than using a stylus to perform actions
on the system.**

All speech navigation must bring up the appropriate data with 97%
accuracy, and the command must be interpreted by SALT in no more
than 3 seconds.

Quantitative Nonfunctional Requirements
System must be available 23 hours a day, 365 days a year, with 1 hour of down-
time for backup and maintenance.

The database must support 10,000 customers with an average of five accounts
per customer and have the ability to grow to double that capacity.

*All time bounds are assuming a wireless connection using IEEE Std
802.11b with a minimum connection speed of 5.5 MB/second.

**This references the average time to write a command using a stylus versus
saying the desired word.

A REAL STUDENT PROJECT 411

V. Gantt Chart
By John-Paul Kosmyna, Nathan Olcott, and Brijesh Patel

! i e
1 EG ey s e 10T e 10 ==
rn—y
FR= ra—— vty e 1708 17700 [r—
Lo | | [re——
El= [T Viders o 11005 on 12006 1
FE vsssieworet | Sown feinen veatanis 1
5 EH s Vawn W INOE ben10a
B E Desnuvesfage | s Mednans Mt
TG oy Pt Ve T RS0 b 20408 1
.
U EHG e [
| I Tewry
L= tiama IR veedun 1
[
= T iam TNl s —
Camng. hevisin
(T T Taws Uea RS T 08 10 -
L] | Taming
T EE Tibers VeSS Ta, A1 1 4
D
1 E{ Coby Pefesin | Odes BAADS w#ts 8 h;
Codng . nd
(= Tamr ARSI ben a0
Temeg
%G ceuens Tewr Ieanam mensE© —
]
WOEE teenem O T e
Darurseration

SALT menu implementation Database setup Basic text-based GUI Banking
Framework Help Framework Grammar Development Deployment

Revision 2
SALT input implementation Finalize Database functionality Finalize gram-
mars Basic banking functions QA Deployment

Revision 3

Complete SALT implementation Complete GUI Complete Help Complete
banking functionality Production Deployment

VI. 4 + 1 Architecture
By Robert Volk

Process View

Pocket banking uses only three processes to process all requests and transac-
tions. This is to reduce complexity in data locking methods and create a simpler
application, which is much easier to develop. The most processor-intensive
functions are divided into separate processes, namely, the pocket banking

application, speech recognition application, and SQL database, so perform-
ance will not be hindered.

412 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

Pocket Banking Speech
Application Recognition
Application

Y

SQL Database

a. Process view.

Logical View

The logical view displays the primary classes used to create the pocket banking
and speech recognition applications. The pocket banking classes are derived
from the main tables in the database. Each database table translates into two
classes, one to represent multiple rows and one to represent a singular row.
Creating classes in this way leads to naming conventions across the classes,
database tables, and methods. The speech recognition application contains
only two classes, Grammar Reader, which parses the XML grammar file, and
Speech Recognition, which interprets the incoming voice data stream and
compares it with the grammar through the grammar reader class.

Pocket Banking

Speech Recognition

“Customers ™~ Accounts ™, /" Account %, "~ History . ;Transfers ™,
3 i S5 Types
{(’-Dalc Helper\‘g

Speech "~
{ Recognition

7" Grammar ",
L Reader

b. Logical view.

A REAL STUDENT PROJECT 413

Physical View

The pocket banking software runs on two servers for increased performance.
The speech recognition application requires a dedicated server because of
the large processing overhead required for interpreting speech. The pocket
banking application and SQL database run on a separate server. The pocket
banking application sends requests and commands to the SQL database, and
the database responds with record sets containing the requested data. The
pocket banking application forwards the incoming speech data stream to the
speech recognition application and that application sends back the plain-text
interpretation of that speech based on a predefined grammar.

Web Server Speech Recognition Server
Pocket Banking Speech Recognition
Application Application
A
SQL Database

c. Physical view.

Development View

The development view shows all of the modules in the applications that the
developers will program separately. The main pocket banking application is
divided into three tiers, namely the presentation layer, for rendering the Web
pages, the business layer, for encapsulating transaction logic, and the data layer
for communicating with the database. The speech recognition application has
two classes to develop independently, and the SQL database has two modules
to develop separately, the stored procedures and the table schemas.

414 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

Pocket Banking Application Speech Recognition Application
] N N
Presentation Layer
. Speech
Navigation Interpreter
Business Layer Grammar
Reader
Business
Process
Components
- J/
Data Layer
Data Access
Layer
Components|
- J
SQL Database
/ R
Table Stored
Schemas Procedures
N /

d. Development view.

VII. UML Diagrams
By Robert Volk

Application Layers UML Object Diagram
This diagram shows an overview of the logical separation of the application,
called layers. The arrows represent the flow of method calls from one layer to

A REAL STUDENT PROJECT 415

another. The presentation layer can only call methods from the business or the
data access layer. The business layer can only call methods from the data access
layer. No calls may be made upward in the layers, for instance, from the data
access layer to the presentation layer.

]

Presentation Layer

]

Business Layer

]

Data Access Layer

a. Layers UML object diagram.

Presentation Layer UML Object Diagram

The presentation layer renders data returned from the business and data
access layers to HTML. Process components, such as CustomerProcess and
UlIProcess control redirection from one Web page to another for the user.

416

THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

I

*

<<subsystem>>
Controls
Signin.aspx Customer.aspx Transfers.aspx
Process : Ci -voiceCi istener : VoiceC istener -voiceC istener : VoiceC
Page Load — -dalcCi :Cl -dalcTransfers : Transfers
+Page Load) +Page_Load() +Page_Load()

*

+Page_Load()

*

Accounts.aspx CustomerEdit.aspx TransfersAddEdit.aspx
-voiceC istener : VoiceC istener -uiProcess : UIProcess -uiProcess : UIProcess
+Page_Load() -dalcCustomers : Customers -dalcTransfers : Transfers

+Page_Load()

B
Accounts.aspx

-voiceC istener : VoiceCr istener
#dalcAccounts : Accounts
+Page_Load()
* i
CustomerProcess UlProcess
-uiProcess : UIProcess +CustomerID
[+Signin() - bool [ReceivedEvent : C ReceivedEventHandler
+SignOut() « |+UIProcess()
+ShowAccounts()
+ShowAccount()
+ShowTransfers()
+ShowTransfersAddEdit()
+ShowCustomer()
+ShowCustomerEdit()
+ShowSignin()
-OnVoiceCommandReceived()

b. Presentation layer UML object diagram.

Controls Subsystem UML Object Diagram

The controls in this subsystem encapsulate frequently used presentation items,
such as the menu for the website, defined in Header.ascx, and any disclaimers
at the bottom, defined in Footer.ascx.

Header.ascx Footer.ascx

d. Controls subsystem UML object diagram.

Business Layer UML Object Diagram

The business layer contains two types of objects: business entities and busi-
ness components. Business entities are in-memory documents containing
selective data from the database. They are not strongly defined in classes;
rather, they are represented with DataReader and DataSet classes, which are
built into ADO.NET.

A REAL STUDENT PROJECT 417

Business components contain the business logic of the application. While a
user is on a website, he or she has the option to give a voice command to
perform some task. The VoiceCommandListener component listens for these
commands to come in from the speech application through a process that runs
continuously while the user is on a page. When the process receives a
command, it raises an event for a class in the presentation layer to interpret.
The Md5Hash component uses the one-way MDS5 hash to encrypt the cus-
tomer’s pin number. Only the encrypted pin is stored in the database for
increased security.

VocieCommandListener Md5Hash
-CommandReceived : CommandReceivedEventHandler
+VoiceCommandListener() +Hash ToBase64String(in String : string) : string

+~VoiceCommandListener()
+OnCommandReceived()
+Listen()

+StopListening()

<<datatype>>
CommandReceivedEventHandler

+CommandReceivedEventHandler(in sender : object, in e)

DataReader DataSet DataRow

-Rows : DataRow [@——

d. Business layer UML object diagram.

Data Access Layer UML Object Diagram

The components of the data access layer interact with the database and return
business entities to the caller. Each class contains methods to create, read,
update, and delete (CRUD) data. The one exception is the history component,
because history should never change. The DalcHelper component contains all
connection logic and information to the database. All components inherit this
class, so they have access to all of its public and protected methods. The CRUD
methods all call stored procedures in the database, which return, where appli-
cable, only the data required.

418

THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

Accounts

Customers

Transfers

+Create(in CustomerID, in AccountTypelD, in ...)
+Update(in Account : DataSet)

+Delete(in AccountID : int)

+GetOne(in AccountID) : DataSet
+GetAllForCustomer(in CustomerID) : DataReader
+GetAlIForCustomerSummary() : DataReader

HCreate(in CustomerlID, in FirstName, in ...)
HUpdate(in Customer : DataSet)

H+Delete(in CustomerID)

+GetOne(in CustomerID : int): DataSet

+Create(in Date, in AccountlD, in ...)

+Update(in Transfer : DataSet)

+Delete(in TransferID)

+GetOne(in TransferlD) : DataSet
+GetPastForAccount(in AccountID) : DataReader
+GetFutureForAccount(in AccountID) : DataReader

AccountTypes

History

+Delete(in AccountTypelD)

+GetAl() : DataReader

+Create(in Name, in IntrestRateName, in ...)
+Update(in AccountType : DataSet)

+GetOne(in AccountTypelD) : DataSet

+Create(in AccountID, in Amount, in ...)
+GetForAccount(in AccountlD, in NumResults) : DataReader
+GetRangeForAccount(in FromDate, in ToDate) : DataReader

A 4

DalcHelper

-strConnection : string

SqlCommand

#GetSqlCommand(in Name : string) : SqiCommand

e. Data access layer UML object diagram.

Sign-In UML Sequence Diagram
The sign-in sequence shows the physical interaction between components. A
user signs in through the SignIn.aspx Web page. That page calls Signln () from
a customerProcess object. That object hashes the pin and compares it with the
pin in the database, retrieved from dalcCustomers. If the hashed pins match,
customerProcess calls ShowAccounts () from uiProcess and redirects the cus-
tomer to the Accounts.aspx page. If the pins do not match, the user is redi-
rected back to the SignIn.aspx page.

Signin.aspx customerProcess md5Hash dalcCustomers uiProcess Accounts.aspx dalcAccounts
T T T T T T T
I I I I I I I
I I I I I
Signin(i i i i i
I I I I
HashToBase64String(| | | |
I I I
i GeItPlln() : i i
: :ShowAccounts6 : :
: | | g Page_Load() :
I I I]
| {OR} |) | —
I | ShowSignin() GetAllForCustomerSummary()
| L : : >
I I I
! ! !

f. Sign-in UML sequence diagram.

Application Sequence Diagram

This sequence diagram shows selected parts of the overall application process.
The top half of the sequence shows how different pages are loaded in the
system. The bottom half shows how the VoiceCommandListener handles
incoming voice commands, as described in the Business Layer UML Object

Diagram section.

A REAL STUDENT PROJECT

Qm:qum mm| VoiceCommandListener | | Accounts.aspx | [Accounts.aspx| | dalcAccounts || Customer.aspx || CustomerEdit.aspx || dalcCustomers
! ShowAccounts() | T T T T
! 1 1 1 1 1 1 1 1

Page_Load 1 1 1 1 1 1
1 1 1 1 1 1
[GetAlIForCustomerSummary() 1 1 1
1 1 1 1
ShowAccount() 1 [l [l 1 1 1
1 1 1 1 1 1
Page_Load() 1 1 1 1 1
L L L 1 1 1
ShowCustomer() 1 1 GetOne() 1 1 1
1 | 1 1 1
1 Page_Load() 1 1 1 1
L L L L oL
1 1 1 1 GetOne()
1 1 1 1
| 1 1 1 Page_Load()
1 1 1 1
1 1 1 1 GetOne()
1 1 1 1
| | ShowCustomer() !
| Page_Load() | |
L
UlProcess() 1 1 1 1 I I]
. 1 1 1 1 1 1 1
VoiceCommandListener | | | | | | |
1 1 1
Listen 1 1 1
1 1
1
|
:> OnCommandReceived
ShowAccount()
Page_Load
{ol T
ShowAccounts() 1
1
ShowCustomer() {OR] 1
1
ShowCustomerEdit() {OR 1
o 1
ShowSignin() {OR I
B '
1 ShowTransfers() ~ {OR)
1
' ShowTransfersAddEdit() OR

g. Application UML sequence diagram.

UML Use Case Diagram

This use case diagram shows the interaction of a customer and the pocket
banking application and the various activities a customer can do with it. The
customer can sign on or off, view accounts and details on that account includ-

ing history, manage transfers, and manage their customer data.

420 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

Views Accounts

Manage Transfers

Customer

Manage Customer

h. UML case diagram.

VIII. Function Point Analysis
By John-Paul Kosmyna and Brijesh Patel

Function Points

Simple Average Complex
Input Types (1) 3 0 0
Output Types (O) 0 0 0
Inquiry Types (E) 5 0 0
Logical Input Files (L) 0 0 0
Interfaces (F) 4 0 0

Unadjusted Function Points

Input Types (1) (3x3)+0+0 9
Output Types (O) 0+0+0 0
Inquiry Types (E) Bx3)+0+0 15
Logical Input Files (L) 0+0+0 0
Interfaces (F) (5%x4)+0+0 20
Total Unadjusted 44

Function Points

Degree of Influence

A REAL STUDENT PROJECT

Data Communications
Distributed Functions
Performance

Heavily Used Configuration
Transaction Rate

Online Data Entry
End-User Efficiency
Online Update

Complex Processing
Reusability

Installation Ease
Operational Ease
Multiple Sites

Facilitate Change

Total Degree of Influence

O—=20UUO0O =+ =200 WPARARNWOM

w

Technical complexity factor = 0.65 + (0.01)DI.

TCF = 0.65 + 0.01(30).
TCF = 0.95.

Function points = Unadjusted function point x Total complexity factor.

Function points = 44 x 0.95.
Function points = 41.8.

IX. COCOMO
By John-Paul Kosmyna and Brijesh Patel

Total lines of code = 41.8 function points x 53 lines per

function point Total lines of code = 2215.4.
KLOC therefore equals 2.22.

E =bKLOC".

421

The COCOMO function is used for cost estimation. It uses two constants
dependent on the category the project falls into and the kilo-lines of code
(KLOC) in the project. We estimated the number of lines of code used in our
project by using our function point analysis. The number of lines of code per
function point is 53 (Applied Software Measurement, Capers Jones McGraw
Hill, 1996). By using this information, we come up with the total lines of code
needed by our project.

This project falls into the semidetached category. In a project falling into this
category, the team may show a mixture of experienced and inexperienced
people and the project may be fairly large, although not excessively large. We
feel this is the best description of our team and project.

422 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

The basic COCOMO parameters for a semidetached project are b=3.0 and
c=1.12E = 3.0 (2.22)""?E = 7.328 staff-months.

As students, the time we spend on a project is limited to the class time and
free time we have. We estimate this as 10 hours per week per student as
opposed to a 40-hour week for a professional in the field. Because we are stu-
dents, we make the assumption of 1 student-month = 4 staff-months; there-
fore, our project will take 29.02 student-months. Student-months = 4 x 7.328
=29.02.

Our team has a total of seven team members using the COCOMO estima-
tion. This project will take our team 4.2 months. Following our grant chart, this
proves the project can be completed in the time allotted.

29.2 student-months/7 students = 4.2 months.

X. ICED-T
By John-Paul Kosmyna, Giuseppe Zappia, and Robert Volk

Phone Online Pocket PC In
Person
Intuitive 2 3 4 5
Consistent 4 4 4 3
Efficient 3 4 5 2
Durable 4 4 4 1
Thoughtful 2 3 4 5
ICED-T
5]
5
| |mPhone
@ Online
1 m Pocket
dIn Person

Intuitive Consistent Efficient Durable Thoughtful

A REAL STUDENT PROJECT 423

Intuitive—Although not being able to overpower the convenience of having
a teller in front of you, our interface will prove to be more efficient than the
telephone and normal online counterparts.

Consistency—Consistency will be identical to normal online banking, because
they are the same. Using computers to do this task ensures greater consistency
than having a person do these tasks.

Efficient—This project will far surpass the efficiency of having a person, tele-
phone, or even a normal online solution. Adding the voice component is an
integral part in allowing customers to get as much done as they can in as little
time as possible.

Durability—Durability is consistent with online and phone systems, but far
greater than having a teller.

Thoughtful—Although not being able to be as thoughtful as having a person
present, the voice component will prove to be much more thoughtful than con-
ventional online banking.

XI. Schedule Time
By Brijesh Patel

Although the COCOMO method says that we only need 7.32 staff-months for
the development job, but as we are students, our calculated estimate is 29
student-months. In our group, we have seven students, so the actual estimate
for the development job is 4.2 student-months. Our time period estimates that
we have total 4.4 student-months. We estimate that our project can finish on
time. This time estimate could be changed if required to finish up the project
a month earlier.

Task Start date End Date Current Est. Days
Planning 10/27/04 11/09/04 9
Requirements 11/10/04 11/24/04 11
Architecture 01/10/05 01/24/05 11
Database Development 01/14/05 01/26/05 9
Grammar XML 01/10/05 01/24/05 1
Design Ul Web Page Flow Chart 01/10/05 01/24/05 11
Coding Revision V1.0 01/25/05 02/14/05 15
Testing 02/15/05 03/02/05 12
Debugging 02/15/05 03/02/05 12
Code Revision V1.2 03/03/05 03/22/05 15
Testing 03/23/05 03/31/05 7
Debugging 03/23/05 03/31/05 7
Code (Final) Revision V1.3 04/01/05 04/14/05 10
Testing 04/15/05 04/25/05 7
Debugging 04/15/05 04/25/05 7

Documentaion 09/15/04 03/30/05 129

424 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

XII. Demonstration Plan
By Nathan Olcott and Robert Volk

Our product needs to run on a pocket PC, but because of lack of funds, to
demonstrate the product, we will be using a pocket PC emulator running on
a laptop with a 1-GHz processor, 256 MB or RAM, and Windows XP service
pack 2. Although the computer has much better specifications than a pocket
PC, which only has a 400-MHz processor and 64 MB of RAM, the demon-
stration will still be accurate because the emulator also emulates the speed
and RAM of the pocket PC. Provided below are screenshots of the program
running on a pocket PC emulator.

XIII. Product Testing
By Nathan Olcott, Seung-Ho Won, and J. P. Kosmyna

Our product will be thoroughly tested using regression testing and unit testing.
Some other types of testing that will be performed include functional testing,
integration testing, and stress testing. Below is a comprehensive plan to test
the result of our code using the pocket PC running a SALT-enabled browser
to run our Web application.

Regression Testing

Regression testing assures that features already implemented in previous ver-
sions of our software work in all current versions. Test cases run on the first
version must run and pass on any subsequent version.

Unit Testing

Various use cases will be executed to ensure that all aspects of the functional
requirements are met. This set of use cases will include both realistic and unre-
alistic scenarios to test the system’s ability to detect and handle errors.
Parameters will be passed to individual functions, and results will be
checked for correctness. We will be using the NUnit test tool for unit testing
of C# code.

Functional Testing

Being the type of testing where a developer (usually the one who wrote the
code) proves that a code module (the “unit”) meets its requirements, the main
purpose of this test would be the validity of the result of XML and HTML
codes. Units that can be broken up for testing are the individual XML, HTML,
as well as the individual tables of the database (SQL server). XML and HTML
take in two kinds of inputs: user input and database queries. Each XML doc-
ument will be considered a unit, and it will be tested independently using valid
and invalid inputs. Each table of the database will be considered a separate
unit as well and will be verified to accept only valid inputs.

A REAL STUDENT PROJECT 425

Integrating Testing

A type of testing in which software and/or hardware components are com-
bined and tested to confirm that they interact according to their requirements,
we will check the connection of the pocket PC to our web server, web server
and SQL server, vice versa, pocket PC to speech server, and speech server to
web server, and test that it is working on its maximum capability.

Stress Testing

Because stress testing is aimed at investigating the behavior of software or
hardware equipment in unusual operating conditions, it will be tested with
realistic and unrealistic scenarios. The production version will be moved to a
hosting facility environment for testing.

Hardware required:

+ Pocket PCs

« Windows 2003 Server
 IIS Web Server

+ Speech Server

« SQL Server

Software required:

« Visual Studio.NET (Version 2003)
 Visual Studio Framework Version 1.1
+ Database (SQL Server)

 Version Control Software

+ Speech Server

SALT-Enabled Browser

426 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

F Pocket PC Emulator = |El| x|

pocket banking

ACCOUNTS | PAYMENTS & TRANSFERS | ACCOLNT SERVICING | HELP | SIGN OFF

Account Details & Activity

DETAILS 'Select an account... v|

Checking: xxxxx222
$12,000.00 on deposit
$12,000.00 available now

Total: $12,000.00
4 Menu < Account Summary View More History p
ACTIVITY Sort Order: | Select a sort order.. ¥ |
Date Description Amount End-of-Day Balance
10-31 CASH WITHDRAWL -$100.00 $12,000.00
10-28 DEBIT CARD PURCHASE

SHADY RECORD STORE -$10.00 $12,100.00
10-28 DEPOSIT $5,010.00 $12,110.00
1027 CASHWITHDRAWL -$500.00 $7,100.00
10-26 DEPOSIT $1000.00 $7lﬁ_DU.DU
10-25 DEBIT CARD PURCHASE -$100.00 $6,600.00
10-24¢ DEBIT CARD PURCHASE -$50.00 $6,700.00
10-23 DEBIT CARD PURCHASE -$1000.00 $6;75U.DG
10-22 CASH WITHDRAWL -$500.00 $7.750.00
10-21 DEPOSIT $4000.00 $7.250.00

10-18 CASH WITHDRAWL -$500.00 $3,250.00

A REAL STUDENT PROJECT 427

€ Pocket PC Emolator, ISTEY

. pocket banking

ACCOUNTS | PAYMENTS & TRANSFERS | ACCOUNT SERVICING | HELP | SIGN OFF

Payments & Transfers

Make a Transfer
Say "From Account” then the from account name, Then say 'To Account” and the to account name.

From Account [Selact an account. . v§|
To Account | Select an account... v/
4 Menu Cancel Next p»

Transfers Between Linked Accounts

+ Setup a Recurring Transfer
» Sea, Change ar Cancel Future Transfers

+ See Past Transfers

428 THE FINAL PROJECT: BY STUDENTS, FOR STUDENTS

12.4 THE REST OF THE STORY

Even with this preparation, things go wrong. These is no sQFD, so when prob-
lems arose, the team was not able to nimbly discard functions. When two of
the seven students slacked off, the team could not compensate for their lost
work. The project was incomplete and buggy at the end of the semester. The
end-product earned less than an A, which was half the grade; the other half of
the grade was for the process used. The students commented that staffing was
inadequate and they would have preferred to have 10 people. This project
brought home to the students the truth of the maxim, “Even the best processes,
tools and technology cannot make up for poor project management.”

12.5 OUR HOPE

We want to encourage outstanding people to produce trustworthy products
by working with discipline and care for the future of their product. Both the
software industry and its customers must insist, at minimum, on this basic code
of behavior.

A software architect and a project manager are identified by name for each
project; both attest that the software is fit for use.

They analyze software project risks and document their findings.

They make sure that user interfaces are intuitive and easy to use, that “help” is
helpful, that private information is protected and that the software is safe for
humans.

They understand the larger environment of the specific problem and will educate
the customer, if need be, to the appropriate solution.

They follow formal, documented software development processes.
They respect property, copyright, patent and privacy rights.
They publicly advocate ethical behavior.

4 + 1, architecture, 142-144, 153, 232,
347,349-353, 411414
7 =2, human working memory, 326-327

Abstraction, 145, 244. See also
Components.

ACM/IEEE, 7

Agile, 49-52,293-294, 334-336

Anti-missile Missile System, 26, 116-122,

228, 250. See also Safeguard, Patriot.

API, application programming interface,
137,156
Architect, 8, 58, 141-144
4 +1,142-144, 153, 232, 347, 349-353,
411414
checklist, 155
discovery, 141
lessons learned, 154
reviews, 138, 141, 155-156
ARQ, Automatic Repeat Request
264-265, 386-389
Availability, 17, see Reliability

Index

Backfire, 185. See also FPA.

Bailey, Robert, 326, 342

Bang bang control, 257-259

Behavior of software architect, project
manager, 428. See also Ethics.

Bell Laboratories, xvi, 28, 95, 117, 138,
144,193, 228, 250-251, 336-337, 375,
404. See also Checklist, core
values.

Bentley, Jon, 360

Best Current Practice(s), xvii, 116,

Boehm, Barry, xxiii, 13, 17,21, 53,77,
108, 280, 287

Bottom up, 223, see Development plan,
choice

Bound execution, 259-260

Brooks, Fred, 46, 311, 343, 344

Buffer overflow, 367

Business Histories, 123-128. See also
Failures

database system, 124-125. See also

Prototype,

Trustworthy Systems Through Quantitative Software Engineering,

by Lawrence Bernstein and C. M. Yuhas
Copyright © 2005 IEEE Computer Society

429

430 INDEX

evolutionary, estuary water flow,
125-128

FBI infrastructure, 328-334. See also
Failures.

financial systems163-166

order entry, 124. See also Prototype,
throwaway.

order reading, 123

store and forward, 124

Capability Maturity Model, CMM 5
CAPS, Computer aided prototyping
systems, 109, 113-114. See also
Luqi.
Case Study. See also Business histories.
application before middleware, 67-68,
134-135
apply process, 208-216. See also Cost
estimation; Gantt; SQFD.
banker’s benefits, 167-170. See also
Business histories; Prototype.
bard’s bulge, 186-187. See also
NCSLOC.
creative consulting, 78-80. See also
Requirements, specification.
dissed discount, 32-33. See also
Customer.
double header development, 138. See
also Architecture, reviews.

driven development, 116-122. See also

Safeguard; Antimissile missile
system.

famished fish, 131-133. See also
Systems, structured analysis.

fault tolerance, 83

Higgins vs. Hoover, 328-334. See also
Failures.

host on time, 264-266. See also
Complexity reduction; Design,
simplification.

I can’t hear you, 317-318. See also
Failures.

1/0O, 260-261. See also Performance,
budgets.

impossible overtime, 379-389. See also

OATS; Testing; Yourdon, Edward
late (but great!) operating system,

52-53. See also Project manager.
library overdue notice, 33, 103

lions share at tea time, 54. See also
Requirements.

magilla transporters, 263

maintenance, 34

mandatory requirement, 17-18. See
also Waterfall Model; Requirements,
hidden.

management, 194-195. See also
Organization, central; Software
Manufacturing middleware, 67

minding your mother, 140-141, 319.
See also System(s), administrator.

muddled middleware, 157-158. See
also Middleware.

no-service service request, 68-70

no-show, 98-102. See also LAS, SRS.

perpetual pendulum, 302-303. See also
Outsourcing.

pokey JiffyLOOP, 347-353. See also
UML.

preempted priorities, 160-163. See also
Failures, NASA.

productivity, 68

puzzling patriot, 81-84. See also
Antimissile; Fault tolerance; Patriot.

sacrosanct date, 8. See also Ethics;
Project manager; Yourdon, Edward.

stabilizing, 63-65. See also Creeping
features; Project manager.

test kit, 386-391. See also
Rejuvenation.

threatened bottom line, 19-21. See
also Spiral Model.

transport pile-up, 231-234. See also
Components.

trouble in paradise, 297-298

Cash flow, discount, 306
Change Control, 13,393
Checklist

architecture review, 155

Bell Laboratories core values, 337

calculate total unadjusted function
points (UFP), 180. See also FPA.

components, 240

corruption, mitigate against, 361. See
also Coding styles.

customer communications, 21-22

defining the type of software, 354. See
also Complexity, measuring.

design review, 230

design, Parnas, 237. See also
Reliability.

development, 87, 247

development process, 14-15

estimation, 205. See also Cost
estimation.

ethical responsibilities of software
manager, 338. See also Ethics.

expansion factor, 340

extracting insights from data, 324

format, 247-248

house of quality, 88

how developers keep busy, 339

ICED-T, 215

metrics based on FPA, 96

metric for complexity, 359-360. See
also Complexity, measuring.

modular design, 238

NCSLOC counting rules, 186

prototypes, 113, see Prototypes, RAD.

rapid application prototype, 109-110,
see Prototypes, RAD
risk analysis, 282, see risk
risk assessment by size, 281
risk identification, 279, see risk
reliability, 226
reuse, 242
risk assessment, COCOMO 11,
285-286
risk identification, 279. See also Risk.
risk management, 280
risk priority, 284
Sarbanes-Oxley (SOX), 273-274
sizing, 198
sponsor, 406
synthesis, 166
team, championship, 30, see Project
Manager(s), job
trustworthy, 233
usability principles, 321
weighting GSC calculation, 181
Wideband Delphi, 189-190
WinWin Spiral, 85
Chief Technology Officer (CTO), 28
Closed loop system, 258
CMIP, common management
information protocol, 153
CMM, Capability Maturity Model, 5

INDEX 431

CMMI, Capability Maturity Model
Integration, 5
COCOMO, 62, 182, 197-204, 421-422.
See also Cost estimation.
COCOMO 1II, 200-205. See also Cost
estimation
cost drivers, 201
effort equation, 201
scale drivers, 200
scheduling, 201-203
Code
and fix, 15
inspections, 42, 357
reading, 364
review, 364
inspections, 364-365
Coding Styles, 360-365, 254-255. See also
Checklist, Hatton.
Cohesion, 243, 353. See also Complexity,
measuring.
Commercial Off-The-Shelf, COTS, 11,
46,287
Compile, link and test, 294, 301
Complexity, xx, 4, 55, 57, 62, 79-80, 96, 31
for function point analysis, 179, 180.
See also FPA.
measuring, 353-360. See also
Checklist, defining types.
metric, 355, 359-360
reduce, 263-266, See also Case study,
host on time.
Common Object Request Broker
Architecture, 58
Components, xx, 4, 26, 43, 149, 165, 230,
238-240, 243, 357
Components, module into component,
144-146
Computer-aided prototyping systems
(CAPS), 109, 113-114
Configuration management, 393-394
Cooperative testing, 380-382
CORBA, common object request
broker, 58
Cost estimation, 195-205. See also
COCOMO; COCOMO II;
SLIM.
Cost estimation, Bernstein model, 198
COTS, Commercial Off-The-Shelf, 11,
46, 144, 155, 231, 287, 320

432 INDEX

Council on National Software Studies, 39
Coupling, 236, 243-244,354. See also
Complexity, measuring.
Creeping features, 64, 87, 183, 295
CRM, customer response management,
319-320
CTO, Chief Technology Officer, 28, 45
Current Estimate, 23
Customer(s), 13, 25, 28, 48, 61, 75, 111,
224
needs from their wants, 107
teaming relations, 193
Cyclomatic Metric, McCabe, 355-358.
See also Complexity, measuring.

Defect(s), 57, 59, 254, 37
Design, 62
human interaction, 301
icon, 324, 326
maintainability, 267-268
pattern, 267
principles, 243-246
review(s), 228-230. See also Checklist,
design review.
rules, 59
simplification, 62, 223-224, 248, 356
stability, 255-256
trustworthy, 248-268
untrustworthy, 295
validation, 116
Development
managing, 322
plan, choice of, 53, 281
process, 24
Diff, Tale of, 188-189
Dijkstra, Edsger, 221, 346, 355, 372. See
also Test(ing).
Discount cash flow, 306
Dixon, Nancy, 51
Documentation, 246-248, see Case study,
bards bulge; Checklist, format.
Drucker, Peter, 312

Ease of implementation, 89

Ease of use, 322, 328

EI, external inputs, 176, 177. See also
Function points.

EIF, external interface file, 176, 179. See
also Function points.

Emergent
properties, 52
requirement(s), 17, 78, 87
Engineering, xvii, 7
EO, external output, 176, 178. See also
Function points.
EQ, external inquires, 176, 178. See also
Function points.
Estimate, Current, 23
Ethernet clashes, 140
Ethics, 6,7, 78, 115, 311-312, 338. See
also Behavior.
Expansion factor, 190-191
Extended machine, 148
Extreme Programming, (XP), 25, 47

FAA, 252,316
FACS, Facilities Assignment and Control
System, 150, 380-381. See also
Test(ing), cooperative.
Fail-safe, 161
Failure(s). See also Business histories;
Case studies.
Air traffic, 159, 317-318
Comair cancels, 158-159
FAA, 252-253
FBI Trilogy Program, 328-334
NASA crashes, 159-160
MARS Preempted Priorities,
160-163
Farmers Market, 192
Fault tolerance, 225, 249-251
FBI Trilogy, 328-334. See also Failures.
FCIF, Flexible Computer Interface
Form, 50-153
Feature creep, 64, 87, 183,295
Feedback control, 256-259
Field fault density, cumulative, 289. See
also Defects.
FMO, future method of operation, 80
Fowler, Martin, 266, 272
FP, function points, 95-98, 127, 142,
176-184, 230, 420-421. See also sFP.
FPA, function point analysis, 176. See
also Function points; sFP.
accuracy, 184-185
FRS, functional requirements
specification, 77. See also
Requirement(s).

Function points, 95-98, 127, 142,
176-184, 230, 420-421. See also sFP;
FPA.

advantages, 183-184

equation, 182

disadvantages, 184

sizing an automation project example,
182-183

Functional organization, 29, 194, See also
Case study, well-shod management.

Future method of operation, (FMO), 80

Gantt Chart, 23, 206-207, 411

Gates, development, 87

Geary Two-Step, 193. See also Project
manager.

General system characteristics (GSC),
180. See also FPA.

Glib, Tom, 316

Gold plate, 76, 248

GoTo Harmful, 346, 355. See also
Structured programming.

Grep, Unix, 148

GSC, general system characteristics, 180,
181. See also FP; FPA; Checklist,
weighting.

GUI. Graphical user interface, 319. See
also Human Factors.

Guru, 40-43, 140, 144,294, 313

Hacking, xvii, 367

Hamming, Richard, 5

Hash table, 252

Hatton, Les, 165, 171, 254, 365

Highsmith, Jim, 50, 70

House of Quality matrix, 88-91. See also
QFD.

Human (factors) design, 301-302,
309-327

Human working memory, 7 + 2, 326-327

ICED-T, 92-95, 422423

Icon design, 324, 326

ILF, internal logical file, 176, 178. See
also Function points; FPA.

Importance rating, 89. See also sQFD.

Incremental, 50, 114, 231

Information hiding, 244

Inheritance, 244

INDEX 433

Interface(s), 57, 149-153, 234-238, 361
classes with clean, 146
description language, 145
pipe(ed), 156

Investment, 195. See also Project

manager.
iPOD, 309
Iterative, 50-52

Jones, Capers, 11, 185,221
Judgment override, 91

Kruchten, Philippe, 142-144, 171, 293

Landauer, Thomas, 54, 171

LAS, London Ambulance System,
98-102

Link, and test, compile, 294, 301

Liskov substitution principle, 239-240,
272

London Ambulance System (LAS),
98-102

Lugqi, 109, 113-114

Management
audits, project, 303-304, see
McDonald, Jim
by exception, 361
malpractice, 303
Manager, Responsibilities, 338
Maranzano, Joe, 141, 151, 155. See also
Checklist, architecture.
Manufactur(ing), xvii, 30, 294, 300-301,
392-398
McCabe Cyclomatic Metric, 355-358.
See also Complexity, measuring.
McDonald, Jim, 303, 308, see project
management
Mcllroy, Doug, 144, 188. See also guru;
Tale of diff.
Meaningful metrics, 60
Measurable metrics, 60
Measurable operational value (MOV),
80, 348
Metrics, 60
Meyers, Ware, 196, 291. See also SLIM
Middle managers, 27
Middleware, 156-158
MML, Man-Machine Language, 150-152

434 INDEX

Model, 4, 109
based (driven) software, 4, 26-27, 117,
399
preproduction, 115
Modularity, xx, 238
Module Ownership, 170
MOV, measurable operational value, 80,
408-409
Moving average equation, 266, 267

NASA, 314
Apollo, 26, 228
Mars Explorer, 162. See also failures
reuse, 203-204
NATO, xix
NCSLOC, new or changed source lines
of code, 66, 96-97, 186. See also
SLOC; Checklist counting rules
NCSLOC.
disadvantages, 190
Network Organization, 31
New or changed source lines of code
(NCSLOC), 66, 96-97, 186. See also
SLOC; Checklist counting rules
NCSLOC
No silver bullet, 344
No-load test, 81
NY Times Jan. 14, 2005, 332-334. See
also Failures, FBI

OAM&P, operations, administration,
maintenance and provisioning, 151,
156
OATS, Orthogonal Array Testing
System, 376-380. See also Test(ing).
Object-oriented, 53-59, 146-149, 244
transition to, 59
Office of Technology Planning (OOTP),
13,28
OOTP, 28. See also Office of Technology
Planning.
Open & Closed Principle, 238-239
Open loop system, 258
Open source, 368-369
Organization
central, 193, 301. See also software
manufacturing.
functional, 29, 194
hierarchical, 30

network, 31
project, 29
Outsourcing, 398-400, 299

Parnas, David, 145, 170, 172, 234, 2326
PASD, performance aware software
development, 262-263, see Case
history, magilla transporters
Patriot, 81-84. See also Anti-missile
Missile System; Safeguard.
Performance
aware software development (PASD),
262-263
budgets, 260
PiDENT, program identifier, 186
Pipe, Unix, 148, 156. See also Interface(s)
PMO, present method of operation, 80
Precondition, 45
Present method of operation (PMO), 80
Prime program, 346. See also Structured
programming.
Productivity, 39, 54, 96, 101, 192, 312
Programmers, 334-338
Project
management audits, 303-304, see
McDonald, Jim
manager(s), 6, 39, 42, 44, 63-64, 67,
107,174,227
managers(s) job, 44-53, 207-208, 287,
292
meetings, 45
newsletter, 45
organization, 29
prospectus, 406407
sponsor, 406-407. See also Student
projects.
Proper program, 346. See also Structured
programming.
Prospectus, project, 406-407
Prototyping, 107-121, 375
evolutionary, 124-125. See also
Business cases.
CAPS, 113
deficiencies, 130
design-driven, 115
important, 128-130
iterative, 130-131
throwaway, 123
storyboard, 112

Putnam, Lawrence, 196, 291. See also
SLIM.

QIT, Quality Improvement Team, 394,
396-397
Quality
function deployment, 88-91. See also
sQFD.
improvement team, 394

RAD, Rapid application development,
51, 108-109
Rapid application development (RAD),
51, 108-109
Rational Unified Process (RUP),
346-353
Refactor, 266
Regression Testing, 385-386
Rejuvenation, 6, 145, 159, 251-253, 318,
391. See also Failure FAA.
Reliability, 225-228, see Checklist
equation, 4, 225
model, 226
tests, 121
structure, 236-238, see Checklist,
Design; Parnas
Requirement(s), 54, 409
analysis, 107
baselined FP reduction, 230
creep, 295. See also risk.
derived, 114
emergent, 87
hidden, 12
incomplete and fuzzy, 289-290
nonfunctional, 76, 77, 107, 410
robust, 81
specification, 77-80, 86-87, 166, 348
validation, 17, 107, 123
Response time, 12, 315
Reuse, 187-189, 203-204, 240-243, see
Checklist reuse
Right of refusal, testers, 363
Risk
analysis, 280
calculating, 282
catastrophic, 283
COCOMO 11, 285
containing, 289-299
cost, 299-300

INDEX 435

critical, 284
exposure, 282
feature set too large, 296
incomplete and fuzzy requirements,
289-290
management, 277, 279-280
management disadvantages, 304-305
marginal, 284
middle management resistance,
298-299
morale poor, 292-293, 299
negligible, 284
not enough staff, 291-292
potential, 278
range chicken, 298
reduction leverage, 283
requirements creep, 295
schedule too short, 290, 299
spiral model, 285-286
stakeholders, 295
technology is immature, 296, 297-298.
See also Case study, trouble in
paradise.
top-ten, 281
untrustworthy design, 295
Roundoff errors, 120, 256
Royce, Winston, 17. See also
Requirement(s), analysis.
RUP, Rational Unified Process, 346-353,
see UML

Safeguard, 26, 116-122, 198, 228, 250. See
also Anti-missile Missile System;
Patriot.

Sarbanes-Oxley Act (SOX), 224,
273-274

Scenario(s), 122, 229

Schedul(ing)

COCOMO 11, 201-205
estimate equation, 205
Gantt, 205, 213

PERT, 205, 219

too short, 290

SeeSoft code coverage, 386-387

SEI, 5, 42,253, 279. See also Checklist,
risk identification.

Sha, Lui, 172, 354. See also Reliability,
equation.

Shneiderman, Ben, 326

436 INDEX

Silver bullet, no, 13
Simplicity, 223
Simplified FP (sFP), 98. See also FP.
Simplified quality function deployment
(sQFD), 88-91, 125
Size, 174-176, 281
size equation, 196
SLIM, Software Life-cycle Model,
195-197, 291
SLOC, source lines of code, 96
Software Engineering Institute, 5, 42
Software manufactur(ing), xvii, 30, 294,
300-301, 392-398
SOX, Sarbanes-Oxley, 224, 273-274
Spiral Model, 18-23, 85, 285
risk, 286-289
sQFD, simplified quality function
deployment, 88-91, 233
SQL injection attacks, 367. See also
Threats.
SRS, system requirements specification,
77
Stability, xvii, 139
Staff
not enough, 291-292
poor morale, 292
Stakeholder, 102
Stevens Institute of Technology, xvi-xvii,
405, 345
Stress tests, 162, 374, 391, 425
Structured Programming, 145, 345-346
Student projects, 405427
SwiFT, Software-implemented Fault
Tolerance, 250-251
System(s), 122
administrator, 140
closed-loop, 119, 258
effectiveness in human factors terms,
320-322
evaluation, 117, 122
of systems, 79
open loop, 258
requirements specification (SRS), 77,
99, 107
structured analysis, 131-133

Tale of “Diff”, 188-189, see Components

TCEF, Technical complexity factor, 180.
See also UFP; VAF.

Technical complexity factor (TCF), 180.
See also UFP; VAF.

Test(ing), 122, 372, 424-425
cooperative, 135, 380-382, see FACS
coverage, 122
expected load, 384
graphic footprint of tests passed,

382-385
heavy load, 384
incrementally, 384
integration, 373
model-based, 399
no-load, 81, 384
orthogonal array, 376-378
regression, 385, 386
reliability, 374, 385
robust, 374-375
scenario-based, 122
stress, 162, 374, 391, 425
system, 162, 373-374
testers right of refusal, 363
unit, 373
Threats, 366-368
TL1, Transaction Language One,
149-153

Top-down, 107, 314, see Development

plan, choice of

Trustworthiness, xxii, 32, 223-225, 228,

278, 366

Turner, Richard, 281

UFP, unadjusted function points, 98, 179.
See also Function points; FP VCF;
TCF

UML, Unified Modeling Language, 146,
346-353, 414-420. See also
Architecture, model.

Unified Equation, Software Engineering,
227

UNIX, 148. See also Pipe; Grep;

Diff.

Usability, 321-322

Use cases, 76, 229, 261, 347, 351, 388

User errors, 323

User friendly, 328

VAF, value adjustment factor, 98, 179.
See also Function points; FP; UFP;
VCF; TCFE.

Van Vliet, Hans, 344
Visualization, data, 324-325

Waterfall Model, 11, 16-18, 66
Websites, helpful, 279, 364
agile methods, 293
prototyping, 110
fault tolerance, 225
refactoring, 266
cyclomatic metric, 355
code inspection, 364
staffing estimation, 291
coding style, 364
code reading, 364
threats, 368

INDEX 437

Wideband Delphi, 77, 90, 189-190,
358

WinWin, 21, 85, 102. See also Spiral
Model.

Work Breakdown, 205-206

Workarounds, 314

World Wide Web, 327

XP, Extreme Programming, 25, 47

Yourdon, Edward, 290, 308, see
Schedul(ing), too short.

Z transform, 258-259
Zuboff, Shoshana, 313, 323

