


Transport Phenomena 
in Biomedical 

Engineering



About the Author
Kal Renganathan Sharma, Ph.D., P.E., has written 
9 books, 16 journal articles, and 482 conference papers. 
Among his books is Bioinformatics: Sequence Align ment 
and Markov Models (McGraw-Hill, 2009). He has 
earned three degrees in chemical engineering—
a B.Tech from the Indian Institute of Technology, 
Chennai, and an M.S. and a Ph.D. from West Virginia 
University, Morgantown. Dr. Sharma has held a 
number of high-level positions at engineering colleges 
and universities. He currently is an adjunct professor 
in the Roy G. Perry College of Engineering at Prairie 
View A&M University in Prairie View, Texas.



Transport Phenomena 
in Biomedical 

Engineering
Artifi cial Organ Design and Development 

and Tissue Engineering

Kal Renganathan Sharma, Ph.D., P.E.
Adjunct Professor 

Department of Chemical Engineering
Prairie View A&M University 

Prairie View, Texas

New York   Chicago   San Francisco 
Lisbon   London   Madrid   Mexico City 

Milan   New Delhi   San Juan 
Seoul   Singapore   Sydney   Toronto



Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the 
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any 
form or by any means, or stored in a database or retrieval system, without the prior written permission of 
the publisher.

ISBN: 978-0-07-166398-4

MHID: 0-07-166398-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166397-7,    
MHID: 0-07-166397-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every 
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the 
trademark owner, with no intention of infringement of the trademark. Where such designations appear in 
this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promo-
tions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@
mcgraw-hill.com.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors re-
serve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the 
Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, 
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, 
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. 
You may use the work for your own noncommercial and personal use; any other use of the work is strictly 
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARAN-
TEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RE-
SULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT 
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESS-
LY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will 
meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its 
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in 
the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any 
information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be 
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the 
use of or inability to use the work, even if any of them has been advised of the possibility of such damages. 
This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises 
in contract, tort or otherwise.



www.accessengineeringlibrary.com


This book is dedicated to my eldest son, 
R. Hari Subrahmanyan Sharma (alias Ramkishan), 

who turned eight on August 13, 2009.



This page intentionally left blank 



Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

 1 Fundamentals of Fluid Mechanics  . . . . . . . . . . . . . .  1
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
 1.1 Fluids  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
 1.2 56 Fluid Flow Types  . . . . . . . . . . . . . . . . . . . . .  2
 1.3 Thermodynamic Properties of Fluids  . . . . . . .  8

 1.3.1 Pressure  . . . . . . . . . . . . . . . . . . . . . . . . .  10
 1.3.2 Kinetic Representation of Pressure  . . .  11
 1.3.3 Derivation of Ideal Gas Law  . . . . . . .  12
 1.3.4 Maxwell’s Relations  . . . . . . . . . . . . . .  12
 1.3.5 Work  . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
 1.3.6 Heat  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
 1.3.7 System, Surroundings, and 

 States of a System  . . . . . . . . . . . . . . . .  18
 1.3.8 Reversibility and Equilibrium  . . . . . .  19

 1.4 Viscosity of Fluid  . . . . . . . . . . . . . . . . . . . . . . . .  20
 1.5 “Yield Stress” Fluids  . . . . . . . . . . . . . . . . . . . . .  23
 1.6 Equation of Conservation of Mass  . . . . . . . . .  24
 1.7 Equation of Motion  . . . . . . . . . . . . . . . . . . . . . .  25
 1.8 Navier-Stokes, Euler, and Bernoulli 

 Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
 1.9 Measurement of Viscosity of Fluid  . . . . . . . . .  28

 1.9.1 Effl ux Viscometer  . . . . . . . . . . . . . . . .  28
 1.9.2 Falling Ball Viscometer  . . . . . . . . . . . .  28
 1.9.3 Cone-and-Plate Viscometer  . . . . . . . .  29
 1.9.4 Coutte Viscometer  . . . . . . . . . . . . . . . .  29
 1.9.5 Parallel Disk Viscometer  . . . . . . . . . .  31
 1.9.6 Rolling Ball Viscometer  . . . . . . . . . . .  32
 1.9.7 Torsional Oscillatory Viscometer  . . .  32
 1.9.8 Bubble Viscometer  . . . . . . . . . . . . . . . .  34

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

 2 Principles of Diffusion  . . . . . . . . . . . . . . . . . . . . . . . .  41
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
 2.1 Diffusion Phenomena  . . . . . . . . . . . . . . . . . . . .  41
 2.2 Fick’s First and Second Laws of Diffusion  . . . .  43

vii



viii C o n t e n t s

 2.3 Skylab Diffusion Demonstration 
 Experiments  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

 2.4 Bulk Motion, Molecular Motion, 
 and Total Molar Flux  . . . . . . . . . . . . . . . . . . . . .  46

 2.5 Diffusivity in Gases  . . . . . . . . . . . . . . . . . . . . . .  48
 2.6 Diffusion Coeffi cients in Liquids  . . . . . . . . . .  50

 2.6.1 Stokes-Einstein Equation for 
 Dilute Solutions  . . . . . . . . . . . . . . . . . .  51

 2.6.2 Diffusion in Concentrated 
 Solutions  . . . . . . . . . . . . . . . . . . . . . . . .  55

 2.7 Diffusion in Solids  . . . . . . . . . . . . . . . . . . . . . . .  56
 2.7.1 Mechanisms of Diffusion  . . . . . . . . . .  56
 2.7.2 Diffusion in Porous Solids  . . . . . . . . .  58
 2.7.3 Diffusion in Polymers  . . . . . . . . . . . . .  59

 2.8 Transient Diffusion  . . . . . . . . . . . . . . . . . . . . . .  60
 2.8.1 Fick Molecular Diffusion—

 Semi-Infi nite Medium  . . . . . . . . . . . . .  61
 2.8.2 Damped Wave Diffusion and 

 Relaxation  . . . . . . . . . . . . . . . . . . . . . . .  63
 2.8.3 Periodic Boundary Condition  . . . . . .  70

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

 3  Osmotic Pressure, Solvent Permeability, 
and Solute Transport  . . . . . . . . . . . . . . . . . . . . . . . . . .  83
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
 3.1 Van’t Hoff’s Law of Osmotic 

 Pressure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
 3.2 Darcy’s Law for Fluid Transport in 

 Porous Media  . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
 3.3 Starling’s Law for Fluid Transport  . . . . . . . . .  90
 3.4 Solute Diffusion across the Membrane  . . . . . .  93
 3.5 Derivation of Starling’s Law  . . . . . . . . . . . . . .  98
 3.6 Starling’s Law Is Not Universal  . . . . . . . . . . .  100
 3.7 Molecular Probes to Measure Permeability

 of Transcapillary Pathways  . . . . . . . . . . . . . . .  101
 3.8 Body Fluids  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
 3.9 Nernst Equation  . . . . . . . . . . . . . . . . . . . . . . . . .  113
3.10 Electrodialysis  . . . . . . . . . . . . . . . . . . . . . . . . . .  114
3.11 Oxygen-Depleted Regions by Theory of 

 Krogh in Cylindrical Coordinates  . . . . . . . . . .  119
3.12 Cartesian Coordinates  . . . . . . . . . . . . . . . . . . . .  121
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126



 4 Rheology of Blood and Transport  . . . . . . . . . . . . . .  141
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
 4.1 Marginal Zone Theory  . . . . . . . . . . . . . . . . . . .  142
 4.2 Slit Limit of Layered Flow  . . . . . . . . . . . . . . . .  143
 4.3 Explicit Expression for Plasma Layer 

 Thickness  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
 4.4 Constitutive Relations—Yield Stress Myth  . . .  148
 4.5 Generalized Newton’s Law of Viscosity  . . . .  150

 4.5.1 Flow Near a Horizontal Wall 
 Suddenly Set in Motion  . . . . . . . . . . .  152

 4.5.2 Transient Vertical Darcy Flow  . . . . . .  157
 4.5.3 Transient Vertical Darcy Flow under 

 Reduced Gravity  . . . . . . . . . . . . . . . . .  158
 4.5.4 Shear Flow between Two Plates 

 Moving in Opposite Directions at 
 Constant Velocity with Separation 
 Distance 2a  . . . . . . . . . . . . . . . . . . . . . .  160

 4.5.5 Vertical Flow between Plates Moving 
 in Opposite Directions  . . . . . . . . . . . .  164

 4.5.6 Transient Laminar Flow in 
 a Circular Conduit  . . . . . . . . . . . . . . . .  168

 4.5.7 Oscillations in a U-Tube 
 Manometer  . . . . . . . . . . . . . . . . . . . . . .  172

 4.5.8 Tangential Flow Induced by 
 a Rotating Cylinder  . . . . . . . . . . . . . . .  174

 4.5.9 Transient Flow Past a Sphere  . . . . . . .  179
4.5.10 Radial Flow between Two 

 Concentric Spheres  . . . . . . . . . . . . . . .  180
4.5.11 Squeeze Flow between 

 Parallel Disks  . . . . . . . . . . . . . . . . . . . .  184
4.5.12 Periodic Boundary Condition  . . . . . .  187

 4.6 Friction Factors  . . . . . . . . . . . . . . . . . . . . . . . . .  192
 4.7 Other Constitutive Relations  . . . . . . . . . . . . . .  196
 4.8 Bernoulli Equation for Blood Pumped 

 by the Heart  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

 5 Gas Transport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
 5.1 Oxygenation Is a Reversible Reaction  . . . . . .  209
 5.2 Diffusion of Oxygen in Tissue and Blood  . . .  213

 5.2.1 Fick Diffusion and Michaelis-Menten 
 Kinetics in Spherical Coordinates  . . .  214

 5.2.2 Wave Diffusion Effects  . . . . . . . . . . . .  221

C o n t e n t s  ix



x C o n t e n t s

 5.3 Krogh Tissue Cylinder  . . . . . . . . . . . . . . . . . . .  225
 5.3.1 Transient Oxygen Fick Diffusion and 

 Michaelis-Menten Kinetics  . . . . . . . . .  226
 5.3.2 Anoxic Regions  . . . . . . . . . . . . . . . . . .  231
 5.3.3 Diffusion in the Cell-Free 

 Plasma Layer  . . . . . . . . . . . . . . . . . . . .  232
 5.3.4 Wave Diffusion Effects during 

 Diffusion in the Plasma Layer  . . . . . .  234
 5.4 Nitric Oxide Formation and Transport in 

 Blood and Tissue  . . . . . . . . . . . . . . . . . . . . . . . .  238
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

 6 Pharmacokinetic Study  . . . . . . . . . . . . . . . . . . . . . . .  267
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
 6.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
 6.2 Drug Distribution Issues  . . . . . . . . . . . . . . . . .  271
 6.3 Single-Compartment Models  . . . . . . . . . . . . . .  277

 6.3.1 First-Order Absorption with 
 Elimination  . . . . . . . . . . . . . . . . . . . . . .  277

 6.3.2 Second-Order Absorption with 
 Elimination  . . . . . . . . . . . . . . . . . . . . . .  280

 6.3.3 Zeroth-Order Absorption with 
 Elimination  . . . . . . . . . . . . . . . . . . . . . .  283

 6.3.4 Michaelis-Menten Absorption with 
 Elimination  . . . . . . . . . . . . . . . . . . . . . .  285

 6.4 Analysis of Simple Reactions in Circle  . . . . . .  289
 6.4.1 Three Reactions in Circle  . . . . . . . . . .  291
 6.4.2 Four Reactions in Circle  . . . . . . . . . . .  292
 6.4.3 General Case of n Reactions 

 in Circle  . . . . . . . . . . . . . . . . . . . . . . . . .  293
 6.5 Subcritical Damped Oscillations  . . . . . . . . . . .  293
 6.6 Multicompartment Models  . . . . . . . . . . . . . . .  295
 6.7 Computer Implementation 

 of Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306

 7 Tissue Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
 7.1 History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
 7.2 Scaffolds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320



C o n t e n t s  xi

 7.3 Biomimetic Materials  . . . . . . . . . . . . . . . . . . . .  328
 7.3.1 Self-Assembly  . . . . . . . . . . . . . . . . . . .  328
 7.3.2 Equilibrium Kinetics  . . . . . . . . . . . . . .  330
 7.3.3 Thin Films  . . . . . . . . . . . . . . . . . . . . . . .  335
 7.3.4 Membranes  . . . . . . . . . . . . . . . . . . . . . .  339

 7.4 Design of Bioartifi cial Organs  . . . . . . . . . . . . .  342
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349

 8 Bioartifi cial Organ Design  . . . . . . . . . . . . . . . . . . . . .  355
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  355
 8.1 Immunoisolation  . . . . . . . . . . . . . . . . . . . . . . . .  355
 8.2 Bioartifi cial Pancreas  . . . . . . . . . . . . . . . . . . . . .  357
 8.3 Glycolytic Oscillations  . . . . . . . . . . . . . . . . . . .  360
 8.4 Bioartifi cial Kidney  . . . . . . . . . . . . . . . . . . . . . .  363
 8.5 Extracorporeal Artifi cial Lung  . . . . . . . . . . . . .  366
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371

 9 Bioheat Transport  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373
Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . .  373
 9.1 Five Laws of Thermodynamics 

 and Metabolism  . . . . . . . . . . . . . . . . . . . . . . . . .  374
 9.1.1 PMM2: Perpetual Motion Machine 

 of the Second Kind  . . . . . . . . . . . . . . .  377
 9.1.2 Isobaric Process  . . . . . . . . . . . . . . . . . .  378
 9.1.3 Isothermal Process  . . . . . . . . . . . . . . .  379
 9.1.4 Adiabatic Process . . . . . . . . . . . . . . . . .  380
 9.1.5 Isochoric Process  . . . . . . . . . . . . . . . . .  381
 9.1.6 Carnot Cycle  . . . . . . . . . . . . . . . . . . . . .  383
 9.1.7 Carnot’s Theorem  . . . . . . . . . . . . . . . .  386
 9.1.8 Otto Cycle  . . . . . . . . . . . . . . . . . . . . . . .  387

 9.2 Conservation of Energy  . . . . . . . . . . . . . . . . . .  388
 9.2.1 Reasons to Seek Generalized Fourier’s 

 Law of Heat Conduction  . . . . . . . . . .  389
 9.3 Derivation of Damped Wave Conduction 

 and Relaxation Equation from Free 
 Electron Theory  . . . . . . . . . . . . . . . . . . . . . . . . .  391

 9.4 Semi-Infi nite Cartesian and Infi nite 
 Cylindrical and Spherical Mediums  . . . . . . . .  393

 9.4.1 Chebyshev Economization or 
 Telescoping Power Series  . . . . . . . . . .  395



 9.4.2 Method of Relativistic Transformation 
 of Coordinates  . . . . . . . . . . . . . . . . . . .  398

 9.4.3 Method of Relativistic Transformation 
 of Coordinates in an Infi nite 
 Cylindrical Medium  . . . . . . . . . . . . . .  403

 9.4.4 Relativistic Transformation of 
 Spherical Coordinates in 
 an Infi nite Medium  . . . . . . . . . . . . . . .  407

 9.5 Finite Slab and Taitel Paradox  . . . . . . . . . . . . .  412
 9.5.1 Final Condition in Time for a 

 Finite Slab  . . . . . . . . . . . . . . . . . . . . . . .  413
 9.6 Finite Sphere Subject to Constant 

 Wall Temperature  . . . . . . . . . . . . . . . . . . . . . . .  417
 9.7 Finite Cylinder Subject to Constant 

 Wall Temperature  . . . . . . . . . . . . . . . . . . . . . . .  420
 9.8 Thermophysical Properties  . . . . . . . . . . . . . . .  423
 9.9 Warm/Cool Sensations and Thermal Wear  . . .  426

 9.9.1 Steady State  . . . . . . . . . . . . . . . . . . . . .  427
 9.9.2 Transient State in Human 

 Skin Layer  . . . . . . . . . . . . . . . . . . . . . . .  429
 9.9.3 Transient State in Thermal 

 Fabric Layer  . . . . . . . . . . . . . . . . . . . . .  431
9.10 Regulation of Human Anatomical 

 Temperature  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  436
9.10.1 Bioheat Transfer Equation  . . . . . . . . .  438
9.10.2 Damped Wave Conduction and 

 Relaxation Effects  . . . . . . . . . . . . . . . .  438
9.10.3 Critical Point of Null 

 Heat Transfer  . . . . . . . . . . . . . . . . . . . .  442
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  446
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  448
Exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  448

 A Generalized Bessel Differential Equation  . . . . . . .  455
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464

 B Inverse of Laplace Transforms  . . . . . . . . . . . . . . . . .  465

  Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471

xii C o n t e n t s



Preface

This book is a natural outgrowth from the instruction by the 
author in biofluid dynamics to undergraduate bioengineering 
students every other semester between 2003 and 2007 at 

SASTRA University, Thanjavur, India, and to graduate students of 
nanotechnology for two years. Transport phenomena and biomedical 
engineering are two vast fields spanning different engineering 
branches and clinical medicine branches. 

Transport phenomena has been the subject of study for the past 
67 years by many an engineering student—both in our nation and 
worldwide. The unified study of heat transfer, mass transfer, and 
momentum transfer that developed as branches of classical physics 
many years ago saw the arrival of transport phenomena as a core 
course in the engineering curriculum. With the plethora of resources 
available to the student of the next millennium, the emphasis in 
theory is changing from engineering correlations to mechanistic 
modeling. Rather than refer to engineering charts in a handbook or 
wait for experimental data to be measured and published by others, 
the modern engineer wants to develop mathematical models from 
first principles, make fewer assumptions, and predict more 
phenomenological variables more reliably and with an improved 
understanding of the underlying mechanisms. The advent of personal 
computers, software for solving ordinary and partial differential 
equations, and software for flow visualization has shifted the onus to 
the engineer to make those judicious choices after careful analysis 
using the resources available and to develop critical thinking skills. 
Fundamental basis and control volume can be used to develop 
governing equations for a given problem. The “slice-balance” 
approach is used to develop mathematical models.

Although a wide range of different applications is possible using 
this approach, of particular interest is the application of the principles 
of transport phenomena to bioengineering systems. What can a 
engineer do in the hospital? He or she can aid the physician with 
theories and methods to fight and eradicate disease. The goal of 
eradicating disease by 2050 can be achieved by applying transport 
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phenomena to the human anatomy. The medical significance of this 
subject is high. This book has been written to reflect physiological 
significance rather than elaborate mathematics. The equations of 
continuity, momentum, energy, and mass can be applied to the human 
anatomical systems. These equations are checked to ensure that they 
are in accordance with the Clausius inequality, and the solutions are 
presented showing the term-by-term medical significance. Iterative 
solutions are used when necessary. Elegant, closed-form analytical 
solutions to the models are developed using different methods. The 
range of application of the models is clearly stated. Friction 
factors are used where appropriate. Flow regimes are delineated, 
and 50 different flow types are discussed. For the first time, surface 
tension concepts, viscoplastic fluids, and the finite speed momentum 
transfer equations are discussed. Worked examples are presented to 
illustrate the application of the theory developed to various organs in 
the human anatomy. Boundary and time conditions are selected to 
provide better insight into the phenomena. Formulation of problems, 
from the real patient to pencil and paper equations, is emphasized.

Applications that are on the rise include:

• The use of flow visualization by tracer technique to identify 
the arterial block in the form of an angiogram

• The design of a dialysis machine to cure end-stage renal 
disease

• Better prediction of how oxygen is transported across the 
blood capillary wall and into the tissue space

• Better understanding of nitric oxide (NO) transport

• Better prediction of the rheology of blood flow in the 
capillaries

• Better understanding of the reversible oxygenation of blood

• The development of better drug delivery systems

• Better prediction of drug profiles in the human anatomy 
using single and multiple pharmacokinetic models

• Better prediction of the work done by the heart

• Applying the Bernoulli law to the flow to the heart

• The design and development of tissue and artificial organs 

The student will learn to apply transport theory to complex 
medical phenomena. The Nobel laureate Krogh’s work on oxygen-
devoid regions in tissue are derived for Cartesian and cylindrical 
coordinates.

Literature available in journals and conference proceedings is 
referred to throughout this book. Patent literature is also cited to 
ensure that the reader obtains a balanced perspective on the theory 

xiv P r e f a c e



and where it is applied. The book is self-contained, with prelimi-
nary chapters devoted to fluid mechanics and molecular diffusion. 
Appendices include a refresher on the Bessel differential equation and 
a table of Laplace transforms. The utility of this subject is expected to 
increase as more transport coefficient information is used to scale up 
into bioartificial organs. As modern patients allow physicians to 
perform more surgery on them, engineers will find themselves wanted 
in the hospital. 

In order to make this book self-contained, two preliminary 
chapters review the prerequisite knowledge needed in fluid 
mechanics and diffusion. In Chap. 3, the three important develop-
ments that gave impetus to the emergence of the field of biofluid 
transport phenomena are discussed in detail: the discovery of osmosis 
and osmotic pressure, the permeability of a solvent across a membrane 
and Starling’s law, and diffusion of solute across a membrane. Van’t 
Hoff’s law to determine osmotic pressure, Darcy’s law of permeability, 
Starling’s law for the combined effect of hydrostatic pressure and 
osmotic pressure, Deen’s sieving coefficient, Maxwell’s effective 
diffusion coefficient for suspensions, Kedem-Katchalsky equations, 
and the Staverman reflection coefficient are elaborated on. The 
hydraulic conductance of solvent, Lp, the permeability of solute, Pm,
and the Staverman reflection coefficient σ are three important 
parameters in solute transport across membranes. Eight worked 
examples illustrating the use of theories described are presented. The 
sieving coefficient and Staverman reflection coefficient are related by 
Se = 1 − σ. Oxygen-depleted regions (identified by the theory of Krogh) 
are identified by mathematical modeling in cylindrical and Cartesian 
coordinates. Simultaneous metabolic reactions and diffusion lead to 
the zone of null transfer after a critical length.

In Chap. 4, blood rheology and transport are discussed. The 
composition of the blood and the Fahraeus-Lindqvist effect are 
discussed. The marginal zone theory is elaborated upon. An explicit 
relation for plasma layer thickness is derived. A list of 46 viscoplastic 
fluids is given in Table 4.1. The yield stress concept is an idealization 
and has not been measured directly. The transient velocity profile 
obtained by the damped wave momentum transfer and relaxation 
equation is obtained under different geometries. Four regimes of 
solutions are found. Subcritical damped oscillations in velocity are 
found for fluids with large relaxation times. The method of relativistic 
transformation of coordinates, the method of separation of variables, 
and the method of complex velocity are used to obtain closed-form 
analytical solutions.

In Chap. 5, the Hill equation is derived. The Bohr shift in the Hill 
plot is explained. Oxygen-depleted regions of tissue are obtained 
from mathematical modeling. Michaelis-Menten kinetics are modeled 
in the asymptotic limits of high and low concentrations. Finite speeds 
of diffusion are accounted for by the damped wave diffusion and 
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relaxation equation. The Krogh tissue cylinder is modeled under 
transient conditions, and the kinetics obeyed in the asymptotic limit 
of high concentration of oxygen (zeroth-order rate) and low con-
centration of oxygen (first-order rate). For intermediate values, a 
numerical solution is needed. An infinite Fourier series solution is 
obtained. NO diffusion in blood and tissue is similar to that of oxygen, 
but is not the same. NO participates in a set of reactions in parallel. 
The instantaneous fractional yield of a heme complex during parallel 
reactions of NO is solved for and shown in Fig. 5.8. 

In Chap. 6, pharmacokinetics are discussed. There can be three 
types of drug concentration as a function of time, as shown in Fig. 6.1: 
slow absorption, maxima and rapid bolus, and constant-rate delivery. 
Single-compartment models are developed for first-order absorption 
with elimination and second-order absorp tion with elimination. The 
model solution is obtained by the method of particular integral for a 
first-order ordinary differential equation (ODE), and given by Eq. (6.39).
Single-compartment models also are developed for zeroth-order 
absorption with elimination, Michaelis-Menten absorption with 
elimination, and reactions-in-circle absorption with elimination. The 
conditions when subcritical damped oscillations can be expected are 
derived. A two-compartment model for absorption with elimination 
is shown in Fig. 6.17. The concentration that has diffused to the tissue 
region in the human anatomy is accounted for in addition to the 
concentration of drug in the blood plasma. The implementation of 
the pharmacokinetic models on personal computers is discussed.

Tissue design, as discussed in Chap. 7, evolved as a separate 
discipline from the field of biomaterials during a scientific conclave 
in 1988. Langer and Vacanti defined tissue engineering as “an 
interdisciplinary field that applies the principles of engineering and 
life sciences toward the development of biological substitutes that 
restore, maintain, or improve tissue function.” The 3-D tissue 
formation is supported by a structure called a scaffold. Scaffolds need 
to be biodegradable. Lower critical solution temperature (LCST) and 
upper critical solution temperature (UCST) are also important 
considerations in the phase separation of polymers. However, they 
are covalently attached, thus preventing separation at the macroscale. 
Phase separation is limited to the nanoscale. Biomimetic materials are 
designed to mimic a natural biological material. Copolymers with 
block microstructure have been found to self-assemble and organize 
into periodic nanophases. One property of biomaterials worthy of 
mimicking is the capability for self-repair.

Chapter 8 is devoted to bioartificial organ design and develop-
ment. One of the key technical hurdles in the successful transplantation 
of bioartificial organs is immunoisolation. A bioartificial pancreas can 
be used to treat diabetes mellitus, and is an improved therapy 
compared with insulin therapy. Pharmacokinetic models have been 
developed to describe glucose and insulin metabolism. Much of the 
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research and development in the field of artificial kidney design has 
been in development of novel dialyzing membranes, autosterilizable 
membranes, reduction in the 200 to 300 liters of dialyzing fluid 
required, the development of blood-compatible polymers for the 
membranes, etc. A hollow-fiber artificial lung used in extracorporeal 
circulation to remove carbon dioxide (CO2) from the blood and add 
oxygen to the blood is shown in Fig. 8.5.

Chapter 9 is devoted to bioheat transport. Two important 
applications of bioheat transport in medicine are thermal therapy 
and cryopreservation. Nanoscale effects in the time domain are 
important in a number of applications. The transient temperature 
profile under damped wave conduction and relaxation is derived for 
various geometries. Four regimes of solutions are found by the 
method of relativistic transformation of coordinates. The Taitel 
paradox is resolved by the use of a final condition in time. For systems 
with large relaxation times, that is, τ π αr a> ( / )2 2 , subcritical damped 
oscillations can be seen in the temperature. The heat generated within 
the human anatomy on account of the several metabolic reactions 
and the heat transfer to the surroundings can be described using the 
bioheat transfer equation. This was first introduced by Pennes. The 
issues with regard to body regulation of temperature are discussed. 
The thermophysical properties of biological properties and other 
materials are discussed. The bioheat transfer equation may be 
modified by the damped wave conduction and relaxation equation in 
order to account for the finite speed of heat propagation.

Kal Renganathan Sharma, Ph.D., P.E.
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CHAPTER 1
Fundamentals of 
Fluid Mechanics

Learning Objectives
• Review 50 flow types

• Newtonian and non-Newtonian fluids

• “Yield stress” fluids

• Thermodynamic properties of fluids

• Maxwell’s relations

• Derive ideal gas law

• System, surroundings, and states

• Viscosity of fluid

• Equation of continuity

• Navier-Stokes equation, Euler equation, Bernoulli equation

• Viscometers–Efflux, rolling ball, Coutte, bubble, cone and 
plate, falling ball, rotating disk, and torsional 

Biomedical engineering is rapidly emerging as a distinct discipline. 
The fundamentals and basic principles of transport phenomena need 
to be integrated with biofluid dynamics and quantitative physiology 
as well as into the biomedical/bioengineering curriculum. The design 
of hemodialysis devices, oxygen transport to tissues, transport in the 
kidneys, interstitial transport in solid tumors, drug delivery systems, 
pharmacokinetic analysis, layered flow of the core and plasma layers 
of blood, etc., will be discussed in this textbook. In order to render the 
work self-contained, a preliminary review of fluid mechanics and dif-
fusion is undertaken in the first two chapters.

Sir Isaac Newton published the Philosophia Naturalis Principia 
Mathematica in 1687 [1]. His work started the larger discipline of 
mechanics. Engineering mechanics (statics and dynamics) is the 
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study of equilibrium and forces on bodies and the kinematic motion 
of bodies in constant and variable accelerations. Newton devoted his 
second book to fluid mechanics. Since the days of the sloping wells of 
the Indus Valley civilization around 2900 B.C., the water systems and 
aqueducts of Roman civilization, and the lead and clay pipes of the 
Hellenistic city of Pergamon, Turkey, fluid mechanics has been a fas-
cinating subject of study. The first recognizable contribution came 
with Archimedes’s buoyancy principle in Greece around 250 B.C. 
Pioneers in the field include L. Vinci, E. Torricelli, B. Pascal, 
D. Bernoulli, J. Bernoulli, L. Euler, d’Alembert, Lagrange, Laplace, 
Poisson, Poiseuille, C.L. Navier, G.G. Stokes, L. Prandtl, O. Reynolds, 
G.I. Taylor, etc.

The application of transport phenomena to human physiology 
began in recent years.

1.1 Fluids
Any form of matter that can flow is considered a fluid. It can be a liq-
uid or gas. Thus, a fluid is a gas or a liquid that flows when subjected 
to sufficient shear stress. Shear force is the tangential component of a 
force field. Divided by the area normal to it, the force serves as the 
average shear stress over the area. Shear stress at a given point is the 
limiting value of shear force to an area in the limit of the area reduced 
to a point. In 2001 the Nobel Prize in physics went to work that iden-
tified a fourth state of matter: Bose-Einstein condensate. If it flows, it 
can be considered a fluid.

Continuum hypotheses assume that the fluid consists of homogeneous 
properties, such as uniform density throughout the fluid considered. 
This is despite the fact that at a molecular level, the mass is concentrated 
in a small region called the nucleus. The protons and neutrons are where 
the bulk of the mass lies. The electrons that orbit the protons and neu-
trons form the volume of the elements. Molecules of gases are separated 
by vacuum regions. Often, problems of flow are concerned with sub-
stances in the larger, macroscopic scale, and the molecular, or microscale, 
phenomena may be assumed to not make an engineering difference. 
Thus, it is assumed that the fluid will behave as if it were continuous in 
structure. Mass and momentum associated with substances within a 
control volume are regarded as distributed uniformly over that volume 
instead of being concentrated in a small fraction of it. 

Control volume refers to a region of volume considered the basis 
for developing the theory of fluid flow in and out of the region.

1.2 56 Fluid Flow Types
Since the pioneering work of Euler, Bernoulli, Navier, and Stokes, for 
several centuries investigators have been accumulating knowledge in 
fluid mechanics. Fifty six different fluid flow types can be identified 
[2, 3]. These are presented in Table 1.1. 
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Osborn Reynolds [4] presented his experimental investigation of 
the circumstances that determine whether the motion of water shall 
be direct or sinuous and of the laws of resistance in parallel channels 
to the Royal Society 122 years ago. To this day the dimensionless 
group (ρVd/µ) named after him, called the Reynolds number, is used 

S. No. Flow Type S. No. Flow Type

1 Three-dimensional 29 Plug

2 Accelerating 30 Poiseuille

3 Adiabatic 31 Prandtl boundary layer

4 Annular 32 Pulsatile

5 Ballistic 33 Raleigh

6 Buoyant 34 Reacting

7 Bubbly 35 Slip

8 Capillary 36 Slug

9 Choked 37 Solenoidal

10 Compressible 38 Sonic

11 Critical 39 Squeeze

12 Darcy’s 40 Steady

13 Electrolytic 41 Subcritical

14 Fanno 42 Subsonic

15 Filtration 43 Supercritical

16 Gravity 44 Supersonic

17 Hele-Shaw 45 Tangential

18 Hypersonic 46 Three-phase

19 Incompressible 47 Tranquil

20 Intraocular 48 Transient

21 Irrotational 49 Transition

22 Jet 50 Transonic

23 Knudsen 51 Turbulent

24 Laminar 52 Two-phase

25 Layered 53 Vacuum

26 Magnetic 54 Viscoelastic

27 Marangoni 55 Vortex

28 Osmotic 56 Womersley

TABLE 1.1 56 Different Fluid Flow Types
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extensively. It gives the ratio of the inertia forces and viscous forces, 
and is used to delineate laminar flow from turbulent flow. 

A glass tube was mounted horizontally with one end in a tank 
and a valve on the opposite end. A smooth bell-mouth entrance was 
attached to the upstream end with a dye jet arranged so that a fine 
stream of dye could be injected at any point in front of the bell 
mouth.

Reynolds took the average velocity, V, as the characteristic veloc-
ity and the diameter of the tube as the characteristic length. For small 
flows, the dye stream moved in a straight line through the tube, indi-
cating that the flow was laminar. As the flow rate was increased, 
Reynolds’s number increased, since d, ρ, and µ were held constant 
and V was directly proportional to the rate of flow. With increasing 
discharge a condition was reached at which the dye stream wavered 
and then suddenly broke up and was diffused throughout the tube. 
The nature of the flow had changed to a turbulent one with its violent 
interchange of momentum that had completely disrupted the orderly 
movement of laminar flow. By careful manipulation of the variables, 
Reynolds was able to obtain a value of Re = 12,000 before turbulence 
set in. Later investigators obtained a value of 40,000 using the same 
equipment as Reynolds. They let the water stand in the tank for sev-
eral days before the experiments and took precautions to avoid 
vibrating the water or equipment. These numbers are referred to as 
the upper critical Reynolds number. Starting with turbulent flow in a 
glass tube, Reynolds found that it was always laminar when the veloc-
ity is reduced to enable Re < 2000. This is the lower critical Reynolds 
number. With the usual piping installation, the flow will change from 
laminar to turbulent in the range of Reynolds numbers from 2000 to 
4000. The Reynolds number may be interpreted as the ratio of the 
bulk transfer of momentum to the momentum by shear stress.

Hele-Shaw [5] refers to two-dimensional laminar flow between 
closely spaced plates. Laminar flow is defined as flow in which the 
fluid moves in layers, or laminas, one layer gliding smoothly over an 
adjacent layer with only a molecular interchange of momentum. Tur-
bulent flow, however, has an erratic motion of fluid particles with a 
vibrant transverse interchange of momentum. Reynolds number cal-
culations have been popular with many a successful practitioner and 
have withstood the test of time for more than 12 decades.

In 1904, Prandtl [6] presented the concept of the boundary layer. 
It provides the important link between ideal fluid flow and real fluid 
flow. For fluids with small viscosity, the effect of internal friction in a 
fluid is appreciable only in a narrow region surrounding the fluid 
boundaries. From this premise, the flow outside the narrow region 
near the solid boundaries may be considered ideal flow or potential 
flow. Relations within the boundary layer region can be computed 
from the general equation for viscous fluid. The momentum equation 
permits developing an approximate equation for boundary layer 
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growth and drag. When motion is started in a fluid with small viscos-
ity, the flow is initially irrotational. The fluid at the boundaries has 
zero velocity relative to the boundaries. As a result, there is a steep 
velocity gradient from the boundary into the flow. The velocity gradi-
ent in a real fluid sets up near the boundary shear forces that reduce 
the flow relative to the boundary. The fluid layer that has had its 
velocity affected by the boundary shear is called the boundary layer. 

The velocity in the boundary layer approaches the velocity in the 
main flow asymptotically. The boundary layer is very thin at the 
upstream end of a streamlined body at rest in an otherwise uniform 
flow. As this layer moves along the body, the continual action of shear 
stress tends to slow down additional fluid particles, causing the thick-
ness of the boundary layer to increase with distance from the upstream 
point. The fluid in the layer is also subjected to a pressure gradient, 
determined from the potential flow, that increases the momentum of 
the layer if the pressure decreases downstream and decreases its 
momentum if the pressure increases downstream (adverse pressure 
gradient). The flow outside the boundary layer may also bring 
momentum into it. For smooth upstream boundaries, the boundary 
layer starts out as a laminar boundary layer in which the fluid parti-
cles move in smooth layers. As the laminar boundary layer increases in 
thickness, it becomes unstable and finally transforms into a turbulent 
region in which the fluid particles move in zigzag paths, although 
their velocity has been reduced by the action of viscosity at the bound-
ary. Where the boundary layer has become turbulent, there is still a 
very thin layer next to the boundary that has laminar motion. It is 
called the laminar sublayer. 

Adiabatic flow is that flow during which no heat is transferred to 
or from the fluid. Isentropic flow is reversible, adiabatic, and friction-
less in nature. Steady flow is said to occur when conditions such as 
velocity and temperature are invariant at a certain point in time. 
When the conditions of flow do change with time, the flow is said to 
be unsteady, or transient. When all the points in the flow field have 
the same velocity, the flow is said to be in plug or uniform flow. Vortex 
flow, or rotational flow, is said to occur when fluid particles exhibit 
rotation about any axis. When the fluid within the region has no rota-
tion, the flow is described as irrotational flow. One-dimensional flow 
neglects variations or changes in velocity, pressure, temperature, con-
centration, etc., transverse to the main flow direction. When there is 
no change in flow normal to the planes of flow along an identical 
path, the flow is described as two-dimensional. Three-dimensional flow, 
the generalized description of flow, is described by the u, v, and w 
components of the velocity vector as a function of space coordinates 
x, y, z, and t.

A streamline is the imaginary continuous line drawn through the 
fluid so that it has the direction of the velocity vector at every point. 
A stream tube, or stream filament, is a tube with a small or large 
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cross-section of any convenient shape that is entirely bounded by 
streamlines. A stream tube can be visualized as an imaginary pipe in 
the mass of flowing fluid through the walls of which no net flow is 
occurring. A path line is the path followed by a material element of 
fluid. When flow is steady, the streamline and path line coincide. In 
transient flow, the path line generally does not coincide with the 
streamline. 

A dye or smoke is frequently injected into a fluid in order to trace 
its subsequent motion. The resulting dye or smoke trials are called 
streaklines. For steady fluids, streaklines, path lines, and streamlines 
are coincidental. In two-dimensional flows, streamlines are contours 
of the stream function. Streamlines in two-dimensional flows can be 
obtained by injecting fire-bright particles such as aluminum dust into 
the fluid, brilliantly lighting one plane and taking a photograph of the 
streaks made in a short time interval. Tracing on the picture continu-
ous lines that have the direction of the streaks at every point portrays 
the streamlines for either steady or unsteady flow. Flow patterns may 
be detected using laser interferometers and Wollaston prism. The 
tracer particles are illuminated by creating laser sheets, and photo-
graphs reveal the streamlines, when a sphere settles in a fluid, for 
example. 

Incompressible flow is said to occur when, during study, the density 
is not changed. Compressible flow [7] is when the density changes dur-
ing flow are more than 5%. The equation of state, in addition to the 
equation of continuity, equation of mass, equation of momentum, 
and equation of energy need be considered. The Mach (Ma) number 
is obtained by taking the ratio of the velocity of fluid to the velocity of 
sound. When Ma < 1, the flow is said to be subsonic, and for Ma > 1, 
the flow is said to be supersonic. When Ma = 1, the flow is said to be 
sonic, or critical. Isothermal compressible flow is often encountered in 
long transport lines where there is sufficient heat transfer to maintain 
constant temperature. Annular flow is found to happen in a cylindri-
cal annulus. Choked flow is said to occur at the throat of a convergent 
divergent nozzle when the fluid reaches the sonic condition. Regard-
less of how low the exit pressure is, the mass flow remains a constant. 
The flow properties at the throat and the entire subsonic section of the 
convergent divergent nozzle are frozen. One-dimensional flow with 
heat addition is called Raleigh line flow.

A plot of thermodynamic properties of enthalpy versus entropy is 
available in the form of a Mollier diagram for such flow. When fric-
tional effects are included, it is referred to as Fanno-line flow.

 Flow can be classified as rapid or tranquil. When flow occurs at 
low velocities so that a small disturbance can travel upstream, it is 
said to be in tranquil flow conditions. Upstream conditions is affected 
by downstream conditions, and the flow is controlled by the down-
stream conditions. The delineating dimensionless group is the Froude 
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number, F (v/(gl)1/2) for the tranquil flow F < 1. When flow occurs at 
such high velocities that a small disturbance such as an elementary 
wave is swept downstream, the flow is described as shooting or rapid 
(F > 1). Small changes in downstream condition do not effect any 
change in upstream condition. When flow is such that the velocity is 
just equal to the velocity of an elementary wave, the flow is said to be 
critical (F = 1). Subcritical refers to tranquil flow at velocities that are 
less than critical, and supercritical corresponds to rapid flows when 
velocities are greater than the critical point. Time-dependent flow is a 
function of the history of fluid. 

Knudsen flow is said to occur when the mean free path of the mol-
ecule is greater than the width of the channel, and the process is 
described by the pressure and temperature of the system. Ballistic, or
relaxational, flow is said to occur when the accumulation of momen-
tum is higher than an exponential rise; when the width of the channel 
is small, the velocity of the fluid exhibits subcritical damped oscillations. 
Oscillations exist in pulsatile flow—for example, in the inhalation and 
exhalation of oxygen and carbon dioxide. Radial flow, or squeeze flow, 
is said to happen when the r component of the velocity becomes a 
salient consideration. 

The Rayleigh–Benard instabilities arise due to natural convection, 
and the Marangoni flow is said to happen on account of thermocapil-
lary stress. When chemical reactions take place during flow, the con-
dition is described as reacting flow. Capillary flow can be said to occur 
with blood in arteries and veins. Subatmospheric pressure conditions 
lead to vacuum flow. Tangential flow emanates from moving circular 
objects. Slip flow is the transition between molecular and viscous flow. 
The slip boundary condition permits flow at the wall of the container. 
Two-phase flow refers to the flow of more than one fluid, such as gas-
solid, liquid-gas, etc. At certain superficial velocities of gas in liquid 
during two-phase flows various regimes can be seen, such as: 

 1. Bubbly flow. Gas escapes in the form of bubbles and some-
times there exists a maximum bubble size. 

 2. Slug flow. Slugs are formed. This is when the bubble reaches 
the size of the apparatus and is called a slug. 

Osmotic flow was discovered by Dutrochet in the 1800s. The flow 
of fluid from a region of low solute concentration to a region of higher 
solute concentration is referred to as osmotic flow. Flow induced by 
electrolytes or cathode-anode difference is referred to as electrolytic 
flow. In a similar fashion, magnetic flow is said to occur under the 
influence of magnetic forces. Electrorheological fluids are smart flu-
ids that have been used recently in automatic transmissions of auto-
mobiles. They undergo an order-of-magnitude change in viscosity 
when the electric field is changed externally. Viscoelastic flow is said to 
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happen when both elastic and viscous effects can be seen. Buoyant
flow is said to happen when buoyant forces cause flow. Fluid flow 
that occurs inside the human eyeball is called intraocular flow. 

1.3 Thermodynamic Properties of Fluids
Thermodynamics was developed in the 19th century based on the 
need to describe the operation of steam engines and to set forth the 
limits of what the steam engines can accomplish. The laws that gov-
ern the development of power from heat and the applications of heat 
engines were discussed in this new discipline. The first and second 
laws of thermodynamics deal with internal energy, U (J/mole); heat, 
Q (J/mole); work done, W (J/mole); and entropy, S (J/K/mole). These 
are all macroscopic properties. These do not reveal microscopic mecha-
nisms. System and surroundings are defined prior to applying the 
laws of thermodynamics. The fundamental dimensions that would 
be used are as follows: 

 1. Length, L (m) 

 2. Time, t (s) 

 3. Mass, M (kg or mole)

 4. Temperature, T (K)

The system of units (SI) is preferred in this textbook. A meter 
is defined as the distance traveled by light in vacuum during 
1 299 792 458/ , ,  of a second. A kg, kilogram, is set as the mass of 
platinum/iridium cylinder kept at the International Bureau of 
Weights and Measures at Sevres, France. Kelvin is a unit of tempera-
ture and is given as 1 273 16/ .  of the thermodynamic temperature of 
the triple point of water. The amount of a substance with as many 
molecules as there are atoms in 0.012 kg of C12, carbon, is one gram 
mole of the substance. One gram mole of any substance consists of 
Avogadro number of molecules (6.023 E 23 molecules/mole).

The word thermodynamics is coined from the Greek: therme means 
heat and dynamis means power. Heat means energy in transit, and 
power relates to movement. Thus, thermodynamics is a branch of 
physics where the effects of changes in temperature, pressure, and 
volume on physical systems are studied at the macroscopic scale by 
analyzing the collective motion of their particles through the use of 
statistics. The essence of thermodynamics is the study of the move-
ment of energy and how energy instills movement. The study includes 
the discussion of the three laws of thermodynamics, the efficiency of 
engines and refrigerators, entropy, equation of state, thermodynamic 
potential, internal energy, and system and surroundings. Thermody-
namics may be classified as classical thermodynamics and statistical 
thermodynamics. The term thermodynamics was coined by James Joule 
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in 1858 to designate the science of relations between heat and power. 
The first book on thermodynamics was written in 1859 by William 
Rankine, originally trained as a physicist. He taught at the University 
of Glasgow as a civil and mechanical engineering professor. 

Otto von Guericke designed the world’s first vacuum pump in 
1650. Robert Boyle and Robert Hooke built an air pump in 1656. Pres-
sure exerted by a fluid was found to be inversely proportional to vol-
ume according to the Boyle’s law. Denis Pipin, an associate of Boyle, 
built a bone digester that was used to raise high-pressure steam. The 
idea of a piston and cylinder emanated from Pipin, although Tom Savery 
built the first engine in 1697.

The father of thermodynamics is Sadi Carnot. He wrote Reflections
on the Motive Power of Fire in 1824. This was a discourse on heat, power, 
and engine efficiency. The Carnot engine, Carnot cycle, and Carnot 
equations are named after him. Credit is given to Rankine, Clausius, 
Thompson, and Kelvin for the three laws of thermodynamics. Chemi-
cal engineering thermodynamics is the study of the interrelation of 
heat with chemical reactions or with a physical change of state within 
the laws of thermodynamics. Between 1873 and 1876, J. W. Gibbs 
authored a series of papers on the equilibrium of heterogeneous sub-
stances. He developed the criteria whereby a process would occur 
spontaneously. Graphic analyses and the study of energy, entropy, 
volume, temperature, and pressure were introduced. The early 20th-
century chemists G. N. Lewis, M. Randall, and E. A. Guggenheim began 
to apply the mathematical methods of Gibbs to the analysis of chemi-
cal processes. Classical thermodynamics originated in the 1600s. The 
laws of thermodynamics were developed into the form we use today 
in the late 1800s. The pre-classical period is the 250 years between 
1600 and 1850. Thermometry originated first, and this was followed 
by the hypotheses of an adiabatic wall and led to calorimetry. 

The pre-classical period was filled with discussions that were 
confused and controversial. Galileo may be credited with the discov-
ery of thermometry. He attempted to quantitate the subjective expe-
riences of hot and cold. In the Hellenistic era, air was known to 
expand upon the application of heat. Galileo used this in his bulb and 
stem device—called a thermometer—that is still in use today, although 
it was once called a barothermoscope. Torricelli, a student of Galileo, 
developed the barometer. He showed that the time taken to drain an 
open tank using an orifice at the bottom is proportional to the square 
root of the height of the fluid in the tank. Liquids used in the ther-
mometer evolved from water, to alcohol, to gas, to mercury in the 
modern era. Thermometry requires two reference temperatures: the 
freezing point and the boiling point of water at atmospheric pres-
sure. The temperature of a mixture of two liquids at two different 
temperatures may be obtained by calculating a weighted average of 
the two. In 1760, Joe Black suggested a modification to the mixing rule 
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through the use of specific heat. He pointed out that heat, not tem-
perature, was conserved during the mixing process. This discussion 
formed the subject of metaphysics. Twenty years later, Count Rumford 
showed by experimentation that mechanical work was an infinite 
source of caloric heat. He called for the revival of a mechanical concept 
of heat. 

Only a century later did Maxwell, Boltzmann, and Gibbs connect 
the microscale energy to the macroscale calorimetry. In 1824, S. Carnot’s 
ideas led to the replacement of caloric theory by the first and second 
laws of thermodynamics. The concepts of heat reservoirs, reversibility, 
and requirement of a temperature difference to generate work from heat 
were introduced. The Carnot cycle was analogous to a waterfall in a 
dam. In 1847, Helmholtz came up with the principle of conservation of 
energy. Joule established the equivalence of mechanical, electrical, 
and chemical energy to heat. Caloric was later split into energy and 
entropy. Heat and work were forms of energy and were asymmetric. 
Entropy is conserved in a reversible process, and energy is conserved 
during a Carnot cycle. These developments occurred in 1850 when 
Clausius, Kelvin, Maxwell, Planck, Duhem, Poincare, and Gibbs pre-
sented their works.

1.3.1 Pressure
Pressure exerted by a fluid is the force per unit area acting on either 
the external surface of the object or the walls of the enclosed container. 
Thus:

 P
dF
dA

=  (1.1)

where F is the normal force and A is the area upon which the force is 
exerted. 

Pressure is a scalar quantity. The depth of the oceans is character-
ized by the hydrostatic pressure, P = hρg, where h is the depth from 
the mean sea level, ρ is the density of the fluid, and g is the accelera-
tion due to gravity. The SI units for pressure are Pascal, or N/m2. The 
standard atmospheric pressure is an established constant, and is 
1.01325 E05 N/m2. Other units for pressure include atmosphere (atm), 
barometric (bar), manometric (mmHg), torr, and imperial units such 
as pounds per square inch (psi). The absolute pressure is different 
from gauge pressure. Gauge pressure is given by the amount in excess 
of atmospheric pressure. Although gauge pressure can take on nega-
tive values, especially under vacuum conditions, reports of negative
absolute pressure are controversial. During the transpiration phase of 
plants and when the van der Waals interparticle forces become attrac-
tive rather than repulsive when they are close to each other, some 
investigators report a negative absolute pressure. This apparently 
comes from a negative value for the force. 
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1.3.2 Kinetic Representation of Pressure
Consider a box of gas molecules. Let each of the molecules have a 
velocity, v, with three components: vx, vy, and vz. Let the box be a cube 
of side l (m). When one of the gas molecules collides with one of the 
walls of the container, assuming an elastic collision, the momentum 
change during collision may be given by:

Rate of momentum change due to one collision 

 = mvx − (−mvx) = 2mvx (1.2)

where m is the mass of a molecule.
Assuming a roundtrip of 2l, the time taken between two colli-

sions of the same molecule with the same wall, the time taken between 
collisions is

 = 2l
vx

 (1.3)

Frequency of collisions on account of one molecule:

 =
v

l
x

2
 (1.4)

Rate of change of momentum at the wall:

 =
v mv

l
x x2

2
 (1.5)

Rate of change of momentum at the wall on account of N molecules: 

 = + + + +
mv

l
mv

l
mv

l
mv

l
x x x xN1
2

2
2

3
2 2

�  (1.6)

The force exerted by N molecules at the wall is equal to the rate of 
change of momentum from Newton’s second law. The pressure 
exerted by the fluid from Eq. (1.1) is F/A and hence:

 P
mv

l
mv

l
mv

l
mv

l
x x x xN= + + + +1
2

3
2

2

3
3

2

3

2

3�  (1.7)

Defining the root-mean-square velocity of the molecule as:

 N v v v v vN< > = + + + +2
1
2

2
2

3
2 2�  (1.8)

and accounting for the motion of molecules in three dimensions, 
combining Eqs. (1.7) and (1.8) gives:

 P
mN v

l
v= < > = < >

2

3
2

3
ρ  (1.9)

where the density of the fluid, ρ, can be seen to be mN/ l3. Equation (1.11) 
gives the kinematic representation of pressure [8]. 
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1.3.3 Derivation of Ideal Gas Law
From the Boltzmann equipartition energy theorem, the temperature 
of the fluid can be written as:

 
mv k TB

2

2
3

2
=  (1.10)

Combining Eqs. (1.9) and (1.10) and multiplying and dividing the 
numerator and denominator by the Avogadro number, AN:

 P
mN k A T

A l
RT
V

B N

N

=
< >

=
3

3 3  (1.11)

where V = molar volume, m3/mole.
Thus, PV = RT for one mole of the gas can be derived. This is the 

ideal gas law. The assumptions in the box of molecules were elastic 
collision and that the gas molecule occupies negligible volume com-
pared to the volume of the container. In Eq. (1.13) it can be seen that 
AN is the Avogadro number. ANkB yields the universal gas constant R 
(J/mole/K). Further, mN/AN gives the number of moles of gas, N 
present in the box. Also, AN l3/mN gives the molar volume of the gas. 

1.3.4 Maxwell’s Relations
Some important parameters of energy will be used in later discussions. 
Five such parameters are introduced here. These are:

 1. Internal energy, U (J/mole)

 2. Enthalpy, H (J/mole)

 3. Gibbs free energy, G (J/mole)

 4. Helmholtz free energy, A, (J/mole)

 5. Entropy, S (J/K/mole)

These are also called state functions. Some important relation-
ships among the state functions U, H, G, A, and S are as follows:

 H = U + PV (1.12)

 G = H − TS (1.13)

 A = U − TS (1.14)

Therefore, G may also be written as A + PV or U − TS + PV. A may also 
be written as G − PV.

The free energy, G, of a system is the amount of energy that can 
be converted to work at a constant temperature and pressure. It is 
named after the thermodynamicist Gibbs. Helmholtz free energy, A, 
of a system is the amount of energy that can be converted to work at 



F u n d a m e n t a l s  o f  F l u i d  M e c h a n i c s  13

a constant temperature. Enthalpy was first introduced by Clapeyron 
and Clausius in 1827, and represented the useful work done by a 
system. Entropy of a system, S, represents the unavailability of the 
system energy to do work. It is a measure of randomness of the mol-
ecules in the system, and is central to the quantitative description of 
the second law of thermodynamics. Internal energy, U, is the sum of 
the kinetic energy, potential energy, and vibrational energy of all the 
molecules in the system.

From the first law of thermodynamics, which shall be formally 
introduced in the next chapter, it can be seen that:

 dQ + dW = dU (1.15)

where dQ is the heat supplied from the surroundings to the system, 
dW is the work done on the system, and dU is the internal energy 
change. When work is done by the system, dW = −P dV

or 

 dQ − P dV = dU (1.16) 

In Chapter 9, it can be seen that dQ = T dS. Hence:

 T dS − P dV = dU (1.17)

It may be deduced from Eq. (1.17) that:

 
∂
∂







=U
S

T
V

 (1.18)

 
∂
∂







= −U
V

P
S

 (1.19)

The reciprocity relation can be used to obtain the corresponding 
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

 
∂

∂ ∂
= ∂

∂ ∂

2 2U
S V

U
V S  (1.20)

Combining Eqs. (1.18) and (1.19) with Eq. (1.20):

 
∂
∂







= − ∂
∂







T
V

P
S

S V

 (1.21)

In a similar fashion [9], expressions can be derived from dH as 
follows:

 dH = d(U + PV) = dU + P dV + V dP (1.22)
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From the first law of thermodynamics, Eq. (1.15):

 dH = dQ − P dV + P dV + V dP = dQ + V dP = T dS + V dP (1.23)

it may be deduced from Eq. (1.23) that:

 
∂
∂







=H
S

T
P

 (1.24)

 
∂
∂







=H
P

V
S

 (1.25)

The reciprocity relation can be used to obtain the corresponding 
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

 
∂
∂ ∂

= ∂
∂ ∂

2 2H
S P

H
P S  (1.26)

Combining Eqs. (1.24) and (1.25) with Eq. (1.26):

 
∂
∂







= ∂
∂







T
P

V
S

S P

 (1.27)

In a similar fashion, the corresponding Maxwell relation can be 
derived from dG: 

 dG = d(H − TS) = dH − T dS − S dT (1.28)

Combining Eq. (1.28) with the first law of thermodynamics given by 
Eq. (1.15):

dG = T dS + V dP − T dS − S dT

 = V dP − S dT (1.29)

it may be deduced from Eq. (1.29) that:

 
∂
∂







=G
P

V
T

 (1.30)

 
∂
∂







= −G
T

S
P

 (1.31)

The reciprocity relation can be used to obtain the corresponding 
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

 
∂

∂ ∂
= ∂

∂ ∂

2 2G
P T

G
T P  (1.32)
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Combining Eqs. (1.30) and (1.31) with Eq. (1.32):

 
∂
∂







= − ∂
∂







V
T

S
P

P T

 (1.33)

In a similar fashion, the corresponding Maxwell relation can be 
derived from dA: 

 dA = d(U − TS) = dU − T dS − S dT (1.34)

Combining Eq. (1.34) with the first law of thermodynamics given by 
Eq. (1.15):

dA = T dS −P dV − T dS − S dT

 = −P dV − S dT (1.35)

it may be deduced from Eq. (1.35) that:

 
∂
∂







= −A
V

P
T

 (1.36)

 
∂
∂







= −A
T

S
V

 (1.37)

The reciprocity relation can be used to obtain the corresponding 
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

 
∂

∂ ∂
= ∂

∂ ∂

2 2A
V T

A
T V  (1.38)

Combining Eqs. (1.36) and (1.37) with Eq. (1.38):

 
∂
∂







= ∂
∂







P
T

S
V

V T

 (1.39)

Example 1.1 Show for an ideal gas that Cp − Cv = R.

 H = U + PV (1.40)

For an ideal gas, PV = RT.
 Hence, Eq. (1.40) becomes:

 H = U + RT (1.41)

Differentiating Eq. (1.41) with respect to T:

 ∂
∂

=
∂
∂

+
H
T

U
T

R  (1.42)



16 C h a p t e r  O n e

it can be seen that:

 ∂
∂







=
∂
∂







=
H
T

C
U
T

C
P

p
v

vand  (1.43)

Combining Eqs. (1.42) and (1.43): 

Cp − Cv = R for an ideal gas.

1.3.5 Work
The work associated with the action of a force from mechanics of par-
ticles and rigid bodies may be written as:

 W = ∫F ds cos θ (1.44)

where θ is the angle made by the line of action of force and the path 
taken by the particle. In a piston-cylinder arrangement, when the gas 
in the cylinder expands when heat is supplied to it from the sur-
roundings, the work done by the system can be written as:

 W = −∫P⋅A⋅ds = −∫P dV (1.45)

The minus sign normalizes the work quantity. When the gas in the 
cylinder expands, the work is done by the system, dV is positive, the 
pressure decreases, and the minus sign keeps the work done positive. 
In the differential form:

 dW = −P dV (1.46)

As suggested by Eq. (1.45), the work done by the system consisting of 
gas is the area under the curve of a PV diagram of the gas. 

Example 1.2 Ice Cube Sliding Down an Inclined Plane
What happens to the internal energy of an ice cube that slides down an inclined 
plane with an angle θ and a length of the incline l (see Fig. 1.1)? Assume that 

mg

1

0

mg Cos θ

mg Sin θ

θ

FIGURE 1.1 Ice cube on an inclined plane with friction.
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the heat gained by the ice during the motion is proportional to the square of its 
velocity. 

 F = mg sin θ − µmg cos θ (1.47)

 W = ∫F dl = ( sin cos )mg mg dl
l

θ µ θ−∫0
 (1.48)

 = mgl (sin θ − µ cos θ) (1.49)

Change in kinetic energy of the ice cube:

 v glf
2 2= −(sin cos )θ µ θ  (1.50)

  Q = c 2gl (sin θ − µ cos θ) (1.51)

From the first law of thermodynamics:

 ∆U = Q + W = 2cgl (sin θ − µ cos θ) + mgl (sin θ − µ cos θ) (1.52)

1.3.6 Heat
Energy transfers from a hot body to a cold body in a spontaneous 
manner when they are brought in contact with each other. The degree 
of hotness or coldness is defined by a quantity called temperature. 
The units of temperature, T, of a system are °C, Celsius, or °F, Fahren-
heit. The conversion of Fahrenheit to Celsius can be given by:

 T
T

( )
( ( ) )° = −

C
F5 32

9
 (1.53)

Thermometers are used to measure temperature. They are made of 
liquid-in-glass constructs. A uniform tube filled with a liquid such as 
mercury or alcohol is allowed to expand, depending on the degree of 
hotness or coldness of the system under scrutiny and the length of the 
column measured. The length of the column is calibrated against 
standard reference points, such as the freezing point of water at atmo-
spheric pressure at 0°C and the boiling point of water at atmospheric 
pressure 100°C. These two points are divided into 100 equal spaces 
called degrees. 

The thermodynamic temperature scale is defined by the Kelvin 
scale. The conversion of °C, degree Celsius, to K, kelvin, can be given 
by:

 T(K) = T(°C) + 273.15 (1.54)

The lower limit of the Kelvin scale is 0 K or −273.15°C. The Interna-
tional Temperature Scale of 1990 (ITS-90) is used to calibrate thermo-
meters. Fixed points used are the triple point of hydrogen at −259.35°C 
and the freezing point of silver at 961.78°C. The Rankine temperature 
scale can be directly related to the Kelvin scale:

 T(R) = 1.8 T(K) (1.55)
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Q is the amount of heat in joules that is transferred from surround-
ings into the system. Although the temperature difference is the driv-
ing force, the energy transfer is Q in joules of energy. The heat trans-
fer is transient in nature. The study of heat transfer is a separate subject 
in itself, and will be discussed in detail in later chapters. The modes 
of heat transfer—conduction, convection, radiation, and of late, 
microscale mechanisms such as wave heat conduction—shall be dis-
cussed later.

A calorie is defined as the quantity of heat when one gram of 
water was heated or cooled by one unit of temperature. A British ther-
mal unit (Btu) is the quantity of heat that, when transferred, can effect 
a 1 degree Fahrenheit (F) change in one pound of water. The SI unit of 
energy is in joules. One joule equals one newton meter (Nm). 

The modern notion of heat stemmed from the experiments con-
ducted by James P. Joule in 1850 [10]. He placed known quantities of 
water, oil, and mercury in an insulated container and agitated the 
fluid with a rotating stirrer. The amount of work done on the fluid by 
the stirrer and the temperature changes of the fluid were accurately 
recorded. He observed that a fixed amount of work was required per 
unit mass for every degree of temperature raised on account of stir-
ring. A quantitative relationship was established between heat and 
work. Thus, heat was recognized as a form of energy.

The concepts of adiabatic wall and diathermal wall are used in dis-
cussions about heat engines and heat and work interactions. Consider 
an object, A, at a temperature, TA, immersed in a fluid at a different 
temperature, TB. The temperature of object A will attain the tempera-
ture of fluid B after a certain time. This is the transient response of a 
step change in temperature at the interfaces of object A. Should the 
temperature of object A remain relatively unchanged after a certain 
time after the step change in temperature, the wall of object A sepa-
rating it from fluid B is said to be an adiabatic wall. Should the tem-
perature of object A reach the temperature of fluid B instantaneously, 
the wall separating object A from fluid B is said to be a diathermal 
wall. Depending on the thermal-response characteristics of object A, 
the transient response of temperature TA to the fluid temperature TB 
for all other materials would lie somewhere between the adiabatic 
wall and the diathermal wall. The adiabatic wall and diathermal 
wall are idealizations that are used in thermodynamic discussions 
later on. 

1.3.7 System, Surroundings, and States of a System
A closed system is defined as a set of components under study whose 
boundaries are impervious to mass flow. Surroundings are the rest of 
the universe other than the closed system. An open system is defined 
as a set of components under study whose boundaries permit mass 
flow across the interfaces. If the closed system is bounded by an 
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adiabatic wall, it is said to be an isolated system. Composite systems 
consist of two or more systems. Restraints are barriers in a system 
that do not permit certain changes. In a simple system there are no 
adiabatic walls, impermeable walls, or external forces. The phase of a 
system is the state of matter it is in. The phase rule can be written as:

 F = C − P + 2 (1.56)

where F is the degrees of freedom, C is the number of components, 
and P is the number of phases in the system. 

A thermodynamic state is defined as a condition of a system char-
acterized by properties of the system that can be reproduced. States 
can be at stable equilibrium or unstable or metastable equilibrium. 
The states can be in nonequilibrium as well. Equilibrium states are 
those where the macroscale changes are invariant with time. These 
will figure in the discussions on fugacity and vapor liquid equilib-
rium later on. 

For closed systems with prescribed internal restraints there exist 
stable equilibrium states that are characterized by two independent 
variable properties in addition to the masses of the chemical species 
initially introduced. 

A change of state is characterized by a change in at least one prop-
erty. The path taken refers to the description of changes in the system 
during a change of state. When the intermediate values during a path 
are at equilibrium states, the path is said to be quasi-static. 

All systems with prescribed internal restraints will change in a 
fashion so as to approach one and only one stable equilibrium state 
for each of the subsystems during processes with no net effect on the 
environment. The entire system is said to be in equilibrium.

Properties of the system may be classified as primitive or derived. 
Experimental measurements define the primitive property of a sys-
tem. Properties that can only be defined by changes in the state are 
derived properties. However, these can be derived from the primitive 
properties. 

1.3.8 Reversibility and Equilibrium
When two systems are nearly completely closed by adiabatic walls, 
except for the one through which they come in contact with each 
other, the states of the two systems change for some time and cease 
after a while. This condition is referred to as the state of thermal equi-
librium. When two systems are in thermal equilibrium with a third 
system, they should also be in thermal equilibrium with each other. 
This shall be stated formally as the zeroth order of thermodynamics 
as Guggenheim introduced it. 

The spontaneous transfer of heat, such as in the example stated 
previously, is generally irreversible in nature. To add to the weightless 
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pulleys and frictionless planes, a reversible process is one where the 
changes in a series of states are at equilibrium with each other. Change 
in a continuous succession of equilibrium states is said to be reversible. 
It is quasi-static. In the piston-cylinder assembly discussed in the pre-
vious sections, the work done during the reversible process is more 
than that done during the irreversible one. When the weight in a 
gauge is removed suddenly, the process is irreversible. A reversible 
process is more gradual. 

Entropy can be defined during a reversible process as follows:

 ∆S = Qrev/T 

 T dS = dQ (1.57)

For an irreversible process, entropy can be defined as:

 T dS > dQ (1.58)

For a reversible process:

 T dS = dQ (1.59)

1.4 Viscosity of Fluid
Consider a pair of large, flat, parallel plates, each with a surface area of 
SA separated by a distance Z. In the space between the plates (Fig. 1.2) 
is a fluid initially at rest. At time t = 0, the upper plate is set in motion 
at a constant velocity, V. As time progresses, momentum is transferred 

FIGURE 1.2 Development of a steady linear velocity profi le in a viscous fl uid 
between two plates.

V

t > 0

Large t

Stationary fluid, t < 0
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from the top plate to the fluid adjacent to it and then to another layer 
adjacent to that layer, and so on. At a steady state, a linear velocity 
profile of the fluid is realized, as shown in Fig. 1.2. This is not chaotic 
or turbulent, but steady and laminar in character. 

A force, F, is required to maintain the motion of the upper plate. 
Such flows can be described by Newton’s law of viscosity:

 τ µzx

F v
z

= = − ∂
∂SA

 (1.60)

where τzx = shear stress 
 µ = viscosity of the fluid 
 v = velocity of the fluid at any location z

SA = area of the flat plate
 F = force required to set the plate in motion 

Thus, Newton’s law of viscosity states that the shearing force 
per unit area is proportional to the negative of the velocity gradient. 
This was derived from empirical observations. A more generalized 
Newton’s law of viscosity that is more applicable for some special 
types of fluids will be discussed later. The form given in Eq. (1.62), 
when attempting to derive it from simple kinetic theory of gases, arises 
as a first term in an expansion, and additional terms can be expected. 
Viscosity is a property of a fluid that measures the resistance of flow 
of fluids with molecular weight less than 4,000 to 6,000. Such fluids 
are called Newtonian fluids. Other systems, including polymers with 
high molecular weight, are classified as non-Newtonian fluids. 

The flow of viscous fluids can be viewed as momentum-transfer 
phenomena. In the example considered in Fig. 1.2, momentum trans-
fers from a flat plate to the fluid through contact with layer after layer 
of fluid. When posed as a problem in momentum transfer, the system 
becomes analogous to what is encountered in heat-transfer and mass-
transfer problems. The equivalent property of the fluid from thermal 
diffusivity in heat conduction and mass diffusivity in molecular dif-
fusion is kinematic viscosity in momentum transfer: 

 ν µ
ρ

=  (1.61)

Typical viscosity values of industrial systems span a wide range, from 
10−5 kg/m/s for air at ambient temperature to that of glycerol at 
1 kg/m/s. Some systems, such as polydimethylsiloxane or silicone 
oil, are more viscous. Some “smart” fluids, such as electrorheological 
fluids used in automatic power transmission fluid, undergo an order 
of magnitude increase in viscosity as the electrical charge applied is 
doubled. Viscosity of fluids changes with temperature. 

A simple expression for viscosity of a fluid can be derived using 
kinetic theory of gases, as shown in the following paragraphs:
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From a molecular view, the viscosity can be derived and the 
momentum transport mechanism can be illustrated [11]. Consider 
molecules to be rigid, nonattracting spheres of mass, m, and diame-
ter, d. The gas is assumed to be at rest, and the molecular motion is 
considered. The following results of kinetic theory for a rigid sphere 
dilute gas in which small temperature, pressure, and velocity gradi-
ents are used:

 Mean molecular speed <u> = 
8k T

m
B

π
 (1.62)

 Wall collision frequency per unit area, Z = ¼ n′<u> (1.63) 

 Mean free path, λ
π

=
′

1

2 2( )d n
 (1.64)

The molecules reaching any plane in the gas have, on average, had 
their last collision at a distance a from the plane, where:

 a = 2/3 λ (1.65)

In order to determine the viscosity of a dilute monatomic gas, con-
sider the gas when it flows parallel to the x axis with a velocity gradient 
∂vx/∂z. Assuming the relations for the mean free path of the molecule, 
wall collision frequency, distance to collision, and mean velocity of 
the molecule are good during the nonequilibrium conditions, the flux 
of momentum in the x direction across any plane z is found by sum-
ming the x momenta of the molecules that cross in the positive y 
direction and subtracting the x momenta of those that cross in the 
opposite direction. Thus:

 τzx = Z mvx�z − a − Z mvx�z + a (1.66)

It may be assumed that the velocity profile is essentially linear for a 
distance of several mean free paths. Molecules have a velocity repre-
sentative of their last collision. Accordingly:

 vx�z − a = vx�z − 2/3 λ ∂vx/∂z 

 vx�z + a = vx�z + 2/3 λ ∂vx/∂z
 (1.67)

Substituting Eqs. (1.67) into Eq. (1.66):

 τzx = −1/3 nm <u> λ dvx/dz (1.68)

Equation (1.68) corresponds to Newton’s law of viscosity, with 
the viscosity given by:

 µ = 1/3 ρ <u> λ (1.69)

This expression for viscosity was obtained by Maxwell in 1860. 
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Some fluids whose flow does not conform to Newton’s law of 
viscosity but do conform to the following expression are called non-
Newtonian fluids:

τ µzx

n
v
z

= − ∂
∂







where n is the power law exponent. Only when n = 1 does the equa-
tion revert to the Newtonian law of viscosity. When n < 1, the fluid is 
said to exhibit pseudoplastic behavior; when n > 1, the fluid is said to 
be dilatant. 

1.5 “Yield Stress” Fluids
For nearly a century, a class of fluids has been referred to as “yield 
stress” fluids. The shear stress versus shear rate relationship they are 
expected to follow is shown in Fig. 1.3. 

As can be seen in Fig. 1.3, the y intercept is finite and represents a 
yield stress: a stress below which the fluid behaves like a solid and 
does not flow. This classification is attributed to Lord Bingham. Exam-
ples of such fluids are blood, tomato puree, tomato paste, fermenta-
tion broth, suspensions, slurries, etc. Most of the fluids recognized as 
yield stress fluids are two-component mixtures. The constitutive rheo-
logical equations used to describe blood are:

 1. Casson model

 2. Hershey-Buckley model

 3. Bingham model

In a paper, Barnes and Walters [12] posed some questions as to 
the validity of the yield stress model. Their experimental findings 

FIGURE 1.3 “Yield stress” fl uids.
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reveal that as more sophisticated instruments with improved capa-
bilities are used, the yield stress measured for the same fluid becomes 
lower and lower in value at lower shear rates. Barnes and Walters 
also pointed out that “yield stress” is often an idealization and not 
very many investigators report experimental measurements of yield 
stress. 

Barnes and Walters found that “yield stress” is an idealization 
and when given accurate measurements, no yield stress exists. They 
used a controlled stress rheometer for commercially available polyvi-
nyl alcohol (PVA) latex with 0.5% aqueous carbopol solution. The 
shape of the curve of the shear stress/shear rate descended from the 
linear region in erstwhile yield stress plots to a power law region that 
can pass through the origin. They used the Cross model to fit the 
experimental data.

Hartnett and Hu [13] made some experimental measurements 
spanning several months in an attempt to measure the terminal set-
tling velocity of a nylon ball in carbopol solution. More than six 
months’ movement of a few markings, although infinite for engineer-
ing purposes, can be considered as no movement at all. So yield stress 
is an engineering reality. 

Yield stress is considered a figment of investigators’ extrapolation. 

1.6 Equation of Conservation of Mass
The equation of conservation of mass for any fluid can be derived as 
shown in Fig. 1.4.

Consider a stationary volume element ∆x∆y∆z through which the 
fluid is flowing (Figure 1.4): 

(Rate of mass in) − (rate of mass out) ± (reaction rates) 
 = (rate of mass accumulation) (1.70) 

FIGURE 1.4 Region of control volume ∆x∆y∆z fi xed in space through which 
fl uid is moving.
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For the case when there is no chemical reaction:

∆x∆z (ρvy�y − ρvy�y + ∆y) + ∆x∆y (ρvz�z − ρvz�z + ∆z)

  + ∆y∆z(ρ vx�x − ρvx�x + ∆x) = ∆x∆y∆z ∂ρ/∂t (1.71)

Dividing Eq. (1.71) by ∆x∆y∆z and taking the limits as the incre-
ments in the three directions, ∆x, ∆y, ∆z goes to zero. 

 ∂
∂

= −
∂

∂
+

∂
∂

+
∂

∂










ρ ρ ρ ρ
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v
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v

y
v
z

x y z( ) ( ) ( )  (1.72)

Equation (1.71) can be written in terms of the substantial derivative:

 Dρ/Dt = −ρ(∂vx/∂x + ∂vy/∂y + ∂vz/∂z) (1.73)

where the total derivative is given by:

 Dρ/Dt = ∂ρ/∂t + vx∂ρ/∂x + vy∂ρ ∂y + vz∂ρ/∂z) (1.74)

at a steady state for a fluid at constant density:

 0 = −ρ(∂vx/∂x + ∂vy/∂y + ∂vz/∂z) (1.75)

Equation (1.75) is the differential form of the equation of continuity. 
An integral form of the equation of continuity can be written as:

 ∂/∂t ∫ ρ dv + ∫ ρV dA = 0
 (1.76)

cv cs

where cv refers to the control volume and cs to the control surface. 
A control volume refers to a region in space, and is useful in ana-

lyzing situations where flow occurs into and out of the space. The 
boundary of a control volume is its control surface. The size and 
shape of the control volume are entirely arbitrary. They can be made 
to coincide with solid boundaries in parts. The control volume is also 
referred to as an open system.

1.7 Equation of Motion 
The equation of motion can be derived using a momentum balance 
on the control volume, as shown in Fig. 1.4. 

(Rate of momentum in) − (rate of momentum out) 

 + (sum of forces acting on system) 

 = (rate of momentum accumulation) (1.77)
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Consider the x component of momentum into and out of the volume 
element shown in Fig. 1.4. Momentum flows into and out of the vol-
ume element by two mechanisms: 

 1. Convection or bulk fluid flow

 2. Molecular transfer (velocity gradients)

 ∆y∆z (τxx�x − τxx�x + ∆x) + ∆x∆y (τzx�z − τzx�z + ∆z) 

     + ∆x∆z (τyx�y − τyx�y + ∆y) = net transfer of x component

     momentum by molecular transfer

τxx is the normal stress on the x face and τyx is the tangential stress on 
the y face from viscous forces. By convection: 

∆y∆z (ρ vx
2�x − ρ vx

2�x + ∆x) + ∆x∆z (ρ vyvx�y − ρ vyvx�y + ∆y)

   + ∆x∆y (τ (ρ vzvx�z − ρ vzvx�z + ∆z) = net transfer of 

   x component momentum by convection (1.78)

The sum of the external forces arises from that of hydrostatic pressure 
and gravity. The resultant force in x direction is:

 ∆y∆z (p�x −  p�x + ∆x) + ρ gx ∆x∆y∆z (1.79)

 (∆x∆y∆z) ∂(ρv)/∂t = rate of accumulation of momentum (1.80)

Substituting Eqs. (1.78) to (1.80) into Eq. (1.77), dividing throughout 
∆x∆y∆z, and obtaining the limits as ∆x, ∆y, ∆z going to zero, the x 
component of the equation of motion of the fluid can be obtained:

 ∂(ρvx)/∂t = − [∂(ρvx
2)/∂x + ∂(ρvxvy)/∂y + ∂(ρvx

 vz)/∂z]

   − [∂τxx/∂x + ∂τyx/∂y + ∂τzx/∂z]

   − ∂p/∂x + ρgx (1.81)

The equation of momentum in the x can be written in terms of the 
substantial derivative as:

 ρDVx/Dt = −∇p − (∂τxx/∂x + ∂τyx/∂y + ∂τzx/∂z) + ρgx (1.82) 

where ∇ is the vector differential operator. Adding the x component, 
y component, and z components of momenta and using the substan-
tial derivative, the equation of motion, including all three compo-
nents, can be written as:

 ρDV/Dt = −∇p + µ ∇2V + ρg (1.83)
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1.8 Navier-Stokes, Euler, and Bernoulli Equations
Equation (1.83) is the Navier-Stokes equation [14]. Neglecting the vis-
cous effects, Eq. (1.83) can be reduced to the Euler equation [15]:

 ρDV/Dt = −∇p + ρg (1.84)

In one dimension at steady state, the Euler equation can be integrated 
to yield the Bernoulli equation [16] between two locations of the flow-
ing fluid at 1 and 2:
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The fluid is assumed to be incompressible in the previous equations. 
For compressible flow, the equations of continuity, momentum, and 
energy can be derived again.

Between 1730 and 1760 the field of fluid dynamics blossomed. This 
was largely due to the work of Leonhard Euler and Daniel and Johann 
Bernoulli. He realized that pressure was a point property and differences 
in pressure cause an acceleration of fluid elements. The equations of con-
tinuity and momentum were developed around this time. The equation 
of energy came about later, in 1839, due to the work of de Saint Venant. 

Euler’s legendary fame among 18th-century mathematicians and 
scientists is due to his work in fluid mechanics. One of Euler’s profes-
sors was Johann Bernoulli, who tutored Euler in mathematics. Johann 
Bernoulli, his son Daniel, and Euler were the three men who had a lot 
to do with the early development of the field of fluid mechanics. Daniel 
Bernoulli published his book Hydrodynamica in 1738. Flow in pipes, 
manometers, and jet propulsion were some of the topics covered in 
this work, and the Bernoulli equation is named after him. Johann 
published the book Hydraulica. 

Euler succeeded Daniel Bernoulli as a professor of physics. By 1741, 
Euler had authored 90 papers and the two-volume book Mechanica. He 
prepared at least 380 papers for publication in Berlin. Euler had a major 
disagreement with Frederick the Great over some financial aspects of 
Berlin society of Sciences which was transformed into a major acad-
emy. First blinded by his insight into fluid dynamics, later in life Euler 
became physically blind. On September 18, 1783, Euler conducted 
business as usual, performing some calculations on the motion of bal-
loons and discussing the discovery of the planet Uranus. He developed 
a brain hemorrhage, and his last words were “I am dying.” 

Euler was called the “great calculator” of the 18th century. He has 
made irreversible contributions to mathematical analysis, theory of 
numbers, mechanics, astronomy, and optics. He is credited with 
devising calculus of variations, the theory of differential equations, 
complex variables, and special functions. He also invented the concept 
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of finite differences. The equations developed by Euler are used to 
this day in modern industrial practice.

1.9 Measurement of Viscosity of Fluid 
Reliable, accurate, and precise values of viscosity of a fluid at a given 
temperature and pressure can be obtained using different viscome-
ters. The accuracy of the device and precision of the device are two 
different things. A digital readout to the third decimal place may be 
precise, but not necessarily accurate. Accuracy is the margin of error, 
or error bar or confidence interval, surrounding the measured value 
within which the true value may lie. The error bar denotes the exper-
imental error associated with the instrument and the personnel used 
to operate the equipment.

1.9.1 Efflux Viscometer
The traditional methods of viscosity measurement of a liquid have 
changed over time. Viscosity used to be measured in terms of seconds 
needed for the liquid to exit a tube. These viscometers are called efflux
viscometers, or short tube viscometers. The time needed for a given 
volume of fluid to discharge under the forces of gravity through a 
short-tube orifice at the base of the instrument is measured. The vis-
cometers are called Redwood in England, Engler in Germany, and 
Saybolt in United States. Viscosity is recorded as Redwood or Saybolt 
seconds. Based on calibration, the Saybolt universal, for example, 
gives the Stokes viscosity as 0.0226t − 1.95/t for fluids with an efflux 
time between 32 and 100 seconds. It can be seen that for higher-
viscosity fluids, the relationships in the calibration are different. Fur-
thermore, viscosity changes with temperature and pressure. The 
changing relationships of viscosity with temperature and pressure 
have also been studied by some investigators. For reliable measure-
ments during the test, it is advisable to not let the conditions of pres-
sure and temperature change appreciably.

1.9.2 Falling Ball Viscometer
The falling ball viscometer is based on Stokes’ settling of falling spheres 
in a fluid attaining its terminal settling velocity. The terminal settling 
velocity of the falling sphere in a fluid is reached when the forces of 
gravity are balanced by the forces of buoyancy and drag. Once the 
terminal settling velocity of a sphere is measured using video pho-
tography and the density of the solid and fluid, as well as the diam-
eter of the solid are known, Stokes’ law can be used to calculate the 
viscosity of the fluid. For instance, steel ball bearings are dropped in 
glycerin to check the viscosity of industrial fluids. Nylon balls were 
allowed to fall through carbopol solution to measure the type of fluid, 
whether Newtonian or otherwise. The glass container carrying the 
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sphere must be wide enough so that the wall effects can be neglected. 
The expression used to calculate the viscosity is the terminal settling 
velocity of the sphere, and can be written as:

 V
r g

s
p f=

−2

9

2 ( )ρ ρ
µ

 (1.86)

Aspherical particles can also be used to settle. The sphericity of the 
particle can be used in the calculations. Renganathan, Clark, and 
Turton [17] developed charts for distance traveled by accelerating 
spheres in a fluid prior to attaining terminal settling velocity. The 
change of drag coefficient with Reynolds number is also taken into 
account. Numerical solutions to the equation of motion were obtained 
and the results presented in easily usable charts. 

1.9.3 Cone-and-Plate Viscometer
The liquid whose viscosity needs to be measured is placed between a 
stationary flat plate and an inverted cone whose apex just contacts 
the plate (Fig. 1.5). The cone is rotated at a known angular velocity, Ω, 
in a cone-and-plate viscometer, and the torque, Ty, required to turn the 
cone is measured. An expression for viscosity of the liquid in terms of 
the angular velocity of the rotation of the cone, torque needed, and 
the angle made by the cone with the plate. This is usually about 
1 degree. The expression for the torque required to turn the cone can 
be shown as:

 T Ry = 2
3

3

θ
πµΩ  (1.87)

where θ = angle made by the cone with the flat plate
 R = radius of the cone
 µ = viscosity of the liquid. 

1.9.4 Coutte Viscometer
A Coutte viscometer is a member of a class of rotational rheometers. 
The torque needed to rotate a solid object in contact with a fluid is 
measured and the viscosity deduced from the derived expression. A 
modified Coutte viscometer is called a Stabiner viscometer. Here the 
inner cylinder is hollow and allowed to float, thereby avoiding bearing 

FIGURE 1.5 
Side view of cone- 
and plate 
viscometer and 
velocity distribution 
in control volume.
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friction. Speed and torque measurements are made by remotely rotat-
ing a magnetic field.

A schematic of a Coutte viscometer is shown in Fig. 1.6. The cup 
holds the fluid whose viscosity needs to be measured. It is made to 
rotate with a constant angular velocity, ωo. The revolving viscous liq-
uid causes the suspended bob to turn. A point is reached when the 
torque produced on account of momentum transfer in the liquid 
becomes equal to the product of the torsion constant, kt, and the angu-
lar displacement of the bob. The angular displacement, θo, is mea-
sured using a mirror mounted on the bob by noting the deflection of 
a light beam. A steady tangential annular flow is maintained between 
two coaxial cylinders. The end effects due to the bob height, H, can be 
neglected. The equations of continuity and momentum for the liquid 
in tangential flow can be written as follows [see 11]: The density and 
viscosity of the liquid are assumed to remain constant and unaffected 
by the flow.
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gρ 0  (1.89)

The boundary conditions are:

 r = R,  vθ = 0 (1.90)

 r = kR,  vθ = ωo (1.91)

Revolving fluid

θ0

Torsion wire

Suspended bob R

kR

FIGURE 1.6 Coutte viscometer.
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Integrating Eq. (1.88) twice and solving for the boundary conditions, 
it can be shown that the tangential velocity of the fluid can be repre-
sented at steady state by:

 v R
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Once the velocity distribution is available, the momentum flux can be 
estimated as:
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The torque acting on the inner cylinder is then obtained as:
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Thus, measuring the angular velocity of the cup and the angular 
deflection of the bob enable the viscosity of the liquid to be deter-
mined. When a critical Reynolds number is reached, Taylor vortices 
form and turbulent flow ensues upon further increasing the velocity.

1.9.5 Parallel Disk Viscometer
In a parallel disk viscometer, a liquid whose viscosity needs to be mea-
sured is placed in the gap of thickness, B, between the two disks of 
radius, R, and held in place by surface tension. The torque needed to 
turn the upper disk at an angular velocity of ω is measured and the 
lower disk is fixed. Assuming creeping, the working equation for 
obtaining viscosity of the liquid can be shown to be:

 µ
πω

=
2

4

BT
R

z  (1.95)

In a parallel disk compression viscometer, a liquid is allowed to fill com-
pletely the region between two circular disks of radius R. The bottom 
disk is fixed, and the upper disk is made to approach the lower one 
very slowly with a constant speed v0 starting from a initial height H0. 
The instantaneous height is given by H(t). It can be shown that the 
force needed to maintain the constant velocity is given by Eq. (1.96), 
where V is the volume of the liquid sample:
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The H(t) is measured as a function of time and then the viscosity is 
determined from:
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where Fo is a constant applied force.

1.9.6 Rolling Ball Viscometer
 A rolling ball viscometer is designed based upon the results of analyz-
ing laminar flow in a narrow slit. A Newtonian fluid is in laminar 
flow in a narrow slit formed by two parallel walls a distance 2B apart. 
Edge effects can be omitted as B << W. Performing a differential 
momentum balance, the following expressions for the momentum-
flux and velocity distributions can be derived:

 τxz
LP P

L
x=

−





0  (1.98)

 v
P P B

L
x
Bz

L=
−

−
















( )0
2 2

2
1

µ  (1.99)

where P = p + ρgh.
The rolling ball viscometer is shown in Fig. 1.7. A ball is rolled 

down the walls of a cylinder held at an incline angle β with the hori-
zontal. The sector formed between the cross-sections of the rolling 
ball and cylinder at any given instant can be shown to be a function 
of the polar angle, θ and z.
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1.9.7 Torsional Oscillatory Viscometer
In a torsional oscillatory viscometer, the fluid is sandwiched between a 
“cup” and a “bob.” Sinusoidal oscillations are imposed in the cup in 
the tangential direction. This causes the suspended bob to oscillate 

FIGURE 1.7 
Rolling ball 
viscometer.

r

z

β

φ

D = 2R



F u n d a m e n t a l s  o f  F l u i d  M e c h a n i c s  33

with the same frequency but with a different amplitude and phase. 
The torsion wire used to suspend the bob also oscillates at the same 
frequency and amplitude as that of the bob. The ratio of amplitudes 
between the cup and bob and the phase lag are a function of the vis-
cosity of the liquid. Small oscillations are considered. The problem 
remains linear for small oscillations. The solution to the governing 
equations can be obtained by Laplace transform methods. 

Newton’s second law of motion can be applied to the cylindrical 
bob for the special case when the annular space between the cup and 
bob are evacuated. It can be shown that the natural frequency of the 
system is ω0 = k I/ , where I is the moment of inertia of the bob and 
k is the spring constant for the torsion wire. Furthermore, Newton’s 
second law of motion can be applied to the bob:
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The initial conditions are:

 t R R= =0 0θ θ  (1.102)
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The governing equation of motion for fluid and the time and space 
conditions can be written as:
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 t = 0,  vθ = 0 
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θκR(t) is a sinusoidal function of time that causes the forced oscil-
lations of the cup and the induced oscillations of the bob. For close 
clearances between the cup and bob, κ is close to 1. The variables are 
made dimensionless, and the resulting governing equations are 
solved for by the method of complex velocity. It can be shown that 
based on these results, the amplitude ratio can be given by:
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1.9.8 Bubble Viscometer
In bubble viscometers, the time required for an air bubble to rise in fluid 
is an inverse measure of the viscosity of the fluid. Calibration is used 
to standardize the technique in the desired viscosity ranges. Viscom-
eters for non-Newtonian fluids are also called rheometers or plastome-
ters. A piston-cylinder arrangement is used in Norcross viscometers. 
Material is drawn through the clearance between the piston and cyl-
inder by raising the piston periodically.

Summary
A preliminary review of fluid mechanics was presented in this chap-
ter. Sir Isaac Newton devoted his entire second book to fluid mechan-
ics. Any form of matter that can flow when subjected to a shear stress 
is considered a fluid. Continuum hypotheses assume that the fluid 
consists of homogeneous properties, such as uniform density, 
throughout the fluid, although in atoms the mass is concentrated at 
the nuclei. Control volume refers to a region of space considered the 
basis for developing the theory of fluid flow in to and out of the 
region. Fifty-six different flow types were compared and contrasted 
with each other (Table 1.1).

The fundamental dimensions are length, time, mass, and temper-
ature. The word thermodynamics comes from the Greek words 
therme, which means heat, and dynamis, which means power. Pres-
sure exerted by a fluid is the force per unit area acting on either the 
external surface of the object or the walls of the enclosed container. 
Both hydrostatic and kinetic pressures also were discussed. Starting 
with a box of molecules, an expression for kinetic pressure as a 
function of the root-mean-square velocity of the molecules was 
derived. This led to the derivation of the ideal gas law. Maxwell’s 
relations between internal energy, U; enthalpy, H; Gibbs’ free energy, 
G; Helmholtz free energy, A; and entropy, S, were introduced. 

The first law of thermodynamics was written in differential form. 
Expression for work done as a function of the pressure and volume of 
the gas in the cylinder of the piston-cylinder arrangement was devel-
oped. Joule’s experiments and how the modern concept of heat evolved 
were discussed. The concepts of closed and open systems, surround-
ings, and states of system were introduced. The phase rule was stated. 
The concepts of reversibility and equilibrium were introduced.
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Viscosity of a fluid and Newton’s law of viscosity were reviewed. 
The myths and realities of yield stress were discussed. Experimental 
evidence that the yield stress has never been directly measured but 
inferred by extrapolation was presented. Different methods to mea-
sure viscosity of a fluid, such as efflux viscometer, falling ball viscom-
eter, cone-and-plate viscometer, rolling ball viscometer, torsional 
oscillatory viscometer, bubble viscometer, etc., were discussed. 

The equation of conservation of mass was derived in Cartesian 
coordinates for any fluid in motion. The equation of conservation of 
mass was presented in cylindrical and spherical coordinates in the 
differential form. The integral form of the equation of continuity was 
also presented. The equation of motion for any fluid in motion in 
Cartesian coordinates was derived. The Navier-Stokes equation was 
recognized, and the term by term physical significance was dis-
cussed. The reduction to the Euler equation in the special case of 
inviscid flow was shown. The Euler equation was integrated with the 
Bernoulli equation, which serves as the law of mechanical energy 
balance.
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Exercises

Problems

1.0 Potential flow. A sphere of diameter, d, moves with a velocity, vz, in an incom-
pressible ideal fluid. Determine the potential flow of the fluid past the sphere.

2.0 Reynolds number. A municipal water distribution system reports a dis-
charge rate of 4 gallons a minute. Determine the Reynolds number of water 
flowing in a pipe with a diameter of 4 inches at room temperature. Is the fluid 
laminar or turbulent? The viscosity of water can be taken as 1 cp.

3.0 Mach number. A supersonic jet is travelling at a speed of 400 m/s. Calculate 
the Mach number of the fluid flowing past the jet.

4.0 Torricelli’s theorem. Derive the Torricelli’s theorem for the efflux velocity 
of a fluid drained from a cylindrical tank with diameter D and orifice diameter 
d. The height of the fluid in the tank can be taken to be H.

5.0 Calculate the time taken to drain the tank in Exercise 4.0.

6.0 Friction factor. What is the length of a ½-inch hose needed to water the 
kitchen garden over the weekend at a discharge rate of 1 liter/hour?

7.0 Liquid drop. Calculate the size of a drop formed on account of surface 
tension as a function of the pressure difference between the atmosphere and 
within the drop.

8.0 Gravity waves [18]. The free surface of a liquid is in equilibrium with the 
gravitational field and exists as a plane. Upon some external perturbation, 
motion of liquid is propagated by means of what are called gravity waves. They 
appear mainly on the surface of the liquid and affect the interior of the fluid to a 
lesser extent. The inertial term in the Euler equation can be neglected (Eq. 1.84) 
in comparison with the ∂ ∂v t/  term. During the time interval of the order of the 
period τ of the oscillations of the fluid particles in the waves, these entities travel 
a distance of the order of the amplitude a of the wave. Their velocity is of the 
order of a/τ and varies over the time intervals of the period of oscillation and 
over the distances of wavelength, λ. The time derivative of velocity is of the order 
of v/τ and the space derivatives are of the order of v/λ. Show that the condi-
tion (v ⋅∇)v << ∂ ∂v t/  is equivalent to a << λ i.e., the amplitude of the oscillations 
in the wave is smaller compared with the wavelength. The inertial term in the 
Euler equation can be neglected and potential flow can be expected. Show that 
the following set of equations will govern the motion of the waves:

∆φ

φ φ

=

∂
∂

+
∂
∂

=

0

0
2

2z g t



F u n d a m e n t a l s  o f  F l u i d  M e c h a n i c s  37

9.0 Show that the following equations can be solutions to the governing 
equations of gravity waves described in Exercise 8.0:

x x A
k

e kx t

z z A
k

e kx

kz

kz

− = − −

− = −

0 0

0

0

0

ω
ω

ω

cos( )

sin( 00 − ωt)

where x, z are the coordinates of the moving fluid particles.

10.0 The isentropic compressibility can be written as:

κ s
s

v
v
P

= −
∂
∂







1

Derive the speed of sound to be:

a
v

s

=
κ

11.0 Show that for one mole of an ideal gas:

C C Rp v− =

12.0 Show that for an adiabatic process;

PV γ = Const

where, γ =
C

C
p

v

13.0 Describe the significance of each term in the Navier-Stokes equation.

14.0 How is the Euler equation derived from the Navier-Stokes equation?

15.0 How is the Bernoulli equation derived from the Euler equation?

16.0 When the pressure of the ideal gas is reduced by half, what happens to 
the velocity of the molecules?

17.0 Two ports are drilled into a pipe with varying cross-sections carrying 
water. The ports are connected to a manometer, and the pressure differential 
was found to be 37 cmHg. If the elevation of both ports is the same, what is 
the velocity of the fluid at the lower pressure port compared with the velocity 
of the fluid at the larger pressure port? The ratio of the cross-sectional areas 
between the low pressure and high pressure port can be taken as 4.

18.0 Calculate the mass flow rate of the air from the fan. The fan spins at 
60 RPM. The cross-sectional area of the blades can be taken to be 1/8" × 4". 
The room is at 37°C. The air can be assumed to obey the ideal gas law. The 
composition of air can be taken to be 78% nitrogen and 21% oxygen. The radius 
of the blade is 1.5 ft.



38 C h a p t e r  O n e

19.0 A smoking lounge is to accommodate 20 heavy smokers. According 
to the American Society of Heating, Refrigerating, and Air-Conditioning 
Engineers (ASHRAE), the fresh air requirement is 25 lit/s per person. Calculate 
the minimum duct area and the minimum flow rate required if the maximum 
velocity of the air is 10 m/s.

20.0 Oil is drilled at a refinery from a depth of 200 ft. When 1 lit/min of oil is 
discharged at the surface, calculate the rating of a pump that operates at 80% 
efficiency should the diameter of the rig be 2 inches. The density of oil can be 
assumed to be 1.6 gm/cc.

21.0 Amagat of France in the late 19th century used a mercury manometer 
to perform measurements for the first time in the history of mankind. Estimate 
the height of the manometer needed for measurements in mine shaft up to 
500 bar.

22.0 An entourage of engineers visited the moon. They used a spring scale 
to measure the mass of some ice cubes. At a reading of 21, what is the mass of 
ice and the weight of the moon? The moon’s gravity is 1/6th that of Earth.

23.0 What is the difference between hydrostatic pressure and kinetic 
pressure?

24.0 Centuries from now, when there is an acute energy shortage, people 
will shop for energy in supermarkets. Cylinders of gas may be purchased and 
connected to any number of Carnot engines or other efficient devices stocked 
at home. Devise a convenient method to allow a person to comparison shop by 
providing a unit cost of energy in joules per dollar. The ambient temperature 
and pressure are 300 K and 1 × 105 Nm−2. The heat capacity at constant volume 
may be taken as 20.7 J/mol/K. Consider a cylinder 1 m3 in volume initially at 
8 × 105 Nm−2 and 400 K that sells for $0.32.

25.0 Show that for any gas:
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∂
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Hint: Use the relation in change of variables in differentiation:
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26.0 Show that for any gas

C C
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H
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Vp v
V T

− = −
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27.0 Show that the free energy change during any isothermal and isochoric 
compression process from P1 to P2 is given by V∆P.

28.0 Show that the entropy change during an isothermal expansion of an 
ideal gas from Vi to Vf can be given by R V Vf iln( )./
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29.0 Show that the entropy change during an isobaric expansion of an ideal 
gas can be written as C T TP f iln( )./

30.0 Show that the free energy change during an isothermal process in an 
ideal gas can be written as RT P Pf iln( )./

31.0 Show that the solution to Example 29.0 may be written in terms of initial 
and final volumes as C V Vp f iln( )./

32.0 Derive the Gibbs-Helmholtz equation given in the form:

∆ ∆
∆

G H T
G

T
p p n n

= +
∂
∂







1 2 1 2, , ,

33.0 Show that:
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34.0 Show that:
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35.0 Show that:
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36.0 Given κ is the compressibility factor –1/V(∂V/∂P) and α is the coef-
ficient of thermal expansion, show that:

∂
∂


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
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S
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T

α
κ

37.0 Water is in laminar flow in a narrow slit formed by two parallel walls a 
distance of 2 w apart. Show that with the velocity of water down the walls vz 
as a function of x, the axial distance between the plates can be shown to be:

v
Pw

L
x
wz = −
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
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38.0 A fluid flows down the inclines of a conical surface with the apex at 
the top. Show that the film thickness as a function of distance, s, down the 
incline is given by:

δ
µ

π ρ β
=





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3
22

1 3�m
sg sin

/

where β is the cone half-angle and �m  the mass flow rate.
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39.0 Contactless pick-up device. Bernoulli’s law can be applied to design a 
device that can be made to pick up objects without coming in contact with 
the device. Semiconductor wafers can help prevent damage to the device due 
to mechanical contact. If air is allowed to impinge on the design through an 
orifice, show that as the air comes in contact with the object to be lifted, the 
flow changes from azimuthal to radial flow and the velocity of flow increases. 
This causes a suction pressure, which can be used to pick up the object. How 
does the suction pressure capable of development vary with the velocity of 
air, the diameter of the orifice, and other relevant parameters?

40.0 Chimney design. How tall should a chimney be constructed to create a 
draft flow of 1 m/s? An exhaust fan is available to generate a flow velocity of 
5 m/s across a duct in the roof. What would happen should the chimney be 
given a taper with a lower diameter on top of the chimney?



CHAPTER 2
Principles of 

Diffusion

Learning Objectives
• Diffusion phenomena confirmation by experiments in Spacelab

• Fick’s laws of diffusion

• Bulk motion and total molar flux

• Damped wave diffusion and relaxation

• Diffusion in gases, liquids, solids, and porous solids

• Steady state and transient diffusion

• Diffusion coefficient as a function of temperature

• Diffusion in polymers

• Transient wave diffusion in semi-infinite medium

• Periodic boundary condition

2.1 Diffusion Phenomena
Diffusion is a phenomenon of migration of a species from a region of 
higher concentration to a region of lower concentration under the 
driving force of a concentration gradient [1]. There can be other driv-
ing forces, such as temperature difference, the large concentration 
gradient of a second species, osmotic potential, steam sweep, centrip-
etal forces, pressure drop, electromotive forces, surface tension gradi-
ent, surface forces, etc., that can cause the transfer of species from one 
point to another, oftentimes in a secondary manner. 

The term molecular diffusion refers to the Brownian motion of mol-
ecules as observed by Einstein [2] and movement from a region of 
higher concentration to a region of lower concentration. This is in 
accordance with the second law of thermodynamics: the Clausius 
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inequality. The movement of a species from a region of lower concen-
tration to a region of higher concentration in a spontaneous manner 
is infeasible. This is because not all heat can be converted to work 
without some heat being rejected to the atmosphere. Heat always 
flows from a hotter temperature to a colder temperature by the phe-
nomenon of molecular conduction. By analogy, the molar species also 
moves from a region of higher chemical potential to that of a region 
of lower chemical potential. The direction of transfer equalizes the 
concentration. 

There can be no negative concentration. As the third law of ther-
modynamics states, the lowest attainable temperature is 0 K. By anal-
ogy, the lowest concentration attainable is 0 mol/m3. This will be 
used in later discussions to obtain a plane of zero concentration, a 
penetration length, etc.

Diffusion is central to separation operations widely used in the 
chemical and biotechnology industries. It is used to better understand 
the transport of solutes in the living cells and to design artificial 
organs, and it plays a pivotal role in the sequence distribution analysis 
in genome projects. The efficiency of distillation and dispersal of pol-
lutants can be derived from principles of diffusion. As cities around 
the world face a drought crisis, the desalination of seawater for pota-
ble water needs is going to be increasingly relied upon. This is the 
method of choice in the deserts of the Middle East, where energy is 
abundant and cheap and drinking water is scarce. The Bhabha Atomic 
Research Center (BARC), at Trombay in Mumbai, India, has set up the 
world’s largest desalination plant at the atomic power plant at Kalpa-
kkam about 50 km near Chennai. This plant has two sections. One 
section produces 1.8 million liters of potable water a day from sea 
water using the reverse-osmosis method, and the other section pro-
duces 4.5 million liters a day using the thermal method. Another 
desalination plant with two units at 50,000 liters per hour was inaugu-
rated at Koodankukulam in Tirunelveli, Tamil Nadu, using reverse-
osmosis technology. In order to desalinate sea water, several transfer 
operations, such as reverse osmosis, electrodialysis, ion exchange, 
extraction, flash vaporization, molecular sieve filtration, and pervapo-
ration, can be used. The principles of diffusion and mass transfer can 
help evaluate the technical feasibility of each operation at a large scale 
at the lowest possible cost without much harm to the environment in 
a safe manner. The chemical reactions performed on a large scale dur-
ing the commercial manufacture of products are often conducted in 
the presence of a catalyst. During the reaction, the critical reactant has 
to diffuse through the catalyst and approach the active site for reaction 
and encounter the other reactant prior to reacting and forming the 
product. Diffusion in the catalyst needs to be understood for better 
design. The useful product has to be separated from the unreacted 
reactants and other by-products using mass transfer separation opera-
tions where diffusion is a critical governing phenomenon.
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Albert Einstein observed that a cube of sugar placed in the bot-
tom of a hot teacup diffuses and a uniform concentration of sugar 
throughout the entire cup is the result. The term thermophoresis refers 
to processes where the primary driving force of diffusion is the tem-
perature difference. Diffusophoresis is when a large drop in concen-
tration of a second species drives the transfer of the first species. 
Osmosis is where osmotic potential drives the flow of solvent from a 
region of low solute concentration to a region of higher solute con-
centration. In reverse osmosis, the solvent is pumped from a region of 
higher solute concentration to a region of lower solute concentra-
tion. The wilting of lettuce when salted is a good example of an 
osmosis phenomenon, as the water oozes out of the leafy vegetable 
and the turgor pressure gives in to a shrunken mass. In sweep diffu-
sion, steam sweeps away the solute with it. The centripetal forces 
during centrifugation result in different forces upon different masses, 
which in turn results in separation. Pressure diffusion is characterized 
by a pressure drop, ∆P, in the direction of transfer. Electrolysis refers 
to the movement of charged particles subject to an electromotive 
force. Surface diffusion is the movement of species of interest on the 
surface of the solid. Surface tension gradient can be utilized in sepa-
ration by foaming.

2.2 Fick’s First and Second Laws of Diffusion
In the mid-1800s Fick [3,4] introduced two differential equations that 
provide a mathematical framework to describe the otherwise random 
phenomena of molecular diffusion. The flow of mass by diffusion 
across a plane was proportional to the concentration gradient of the 
diffusant across the plane. The components in a mixture are trans-
ported by a driving force during diffusion. The molecular motion is 
Brownian. The ability of the diffusant to pass through a body is 
dependent on the diffusion coefficient, D, and the solubility coeffi-
cient, S. The permeability coefficient, P, is given by:

 P = (DS) (2.1)

Fick’s laws of diffusion were proposed in the year 1855. Adolf E. 
Fick, the youngest of five children, was born on September 3, 1829, 
to a civil engineer. During his secondary schooling, Fick was inter-
ested in mathematics and was enamored of the work of Poisson. His 
brother, a professor of anatomy at the University of Marburg, per-
suaded him to switch from a career in mathematics to a career in 
medicine. Carl Ludwig was Fick’s tutor at Marburg. Ludwig 
strongly believed that medicine and life itself have a basis in math-
ematics, physics, and chemistry. His thesis dealt with the visual 
errors caused by astigmatism. Ironically, most of Fick’s accomplish-
ments do not depend on diffusion studies at all, but on his more 
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general investigations of physiology. He did outstanding work in 
mechanics in hydrodynamics and hemorheology, and in the visual 
and thermal functioning of the human body. 

In his first diffusion paper [3], Fick interpreted the experiments 
from Graham with interesting theories, analogies, and quantitative 
experiments. He showed that diffusion can be described on the same 
mathematical basis as Fourier’s law of heat conduction [5] and Ohm’s 
law of electricity. Fick’s first law of diffusion can be written as:

 J AD
C
x

= − ∂
∂

 (2.2)

where J is defined as the one-dimensional molar flux. The diffusivity 
is the proportionality constant that depends on the material under 
consideration.

Fick’s second law of diffusion can be derived by considering a thin 
shell of thickness, ∆x, with constant cross-sectional area, A, across 
which the diffusion is considered to occur. A mass balance in the incre-
mental volume, considered A∆x for an incremental time, ∆t, neglect-
ing any reaction or accumulation of the species, can be written as:

(mass in) − (mass out) ± (mass reacted/generated) 
= mass accumulated  (2.3)

 ∆t(Jx − Jx+∆x) = A∆x ∆C (2.4)

Dividing Eq. (2.4) throughout by A∆x∆t and obtaining the limits as ∆x 
and ∆t goes to zero:

 − ∂
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∂

J
x
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C
t

 (2.5)

Combining Eq. (2.5) and Eq. (2.2), the governing equation for the dif-
fusing species becomes apparent when the area across which the dif-
fusion occurs is a constant:

 D
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t

∂
∂

= ∂
∂

2

2  (2.6)

Equation (2.6) is sometimes referred to as Fick’s second law of dif-
fusion [4]. This is a fundamental equation that describes the transient, 
one-dimensional diffusion of diffusing species. Fick attempted to 
integrate Eq. (2.6) and was discouraged by the numerical effort 
needed. He found the second derivative difficult to measure experi-
mentally, and he found that the second difference increases exception-
ally with the effect of experimental errors. Finally, he demonstrated in 
a cylindrical cell the steady-state linear concentration gradient of 
sodium chloride. He used a glass cylinder containing crystalline 
sodium chloride in the bottom and a large volume of water in the top. 
By periodically changing the water in the top volume, he was able to 
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establish a steady-state concentration gradient in the cylindrical cell. 
He confirmed his equation from this steady-state gradient. 

In three dimensions, Fick’s first law of diffusion can be written as:

 J″ = − D ∇C (2.7)

where the differential operator ∇ is given by:

 ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

i
x

j
y

k
z

 (2.8)

such that:
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In the special case of Eq. (2.9), the one-dimensional case of Eq. (2.7) 
results. Diffusion may be viewed as a process by which molecules 
intermingle as a result of their kinetic energy of random motion.

On Earth, density differences within a liquid system often result in 
convective mixing of the fluid. This gravity-induced convection, cou-
pled with gravity-independent diffusion, contributes to the overall 
mass transfer within the system. In space, the convective contribution 
is greatly reduced, and a closer examination of the diffusion contribu-
tion can be observed.

2.3 Skylab Diffusion Demonstration Experiments
The Skylab science demonstration was the first in a series of investi-
gations designed by Fascimire et al. [6] to study low-gravity diffusive 
mass transfer. The specific objective of the demonstration was to pho-
tographically document the diffusion of tea in water in spacecraft. In 
preparation for the experiment, Skylab pilot Jack Lousma filled a 
half-inch-diameter, six-inch-long transparent tube three-fourths of 
the way full with water. A highly concentrated tea solution was then 
delivered to the water surface via a 5-cc syringe through a synthetic 
fiber wad. The tube was then capped. The fiber pad was employed to 
try to bring the tea and water in contact without any entrapped air. 
Three attempts to produce the wad were unsuccessful. During the 
fourth wad/attempt, “a good bubble-free interface” was realized. 
The next day, Lousma reported that no diffusion of the tea in the liq-
uid had occurred. Thus, the experiment was initiated again. 

During this new experimental run, the wad was removed and the 
tea was delivered on top of the water. After an air bubble between the tea 
and water was removed via the syringe, a “smooth, continuous inter-
face” was achieved. The tea was allowed to diffuse during the next three 
days. Post-flight 16-mm photographs of the diffusion were analyzed. In 
51.15 hours, the visible diffusion front advanced 1.96 cm. It was noted 
that the diffusion front became increasingly parabolic during the dem-
onstration and very little diffusion occurred near the container wall. 
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A similar ground-based experiment was performed for comparison to 
the space investigation. After 45.5 hours, three different zones were vis-
ible: a dark area, an area of medium darkness, and a very light area. The 
medium-colored area had advanced 1.6 cm in 45.5 hours. 

If a few crystals of K2CrO4, potassium chromate, are placed at the 
bottom of a tall bottle filled with triple distilled water, the yellow color 
will slowly spread throughout the bottle. At first, the color will be 
concentrated in the bottom of the bottle. After a day, it will penetrate 
upward a few centimeters. After several years, the solution will appear 
homogeneous. The process responsible for the movement of the 
colored material is diffusion. Diffusion was studied by Albert Einstein. 
He noted that as sugar dissolves in water, the viscosity of the solution 
increases. The Stokes-Einstein equation is used for estimating diffu-
sion coefficients for molecules in liquid phase. Diffusion is a molecular 
phenomenon. At a microscopic level, molecules do undergo Brownian 
random motion. However, the driving force sets some direction to the 
transfer of the species under consideration. In gases, diffusion progresses 
at a rate of about 10 cm/min; in liquids, the rate is about 0.05 cm/min; 
in solids, its rate is about 100 nm/min. 

Diffusion varies less with temperature, although for polymers, 
Arrhenius relationships have been reported for changes of diffusion 
coefficients with temperature. The slow rate of diffusion makes it a 
rate-limiting step in cases where it occurs sequentially with other 
phenomena. The rates of distillation are limited by diffusion and that 
of industrial reactions on porous catalysts. The rate of diffusion limits 
the speed of absorption of nutrients in the human intestine and the 
control of microorganisms in the production of penicillin. The rate of 
corrosion of steel, splat cooling of metallic glasses, dopant diffusion 
in silicon chip manufacturing, the release of flavor from food, and the 
delivery of drugs to tumor cells are limited by diffusion. 

The equalizing effect of diffusion needs to be distinguished from 
other methods of producing a uniform mixture, such as bulk convec-
tive mixing. Agitation also is used in homogenization. The energy for 
movement from diffusion comes from the thermal energy of the mol-
ecules. The rate of evaporation of water at 25°C into complete vacuum 
was calculated as 3.3 kg/m2/s. Placing a layer of stagnant air at 1 STP 
and 100 microns thickness above the water surface reduces the rate of 
evaporation by a factor of about 600. 

2.4  Bulk Motion, Molecular Motion, and Total Molar Flux
Consider two containers of CO2 gas and He gas separated by a parti-
tion, as shown in Fig. 2.1. The molecules of both gases are in constant 
motion and make numerous collisions with the partition. If the parti-
tion is removed, the gases will mix due to the random velocities of 
their molecules. In sufficient time, a uniform mixture of CO2 and He 
molecules will result in the container.
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The helium molecules will move to the bottom and the carbon 
dioxide molecules will move to the top. If the two species are denoted 
by A and B, and the total fluxes as NA and NB, then the net flux, N, can 
be written as:

 N = NA + NB (2.10)

The movement of A comprises two components, one due to the bulk 
motion N and the fraction xA of N, which is A, and the second compo-
nent resulting from the diffusion of A, J″A:

 NA = NxA + J″A (2.11)

 NB = NxB + J″B (2.12)

Adding Eqs. (2.11) and (2.12):

 N = N + J″A + J″B (2.13)

or −
∂
∂

=
∂
∂

D
C
z

D
C
zAB

A
BA

B  (2.14)

If CA + CB is constant, then DAB = DBA.

Example 2.1 Unimolar diffusion. Consider the diffusion of a liquid, A, evaporating 
into a gas, B, in a partially filled tall tube. Assume that the liquid level is maintained 
at z = z1. At the top of the tube at z = z2 a stream of gas mixture of A-B flows steadily 
past, thereby maintaining the mole fraction of A at XA2. At the liquid-gas interface, 
the gas phase concentration of A expressed as a mole fraction is XA1. This is the gas 
phase concentration of A corresponding to the equilibrium with the liquid at the 
interface, i.e., XA1 is the vapor pressure of A divided by the total pressure, pA

vap/Ptot, 
provided that A and B form an ideal gas mixture. It is further assumed that the 
solubility of B in liquid A is negligible. The entire system is presumed to be held at 
constant temperature and pressure. Gases A and B are assumed to be ideal. When 
this evaporating surface attains steady state, there is a net motion of A away from 
the evaporating surface and vapor B is stationary. Obtain the concentration profile 

FIGURE 2.1 Container with a partition separating helium and carbon dioxide.
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at steady state for A in the head space:

 NB = 0 (2.15)

 N N x D
C
zA A A AB
A= −

∂
∂

  (2.16)

In terms of mole fractions:

 N x C D
x
zA A tot AB
A( )1− = −

∂
∂

 (2.17)

A mass balance over an incremental volume of height ∆z at a steady state across 
a constant cross-sectional area, A:

 −
∂
∂

=
N
z

A 0  (2.18)

Combining Eqs. (2.18) and (2.17) and integrating the resulting second-order dif-
ferential equation with respect to z gives:

 1
1 1( )−

∂
∂

=
x

x
z

c
A

A  (2.19)

A second integration then gives:

 −ln(1 – xA) = c1z + c2 (2.20)

The two integration constants can be solved for by using the information given 
as boundary conditions at locations 1 and 2:

 ln( )
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( )
( )
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2 1
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These expressions are used during the experimental measurement of gas 
diffusivities.

2.5 Diffusivity in Gases
The diffusion coefficients of binary hydrocarbon-hydrocarbon gas 
systems at low pressures below about 3.5 MPa can be predicted using 
Gilland’s method [7]: 

 D12 = (0.1014T 1.5(1/M1 + 1/M2)
0.5)/Ptot (V1

1/3 + V2
1/3)2 
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where subscript 1 refers to the solute and subscript 2 refers to the 
solvent. The units of T, P, and V are R0,  psia, and cm3/gmole, respec-
tively, and diffusivity is given by ft2/hr. 

There is no universal theory that predicts a priori all the diffusion 
coefficients. Experimental measurements have to be relied upon. 
Sometimes the experimental measurements are difficult to make and 
the quality of the results is not adequate. The estimates of diffusion 
coefficients of gases at room temperature are about 0.1 cm2/s, that of 
liquids 10−5 cm2/s, and that of solids 10−10 cm2/s. Diffusion coefficients 
in polymers lie between that of solids and liquids. Binary diffusion 
coefficients in gases for pairs of gases are given in Table 2.1.

The most widely cited method for theoretical estimation of gas-
eous diffusion is that developed independently by Chapman and 
Cowling [8]. This theory is accurate to an average of about 8% 
yields:

 D = (1.86 E-3 T 3/2 (1/M1 + 1/M2)
1/2)/pσ12

2Ω (2.24)

where  D = diffusion coefficient in cm2/s 
  T = absolute temperature in K 
  p = pressure in atmospheres 

M = molecular weight 
 σ12

 and Ω = molecular properties 
  σ12 =  collision diameter; is the arithmetic average of the 

diameters of the atoms of the species present
 Ω = collision integral

Some other correlations for diffusivities for gases are available in the 
literature. Reid, Sherwood, and Prausnitz [9] compared predictions 

CO2 H2 He Ar O2 H2O N2 Air CH4

CO2 0.646 0.597 0.133 0.156 0.202 0.165 0.400 0.00215

H2 1.706 0.902 0.891 0.915 0.779 0.71 0.726

He  0.742 0.822 0.908 0.794 0.658 0.494

Ar   0.216 0.675

O2 0.282 0.181 0.176 1.1

H2O  0.293 0.260 0.212

N2 0.148

Air 0.196

CH4

TABLE 2.1 Measured Values of Diffusion Coefficients in Gases at 1 atm Pressure 
and Data Available at Nearest Temperature to 298 K (cm2/s)
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from different correlations with 68 experimental values of DAB. The 
amount of error, ease of calculations, range of applicability, empirical 
parameters, uses, and underlying mechanistic theory from which the 
correlations were derived are some of the considerations prior to 
using any of the available correlations.

For nonpolar binary mixtures at low pressure, Wilke and Lee 
state [10]:

 D
T M M

PAB

AB AB

AB D

=
−( )3 2

2

0 0027 0 0005/ . .

σ Ω
 (2.25)

For polar binary mixtures and low pressure, Brokaw states [11]:

 D
T M

PAB
AB

AB D

=
0 001858 3 2

2

. /

σ Ω
 (2.26)

For self-diffusivity, high pressure, ρr ≤ 1.5, Mathur and Thodos state [12]:

 D
T

AA
r

r

=
−10 7 10 5. *

βρ
 (2.27)

For supercritical mixtures, Catchpole and King state [13]:
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0 667.  (2.28)

Observations show that for many polyatomic gases and mixtures, 
DABP is constant up to 1000 K and 700 atm. The characteristic length 
σAB is in A. 

2.6 Diffusion Coefficients in Liquids
Diffusion coefficients in liquids such as common organic solvents, 
mercury, and molten metal fall in the order of magnitude of 10−5 cm2/s. 
The diffusion can even be slower, sometimes even 100 times slower, 
for high-molecular-weight solutes like polystyrene and polybutadi-
ene. Diffusion in liquids is slower compared with the gases, and can 
become the rate-limiting step in simultaneous reaction and diffusion. 

A demonstration experiment was performed to illustrate diffusion 
phenomena in liquids. One hundred milliliters of three solutions were 
poured into a large filter funnel, with adequate care taken not to mix 
the layers. The top layer was made up of hydrochloric acid (HCl) dis-
solved in toluene. The middle layer was a universal indicator in water. 
The bottom layer was ammonia (NH3) dissolved in chloroform (CHCl3). 
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The HCl from the top layer diffused into the middle layer, and the 
color in the second layer changed, indicating an acid. The bottom 
ammonia layer was also diffusing into the middle layer, and the color 
changed, indicating a base. Eventually, when the ammonia from the 
bottom layer and HCl from the top layer diffused into the second layer 
and mixed, the indicator turned into the color for a neutral solution.

2.6.1 Stokes-Einstein Equation for Dilute Solutions
The Stokes-Einstein equation can be used to calculate diffusion coef-
ficients in liquids:

 D
k T

f
k T

R
B B

o

= =
6πµ

 (2.29)

where kB is the Boltzmann constant, f is the frictional drag coefficient, T is 
the temperature, µ is the viscosity of the surrounding medium, and R0 is 
the radius of the solute that is diffusing. Equation (2.29) can be derived 
as follows. A rigid solute sphere is assumed for the molecule diffusing in 
a common solvent. The frictional drag force acting on the molecule 
opposing its motion is proportional to the velocity of the sphere:

 Drag force = f v1 (2.30)

where v1 is the velocity of the molecule. From Stokes’ law [14] for a 
sphere moving in a fluid, f = 6πµRo, the driving force was taken by 
Einstein [2] to be the negative of the chemical potential gradient 
(−∇µA) defined per molecule:

  −∇µA = (6πµRo)vA (2.31)

Equation (2.31) is valid when the molecule reaches a steady-state 
velocity. This is when the net force acting on the molecule is zero. The 
solution is assumed to be ideal and dilute.

 µA = µA
0 + kBT ln(xA) = µ1

0 + kBT ln CA − kBT ln CB (2.32)

For dilute solutions, the concentration of the second species, CB, 
far exceeds the solute concentration and can be taken as a constant. 
The gradient at a constant temperature, then, is:

 ∇ =
∇

= −µ πµ1 6k T
C

C
R vB

A

A
o A( )  (2.33)

  
−

∇ = =
k T

R
C C v J AB

A A A( )6 0πµ
/  (2.34)

Comparing Eq. (2.34) with Fick’s law of molecular diffusion given 
in Eq. (2.7), the Stokes-Einstein relationship of Eq. (2.29) results.
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Equation (2.34) is valid only at a steady state. Oftentimes in tran-
sient applications, there is a sudden step-change in concentration, i.e., 
the driving force is imposed on the system. The molecule will experi-
ence an accelerating regime prior to reaching steady state. During the 
accelerating regime:

  −∇µA − (6πµRo)vA = m
dv
dt

A  (2.35)

where m is the mass of the molecule,

 mCA 
dv
dt

A
 = −(6πµRo)CAvA (2.36)

or − ∇ = ∂
∂

+
k TA

R
C

m
R

J
t

JB

o
A

o6 6πµ πµ( )
 (2.37)

Equation (2.37) is the generalized Fick’s law of diffusion that accounts 
for the acceleration regime of the molecule as well as the steady-state 
regime. An expression for the relaxation time for molecular diffusion 
falls out of the analysis: 

 τ
πµr

o B

m
R

mD
k T

= =
( )6

 (2.38)

In terms of Ptot, the system pressure for ideal gas, the relaxation time 
can be written as:

 τ
ρ

r
mMD

P
=  (2.39)

where ρm is the molar density of the species migrating. The velocity of 
mass diffusion is given by:

 v
D k T

mm
r

B= =
τ

 (2.40)

Equation (2.40) can be rewritten in terms of the molar gas con-
stant and molecular weight as:

 vm = 
D RT

Mrτ
=  (2.41)

The kinetic representation of pressure can be written after observing 
that a molecule moving in a one-dimensional cube with a velocity of 
vx undergoes a momentum change of 2mvx upon one collision with the 
wall. The number of collisions on the wall can be estimated by first 
calculating the time taken by the molecule to make the round trip 
from the wall after a collision to the opposite wall and return as 2l/vx. 
The number of collisions undergone by a molecule is vx/2l. The rate of 
transfer of momentum to the surface from the molecular collisions is 
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then mvx
2/l. The total force exerted by all the molecules colliding can 

be obtained by summing the contribution from each molecule, and 
the pressure is obtained by dividing the sum by the area of the wall 
and is given by Resnick and Halliday [15]:

 Ptot = 
m
l

v v vx x x3 1
2

2
2

3
2+ + +( )�  (2.42)

Let Nm be the number of molecules in the system and n the number of 
molecules per unit volume. Then Eq. (2.42) can be rewritten after mul-
tiplying the numerator and denominator by Nm:

 Ptot = mn v v vx x
2 2 21

3
= =ρ ρ< >  (2.43)

As the molecules treated as particles move in random, there is no pre-
ferred direction in the box. Hence, v2 = vx

2 + vy
2 + vz

2. The square root of v2 
is called the root mean squared speed of the molecule, and is a widely 
accepted average molecular speed. From the ideal gas law, Ptot = ρRT/M. 
Combining this with Eq. (2.41):

 
1

3 2< >v
RT
M

A k T
M

N B= =  (2.44)

Comparing Eqs. (2.44) and (2.40), it can be seen that the velocity of 
mass is one-third of the root mean square velocity. This could be due 
to the fact that only one-dimensional diffusion has been considered. 
When all three dimensions are considered, these two velocities would 
be identical, although derived from different first principles.

The governing equation for concentration in Cartesian, cylindrical, 
and spherical coordinates, taking into account the generalized Fick’s law 
of mass diffusion and relaxation, is given by the following equations:
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Six reasons were listed to seek a generalized Fourier’s law of heat 
conduction (details given in Chap. 9). By analogy, the generalized 
Fick’s law of diffusion needs to be considered:

 ′′ = −
∂
∂

− ∂ ′′
∂

J D
C
x

J
tAB

A
rτ  (2.48)

The Stokes-Einstein formula for diffusion coefficients is limited to 
cases in which the solute is larger than the solvent. As a result, other 
correlations have been derived for cases when the solute and solvent 
size are similar. Predictions in liquid are not as accurate as in gases. 
The Wilke and Chang [16] correlation for diffusion in liquids was an 
empirical correlation, and is given by:

 D = 7.4 E − 8 (φM2)
1/2T/µV1

0.6 (2.49)

Example 2.2 Effect of temperature on relaxation time. Write an expression for the 
relaxation time during diffusion of the considered species in liquids. Combine 
this expression with that of the effect of temperature on a diffusion coefficient, 
and obtain the dependence of relaxation time on temperature.
 Equation (2.38) can be multiplied by the Avogadro number and:

 τr = DM/RT (2.50)

Combining Eq. (2.50) with Eq. (2.49):

 τr = 7.4 E − 8 (φM2)
3/2/RµV1

0.6 (2.51)

It can be seen that the relaxation time becomes independent of tem-
perature and depends only on the viscosity of the fluid and molecu-
lar size parameters.

Hildebrand adapted a theory of viscosity to self-diffusivity:

 DAA = B(V − Vms)/Vms (2.52)

where V is the molar volume and Vms is the molar volume when flu-
idity is zero. The Siddiqi and Lucas correlation [17] for aqueous 
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solutions can be written as:

 DAw
0  = 2.98 E − 7 VA

−0.5473µw
−1.026T (2.53)

For hydrocarbon mixtures, the Haydeek-Minhas [18] correlation can 
be used:

 D E T VAB B
V

A
A0 1 47 10 2 7113 3 8

0 791
= −

− −. . ( . / ) .
.

µ  (2.54)

When electrolytes are added to a solvent, they dissociate to a certain 
degree. It would appear that the solution contains at least three compo-
nents: solvent, anions, and cations. If the solution is to remain neutral 
in charge at each point, assuming the absence of any applied electric 
potential field, the anions and cations diffuse effectively as a single 
component, as with molecular diffusion. The diffusion of the anionic 
and cationic species in the solvent can thus be treated as a binary mix-
ture. The theory of dilute diffusion of salts is well developed and has 
been experimentally verified. For dilute solutions of a single salt, the 
Nernst-Haskell equation is applicable:

 DAB
0  = RT/F2 (| / | | / |1 1n n+ −+ )/(1/λ+

0 + 1/λ−
0) (2.55)

where DAB
0 is diffusivity based on molarity rather than on normality of 

dilute salt A in solvent B in cm2/s.

2.6.2 Diffusion in Concentrated Solutions
The correlations discussed previously pertain to the diffusion in 
dilute solutions. With increased concentration, some things are differ-
ent and the considerations will be different. Diffusion coefficients 
vary with the volume fraction of the solute, oftentimes in a complex 
manner with a extremamas. Diffusion coefficients are no longer a 
proportionality constant, but do vary with the concentration and 
become concentration-dependent. In one approach, the hydrody-
namic interaction of the spheres was taken into account and the fric-
tion factor f corrected for per Batchelor [19]:

 f = 6πµRo(1 + 1.5φ1 + …) (2.56)

in which φ1 is the volume fraction of the solute. Substituting Eq. (2.50) 
in Eq. (2.34):

 −∇µ1 − (6πµRo)(1 + 1.5φ1 + …) v1 = mdv1/dt (2.57)

 kBT∇c1 + mc1dv1/dt = −(6πµRo)(1 + 1.5φ1 + …]c1v1 (2.58)

or −(kBT/6πµRo)/(1 + 1.5φ1 + …]∇c1

 = m/6πµRo /(1 + 1.5φ1 + …]∂J″/∂t + J″ (2.59)
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and  D = kBT/6πµRo (1 + 1.5φ1 + …)

 τr = m/6πµRo /(1 + 1.5φ1 + …) (2.60)

For nonideal solutions, the chemical potential can be written as:

 µ1 = µ1
0 + kBT ln(c1γ1) (2.61)

where γ1 is the activity coefficient.

 ∇µ1 = kBT/c1γ1(γ1∇c1 + c1∇γ1) 

Substituting Eq. (2.55) in Eq. (2.34):

 −D∇c1 (1 + ∂lnγ1/∂lnc1) = J″ + m/(6πµRo) ∂J″/∂t (2.62)

The correction for diffusion coefficient given in Eq. (2.59) may be 
attributed to a cluster of molecules in the solution. 

2.7 Diffusion in Solids

2.7.1 Mechanisms of Diffusion
Atomic diffusion in solids is of increased interest since the phenom-
enal growth in very large-scale integration (VLSI) of transistors on 
the silicon chip. Interstitial or substitutional mechanism of diffusion 
is said to occur when atoms occupy specific sites in a lattice. In an 
interstitial mechanism of diffusion, an impurity jumps from one 
interstitial site to the next. In a substitutional mechanism of diffusion, 
an impurity jumps from one lattice site to the neighboring vacant lat-
tice site. Since the concentration of vacancies is low, substitutional 
diffusion is much slower than interstitial diffusion. In concentrated 
diffusion, the atom replaces the lattice atom and moves through the 
interstices. 

The mechanism of diffusion varies greatly, depending upon 
the crystalline structure and the nature of the solute. For crystals 
with lattices of cubic symmetry, the diffusivity is isotropic, but not 
so for noncubic crystals. Interstitial mechanism of diffusion refers 
to small diffusing solute atoms passing through one interstitial 
site to the next. The matrix of atoms of the crystal lattice move 
apart temporarily to provide the necessary space. When there are 
vacancies and lattice sites are unoccupied, an atom in an adjacent 
site may jump into such a vacancy. This mechanism is called 
vacancy mechanism.

The NEC Corporation [20] has developed an interstitial concen-
tration simulation method. Here a mesh is set in a simulation region 
of a semiconductor device. Under a condition that an area outside of 
the simulation region is infinite, a provisional interstitial diffusion 
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flux at the boundary of the simulation region is calculated. Then, an 
interstitial diffusion rate at the boundary of the simulation is calcu-
lated by a ratio of the provisional interstitial diffusion flux to the pro-
visional interstitial concentration. Finally, an interstitial diffusion 
equation is solved for each element of the mesh using the interstitial 
diffusion rate at the boundary.

Crowd ion mechanism refers to the displacement of an extra atom 
that can displace several atom positions, thus producing a diffusion 
flux. The diffusivity in a single crystal is always substantially smaller 
than that of a multicrystalline sample because the latter has diffusion 
along the grain boundaries.

For diffusion in metals, Franklin [21] and Stark [22] gave the fol-
lowing expression:

 D = a0
2Nf ω (2.63)

where a0 is the spacing between the atoms, Nf is the fraction of sites 
vacant in the crystal, and ω is the jump frequency—that is, the number 
of jumps per unit time from one position to the next.

Example 2.3 Steady diffusion in a hollow cylinder. Develop the concentration profile 
in a hollow cylinder when a species is diffusing without any chemical reaction. 
Consider the concentration of the species to be held constant at the inner and 
outer surface of the cylinder at CAi and CAo, respectively.
 A mass balance on a thin shell of thickness, ∆r, at radius, r, in the cylinder 
would yield:

 J"A2πrL − J"A2π(r + ∆r)L = 0 (2.64)

In the limit when ∆r → 0:

 −
∂

∂
=

( )rJ
r

A" 0  (2.65)

Upon integration:

 J
c
rA" = − 1  (2.66)

or −
∂
∂

= −D
C
r

c
rAB

A 1  (2.67)

Upon integration:

 
C

c r
D

cA
AB

= +1
2

ln( )  (2.68)

From the boundary conditions, c1 and c2 can be solved for:

 r = Ro, CA = CAo (2.69)

 r = Ri, CA = CAi (2.70)



58 C h a p t e r  T w o

 c
D C C

R
R

AB Ao Ai

o

i

1 =
−( )







ln

 (2.71)

 c C R
C C

R
R

Ao o
Ao Ai

o

i

2 = −
−( )







ln( )
ln

 

 c2 = CAo – ln(Ro) (CAo – CAi)/ln(Ro/Ri) (2.72)
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Defining a log mean radius:
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2.7.2 Diffusion in Porous Solids
Solute movement by diffusion can be by virtue of concentration dif-
ference or by means of pressure difference. Micropores, mesopores, 
and macropores can be distinguished by means of the pore sizes. 
Several publications discuss pore diffusion along with gas-solid reac-
tions and catalysis. A Knudsen diffusion may be identified when the 
mean free path of the molecule is comparable to the pore size. When 
the pore size to the mean free path of the molecule ratio is about 20, 
molecular diffusion prevails. When d/λ < 0.2 rate of diffusion is a 
function of the collision of the gas molecules and wall, Knudsen dif-
fusion is said to occur:

 NA = duA∆p/3RTl (2.76)

where uA is the molecular velocity of A. The Knudsen diffusion 
coefficient:

 DKA = d/3 (8RT/πMA)1/2 (2.77)
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and the mean free path, λ, is expressed as:

 λ = 3.2 µ (RT/2πM) (2.78)

In the range of d/λ from roughly 0.2 to 20, both molecular diffusion 
and Knudsen diffusion are important:

 NA = (DAB,eff pt/RTz) ln(NA/N(1 + DAB, eff/DKA,eff) − yA2)/

 (NA/N(1 + DB,eff/DKA,eff) − yA1) (2.79)

Hydrodynamic flow of gases will occur when there is a difference in 
absolute pressure across a porous solid. Consider a solid consisting of 
uniform straight capillary tubes of diameter dc and length l reaching 
from the high-pressure side to the low-pressure side. Assuming lami-
nar flow, Hagen-Poiseuille’s law for a compressible fluid that obeys 
the ideal gas law can be written as:

 NA = d2 pt,av (pt,1 − pt,2)/32µlRT (2.80)

The entire pressure difference is assumed to be the result of friction in the 
pores and ignores entrance and exit losses and kinetic energy effects. 

2.7.3 Diffusion in Polymers
The diffusion coefficients for polymers lie in between that of solids 
and liquids. Different systems where diffusion of high-molecular-
weight substances become of importance is when the polymer forms 
a solute of a dilute solution or one component of a polymer-polymer 
blend. A polymer blend can be miscible, immiscible, compatible, or 
incompatible. When two polymers are mixed to yield a product with 
improved property, it is said to be compatible blend. When two poly-
mers mix at a molecular level, they are said to be miscible blends. A 
concentrated system where the volume fraction of the polymer solute 
is large is another category where diffusion has to be treated in a dif-
ferent manner compared to other systems.

A polymer molecule dissolved in a solvent can be envisioned as a 
necklace comprising spherical beads connected by string [23]. The 
polymer molecules are separated and only interact through the sol-
vent. The Stokes-Einstein equation for the diffusion coefficient of 
the polymer can be used for a Flory theta solvent. The root mean 
square radius of gyration used as a measure of the size of the poly-
mer can be used as the radius of the solute in the Stokes-Einstein 
formula. These values can be measured by light scattering. For con-
centrated solutions, the diffusivity is given by:

 D = D0(1 + ∂lnγ1/∂lnφ1) (2.81)
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D0 includes the solute’s activation energy. This must be sufficient to 
overcome any attractive forces that constrain its near neighboring 
polymer segments. This coefficient can be expected to vary with the 
free volume of the polymer chains. Only the fraction of the free vol-
ume, the hole-free volume, will be accessed by the solute: 

 D0 = D'0 exp(−E/RT) exp(−ω1V10 + ω2V20/(ω1K1 + ω2K2)) (2.82)

where E is the solute-polymer attractive energy, ωi is the mass frac-
tions, Vi0 is the specific critical free volumes, and Ki is the additional 
free volume parameters. These parameters are strong functions of the 
actual temperature minus the glass transition temperatures. 

For polymer blends, the Rouse model is suggested:

 D = kBT/Npζ (2.83)

where Np is the degree of polymerization and ζ is the friction coeffi-
cient characteristic of the interaction of a bead with its surroundings. 

2.8 Transient Diffusion [24–31]
The transient concentration profile due to molecular diffusion can be 
described using Fick’s second law of diffusion and the damped wave 
diffusion and relaxation equation. The parabolic Fick model and 
damped wave diffusion and relaxation model for transient mass flux 
at the surface for the problem of transient diffusion in a semi-infinite 
medium subject to a step-change in concentration at the surface was 
found by Sharma [25] to be within 10% of each other for times t > 2τr 
(Fig. 9.7). This checks out with the Boltzmann transformation—the 
hyperbolic governing equation reverts to the parabolic at long times. 
At short times, there is a “blow-up” in the parabolic model. In the 
hyperbolic model, there is no singularity. This has significant implica-
tions in several industrial applications, such as gel acrylamide elec-
trophoresis used in obtaining the sequence distribution of DNA and 
protein microstructure.

The Fick regime is valid for materials with small relaxation times, 
long times, and moderate-to-small mass flux rates. The wave regime 
and the hyperbolic model are valid for short times, high mass flux 
rates, and materials with large relaxation times. There were some con-
cerns expressed in the literature that the hyperbolic mass diffusion 
equation violates the second law of thermodynamics. The equation 
was shown to yield well-bounded solutions in accordance with the 
second law of thermodynamics by Sharma [24] when final condition 
in time was used. This condition is a more realistic representation of 
the transient events in molecular diffusion in practice. The physical 
significance of the damped wave equation needs to be borne in mind 
when applying it.
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The solution developed by Baumeister and Hamill [32] by the 
method of Laplace transforms was further integrated into a useful 
expression. A Chebyshev polynomial approximation was used to 
approximate the integrand with the modified Bessel composite func-
tion of space and time of the first kind and first order. The error 
involved in Chebyshev economization was 4.1 × 10−5 ηξ. The useful 
expression for transient temperature was shown in Fig. 9.8 for a typi-
cal time of τ = 5. The dimensionless temperature as a function of 
dimensionless distance is shown in Fig. 9.8. The predictions from 
Baumeister and Hamill and the solution obtained by the method of 
relativistic transformation are within 12% of each other, on average. 
Close to the wavefront, the error in the Chebyshev economization is 
expected to be small and verified accordingly. Close to the surface, 
the numerical error involved in the Chebyshev economization can be 
expected to be significant. This can be seen in Fig. 9.8 close to the 
surface. The method of relativistic transformation yields bounded 
solutions without any singularities. The transformation variable ψ is 
symmetric with respect to space and time. It transforms the partial 
differential equation (PDE) that governs the wave temperature into a 
Bessel differential equation. The penetration distance beyond which 
there is no effect of the step change in temperature at the surface for a 
considered instant in time is shown in Fig. 9.8. The solutions from the 
relativistic transformation of coordinates is an improvement over the 
Baumeister and Hamill solution and parabolic Fourier solution in 
depicting the transient heat events in a semi-infinite medium subject 
to a step change in boundary temperature. Four regimes in the tran-
sient temperature solution for the hyperbolic governing equation 
using the method of relativistic transformation of coordinates are rec-
ognized, and closed-form analytical solutions in each regime are 
given without any singularities. The transient temperature is also 
found in accordance with the second law of thermodynamics in all 
four regimes.

2.8.1 Fick Molecular Diffusion—Semi-Infinite Medium
Consider a semi-infinite medium at an initial concentration of a spe-
cies, A, at CA0 (Fig. 2.2). For times greater than 0, the surface at x = 0 is 
maintained at a constant surface concentration at CA = CAs, CAs > CA0. 

FIGURE 2.2 Semi-infi nite medium with initial concentration at C
A0.

x = 0

CA = CAs

x – ∞
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The boundary conditions and initial condition are as follows:

 t = 0, CA = CA0 (2.84)

 x = 0, CA = CAs (2.85)

 x = ∞, CA = CA0 (2.86)

The transient concentration in the semi-infinite medium can be 
obtained by solving the Fick parabolic mass diffusion equations using 
the Boltzmann transformation η = x Dt4  as follows. The governing 
equation for molecular diffusion in one dimension using Fick’s sec-
ond law can be written as:
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Equation (2.87) is a parabolic PDE of the second order in space and 
time.

Let:

  u
C C
C C

x

D t
A A

As A AB

=
−
−

=
( )
( )

;0

0 4
η   (2.88)

Equation (2.87) becomes:
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The three conditions, one in time and two in space, given by Eqs. (2.84) 
to (2.86) become:

 η = =0 1,u  (2.91)

 η = ∞ =,u 0  (2.92)

Thus a PDE of the second order in space and time can be transformed 
into an ordinary differential equation (ODE) in one variable. The trans-
formation η = x D tAB4  is called the Boltzmann transformation. The 
solution to the ODE in the transformed variable, η, can be written as:

 u c e d c= +−∫1
0

2
2η

η

η  (2.93)

The integration constants, c1 and c2, can be solved for using the bound-
ary conditions given by Eqs. (2.91) and (2.92). Thus:
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The mass flux can be written as:
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The dimensionless mass flux at the surface is then given by:

 qs
* = 1

πτ
 (2.96)

2.8.2 Damped Wave Diffusion and Relaxation
The semi-infinite medium is considered to study the spatio-temporal 
patterns that the solution of the non-Fick damped wave diffusion and 
relaxation equation exhibits. This kind of consideration has been used 
in the study of Fick mass diffusion. The boundary conditions can be of 
different kinds, such as the constant wall concentration, the constant 
wall flux (CWF), pulse injection, convective, impervious, and expo-
nential decay. The similarity or Boltzmann transformation worked out 
well in the case of the parabolic PDE, where an error function solution 
can be obtained in the transformed variable. The conditions at infinite 
width and zero time are the same. The conditions at zero distance 
from the surface and at infinite time are the same. 

Baumeister and Hamill [32] solved the hyperbolic heat conduc-
tion equation in a semi-infinite medium subjected to a step change in 
temperature at one of its ends using the method of Laplace transform. 
The space-integrated expression for the temperature in the Laplace 
domain had the inversion readily available within the tables. This 
expression was differentiated using Leibniz’s rule, and the resulting 
temperature distribution was given for τ > X as:
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The method of relativistic transformation of coordinates is evaluated 
to obtain the exact solution for the transient temperature. Consider a 
semi-infinite slab at initial concentration, C0, imposed by a constant 
wall concentration, Cs, for times greater than zero at one of the ends. 
The transient concentration as a function of time and space in one 
dimension is obtained. Obtaining the dimensionless variables:
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The mass balance on a thin spherical shell at x with thickness ∆x is 
written in one dimension as –∂J*/∂X = ∂u/∂τ. The governing equa-
tion can be obtained in terms of the mass flux after eliminating the 
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concentration between the mass balance equation and the non-Fick 
expression: 
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It can be seen that the governing equation for the dimensionless mass 
flux is identical in form to that of the dimensionless concentration. 
The initial condition is:

  τ = 0, J* = 0 (2.100)

The boundary conditions are:

 X = ∞, J* = 0 (2.101)

 X = 0, C = Cs; u = 1 (2.102)

Let us suppose that the solution for J* is of the form w exp(−nτ) for 
τ > 0 where W is the transient wave flux. Then, when n = ½, Eq. (2.99) 
becomes:
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The solution to Eq. (2.103) can be obtained by the following rela-
tivistic transformation of coordinates for τ > X. Let η = (τ2 − X2). Then 
Eq. (2.103) becomes:
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Combining Eqs. (2.104) and (2.105) into Eq. (2.103):
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Equation (2.107) can be seen to be a special differential equation 
in one independent variable. The number of variables in the hyper-
bolic PDE has thus been reduced from two to one. Comparing 
Eq. (2.107) with the generalized form of Bessel’s equation, it can be 
seen that a = 1, b = 0, c = 0, s = ½, and d = −1/16. The order of the solution 
is calculated as 0 and the general solution is given by:
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The wave flux, w, is finite when η = 0, and hence it can be seen 
that c2 can be seen to be zero. The c1 can be solved from the boundary 
condition given in Eq. (2.102). The expression for the dimensionless 
mass flux for times, τ, greater than X is thus:

 J c I X* exp= −
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For large times, the modified Bessel’s function can be given as an 
exponential and reciprocal in square root of time by asymptotic 
expansion. Consider the surface flux, i.e., when in Eq. (2.109) X is set 
as zero:
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For times when exp(τ) is much greater than the mass flux, it can 
be seen that the second derivative in time of the dimensionless flux in 
Eq. (2.99) can be neglected, compared with the first derivative. The 
resulting expression is the familiar expression for surface flux from 
the Fourier parabolic governing equation for constant wall concen-
tration in a semi-infinite medium, and is given by:

 J* = 1

πτ
 (2.111) 

Comparing Eq. (2.111) and Eq. (2.110) it can be seen that c1 is 1. Thus, 
the dimensionless heat flux is given by:
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The solution for J* needs to be converted to the dimensionless con-
centration, u, and then the boundary conditions applied. From the 
mass balance:
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Thus, differentiating Eq. (2.112) wrt to X and substituting in Eq. (2.113) 
and integrating both sides wrt τ. For τ > X: 
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It can be left as an indefinite integral and the integration constant can 
be expected to be a function of space. The c(X) can be solved for by 
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examining what happens at the wavefront. At the wavefront, η = 0 
and time elapsed equals the time taken for a mass disturbance to 
reach the location x given the wave speed sqrt D mrτ . The govern-
ing equations for the dimensionless mass flux and dimensionless 
concentration are identical in form. At the wavefront, Eq. (2.106) 
reduces to:
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From the boundary condition in Eq. (2.102) it can be seen that c′ = 1. 
Thus, for τ > X, it can be seen that the boundary conditions are satis-
fied by Eq. (2.117), and it describes the transient concentration as a 
function of space and time that is governed by the hyperbolic wave 
diffusion and relaxation equation. The flux expression is given by 
Eq. (2.112). 

It can be seen that expressions for dimensionless mass flux and 
dimensionless concentration given by Eq. (2.112) and Eq. (2.117) are 
valid only in the open interval for τ > X. When τ = X, the wavefront 
condition results and the dimensionless mass flux and concentration 
are identical:
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When X > τ, the transformation variable can be redefined as η = 
X2 − τ2. Equation (2.106) becomes:
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The general solution for this Bessel equation is given by:
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The wave temperature, W, is finite when η = 0, and hence it can be 
seen that c2 can be seen to be zero. The c1 can be solved from the 
boundary condition given in Eq. (2.56). The expression in the open 
interval or the dimensionless heat flux for times τ smaller than X is 
thus:
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On examining the Bessel function in Eq. (2.121), it can be seen that 
the first zero of the Bessel occurs when the argument becomes 2.4048. 
Beyond that point the Bessel function will take on negative values, 
indicating a reversal of heat flux. There is no good reason for the mass 
flux to reverse in direction at short times. Hence, Eq. (2.121) is valid 
from the wavefront down to where the first zero of the Bessel func-
tion occurs, and the plane of zero transfer explains the initial condi-
tion verification from the solution. 

By using the expression at the wavefront for the dimensionless 
mass flux, c1 can be solved for and found to be 1. Equation (2.121) can 
also be obtained directly from Eq. (2.112) by using I0(η) = J0(iη). The 
expression for temperature in a similar vein for the open interval X > τ 
is thus:

  u X

J
X

X
d= −





−











−
+ −

exp exp
τ

τ

τ
τ

2

21

2 2

2 2

XX
2





∫   (2.122)

Consider a point Xp in the semi-infinite medium. Three regimes can 
be identified in the mass flux at this point from the surface as a function of 
time. The series expansion of the modified Bessel composite function 
of the first kind and zeroth order was used using a Microsoft Excel 
spreadsheet on a Pentium IV desktop microcomputer. The four regimes
and the mass flux at the wavefront are summarized as follows:

 1. The first regime is a thermal inertia regime when there is no 
transfer. 

 2. The second regime is given by Eq. (2.121) for the mass flux and 
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  (2.123)

  The first zero of the zeroth-order Bessel function of the first 
kind occurs at 2.4048. This is when

  2 4048
2

23 132
2 2

2. .= − = −X
X

τ τor lag   (2.124)
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  Thus, τlag is the inertial lag that will ensue before the mass flux 
is realized at an interior point in the semi-infinite medium at 
a dimensionless distance X from the surface. By way of dem-
onstration, one value of X is used, i.e., 5. Thus, for points 
closer to the surface the time lag may be zero. Only for dimen-
sionless distances greater than 4.8096 is the time lag finite. 
For distances closer than 4.8096 sqrt(atr), the thermal lag expe-
rienced will be zero. For distances:

  x mr> 4 8096. ατ   (2.125)

  The time lag experienced is given by Eq. (2.124) and is sqrt (X2 − 
4β1

2) where β1 is the first zero of the Bessel function of the first 
kind and zeroth order, and is 2.4048. In a similar fashion, the 
penetration distance of the disturbance for a considered 
instant in time, beyond which the change in initial tempera-
ture is zero, can be calculated as:

  X ipen = +23 132 2. τ   

 3. The third regime starts at the wavefront and is described by 
Eq. (2.112). 
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 4. At the wavefront, J* = u = exp(−X/2) = exp(−τ/2).

The expressions for transient concentration derived in the previous 
section need to be integrated prior to use. More easily usable expres-
sions can be developed by making suitable approximations. Realiz-
ing that for a PDE, a set of functions instead of constants (as in the 
case of an ODE) needs to be solved from the boundary conditions, the 
c in Eq. (2.101) is allowed to vary with time. This results in an expres-
sion for transient concentration that is more readily available for 
direct use. Extensions to three dimensions in space are also straight-
forward in this method.

In this section, the exact solution for the constant wall concentra-
tion problem in a semi-infinite medium in one dimension is revisited 
since the discussion by the method of Laplace transforms by Bau-
meister and Hamill. This section will attempt to derive an expression 
that does not need further integration. Consider a semi-infinite slab 
at initial concentration, C0, subjected to a sudden change in concen-
tration at one of the ends to Cs. The mass propagative velocity is Vm = 
sqrt (DAB/τr). The initial condition:

     t = 0, Vx, C = Co (2.127)

 t > 0, x = 0, C = Cs (2.128)

  t > 0, x = ∞ C = C0  (2.129)
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Obtaining the dimensionless variables:
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X D
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τ
τ
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The mass balance on a thin spherical shell at x with thickness ∆x is 
written. The governing equation can be obtained after eliminating J″ 
between the mass balance equation and the derivative with respect to 
x of the flux equation and introducing the dimensionless variables: 
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Suppose u = exp(–nτ) w (X, τ). By choosing n = ½, the damping com-
ponent of the equation is removed. Thus, for n = ½, the governing 
equation becomes: 
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The solution to Eq. (2.132) can be obtained by the following relativ-
istic transformation of coordinates for τ > X. Let η = (τ2 – X2). Then 
Eq. (2.132) becomes: 
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Combining Eqs. (2.133) and (2.132):
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Equation (2.135) can be seen to be a special differential equation in 
one independent variable. The number of variables in the hyperbolic 
PDE has thus been reduced from two to one. Comparing Eq. (2.135) 
with the generalized form of Bessel’s equation, it can be seen that a = 1, 
b = 0, c = 0, s = ½, and d = −1/16. The order of the solution is calculated as 
0 and the general solution is given by:
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The wave temperature, w, is finite when η = 0, and hence, it can be 
seen that c2 can be seen to be zero. The c1 can be solved from the 
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boundary condition given in Eq. (2.128). For X = 0, u is 1. Writing the 
expression for at X = 0: 
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c1 can be eliminated by dividing Eq. (2.136) after setting c2 = 0 by 
Eq. (2.137) to yield in the open interval of τ > X:
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In the open interval X > τ:
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It can be inferred that an expression in time is used for c1. A domain-
restricted solution for short and long times may be in order. The dimen-
sionless concentration profile as a function of dimensionless distance 
for different values of dimensionless times is shown in Fig. 2.3. 

2.8.3 Periodic Boundary Condition
Consider a semi-infinite slab at initial concentration, C0, imposed by 
a periodic concentration at one of the ends by C0 + C1 cos(ωt). The 
transient concentration as a function of time and space in one dimen-
sion is obtained. Obtaining the dimensionless variables:

u
C C

C
t

X
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Dmr mr

=
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= =
( )

; ;0

1

τ
τ τ

 u = (C – C0)/(C1);

 τ = t/τr; X = x/sqrt(Dτr)  (2.140)

The mass balance on a thin shell at x with thickness ∆x is written. The 
governing equation is obtained after eliminating J between the mass 
balance equation and the derivative with respect to x of the flux equa-
tion and introducing the dimensionless variables. The initial condi-
tion is:

  t = 0, C = C0; u = 0  (2.141) 
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The boundary conditions are:

  X = ∞, C = C0 ; u = 0  (2.142) 

  X = 0, C = C0 + C1 cos(ωt); u = cos(ω*τ)  (2.143)

Let us suppose that the solution for u is of the form f(x)exp(–iω*τ) for 
τ > 0 where ω is the frequency of the concentration wave imposed on 
the surface and C1 is the amplitude of the wave. Then:

 (−iω*) f exp(−iω*τ) + (i2ω*2 )f exp(−iωτ) = f″ exp(−iω*τ)  (2.144)

 i2 f(ω*2 + iω*) = f″   

 f(X) = c exp(–iXω*sqrt (ω* + i))  (2.145) 
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d can be seen to be zero as at X = ∝, u = 0.

  u c iX i i= − + −exp( * * )exp( * )ω ω ω τ   (2.146)

From the boundary condition at X = 0: 

 cos(ω*τ) = real part (c exp(−iω*τ) ) or c = 1   (2.147)

  u = exp(−Xω*(A + iB)exp(−iω*τ)) 

  = exp(−Aω*X)exp(−i(BXω* + ω*τ))  (2.148)

where A + iB = i sqrt(ω* + i)   (2.149)

Squaring both sides:

 A2 − B2 + 2 ABi = i2 (ω* + i) = −ω* −i   (2.150)

  A2 − B2 = −ω* ; 2 AB = −1 or B = −1/2A  

or A2 − 1/4A2 = −ω*  (2.151)

 A2 = (−ω* ± sqrt (ω*2 + 1))/2 ; B = −1/2A  (2.152)

Obtaining the real part:

 u = exp(−Aω*X)cos(ω*(BX + τ))  (2.153)

The time lag in the propagation of the periodic disturbance at the 
surface is captured by the previous relation. Thus, the boundary con-
ditions can be seen to be satisfied by Eq. (2.145). In a similar vein to 
the supposition of f(x)exp(−iω*τ), the mass flux J″ can be supposed to 
be of the form J* = g(x)exp(−iω*τ). Thus:

  g
f
i

= ′
−( *)1 ω

   (2.154)

Combining the f from Eq. (2.145) into Eq. (2.154):

 J* = −ω*(A + iB) exp(−Xω*(A + iB)exp(−iω*τ))   (2.155)

          = −ω*(A + iB) exp(−Aω*X)exp(−i(BXω* + ω*τ))  

  = −ω*(A + iB)exp(−Aω*X)(cos(BXω* + ω*τ) + i sin(BXω* + ω*τ))  

Obtaining the real part:

 J″ = 
D

mrτ
 ω*exp(−Aω*X)(B sin(ω*(BX + τ)) − Acos(ω*(BX + τ))) 

  (2.156)
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Summary
Diffusion is a phenomenon whereby a species migrates from a region 
of higher concentration to a region of lower concentration. The driving 
force for motion is the concentration gradient. The Skylab demonstra-
tion experiments by Fascimire documents the diffusion of tea in water 
under reduced gravity conditions. The lowest achievable concentra-
tion is 0 molm−3 by law. Fick’s first and second laws can be written as:

  J D A
C
xij
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2

2   

The N and J fluxes are distinguished from each other. J describes the 
molecular diffusion and N the migration due to bulk motion. The dif-
fusion coefficient varies with temperature. In gases, the correlations 
of Chapman and Enskog, Wilke-Lee, Mathur and Thodos, and Catch-
pole and King are presented. Binary diffusion coefficient values for 
commonly available gases are given in Table 2.1. For liquids, the 
Stokes-Einstein relation for diffusion coefficients was derived. Dur-
ing the derivation, when accounting for the acceleration regime of the 
solute molecule, the generalized Fick’s laws of diffusion were 
derived:
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Correlations of Nernst-Haskell for electrolytes were mentioned. 
The effect of concentration, i.e., dilute versus concentrated solutions, 
were discussed separately. Correlations of Wilke-Chang, Siddiqi-
Lucas, and Haydeek-Minhas were included. The diffusion mecha-
nism in solids was discussed. The different mechanisms of diffusion, 
such as vacancy mechanism, interstitial mechanism, substitutional 
mechanism, and crowd ion mechanism were outlined. The Knudsen 
diffusion when the mean free path of the molecule is greater than the 
diffusion path, such as in pore diffusion, was discussed. The diffu-
sion in polymers and the Arrhenius dependence of diffusion coeffi-
cient with temperature were discussed. 

The transient diffusion in a semi-infinite medium was studied 
under a constant wall concentration boundary condition using Fick’s 
second law of diffusion and the damped wave diffusion and relaxation 
equation. The latter can account for the finite speed of propagation of 
mass. A new procedure called the method of relativistic transformation 
was developed to obtain bounded and physically realistic solutions. 
These were compared with the solution from Fick’s second law of dif-
fusion obtained using Boltzmann transformation and the solution pre-
sented in the literature by Baumesiter and Hamill [32]. Four different 
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regimes of the solution were recognized: an inertial regime with zero 
transfer, a second regime characterized by a Bessel composite function 
of space and time of the zeroth order and first kind, a third regime 
characterized by a modified Bessel composite function of space and 
time of the zeroth order and first kind, and a wavefront regime. The 
characteristics of the solution to the damped wave diffusion and relax-
ation equation, subject to the periodic boundary condition by the 
method of complex concentration, were discussed. The transient con-
centration profile from the relativistic transformation method was pre-
sented in an easy-to-use chart in Fig. 2.3. The profile has a point of 
inflection and zero curvature at X = 0. Mathematical expressions for 
penetration length and inertial lag time were derived. 

References
 [1] E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, Cambridge, UK: 

Cambridge University Press, 1997.
 [2] A. Einstein, Annalen der Physik (1905), 7, 549.
 [3] A. E. Fick, Poggendorff’s Annelen der Physik (1855a), 94, 59.
 [4] A. E. Fick, Philosophical Magazine (1855b), 10, 30.
 [5] J. B. Fourier, Theorie analytique de la chaleur, English translation by A. Freeman, 

New York: Dover Publications, 1955. 
 [6] B. Fascimire, NASA Marshall Flight Center, AL, 1973.
 [7] E. R. Gilland, Ind. Eng. Chem. (1934) 26, 681.
 [8] S. Chapman, and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 

Cambridge, UK: Cambridge University Press, 1970.
 [9] R. C. Reid, T. K. Sherwood, and J. M. Prausnitz, Properties of Gases and Liquids, 

New York: McGraw-Hill, 1977.
[10] Wilke and Lee, Ind. Eng. Chem. (1955), 47, 1253.
[11] Brokaw, Ind. Eng. Chem. Process. Des. & Dev. (1969), 8, 2, 240.
[12] Mathur and Thodos, AIChE (1965), 11, 613.
[13] Catchpole and King, Ind. Eng. Chem. Process. Des. & Dev. (1994), 33, 1828.
[14] R. H. Stokes, J. of Amer. Chem. Soc. (1950), 72, 763, 2243.
[15] R. Resnick and D. Halliday, Physics, Part I, 38th Wiley Eastern Reprint, 

New Delhi, 1991.
[16] C. R. Wilke and P. C. Chang, AIChE J (1955), 1264.
[17] Siddiqi and Lucas, Can. J. of Chem. Eng. (1986), 64, 839.
[18] Haydeek and Minhas, Can, J. of Chem. Eng. (1982), 60, 195.
[19] G. K. Batchelor, J. of Fluid Mechanics (1972), 52, 245, 71, 1.
[20] NEC Corporation, U.S. Patent 5,784,300 (1998).
[21] W. D. Callister, Materials Science and Engineering, 7th ed., New York: Wiley, 

2007.
[22] J. P. Stark, Solid State Diffusion, New York: John Wiley, 1976.
[23] J. S. Vrentas and J. L. Duda, J. of Appl. Polym. Sci. (1980), 25, 1297.
[24] K. R. Sharma, Damped Wave Transport and Relaxation, Amsterdam: Elsevier, 

2005.
[25] K. R. Sharma, “On the solution of damped wave conduction and relaxation 

equation in a semi-infinite medium subject to constant wall flux,” International 
Journal of Heat and Mass Transfer, vol. 51 (2008), 25–26, 6024–6031.

[26] K. R. Sharma, “Damped wave conduction and relaxation in a finite sphere 
and cylinder,” Journal of Thermophysics and Heat Transfer, vol. 22 (2008), 4, 
783–786.

[27] K. R. Sharma, “Damped wave conduction and relaxation in cylindrical and 
spherical coordinates,” Journal of Thermophysics and Heat Transfer, vol. 21 
(2007), 4, 688–693.



P r i n c i p l e s  o f  D i f f u s i o n  75

[28] K. R. Sharma, “Manifestation of acceleration during transient heat conduc-
tion,” Journal of Thermophysics and Heat Transfer, vol. 20 (2006), 4, 799–808.

[29] K. R. Sharma, “A fourth mode of heat transfer called damped wave conduc-
tion,” 42nd Annual Convention of Chemists, Santiniketan, India, February 
2006.

[30] K. R. Sharma, “Solution methods and applications for generalized Fick’s 
law of diffusion,” invited lecture, 43rd Annual Convention of Chemists, 
Aurangabad, December 2006.

[31] K. R. Sharma, “On the second law violation in Fourier conduction,” 231st ACS 
National Meeting, Atlanta, GA, March 2006.

[32] K. J. Baumeister and T. D. Hamill, “Hyperbolic heat conduction equation—a 
solution for the semi-infinite body problem,” ASME J of Heat Transfer (1971), 
93, 126–128.

Exercises

Review Questions

1.0 What is the difference between self, binary, and ternary diffusion coef-
ficients? 

2.0 During Brownian motion, the molecules follow a random zigzag path 
and sometimes move in the opposite direction, compared with the imposed 
concentration difference driving the diffusion. Is this a violation of the second 
law of thermodynamics?

3.0 What are the differences between multicomponent diffusion and binary 
diffusion?

4.0 What happens to the formula for total flux during equimolar counterdif-
fusion, compared with that for molecular diffusion?

5.0 Correlations for diffusion in gases, liquids, and solids were discussed. 
What would be appropriate for liquid diffusing in a solid or gases diffusing 
in a liquid?

6.0 Discuss the units of each term in the equation P = DS.

7.0 Explain the effect of temperature on the mass propagation velocity. What 
happens to the diffusion coefficient and relaxation time at high pressure?

8.0 Why are insects larger in size in the tropics compared with the insects 
in the Arctic region?

9.0 Are the forces of gravity taken into account in the derivation of the 
Stokes-Einstein relationship for diffusivity coefficients?

10.0 Can you expect a plane of zero concentration or null transfer during 
drug delivery in the tissue region? How so?

11.0 Diffusion coefficient is a proportionality constant in Fick’s first law of 
diffusion, independent of concentration. For concentrated solutions, it is said 
to vary with concentration. How can this be interpreted? 
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12.0 State the Onsager reciprocal relations. Show that D12 = D21.

13.0 What was Landau’s observation of the infinite speed of propagation?

14.0  What is penetration length?

15.0 What is inertial lag time?

16.0 What is the first zero of the Bessel function of the first order? How is 
this used in the derivation of the penetration length and inertial lag time in a 
three-dimensional medium?

17.0 Examine I0(τ/2)exp(–τ/2) in terms of extremamas and asymp-
totic limits. Under what conditions can I0(τ/2) be reduced to a simpler 
expression?

18.0 What is the meaning of a negative mass flux? What happens to the ratio 
of accumulation and diffusion ?

Problems
19.0 Estimate of diffusion coefficient of argon in hydrogen. Calculate the diffusion 
coefficient of argon in hydrogen at 1.5 atm and 310 K. Compare this with the 
experimental values reported in the literature.

20.0 Parabolic law of oxidation. During the corrosion of metals, an 
oxide layer is formed on the metal. Assuming that the oxygen diffuses 
through the oxide layer, show that the thickness of the oxide layer, δ, 
can be given by (Cbulk DABt/ρm)1/2 using Fick’s law of diffusion. A gentle 
breeze is blowing at a constant velocity of U over the corroded layer. 
Is this going to increase the rate of corrosion due to the convection 
contribution?

21.0 Sacred pond. Evaporation from ponds is retarded by the introduction 
of lotus leaves in the sacred ponds in temples. Assume that in a pond of area 
9 m × 9 m, 4,130 leaves, each with a diameter of 3″, were placed. Calculate 
the reduction in diffusion rate on account of the reduction in area in the path 
of evaporation. 

22.0 Diffusion of oxygen through spiracles. Many insects breathe through 
spiracles. Spiracles are open tubes that extend into the insect’s body. 
Oxygen diffuses from the surrounding air and gas exchange takes place 
through the walls. For every mole of oxygen diffusing in, there is one 
mole of CO2 diffusing out. To prevent water loss, the walls of the spiracle 
are coated with a cuticle of 10 µm thickness. The oxygen concentration 
outside the cuticle is constant and is 5% of the equilibrium concentra-
tion. What is the local oxygen flux in the spiracle to the tissue? Derive an 
oxygen concentration profile within the tissue. Is the spiracle an efficient 
method of respiration? (Spiracle radius = 100 µm; spiracle length = 9 mm; 
Do,cuticle = 3 E-5 cm2/s; Do,air = 0.15 cm2/s; oxygen solubility in tissue Ct = 
0.2 mmol/L.)
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23.0 Scrubbing of SO2. During coal combustion, the emission of sulfur dioxide 
from power plants can be reduced by using CaO scrubbers. In the scrubber:

 2CaO + 2SO2 + O2 → 2CaSO4

Consider the diffusion of SO2 into a spherical particle of CaO. Show that a 
governing equation can be derived from the shell balance as:
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Show that the concentration profile of SO2 in the spherical lime particle can be 
written as: 
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24.0 Coextrusion. In the manufacture of the casings of the solid rocket 
motor (SRM), the material requirements are bifunctional. They have to 
have high hoop strength on one side and high ablation resistance on the 
other. In order to prepare such materials, the technology of coextrusion is 
utilized. In a twin-screw extruder, both the materials are extruded together. 
During the residence time of the polymers in the extruder, the interdif-
fusion of either material into the other occurs. Calculate the interlayer 
thickness as a function of the extruder residence time and diffusivities of 
the two materials.

25.0 Diffusion coefficient of milk in the refrigerator. Estimate the diffusion coef-
ficient of lactic acid in the refrigerator. Compare this with the value at room 
temperature and that of the milk through the plastic container.

26.0 Restriction mapping. Endonucleases, or restriction enzymes, cut the 
unmethylated DNA at several sites and restrict its activity. About 300 restric-
tion enzymes are known, and they act upon 100 distinct restriction sites that 
are palindromes. Some cut leaves with blunt ends and others leave them 
sticky. The restriction fragment lengths can be measured by using the tech-
nique of gel electrophoresis. The solid matrix is the gel usually agarose or 
polyacrylamide—which is permeated with a liquid buffer. As DNA is a nega-
tively charged molecule when placed in an electric field, the DNA migrates 
toward the positive pole. DNA migration is a function of its size. Calibration 
is used to relate the migration distance as a function of size. Migration dis-
tance of DNA under a field for a set time is measured. The DNA molecule 
is made to fluoresce and made visible under ultraviolet light by stainingthe 
gel with ethidium bromide. A second method is to tag the DNA with a radio 
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active label and then expose the x-ray film to the gel. Show that the migration 
under gel electrophoresis can be given by:
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Show that the governing equation can be written in one dimension as:
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27.0 Pheromone and insect control. During insect control, controlled release 
of pheromones are used. Pheromones are sex attractants released by insects. 
When mixed with an insecticide and used, it annihilates all of one sex of a 
particular insect pest. The pheromone sublimation rate in the impermeable 
holder is given as:

S0 = 9 E-16 (1 − 1 E-6 C1)

where C1 is the concentration in the vapor. The diffusivity through the polymer 
is 1.2 E-11 cm2/s. It can be assumed that the pheromone outside the chamber 
is 0. If the polymeric diffusion barrier is 600 microns thick and has an area of 
1.6 cm2, what is the concentration of pheromone in the vapor? How fast is the 
pheromone released by the device? 

28.0 Oxygen transport in the eye. The cornea is a unique, living tissue and is 
a transparent window through which light enters the eye to be focused on 
the retina, thus forming the images of our surroundings and enabling sight. 
When the eye is open, it receives all of its oxygen requirements from the sur-
rounding air. Other nutrients are likely delivered via the tear duct fluid that 
bathes the outer surface of the cornea or the aqueous humor, which fills the 
chamber behind the cornea and in front of the lens. Some oxygen may enter 
the aqueous humor from a vasculature in the muscle around the periphery 
of the lens. When the eye is closed, it is cut off from the O2 source in the air. 
There is a rich microvascular bed (well perfused with high vascular density 
on the inner surface of the eyelid) that supplies the cornea with oxygen and 
possibly other nutrients. What is the pO2 at the surface of the cornea when 
the eye is closed? 

Layer
Thickness
(lm)

Diffusion Coefficient 
(cm2/s)

VO2 (mL O2 · mL 
tissue-1s-1)

Epithelium 40 3.8 E-10 2.0 E-4

Stroma 450 3.8 E-10 1.0 E-5

Endothelium 10 3.8 E-4 2.0 E-4

Table of Model Parameters

29.0 Loss from beverage containers. Soft drink bottles are made out of plastic. 
The contents diffuse at a slow rate through the walls of the container and out 
into the air, and result in some losses. It has been suggested to coat the inner 
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wall of the container to reduce the losses. With a coating thickness of 25 µm and 
a diffusion coefficient in the coating of 1 E-9 m2/s, what would be the benefit to 
the manufacturer? Assume a thickness of 1.5 mm for the plastic container and 
a diffusion coefficient of the contents in the plastic container as 1 E-6 m2/s.

30.0 Reaction and diffusion in a nuclear fuel rod. In autocatalytic reactions, such 
as during nuclear fission, the neutrons can be studied by a first-order reaction. 
The mass balance in a long cylindrical rod with a first-order autocatalytic reac-
tion can be written at steady state as:

 1
0

r
rJ
r

k Cr∂
∂

+ ′′′ =
( )  

The long cylindrical rod is at zero initial concentration of autocatalytic reac-
tant, A. The surface of the rod is maintained at a constant concentration, Cs, 
for times greater than zero. The boundary conditions are: 

 r = 0, ∂
∂

=C
r

0  

 r = R, C = Cs 

Show that the steady-state solution can be obtained as follows after redefin-
ing us = C/Cs: 

∂2 us/∂X2 + 1/X ∂us/∂X + k* us = 0 

X2 ∂2 us/∂X2 + X ∂us/∂X + X2k* us = 0  

This equation can be recognized as the Bessel equation. The solution is:

us = c1 J0 (X√k*) + c2 Y0 (X√k*) 

It can be seen that c2 = 0 as the concentration is finite at X = 0. The boundary 
condition for surface concentration is used to obtain c1. Thus: 

c1 = 1/J0 (R√k*/Dτr) 

Thus:

us = J0 (X√k* )/J0 (R√k*/Dτr)

31.0 Grooming hair with oil. In order to keep the hair on the human skull from 
becoming dehydrated, it is oiled or hair cream is applied every day. During the 
course of the day estimate the loss of the oil from the human hair by diffusion. 
Show that there are two contributions. One is from the molecular diffusion 
from the head to the atmosphere in the vertical direction and the other is by 
convection from a wind blowing in the horizontal direction. Show that the 
governing equation can be given by:
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= ∂
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Show that the solution for the concentration profile of the oil in the surround-
ing region of the human skull at a steady state can be given by:

 u Z
Pe

X
m= −









1

4
erf  

Assuming that the diameter of the hair is 2 microns, the velocity of air is 1 m/s, 
and the diffusivity is 1 E-5 m2/s, estimate the time taken for the layer of cream 
of 1 micron to be replaced. Make suitable assumptions, such as the cranial area 
is 2,500 cm2 and the length of the hair is 5 cm. 

32.0 Dyeing of the wool. A dye bath at a concentration C0 and a volume V is 
used to dye wool that is bathed in it. The dye diffuses into the wool. Measuring 
the concentration of the dye in the wool as a function of time, can you a) 
estimate the diffusion coefficient of the dye (ff so, how and b) estimate the 
relaxation time?

33.0 Dopant profile by ion implantation. Ion implantation is used to introduce 
dopant atoms into the semiconductor material to alter its electrical conductiv-
ity. During ion implantation, a beam of ions containing the dopant is directed 
at the semiconductor surface. For example, boron atoms are implanted into 
silicon wafers by Lucent Technologies. Assume that the transfer of boron into 
the silicon surface is on account of both the convection and diffusion contribu-
tions at a steady state. Show that the governing equation for the transfer of 
boron at the gas-solid interface is given by:

 −
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Given a characteristic length l, show that the equation can be reduced to:
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and the solution is:

 u
J

Pe
ess

m

Pe Zm= − −1
*

 

34.0 Soot from the steam engine. The steam engine that powers the train that 
takes you from Chennai to N. Delhi in 31 hours discharges coal dust at a steady 
rate of 68 kg-mol/hr. The train moves at a velocity of 90 km/hr. Estimate the 
thickness of soot that will deposit on a passenger sitting near the window of 
seat S6 during the entire journey. S6 is about 200 feet from the engine. Assume 
that the diffusion coefficient of the soot in air is 1 E-6 m2/sec. Repeat the 
analysis for a wind speed of 10 km/hr. (Hint: Bulk concentration of soot in 
surrounding air can be calculated by considering a basis of time, such as that 
taken for the passenger to move 600 feet to the discharge point in fixed space, 
and in that time, the discharge amount is calculated from the discharge rate 
and the dispersed region from the penetration length in all three directions.)

35.0 Steady diffusion in a hollow sphere. Develop the concentration profile in 
a hollow sphere when a species is diffusing without any chemical reaction. 
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Consider the concentration of the species to be held constant at the inner and 
outer surfaces of the cylinder at CAi and CAo, respectively. Show that:
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36.0 Determination of diffusivity. Unimolar diffusion can be used to estimate 
the binary diffusivity of a binary gas pair. Consider the evaporation of CCl4, 
carbon tetrachloride, into a tube containing oxygen. The distance between the 
CCl4 level and the top of the tube is 16.5 cm. The total pressure in the system 
is 760 mmHg and the temperature is –5°C. The vapor pressure of CCl4 at that 
temperature is 29.5 mmHg. The area of the diffusion path in the diffusion tube 
may be taken as 0.80 cm2. Determine the binary diffusivity of O2−CCl4 when in 
an 11-hour period after a steady state, 0.026 cm3 of CCl4 is evaporated.

37.0 Helium separation from natural gas. McAfee proposed a method to sepa-
rate helium from natural gas. He noted that Pyrex glass is almost imperme-
able to all gases but helium. The diffusion coefficient of helium is 25 times the 
diffusion coefficient of hydrogen. Consider a Pyrex tubing of length, L, and 
inner and outer radii, Ri and R0. Show that the rate at which helium will diffuse 
through the Pyrex can be given by:
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38.0 Solid dissolution into a falling film. A liquid is flowing in laminar motion 
down a vertical wall. The wall consists of a species that is slightly soluble in the 
liquid. Show that the governing equation for species diffusing into the liquid 
from the wall can be written as:
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Show that an error function solution results for this PDE. 

39.0 Carburizing steel. Low-carbon steel can be hardened in order to improve 
the wear resistance by carburizing. Steel is carburized by exposing it to gas, 
liquid, or solid that provides a high carbon concentration at the surface. Given 
the percent carbon versus depth graphs for various times at 930°C, how can 
the diffusion coefficient be estimated from the graphs?

40.0 Electrophoretic term. For some systems, there is a minus sign in the elec-
trophoretic term, as shown in the following equation. What are the implications 
of the minus sign in this equation? How will this manifest in applications?
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CHAPTER 3
Osmotic Pressure, 

Solvent Permeability, 
and Solute Transport

Learning Objectives
• Discuss osmosis, osmotic pressure, and van’t Hoff’s law

• Learn permeability of a solvent across a membrane, Starling’s 
law

• Familiarize with diffusion mechanisms of a solute across 
a membrane

• Discuss hindered diffusion of a solute through pores

• Apply the Kedem-Katchalsky equation 

• Discuss flow through porous media, Darcy’s law

• Derive Starling’s law

• Measure a permeability coefficient

• Use Staverman’s reflection coefficient and the sieving 
coefficient

• Estimate effective diffusivity in suspensions

• Design a dialysis system to filter out toxic solutes from the 
bloodstream

• Characterize body fluids

• Apply the Nernst equation

• Understand electrodialysis and mass exchangers

83
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There were three important developments in the history of biofluid 
transport phenomena in human anatomy. These are as follows:

 1. The discovery of osmosis and osmotic pressure

 2. Permeability of a solvent across a membrane and Starling’s 
law

 3. Diffusion of a solute across a membrane

3.1 Van’t Hoff’s Law of Osmotic Pressure
The concept of osmotic pressure is illustrated in Fig. 3.1. When a bal-
loon made out of a semipermeable membrane and filled with salt 
solution is immersed in a bath of pure water, the water will travel 
from the jar into the balloon and the size of the balloon will increase 
until equilibrium is reached in terms of the chemical potential on 
both sides of the membrane. The semipermeable membrane chosen 
can permit only water and not the solute to a large extent. The flow 
of water is an example of the concept of osmotic pressure. Osmosis is
the flow of solvent from a region of low solute concentration to a 
region of high solute concentration. The pressure difference that 
causes this flow is called osmotic pressure. This pressure is caused 
by the presence of solutes. Hence, it is called colloid osmotic pressure.
For human plasma in the blood, the colloid oncotic pressure is about 
28 mmHg. The colloid osmotic pressure is small, compared with the 
osmotic pressure developed when a human cell is placed in pure 
water. The total osmotic pressure of the intracellular fluid would 
be 5450 mmHg at 37°C. 

FIGURE 3.1 Concept of osmotic pressure.

Water

Solution

Semipermeable
membrane
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Osmotic pressure is caused by the presence of solutes such as 
K+ ions; phosphocreatine; Mg++, Cl−, HCO3

−, and HPO4
2− ions; carno-

sine; amino acids; creatine; lactate; Na+ ions; urea; adenosine 
triphosphate (ATP), hexose monophosphate; and others. A number 
of solute molecules contribute to the osmotic pressure. Some of 
them are dissociating. For example, NaCl dissociates to the Na+ and 
Cl− ions. Each ion particle exerts its own osmotic pressure, and the 
charge of the ion has no bearing on the osmotic pressure. Substances 
such as glucose do not dissociate, and the osmotic pressure exerted 
is based upon its concentration. The term osmole is introduced to 
account for the effect of a dissociating solute. Therefore, one osmole 
is defined as one mole of a nondissociating substance. One mole of 
dissociating NaCl is equivalent to two osmoles. Osmolarity defines 
the number of osmoles per liter of solution. For physiological solu-
tions, the unit used for convenience is mOs. If a cell is placed within 
a solution that has a lower concentration of solutes or osmolarity, 
the cell is in a hypotonic solution and establishment of osmotic equi-
librium requires the osmotic flow of water into the cell. The influx of 
water into the cell results in swelling of the cell and a subsequent 
decrease in its osmolarity. On the other hand, if the cell is placed 
in a solution with a higher concentration of solutes or osmolarity—
that is, a hypertonic solution—osmotic equilibrium requires osmotic 
flow of water out of the cell. An isotonic solution is a fluid that has 
the same osmolarity of the cell. When cells are placed in an isot-
onic solution, there is neither swelling nor shrinkage of the cell. 
Examples of isotonic solutions are 0.9 percent by weight NaCl in 
water solution and 5 percent by weight of glucose solutions with 
respect to a human cell. 

Lettuce leaves in a salad wilt when salt is added. The osmotic 
pressure exceeds the turgor pressure in the cells of the lettuce, and 
the water oozes out. The process of wilting is thus accelerated with 
the addition of common salt. The water droplets on the surface of the 
leaves come from the interior of the lettuce plant cells. Consequently, 
the turgor pressure and internal rigidity of the leaves are lowered and 
they wilt. The process of water transport out of the cells caused by an 
increase in external salt concentration is an example of osmosis 
phenomena. 

Dutrochet discovered the phenomena of osmosis. He made sys-
tematic observations of osmotic pressure in the 1800s. He observed 
that small animal bladders filled with dense solution and then com-
pletely closed and plunged in water became turgid and swollen 
excessively. Water flowed into the bladder so as to dilute the solution 
inside.

Osmotic phenomena do not violate the second law of thermody-
namics. The entropy of the solution is larger than that of the solvent. 
When brought in contact with each other, the combined system strives 
to reach a state where the entropy is even higher. This can happen 
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only when the solvent moves from low solute concentration to the 
solution with higher solute concentration. 

Van’t Hoff’s law can be used to determine the osmotic pressure in 
terms of the concentration of the solution. It is derived from the con-
cept that fugacity of different phases needs to be equal at equilibrium. 
Thus, Fig. 3.1 shows that at equilibrium, the temperature and fugac-
ity of the water and that of the solution must be equal. Fugacity is a 
measure of the chemical potential of the system. As discussed previ-
ously, the difference in the chemical potential between the solution 
and the solvent causes the osmotic flow from a region of low solute 
concentration to a region of high solute concentration.

fw(T, Pw) = fs(T, Ps) (3.1)

The fugacity of a solution can be written in terms of the pure-component 
fugacity using the Poynting factor. The mole fraction of water and the 
activity coefficient of water are also needed. The Poynting factor 
corrects for the effect of pressure on the pure-component fugacity 
where Vw is the molar volume:

f x f
V P P

RTw w w w
w w s= −

−



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γ exp
( )

 (3.2)

The osmotic pressure is given by (Ps − Pw) = π and can be solved for 
from Eq. (3.2) as: 

 π = (Pw − Ps) = − RT
V

x
w

w wln( )γ   (3.3)

For an ideal solution, the activity coefficient may be taken as 1. For 
dilute systems using Taylor series expansion, the logarithmic func-
tionality can be approximated as:

 ln(xw) = ln(1 − xs) ≈ −(xs) (3.4)

Substituting Eq. (3.4) in Eq. (3.3) provides:

π =
RTx
V

s

w

= RTCs (3.5)

Equation (3.5) is called van’t Hoff’s law, and it is used to determine 
the osmotic pressure. Equation (3.3) may be used when activity 
coefficient information is available. If the solution contains N ideal 
solutes, the osmotic pressure can be obtained as a sum of the contri-
butions from each solute:

π =
RTx
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The number of molecules and not the absolute weight of the solute 
determines the osmotic pressure of the solution.  

Example 3.1 Concentration of orange juice by osmosis. In the food processing indus-
try, in order to concentrate orange juice, the water needs to be removed. A plastic 
bag containing orange juice at 1 wt % sucrose concentration is dropped into a 
brine solution at 35 wt % NaCl by weight. Calculate the osmotic pressure devel-
oped that will concentrate the juice.
 At equilibrium, the fugacity of water will be equal between the juice phase 
and brine phase:

f     juice = f     brine (3.7)

The fugacity of the solution can be written in terms of the pure-
component fugacity using the Poynting factor. The mole fraction of 
water and the activity coefficient of water are needed. The Poynting 
factor corrects for the effect of pressure on the pure-component fugac-
ity where Vw is the molar volume. For ideal solutions, the activity 
coefficient can be taken as 1: 

 1xwj   fwexp(−Vwπj/RT) = 1xwb fwexp(−Vwπb/RT) (3.8)

Mole fractions have to be calculated for water in juice and brine 
solutions:
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3.2 Darcy’s Law for Fluid Transport in Porous Media
Oftentimes, the fluid flow and solute transport are across pores in 
biological transport phenomena. Porous media are solid materials 
with an internal pore structure. The pores can be macropores or micro-
pores. The pore size and structure vary from one organ to another and 
between organisms. Nanostructured materials consist of a regular 
array of cylindrical pores. Interconnected channels may lead to a 
sponge or foam structure. Polymer gels form a fiber matrix. Tissues 
often contain a porous structure. The extravascular region can be 
viewed as a porous medium. The region consists of cells and an inter-
stitial region, and the pores are saturated with interstitial fluid. Pores 
exist in between cells, much like the spaces between grains in a pile of 
sand. They also exist in between extracellular fibrous molecules as 
part of a fiber matrix. A composite material is formed by embedding 
a fiber-matrix structure in the granular structure. Pores in the intersti-
tial region are either isolated or connected. Tissues are comprised of 
blood vessels, cells, and interstitial regions. The interstitium is com-
prised of an extracellular matrix and interstitial fluid. 
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Synthesized protein and polysaccharide molecules, such as 
proteoglycans, collagen, elastin, fibronectin, and laminin, form the 
extracellular matrix. A mechanical scaffold of tissue is provided by 
the extracellular matrix. It also serves as a substrate for cell adhesion 
and cell migration. Pores are characterized by their surface area and 
porosity:

s
area

volumesp = ( )interfacial
 (3.9)

ε = volume pores
volume total

( )
( )

(3.10)

where ssp is the specific surface area and ε is the porosity of the 
medium. Porous structures are deformable on application of load. 
The spatial distribution of pores can change on application of mechan-
ical stress. 

Pores can be classified depending on their connectivity as follows:

 1. Passing penetrable pores

 2. Nonpassing penetrable pores

 3. Isolated pores

 4. Tortuous channels

A pore is considered a passing pore when it connects to at least 
two subdomains of the outer surface of finite porous media. The 
passing pores may connect to two boundaries of the material, regard-
less of its geometry: rectangular, cylindrical, or spherical. A nonpass-
ing pore connects to only one subdomain of the outer surface. Both 
passing and nonpassing pores are said to be penetrable pores. Pores 
without any connections to the outer surface of the porous media are 
considered isolated. Tortuous channels occur when the length of the 
pore is greater than the thickness of the specimen—that is, tortuosity 
may be defined as:

τ =




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L
L
min

2

 (3.11)

where L is the length of the diffusion path through the pore and Lmin
is the shortest distance between the departure and arrival points of 
the solute in the medium. Accessibility of pores to solutes depends on 
the molecular structure and property of the solute. Common sense 
would dictate that a solute with a solute size greater than the pore 
size would not be penetrable. But there are instances when macro-
molecules with an initial size greater than the pore size have coiled 
up and penetrated the pore! 
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The size of a flexible molecule is defined by its radius of gyration. 
Oftentimes, not all the pore volume is available for solute transfer. 
This can be quantitated by using the parameter called the partition
coefficient. The partition coefficient gives the ratio of the available 
pore volume for solute diffusion to the porosity of the medium. For 
example, Ogston [1] developed a statistical model to include the 
effects of molecular exclusion in an oriented fiber matrix:
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where θ = volume fraction of fibers
 rsolute = radii of solute
 rfiber = radii of fiber
 φ = partition coefficient in the porous media 

The partition coefficient is an indicator of solute partitioning at 
equilibrium, between external solutions, and the void space in the 
porous media. In human anatomy, for example, the partition coeffi-
cient for albumin in the liver was found to be 0.5, 0.61 in the dermis, 
and 0.9 in the gut. The porosity was 0.163, 0.302, and 0.094 in the liver, 
dermis, and gut, respectively. 

Fluid flow through porous media has been studied for more than 
150 years. Similar to Ohm’s law of electricity, Fourier’s law of heat 
conduction, Fick’s law of molecular diffusion, and Newton’s law of 
viscosity, Darcy’s law can be written for fluid flow through porous 
media as follows [2]:

Q
A P

z
= − ∂
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κ
µ

 (3.13)

where Q = throughput of the fluid 
 κ = permeability of the medium to the fluid 
 A = the cross-sectional area across which flow occurs 
 µ = the viscosity of the fluid 
 P = pressure
 z = distance of the flow field 

Darcy observed that water percolates through sand at a flow 
rate proportional to the pressure gradient and inversely propor-
tional to the viscosity of the fluid. Although derived from empirical 
observations, attempts have been made to derive Darcy’s law after 
disregarding friction within the fluid. Darcy’s law is used to 
describe fluid flow in interstitium. Extending Eq. (3.13) in three 
dimensions:

v K P= − ∇.  (3.14)
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where the superficial velocity vector is given as a dot product of per-
meability and pressure gradient in all three Cartesian coordinates: x,
y, and z.

Darcy’s law implies the use of a continuum where the material is 
assumed to be homogeneous throughout. Three length scales are 
recognized:

 1. Average size of pores: rpore

 2. Length L over which the macroquantities such as fluid 
velocity and pressure are defined: L >> rpore

3. r a Lpore ≤ ≤  (the volume a3 is a basis volume)

Two phases can be recognized in the basis volume—that is, the 
void phase and the solid phase. The principle of conservation of mass 
and the principle of conservation of momentum can be applied to 
fluid flow in porous media. Equation (1.73) applied to fluid flow in a 
porous medium will yield:

∇ = −. sinv kθ θsource  (3.15)

Combining Eqs. (3.14) and (3.15):

∇ = −∇ ∇ = −. .( . ) sinv K P kθ θsource  (3.16)

When the source and sink are zero, the Laplace equation results:

∇ =2 0P  (3.17)

3.3 Starling’s Law for Fluid Transport
The combined effect of osmotic pressure and hydrostatic pressure 
can be seen in Starling’s law [3], which gives the relation between the 
flow of fluid across the capillary wall or a porous membrane and 
the pressure difference across the capillary. The volumetric fluid 
transfer rate, J, across the capillary membrane is given as:

J
L S

P P
p c

h h= − =∆ ∆ ∆π
_

 (3.18) 

where the effective pressure, ∆Ph, is the result of the hydrodynamic 
pressure; drop, ∆Ph; and the osmotic pressure difference, ∆π. Lp is the 
hydraulic conductance, and Sc is the effective peripheral surface area 
through which the fluid flows. The hydraulic conductance is often 
determined by experiment. It varies from 1 E–9 m2s/kg in capillaries 
in the kidneys’ glomeruli to 1 E–14 m2s/kg for endothelial cells found 
in the capillaries of the rabbit brain. One use of Eq. (3.7) is to better 
understand the flow of plasma across the capillary wall in human 
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anatomy. This can be used in the seawater reverse osmosis (SWRO) 
systems used to desalinate seawater to drinking potable water. The 
hydraulic conductance can also be derived from the properties of the 
system. Thus, should the membrane be viewed as a series of parallel 
cylindrical pores: 
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where Apore =  the cross-sectional area of the pore of radius 
r in the capillary wall

 Sc = the peripheral area
 tw = the wall thickness. 
 The ratio Ap /Sc = the porosity of the capillary wall, ε.

Oftentimes, the solvent moving across the membrane will carry 
with it the solute molecules. Some molecules will be filtered on 
account of their large size. Even when the membrane is semiper-
meable, some solute diffusion will take place. The solute separation 
on account of size can be accounted for by the introduction of the 
sieving coefficient, Se. The sieving coefficient is defined as the ratio of 
the solute concentration in the filtrate, Cp, to the solute concentration 
of the feed solution, Cf . Theoretical expressions based on the motion 
of a spherical solute moving through a cylindrical pore have been 
developed in order to estimate the value of the sieving coefficient [4]. 
The expression given by Deen can be written as a seventh-degree 
polynomial expression for the sieving coefficient in terms of the ratio 
of solute radius to the capillary pore radius as follows:

C

C
Sp

f
e= = − + +1 4 67 3 837 1 672 3 4. . .λ λ λ

   − + +2 015 0 015 0 1635 6 7. . .λ λ λ  (3.20)

where λ is the ratio of the solute radius, a, to the capillary pore radius, 
rpore. The sieving coefficient as a function of the ratio of solute radius 
to capillary pore radius is shown in Fig. 3.2. With a root mean square 
(RMS) error of 0.04 percent, the sixth-degree term in Eq. (3.20) can be 
omitted and Eq. (3.20) written as:

C

C
Sp

f
e= = − + + − +1 4 67 3 837 1 67 2 015 0 12 3 4 5. . . . .λ λ λ λ 663 7λ  (3.21)

Concentration polarization refers to the formation of a coat of retained 
solutes on the feed side of the membrane. 

At high filtration rates, the formation of a concentration polariza-
tion layer has been found, which will change the protein transport. 
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A sieving coefficient including the polarization effects can be defined 
as Scp and represents the ratio of the solute concentration in the filtrate 
(Cf) to that of the solute concentration in the bulk blood, Cbulk [5]: 

S
C

C
S

S
j

k
S

cp
f e

e
m

e

= =
− −





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+bulk ( )exp1
 (3.22)

where j is the flux of filtration and km is the film mass transfer coeffi-
cient. For laminar flow, the film mass transfer coefficient can be 
obtained from the following empirical correlation for Sherwood 
number Sh = ( / )k D Dm c

Sh Pe
D
L Pe

L D

m
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m
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= +
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
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


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

0 8.
 (3.23)

where Pem = the Peclet number (mass) ( / )VD Lc
 Dc = the diameter of the capillary 
 D = the binary diffusivity 
 L = the length of the capillary

Equation (3.11) was developed later for cases where velocity and con-
centration profiles are not yet fully developed. When the flow 
becomes fully developed, the Sherwood number reaches 3.66, its 
asymptotic value. For cylindrical channels, the hydraulic diameter 
DH can be used in place of the capillary diameter. Hydraulic diameter 
can be defined as four times the channel cross-sectional area divided 
by the wetted perimeter. 
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3.4 Solute Diffusion across the Membrane
The solute diffusion across the membrane can be treated with Fick’s 
laws of diffusion at steady state and the generalized Fick’s laws of 
diffusion discussed in Chap. 2 for transient applications. Different 
diffusivities, such as pore diffusion, diffusion in polymeric systems, 
and convective effect, can be added together. 

Diffusion of solutes through pores can be of different kinds [6]: (1) 
viscous flow, (2) molecular flow or Knudsen diffusion, (3) surface dif-
fusion, (4) capillary condensation diffusion, (5) molecular sieving dif-
fusion, and (6) diffusion solubility diffusion. When the pore radius is 
much larger compared with the size of the solute, diffusion happens in 
a unfettered manner, much like water flowing in a circular pipe. When 
the mean free path of the solute molecule is larger than the pore radius, 
Knudsen diffusion is said to occur. The classical laws of diffusion can 
no longer be applied to describe the phenomena. Rather, the kinetic 
theory of pressure and temperature is used to describe the mechanism. 
Solute chemistry, or interactions between the solute and the wall, can 
give rise to surface diffusion. During capillary condensation, there is 
increased vapor pressure of a liquid inside the pore. It exists when sur-
face tension is a non-negligible factor. The sieving mechanism is found 
during the transport of linear and branched alkanes using zeolites. The 
branched alkanes diffuse into the alkanes at one-fifteenth the rate of 
linear alkanes. The reason is that the linear alkanes are smaller in size 
and can fit in the pores rather well. Diffusion solubility mechanism 
involves dissolution of solute in the medium and permeation later. 

The size of the solute can be estimated from the Stokes-Einstein 
relation presented in Chap. 1 [Eq. (1.39)]. The diffusivity of the solute 
in the liquid needs to be known. If the diffusivity is not known, the 
solute size can first be estimated from the following equation, assum-
ing that the solute of molecular weight, Mw, is a sphere with a density 
of approximately 1 gm/cm3 and is the same as that of the solute in the 
solid phase:

a
M

A
w

N

=




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3
4

1 3

πρ

/

 (3.24)

Renkin and Curry [7,8] looked at diffusion coefficients for various 
solutes as a function of the molecular weight for dilute solutions. An 
empirical equation was developed using a least squares regression fit 
of the experimental observations at 37°C: 

D Mw= − −1 013 10 4 0 46. * ( ) .  (3.25)

Biological systems are heterogeneous in nature. The diffusion coeffi-
cients of the solute would depend on the medium through which it 
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diffuses. Several diffusion coefficients can be recognized. These are as 
follows:

 1. Solute diffusion coefficient in blood or tissue, Dbl

 2. Solute diffusion coefficient in plasma, Dpl

 3. Solute diffusion within pores of a capillary wall, Dpore

 4. Solute diffusion in the interstitial fluid, Dint

 8. Solute diffusion within cells, Dcell

 9. Solute diffusion in water, D

The Stokes-Einstein equation for diffusion coefficients of solutes 
in dilute solutions may be used to estimate Dpl, the diffusion coeffi-
cient of the solute in plasma. The pore diffusion coefficient can be 
estimated after considering the available surface area for diffusion. 
The pore is Apore. The path taken by the solute through the pores may 
be tortuous. Thus, the diffusion distance may be greater than the 
membrane thickness, tmem, in reality.

Steric exclusion and hindered diffusion can also be accounted for in 
the expressions for diffusion of the solute, depending on the problem 
at hand. Steric exclusion refers to the problem that occurs when only 
the volume in the pores and not that of the solute is available for dif-
fusion. The fraction of the pore volume available to the solute for 
diffusion is given by a partition coefficient, K:

K = 1
2

−






a
r

 (3.26)

Due to steric exclusion the equilibrium concentration of a solute is 
less within the pore mouth than in the bulk solution. Attractions 
between the solute and pores are ignored. 

The hydrodynamic drag experienced by the solute is referred to 
as the hindered diffusion. The Renkin equation [7,8] gives the ratio of 
the pore diffusivity to that of the bulk diffusivity:

D

D
pore = − + − −1 4 1 5 2 0 01 4 182 3 4. . . .λ λ λ λ

      + + − =1 14 1 9 0 955 6 7. . .λ λ λ ωK  (3.27)

where λ is the ratio of the solute radius to the pore mouth radius. The 
partition coefficient, K, captures the steric exclusion. The rest of the 
term accounts for the hydrodynamic drag faced by the diffusing sol-
ute through the pore. Gaydos and Brenner [9] give a different expres-
sion for pore diffusivity as a function of the ratio of solute radius to 
the pore radius:

D

D
pore = + −1

9
8

1 54λ λ λln( ) .  (3.28)
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The error in writing Eq. (3.28) is O(λ2). This is about 2 percent when 
the pore diffusion coefficient is about half of the intrinsic diffusion 
coefficient. Equations (3.27) and (3.28) are shown in Fig. 3.3.

Fick’s law of diffusion for a solute in pores may be written as:

J DA K
C
xs = − ∂

∂pore ω
τ
1

 (3.29)

where Kω = RHS of Eq. (3.27) and τ is the tortuosity required to take 
into account the actual path of the solute diffusion through the 
membrane. 

The diffusion of solute through blood and cells can be represented 
by an effective diffusion coefficient. The transport across suspensions 
may be applicable here. Maxwell [10] had developed an expression 
for diffusion in suspensions:

D
D

D D D D
D D

bl

int

int int

int

( )
=

+ − −
+

2 2
2

cell cell

ce

φ

lll cell+ −φ( )intD D
 (3.30)

Furthermore, Dpl*Dbl = Dint and φ is the volume fraction of the cells in 
blood. Maxwell had developed his expression for the suspension of 
spheres. Cells are not spherical. So sphericity for cells may be used to 
correct for the actual shape of cells. Using Monte Carlo simulations, 
some investigators [11] have developed a empirical equation for the 
diffusion coefficient in blood for a wide range of volume fractions, 
which can be seen to be:

D
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int int

( . . .= − −

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
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− +1 1 1 73 0 82 02cell φ φ 009 3φ )  (3.31)
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The interstitial fluid is a gel of macromolecules. Solute diffusion 
happens around the random network of macromolecular chains. 
Reduction in diffusivity due to macromolecules has been accounted 
for by Brinkman, and is given as a one-parameter equation:

D
D

a
a

int =
+ +

1

1
3

2 2

κ κ
 (3.32)

where κ is the one parameter that is a function of the macromolecular 
structure of the interstitial fluid and can be obtained by fitting exper-
imental data for solute diffusion in gel.

The effective diffusivities of different sizes of solutes through 
tumor and normal tissue were studied by Jain [12]. They found a 
greater reduction in solute diffusivity for normal tissue compared 
with tumor tissue. The interstitial volume in normal tissue was smaller 
compared with the tumor tissue. They used a fiber-matrix model 
based on Curry [13], and the diffusion coefficients were given by:
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
exp 1 νφ  (3.33)

The interstitial space is viewed as a matrix of fibers with radius af , φf

is the fiber concentration, and ν is the specific volume of the fibers.
The solute diffusion can also be described using a solute perme-

ability similar to the solvent permeability. The solute flux can be 
written as:

Js = PmS(Csf − Csp) (3.34)

where Pm is the permeability of the solute and S is the membrane 
surface area. The two concentrations, Csf and Csp, are that of the solute 
in the feed side of the membrane and the permeate side of the mem-
brane, respectively. Solute diffuses from a region of higher concentra-
tion to a region of lower concentration. The permeability is given by 
the product of effective diffusivity of the solute in the membrane 
divided by the thickness of the membrane. Thus:

P
D

t

A

S
K

m =
mem

pore ω
τ

 (3.35)

Renkin and Curry [8] performed a variety of experiments for solutes 
with different sizes. They summarized their findings on permeability 
coefficients in the form of empirical correlations as follows:

P S am = −0 0184 1 223. . a < 1 nm (3.36)

P S am = −0 0287 2 92. . a > 1 nm (3.37)
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The combined effect of hydraulic pressure and osmotic pressure 
and the solute flux can be written from the application of irreversible 
thermodynamics (Kedem and Katchalsky [14]). The cross-coefficients 
that are from the secondary effects are equal according to the Onsager 
relations. The relative flow between the solvent and solute is capable 
of providing a separation of the solute and solvent. The sieving mech-
anism is called ultrafiltration, and when the solute permeability is low, 
it is referred to as reverse osmosis:

J = SLp(∆P − σRT∆C) (3.38)

Js = SLp
− +









σ∆ ∆P

L
L

RT Cs

p
 (3.39)

where J is the flux of the solvent and Js is the flux of the solute.
The parameter σ = –Lsp / Lp is called the Staverman reflection coeffi-

cient [15]. If the membrane is permeable to solvent and not to the 
solute, σ = 1. When σ = 0, the membrane is equally permeable to both 
solvent and solute. Equation (3.16) gives the flux of solvent across the 
semipermeable membrane, and Eq. (3.17) gives the flux of solute.

The total rate of solute transfer through the pores of the capillary 
wall can be obtained by multiplying the solute concentration by 
the combined flow rate of the solution due to both applied pressure 
difference and the concentration difference. Thus:

N C L S P
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L

RT Cs s p
s
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= − + −
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







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




∆ ∆( )1 σ σ  (3.40)

Substituting Eq. (3.16) in Eq. (3.18):

N C J C SL
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Ls s p

s

p

= − + −








( )1 2σ σ π∆  (3.41)

When solute transfers by only diffusion—that is, no flow of solvent:

N C L SRT C
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P S CJ s p
s

p
m J= == −









 =0

2
0∆ ∆σ  (3.42)

Equation (3.19) can be modified using Eq. (3.20) as shown:

N C J P S Cs s m= − +( )1 σ ∆  (3.43)

Oftentimes, the problem is in obtaining the three parameters: Lp, the 
hydraulic conductance of the solvent; Pm, the permeability of the sol-
ute; and σ, the Staverman reflection coefficient. Anderson and Quinn 
[9] showed that the sieving coefficient is the same as 1 − σ using a 
hydrodynamic equation accounting for hindered particle motion in 
small pores. 
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Thus, from Eq. (3.9) and the relation between the sieving coeffi-
cient and the Staverman reflection coefficient, a polynomial expres-
sion for the Staverman reflection coefficient can be written as follows:

σ λ λ λ λ λ= − − + − −2 2 3 44 67 3 837 1 67 2 015 0 015 0 1( . . . . . . 663 5λ ) (3.44)

Equation (3.32) is plotted and shown in Fig. 3.4.

3.5 Derivation of Starling’s Law
Starling’s law, which describes the permeation of solvent across the 
membrane, can be derived from hydrostatic pressure and chemical 
potential considerations. The solvent that filters out of the membrane 
is called the permeate, and the solution that is being filtered is called 
the feed. The water flux or solvent flux can be written as:

′ = =J JC
D C

tsolvp
solv solv

mem

∆
 (3.45)

The equilibrium chemical and pressure potential in the permeate and 
feed sides can be written as:

µ µf f f f p p p pV P RTC V P RTC+ + = + +  (3.46)

Equation (3.46) can be rearranged and a partition coefficient, K,
introduced:

C C K V
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RTp f=




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



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exp ∆ ∆
 (3.47)

where K is the partition coefficient at some average reference pres-
sure, <P>.

K
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 (3.48)
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Equations (3.47) and (3.48) can be expanded in a Taylor series and:

C C K
V P
RTp f= +





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1
∆ ∆

 (3.49)

and ∆
∆ ∆

C
PKC V

RT
f=  (3.50)

Substituting Eq. (3.50) in Eq. (3.45):

′ = =J
PDK V
RTt

L Pp
∆ ∆ ∆

mem

 (3.51)

where Lp is the hydraulic permeability of membrane to solvent. The 
net solvent flux, including the osmotic pressure, can be written as:

J’ = Lp(∆P − σ∆π) (3.52)

Patlak, Goldstein, and Hoffman [10] account for the diffusion term in 
Eq. (3.21) as follows:

N C J D S
C
zs s e

s= − −
∂
∂

( )1 σ  (3.53)

Assuming constant solute transfer, Eq. (3.22) can be “solved for” as 
follows:
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∂
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where Peclet number, Pe, is defi ned as 
J t

D Se

( )1 −



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σ mem  (3.56)

The physical significance of the Peclet number is that it gives a ratio 
of the solute transfer by convection divided by the solute transfer by 
molecular diffusion. When the Peclet number is small and close to 
zero, the solute transfer is dominated by a molecular diffusion mech-
anism. When the Peclet number is large and close to infinity, the sol-
ute transfer is dominated by bulk convection.

Integrating Eq. (3.24):

C c c
zPe
ts = +





2 3 exp

mem

 (3.57)

The integration constants can be solved for by imposing the follow-
ing boundary conditions:

z = 0, Cs = Cf (3.58)

z = tmem, Cs = Cp (3.59)
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The constants can be seen to be c
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 (3.60)

This analysis is applicable at steady state for dilute systems where the 
constant solute transfer assumption yields a rich dividend.

3.6 Starling’s Law Is Not Universal
The flow of fluid across membranes is governed by Starling’s law. 
When membranes are comprised of uniform macrostructures, the 
flux of fluid is predicted well using Starling’s law. The flow of fluid 
depends on the pressure differences across the membrane and the 
hydraulic conductance. Microvessel walls are nonuniform. This can 
be seen in the glycocalyx, the endothelium, and the basement mem-
brane. Endothelial cells, interendothelial cleft, and junction protein 
strands are not uniform. 

Experimental observations have been made that are inconsistent 
with the predictions of Starling’s law.

Blood in a capillary, for example, with a hydrostatic pressure 
difference of about 15 mmHg in the arterial end and an osmotic 
pressure difference of 26 mmHg would be expected to filter water 
into the interstitial space and out of the artery. The reflection coeffi-
cient may be taken as 1. With the osmotic pressure difference remain-
ing the same, the net pressure drop would be 17 – 1(27) ~ –10 mmHg 
at the veins. The driving force has changed in direction (Fig. 3.5) 
and the water can be expected to filter from interstitial space into 
the veins. 

z
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Artery21 mmHg

∆Γ

–7 mmHg

FIGURE 3.5 Filtration pressure drop in arteries and veins.
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Experimental observations of Michel and Phillips [16] provide a 
counterexample to the filtration/reabsorption prediction. Starling’s 
law has been modified by Hu and Weinbaum [10] as:

J L S Pp= −( )∆ ∆σ π  (3.61)

The model consists of four different regions, such as glycocalyx, a 
junction cleft between endothelial cells with a junction protein strand 
in the middle, a semicircular region for albumin mixing at the exit of 
the cleft, and the extravascular space between the semicircular region 
and the mid-plane of the microvessel. Three different cases in the 
model can be identified:

Case (a): ∆ ∆P > π, blood pressure is 35 cm water, and πB is 27.2 cm 
water. Interstitial blood and osmotic pressures are 0. Convective 
effects are much greater than diffusive effects at break junctions. 
There is no accumulation. Osmotic pressure drop across the glycoca-
lyx layer is the primary causative factor.

Case (b): Arterial and interstitial blood pressures and osmotic 
arterial pressure are the same as in Case (a). Osmotic interstitial pres-
sure increases to 27.2 cm water. The osmotic pressure difference is 0. 
The solvent flux increases compared with Case (a). Experimental 
observations come close to theoretical predictions.

Case (c): Interstitial blood pressure, osmotic arterial, and intersti-
tial pressures are the same as in Cases (a) and (b). Arterial blood pres-
sure decreases from 35 cm water to 10 cm water. (∆ ∆P − σ π ) is lower 
than in Cases (a) and (b). No fluid reabsorption. Some accumulation 
due to back-diffusion.

3.7  Molecular Probes to Measure Permeability 
of Transcapillary Pathways (Curry [13])

Single capillary methods were developed at Oxford Laboratory to 
measure the permeability of solutes across capillary walls. Dyes were 
developed by the time of World War I. They explored the possibility 
of using chemically different dyes, large and small, to study the per-
meability of the capillary wall in greater detail. A micromanipulator 
was used to cannulate and perfuse the capillaries in frog mesentery 
with various colored dyes dissolved in frog Ringer’s solution. By 
measuring the time it takes the dye to appear outside the vessels as 
an index of the permeability of the capillary, the chemical and physi-
cal properties of the pathways for solute exchange across the walls of 
segments of frog microvessels were studied. It was found necessary 
to measure the capillary pressure. It was realized that the rate at 
which solutes traverse the capillary wall depends on the permeabil-
ity of the membrane wall as well as the driving force for solute 
exchange. The Kedem-Katchalsky equations, with the use of the 
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Staverman reflection coefficient, can be used to quantitate the 
exchange of solutes across the capillary membrane. The driving 
forces are the concentration difference of the solute, ∆C, and the fric-
tional drag force exerted by solvent on diffusing solutes.

The flux of a tracer through a single porous pathway is written 
using Eq. (3.31). Two mechanisms can be recognized—namely the 
solute molecular Fickian diffusion and the solvent drag. Whether 
the process is diffusion-limited or solvent-drag–limited depends on 
the solute diffusion velocity within the pores relative to the velocity 
of water convective flow. This can be quantitated using the Peclet 
number mass as defined by Eq. (3.36). When Peclet number is greater 
than 3, solvent drag dominates the exchange. The magnitude of sol-
ute exchange is determined by the permeability coefficient, Pm; the 
hydraulic conductance, Lp; and the Staverman reflection coefficient. 
The effective osmotic pressure is also captured in the reflection coef-
ficient representation. In the experiments, it is important to ensure 
that the contribution from other solutes such as plasma proteins is 
negligible.

Figure 3.6 shows a schematic of a capillary cannulated with two 
micropipettes at a Y branch. This is used to measure the permeability 
of a fluorescent solute. Either a control washout solution is used 
to perfuse the capillary from the pipette on the left or a perfusate 
containing α-lactalbumin labeled with fluorescent tetramethylrhod-
amine isothiocyanate from the pipette on the right is used. A rapid 

∆I
mv

dI/dt = 0

FIGURE 3.6 Cannulated glass micropipettes at a Y branch for measurement 
of permeability coeffi cient.
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change in the solution-perfusing capillary lumen can be detected. 
A photomultiplier tube (PMT) is used as a detector. The output of 
PMT is plotted as a function of time. Frog Ringer’s-albumin solution 
is used to perfuse the capillary without any fluorescent dye. This 
establishes the baseline representing no solute transfer. Rapid fill of 
capillary lumen by the same perfusate is labeled with the fluorescent 
probe. This is accomplished by a simple switch of perfusion pres-
sures to preset values such that there is no mixing of the perfusates in 
the capillary lumen. The step-change in fluorescent intensity at fill 
point is proportional to the number of fluorescently labeled mole-
cules in the capillary lumen. The initial solute transport across the 
capillary wall was measured from the initial rate of increase in fluo-
rescence intensity (dI/dt)0. When solute was washed out of the capil-
lary lumen, extra capillary solute began to diffuse back into capillary 
lumen. A 10-sec time interval is provided. 

Perfusion of vessel segments with Ringer’s perfusate containing 
tracers with molecular weights greater than 500 gm/mole in the 
absence of plasma proteins increases the permeability of the micro-
vessel wall. It was realized that not measuring the capillary pressure 
compromised the interpretation of measurements of the time it took 
colored tracers to appear in terms of the properties of transcapillary 
pores. This problem was solved by developing novel methods to 
measure capillary pressure and transcapillary filtration rate. 

Figure 3.6 illustrates a method to measure the permeability of a 
segment of a microvessel to a fluorescently labeled solute under con-
ditions where both the solute concentration gradient and the hydro-
static and osmotic pressures determining water flow across the wall 
are measured directly. The true diffusive permeability coefficient is 
measured only when the net filtration pressure in all pathways is 
0—that is, when there is no coupling of solute flux to transcapillary 
water flows. When these conditions are not adhered to an apparent 
permeability coefficient is measured. This is larger than the true diffu-
sive permeability. Transcapillary solute flux is measured at a series of 
pressures, and the true permeability is identified by extrapolation to 
the condition of zero volume flow. The membrane coefficients that 
capture solvent drag, Lp(1 − σ), are identified from the increase in 
transcapillary flux as pressure increases. This method has been suc-
cessfully applied by several investigators to frog microvessels and in 
mammalian vessels.

Example 3.2 Effective pore size of gel. Transplantation of insulin-secreting 
cells in a pancreas using nanotechnology can be a way to cure type 1 diabetes. 
Nanoporous biocapsules are bulk and surface micromachined to make 
available uniform and controlled pore sizes as small as 7 nm, tailored sur-
face chemistries, and precise microarchitectures. This provides immunoi-
solating microenvironments for cells. Such a design may overcome some 
prior limitations associated with conventional encapsulation and delivery 
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technologies, including chemical instabilities, material degradation, and 
fracture and broad membrane pore sizes. 
 For immunoprotection of pancreatic cells, the immunoprotection membrane 
ought to allow permeability of glucose, insulin, oxygen, and other metabolic 
products to ensure islet functionality and therapeutic effectiveness. The nanop-
ore microfabricated membranes were tested (Desai [14]) for diffusion of biomol-
ecules such as glucose with a molecular weight of 180 kDa, human albumin with 
a molecular weight of 67 kDa, human IgG with a molecular weight of 150 kDa, 
vitamin B12 with a molecular weight of 1200 kDa, myoglobin with a molecular 
weight of 17,000 kDa, and bovine serum albumin (BSA) with a molecular weight 
of 69,000 kDa. 
 Tests were conducted at 37°C over 4 hours in a diffusion chamber with two 
compartments, A and B, with fixed volumes of 2 mL separated by the desired 
membrane and sealed with O rings and screwed together. The measured dif-
fusion coefficients are seen to be in million cm2/s for glucose as 4.5, human 
albumin and human IgG as 0.13, vitamin B12 as 1.7, myoglobin as 0.4, and BSA 
as 0.1. What is the effective pore size of the membrane? Use a suitable equation 
described in the text.

Pore Radius 252 nm

kDa cm^2/s Nm cm^2/s Min.

# Solute MW Dbl Solute 
Radius

a/r K w Kw D Dbl/D Error

0.0000 1.00

1 Human 
albumin

67 9.00E–06 30.4 0.1205 0.77 0.75 0.58 1.46E–05 0.615 0.001

2 Glucose 180 4.50E–06 42.2 0.1674 0.69 0.66 0.46 9.29E–06 0.484 0.001

3 Human IgG 150 1.30E–07 39.7 0.1575 0.71 0.68 0.48 1.01E–05 0.013 0.219

4 Vitamin B12 1,200 1.70E–06 79.3 0.3149 0.47 0.40 0.19 3.88E–06 0.438 0.062

5 Myoglobin 17,000 4.00E-07 191.8 0.7612 0.06 0.08 0.00 1.15E-06 0.349 0.118

6 BSA 69,000 1.00E–07 305.8 1.2137 0.05 –0.31 –0.01 6.02E–07 0.166 0.033

0.433

Equation (3.12) was used to calculate the solute radius given the molecular 
weight, Eq. (3.13) was used to estimate the diffusion coefficient of the solute 
in water, and Eq. (3.15) was used to calculate the diffusivity ratio of solute in 
blood and in water. The density of solute was taken to be 1 gm/cm3. The Renkin 
equation prediction is shown as a solid curve. The pore radius was iterated until 
the least squared error was minimized using a Microsoft Excel spreadsheet. At 
252 nm, the error was minimized. The measured diffusivity ratios and predicted 
ratios are shown in Fig. 3.7.

Example 3.3 Effective diffusivity through spherical suspensions. Islets of 
Langerhans are spheroidal aggregates of cells that are located in the pancreas 
and secrete hormones that are involved in glucose metabolism [17]. Type 1 
diabetes can be cured by transplanting isolated islets. Islets removed from 
the pancreas lose their internal vascularization and are dependent on the 
diffusion of oxygen from the external environment and through the oxygen-
consuming islet tissue to satisfy the metabolic requirements of the cells. Islets 
can be viewed as a suspension of tissue spheres. The diffusivity of oxygen was 



O s m o t i c  P r e s s u r e ,  S o l v e n t  P e r m e a b i l i t y ,  a n d  S o l u t e  T r a n s p o r t  105

measured. The islets were isolated from male rats using a modified digestion 
and purification technique under a dissecting microscope and cultured for a 
day in nonattacking polystyrene Petri dishes containing 5.6 mm of glucose, 
50 U/mL of penicillin, 50 µg/mL streptomycin, and 10 percent newborn calf 
serum. The material was placed in an incubator at a temperature of oxygen 
uptake measurements. A known number of islets were placed in a tube that 
contained 45 mL of culture medium and 5 mL of air. The tubes were intermit-
tently rotated to prevent settling and aggregation of the islets and to enhance 
oxygen transfer. The oxygen uptake chamber was equipped for measuring 
the oxygen-dependent lifetime of Pd-coproporphyrin phosphorescence to 
provide rapid and accurate measurements of oxygen concentration down to 
values as low as 0.05 µM. The chamber was a glass cuvette that contained a 
small Teflon-coated magnetic stirring bar rotated at a speed of 1,200 rpm. A 
sample of 1,500 islets was loaded in the cuvette, which was filled with phos-
phate-buffered saline (pH 7.4) containing 0.35 gm/lit HEPES buffer, 0.5 gm/lit 
bovine serum albumin, and 300 mg/L glucose supplemented with 0.01 µM
palladium coproporphyrin and 1–5 U/mL catalase. The cuvette was capped 
with a ground-glass stopper to eliminate the gas phase. The measured effective 
diffusivity of oxygen through the islets was found to be 1.31 E − 5 cm2/s. Take 
the diffusivity of oxygen in interstitial fluid to be 2.1 E − 5 cm2/s. Should 
the diffusivity in the cells be 1.72 E − 5 cm2/s, calculate the volume fraction 
of the islets in the suspension.

From Eq. (3.18):

D
D

D
D

bl

int int

( . . .= − −






− +1 1 1 73 0 82 02cell φ φ 009 3φ )  (3.62)

Dbl = 1.31 E − 5 cm2/s

Dint = 2.1 E − 5 cm2/s

Dcell = 1.72 E − 5 cm2/s

0 762 1 73 0 82 0 092 3. . . .= − +φ φ φ

This equation required a numerical solution. Using a Microsoft Excel spread-
sheet, the volume fraction of the islets was found to be 0.6.
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FIGURE 3.7 Measured diffusivity ratio and prediction from Renkin equation 
for pore diffusion.



106 C h a p t e r  T h r e e

Example 3.4 Plasmapheresis membranes made of polycarbonate. Plasmapheresis is a 
blood separation procedure used to isolate blood cells from plasma. In hemo-
filtration, the “cut-off” for the passage of molecules through the membrane 
is 103 − 5*104 Dalton molecular weight and the cut-off in molecular weight of 
species in plasmapheresis is 3*106 Dalton. A German manufacturer developed 
a polycarbonate membrane with an average pore diameter of 0.4 µm and a 
porosity of 0.65. The membrane thickness was about 100 µm. A polycarbonate 
polymer solution was cast onto a smooth surface and contacted with a gel 
medium, followed by precipitation of membrane and gelled layer to form the 
membrane. Calculate the hydraulic conductance of capillary flow.
From Eq. 3.8:

Lp = −
− −

= −0 65 0 2 6
8 100 6 1 3

3 25 6
2. ( . )

* *
.

E
E E

E m s/kg2  (3.63)

The viscosity of plasma fluid was assumed to be that of water at room 
temperature.

Example 3.5 Saline water injection. What ought to be the pump pressure to inject 
3.6 mL/hr of saline water at a 10 wt % NaCl into the human bloodstream across 
a membrane of thickness 0.1 microns? The membrane has a porous structure with 
a pore radius of 500 nm.
 The pump pressure head has to overcome the osmotic pressure and filter 
through the pores in accordance with Starling’s law.
Hydraulic conductance:

L S
A r

t
E
Ep

p= = −
−

=
2 4

8
3 14 500 9
8 0 001 1 9

2
µ mem

. * ( )
* . *

..45 16E − m s/kg4  (3.64)

From Starling’s law:

∆P
J

L S
E
Ep

_

.
.= = −

−
=1 9

2 45 16
40 2atm

Now, the pressure head at the pump is given by:

∆ ∆P P RT x
Vw

w

= − = + =
_

ln( ) . .
1

40 2 46 86 2atm (3.65)

Example 3.6 Blood-purifying hematocatharsis unit. The human urinary system is 
made up of kidneys, the bladder, two ureters, and a single urethra. The kidneys 
are a pair of organs resembling kidney beans measuring around four to five 
inches in length and two to three inches in width. They are situated against the 
rear wall of the abdomen in the middle of the back, with on located on either 
side of the spine, beneath the liver on the right and the spleen on the left. Healthy 
kidneys in the average adult person process about 125 mL/min, or 180 liters of 
blood per day, and filter out about 2 liters of waste product and extra water in 
the urine. The kidneys remove excess minerals and wastes, and regulate the 
composition of such inorganic ions as sodium, phosphorous, and chloride in 
the blood plasma at a nearly constant level. Potassium is controlled by the 
kidneys for proper functioning of the nerves and muscles, particularly those 
of the heart. 
 Blood urea nitrogen (BUN), a waste product produced in the liver as the 
end product of protein metabolism, is removed from the blood by the kidneys 
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in the Bowman’s capsule along with creatinine, a waste product of creatinine 
phosphate—an energy-storing molecule produced largely as a result of muscle 
breakdown. Most kidney diseases, such as diabetes and high blood pressure, 
are caused by an attack on nephrons, causing them to lose their filtering capac-
ity. The damaged nephrons cannot filter out the poison as they should. If the 
problem worsens and renal function drops below 10 to 15 percent that person 
has end-stage renal disease. When a person’s kidneys fail, harmful wastes build 
up in the body, their blood pressure elevates, and the blood retains fluid. The 
person will soon die unless his or her life is temporarily prolonged by a kidney 
transplant [18]. In order to prevent the immune system from attacking the for-
eign kidney, the patient will take immunosuppressant medications for the rest 
of his or her life.
 When the kidneys are functioning properly and the concentration of an ion 
in the blood exceeds its kidney threshold value, the excess ions and proteins in 
the filtrate are not reabsorbed but are released in the urine, thus maintaining 
near-constant levels. Maintaining constant levels is achieved by the mechanism 
of reverse osmosis, osmosis, and ion-exchange filtration.
 Dialysis machines are the most widely used temporary lifesaving invention 
for patients with end-stage renal disease (Fig. 3.8). Hemodialysis machines are 
described as large, stationary, hydromechanical devices. In order to function, 
they require the following accessories:

 1. Arterial line
 2. Blood pump
 3. Heparin infusion pump  
 4. Dialyzer filter
 5. Venous line    
 6. Blood flow and pressure monitors
 7.  Air/foam detectors   
 8. Motors
 9. Regulators and piping to carry 500–800 mL/min of dialysis solution
10.  Aqueous solutions of Ca, Mg, Na, K, and other minerals from large mixing-

holding vats to the patient’s dialyzer and from there to the drain

Dialysis solution

Blood cells

Blood compartment
Waste products

Semipermeable
membrane

FIGURE 3.8 Blood purifying hemocatharsis unit.
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With hemodialysis, the patient must be dialyzed three times a week. Each 
treatment lasts approximately three to four hours. Although the dialyzers are 
removing poisons, there are side effects, caused primarily by the dialyzers 
themselves.
 Dialyzer filters are made of cellulose acetate, polysulfone, or similar materials 
and are sterilized with a solution of ethylene oxide, bleach, or formaldehyde. 
Dialyzer filters have just one membrane pore size, with a cut-off point larger 
than creatinine at 113.1 amu. Removed with creatinine is urea at 60.1 amu, water, 
and essential electrolytes, such as Na, K, Ca, Mg; however, these are not replaced 
during dialysis. Phosphorous molecules at 123.9 amu are not removed by dialy-
sis, and large amounts are deadly to the patient. Find the pore size of the filter.

Creatine

MW 113 gm/mole

a 3.45671E–08 34.56711

density 1.09 gm/cc

urea 60

density 1.3 gm/cc

a 2.63953E–08 26.39531

Se 0.763596

 Molecular Formula for Creatinine: C H N O4 7 3
 Creatinine comes from the Greek word kreas, which means flesh. It is a break-
down product of creatinine phosphate in the muscle. It is produced at a constant 
rate by the human anatomy. Creatinine is actively filtered out by the kidneys. 
Some of it is secreted by the kidneys into the urine. Creatine levels in blood and 
urine may be used to calculate the all-important glomerular filtration rate. It is 
clinically important in the evaluation of renal function. 
 From Fig. 3.9, the ratio of solute radius to pore radius can be read as 0.25. 
Therefore, the pore radius is 105.8 nm. Equation (3.9) has been plotted in 
Fig. 3.4.

0
0

0.1
0.2
0.3
0.4

Si
ev

in
g 

co
ef

fi
ci

en
ts

0.5
0.6
0.7
0.8
0.9

1

0.20.1 0.3 0.4 0.5
Ratio of solute radius to pore radius

0.6 0.7 0.8 0.9 1

FIGURE 3.9 Sieving coeffi cient versus ratio of solute radius to pore radius.
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 Equation (3.9) is also shown in table form after computing the values using a 
Microsoft Excel spreadsheet. 

k Se

0 1

0.05 0.988814

0.1 0.957284

0.15 0.908568

0.2 0.845926

0.25 0.772647

0.3 0.691976

0.35 0.607046

0.4 0.520815

0.45 0.436003

0.5 0.355039

0.55 0.280006

0.6 0.2126

0.65 0.15409

0.7 0.105285

0.75 0.066516

0.8 0.037617

0.85 0.017918

0.9 0.006257

0.95 0.000985

1 0

Example 3.7 Glucose transport using the Kedem-Katchalsky equation. The trans-
port of glucose across the capillary wall is 3.0*10−5 µmole/hr. Glucose is a 
water-soluble and lipid-insoluble solute. The mean pressure of blood in the 
capillary is 17.3 mmHg; the interstitial pressure of blood is –3 mmHg. The col-
loid osmotic pressure inside the capillary and the interstitial fluid are 28 and 
8 mmHg, respectively. The capillary length is 1 mm, and the inside diameter is 
10 µm. It can be assumed that all the glucose transported to the extracapillary 
space is consumed rapidly by the cells. All plasma protein is retained by the 
capillary wall. The average concentration of glucose in plasma is 7 µmole/mL.
The filtration rate is 5.75 E − 6 µL/hr. Calculate the Staverman reflection coef-
ficient and the pore radius through which the solute transfers.
 Glucose comes from the Greek words glukus, meaning sweet, and ose, meaning 
sugar. An important carbohydrate in human physiology, it is a monosaccharide 
and is a source of energy and metabolic intermediate compound. 
 Molecular formula for glucose: C H O6 12 6
 Molecular weight: 180.16 gm/mole
 Density: 1.54 gm/cc
 From Eq. (3.12), the molecular radius of glucose can be calculated as = 36 nm.
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 From Eq. (3.24), the permeability coefficient can be calculated as:

P Sm = =− −0 0287 36 8 21 102 92 7. ( ) . *. nm /s3  (3.65)

P Em = = −
−8 21 10

2 10 10
1 31 8

7

6 4

. *
* * *

.
π

m/s  (3.66)

 J = 5.75 E–6 µL/hr
 N = 3.0 E–5 µmole/hr
 From Eq. (3.31), the Staverman reflection coefficient can be calculated 
as 0.255.
 From Fig. 3.2, λ = 0.26.
 Hence, the pore radius = 0.26*36 = 9.36 nm.

Example 3.8 Thermofiltration of plasma. Diseases usually have undesirable ele-
vated levels of plasma solutes, such as toxins, excessive antibodies, and other 
metabolites. Plasma filtration has been used to separate undesirable solutes from 
blood plasma. Successful treatment of such diseases involves removal of unde-
sirable plasma solutes from the blood plasma using membrane filtration. 
 Cholesterol has been determined to be an important component of arte-
rial plaque formation in atherosclerosis as well as in hypercholesterolemia. 
Cholesterol circulates in the blood and is linked to large protein molecules. One 
form of cholesterol-carrying protein, called low-density lipoprotein (LDL), is 
known to promote atherosclerosis. About two-thirds or more of the total blood 
cholesterol is transported in LDL. Another form, called high-density lipoprotein 
(HDL), is known to be protective against the disease process. Therefore, the selec-
tive removal of LDL and maintenance of HDL is important in the treatment of 
atherosclerosis and the therapeutic control of hypercholesterolemia.
 The observed sieving coefficients for different solutes are given in the follow-
ing table. What is the pore diameter used in filtration?

Solute Sieving Coefficient at 25°C

Albumin 0.71

Fibrinogen 0.05

LDL cholesterol 0.03

HDL cholesterol 0.71

Based on Fig. 3.6, the corresponding λ is read from the charts for albumin, fibrin-
ogen, LDL cholesterol, and HDL cholesterol as 0.3, 0.8, 0.88, and 0.3, respectively. 
Given that the molecular weight of cholesterol is 386 (C27H46O), the solute radius 
can be estimated from Eq. (3.12) as (3*386/4/Pi/6.023E23/1.5)^.333 = 0.47 nm. 
 The membrane pore radius is then 0.47*0.3 = 2.4 A.
 Equation (3.12) is not reliable in calculating the solute radius given the molecu-
lar weight, as these solutes are macromolecules. However, Eq. (3.12) is valid 
should the solute be approximated to a spherical solid.

3.8 Body Fluids
The human anatomy contains three types of fluids: extracellular flu-
ids, intracellular fluids, and transcellular fluids. Sixty percent of 
human anatomy is comprised of fluids. Thus, a 100-kg male would 
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contain 60 liters of fluid volume at room temperature. Interstitial 
fluid circulates within the spaces between cells. About 36 wt % of the 
body mass consists of extracellular fluids, about 21 wt % of body 
mass is comprised of interstitial fluid, and 4 wt % of body mass is 
made up of plasma. Figure 3.10 shows the main organs where the 
fluids flow in to and out of.

The bulk of the body mass is water. The rest consists of fat, pro-
teins, and carbohydrates. Sodium, potassium, calcium, magnesium, 
chlorine, phosphorous, sulfur, iron, and iodine are also present in 
trace amounts. Food, air, and water enter the human anatomy every 
day, and air, sweat, urine, and feces are excreted every day. Metabolic 
activities consume part of the energy in the food ingested, and water 
is produced along with the metabolic reactions. Some water is lost 
through the human dermis. 

Blood volume is about one-eighth the total body fluid volume. 
Sixty percent of the blood volume is comprised of plasma, and the 
rest is the cells in the blood, such as red blood cells (RBC), white 
blood cells (WBC), and blood platelets. The cells are filled with intra-
cellular fluid. Hematocrit denotes the blood volume occupied by the 
red blood cells. This can be measured using a centrifuge. Corrections 
can be allowed for trapped plasma in the cells. After correcting for the 
trapped quantities, it is called true hematocrit. Transcellular fluids are 
cerebrospinal, intraocular, pleural, pericardial, synovial, sweat, and 
digestive fluids. Tracer techniques have been developed to measure 
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the quantities and composition of these fluids. For example, radioac-
tive water is used to measure total body mass consisting of water and 
radioactive sodium is used to measure extracellular fluid volume. 
Interstitial fluid volume can be obtained by carefully accounting for 
the different fluids. 

The smallest element of the cardiovascular system is the capillar-
ies. Interstitial fluid is formed here from the plasma as filtrate. Vital 
substances are exchanged in the capillaries. The capillary wall con-
sists of a porous, semipermeable membrane. The typical dimensions 
of a capillary are 10 µm in diameter, 1 mm in length, and the repre-
sentative residence times in the capillary are one to two seconds. 
There are three types of capillaries: continuous, fenestrated, and dis-
continuous. Oftentimes, the solute diffusion through the capillary 
wall can become an important consideration. The muscles, skin, and 
lungs consist of continuous capillaries. Continuous capillaries can 
also be seen in fat, nervous system, and connective tissues. A cross-
sectional view [7] of a capillary reveals the basement membrane, 
pinocytotic channels, endothelial cells, pinocytotic vesicles, and an 
intercellular cleft. The paths of solute movements are several. The 
pinocytotic channel occupies 1/100th of the total capillary surface 
area, and typical dimensions are 6 to 7 nm. 

Transport of solutes across the wall can be by several different 
mechanisms. One such mechanism is the intercellular cleft and 
pinocytotic vesicles and channels. The cleft is a slit-pore of about 6 to 
7 nm. The plasma proteins’ molecular size is greater than the capil-
lary slit-pore diameter. Thus, their entry into the capillary is blocked. 
Smaller molecules, such as ions, glucose, and metabolic waste prod-
ucts, will readily pass through the capillary wall.

Oxygen and carbon dioxide are lipid-soluble. They can diffuse 
directly through the endothelial cells that line the cell wall. No pore 
diffusion is involved. The rates of diffusion are observed to be higher 
compared with the water-soluble substances. There are two other 
mechanisms by which solutes can be transported across the capillary 
walls other than through the slit-pores. These mechanisms are called 
pinocytosis and receptor-mediated transcytosis. The pinocytosis mecha-
nism is similar to how the microorganism amoeba ingests substances. 
Stimulated by the presence of the solute, the plasma membrane 
engulfs the solute, grows in size, and upon migration to the posterior 
of the membrane, is released. During receptor-mediated transcytosis, 
the solute/ligand first binds with receptors that complement them, 
then concentrates the solute regardless of its specificity, followed 
by complexation of the ligand receptor, and then it is endocytosed. 
Release of solutes can lead to 80 percent transport of insulin by this 
process. 

Cell membranes are comprised of a lipid bilayer with a head-to-
tail configuration. The head of the lipid layer is hydrophilic and the tail 
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is hydrophobic. The hydrophilic heads face into the aqueous environ-
ment inside and outside of the cell, and the hydrophobic tails are 
sandwiched between the heads of the lipid molecules. In addition to 
the lipids, proteins are found scattered in the cell membrane. These 
proteins also participate in the transport of specific molecules across 
the cell membrane. Others serve as catalysts in reactions, while some 
serve as enzymes. Proteins can be classified as transmembrane or 
peripheral. Carrier proteins and channel proteins are membrane 
transport proteins. The cell membrane is usually impermeable to 
polar or other water-soluble molecules. 

Sometimes, solutes are pumped against their electrochemical gra-
dient by a process called active transport. This is an uphill phenome-
non that requires cellular energy. Proper functioning of the cells 
requires that the concentration differences of ions such as sodium 
and potassium be maintained in order to preserve the resting mem-
brane potential. The energy needed for active transport is made avail-
able by adenosine triphosphate (ATP) molecules. ATP is a nucleotide 
and consists of an adenine base, ribose sugar, and a triphosphate 
group. ATP is converted to adensoine diphosphate (ADP) by the 
action of the enzyme ATPase, which is an example of active transport 
in the sodium-potassium pump. The K-Na pump transports sodium 
ions out of the cell and at the same instant transfers potassium ions 
into the cell. The carrier protein protrudes through the two sides of 
the cell membrane. It has three receptor sites for binding sodium ions 
and also has ATPase activity. Two receptor sites for the carrier protein 
are available outside the cell membrane. ATPase is activated upon 
binding to receptor sites, and a high-energy phosphate bond from 
ATP is liberated. The energy in the phosphate bond causes a confor-
mational change in the carrier protein that allows for the passage of 
the sodium and potassium ions. Active transport can also be driven 
by ion gradients during secondary active transport. 

3.9 Nernst Equation
The Gibbs free energy change of diffusion and the movement of ions 
in the presence of an electric field can be estimated as follows. The 
Gibbs free energy change due to the movement of a solute by diffu-
sion from a region of high concentration to a region of low concentra-
tion is given by:

∆G RT
C
CD

i

= −






ln 0  (3.67)

where C0 = the region of high concentration 
 Ci = the region of low concentration 
 ∆GD = the free energy change due to diffusion 
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In a similar fashion, the Gibbs free energy change for the movement 
of an ion across the cell membrane and into a cell at a voltage, V, rela-
tive to the outside is given by:

∆G zFVelec =  (3.68)

where z is the charge on the ion and F is the Faraday’s constant. The 
Nernst equation can be derived by balance or equilibrium of the con-
centration and voltage gradients for an ion. The driving force for the 
transport of solutes is the combined effect of their concentration gra-
dient and the electrical potential difference that is found across the 
membrane. The electrochemical gradient denotes the combined effect 
of charge and solute concentration on the transport of a molecule. 
Membrane potential is created when the charged molecules flow 
through channels in a cell membrane. For example, a higher concen-
tration of sodium ions within the cell compared with the surround-
ings will cause leakage currents out of the cell. The loss of charged 
ions will make the interior of the cell negative in charge. This creates 
the membrane potential. As sodium ions are lost, the membrane 
potential grows. A point is reached where the negative charge created 
within the cell begins to inhibit the loss of charged ions due to the 
differences in sodium concentration. Thus, equilibrium membrane 
potential for the cell is reached. 

Equating Eqs. (3.15) and (3.16):

V
RT
zF

C
Ci

= −






ln 0  (3.69)

Equation (3.17) is the Nernst equation and can be used to calculate 
the equilibrium membrane potential. R is the universal molar gas 
constant, T is the absolute temperature in Kelvin, F is the Faraday’s 
constant (2.3*104 cal/V/gmol), and z is the charge on the ion.  

Electrodialysis
Dialysis is a membrane-separation technique used to remove toxic 
metabolites from blood in patients suffering from kidney failure. The 
first artificial kidney was developed in 1940 and was based on cello-
phane. In the 1990s, most artificial kidneys were based on hollow-
fiber modules with a membrane area of 1 m2. Cellulose fibers were 
replaced with polycarbonate, polysulfone, and other polymers, which 
have higher fluxes and are less damaging to the blood. Blood is circu-
lated through the center of the fiber, while isotonic saline, the dia-
lysate urea, creatinine, and other low-molecular-weight metabolites 
in the blood diffuse across the fiber wall and are removed with the 
saline solution. The process is slow, requiring several hours to remove 
the required low-molecular-weight metabolites from the patient, and 
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must be repeated one to two times per week. More than 100,000 
patients in hospitals use these devices on a regular basis. 

The largest application of membranes is the artificial kidney. Sim-
ilar hollow-fiber devices are being explored for medical uses, includ-
ing an artificial pancreas, in which islets of Langerhans supply insulin 
to patients with diabetes, or an artificial liver in which adsorbent 
materials remove bilirubin and other toxins. In carrier facilitated trans-
port, the membrane used to perform the separation contains a carrier 
that preferentially reacts with one of the components to be trans-
ported across the membrane. Liquids containing a complexing agent 
are used. Membranes are formed by holding the liquids through cap-
illary action in the pores of a microporous film. The carrier agent reacts 
with the solute on the feed side of the membrane and then diffuses 
across the membrane to release the solute on the product side of the 
membrane. The carrier agent is then reformed and diffuses back to 
the feed side of the membrane. The carrier acts as a shuttle to trans-
port one component of the feed to the other side. 

Metal ions can be transported selectively across a membrane 
driven by the flow of hydrogen or hydroxyl ions in the other direc-
tion pumped counter currently around the outside of the fibers 
(Fig. 3.11). High membrane selectivities can be achieved using facili-
tated transport. There are no commercial processes yet using this 
method. This is due to the instability of the membrane and the carrier 
agent. Dialysis is the earliest molecularly separative membrane proc-
ess discovered. Fick’s law of diffusion and the generalized laws of 
diffusion are applicable in describing the transport of solute mole-
cules across the membrane to the other side. A multistage dialysis 
separation procedure can be envisioned for desalinating sea water. 

BloodBlood

Dialysate

Dialysate

FIGURE 3.11 Schematic of a hollow-fi ber mass exchanger used as an artifi cial 
kidney dialyzer used to remove urea and toxic metabolites from blood.
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Depending on the ratio of the pore size of the membrane and the 
solute radius, the salt concentration on the other side of the first 
stage can be estimated using the sieving coefficient expressions dis-
cussed in the previous sections. Up to one-half the feed concentra-
tion of the feed of solute can be obtained on the permeate side of the 
membrane. Thus, at every stage, a maximum of halving of concen-
tration takes place. Starting with 3.6 wt % NaCl of sea water, a 
suitable dialysis membrane can, in after n stages, reduce the con-
centration of the NaCl in both sides of the membrane down to 100 ppm 
or 0.01 percent. After the first stage, if sufficient time is allowed for 
equilibrium to be attained by diffusion, both sides of the dialysis 
membrane will be at 1.8 wt %. Repeated over n stages, this would be 
1.8, 0.9, 0.45, 0.225, 0.113, 0.055, 0.028, 0.014, and 0.0007, respectively. 
For example, after nine stages, the concentration of sea water will 
reach potable water allowable limits down to less than 100 ppm 
(Figs. 3.12, 3.13).

The recovery of caustic from hemicellulose in the rayon process 
was well established in the 1930s and has been used in modern times 
in the paper pulp industry. Isobaric dialysis as a unit operation is 
emerging and is used to remove alcohol from beverages and in the 
production of products derived from biotechnology. By the end of 

Feed brackish water solution

Na+

Concentrated salt
solution

Desalted water

+ AnodeNa+

+A –C

Cl−

C

Cl− Cl−Cl−
Cl−

+A
Cathode =

C

Na+

Na+Na+

FIGURE 3.12 Schematic of electrodialysis apparatus with alternating anode and 
cathode up to 100 cell pairs. 
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1992, 40 key beer breweries had installed worldwide industrial dialy-
sis plants with an annual capacity of 189 million liters. The schematic 
of an example industrial dialysis process is shown in Fig. 3.11.

Alcohol is removed from beer by dialysis, and the alcohol is dis-
tilled from the dialysate. The raffinate is recycled as a distillate stream. 
The combination of dialysis and distillation preserves the flavor of 
the product. Dialysis is an isothermal operation. It is an important 
parameter in the biotechnology industry. Dialysis facilitates the 
removal of salts from heat-sensitive or mechanically labile com-
pounds such as vaccines, hormones, enzymes, and other bioactive 
cell secretions. Dialysis is combined with ultrafiltration to offer diafil-
tration which offers a more efficient process efficiency. The media and 
extracellular environment in bioreactors can be controlled using dia-
filtration. Novel bioreactor designs are possible using dialyzers. The 
extraluminal region of a hollow-fiber dialyzer provides an excellent 
growth environment for mammalian cells when the lumen is per-
fused with oxygen and nutrients. In the production of monoclonal 
antibodies, for example, a bench-top bioreactor can readily equal the 
antibody production of several thousand mice. 

This technology is in the developmental stage. Attempts have 
been made to separate biological fluids using a dialysis membrane. 
Removal of a buffer from a protein solution or concentrating polypep-
tide and hyperosmotic dialysate are examples. Microdialysis is a spe-
cialized application of the technique. A U-shaped dialysis capillary is 

Water

Heat

Original beer

Alcohol-loaded
dialysate

Alcohol-free
dialysate

Alcohol-reduced
beer

Heat
exchanger

Alcohol/water

FIGURE 3.13 Countercurrent dialysis and distillation to separate alcohol from 
beverages.
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surgically implanted into the tissue of a living animal. Isotonic dia-
lysate is pumped through the tubing at a flow rate low enough to 
allow equilibration with small solutes in the host’s extracellular por-
tion of the tissue. It helps in sampling tissues. Perfusate rate is low, at 
1 nL per minute. 

Electrodialysis (ED) [20] has been found to be the most economical 
to desalinate brackish water at a feed NaCl concentration of a little 
over 1 wt %. The apparatus for ED as shown in Fig. 3.12 is basically an 
array of anode and cathode membranes terminated by electrodes. The 
membranes are separated from each other by gaskets, which form 
fluid compartments. Compartments that have the A membrane on the 
side facing the positively charged anode are electrolyte depletion com-
partments. The remaining compartments are electrolyte concentrating 
compartments. The concentrating and depleting compartments alter-
nate throughout the apparatus. The feed solution is supplied to all 
compartments. Piping is provided in a fashion so that the concentrated 
solution is removed from one end and the diluate is removed from 
the other. In the case of desalination of brackish water, for example, 
the feed contains a little more than 1 wt % salt solution, the diluate 
is the potable drinking water at less than 100 ppm NaCl concentration, 
and the concentrated solution is the brine solution that can be allowed 
to segregate and removed at the bottom of the apparatus. 

Holes in the gaskets and membranes register with each other to 
provide two pairs of internal hydraulic manifolds to carry fluid into 
and out of the compartments. One pair communicates with the deple-
tion compartments and the other with the concentrated compart-
ment. Much effort has been spent on the design of the entrance and 
exit channels from the manifolds to the compartments to prevent 
unwanted cross-leak of fluid intended for one class of compartment 
into the other class. As the trend in membrane architecture leads to 
thinner membranes, the design becomes more difficult. A cell pair
refers to a contiguous group of two membranes and the associated 
two fluid compartments. A group of cell pairs and the associated end 
electrodes is called a stack or pack. Generally, 100 to 600 cell pairs are 
arranged in a single stack. The choice depends on the capacity of ED, 
the uniformity of flow distribution achieved among the several com-
partments of the same class in stack, and the maximum total direct 
current potential desired. One or more stacks may be arranged in a 
filter press configuration designed to compress the membranes and 
gaskets against the force of fluid flowing through the compartments, 
thereby preventing fluid leaks to the outside and internal cross-leaks 
between compartments. Hydraulic rams are used for large presses, 
and rods provide the compression for small presses. Commercial 
membranes have a thickness of 150 to 500 µ. The compartments 
between the membranes have a typical thicknesses of 0.5 to 2 mm. The 
thickness of a cell pair is, therefore, in the range of 1.3 to 5.0 mm. One 
hundred cell pairs have a combined thickness of 30 cm. The effective 
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area of a cell pair for current conduction is generally on the order of 
0.2 to 2 m2. Electric current applied to the stack is limited by economic 
considerations. The power consumption is I2R. In relatively dilute 
electrolyte, the electric current that can be applied is diffusion-limited.
This is the ability of ions to diffuse through the membranes. 

The membranes used in the ED apparatus are ion-selective. The 
stack of membranes is prepared on a plate-and-frame concept. Anion-
exchange membranes contain positively charged entities, such as 
quaternary ammonium groups, fixed to the polymer backbone. These 
membranes may permit negatively charged ions and exclude posi-
tive ions. Cation exchange membranes contain fixed negatively 
charged groups such as sulfonic acid groups. They permit positively 
charged ions to move through them. 

3.11  Oxygen-Depleted Regions by Theory of Krogh 
in Cylindrical Coordinates

A microscopic view reveals a repetitive arrangement of capillaries 
surrounded by a cylindrical layer of tissue. An idealized sketch of the 
capillary bed and the corresponding layer of tissue idealized into a 
cylinder is shown in Fig. 3.14. Let the radius of the tissue layer be rT.
The residence time of the blood in the capillary is in the order of 1 sec. 
The wave diffusion and relaxation time is comparable in magnitude 
to the residence time in the blood. Krogh [21] developed this cylindri-
cal capillary tissue model to study the supply of oxygen to muscle. 
The tissue space surrounding the capillary is considered a continuous 
phase, although it consists of discrete cells. An effective diffusivity, 
DT, can be used to represent the diffusion process in the tissue. The 
driving force for the diffusion is the consumption of the solute by the 
cells within the tissue space.

The Michaelis-Menten equation can be used to describe the meta-
bolic consumption of the solute in the tissue space. The equation may 
be written as:

R
V C

K C
m T

m T

=
+( )

 (3.70)

r

z

Capillary

Tissue

FIGURE 3.14 An idealized sketch of capillary bed and surrounding tissue layer.
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where CT is the concentration of the solute in the tissue space. For 
consumption of the solute, R, it will have a positive value and for 
solute production, it will have a negative value. Vm represents the 
maximum reaction rate. The maximum reaction rate occurs when 
<C> > > Km. The reaction rate is then in zero order in solute concentra-
tion. The blood flows through the capillary with an average velocity 
of V. A steady-state shell balance on the solute in the blood from z to 
z + ∆z can be written as:

− = − +V
dC
dz r

K C C
c

T rc tm
2

0( )( )  (3.71)

where K0 is represented by an overall mass transfer coefficient. The 
overall mass transfer coefficient represents the combined resistance 
of fluid flowing through the capillary km and the permeability of the 
solute in the capillary wall Pm. A steady-state shell balance at a given 
value of z from r to r + ∆r may also be written for the solute concentra-
tion in the tissue space:

D
r

d
dr

r
dC
dr

RT T



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− = 0  (3.72)

The boundary conditions for Eqs. (3.71) and (3.72) are:

z = 0, C = Co (3.73)

r = rc + tm, CT = CT�rc + tm (3.74)

r = rT, dCT/dr = 0 (3.75)

The axial diffusion is neglected in the tissue space in comparison with 
the radial diffusion. From the zero-order rate of reaction, R = Ro is a 
constant. Solving for Eq. (3.72) with the boundary conditions given in 
Eqs. (3.73) and (3.75):

CT − CT�rc + tm = (r2 − (rc + tm)2)
R
D

o

T4
−

r R
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r
r t

T o

T c m

2

2
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+






  (3.76)

The variation of concentration as a function of z can be calculated by 
equating the change in solute concentration within the blood to the 
consumption of solute in the tissue space:

C = Co −
R

Vrc

0
2 (rT

2 − (rc + tm)2)z (3.77)

Equation (3.76) is combined with Eq. (3.77):

 CT�rc + tm – Co = −
R

Vrc

0
2 (rT

2 − (rc + tm)2)z −
R
r
o

c2
Ko (rT

2 − (rc + tm)2) (3.78)
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Combining Eqs. (3.76), (3.77), and (3.78):

CT − Co = (r2 − (rc + tm)2)
R
D

o

T4
− rT

2
R
D

r
r t

o

T c m2
ln

+




  (3.79)

 − 
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2 − (rc + tm)2)z −
R
r
o

c2
(rT

2 − (rc + tm)2)

It can be deduced that under certain conditions some regions may not 
receive any solute. A critical radius of tissue can be identified, rcritical,
and defined as the distance beyond which no solute is present in the 
tissue.

 At r = rcritical, dCT/dr = 0  (3.80)

and CT = 0 (3.81)

This can be solved for from Eq. (3.79) after replacing rT with rcritical. The 
equation is nonlinear. 

3.12 Cartesian Coordinates
Idealize Fig. 3.14 in the Cartesian coordinates and obtain the solu-
tion for the concentration of the solute in the tissue space. The gov-
erning equations for the concentration of the solute in the capillary 
and in the tissue can be written after taking the r in Fig. 3.14 as x
[22–23]:

− = −( )+V
dC
dz r

K C C
c

T r tc

2
0 ( )mem

 (3.82)

Considering the effects of diffusion in x direction only in the tissue 
and assuming a zero-order reaction rate:

D
C
x

rAB
T∂

∂
= ′′′

2

2  (3.83)

Integrating, and substituting for the boundary conditions: 

x = xc + tm , CT = CT�xc + tm (3.84)

x = xT, dCT/dx = 0 (3.85)

− r′′′xT/DAB = c1  (3.86)

CT − CT�xc + tm =  (r′′′/2DAB)(x2 − (xc + tm)2) 

− r′′′xT/DAB (x − (xc + tm))              (3.87)
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The variation of concentration as a function of z can be calculated by 
equating the change in solute concentration within the blood to the 
consumption of solute in the tissue space:

VACo − VAC = r′′′zA T (3.88)

C = Co − r′′′zAT/VA (3.89)

Equation (3.89) is combined with Eq. (3.87):

r′′′AT/A = 2/xc K0 (C − CT�rc + tm) (3.90)

CT�rc + tmem = C − K0xc r′′′AT/2A  (3.91)

Therefore:

CT − Co = r′′′zAT/VA + K0xc r′′′AT/2A + (r′′′/2DAB)

× (x2 − (xc + tm)2 ) − r′′′xT/DAB (x − (xc + tm))           (3.92)

At a critical distance from the capillary wall, the concentration in the 
solute will become zero. This can be solved for from Eq. (3.92). At and 
beyond the critical distance:

dCT/dx = 0 = CT (3.93)

replacing xT with xcritical:

0 = C0 + r′′′zAT/VA + K0xc r′′′AT/2A + (r′′′/2DAB)(x2 − (xc + tmem)2) 

− r′′′xcritical/DAB (x − (xc + tmem))     (3.94)

xcritical
2 ( – r′′′/2DAB) = C0 + r′′′zAT/VA + K0xc r′′′AT/2A − (r′′′/2DAB)

× (xc + tm)2 − r′′′xcritical/DAB (x − (xc + tm))        (3.95)

The quadratic equation in xcritical is then: 

 Axcritical
2 + Bxcritical + C = 0 (3.96)

where:
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When the solution of the quadratic expression for the critical distance 
in the tissue is real and found to be less than the thickness of the tis-
sue, the onset of zero concentration will occur prior to the periphery 
of the tissue. This zone can be seen as the anorexic or oxygen-depleted 
regions in the tissue.

Summary
The three important developments that gave impetus to the emer-
gence of the field of biofluid transport phenomena are the discovery 
of osmosis and osmotic pressure, permeability for a solvent across 
the membrane and Starling’s law, and diffusion of solute across the 
membrane. Osmosis is the flow of solvent from a region of low solute 
concentration to a region of high solute concentration. The pressure 
difference that creates flow is caused by the presence of solutes, and 
is called the colloid osmotic pressure. If a cell is placed within a solu-
tion that has a lower concentration of solutes, water flows into the cell 
and the system is considered hypotonic. When the cell is placed in a 
solution that has a higher concentration of solutes, water flows out of 
the cell and the system is considered hypertonic. When the system 
isotonic, there is neither swelling nor shrinking of cells. Dutrochet 
discovered the phenomena of osmosis in the 1800s.

Van’t Hoff’s law can be used to determine the osmotic pressure in 
terms of the concentration of the solution. It can be derived by equat-
ing fugacities of the solvent and solution. The Poynting correction 
factor and Taylor series expansion are used in the derivation. 

Porous membranes are solid materials with an internal pore 
structure comprised of macropores and micropores. Pores can be 
classified into passing penetrable pores, nonpassing penetrable pores, 
isolated pores, and tortuous channels. Pores are characterized by the 
surface area and porosity. When the length of the pore is greater than 
the thickness of the specimen, the pore is said to be tortuous. Darcy’s 
law may be written for fluid passage through the pores, relating the 
discharge rate, Q, to the permeability of medium, κ; cross-sectional 
area, A; viscosity of fluid, µ; and pressure gradient, ∂ ∂P z/ .

The combined effect of osmotic pressure and hydrostatic pressure 
is described by Starling’s law, which provides the relation between 
the flow of fluid across the capillary wall or a porous membrane and 
the pressure difference across the capillary. Both the hydrostatic and 
osmotic pressure drops are accounted for. A hydraulic conductance, 
L

P, can be defined for flowing fluid as a function of pore radius, 
peripheral area, and wall thickness. Starling’s law can be derived 
from pressure and chemical potential considerations. Starling’s law 
applicability is not universal, but it has been improved upon.

Oftentimes, solvent moving across the membrane will carry with 
it some solute molecules. A sieving coefficient, Se, has been developed 
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to account for solute separation based on molecular size. Analytical 
expressions based on the motion of a spherical solute through a 
cylindrical pore have been derived to estimate Se. The mathematical 
expression given by Deen can be written as a seventh-degree polyno-
mial for the sieving coefficient in terms of the ratio of the solute radius 
to the capillary pore radius [Eq. (3.20)]. Formation of the concentra-
tion polarization layer was also discussed.

There are several kinds of diffusion of solutes through mem-
branes: viscous flow, molecular flow, surface diffusion, capillary con-
densation, molecular sieving diffusion, and solubility diffusion. The 
solute size can be calculated as a function of molecular weight directly 
from Eq. (3.24). Renkin and Curry [7,8] presented an expression for 
diffusion coefficient as a function of the molecular weight of the 
migrating species in Eq. (3.25). There are several diffusion coeffi-
cients, such as solute diffusion coefficient in blood and tissue, Dbl;
solute diffusion coefficient in plasma, Dpl; solute diffusion within the 
pores of a capillary wall, Dpore; solute diffusion in the interstitial fluid, 
Dint ; solute diffusion within the cell, Dcell; and solute diffusion in 
water, D. Expressions for steric exclusion and hindered diffusion 
were provided. The Renkin equation gives the ratio of pore diffusiv-
ity to that of bulk diffusivity [Eq. (3.27)]. The Renkin euation is a 
seventh-degree polynomial in λ, the ratio of the solute radius with 
pore mouth radius

The mathematical expression developed by Maxwell for diffu-
sion through blood and cells is given by Eq. (3.30). Expression for 
diffusion coefficient in blood developed using Monte Carlo simula-
tions as a function of the volume fraction of cells in blood is given by 
Eq. (3.31). The effect of molecular weight as evidenced in polymers 
developed by Brinkman is given by Eq. (3.32). The effective diffusivi-
ties of different sizes of solutes through tumor and normal tissue 
developed by Jain [10] is given by Eq. (3.33). The solute diffusion can 
also be accounted for by use of a solute permeability [Eq. (3.35)]. 
Renkin and Curry [8] developed empirical relations [Eqs. (3.36) and 
(3.37)] to solute permeability as a function of solute size. 

The combined effect of hydrostatic pressure and osmotic pressure 
and the solute flux is captured by the Kadem-Katchalsky equation 
[Eqs. (3.38) and (3.39)]. They were derived by the application of irre-
versible thermodynamics. A Staverman reflection coefficient gives 
the ratio of the hydraulic conductance of a solute to that of a solvent. 
Oftentimes, the three parameters need to be solved for: Lp, the hydrau-
lic conductance of solvent; Pm, the permeability of the solute; and σ,
the Staverman reflection coefficient. Anderson and Quinn [13] 
showed that the sieving coefficient, Se = 1 − σ, using hydrodynamic 
equation accounting for hindered particle motion is small pores.

Eight worked examples illustrating the use of the theory described 
were presented. The human anatomy is comprised of three types of 
body fluids: extracellular fluids, intracellular fluids, and transcellular 
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fluids. The Nernst equation also was derived. It can be used to calcu-
late the equilibrium membrane potential.

Dialysis is a membrane separation process that lets solute diffuse 
across the membrane and from the permeate and retentate at desired 
concentrations. A mass exchanger is used in hospitals to treat human 
patients with kidney disease by removing toxic metabolites from 
urea. Industrial dialysis and reclamation of alcohol from beer was 
shown with examples from commercial operations used throughout 
the world. The electrodialysis apparatus was shown with a schematic 
as a method to reduce common salt concentrations in alternate com-
partments of anode and cathode.

Oxygen-depleted regions were identified by the theory of Krogh 
using mathematical modeling in both cylindrical and Cartesian coor-
dinates. Simultaneous metabolic reactions and diffusion leads to the 
zone of null transfer after a critical length. A numerical solution is 
needed for cylindrical coordinates. Closed form analytical solution is 
derived for Cartesian coordinates.
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Exercises

Questions for Discussion

1.0 Can the osmotic pressure be used to cause a flow that can operate a 
turbine and generate electricity? Why?

2.0 Can Kedem-Katchalsky equations violate the second law of thermody-
namics? Can transport occur from low concentration to high concentration of 
the said species?

3.0 Will recycling in sea water reverse osmosis (SWRO) plants reduce the 
pressure needed at the pump?

4.0 What is the reason for the higher water flux in the membranes developed 
later, such as a polyamide membrane, compared with the cellulose acetate 
membrane?

5.0 Should there be a temperature difference between the feed and permeate 
sides? What will happen to the predictions of van’t Hoff’s law?

6.0 Can osmotic pressure be extended to other systems such as gases?

7.0 Consider a layered solution. A higher concentration of solute is found 
in the bottom and a lower concentration of solute is found at the top. Will the 
solvent flow from the top of the jar to the bottom by osmosis? Why?

8.0 What are the energetic considerations during osmotic flow?

9.0 Can the osmotic pressure and hydrostatic pressure cancel out each other, 
resulting in zero net flow?
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10.0 Why are not a lot of trees found near the beach or coastline?

11.0 Can 100 percent separation be effected by use of semipermeable mem-
brane technology?

12.0 Is osmotic pressure accounted for in the development of Darcy’s law? 
Why?

13.0 Sketch the different mechanisms of pore diffusion: viscous flow, 
Knudsen diffusion, capillary condensation, surface diffusion, molecular siev-
ing, and diffusion solubility mechanism.

14.0 How would you write a generalized Starling’s law, taking into account 
the observations that rendered it not universal?

15.0 What are some of the important considerations during transient solvent 
filtration and solute diffusion?

Problems That Require Analysis—Reverse Osmosis
Reverse osmosis (RO), ultrafiltration, molecular sieves, and electrodialysis 
can be used to separate liquid solutions. Reverse osmosis and ultrafiltration 
differ in the solute size rejected. Conventional filtration rejects particles of 
the size of 10 µm and above, the ultrafiltration rejects solute sizes of 10 nm to 
10 µm, and the reverse osmosis rejects solute sizes in the ionic range of 
1 pm to 0.1 nm. The driving force for RO, ultrafiltration, and molecular
sieve operations comes from a pressure difference. No filter cake is 
allowed to form. The driving force in electrodialysis is an induced elec-
tric field and polarization of the ions to the anode and cathode. The 
compartments are made from alternating anode and cathode, and the 
ions are segregated from the diluate water in alternating compart-
ments. It is used to desalinate brackish water and is found to be the most 
economical method at low salt concentration in the feed, at little over 
1 wt %. Any material that can exclude molecular species by size is referred 
to as a molecular sieve. These are made up of inorganic materials that pos-
sess uniform pores with diameters less than 2 nm (microrange) or 2 to 
20 nm (mesorange). 

In reverse osmosis, the solvent from the solution is pumped across a semi-
permeable membrane, opposing the osmotic pressure difference with the 
solute largely rejected by the membrane (Fig. 3.16). For example, in sea water 
desalination by reverse osmosis, the osmotic pressure will cause a flow from 
the region of low solute concentration to a region of higher solute concentra-
tion. Pressure is supplied in order to overcome this so that the solvent from 
the sea water flows across a semipermeable membrane that permits only the 
solvent and not the solute. Although the membrane rejects the solute, some 
will diffuse across the pores.

The drinking water needs of major cities around the world can be met using 
the reverse osmosis method for desalination, as the drought conditions in 
major cities have become an important concern. In the Middle East gulf region, 
where the energy is cheap and river water scarce, sea water reverse osmosis 
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FIGURE 3.15 Water fl ux and salt rejection for various SWRO semipermeable 
membranes.

(A–F. Sea water membranes operate at 5.5 Mpa and 25°C. H–J. Brackish 
water membranes operate at 1,500 mg/L NaCl feed, 1.5 Mpa, and 25°C. 
K–S. Nanofiltration membranes operate at 500 mg/L NaCl feed, 0.74 Mpa, 
and 25°C.)
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FIGURE 3.16 Transport processes during reverse osmosis.
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(SWRO) plants are increasingly relied upon to obtain potable drinking water 
(Fig. 3.17). Reverse osmosis is also used in the food industry to concentrate 
fruit juices. Reverse osmosis is dominated by desalination—that is, by remov-
ing salt from water. It is used in the treatment of sea water, brackish water, 
and the reclamation of municipal waste water. It is used in boiler feed water 
pretreatment in order to avoid scale formation later on. The market for ultra 
pure water is growing; thus, reverse osmosis is used in injectable pharmaceu-
ticals and for semiconductors, water for domestic use, sweetener concentra-
tion, and fruit juice concentration and fermentation product recovery. 

In the 1950s, it was shown that cellulose acetate RO membranes were capa-
ble of separating salt from water. But the water fluxes obtained were too small 
to be feasible in practice. Since then, RO membrane technology has improved 
a great deal. Recently DuPont patented a polyamide membrane made from 
interfacial polymerization that has a high solvent flux, and turbulence is used 
to reduce the concentration polarization layer thickness formed during the 
operation of the RO during desalination. Advances in thin-film composite 
membranes and polymer materials have widened the applications of RO from 
desalination to treatment of hazardous wastes, material recovery in electro-
plating industries, production of ultra pure water, water softening, food pro-
cessing, dairy, and the semiconductor industry. 

The advantages of these systems over traditional separation processes, 
such as distillation, extraction, ion exchange, and adsorption, are that RO is 
a pressure-driven process, there are no energy-intensive phase changes, and 
expensive solvents or adsorbents are not needed. RO processes have a simple 
design and are easy to operate compared with other traditional methods. 

Membrane properties play a pivotal role in the performance of RO tech-
nology and depend on the chemical structure of the membrane. An ideal RO 
membrane is low in cost, resistant to chemical and microbial attack, possesses 
high mechanical and structural stability over long period of operation and a 
wide range of temperature, and has the desired separation characteristics for 
the given system. 

RO membranes are classified into asymmetric membranes (contain-
ing one polymer) and thin-film composite membranes. Asymmetric RO 
membranes have a thin permselective skin layer of about 100 nm thick-
ness supported on a more porous sublayer of the same polymer. The dense 
skin layer determines the fluxes and selectivities of these membranes. The 
porous layer serves as a mechanical support for the skin layer. Asymmetric 
membranes are formed by a phase-inversion polymer precipitation process. 
In this process, a polymer solution is precipitated into a polymer-rich solid 
phase that forms the membrane and a polymer-poor liquid phase that forms 
the membranes or void spaces. Composite RO and ultrafiltration mem-
branes are thin films consisting of a thin polymer barrier layer formed on 
one or more porous support layers, which is a different polymer compared 
with the barrier layer. The surface layer determines the flux and separation 
characteristics of the membrane. The porous backing is intended largely to 
support the barrier layer. The barrier layer is extremely thin, thus allowing 
for high water fluxes. The most important thin-film composite membranes 
are made by interfacial polymerization, a process in which a highly porous 
membrane such as polysulfone is coated with an aqueous solution of a 
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polymer or monomer and then reacted with a cross-linking agent in a water-
immiscible solvent. 

16.0 Sea water reverse osmosis semipermeable membrane process. Prepare a pre-
liminary estimate of an SWRO plant where the inlet NaCl composition is 
3.6 percent by weight and the outlet composition is 100 ppm. A typical RO 
process schematic is given in Fig. 3.16. What should the size of the pump be?
The RO membrane used is a linear aromatic polyamide. The expected water 
supply for the township is 6.3 million liters per day. Spiral-wound modules 
are used with an interfacial area of 5 m2/gm. How much membrane is needed? 
The operating temperature is 25°C. What would be the reduction in pump 
pressure if recycling is used (Sharma [20])?

17.0 Effect of solute concentration. Van’t Hoff’s law, as given by Eq. (3.5), was 
derived assuming that the solute concentration was small. For not-so-dilute 
systems, what would be the expression for osmotic pressure? What effect does 
it have in the solution in Exercise 16.0? Use the ln(xw) in the van’t Hoff’s law 
instead of the Taylor series approximation. What effect does it have?

In the Taylor series expansion of ln(1 − xs), another two terms are taken:
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18.0 Use of reflection coefficient. A brackish water body is desalinated using 
the reverse osmosis method. The concentration of the NaCl feed is 15 gm/liter. 
A FilmTec NF40HF semipermeable membrane is used. How much water flux 
can be handled when a spiral module with interfacial area of 8 m2/gm is 
used and exit water at a concentration of 100 ppm is produced? The operating 
temperature is 37°C. How much membrane is needed? What is the pressure 
needed at the high pressure pump?

19.0 Hydraulic conductance in the human body. Calculate the normal rate of net 
filtration for the human body. Assume that the capillaries have a total surface 
area of 413 m2 and that the slit-pore surface area is 3/1000 of the total capillary 

High pressure
pump

Feed source

Pretreatment

Permeate

Concentrate

FIGURE 3.17 Schematic of an SWRO semipermeable membrane process.
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surface area. Assume that the porous structure of the capillary wall is a series 
of parallel cylindrical pores with a diameter of 7 nm. Plasma filtrate may be 
considered as Newtonian fluid with a viscosity of 1 cp. The mean net filtration 
pressure for the capillary was just calculated to be 0.3 mmHg. The capillary 
characteristics are as follows:

Inside diameter: 10 µm Length (L): 0.1 cm
Wall thickness, tm: 0.5 µm Average blood velocity: 0.05 cm/s
Pore fraction: 0.001 Wall pore diameter: 6–7 nm
Inlet pressure: 30 mmHg Outlet pressure: 10 mmHg
Mean pressure: 17.3 mmHg Colloid osmotic pressure: 28 mmHg
Interstitial fluid pressure: –3 mmHg
Interstitial fluid colloid osmotic pressure: 8 mmHg

20.0 Blood storage in the army. For transfusion purposes, in the army, 
donated human blood is stored for a month. There is interest in improv-
ing the storage procedure such as concentrating red cells, white cells, plate-
lets, vitamins, proteins, sugars, minerals, hormones, and enzymes by water 
removal. Ultrafiltration devices are sought by the army to remove water, with 
50 percent by volume water, to levels low enough to effect significant volume 
reduction during blood storage. The temperatures have to be kept low during 
separation to prevent hemolysis. Use an ultrafiltration membrane and for 
a solute rejection of 80 percent, find the pore radius of the membrane from 
the expression for the sieving coefficient. The solute radius can be taken as 
an effective radius of the different ions present in the blood. For the given 
pore size of the membrane, and for a membrane thickness of 1 mm, what is 
the hydraulic conductance during flow of water across the membrane? The 
interfacial area of the membrane, the amount of water that can be treated, 
and the volume and weight of the membrane needed can be related to the 
information in Fig. 3.16. Choose a membrane for the given solute rejection, 
and by trial and error in a Microsoft Excel spreadsheet, obtain the throughput 
that can be handled during ultrafiltration of blood and the pressure needed 
at the high pressure pump.

21.0 Reverse osmosis to separate acrylonitrile from water. In the manufacture 
of Acrylonitrile Butadiene Styrene (ABS) engineering thermoplastics using 
a continuous polymerization process, for every pound of product manufac-
tured, a little over a pound of water is generated that contains acrylonitrile 
(CH2 = CHCN). A 5 percent Acrylonitrile (AN) solution of water needs to 
be separated by reverse osmosis, and the product needs to have AN less than 
1 ppm. A membrane made of cross-linked polyether resin at an interfacial area 
of 10 m2/gm and 1 mm thickness is used. How much membrane is needed 
for a solute rejection of 99.9 percent? What is the pore size of the membrane? 
What is the throughput of water it can handle? What is the pressure at the high 
pressure pump on the feed side? 

22.0 Effect of concentration polarization layer. During reverse osmosis in sea 
water desalination, the salt is rejected by the semipermeable membrane and 
is accumulated near the feed side of the membrane (Fig. 3.16). Perform a 
mass balance of the solvent in the region of the concentration polarization 



132 C h a p t e r  T h r e e

layer and the membrane, and show that the flux will decrease with time—
that is:

J/LpS = (∆P − RTCsf0/δS)/(1/LpS + RTCsf0t/δS) (3.102)

where δ is the polarization layer and t is the time of operation.

23.0 Hydraulic conductance. Consider water that contains polychlorinated 
biphenyls (PCBs) and tetrachlorinated ethylenes (TCEs) at 4.5 percent and 
2.0 percent by weight, respectively. A reverse osmosis membrane of 0.5 mm 
thickness is used. The membrane is Toray, SU-700. What is the rejection rate 
for SU-700? What is the flux rate the Toray membrane can handle per day with 
an interfacial area of 13 m2/gm? How much membrane is needed to produce 
a filtrate with a concentration of 1 ppb? For a throughput of 22,500 liters/day, 
what is the osmotic pressure? What is the hydraulic conductance (LpS) of the 
system? What should the pressure at the pump be?

24.0 Starch removal. A new membrane on the market was tested and found to 
have permeability, LpS, of 1 E − 4 m4s/kg under a pressure difference of 10 atm. 
The membrane handles 4.8 percent of partially hydrolyzed starch (MW 17,000) 
as feed and puts out a product at 175 ppm. What is the Staverman reflection 
coefficient? What is the throughput of water the membrane can handle? What 
is the solute rejection rate of the membrane? Can you provide the pore diam-
eter and length of the membrane for a thickness of the membrane of 500 µm
when 100 cc of the membrane is used?

25.0 Tallest tree in the world. What is the limit on the height of a tree? Include 
the Bernoulli law as well as the osmotic pressure drop. Assume that the leaves 
on the tree top have a starch concentration of 10 wt %.

26.0 Porous membrane. A copolymer with a high acrylonitrile content of sty-
rene acrylonitrile (SAN) is tested for use as a reverse osmosis membrane. The 
pore radius is 200 nm. For a solution of 1 percent by weight of polyethylene 
glycol of 18,000 molecular weight in water, what is the sieving coefficient? 
Using this as the Staverman reflection coefficient, what is the pressure at the 
pressure pump to reduce the water content to less than 1 ppb in the filtrate 
side? What is the hydraulic conductance? Show that the effect of the molecular 
weight has reduced the pressure needed at the pump in such as fashion that 
the solvent filtration pressure drop is the limiting factor, compared with most 
RO processes where the osmotic pressure is the limiting factor. Show that the 
water flux rate this membrane can handle is 26,000 liters/day for a 1 mm thick 
membrane and effective volume of 1 cc.

27.0 Effect of molecular weight of the solute. In some applications of RO technol-
ogy, such as the desalination of sea water, the cost-limiting step is the osmotic 
pressure that needs to be overcome in order to achieve the desired degree of 
separation. This leads to a large pump size. As the molecular weight of the 
solute increases, for the same solute concentration by weight, say, 3.6 wt %, 
what is the molecular weight of the solute when the pressure drop needed for 
the hydraulic motion of the solvent alone is greater than or equal to the osmotic 
pressure from the solute? Make suitable assumptions about the Staverman 
reflection coefficient.
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28.0 Effect of operating temperature. In Exercise 16.0, what happens to the pres-
sure needed at the high pressure pump during winter? Consider an operat-
ing temperature at 4°C, an inlet salt concentration of 4.4 wt %, and a product 
expected salt concentration of 42 ppm. For the same membrane used in the 
worked example, what is the reduction in pressure needed at the pump? 

29.0 Salt precipitation by freezing. Based on the results in Exercise 16.0, esti-
mate the energy needed to pump the sea water using a high pressure pump 
to achieve the desired separation objectives. Make a comparative study of 
the decrease in solubility of NaCl with temperature. As you compress the sea 
water, at what point does it become ice, or at what point does it become favor-
able for salt precipitation? In which route is less energy required?

30.0 Virial expansion of osmotic potential. The osmotic pressure for albumin 
was developed by fitting a curve to experimental data and presented as:

π ρ ρ ρ= + − + −0 345 2 657 3 2 26 52 3. . .s s sE E  (3.103)

where ρs is in mgm/mL and π is in cm of water. Show that this form of the 
equation can be derived from van’t Hoff’s law for nondilute solutions by a 
series expansion of the concentration of solute in absolute mass units instead 
of molar units.

31.0 Effect of gravity in fluid flow through porous medium. Modify Darcy’s law 
in order to take into account gravity forces and show that:

v K P g= − ∇ −( )ρ  (3.104)

32.0 Apply the principle of conservation of momentum, and derive the 
Laplace equation for the case of zero source and sink of fluid.

33.0 In Worked Example 3.2, the data point for BSA deviated from the fit 
of equation to data. Can the equation for solute radius, given the molecular 
weight, be applied to BSA? Discuss.

34.0 Treatment of type 1 diabetes. Nanoporous biocapsules can be used to 
transport insulin-secreting cells by providing an immunoisolating microen-
vironment. For immunoprotection of pancreatic cells, the immunoprotection 
membrane ought to allow permeation of glucose, insulin, oxygen, and other 
metabolic products to ensure islet functionality and therapeutic effectiveness. 
The sieving coefficient for vitamin B12 may be taken as 0.7. What ought to be 
the size of the pores in the membrane should the molecular mass of vitamin 
B12 be 1355? The molecular formula for the antioxidant is C63H88CoN14O14P. It is 
involved in the metabolism of every cell of the body. It affects DNA synthesis 
and regulation, energy production, and fatty acid synthesis. 

35.0 Islets of Langerhans. Islets of Langerhans are spheroidal aggregates 
of cells that are located in the pancreas (Fig. 3.18). Islets may be viewed as a 
suspension of tissue spheres. Some islets were isolated from male rats under 
a dissecting microscope, as discussed in Worked Example 3.3, and cultured. 
Rotation of tubes prevented settling and aggregation of islets. Oxygen uptake 
measurements were conducted. The oxygen uptake chamber was equipped 
for measurement of the oxygen-dependent lifetime of Pd-coproporphyrin
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phosphorescence to enable rapid and accurate measurements of oxygen concen-
tration up to low concentrations. The measured effective diffusivity of oxygen 
through the islets was found to be 5.0 E − 5 cm2/sec. Given that the volume 
fraction of the cells was 50 percent, calculate the diffusion coefficient of oxygen 
in interstitial fluid. The diffusion coefficient in the cell is 2.5 E − 5 cm2/s. 

36.0 Calculate the Brinkman parameter in Problem 21.0.  

37.0 The Renkin equation takes into account the effects of hindered diffusion 
of the solute, especially the hydrodynamic drag experienced by the solute. The 
equation gives the ratio of pore diffusivity to that of bulk diffusivity:

D

D
pore = − + − − + +1 4 1 5 2 0 01 4 18 1 14 12 3 4 5. . . . . .λ λ λ λ λ 99 0 956 7λ λ ω− =. K  (3.105)

where λ is the ratio of the solute radius to the pore mouth radius. The partition 
coefficient K captures the steric exclusion. ω accounts for the hydrodynamic 
drag faced by the diffusing solute through the pore. What is the error involved 
in neglecting the cubic term in the seventh-degree polynomial expression—
that is, − 0.01 λ3?

38.0 In the Maxwell’s expression for diffusion coefficients in suspensions, the 
diffusion coefficient in the blood can be calculated given the volume fraction of 
cells, the diffusion coefficient in the interstitium, and the diffusion coefficient 
in the cell. Given the diffusion coefficient in the suspension and the diffusion 

FIGURE 3.18 Islets of Langerhans.

----·
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coefficient in the volume fraction of cells, can the diffusion coefficient in the 
interstitium be estimated? Is a numerical solution necessary?

39.0 Blood cells can be isolated from plasma using a blood separation tech-
nique called plasmapheresis, as discussed in Worked Example 3.4. Given that 
the hydraulic conductance of the membrane is 2.0 E–6 m2s/kg and the thick-
ness of the membrane is 90 µm, find the radius of the pore given that the 
porosity is 0.5.

40.0 Intravenous therapy. Liquid substances are introduced into the veins 
using IV therapy, or intravenous therapy. Rather than using a catheter, a novel 
device pumps the fluid across a semipermeable membrane into the blood-
stream. Suppose the membrane thickness is 500 nm and has a pore size of 
80 nm. What is the desired pump pressure to inject 0.9 perent NaCl solution 
at 3.6 mL/hr? Assume that the saline concentration in the blood is zero. In 
practice, the intravenous therapy is by transonic flow, as the saline concentra-
tion in the bloodstream is also 0.9 percent by weight. The pump pressure has 
to overcome the osmotic pressure and filter through the pores in accordance 
with Starling’s law.

41.0 Sieving coefficient of dialyzer filter. As discussed in Worked Example 3.6, 
hemodialysis machines are stationary hydromechanical devices. They are used 
to prolong life temporarily for patients with end-stage renal disease. A dialyzer 
filter made of cellulose acetate has a pore size of 125 nm. Creatinine and urea 
have to pass through the filter and phosphorous has to be retained. Calculate 
the sieving coefficient of the filter.

42.0 Glucose transport across a capillary. Calculate the transport rate of glucose 
across the capillary wall. Glucose is a water-soluble and lipid-insoluble solute. 
The mean pressure of blood in a capillary is 17.3 mmHg, and interstitial blood 
pressure is –3 mmHg. The colloid osmotic pressure inside the capillary and 
the interstitial fluid are 28 and 8 mmHg, respectively. The capillary length is 
900 µm and the inside diameter is 9 µm. It may be assumed that glucose is 
rapidly consumed by the cells upon transport. The average concentration of 
glucose in the plasma is 6 µmole/mL. The Staverman reflection coefficient can 
be taken as 0.424, and the pore radius can be taken as 15 nm. 

43.0 Concentration of protein. A small bag containing albumin protein solution 
is dropped into a bath containing water. The molecular weight of albumin is 
69,000 gm/mol. The bag wall is made up of a semipermeable membrane. What 
is the osmotic pressure developed? Will the bag increase or decrease in size?

44.0 “Pot hole” in a membrane. Suppose a “pot hole” forms in a dialysis mem-
brane used to filter toxic solutes from the bloodstream. What will happen to 
the expression for flow rate of fluid across the membrane?

45.0 Hydraulic conductance of ultrafiltration membrane. Ultrafiltration mem-
branes are used to clean a sanitation pond. For a clean water flow rate of 
1 mL/min/cm2 at 50 psi, calculate the hydraulic conductance. Should the 
thickness of the membrane be 500 nm? Assuming a porosity of 0.6, what is 
the pore radius?
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46.0 Combined hydrostatic and osmotic flow. In a given system, the solvent fil-
tration rate is in an opposite direction compared with solute diffusion across 
the membrane. Show that Ns, the transport rate of solute, would be zero when 
J = –Js.

47.0 Derive Darcy’s law permeability coefficient. Given that the Patlak, Goldstein 
et al. [14] account for the diffusion as follows:

   N C J D S
C
zs s e

s= − −
∂
∂

( )1 σ  (3.106)

Incorporate Darcy’s law by realizing that J = − ∂
∂
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z

in Eq. (3.97). At steady 
state, the principle of conservation of mass can be applied and:
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Transform the governing equation [Eq. (3.103)]. Write pressure in terms of 
concentration by using P = hρg, and derive an expression for the permeability 
κ. Express the permeability coefficient as a function of the Staverman reflection 
coefficient, viscosity of the solvent, diffusion coefficient of the solute, density 
of the solute, and density of the solvent. What is the physical significance of 
this derivation?

48.0 Permeability coefficient of membrane to solute. Derive an expression for the 
permeability coefficient of the membrane to the solute comprised of cylindrical 
pores. The population of pores is N, pore radius is rpore, membrane thickness is
tmem, and diffusion coefficient of solute in the pore. Consider either one dimen-
sion diffusion of solute in pores or apply Kedem-Katchalsky equations at 
J = 0, called the zero convection velocity condition.

49.0 What would be the hydraulic conductance of the membrane to the 
solvent described in Exercise 34.0?

50.0 Ultrafiltration of starch solution. An ultrafiltration membrane recently 
developed by Omega Membranes, Inc., rejects 90 percent of a 3.6 wt % of par-
tially hydrolyzed starch. The molecular weight of starch is 17,000 gm/mole. 
The permeability of the membrane to water is 0.63 m/day under a pressure 
drop of 4 atm. The volumetric flow is zero when 5 sq cm of membrane sepa-
rates 66 cc of starch solution from the same volume of pure water. The osmotic 
pressure difference is 80 percent of the original value in one week. Find the 
Darcy’s law permeability, solute permeability, and the reflection coefficient.

51.0 Removal of aluminum from blood. Aluminum (Al) has been found to 
be deposited in the bones of dialysis patients. In healthy individuals, Al is 
excreted through the kidneys. Patients accumulate Al in the body when the 
intake is greater than the excretion rate during dialysis treatment. The sources 
of Al are aluminum-hydroxide–based phosphate binders, drinking water and 
food storage containers made of Al, and a range of prescription drugs. In a 
modern, open-pore, high-flux dialyzer, only a reduction of 40 percent of the 
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Al level is achieved during passage through the dialyzer. The remaining Al 
settles in bones. This may cause bone cysts and osteomalacia. After five years 
of dialysis treatment, significant Al deposits in bones and tissues, causing the 
patient’s health to deteriorate. 

A complexing agent is used to react with Al and then filtered. The dosage 
of complexing agents should be in sufficient quantities to facilitate removal 
of Al ions. Ion-protein complexes are allowed to form. It is then filtered 
across a semipermeable membrane filter. The coagulant molecular weight 
is 20,000 gm/mole. What is the pore size of the semipermeable membrane 
for a rejection of 85 percent of Al coagulant by the membrane? 

52.0 Hemodialysis and ultrafiltration. Hemodialysis is an example of a dialy-
sis process that is assisted using ultrafiltration. A hemodialyzer is used to 
remove waste products such as urea, creatinine, and uric acid from blood. The 
patient’s blood is introduced into the hemodialyzer under the patient’s perfu-
sion pressure and flows past a semipermeable membrane. The blood solutes 
containing the wastes permeate through the membrane into the dialysate. 
The dialysate is a sterilized solution formulated to regulate solute permeation 
through the membrane. Osmosis can result in water from the dialysate flowing 
into the blood, causing edema. To avoid this, hemodialysis is used in conjunc-
tion with ultrafiltration to remove excess water. The dialysate is prepared using 
pure water obtained from the reverse osmosis process. Using Fig. 3.15, select 
a suitable membrane for RO to generate pure water for hemodialysis and 
ultrafiltration. Use the information given in Worked Example 3.6.

53.0  Apply the theory of Krogh and develop a mathematical model for 
diffusion of oxygen from blood capillaries into the tissue space along with 
simultaneous metabolic reactions in spherical coordinates. Is a numerical 
solution needed?

54.0 In the food processing industry, during the concentration of orange 
juice, water needs to be removed. A plastic bag containing orange juice at 
1 wt % sucrose concentration is dropped into a brine solution. Calculate the 
concentration of NaCl by % weight for hypotonic state, hypertonic state, and 
transonic state.

55.0 Islets of Langerhans are spheroidal aggregates of cells that are located 
in the pancreas and secrete hormones that are involved in glucose metabo-
lism [17]. Type 1 diabetes can be cured by transplanting isolated islets. Islets 
removed from the pancreas lose their internal vascularization and are depen-
dent on the diffusion of oxygen from the external environment and through 
the oxygen-consuming islet tissue to satisfy the metabolic requirements of the 
cells. Islets can be viewed as a suspension of tissue spheres. The diffusivity of 
oxygen is measured. The islets were isolated from male rats using a modified 
digestion and purification technique under a dissecting microscope and cul-
tured for a day in nonattacking polystyrene Petri dishes containing 5.6 mm of 
glucose, 50 U/mL penicillin, 50 µg/mL streptomycin, and 10 % newborn calf 
serum. The material was placed in an incubator at a temperature of oxygen 
uptake measurements. A known number of islets were placed in a tube that 
contained 45 mL of culture medium and 5 mL of air. The tubes were intermit-
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tently rotated to prevent settling and aggregation of the islets and to enhance 
oxygen transfer. The oxygen uptake chamber was equipped for measuring 
the oxygen-dependent lifetime of Pd-coproporphyrin phosphorescence to 
provide rapid and accurate measurements of oxygen concentration down to 
values as low as 0.05 µM. The chamber was a glass cuvette that contained a 
small Teflon-coated magnetic stirring bar that rotated at a speed of 1,200 rpm. 
A sample of 1,500 islets was loaded in the curette, which was filled with 
phosphate-buffered saline (pH 7.4) containing 0.35 gm/lit HEPES buffer, 
0.5 gm/lit bovine serum albumin, and 300 mg/L glucose supplemented with 
0.01 µM palladium coproporphyrin and 1-5 U/mL catalase. The cuvette 
was capped with a ground-glass stopper to eliminate the gas phase. The 
measured effective diffusivity of oxygen through the islets was found to 
be 2.31 E − 6 cm2/s. Take the diffusivity of oxygen in interstitial fluid to be 
4.1 E − 6 cm2/s. Should the diffusivity in the cells be 3.5 E − 6 cm2/s, calculate 
the volume fraction of the islets in the suspension.

56.0 Plasmapheresis is a blood separation procedure used to isolate blood 
cells from plasma. In hemofiltration, the “cut-off” for the passage of molecules 
through the membrane is 1,000 to 50,000 Dalton molecular weight and the 
cut-off in molecular weight of species in plasmapheresis is 3 million Dalton. A 
German manufacturer developed a polycarbonate membrane with an average 
pore diameter of 200 nm and a porosity of 0.45. The membrane thickness was 
about 10 µm. A polycarbonate polymer solution was cast onto a smooth surface 
and contacted with a gel medium, followed by precipitation of membrane and 
gelled layer to form the membrane. Calculate the hydraulic conductance of 
capillary flow.

57.0 What ought to be the pump pressure to inject 1.6 ml/hr of saline water 
at a 15 wt % NaCl into the human blood stream across a membrane of thickness 
50 nm. The membrane has a porous structure with a pore radius of 5 nm.

58.0 Healthy kidneys in the average adult person process about 125 ml/min 
or 180 liters of blood/day and filter out about 2 liters of waste product and extra 
water in the urine. The kidneys remove excess minerals and wastes and regu-
late the composition of such inorganic ions as sodium, phosphorous and chlo-
ride in the blood plasma at a nearly constant level. Blood urea nitrogen, BUN, 
a waste product produced in the liver as the end product of protein metabolism 
is removed from the blood by the kidneys in the Bowman’s capsule along with 
creatinine, a waste product of creatinine phosphate as energy storing molecule 
produced largely from muscle breakdown. When a person kidneys fail, harm-
ful wastes build up in their body, their blood pressure elevates and the blood 
retains fluid. The person will soon die unless their life is temporarily prolonged 
by either a kidney transplant their immune system attacks the foreign kidney 
requiring that the patient take immunosuppressant the rest of their life.

With hemodialysis the patient must be dialyzed three times a week: each 
treatment lasting from 3-4 hrs. Although the dialyzers are removing poisons 
there are side-effects caused primarily by the dialyzers themselves. Dialyzer 
filters are made of cellulose acetate, polysulfone or similar materials and steril-
ized with a solution of ethylene oxide, bleach or formaldehyde. Dialyzer filters 
have a membrane pore size of 90 nm. Find the radius of the solute that will be 
cut-off or rejected by the filter.
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59.0 The transport of glucose across the capillary wall is 5.0*10−5 µmole/hr. 
Glucose is a water soluble and lipid insoluble solute. The mean pressure of 
blood in capillary is 17.3 mm Hg, interstitial pressure of blood is −3 mm Hg. 
The colloid osmotic pressure inside the capillary and the interstitial fluid are 
28 and 8 mm Hg respectively. The capillary length is 1 mm and inside diameter 
is 10 µm. It can be assumed that all the glucose transported to the extra capil-
lary space is consumed rapidly by the cells. All plasma protein is retained by 
the capillary wall. Average concentration of glucose in plasma is 4 µmole/ml.
Filtration rate can be taken as 10.75 E − 6 µL/hr. Calculate the Staverman reflec-
tion coefficient and the pore radius through which the solute transfers.

60.0 Diseases usually have undesirable elevated levels of plasma solutes 
such as toxins, excessive antibodies and other metabolites. Plasma filtration 
has been used to separate undesirable solutes from blood plasma. Successful 
treatment of such diseases involves removal of undesirable plasma solutes 
from the blood plasma using membrane filtration. 

Cholesterol has been determined to be an important component of arte-
rial plague formation in atherosclerosis as well as in hypercholesterolemia. 
Cholesterol circulates in the blood linked to large protein molecules. One form 
of cholesterol carrying protein called low-density lipoprotein, LDL is known 
to promote atherosclerosis. About 2/3rd or more of the total blood cholesterol 
is transported in LDL. Another form, called high density lipoprotein, HDL, 
is known to the protective against the disease process. Therefore the selective 
removal of LDL and maintenance of HDL is important in the treatment of 
atherosclerosis and the therapeutic control of hypercholesterolemia.

The observed sieving coefficients for different solutes are given in the 
following table. What would be the pore diameter used in filtration.

Solute Sieving Coefficient at 25°C

Albumin 0.51

Fibrinogen 0.03

LDL Cholesterol 0.1

HDL Cholesterol 0.94
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CHAPTER 4
Rheology of Blood 

and Transport

Learning Objectives
• Better understand the Fahraeus-Lindqvist effect

• Develop marginal zone theory

• Explicit relation for plasma layer thickness

• Determine the manifestation of ballistic transport

• Discuss Casson’s equation, Bingham equation, and damped 
wave and momentum transfer equation

• Womersley flow

• Apply the Bernoulli equation to cardiovascular flow work 
done by the heart

Blood is a colloidal dispersion system. This fluid system consists of 
cells and plasma. Major proteins found in the blood are albumin, 
globulin, and fibrinogen. The three main cells present in the blood are 
red blood cells (RBCs), white blood cells (WBCs), and platelets. The 
RBCs, or erythrocytes, tend to occupy 95 percent of the cellular com-
ponent of the blood. They play a critical role in the transport of oxy-
gen through hemoglobin contained within the RBCs. The density of 
RBCs is higher than that of plasma. The RBC volume fraction is called 
the hemotocrit and typically varies between 40 and 50 wt %. The true 
hemotocrit H is about 96 percent of the measured hematocrit, Hct. 
RBCs can form stacked-coinlike structures called rouleaux. Rouleaux 
tend to clump together to form aggregates. They often break up in 
conditions of high shear or increased volumetric flow rate. About 
5 percent of the blood consists of platelets. They are responsible for 
blood coagulation and homeostasis. The leukocytes, or WBCs, form 
the basis of the cellular component of the immune system. The effect 
of blood platelets and WBCs on the flow characteristics of the blood 
can be expected to be low on account of their low volume fraction.

141
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4.1 Marginal Zone Theory
The marginal zone theory proposed by Haynes [1] can explain the 
Fahraeus-Lindquist effect. When the viscosity of blood was attempted 
to be measured using cylindrical tube viscometers, it was found 
that the viscosity measurements changed with changes in tube 
diameter! This happened at high shear rates. Viscosity measurements 
during tube flow at high shear rates greater than 100 sec−1 were found 
to depend on the diameter of the tube. When the diameter of the tube 
is less then 500 µm, the viscosity of the blood will decrease accord-
ingly, down to tube diameters of 4 to 6 µm. 

This effect is attributed to the existence of a cell-free layer adja-
cent to the tube wall referred to as the plasma skimming layer. The 
occurrence of layered blood flow in capillaries and the existence of a 
cell-free layer in flowing blood have been confirmed using high-
speed video photography. Simultaneously, an axial accumulation of 
the cells near the center of the tube results in a core layer—an expres-
sion for the apparent viscosity in terms of plasma layer thickness, 
tube diameter, and the hemotocrit in the marginal zone theory. 

The blood flow within a tube or some other vessel is divided into 
two regions: a central core that contains cells with a viscosity of µc and 
a cell-free plasma peripheral layer with thickness δ and a viscosity of 
plasma denoted by µp (Fig. 4.1) In each region, the flow is considered 
Newtonian and at steady state. For the core region, the governing 
equation neglecting the ballistic effects can be written as [2]:

 τ µrz c
z
c

L
v
r

= = −
∂
∂

∆Pr
2

 (4.1)

The boundary conditions can be written as:

 r R rz rz= − =δ τ τ, core plasma  (4.2)

 r
v
r

z
c

=
∂
∂

=0 0,  (4.3)

Core layer

δR Plasma layer

FIGURE 4.1 Layered blood fl ow in circular conduits.
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The first boundary condition stems from the continuity of the trans-
fer of momentum across the interface between the core and plasma 
layers. The second boundary condition derives from the realization 
that axial velocity reaches a maximum value at the center of the tube. 
This ought to be the case based on symmetry arguments. In a similar 
fashion, for the plasma layer, the governing equation and boundary 
conditions can be written as:

 τ µrz p
z
p

L
v
r

plasma = = −
∂
∂

∆Pr
2

 (4.4)

The boundary conditions of the blood flow in the plasma layer can be 
written as:

 r R vz
p= =, 0  (4.5)

 r R v vz
p

z
c= − =δ,  (4.6)

At the wall, the fluid is considered to be at rest and at zero velocity. At 
the interface of the plasma and core layers, the velocity needs to be the 
same from continuity considerations, without any accumulation. Equa-
tions (4.1) and (4.4) can be integrated and the integration constants 
solved for using the previously mentioned four boundary conditions. 
The discharge rate of the plasma and core layers can be found to be [3]:
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The total discharge rate of the blood is equal to the sum of the flow 
rates in the core and plasma regions, and is given by:
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4.2 Slit Limit of Layered Flow
The blood flow within a rectangular conduit, as used in a dialysis 
machine, is divided into two regions: a central core that contains cells 
with a viscosity of µc and a cell-free plasma peripheral layer with 
thickness δ and a viscosity of plasma denoted by µp (Fig. 4.2). In each 
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region, the flow is considered to be Newtonian and at a steady state. 
For the core region, the governing equation neglecting the ballistic 
effects can be written as:

 τ µxy c
z
cPy

L
v
y

= = −
∂
∂

∆
2

 (4.10)

The boundary conditions can be written as:

 y R xy xy= − =δ τ τ, core plasma  (4.11)

 y
v
y

z
c

=
∂
∂

=0 0,  (4.12)

The first boundary condition stems from the continuity of the trans-
fer of momentum across the interface between the core and plasma 
layers. The second boundary condition is derived from the realiza-
tion that axial velocity reaches a maximum speed at the center of the 
tube. This ought to be the case based on symmetry considerations. In 
a similar fashion, for the plasma layer, the governing equation and 
boundary conditions can be written as:

  τ µxy p
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pPy
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∂
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2

 (4.13)

The boundary conditions of the blood flow in the plasma layer can be 
written as:

  y B vy
p= =, 0   (4.14)

  y B v vz
p

z
c= − =δ,   (4.15)

At the wall, the fluid is considered to be at rest and at zero velocity. At 
the interface of the plasma and core layers, the velocity needs to be 
the same from continuity considerations, without any accumulation. 

FIGURE 4.2 Plasma layer and core layer of blood fl owing across a rectangular 
slit of width 2B, length L, and plasma layer thickness δ.
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Equations (4.10) and (4.13) can be integrated and the integration 
constants solved for using the previously mentioned four boundary 
conditions. The fluid velocity of the plasma and core layers can be 
found to be:
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The total discharge rate of the blood is equal to the sum of the flow 
rates in the core and plasma regions, and is given by:
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4.3 Explicit Expression for Plasma Layer Thickness
Plasma layer thickness δ can be obtained by fitting apparent viscos-
ity data and using Eq. (4.9) or Eq. (4.18), depending on whether the 
conduit is circular or rectangular. The core hemotocrit variation as a 
function of the tube diameter or slit width can also be obtained. A 
relation between the core hematocrit, Hc, and the feed hematocrit, 
HF, and the thickness of the plasma layer is needed. An equation is 
needed to describe the dependence of the blood viscosity on the 
hematocrit since the value of Hc will be larger than HF because of the 
axial accumulation of the RBCs. This relative increase in the core 
hematocrit will make the equation in the core have a higher viscos-
ity than the blood in the feed. The following equation developed by 
Charm and Kurland [4] may be used to express the dependence of 
the viscosity of the blood at high shear rates on the hematocrit and 
temperature:
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where the temperature is in kelvins. These equations are valid to a 
hematocrit of 0.6 with an accuracy of 10 percent. The viscosity of the 
blood µ and the core layer hematocrit, Hc, can be related as:

 µ µ
α

=
−c

c cH
1

1( )
  (4.22)

defining ′ = −σ δ1 ( )/R . 
The solution for the plasma layer thickness δ is implicit and 

requires solving for two equations and two unknowns:
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The plasma layer thickness σ is implicit in Eqs. (4.23) and (4.24). An 
explicit expression for σ is desirable. This was developed by Sharma 
[5]. Equation (4.21) was examined using a Microsoft Excel spread-
sheet (Fig. 4.3). 

Upon examination of Eq. (4.21), it was found that the temperature 
parameter used to describe the variation of viscosity of blood varied 
linearly with H when checked against αH at a given temperature. 
This is shown in Fig. 4.3 at 300 K. This can be expressed mathemati-
cally for the core layer and plasma layer respectively as:

  αc c cH mH c= +   (4.25)

  αT T TH mH c= +   (4.26)
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FIGURE 4.3 Variation of temperature parameter αH with hematocrit H.
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The slope and intercept may be obtained by the least squares regres-
sion line between αH and H, as shown in Fig. 4.3 m and c would vary 
with the temperature. It is interesting that m and c are independent of 
the layer—that is, the core or plasma layer or the feed! 

A material balance can be written over the two phases in the tube, 
and it can be realized that:

 H HT c= σ2   (4.27)

Equation (4.25) is divided with Eq. (4.26):
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It can be seen from Eq. (4.28) that:
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It can also be seen upon minor rearrangement that:
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Combining Eqs. (4.30) and (4.31):
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Let σ2 = s, and it can be seen that Eq. (4.32) is quadratic in s:
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A solution to Eq. (4.33) can readily be obtained. Thus, an explicit 
expression for the plasma layer thickness in terms of the tube hema-
tocrit has been developed. The tube hematocrit, HT, can be read from 
the linear regression line between αH and H at a given temperature 
once the apparent viscosity of the tube is known. 
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S. No. Fluid S. No. Fluid

1 Acrylic rubber/polyethyl 
acrylate

24 Metal oxides/water

2 Applesauce 25 Orange juice concentrate

3 Blood 26 Paint

4 Borite/water 27 Plastic rocket propellant

5 Butter 28 Polymer latex/water

6 Carbon black/oil 29 Printing ink

7 Cement raw mix 30 PVC/organic liquids

8 Cement/clay/water 31 Rubber/benzene

9 Chemical-mechanical 
polishing

32 Sewage sludge

10 Clay methanol 33 Silica/Newtonian liquid

11 Clay water 34 Styrene-co-DVB/PS/DEP

12 Coal/Newtonian liquid 35 Sulfur/water

13 Drilling mud 36 Sweet potato puree

14 Explosives—Water/gelling 
agent and oxidizer

37 Thorium oxide/methanol

15 Fermentation broth 38 Tomato puree

16 Glass/glycerol 39 Tomato sauce

17 Glass/polymer 40 Toothpaste

18 Graphite/water 41 Tritolyl phosphate/
castor oil

19 Grease 42 Water/animal wastes—
fertilizer

20 Inorganic solid/polymer/
solvent

43 Water/bentonite

21 Iron oxide/ethylene glycol 44 Water/benzene

22 Mayonnaise 45 Wood pulp/water

23 Meat extract 46 Xanthan gum/water

TABLE 4.1 List of Viscoplastic Fluids

4.4 Constitutive Relations—Yield Stress Myth
As was briefly discussed in Chap. 1, several equations have been pro-
posed for use as constitutive relations to describe blood rheology. 
One of them is the Bingham yield stress fluid [6].

Some examples of fluids whose rheology has been described 
using the Bingham model are listed in Table 4.1 [7].
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Most of the examples listed in Table 4.1 are slurries, pastes, and 
suspensions. The Bingham equation can be written as shown in 
Fig. 1.3 as:

  τ τ µxy
xv

y
= ± −

∂
∂0 0 , for | |τ τxy ≥ 0   (4.34)

where τ0 is the yield stress and µ0 is the plastic viscosity. For values of 
shear stress less than the yield stress, the velocity gradient or shear 
rate would be zero. The Bingham model is a special case of a model 
suggest by Schwedoff many years ago:
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As discussed in Chap. 1, experimental evidence presented by Barnes 
and Walters from constant stress rheometers indicate that the yield 
stress concept is an idealization. Given accurate measurements, no 
yield stress exists. The non-Newtonian power law models are ade-
quate to describe the rheology of the “Bingham” fluids. Yield stress is 
a British standard that represents the stress below which the sub-
stance behaves as an elastic solid and above which it is a liquid with 
a plastic viscosity. With the advent of better instrumentation, Eq. (4.34) 
is only an idealization that is valid at high shear rates. The yield stress 
was extrapolated and never directly measured. A range of constant 
stress instruments was developed as the Deer rheometer, which 
allows for accurate stress measurements to be made at shear rates as 
low as 1 E-6 sec−1. Conventional rheometers, such as the Weissenberg 
rheogoniometer, can provide viscosity measurements above shear 
rates of 0.01 sec−1. They found that lower the specifications of the 
instrument of shear rate lower were the measured yield stress for the 
same fluid at the same temperature and pressure!

Hartnett and Hu, as discussed in Chap. 1, argue that yield stress 
is an engineering reality. Nylon and Teflon balls were placed in carbo-
pol solutions to study the yield stress myth. Photographs obtained 
every week for several months after 14 weeks revealed that Teflon 
ball A dropped a distance equal to approximately half the ball diam-
eter was interpreted as “no appreciable movement.” Reviewers called 
attention to the Harntett and Hu’s reference which predicts that a 
sphere will fall in a viscoplastic medium only for values of dimen-
sionless parameter 1 5 0. ( )τ ρ ρ/ s g−  less than 0.143, where τ0 is the 
yield stress. Since the Teflon ball moved in the carbopol solution, 
the value of the yield stress must be less than 107 dynes/cm2. With the 
emergence of nanotechnology, if the yield stress of fluids is low, they 
ought to be measured directly. Higher values inferred by extrapola-
tion may not be sufficient. Should the non-Newtonian models be bet-
ter suited for the Bingham fluids, those ought to be used. 
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This kind of rationale may be applicable to the Casson and 
Herschel-Buckley models discussed in the literature to describe 
blood flow.

4.5 Generalized Newton’s Law of Viscosity
Newton’s law of viscosity relates the shear stress to the shear rate 
with the constant of proportionality, the viscosity of the fluid, which 
offers resistance to flow:

 τ µxy
xv

y
= −

∂
∂

  (4.36)

where τyx is the shear stress, ∂v/∂y is the velocity gradient, and µ is the 
absolute viscosity. The negative sign in Eq. (4.1) is written to normal-
ize the momentum transfer direction. Consider a plate at y = l, pulled 
at a constant velocity V atop a stationary liquid. The layer of the 
liquid adjacent to the plate is also subjected to motion. The layer 
adjoining the bottom surface is stationary. The velocity gradient can 
be calculated as V/l. This, multiplied by the absolute viscosity, gives 
the shear stress in magnitude. If the force acting on the plate is F and 
the area of the plate is A, then:

  τ µ ρ
xy

F
A

V
l

= = −   (4.37)

The right-hand side of Eq. (4.37) represents the rate of momentum 
transfer. γ is the kinematic viscosity with units of m2/s. The direction of 
momentum transfer is in the downward direction, from atop the liquid 
towards the origin. Hence, in order to render F/A = τ positive, the neg-
ative sign is added to Eq. (4.1). Consequently, τ may be viewed as the 
momentum flux in the y direction. In addition the momentum flux and 
velocity gradient must have opposite signs to stay within the bounds 
of the second law of thermodynamics. Momentum transfers from the 
high velocity region to a low velocity region by molecular transfer, and 
the other direction is not allowed. The shear stress expression, when 
combined with the equation of momentum, results in a PDE that can 
be solved and the solution expressed as an infinite Fourier series. The 
singularity in Fourier series representation can be addressed by the use 
of the damped wave momentum and relaxation equation: 

  τ µ τ
τ

xy
x

r
xyv

y t
= −

∂
∂

−
∂
∂

  (4.38)

The damped wave momentum transfer and relaxation equation can arise 
from the accumulation term in the kinetic theory of gases and deriva-
tion of physical properties of monatomic gases from molecular 
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properties. From a molecular view, the viscosity can be derived and 
the momentum transport mechanism can be illustrated [2]. This deri-
vation is revisited here. Consider molecules to be rigid, nonattracting 
spheres of mass m and diameter d. The gas is assumed to be at rest, and 
the molecular motion is considered. The following results of kinetic 
theory for a rigid sphere dilute gas in which temperature, pressure, 
and velocity gradients are small are used:

 Mean molecular speed <u> = 
8κ
π

T
m

 (4.39)

Wall collision frequency per unit area: 

 Z = ¼ n′<u>  (4.40)

 Mean free path λ
π

=
′

1

2 2d n
  (4.41)

The molecules reaching any plane in the gas have, on average, had 
their last collision at a distance a from the plane where:

 a = 
2
3

λ  (4.42)

In order to determine the viscosity of a dilute monatomic gas, con-
sider the gas when it flows parallel to the x axis with a velocity 
gradient ∂vx/∂z. Assuming the relations for the mean free path of 
the molecule, wall collision frequency, distance to collision, and 
mean velocity of the molecule are good during the nonequilibrium 
conditions, the flux of momentum in the x direction across any plane 
z is found by summing the x momentum of the molecules that cross 
in the positive y direction and subtracting the x momentum of those 
that cross in the opposite direction. Thus:

 τzx = Z mvx�z – a – Z mvx�z + a (4.43)

It may be assumed that the velocity profile is essentially linear for a 
distance of several mean free paths. Molecules have a velocity repre-
sentative of their last collision. Accordingly:

 vx�z – a = vx�z – 
2
3
λ ∂

∂
v
z

x  (4.44)

 vx�z + a = vx�z + 
2
3
λ ∂

∂
v
z

x  (4.45)

Substituting Eqs. (4.9) and (4.10) into Eq. (4.8):

 τzx = –1/3n m <u> λ 
∂
∂
v
z
x   (4.46)
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Equation (4.46) corresponds to Newton’s law of viscosity, with the 
viscosity given by:

 µ = 1/3 ρ <u> λ  (4.47)

Maxwell obtained this relation in 1860. It can be seen that prior to 
writing Eq. (4.8), the accumulation of momentum was neglected. This 
may be a good assumption at steady state, but not at short-time tran-
sient events. Thus, considering a time increment t∗, the momentum is 
the momentum of molecules in minus momentum of molecules out 
minus the accumulation of momentum in the incremental volume 
under consideration near the surface. The accumulation of momen-
tum may be written in terms of:

 τzx = Z mvx�z − a − Z mvx�z + a − t∗∂/∂t{Z mvx�z − a − Z mvx�z + a} (4.48)

where t∗ is some characteristic time constant. To simplify matters, 
Eq. (4.13) is used in Eq. (4.8) to give:

  τ µ
τ

zx
x zxv

z
t

t
= −

∂
∂

−
∂
∂

∗   (4.49)

4.5.1 Flow Near a Horizontal Wall Suddenly Set in Motion
Consider a fluid with constant density ρ and constant viscosity µ atop 
a horizontal plate. The fluid medium is assumed to be in a contin-
uum. In most cases, at the macroscopic scale, the molecular structure 
of the fluid is not taken into account. Mass is concentrated in the 
nuclei of atoms and is far from uniformly distributed over the vol-
ume occupied by the liquid. Nonuniform distribution can be seen in 
other variables, such as composition and velocity, when viewed on a 
microscopic scale. The continuum supposition is that the behavior of 
fluids is the same as if they were perfectly continuous in structure 
and physical quantities such as mass and momentum associated with 
matter contained within a given volume will be regarded as being 
spread uniformly over that volume, instead of being concentrated in 
a small fraction of it. Atop the horizontal plate is a semi-infinite 
medium of fluid. The fluid is stationary at time zero. For times greater 
than zero, the plate is set at a constant velocity V. The velocity in the 
z direction as a function of space and time is of interest. An error func-
tion results when Newton’s law of viscosity is used for the fluid. The 
spatiotemporal velocity of the fluid is obtained from the damped 
wave momentum transfer and relaxation equation. From the equation 
of motion, neglecting convection effects:

 τ γmom

∂
∂

+
∂
∂

=
∂
∂

−
2

2

2

2 2
v
t

v
t

v
z

gx x x   (4.50)
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Let  u = vx/V; τ = t/τmom; Z = z/sqrt(γ τmom) (4.51)

The one time and two space conditions are: 

 τ = 0, u = 0 (4.52)

 Z = 0, u = 1 (4.53)

 Z = ∞, u = 0 (4.54)

 
∂
∂

+ ∂
∂

= ∂
∂

−
2

2

2

2 2
u u u

Zτ τ
Acc   (4.55)

where Acc = (gτmom/V) is a dimensionless number that represents the 
ratio of gravity forces to the ballistic “force” that corrects for the accu-
mulation of momentum and can be called the accumulation number. 

Sharma [8] has developed a closed-form analytical solution to the 
governing equation presented in Eq. (4.55) by the method of relativ-
istic transformation. The solution is:

For τ > Z:

  u
I Z

I
=

−






0
2 2

0

1 2

2

( / )τ
τ

  (4.56)
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For Z > τ:

  u
J Z

I
=

−






0
2 2

0

1 2

2

( )/ τ
τ

  (4.58)
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τ
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zx
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e J
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4

mom
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



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

−
  (4.59)

The solution exhibits some space-time symmetry with respect to the neg-
ative values as well as with each other. It can be seen that for a plate at 
some point in the interior of the semi-infinite medium, the shear force 
exerted by the fluid on the plate is bifurcated. In fact, it has four different 
regimes. The first is the thermal inertia regime. In this regime there is no 
action of the fluid on the plate. In the second regime, the shear stress is 
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given by Eq. (4.94), which is a product of the decaying exponential and 
a Bessel composite function of the first kind and zeroth order. The third 
regime after the wave front is represented by Eq. (4.93), and is a prod-
uct of a modified composite Bessel function of the first and zeroth 
orders. The momentum inertia can be calculated as:

 τinertia = sqrt(Zp
2 − 23.1323)  (4.60)

The fourth regime is the wave front where

 u = e
−

τ
2  = e

Z
−

2  (4.61)

In the first regime, the shear force may be negative should the Bessel 
function’s negative sign have meaning. This could be the first few 
ripples that the plate sees from the disturbance from the surface. The 
shear force can be in the opposite direction, and eventually, after 
the thermal time lag has elapsed, the force is in the right direction. 
The shear stress undergoes a maxima. The second regime is a steep 
rise (Fig. 4.4). The first regime is an inertial time of up to 3.597 in 
dimensionless quantities. The third regime is a tailed fall. The curva-
ture changes from convex to concave. There is an inflection point in 
the third regime. There is a skew to the right, and the kurtosis may be 
compared to the Maxwell distribution.

On examining Eq. (4.92), it can be seen that when Z > τ, the expres-
sion for the dimensionless velocity becomes a Bessel composite func-
tion. This is because when Z > τ, the argument in the modified Bessel 
composite function within the square root sign becomes negative. 
The square root of −1 is i. Furthermore:

 J0(x) = I0(ix) (4.62)
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Hence, Eq. (4.92) becomes, for Z > τ:

 u
J Z

I
=

−






0
2 2

0

1 2

2

( )/ τ
τ

 (4.63)

It is generally realized in analysis such as in boundary layer the-
ory that after a finite region from the moving plate the fluid will be at 
the initial state or will have zero velocity. The first zero of the Bessel 
function occurs at 2.4048. Beyond that, the velocity predicted will be 
negative. Although the denominator in Eq. (4.63) will dampen the 
oscillations, why would the velocity of fluid be negative after a said 
distance from the moving flat plate at the boundary for a given time 
instant under consideration? Since it is damped oscillatory, the effect 
of the surface disturbance for distances further than sqrt(23.13 + τ2) 
acts differently on account of the ballistic transport. It can be taken as 
zero from an analogy from heat wave conduction and relaxation or 
mass wave diffusion and relaxation. If it is taken as zero, the bound-
ary layer thickness for a given instant in time greater than zero is 
given by:

 δ(τ) = sqrt(23.13 + τ2) (4.64)

Beyond this distance, the fluid velocity can be taken to be zero from 
the analogy from heat or mass diffusion and relaxation.

The model prediction of Eq. (4.63) gives negative values for veloc-
ity beyond the boundary layer thickness. Velocity is a vector. In the 
momentum balance equation from which the solution is derived, the 
velocity is preserved through the analysis. Hence, a negative velocity 
could mean that the velocity of the fluid is in the opposite direction 
compared with the velocity of the flat plate. Up to the first root of the 
Bessel function, the second regime for the dimensionless velocity 
profile holds good. For a given instant of time, for values of Z smaller 
than the instant of dimensionless time, the third regime, or the modi-
fied Bessel composite function solution is applicable. The negative 
values for the velocity can be due to the ballistic transport mecha-
nism. The disturbance swims back from the region beyond the bound-
ary layer. This is a type of ripple effect and backflow phenomena that 
needs to be borne out by experiment. It can be seen in graphical form 
as follows. For large values of the argument, the Bessel function can 
be approximated with a cosinuous function as follows:

 u = sqrt(4/(π(Z2 − τ2)1/2)) cos[½(Z2 − τ2)1/2 − π/4]/(I0(τ/2) (4.65)

In Figs. 4.5 and 4.6 are plotted the dimensionless velocity for a given 
instant in time (τ = 5) as a function of dimensionless distance. In 
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Fig. 4.4, it can be seen that close to the flat plate the dimensionless 
velocity obeys Eq. (4.98) and is valid for dimensionless distances 
less than the instant in time under consideration. This is given by 
the modified composite Bessel spatiotemporal function of the first 
kind and zeroth order divided by the modified Bessel function in 
time of the first kind and first order. For dimensionless distances 
greater than the time instant under consideration, the Bessel com-
posite spatiotemporal function of the first kind and zeroth order 
divided by the modified Bessel function in time of the first kind and 
zeroth order gives the dimensionless velocity profile. Beyond the 
first zero of the Bessel function, the solution predicts damped oscil-
lations for the dimensionless velocity. Up to the first zero of the Bes-
sel function, the velocity of the fluid is positive. In this case, this 
value can be calculated to be sqrt(22.21 + 16) = 6.18. Beyond 6.18, the 
velocity is in the negative direction. This is the subcritical damped 
oscillatory regime, and it needs to be verified by experiment. The 
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ballistic transport mechanism gives credence to some wave motion 
for certain conditions. This was seen in model predictions in the 
heat and mass transfer sections as well. However, for the fluid prob-
lem, it manifests as a vector, and a minus sign indicates a reversal of 
flow in the direction opposite to the movement of the flat plate.

4.5.2 Transient Vertical Darcy Flow
As discussed in earlier sections, during the study of emptying a pipe, 
a filled tube with porous packing was considered. Darcy’s law can be 
used to relate the pressure gradient to the flow velocity. The solution 
for the resulting governing equation and for the vertical component 
of the velocity of the fluid is obtained.

The equation of motion considering the ballistic transport effects for 
the vertical component of the velocity of the fluid can be written as:
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From Darcy’s law:
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where κ is the permeability of the porous medium. Equation (4.66) 
becomes:
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It can be assumed that during the drainage the velocity of liquid in the 
tube, vz, is independent of z and is only a function of time. Or this can 
be arrived at by writing the equation of continuity. This is true for wide 
reservoirs where the height in the container does not change apprecia-
bly. Thus, at constant density, the equation of momentum becomes:
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Let  τ = 
t

τmom
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Let Pb = 
γ τ

κ
mom   

Pb is a sort of a permeability number that gives the ratio of the kine-
matic viscosity times the relaxation time of momentum divided by 
the Darcy permeability of the medium. It may represent the ratio of 
viscous forces and ballistic transport “forces” to the permeability 
forces. 
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 (4.72)
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The solution to Eq. (4.73), which is a second-order ODE with constant 
coefficients, can be written as:

 u c e c ePb= +−
1 2

τ τ   (4.74)

From the constraint at infinite time—that is, u = 0, c2 can be seen to be 
zero.

The initial condition can be written assuming a pseudo-steady 
state and using Torricelli’s theorem:

 2 1gH c=  (4.75)

Thus:

 u gHe= −2 τ   (4.76)

4.5.3 Transient Vertical Darcy Flow under Reduced Gravity
In Sec. 4.5.2, during the study of emptying a pipe filled with liquid, a 
tube with porous packing was considered, and the apparatus was 
taken in a Space Shuttle and into the galaxy. Darcy’s law is then used 
to relate the pressure gradient with the flow velocity as follows. The 
resulting governing equation is considered and a solution is obtained 
for the vertical component of the velocity of the fluid.

The equation of motion considering the ballistic transport effects 
for the vertical component of the velocity of the fluid can be given by 
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Eq. (4.66). From Darcy’s law in a new gravitational field in the Space 
Shuttle in the galaxy:
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where κ is the permeability of the porous medium. After neglecting 
the pressure changes with time, Eq. (4.77) becomes:
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It can be assumed that during the drainage, the velocity of liquid in the 
tube, vz, is independent of z and is only a function of time. Or this can 
be arrived at by writing the equation of continuity. This is true for wide 
reservoirs where the height in the container does not change apprecia-
bly. Thus, at constant density, the equation of momentum becomes:
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Let τ = t/τmom
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where Pb = γ τ κmom/ . 
Pb is a sort of a permeability number that gives the ratio of the 

kinematic viscosity times the relaxation time of momentum divided 
by the Darcy permeability of the medium. It may represent the ratio 
of viscous forces and ballistic transport “forces” to the permeability 
forces. Let u v gz= / momτ
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Equation (4.81) is a second-order ODE with constant coefficients and 
is homogeneous. The solution to Eq. (4.81) may be written as:
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From the constraint at infinite time, that is, uexp(τ/2) = 0, c2 can be 
seen to be zero. The initial condition can be written assuming a 
pseudo-steady state and using Torricelli’s theorem:

  2 1gH c=  

  u gH e Pb= − −2 1 4( )τ   (4.83)
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It can be seen that for small values of the permeability number, that 
is, when Pb > 1/4:

 u gHe
Pb= −
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The positive gradient of pressure dependence of velocity of flow 
through a porous medium can happen in packings in which the chan-
nel size changes on account of pressure. When the channel size 
decreases with increased pressure, the flow velocity through the 
porous medium also will decrease. The dimensionless velocity as a 
function of dimensionless time is shown in Fig. 4.7, and subcritical 
damped oscillations can be seen. After a time, the velocity changes 
direction on account of the added consideration of the ballistic trans-
port, which takes into consideration the accumulation of momentum 
in the momentum flux expression.

4.5.4  Shear Flow between Two Plates Moving in 
Opposite Directions at Constant Velocity with 
Separation Distance 2a

Consider two flat plates (Fig. 4.8) pulled in opposite directions at a 
constant velocity V with confined fluid. Let the separation distance 
between the plates be 2a. The initial velocity of the fluid is zero. Define 
the axes in a fashion so that the plate velocity is in the ± x direction 
and the shear stress acts in and imparts the momentum transfer in the 
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FIGURE 4.7 Subcritical damped oscillations with positive permeability.
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z direction. The governing equation for the velocity for the fluid at 
constant density and viscosity, neglecting pressure and gravity effects 
in one dimension, including the ballistic transport term for correcting 
for the accumulation of momentum, can be written as:

 τ γr
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Let τ = t/τr; Z = z/sqrt(γ τr); u = (vx − V)/V  (4.86)

The governing equation in the dimensionless form is then:
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The solution can be assumed to consist of a steady-state part and a 
transient part, that is, u = ut + uss. The steady-state part and boundary 
conditions can be selected in such a fashion that the transient portion 
becomes homogeneous:
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 (4.88)

The boundary conditions are:

 Z = 0, u = −1 from symmetry  (4.89)

 Z = 
a

rγ τ
, u = 0  (4.90)

 Z = − a

rγ τ
, u = −2 (4.91)
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FIGURE 4.8 Two plates pulled at constant velocity in opposite directions with 
confi ned fl uids.
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Solving for Eq. (4.88):

 uss = c1 Z + c2 (4.92)

From the boundary condition given in Eq. (4.89), c2 can be seen to be 
−1. From the boundary condition given in Eq. (4.90), c1 can be seen to 
be 1/Za. Equation (4.91) is obeyed by Eq. (4.92). Thus:

 uss = 
Z
Za

− 1  (4.93)

The equation and time and space conditions for the transient portion 
of the solution can be written as:

 
∂
∂

+ ∂
∂

= ∂
∂

u u u
Z

t t t

τ τ

2

2

2

2  (4.94)

The initial condition: τ = 0, ut = −1  (4.95)

The fi nal condition: τ = ∞, ut = 0 (4.96)

The boundary conditions are now homogeneous after the expression 
of the result as a sum of steady-state and transient parts, and are:

 ut = 0, Z = 0  (4.97)

 Z = ± Za, u
t = 0 (4.98)

The solution is obtained by the method of separation of variables. 
Initially, the damping term is eliminated using a substitution such as 
ut = W exp(−nτ). Equation (4.94) then becomes at n = ½: 

 
∂
∂

= ∂
∂

−
2

2

2

2 4
W

X
W W
τ

 (4.99)

Equation (4.99) also can be solved by the method of separation of 
variables: 

Let W = g(τ) φ (Z)  (4.100)

Equation (4.99) becomes: 

 g(τ) φ″ (Z) = − g(τ) φ (Z)/4 + g″(τ) φ(Z)  (4.101)

 
′′ = − + ′′ = −φ

φ
τ
τ

λ( )
( )

( )
( )

Z
Z

g
g n

1
4

2   (4.102)
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The space domain solution is:

 φ(Z) = c1 sin (λnZ) + c2 cos (λnZ)  (4.103)

From the boundary conditions:

 X = 0, u = 0, it can be seen that c2 = 0 (4.104)

 φ(Z) = c1 sin (λnZ)  (4.105)

From the boundary condition given by Eq. (4.98): 

 0 = c1 sin (λnZa)  (4.106)

 nπ = λnZa (4.107)

 λn = 
n

a
rπ γ τ

 (4.108)

 a
nr

n

=
γ τ π

λ
( )

 (4.109)

Since a is a nonzero quantity, n can take on the values 1, 2, 3, . . . . The 
time domain solution would be:

  g c e c en n= +
− − −

3

1
4

4

1
4

2 2τ λ τ λ
 (4.110)

From the final condition given by Eq. (4.96), not only does the tran-
sient velocity have to decay out to zero, but also the wave velocity. 
Because W = ut exp(τ/2), at time infinity, the transient velocity is zero 
and any number multiplied by zero is zero even if it is infinity, W = 0 
at the final condition. Applying this condition in the solution in Eq. (4.110), 
it can be seen that c3 = 0. Thus:

 u
n

e e Zt n
n

n= − − − − − −∞

∑ 2
1 1 2

1
4

1

2

π
λ

τ τ λ
( ( ) ) sin( )   (4.111)

λn is described by Eq. (4.108). Cn can be derived using the orthogonal-
ity property and can be shown to be −( )2/nπ (1 − (−1)n). It can be seen 
that the model solutions given by Eq. (4.111) is bifurcated, that is, the 
characteristics of the function change considerably when a parameter 
such as the separation distance of the plates is varied. Here, a decay-
ing exponential becomes an exponentially damped cosine function. 
This is referred to as subcritical damped oscillatory behavior. 

For a < 2π sqrt(γ τr), all the terms in the infinite series will pulsate. 
This is when the argument within the square root sign in the expo-
nentiated time domain expression becomes negative and the result 
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becomes imaginary. Using De Moivre’s theorem and taking a real 
part for the small width of the slab: 

  u c e Zt
n n n= −











−
∞

∑
τ

τ λ λ2 2

1

1
4

cos sin( )   (4.112)

At Z = Za/2, the dimensionless velocity:

  u c et
n n= −











−∞

∑
τ

τ λ2 2

1

1
4

cos  (4.113)

This is shown in Figs. 4.9 and 4.10. The maximum velocity can be 
expected to undergo subcritical damped oscillations. The oscillations 
are overdamped by the decaying exponential in terms of time.

4.5.5  Vertical Flow between Plates Moving in 
Opposite Directions

The governing equation for the fluid between two moving plates in 
the opposite direction (Fig. 4.11) is obtained after considering the 
additional forces of pressure and gravity. A permeability law between 
pressure gradient and flow velocity where the velocity increases as 
the pressure gradient becomes lower is assumed. This can be seen 
during elutriation in gas-solid flow and pneumatic conveying under 
certain conditions. The dimensionless velocity variation of the fluid 
spatiotemporally is discussed. The two plates are moved in opposite 
directions along the z axis. Thus, the shear stress or momentum trans-
fer is in the x direction, the horizontal axis. Let the separation between 
the two vertical plates be given by 2a.
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FIGURE 4.9 Subcritical damped oscillations in a fl uid between two moving 
plates in opposite direction Z = a/2(γ τr).
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The governing equation, including the pressure gradient and 
gravity forces, and after writing the pressure gradient in terms of the 
velocity of flow and neglecting the changes in pressure gradient with 
time, can be written as:
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∂
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τ τ
γ τ
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γmom  (4.114)

Let τ
τ γτ

γτ
κ

= = =
−

=t
Z

z
u

v V
V

Pb
r r

z; ;
( )

; mom   (4.115)
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FIGURE 4.10 Subcritical damped oscillations in a fl uid between two moving 
plates in opposite direction Z = −a/2sqrt(γ τmom).
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FIGURE 4.11 Fluid in between two vertical plates moving in opposite 
directions with constant velocity.
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The governing equation in the dimensionless form is then:

 
∂
∂

+ ∂
∂

+ + = ∂
∂

2

2

2

2

u u
Pb u Pb

u
Zτ τ

( )  (4.116)

The solution can be assumed to consist of a steady-state part and a 
transient part, that is, u = ut + uss. The steady-state part and boundary 
conditions can be selected in such a fashion that the transient portion 
becomes homogeneous:

 Pb u Pb
u
Z

ss
ss

( ) + + ∂
∂

=
2

2 0  (4.117)

The boundary conditions are:

 Z = 0, u = −1 from symmetry  (4.118) 

Z
R

u
r

ss= =
γ τ

, 0  (4.119)

 Z = − R

rγ τ
, uss = −2 (4.120)

Solving for Eq. (4.117):

 uss = c1 sin (Pb1/2Z) + c2 cos (Pb1/2Z) + c3 (4.121)

From the boundary condition given in Eq. (4.118): 

 c2 + c3 = −1 (4.122)

 0 = c1 sin (Pb ZR) + c2 (cos (Pb1/2ZR) − 1) + 1 (4.123)

 −2 = −c1 sin (Pb ZR) + c2 (cos (Pb1/2ZR) − 1) + 1 (4.124)

 or c1 = −c2(cot (Pb1/2ZR) − 1/sin (Pb1/2ZR) + 1/sin (Pb1/2ZR) (4.125)

 c2 = −2/(sin (Pb1/2ZR) − 1/sin2 (Pb1/2ZR)) (4.126)

The boundary condition given in Eq. (4.119) assumes that the viscous 
effects predominate over the gravitational and pressure effects. The 
equation and time and space conditions for the transient portion of 
the solution can be written as:

  
∂
∂

+ ∂
∂

+ + = ∂
∂

2

2

2

2

u u
Pb u Pb

u
Z

t t
t

t

τ τ
( )   (4.127)

The initial condition: τ = 0, ut = −1  (4.128)

The fi nal condition: τ = ∞, ut = 0 (4.129)
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The boundary conditions are now homogeneous after the expression 
of the result as a sum of steady-state and transient parts, and are:

 ut = 0, Z = 0 (4.130)

 Z = ± Za, u
t = 0  (4.131)

The solution is obtained by the method of separation of variables. 
Initially, the damping term is eliminated using a substitution such as 
ut = W exp(−nτ). Equation (4.127) then becomes at n = ½: 
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4 4
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W W

τ
 (4.132)

For large permeability numbers, Eq. (4.132) can be transformed into a 
Bessel equation with the following substitution:

 For τ > Z, and Pb > ¼, η = τ2 − Z2 (4.133)

As shown in earlier sections, Eq. (4.132) is transformed into:

 4 4
1
4

0
2

2η
η η

∂
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+ ∂
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+ −

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
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The solution is a Bessel composite function and can be written by:

d = 1
4

(Pb − ¼)  

 W c J Pb Z= −

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
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2 21

4
( )τ  (4.135)
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From the boundary condition:

 − = = −
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τ
τ  (4.137)

Eliminating c between Eqs. (4.136) and (4.137):

 u

J Pb Z

J Pb
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4
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 (4.138) 
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It can be seen that Eq. (4.138) describes the velocity profile in between 
the vertical plates considering the viscous, gravitational, and perme-
ability effects. The spatiotemporal velocity is given by a Bessel com-
posite function of the first kind and zeroth order (Fig. 4.12). This is 
expected to be valid for permeability numbers greater than ¼. The 
expression exhibits space symmetry and subcritical damped oscilla-
tions can be expected. The Bessel function can be approximated as: 

 u
Z

Pb Z

P

= −
−

− − −
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τ
τ
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4 4

π
 (4.139)

4.5.6 Transient Laminar Flow in a Circular Conduit
Consider the laminar flow in a circular pipe of narrow dimensions in 
transience. The damped wave momentum transfer and relaxation 
equation is written as:

 τ µ τ
τ

xy
xyv

r t
= − ∂

∂
−

∂
∂mom  (4.140)
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FIGURE 4.12 Transient velocity of viscous fl uid fl ow in porous medium with a 
positive permeability coeffi cient between vertical plates.
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The governing equation for the axial velocity as a function of the 
radial direction can be written after combining the modified Newton’s 
law of viscosity, including the relaxation term, with the momentum 
balance equation to yield:

  τ
ρ

ν
mom

∂
∂

+ ∂
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= + ∂
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∂
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
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L r r

r
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∆  (4.141) 

Let the dimensionless variables be:

 τ
τ ντ

τ
ρ

= = = =∗t
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max max

∆
 (4.142)

The dimensionless governing equation then becomes:
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The solution is assumed to be a sum of two parts, that is, the steady-
state and transient parts. Let u = uss + ut. Then the governing equation 
becomes:
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Integrating the equation for the steady-state component of the veloc-
ity with respect to X:

 X
u
X

P X
c

ss∂
∂

= − + ′
∗ 2

2
 (4.146)

At X = 0, the gradient of the velocity is zero, as a condition of 
extremama can be expected from symmetry considerations. So it can 
be seen that C′ = 0. Integrating the resulting equation, again with 
respect to X:

 u
P X

dss = − + ′
∗ 2

4
 (4.147)

From the boundary condition at X = XR:

 d′ = P∗XR
2/4 (4.148)

and u
P R r
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The above relation is the Poiseuille distribution. Specifically, is the 
Hagen-Poiseuille flow in laminar pipes at steady state where P∗ is 
given by Eq. (4.142). The rest of the problem obtains the transient 
part. First, the damping term is removed by a substitution: ut = W × 
exp(−nτ). At n = ½, the governing equation reduces to: 

  
∂
∂

+ ∂
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= − + ∂
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2

2

2

2

1
4

W
X X

W
X

W W
τ

  (4.150)

The basis for this substitution is to recognize that the damped wave 
conduction and relaxation equation, which is of the hyperbolic type, 
has a damping component and wave component to it. In order to bet-
ter study the characteristics of the wave component, it would be 
desirable to remove the damping component from the governing 
equation. The transformation given in Eq. (4.145) was selected in 
order to delineate the damping component and the wave component 
of the transient temperature. Furthermore, it is realized that transient 
temperatures decay out in time exponentially. This leads to the neg-
ative exponent in the exponentiated term. At n = ½, it can be seen 
that the governing equation in transient temperature reverts to an 
equation for wave temperature. This happens to be a Bessel special 
differential equation. 

The method of separation of variables can be used to obtain the 
exact solution to the Eq. (4.150). The boundary and time conditions 
for the transient portion of the velocity are then:

 τ = 0, ut = 1 (4.151)

 τ = infi nity, ut = 0 (4.152) 

  τ > 0, X = XR, ut = 0 (4.153)

 X = 0, symmetry considerations (4.154)

Let W = V(τ)φ(X) (4.155)

The wave equation becomes:

 
′′ − =

′′ + ′

= −V
V

X
n

1
4

2
φ φ

φ
λ  (4.156)

Thus: 

 X2φ″ + Xφ′ + X2λn
2φ = 0 (4.157)

This can be recognized as a Bessel equation of the first order (App. A) 
and the solution can be written as:

 ϕ = c1J0(λnX ) (4.158)
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c2 can be seen to be zero, as φ is finite at X = 0. From the boundary 
condition at X = R/sqrt(ντmom): 

 c1 J0(λnXR) = 0 (4.159)

 λ
ντ

πn R
n= + −mom ( . ( ) )2 4048 1  (4.160) 

n = 1, 2, 3, . . . .
Now the time domain part of the wave is obtained by solving the 

second-order ODE:
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Thus: 
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At infinite times, the right-hand side becomes infinitely large. The 
left-hand side is zero multiplied by infinity and is zero. At steady 
state, the velocity is bounded and hence, the constant c3 is set to zero. 
It can be seen that for small channel dimensions, that is, when R < 
4.8096 sqrt(ντmom), the solution is periodic with respect to time. The 
general solution for such cases can be written as:
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The initial condition can be taken to be the maximum velocity in plug 
flow. So the initial superficial velocity essentially at plug flow becomes 
a periodic profile, as in Hagen-Poiseuille flow when channels are 
formed. The transient portion is governed for small channels by the 
generalized Newton’s law of viscosity. So the initial condition is:

 1 0
1

=
∞

∑C J Xn n( )λ  (4.164)

The constant can be solved for by the orthogonality property: 
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The maximum transient velocity is given by that at the center of the 
circular tube:

 u c en nmax cos= −
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4.5.7 Oscillations in a U-Tube Manometer
Consider the oscillations in a U-tube manometer. The additional 
ballistic term is used to discuss the velocity and the height in the 
manometer. 

The governing equation in the z direction in the U-tube manometer 
integrated with respect to z between the two points in the manometer, 
1 and 2, on either side may be written as follows:

 τmom

∂
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+
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+ =
2

2

2
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v
t

v
t

gz
L

x x  (4.167)

∂vz/∂t is independent of z, L, where L is the length of the column: 

 P1 = P2 (4.168)

 Vz1 = −Vz2 (from continuity) (4.169)

 Vz1
2 = Vz2

2 (4.170)

Writing vz as dz/dt, Eq. (4.167) can be written as:
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  (4.171)

Let the oscillation number 

 Osc = ( gτ 2mom /L); τ = t/τmom; Z = z/L (4.172)

Equation (4.171) becomes:

  
∂
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+ ∂
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+ =
3

3

2

2 2 0
Z Z

τ τ
Osc  (4.173) 

The third-order ODE with constant coefficients is homogeneous and 
can be solved for as follows:

 r3 + r2 + 2Osc = 0 (4.174)

Equation (4.174) can be compared with the general form of the cubic 
equation:

 r3 + a2r
2 + a1r + a0 = 0 (4.175)

Let e and f be defined as:

 e = 1/3 a1 − 1/9a2
2 = −1/9 (4.176)

  f = 1/6(a1a2 − 3a0) − 1/27a2
3 = −(Osc + 1/27) (4.177)
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 where a0 = 2Osc; a1 = 0; a2 = 1 (4.178)

 Consider e3 + f 2 > 0 (4.179)

This is when:

 Osc > −2/27 (4.180)

The oscillation number is the ratio of the gravitational force divided 
by the relaxation frequency normalized by the length of the column 
in the U-tube. The oscillation number will always be positive; hence, 
Eq. (4.173) will be valid for real systems. In such cases, the cubic equa-
tion solution results in one real root and two imaginary roots. Let:

 s1 = (f + (e3 + f 2)1/2)1/3  

 = (Osc[(1 + 2/27Osc)1/2 − 1] −1/27)1/3 (4.181)

 s2 = (f − (e3 + f 2)1/2)1/3  
 = −(Osc[(1 + 2/27Osc))1/2 − 1] + 1/27)1/3 (4.182)

The cubic roots are then:

 r1 = (s1 + s2) − a2/3  (4.183)

 r2 = 1/2(s1 + s2) − a2/3 + isqrt(3)/2 (s1 − s2) (4.184)

 r3 = 1/2(s1 + s2) − a2/3 + isqrt(3)/2 (s1 − s2) (4.185)

Thus, for a finite oscillation number, the displacement will pulsate: 

 Z = c1exp(r1t) + c2exp(r2t) + c3 exp(r3t) (4.186)

The imaginary roots can be seen to predict the oscillations (Fig. 4.13) 
that are subcritical and damped. Using De Moivre’s theorem and 

–1

–0.5

0

0 5
Dimensionless time

D
is

pl
ac

em
en

t 0.5

1
Oscillation number = 147.2

FIGURE 4.13 Subcritical damped oscillations in a U-tube manometer, 
including the ballistic transport term.
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obtaining the real parts, the term that contributes the subcritical 
damped oscillations can be written as:
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C′ can be solved for using the initial condition for velocity. The other 
conditions are the velocity at zero time and infinite time to solve for 
the other two integration constants.

4.5.8 Tangential Flow Induced by a Rotating Cylinder
The velocity distributions and pressure distributions during the tan-
gential laminar flow of an incompressible fluid induced by a sudden 
rotating cylinder at constant velocity is examined in this section. The 
rotation of the cylinder of radius R is at a tangential velocity of Vθ 
(Fig. 4.14). The radial and azimuthal velocity components are zero. 
The equation of motion can be written as:
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θ component:
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r component:

 0 = −
∂
∂

+
p
z

gρ  (4.190)
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FIGURE 4.14 Tangential fl ows past a cylinder.
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It can be seen that the pressure gradient in the z direction does not 
change with time; hence, τmom∂2p/∂t ∂z is zero. Once vθ is solved for 
from Eq. (4.189), the radial pressure distribution can then be calcu-
lated using Eq. (4.190). The tangential velocity is assumed to be a 
function of time and the radial space coordinate. Equation (4.188) is 
made dimensionless by the following substitutions:

 τ
τ ντ

θ

θ
= = =t

X
r

u
v
Vmom mom

; ;   (4.191)

The dimensionless governing equation then becomes:

 
∂
∂

+ ∂
∂

= + ∂
∂

∂
∂







2

2

1u u
X X

uX
Xτ τ

( )
  (4.192)

 Let  uX = V (4.193)

The dimensionless governing equation then becomes:
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Xτ τ

 (4.194)

The damping term is removed from the governing equation. This 
is done realizing that the transient velocity decays with time in an 
exponential fashion. The other reason for this maneuver is to study 
the wave equation without the damping term. Let V = w exp(−nτ). 
By choosing n = ½, the damping component of the equation is 
removed.

Thus, for n = ½:
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= − + ∂
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X X
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W W
τ

 (4.195)

Equation (4.195) can be solved by using the method of relativistic 
transformation of coordinates. Consider the transformation variable 
η for τ > X:

 η = τ2 − X2  (4.196)

Equation (4.195) becomes:

 4 2
4

02
2

2η
η

η
η

η∂
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+ ∂
∂

− =W W W  (4.197)

 or η
η

η
η

η2
2

2 2 16
0

∂
∂

+ ∂
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− =W W W
 (4.198)
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Comparing Eq. (4.198) with the generalized Bessel equation, the solu-
tion is a = 1/2; b = 0; c = 0; d = −1/16; and s = ½. The order p of the 
solution is then p = 2 sqrt(1/16) = ½:
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c2 can be seen to be zero, as W is finite and not infinitely large at η = 0. 
An approximate solution can be obtained by eliminating c1 between 
the equation derived from the boundary condition at X = XR and 
Eq. (4.199) after setting c2 to be zero. It can be noted that this is a mild 
function of time, however, as the general solution of a PDE consists of 
n arbitrary functions when the order of the PDE is n compared with 
n arbitrary constants for an ODE. From the boundary condition at 
X = XR:
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 (4.201)

In terms of elementary functions, Eq. (4.201) can be written as:
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In the limit of XR going to zero, the expression becomes for τ > X:
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For X > τ:
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Equation (4.204) can be written in terms of trigonometric functions 
as:

 u
X

h XR

=
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 (4.205)

Four different regimes can be seen. The first regime is that of the ther-
mal lag and consists of no change from the initial velocity. The second 
regime is when:

  τlag
2 = X2 − 4π2 

 or  τlag = sqrt(Xp
2 − 4π2) = 3.09  when Xp = 7 (4.206)

For times greater than the time lag and less than Xp, the dimensionless
velocity is given by Eq. (4.204). For dimensionless times greater than 
7, for example, the dimensionless velocity is given by Eq. (4.201). For 
distances closer to the surface compared with 2π, the time lag will be 
zero. The fourth regime is at the wavefront. Here, u = exp(−X/2) =
exp(−τ/2). The radial pressure distribution can be estimated from 
the following equation:

ρ
τ τ
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 (4.207)

It can be seen that for materials with relaxation greater than a certain 
threshold value, the instantaneous pressure values will be pulsation 
values.

Tangential Flow at Small Distances
In writing Eq. (4.194), the assumption made that large distances were 
involved was valid. Obtain the governing equation from the tangen-
tial shear term and obtain the solution for the tangential flow prob-
lem by relaxing the assumption at large distances:
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Let V = u/X where u, X, and τ are defined using the dimension-
less variables in Eq. (4.191). Equation (4.208) becomes:

∂
∂

+ ∂
∂

= ∂
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+ ∂
∂

2

2 2

3 2V V
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Xτ τ

 (4.209)

The damping term is removed from the governing equation. This is 
done realizing that the transient velocity decays with time in an 
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exponential fashion. The other reason for this maneuver is to study 
the wave equation without the damping term. Let V = wexp(−nτ). By 
choosing n = ½, the damping component of the equation is removed.

Thus, for n = ½:
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  (4.210)

Equation (4.210) can be solved using the method of relativistic trans-
formation of coordinates. Consider the transformation variable η for 
τ > X as:

 η = τ2 − X2  (4.211)

Upon applying relativistic transformation, Eq. (4.210) becomes:
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Comparing Eq. (4.213) with the generalized Bessel equation, the solu-
tion is a = 5/2; b = 0; c = 0; d = −1/16; and s = ½. The order p of the 
solution is then p = 3/2 sqrt(1/16) = ½:

Or
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c2 can be seen to be zero, as W is finite and not infinitely large at η = 0. 
An approximate solution can be obtained by eliminating c1 between 
the boundary condition and the Eq. (4.214) after setting c2 to be zero. 
It can be noted that this is a mild function of time, however, as the 
general solution of a PDE consists of n arbitrary functions when 
the order of the PDE is n, compared with n arbitrary constants for 
the ODE. From the boundary condition at X = XR:
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For X > τ:
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4.5.9 Transient Flow Past a Sphere
Consider a solid sphere settling in an infinite fluid at terminal settling 
velocity. Of interest is the transient velocity in the tangential direction 
of the sphere as a function of r. Defining the stream function as fol-
lows and neglecting the φ and r component velocities: 

 v
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sin

 (4.218)

The θ component of the velocity, considering only its dependence in 
r direction, becomes:
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 Let τ
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;  (4.220)
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Integrating with respect to X:
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Let ψ = χ exp(−τ/2). This will remove the damping term in the govern-
ing equation to give:

 ∂
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24
χ χ χ

τX
 (4.224)

Using the relativistic transformation [8]:

 η = τ2 − X2 (4.225)
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For τ > X the governing equation without the damping term becomes:

 4η ∂2χ/∂η2 + 4 ∂χ/∂η − χ/4 = 0 (4.226)

or η2∂2χ/∂η2 + η ∂χ/∂η − ηχ/16 = 0 (4.227)

Comparing Eq. (4.227) with the generalized Bessel equation, the solu-
tion can be written as:
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From the boundary condition at r = R:
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For X > τ: 
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Eliminating c1 between Eqs. (4.230) and (4.229) for τ > X: 
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4.5.10 Radial Flow between Two Concentric Spheres 
Consider the radial flow between two concentric spheres of an incom-
pressible, isothermal liquid. The transient velocity distribution is 
examined using the damped wave momentum transfer and relax-
ation equation. Let the radii of the two spheres be R and mR, 
respectively. The governing equation for the radial component of 
the velocity can be written as:
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(4.233)

In order to obtain the dimensionless form of the governing equation, 
the substitution given in Eq. (4.233) is used, and after neglecting the 
nonlinear term using the creeping flow assumption:
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 where P
p

v v
u

v v
vR

r R

R

∗ = =
−

ρ mom

;  (4.235)

The space boundary conditions can be written as 

 r = R, vr = vR  (4.236)

From the equation of continuity for a constant density system:
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 r2vr = c1 = R2vR (4.238)

The velocity at mR is then:

 vmR = vR/m2 (4.239) 

Thus, 

 uss = (R/r)2 − 1 (4.240)

   = 
X
X

R
2

2 1−  (4.241)

The time conditions are:

 τ = 0, u = −1 (4.242)

Let the velocity consist of steady-state and transient components:

 u = uss + ut (4.243)
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 − ∂
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3  (4.244)

 P∗ = −XR
2/X2 + 2lnX − 2/X + c3 (4.245)

 X = 0, P∗ is fi nite and, therefore, c3 = 0 (4.246)

 uss = (XR
2 /X2) (4.247)

 X2 uss = XR
2 (4.248)

Thus, P∗ = c2
The transient dimensionless velocity can be written as:
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 Let V = X2u:  

(4.250)
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The method of separation of variables can be used to solve Eq. (4.251):

 Let V = g(X) θ(τ) (4.252)

 θ″ g + X2 [θ′ g + gθ] g′θ + gθ′ = g″θ (4.253)

Dividing by gθ throughout:

 
′′ + ′ = ′′ − ′ + ′ = −θ θ

θ
θ θ λ

g
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X g n
2 2( )  (4.254)

[θ′ + θ] can be set to zero to obtain a separation of the time and space 
variables. From this constraint:

 θ′ + θ = c  (4.255)

Then θ″/θ = 1 − λn
2 (4.256)

Equation (4.256) can be used to obtain the θ. The θ obtained from this 
constraint may not meet the θ′ + θ = 0 requirement. Hence, the solu-
tion is an approximation:

 g″/g = −λn
2 (4.257)

 θ τ λ τ λ= +− − −c e c en n
1

1
2

12 2
 (4.258)
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At steady state, the velocity profile is given by Eq. (4.247). Hence, c1 
can be taken as zero, as θ is not infinite at infinite time: 

 θ τ λ= − −c e n
2

1 2
 (4.259)

In order to solve for the constants c3 and c4, redefine X as follows:

 Y = X − XR (4.260)

Equation (4.254) then becomes 

 g″(Y)/g = −λn
2 (4.261)

 g = c3 sin (λnY) + c4 cos (λnY) (4.262)

at Y = 0, ut = gθ = 0 (4.263)

Hence, c4 = 0 (4.264)

 g = c3 sin (λnY)  (4.265)

at Y = YmR, ut = u − uss = 1/m2 − 1 − 1/m2 + 1 = 0 (4.266)

Hence,  λn = 
n
YmR

π
 for n = 1, 2, 3. . . . (4.267)
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Thus:
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cn can be solved using the orthogonal property and the initial condi-
tion, and shown to be ( )2/nπ (1 − (−1)n). It can be seen that when:
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The solution is given after using the De Moivre’s theorem and obtain-
ing the real parts:
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The maximum velocity is obtained when λnX = π/2. The velocity is sus-
tained periodically. When the velocity changes in sign, the radial veloc-
ity becomes inward in direction. This occurs when the distance between 
the spheres is small. The energy for the oscillations is provided by the 
kinetic energy from the inflow of the fluid from the surface at R. The 
pressure drop at steady state can be calculated from Eq. (4.234).

4.5.11 Squeeze Flow between Parallel Disks
Consider the outward radial squeeze flow between two parallel cir-
cular disks (Fig. 4.15). A potential application is in a lubricant system 
consisting of two circular disks between which a lubricant flows radi-
ally. The flow takes place because of a pressure drop, ∆p, between the 
inner and outer radii, r1 and r2. Perform the analysis, including the 
transient effects.

The equation of motion for vr can be written as:
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FIGURE 4.15 Radial outfl ow between two circular parallel disks.
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Considering only the radial component of velocity from the equation 
of continuity:

 1
0

r
rv
r

r∂
∂

=
( )ρ  (4.274)

Obtain the dimensionless form of Eq. (4.273) using the following 
substitutions:

 Dimensionless velocity:  u
v

v
r=

ref

 (4.275)

 Dimensionless time: τ
τ

= t

mom
 (4.276)

 Dimensionless distance:  X
z=

γ τmom

 (4.277)

 Dimensionless radius: Y
r=

γ τmom

 (4.278)

Dimensionless pressure: P
p

v vrb

∗ =
ρ mom

 (4.279)

 Peclet (momentum): Pe
v

v
rb

mom
mom

=  (4.280)
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Let Yu = V (4.282)

Then Eq. (4.281) becomes:

 ∂
∂

+ ∂
∂

− ∂
∂

= − ∂
∂

− ∂
∂ ∂

∗ ∗2

2

2

2

2V V V
X

Y
P
Y

Y
P

Yτ τ τ
 (4.283)

Equation (4.283) is obeyed when the right-hand side and left-hand 
side go to zero or constant.

The solution of ( ) ( ) ( )∂ ∂ + ∂ ∂ − ∂ ∂ =2 2 2 2 0V V V X/ / /τ τ  is sought as 
follows:

Let V = Vss + Vt (4.284)
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The solution is assumed to consist of a steady-state and transient 
part. At steady state:

  
1 2

2Y
V
X

P
Y

ss∂
∂

= ∂
∂

∗
 (4.285)

Integrating with respect to Y:
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or V
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Y

X
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
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+ +
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ln 2

1

2

1 22
 (4.287)

At X = 0, ∂u/∂X = 0 (4.288)

so c1 can be set to zero.
Solving for c2 from the boundary condition at 

 X = ± Xb, u = 0  (4.289)

 V
P X X

Y
Y

ss b=
−( )





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∗∆ 2 2

2

1

2 ln
 (4.290)

The transient part of the solution can be obtained by solving the fol-
lowing equation:

 ∂
∂

+ ∂
∂

− ∂
∂

=
2

2

2

2 0
V V V

Xτ τ
  (4.291)

The damping term can be removed from Eq. (4.291) by V = Wexp(−τ/2). 
Equation (4.291) becomes, as shown in Ref. 8: 

 ∂
∂

= − + ∂
∂

2

2

2

24
W

X
W W

τ
 (4.292)

The solution to Eq. (4.292) can be obtained by the method of separa-
tion of variables:

Let W = f(τ) g (X) (4.293)

Equation (4.292) then becomes:

 f ″/f − ¼ = g″/g = −λn
2 (4.294)

 g = c1 sin (λnX) + c2 cos (λnX)  (4.295)
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From the boundary condition at X = 0, that is, g′ = 0, it can be seen that 
c1 can be set to zero:

 g = c2 cos (λnX)  (4.296)

From the boundary condition at X = ± Xb, g = 0:

 λ π
n bX

n
n= − =( )

, , , , . . . .
2 1

2
1 2 3  (4.297)

 f c e c en n= +− − −
3

1
4

12 2τ λ τ λ  (4.298)

At infinite time, u = 0 and V = uX = 0. W is Vexp(τ/2) and is zero at 
infinite time. Hence, c3 needs to be set to zero. Thus:

 uY V e
n z

b
n= = −





− −∞

∑ τ λ π1
4

1

2 2 1
2

cos
( )  (4.299)

cn can be solved from the initial condition, which is when the fluid is 
at the reference velocity. cn can be shown to be 4 1 2 11( ) ( )− −+n n/ π.

For large values of relaxation times, the characteristic nature of 
the solution changes from decaying exponential to subcritical damped 
oscillatory. This happens when:

 τ
πνmom > b2

 (4.300)

4.5.12 Periodic Boundary Condition
Blood flow in and out of the heart is periodic. Blood flows from the 
right ventricle into the pulmonary artery upon contraction of the 
heart muscle and from the left ventricle into the aorta. Backflow of 
blood is prevented by heart valves. Pressure and flow vary with time 
over the period of contraction and relaxation of the heart. During the 
phase of systole, the blood is pumped from the heart; during the phase 
of diastole, no blood is pumped from the heart and the ventricles fill 
with blood. An infinite Fourier series can be used to represent the 
pressure and velocity waveforms. Pressure waveform representation 
requires a minimum of 6 harmonics, and 10 harmonics are needed to 
describe the velocity waveform. The velocity profile in response to an 
oscillating pressure field was determined by Womersley [9]. 

For transient flow, based on dimensionless analysis, two dimen-
sionless groups to describe the flow and velocity fields have been 
identified. The two dimensionless groups are:

 1. Reynolds number ( )ρ µv R2 / . It is the ratio of the inertial forces 
to the gravity forces in the system. It is a quantitative criterion 
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to delineate the laminar flow and turbulent flow, as discussed 
in Chap. 1.

 2. Strouhal number St /= < >∗L t vz z . The characteristic time t∗ 
for oscillatory flow is proportional to the reciprocal of the fre-
quency ω. The Womersley number is sometimes used in place 
of the Strouhal number:

  W R= ρω
µ

 (4.301)

The dominant frequency in blood flow used in Eq. (4.301) is the one that 
arises from the heart beat. Womersley numbers for different vessels 
are given in Table 4.2.

The velocity distribution can be obtained as follows. Consider the 
laminar flow of a Newtonian fluid in a rigid, long, circular blood ves-
sel. This vessel is subjected to an oscillating pressure field v vr = =θ 0. 
The azimuthal velocity, vz, is a function of radial position only. The 
equation of momentum, or the Navier-Stokes equation, that governs 
the profile of vz as a function of space and time can be written as 
follows:

 ρ µ ρ
∂
∂

= −
∂
∂

+ ∂
∂

∂
∂

+
v
t

p
z r

r
v
r

gz z( )  (4.302)

The pressure gradient imposed is periodic and:

 − ∂
∂

= =p
z

Ae
p

L t
i tReal( )

cos( )
ω

ω
∆

  (4.303)

The method of complex velocity can be used to analyze the manifes-
tation of the oscillating pressure gradient in the velocity flow field. 
Let:

 v ez
i t= φ ω  (4.304)

Vessel Radius (mm) W

Artery (Femoral) 2.7 3.9

Artery (Left coronary) 4.25 6.15

Artery (Right coronary) 0.97 1.82

Artery (Anterior disc) 1.7 2.4

Artery (Terminal) 0.5 0.72

Aorta (Proximal) 15 21.7

TABLE 4.2 Womersley Number for Different Blood Vessels
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where φ is a function of z only. Substituting Eq. (4.304) into Eq. (4.302), 
Eq. (4.302) becomes, neglecting gravity effects:

 ρ ω φ µ φω ω ωi e e
r

r
r

Aei t i t i t− ∂
∂

∂
∂







= −   (4.305)

or ρ ωφ µ φ φ
i

d
dr

r
d
dr

A− +




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+ =
2

2 0  (4.306)

Equation (4.306) is compared with the generalized Bessel equation. 
The boundary conditions are:

 r
v
r
z=

∂
∂

=0 0,  (4.307)

 r R vz= =, 0  (4.308)

The solution can be seen to be:
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In the time span of the heartbeat, the non-Newtonian finite momen-
tum transfer effects may become significant and cannot be ignored. 
Consider the oscillations of a fluid in a tube of radius R about a 
mean position where an oscillating pressure gradient is imposed on 
the system using the momentum transfer and relaxation equation. 
The pressure gradient imposed is periodic with respect to time with 
frequency ω:

 −
∂
∂
p
z

= a0 real part of exp(iωt) (4.310)

The equation of motion for the vertical component of the velocity in 
the pipe, taking into account the finite speed momentum transfer 
effects, can be written as:
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From the equation of continuity, neglecting the radial and angular 
component of velocities and considering an incompressible fluid:

 
∂

∂
=

( )ρv
z

z 0  (4.312)

and vz = φ(r) 
Hence, after non-dimensionalizing and neglecting the gravity 

effects and keeping the tube horizontal, the equation of motion can be 
written as: 
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 (4.314)

The nonhomogeneity in the boundary condition can be removed by 
supposing that the solution can consist of two parts, one transient 
and the other a steady-state part:

 Let  u = φ(X) exp(iω∗τ) + uss (4.315)

 
∆P
L

f X i
∗

∗
∗= ( )exp( )ω τ  

 where  ω∗ = ωτmom (4.316)

The steady-state part of the solution can be written as:
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Integrating both sides with respect to Z:
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Integrating with respect to X:

 ′ + = ∂
∂

∗
c X

P
L

X
u
X

∆  (4.319)

  c′ = 0 as at X = 0, ∂u/∂X = 0  (4.320)

 c″ + X∆P∗/L = uss = vzmax/vref (4.321) 

 At X = XR, (4.322)
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 C″ = vzmax/vref − XR∆P∗/L  (4.323)

 uss = vzmax/vref − (XR − X) f(X) cos (ω∗τ) (4.324)

The transient part of the velocity profile can be solved for as follows 
by assuming that the velocity also has a periodic component with the 
same frequency ω:

 −ω∗2 φ + φiω∗ + iω∗ f ′ = −f ′ + φ′ iω∗ − Xφ″ ω∗2  (4.325)

Assuming f and φ are the same:

 X
X
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2 1 0′′ + ′ + −
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=∗ ∗φ φ
ω
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ω

 (4.326)

Comparing Eq. (4.326) with the generalized Bessel equation:

 a = 1/ω∗2; b = 0; c = 0; s = ½; d = i/ω∗ − 1; p = (ω∗2 − 1)/ω∗2 (4.327)

For high dimensionless frequency, the order of the Bessel solution can 
be taken as 1. The solution can be presented as:
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c″ can be set to be zero because φ is finite at X = 0. Realizing that 
I(ix) = J(x):
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c′ can be solved from the boundary condition of zero velocity at r = R 
or X = XR:
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At high frequency:

 
v v

v
z

z

zmax

max

−
=

X
XR

J X

J XR

1

1

2

2

( )

( )
cos (ω∗τ)  (4.333)

Equation (4.333) is shown in Fig. 4.16.

4.6 Friction Factors
Many engineering flow problems fall under the categories of flow in 
circular pipes and flow past spherical objects. The “Peace Pipeline 
Project” is designed to construct a pipeline to meter out oil from the 
Gulf region, such as from Iran to North Delhi, India, through a host of 
countries, such as Turkmenistan, Afghanistan, Pakistan, and India. 
The optimal number of pipes needed is derived in Sharma [10]. 
Examples of flow in pipes are piping oil in pipes, the flow of water in 
channels, the extrusion of polymer through a die, the flow of fluid 
through a filter, pulsatile flow from the lungs to the nostrils, blood 
flow through the capillaries, and flow during reverse osmosis in 
desalination. Examples of flow around submerged objects are the 
flow of air around the airplane wing, motion of fluid around parti-
cles, fluid flow in fluidized bed combustors, reactors, and heat 
exchangers circulating fluidized beds. In such problems, there is a 
relationship between the pressure drop and the volume rate of flow. 
In flow past submerged objects, the drag force is important. Some-
times experimental data are utilized to obtain correlations for the 
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drag coefficients for the appropriate geometry and flow situation. 
In this section, the notion of friction factor is introduced and charts 
can be found in chemical engineering, bioengineering, mechanical 
engineering, and civil engineering handbooks. Often times, friction 
factors are defined for steady-state scenarios. In this section, friction 
factor for transient flow driven by damped wave momentum trans-
fer and relaxation is introduced.

A force is exerted by the flowing fluid on the solid surface it is in 
contact with. This has been calculated at steady-state for incompress-
ible flow under various conditions. This force consists of two parts: 
one that would act even when fluid is stationary and additional force 
associated with the kinetic behavior of the fluid:

 Fk = AKe f (4.334)

A is the characteristic area, K is a characteristic energy per unit vol-
ume, and a dimensionless quantity, f, is called the friction factor. For 
circular tubes of radius R and length L, f is defined as:

 Fk = (2πRL)(1/2ρ <v>2) f (4.335)

For a fully developed pipe flow, a force balance on the fluid between 
0 and L in the direction of flow yields:

 Fk = πR2 (∆p + ρg (h0 − hL) = πR2 (∆P) (4.336)

Comparing Eqs. (4.326) and (4.327):

 f
D
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P

v
=

< >

1
4 1

2
2

∆

ρ
 (4.337)

This is usually referred to as the Fanning friction factor. For flows 
around submerged objects, the characteristic area A is usually taken 
to be the area obtained by projecting the solid onto a plane perpen-
dicular to the velocity of approach of the fluid. Then k is taken to be 
1/2ρ v∞

2 , where v∞ is the approach velocity of the fluid at a large dis-
tance from the object. Thus, for flow past a sphere at steady state:

 Fk = (πR2)(1/2ρ v∞
2  ) f (4.338)

The resultant force of gravity and buoyancy driving the motion of the 
sphere is given by:

 Fs = 
π ρ ρ

ρ
D s

3

6
( )−

 (4.339)
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Comparing Eqs. (4.329) and (4.330), for the net force to be zero, as it is 
at the terminal settling velocity of the fluid:

 f = 4
3 2

gD
v

s( )ρ ρ
ρ

−

∞

 (4.340)

The friction factor in Eq. (4.331) is referred to as drag coefficient, and 
is represented by CD. For a long, smooth, horizontal pipe of length L 
at steady state for fluid with constant ρ and µ, the force exerted by the 
fluid on the inner pipe wall for either laminar or turbulent flow is:
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R d dzk
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Comparing Eqs. (4.340) and (4.341):
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 (4.342)

Thus, the friction factor is a function of the Reynold’s number and the 
L/D ratio.

For laminar, steady, incompressible flow in circular pipe, the 
Hagen-Poiseuille flow distribution is given by:

 v
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r
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ss = − 
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

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Λ 2 2

4 1µ  (4.343)

Substituting Eq. (4.343) in Eq. (4.342), f can be calculated as:

 f = 16/Re (4.344)

where Re = ρ<vz>2R/µ. 
Equation (4.335) has been found to be valid for Reynold’s num-

bers less than 2100. For turbulent flow in a smooth, circular tube, the 
friction factor is given by the Blasius formula:

 f = 
0 0791

1 4

.
Re /  (4.345)

The Blasius formula is valid for a Reynold’s number less than 105. The 
friction factor during flow between two plates moving in opposite 
directions when governed by the momentum transfer and relaxation 
equation is given by: 

for τ
νπmom > a2

24
 (4.346)



R h e o l o g y  o f  B l o o d  a n d  T r a n s p o r t  195

 u c e Zt
n n n= −











−
∞

∑
τ

τ λ λ2 2

1

1
4

cos sin( )  (4.347)

 ∂ut/∂Z�b = λ τ λ
τ

n
n

n nc e( ) cos− −










−∞

∑ 1
1
4

2 2

1

 (4.348)

The definition used for the friction factor at steady state is retained 
and:

 f = −vmax/sqrt(γ τmom) µ∂u/∂Z/(ρ/2 <v>2) (4.349)

 <ut> = 
1

∞

∑− (1 − (−1)n)2 exp(−τ/2) cos (sqrt((λn
2 − 1/4)τ)/n2π2 (4.350)

Combining Eqs. (4.347), (4.348), and (4.349):

 f = −vmax/sqrt(γ τmom) µ∂u/∂Z/(ρ/2 <v>2) (4.351)

Defining Re = (ρ <v>b/µ)
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  (4.352)

For example, taking the first few terms in the infinite series in 
Eq. (4.352):
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 (4.353)

For the flow around the sphere, the friction factor can be shown to be:

 f = 24
Re

 (4.354)
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This can be derived from Stokes’ law. This has been found valid for 
Re < 0.1 in the creeping flow regime. 

4.7 Other Constitutive Relations
Notable in the literature among the equations used as a constitu-
tive relation to describe blood rheology is Casson’s equation. The 
shear stress and shear rate dependence for a Casson fluid is show 
in Fig. 4.17. 

As the shear rate increases, the apparent viscosity decreases in 
Casson fluids. This could mean that the particulate aggregates become 
smaller, and at some point the fluid reverts to Newtonian behavior. In 
blood, the aggregates are formed by RBCs. At low shear rates, the 
apparent viscosity of Casson fluid is high, indicating aggregates of 
RBCs. Casson’s equation may be written as:

 τ τ µ= +
∂
∂0

v
y

x   (4.355)

The pressure drop and flow data from blood in tubes can be used in 
a log graph to obtain the transition point where the fluid reverts from 
Casson to Newtonian behavior. The momentum balance equation 
and the Casson equation can be combined to obtain the governing 
equation for fluid flow in a circular pipe. This can be solved and the 
velocity profile obtained as:
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FIGURE 4.17 Casson fl uid shear stress-shear rate relation.
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When the shear stress equals the yield stress, the corresponding 
radius r∗ can be denoted as the critical radius. 

4.8 Bernoulli Equation for Blood Pumped by the Heart
The generalized mechanical energy balance equation can be written 
to account for the pumping work performed by the heart in the 
human anatomy to cause blood to flow through the arteries. This 
equation is also referred to as the Bernoulli equation for work done 
by the heart. The changes in fluid pressure, potential energy, and 
kinetic energy during the flow of blood can be accounted for by this 
equation. The flow is assumed to be at a steady state. The density of 
the fluid is also assumed to be constant, or the flow is said to be 
incompressible. The Bernoulli equation, which was introduced in 
Chap. 1, can be written between two locations in the bloodstream in 
human anatomy, 1 and 2, as follows:
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+ + + = + + + friction  (4.357)

Each term in the equation has units of energy per unit mass and rep-
resents the pressure head, potential energy, and kinetic energy at 
locations 1 and 2 in the blood flow stream. The work done by the 
heart is given by Wp, and η is the efficiency of the pump work. The fric-
tion losses can also be accounted for by hfriction. 

Summary
Blood is a colloidal dispersion. It consists of RBCs (90 percent), WBCs 
(1 percent), platelets (5 percent). The RBC volume fraction is called 
the hematocrit and typically varies between 10 and 50 wt %. The 
Fahraeus-Lindqvist effect is the change observed in the viscosity of 
blood during flow with a change in the diameter of the circular conduits. 
The marginal zone theory was developed to explain the Fahraeus-
Lindqvist effect. The discharge rate of blood flow as a function of 
plasma layer thickness, viscosity of the core layer, viscosity of the 
plasma layer, radius of the conduit, and pressure drop was derived 
from first principles. 

The blood flow in a dialysis machine is through rectangular con-
duits. The discharge rate of blood through a narrow slit 2B distance 
apart as a function of the core layer, plasma layer viscosities, and 
pressure drop was derived for Newtonian fluids. Expression for 
plasma layer thickness as a function of core layer hematocrit, Hc, and 
feed hematocrit, HF, can be developed. The mathematical expression 
was derived by Charm and Kurland [4] to capture the dependence of 
the viscosity of the blood at high shear rates on hematocrit and tem-
perature. The solution for plasma layer thickness δ is implicit and 
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requires solving two simultaneous nonlinear equations and two 
unknowns. An explicit method for obtaining plasma layer thickness 
was developed by Sharma [5]. The temperature parameter used to 
describe the variation of blood viscosity is expressed as a linear 
function of hematocrit for core and plasma layers. This leads to the 
simplification of the system of two simultaneous nonlinear equa-
tions into a single quadratic expression for the square of the plasma 
layer thickness. 

A list of 46 viscoplastic fluids was given in Table 4.1. The yield 
stress concept is an idealization and has not been measured directly. 
It has been found by extrapolation from high shear data. Other con-
stitutive relations that may be applicable to describe blood flow, such 
as Casson fluid, were discussed briefly. An expression to represent 
the shear stress versus shear rate behavior that may be applicable to 
describe blood flow is the generalized Newton’s law of viscosity. This 
expression can be used to account for the finite speed of propagation 
of momentum. This is significant in transient applications. The 
damped wave momentum transfer and relaxation equation can be 
derived from the kinetic theory of gases or by analogy to molecular 
diffusion from the Stokes-Einstein equation, taking into account the 
acceleration of the molecules; or by analogy to molecular conduction 
from the free electron theory, taking into account the acceleration of 
the electrons due to a collision with an obstacle. 

The transient velocity profile that arises when a flat plate is sud-
denly subject to velocity V is derived using the damped wave momen-
tum transfer and relaxation equation for a semi-infinite medium of 
fluid. A novel procedure called the method of relativistic transforma-
tion was used to obtain closed-form analytical solutions for the veloc-
ity profile for a initial, stagnant, semi-infinite fluid. Four regimes of 
solution for velocity profile can be recognized: (a) an inertial regime; 
(b) a regime at long times at a given location, τ > X, characterized by 
a modified Bessel composite function in space and time of the zeroth 
order and first kind; (c) a regime at shorter times at a given location, 
τinertia < τ < X, characterized by a Bessel composite function in space 
and time of the zeroth order and first kind; and (d) a regime at the 
wavefront, τ = X. Some interesting features can be seen from the 
model solutions. These include space-time symmetry, point of inflec-
tion in the velocity profile, zero curvature at X = 0, and subcritical 
damped oscillations under certain conditions. Mathematical expres-
sions for inertial lag time and penetration distance were derived. 

The transient velocity profile during vertical flow subject to a 
Darcy pressure gradient was developed using damped wave momen-
tum transfer and relaxation equation. The permeability number is an 
important dimensionless group that governs the flow characteristics. 
For permeability numbers, Pb > ¼, the solution changed in character 
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from monotonic decay to cosinuous oscillatory. These oscillations 
were found to be subcritical and damped. 

The transient velocity profile between two plates moving in 
opposite directions at velocity V and −V separated by distance 2a was 
studied using the damped wave momentum transfer and relaxation 
equation. The method of separation of variables was used to obtain 
closed-form analytical solutions expressed as infinite Fourier series. 
The solution was found to be bifurcated. For certain fluids with large 
momentum relaxation times, the velocity is expected to transition 
from monotonic exponential decay to cosinuous damped oscillatory. 
Subcritical damped oscillations can be expected under certain condi-
tions. The solution was found to be in accordance with Clausius 
inequality. The final condition in time at steady state was used, lead-
ing to dropping a growing exponential term in the time domain.

The transient velocity profile of fluid under vertical flow between 
two plates moving in opposite directions at velocity V and −V sepa-
rated by distance 2a was studied using the damped wave momentum 
transfer and relaxation equation. For large permeability numbers, the 
governing equation for wave velocity was seen to be a Bessel differ-
ential equation. The velocity profile of fluid under vertical flow 
between two plates considering the viscous, gravitational, and per-
meability effects was derived. The profile was characterized by a 
Bessel composite function in space and time of zeroth order and first 
kind. The expression was valid for Pb > ¼. It is subcritical damped 
oscillatory.

The transient velocity profile of a viscous fluid in a circular 
conduit using damped wave momentum transfer and relaxation 
equation was derived using the method of separation of variables. 
An infinite Fourier series expression for velocity profile was devel-
oped. At large relaxation times, subcritical damped oscillations in 
velocity can be expected.

The oscillations in a U-tube manometer were modeled using the 
damped wave momentum transfer and relaxation equation. The 
third-order ODE was analyzed. The conditions where oscillations can 
be expected were also derived. This is when the oscillation number is 
> −2/27. A mathematical expression for displacement of fluid that is 
damped oscillatory was obtained. 

Transient tangential flow in an infinite medium, transient flow 
past a sphere, flow between concentric spheres, and radial flow 
between parallel disks were studied using the damped wave 
momentum transfer and relaxation equation. The velocity profile 
under periodic boundary conditions also was derived. The use of 
friction factors under transient flow was reviewed. The Bernoulli 
equation was written, taking into account the work done by the heart 
causing blood to flow.
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Exercises

Review Questions

1.0 What does hematocrit mean?

2.0 What are the differences between RBCs and WBCs?

3.0 What happens when the diameter of the blood-flowing capillary is 
decreased?

4.0 What are the key parameters of the marginal zone theory?

5.0 What would be the key parameters should the assumption of Newtonian 
fluid be replaced with non-Newtonian fluid in the marginal zone theory?

6.0 Is there allowance for boundary layer formation in the marginal zone 
theory?

7.0 What is the difference between plasma layer thickness and boundary 
layer thickness?

8.0 Will the plasma layer thickness change with a change in temperature?

9.0 What are the advantages of using the explicit method for calculation of 
plasma layer thickness?

10.0 Can a viscoplastic fluid that is homogeneous and made of one compo-
nent be found?

11.0 Why is yield stress an idealization?
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12.0 What is the physical significance of the relaxation time of momentum?

13.0 How many regimes were found in the transient velocity profile gov-
erned by the damped wave momentum transfer and relaxation equation?

14.0 What is penetration distance?

15.0 What is momentum inertial lag time?

16.0 What is a permeability number? What happens at Pb > 0.25 during 
vertical flow subject to a Darcy pressure gradient governed by the damped 
wave momentum transfer and relaxation equation?

17.0 What are the differences in a transient velocity profile for a fluid moving 
between two vertical plates at constant velocity when the plates are moving 
in the same direction and when the plates are moving in opposite directions? 
The governing equation is the damped wave momentum transfer and relax-
ation equation.

18.0 What are the differences in the transient velocity profile during vertical 
flow when the fluid is governed by the parabolic momentum transfer equation 
and the hyperbolic momentum transfer equation?

19.0 What are subcritical damped oscillations in velocity?

20.0 What is the significance of the oscillation number during oscillations of 
a fluid in a U-tube manometer?

21.0 Discuss the transient velocity profile during tangential flow past a 
sphere governed by the damped wave momentum transfer and relaxation 
equation.

22.0 Discuss the transient velocity profile during flow between two concen-
tric spheres governed by the damped wave momentum transfer and relaxation 
equation.

23.0 Discuss the transient velocity profile during radial flow between paral-
lel disks governed by the damped wave momentum transfer and relaxation 
equation.

24.0 Discuss the transient velocity profile when the periodic boundary con-
dition is used when the fluid is governed by the damped wave momentum 
transfer and relaxation equation.

25.0 What is the term-by-term significance of the Bernoulli equation for the 
pump work done by the heart?

26.0 Why are friction factors important in the flow of blood in human 
anatomy?

27.0 What is meant by rheology of blood flow?

28.0 How will you measure the relaxation time of momentum of blood?
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29.0 Will there be two relaxation times of momentum of blood, one for the 
core layer and one for the plasma layer?

30.0 What are the issues in a system described by a third-order ODE?

Problems

31.0 A flat plate is moved suddenly between two fluids of kinematic viscos-
ity, γ1 and γ2, and relaxation times τmom1 and τmom2, respectively. The fluid at the 
two surfaces that binds them is stationary. Compute the force exerted on the 
plate, and obtain the distance of the plate from the wall for balance.

Show that the governing equations for the two fluids may be written as:

∂2u/∂τ2 + ∂u/∂τ = ∂2u/∂X2 

κ∂2u/∂τ2 + ∂u/∂τ = β∂2u/∂X2 

where u = vx/V
 τ = t/τmom

 X = z/(γ τmom1)
 β = γ2/γ1

 κ = τmom2/τmom1

The nonhomogeneity in the boundary condition can be removed by superpos-
ing the steady-state and transient solutions:

Let the distance of the plate from the top surface be b and the distance from 
the bottom surface be a:

Let u = uss + ut

Show that at steady state:

     uss = 1 – X/Xb (fluid on top of the plate)

uss = X/Xa + 1 (fluid below the plate)

After removing the damping terms, show that the governing equations for 
the transient component of the fluid atop the plate and for the fluid below the 
plate can be written after a u = w exp(–τ/2) substitution:

∂2w/∂τ2 – w/4 = ∂2w/∂X2

The u = w exp(–τ/2κ) substitution for the governing equation for the fluid 
below the plate:

∂2w/∂τ2 – w/4κ2 = (β/κ)∂2w/∂X2 

The space and time conditions are:

X = 0, ut = 0

X = Xa, u
t = 0; X = Xb, u

t = 0, τ = 0, u = 0. Use the method of separation of variables 
to solve for the transient component of the dimensionless velocity. Show that ut = 
∑1

∞ cn exp(–τ/2)exp(–τsqrt(1/4 – λn
2)) sin(λnX) where λn = nπ/Xb, n = 1, 2, 3, . . . and 
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where cn = 2(1 – (–1)n)/nπ. Furthermore, for a small distance between the plate 
and the bounded surface, show that ut = ∑1

∞ cn exp(–τ/2)cos(τsqrt(λn
2 – 1/4)×

sin(λnX).
In a similar fashion, for the fluid below the plate, show that ut = ∑1

∞ cn× 
exp (–τ/2)exp (–τsqrt(1/4κ2 – ζn

2))sin((κ/β)1/2ζnX) where ζn = nπ/Xa, n = 1, 2, 3. . . 
and where cn = 2(1 – (–1)n)/nπ.

Derive the force on the plate during transient flow and equate the contribu-
tions of the fluid on top of the plate and from the bottom of the plate. Make use 
of the integrating factor if necessary. Is the force oscillatory for small separation 
distances between the late and the bounded surface?

32.0 Microlayer composites were coextruded in up to 3,713 alternating layers. 
The interdiffusion of two miscible layers of polycarbonate and copolyester was 
studied at temperatures from 200 to 230°C at the polymer laboratory at Case 
Western Reserve University. Extend the analysis in Problem 1.0 to n layers.

33.0 From the analysis in Exercise 32.0, can the layer rearrangement be pre-
dicted? What secondary flows can be predicted?

34.0 Consider n layers of n different fluids on top of each other in a vertical 
container. Extend Torricelli’s theorem to obtain the efflux velocity of the fluid 
from the bottom of the container. Derive the azimuthal velocity as a function 
of space and time.

35.0 The flow of blood in a circular pipe for the plasma layer and core layer 
was studied, and the discharge rate as a function of the intrinsic viscosity of 
the plasma and core layers and the thickness of the plasma layer radius of the 
capillary was derived. Derive the discharge rates as a function of pressure drop 
and other parameters of flow for the slit flow limit.

Let the width of the flat plates be 2W, the area of the cross-section be A, and 
the thickness of the core layer be 2δc. The boundary conditions are:

x = 0, ∂vx
c/∂z = 0

x = W, vx
p = 0

x = δc, τzx
c = τzx

c ; vx
p = vx

c

Show that at steady state:

∂p/∂x = µc
 (∂2vx/∂z2) = c1 = –(p0 – pL)/L

vx
c = (∆p/2µc L)(W2 – z2) – ∆pδc

2/2L(1/µp– 1/µc)

vx
p = (∆p/2µpL)(W2 – z2)

Show that the average flow rates in the core and plasma layers can be calcu-
lated as:

< > = = ∆ − − ∆v zv dz p L W px
c

c x
c

c c2 2 42 2 2/ ( / )( / / )δ µ δ δcc p cL
c

2

0

1 1/ ( / / )µ µ
δ

−∫

   Qc = (∆pWδc
3/µcL) (2(W/δc)

2 – 1) – 4∆pW(δc
3)/L(1/µp– 1/µc)

   Qp = 4W(∆p/µpL)(W2 – δc
2)2 /(W + δc)
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36.0 For the geometry and space conditions shown in Problem 5.0, derive 
the transient pressure and velocity distributions as a function of z and time. 
What is the critical thickness prior to the onset of subcritical oscillations in 
the flow rate?

37.0 Repeat the analysis in Problem 1.0 for a vertical plate. Study the response 
to an oscillating velocity introduced by the vertical plate.

38.0 Consider the coaxial flow between two cylinders. The free stream velocity 
approaching the coaxial cylinders is constant at V. Develop the transient velocity 
profile in the annulus using the damped wave momentum transfer and relax-
ation equation. What is the average velocity? Where is the location of maximum 
velocity? Obtain the pressure drop versus discharge rate relationships at steady 
state and transient state. Use the method of separation of variables, and let the 
inner and outer radii be R and κR, respectively, and develop the conditions 
where subcritical oscillations in the velocity can be observed. What is the force 
exerted by the fluid on the surface? Defining the friction factor f as:

Fk = f (1/2ρ <v>2)Ak

Obtain the friction factor at a steady state and transient state for large pipes 
and at a transient state for small pipes. Ak may be taken as the wetted surface 
area, which is 2πLR (1 + κ). 

39.0 Bulk flow effect. Consider a one-dimensional flow due to a constant pres-
sure drop along with bulk flow. Show that after neglecting the viscous effects, 
the governing equation can be written as:

τmom (∂2vx/∂t2 + vx∂
2vx/∂t∂x) + (τmom ∂vx/∂t + vx)(∂vx/∂x) + ∂vx/∂t = ∆p/ρL

At steady state:

vx
2/2 = c + x(∆p/L)

Let vx = vx
s + vx

t

τ = t/τmom; u = vx/Vref ; X = x/Vτmom: P∗ = ∆p/(ρVref L/τmom)

Show that the transient portion of the solution will obey:

(∂2u/∂τ2 + u ∂2u/∂τ ∂X) + (∂u/∂τ + u)(∂u/∂X) + ∂u/∂τ = 0

Let u = V(τ)g(X)

V″g + Vg V′g′ + g′V(V′g + Vg) + V′g = 0

V″/V + V′/V /(2V′ + V) = – g′ = c2

g(x) = –c2x + d

V″ + V′(1 − 2c2V) – V2c2 = 0

Seek a solution for V using the Frobenius method.
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40.0 In the chapter, the radial flow between two concentric spheres of an 
incompressible, isothermal liquid was derived. The transient velocity distribu-
tion is examined using the damped wave momentum transfer and relaxation 
equation. Let the radii of the two spheres be R and mR, respectively. The gov-
erning equation for the radial component of the velocity can be written. The 
velocity is assumed to consist of steady-state and transient parts. From the 
steady-state part of the solution to the velocity profile obtain the friction factor 
as a function of the Reynold’s number for laminar flow. The transient velocity 
profile is derived by the method of separation of variables. Obtain the friction 
factor for transient flow for large spheres and small spheres.

41.0 A conical thrust bearing idealized as a cone of vertex angle 2θ and maxi-
mum cone radius R rests and revolves over a uniform fluid layer of thickness 
δ at a constant angular velocity ω. Derive the transient and steady-state veloc-
ity profileand obtain expressions for the torque required and the rates of heat 
dissipation in the bearing at steady state and transient state using the damped 
wave momentum transfer and relaxation equation.

42.0 In the falling ball viscometer, the shear rate is given by the terminal 
settling velocity of the sphere over the radius of the falling ball and the shear 
stress by 2/9gR(ρs – ρ). Consider the acceleration regime of the settling sphere. 
Develop the friction factor and Reynold’s number relationship during accelera-
tion. Show how the falling ball viscometer can be used to obtain the viscosity 
and relaxation time information from experiments.

43.0 Examine the rotating cylinder viscometer in transient and steady-state 
conditions. The radii of the cylinders are 3.2 cm and 3 cm, and the outer cylin-
der is suddenly rotated at 180 rpm. For a liquid filled in the annular space to a 
depth of 8 cm, the torque produced on the inner cylinder is 10−4 Nm at steady 
state. Use the damped wave momentum transfer and relaxation equation, 
and obtain the spatiotemporal velocity profile. Calculate the viscosity of the 
liquid. Develop a procedure to obtain the relaxation time of the liquid using 
the transient torque data.

44.0 There is interest in a “Peace Pipeline” to bring gas from Iran to North 
Delhi via different countries such as Afghanistan, Pakistan, and possibly 
Turkmenistan. Prepare a preliminary estimate of the pipe size required for a 
transcontinental pipeline between the Gulf region and North Delhi. It has to 
handle 1000 std m3/hr of natural gas at an average pressure drop of 3 atm abs 
at an average temperature of 25°C. What is the maximum force exerted by 
the pipe? Is this during transience or steady state? What is the ideal friction 
factor relation to be used? What is the optimal number of pipes to minimize 
the total cost to achieve the objectives of the task? Using the damped wave 
momentum transfer and relaxation time equation, obtain the time it takes to 
reach steady state and the conditions needed to avoid subcritical damped 
oscillations. 

45.0 Consider a hot circular pipe through which a fluid is flowing in laminar 
flow. Obtain the transient velocity profile using the damped wave momen-
tum transfer and relaxation equation. Obtaining an average velocity, use the 
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governing equation for heat transfer and plug the derived expression for the 
velocity in the azimuthal direction.

τr(∂
2T/∂t2 + < vz >∂2T/∂t∂z + ∂T/∂t = α(1/r ∂/∂r (r∂T/∂r) 

Obtain the transient temperature profile using the damped wave heat con-
duction and relaxation equation. Obtain the hydrodynamic boundary layer 
thickness to the thermal boundary layer thickness. Discuss the implications 
of Prandtl number in transience.

46.0 In Ref. 8, a general substitution was used to reduce the hyperbolic PDE 
in one space dimension into a parabolic PDE. Consider all three space dimen-
sions, and seek a suitable general substitution to reduce the hyperbolic PDE 
in three space and time dimensions into a parabolic PDE. 

47.0 Obtain the pressure and velocity distribution as a function of z and t in 
a hemispherical cup using the extended Euler equation in one dimension and 
two dimensions, respectively. What is different in the predictions of the efflux 
time, velocity, and pressure profile? 

Volume of a partially filled sphere = π/6h1 (3r2
2 + h1

2) 

48.0 Develop the friction factor for a bubble moving through a liquid. Obtain 
the transient and steady-state relationships. What assumptions are necessary?

49.0 Consider an elutriating bed of particles. Write the governing equation 
for vz. Obtain the pressure drop versus flow rate in a circular pipe for mate-
rials with a positive permeability coefficient. Obtain the conditions where 
the velocity will exhibit subcritical damped oscillations using the extended 
Euler equation, making allowance for Darcy’s law with a positive permittivity. 
In an elutriating bed, as the superficial velocity increases, the pressure drop 
decreases. This is in contrast to Darcy’s law for packed beds when the pressure 
drop is increased for increased flow rates. Use the damped wave momentum 
transfer and relaxation equation.

50.0 Intravenous infusion. Gravity flow is used for a patient infusion system. 
The fluid is allowed to flow out an IV bag by gravity flow. A 400-mL IV bag 
containing an aqueous solution is connected to a vein in the forearm of a 
patient. Pressure at the veins is 1 atm. The IV bag is placed on a pedestal such 
that the entrance to the tube leaving the IV bag is 1.8 meters above the vein 
into which the IV fluid enters. The length of the IV bag is 26 cm. The IV is fed 
through an 16"-gauge tube, and the total length of the tube is 3 m. Compute 
the flow rate of the IV fluid. Estimate the time needed to completely deplete 
the contents of the bag.

51.0  The cardiac output in human anatomy is about 5 L/min. Blood enters 
the right side of the heart at a pressure of 1 atm. It flows via the pulmonary 
arteries to the lungs at a mean pressure of 1.0144 atm. Blood returns to the left 
side of the heart through the pulmonary veins at a mean pressure of 1.0105 atm. 
The blood is then ejected from the heart through the aorta at a mean pressure 
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of atm. Apply the Bernoulli equation and estimate the power or rate of work 
done by the heart.

52.0  One type of a compact mass exchanger used for detoxification of blood 
uses tubes whose cross-sectional area is an equilateral triangle. Each of the 
sides of the triangle is H. When blood is forced to flow through these mass-
exchanger elements, it can be expected that the core layer and plasma layer 
form according to the Fahraeus-Lindqvist effect. Calculate the total discharge 
rate of the blood as a function of the viscosity of the core layer, viscosity of the 
plasma layer, plasma layer thickness, length of the tube, pressure drop, and 
any other parameters needed.

53.0 Repeat Exercise 52.0 for a trapezoidal cross-section of width a and b 
separated by H.

54.0 Calculate the total discharge rate of the blood in a circular tube with 
radius R as a function of viscosity of core layer, viscosity of plasma layer, plasma 
layer thickness, length of the tube, pressure drop, and any other parameter that 
is needed when the fluid is said to be non-Newtonian. For such fluids:

τ µrz
z

n
v
r

= −
∂
∂








−1

55.0  Repeat Exercise 54.0 for flow through a rectangular narrow slit 2B apart 
and width W.

56.0 The marginal zone theory and the discharge rate of blood as a function of 
the applied pressure drop, length of the circular conduit, radius of the circular 
conduit, viscosity of the core and plasma layer, and plasma layer thickness was 
derived in Sec. 4.1. This was at steady state. In Sec. 4.5.6, the transient flow in a 
circular conduit was studied using the damped wave momentum transfer and 
relaxation equation. Now study the flow of blood in the core and plasma layers 
in transit using the damped wave momentum transfer and relaxation equa-
tion. What are the interesting features of the solution to the transient velocity 
profile?Under what conditions of the relaxation time of momentum and plasma 
layer thickness can subcritical damped oscillations in velocity be expected? 
Under these circumstances, what will happen to the plasma layer formation?

57.0 Repeat Exercise 56.0 for rectangular slit 2B apart and width W.

58.0 Repeat Exercise 56.0 for a triangular cross-section, as described in 
Exercise 56.0.

59.0 The cardiac output in human anatomy is about 5 lit/min. What would 
be the fluid velocity in the human arm, human leg, human spinal region, 
human stomach, etc.? What idealization of the geometry would you recom-
mend for each region of the human anatomy? Assume steady state.

60.0  How will you design an electronic blood pressure monitor for human 
anatomy in a noninvasive manner using the theory developed in Sec. 4.5.12? 
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CHAPTER 5
Gas Transport

Learning Objectives
• Learn Hill plot and equilibrium dissociation

• Simultaneous diffusion and reaction in Islets of Langerhans

• Michaelis-Menten kinetics

• Asymptotic limits at high and low concentrations

• Transient oxygen diffusion in capillary and tissue layers

• Oxygen concentration profile in cell-free plasma layer

• Continue discussion on Krogh tissue cylinder

• Include wave diffusion effects in transient conditions

• Kinetics of nitric oxide formation, diffusion, and transport

5.1 Oxygenation Is a Reversible Reaction 
Oxyhemoglobin, HbO2n, dissociates to hemoglobin, Hb, and oxygen 
via an equilibrium reaction. Hemoglobin binds to oxygen to form 
oxyhemoglobin at high partial pressures of oxygen, usually in the 
lungs. Heme means group and globin represents the globular protein. 
Hemoglobin is a metalloprotein with a molecular weight of 68,000 gm/
mole. It consists of four polypeptide chains, two of them α type and 
two of them β type. It is contained in the RBCs of vertebrates. Ninety-
seven percent of RBCs is Hb. Hb transports oxygen from the lungs or 
gills to the rest of the anatomy, where the oxygen is released for use 
in cells. It possesses oxygen-binding capacity. Hemoglobin was dis-
covered by Hunefeld in 1840. Funke grew Hb crystals in water and 
alcohol. In 1959, Perutz elucidated the structure of hemoglobin by 
x-ray crystallography. He was awarded the Nobel Prize for it in 1962. 
At full saturation, all erythrocytes are in the form of oxyhemoglobin. 
As the erythrocytes diffuse to tissues deficient in oxygen, the partial 
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pressure of oxygen will decrease, resulting in the decrease of oxygen 
and hemoglobin from oxyhemoglobin. 

 HbO Hb nOn k

k

b

f

2 2⇔ +  (5.1)

The equilibrium reaction is shown in Eq. (5.1), where kf is the forward 
reaction rate, and kb is the reverse reaction rate, and n is the number of 
molecules of oxygen that bind with hemoglobin. Chemical equilibrium 
is the state at which the chemical activities, usually denoted concentra-
tions of the reactants and products, are invariant with time. At this 
juncture, the forward and reverse reaction rates are equal. They are not 
zero, and the process is in a state of dynamic equilibrium.

 An equilibrium rate constant, Keq, can be defined as follows:

 K
k

k
f

b
eq =  (5.2)

The rate of oxygenation can be written as:

 
dC

dt
k C k C CHbO

f HbO b Hb O
nn

n

2

2 2
= − +  (5.3)

Equation (5.3) may be written provided the rate of the forward reac-
tions is simple and obeys the first-order kinetics and the rate of reverse 
reaction is first order with respect to hemoglobin and nth order with 
respect to oxygen. At equilibrium, Eq. (5.3) becomes zero and:

 C
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KHbO
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2

2=
eq

 (5.4)

The extent of oxygenation can be quantitated by a term called satura-
tion. Defining saturated hemoglobin as φ:

 φ =
+

=
+

C

C C C
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1
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 (5.5)

Combining Eqs. (5.5) and (5.4):

 φ =
+

=
+

1
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neq eq

 (5.6)

Assuming ideal gas law:

 C
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RTO
O
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2=
( )

 (5.7)
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Plugging Eq. (5.7) in Eq. (5.6):

 φ =
+( )

p

p K RT
O
n

O
n n

n

n

2

2 eq( )
 (5.8)

Equation (5.8) can be made simpler to use by defining a certain p50—
that is, the partial pressure of oxygen at which 50 percent of the 
oxygen-binding sites are filled. Thus, when φ = 0.5:

 0 5 50

50

.
( )

=
+

p
p K RT

n

n n
eq

 (5.9)

Obtaining the reciprocal of Eq. (5.9) and rearranging it can show 
that:

 p K RTn
50

1= eq
/ ( )  (5.10)

Substituting Eq. (5.10) in Eq. (5.8):

 φ =
+( )

p

p p
O
n

O
n n

n

n

2

2 50
 (5.11)

Equation (5.11) is referred to as the Hill equation. It is named after 
Archibald V. Hill, who was awarded the Nobel Prize in physiology or 
medicine in 1922 for his discovery relating to the production of heat 
in the muscle. A plot of φ versus the partial pressure of oxygen is 
called the Hill plot. It can be seen that as temperature varies, the plot 
will vary. The values of n and p50 can be obtained by a log-log plot of 
the experimental values of the partial pressure of oxygen and the 
saturation level of hemoglobin upon suitable modification. 

This can be seen in Fig. 5.1 The curve is sigmoidal in shape. When 
the temperature is increased, as indicated in Eq. (5.10), the p50 will 
increase, provided the equilibrium rate constant does not change 
significantly. This can result in the dissociation curve shifting to the 
right. This is represented by the dashed curve in Fig. 5.1. Another 
cause attributable to the shift of the curve to the right in Fig. 5.1 with 
an increase in temperature is the denaturing of the bond between the 
oxygen and hemoglobin. 

The sigmoidal shape of the Hill plot is attributed to the coopera-
tive binding of oxygen to the four polypeptide chains. Cooperative 
binding is the increased affinity for more oxygen to bind with hemo-
globin once the first oxygen atom has attached itself to hemoglobin. 

Other factors that can change the equilibrium rate constant Keq 
and p50 are pH and organic phosphates. An increase in acidity or a 
decrease in pH results in what is referred to as the Bohr shift.
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During Bohr shift, the curve in the Hill plot will shift to the right. 
Due to the increase in sensitivity to acid, more oxygen needs to be 
given up. 2.3-diphosphoglycerate (DPG) organic phosphate binds to 
hemoglobin. This decreases the affinity of oxygen, causing a shift of 
the curve to the right in the Hill plot [1]. 

Each heme group in hemoglobin contains one iron (Fe) atom that 
is capable of binding one oxygen molecule via ion-induced dipole 
forces. The oxidation state of Fe in oxyhemoglobin is 3, not 2. The 
polypeptide chains in Hb bind together by noncovalent interactions. 
The binding is said to be cooperative. When oxygen binds to the iron 
complex, the Fe atom moves back toward the center of the plane of 
the porphyrin ring. The imidazole side chain of the histidine residue 
interacting at the other pole of the iron is pulled toward the porphy-
rin ring. The binding of oxygen is a cooperative process. When one 
subunit in hemoglobin is attached to oxygen, the other subunits 
undergo a conformational change, resulting in an increase in affinity 
to oxygen. This is why the Hill plot is sigmoidal in shape (Fig. 5.1).

The oxygen-binding capacity of Hb is decreased in the presence of 
carbon monoxide (CO). This is because CO also competes for the avail-
able binding sites for oxygen. This effect can be seen in tobacco smok-
ers. In heavy smokers, 20 percent of the active sites in Hb are blocked. 
The affinity of CO to Hb is 200 times greater than that with oxygen. 
Small amounts of CO can reduce the oxygen transport capability of 
hemoglobin. When Hb combines with CO, it forms a bright pink com-
pound called carboxyhemoglobin. Due to pollution, air containing CO 
can cause headache, nausea, and even unconsciousness. 

Henry’s law can be applied to estimate the partial pressure of 
oxygen:

 p HCO O2 2
=  (5.12)

0
0 20 40

Partial pressure of oxygen (mmHg)

Dissociation of oxygen from oxyhemoglobin

60 80

0.1
0.2
0.3Sa

tu
ra

tio
n 

le
ve

l

0.4
0.5
0.6
0.7
0.8
0.9

1

FIGURE 5.1 Oxygen dissociation from oxyhemoglobin—the Hill plot.
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H is the Henry’s law constant, and CO2
 is the concentration of the dis-

solved oxygen concentration in the blood. The Henry’s law constant for 
human blood at 37°C is 0.75 mmHg/µM. 

The equilibrium rate constant, Keq, changes in response to tem-
perature. This is described by van’t Hoff’s equation:

 
d K

dT
H

RT

ln( )eq = ∆
2  (5.13)

where ∆H is the enthalpy change for the reaction. Equation (5.13) was 
integrated and an expression developed in terms of Keq at two differ-
ent temperatures. Thus:
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Furthermore, it is known that:

 K e e e
G

RT
H

RT
S

R
eq = =− −∆ ∆ ∆

 (5.15)

Equation (5.15) follows from the relation ∆G = ∆H − T∆S. G is the 
Gibbs free energy, as discussed in Chap. 1.

5.2 Diffusion of Oxygen in Tissue and Blood
Oxygen availability becomes limited in some regions of the tissue. 
The metabolic rate in the cells and the demand for oxygen is greater 
than the oxygen that has diffused to that region. Oxygenation becomes 
a diffusion-limited process. Due to this phenomena, growth of multi-
cellular systems over 100 µm does not happen. A condition called 
hypoxia has been observed in Brockmann bodies in fish. Oxygen-
partial pressures were measured in the islet organs placed in culture. 
A microelectrode was used to detect oxygen-partial pressure in the 
surrounding region of an islet organ that is 800 µm in diameter and 
within the cells. Within a distance of 100 µm for the case of no convec-
tion [2], pO2

 is close to zero. A condition called necrosis is reached 
where the cells begin to die without sufficient oxygen supply. The 
experiments with convection showed increased pO2

 at the surface and 
core regions of the islet. 

Oxygen supply, in addition to diffusion, comes about by the cir-
culatory system and through the hemoglobin molecule. Oxygen is 
carried in the blood by convection to capillaries by the circulatory 
system. 

Islets of Langerhans (Fig. 3.18) are spheroidal aggregates of cells 
that are located in the pancreas [2]. They secrete hormones that are 
involved in glucose metabolism, particularly insulin. Transplantation 
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of isolated cells is a promising treatment for some forms of type 1 
diabetes. Islets removed from the pancreas are devoid of their inter-
nal vascularization. The metabolic requirement of the cells requires 
oxygen to diffuse from the external environment and through the 
oxygen-consuming islet tissue. The oxygen supply is a critical limit-
ing factor for the functionality and feasibility of islets that are encap-
sulated, placed in devices for implantation, cultured, and used in 
anaerobic conditions. Theoretical models are needed to describe the 
oxygen diffusion. The parameters of the model require knowledge of 
the consumption rate of oxygen, oxygen solubility, and the effective 
diffusion coefficient to oxygen in the tissue. 

5.2.1  Fick Diffusion and Michaelis-Menten Kinetics in 
Spherical Coordinates

Colton et al. [3] developed an oxygen reaction and diffusion 
model. They assumed that the islet preparation is a suspension of 
tissue spheres that can be divided into m groups. Each sphere in 
group i (1 < i < m) has the same equivalent radius, Ri, that varies 
from group to group. The tissue is assumed to be uniform, with 
constant physical properties that are invariant in space. The gov-
erning equation for oxygen diffusion and reaction in spherical 
coordinates with azimuthal symmetry, accounting for Fick’s dif-
fusion, can be written as:
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∂
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where DT = the diffusion coefficient in the tissue 
 CE0 = the total enzyme or complexation species concentration  
 CM = the Michaelis constant 

The oxygen consumption rate is assumed to obey the Michaelis-Menten 
kinetics. Equation (5.16) describes the interplay of transient diffusion 
and metabolic consumption of oxygen in the tissue in spherical coor-
dinates. The concentration of oxygen, CO2

, can be expressed in terms 
of its partial pressure, pO2

. This is obtained by using the Bunsen solu-
bility coefficient, αt, such that:

 C pO t O2 2
= α   (5.17)

Substituting Eq. (5.17) in Eq. (5.16), Eq. (5.16) becomes:
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The product αtDT can be seen to the product of solubility and diffu-
sivity, and hence is the permeability of oxygen in the tissue. The 
Michaelis constant, CM, is also modified: C’M expressed in units of 
mmHg. The initial condition can be written as:

 p p tO O2 20
0= =,  (5.19)

From symmetry at the center of the sphere:
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At the surface, the oxygen diffusive transport from within the sphere 
must be equal to the oxygen transport by convection across the 
boundary layer surrounding each sphere:
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where p RO i2
( ) = the partial pressure of oxygen at the surface, 

 ki =  the mass transfer coefficient between the surround-
ing space and the surface of the sphere, 

 αm = the oxygen solubility in the surrounding space. 

The total rate of oxygen transfer N from the surrounding space to all 
of the spheres can be summed up as:
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where Vm = the volume of the surrounding space is given by 
 ns = the total number of spheres, 
 fi = the fraction of spheres in group i. 

The initial condition for the surrounding space is:

 p p tO Om m2 2
0 0= =( ),  (5.23)

The mass transfer coefficient can be obtained from suitable Sherwood 
number correlations. For instance, the mass transfer coefficient for 
spherical particles in an agitated tank in the islet size range of 100 to 
300 µm can be written as:
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where ε is the power input per unit fluid mass and f is the function 
that has to be obtained from experimental data.

Numerical methods are needed to obtain the solution to Eq. (5.18). 
This is because of the nonlinearity of Michaelis-Menten kinetics. 
Closed formed analytical solutions to Eq. (5.18) can be obtained in the 
asymptotic limits of the following: 

 1. High concentration of oxygen: The rate is independent of pO2
 

(zeroth order).

 2. Low concentration of oxygen: The rate is first order with 
respect to pO2

.

The reasons for choosing the asymptotic limits are elucidated in 
Fig. 5.2. It can be seen that at low reactant concentrations, the rate is 
linear [4]. At high enzyme or complexing agent concentrations, the 
rate is invariant with respect to concentration. Hence, a zeroth order 
can be assumed at high concentrations and a first order at low reac-
tant concentrations.

Thus, at high reactant concentrations, Eq. (5.18) becomes: 
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Equation (5.18) can be nondimensionalized as follows:
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FIGURE 5.2 Rate-concentration curve obeying Michaelis-Menten kinetics.
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Equation (5.25) becomes:
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The zeroth-order reaction at high concentrations of oxygen is a het-
erogeneity in the partial differential equation. Systems such as this 
can be solved for by assuming that the solution consists of a steady-
state part and a transient part:

 Let u = uss + ut (5.28)

Substituting Eq. (5.28) in Eq. (5.27), Eq. (5.27) becomes:
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Equation (5.29) holds good when:

 − = ∂
∂

∂
∂







∗r
X X

X
u
X

ss

max
1

2
2  (5.30)

and  
∂
∂

= ∂
∂

∂
∂







u
X X

X
u
X

t t

τ
1

2
2  (5.31)

Equation (5.30) can be integrated twice and the boundary condition 
given by Eq. (5.20) applied to yield:

 u
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In order to obtain the solution of the integration constant d in Eq. (5.32), 
the boundary condition given by Eq. (5.21) needs to be modified. 
Assuming that after attaining steady state, the surface concentration of 
the sphere would have reached the surrounding space concentration, d 
can be solved for the solution for the pO2

 at steady state, written as:
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R r r

R
ss i

i

=
−( ) ∗2 2

26
max  (5.33)

The solution to Eq. (5.31) may be obtained by separating the variables 
as follows:

Let ut = V(τ)g(X) 

Then Eq. (5.31) becomes:
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Hence, V ce n= −λ τ2
 (5.35)

 X g X Xg X X g Xn
2 2 22 0′′ + ′ + =( ) ( ) ( )λ  (5.36)

Comparing Eq. (5.36) with the generalized Bessel function [5]:

a = 2; c = 0; s = 1; d = λn
2 ; p = 1/2

The solution to Eq. (5.36) can be seen to be:
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From the boundary condition given by Eq. (5.20), it can be seen that 
d1 can be set to zero and:
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 (5.38)

The eigenvalues λn can be solved for from the boundary condition 
given by Eq. (5.21). In the dimensionless form, Eq. (5.21) may be writ-
ten as:
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where ( / ) ,k R D Bii i T m=  the Biot number (mass). This represents the 
ratio of mass transfer from the surrounding space and the diffusion 
within the sphere. To simplify matters from a mathematical stand-
point, Eq. (5.38) can be written in terms of elementary trigonometric 
functions as:

 g X c
X

Xn

n( )
( )

= 1
2

πλ
λsin

 (5.40) 

The eigenvalues can be obtained from the solution of the following 
transcendental equation:
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The general solution for the dimensionless pO2
 can be written as:
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The eigenvalues are given by Eq. (5.41). The cn can be solved for from 
the initial condition given by Eq. (5.19) using the principle of orthog-
onality and:
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Thus, the oxygen concentration profile at high oxygen concentra-
tion is obtained. At a low concentration of oxygen, the rate of con-
sumption is first order. The governing equation, Eq. (5.18), can be 
written as:
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Obtaining the dimensionless form of Eq. (5.44):
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It can be recognized that φ is the Thiele modulus. Equation (5.45) can 
be solved for by the method of separation of variables. Let u = 
V(τ)g(X):
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The solution in the time domain can be seen to be:

 V ce n= − +( )λ φ τ2 2
 (5.48)

The solution in the space domain can be seen to be:

 X g X Xg X X g Xn
2 2 2 22 0′′ + ′ + +( ) =( ) ( ) ( )φ λ  (5.49)

Comparing Eq. (5.49) with the generalized Bessel function [5]:

a = 2; c = 0; s = 1; d = φ λ2 2+( )n ;  p = 1/2
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The solution to Eq. (5.49) can be seen to be:
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From the boundary condition given by Eq. (5.20), it can be seen that 
d1 can be set to zero and:
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The eigenvalues, λn, can be solved for from the boundary condition 
given by Eq. (5.21). In the dimensionless form, Eq. (5.21) may be writ-
ten as:
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where ( / )k R D Bii i T m= , the Biot number (mass). This represents the 
ratio of mass transfer from the surrounding space of the diffusion 
within the sphere. To simplify matters from a mathematical stand-
point, Eq. (5.51) can be written in terms of elementary trigonometric 
functions as:
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 (5.53) 

The eigenvalues can be obtained by solving the following transcen-
dental equation:
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 (5.54)

The general solution for the dimensionless pO2
 can be written as:
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The eigenvalues are given by Eq. (5.54). The cn can be solved for from 
the initial condition given by Eq. (5.19) using the principle of orthog-
onality and:
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Thus, the oxygen concentration profile at low oxygen concentration 
is obtained.

5.2.2 Wave Diffusion Effects
In the times associated with the oxygen consumption, the finite speed 
of diffusion effects cannot be ignored. The damped wave diffusion 
and relaxation effects may be included (Sharma [6]) in the following 
manner. 

At low oxygen concentration, a first-order rate of reaction can be 
assumed. A semi-infinite medium of tissue is considered. A step 
change in concentration is given at the surface. At times zero, the con-
centration of oxygen is at an initial value. At infinite distances, the con-
centration of oxygen would be unchanged at the initial value. The 
mass balance equation for oxygen can be written as:

 −
∂
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− =
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∂
J

x
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O
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2

2  (5.57)

where k is the lumped first-order reaction rate constant. Combining 
Eq. (5.57) with the damped wave diffusion and relaxation equation:
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the governing equation is obtained. τmr is the mass relaxation time. 
When it is zero, Eq. (5.58) reverts to Fick’s law of diffusion. When the 
rate of mass flux is greater than an exponential rise, the wave regime is 
the more dominant mechanism of transport, compared with the Fick 
regime. Equation (5.58) is differentiated by x, Eq. (5.57) is differenti-
ated by t, and the cross term ∂ ∂ ∂2 J t x/  between the two equations is:

 D
C

x

C

t
k

C

t
kCT

O
mr

O
mr

O
O

∂
∂

=
∂

∂
+ +

∂
∂

+
2

2

2

2
2 2 2

2
1τ τ( )  (5.59)

The governing equation for oxygen concentration in the tissue is 
obtained in the dimensionless form by the following substitutions:
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 (5.60) 

The governing equation is a partial differential equation of the hyper-
bolic type. It is second order with respect to time and space:
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The space and time conditions are:

 
X u X u

u
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0 1 0
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,τ
 (5.62)

Equation (5.61) can be solved by a recently developed method called 
relativistic transformation of coordinates. The damping term is first 
removed by Eq. (5.61) by enτ. Choosing n k= + ∗( )/1 2 and letting W = 
uenτ, Eq. (5.61) becomes:
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The significance of W is that it can be recognized as the wave concen-
tration. During the transformation of Eq. (5.61) to Eq. (5.62), the 
damping term has vanished.

Now let us define a spatiotemporal symmetric substitution:

  η = τ2 − X2 for τ > X 

Equation (5.62) becomes:
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Comparing Eq. (5.64) with the generalized Bessel equation :

 a = 1; b = 0; c = 0; s = ½; d
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The order p = 0. 
d s/ = ½ i(1 − k∗) and is imaginary. Hence, the solution is:
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c2 can be seen to be zero from the condition that at η = 0, W is finite:
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From the boundary condition at X = 0:
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c1 can be eliminated between Eqs. (5.66) and (5.67) in order to yield:
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This is valid for τ > X, k∗ ≠ 1. For X > τ:
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At the wavefront, τ = X: 
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The mass inertia can be calculated from the first zero of the Bessel 
function at 2.4048. Thus:

 τ inertia=
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 (5.71)

The concentration at an interior point in the semi-infinite medium is 
shown in Fig. 5.3. Four regimes can be identified. These are:
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FIGURE 5.3 Dimensionless concentration at an interior point Xp = 10 in a 
semi-infi nite medium during simultaneous reaction and diffusion. k∗ = 0.5.
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 1. Zero-transfer inertial regime: 0 0 ≤ ≤τ τinertia

 2. Times greater than the inertial regime and less than at the 
wavefront: Xp > τ

 3. Wavefront: τ = Xp

 4. Open interval of times greater than at the wavefront: τ > Xp

During the first regime of mass inertia, there is no transfer of mass 
up to a certain threshold time at the interior point Xp = 10. The second 
regime is given by Eq. (5.69), represented by a Bessel composite func-
tion of the first kind and zeroth order. The rise in dimensionless con-
centration proceeds from the dimensionless time 2.733 up to the 
wavefront at Xp = 10.0. The third regime is at the wavefront. The 
dimensionless concentration is described by Eq. (5.70).

The fourth regime is described by Eq. (5.68) and represents the 
decay in time of the dimensionless concentration. It is given by the 
modified Bessel composite function of the first kind and zeroth order. 
Figure 5.4 shows the three regimes of the concentration when k∗ = 2.0. 
It can be seen from Fig. 5.4 that the mass inertia time has increased to 
8.767. The rise is nearly a jump in concentration at the interior point 
Xp = 10.0. When k∗ = 0.25, as shown in Fig. 5.5, the inertia time is 7.673. 
In Fig. 5.6, the three regimes for the case when k∗ = 0.0 are plotted. In 
Table 5.1, the mass inertia time for various values of k∗ for the interior 
point Xp = 10.0 is shown. k∗ needs to be sufficiently far from 1 to keep 
the inertia time positive.

The steady-state solution for Eq. (5.61) can be written as:

  uss = exp(–(k∗)1/2 X) (5.72)
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5.3 Krogh Tissue Cylinder
The Krogh tissue cylinder was briefly discussed in Sec. 3.11. In the 
early part of the 20th century, A. Krogh, a Danish physiologist, 
described oxygen delivery to tissues when the concentration of oxy-
gen in the blood is uniform. More advanced models that include the 
variation of concentration along the length of the capillary have been 
developed in the literature. Krogh idealized the capillary and tissue 
region such that capillaries supply oxygen to a cylindrical region sur-
rounding each capillary (Fig. 3.14). This pattern may be applicable in 
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FIGURE 5.5 Dimensionless concentration at an interior point Xp = 10 in a 
semi-infi nite medium during simultaneous reaction and diffusion. k∗ = 0.25.
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some cases, but not in the brain tissue, where the capillary arrange-
ment is more complex. 

5.3.1  Transient Oxygen Fick Diffusion and 
Michaelis-Menten Kinetics

Consider the oxygen diffusion in the tissues at transient state. The 
governing equation for one-dimensional diffusion of oxygen in the 
tissue can be written considering only the Fick diffusion and 
Michaelis-Menten kinetics for the consumption of oxygen as:
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where DT is the diffusion coefficient of oxygen in the tissues. The 
boundary conditions are:

 r R D
C

ro T
O= −

∂
∂

=, 2 0  (5.74)

 r R C Cc O Rc
= =,

2
 (5.75)

 t CO= =0 0
2

,  (5.76)

Closed formed analytical solutions to Eq. (5.73) can be obtained in the 
asymptotic limits of the following: 

S. No. k∗ (k”’smr) Mass Inertia Time (t/smr)

1. 0.01 8.741

2. 0.1 8.452

3. 0.25 7.673

4. 0.3 7.266

5. 0.4 5.979

6. 0.5 2.733

7. 1.75 7.673

8. 2.0 8.767

9. 4.0 9.871

10. 8.0 9.976

11. 25.0 9.998

12. 10.0 10.0

TABLE 5.1 Mass Inertia Time vs. k∗ for Interior Point Xp = 10.0.
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 1. High concentration of oxygen: The rate is independent of 
oxygen concentration (zeroth order).

 2. Low concentration of oxygen: The rate is first order with 
respect to concentration of oxygen.

The reasons for choosing the asymptotic limits are elucidated in 
Fig. 5.2. It can be seen that at low reactant concentrations the rate is 
linear. At high enzyme or complexing agent concentrations the rate is 
invariant with respect to concentration. Hence, a zeroth order can be 
assumed at high concentrations and a first order at low reactant con-
centrations. Thus, at high reactant concentrations, Eq. (5.73) becomes:
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Equation (5.73) can be nondimensionalized as follows:
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Equation (5.77) becomes:
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The zeroth-order reaction at high concentrations of oxygen is a het-
erogeneity in the partial differential equation. Systems such as this 
can be solved for by assuming that the solution consists of a steady-
state part and a transient part:

Let u = uss + ut (5.80)

Substituting Eq. (5.80) in Eq. (5.79), Eq. (5.79) becomes:
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Equation (5.81) holds good when:
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Equation (5.82) can be integrated twice and the boundary condition 
given by Eq. (5.74) applied to yield:

 u
X r

d
r

Xss = − + +
∗ ∗2

4 2
max max ( )ln   (5.84)

In order to obtain the solution of the integration constant d in 
Eq. (5.84), the boundary condition given by Eq. (5.75) is used. The solu-
tion for the CO2

 concentration profile of oxygen in the tissue space 
surrounding the blood capillary at steady state can be written as:
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Equation (5.85) is plotted for various values of dimensionless reac-
tion rate r∗

max in Fig. 5.7. A certain X less than 1 can be calculated where 
the dimensionless concentration becomes 1. This is when the concen-
tration of oxygen drops to zero and is the zone of zero transfer. This 
happens before the arrival of the tissue space boundary, where there 
is no flux, and can be expected at large reaction rates.  
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The solution to Eq. (5.83) may be obtained by separating the vari-
ables as follows: 

Let ut = V(τ)g(X)  

Then Eq. (5.83) becomes:

 ′ = ∂
∂ ′ = −V

V g X X X
Xg X n

( )
( ) ( )

( ( ))
τ
τ

λ1 2  (5.86)

Hence,  V ce n= −λ τ2
 (5.87)

 X g X Xg X X g Xn
2 2 2 0′′ + ′ + =( ) ( ) ( )λ  (5.88)

Comparing Eq. (5.88) with the generalized Bessel function: 

 a = 1; c = 0; s = 1; d = λn
2  p = 0 (5.89)

The solution to Eq. (5.88) can be seen to be:

 g X c J X d Y Xn n( ) ( ) ( )= +1 0 1 0λ λ  (5.90)

Based on the fact that at X = 0, the concentration of acid cannot be 
unbounded, it can be seen that d1 can be set to zero and g X c J Xn( ) ( )= 1 0 λ  
This is in the limit of the capillary radius tending to zero. The eigen-
values, λn, can be solved for from the boundary condition given by 
Eq. (5.91):

 J X r Rn c c0 0( ) ,λ = =  (5.91)

The eigenvalues can be obtained as:

 X n nc nλ π= + − =2 4048 1 1 2 3. ( ) , , , ....   (5.92)

The general solution for the dimensionless concentration can be 
written as:
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The eigenvalues are given by Eq. (5.92). The cn can be solved for from 
the initial condition given by Eq. (5.76) using the principle of orthog-
onality and:
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Thus, the oxygen concentration profile at high oxygen concentration 
is obtained. At a low concentration of oxygen, the rate of oxygen gen-
eration may be approximated as obeying first-order kinetics. The 
governing equation for simultaneous diffusion and reaction of acid 
can be written as:
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Obtaining the dimensionless form of Eq. (5.95):
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It can be recognized that φ is the Thiele modulus. The transient part 
of the concentration profile can be solved for by separating the vari-
ables. Let u = V(τ)g(X):
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The solution in the time domain can be seen to be:

 V ce n= − +( )λ φ τ2 2
 (5.99)

The solution in the space domain can be seen to be:

 X g X Xg X X g Xn
2 2 2 2 0′′ + ′ + +( ) =( ) ( ) ( )φ λ  (5.100)

Comparing Eq. (5.100) with the generalized Bessel function:

a = 1; c = 0; s = 1; d = φ λ2 2+( )n ; p = 0

The solution to Eq. (5.100) can be seen to be:

 g X c J X c Y Xn n( ) = +( ) + +( )1 0
2 2

2 0
2 2λ φ λ φ  (5.101)

Based on the realization that the concentration cannot become 
unbounded at X = 0, it can be seen that c2 is 0. This is especially true 
for capillaries with a small radius: 

 g X c J Xn( ) = +( )1 0
2 2λ φ  (5.102)
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The eigenvalues, λn, can be solved for from the boundary condition at 
X = 1:

 − + +( ) =λ φ λ φn nJ2 2
1

2 2 0  (5.103)

and 3.8317 + (n − 1)π = λ φn
2 2+  (5.104)

The general solution for the dimensionless CO2
 can be written as:
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The eigenvalues are given by Eq. (5.104). The cn can be solved for 
from the initial condition and using the principle of orthogonality:
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Thus, the oxygen concentration profile at low oxygen concentration 
is obtained.

5.3.2 Anoxic Regions
The original Krogh model did not include the transient effects. It also 
did not include the axial variation of oxygen concentration. Axial 
variation in oxygen concentration can be accounted for by a steady-
state mass balance on the bloodstream (Sec 3.11). This can be used to 
obtain the anoxic region. This is where the oxygen concentration 
becomes zero even before reaching the boundary. It is also called the 
lethal corner. 

The Krogh model makes the following assumptions:

 1. Axial diffusion of oxygen in the blood is insignificant.

 2. Axial diffusion of oxygen in tissue is insignificant.

 3. Other reactions with oxygen are insignificant.

 4. Zeroth-order kinetics is assumed for oxygen uptake for large 
concentrations of oxygen (Fig. 5.2).

 5. Capillaries are arranged in a regular array. The central capil-
lary is surrounded by cylinders of tissue.

 6. Oxyhemoglobin and oxygen reaction is reversible and occurs 
uniformly throughout the bloodstream.

 7. Oxygen release in plasma is at a uniform rate. RBCs are not 
recognized as discrete bodies.
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 8. Mass transfer resistance in the endothelium and cell-free fluid 
layer are insignificant. 

Since the Krogh model in the early part of the 20th century, other 
geometries have been considered for idealization of capillaries and 
tissue space. Examples are hexagonal, rectangular, triangular, etc. 
Complex geometries require numerical procedures for obtaining model 
solution(s). The organization of arteriolar and venular ends of adjacent 
capillaries has an effect on oxygen concentration in the tissue space.

5.3.3 Diffusion in the Cell-Free Plasma Layer 
The oxygen concentration in the plasma layer in the absence of any 
reaction can be obtained as follows:
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The boundary conditions can be written as:

 r R C CRB O O
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 (5.108)

The second boundary condition is derived from the oxygen balance 
between the flowing blood in convection and diffusion:
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The initial condition is that at:

 t CO= =0 0
2

,  

Obtaining the dimensionless form of Eq. (5.107):
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where
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The boundary condition given by Eq. (5.109) imposes a mathematical 
heterogeneity on the equations. Systems such as this can be solved for 
by assuming that the solution consists of a steady-state part and a 
transient part:

Let u = uss + ut (5.112)
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Substituting Eq. (5.112) in Eq. (5.110), Eq. (5.110) becomes:
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Equation (5.113) holds good when:
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with the boundary condition:
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with the boundary condition:

 r R
u
Xc

t

= ∂
∂

=, 0  (5.118)

Integrating Eq. (5.114) twice and solving for the integration constants 
from the boundary conditions:
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The oxygen concentration profile in the cell-free layer at steady state 
is given by Eq. (5.119). This was developed by Groebe [7]. They also 
include a fraction of the length of the capillary occupied by the RBCs. 
This can go in the denominator with 2Dpl. The fraction is usually 0.5, 
so 2∗0.5 = 1. Equation (5.119) is valid for RRB< r <Rc.

The transient part of the concentration profile of oxygen in 
the cell-free layer can be solved for by separating the variables. 
Let u = V(τ)g(X):
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The solution in the time domain can be seen to be:

 V ce n= −( )λ τ2
 (5.121)

The solution in the space domain can be seen to be:

 X g X Xg X X g Xn
2 2 2 0′′ + ′ + =( ) ( ) ( ) ( )λ  (5.122)

Comparing Eq. (5.122) with the generalized Bessel function:

 a c s d pn= = = = ( ) =1 0 1 02; ; ; ;λ  (5.123)

The solution to Eq. (5.122) can be seen to be:

 g X c J X c Y Xn n( ) ( ) ( )= +1 0 2 0λ λ  (5.124)

Based on the realization that the concentration cannot become 
unbounded at X = 0, it can be seen that c2 is 0. This is from the sym-
metry condition:

 g X c J Xn( ) ( )= 1 0 λ  (5.125)

The eigenvalues, λn, can be solved for from the boundary condition 
given by Eq. (5.118). Hence:

 3.8317 + (n − 1)π = λn (5.126)

The general solution for the transient dimensionless concentration 
can be written as:

 u c e J Xn n
n=

∞
−∑

0
0

2λ τ λ( )  (5.127)

The eigenvalues are given by Eq. (5.126). The cn can be solved for 
from the initial condition given by Eq. (5.109) using the principle of 
orthogonality and:

 c
J X dX

J X dX
n

nR

nR

o

o

=

∞

∞

∫
∫

0

0
2

( )

( )

λ

λ
 (5.128)

Thus, the oxygen concentration profile in the cell-free layer is 
obtained.

5.3.4  Wave Diffusion Effects during Diffusion 
in the Plasma Layer

Given that typical radius of the capillary is 5 µm, the residence time 
of blood in the capillary is on the order of a few seconds, and the 
nonhomogenous inner structure of blood, the relaxation time (mass) 
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can be on the order of several seconds. The ballistic term in the gen-
eralized Fick’s law of diffusion cannot be neglected. In this section, 
the wave diffusion effects in the cell-free plasma layer are attempted 
to be taken into account.

The oxygen concentration in the plasma layer in the absence of 
any reaction can be obtained from the governing equation for the 
concentration of oxygen, including the damped wave diffusion and 
relaxation effects, as follows:
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The boundary conditions can be written as:

 r R C CRB O O
= = ∗,

2 2
 (5.130)

where RRB is the radius of the core layer with aggregates of RBCs and 
it demarcates the plasma layer of interest.

The second boundary condition is derived from the oxygen bal-
ance between the flowing blood in convection and diffusion:
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 (5.131)

The initial condition is that at:

 t CO= =0 0
2

,  (5.132)

Obtaining the dimensionless form of Eq. (5.129):
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where
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The boundary condition given by Eq. (5.131) imposes a mathematical 
heterogeneity on the equations. Systems such as this can be solved for 
by assuming that the solution consists of a steady-state part and a 
transient part:

Let u = uss + ut (5.135)
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Substituting Eq. (5.135) in Eq. (5.133), Eq. (5.133) becomes:
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Equation (5.136) holds good when:
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with the boundary condition:
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with the boundary condition:
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u
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t
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Integrating Eq. (5.137) twice and solving for the integration constants 
from the boundary conditions:
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The oxygen concentration profile in the cell-free layer at steady state 
is given by Eq. (5.142). This was discussed in the previous section. 
The transient part of the concentration profile of oxygen in the cell-
free layer can be solved for by separating the variables. Let u = 
V(τ)g(X):
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The solution in the time domain can be seen to be:
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It can be seen that the system reaches steady state after some time. At 
steady state, Veτ/2 would become 0 multiplied by a countable large 
number tending to infinity. Zero multiplied by any finite number is 
zero. The time taken to reach steady state is usually not more than a 
few hours. So eτ/2 is large at steady state, yet finite or tending to count-
able infinity. In this case, zero multiplied by a large number is zero. At 
steady state, V would be zero. This means that d has to be set to zero 
in Eq. (5.144). This comes from the “final condition” in time.

The solution in the space domain can be seen to be:

 X g X Xg X X g Xn
2 2 2 0′′ + ′ + ( ) =( ) ( ) ( )λ  (5.145)

Comparing Eq. (5.145) with the generalized Bessel function:

 a c s d pn= = = = ( ) =1 0 1 02; ; ; ;λ  (5.146)

The solution to Eq. (5.145) can be seen to be:

 g X c J X c Y Xn n( ) ( ) ( )= +1 0 2 0λ λ  (5.147)

Based on the realization that the concentration cannot become 
unbounded at X = 0, it can be seen that c2 is 0. This is from the sym-
metry condition:

 g X c J Xn( ) ( )= 1 0 λ  (5.148)

The eigenvalues, λn, can be solved for from the boundary condition 
given by Eq. (5.130). Hence:

 3.8317 + (n − 1)π = λnXRB (5.149)

The general solution for the transient dimensionless concentration 
can be written as:
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It can be seen that for large values of relaxation times of the fluid, 
Eq. (5.150) becomes bifurcated. For:

 λn > 1 2/  (5.151)

Equation (5.150) would become:
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The eigenvalues are given by Eq. (5.126). Equation (5.151) is valid 
when:

 τr
RB

T

R
D

>
2

58 7.
 (5.153)

For a plasma layer thickness of 1 µ and the diffusion coefficient of 
10−5 m2/s, the threshold relaxation time of the fluid would be 27 ns, so 
there is a good chance that the concentration of oxygen in the plasma 
layer would exhibit subcritical damped oscillations.

The cn can be solved for from the initial condition given by Eq. (5.132) 
using the principle of orthogonality and:
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Thus, the oxygen concentration profile in the cell-free layer is 
obtained, including the wave diffusion effects.

5.4  Nitric Oxide Formation and Transport 
in Blood and Tissue

Nitric oxide (NO) is a vasodilator. The widening of blood vessels 
when the surrounding smooth muscle cells relax is called vasodila-
tion. Au contraire, the narrowing of blood vessels is called vasocon-
striction. NO gas is an important signaling molecule and is involved 
in many physiological and pathological processes. In order to protect 
the liver from ischemic damage, a certain threshold level of NO is 
required. Excess NO can result in tissue damage and vascular col-
lapse. Chronic expression of NO is associated with many carcinomas 
and inflammatory conditions, such as juvenile diabetes, multiple 
sclerosis, arthritis, and ulcerative colitis. 

The NO has to diffuse through the blood vessel wall and then 
binds to the enzyme in smooth muscle cells. Cyclic guanine mono-
phosphate (cGMP) is produced, and the smooth relaxation of muscle 
is completed. During hypoxia, which is a state of no or low oxygen 
concentration in the blood, NO is produced. NO production is sen-
sitive to the presence of acetylcholine, histamine, adenosine tri-
phosphate (ATP), and adenosine diphosphate (ADP), and is also 
stimulated by elevated stress levels. The triple-bonded structure of 
nitrogen and oxygen reacts with it, hemoglobin, and proteins, and 
binds with guanylate cyclase enzyme. The lifetime of NO is only a 
few seconds. Progression of atherosclerosis and septic shock are 
affected by changes in the release of NO. It participates in neuro-
transmission, smooth muscle cell formation and development, and 
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changes the adhesion potential of leukocytes to endothelium. NO 
plays a role in the modulation of the hair cycle, synthesis of reactive 
nitrogen intermediates, penile erections, etc. Sildenafil, sold under 
the brand name Viagra, stimulates erections by increased signaling 
via NO pathways in the penis.

The concentration of NO can be measured using a reaction with 
ozone. Such reactions are called chemiluminescent reactions. The reac-
tion produces light that can be detected using a photodetector:

 NO O NO O light+ → + +3 2 2  (5.155)

The light can be detected using electron paramagentic resonance 
(EPR). The heat produced by the formation of NO is endothermic. NO 
production is elevated in people living at high altitudes, which aids 
them in avoiding hypoxia by increasing pulmonary vasculature 
vasodilation. 

NO is produced by the reaction of nicotinamide adenine dinu-
cleotide phosphate (NADPH ) with oxygen and L-arginine. Another 
by-product of this nitric oxide synthase (NOS), enzyme-catalyzed 
reaction is L-citrulline. 

NO: 

 1. Reacts in parallel with proteins, such those found in hemo-
globin, myoglobin, and soluble guanyl (sGC)

 2. Reacts in parallel with cyclase and cytochrome. The reaction 
between NO and hemoglobin is complex. At first, NO reacts 
with the heme group of hemoglobin that is deoxygenated 
and forms a stable complex with iron. The reaction is first 
order with respect to NO and hemoglobin: 

 NO Hb Fe O NO Hb Fe
k

+ → +++ + +( ) ( )2
3 2

1

 (5.156)

 3. Reacts irreversibly with oxygen and reversibly with thiol 
groups (–SH):

 4 2 4 42 2 2

2

NO O H O H NO
k

+ + → ++ −  (5.157)

The reaction rates of the parallel reactions can be analyzed as 
follows:
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The product distribution can be obtained by defining an instantaneous
fractional yield (Figure 5.8). Thus, at any CNO:
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Assuming plug flow reactor behavior, the final product yield can be 
calculated as:
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The transport of NO is similar to the transport of oxygen, but not 
exactly the same. Unlike oxygen, NO is generated via a surface reac-
tion in the surface of the endothelium. NO diffuses in the blood and 
tissue. Consider the schematic in Fig. 5.9.

Capillary radii through which blood flows are approximately 25 
to 75 µm. A mathematical model is developed to describe the diffu-
sion of NO in the blood and tissue. The distance over which NO acts 
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FIGURE 5.8 Instantaneous fractional yield of heme complex during parallel 
reactions of NO.
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in the tissue can be calculated. The governing equation for NO diffu-
sion in the blood and tissue, including Fick and non-Fick transient 
diffusion effects, can be written for the blood and tissue space as:

Blood space:
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where:
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Tissue space:

 
∂

∂
+ +

∂
∂

+ =






∂∗ ∗
2

2

2

1
C

k
C

k C
D
D

CNO NO
NO

T

bl

N

τ τ
( ) OO NO

X X
C

X∂
+

∂
∂






2

1
 (5.165)

where DT and Dbl are the diffusion coefficients of NO in tissue space 
and blood space, respectively. τrbl and τrT are the relaxation times of 
NO in the blood and tissue space, respectively, and are assumed to be 
equal as a first approximation and are τr.

The time and blood and tissue space conditions for CNO can be 
written as follows:
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FIGURE 5.9 NO diffusion in blood and tissue.
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where Γ
.

 is the metabolic production rate of NO at the surface of the 
capillary in the endothelium. Assuming no accumulation at the sur-
face, the metabolic production rate of NO has to be equal to the sum 
of the rates of diffusion into the blood and tissue space. Due to 
opposite directions of NO movement in the blood and tissue spaces, 
there is a sign change in front of the Fick term in the blood space in 
Eq. (5.169): 

 t C CNO NOi= =0,  (5.170)

Heterogeneity is introduced by Eqs. (5.169), (5.163), and (5.165), 
which can be solved for in the following manner:

Let the solution be assumed to consist of steady-state and tran-
sient parts;

 C C CNO NO
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The solutions to Eqs. (5.163) and (5.165) are same as the solutions to:
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and
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and

 k C
D
D

C
X X

C
XNO

ss T

bl

NO
ss

NO
ss

∗ =






∂
∂

+
∂

∂



2

2

1 


 (5.175)

The boundary condition in Eq. (5.169) is applied in its entirety to the 
solution of the steady-state component of the solution. The transient 
part of the solution has a co-continuous derivative, making the equa-
tions homogeneous. The solution to Eq. (5.173) and the concentration 
profile for NO at steady state in the blood space can be written as:

 C cI k X dK k XNO
ss = +∗ ∗

0 0( ) ( )  (5.176)
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Applying the boundary condition given by Eq. (5.173), it can be seen 
that d has to be set to zero and:

 C cI k XNO
ss = ∗

0( )  (5.177)

The solution to Eq. (5.175) and the concentration profile of NO in the 
tissue space can be written as:
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The application of the boundary condition given by Eq. (5.168) leads 
to setting e as zero in Eq. (5.168):
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The constants c and f in Eqs. (5.177), (5.178), and (5.179) can be 
obtained by applying the boundary conditions given by Eqs. (5.167) 
and(5.169). Thus, the steady-state concentration profile in the blood 
space can be given by:
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and the concentration profile in the tissue space can be given by:
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The solution to the transient portion of the concentration profile in 
the blood space can be obtained by separating the variables. Upon 
substituting C g X VNO

ss = ( ) ( )τ , Eq. (5.172) becomes:

 
′′ + + ′ + = ′′ + ′ = −∗ ∗V

V
k

V
V

k
g
g

g
Xg n( )1 2λ  (5.182)



244 C h a p t e r  F i v e

The space domain solution can be written as:

 g X cJ X dY Xn n( ) ( ) ( )= +0 0λ λ  (5.183)

The boundary condition given by Eq. (5.168) can be applied to 
Eq. (5.183), and the integration constant d has to be taken to be 
zero. Hence:

 g X cJ Xn( ) ( )= 0 λ  (5.184)

The solution to the transient portion of the concentration profile in 
the tissue space can be obtained by separating the variables. Upon 
substituting C g X VNO

ss = ( ) ( )τ , Eq. (5.174) becomes:

 
′′ + + ′ + = ′′ + ′ = −







∗ ∗V
V

k
V
V

k
g
g

g
Xg

D
Dn

bl

T

( )1 2λ  (5.185)

The space domain solution can be written as:
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The boundary condition given by Eq. (5.166) can be applied to 
Eq. (5.183), and the integration constant e has to be taken to be 
zero. Hence:
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The boundary condition given by Eq. (5.167) can be applied to get f 
in terms of integration constant c:
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The eigenvalues, λn, can be solved for by applying the boundary con-
dition given by Eq. (5.169):
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The solution to the time domain portion of the concentration profile 
in the blood space can be obtained by solving the following second-
order ordinary differential equation (ODE):

 ′′ + + ′ + + =∗ ∗V k V V k n( ) ( )1 02λ  (5.190)

The solution to Eq. (5.190) can be seen to be:
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As the system reaches steady state, at large times, Vgeτ/2 cannot be 
infinity or unbounded. Therefore, c1 in Eq. (5.191) has to be set to zero. 
The general solution to the transient concentration profile in the 
blood space can be written as:
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The integration constant, cn, can be solved for from the initial condi-
tion given by Eq. (5.170), and is obtained as:

 c
C J X dX

J X dX
n

NOi n

R

n

R

c

c
= ∫

∫
00

0
2

0

( )

( )

λ

λ
 (5.193)

It can be realized that Eq. (5.192) is bifurcated. For large values of λn, 
the monotonic exponential decay behavior of the time domain por-
tion of the solution will change in characteristic to a subcritical damped 
oscillatory state. This happens when:

 λn

k
>

− ∗1
2

 (5.194)

When this happens, the general solution for the concentration profile 
of NO in the blood space can be seen to be:
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Summary
Oxyhemoglobin dissociation to hemoglobin and oxygen occurs through 
an equilibrium chemical reaction. The rate expression for oxygen was 
written. The Hill equation was derived. The Hill plot (Fig. 5.1) contains 
the saturated hemoglobin φ versus the partial pressure of oxygen. The 
curve is sigmoidal in shape. pH and organic phosphates can cause a 
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change in the equilibrium rate constant, Keq, values. During Bohr shift, 
the curve in the Hill plot shifts to the right. The change with tempera-
ture of the Keq rate constant is captured by van’t Hoff’s equation.

Oxygen availability becomes limited in some regions of the tis-
sue. An oxygen reaction and diffusion model was developed by 
Colton [2]. The transient diffusion of oxygen in spherical coordinates 
that undergoes a simultaneous reaction by Michaelis-Menten kinetics 
was modeled. At the asymptotic limit of high reactant concentration, 
the reaction rate becomes zero order. The model solution consists of 
steady-state and transient parts, which removes the heterogeneity in 
the governing equation. The transient concentration profile is 
obtained by separating the variables. The solution is presented as an 
infinite Bessel series of 1/2th order and first kind. At a low concentra-
tion of oxygen, the kinetics of oxygenation reverts to a first-order 
expression. The transient and steady-state solutions are obtained. 
The eigenvalues have to be solved for from a transcendental equa-
tion. A Biot number (mass) was introduced.

During the course of oxygen consumption, the finite speed effects 
cannot be ignored. Simultaneous diffusion and reaction of the first 
order using the damped wave diffusion and reaction equation in a 
semi-infinite medium in Cartesian coordinates was studied. The 
closed-form analytical solution was obtained by the method of rela-
tivistic transformation. Four regimes in solution were identified: (a) 
an inertial regime of null transfer, (b) a regime at short times charac-
terized by the Bessel composite function in space and time and rate 
constant, (c) a regime at long times characterized by a modified Bes-
sel composite function in space and time and rate constant, and (d) a 
wavefront regime. The mass inertial lag time as a function of rate 
constant was obtained and tabulated in Table 5.1. Different character-
istic behaviord at different dimensionless rate constants k∗ were found 
and shown in Figs. 5.3–5.6.

The Krogh tissue cylinder was modeled under transient condi-
tions, and the kinetics obeyed the asymptotic limit of high concentra-
tion of oxygen (zeroth-order rate) and low concentration of oxygen 
(first-order rate). For intermediate values, a numerical solution is 
needed. An infinite Fourier series solution was obtained. Heteroge-
neity in the governing equation was removed by supposing that the 
concentration is a sum of steady and transient states.

The transient concentration profile of oxygen in the plasma layer 
in the absence of any reaction was modeled. The damped wave diffu-
sion and relaxation effects were also accounted for in a separate sec-
tion. The infinite Fourier series solution was seen to be bifurcated. At 
large relaxation times, τr RB TR D> ( / . ),2 58 7  the concentration of oxygen 
will undergo subcritical damped oscillations.

NO is a vasodilator. The widening of blood vessels when the sur-
rounding smooth muscle cells relax is called vasodilation. NO has to 
diffuse through the blood vessel wall and then binds to the enzyme in 
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smooth muscle cells. It participates in a set of reactions in parallel. 
The instantaneous fractional yield of heme complex during parallel 
reactions of NO was solved for and shown in Fig. 5.8. 

NO diffusion in blood and tissue is similar to that of oxygen, but not 
exactly the same. The steady-state concentration profile for NO in blood 
and tissue was obtained from the model solutions and shown in Fig. 5.8. 
It is characterized by modified Bessel functions of the first and second 
kind and zeroth and first orders. The solution to the transient portion of 
the concentration profile in the blood space is obtained by separating the 
variables. The damped wave diffusion effects were included in the 
model. For materials with large relaxation times, the concentration of 
NO can be expected to be subcritical damped oscillatory in nature.
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Exercises

Review Questions

1.0 What is the difference between myoglobin and hemoglobin?

2.0 Does myoglobin undergo cooperative binding with oxygen?

3.0 Does hemoglobin undergo cooperative binding with oxygen?

4.0 When does the sigmoidal curve in the Hill plot shift to the right?

5.0 When does the sigmoidal curve in the Hill plot shift to the left?

6.0 At the time when the Krogh tissue cylinder model arrived, were transient 
effects studied?

7.0 What is the importance of hypoxia in the islets of Langerhans and the 
treatment of diabetes?



248 C h a p t e r  F i v e

8.0 Is the diffusion of NO and oxygen the same in human anatomy?

9.0 What does vasoconstriction mean?

10.0 How can the oxygen-depleted regions be detected from the mathemati-
cal model solutions?

11.0 By mathematically modeling the diffusion of oxygen in the tissue space, 
it was found that after a critical distance from the blood capillary, there is 
a zone of null transfer. These are the oxygen-depleted regions in the tissue. 
Consider an idealized geometry of a sphere. What would be the shape of the 
zone of zero transfer?

12.0 In Exercise 11.0, consider an idealized geometry of a cylinder. What 
would be the shape of the zone of zero transfer?

13.0 In Exercise 11.0, consider an idealized geometry of a solid with a equi-
lateral triangular cross-sectional area. What would be the shape of the zone 
of zero transfer?

14.0 Would carbon dioxide (CO2) be transported in a similar manner com-
pared with oxygen in the blood and tissue spaces?

15.0 Would there be CO2-accumulated regions in the tissue in human 
anatomy?

16.0 What would happen to the model developed for the islets of Langerhans 
for diffusion and reaction of oxygen if the reversible reaction is accounted for 
instead of the Michaelis-Menten kinetics?

17.0 What would happen to the model developed in semi-infinite Cartesian 
coordinates in order to account for simultaneous diffusion and reaction if the 
rate expression is reversible rate instead of the first-order rate used?

18.0 Can the damped wave diffusion and relaxation equation violate the 
second law of thermodynamics?

19.0 How many regimes of solution are present in the solution of the damped 
wave diffusion and relaxation equation in a semi-infinite medium in Cartesian 
coordinates?

20.0 What happens during the inertial regime?

Problems

21.0 Parabolic diffusion of oxygen in islets of Langerhans in a finite slab. The gov-
erning equation for oxygen diffusion and reaction in Cartesian coordinates in 
one dimension, accounting for Fick’s diffusion, can be written as:
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where DT = the diffusion coefficient in the tissue 
 CE0 = the total enzyme or complexation species concentration  
 CM = the Michaelis constant

The oxygen consumption rate is assumed to obey the Michaelis-Menten kinet-
ics. The governing equation describes the interplay of transient diffusion and 
metabolic consumption of oxygen in the tissue in spherical coordinates. The 
concentration of oxygen, CO2

, can be expressed in terms of its partial pO2
. This 

is obtained by using the Bunsen solubility coefficient αt such that:

 C pO t O2 2
= α   (5.197)

Substituting Eq. (5.197) in Eq. (5.196), Eq. (5.196) becomes:
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The product αtDT can be seen to be the product of solubility and diffusivity, 
and hence is the permeability of oxygen in the tissue. The Michaelis constant, 
CM, is also modified, C’M, expressed in units of mmHg. The initial condition 
can be written as:

 p p tO O2 20
0= =,  (5.199)

From the symmetry at the center of the slab:
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At the surface (z = ± a), the oxygen diffusive transport from within the tissue 
must be equal to the oxygen transport by convection across the boundary layer 
surrounding each tissue:
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Obtain the concentration profile for oxygen in the finite slab at the asymptotic 
limit of high oxygen concentration.

22.0 Obtain the concentration profile for oxygen in a finite slab at the asymp-
totic limit of low oxygen concentration in Problem 11.0.

23.0 Hyperbolic diffusion of oxygen in islets of Langerhans in a finite slab. When 
the damped wave diffusion and relaxation effects are included, the governing 
equation for Problem 11.0 can be written in Cartesian coordinates as:
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For the same set of time and space conditions as in Eqs. (5.199), (5.200), and 
(5.201), obtain the closed-form analytical solution for Eq. (5.202) in the asymp-
totic limit of high oxygen concentration.

24.0 Obtain the concentration profile for oxygen in a finite slab at the asymp-
totic limit of low oxygen concentration, taking into account the damped wave dif-
fusion and relaxation effects. The governing equation is given by Eq. (5.202), and 
the time and space conditions are given by Eqs. (5.199), (5.200), and (5.201).

25.0 Pulse boundary condition–finite slab–hyperbolic diffusion. Obtain the closed-
form analytical solution for Eq. (5.202) in the asymptotic limit of high oxygen 
concentration for the pulse boundary condition. In the time and space con-
ditions given in Eqs. (5.199), (5.200). and (5.201), instead of Eq. (5.201), use 
the following boundary condition at z = ± a at the surface of a finite slab of 
width 2a:

 t p p aO= = ∗0
2

, ( )δ  (5.203)
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26.0  Pulse boundary condition–finite slab–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.202) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at z = ± a at the surface of a finite slab of width 2a given 
by Eqs. (5.203)and (5.204).

27.0 Pulse boundary condition–finite slab–parabolic diffusion. Obtain the closed-
form analytical solution for Eq. (5.198) in the asymptotic limit of high oxygen 
concentration for the pulse boundary condition. In the time and space condi-
tions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use the 
following boundary condition at z = ± a at the surface of a finite slab of width 
2a given by Eqs. (5.203) and (5.204).

28.0 Pulse boundary condition–finite slab–parabolic diffusion. Obtain the closed-
form analytical solution for Eq. (5.198) in the asymptotic limit of low oxygen 
concentration for the pulse boundary condition. In the time and space condi-
tions given in Eqs. (5.199), (5.200) and (5.201), instead of Eq. (5.201), use the 
following boundary condition at z = ± a at the surface of a finite slab of width 
2a given by Eqs. (5.203) and (5.204).

29.0 Pulse boundary condition–finite cylinder–hyperbolic diffusion. Obtain the 
closed-form analytical solution for the following governing equation that can 
be used to describe oxygen diffusion in a finite cylinder undergoing simultane-
ous reaction kinetics of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the pulse boundary 
condition. In the time and space conditions given in Eqs. (5.199), (5.200) and 



G a s  T r a n s p o r t  251

(5.201), instead of Eq. (5.201), use the boundary condition at r = Ri at the surface 
of a finite cylinder of radius Ri given by Eqs. (5.203) and (5.204).

30.0 Pulse boundary condition–finite cylinder–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.205) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200) and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eqs. (5.203) and (5.204).

31.0 Pulse boundary condition–finite cylinder–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.206) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200) and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eqs. (5.203) and (5.204):
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32.0 Pulse boundary condition–finite cylinder–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.206) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200) and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eqs. (5.203) and (5.204).

33.0 Convective boundary condition–finite cylinder–hyperbolic diffusion. Obtain 
the closed-form analytical solution for the governing equation given by 
Eq. (5.205) that can be used to describe oxygen diffusion in a finite cylinder 
undergoing simultaneous reaction kinetics of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the convective bound-
ary condition. Use the time and space conditions given in Eqs. (5.199), (5.200), 
and (5.201).

34.0 Convective boundary condition–finite cylinder–hyperbolic diffusion. Obtain 
the closed-form analytical solution for Eq. (5.205) in the asymptotic limit of 
low oxygen concentration for the pulse boundary condition. Use the time and 
space conditions given in Eqs. (5.199), (5.200), and (5.201). 

35.0 Convective boundary condition–finite cylinder–parabolic diffusion. Obtain 
the closed-form analytical solution for Eq. (5.206) in the asymptotic limit of 
high oxygen concentration for the pulse boundary condition. Use the time and 
space conditions given in Eqs. (5.199), (5.200) and (5.201). 

36.0 Convective boundary condition–finite cylinder–parabolic diffusion. Obtain 
the closed-form analytical solution for Eq. (5.206) in the asymptotic limit of 



252 C h a p t e r  F i v e

low oxygen concentration for the pulse boundary condition. Use the time and 
space conditions given in Eqs. (5.199), (5.200) and (5.201). 

37.0 Pulse boundary condition–finite sphere–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.207) that can be used to describe 
oxygen diffusion in a finite cylinder undergoing simultaneous reaction kinetics 
of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the pulse boundary 
condition. In the time and space conditions given in Eqs. (5.199), (5.200), and 
(5.201), instead of Eq. (5.201), use the boundary condition at r = Ri at the surface 
of a finite cylinder of radius Ri given by Eqs. (5.201) and (5.202).

38.0 Pulse boundary condition–finite sphere–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.207) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eqs. (5.203) and (5.204).

39.0 Pulse boundary condition–finite sphere–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.206) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200) and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eqs. (5.203) and (5.204):
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40.0 Pulse boundary condition–finite sphere–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.208) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions  given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eqs. (5.201) and (5.204).

41.0 Periodic boundary condition–finite slab–hyperbolic diffusion. Obtain the closed-
form analytical solution for Eq. (5.202) in the asymptotic limit of high oxygen 
concentration for the pulse boundary condition. In the time and space conditions 
given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.20!), use the following 
boundary condition at z = ± a at the surface of a finite slab of width 2a:

 t p p A tO> = +∗0
2

, sin ω  (5.209)

42.0 Periodic boundary condition–finite slab–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.202) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
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conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at z = ± a at the surface of a finite slab of width 2a 
given by Eqs. (5.209).

43.0 Periodic boundary condition–finite slab–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.198) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at z = ± a at the surface of a finite slab of width 2a 
given by Eq. (5.209).

44.0 Periodic boundary condition–finite slab–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.198) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at z = ± a at the surface of a finite slab of width 2a 
given by Eq. (5.209).

45.0 Periodic boundary condition–finite cylinder–hyperbolic diffusion. Obtain the 
closed-form analytical solution for the following governing equation that can 
be used to describe oxygen diffusion in a finite cylinder undergoing simultane-
ous reaction kinetics of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the pulse boundary 
condition. In the time and space conditions given in Eqs. (5.199), (5.200), and 
(5.201), instead of Eq. (5.201), use the boundary condition at r = Ri at the surface 
of a finite cylinder of radius Ri given by Eq. (5.209).

46.0 Periodic boundary condition–finite cylinder–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.210) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.209).

47.0 Periodic boundary condition–finite cylinder–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.211) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.209):
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48.0 Periodic boundary condition–finite cylinder–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.211) in the asymptotic limit of low 
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oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.209).

49.0 Periodic boundary condition–finite sphere–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.212) that can be used to describe 
oxygen diffusion in a finite cylinder undergoing simultaneous reaction kinetics 
of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the pulse boundary 
condition. In the time and space conditions given in Eqs. (5.199), (5.200), and 
(5.201), instead of Eq. (5.201), use the boundary condition at r = Ri at the surface 
of a finite cylinder of radius Ri given by Eq. (5.209).

50.0 Periodic boundary condition–finite sphere–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.212) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri

given by Eq. (5.209).

51.0 Periodic boundary condition–finite sphere–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.213) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.209):
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52.0 Periodic boundary condition–finite sphere–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.213) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.209).

53.0 Constant surface concentration condition–finite slab–hyperbolic diffusion. 
Obtain the closed-form analytical solution for Eq. (5.202) in the asymptotic 
limit of high oxygen concentration for the pulse boundary condition. In the 
time and space conditions given in Eqs. (5.199), (5.200), and (5.201), instead of 
Eq. (5.201), use the following boundary condition at z = ± a at the surface of a 
finite slab of width 2a:

 t p pO> = ∗0
2

,  (5.214)
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54.0 Constant surface concentration condition–finite slab–hyperbolic diffusion. 
Obtain the closed-form analytical solution for Eq. (5.202) in the asymptotic 
limit of low oxygen concentration for the pulse boundary condition. In the 
time and space conditions given in Eqs. (5.199), (5.200), and (5.201), instead of 
Eq. (5.201), use the boundary condition at z = ± a at the surface of a finite slab 
of width 2a given by Eq. (5.214).

55.0 Constant surface concentration condition–finite slab–parabolic diffusion. 
Obtain the closed-form analytical solution for Eq. (5.198) in the asymptotic 
limit of high oxygen concentration for the pulse boundary condition. In the 
time and space conditions given in Eqs. (5.199), (5.200), and (5.201), instead of 
Eq. (5.201), use the following boundary condition at z = ± a at the surface of a 
finite slab of width 2a given by Eq. (5.214).

56.0 Constant surface concentration condition–finite slab–parabolic diffusion. 
Obtain the closed-form analytical solution for Eq. (5.198) in the asymptotic 
limit of low oxygen concentration for the pulse boundary condition. In the 
time and space conditions given in Eqs. (5.199), (5.200), and (5.201), instead of 
Eq. (5.201), use the following boundary condition at z = ± a at the surface of a 
finite slab of width 2a given by Eq. (5.214).

57.0 Constant surface concentration–finite cylinder–hyperbolic diffusion. Obtain 
the closed-form analytical solution for the following governing equation that 
can be used to describe oxygen diffusion in a finite cylinder undergoing simul-
taneous reaction kinetics of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the pulse boundary 
condition. In the time and space conditions given in Eqs. (5.199), (5.200), and 
(5.201), instead of Eq. (5.201), use the boundary condition at r = Ri at the surface 
of a finite cylinder of radius Ri given by Eq. (5.214).

58.0 Constant surface concentration–finite cylinder–hyperbolic diffusion. Obtain 
the closed-form analytical solution for Eq. (5.205) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.214).

59.0 Constant surface concentration–finite cylinder–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.216) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.214):
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60.0 Constant surface concentration–finite cylinder–parabolic diffusion. Obtain 
the closed-form analytical solution for Eq. (5.206) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.214).

61.0 Constant surface concentration–finite sphere–hyperbolic diffusion. Obtain 
the closed-form analytical solution for Eq. (5.217) that can be used to describe 
oxygen diffusion in a finite cylinder undergoing simultaneous reaction kinetics 
of the Michaelis-Menten type:
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in the asymptotic limit of high oxygen concentration for the pulse boundary 
condition. In the time and space conditions given in Eqs. (5.199), (5.200), and 
(5.201), instead of Eq. (5.201), use the boundary condition at r = Ri at the surface 
of a finite cylinder of radius Ri given by Eq. (5.214).

62.0 Constant surface concentration–finite sphere–hyperbolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.207) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.214).

63.0 Constant surface concentration–finite sphere–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.206) in the asymptotic limit of high 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), 
use the boundary condition at r = Ri at the surface of a finite cylinder of radius 
Ri given by Eq. (5.214):
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64.0 Constant surface concentration–finite sphere–parabolic diffusion. Obtain the 
closed-form analytical solution for Eq. (5.208) in the asymptotic limit of low 
oxygen concentration for the pulse boundary condition. In the time and space 
conditions given in Eqs. (5.199), (5.200), and (5.201), instead of Eq. (5.201), use 
the boundary condition at r = Ri at the surface of a finite cylinder of radius Ri 
given by Eq. (5.214).

65.0 Equations (5.68) and (5.69) are not valid for k∗ ≠ 1. Derive a suitable 
expression for k∗ = 1. The governing equation for simultaneous diffusion and 
reaction of oxygen with first-order kinetics, accounting for damped wave dif-
fusion effects at k∗ = 1, can be written as follows:

 ∂
∂

= ∂
∂

+ ∂
∂

+
2

2

2

2 2
u

X
u u

u
τ τ

 (5.219)



G a s  T r a n s p o r t  257

Obtain the closed-form analytical solution by the method of Laplace trans-
forms. The boundary conditions in space and time conditions for a semi-infinite 
medium in Cartesian coordinates can be the same as those given by Eq (5.62).

66.0 Obtain the solution to the governing equation given by Eq. (5.61) for 
damped wave diffusion and relaxation of oxygen and simultaneous reaction of 
the first order by the method of Laplace transforms. The boundary conditions 
in space and time for a semi-infinite medium in Cartesian coordinates can be 
the same as those given by Eq. (5.62).

67.0 Semi-infinite medium-Cartesian-convective boundary–hyperbolic-first order. 
Obtain the solution to the damped wave diffusion and relaxation and simulta-
neous reaction of oxygen of the first order in a semi-infinite medium. Use the 
governing equation in Eq. (5.61). The boundary conditions in space and time 
in Cartesian coordinates are as follows:
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where k″ is the mass transfer coefficient between the bulk cross-flow with the 
surface of the semi-infinite slab.

68.0 Semi-infinite medium-Cartesian-constant concentration–parabolic-first order. 
Obtain the solution to the diffusion and relaxation and simultaneous reaction 
of oxygen of the first order in a semi-infinite medium using the parabolic Fick’s 
second law of diffusion. The boundary conditions in space and time for a semi-
infinite medium in Cartesian coordinates are the same as in Eq. (5.62). The gov-
erning equation for the concentration of oxygen can be written as:
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69.0 Semi-infinite medium-Cartesian-constant concentration–hyperbolic-zeroth 
order. Consider a semi-infinite medium at an initial concentration of zero. For 
times greater than zero, a step change in concentration is effected at one of the 
surfaces. The species reacts with a zeroth-order reaction as it comes in contact 
with the solid medium. Discuss the concentration profile as a function of space 
and time. The governing equation for damped wave diffusion and relaxation 
and simultaneous reaction of oxygen may be written as follows:
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The boundary conditions in space and time for a semi-infinite medium in 
Cartesian coordinates are the same as in Eq. (5.62).

70.0 Semi-infinite medium-Cartesian-convective boundary–hyperbolic-zeroth 
order. Obtain the concentration profile of oxygen in space and time during 
damped wave diffusion and simultaneous reaction in a semi-infinite medium 
in Cartesian coordinates. The reaction order is of the zeroth order. The governing 
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equation is given by Eq. (5.222). The boundary condition is of the convective 
type, as given by Eq. (5.220).

71.0 Semi-infinite medium-Cartesian-constant concentration–parabolic-zeroth 
order. Consider a semi-infinite medium at an initial concentration of zero. For 
times greater than zero, a step change in concentration is effected at one of the 
surfaces. The species reacts with a zeroth-order reaction as it comes in contact 
with the solid medium. Discuss the concentration profile as a function of space 
and time. The governing equation for Fick’s parabolic diffusion and simultane-
ous reaction of oxygen may be written as follows:
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The boundary conditions in space and time for a semi-infinite medium in 
Cartesian coordinates are the same as those given by Eq. (5.62).

72.0 Semi-infinite medium-Cartesian-convective boundary–parabolic-zeroth order. 
Obtain the concentration profile of oxygen in space and time during Fick’s 
parabolic diffusion and simultaneous reaction in a semi-infinite medium in 
Cartesian coordinates. The reaction order can be taken to be of the zeroth order. 
The governing equation is given by Eq. (5.223). The boundary condition is of 
the convective type, as given by Eq. (5.220).

73.0 Semi-infinite medium-Cartesian-periodic boundary–hyperbolic-first order. 
Obtain the solution to the damped wave diffusion and relaxation and simul-
taneous reaction of oxygen of the first order in a semi-infinite medium. The 
governing equation is Eq. (5.61). The boundary conditions in space and time 
in Cartesian coordinates are of the periodic type as follows:
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where k″ is the mass transfer coefficient between the bulk cross-flow with the 
surface of the semi-infinite slab.

74.0 Semi-infinite medium-Cartesian-periodic boundary–parabolic-first order. 
Obtain the solution to the diffusion and simultaneous reaction of oxygen of 
the first order in a semi-infinite medium using the parabolic Fick’s second law 
of diffusion. The boundary conditions in space and time for a semi-infinite 
medium in Cartesian coordinates are the same as in Eq. (5.224). The governing 
equation for the concentration of oxygen is Eq. (5.221).

75.0 Semi-infinite medium-Cartesian-periodic boundary–parabolic-zeroth order. 
Obtain the solution to the diffusion and simultaneous reaction of oxygen of 
the zeroth order in a semi-infinite medium using the parabolic Fick’s second 
law of diffusion. The boundary conditions in space and time for a semi-infinite 
medium in Cartesian coordinates are given by Eq. (5.224). The governing equa-
tion for the concentration of oxygen is given by Eq. (5.221).
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76.0 Semi-infinite medium-Cartesian-periodic boundary–hyperbolic-zeroth order. 
Obtain the solution to the damped wave diffusion and relaxation and simul-
taneous reaction of oxygen of the zeroth order in a semi-infinite medium. 
The boundary conditions in space and time for a semi-infinite medium in 
Cartesian coordinates are given by Eq. (5.224) and can be seen to be of the 
periodic type. The governing equation for the concentration of oxygen is given 
by Eq. (5.222).

77.0 Semi-infinite medium-Cartesian-pulse boundary–hyperbolic-first order. 
Obtain the solution to the damped wave diffusion and relaxation and simul-
taneous reaction of oxygen of the first order in a semi-infinite medium. The 
governing equation is Eq. (5.61). The boundary conditions in space and time 
in Cartesian coordinates are of the pulse type and are as follows:
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78.0 Semi-infinite medium-Cartesian-pulse boundary–parabolic-first order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the first 
order in a semi-infinite medium using the parabolic Fick’s second law of dif-
fusion. The boundary conditions in space and time for a semi-infinite medium 
in Cartesian coordinates are given by Eq. (5.225) and are seen to be of the 
pulse type. The governing equation for the concentration of oxygen is given 
by Eq. (5.221).

79.0 Semi-infinite medium-Cartesian-pulse boundary–parabolic-zeroth order. 
Obtain the solution to the diffusion and simultaneous reaction of oxygen of 
the zeroth order in a semi-infinite medium using the parabolic Fick’s second 
law of diffusion. The boundary conditions in space and time for a semi-infinite 
medium in Cartesian coordinates are given by Eq. (5.225) and are seen to be 
of the pulse type. The governing equation for the concentration of oxygen is 
given by Eq. (5.221).

80.0 Semi-infinite medium-Cartesian-pulse boundary–hyperbolic-zeroth order. 
Obtain the solution to the damped wave diffusion and relaxation and simul-
taneous reaction of oxygen of the zeroth order in a semi-infinite medium. 
The boundary conditions in space and time for a semi-infinite medium in 
Cartesian coordinates are given by Eq. (5.225) and can be seen to be of the 
periodic type. The governing equation for the concentration of oxygen is given 
by Eq. (5.222).

81.0 Infinite medium-cylindrical-convective boundary–hyperbolic-first order. 
Obtain the solution to the damped wave diffusion and relaxation and simulta-
neous reaction of oxygen of the first order in an infinite medium in cylindrical 
coordinates. The governing equation can be derived as:
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The boundary conditions in space and time in cylindrical coordinates are as 
follows:
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where k ″ is the mass transfer coefficient between the flow within the cylinder 
of radius Ri.

82.0 Infinite medium-cylindrical-constant concentration–parabolic-first order. 
Obtain the solution to the diffusion and simultaneous reaction of oxygen of 
the first order in an infinite medium using the parabolic Fick’s second law of 
diffusion. The boundary conditions in space and time for an infinite medium 
in cylindrical coordinates can be taken as:
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The governing equation for the concentration of oxygen can be written as:
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83.0 Infinite medium-cylindrical-constant concentration–hyperbolic-first order. 
Obtain the solution to the damped wave diffusion and relaxation and 
simultaneous reaction of oxygen of the first order in an infinite medium 
using the governing equation given by Eq. (5.226). The boundary condi-
tions in space and time for an infinite medium in cylindrical coordinates 
is given by Eq. (5.228).

84.0 Infinite medium-cylindrical-constant concentration–hyperbolic-zeroth order. 
Consider an infinite medium at an initial concentration of zero. For times 
greater than zero, a step change in concentration is effected at the surface of 
a cylinder of radius Ri. The species reacts with a zeroth-order reaction as it 
comes in contact with the solid medium. Discuss the concentration profile 
as a function of space and time. The governing equation for damped wave 
diffusion and relaxation and simultaneous reaction of oxygen may be written 
as follows:
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The boundary conditions in space and time for an infinite medium in cylindri-
cal coordinates are given by Eq. (5.228).

85.0 Infinite medium-cylindrical-convective boundary–hyperbolic-zeroth order. 
Obtain the concentration profile of oxygen in space and time during damped 
wave diffusion and simultaneous reaction in an infinite medium in cylindrical 
coordinates. The reaction order is of the zeroth order. The governing equation 
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is given by Eq. (5.230). The boundary condition is of the convective type, as 
given by Eq. (5.227).

86.0 Infinite medium-cylindrical-constant concentration–parabolic-zeroth order. 
Consider an infinite medium at a initial concentration of zero. For times greater 
than zero, a step change in concentration is effected at one of the surfaces. The 
species reacts with a zeroth-order reaction as it comes in contact with the solid 
medium. Discuss the concentration profile as a function of space and time in 
cylindrical coordinates. The governing equation for Fick’s parabolic diffusion 
and simultaneous reaction of oxygen may be written as follows:
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The boundary conditions in space and time for an infinite medium in cylindri-
cal coordinates are given by Eq. (5.228).

87.0 Infinite medium-cylindrical-convective boundary–parabolic-zeroth order. 
Obtain the concentration profile of oxygen in space and time during Fick’s 
parabolic diffusion and simultaneous reaction in an infinite medium in cylin-
drical coordinates. The reaction order is of the zeroth order. The governing 
equation is given by Eq. (5.231). The boundary condition is of the convective 
type, as given by Eq. (5.227).

88.0 Infinite medium-cylindrical-periodic boundary–hyperbolic-first order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the first order in an infinite medium. The governing 
equation is Eq. (5.226). The boundary conditions in space and time in cylindri-
cal coordinates are of the periodic type and are as follows:
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where k ″ is the mass transfer coefficient between the flowing fluid within the 
cylinder of radius, Ri.

89.0 Infinite medium-cylindrical-periodic boundary–parabolic-first order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the first 
order in an infinite medium using the parabolic Fick’s second law of diffu-
sion. The boundary conditions in space and time for an infinite medium in 
cylindrical coordinates are given by Eq. (5.232). The governing equation for 
the concentration of oxygen is given by Eq. (5.229).

90.0 Infinite medium-cylindrical-periodic boundary–parabolic-zeroth order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the zeroth 
order in an infinite medium using the parabolic Fick’s second law of diffu-
sion. The boundary conditions in space and time for an infinite medium in 
cylindrical coordinates are given by Eq. (5.232). The governing equation for 
the concentration of oxygen is given by Eq. (5.229).
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91.0 Infinite medium-cylindrical-periodic boundary–hyperbolic-zeroth order. 
Obtain the solution to the damped wave diffusion and relaxation and simul-
taneous reaction of oxygen of the zeroth order in an infinite medium. The 
boundary conditions in space and time for an infinite medium in cylindrical 
coordinates are given by Eq. (5.232) and are of the periodic type. The governing 
equation for the concentration of oxygen is given by Eq. (5.230).

92.0 Infinite medium-cylindrical-pulse boundary–hyperbolic-first order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the first order in an infinite medium. The governing 
equation is Eq. (5.226). The boundary conditions in space and time in cylindri-
cal coordinates are of the pulse type and are as follows:
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93.0 Infinite medium-Cartesian-pulse boundary–parabolic-first order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the 
first order in an infinite medium using the parabolic Fick’s second law 
of diffusion. The boundary conditions in space and time for an infinite 
medium in cylindrical coordinates are given by Eq. (5.233) and are of the 
pulse type. The governing equation for the concentration of oxygen is given 
by Eq. (5.229).

94.0 Infinite medium-cylindrical-pulse boundary–parabolic-zeroth order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the zeroth 
order in an infinite medium using the parabolic Fick’s second law of diffusion. 
The boundary conditions in space and time for an infinite medium in cylindri-
cal coordinates are given by Eq. (5.233) and are of the pulse type. The govern-
ing equation for the concentration of oxygen is given by Eq. (5.231).

95.0 Infinite medium-cylindrical-pulse boundary–hyperbolic-zeroth order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the zeroth order in an infinite medium. The boundary 
conditions in space and time for an infinite medium in cylindrical coordinates 
are given by Eq. (5.233) and are of the periodic type. The governing equation 
for the concentration of oxygenis given by Eq. (5.230).

96.0 Infinite medium-spherical-convective boundary–hyperbolic-first order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the first order in an infinite medium in spherical coordi-
nates. The governing equation is:
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The boundary conditions in space and time in spherical coordinates are as 
follows:



G a s  T r a n s p o r t  263

 
r R D

C

r
k C C r C

t C

i T
O

b O

O

=
∂

∂
= ′′ − = ∞ =

= =

, ( ); ,

,

2

2

2

0

0 0
 (5.235)

where k″ is the mass transfer coefficient between the flow within the cylinder 
of radius Ri.

97.0 Infinite medium-spherical-constant concentration–parabolic-first order. 
Obtain the solution to the diffusion and simultaneous reaction of oxygen of 
the first order in an infinite medium using the parabolic Fick’s second law of 
diffusion. The boundary conditions in space and time for an infinite medium 
in spherical coordinates are:
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The governing equation for the concentration of oxygen can be written as:
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98.0 Infinite medium-spherical-constant concentration–hyperbolic-first order. 
Obtain the solution to the damped wave diffusion and relaxation and simul-
taneous reaction of oxygen of the first order in an infinite medium using 
the governing equation as given by Eq. (5.234). The boundary conditions 
in space and time for an infinite medium in spherical coordinates are given 
by Eq. (5.236).

99.0 Infinite medium-spherical-constant concentration–hyperbolic-zeroth order. 
Consider an infinite medium at an initial concentration of zero. For times 
greater than zero, a step change in concentration is effected at the surface of 
a cylinder of radius Ri. The species reacts with a zeroth-order reaction as it 
comes in contact with the solid medium. Discuss the concentration profile 
as a function of space and time. The governing equation for damped wave 
diffusion and relaxation and simultaneous reaction of oxygen may be written 
as follows:
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The boundary conditions in space and time for an infinite medium in spherical 
coordinates are given by Eq. (5.236).

100.0 Infinite medium-spherical-convective boundary–hyperbolic-zeroth order. 
Obtain the concentration profile of oxygen in space and time during damped 
wave diffusion and simultaneous reaction in an infinite medium in spherical 
coordinates. The reaction order is of the zeroth order. The governing equation 
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is given by Eq. (5.238). The boundary condition is of the convective type, as 
given by Eq. (5.235).

101.0 Infinite medium-spherical-constant concentration–parabolic-zeroth order. 
Consider an infinite medium at an initial concentration of zero. For times 
greater than zero, a step change in concentration is effected at one of the sur-
faces. The species reacts with a zeroth-order reaction as it comes in contact with 
the solid medium. Discuss the concentration profile as a function of space and 
time in spherical coordinates. The governing equation for Fick’s parabolic dif-
fusion and simultaneous reaction of oxygen may be written as follows:
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The boundary conditions in space and time for an infinite medium in spherical 
coordinates are given by Eq. (5.236).

102.0 Infinite medium-spherical-convective boundary–parabolic-zeroth order. 
Obtain the concentration profile of oxygen in space and time during Fick’s 
parabolic diffusion and simultaneous reaction in an infinite medium in spheri-
cal coordinates. The reaction order is of the zeroth order. The governing equa-
tion is given by Eq. (5.239). The boundary condition is of the convective type, 
as given by Eq. (5.235).

103.0 Infinite medium-spherical-periodic boundary–hyperbolic-first order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the first order in an infinite medium. The governing 
equation is Eq. (5.234). The boundary conditions in space and time in spherical 
coordinates are of the periodic type and are as follows:
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where k ″ is the mass transfer coefficient between the flowing fluid within the 
cylinder of radius, Ri.

104.0 Infinite medium-spherical-periodic boundary–parabolic-first order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the first 
order in an infinite medium using the parabolic Fick’s second law of diffu-
sion. The boundary conditions in space and time for an infinite medium in 
spherical coordinates are given by Eq. (5.240). The governing equation for the 
concentration of oxygen is Eq. (5.237).

105.0 Infinite medium-spherical-periodic boundary–parabolic-zeroth order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the zeroth 
order in an infinite medium using the parabolic Fick’s second law of diffusion. 
The boundary conditions in space and time for an infinite medium in spherical 



G a s  T r a n s p o r t  265

coordinates are given by Eq. (5.240). The governing equation for the concentra-
tion of oxygen is given by Eq. (5.239).

106.0 Infinite medium-spherical-periodic boundary–hyperbolic-zeroth order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the zeroth order in an infinite medium. The boundary 
conditions in space and time for an infinite medium in spherical coordinates 
are given by Eq. (5.232) and are of the periodic type. The governing equation 
for the concentration of oxygen is given by Eq. (5.240).

107.0 Infinite medium-spherical-pulse boundary–hyperbolic-first order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the first order in an infinite medium. The governing 
equation is Eq. (5.234). The boundary conditions in space and time in spherical 
coordinates are of the pulse type and are as follows:
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108.0 Infinite medium-Cartesian-pulse boundary–parabolic-first order. Obtain the 
solution to the diffusion and simultaneous reaction of oxygen of the first order 
in an infinite medium using the parabolic Fick’s second law of diffusion. The 
boundary conditions in space and time for an infinite medium in spherical 
coordinates are given by Eq. (5.241) and are of the pulse type. The governing 
equation for the concentration of oxygen is given by Eq. (5.237).

109.0 Infinite medium-spherical-pulse boundary–parabolic-zeroth order. Obtain 
the solution to the diffusion and simultaneous reaction of oxygen of the zeroth 
order in an infinite medium using the parabolic Fick’s second law of diffusion. 
The boundary conditions in space and time for an infinite medium in spherical 
coordinates are given by Eq. (5.239) and are of the pulse type. The governing 
equation for the concentration of oxygen is given by Eq. (5.231).

110.0 Infinite medium-spherical-pulse boundary–hyperbolic-zeroth order. Obtain 
the solution to the damped wave diffusion and relaxation and simultaneous 
reaction of oxygen of the zeroth order in an infinite medium. The boundary 
conditions in space and time for an infinite medium in spherical coordinates 
are given by Eq. (5.241) and are of the periodic type. The governing equation 
for the concentration of oxygen is given by Eq. (5.238).
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CHAPTER 6
Pharmacokinetic Study

Learning Objectives
• Compartment models

• Drug distribution volumes

• Factors that affect drug distribution

• Nephron and glomerular filtration rate

• Single-compartment model with first-order absorption and 
elimination

• Zeroth-order, first-order, and second-order absorption

• Michaelis-Menten absorption 

• Second-order absorption and elimination

• Subcritical damped oscillations

• Multiple compartment models

• PK tool

6.1 Introduction
The experimental, theoretical, and computational analysis of rate of 
change with time of concentration and volume distribution of 
compounds administered externally, such as drugs, metabolites, 
nutrients, hormones, and toxins, in various regions of the human 
physiology is called pharmacokinetics. Pharmacokinetics comes 
from the Greek words, pharmacon, which means drugs, and kinetikos, 
which means setting in motion. The science and techniques of chemi-
cal kinetics applied to biological systems, thus, is pharmacokinetics. 
The application of pharmacokinetics allows for the processes of libera-
tion, absorption, distribution, metabolism, and excretion to be characterized 
mathematically. The development of the theory of kinetic processes 

267
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in biological systems permits a quantitative prediction of the amounts 
and concentrations of a chemical in the anatomy as a function of time 
and dosing regimen. 

The absorption of a drug can be affected by different methods. 
When drugs are administered through the gastrointestinal (GI) tract, 
it is referred to as an enteral route of entry. Parenteral routes refer to 
all other types of drug entry. Drug administration can be achieved in 
the following ways: 

• Beneath the tongue (sublingual entry)

• Via the mouth (buccal entry)

• Through the stomach (gastric entry)

• Through the veins (IV therapy)

• Within the muscles (intramuscular therapy)

• Beneath the epidermal and dermal skin layers (subcutaneous 
therapy)

• Within the dermis (intradermal therapy)

• Applied to the skin (percutaneous therapy)

• Through the mouth, nose, pharynx, trachea, bronchi, bron-
chioles, alveolar sacs, or alveoli by inhalation

• Into an artery (intra-arterial route)

• Into cerebrospinal fluid (intrathecal route)

• Within the vagina (vaginal route)

• Through the eye (intraocular route) 

Systemic circulation occurs when the drugs are absorbed from the 
buccal cavity and the lower rectum. The splanchnic circulation occurs 
when the drugs are absorbed from the stomach, intestines, colon, and 
upper rectum. 

The drug is then circulated to the liver through the portal vein, 
and upon exit from the liver, enters the systemic circulation. During 
the first pass of the drug through the liver, a significant portion may 
be degraded by the various enzymes contained within the liver. The 
drug is then available for general circulation. The presence of a drug 
can be detected in the plasma, and the concentration of the drug 
changes with time. There can be three types of drug concentration as 
a function of time upon infusion in the body (Fig. 6.1).

The slow absorption of the drug is shown as curve A in Fig. 6.1. A 
maxima is reached in the concentration of the drug in the plasma. The 
fall in the drug concentration in the plasma is because of the drug’s 
elimination through physiological processes. A rapid bolus of the 
drug intravenously is shown as curve B in Fig. 6.1. Peak concentration 
of the drug in the plasma is reached the next instant upon infusion of 
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the drug. This is followed by a decrease in the concentration of the 
drug due to the elimination reactions. In some cases, the allowed dos-
age level is either exceeded or not met. This problem can be circum-
vented by the method of controlled-rate drug delivery. This is shown 
as curve C in Fig. 6.1. The infusion is continuous, and after a 
short period, the drug reaches a steady-state concentration in the 
plasma. The fall in drug concentration in the plasma occurs 
through elimination. 

Pharmacokinetic studies can be performed by:

 1. Noncompartmental method

 2. Compartmental methods

 3. Bioanalytical method

 4. Mass spectrometry

 5. Population pharmacokinetic methods

Noncompartmental methods are model-independent. The area 
under the concentration-time graph of the drug is used to estimate 
the exposure of the drug. Kinetic models may be used to obtain the 
area under the concentration-time graph. These are used in bioequiv-
alence studies.

Compartmental methods [1] involve the development of mathe-
matical models to describe the change in drug concentration with 
time. These models are similar to those developed in chemical reac-
tion engineering, thermodynamics, and biochemical kinetics. Com-
partmental models offer the advantage of being able to predict 
drug concentration at any instant of time. There is a spectrum of 

Time
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FIGURE 6.1 Drug concentration in plasma: (A) absorption process; 
(B) intravenous therapy; (C) intravenous continuous infusion.
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pharmacokinetic models and computer software, ranging from a 
simple one-compartmental pharmacokinetic mode with IV bolus 
administration with elimination, to complex models that rely on the 
use of physiological information to ease development and validation. 

Bioanalytical methods can be used to construct the drug concen-
tration versus time curve(s). The concentration of drugs in a biologi-
cal matrix is measured using chemical techniques. These methods are 
designed to be selective and are sensitive. Mass spectrometry can be 
used in pharmacokinetic studies and offer high sensitivity with a low 
dosage of blood or urine. An LC-MS with a triple quadrapole mass 
spectrometer can be used for this purpose. High-sensitivity mass 
spectrometers for microdosing studies are becoming more popular 
and offer a better alternative to animal experimentation. Samples at 
different time points, including a t = 0 sample, can be obtained as a 
pharmaceutical is administered and then metabolized or cleared from 
the anatomy. Complex curve fitting, which is more advanced than 
linear, is used in mass spectrometry studies. Population pharmacokinet-
ics involves the correlation of variability in drug concentration among 
individuals in the target population. Patient demographic patho-
physiological, therapeutic features, such as body weight, excretory, 
and metabolic functions, can affect dose-concentration relation-
ships. Measurable pathophysiological factors that affect the dose-
concentration relationships are identified. 

Mathematical models are proposed to describe the concentration 
profile of the drug in the plasma. Models will be allowed to contain 
parameters, some of which can be obtained by fitting experimental 
data to theory. In the compartmental method, the drug is assumed to 
be distributed into one or more “compartments,” such as different 
organs, a group of tissues, or body fluids. The compartments are 
assumed to be “well mixed.” Drug concentration, both within the 
compartment and with the exit of the compartment, is identical. Mul-
tiple compartments can be used to describe the distribution of the 
drug throughout the anatomy. The well-mixed assumption within 
the compartments stems from the fact that cardiac output is about 
5 lit/min and the blood volume is bit more than a gallon, resulting in 
a residence time within the circulatory system of 1 minute. The filtra-
tion rate of the blood plasma and interstitial fluid is of the order of 
mm/min. The distribution of the drug is over hours, and the body 
fluids move over minutes. As a result, the well-mixed assumption is 
appropriate. Movement of a drug between compartments is described 
by simple irreversible or reversible first-order rate processes.

For example, the drug has to be modeled much like oxygen or 
nitric oxide diffusing through the blood and capillaries in the earlier 
chapters. The transport of a drug depends on the flow profile of blood 
through a desired organ or tissue. Rates of mass transport need be 
considered. The model parameters can be defined using the concentra-
tion of drug in blood and tissue. Au contraire to a noncompartmental 
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study in the compartmental study, the physiological connection is 
made. According to Notari [2], the drug concentration can be denoted 
by a simple weighted summation of exponential decays. 

6.2 Drug Distribution Issues
The factors that affect how a particular drug is distributed through-
out the anatomy are as follows:

 1. Rate of blood perfusion

 2. Permeability of the capillary

 3. Biological affinity of the drug

 4. Rate of metabolism of the drug

 5. Rate of renal excretion

The distribution volume of a drug when infused into the circula-
tory system alone would be about 3 lit; when allowed to penetrate the 
vascular walls, it would be about 15 lit; and when allowed to perme-
ate the cell wall, it would be about 40 lit. Drug delivery rate would 
depend on the rate of the blood, that is, the rate of blood perfusion. 
The tissue blood perfusion rate and the rate of drug transport from 
the vascular system to extravascular space are important. The trans-
port is said to be perfusion-rate–limited when the equilibrium between 
the concentration of drug in the blood and in the tissue is rapidly 
reached, such as when a drug is lipid-soluble. For cases when the 
drug is lipid-insoluble, the rate at which the drug is distributed 
between the blood and tissue is determined by the permeability of 
the capillary membrane. In such cases, the transport of the drug is 
said to be diffusion-rate–limited. 

Drugs may sometimes bind to proteins found in the blood and 
tissue spaces. The distribution volume of the drug is then restricted. 
An apparent distribution volume of the drug may be defined in such 
cases. Let the volume of the blood space be denoted by Vplasma and the 
volume of the tissue space be denoted by VT. Let the concentration of 
the drug that is unbound be denoted by Cdrug and the concentration of 
the drug that binds to proteins be represented by CBplasma and CBT in the 
plasma and tissue spaces, respectively. Thus:

  C C CT T
BTtotal drug= +    (6.1)

Equation (6.1) represents the total concentration of drug in the 
tissue space. In a similar manner, in the blood space, the total concen-
tration of the drug can be written as:

  C C CBtotal
plasma

drug
plasma

plasma= +    (6.2)
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The total drug concentration can be obtained by adding Eqs. (6.1) 
and (6.2):

  C C CT
total total total

plasma= +    (6.3)

The apparent distribution volume of the drug, Va, can then be esti-
mated as:

  V
n
Ca u= total

total

   (6.4)

where ntotal is the total number of moles of drug within the anatomy. 
Let α and β be the fraction of the drug that is bound to plasma protein 
and tissue protein, respectively. Then:

  α =
+

C

C C
B

u
B

plasma

total plasma

; β =
+

C
C C

BT

T
u

BT

   (6.5)

The unbound drug concentration in the plasma and tissue can be 
calculated as:

  n C V C V V CB pl BT T
u

total plasma true total= + +    (6.6)

The apparent volume can be calculated as:

  V V V V Va pl pl=
−

+
−

− +α
α

β
β1 1

( )true true    (6.7)

where Cdrug
plu  =  the concentration of drug that is unbound and free in 

the plasma 
 CTu

drug =  the concentration of drug that is unbound and free in 
the tissue space 

 Cu
total =  the concentration of the drug that is unbound and free 

in the entire anatomy 

Upon being absorbed and distributed in the body by circulation, 
a number of reactions will set in to degrade the drug. These meta-
bolic reactions are catalyzed by enzymes. The depletion of the drug 
via enzymatic reactions will result in a decrease of pharmacological 
activity. The products tend to have higher water solubility and 
decreased permeability through the capillaries. They are removed 
from the anatomy through the kidneys. The kinetics of enzymatic 
reactions that deplete the drug in the tissues can be expected to obey 
the Michaelis-Menten kinetics:

  r
dC

dt
k

C C

C C
EO

M

= − =
+

drug drug

drug

   (6.8)
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where CEO is the enzyme concentration and CM is the Michaelis 
constant. For cases when the drug concentration is much less than 
the Michaelis constant, Eq. (6.8) can be reduced to a first-order 
expression:

  r
dC

dt
k C= = − ′drug

drug    (6.9)

During the final stages of drug action, the rate can reduce to a zeroth-
order expression. This is when the enzyme concentration is high and 
the rate becomes:

  r
dC

dt
k CE= = − ′′drug

0   (6.10)

The elimination of the drug is affected by the kidneys in a big way 
by enzymatic degradation and the formation of water-soluble drug 
products. About 22 percent of the cardiac output is received by the 
kidneys. The organ most perfused is the kidneys. The human urinary 
system is made up of kidneys, the bladder, two ureters, and single 
urethra. The kidneys are a pair of organs resembling kidney beans 
measuring around 4 to 5 inches in length and 2 to 3 inches in width. 
They are situated against the rear wall of the abdomen in the middle 
of the back, on either side of the spine, beneath the liver on the right 
and the spleen on the left. Healthy kidneys in the average adult per-
son process about 125 mL/min, or 180 liters of blood per day, and 
filter out about 2 liters of waste product and extra water in the urine. 
The kidneys remove excess minerals and wastes and regulate the 
composition of such inorganic ions as sodium, phosphorous, and 
chloride in the blood plasma at a nearly constant level. Potassium is 
controlled by the kidneys for proper functioning of the nerves and 
muscles, particularly those of the heart. 

Blood urea nitrogen (BUN), a waste product produced in the liver 
as the end product of protein metabolism, is removed from the blood 
by the kidneys in the Bowman’s capsule along with creatinine, a 
waste product of creatinine phosphate, an energy-storing molecule 
produced largely from muscle breakdown. Most kidney diseases, 
such as diabetes and high blood pressure, are caused by an attack on 
the nephrons, which causes them to lose their filtering capability. The 
damaged nephrons cannot filter out the poisons as they should. If the 
problems worsen and renal function drops below 10 to 15 percent, 
that person is diagnosed with end-stage renal disease. When a person’s 
kidneys fail, harmful wastes build up in the body, the blood pressure 
elevates, and the blood retains fluid. The person will soon die unless 
his life is temporarily prolonged by a kidney transplant. To keep the 
immune system from attacking the foreign kidney, the person must 
take immunosuppressants for the rest of his life.
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When the kidneys are functioning properly and the concentration 
of an ion in the blood exceeds its kidney threshold value, the excess 
ions and proteins in the filtrate are not reabsorbed but are released in 
the urine, thus maintaining near-constant levels. Maintaining constant 
levels is achieved by the mechanism of reverse osmosis, osmosis, and 
ion-exchange filtration.

The microscopic representation of the normal anatomy of the 
nephron is shown in Fig. 6.2. The kidney is comprised of more than a 
million nephrons. The nephron is comprised of a glomerulus, enter-
ing and exiting arterioles, and a renal tubule. The glomerulus consists 
of a tuft of 20 to 40 capillary loops protruding into Bowman’s capsule. 
Bowman’s capsule is a cup-shaped extension of the renal tubule and 
is the beginning of the renal tubule. The epithelial layer of Bowman’s 
capsule is about 40 nm thick and facilitates passage of water into 
inorganic and organic compounds. The renal tubule has several dis-
tinct regions, which have different functions, such as the proximal 
convoluted tubule, the loop of Henle, the distal convoluted tubule, and the 
collecting duct that carries urine to the renal pelvis and the ureter. 

There are two types of nephrons: cortical nephrons and juxta-
medullary nephrons. About 85 percent of all nephrons in the kidney 
are cortical. They have glomeruli located in the renal cortex and short 

Afferent (exit)

Proximal convoluted
tubule

Distal
convoluted
tubule

Collecting
duct

Renal tubule

Proximal convoluted
tubule

Epithelial layer of
Bowman’s capsule

Afferent
(entrance)

Glomerulus

Loop of Henle

FIGURE 6.2 Microscopic representation of the anatomy of a nephron [3].
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loops of Henle that descend as far as the outer layer of the renal 
medulla. Long loops are found in juxtamedullary nephrons. These 
are located at the junction of the cortex and the medulla of the kidney. 
The long loops of Henle penetrate deep into the medulla and reach 
the tip of the renal papillae. Urine is concentrated in the kidneys by a 
countercurrent system of nephrons. About 2 million nephrons par-
ticipate in making sure that the anatomy’s internal environment is 
maintained at a constant level. As blood passes through the kidneys, 
the nephrons clear the plasma of unwanted substances, such as urea, 
while retaining others, such as water. Undesirable substances are 
removed by glomerular filtration and renal tubular secretion, and are 
passed into the urine. Substances that the anatomy needs are retained by 
renal tubular secretion and are returned to the blood by reabsorption.

Glomerular filtration is the amount of fluid movement from the 
capillaries into the Bowman’s capsule. The glomerular filtration rate 
(GFR) is about 125 mL/min, or about 180 liters per day. GFR refers to 
the volume of glomerular filtrate formed each minute by all the neph-
rons in both the kidneys. The glomerular filtrate then passes along 
the renal tubule and is subject to the forces in the proximal convo-
luted tubule, the loop of Henle, the distal convoluted tubule, and 
finally the collecting duct. The renal tubule functions either to secrete 
or reabsorb organic and inorganic compounds into or from the glo-
merular filtrate. Both of these renal tubular functions involve active 
transport mechanisms, as opposed to passive transport mechanisms. 

Glomerular filtration is proportional to the membrane permeabil-
ity and to the balance between hydrostatic and oncotic forces. The 
hydrostatic pressure driving glomerular filtration is the gradient 
between the intrarenal blood pressure and the pressure within the 
Bowman’s capsule, which is roughly atmospheric. The intrarenal 
pressure is, for all intents and purposes, equivalent to the systolic 
and diastolic blood pressures measured peripherally. Hydrostatic 
pressure can be conceptualized as the pressure driving fluid out of 
the glomerular capillary into Bowman’s capsule. The colloid oncotic 
pressure gradient is the pressure driving fluid into the glomerular 
capillary. When the hydrostatic pressure exceeds the oncotic pres-
sure, filtration occurs. Conversely, when the oncotic pressure exceeds 
the hydrostatic pressure, reabsorption occurs. 

Renal clearance is the term reserved for elimination of a drug by 
the kidney. The volume of plasma that is totally cleared of the drug 
per unit time as a result of elimination reactions is called the renal 
clearance. This is useful when the elimination pathway of drugs is 
through the kidneys. 

The concept of renal clearance is shown in Fig. 6.3. A drug is 
assumed to be uniformly distributed in the human anatomy with an 
apparent volume of V

a and a total drug concentration in the plasma 
of Cdrug

plasma. The renal plasma flow rate that is totally cleared of the 



276 C h a p t e r  S i x

drug is denoted by Frenal. A mass balance on the drug in the anatomy’s 
apparent distribution volume at transient state can be written as:

  ( ) ( )rate rate accumulationin out− =    (6.11)

  0 − =F C V
dC

dtarenal drug
plasma drug

plasma

   (6.12)

Given an initial concentration of drug in the plasma as Cdrug
plasma

0 , Eq. (6.12) 
can be integrated to yield the concentration of a drug as a function of 
time: 

  C C e
F t

Va
drug
plasma

drug
plasma

renal

=
−







0    (6.13)

Thus, the elimination of a drug in the urine is seen to be a first-order 
process. The first-order rate constant can be seen to be k F Vre a= ( / )renal . 
Let the urine volumetric rate be given by Qu and the concentration of 
a drug in the urine given by Cdrug

urine. A mass balance on the drug pass-
ing through the urine at steady state would yield:

  Q C
F
V

Cu
a

drug
urine renal

drug
plasma=    (6.14)

Equation (6.14) gives the formation of urine in terms of renal clearance. 
In a similar vein, the term plasma clearance represents all the drug-
elimination processes of the body. The primary elimination processes 
are that of metabolism and glomerular filtration in the kidneys. The 
secondary processes can be from sweat, bile, respiration, and feces. The 
rate constant for each secondary process can be denoted as:

  k
F

Vj
j

a

=    (6.15)

Va, Cdrug Kidney
Solute

removal
rateCdrug = 0

renal plasma
flow rate

Renal plasma
flow rate,

Cdrug

FIGURE 6.3 Renal clearance.
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where j represents the secondary processes. An overall rate constant can 
be defined and used to take into account all of the primary and second-
ary processes of the elimination of a drug in the human anatomy:

  k k
V

Fj
j a

j
j

lumped = =∑ ∑1
   (6.16)

The change in concentration of drug with time can be written as:

  C C e

F t

Va
drug
plasma

drug
plasma

plasma

=
−











0    (6.17)

where F Fj jplasma = ∑ . Equation (6.17) is an example of a pharmacoki-
netic model derived from first principles. The curve B in Fig. 6.1 can 
be explained using this model. The half-life of the drug is the time 
taken by the drug to reach one-half its initial concentration value. 
For a first-order process, half-life can be related to the rate con-
stant by solving Eq. (6.13) and letting the drug reach half the initial 
concentration:

  t
k

V
F

a
1 2

0 693 0 693
/

. .
= =

lumped plasma

   (6.18)

The area under the concentration of drug versus time graph can be 
denoted by Area and can be seen to be:

  Area drug
0

0
..∞ ∞

= ∫ C dt    (6.19)

Combining Eqs. (6.17) and (6.19):

  Area
Dosedrug

plasma

lumped plasma

0 0..∞ = =
C

k F
   (6.20)

where Dose is the dose injected over the distribution volume Va.

6.3 Single-Compartment Models

6.3.1 First-Order Absorption with Elimination
Drugs can take several routes into the human anatomy, as discussed 
in Sec. 6.1. Upon entry into the human anatomy, the drug finds its 
way to the plasma by diffusion. Upon infusion, the concentration of 
the drug gradually increases, reaches a maxima, and then decreases. 
The decrease in concentration of drug in the plasma is attributed to the 
elimination reactions, both primary and secondary, that tend to deplete 
the drug. 
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A single compartmental model that accounts for the first-order 
absorption of the drug and its elimination is shown in Fig. 6.4.

The dose infused is given by Dose. A factor f is introduced that 
represents the fraction of dose that is absorbable. A mass balance on 
the concentration of the drug within the human anatomy can be writ-
ten for Fig. 6.4 as:

  ( ) ( )rate rate accumulationin out− =    (6.21)

  k n F C V
dC

ainfusion anatomy renal drug
plasma dru− = gg

plasma

dt
   (6.22)

where kinfusion is the first-order rate constant of the absorption process 
and nantomy is the amount of drug that is available for absorption. The 
first-order absorption of the drug process can be described by:

  
dn

dt
k nanatomy

infusion anatomy= −    (6.23)

The solution to Eq. (6.23) can be written as:

  n f e k t
anatomy Dose infusion= −( )    (6.24)

Equations (6.24) and (6.22) can be combined and the concentration of 
drug as a function of time can be solved for from the first-order ordinary 
differential equation (ODE) by the method of Laplace transforms as:

  C
f

V
k

ka
drug
plasma infusion

infusion

Dose=




 −−









 −( )− −

k
e ek t k t

lumped

lumped infusion    (6.25)

This is valid for k kinfusion lumped≠ . From Eq. (6.25), it can be seen that 
the concentration of the drug as a function of time varies inversely 
with the apparent volume of distribution of the drug within the 
human anatomy and is directly proportional to the amount of drug 

Dose, f Va, Cdrug
human

anatomy

Cdrug
Fplasma

Cdrug = 0

Fplasma

Solute removal
rate = Fplasma

Cdrug
Routes

for
elimination

FIGURE 6.4 Single compartmental model with fi rst-order absorption and 
elimination.
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that is absorbable. In addition, it depends on the first-order rate con-
stants of absorption and elimination. It can be seen that Eq. (6.25) 
exhibits a maxima. This occurs at:

  τ m k k
k
k

=
−






1

infusion lumped

infusion

lumped

ln

    (6.26)

The corresponding maximum concentration can be given by:

  C
f

V
k
k

m

a
drug
plasma infusion

lumpe

Dose( ) =




 dd

lumped

lumped infusion









−
k

k k

   (6.27)

Eqs. (6.25) to (6.27) are valid only when k klumped infusion≠ . For the spe-
cial case when the overall rate constant of the primary and secondary 
elimination processes is equal to the rate constant of absorption, the 
following analysis would be applicable. Equation (6.22) can be writ-
ten when k k k= =infusion lumped as:

  ( ) ( )kf e V k C V
dC

kt
a aDose drug

plasma drug
plasm

− − =
aa

dt
   (6.28)

Let  τ = =kt u
C

f
Va

; drug
plasma

Dose
   (6.29)

Equation (6.28) becomes:

  e u
du
d

− − =τ
τ

   (6.30)

Obtaining the Laplace transforms of Eq. (6.30) and recognizing the 
initial concentration is u0, the transformed variable can be solved 
for as:

  u
u

s s

_

( ) ( )
=

+
+

+
0

21
1
1

   (6.31)

Obtaining the inverse of the Laplace transformed dimensionless 
concentration:

  u u e e= +− −
0

τ ττ   (6.32)

The solution for the dimensionless concentration given by Eq. (6.32) 
is shown in Fig. 6.5 for the case of zero initial concentration. A max-
ima can be seen in the concentration versus time graphs. The Type A 
behavior, as shown in Fig. 6.1, can be accounted for from this model.
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In the dimensional form, Eq. 6.32 can be written as:

  C
f

V
kte

a

kt
drug
plasma Dose=







−   (6.33)

Equation (6.25) can be integrated and given in terms of area under the 
concentration of the drug versus time graph as:

  Area
Dose Dose

lumped plasma

0..∞ = =f
V k

f
Fa

   (6.34)

6.3.2 Second-Order Absorption with Elimination
A mass balance on the concentration of a drug within the human 
anatomy for the case of second-order absorption with elimination can 
be written for Fig. 6.4 as:

  ( (rate) rate) accumulationin out− =    (6.35)

  ′′ − =k n F C V
dC

aanatomy renal drug
plasma drug

plas

2

mma

dt
   (6.36)

FIGURE 6.5 Drug concentration as a function of time for the special case 
when k = klumped = kinfusion.
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where k′′ is the second-order rate constant of the absorption process 
and nanatomy is the amount of drug that is available for absorption. The 
second-order absorption of the drug process can be described by:

  
dn

dt
k nanatomy

anatomy= − ′′ 2    (6.37)

The solution to Eq. (6.37) can be written as:

  
1 1

f
k t

nDose anatomy

+ ′′ =    (6.38)

Equations (6.38) and (6.36) can be combined and the concentration of 
drug as a function of time can be solved for from the first-order ODE 
and substituting the particular integral as;

  C e
k t

f

k t
drug
plasma lumped

Dose

= −

+ ′′





− 1

1
2    (6.39)

The initial condition is: 

  C tdrug
plasma

0 0 0= =,    (6.40)

Equation (6.39) can be seen to exhibit a maxima (Figure 6.6). The 
solution for the maxima needs numerical methods, as the resulting 
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equation is transcendental. Equation (6.39) can be seen to be an 
interplay of the rate of absorption and the rate of excretion. When 
the second-order absorption processes are rapid and excretion is 
slow, the drug tends to accumulate in the blood plasma. When the 
rate of excretion is rapid, the drug concentration tends to drop off 
rapidly.

Worked Example 6.1 Pharmacokinetics of styrene in rats. Styrene is a liquid at room 
temperature, with a vapor pressure of 4.5 mmHg at 20°C. It is widely used as 
a monomer in the production of polystyrene and various copolymers, such as 
Styrene Acrylonitrile (SAN), Acrylonitrile Butadiene Styrne (ABS), Methacrylate 
Butadiene Styrene (MBS), Styrene Maleic Anhydride (SMA), etc. Styrene is low 
in acute and chronic toxicity. It is metabolized in rats and humans by oxidation 
of the side chain to yield mandelic and phenylglyoxylic acids, among other 
things, that are rapidly excreted in the urine. Experimental data were obtained 
from inhalation exposure of male Sprague-Dawley rats to different styrene con-
centrations by Young et al. [4] for up to 24 hours. Rats were removed in groups 
of three from the exposure chambers at selected time intervals, up to 24 hours, 
and immediately decapitated to obtain whole heparinized blood for styrene 
analysis. Samples of epididymal fat, liver, and kidney were also obtained from 
each rat. A group of 27 rats was removed from the exposure chamber after 
6 hours of exposure. These rats were killed in groups of three at selected time 
intervals up to 18 hours postexposure to examine the disappearance of styrene 
from blood and tissues. All samples were analyzed for styrene concentration by 
hexane extraction, followed by (Gas chromotograph) GC/mass spectrometry 
with selected ion monitoring. At each exposure level, the styrene concentra-
tion in the blood increased rapidly and approached a near-maximum value 
at 6 hours. The postexposure blood concentration curves revealed a biphasic 
log-linear shape at low concentrations. The data are given in the following table 
for one styrene concentration. Determine the pharmacokinetic parameters that 
describe the absorption and elimination of styrene. 

Time
Styrene Concentration 
(mg/lit)

0 1

2 10

4 1

6 0.2

8 0.025

12 5 E-4

16 1 E-5

20 1.5 E-7

24 3 E-9

TABLE 6.1 Styrene Concentration in Blood
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Equation (6.25) was made dimensionless and plotted against the 
experimental data points for various values of the absorption and elim-
ination rate constants. As shown in Fig. 6.7, the following values of the 
rate constants gave the least error in a Microsoft Excel spreadsheet:

 kinfusion = 2.5 hr−1  (6.41)

 klumped = 1 hr−1  (6.42)

  
f

Va

Dose = 50    (6.43)

6.3.3 Zeroth-Order Absorption with Elimination
A mass balance on the concentration of a drug within the human 
anatomy for the case of zeroth-order absorption with elimination can 
be written for Fig. 6.4 as:

  r V k C V
dC

dta azero lumped drug
plasma drug

plasma

− =    (6.44)

FIGURE 6.7 Styrene inhalation in rats—fi rst-order absorption and elimination.
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where rzero is the zeroth-order reaction rate of the absorption process. 
Let nanatomy be the amount of drug that is available for absorption. The 
zeroth-order absorption of the drug process can be described by:

  
dn

dt
kanatomy

zero= −    (6.45)

where kzero is the zeroth-order reaction rate with units of moles/sec. 
The solution to Eq. (6.45) can be written as:

  n f k tanatomy zeroDose= −( )    (6.46)

Equations (6.46) and (6.44) can be combined and the concentration of 
drug as a function of time can be solved for from the resulting equa-
tion by the method of Laplace transforms as follows:

  k V k C V
dC

dta azero lumped drug
plasma drug

plasma

− =    (6.47)

Obtaining the Laplace transforms of Eq. (6.47):

  
k

s
V k C V sCa a

zero
lumped− = −

−_

( )0    (6.48)

or  C
k

V s s ka

−
=

+
zero

lumped( )( )
   (6.49)

Obtaining the inverse of the Laplace transformed expression in 
Eq. (6.49), the concentration of the drug in the plasma can be seen to be:

  C
k

V k
e

a

k t
drug
plasma zero

lumped

lumped= − −( )1    (6.50)

Equation (6.50) is valid for times from 0 up to t f k= Dose/ zero. For 
times t f k> ( )Dose/ zero , the zeroth-order absorption process con-
cludes and the concentration of the drug has to be solved for from the 
following equation:

  − =k C
dC

dtlumped drug
plasma drug

plasma

   (6.51)
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e
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1
sse Dose

zero
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)
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k t
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ke

− −




    (6.52)

Equations (6.50) and (6.52) for a set of rate constants, dose, and appar-
ent volumes are shown in Fig. 6.8. This model can explain the Type C 
behavior shown in Fig. 6.1. For short times, the concentration profile 
is convex and the drug concentration reaches a maxima. After the 
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zeroth-order absorption processes ceases, upon complete consump-
tion of the dose, the drug concentration falls in accordance with a 
monotonic exponential decay. This concentration profile is concave in 
shape, and the curve is asymmetrical. This model has the capability 
of predicting convex to concave changes in behavior of the function-
ality of the concentration with respect to time. In the convex portion 
of the curve, the rate of change in concentration decreases with time. 
In the concave portion of the curve, the rate of change in concentra-
tion is first-order decay.

6.3.4 Michaelis-Menten Absorption with Elimination
A mass balance on the concentration of a drug within the human anat-
omy for the case where the kinetics of absorption is in accordance with 
Michaelis-Menten kinetics with elimination can be written for Fig. 6.4 as:

  
kC n

V C n
V k CE

a M
a

0 anatomy

anatomy
lumped drug

pla

+
− ssma drug

plasma

= V
dC

dta    (6.53)

Let nanatomy be the amount of drug that is available for absorption. The 
absorption of the drug process can be described by Michaelis-Menten 
kinetics:

  
dn

dt

kV C n

V C n
a E

a M

anatomy anatomy

anatomy

= −
+
0    (6.54)
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where k = the infusion Michaelis-Menten rate constant 
 CE0 = the total enzyme concentration 
 CM = the rate constant. 

It can be seen [6] that the Michaelis-Menten kinetics becomes inde-
pendent of concentration at high drug concentration and becomes 
zeroth order, and at the low concentration limit reverts to a simple 
first-order rate expression. An integration of Eq. (6.54) can be seen to 
be [7]:

  C
n

f
f

V

n

VM
a a

ln anatomy anatomy

Dose
Dose







 + −









 = kC tE0    (6.55)

It can be seen that Eq. (6.55) is in a form that is not readily usable in 
terms of a one-to-one mapping between the independent variable t 
and dependent variable nanatomy. In order to combine Eq. (6.55) with 
Eq. (6.53) and then solve for the concentration of drug in the plasma, 
a more usable form of Eq. (6.55) is sought. This can be done by real-
izing that any arbitrary function can be represented using the Taylor 
series. The Taylor series representation of any arbitrary function is an 
infinite series containing derivatives of the arbitrary function about a 
particular point. Prior to obtaining the Taylor series, Eq. (6.54) is made 
dimensionless as follows:

  u
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k u t u

C V
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uE E
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M= = = =anatomy

Dose Dose
; ; ;τ 3 0 0

0 CC V
f

M a

Dose
   (6.56)

Equation (6.54) becomes:

  
du
d

u
u uMτ

= −
+

   (6.57)

The Taylor series in terms of derivatives of u evaluated at the point 
τ = 0 can be written as follows:

  u u u u u= + ′ + ′′ + ′′′ +( ) ( )
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( ) ......0 0
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2 3

τ τ τ ....    (6.58)

from the initial condition, u(0) = 1  (6.59)

From Eq. (6.57),  ′ =
+

u
uM

( )0
1

1
   (6.60)

The initial value of the second derivative of the dimensionless con-
centration u” can be seen to be:
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The initial value of the third derivative of the dimensionless concen-
tration u”’ can be seen to be:

  d u
d

u u u u u u u u
u u

M M M M
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   (6.62)

Plugging Eqs. (6.59) to (6.62) in Eq. (6.58):
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3 2τ τ τ
!( ) !( )55 + ......    (6.63)

Equations (6.63) and (6.55) are sketched for a particular value of uM = 16 
in Fig. 6.9. It can be seen that for times t < ( )25 0f kC VE aDose/ , the 
Taylor series expression evaluated near the origin, up to the third 
derivative, is a reasonable representation of the integrated solution 
given in Eq. (6.55). More terms in the Taylor series expression can be 
added to suit the application and the apparent volume, dosage, 
enzyme concentration, Michaelis constant, and the desired accuracy 
level needed, as shown in Eq. (6.63).

Equations (6.63) and (6.53) can be combined and the concentra-
tion of drug as a function of time can be solved for from the resulting 
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expressions.
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equation by the method of Laplace transforms as follows. The com-
bined equation is also made dimensionless:
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Combining Eqs. (6.63), (6.57), and (6.64):
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Obtaining the Laplace transform of the governing equation for dimen-
sionless drug concentration in the compartment (plasma), Eq. (6.65):
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The transformed expression for dimensionless drug concentration in 
the compartment can be seen to be:
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It can be seen that the inversion for each term in the infinite series is 
readily available from the tables (Appendix B). Thus, a nonlinear dif-
ferential equation was transformed using Taylor series and some 
manipulations into an equation with a closed-form analytical solu-
tion. The term-by-term inversion of Eq. (6.67) can be seen from the 
tables in Appendix B as:
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The dimensionless drug concentration in the compartment or plasma 
is shown in Fig. 6.10.

It can be seen from Fig. 6.10 that the dimensionless drug concen-
tration in the compartment goes through a maxima. The curve is con-
vex throughout the absorption and elimination processes. The drug is 
completely depleted after a said time. The curve is asymmetrical with 
a right skew. The constants used to construct Fig. 6.10 using a Micro-
soft Excel spreadsheet were:
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6.4 Analysis of Simple Reactions in Circle
The mathematical model predictions for drug concentration, as dis-
cussed previously, depends on the nature of kinetics of absorption. It 
can be simple zeroth order, first order, second order, fractional order, 
and any order n. It can also be reversible in nature. It can obey Michaelis-
Menten kinetics.

Sometimes in the absorption process, the Krebs cycle [8] may be 
encountered. Reactions such as these can be represented by a scheme 
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FIGURE 6.10 Michaelis-Menten absorption and elimination.
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of reactions in circle [9]. The essential steps in the Krebs cycle are the 
formation of: 

• Oxalic acid

• Citric acid

• Isocitric acid

• α-ketoglutaric acid

• Succyl coenzyme A

• Succinic acid

• Fumaric acid

• Maleic acid 

Other sets of reactions in metabolic pathways can be represented 
by a scheme of reactions in circle. Systems of reactions in series and 
reactions in parallel have been introduced [6]. 

Consider the following systems of reactions in circle: 

• System of three reactants in circle

• System of four reactants in circle

• System of eight reactants in circle (such as in the Krebs cycle) 

• General case 

A scheme of reactants in circle is shown in Fig. 6.11.
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C

D

EF

G

H

FIGURE 6.11 Simple reactions in circle representation of Krebs cycle.
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6.4.1 Three Reactions in Circle
The simple first-order irreversible rate expressions for three reactants 
in circle can be written as:

  
dC

dt
k C k CA

A C= − +1 3   (6.69)

  
dC
dt

k C k CB
B A= − +2 1   (6.70)

  
dC
dt

k C k CC
C B= − +3 3   (6.71)

where CA, CB, and CC are the concentrations of the reactants A, B, and 
C at any instant in time t. Let the initial concentrations of reactants A, 
B, and C be given by CA0, CB0 = 0, and CC0 = 0. The Laplace transforms 
of Eqs. (6.68) to (6.71) are obtained as:

  ( )
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s k C C k CA A C+ = +1 0 3   (6.72)

  ( )
_ _

s k C k CB A+ =2 2   (6.73)

  ( )
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s k C k CC B+ =3 2   (6.74)

Eliminating CB and CC between Eqs. (6.72) and (6.74), the transformed 
expression for the instantaneous concentration of reactant A can be 
written as:
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  (6.76)

The inversion of Eq. (6.76) can be obtained by using the residue theo-
rem. The three simple poles can be recognized in Eq. (6.76). Further-
more, it can be realized that when the poles are complex, subcritical 
damped oscillations can be expected in the concentration of the reactant. 
This is when the quadratic b ac2 4 0− < . This can happen when:

  ( )k k k k k3 2 1
2

2 14 0− − − <   (6.77)

or  ( )k k k k k3 2 1 1 22− − <   (6.78)

or  k k k3 2 1
2< +( )   (6.79)
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This expression is symmetrical with respect to reactants A, B, and C. 
When the relation holds, that is, when one reaction rate constant is 
less than the square of the sum of the square root of the rate constants 
of the other two reactions, the subcritical damped oscillations can be 
expected in the reactant concentration.

6.4.2 Four Reactions in Circle
The equivalent Laplace transformed expression for concentration of 
reactant A for a system of four reactions in circle, assuming that all 
the reactions in the cycle obey simple, first-order kinetics, can be 
derived as:

 C C s k s k s k
s s s k k k kA

A
_ ( )( )( )

( (
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+ + +
+ + + +
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3 2

1 2 3 44 1 2 1 3 2 3 1 4 2 4 3 4 1 2 3) ( )+ + + + + + +s k k k k k k k k k k k k k k k ++ + +k k k k k k k k k1 2 4 1 3 4 2 3 4)
 

   (6.80)

The conditions where the concentration can be expected to exhibit 
subcritical damped oscillations when the roots of the following equa-
tion becomes complex are:

  s s s3 2 0+ + + =α β χ    (6.81)

where α = + + +k k k k1 2 3 4    (6.82)

 β = + + + + +k k k k k k k k k k k k2 3 1 3 1 2 1 4 4 3 1 4    (6.83)

  χ = + + +k k k k k k k k k k k k1 2 3 1 2 4 1 3 4 2 3 4    (6.84)

It can be seen that α is the sum of all four reaction rate constants, β is 
the sum of the product of all possible pairs of the reaction rate con-
stants, and χ is the sum of the product of all possible triple products 
of rate constants in the system of reactions in circle. Equation (6.81) 
can be converted to the depressed cubic equation by using the follow-
ing substitution:

  x s= − α
3

   (6.85)

This method was developed in the Renaissance period [10]. The 
depressed cubic without the quadratic term will then be:

  x x3
2 3

3
2
27 3

0+ −






+ + − =β α χ α αβ
   (6.86)

Let β α−






=
2

3
B; χ α αβ+ −







=2
27 3

3

C    (6.87)



P h a r m a c o k i n e t i c  S t u d y  293

Then Eq. (6.86) becomes:

  x Bx C3 0+ + =    (6.88)

The complex roots to Eq. (6.88) shall occur when D > 0 where:

  D
B C= +

3 2

27 4
   (6.89)

Thus, the conditions when subcritical damped oscillations can be 
expected for a system of four reactions in circle are derived. 

6.4.3 General Case of n Reactions in Circle
For the general case, of which the Krebs cycle with eight reactions in 
circle is a particular case, it can be obtained by extending the expres-
sions derived for three reactions in circle and four reactions in circle. 
Another way of doing this would be the method of eigenvalues and 
eigenvectors. The cases when λ is imaginary is when the concentra-
tion of the species will exhibit subcritical damped oscillations given 
by the characteristic equation (6.90):

  Det IK − λ = 0   (6.90)

The size of the K matrix depends on the number of reactions in circle. 
For n reactions in circle, K would be an n × n matrix. For the case of a 
Krebs cycle, it would be a 8 × 8 matrix.

Upon expansion, an eighth-order polynomial equation in λ arises. 
Eight roots of the polynomial exist. Even if all the values in the char-
acteristic matrix are real, some roots may be complex. When complex 
roots occur, they appear in pairs. The roots of the polynomial are 
called eigenvalues of the characteristic matrix. The polynomial equa-
tion is called the eigenvalue equation. 

6.5 Subcritical Damped Oscillations
As was discussed in the previous section, the concentration of the 
drug during absorption on account of kinetics, such as the reactions 
in circle, can undergo subcritical damped oscillations. In such cases, 
how can the absorption with elimination process be modeled?

Let the solution for the dosage drug when absorbed by kinetics 
that result in subcritical damped oscillations be given by:

  n
f

V
e t
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k t
kanatomy

Dose
cosinfusion= −− ( ( ))2 ω    (6.91)
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A mass balance on the concentration of drug within the human anat-
omy for the case of kinetics of absorption resulting in subcritical 
damped oscillation can be written for Fig. 6.4 as:

  
k f e t

V

k t
k

a

infusion Dose cosinfusion( ) ( ( ))− −
−

2 ω
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  (6.92)

Equation (6.92) is the governing equation for concentration of a drug 
in the single compartment. Equation (6.92) is made dimensionless by 
the following substitutions:
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Plugging Eq. (6.93) in, Eq. (6.92) becomes:
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The concentration of drug as a function of time can be solved for by 
the method of Laplace transforms as follows. Obtaining the Laplace 
transforms of Eq. (6.94):
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Obtaining the inverse of the transformed expression by using the 
convolution property of Eq. (6.95):
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The solution for dimensionless concentration of the drug in the single 
compartment for different values of rate constants and dimensionless 
frequency are shown in Figs. 6.12 through 6.15. The drug profile 
reaches a maximum and drops to zero concentration after a given 
period. The fluctuations in concentration depend on the dimension-
less frequency resulting from the subcritical damped oscillations dur-
ing absorption. At low frequencies, the fluctuations are absent. As the 
frequency is increased, the fluctuations in concentration are pro-
nounced. The frequency of fluctuations was found to increase along 
with an increase in the frequency of oscillations during absorption. 
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6.6 Multicompartment Models
Two- and three-compartment models are used when complex drug 
profiles need to be described. Such a need arises particularly when equi-
librium between a central compartment and a peripheral tissue com-
partment to describe the concentration of drug in blood is not rapid. 
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FIGURE 6.12 Characteristic matrix for system of eight reactions in circle.
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FIGURE 6.13 Dimensionless concentration of drug in compartment 
ω∗ = ω/klumped = 8; k kinfusion lumped 0.4/ = .
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A two-compartment model to model the absorption process with 
elimination is shown in Fig. 6.17. The concentration that has diffused 
to the tissue region in the human anatomy is accounted for in addi-
tion to the concentration of drug in the blood plasma.
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FIGURE 6.14 Dimensionless concentration of drug in compartment 
ω∗ = ω/klumped = 16; k kinfusion lumped 0.4/ = .
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FIGURE 6.15 Dimensionless concentration of drug in compartment, 
ω∗ = 1, kinfusion/klumped = 0.4.
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A bolus is administered intravenously. A mass balance on the 
concentration of drug within the human anatomy in the blood plasma 
and tissue compartments can be written for Fig. 6.17 as follows:

  ( (rate) rate) accumulationin out− =    (6.97)
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renal drug
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dtp
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   (6.98)
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  (6.99)

0
0 2 4 6 8 10

Dimensionless time

Subcritical damped absorption with elimination

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D
im

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n

0.18

FIGURE 6.16 Dimensionless concentration of drug in compartment 
ω∗ = ω/klumped = 5; k kinfusion lumped 0.4/ = .
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FIGURE 6.17 Two-compartment model.
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where Vp and VT are the apparent distribution volumes of the blood 
plasma and tissue compartments. The initial concentrations of the 
drug in the compartments are:

  
C

V

C

P
drug
plasma

drug
tissue

Dose=

= 0

  (6.100)

Differentiating Eq. (6.98) with respect to time and eliminating the 
concentration of the drug in the tissue from Eq. (6.100), the governing 
equation for the concentration of drug in the blood plasma compart-
ment can be written as:

  
d C

dt
k F

dC

dtpt
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k

Vtp pt
tp

p
drug
plasma Dose

0   

  (6.101)

Equation (6.101) is an ODE of the second order with constant 
coefficients. This can be solved for by obtaining the roots of the com-
plementary function and adding a particular solution. The solution to 
Eq. (6.101) can be written, after using the initial condition, as:

  C
V

e c e e
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t t t
drug
plasma Dose= + −α α β

2( )   (6.102)

The concentration of the drug in the tissue can be written as:
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  β =
− + − + + +( ) ( ) ( )k F k F k kpt pt pt tprenal renal

2 4

2
  (6.105)

The solution of the integration constant needs another time condition 
in addition to the initial conditions given by Eq. (6.100). By mass bal-
ance at any given instant in time, the initial concentration of the drug 
in the plasma is the total of the concentration of the drug in the blood 
compartment plus the concentration of the drug in the tissue com-
partment. The fourth constraint can be that the initial rate of reaction 
in the tissue compartment is zero, that is: 

  0 2= − − −α α βDose
V

c
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( )   (6.106)
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then   c
VP

2 =
−

α
α β

Dose
( )

  (6.107)

Equation (6.107) is valid only when α β≠ .

6.7 Computer Implementation of Models
With the advent of personal computers, the pharmacokinetic models 
are implemented on computers. Both linear and nonlinear pharmaco-
kinetic models can be simulated in the computer. This is especially 
the case when drug concentration throughout the body or a particu-
lar location is high. The possible reason for this situation is when the 
capacity of a biochemical process to reduce the concentration of the 
drug becomes saturated. Michaelis-Menten kinetics are used to cap-
ture the nonlinear nature of the system. This involves mixtures of 
zeroth-order and first-order kinetics. 

Experimental methods are deployed to collect data on the change 
in the concentration of drug with time from a patient who has been 
injected with a particular dose of a drug. This is followed by inter-
preting and analyzing the data. Data analysis involves plotting the 
points of concentration of a drug in a logarithmic graph. The slope 
and intercept of the best-fit, linear, and regression lines to the data can 
be used to obtain the rate constant and the initial concentration of the 
drug. These constants are used in the compartment models to describe 
the drug’s time course for additional patients and dosing regimes.

Experimental methods to study drug profiles affected by Michaelis-
Menten kinetics are similar to those used in standard compartment 
models. The drug profiles are usually nonlinear. However, at high 
concentrations, the drug concentration is linear. This is because the 
drug is eliminated at a maximal constant rate by a zeroth-order pro-
cess. The data line then begins to curve in an asymptotic fashion 
with time until the drug concentration drops to a point where the 
rate process becomes proportional to the drug concentration via a 
first-order process. Nonlinear pharmacokinetics can be used to 
describe solvation of the therapeutic ingredient from a drug formu-
lation, as well as metabolism and elimination processes. Toxicological 
events related to threshold dosing can be described using nonlinear 
pharmacokinetics.

Single-, two-, and three-compartment pharmacokinetic models 
require in vivo blood data to obtain rate constants and other relevant 
parameters that are used to describe drug profiles. Furthermore, what 
may work for one drug may not be suitable for another drug. Blood 
profile data need to be generated for each drug under scrutiny. In 
vivo state of a spectrum of drugs without experimental blood sam-
ples from animal testing cannot be predicted accurately using such 
models. Physiological pharmacokinetic models have been developed. 
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These integrate the basic physiology and anatomy with drug distri-
bution and disposition. The compartments used correspond to ana-
tomic entities, such as GI tract, liver, lungs, ocular, buttocks, etc., that 
are connected by the passage of blood. However, a large body of 
drug-specific physiological and physiochemical data are employed. 
The rate processes are lumped together in the physiological models. 

Computer systems have been used in pharmacokinetics to pro-
vide easy solutions to complex pharmacokinetic equations and 
modeling of pharmacokinetic processes. Other uses of computers 
in pharmacokinetics include statistical design of experiments, data 
manipulation, graphical representation of data, projection of drug 
action, and preparation of written reports or documents.

Pharmacokinetic models are described by systems of differential 
equations. Computer systems and programming languages have been 
developed that are more amenable for the solution of differential equa-
tions. Graphics-oriented model development computer programs are 
designed for the development of multicompartment linear and nonlin-
ear pharmacokinetic models. The user is allowed to interactively draw 
compartments and then link them with other iconic elements to develop 
integrated flow pathways using predefined symbols. The user assigns 
certain parameters and equations, relating the parameters to the com-
partments and flow pathways, and then the model development pro-
gram generates the differential equations and interpretable code to 
reflect the integrated system in a computer-readable format. The result-
ing model can be used to simulate the system under scrutiny when 
input values for parameters corresponding to the underlying equations 
of the model, such as drug dose, etc., are used.

Tools are developed to implement pharmacokinetic models. 
However, the current state of the art does not permit predictability of 
the pharmacokinetic state of extravascularly administered drugs in a 
mammal from in vitro cell, tissue, or compound structure-activity rela-
tionship (SAR/QSAR) data. The predictability is poor when attempt-
ing to predict absorption of drug in one mammal from data derived 
from a second mammal. Different approaches to predict oral admin-
istration and fraction dose absorbed are presented in the literature 
[13–15]. There are lacunae in these models, as they make assumptions 
that limit the scope of prediction to a few specific compounds. These 
collections of compounds possess variable ranges of dosing require-
ments and of permeability, solubility, dissolution rates, and transport 
mechanism properties. Other deficiencies include the use of drug-
specific parameters and values in pharmacokinetic models that limit 
the predictive capability of the models. Generation of rules that may 
be universally applicable to drug disposition in a complex physiolog-
ical system, such as the GI tract is difficult. 

The bioavailability of the drug includes the product price, patient 
compliance, and ease of administration. Failure to identify promising, 
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problematic drug candidates during the discovery and preclinical 
stages of development is a significant consequence of problems with 
drug bioavailability. There is a need to develop a comprehensive, phys-
iologically based, pharmacokinetic model and computer system capa-
ble of predicting drug bioavailability and variability in humans that 
utilizes relatively straightforward input parameters. Computer-based 
biopharmaceutical tools are needed for the medical community, which 
encounters new therapeutic alternates and the use of high-throughput 
drug screening for selecting drug candidates.

Lion Bioscience [16] has patented a pharmacokinetic-based design 
and selection PK tool. The tool can be used to predict absorption of a 
compound in a mammalian system of interest. The PK tool consists of 
an input/output system; a physiologic-based simulation model of 
one or more segments of a mammalian system of interest, with phys-
iological barriers to absorption based on route of administration; and 
a simulation engine with a differential equation solver and a control 
statement module. The structure of the PK tool is shown in Fig. 6.18. 
The PK tool is a multicompartment mathematical model. Linked 
components include differential equations for fluid transport, fluid 
absorption, mass transit, mass solvation, mass solubility, and mass 

Input/output system

Physiological simulation
models for human anatomy
using differential equations

Equations and parameters
 Compartments
 Flow regulators
 Segment converters

Underlying
equation/parameter values
 Physiological parameters
 Correlation parameters
 Adjustment parameters
Control statement rules

Simulation engine

FIGURE 6.18 Structure of the PK tool.
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absorption for one or more segments of the human anatomy; input 
parameter values for the differential equations corresponding to 
physiological parameters; and selectively optimized adjustable 
parameters for one or more segments of human anatomy and control 
statement rules for one or more transit, absorption, permeability, sol-
ubility, solvation, concentration, and mathematical error correction.

The dose, permeability, and solubility data of a drug or com-
pound is received by the input/output system. The absorption pro-
file for the compound is generated by applying physiological-based 
simulation models. The PK tool also has a database that includes 
physiological-based models; simulation model parameters; differen-
tial equations for fluid transport, fluid absorption, mass transport, 
mass solvation, and mass absorption for different parts of the human 
anatomy; initial parameter values for the differential equations; opti-
mized adjustable parameters; regional correlation parameters; and 
control statement rules for transport, absorption, permeation, solva-
tion, and mathematical error corrections for different parts of the 
human anatomy. The database also has a compartment-flow data 
structure that is portable into and readable by a simulation engine for 
calculating the rate of absorption, extent of absorption, and concentra-
tion of a compound at a sampling site across physiological barriers in 
different parts of the human anatomy as a function of time. The PK tool 
can be used to predict accurately one or more in vivo pharmacokinetic 
parameters of a compound in human anatomy. The method uses a 
curve-fitting algorithm to obtain the fit of the model with one or more 
input variables. Then adjustable parameters are generated. These steps 
are repeated until the adjustable parameters are optimized. 

An example of simulation engine is the STELLA® program from 
High Performance Systems, Inc. It is an interpretive program that can 
use two different numerical schemes to evaluate differential equa-
tions: Euler’s method or Runge-Kutta. The program KINETICATM 
solves differential equations by evaluating the equations of the 
model. By translating the model from a STELLA-readable format to 
a KINETICA-readable format, physiological simulations can be con-
structed using KINETICA, which has various fitting algorithms. 

Summary
Pharmacokinetics comes from the Greek words pharmacon, which that 
means drugs, and kinetikos, which means setting in motion. The appli-
cation of pharmacokinetics allows for the processes of liberation,
absorption, distribution, metabolism, and excretion to be characterized 
mathematically. The absorption of drug can be affected by 13 differ-
ent methods. The change with time of the concentration of the drug 
can be by three different types, as shown in Fig. 6.1: Slow absorption 
maxima and rapid bolus, and constant-rate delivery. Pharmacokinetic 
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studies can be performed by five different methods, including com-
partment methods. The five different methods are noncompartment, 
compartment, bioanalytical, mass spectrometry, and population.

The factors that affect how a particular drug is distributed 
throughout the anatomy are rate of blood perfusion, permeability of 
the capillary, biological affinity of the drug, rate of metabolism of the 
drug, and rate of renal extraction. Drugs may bind to proteins, and 
the distribution volume is restricted. An apparent distribution vol-
ume of the drug is defined in such cases (Eq. 6.7). The kinetics of 
enzymatic reactions that deplete the drug in the tissues can be 
expected to obey the Michaelis-Menten kinetics. The elimination of a 
drug is affected by the kidneys to a large extent by enzymatic degra-
dation and formation of water-soluble drug products. BUN, a waste 
product produced in the liver as the end product of protein metabo-
lism, is removed from the blood by the kidneys in the Bowman’s cap-
sule, along with creatinine, a waste product of creatinine phosphate, 
an energy-storage molecule, produced largely from muscle break-
down. The microscopic representation of the anatomy of a nephron is 
shown in Fig. 6.2. The kidney is comprised of more than a million 
nephrons. The nephron is comprised of a glomerulus, entering and 
exiting arterioles, and a renal tubule. The glomerulus consists of a tuft 
of 20 to 40 capillary loops protruding into Bowman’s capsule. 
Bowman’s capsule is a cup-shaped extension of the renal tubule and 
is where the tubule begins. The epithelial layer of Bowman’s capsule 
is about 40 nm in thickness and facilitates the passage of water into 
inorganic and organic compounds. The renal tubule has several dis-
tinct regions, which have different functions, such as the proximal 
convoluted tubule, the loop of Henle, the distal convoluted tubule, 
and the collecting duct that carries the final urine to the renal pelvis 
and the ureter. Glomerular filtration is the amount of fluid movement 
from the capillaries into the Bowman’s capsule. GFR is about 125 mL/
min, or about 180 liters per day. 

The concept of renal clearance is introduced by performing a 
mass balance on the drug in the human anatomy’s apparent distribu-
tion volume at transient state. The elimination of a drug in urine is 
seen to be a first-order process [Eq. (6.13)]. The term plasma clearance 
represents all the drug elimination processes of the body. The pri-
mary elimination processes are from metabolism and GFR. The sec-
ondary processes are from sweat, bile, respiration, and feces. The rate 
constant for each secondary process is denoted by k F Vj j a= / . 

An overall rate constant is defined that can be used to account for 
all the primary and secondary processes of the elimination of a drug 
in human anatomy [Eq. (6.16)]. Equation (6.17) is an example of a 
pharmacokinetic model derived from first principles. Curve B in 
Fig. 6.1 can be explained using this model. The area under the con-
centration of drug versus time can be denoted by area [Eq. (6.19)].
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Single-compartment models were developed for first-order 
absorption with elimination. The dose infused is given by Dose. A 
fraction f represents the fraction of dose that is absorbable. The model 
equation is solved for by the method of Laplace transforms [Eq. (6.25)]. 
The concentration of the drug as a function of time varies inversely 
and is proportional to the apparent distribution volume of the drug 
within the human anatomy. It is directly proportional to the amount 
of drug that is absorbable and depends on the first-order rate constants 
of absorption and elimination. The time where the concentration 
reaches a maxima is identified [Eq. (6.26)], and the corresponding max-
imum concentration is given by Eq. (6.27). A separate model solution 
for the special case when the overall rate constant of the primary and 
secondary elimination processes is equal to the rate constant of 
absorption [Eq. (6.32)] was developed. Curve A in Fig. 6.1 can be 
explained by this model solution: second-order absorption with elim-
ination. The model solution was obtained by the method of particular 
integrals for first-order ODE, and the model solution was given by 
Eq. (6.39). The concentration profile exhibited a maxima. The solution 
for the time at which the maxima occurs needs a numerical solution, 
as in the resulting transcendental equation in Eq. (6.39). This equation 
can be seen to be an interplay of the rate of absorption and rate of 
excretion. When the second-order absorption processes are rapid and 
excretion is slow, the drug tends to accumulate in the blood plasma. 
When the rate of excretion is rapid, the drug concentration tends to 
drop off rapidly. The zeroth-order absorption with elimination model 
solution was obtained by the method of Laplace transforms. The 
model solution given by Eq. (6.50) is valid for 0 < t < ( )f kDose/ zero . 
For time t > ( / )f kDose zero , the model solution is given by Eq. (6.52). 
This model solution (Fig. 6.8) can explain the behavior of Curve C, as 
shown in Figure 6.1. The concentration profile changes from convex 
at small times to concave at long times. The Michaelis-Menten kinet-
ics, when integrated (Eq. 6.55), results in a transcendental equation. 
However, it is not in a form that is readily usable. A more usable form 
of Eq. (6.55) is developed using a Taylor series expansion of dimen-
sionless concentration u in terms of its derivatives. The infinite series 
expression for dimensionless concentration is given by Eq. (6.63). It 
can be seen that for times t < ( )25 0f kC VE aDose/ , the Taylor series 
expression evaluated near the origin, up to the third derivative, 
is a reasonable representation of the integrated solution given in 
Eq. (6.55). More terms in the Taylor series expression can be added to 
suit the application and the apparent volume, dosage, enzyme con-
centration, Michaelis constant, and the desired accuracy level needed, 
as shown previously. The single-compartment model solution was 
obtained by the method of Laplace transforms (Eq. 6.68). It can be 
seen from Fig. 6.10 that the dimensionless drug concentration in the 
compartment goes through a maxima. The curve is convex throughout 



P h a r m a c o k i n e t i c  S t u d y  305

the absorption and elimination processes. The drug is completely 
depleted after a given period. The curve is asymmetrical with a right 
skew. With reactions in circle and absorption with elimination, a sys-
tem of n simple reactions in circle was considered. The concentration 
profile of the reactants was obtained by the method of Laplace trans-
forms. The conditions when subcritical damped oscillations can be 
expected were derived. A model was developed for cases when 
absorption kinetics exhibiting subcritical damped oscillations can be 
expected. The solution was developed by the method of Laplace 
transforms (Eq. 6.96). The solutions for dimensionless concentration 
of the drug in a single compartment for different values of rate con-
stants and dimensionless frequency were shown in Figs. 6.12 through 
6.15. The drug profile reaches a maximum and drops to zero concen-
tration after a given period. The fluctuations in concentration depend 
on the dimensionless frequency resulting from the subcritical damped 
oscillations during absorption. At low frequencies, the fluctuations 
are absent. As the frequency increases, the fluctuations in concentra-
tion are pronounced. The frequency of fluctuations was found to 
increase along with an increase in frequency of oscillations during 
absorption. 

A two-compartment model for absorption with elimination was 
shown in Fig. 6.17. The concentration that has diffused to the tissue 
region in the human anatomy is accounted for in addition to the con-
centration of drug in the blood plasma. The model equation for the 
concentration of drug in the tissue is found to be an ODE of the sec-
ond order with constant coefficients (Eq. 6.101). The model solution is 
given in Eq. (6.103) and is obtained by the method of complementary 
function and particular integrals.

The implementation of the pharmacokinetic models on personal 
computers was discussed. Software has been developed, with wide-
ranging capabilities, from regression fit of experimental data to pro-
jection of drug action to preparation of written reports/documents. 
Computer systems and programming languages have been developed 
that are more amenable for solving differential equations. Tools have 
been developed to implement pharmacokinetic models. However, the 
current state of the art does not permit the predictability of the pharma-
cokinetic state of extravascularly administered drugs in a mammal 
from in vitro cell, tissue, or compound SAR/QSAR data. Lion Biosci-
ence [16] has patented a pharmacokinetic-based design and selection 
PK tool. The tool can be used to predict absorption of a compound in a 
mammalian system of interest. The PK tool consists of an input/output 
system; a physiologic-based simulation model of one or more segments 
of a mammalian system of interest, with physiological barriers to 
absorption based on route of administration; and a simulation engine 
with a differential equation solver and a control statement module. The 
structure of the PK tool was shown in Fig. 6.17. 
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Exercises

Review Questions

1.0 Does the concentration of a drug reach zero after a given period?

2.0 What is the difference between compartment methods and noncompart-
ment methods?

3.0 What is the difference between the bioanalytical method and the mass 
spectrometry method?

http://nobel.se
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4.0 What are the characteristics of the typical drug concentration profiles, 
Curve A, Curve B, and Curve C, as shown in Fig. 6.1?

5.0 What is the difference between absorption and elimination?

6.0 What is the difference between liberation and metabolism?

7.0 What is the effect of the permeability of a capillary on the concentration 
profile of a drug?

8.0 What is the effect of biological affinity on the concentration profile of a 
drug?

9.0 What are the differences in drug administration by sublingual entry and 
buccal entry?

10.0 What are the differences in drug administration by gastric entry and 
IV therapy?

11.0 What are the differences in drug administration by intramuscular ther-
apy and subcutaneous therapy?

12.0 What are the differences in drug administration by intradermal therapy 
and percutaneous therapy?

13.0 What are the differences in drug administration by inhalation and by 
intra-arterial route?

14.0 What are the differences in drug administration by intraocular route 
and gastric entry?

15.0 What is Bowman’s capsule?

16.0 What are the different regions of the renal tubule?

17.0 What are the differences between renal clearance and plasma clearance?

18.0 The overall rate constant given by Eq. (6.16) assumed that the processes 
considered act in series. What if they act in parallel?

19.0 What are the issues in developing a single-compartment model with 
absorption kinetics that is reversible?

20.0 What are the features of a PK tool in the PC?

Problems
21.0 Accumulation of drug in urine. During the elimination of the drug by 
primary and secondary processes, some drug is passed along with the urine. 
In order to supplement the pharmacokinetic analysis, some additional data 
on the amount of the drug can be used. The rate at which drug accumulates 
in the urine at any given instant in time can be written as:

  
dm

dt
k V Cre a

urine
drug
plasma=   (6.108)
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where murine is the mass of the urine at any given instant in time. Substitute 
Eq. (6.17) in Eq. (6.40). Show that at infinite time: 

  m
k

k
Fre

urine
lumped

renalDose Area= = ∞0..   (6.109)

Eq. (6.41) would be a relationship between the total amount of drug collected 
in the urine, the renal clearance, and the area under the concentration of the 
drug versus time curve. 

22.0 Drug concentration during continuous intravenous injection. Curve C in 
Fig. 6.1 can be explained by the following pharmacokinetic model (Fig. 6.19). 

The drug is infused at a constant rate, q0, as shown in Fig. 6.4. Write the 
mass balance for the drug and show that the concentration of the drug as a 
function of time can be given by:

  C
q

k V
e

a

k t
drug
plasma

lumped

lumped= − −0 1( )   (6.110)

Show that Eq. (6.93) can describe the behavior of Curve C as depicted in Fig. 6.1.

23.0 Accumulation of drug in urine with first-order absorption and elimination. 
During the elimination of the drug by primary and secondary processes, some 
drug is passed along with the urine. In order to supplement the pharmacoki-
netic analysis, some additional data on the amount of drug can be used. The 
rate at which drug accumulates in the urine at any given instant in time can 
be written as:

  
dm

dt
k V Cre a

urine
drug
plasma=   (6.111)

where murine is the mass of the urine at any given instant in time. Substitute 
Eq. (6.25) in Eq. (6.94). Show that:

  m
f

k k k
re

urine
lumped infusion l

Dose
=









 −

−
k

1
1

uumped
infusion lumped

lumoed infusi(k e k ek t k− −− oont )








   

  (6.112)

Va, Cdrug Kidney
Solute

removal
rateCdrug = 0

renal plasma
flow rate

Renal plasma
flow rate,

Cdrug

Infusion
rate

FIGURE 6.19 Continuous infusions with elimination.
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This is true for k kinfusion lumped≠ . Show that at infi nite time;

 m
f k

k
re

urine
lumped

Dose∞ =   (6.113)

Why are the limits at t = 0 and t = ∞ equal to each other?

24.0  The equations shown in Exercise 3.0 are only valid for k kinfusion lumped≠  . 
For the special case when k k kinfusion lumped= =  show that:

  m
k
k

f e ktre kt
urine Dose=







− +−( ) ( ( ))1 1   (6.114)

Show that at infinite time:

  m
k
k

fre
urine Dose∞ =







( )   (6.115)

What happens to the expression in the limit of t → 0?

25.0 Accumulation of drug in urine with zeroth-order absorption and elimination. 
During the elimination of the drug by primary and secondary processes, some 
drug is passed along with the urine. In order to supplement the pharmacoki-
netic analysis, some additional data on the amount of drug can be used. The 
rate at which drug accumulates in the urine at any given instant in time can 
be written as:

  
dm

dt
k V Cre a

urine
drug
plasma=   (6.116)

where murine is the mass of the urine at any given instant in time. Substitute 
Eq. (6.25) in Eq. (6.99). Show that:

  m
k k
k

t
e
k

re
k t

urine
zero

lumped lu

lumped

=








 +

−

mmped









    (6.117)

This is true for t f k≤ ( )Dose/ zero . What happens in the limit of t → 0?

26.0 Lambert function and Michaelis-Menten kinetics. The Michaelis-Menten 
kinetics, upon separating the variables of concentration and time and inte-
gration, becomes Eq. (6.55). When generating the drug profile, that is, (t, C(t)) 
curve, it can be seen that each point needs the solution of a transcendental 
equation. The Lambert W function is available in mathematical software such 
as MATLAB and Maple. The Lambert W function has been studied in the lit-
erature to develop a more useful form of Eq. (6.55) [13]. The Michaelis-Menten 
kinetics in the dimensionless form can be written from Eq. (6.57) as:

  
du
d

u
u uMτ

= −
+

  (6.118)

The integration of Eq. (6.118) can be seen to be:

  − = − +τ u uuM1 ln( )   (6.119)
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The exponentiation of Eq. (6.119) can yield:

  
u

u
e

u
e

M

u
u

M

uM M=
−

1
1 τ

  (6.120)

From application of the Lambert W function:

For any   Y XeX=   (6.121)

 X = W(Y) (6.122)

So when   X
u

u
Y

e
u

e
M

u

M

u
M

M= =
−

;

1
τ

  (6.123)

the solution is:

  
u

u
e

u e
M

u

M
u

M

M

=

















−

−
Lambert

τ

1   (6.124)

Use MATLAB and sketch the dimensionless concentration u and show the 
concentration profile as a function of time for a given uM.

27.0 Ethanol in brain tissue. Pharmacokinetic modeling of ethanol in various 
tissues plays an important role in the brain’s response to ethanol. Ethanol is a 
naturally produced drug used by humans for thousands of years because of 
its psychoactive properties. It is beneficial when used in moderation. Excessive 
use, however, can be devastating. Brain is a high-blood-flow, small-water-
volume organ, and ethanol readily crosses the blood-brain barrier. The ethanol 
is eliminated by an oxidation reaction as follows:

  C H OH O CO H O2 5 2 2 23 2 3+ → +   (6.125)

The stoichiometry of the reaction suggests that the rates of reaction are 
related by:

  
−

= −
r r

A O

1 3
2   (6.126)

The kinetics of the reaction can be expected to be of the form:

  − =r kC CA A O2

3   (6.127)

Lumping all the rate effects into the alcohol concentration assume that the rate 
expression can be given by a fourth-order rate expression such as;

  − =r kCA A
4   (6.128)

Let the amount of alcohol ingested by given by Dose. Develop a single-
compartment pharmacokinetic model for this fourth-order absorption with 
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elimination of ethanol. Plot the alcohol concentration as a function of time. 
Does it undergo a maxima? Calculate the amount of ethanol in the urine.

28.0 In Problem 27.0, instead of a fourth-order kinetics, assume that ethanol 
is eliminated by Michaelis-Menten kinetics. Develop a single-compartment 
pharmacokinetic model for absorption and elimination of ethanol. What can 
be inferred from the ethanol concentration versus time plot?

29.0 Develop a two-compartment pharmacokinetic model for alcohol 
absorption and elimination, as described in Problem 6.0. How does the con-
centration of ethanol in the tissue compare with the concentration of ethanol 
in the blood?

30.0 Consider a periodic ingestion of ethanol given by Dose (2 − cos (ωt)) 
in Problem 6.0, and construct a single-compartment model for fourth-order 
absorption and elimination of ethanol. What can be inferred from the concen-
tration versus time plot of ethanol?

31.0 Develop a two-compartment pharmacokinetic model for alcohol absorp-
tion and elimination as described in Problem 27.0. How does the concentration 
of ethanol in the tissue compare with the concentration of ethanol in blood?

32.0 In Problem 6.0, instead of fourth-order kinetics, assume that ethanol 
is eliminated by Michaelis-Menten kinetics. Develop a two-compartment 
pharmacokinetic model for absorption and elimination of ethanol. How does 
the concentration of ethanol in the tissue compare with the concentration of 
ethanol in the blood?

33.0 Develop a single-compartment model with absorption and elimination. 
The kinetics of absorption can be described by a reversible first-order reaction, 
with the equilibrium rate constant given by Keq.

34.0 Develop a single-compartment model with elimination for intermediate 
species R formed during absorption. The abortion process kinetics can be rep-
resented as a simple set of reactions in series, both first-order. The first-order 
absorption of the drug process can be described by:

  

n R S

dn

dt
k

anatomy anatomy anatomy

anatomy
inf

→ →

= − uusion anatomy

anatomy
infusion anatomy

n

dR

dt
k n= −−

=

k R

dS

dt
k R

2

2

anatomy

anatomy
anatomy

  (6.129)

The solution to Eq. (6.129) can be written as:

  R f
k

k kanatomy
infusion

infusion

Dose=
−







( )
2

(( )e ek t k t− −−infusion 2   (6.130)

when k k2 ≠ infusion  
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35.0 Develop a single-compartment model for intermediate species R for the 
special case in Problem 34.0 when the rate constants in the simple reactions in 
series are equal to each other: k k2 = infusion.

36.0 Develop a two-compartment model for intermediate species R for the 
reaction scheme given in Problem 34.0.

37.0 Develop a two-compartment model for intermediate species R for the 
special case given in Problem 35.0.

38.0 Develop a single-compartment model for the drug nanatomy for the scheme 
of reactions given in Problem 34.0. How is the concentration profile different 
from Eq. (6.25)?

39.0 Develop a single-compartment model for the species Sanatomy for the 
scheme of reactions given in Problem 34.0.

40.0 Develop a two-compartment model for the species Sanatomy for the scheme 
of reactions given in Problem 34.0.

41.0 Develop a single-compartment model for the species Sanatomy for the 
special case given in Problem 35.0.

42.0 Develop a two-compartment model for the species Sanatomy for the special 
case given in Problem 35.0.

43.0 Develop a single-compartment model for the special case in Pro-
blem 35.0 when the rate constants in the simple reactions in series are equal 
to each other: k k2 = infusion for nanatomy.

44.0 Develop a two-compartment model for the reaction scheme given in 
Problem 34.0 for nanatomy.

45.0 Develop a two-compartment model for the special case given in Pro-
blem 35.0 for nanatomy.

46.0 Develop a single-compartment model with elimination for intermediate 
species R formed during absorption. The absorption process kinetics can be 
represented as a simple set of reactions in series, with a first-order reaction fol-
lowed by a zero-order reaction. The first-order absorption of the drug process 
can be described by:

  

n R S

dn

dt
k

anatomy anatomy anatomy

anatomy
inf

→ →

= − uusion anatomy

anatomy
infusion anatomy

n

dR

dt
k n= −− k2

  (6.131)

The solution to Eq. (6.131) can be written as:

  R f e
k t

f
k t

anatomy Dose
Dose

infusion= − −



−( ) 1 2


  (6.132)
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47.0 Develop a two-compartment model for intermediate species R for a 
series of reactions, with first order followed by zero order, as described in 
Problem 44.0.

48.0 Develop a single-compartment model for nanatomy for a series of reactions, 
with first order followed by zero order, as described in Problem 44.0.

49.0 Develop a two-compartment model for nanatomy for a series of reactions, 
with first order followed by zero order, as described in Problem 44.0. 

50.0 Develop a single-compartment model for species S for a series of reac-
tions, with first order followed by zero order, as described in Problem 44.0.

51.0 Develop a two-compartment model for species S for a series of reac-
tions, with first order followed by zero order, as described in Problem 44.0.

52.0 Develop a single-compartment model with elimination for intermediate 
species R formed during absorption. The absorption process kinetics can be 
represented as a simple set of reactions in series, with a zero-order reaction 
followed by a first-order reaction. The absorption of the drug process can be 
described by:
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The solution to Eq. (6.133) can be written as:
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53.0 Develop a two-compartment model for intermediate species R for a 
series of reactions, with zero order followed by first order, as described in 
Problem 50.0.

54.0 Develop a single-compartment model for nanatomy for a series of reactions, 
with zero order followed by first order, as described in Problem 50.0.

55.0 Develop a two-compartment model for nanatomy for a series of reactions, 
with zero order followed by first order, as described in Problem 50.0. 
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56.0 Develop a single-compartment model for species S for a series of reac-
tions, with zero order followed by first order, as described in Problem 50.0.

57.0 Develop a two-compartment model for species S for a series of reac-
tions, with zero order followed by first order, as described in Problem 50.0.

58.0 A pharmacokinetic study in rats resulted in the following data 
(Table 6.2):

Develop a pharmacokinetic model to best describe the data given in 
Table 6.2.

59.0 Develop a single-compartment model for first-order absorption with 
elimination. Consider a train of pulses as an infusion of the drug.

60.0 Develop a single-compartment model for first-order absorption with 
elimination. Consider a periodic dose of drug infused.

61.0 Develop a two-compartment model for first-order absorption with 
elimination. Consider a periodic dose of drug infused.

62.0 Develop a single-compartment model with elimination for species R 
formed during absorption of drug that reacts in parallel as follows:
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The reaction from nanatomy to R is of the first order, and the reaction from nanatomy 
to S is of the first order.

63.0 Develop a single-compartment model for species S formed during 
absorption of the drug, as described in Problem 60.0.

64.0 Develop a single-compartment model for nanatomy for the scheme of reac-
tions given in Problem 60.0.

#
Dimensionless
Time

Dimensionless Concentration 
of Drug in Plasma

1 0 0

2 1 0.16

3 2 0.15

4 3 0.06

5 4 0.03

6 6 0.01

TABLE 6.2 Drug Concentration in Rats



P h a r m a c o k i n e t i c  S t u d y  315

65.0 Develop a two-compartment model for intermediate species R formed 
during absorption of the drug, as described in Problem 60.0.

66.0 Develop a two-compartment model for intermediate species formed 
during absorption of the drug, as described in Problem 60.0.

67.0 Develop a two-compartment model for nanatomy during absorption of the 
drug for the parallel scheme of reactions, as shown in Problem 60.0.
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CHAPTER 7
Tissue Design

Learning Objectives
• Cell transplantation

• History of tissue design

• Scaffold

• Bioresorption

• Biodegradable and nonbiodegradable materials

• Triple helix structure of collagen

• Electrospinning of nanofibers

• Biomimetic films, membranes, and self-assembly

• Porous polymer supports

• Vascularization

• Response to an implant

• Multicompartment pharmacokinetic models

7.1 History
The phrase tissue engineering was coined by a pioneer in bioengineer-
ing, Y. C. Fung of the University of California at San Diego. The terms 
regenerative medicine and reparative medicine are synonymous with tis-
sue design. The first scientific conclave of this emerging field was 
conducted in 1988 at Lake Granlibakken, California. The scientific lit-
erature was seeded with this de novo concept. Tissue design emerged 
as a separate discipline from the field of biomaterials. The framework 
for the field of tissue design arose from the proceedings of this work-
shop and a review article by Langer and Vacanti [1]. The loss of a 
tissue or failure of an organ is a frequent, costly, and detrimental 
problem in human patient care. In tissue design, the principles of 
biology and engineering can be applied to the development of func-
tional substitutes for damaged tissue, and solutions to tissue creation 
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and repair are provided. Langer and Vacanti defined tissue engineer-
ing as “an interdisciplinary field that applies the principles of engineer-
ing and life sciences toward the development of biological substitutes 
that restore, maintain or improve tissue function.” The healing process 
for diseases can be achieved based on the natural healing potential of 
patients. During tissue regeneration therapy, regeneration of tissues 
is naturally induced by artificially promoting the potential of cell pro-
liferation and differentiation. The three strategies that are employed 
in tissue design are:

 1. Isolated cells or substitutes

 2. Tissue-inducing substances

 3. Cells placed on or within matrices

Vascular grafts were explored by A. Carrel, who was awarded the 
Nobel Prize in physiology in 1912. He demonstrated successful tech-
nique for the anastomosis of blood vessels and extended these tech-
niques from the transplantation of vessels to the transplantation of 
entire solid organs. Experimental use of rigid glass and metal tubes for 
vascular grafts was not successful. Tubes of synthetic fabric were used 
as arterial prostheses [2]. Thrombogenesis and other problems arising 
from the interaction between synthetic materials and the blood and 
perigraft tissues that come in contact with each other have been stud-
ied by biomaterials researchers, leading to the development of a range 
of alternative materials. The resorbable vascular graft was developed 
in the 1960s, and the fully resorbable graft was introduced in 1978. The 
creation of biologic vascular structures in their entirety using collagen 
and cultured vascular cells was developed in 1982 [3].

Skin grafts are used to cover severe wounds. These were first 
attempted using both cadavers and living human beings. The immu-
nologic basis for the rejection of skin allografts began to be investi-
gated in the early 20th century. Skin replacement received increased 
impetus during World War II. This is because of the tremendous 
increase in the number of burn victims for whom a skin allograft was 
not feasible. Billingham and Reynolds [4] demonstrated in animal 
models that the products of a brief culture of epidermal cells could be 
applied to a graft bed to reconstitute an epidermis. 

Growth factors were identified in the 1960s and 1970s that can be 
added to culture medium to induce greater proliferation of epider-
mal cells. In mid-1970s, skin replacement methods were developed, 
such as the co-culture method and the growth of cultured cells in 
sheets in a Petri dish. In the co-culture method, human epidermal 
keratinocytes were cultivated serially from small biopsy samples. 
Thick multilayered skin is generated to resurface the entire body of a 
burn victim. Another method was developed in which fibroblasts 
were used to condense a hydrated collagen lattice to a tissue-like 
structure potentially suitable for wound healing [5].
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Kidney transplantation research began in earnest in the early part 
of the 20th century with renal transplantation efforts in the late 1940s. 
The first dialysis machine was invented by Kolff in the Netherlands 
during World War II. For the first time, patients in a Boston hospital 
in 1948 used a refined dialysis machine. In 1954, the first kidney 
transplant was performed. The concept of a bioartificial kidney was 
formulated because of a short supply of organs suitable for transplan-
tation and therapeutic limitations of the dialysis machine. Hollow-
fiber bioreactors were developed [6] using renal epithelial cells.

The first pancreas transplant was performed by Lillehei in 1966.
Prior to this, insulin therapy was used to treat people with diabetes 
for 70 years. The limitations of insulin therapy were severe, long-term 
complications for a variety of organ systems. The use of microencap-
sulated islets as artificial beta cells was proposed in the mid-1960s. A 
hybrid artificial pancreas consisting of beta cells cultured on synthetic 
semipermeable hollow fibers was developed [7]. This device was able 
to restore glucose homeostasis in rats when connected to the circula-
tory system via a shunt. Studies of implanted microencapsulated 
islets began in 1980. Investigation of different ways of packaging islet 
cells to provide effective and durable glycemic control also was initi-
ated in the 1980s.

The first liver transplant was carried out by Starzl in 1967. Extracor-
poreal support to patients suffering from liver failure to replace the 
hepatic function and nonbiological approaches, such as hemodialysis, 
hemoperfusion over charcoal or resins or immobilized enzymes, plas-
mapheresis, and plasma exchange, have been attempted by clinicians. 
These attempts had limited success because the complex synthetic 
and metabolic functions of the liver are not completely replaced. 

Cell-based therapies and bioartificial systems have the same 
underlying concept as in the case of pancreatic islet cells. A bioreactor 
containing a rat hepatoma cell line cultured on the surface of semi-
permeable hollow fibers within a plastic housing was developed [8]. 
Transplanted hepatocytes were used in the treatment of drug-induced 
liver failure in rats in the 1970s. Approaches to the microencapsula-
tion of hepatocytes began in the 1980s.

Metals and alloys have been used to replace damaged bone or to 
provide support for healing bones. These foreign materials are inert. 
Some nonbiological materials do not remain inert in the environment 
of the human anatomy. Reactivity  is  a function of a number of fac-
tors that include implantation site, type of trauma, time of surgery, 
and precise material in use. In the 1970s, porous glass and hydroxy-
apatite ceramic were found to be bioactive and to solicit the forma-
tion of normal tissue on their surfaces. 

The growth and regenerative capabilities of bone have been 
looked at for decades. Urist [9] proved that a certain material was 
present in demineralized bone that, when transplanted, can induce 
growth of additional bone. Subsequent investigators pored over the 
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precise factors that led to trigger bone induction, and bone morpho-
genetic proteins (BMPs) were discovered in the 1970s and 1980s as 
mediatory growth factors. These substances can be isolated from the 
extracellular matrix of bone. Research work is in progress on isolation, 
purification, and proliferation of BMPs.

7.2 Scaffolds
The 3-D tissue formation is supported by an artificial structure called 
a scaffold. Cells are implanted into scaffolds. This can be affected in
vivo or ex vivo. Scaffolds enable cell attachment and migration, deliv-
ery and retention of cells, diffusion of vital cell nutrients, and modifi-
cation of cell phase. The cell seeding and diffusion throughout the 
whole structure of both cells and nutrients requires scaffold specifica-
tions such as high porosity and appropriate pore size. Scaffolds need 
to be absorbed by the surrounding tissue space. This imposes a spec-
ification of biodegradability on the scaffolds. 

The rate of tissue formation should be equal to the rate at which 
degradation occurs. The implications are that the cells make their 
own natural matrix structure around themselves. Scaffolds provide 
structural integrity within the body. When the scaffold breaks down, 
it leaves the neotissue that will absorb the mechanical load.

Engineering tissues and organs with mammalian cells and a scaf-
folding material is a recent trend compared to the use of harvested 
tissues and organs. Biodegradable polymers have been attractive candi-
dates for scaffolding materials because they degrade as the new tissues 
are formed, eventually leaving nothing foreign to the body. They allow 
the transplanted cells sufficient time to organize the desired 3-D struc-
ture and develop the blood supply. They readily hydrolyze on contact 
with the body fluids and disappear slowly. Examples of biodegradable 
polymers are:

• Collagen

• Glycosaminoglycans (GAG)

• Chitosan

• Polylactic acid

• Polyglycolic acid

• Polycaprolactone

• Polyhydroxyalkanoates

Polylactic acid (PLA) is biodegradable. PLA has been used either 
as a D isomer or in DL mixed form to prepare implant materials that 
are bioresorbable. PLA is biodegradable, although it would take three 
to five years to be fully resorbed. The in vivo degradation of PLA is by 
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an autocatalyzed hydrolytic scission of the ester groups in the polymer 
chain according to the following reaction:

∼ ∼ ∼ ∼COO H O COOH OH+ → +2  (7.1)

Research work has been published in the literature on attempts that 
have been made to increase the carboxylic acid (COOH) functionality, 
thereby increasing the rate of degradation of PLA. Samples of PLA 
have been contacted with COOH-containing materials such as oleic 
acid. No effect on the rate of degradation was reported. The effect of 
lactic acid monomers in PLA has also been investigated. It was found 
that the added monomer rapidly leached out of the polymer. Polymer 
blends containing 15 wt % lactic acid exhibited a total weight loss of 
about 15 percent within the first week of a 10-week study, and little 
further loss was found in the remaining weeks. A biodegradable stent 
was formed from lactide polymers where citric acid or fumaric acid 
can be included during the polymer processing. Other additives that 
are used to accelerate stent degradation are t-butyl ester of lauric acid 
and other esters. It was found [10] that it is possible to control the rate 
of degradation of lactic acid polymers by includin certain additives 
that are fully miscible with PLA. 

The blending process is simple. Stable polymer blends can be easily
thermoformed by injection molding in order to form implantable 
medical devices that will be both physically strong as well as biode-
gradable, allowing for proper controls. The additives can be selected 
from hexanoic acid, octanoic acid, decanoic acid, etc., and isovaleric 
anhydride, etc. The additive is at a 5 percent composition level in the 
blend. The mechanical properties of the implant are retained in the 
early stages of degradation, although molecular weight may decrease 
remarkably. A critical molecular weight is reached and the implant will 
cease to possess any mechanical strength and will not have degraded
sufficiently for resorption to occur. 
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The relationship between % additive and the degradation rate con-
stants and molecular weights are given in Eq. (7.2). A graph of the 
degradation rate of the blend versus the concentration of the COOH 
groups of the blend is obtained. The slope and intercept of this graph 
is used to obtain the rate constants k1 and k2 in Eq. (7.2). The degrada-
tion rate of the blend is obtained from the slope of a logarithmic graph 
against time for degradation time in weeks. The terms in Eq. (7.2) 
are MWn0, the polymer initial molecular weight MWns, the number 
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averaged molecular weight of the polymer at the point of loss of strength; 
and t, the duration in weeks where strength retention is required. 

Another additive can be included to cause a delay of the onset 
of the degradation process. This is achieved by the use of sub-
stances that may later become acidic. For example, acid anhydrides 
shall hydrolyze to the corresponding acid. The PLA can be a homo-
polymer or a copolymer of polylactic acid-co-polyglycolic acid 
(PLA-co-PGA). The polymer blends may be prepared by solution 
blending using solvents such as chloroform (CHCl3). These materi-
als may be used in medical devices where only temporary residence 
is required. For example, sutures, anchors, interference screws, scaf-
folds, maxilla-facial plates, and fracture fixation plates and rods 
need biodegradable constituents. 

Collagen has a triple-helical structure. This was discovered by 
G. N. Ramachandran [11], a former Ph.D. student of Nobel laureate 
Sir C. V. Raman. Tissues are made up of cells and extracellular matrix 
(ECM). The ECM is made up of collagen fibers in large measure. Col-
lagen has high tensile strength. The molecular structure of collagen 
consists of fibrils that are 300 nm in length and 1.5 nm in diameter. 
Collagen is a vital protein that is present in mammalian connective 
tissues such as skin, cartilage, and bone, and it accounts for nearly 
one-third of all the proteins in the human anatomy. Collagen is an 
insoluble fibrous protein. 

Its x-ray diffraction pattern is diffuse and is difficult to interpret. 
Ramachandran studied the collagen fiber in kangaroo tail tendon. 
The shark fin ray collagen that he obtained from the biochemistry lab 
did not yield good diffraction patterns. A description of the original 
triple-helical structure of collagen was published in the journal Nature.
The proposed structure consisted of three separate helical chains with 
their axes parallel to the fiber axis stacked in a hexagonal ray. The 
structure was innovative and provided better quantitative agreement 
with the x-ray data. G. Ambady a graduate student in Ramachandran’s
laboratory, obtained a collagen x-ray diffraction pattern with the fiber 
inclined to the incident beam. The data used so far were hitting the 
fiber perpendicularly. A meridional reflection was revealed that could 
not be explained by the triple-helical model. The model was revised 
to yield a structure that had a coiled-coil structure of the triple helix 
instead of the separate helices. 

The structure comprises three left-handed helices intertwining 
themselves into a second right-handed helix with a common axis in a 
closely packed formation. The model explained all of the published 
experimental data on collagen up to that point. As mentioned, this 
work was published in the journal Nature in 1955. Nobel laureate 
Crick called Ramachandran’s proposed structure wrong and gave a 
modified structure for collagen. However, the Crick structure was not 
possible because one of the hydrogen bonds gave rise to an apparent 
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situation in which hydrogen atoms came closer than the sum of their 
radii. Then Crick proposed a structure with a single hydrogen bond. 
Ramachandran and Chandrasekharan proposed that the second bond 
could be mediated through water. Water promotes the intratriple-
helix stability and the binding of neighboring triple helices together 
into a matrix, thereby improving the collagen fiber’s strength.

Drexel University patented [12] scaffolds used in tissue design 
comprising collagen or collagen-like peptides. Polymeric fiber matri-
ces can be used for the controlled release of bioactive compounds. 
These compounds are included in the delivery system, either by sus-
pending the compound particles or dissolving the compound in the 
polymer solution used to produce the fibers. The scaffold is useful in 
promoting attachment and growth of chondrocytes and is useful in 
cartilage repair and replacement.

An electrospinning operation can be used to fabricate organic poly-
mer fibers with micron to nanoscale diameters in linear, 2-D, and 3-D 
architectures. In the electrospinning process, a high-voltage electric 
field is generated between an oppositely charged polymer fluid con-
tained in a glass syringe with a capillary tip and a metallic collection 
screen. As the voltage is increased, the charged polymer solution is 
attracted to the screen. Once the voltage reaches a critical value, the 
charge overcomes the surface tension of the suspended polymer cone 
formed on the capillary tip of the syringe and a jet of ultrafine fibers is 
produced. As the charged fibers are sprayed, the solvent evaporates 
and the fibers are accumulated randomly on the surface of the collec-
tion screen. This results in a nonwoven mesh of nano- and micron-scale 
fibers. The fiber diameter and mesh thickness can be controlled by 
varying the applied voltage, polymer solution concentration, solvent 
used, and the duration of electrospinning. The fiber matrix properties 
can also be affected by changing the distance between the needle and 
the collection plate, the angle of the syringe with respect to the collec-
tion plate, and the applied voltage. A steady concentration of bioactive 
compound is maintained by suitable design of the delivery system. 

A delayed release of a bioactive compound also can be affected. 
The bioactive compound containing a fiber polymer matrix is coated 
with a layer of nonwoven polymer fiber matrix with no bioactive 
compound. Different polymers with various degradation times can 
be used to obtain the desired time delays. The selective bioactive 
compound promotes cell adhesion and growth, and serves as a scaf-
fold. Even nondegradable polymers that go into solution, such as 
polyethylenes, polyurethanes, and EVA, can be electrospun into 
fibers. Biodegradable polymers, such as PLA-co-PGA, PLLA, PGLA, 
polyglaxanaone and polyphosphazenes can be spun into fibers.

Techniques such as salt leaching, fibrous fabric processing, 3-D 
printing, foaming, nanofiber self-assembly, textile technologies, solvent
casting, gas foaming, emulsification, freeze-drying, thermally induced 
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phase separation, computer-aided designing (CAD)/computer-aided 
mapping (CAM) technologies, fiber bonding, membrane lamination, 
melt molding, and in situ polymerization can be used to prepare scaf-
folds. Engineering clinically useful tissues and organs is a challenge. 
Ideal scaffolds are yet to be developed. The principles of scaffolding 
are not well understood. Pore size, porosity, and surface area are 
salient parameters in scaffold design. Pore shape, pore wall morphol-
ogy, and interconnectivity between pores of the scaffolding materials 
may become important for cell seeding, migration, growth, mass 
transport, gene expression, and new tissue generation.

In human anatomy, tissues are organized into 3-D structures as 
functional organs and organ systems. Each tissue or organ has its spe-
cific characteristic architecture, depending on its biological function. 
Architecture design can provide for appropriate channels for mass 
transport and spatial cellular organization. Mass transport can include 
signaling molecules, nutritional supplies, and metabolic waste removal. 
Spatial cellular organization determines cell-cell and cell-matrix inter-
actions, and is critical to normal tissue and organ function. Matrix 
materials play a critical role in allowing for appropriate cell distribu-
tion and guidance of tissue regeneration in 3-D. In order to develop a 
scaffold, the architectural design, including cellular distribution, mass 
transport conditions, and tissue function, is important.

The salt leaching technique enables control of porosity by varying 
the salt particle size and salt/polymer ratio. The shape of the pores is 
limited to the cubic salt crystal shape. Textile technologies can enable 
control of fiber diameter on the order of a magnitude of 15 µm, inter-
fiber distance, and porosity. 

The carbon nanotube (CNT) is a potential candidate for scaffolds 
in tissue design. They are biocompatible, resistant to biodegradation, 
and can be functionalized by biomolecules. However, there are some 
unresolved toxicological issues regarding the use of CNTs.

CNTs are rolled graphene sheets of atoms about the needle axis. 
They are 0.7 to 100 nm diameter and a few microns in length. Carbon 
hexagons are arranged in a concentric manner, with both ends of the 
tube capped by a pentagon containing Buckminsterfullerene-type 
structure. They possess excellent electrical, thermal, and toughness 
properties. Young’s modulus of CNT has been estimated at 1 TPa and 
a yield strength of 120 GPa. S. Ijima verified fullerene in 1991 and 
observed a multiwalled CNT formed from carbon arc discharge.

Five methods of synthesis of CNTs are discussed [13]. These are: 

 1. Arc discharge

 2. Laser ablation

 3. Chemical vapor deposition (CVD)

 4. High pressure carbon monoxide (HIPCO) process  

 5. Surface-mediated growth of vertically aligned tubes 
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The arc discharge process was developed by NEC in 1992. Two 
graphite rods are connected to a power supply spaced a few mm apart. 
At 100 amps carbon vaporizes and forms a hot plasma. The typical 
yield is 30 to 90 percent. The single-walled nanotube (SWNT) and 
multi-walled nanotube (MWNT) are short tubes with diameters rang-
ing from 0.6 to 1.4 nm. CNTs can be synthesized in open air, although 
the product needs to be purified. CVD process was invented in 
Nagano, Japan. The substrate is placed in an oven, heated to 600°C, 
and a carbon-bearing gas such as methane is slowly added. As the gas 
decomposes, it frees up the carbon atoms, which recombine as a nano-
tube. The yield range is 20 to 100 percent. Long tubes with a diameter 
ranging from 0.6 to 4 nm were formed. CNT scan be easily scaled up 
to industrial production levels. The SWNT diameter is controllable. 
The tubes are usually multiwalled and riddled with defects. 

The laser vaporization process was developed by Smalley in 
1996. The graphite is blasted with intense laser pulses to generate 
carbon gas. A prodigious amount of SWNTs are formed, with a yield 
of up to 70 percent. Long bundles of tubes 5 to 20 µm with diameters 
in the range of 1 to 2 nm are formed. The product formation is pri-
marily SWNTs. Good diameter control is possible, and few defects 
are found in the product. The reaction product is pure, but the pro-
cess is expensive. 

The HIPCO process was also developed by Smalley in 1998. A 
gaseous catalyst precursor is rapidly mixed with carbon monoxide 
(CO) in a chamber at high pressure and temperature. The catalyst 
precursor decomposes, and nanoscale metal particles form the 
decomposition product. CO reacts on the catalyst surface and forms 
solid carbon and gaseous carbon dioxide (CO2). The carbon atoms 
roll up into CNTs. One hundred percent of the product is SWNT, and 
the process is highly selective. Samsung patented a method for verti-
cally aligning CNTs on a substrate. A CNT support layer is stacked on 
the substrate, which is filled with pores. A self-assembled monolayer 
(SAM) is arranged on the surface of the substrate. On one end of each 
of the CNTs are attached portions of the SAM exposed through the 
pores formed between the colloid particles present in the support 
layer. CNTs can be vertically aligned on the substrate with the SAM 
on it through the help of pores formed between the colloid particles.

CNTs possess interesting physical properties. The thermal con-
ductivity of CNTs is in excess of 2000 W/m/K. They have unique 
electronic properties. Applications include electromagnetic shielding, 
electron field emission displays for computers and other high-tech 
devices, photovoltaics, super capacitors, batteries, fuel cells, com-
puter memory, carbon electrodes, carbon foams, actuators, material 
for hydrogen storage, and adsorbents.

CNTs can be produced with different morphologies, such as 
SWNT, DWNT, MWNT, nanoribbon, nanosheet, nanopeapod, linear 
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and branched, conically overlapping bamboolike tubules, branched 
Y-shaped tubules, nanorope, nanowires, and nanofilm. Processes 
have been developed to prepare CNTs with a desired morphology. 
Phase-separated copolymers/stabilized blends of polymers can be 
pyrolyzed along with sacrificial material to form the desired mor-
phology. The sacrificial material is changed to control the morphology 
of the product. A self-assembly of block copolymers can lead to 20 
different complex phase-separated morphologies. Often, as is the 
precursor, so is the product. Therefore, an even wider variety of CNT 
morphologies can be synthesized. 

Strong van der Waals forces allow for spontaneous roping of 
nanostructures, leading to the formation of extended carbon struc-
tures. CNTs with a predetermined morphology can be synthesized. 
For example, this was discussed in a patent by Carnegie Mellon Uni-
versity. Phase-separated copolymers/stabilized blends of polymers 
can be pyrolyzed to form the carbon tubular morphology. These are 
precursor materials. One of the comonomers that form the copolymers 
can be acrylonitrile (AN), for example. Another material is added to 
the precursor material, called the sacrificial material. The sacrificial 
material is used to control the morphology, self-assembly, and distribu-
tion of the precursor phase. The primary source of carbon in the product 
is the precursor. The polymer blocks in the copolymers are immiscible 
at the micro scale. Free energy and entropic considerations can be used 
to derive the conditions for phase separation.

Lower critical solution temperature (LCST) and upper critical 
solution temperature (UCST) are also important considerations in the 
phase separation of polymers. However, they are covalently attached, 
thus preventing separation at the macro scale. Phase separation is 
limited to the nanoscale. The nanoscale dimensions typical of these 
structures range from 5 to 100 nm. The precursor phase pyrolyzes to 
form carbon nanostructures. The sacrificial phase ends with pyroly-
sis. When the phase-separated copolymer undergoes pyrolysis, it 
forms two different carbon-based structures, such as a pure carbon 
phase and a doped carbon phase. 

The topology of the product depends on the morphology of the pre-
cursor. Due to the phase separation of the copolymer on the nanoscale, 
the phase-separated copolymers self-assemble on the molecular level 
into the phase-separated morphologies. The ABC block copolymer 
may self-assemble into more than 20 different complex phase-separated
morphologies (Fig. 7.1 [12]). Typical morphologies are spherical, 
cylindrical, and lamellar. Phase-separated domains may also include 
gyroid morphologies with two interpenetrating continuous phases. 
The morphologies are dependent on many factors, such as volume 
ratio of segments, chemical composition of segments, connectivity, 
Flory-Huggins interaction parameters between segments, and pro-
cessing conditions. 
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Nanoscale morphologies are sensitive to temperature, and they 
are reversibly formed. Spinning or extrusion of the polymer at the 
surface prior to carbonization leads to nanowires after pyrolysis. 
Nanotubes, nanowires, and nanofibers can be formed in this manner. 
Polyacrylonitrile (PAN) has been used in the industry to form carbon 
fibers. Cross-linking of microscale phase-separated domains in the 
polymer blend that forms the precursor can lead to the formation of 
nanoclusters in the product. 
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FIGURE 7.1 
Different 
morphologies of 
precursor material.
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7.3 Biomimetic Materials 

7.3.1 Self-Assembly
Structure-function relations in natural tissues are studied. Then the 
biomimetic materials [13] are engineered. Biomimetic, according to 
the dictionary, means a compound that mimics a biological material in 
its structure or function, or a lab protocol to initiate a natural chemical 
process. 

For example, Discher [14] prepared rod-like aggregates referred 
to as worm micelles. These resemble linear proteins found both inside 
cells, such as cytoskeleton filament, and outside cells, such as colla-
gen fibers. The research in solvent diluted copolymer systems was 
initiated in the early 1990s. Discher discovered the formation of cell-
mimetic sacs, or vesicles in aqueous solution, using amphiphilic block 
copolymers.

Molecular assembly in biology uses water a lot. Water constitutes 
70 percent of body mass in human anatomy. Protein-folding phenom-
ena may be due to a hydrophobic effect. The binding of molecules to 
proteins can also be explained in this manner. Nine out of the twenty 
amino acids that comprise the polypeptide protein molecules are 
hydrophobic. Cell membranes are made up of lipids that are dual 
hydrophobic-polar and arranged in a segmented fashion. This 
sequential arrangement is referred to as amphiphilic. Hydrophobic-
ity can be used to prepare templates for biomimetic nanostructures 
through self-assembly. Synthetic mimics of cell components and their 
functions rely on energetics, stability, and fluidity properties. 

Block copolymers are segmented into two different monomer 
units, with sections of the polymer having one or the other monomer-
repeating unit. Copolymers with block microstructure have been 
found to self-assemble and organize into periodic nanophases, such as 
arrays of rods and stacks of lamellar sheets. Hydrophobic-hydrophilic
interactions form the driving force for the formation of the structure. 
The time-average molecular shape of an amphiphile in an aqueous 
solution in the corresponding forms of cylinder, wedge, cone, etc., 
will determine the morphology of the membrane formed, such as 
spherical, rod-like, etc. The average molecular shape is a function of 
the fraction of the hydrophilic fraction. The solvent effects also have 
a secondary role. 

Copolymers with block microstructure that are amphiphilic 
assemble into worm micelles and polymer membranes. A polyethyl-
ene oxide (PED) and polybutadiene (PBd) copolymer (PEO-PBd) 
with block architecture is an example of an amphiphilic copolymer. 
PEO is hydrophilic, and PBd is hydrophobic. Self-assembly of these 
copolymers in water can lead to the formation of polymersomes or 
vesicles. At certain fractions of hydrophilic component, they form rod-like
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worm micelles. The relatively higher molecular weight results in the 
aggregate formation. 

Lipid vesicles are formed into different morphologies, such as starfish, 
tube, pear, and string of pearls. Membrane thicknesses of 3 to 4 nm were 
confirmed using cryotransmission electron microscopy (cryo-TEM). The 
temperature range of stability of these structures is 273 to 373 K. Flexural 
Brownian motion and thermal bending modes are important consider-
ations during analysis of stability of the morphologies formed. Membrane 
bending resistance has been found to increase as the polymer molecular 
weight increases. The copolymer molecular weight can have a strong effect 
on vesicle stability and in-plane hydrodynamic properties. Worms less 
than 10 nm in diameter have been observed using fluorescent labeling. 

Diblock copolymer vesicles in aqueous solution have been stud-
ied. Protein folding stability is an interesting application of the study. 
Poly(isocyano-L-alanine)-L-alanine amphiphile, on self-assembly, 
becomes immunogenic. These are used in biomedical applications. 
The vesicular shells, upon collapsing are 10 to 100 nm in diameter. 
They coexist with rod-like filaments as well as chiral super helices. 
Polymersomes [14] can be formed instantaneously by adding water 
to lamellar structures of films (Fig. 7.2). Adding chloroform (CHCl3)
solutions of a copolymer into water creates vesicles. The chloroform 
can be removed by dialysis. Cross-linking the PBd can improve the 
stability of the worms. The applications for these systems are several: 
the cosmetics and pharmaceutical industries and as an anti-cancer 
agent, among others. 

FIGURE 7.2 Cryogenic TEM image of 100-nm polymersomes [14].
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Thus, many biological membrane processes can be mimicked by 
synthetic polymer vesicles. Examples of such processes are protein inte-
gration, protein fusion, DNA encapsulation, and DNA compatibility. 

The materials in life sciences can be organized into a hierarchical 
structure. The levels of structural hierarchy can be seen in a tendon as 
follows [15]: (i) 0.5 nm for collagen polypeptide, (ii) 1.5 nm for triple 
helix, (iii) 3.5 nm for microfibril, (iv) 10 to 20 nm for subfibril, (v) 50 to 
500 nm for fibril, (vi) 50 to 300 µm for fascicle, and (vii) 0.1 to 0.5 mm 
for the tendon. Wood and diarthrodial joints are found to have six 
levels of structural hierarchy. Thin films can be developed using bio-
mimetics. The sequential adsorption of materials onto the surface 
observed during biomineralization can be mimicked. In the litera-
ture, such film-forming techniques are referred to under different 
names, such as fuzzy nanoassemblies, polyion multilayers, alternate 
polyelectrolyte thin films, molecular deposition, bolaform amphile 
multilayers, polymer self-assembly adsorption, layered composite 
films, stepwise assembly,  and electrostatic self-assembly. 

Some polymers have the capability to self-assemble and form 
complex structures. Some examples of self assembly during thin film 
formation by the sequential adsorption of materials onto a surface 
include coil-to-helix formation, formation of a biotin-streptavidin 
complex, S-layer protein formation on a two-dimensional array, and 
antigen-antibody interactions. A first-principle-based model of the 
linear assembly process leading to filaments has been discussed in 
the literature.

7.3.2 Equilibrium Kinetics
This dimerization step is a nucleation process: 

2 2A A⇔  (7.3)

The equilibrium constant for the reversible dimerization reaction can 
be written as:

 K2 = σ K (7.4)

A linear polymer is formed by adding a monomer to the filament. The 
recurrent propagation step can be written as:

A A Ai i− + ⇔1
 (7.5)

The equilibrium constant for the propagation step can be written as:

 Ki = K (for i ≥ 3) (7.6)

σ is the cooperativity parameter. For small values of this parameter, 
the subsequent propagation steps are thermodynamically favorable, 
that is, K >> 1. During any self-assembly process, the total monomer 
+ aggregate concentration shall be varied (C0). A certain critical 
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concentration can be derived, Ccrit. The monomer concentration shall 
remain less than the critical concentration at all times. For values less 
than the critical concentration, the monomer concentration increases 
with C0. Above the critical concentration, only the aggregate forma-
tion occurs. The dimer formation step is slow during self-assembly. 
The propagation steps are faster. The kinetics take a sigmoidal growth 
curve.

An example of a self-assembly process can be found in tropomyo-
sin systems that belong to the KMEF family (keratin-myosin-epidermin-
fibrin) category of proteins. The repeat pattern in the amino acids is 
seven-fold: 1234567. The amino acids in positions 2, 3, 5, 6, and 7 are 
hydrophilic, and the amino acids in positions 1 and 4 tend to be 
hydrophobic. This is why the secondary structure of this protein is 
α-helix. After the formation of the helix conformation, a higher order 
structure forms on the surface of the helix. The hydrophobic amino 
acids in positions 1 and 4 form a band on the surface of the helix. The 
rest of the surface is filled by the hydrophilic amino acids. Two tropo-
myosin monomers self-assemble into a coiled-coil dimer. The coiled-
coil dimer can take on different morphologies, such as filaments from 
head to tail interactions, muscle fibers, etc.

Self-assembly found in proteins has been attempted to mimicked 
in synthetic proteins. 

The functions in organisms particularly popular are growth and 
functional adaptation, hierarchical structuring, damage repair and 
self-healing, capture of light by the eyes, photosensitive erection of 
plants, wings that enable flight, etc. 

One unique property of biomaterials is their capability for self-
repair. Investigators have found that sacrificial bonds between 
molecules break and reform dynamically. For example, during the 
deformation of wood, bonds were found to undergo reformation and 
breakage in cycle. This is similar to plastic deformation observed in 
metal and alloys. Osteoclasts, specialized cells in bone, remove mate-
rial irreversibly, and osteoblasts deposit material to form virgin tissue. 
This cycle allows a continuous structural adaptation to external 
conditions and removal of damaged material by new tissue. A sensor/
actuator system is in place that replaces damaged material. The 
growth direction of a tree after a landslide is an example in this regard. 
A fractured or broken tissue is healed naturally. The mechanism 
involves formation of an intermediate tissue based on the response to 
inflammation, followed by a scar tissue. Bone tissue is an exception to 
this empirical observation. It tends to regenerate completely. A great 
deal of research is underway in self-healing materials and it repre-
sents an opportunity for biomimetic materials research.

Biomimetic materials design starts with the observations of 
structure-function relationships in biomaterials. Systemization of this 
approach over serendipity is preferred. For example, the cuticle of 
arthropods was designed to endure infrared (IR) and ultraviolet (UV) 
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irradiation, as well as the demands of sensory movement, transmis-
sion, etc. Biomimetic solutions are stored in large databases. These 
can be retrieved by engineers in search of technical solutions. Biomi-
metic solutions can be classified according to their functions in the 
databases. Validation and verification of biomechanisms is an itera-
tive process between life sciences and engineering. 

Hydroxyapatite [16] and collagen bonelike nanocomposite was pre-
pared by Kikuchi et al. [17]. A self-organization mechanism between 
the hydroxyapetite and collagen surfaces was used in the preparation 
of nanocomposite. The composite prepared was found to possess good 
biocompatibility and biointegrative activities. They are equivalent to 
autogenous bone and perform better compared with other synthetic 
bone materials. These nanocomposites are poised for use in medical and 
dental fields in the future. They can reduce the patients’ loads, including 
pain, at the donor sites of autogenous bone after transplantation. 

Bone in human anatomy is chiefly composed of hydroxyapetite 
and collagen. Collagen is a protein abundantly found during the for-
mation of most life the earth, except for insects. Extracellular matrices 
are constructed, such as tendons, ligaments, skin, and scar tissue,
using collagen. Hydroxyapetite is a stable calcium phosphate with a 
pH of 7.2 to 7.4. It is found in body fluids of vertebrates and has an 
affinity for organic molecules. It can be used to filter and separate DNA 
and proteins. Endoskeletons of vertebrates, by evolution, have selected 
collagen and hydroxyapetite as their constituents. Bone is one of the 
human organs where turnover occurs by metabolism but the mechan-
ical properties of the bone are intact. The turnover process is triggered 
by the attachment of osteoclasts to repaired parts of bone. 

 Hydroxyapetite nanocrystals are dissolved by the release of pro-
tons from osteoclasts that are attached to bone, forming the clear zone 
that distinguishes the resorption from other parts of the bone. Colla-
gen fibrils are decomposed by collagenase and other proteases 
secreted by the osteoclasts. Howship’s lacunae are cavities created by 
osteoclastic bone resorption. Osteoblasts cover the surfaces of the 
lacunae formed. These osteoblasts form the bone via collagen and 
subsequent release of calcium and phosphorous. Hydroxyapetite 
nanocrystals deposit on the c-axis, and a bundle of collagen is formed. 
This nanostructure plays a salient role in bone metabolism and 
mechanical properties. 

There is a lot of interest in the literature in preparing hydroxy-
apetite/collagen nanocomposites. Their biocompatibility is tested 
using implantation techniques. Some of them are self-setting. 
Hydroxyapetite crystals are grown on collagen fibers using CaHPO

4
as precursors of hydroxyapetite. Mimesis of bone nanostructure is 
required to function as bone in recipient sites. Hydroxyapetite nano-
crystals synthesized in the absence and presence of aspartic acid are 
shown in Fig. 7.3.
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 The detailed description of bone nanostructure formation has 
not yet been reported. Under healthy conditions, the supersaturated 
hydroxyapetite and body fluid solution does not deposit on collagen 
and other organic substances. The presence of Ca2+ and PO4

3– ions may 
have contributed to the calcification of collagen fibrils. The stable for-
mation of hydroxyapetite occurs with an alkaline pH of 8 to 9. Collagen 
fibrillogenesis occurs at 40°C body temperature. In vitro fibrillogenesis 
of collagen requires physiological saline conditions at a pH of 8 to 9 
and 40°C body temperature. 

Lengths of hydroxyapetite/collagen fibers grown were 20 µm in 
length, and those of collagen molecules grown were 300 nm. Electron 
diffraction pattern of the fibers indicated crescentlike 002 diffraction 
of hydroxyapetite. The c-axes of hydroxyapetite nanocrystals are 
aligned along the elongation direction of the hydroxyapetite/collagen 

FIGURE 7.3 Hydroxyapetite nanocrystals in the absence of aspartic acid and 
the presence of aspartic acid [17].
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fibers. The orientation is similar to that of the bone of vertebrates. The 
fibril length is based upon the degree of self-organization of hydroxy-
apetite and collagen, as measured by TEM and diffraction patterns. 
The alkaline pH conditions and body temperature promote calcium 
ion accumulation and the first phase of hydroxyapetite nucleation on 
the collagen surface. Collagen fibrillogenesis is promoted by the neutral 
surface charge of collagen achieved by sodium (Na) and chlorine (Cl) 
ions in physiological saline. With self-organization, the bending strength 
of the composite was found to increase. Excess water was removed by 
consolidation. The pH and temperature were sensitive parameters in 
determining the bending strength of the resulting nanocomposite. 

Hydroxyapetite formation on the Langmuir-Blodgett monolayer 
indicates a driving force for the surface interaction between hydroxy-
apetite and collagen, and is an interfacial interaction between these 
molecules. This can be deduced from the formation of hydroxyapetite 
nanocrystals on carboxyl-terminated monolayer, but not on an 
amino-terminated monolayer. The interfacial interaction was studied 
using Fourier transform infrared (FTIR) spectrometer using the 
Kramers-Kronig equation for energy shifts of residues at the interface 
of hydroxyapetite and collagen. Red shifts in the spectra were found, 
meaning a decrease in bonding energies of C-O bonds. The hydroxy-
apetite crystal structure consists of two different Ca sites. 

Biocompatibility of the nanocomposite specimens was studied 
under transmission electron (TM) and scanning electron (SE) micro-
scopes. Tissue granulation and surface erosion were observed after 
two to four weeks. Collagen fibers encapsulated the debris of compos-
ites. Large cells with round nuclei infiltrated into the regions around 
the composites. Infiltrating macrophages phagocytize the resulting 
debris. Composites implanted into the subcutaneous tissue are col-
lapsed from their surfaces. The composites were collapsed continu-
ously and phagocytized for 24 weeks after implantation. Infiltration of 
macrophages into the nanocomposites occurred in a similar manner 
as implanted collagen sponges. Lymphocytes were not observed in 
either the hydroxyapetite/collagen or collagen sponge implantation. 
This is due to differences in the rejection, mobilization, and activation 
of granulocytes. The nanocomposites possess good biocompatibility 
in comparison with collagen sponges. Bone tissue reaction was exam-
ined in SD rats to understand this mechanism. Nanocomposite cylin-
ders were implanted into SD rats. They were observed using optical 
microscopy after 1, 3, 5, 7, 14, and 28 days. The cut sections were 
stained with hematoxylin, eosin, tartrate-resistant acid phosphatase 
(TRAP), and alkaline phosphate (ALP) and were studied under the 
microscope. Progressive resorption of the composites was found. 

Good osteocompatibility was found after direct bonding between 
new bone and composites without fibrous connective tissue in the sur-
roundings. Howship’s-like resorption was found in stained sections after 
14 to 28 days. TRAP activity was raised on day 5 in the surroundings
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and cracks of composites. ALP activity also showed progress in sur-
roundings of new bone. The substitution process of the composites to 
new bone occurs as follows: (a) formation of the composite debris by 
erosion with body fluid, (b) phagocytosis of the debris and composite 
surface by macrophages, (c) induction of osteoclastic cells on the 
composite surface and resorption of the composite by an analogous 
process to that of bone, and (d) induction of osteoblasts to the resorp-
tion lacunae created by osteoclastic cells and formation of new bone 
in the surroundings of the composite.

These steps are similar to the autogenous bone transplantation. 
Reconstruction of a critical bone defect in the tibias of beagles was 
examined for possible clinical use. The tibia defect was 20 mm in length 
and was formed by surgical saw using Ilizarov bone fixator. The nano-
composite resorption and bone growth were observed at each week by 
soft x-ray photography until the sacrifice date. The interface between 
the composite and bone was unclear at 10 to 12 weeks after implanta-
tion. Nanocomposite resorption and new bone formation in a beagle’s 
tibia is analogous to bone remodeling in rats. The nanocomposite was 
studied for presence of human bone morphogenetic protein 2 to exploit 
the large surface area of contained hydroxyapetite nanocrystals with 
high adsorbability to organic substances. The nanocomposite was 
found to be a useful carrier of the protein. 

7.3.3 Thin Films
The iridescence of insects and structural colors of plants are not well 
understood. The structure and composition of the chromophores are, 
however. Structural colors are different from pigmented colors. Investi-
gations on optical thin films in biology have been performed for decades. 
Structural colors can be altered with the application of pressure, swell-
ing or shrinking, or addition of a solvent. Addition of a swelling agent 
can result in a change of color in a reversible manner in iridescent wing 
membranes. Thin film optical interference can explain this observation. 
Light scattering causes the white color seen in insect wings. Structural 
colors can be studied using electron microscopy, as seen in butterfly 
and moth scales. These serve as thin film interference filters. Each scale 
is a flattened stack with two surfaces; the upper lamina contains a grid 
consisting of raised longitudinal ridges regularly joined by cross-ribs. 
The ridges and cross-ribs form a series of windows opening into the 
scale interior. The ridge structure consists of an alternating stack of 
high- and low-refractive index layers. Each ridge acts as a quarter-
wave thin film interference mirror with a phase change upon reflec-
tion. The optical thickness, nt, of a dielectric stack layer composed of 
alternating thicknesses ta and tb is related by:

nata = nbtb (7.7)

nt = nata + nbtb (7.8)



336 C h a p t e r  S e v e n

where nt is the optical thickness of the bilayer composed of a high-
index and low-index component. The wavelength of maximum 
reflection is given by:

λ = 4nata = 4nbtb (7.9)

The wavelength of maximum constructive interference varies from 
320 to 348 nm over a wing tilt from 0 to 50°C. Two Lycaenid butterflies 
were studied for the development of iridescence. Two types of inter-
nal reflective structures are closely related by development. The dif-
fraction lattice appears to form within the scale cell boundaries through 
the assistance of a convoluted series of membranes. Membrane cuticle 
units are produced that are continuous with invaginations of the 
plasma membrane. Crystallites are formed that grow toward each 
other by accretion until the adult morphology arises. Thin film inter-
ference laminae are formed from the condensation of the network 
of filaments and tubes secreted outside the boundaries of the cell. 
Lattice formation occurs through the self-assembly of material into 
an face-centered cubic (FCC) Bravais lattice structure. The thin film 
laminae are formed by stretching the lattice. The lead reflectance spec-
trum from Lindsea lucida has a blue-green reflection band at 538 nm. 
Blue fruits of Elaeocarpus angustifolius exhibit a reflection band at 
439 nm. A multilayer structure within the epidermis consisting of a 
parallel network of strands 78 nm thick was detected by electron 
microscopy. The optical thickness was 109 nm, and the reflectance 
maximum was 436 nm.

The mechanism of biomineralization in mollusks has been stud-
ied by investigating ”flat pearls.” In vivo monitoring is accomplished 
by placing a glass substrate between the mantle and the inner surface 
of the mollusk shell. The shell structure contains multiple organic, 
calcite, and aragonite layers, and the process is sensitive to substrate. 
The crystal phase during nacre formation is controlled by soluble 
mollusk proteins. The amino acids contained in the proteins were 
aspirate, glycine, glutamate, and serine residues. The red abalone 
shell formed the source of the proteins. The composition of the arago-
nitic composite was studied using gel electrophoresis denaturisation. 
These proteins promote the growth of CaCO3 crystals. Rhombohedral
calcite morphology was found to form in crystals grown in the 
absence of soluble protein. Spherulitic calcite morphology was found 
to form in crystals grown in the presence of calcitic protein fraction. 
Aragonite needles are formed in the presence of aragonitic fraction. 
The calcite-to-aragonite transition is caused by the addition of arago-
nitic polyanionic proteins. When soluble aragonite proteins are 
depleted, the sequential transition of calcite to aragonite and back to 
calcite is the result. Atomic force microscopy (AFM) was used to study 
the mechanism of aragonite tablet growth. Iridescent patches of 
organic material are formed when organic pearls are demineralized. 
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Organic sheets with a pore diameter of 5 to 50 nm was found using 
AFM and scanning ion conductance microscopy.

Crystal CdS synthesis was demonstrated in films made up of 
polyethylene oxide (PEO). The factors governing the synthesis are 
strong binding; solubility of the reagents; and an ordered, regular 
environment to induce nucleation. The crystals formed were found to 
be uniform in size, phase, and crystallographic orientation. The mor-
phology type of the crystals formed was rock salt in nature. 

The sequential laying down of inorganic layers forms a critical 
step in biomineralization in a mollusk shell. A positively charged 
substrate is dipped into an aqueous solution containing polyelectro-
lytes of the negative charge. The negatively charged polyelectrolyte 
adsorbs to the surface. Upon rinsing and drying, the film is dipped 
into a solution containing a positively charged polyelectrolyte. This 
process is repeated indefinitely with multiple electrolyte solutions. 
Multilayer thin film formation is an important aspect to this process. 
Examples of layer formation in albumin/silica, silica/alumina, treat-
ment of fabrics, and multilayers on metals and mica were shown in 
the literature. 

Clean substrates are needed for an efficient film formation. The 
glass substrates are acid cleaned using concentrated sulfuric acid 
(H2SO4) and hydrogen peroxide (H2O2). The substrate surface needs 
to be modified with charged groups some of the time. Silanol groups 
are sometimes added. Negative charges are imparted to quartz sur-
faces. Carboxyl groups are added to gold substrates. The substrate 
used in polymethylformamide (PMF) film is polyethylene terepthal-
ate (PET). Amide linkages are formed between carboxylate groups 
and some PAH amino groups. A net positive charge is affected to 
silanized slides by dipping into hydrocholoric acid (1 N HCl). 

Polyion multilayer films are characterized by small-angle x-ray 
reflectance spectroscopy (SAXR). Ultraviolet-visible (UV/Vis) spec-
troscopy taps into the chromophore present in PMF. Film thicknesses 
are measured using ellipsometry. The deposition kinetics, as well as 
film thickness, can be measured using surface plasmon resonance 
spectroscopy. Material deposition can be studied using IR spectros-
copy. Real-time monitoring of rate and amount of monolayer deposi-
tion during PMF monolayer formation is allowed for by the use of 
quartz crystal microbalance (QCM). QCM is a piezoelectric device. 
Mass charges on the order of nanograms are quantitatively measured. 
The changes in resonant frequency f of a quartz crystal with the 
change of mass of material loaded into the crystal is given by the 
Sauerbrey equation. The mechanism of PMF film formation can be 
studied by atomic force microscopy (AFM). Hectorite sheets of 25 to 
30 nm were imaged using AFM. The charged macromolecules adsorb 
onto surface defects at short deposition times. These form islands and 
retain their coil conformation. Homogeneous monolayers composed 
of flattened polymer chains are found at longer deposition times. 
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Monolayer formation in PMF can be studied using AFM. Surface cov-
erage is measured as a function of adsorption time and ionic strength. 
Initial kinetics are diffusion-limited, and at long times, it becomes 
random sequential adsorption. Surface coverage is sensitive to the 
ionic strength. 

Biopolymers have been prepared, such as polysaccharide-
containing PMFs. In chitosan/PSS, film thickness was increased by 
dipping in a solution with ionic strength ranging from 15 A/bilayer 
in the absence of salt to 69 A in a molar sodium chloride. Ionic strength 
was found to be an important parameter in the determination of 
adsorption kinetics. Saturation condition was achieved at lower molar-
ity. Shielding the chitosan charge by adding salt provided for more con-
formational flexibility and enabled adsorption at the surface. A film 
containing alternating layers of DNA and PAH, a polymer/biopolymer 
hybrid, was prepared. Coil conformation of polypeptides can be 
detected using circular dichroism. β-sheet conformation formed from 
self-assembly between two polypeptides can be seen using IR analysis 
of the film. 

Streptavidin-containing films were described in the literature. A 
precursor was used. The film was irradiated with UV light through a 
copper mask. The film was then immersed in a solution containing 
fluorescein isothiocyanate (FITC)–labeled streptavidin. Fluorescence 
spectroscopy was used to study the protein arrays. Protein-containing 
PMFs were studied. The molecular weight range of proteins studied 
was 12,400 to 240,000. A multilayer was prepared consisting of glucose
isomerase and the bolaamphiphile in porous trimethylamine poly-
styrene beads. The carrier pore diameter was 46 nm, and only two 
layers of enzyme could deposit on the pores. Enzyme activity was 
comparable to that of soluble and monolayer enzyme preparations. It 
was studied in films containing up to 40 enzyme layers. In the 40 bilayer
film, the average activity per layer decreased by 50 percent of that 
measured for a 10-layer film. This is apparently because of the inability 
of the substrate to diffuse deeply into the film.

Sequential adsorption is a low-cost approach to the assembly of 
thin films. Most polions can be incorporated into a film, including dyes, 
polymers, proteins, viruses, inorganic nanoparticles, and ceramic plates. 
Automation of the technique is possible, with a minimal investment in 
equipment. Films with interesting features can be synthesized using 
beakers, stopwatch, water, and electrolytes by hand. Complex multi-
layers are formed using an automated slide stainer. Scale-up of sequen-
tial adsorption technique is less expensive compared with the Langmuir-
Blodgett technique. Some examples of PMFs were discussed. The 
properties can be tuned by varying the number of layers or the spacing 
between the layers. Any substrate where a charge can be placed can be 
used in the synthesis of these films. Self-healing characteristics are 
exhibited by the sequential adsorption process. Point defects and dust 
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inclusions have less penetration distance. The ionic strength is a sensi-
tive parameter in varying the bilayer thickness. The sequential adsorp-
tion process can be combined with other techniques.

Three-dimensional control of film composition and properties are 
provided. Spin coating consists of an application of a solution of film 
material into a rapidly spinning disk. A uniform fluid film forms and 
solidifies upon evaporation of the solvent. Solvent casting involves dry-
ing a polymer solution placed in a well. Oriented thin films are formed 
when cast in magnetic or electric fields. Films have been formed by 
direct polymerization into an initiator covalently attached to the sub-
strate. In the Langmuir-Blodgett technique, an amphiphile monolayer 
is placed on an air-water interface. The temperature in the water bath is 
controlled. The surface pressure is measured and controlled by a Teflon 
arm touching the interface containing the monolayer. The monolayer is 
transferred to the glass slide using a mechanical dipping apparatus. 
Complex optical films can be prepared this way. Practical application of 
this technique, however, is precluded by high cost and poor efficiency. 
The control of molecular structure is made possible using photolithog-
raphy. This is effected by a combined method of solid-phase peptide 
synthesis and semiconductor-based photolithography.

The sequential adsorption technique for film formation can be 
applied in the following ways: 

• Light emitting diode (LED) 

• Conducting polymer 

• Second-order nonlinear optics (NLO)

• Dye-containing optical film 

• Polydiacetylene

• Bioreactors 

• Molecular recognition by antibody-antigen interaction 

• Nonthrombogenic surfaces 

• Nanoscale thin film pH electrodes 

Starch can be converted to gluconic acid using a sequential 
adsorption film formation process. The reaction rate achieved is 
0.0045 mol/m2/h, compared with 0.017 mol/L/h. A 1 m2 membrane 
would have about one-third the efficiency of a commercial microbial 
fermenter. A two-component film has four levels in its structure hier-
archy: monolayer, bilayer, and multilayer. A three-component film 
has a five-level hierarchy. 

7.3.4 Membranes
A protein scaffold/biomimetic membrane material was developed at 
Argonne National Laboratory. It is a tool for encapsulating and studying 
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the native behavior and structure of membrane and soluble proteins. 
The membrane material is a complex fluid made up of a mixture of a 
lipid, polymer amphiphile, a cosurfactant, and water. It undergoes 
thermoreversible phase changes and exists as liquid below a certain 
threshold temperature and as a liquid crystalline gel above that tem-
perature. Dedicated proteins, enzymes, and other biomolecules are 
mixed and ordered in the liquid state and ordered again by increas-
ing the temperature above room temperature. The orientation of the 
materials is further increased by the use of magnetic fields. When 
applied to selected substrate materials, domains can be oriented pref-
erentially. Certain nonionic, amphiphilic triblock copolymers of PEO-
PPO-PEO can be employed as an alternative to a more expensive PED 
that is also architecturally limited. They can be used as lipid conju-
gates for producing biomimetic nanostructures. The PPO chain 
length, when approximately similar to the dimensions of the acyl 
chain region of the lipid bilayer, results in a strongly anchored tri-
block copolymer. 

Medical researchers used biomimetic nanostructures to examine 
soft tissue cellular wounds such as burns, frostbite, radiation expo-
sure, pressure trauma, electric shock, scrapes and abrasions, heart 
attack, and stroke. It can be used as a drug screening and develop-
ment tool in the following applications: nano Band-Aids to augment 
the healing of cellular wounds, nanocapsules for site-directed deliv-
ery of healing agents, ideal polymers for healing soft tissue damage, 
and nerve regeneration in spinal cord injuries.

Synthetic biological membranes with self-organizing characteris-
tics, such as liquid crystalline gels that change shape and function in 
response to environmental changes, were developed at the Univer-
sity of Chicago [18]. There is increased interest in the development of 
“smart materials.” The properties of these materials change in 
response to environmental stimuli such as ionic strength, tempera-
ture, and magnetic or electric fields. The basis of molecular machines, 
chemical valves and switches, sensors, and a wide range of optoelec-
tronic materials is the response of bio-organisms to external stimuli. 

A mixture of lipids, a low-molecular-weight polyethylene glycol-
derived polymer lipid, and a pentanol surfactant is one such example of 
a smart material. These gels transform to liquid by heating to an ele-
vated temperature. At higher temperatures, the incorporated proteins 
and pentanol surfactant rapidly degenerate. The material undergoes 
phase separation at lower temperatures. It responds to an external stim-
ulus of temperature alone. The material developed at the University of 
Chicago was in response to a need for materials that are responsive to a 
variety of external stimuli. The material must also be biocompatible.

The developed material exists as a gel at elevated temperatures and 
as a liquid at lower temperatures. It is used in drug delivery systems 
where the body temperature is the high temperature. The developed 
material is a biocompatible, membrane-mimetic liquid crystalline material. 
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The biologically active membrane proteins can be encapsulated using the 
developed material within an organized lipid matrix. 

Macroscopic ordering of molecules occurs when a magnetic field, an 
electric field, or shear is applied to the mixture. The mixture is multiposi-
tional, and the material reacts to external stimuli to provide both struc-
tural and functional characteristics. It manifests a birefringent phase 
when subjected to a certain environment, an optically isotropic or trans-
parent phase. An optical cue is given when an intact membrane has 
formed in response to the application of certain stimuli. The material 
undergoes a thermoreversible phase change. It is comprised of a lipid poly-
mer amphiphile (such as a polymer grafted phospholipid), cosurfactant, 
and water. When the temperature is increased, the material solidifies. 

The material is comprised of 65 to 90 percent water, 3 to 5 percent 
surfactant, 7 to 27 percent lipid and amphiphilic polymer, and the 
ratio of polymer to lipid is approximately 4 to 10 mole percent. The 
mixture undergoing phase change is depicted in Fig. 7.4. The stimu-
lus responsive fluid developed with self-assembling properties 
switches between two distinct structural states and two distinct func-
tional states in response to several external stimuli. 

The material is prepared by a noncovalent self-assembly of a qua-
ternary mixture of a phospholipid; a lipopolymer, a diblock or triblock 
copolymer or polymer-grafted amphiphile, and a surfactant dispersed 
in water. The supramolecular, nondenaturing material undergoes a 
reversible transformation from a liquid crystalline gel to a nonbirefrin-
gent fluid upon reduction in temperature. The liquid phase is found to 
instantaneously organize into a liquid crystalline gel with an increase 
in temperature. These changes are at the molecular level, but manifest 
at the macromolecular level. The phase change occurs at a tempera-
ture range of 15 to 20°C. 

∆∆

∆∆

FIGURE 7.4 Gel undergoing phase change.
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The gel composition shown in Fig. 7.4 is a mixture of a phospho-
lipid, a polymer amphiphile such as an end-grafted phospholipid or a 
diblock or a triblock copolymer, and a zwitterionic or cationic cosurfac-
tant dispersed in water. These gels form bilayer membranes, with the 
hydrophobic ends of the lipid and cosurfactant of each layer oriented 
inwards. Cavities/spaces in these membranes can accommodate the fluid 
in which the membranes are immersed. When juxtaposed, the cavities/
spaces are differentially organized into planar sheets and channels sepa-
rated by water-impermeable lipid micelle and membranes. Proteins and 
other substances generally of a size between 1 and 50 nm may be incor-
porated in the bilayer membranes or in the aqueous channels. This 
allows the membranes to be used in packaging or encapsulation for 
drug delivery applications. Depending on their characteristics, gels can 
be used as sensors and opto- and microelectronic products. 

Mesoscopic self-assemblage of the developed fluid is further enhanced 
when the fluid contacts an appropriate surface. When the gel phase of 
the mixture interacts with certain surfaces containing OH group, the 
orientation of lamellar domains of the gel are directed into macro-
scopic dimensions. This ordering enhancement is because of polar 
phospholipid head groups contained in the mixture and a similar 
hydrophilic group on the support substrate. This mechanism enables 
the mixture to hold target functional groups that are encapsulated by 
the mixture in a certain orientation.

7.4 Design of Bioartificial Organs
The design of bioartificial organs needs a lot of information about the 
permeability of the capillary wall, tissue space in specific organs, and 
other transport parameters. Single- and multiple-compartment phar-
macokinetic models can be developed. Tracer compounds can be 
injected, and transient concentration data can be measured in the tissue 
space and blood vessels in the human anatomy either in vivo or in vitro.
The pharmacokinetic model can be correlated to the concentration of 
the tracer and a variety of transport information, such as the matrix 
blood flow rate and the capillary wall and immunoisolation membrane 
permeability to insulin. With the information available from one tracer, 
permeabilities of other substances of interest can be predicted using the 
theory discussed in Chap. 3. This information can be used to scale up
into bioartificial organs, which will be discussed in Chap. 8.

For example, insulin is injected as a tracer to study the ramifica-
tions of an implant device. The initial response to an implant is infil-
tration of the support of a variety of cell types. The process is similar 
to that of wound healing and involves overlapping phases [19]: 

 1. Inflammation
 2. Proliferation
 3. Maturation
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Platelets and neutrophils arrive during the inflammation period, 
which can take several days. The scaffold for the inflammatory cells is 
provided by a fibrin network triggered by the activation of the clotting 
process and release of growth factors such as platelet-derived growth 
factor (PDGF), epidermal growth factor (EGF), and transforming 
growth factor (TGF). Foreign material is ingested by phagocytosis, 
controlled by factors released by neutrophils. Monocytes are attracted 
and fused into macrophages and transformed into foreign-body giant 
cells. The site is cleansed, and dead tissue, bacteria, and debris are 
taken out by the giant cells. Fibroblasts and endothelial cells prolifer-
ate, triggered by a variety of growth factors such as PDGF, TGF, EGF, 
and fibroblast growth factor (FGF) released from the macrophages. A 
collagen network is formed by extracellular matrix materials released 
from fibroblasts. Capillary sprouts form due to low oxygen levels and 
become a vascular bed. Low oxygen levels can regress the vascular 
supply. The site is remodeled during the maturation phase. The wound 
is contracted and the collagen matrix is organized. The rate of tissue 
growth is a salient consideration in tissue design. 

Radioactive insulin was injected as a tracer to evaluate a vascular-
ized implant device. The tracer’s uptake and elimination data can be 
evaluated using a multiple-compartment pharmacokinetic model 
[20]. A schematic of this multiple-compartment pharmacokinetic 
model is shown in Fig. 7.5. The distribution of insulin within the 
human anatomy is distributed into four compartments that are 
assumed to be well mixed. These include: implantation chamber, 

Dose,
t = 0

T

Interstitial tissue compartment

I

Implant compartment

a

Human anatomy distribution
volume

Urine liquid GFR Cdrug

C

Capillary compartment

FIGURE 7.5 Multiple-compartment models for analysis of radioactive insulin 
injection.
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interstitial tissue chamber, blood capillary chamber, and human anat-
omy distribution volume. The insulin is injected into the implanta-
tion chamber at time t = 0. Insulin then diffuses across a semiperme-
able membrane and enters the tissue chamber. Then the insulin goes 
into the capillary bed, where the blood is flowing at a rate Q. Then the 
insulin is carried to the human anatomy distribution, which is shown 
as another compartment in Fig. 7.5. The elimination step of insulation 
through the kidneys is also included in the model.

The transient concentration of the insulin drug can be obtained 
by solving the model developed from mass balances across each com-
partment. Let the renal clearance or first-order rate constant from 
each compartment be given by k in general, and the subscripts denote 
the compartment from which the drug originates to the compartment 
to which it must reach. The mass balance equations for each compart-
ment can be written as discussed in Chap. 6.
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Equations (7.10) to (7.13) are a set of ordinary differential equations 
(ODEs) with constant coefficients that are simple and linear. These 
can be written in the state form as follows [21]:
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The initial conditions for the system is given by:
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The solution to Eq. (7.14) can be obtained by expanding an arbitrary 
vector in terms of eigenvectors. Equation (7.14) is in the form of:

dc
dt

K C= ∗  (7.15)

The solution can be written as:

C Ze t= λ  (7.16)

where Z is the unknown matrix of constants and λ is the unknown 
constant(s). Substituting Eq. (7.16) in Eq. (7.15) and realizing that eλt ≠
0, it can be seen that:

K Z Z∗ = λ  (7.17)

Equation (7.16) requires that Z t ≠ 0; thus, in Eq. (7.17), λ is an eigen-
value of K and Z is an eigenvector that belongs to λ. Because K is a 
square matrix (4 × 4 rows and columns) of the order 4, there are four 
values of λ that satisfy the characteristic equation:

| , , , ,K Ij− = =λ | and 40 1 2 3j  (7.18)

Corresponding to each eigenvalue is an eigenvector, Zj. There are 
four solutions of the form presented in Eq. (7.16). Equation (7.15) is 
homogenous, so there is no need for a particular solution for this sys-
tem. Each of the solutions correspond to the concentration of insulin 
in the implant compartment, interstitial tissue compartment, blood 
capillary compartment, and the human anatomy distribution com-
partment. The glomerular filtration rate (GFR) was also included in 
the governing equation of the concentration of insulin in the human 
anatomy distribution compartment. The initial conditions given 
below Eq. (7.14) can be invoked to obtain the integration constants. 

Equation (7.18) can be expanded to a polynomial equation of the 
fourth degree in λ. Laplace’s development of the determinant to write 
the polynomial as:

P s s sn( ) |λ λ λ λ λ= + + + + =4
1

3
2

2
1 0K|  (7.19)

where

     s principal ors of order j of Kj
j= − −( ) ( )1 4 Σ min j = 1, 2, 3, and 4. 

  (7.20)

If all the eigenvalues of C, that is, λj, have negative real parts, then 
C would tend to zero at infinite times. If any eigenvalue has a positive 
real part, then one or more of the insulin compartment concentra-
tions can become arbitrarily large. If the eigenvalues are imaginary, 
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the concentration would undergo oscillations. The oscillations would 
be subcritical damped or growing supercritical, depending on whether 
the real part of the eigenvalues is negative or positive, respectively. 

Summary
Tissue design evolved as a separate discipline from the field of bio-
materials during a scientific conclave in 1988. Langer and Vacanti 
defined tissue engineering as “an interdisciplinary field that applies 
the principles of engineering and life sciences toward the develop-
ment of biological substitutes that restore, maintain, or improve tis-
sue function.” The natural healing potential of patients is also tapped 
into. The three strategies in tissue design are providing substitutes, 
introducing tissue-inducing substances, and placing cells within 
matrices. Vascular grafts were introduced for the anastomosis of 
blood vessels. Resorbable grafts were developed in the 1960s. Skin 
grafts are used to cover severe wounds. Fibroblasts were used to con-
dense a hydrated collagen lattice to a tissue-like structure suitable for 
wound healing. The first dialysis machine was introduced during 
Word War II. The concept of a bioartificial kidney was formulated. 
The first pancreas transplant was performed in 1966, and the first 
liver transplant was performed in 1967. Different ways of packing 
islet cells to provide effective and durable glycemic control were 
started in the 1980s. Metals and alloys have been used to replace 
damaged bone to provide support for healing bones. Hydroxyapetite 
ceramics were found to be bioactive and solicit the formation of nor-
mal tissue on their surfaces. Bone induction has been studied, and 
bone morphogenic proteins (BMPs) were discovered in 1970s and 
1980s.

Three-dimensional tissue formation is supported by a structure 
called a scaffold. Scaffolds need to be biodegradable. The rate of tissue 
formation should be equal to the rate at which degradation occurs. 
Biodegradable polymers make attractive candidates for scaffold 
materials. Examples of biodegradable polymers are collagen, glycos-
aminoglycans, chitosan, polylactic acid (PLA), polycaprolactone, and 
polyhydroxyalkanoates. It can take three to five years for PLA to be 
fully resorbed. Degradation of PLA is via an autocatalyzed hydrolytic 
scission of the ester groups in the polymer chain. Polymer blends can 
be used to form implantable devices. When a critical molecular weight 
is reached, the implant will cease to posses any mechanical strength. 
The relationship between percent additive and the degradation rate 
constants and molecular weights are given in Eq. (7.2). Collagen has a 
triple-helical structure. The extracellular matrix (ECM) is made up of 
collagen. The molecular structure of collagen consists of fibrils that are 
300 nm in length and 1.5 nm in diameter. Ramachandran studied the 
collagen fiber in kangaroo tail tendon. Electrospinning operation can 
be used to fabricate organic polymer fibers with micron-to-nanoscale 
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diameters in linear, 2-D, and 3-D architecture. Polyglaxanaone and 
polyphosphazenes can be spun into fibers. Techniques such as salt-
leaching, fibrous fabric processing, 3-D printing, foaming, nanofiber 
self-assembly, textile technologies, solvent casting, gas foaming, emul-
sification, freeze-drying, thermally induced phase separation, CAD/
CAM technologies, fiber bonding, membrane lamination, melt mold-
ing, and in situ polymerization can be used to prepare scaffolds. 
Carbon nanotubes (CNTs) are also potential candidates for scaffolds in 
tissue design. They are biocompatible, resistant to biodegradation, and 
can be functionalized by biomolecules. However, some toxicological 
issues regarding the use of CNTs still need to be resolved.

Lower critical solution temperature (LCST) and upper critical 
solution temperature (UCST) are also important considerations in the 
phase separation of polymers. However, they are covalently attached, 
thus preventing separation at the macroscale. Phase separation is lim-
ited to the nanoscale. The ABC block copolymer may self-assemble 
into more than 20 different complex phase-separated morphologies 
(Fig. 7.1 [12]). Typical morphologies are spherical, cylindrical, and 
lamellar. Nanoscale morphologies are sensitive to temperature. They 
are reversibly formed.

Biomimetic materials are designed to mimic a natural biological 
material. Copolymers with block microstructure have been found to 
self-assemble and organize into periodic nanophases. Molecular 
shape is found to be a function of a fraction of hydrophilic fraction. 
Polymersomes, or vesicles, can be formed by the self-assembly of 
PEO-PBd in water. Lipid vesicles are formed into different morpholo-
gies such as starfish, tube, pear, and string-of-pearl shapes. Worms 
that are less than 10 nm in diameter and with a membrane 3 nm thick 
have been observed. The stability of protein folding can be studied 
using self-assembly. Many biological membrane processes can be 
mimicked by synthetic polymer vesicles.

The equilibrium kinetics of self-assembly reactions was discussed. 
A cooperativity parameter is defined along with the equilibrium rate 
constant. The example system used to illustrate the mathematical 
treatment is tropomyosin. Amino acids in position 1 and 4 are hydro-
phobic and are hydrophilic in positions 2, 3, 5, 6, and 7. Banding on 
helix structures comes about.

One property of biomaterials worthy of mimicking is capable of 
self-repair. Biomimetic mechanisms are stored in databases. Hydroxy-
apetite and collagen were used to prepare bone-like nanocomposite.
Howship’s lacunae are cavities created by osteoclastic bone resorption. 
Hydroxyapetite form on Langmuir-Blodgett monolayers. There is 
interfacial interaction between hydroxyapetite and collagen. The sub-
stitution process of composites to new bone occurs in stages similar to 
autogenous bone transplantation: erosion of body fluid and formation 
of composite debris, phagocytosis of debris, resorption of composite,
and induction of osteoblast to the resorption lacunae. Reconstruction 
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of a critical bone defect in beagles’ tibias was examined for possible 
clinical use. 

The iridescence of insects and structural colors of plants are not 
well understood. Optical thickness of a dielectric stack layer of alter-
nating thickness and a wavelength of maximum constructive inter-
ference were quantitated. Two Lycaenid butterflies were studied for 
the development of iridescence. The mechanism of biomineralization 
in mollusks has been studied by investigating “flat pearls.” Rhombo-
hedral calcite morphology, spherulite calcite morphology, and arago-
nite needles are formed under different conditions. Aragonite tablet 
growth was studied using AFM. Crystal CdS with rock salt morphol-
ogy was synthesized in films made up of PEO. 

Efficient film formation needs a clean substrate. Polyion multi-
layer films are characterized by small-angle x-ray spectroscopy 
(SAXR). Quartz crystal microbalance is used to measure mass charges 
in nanogram-quantity materials. The mechanism of PMF film forma-
tion was studied by using AFM. Polysaccharide-containing PMF bio-
polymers have been prepared. Adsorption kinetics depends on ionic 
strength. A polymer/biopolymer hybrid such as DNA and PAH was 
formed into a film containing alternating layers. Films containing 
streptavidin, glucose isomerase, etc., were discussed. Assembly of 
thin films is by sequential adsorption. Three-dimensional control of 
film composition and properties were discussed. 

Protein scaffold/biomimetic membrane material was discussed. 
Membrane material is a complex fluid made up of a mixture of a lipid, 
polymer amphiphile, and a cosurfactant. It undergoes thermoreversible 
phase changes and exists as liquid below a certain threshold tempera-
ture and as a liquid crystalline gel above that temperature. Biomimetic 
nanostructures are used to examine soft tissue cellular wounds and dry 
sensing and development and nerve regeneration. Smart materials have 
been developed that undergo a property change in response to environ-
mental stimuli. These materials are used in drug delivery systems. A gel 
undergoing phase change was shown in Fig. 7.4.

The design of bioartificial organs needs a lot of information about 
the permeability of the capillary wall, tissue space in specific organs, and
other transport parameters. Tracer compounds can be injected, 
and transient concentration data can be measured in the tissue space 
and blood vessels in the human anatomy, either in vivo or in vitro.
This information can be used to scale up into bioartificial organs (dis-
cussed in the next chapter). Finally, a multicompartment model for 
the analysis of radioactive insulin injection was discussed.
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Exercises

Review Questions

1.0 Where was tissue engineering born?

2.0 What is the difference between natural healing and tissue repair?

3.0 What is meant by reparative medicine?

4.0 What are the three different strategies employed in tissue design?
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5.0 What happened when rigid glass and metal tubes were attempted to be 
used as vascular grafts?

6.0 What is a resorbable graft?

7.0 What are the differences between vascular grafts and skin grafts?

8.0 What is the immunological basis for skin grafts?

9.0 Can collagen be used to prepare biologic vascular structures?

10.0 How did allografts form the impetus for the development of skin grafts 
during World War II?

11.0 How did growth factors help?

12.0 How was wound healing affected using fibroblasts?

13.0 How is pancreas transplant superior to insulin therapy?

14.0 Describe the hybrid artificial pancreas made of beta cell cultures on 
synthetic semipermeable hollow fibers.

15.0 Was the first liver transplant extracorporeal or in vivo?

16.0 How is a bioreactor helpful in cell-based therapy?

17.0 Why is hydroxyapetite preferred to replace bone?

18.0 Why are growth and regenerative capabilities important in tissue 
design?

19.0 What are the advantages of scaffolds?

20.0 Give two examples of biodegradable polymers.

21.0 How does the mechanical strength of the implant change with molecu-
lar weight and other parameters of the blend?

22.0 How is the collagen triple-helix structure different from protein α-helix
and DNA double-helix structures?

23.0 What was the issue in Crick’s structure of collagen and Ramachandran’s 
structure of collagen?

24.0 Describe the electrospinning process to fabricate organic polymer fibers 
in nanoscale dimensions.

25.0 How can the salt-leaching technique be used to prepare a scaffold?

26.0 What does “soot harvesting” mean?

27.0 What is the degree of control available in the electric arc process to 
control the diameter of CNTs?

28.0 What is the degree of control available in the laser ablation process to 
control the diameter of CNTs?
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29.0 What is the degree of control available in the CVD process to control 
the diameter of CNTs?

30.0 What is the degree of control available in the HIPCO process for to 
control the diameter of CNTs?

31.0  What is the degree of control available in the surface-mediated process 
for the vertical alignment of CNTs?

32.0 What is the typical length of CNT formed during the electric arc process 
for the synthesis of CNTs?

33.0  What is the typical length of CNT formed during the laser ablation 
process for the synthesis of CNTs?

34.0  What is the typical length of CNT formed during the CVD process for 
the synthesis of CNTs?

35.0  What is the typical length of CNT formed during the HIPCO process 
for the synthesis of CNTs?

36.0  What is the typical length of CNT formed during the surface mediated 
vertically aligned nanotube process for the synthesis of CNTs?

37.0 What are the typical temperature and pressure used during the synthe-
sis of CNTs using the electric arc process?

38.0 What are the typical temperature and pressure used during the synthesis 
of CNTs using the laser ablation process?

39.0 What are the typical temperature and pressure used during the synthesis 
of CNTs using the CVD process?

40.0 What are the typical temperature and pressure used during the synthesis 
of CNTs using the HIPCO process?

41.0 What are the typical temperature and pressure used during the synthesis 
of CNTs using the surface mediated vertically aligned nanotubes?

42.0 What is the difference between SWNT, DWNT, and MWNT?

43.0 What is the role of the catalyst in the laser ablation process?

44.0 What is the time duration of the laser pulse during laser ablation process 
to prepare CNTs?

45.0 What does the pelletization do in the laser ablation process?

46.0 Rank the CVD, laser ablation, and electric arc processes to form CNTs.

47.0 What does the quartz tube do in the CVD process to form CNTs?

48.0 Mention the typical growth rates of CNTs in the CVD process.

49.0 Discuss the sequence of steps in the CVD process to prepare CNTs.
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50.0 Sketch the CVD method, showing clearly the mask, substrate, deposi-
tion of solvent-based catalyst, removal of mask region, etc.

51.0 What is unique about the “lift-off” process?

52.0 What is the role of trench formed and etching in the CVD process?

53.0 What is the role of diffusion in the growth mechanism of CNT by 
CVD?

54.0 What is the energy needed for surface reactions and desorption for 
CNT synthesis?

55.0 Comment on the rate-determining step among diffusion, adsorption of 
species on the surface, surface reactions, desorption, and diffusion of species 
during the CNT synthesis by CVD.

56.0 What are the typical operating conditions during the high pressure 
carbon monoxide (HIPCO) process developed by Smalley in 1998?

57.0 What is the purpose of the annealing zone in the HIPCO process?

58.0 Discuss gas-phase nucleation and growth during the HIPCO process.

59.0 Discuss the formation of SWNTs by Boudouard reaction.

60.0 Distinguish the substrate layer from the material layer during the 
surface-mediated vertical alignment of CNTs.

61.0 Compare CNT’s thermal conductivity with that of steel.

62.0 Compare CNT’s Young’s modulus of elasticity with that of steel.

63.0 Compare CNT’s yield strength with that of steel.

64.0 What are the 12 different CNT morphologies?

65.0 How many different morphologies does a “phase-separated copolymer 
blend” exhibit?

66.0 Rod-like aggregates referred to as worm micelles were prepared from 
resemblance with __________.

67.0 What is the role of hydrophobic and hydrophilic properties of protein 
molecules in protein folding?

68.0 How are nanophases in copolymers with block microstructures 
formed?

69.0 What is the mechanism of formation of polymersomes from PEO-Pbd 
system?

70.0 What are the four different morphologies that the lipid vesicles can 
exhibit?

71.0 What are some of the important considerations during analysis of stabil-
ity of the morphologies formed?
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72.0 Name some applications of vesicles formed from lamellar structures 
of films.

73.0 Discuss the levels of structural hierarchy that can be seen in tendons.

74.0 What is the equilibrium reaction that can be used to describe the linear 
assembly process leading to filaments?

75.0 Under what values of the cooperativity parameter is the polymerization 
propagation step thermodynamically favorable?

76.0 What is the connection between aggregate formation and critical mono-
mer concentration?

77.0 Explain the helix structure formation in keratin-myosin-epideremis-
fibrin category of proteins using the repeat pattern in the amino acids and the 
hydrophobic and hydrophilic properties?

78.0 Who is considered the father of biomechanics? According to him, what 
is the relation between the shape of an animal’s bone and its weight?

79.0 Describe the self-repair property of biomaterials.

80.0 Discuss the osteoclasts and osteoblasts cycle.

81.0 What is the role of self-organization in the preparation of hydroxyapetite-
bone nanocomposites?

82.0 Explain the properties of biocompatibility and biointegration of 
synthetic materials.

83.0 How are hydroxyapetite nanocrystals dissolved?

84.0 What are Howship’s lacunae?

85.0 Why is dicalcium phosphate used as a precursor to prepare 
hydroxyapetite?

86.0 Explain the formation of bone nanostructure in human anatomy.

87.0 Explain in vitro fibrillogenesis and the conditions preferred.

88.0 What are Langmuir-Blodgett monolayers, and what is their role in 
hydroxyapetite formation?

89.0 Where is the Kramers-Kronig equation used?

90.0 Why were Wistar rats and beagle dogs chosen for biocompatibility 
studies?

91.0 What is osteocompatibility?

92.0 Discuss the stages involved in the substitution process of composites 
to new bone structures.

93.0 Compare the resorption of synthetic nanocomposite with autogenous 
bone transplantation.
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94.0 Elaborate on the tibia defect.

95.0 What is the difference between structural colors and pigmented 
colors?

96.0 Discuss the mechanism of iridescence in Lycaenid butterflies.

97.0 How is the mechanism of biomineralization studied using “flat 
pearls?”

98.0 What are the three morphologies exhibited by aragonite composite?

99.0 How is crystal CdS synthesis demonstrated in films made up of PEO?

100.0 Why is SAXR needed to characterize polyion multilayer films?

101.0 Where is quartz crystal microbalance used?

102.0 How is AFM used to study the mechanism of PMF film formation?

103.0 What happens to chitosan/polysaccharide film thickness when the 
solution ionic strength is increased?

104.0 Discuss the pore formation in glucose isomerase and bolaamphiphile 
multilayers.

105.0 How is sequential adsorption a low-cost approach to the assembly of 
thin films?

106.0 Explain the Langmuir-Blodgett technique for film formation.

107.0 Name two applications of biomimetic membranes.

108.0 Explain the niche property of “smart materials.”

109.0 Under what temperatures are the smart materials in gel form and 
under what temperatures are they in liquid form?

110.0 What is meant by a thermoreversible phase change?

111.0 Discuss the gel phase changes shown in Fig. 7.1.

112.0 What is the size range of proteins that may be incorporated in the 
bilayer membranes in the aqueous channels?

113.0 Explain the phenomena of mesoscopic self assemblage.
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• Bioartificial liver

• Bioartificial kidney

• Extracorporeal artificial lung

8.1 Immunoisolation
Over time, the need to completely replace some vital organs in the 
human anatomy has become evident. One of the key technical hur-
dles in the successful transplantation of a bioartificial organ(s) is 
immunoisolation. The host’s immune system may reject the replace-
ment introduced, which is counterproductive. Immunological simi-
larity between cells in ex vitro assembly of substitute organs and host 
cells may be one way of overcoming this. 

Immunosuppressive drugs have been developed, but they have 
to be used with caution for obvious reasons, lest the immune response 
that was needed be suppressed! In some cases, on account of side 
effects from such drugs, the cure is worse than the disease. This is not 
a desirable state.

Cell implantation and proliferation in vitro may be an alternate 
consideration. The immune action consists of two parts: the cell medi-
atory processes and the humarol processes. B-cells, or B-lymphocytes, 
and T-lymphocytes form in the bone marrow. B-cells are activated by 
antigen or foreign materials of which transplanted cells are a subset. Upon 
activation, they transform into antibodies, which are proteinaceous. 

355
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The T-lymphocytes, or T-cells, in a similar fashion stem from the thy-
mus and are present as helper T-cells and killer T-cells. Each B-cell 
recognizes a specific antigen by using a surface antibody receptor. 
Antibodies are proteins. These immunoglobins make up 20 percent of 
all protein present in plasma. Five different classes of antibodies exist: 
IgM, IgG, IgE, IgD, and IgA. An antibody molecule consists of two 
light and two heavy polypeptide chains held together by disulfide 
bridges similar to insulin microstructure. The antibody is Y-shaped. 
The heavy chain is at the stem and the lighter chains are at the 
branches of the Y. 

T-cells are another category of cells that participate in the cell-
mediated immune response. They are characterized by an antigen-
specific T-cell receptor. Free antigens activate the T-cells. Activation 
requires that the antigen be presented by other cells. A foreign mate-
rial is devoured by an antigen-presenting cell and then broken down. 
The antigen, along with an MHC class II molecule, is then transported 
to the cell surface, where the antigen is presented. T-cells that are 
comprised of CD4 molecules are referred to as helper T-cells.

The immune action is a complex process based on interactions 
among the T-cells, B-cells, etc. The host’s immune response is 
restricted by immunoisolation. Polymeric membranes can be used to 
affect immunoisolation. The membrane will prevent the passage of 
major components of the immune system, such as immune cells, anti-
bodies, and complement. The immune response occurs as a result of 
antigens emanating from cells that were transplanted. The pore size 
of the membrane is tailored accordingly. Openings that restrict entry 
of immune cells will still allow the passage of antibodies and comple-
ment. The solute permeability characteristics of the immunoisolation 
membrane are a salient issue to consider. Several issues need to be 
considered during the development of an immunoisolation mem-
brane. Toxicity of by-products is a critical issue. Retention of low 
molecular weight by the membrane is another issue. 

The bioartificial organs are made up of live cells and tissue that 
are immunoisolated by the use of polymeric membranes. These 
organs are made of a hybrid of synthetic nonliving materials and liv-
ing cells. A host of diseases, such as diabetes, liver malfunction, and 
kidney catastrophe; neurological dysfunction such as Parkinson’s 
disease or Alzheimer’s disease; control of pain; and delivery of drugs 
generated by genetically engineered cell lines can be treated using 
bioartificial organs. The treatment of diabetes involves the secretion 
of insulin that varies with time to maintain glucose at appropriate 
allowed levels. Most of the functions of the kidneys and liver are per-
formed by their bioartificial counterparts. Genetic engineered cells 
have been used to secrete products such as dopamine that tends to be 
neuroprotective, β-endorphin that can reduce pain resulting from 
cancer, and hormones that combat severe combined immunodefi-
ciency disease (SCID). 
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8.2 Bioartificial Pancreas
The bioartificial pancreas can be used to treat insulin-dependent dia-
betes mellitus (IDDM). IDDM has complications such as blindness, 
gangrene, heart and kidney dysfunction, stroke, and nonaccidental 
amputation of limbs, and can lead to a reduction in the quality of life. 
Over a million people in the United States suffer from IDDM. This is 
one of the most prevalent causes of death by disease in the United 
States next to cardiovascular and neoplastic diseases.

Diabetic treatment has been focused largely on achieving meta-
bolic control of blood glucose. Insulin was discovered in 1921 by 
Banting and Best. Since then, treatment for diabetes has been largely 
via daily insulin injections. An alternative approach to achieve 
homeostatic blood glucose levels has been developed that is built on 
the design of a biofeedback system. With the biofeedback system, 
insulin is released in response to the rise and fall of glucose concen-
trations. Three approaches to achieving control of glucose level by 
the use of insulin are as follows:

 1. Computer-aided insulin pump with an implanted glucose 
sensor

 2. Glycosylated-insulin-bound Concanavalin A system in which 
glycosylated insulin is released in response to blood glucose 
levels

 3. Immunoprotected islets by artificial membrane and develop-
ment of a hybrid artificial pancreas

Bioartificial pancreases developed on the principle of microencap-
sulation and/or semipermeable membranes have been patented. 
Microencapsulation of tissue cells such as the islets of Langerhans, 
which are injected into the human anatomy, has led to interesting 
results. Microencapsulation provided penetration distances of diffu-
sion of 100 to 200 µm and large surface areas per volume of islet tissue. 
The small size provided excellent diffusion characteristics for nutri-
ents and oxygen, which improves islet viability. 

The microencapsules consists of the islet immersed in a hydrogel 
material, with another eggshell layer that provides the immunoisola-
tion characteristics and mechanical strength. Different polymer chem-
istries have been described in the literature to prepare the hydrogel 
and the immunoprotective layer. One important issue is that the 
fibrotic capsule formation can limit the diffusion of nutrients and 
oxygen, resulting in the loss of islet function. Membrane materials 
have to be carefully selected to minimize the fibrotic reaction.

Soon-Shiong et al. [1], has proposed a microencapsulation 
approach using poly-L-lysine. They demonstrated their results in 
large mammals and human patients. Alginates are natural polymers 
made up of the polysaccharide, mannuronic acid and guluronic acid. 
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They found that the large mannuronic acid residues in the alginate 
are the culprit for the fibrotic response. Lymphokines IL-1 and tumor 
necrosis factor (TNF) are induced and end up promoting and prolif-
erating fibroblasts, which leads to the formation of fibrotic capsules. 
The fibrotic response was minimized by reducing the alginate’s man-
nuronic acid content and increasing the guluronic acid content. Algi-
nates with higher guluronic contents were found to possess higher 
mechanical strength. The modified alginate microcapsules were 
tested in dogs with diabetes. Three dogs received free unencapsu-
lated islets, and the other six dogs received encapsulated islets. The 
islets were dosed at 20,000 EIN/kg of body mass. Exogenous insulin 
was stopped four days prior to islet injection, and the plasma glucose 
levels were reduced to an average of 116 mg/dL in those animals that 
received encapsulated islets. The rejection of unprotected free islets 
was found to occur, with hyperglycemia returning in about six days. 
The animals receiving encapsulated islets exhibited normoglycemia 
for periods ranging from 63 to 172 days, with a median period of 105 
days. Failure of the encapsulated islets was attributed to membrane 
dysfunction as a result of hydrophilicity of the alginate system.

The treatment of diabetes with peritoneal implants of encapsu-
lated islets has been discussed in the literature. Diabetic models have 
been developed by Colton et al. [2]. According to Colton et al. [3], the 
number of islets required to reverse diabetes is up to 5,000 islets/kg. 
A 70-kg human will require 350,000 islets to maintain glucose levels. 
The volume of encapsulated islets with a mean diameter of 500 µm 
would be roughly 18 mL and the surface area would be 2,750 cm2. 

One of the salient considerations in the design of a bioartificial 
pancreas using hybrid materials is to prolong the cell life within the 
system. Peritoneally implanted membrane encapsulated cells usually 
have a limited lifespan. This may be due to oxygen deficiency and the 
inactivation of cells by low-molecular-weight humoral components 
of the immune system, such as interleukin-1. The membrane, how-
ever, will isolate the entrapped islets from the cellular immune sys-
tem or high-molecular-weight cytokines. Foreign proteins released 
from cells will accelerate the attack of the cellular immune system 
upon cell death. Implanted islets should be replaced with fresh islets 
after certain period. A self-contained miniaturized implant from 
which the islets are replenished after a certain period was patented 
by the University of Utah [3]. This device is extravascularly implant-
able and rechargeable. It consists of a refillable immunoprotective 
membrane pouch containing an islet-polymer matrix. The polymer is 
soluble below human anatomy temperatures and insoluble above 
human anatomy temperatures. They exhibit lower critical solution 
temperature (LCST) behavior. The LCST exists for some systems. This 
demarcates the temperature above which the solute is insoluble in 
the solvent and below which the solute is soluble in the solvent. The 
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pouch also contains means for stimulating the insulin secretion func-
tion of β-cells of the islets. Bioactive agents are released that are meant 
to regulate interactions between the bioartificial pancreas membrane 
and cellular components in the human anatomy. The membrane iso-
lates the islets from cellular and humoral components in the human 
immune system. 

The volume of the artificial pancreas is minimized by not encapsu-
lating each islet. The islet cells are separated and held within a poly-
mer matrix that is soluble in an aqueous solution below the human 
anatomical temperature and insoluble in an aqueous solution above 
the human anatomical temperature: 37°C (LCST behavior). The polymer-
islet mixture is contained in a pouch with entry/exit ports. By chang-
ing the temperature, the contents of the pouch are replaced. This is 
affected by the injection of cold saline into the pouch to simulate local-
ized hypothermia. The pouch is made of biocompatible material per-
meable to insulin and other substances of similar or less molecular 
weight, such as oxygen, nutrients, and hormones that may pass in and 
out of the pouch. The pouch also is impermeable to cellular and 
humoral components of the human anatomical immune system. 

The artificial pancreas is comprised of a pouch membrane that 
requires minimal space while affording optimal implant volume. The 
implant consists of islets suspended in polymers that exhibit LCST 
behavior. These polymers exist as a liquid at low temperatures, form 
into a solid microsphere at human anatomical temperature, and can 
be sampled or replaced as desired. The suspension may also contain 
islet-stimulating agents.

Methods have been developed to isolate large quantities of cells 
from the pancreas of mammals such as pigs. A supply of donor islet 
tissue is provided in the bioreactor. Immunoisolation is needed for 
the bioartificial pancreas to operate successfully, as was discussed in 
the previous sections. IDDM is believed to be caused by an autoim-
mune process that results in the destruction of insulin-secreting 
cells found in the islets of Langerhans. Islets of Langerhans form 1 to 
2 percent of the mass of the pancreas. 

An improved solid support was patented by Seed Capital Invest-
ments, Amsterdam, Netherlands [4] for the cultivation of cells. Hol-
low fibers are provided for the supply and removal of gases such as 
oxygen and carbon dioxide. Support is provided for improved adhe-
sion between the tissue cells and the support. A bioartificial pancreas 
can be developed using this support system. The support can be 
made of gelfoam, polyvinyl fluoride (PVF), polyglycolic acid (PGA), 
polyvinyl alcohol (PVA), polyglycolic acid/polylactic acid (PGA/
PLA), 3-D polyurethane foam, porous silicon rubber foam, etc. The 
support provided a large surface area, and acceptable porosity formed 
from a network of fibers. The pore diameter ranges from 10 to 100 µm. 
The porosity is in the range of 0.6 to 0.95. The fibers are made up of 
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hydrophobic material, such as silicone, polyethylene, polypropylene, 
etc. The fibers are evenly distributed throughout the matrix material. 
The sandwich configuration of the support material is shown in Fig. 8.1. 
With the sandwich configuration, an improved supply and removal 
of gases is possible. The fibers also act as baffles and channels for 
uniform flow and distribution of the liquid medium through the 
extraluminal space to all parts of the solid support. The fibers provide 
physical support to the matrix sheets. This becomes more important as 
the solid support is subjected to high shear, such as during liquid flow. 
The fibers are at an angle to each other in the sandwich configuration. 

8.3 Glycolytic Oscillations
Some of the salient considerations in the design of a bioartificial pan-
creas include the better understanding of the insulin release rate from 
an islet and its dependence on plasma glucose levels. A step-change 
in glucose concentration is given to islets that have been isolated from 
the pancreas of mammals. The islet viability and glucose responsive-
ness are studied from the F curve. Insulin release has been found to 
be biphasic. 

Nomura [5] used control theory to describe mathematically the 
insulin release rate during a step-change in glucose concentration. 
The dynamics of glucose-induced secretion of insulin can be expressed 
as the sum of the proportional response to the step change and a 
derivative response to the rate of change in the glucose concentration. 
Each of them has a first-order lag time. The Laplace transform of the 
islet insulin release rate can be expressed as follows:
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The lag times are τ1 and τ2, respectively. The Laplace domain expres-
sion in Eq. (8.1) can be inverted to give:
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The lag times can be obtained by using nonlinear regression of islet 
release-rate experimental data. The ramp function of glucose concen-
tration is written as follows:

  C Cglucose glucose= 0     for t < 0 (8.3)
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Equations (8.3) to (8.5) can be substituted into Eq. (8.2) and integrated 
to yield:
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Pharmacokinetic models have been developed to describe glucose 
and insulin metabolism. A model was proposed by Sturis et al. [6] to 
predict the oscillations of insulin and glucose concentrations with 
time observed experimentally. Insulin formed in human anatomy has 
been found to exhibit two kinds of oscillations: a rapid oscillation 
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with a period of 10 to 15 minutes and small amplitude, and longer or 
ultradian damped oscillations with a period of 100 to 150 min and 
larger amplitude. The compartment model proposed by Sturis et al. 
to describe glucose and insulin interactions is shown in Fig. 8.2.

Four negative feedback loops form their model involving glucose 
and insulin interactions: insulin formation is triggered when glucose 
levels reach the more than tolerable limit; an increase in insulin level 
increases the utilization of glucose and hence, reduces the glucose lev-
els; a rise in glucose level inhibits production of glucose; and increase 
in glucose levels stimulates its utilization. The glucose and insulin 
never reach a stable equilibrium. The model includes two time delays 
that are critical in describing the observed oscillatory dynamics. The 
suppression of glucose levels by insulin production is captured by one 
time delay, and the correlation of the biological action of insulin with 
insulin concentration is captured by another time delay in an intersti-
tial compartment. Six differential equations describe the system. The 
variables are Cglucose

plasma, concentration of glucose in plasma; Cinsulin
plasma, con-

centration of insulin in the plasma; and Cinsulin
interstitial, concentration of insu-

lin in the interstitial fluid. Three additional variables used to describe 
the insulin and glucose system are the delay between the plasma insu-
lin level and its effect on glucose production x1, x2, x3, and time lag, τdelay. 
The six differential equations can be written as follows:
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FIGURE 8.2 Compartment model for glucose and insulin interaction.
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The volumes of the insulin plasma compartment, insulin interstitial 
fluid compartment, and glucose plasma compartments are denoted 
by Vplasma, Vinterstitial, and VplasmaG, respectively. The kE is the rate constant 
that is used to describe the insulin transport rate into the interstitial 
fluid compartment. The first-order degradation time constants for 
insulin in a plasma compartment and insulin in interstitial fluid com-
partments are given by τplasma and τinterstitial, respectively. Utilization 
functions are given by f. The subscripts 2 and 3 are used to denote the 
glucose utilization function throughout the glucose plasma compart-
ment. The 4 subscript is used for dependence on interstitial insulin 
concentration. The glucose inhibition on account of insulin formation 
is given by subscript 5. 

The pharmacokinetic model developed by Sturis et. al. [6] can be 
combined with an insulin-release model to monitor the glucose con-
trol that is achievable using a bioartificial pancreas. Two types of tests 
are used: intravenous glucose tolerance test (IVGTT) and oral admin-
istration of glucose tolerance test (OGTT). The initial conditions for 
IVGTT or OGTT can be selected based on the fasting levels of the 
patient. 

8.4 Bioartificial Kidney
As was discussed in previous sections, several patients with end-
stage renal disease can use an artificial kidney. Approximately 800,000 
patients worldwide use hemodialysis, at a cost of US $15 billion every 
year. Current methods of hemodialysis and continuous ambulatory 
peritoneal dialysis (CAPD) are by no means permanent solutions. 
Some of the other deficiencies of the use of dialysis machine are that they 
are expensive, they are large and heavy, and they require detoxification 
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several times a week—200 to 300 liters of dialyzing fluid are needed 
for each dialysis treatment. The quality of life of users of such devices 
is poor. The morbidity and mortality associated with the hemodialy-
sis therapy is high. 

Inventors of artificial kidneys admit two problems, that is, blood 
clotting and water removal. Much of the research and development 
in the field of the artificial kidney have been in the development of 
novel dialyzing membranes, autosterilizable membranes, reduction 
in the 200 to 300 liters of dialyzing fluid required, development of 
blood-compatible polymers for the membranes, etc. The goals in 
detoxification of impure blood are: removal of urea and uric acid, 
removal of creatinine and substances with molecular weights between 
1,400 and 1,550, and removal of water and phosphate from the blood. 
Urea is the final product of the decomposition and utilization of pro-
teins in the body. It is eliminated through urine. Uric acid is a product 
of metabolism found usually in the urine. Creatinine is a waste prod-
uct found in muscles and animal tissues. Phosphate is a salt of phos-
phoric acid with an atom or atoms of a metal.

Blood clotting can become an issue during the detoxification 
process. Blood platelet damage is caused by the requirements for 
higher hydrostatic pressure for water compared to that of blood for 
ultrafiltration. The platelet damage causes blood clotting. Calcium 
adheres to dialyzing membranes so it has to be added to prevent 
heart damage. Protein tends to adsorb to some polymer walls, as well 
as dialyzing membranes, causing a reduction in membrane efficiency 
and an increase in clotting. Other ions also adsorb on the membranes. 
The smallest known artificial kidney weighs about 70 lb. The pumps, 
plumbing, and dialysate increase the weight of the entire apparatus. 

An artificial kidney that was portable and wearable was patented 
by Beltz [7]. The basic components of the novel artificial kidney are a 
blood separator unit, a chemical treatment unit, and a water removal 
unit. Blood access is provided from the patient via an arteriovenous 
shunt that is implantable in the patient’s arteries and corresponding 
veins for a period, after which it is removed. The flow of blood is 
affected by either the hydrostatic pressure difference or a pump with 
battery and vacuum pressure on the plasma side of the apparatus. 
The blood plasma separator, which comes in the form of a packet, is 
replaced every day. It is an elongated outer tube through which 
passes an inner tube. Whole blood enters one end of the blood plasma 
separator and is directed into the interior of the inner tube, which is 
made of a polycarbonate perforated membrane. The hole sizes in the 
membrane were of the order of 450 nm to 3 microns. The holes are 
small enough to prevent extrusion of blood elements such as platelets 
and red and white corpuscles while allowing the passage of plasma. 
The urease-coated tube coming out of the blood plasma separator 
and going to the chemical treatment packet is used to break down 
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urea. The breakdown results in ammonia ions and carbon dioxide, 
with the ammonium ions being picked up by zirconium phosphate. 
The concentric tubes have a convoluted shape as they pass through 
the blood plasma separator. The polycythemic blood that exits the 
inner tube is transmitted back to the patient’s body. The plasma that 
exits the end of the outer tube is next transmitted to the chemical 
treatment unit. The chemical treatment unit is a removable packet. It 
is used to relieve the contaminated plasma of uric acid and creatinine 
by means of activated charcoal. The phosphate ions are removed by 
zirconium oxide, and the ammonium ions are removed by zirconium 
phosphate. After being processed through the chemical treatment 
unit packet, the detoxified plasma passes into the water removal unit 
packet. The packet has a perforated tube through which passes the 
detoxified plasma. This tube is a polycarbonate perforated membrane 
material with holes that have a diameter between 450 nm to 3 µm and is 
formed of cellophane. Sephadex desiccant is used. The tube in the water 
removal packet is convoluted. The water removal packet has a color-
coded indicator to show when it is loaded and needs to be replaced. The 
detoxification period and packet replacement will vary from patient to 
patient. The advantages of the artificial kidney are as follows:

 1. The unit is maintained by the patient, who would change the 
batteries.

 2. The patient may have small amounts of heparin.

 3. Blood cell damage will be greatly reduced over that with dialysis.

 4. Shock to the body from quick removal of heightened levels of 
urea, creatinine, uric acid, and the middle molecular substances.

The bioartificial glomerulus and the artificial tubule can be 
arranged in two different configurations. In the first arrangement, 
blood flows through the luminal spaces of the hollow fibers that com-
prise the hemofilter and two tubule sections. A flow control valve placed 
after the hemofilter regulates the filtration rate of the hemofilter. The 
hyperosmotic blood then leaves the hemofilter and continues through 
the proximal and distal tubule modules. The ultrafiltrate generated in 
the hemofilter flows through the shell side of the tubules. Cells are 
immunoprotected by the hollow-fiber membrane. Solutes are selec-
tively transported from the shell side to the blood side. Reabsorption of 
water from the ultrafiltrate is facilitated by the hemofilter.

 In the second arrangement, contact of blood is with the artificial 
membrane in the hemofiltration unit. Blood flows within the hollow 
fibers. Ultrafiltrate is collected within the hemofilter shell space. 
Ultrafiltrate enters the shell side. Selective solute transport is affected 
between the shell side and hollow-fiber luminal space. Shell-side 
ultrafiltrate exits with the blood from the hemofilter. 
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8.5 Extracorporeal Artificial Lung
Extracorporeal devices are made to work outside the human anatomy 
and are connected to the patient by an arteriovenous shunt. They 
may be viewed as artificial organs. They can be used to remove unde-
sired chemicals from the human anatomy or substitute for a damaged 
or failed organ. Before being allowed to enter these devices, blood is 
prevented from clotting by the use of heparin. Auxiliary equipment, 
such as pumps, probes, sensors, and control systems for pressure, 
temperature, and concentration, can be used to augment the device. 
These devices do not contain living cells. The ones that contained living 
cells were discussed in the earlier part of the chapter under different 
bioartificial organ design. 

A hollow-fiber artificial lung used in extracorporeal circulation to 
remove carbon dioxide from blood and add oxygen to the blood is 
shown in Fig. 8.3. This was patented by Terumo Corp., Tokyo, Japan [8]. 
This device uses less blood and has greater mass transfer efficiency of 
gas transport across the hollow-fiber surface. 

Artificial lungs can be classified into two categories: porous variety 
and membrane variety. The membrane artificial lung, such as stacked 
membrane type, coil type, or hollow-fiber type, has been found to be 
superior to the porous-type artificial lung. This is because the blood 

Outlet
port

Wall

Communication
passage

Slender
tubes Port of

entry exit

Wall

Wall
Header

Outlet
chamber

Bundle
of fibers

Gas
outlet
port

Blood
inlet port

Hollow
fiber

Blood
chamber

Outer
cylinder

Artificial
lung

Fiber

Walls

Header

Gas
inlet
port
Gas inlet
chamber

Blood reservoir

HousingVent

Blood
outlet port

Heat
exchanger

FIGURE 8.3 Hollow-fi ber extracorporeal artifi cial lung.



B i o a r t i f i c i a l  O r g a n  D e s i g n  367

flowing through the lungs undergoes hemolysis, albumin degenera-
tion, clotting, and affixation with the porous variety. The operating 
mechanism of the membrane variety is close to that of the human 
lung. The porous artificial lung is used during open heart surgery. In 
order to obtain sufficient oxygenation with the membrane-type artifi-
cial lung, the blood flow layer must be reduced in thickness, that is, a 
narrow blood flow conduit area and large flow resistance. It is not 
possible to achieve perfusion of the blood within the artificial lung by 
using the head developed between the patient and the lung. Different 
blood circuits using a pump, blood reservoir, and heat exchanger 
have been attempted to overcome this difficulty. The problem that 
arose in such designs was the increase in the internal pressure of the 
circuit on the blood feeding side. A proposed solution to this problem 
is to the let the blood flow on the outer side of the hollow fibers. This 
could not be reduced to practice, however, because of the presence of 
air bubbles in the blood in the extracorporeal circuit. 

As shown in Fig. 8.3, the mass exchanger consists of a hollow-
fiber bundle accommodated along the axial direction of the housing, 
axially extended housing, blood inlet port, blood outlet port, gas 
venting port, etc. The hollow fibers are made of a microporous mem-
brane. The fibers are allowed to touch each other. The flow circuit 
consists of a blood reservoir, a pump, and a heat exchanger through 
which blood is allowed to flow. The ends of the hollow fibers are 
retained tightly within the housing via walls. A header is attached to 
each end of the housing. All the hollow fibers exit to a gas outlet 
chamber. The outer walls of adjacent hollow fibers define channels 
through which the blood is allowed to flow. Turbulence can be 
expected due to the interconnections of the channels. The area across 
which blood flows decreases with an increase in distance from the 
blood inlet port. This makes it possible for the flow rate of the blood 
flowing axially of the housing within the blood chamber to be made 
uniform in relation to the circumferential direction of the hollow-fiber 
bundle.

The housing consists of an inner and outer cylinder. The outer 
cylinder consists of a rigid material made up of acrylstyrene copoly-
mer, polycarbonate, or polystyrene. The bundle of fibers is housed 
within the inner cylinder. Oxygen and other gases supplied from the 
gas inlet port pass through the interior of the hollow fibers, while 
blood flows under turbulence on the periphery of the hollow fibers. 
This allows for gas transport between the blood and the gas stream 
within the hollow fibers. In between the inner cylinder and outer cyl-
inder is located a blood reservoir. A blood outlet port and heat 
exchanger are provided. The heat exchanger is comprised of a bundle 
of slender tubes supported at both ends by respective walls located 
within the heat exchanger tank. The ends of the slender tubes open 
externally of the blood reservoir on the outer sides of the walls. The 
heat transfer medium flows inside the tubes. Cooling and heating 
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water is allowed to enter via inlet and outlet ports. The heat exchanger 
tank serves to heat, cool, or maintain the temperature of blood fol-
lowing the gas exchange. The artificial lung is designed to improve 
the gas exchange performance per unit membrane of the hollow 
fibers. Perfusion of the blood is allowed due to the pressure head 
developed between the human anatomy and the artificial lung. The 
quantity of blood needed to fill the blood circuit in which the artificial 
lung is used can be estimated. 

The contact between the gas stream and blood stream can be in 
counter-current, co-current, and cross-current modes of contact. The gas 
flows through the fibers and blood flows at right angles across the 
outer surface of the fibers during cross-current contact. For the counter-
current mode of contact, the following mathematical model would be 
applicable. Let the concentration of solute on the blood side and gas 
side be given by Cblood and Cgas, respectively. The amount of oxygen in 
blood that is bound to hemoglobin is given by C’blood. The interface con-
centrations of gas for the blood and gas sides of the membrane are 
given by Cbm and Cgm, respectively. The blood and gas side mass trans-
fer coefficients are given by kblood and kgas, respectively. A shell balance 
on a slice of thickness ∆x in Fig. 8.3 across the hollow fiber axially 
located for oxygen solute can be written as:

 Q
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blood blood
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where Ablood and Agas are the membrane area per unit length of mem-
brane. Further simplications of these two equations can be made 
using m dC dC= ′blood blood/ . Furthermore, the concentration of oxygen 
in the blood and gas can be expressed as partial pressures, as shown 
in Chap. 5. An overall mass transfer coefficient, Ko, can be defined and 
shown to be:
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where Amean is the log mean area of the membrane per unit length, 
A A A k Amean gas blood gas gas= −( )/ ; Pm is the permeability of the mem-
brane, and H is the Henry’s constant, p HCO2

= blood , relating the partial 
pressure of oxygen to the concentration of oxygen in the blood stream. 
The density of gas in standard temperature and pressure (STP) condi-
tions is given by ρSTP . The overall mass transfer coefficient can be 
used in the mass balance equations of oxygen in blood and gas 
streams and the model equations solved for to obtain:
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A similar set of equations can be developed for carbon dioxide (CO2) 
in the mass exchanger. 

Summary
One of the key technical hurdles in the successful transplantation of 
bioartificial organ(s) is immunoisolation. The host’s immune system 
may reject the replacement introduced. Immunosuppressive drugs 
have been developed. The immune action consists of two parts: cell 
mediatory processes and humarol processes. The role of B-cells and 
T-cells in the immune process was outlined. The bioartificial organs 
are made up of live cells and tissue that are immunoisolated by the 
use of polymeric membranes. These organs are made of a hybrid of 
synthetic nonliving materials and living cells.

A bioartificial pancreas can be used to treat diabetes mellitus, and 
is an improved therapy compared with insulin therapy. The pancreas 
is developed on the principle of microencapsulation. Microencapsu-
lation provided penetration distances of diffusion of 100 to 200 µm 
and large surface areas per volume of islet tissue. The small size pro-
vided excellent diffusion characteristics for nutrients and oxygen, 
which improves islet viability. A self-contained miniaturized implant
from which the islets are replenished after a certain period was pat-
ented by the University of Utah [3]. This device is extravascularly 
implantable and rechargeable. It is comprised of a refillable immuno-
protective membrane pouch containing an islet-polymer matrix. The 
polymer is soluble below human anatomy temperatures and insoluble 
above human anatomy temperatures. They exhibit LCST behavior. An 
improved solid support was patented by Seed Capital Investments, 
Amsterdam, Netherlands [4] for the cultivation of cells. Hollow fibers 
are provided for the supply and removal of gases such as oxygen and 
carbon dioxide. The support provides improved adhesion between 
the tissue cells and the support. A bioartificial pancreas can be developed 
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using this support system. The support can be made of gelfoam, PVF, 
PGA, PVA, PGA/PLA, 3-D polyurethane foam, porous silicon rubber 
foam, etc.

Nomura [5] used control theory to describe mathematically the 
insulin release rate during a step-change in glucose concentration. 
Pharmacokinetic models have been developed to describe glucose 
and insulin metabolism. A model was proposed by Sturis et al. [6] 
to predict the oscillations of insulin and glucose concentrations 
with time observed experimentally. Insulin formed in the human 
anatomy has been found to exhibit two kinds of oscillations: a rapid 
oscillation with a period of 10 to 15 minutes and small amplitude 
and  longer or ultradian damped oscillations with a period of 100 to 
150 min and larger amplitude. The compartment model proposed 
by Sturis et al. to describe glucose and insulin interactions is shown 
in Fig. 8.2.

Much of the research and development in the field of artificial 
kidneys have been in the development of novel dialyzing membranes, 
autosterilizable membranes, reduction in the 200 to 300 liters of dialyz-
ing fluid required, development of blood-compatible polymers for the 
membranes, etc. An artificial kidney that was portable and wearable 
was patented by Beltz [7]. The basic components of the novel artificial 
kidney rare a blood separator unit, a chemical treatment unit, and a 
water removal unit. Blood access is provided from the patient via an 
arteriovenous shunt that is implanted in the patient’s arteries and cor-
responding veins for a period, after which it is removed. The flow of 
blood is affected by either the hydrostatic pressure difference or a 
pump with battery and vacuum pressure on the plasma side of the 
apparatus.

Extracorporeal devices are made to work outside the human 
anatomy and are connected to the patient by an arteriovenous shunt. 
A hollow-fiber artificial lung used in extracorporeal circulation to 
remove carbon dioxide from blood and add oxygen to the blood is 
shown in Fig. 8.3. This was patented by Terumo Corp., Tokyo, Japan 
[8]. This device uses less blood and has greater mass transfer efficiency 
of gas transport across the hollow-fiber surface. As shown in Fig. 8.3, 
the mass exchanger consists of a hollow-fiber bundle accommodated 
along the axial direction of the housing, axially extended housing, 
blood inlet port, blood outlet port, gas venting port, etc. The hollow 
fibers are made of a microporous membrane. The fibers are allowed to 
touch each other. The flow circuit consists of blood reservoir, a pump, 
and a heat exchanger through which blood is allowed to flow. The 
ends of the hollow fibers are retained tightly within the housing via 
walls. The contact between the gas stream and blood stream can be in 
counter-current, co-current, and cross-current modes of contact. The gas 
flows through the fibers and blood flows at right angles across the 
outer surface of the fibers during cross-current contact. 
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Exercises

Problems

 1.0 Mass exchanger for extracorporeal artificial lung. Consider a mass exchanger 
similar to the one shown in Fig. 8.3. Calculate the membrane surface area needed 
to remove carbon dioxide from the blood and supply oxygen to the bloodstream. 
The membranes are made up of polycarbonate. The length of each fiber is 40 cm, 
with a wall thickness of 40 microns. The inside diameter of a fiber is 350 microns. 
The blood flow rate between the fibers is 5,500 mL/min, and the gas flow rate is 
5,500 mL/min. The temperature and pressure of operation are 98.6°F and 1 atm, 
respectively. The partial pressure of oxygen entering the blood is 45 mmHg and 
the partial pressure of oxygen exiting the blood is 100 mmHg. The partial pres-
sure of entering gas is 700 mmHg. The Henry’s law constant of oxygen in blood 
is 0.74 Hg/µm. Ideal gas can be assumed for the gas side. The diffusion coefficient 
of oxygen in blood may be taken as 1.7 E-9 m2/sec. The m dC dC= ′( / )blood blood  can 
be taken to be 26. Is the information given sufficient? 

2.0 Oscillations in concentrations of glucose and insulin. Estimate glucose con-
centrations during OGTT, oral glucose tolerance test. Fifty grams of glucose 
are consumed orally. The glucose absorption and elimination rate constants 
are 0.042 L/min and 0.0083 L/min, respectively. Assume that the body mass 
is 75 kg. The patient receives a total of 1 million EIN. Assume that the islet 
insulin secretion rate is given by:

 r
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3.0 The half-thickness of the islet chamber is 50 microns. The void volume 
within the islet chamber must be at least 50 percent for sufficient oxygen trans-
port. The immunoisolation membrane permeabilities for glucose and insulin 
are 0.0004 cm/sec for glucose and 8 E-5 cm/sec for insulin. Present the blood 
insulin and glucose levels as charts with time on the x axis.



CHAPTER 9
Bioheat Transport

Learning Objectives

• First law of thermodynamics and metabolism

• Conservation of energy

• Fourier’s law of heat conduction

• Damped wave conduction and relaxation

• Cartesian, cylindrical, and spherical coordinates

• Steady-state and transient temperature profiles

• Metabolic energy production

• Forced and natural convection

• Rayleigh-Bernard instability

• Sweating with evaporation

• Thermal wear design

• Metabolism and regulation of body temperature

• Bioheat transfer equation

The laws of thermodynamics and of heat conduction can be applied 
to the human anatomical and physiological systems. Two important 
applications of bioheat transport in medicine are thermal therapy and 
cryopreservation. Local destruction of tissue is made to come about by 
the use of hyperthermic or cryothermic technology. The payoff in 
studying bioheat transfer toward complete eradication of disease by 
2050 is to understand better and find a cure for the disease mecha-
nism of cancer and cardiovascular disease. Statistics on the number of 
people with cancer and cardiovascular disease in the United States in 
the 2005 according the American Cancer Society and American Heart 
Association, respectively, are listed in Table 9.1.

Thermal therapies are accomplished by the use of invasive probes, 
which either act as a hyperthermic energy source (such as microwave, 
radiofrequency, high-intensity focused ultrasound, and laser) or as a 

373
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cryothermic energy sink (such as Joule-Thomson argon effect and 
cryogen-circulation probe technologies) [1]. Such probes are used for 
the treatment of prostate and kidney disease, including cancer and 
benign prostatic hyperplasia (BPH). Probe-tissue interactions need to 
be better understood. Nanoscale cellular- and tissue-level events are 
correlated to the therapeutic outcome. Research is in progress to 
quantitate temperature, injury, and the mechanisms that relate them 
to each other. Various types of biopreservation techniques include 
hypothermic storage (above the freezing point), cryopreservation 
(below –80°C), and vitrification (freeze-drying).

9.1 Five Laws of Thermodynamics and Metabolism
The word energy comes from the Greek words en meaning “in” and 
ergon meaning “work.” The sun is the primary source of energy. Light 
is converted into chemical energy by the process of photosynthesis. 
This is common in plants, where starch is formed in leaves from car-
bon dioxide in the presence of sunlight and oxygen is liberated. As in 
respiration of humans and other species, oxygen is inhaled and car-
bon dioxide is exhaled, and the composition balance of air in the 
atmosphere remains the same, invariant with time. Through another 
process called chemosynthesis, bacteria that thrive a mile below the 
surface of the sea use sunlight for their energy requirements. They 
use Fe++ or Mn++ as an energy source. The photon energy present in 
sunlight can be related to the photon frequency by Planck’s law as:

 E
hc= =
λ

νh   (9.1)

where h is the Planck’s constant (6.63 ∗ 10–34 Js) and c is the speed of 
light in a vacuum (2.998 ∗ 108 m/s). Plants combine trapped energy 
from sunlight from CO2 and water to make glucose (C6H12O6), oxygen, 

Disease Number of Patients

Prostate and breast cancer 200,000

Kidney cancer (males) 20,000

Liver cancer 20,000

Colorectal cancer 100,000

Coronary heart disease 13 million

Atrial fibrillation 200,000

TABLE 9.1 Incidence of Cancer and Cardiovascular Disease 
in the U.S. Population
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and heat. Solar energy is stored in the form of chemical bonds. Red blood 
cells (RBCs) are derived from stem cells in the bone marrow in accor-
dance with the genetic code stored in DNA and in response to a 
hormone secreted by the kidneys.

Protein signaling is a salient item in the utilization of the plant’s 
energy by the bioorganism. Molecular oxygen is transported from the 
lungs in human anatomy and the gills in aquatic species to burn “fuel.” 
Through a series of reactions, glucose, fats, and other organics are oxi-
dized to CO2, water, heat, and other by-products. Energy from digested 
food is used for locomotion, to regulate body heat, to generate light in 
some species, to ward off infection from microbes, and for reproduc-
tion. A number of biochemical reactions take place that require energy. 
Protein structures are encoded by the nucleic acids and formed by gene 
expression. The protein’s secondary structure regulates the functions 
of any organism by signaling the flow of energy and information in and 
between cells. The interplay of energy and information is a theme that 
is emphasized in the field of biological thermodynamics [2].

Cells use energy to maintain osmotic pressure gradients for the 
synthesis of proteins. Even at rest, humans have some metabolic 
functions that require energy: i) autonomic motor activity for respira-
tion, ii) motor activity for contraction of the heart; iii) perfusion of 
blood and other body fluids; iv) regulation of body temperature; v) 
phenomena of the mind; vi) digestion of food consumed; and vii) 
simple anatomy motion. Energy needs to be stored in the human 
anatomy in the event of increases in metabolic state arising from ana-
tomical responses to environmental stimuli. Adenosine triphosphate 
(ATP) drives energy-dependent biochemical reactions. 

The efficiency with which biological energy transport occurs is 
the ratio of useful work, defined as the total work less the work done 
by the system, to the energy input for volume expansion. The energy 
stored in each mole of ATP that is available to perform useful work is 
roughly 42 kilojoules (kJ). Aerobic glycolysis of 1 mole of glucose 
produces roughly 36 moles of ATP. Converting 1 mole of glucose to 
water and CO2 releases 2.823 megajoules (mJ) of energy. The maxi-
mum efficiency during glycolysis is about 53 percent. This is higher 
than many mechanical devices that operate under a temperature 
gradient. Energy released from metabolism that is uncoverted to 
chemical energy or mechanical work is used up to regulate human 
anatomical temperature. Excess heat generated has to be removed to 
avoid temperature overshoot in the human anatomy. 

There are five laws of thermodynamics. An elaborate treatment of 
these laws and their applications are beyond the scope of this text-
book. These are briefly stated as follows:

Zeroth law of thermodynamics: If two systems are in thermal 
equilibrium with a third system, then the two systems are in thermal 
equilibrium with each other.
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First law of thermodynamics: The total quantity of energy is a 
constant, and when energy is consumed in one form, it appears con-
currently in another form. Energy exists in many forms. The math-
ematical statement of the first law of thermodynamics for closed 
systems can be written as:

 Q + W = ∆U (9.2)

Q is the heat energy needed for the system supplied from the sur-
roundings. W is the work done on the system. When the work is done 
by the system, then a negative sign should precede the work contribu-
tion to Eq. (9.2). ∆U is the internal energy change of the system. The 
sign convention used in Eq. (9.2) is recommended by the International 
Union of Pure and Applied Chemistry. In differential form, Eq. (9.2) 
may be written as:

 dQ + dW = dU (9.3)

For an open system, the first law of thermodynamics may be 
written as:
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where u is the fluid flow rate across the control volume and z is the 
height of the fluid. The mass flow rate is �m in (mole/s); heat and work 
rates are �Q and �W . In terms of enthalpy, H = U + PV, the first law for 
the open systems can be written as:
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Second law of thermodynamics: No process can be effected and no 
machine can be devised whose sole effect is the complete conversion 
of heat absorbed to work done by the system. Some heat has to be 
discarded to the surroundings. In other words, it is impossible to con-
struct a process whose sole effect is the transfer of heat from a low 
temperature to a higher temperature. Heat flows spontaneously from 
a higher temperature to a lower temperature and not from a lower 
temperature to a higher temperature. 

The first statement is the Kelvin-Planck statement of the second 
law of thermodynamics. As a corollary, it is not possible to effect a 
cyclic process that can convert heat absorbed by a system completely 
into work done by the system. Mathematically stated, the second law 
of thermodynamics can be written as:

 ∆Stot ≥ 0 (9.6)
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Thus, each and every process proceeds in such a direction that the 
total entropy change associated with it is positive. In the limiting case 
of reversible operation, the entropy change would be zero. It is impos-
sible to effect a process whose entropic change is negative. The inequal-
ity given by Eq. (9.6) is also referred to as the Clausius inequality. 

9.1.1 PMM2: Perpetual Motion Machine of the Second Kind
Some machines and processes are designed in such a fashion that 
they are infeasible. They claim perpetual motion. They either violate 
the conservation of energy principle or they disobey the Clausius 
inequality. The types of designs with sustained, undamped motion 
that violate the conservation of energy principle are referred to as 
perpetual motion machines of the first kind (PMM1). The designs 
with sustained, undamped motion that violate the second law of 
thermodynamics are referred to as perpetual motion machines of the 
second kind (PMM2). Although the second law of thermodynamics 
will be formally introduced later, simply stated, no machine can be 
devised and no process can be designed whose sole effect is to convert 
all heat to work. Some heat will have to be discarded to the surround-
ings. Heat cannot flow from a low temperature to a higher temperature 
in a spontaneous fashion. Heat can only travel from a hot temperature 
to a cold temperature in a spontaneous manner. 

Example 9.1 Water screw perpetual motion machine. Water from a tray falls and 
spins a water wheel. This powers a set of gears and pumps, and returns the 
water to the tray. Can this last forever?
 No. Frictional effects will result in reduced water at the water wheel in 
subsequent cycles. Any other design is a violation of PMM1. The law of 
conservation of energy is violated.

Third law of thermodynamics: The third law of thermodynamics 
was developed by Nernst and is referred to as the Nernst postulate or 
Nernst theorem. It states that entropy of pure substances approaches 
zero when the temperature of the substance is brought to zero Kelvin.

If the entropy of each element in a crystalline state with a perfect 
structure is zero at the absolute zero of temperature, every substance 
has a finite positive entropy; however, at the absolute zero of tem-
perature, the entropy may become zero, and does so in the case of 
crystalline substances with a perfect structure.

Fourth law of thermodynamics: The Onsager reciprocal relations 
are referred to collectively as the fourth law of thermodynamics. The 
relation between forces and flows for systems not in equilibrium but 
in a state of local equilibrium are provided in the Onsager relations as 
follows: 

  J L Fi ij j
j

= ∑   (9.7)
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J represent the flows, F the forces, and L the phenomenological coef-
ficients. The i and j denote the different flows and forces. Thus, the 
concentration difference may be one force, temperature difference 
another force, momentum difference another force, etc., and the flows 
can be heat transfer, mass transfer, and momentum transfer. Onsager 
showed that from analysis of a positive definite matrix, the cross-
coefficients in Eq. (9.7) have to be equal. Thus:

 Lij = Lji  (9.8)

Example 9.2 Evaluate the difference. ∂
∂
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Assumption: Fluid is an ideal gas.
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∂
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  (9.9)
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 = Cp – Cv – PVβ = R(1 – βT) (9.11)

where β is the compressibility factor.

9.1.2 Isobaric Process
Consider an ideal gas expansion in a piston cylinder arrangement from 
an initial volume Vi to a final volume Vf. The expansion is conducted at 
constant pressure. Applying the first law of thermodynamics for n 
moles of the gas in the cylinder:

 d(nU) = dQ + dW (9.12)

The work done by the system can be written as:

  dW Pd nV nP V Vf i= − = − −∫ ( ) ( )   (9.13)

Combining Eqs. (9.12) and (9.13) and writing the internal energy 
change in terms of the temperature change of the gas: 

  nC T T dQ nP V Vf i f iv( ) ( )− = − −∫   (9.14)
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it can be seen that:
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  (9.15)

The term ∂U/∂P is negligible and:
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  (9.16)

The term ∂U/∂V is negligible and dU can be written as CvdT.
Assuming that the fluid obeys the ideal gas law, PV = RT, for one 

mole of the gas, Eq. (9.14) becomes:

   nC T T QP f i( )− =   (9.17)

In other words, during a constant pressure process, the heat supplied 
for the system from the surroundings should equal the change in 
enthalpy of the system. For one mole of the ideal gas in the differen-
tial form, the first law of thermodynamics for a closed system during 
a constant pressure process can be written as:

 dU dQ PdV dQ d PV VdP= − = − +( )   (9.18)

     or dU d PV dH dQ+ = =( )   (9.19)

From Eq. (9.2):

 dH = TdS + VdP (9.20)

For a constant pressure process, VdP = 0 and hence dH = TdS = dQ.

9.1.3 Isothermal Process
Consider a piston cylinder arrangement with the cylinder filled with 
one mole of an ideal gas. The piston is pulled, and the volume expands 
from an initial volume, Vi, to a final volume, Vf , at constant tempera-
ture. In differential form, the first law of thermodynamics for a closed 
system for one mole of the ideal gas may be written as:

 dQ – PdV = dU (9.21)

Internal energy refers to the energy internal to a substance. All mole-
cules possess kinetic energy of translation, energy of rotation, and 
energy of vibration. When heat is added to a closed system at a mac-
roscopic level, the energy of the molecules increases. The internal energy 
is defined to capture such changes in energy level. The internal energy 
of a substance includes the potential energy resulting from intermolecu-
lar forces. Absolute values of the energy are not as important as the 
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changes in the state of the system. For an isothermal process, dU = 0. 
This is assuming that U is a function of only temperature. Thus:

 dQ = PdV = TdS (9.22)

For an ideal gas, PV = RT for one mole of gas:

  Q
RTdV

V
RT

V

V
f

i

= =





∫ ln  = T∆S (9.23)

Thus, the heat supplied from the surroundings during an isothermal 
expansion of an ideal gas can be given by Eq. (9.23). From the relation 
dU = TdS – PdV for an isothermal process, dU = 0 and hence, TdS = 
PdV. For an isothermal process, dU is zero because U is a function of 
the state of the system only, that is, its temperature in this case and 
not the path taken to reach it.

9.1.4 Adiabatic Process
Consider a piston cylinder arrangement with the cylinder filled with 
one mole of an ideal gas. The piston is pulled, and the volume expands 
from an initial volume, Vi, to a final volume, Vf, adiabatically. In dif-
ferential form, the first law of thermodynamics for a closed system 
for one mole of the ideal gas may be written as:

  dQ – PdV = dU (9.24)

or – PdV = dU (9.25)

For an ideal gas, for one mole of gas, P = RT/V and dU = CvdT. dU = 
Cv dT is assuming that U is a function of only temperature. Then Eq. (9.25) 
becomes:

  − − =dV
V

C dT
RT
v   (9.26)

Integrating Eq. (9.26) from the initial volume to final volume and ini-
tial temperature to final temperature:

  − =ln ln
V

V
C
R

T

T
f

i

v f

i

  (9.27)

In the power-potentiated form, Eq. (9.27) becomes:

  
V

V
T
T

f

i

i

f

C Rv

=







/

  (9.28)

Equation (9.28) is valid for an adiabatic expansion of an ideal gas.
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Example 9.3 Show that the adiabatic process for an ideal gas is polytropic. Let γ = 
Cp/Cv

For an ideal gas, it was shown earlier that Cp – Cv = R, or (γ – 1) = R/Cv. 
Applying this to Eq. (9.27):

  V
V

VT

V T

P

P
i

f

i f

f i

f

i









 =









 =

γ

  (9.29)

9.1.5 Isochoric Process
Consider a piston cylinder arrangement with the cylinder filled with 
one mole of an ideal gas. The pressure of the closed system is increased 
from an initial Pi to a final Pf by a constant-volume process. In differ-
ential form, the first law of thermodynamics for a closed system for 
one mole of the ideal gas may be written as:

 dQ – PdV = dU (9.30)

or dQ = dU = TdS – PdV = TdS (9.31)

Example 9.4 Three-step cycle. An ideal gas is heated from a temperature T0 to a 
final temperature Tf at constant pressure P0. Then it is compressed to a pressure 
P1 at constant temperature. Then it is brought back to its initial state by isother-
mal expansion. Show the changes in internal energy and enthalpy for each of 
the three steps. Choose one mole of gas as the basis, and derive the work done 
in each of the steps. The heat capacity at constant volume Cv = 3R/R and Cp = 
5R/R.
Step 1–2 in Figure 9.1 is a constant-pressure process. Equation (9.30) may be 
used: 

  Q = ∆H = Cp(Tf – T0) (9.32)

1 2

3

P0

T0

T
Tf

P1

P

FIGURE 9.1 Three-step cycle in a P–T diagram.
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Step 2–3 is an isothermal process. Equation (9.30) may be used:

 Q = RTf ln(V3/V2) (9.33)

The internal energy change during Step 3–1 may be calculated as follows:

 0 = ∆U12 + ∆U23 + ∆U31  (9.34)

or

 ∆U31 = –Cv(Tf – T0) + 0 (9.35)

Work done by the system: W = –∫  PdV
From the first law of thermodynamics, Q + W = ∆U.

Thus,           Q PdV C T T
v

v

v f= − −∫
3

1

0( )  (9.36)

Example 9.5 Compressibility factor, β. Show that:
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Differentiate Eq. (9.38) with respect to pressure P and Eq. (9.39) with respect to 
temperature T:
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Volume V is a function of pressure P and temperature T. V is a continuous dif-
ferentiable function of two variables, P and T. Hence, the order of differentiation 
should not matter. Thus:
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  (9.42)

Hence, Eqs. (9.40) and (9.41) are equal and Eq. (9.37) is shown.



B i o h e a t  T r a n s p o r t  383

9.1.6 Carnot Cycle
The Carnot cycle is the most efficient of cyclical processes. It consists 
of two isothermal and two adiabatic steps that alternate. The thermal 
efficiency of any heat engine can be written as:

 η = 1 −
−Q Q

Q
h c

h

 (9.43)

The heat absorbed from the hot reservoir is given by Qh, the work done 
is Q, and the heat given out to the cold reservoir is Qc. The Carnot 
engine sets the upper limit on the maximum efficiency achievable. This 
is because it is operated in a reversible manner. From the Kelvin-Planck 
statement of the second law of thermodynamics, Eq. (9.43) has to be 
less than 1 and cannot be equal to or greater than 1. A reversible ideal 
engine was proposed by Sadi Carnot in 1824. The four steps of the 
Carnot cycle are shown in Fig. 9.2 in a P–V diagram of the working 
fluid and in Fig. 9.3 in a T–S diagram of the working fluid.

The Carnot cycle consists of four steps. These are as follows:

 A. A reversible isothermal process (1–2) is effected when heat Qh 
is taken in by the working fluid from the hot reservoir at the 
temperature Th.

 B. A reversible adiabatic expansion (2–3) of the working fluid, 
where the temperature of the working fluid changes from
Th to Tc.

Qh

1

V

4

P

QcTc

2

3

Th

FIGURE 9.2 Four-step Carnot cycle on a P–V diagram of the working fl uid.
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 C. A reversible isothermal process (3–4) when heat Qc is dis-
charged from the working fluid into the cold reservoir at the 
temperature Tc.

 D. A reversible adiabatic process (4–1) where the working fluid 
is brought back to the hot reservoir temperature, Th, by com-
pression. 

During step 1–2, the first law is applied. The work done during 
isothermal expansion of an ideal gas was found to be RTh ln(V2/V1):

 Qh – RTh ln(V2/V1) = ∆U (9.44)

The internal energy change with volume can be neglected and as step 1–2 
is isothermal, ∆U = 0. Hence, Eq. (9.41) becomes:

 Qh = RTh ln(V2/V1) (9.45)

In a similar manner, the first law can be applied to the isothermal 
step 3–4 and:

 –Qc = RTc ln(V4/V3) (9.46)

Step 2–3 is adiabatic and reversible. Hence:

 dU = TdS – PdV (9.47)

Qh

Th

T

Tc

Qc

3

21

4

S

FIGURE 9.3 Four-step Carnot cycle on a T–S diagram of a working fl uid.
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Neglecting changes of internal energy with volume and assuming 
that internal energy is a function of only temperature, Eq. 9.47 may be 
written as:

 CvdT = –RTdV/V (9.48)

     or 
dT
T

R
C

dV
Vv

= −  (9.49)

Integrating Eq. (9.49) between the hot reservoir and cold reservoir 
temperatures:
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In a similar manner, the first law for the adiabatic step 4–1 can be 
integrated to yield:
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Comparing Eqs. (9.50) and (9.51):
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the thermal efficiency of the cycle can be calculated as:
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Combining Eqs. (9.52) and (9.53):

  η = −1
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c

  (9.54)

Equation (9.54) is the Carnot equation. The ideal gas temperature is in 
Kelvin scale. 

Thus, for a Carnot engine:
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The quantity Q/T can be seen to be the entropy. The entropic change 
for a reversible cycle is zero. Hence:

  
dQ

T
rev�∫ =  ∆S = 0 (9.57)

For an irreversible cycle, ∆S would be positive. For ∆S for the cycle 
less than zero, the process is infeasible. 

9.1.7 Carnot’s Theorem
Carnot’s theorem may be stated as follows: No machine can be 
devised and no process can be designed with an efficiency greater 
than that of the Carnot efficiency.

The proof can be provided by the method of reduction de abstrac-
tum. Assume that there exists an engine E with an efficiency greater 
than that of Carnot. Then that engine is operated along with a Carnot 
refrigerator, as shown in Fig. 9.4.

The heat received from the cold reservoir is Qh – Qh'. This can be 
seen to be the heat gained by the hot reservoir at temperature Th from 
Fig. 9.4. Thus, the net effect of the engine E and Carnot refrigerator is 
to take heat from the cold reservoir to the hot reservoir. Per the alter-
nate statement of the second law, no machine can be devised and no 
process can be designed whose sole effect is to take heat from a cold 
temperature and discharge it to a hot temperature. 

Thus, the engine E cannot have a thermal efficiency greater than 
that of the Carnot cycle. Hence, by the method of reduction de abstrac-
tum, the Carnot theorem stands proved. As a corollary, the thermal 
efficiency of the Carnot engine depends only on the temperatures of 
the hot and cold reservoir temperatures.

Th

Tc

E C

Q′h

Q′h – W Qh – W

Qh

W

FIGURE 9.4 Engine E and Carnot refrigerator C.
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9.1.8 Otto Cycle
Internal combustion engines are used to drive automobiles and airplanes 
by the thrust generated by a propulsion system. The Otto cycle is shown 
in Fig. 9.5 on a PV diagram of the working fluid. The intake stroke of the 
engine begins at step a. The intake valve is opened, and the piston is 
pulled out of the cylinder through an isobaric process. The fuel is drawn 
into the cylinder through the open valve along with the oxygen needed 
for combustion. The compression stroke of the engine begins after the 
closing of the intake valve. In step bc, work is done, volume decreases, 
and the pressure rises. Step c marks the beginning of the combustion of 
fuel/oxygen supplied by the air. The combustion is anh isochoric process. 
Heat is released from the exothermic reactions. This results in an increase 
in pressure (step cd). The power stroke of the engine starts at step d. Dur-
ing step de, pressure drops as volume expands and work is done by the 
gas in the piston-cylinder assembly. The exhaust valve is opened at step e. 
Heat is expended to the surroundings. Step ef is isochoric. The exhaust 
stroke of the engine begins at step f. The process can repeat in cycles from 
there on. Real cycles will be less efficient on account of the heat losses 
during the compression and power strokes, friction losses, and sponta-
neous combustion in an isochoric fashion. The area in the enclosure of 
step bcdef is the work done. 

Steps cd and ef are isochoric operations. The first law applied to 
these steps can lead to:

 Qh = Cv(Td – Tc) (9.58)

 –Qc = Cv(Tb – Te) (9.59)

FIGURE 9.5 Six-stroke Otto cycle used in automobiles.
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Because steps cd and ef are adiabatic and reversible, the thermal 
efficiency of an Otto cycle may be calculated as:

  η = −
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  (9.60)

Assuming that the fluid obeys the ideal gas law:
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where r is the compression ratio r = (Vb/Vc) = (Ve/Vd).
Realizing that steps bc and de are adiabatic, the polytropic rela-

tionships may be used. Thus:

  P V PV PVd d e e e b
γ γ γ= =   (9.62)

and

  P V P V P Vc c b b c d
γ γ γ= =   (9.63)

Dividing Eq. (9.62) by Eq. (9.63):
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Combining Eq. (9.64) in Eq. (9.61), the thermal efficiency of an Otto 
cycle can be seen to be:

  η γ= − −1
1

1r
  (9.65)

where r is the compression ratio and γ is the polytropic constant for 
an ideal gas (Cp/Cv = 5/3). 

     or η = −1
1
5 3r /   (9.66)

9.2 Conservation of Energy
As discussed in Chap. 1, as in the equation of conservation of momen-
tum, the equation of conservation of energy can be written from a 
shell balance in the system as follows:
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  (9.67)

The energy is the sum of the internal energy and kinetic energy of 
the system. Let q be the heat flux into and out of the surfaces of the 
shell considered and T the temperature. Equation (9.68) can be 
written as:
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Fourier’s law of heat conduction can be written for the heat flux in 
one dimension as:
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The generalized Fourier’s law of heat conduction can be written as:
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9.2.1  Reasons to Seek Generalized Fourier’s 
Law of Heat Conduction

Fourier’s law of heat conduction, Fick’s law of mass diffusion, New-
ton’s law of viscosity, and Ohm’s law of electricity are physical laws 
that are used to describe transport phenomena of heat, mass, 
momentum, and electricity, respectively. These phenomenological 
laws were developed largely from empirical observations at steady 
states several centuries ago. Although they have been used widely 
for extended periods, there are a number of applications where 
massive deviations from theoretical predictions based on these laws 
have been found. Here are six reasons to seek a generalized Fourier’s 
law of heat conduction:

 1. Fourier’s law of heat conduction was found to contradict the 
microscopic theory of reversibility introduced by Onsager [3].

 2. Singularities have been found in the description of transient 
heat conduction using the Fourier parabolic equations. A 
“blow-up” occurs: a) at short contact times in the expression 



390 C h a p t e r  N i n e

for surface flux, for the case of description of transient tem-
perature in a semi-infinite medium subject to constant wall 
temperature boundary condition; b) surface flux for a finite 
slab subject to constant wall temperature on either of its 
edges; c) temperature term in the constant wall flux problem 
in cylindrical coordinates in a semi-infinite medium solved 
for by using the Boltzmann transformation, leading to a solu-
tion in exponential integral; d) in the short time limit, the 
parabolic conduction equations for a semi-infinite sphere are 
solved for by using the similarity transformation.

 3. Development of Fourier’s law of heat conduction was from 
observations at steady state and empirical in nature. The 
observations’ use in transient state, such as at a nanoscale 
level in the time domain, is an extrapolation.

 4. Overpredictions of theory to experiment have been found in 
important industrial processes, such as fluidized bed heat 
transfer to surfaces, CPU overheating, adsorption, gel acryla-
mide electrophoresis, restriction mapping, laser heating of 
semiconductors during the manufacture of semiconductor 
devices, and drug delivery systems.

 5. Landau and Lifshitz examined the solution for transient tem-
perature and noted that for times greater than zero, the tempera-
ture is finite at all points in the infinite medium, except at an 
infinite location. The inference is that the heat pulse has traveled 
at infinite speed. But light is the speediest of all velocities. Hence, 
there is a conflict with the light speed barrier stated by Einstein’s 
theory of relativity. The speed of any mobile object, including a 
thermal wave, ought to be less than the speed of light.

 6. Fourier’s law breaks down at the nanoscale space level. This 
is also referred to as the Casimir limit in some quarters. In 
this regime, the mean free path of the molecules is greater 
than the dimension of the object under scrutiny. 

In order to better describe transient heat conduction events at the 
nanoscale level, the damped wave conduction and relaxation equa-
tion can be used. A comprehensive insight into the characteristics of 
the analytical solution using the damped wave conduction and relaxation 
equation was provided. This was originally suggested by Maxwell. 
The equation can be written as in Eq. (9.70), where τr is the relaxation 
time (nanoseconds), q is the heat flux (w/m2), and k is the thermal 
conductivity of the medium of conduction (w/m/K). This equation 
was postulated in the mid 20th century by Cattaneo and Vernotte. 
Reviews have been provided by Joseph and Preziosi. The estimates of 
the relaxation times are of the order of nanoseconds. Some concerns 
have been expressed about the generalized Fourier’s law of heat 
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conduction violating the second law of thermodynamics. It is going 
to be shown later in the chapter that investigators who do not use the 
time and space conditions appropriately end up with solutions that 
appear in violation of the second law of thermodynamics. But when 
those conditions are corrected to more physically realistic conditions, 
well-bounded solutions within the constraints of the second law of 
thermodynamics can be obtained.

9.3  Derivation of Damped Wave Conduction and 
Relaxation Equation from Free Electron Theory

The damped wave conduction and relaxation equation is derived from 
the free electron theory. The derivation of Ohm’s law of electric con-
duction is revisited to obtain the damped wave momentum transfer 
and relaxation equation by analogy. The electrical resistivity of materi-
als differs by 30 orders of magnitude. So a single theory to explain the 
behavior of all materials may be difficult to develop. In the free electron 
model, the outermost electrons of the atoms can take part in conduc-
tion. They are not bound to the atom, but are free to move through the 
whole solid. These electrons have been variously called the free elec-
tron cloud, the free electron gas, or the Fermi gas. The assumption is 
that the potential field due to the ion cores is uniform throughout the 
solid. The free electrons have the same potential energy everywhere in 
the solid. Due to the electrostatic attraction between a free electron and 
the ion core, this potential energy will be a finite negative value. Only 
energy differences are important, and the constant potential can be 
taken to be zero. Then, the only energy that has to be considered is the 
kinetic energy. The kinetic energy is substantially lower than that of 
the bound electrons in an isolated atom, as the field of motion for the 
free electron is considerably enlarged in the solid as compared to the 
field around an isolated atom. The free electron theory can be used to 
better understand electrical conduction. 

By Lorenz analogy, the heat conduction can also be predicted in a 
similar manner. The independent electron assumption was devel-
oped by Drude in 1905. The free electron theory assumes that elec-
trons are responsible for all of the conduction. The electrons behave 
like an ideal gas, occupy negligible volume, undergo collisions, and 
are perfectly elastic. Electrons are free to move in a constrained flat-
bottom well. Electron distribution of energy is a continuum. 

The general equation of motion for the drift velocity of the free 
electron on account of an applied temperature gradient driving force 
can be given by the following expression from the Drude theory:

  m
dv
dt

mv k dT
dx

e e B+ = −
τ

3
2   (9.71)
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where m is the mass of the electron, ve is the drift velocity, τ is the colli-
sion time of the electron with an obstacle, kB is the Boltzmann constant, 
and dT/dx is the applied temperature gradient. The drift velocity of the 
electron is different from the random velocities associated with it. Drift 
velocity is superimposed on the random motion. It is in a net direction 
of the superimposed field. This leads to a net flow of charge and the 
passage of electric current. The electrons encounter obstacles during 
drift, and the directional motion is lost and reduced to the random 
motion. The memory gained is lost, and the clock is set back to zero. 
Collisions occur in the time interval τ. The rate of destruction of 
momentum by virtue of the collision is given by mve/τ. This slows 
down the electron. The drag force will balance the applied force due to 
the temperature gradient at steady state to yield the Fourier’s law of 
heat conduction. This can be seen in the following steps: 

 
v

m
k dT

dxe
B= –3

2
τ  (9.72)

The heat flux can be defined as: 

 
q n k T vB e=







3
2

 (9.73)

where n is the number of electrons per unit volume and (3/2 kBT) is the 
average energy of the electron from the equipartition energy theorem. 
Using the Boltzmann relation, the heat flux can also be written as:

 
q n mve

3= 1
2

 (9.74)

Multiplying Eq. (9.72) throughout by n (3/2 kBT) and using Eq. (9.73), 
Eq. (9.72) becomes:

 
q

nT
m

k
dT
dx

k T
xB= − = − ∂

∂
9
4

2τ
 (9.75)

where the thermal conductivity can be written as:

 
k

nT
m

kB= 9
4

2τ  (9.76)

During transient heat conduction, the acceleration term may become 
important. Rewriting Eq. (9.72) as:

 

τ τdv
dt v m

k dT
dx

e

e

B

+
= −3

2
 (9.77)

Multiplying Eq. (9.77) throughout by n (3/2 kBT) and combining it 
with Eqs. (9.74) through (9.76):

 
n k T

dv
dt q

k T
xB

e3
2

τ
+

= − ∂
∂

 (9.78)
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Using the Boltzmann relation (½ mve
2 = 3/2kBT ), Eq. (9.78) becomes:

 

1
2

2n mv dv
dt q

k T
dx

eτ
+

= − ∂  (9.79)

Differentiating Eq. (9.74) with respect to t:

 

∂
∂

=q
t

nmv dv
dt

e e3
2

2
 (9.80)

Combining Eqs. (9.80) and (9.79):

 

τ
3

∂
∂ +

= − ∂
∂

q
t q

k T
x

 (9.81)

Equation (9.81) is equivalent to the Cattaneo and Vernotte equation 
given by Eq. (9.70) when τ/3 = τr:

 

τr q
t q

k T
x

∂
∂ +

= ∂
∂

–
 (9.82)

9.4  Semi-infinite Cartesian and Infinite 
Cylindrical and Spherical Mediums

Consider a semi-infinite medium at an initial temperature of T0 (Fig. 9.6). 
For times greater than 0, the surface at x = 0 is maintained at a con-
stant surface temperature at T = Ts , Ts > T0. The boundary conditions 
and initial condition are as follows:

 t = 0, T = T0 (9.83)

 x = 0, T = Ts (9.84)

 x = ∞, T = T0 (9.85)

The transient temperature in the semi-infinite medium can be solved 
for by solving the Fourier parabolic heat conduction equations using 
the Boltzmann transformation η α= x t/ 4  and shown to be: 

  u
T T
T T

erf
x

ts

=
−
−

= −




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( )
( )

0

0

1
4α

  (9.86)

FIGURE 9.6 Semi-infi nite medium with initial temperature at T0.

T = T0T = Ts

x = ∞x = 0
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The heat flux can be written as:

  q
q

k C T T

x
t

p r s

∗ =
−

= −




ρ τ πτ α/ ( )

exp
0

21
4   (9.87)

The dimensionless heat flux at the surface is then given by:

  qs
∗ = 1

πτ
  (9.88)

It can be seen that there is a “blow-up” in Eq. (9.88) as τ → 0. For 
applications with substantial industrial importance, such as the 
heat transfer between fluidized beds to immersed surfaces [4], large 
deviations have been found between experimental data and math-
ematical models based upon surface renewal theory. The critical 
parameter in the mathematical models is the contact time of the 
packets that are comprised of solid particles at the surface. This con-
tact time is small for gas-solid fluidized beds for certain powder 
types. Under such circumstances, the microscale time effects may 
have been significant. These are not accounted for by the parabolic 
heat conduction models. This is one of the motivations for studying 
the hyperbolic heat conduction models. It has been shown that the 
ballistic term in the governing hyperbolic heat conduction equation 
is the “only” mathematical modification to the parabolic heat con-
duction equation that can remove the singularity in Eq. (9.86) at 
short times.

The governing hyperbolic heat conduction equation in one 
dimension for a semi-infinite medium with constant thermophysical 
properties ρ, Cp, k, and τr , that is, the density, heat capacity, thermal 
conductivity, and thermal relaxation time, can be obtained by com-
bining the damped wave conduction and relaxation equation with 
the energy balance equation to yield:

   
∂
∂

+ ∂
∂

= ∂
∂

u u u
Xτ τ

2

2

2

2   (9.89)

where  u
T T
T T

X
x

t

t

s r

=
−
−

= =
( )
( )

; ;0

0 4α
τ

τ
  (9.90)

Baumeister and Hamill obtained the Laplace transform of Eq. (9.89) 
and applied the boundary condition at x = ∞, given by Eqs. (9.85) and 
(9.84), to obtain in the Laplace domain:

  u
X s s

s
− =

− +exp( ( ))1
  (9.91)
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They integrated Eq. (9.91) with respect to space to obtain:

  H s
X s s

s
dX

s s s

X s s
s

( ) exp
( )

( )
exp

( )
=

− +
= −

+
− +

∫
1 1

1

1
  

  (9.92)

The inversion of Eq. (9.94) was obtained from the Laplace transform 
tables and found to be:

 H
p

I p X dp( ) exp /τ
τ

= −




 −∫ 2

1 2
0 0

2 2  (9.93)

The dimensionless temperature is obtained by differentiating H(τ) in 
Eq. (9.93) with respect to X and for τ ≥ X:

  u
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Baumeister and Hamill presented their solution in the integral form, 
as shown in Eq. (9.94). In this study, the integrand is approximated to 
a Chebyshev polynomial and a useful expression for the dimension-
less temperature is obtained. This is used to compare the results to 
those obtained by relativistic transformation. The dimensionless heat 
flux can be seen to be:

  q I X∗ = −




 −exp /

τ τ
2

1 20
2 2   (9.95)

The surface heat flux can be seen to be:

  q Is
∗ = −





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
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


exp
τ τ
2 20

  (9.96)

9.4.1  Chebyshev Economization or 
Telescoping Power Series

In order to further study the dimensionless transient temperature 
from the hyperbolic damped wave conduction and relaxation equa-
tion, the integral expression given by Baumeister and Hamill in 
Eq. (9.95) can be simplified using a Chebyshev polynomial. Cheby-
shev polynomial approximations tend to distribute the errors more 
evenly, with reduced maximum error, by the use of cosine functions. 
The set of polynomials Tn(r) = Cos(nθ) generated from the sequence of 
cosine functions using the transformation:

 θ = Cos−1(r) (9.97)
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is called Chebyshev polynomials (Table 9.2). Coefficients of 
the       Chebyshev polynomials for the integrand in Eq. (9.94)  I p X1

2 21 2/ /−
 

p X2 2−  can be computed with some effort. The modified Bessel 
function of the first order and first kind can be expressed as a power 
series as follows:

  
I p X

p X

p X
m m

m

k

m
1

2 2

2 2

2 2

2 1

1 2
4 1 4

/ ( )
( !)( )!

−

−
= −

+
=+

ψ
22 1

0 1k
m m m+

=

∞

+∑ ( !)( )!
  (9.98)

where ψ = p2 – X 2. 
Each of the ψm terms can be replaced with its expansion in terms 

of the Chebyshev polynomials given in Table 9.2.
The coefficients of like polynomials Ti(r) are collected. When the 

truncated power series polynomial of the integrand is represented by 
a Chebyshev polynomial, some of the high-order Chebyshev polyno-
mials can be dropped with negligible truncation error. This is because 
the upper bound for Tn(r) in the interval (–1, 1) is 1. The truncated 
series can then be retransformed to a polynomial in r with fewer 
terms than the original and with modified coefficients. This proce-
dure is referred to as Chebyshev economization, or telescoping a 
power series.

Prior to expressing Eq. (9.98) in terms of Chebyshev polynomials, 
the interval (X, τ) needs to be converted to the interval (–1, 1). So let:

  r
X

X
and

r X X= − −
−

= − + +2
2

ψ τ
τ

ψ τ τ( ) ( )
  (9.99)

     Further, let  ξ = (τ – X) and η = (τ + X)  (9.100)
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TABLE 9.2 Chebyshev 
Polynomials
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   Thus,  ψ ξ η= +r
2   (9.101)

Substituting Eq. (9.101) in Eq. (9.98):
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The right-hand side (RHS) of Eq. (9.102) can be written as:

  RHS
r r

( . )
( )

,
....Eq. 8 22

1
4 256 49 152

2

= + + + + +ξ η ξ η
........   (9.103)

A truncation error of ( ) / , ,rξ η+ 3 18 874 368  is incurred in writing the 
left-hand side (LHS) of Eq. (9.102) as Eq. (9.103). Replacing the r, r2, 
and r3 terms (see Table 9.3) in Eq. (9.102) in terms of the Chebyshev 
polynomials given in Table 9.2 and collecting the like Chebyshev 
coefficients T0, T1, and T2, the RHS of Eq. (9.103) can be written as:
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TABLE 9.3 Powers of r in Terms of the 
Chebyshev Polynomials
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The T2(r) term can be dropped with an added error of only ξ2 98 304/ ,  . 
The order of magnitude of the error incurred is thus O( / , )ξ2 98 304 . 
Retransformation of the series given by Eq. (9.105) yields:

  

I p X

p X
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2 2

2 2

2 2 21 2 1
4 128 49 152 98 304

/
, ,

−

−
= − + + +η ξ (( )p X2 2

128
−

  
(9.105)

The error involved in writing Eq. (9.105) is 4.1 10−5 ηξ. If Chebyshev 
polynomial approximation was not used for the integrand and the 
power series was truncated after the second term, the error would 
have been 4 10−3r2. Substituting Eq. (9.105) in Eq. (9.95) and further 
integrating the expression for dimensionless temperature:
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 (9.106)

It can be seen that Eq. (9.106) can be expected to yield reliable predic-
tions on the transient temperature close to the wavefront. This is 
because the error increases as a function of 4.1 10−5 ξη. Far from the 
wavefront, that is, close to the surface, the numerical error may 
become significant.

9.4.2  Method of Relativistic Transformation of Coordinates
 Sharma developed a relativistic transformation method to solve for the 
transient temperature by damped wave conduction and relaxation in a 
semi-infinite medium. A closed-form solution for the transient tem-
perature was obtained. The hyperbolic governing equation [Eq. (9.89)] 
can be multiplied by exp(nτ) and for n ½ reduced to Eq. (9.107) below 
in wave temperature. Thus, the transient temperature was found to be 
a product of a decaying exponential in time and wave temperature, 
that is, u = W exp(–nτ). This is typical of transient heat conduction 
applications. Also, the damping term in the hyperbolic PDE, once 
removed, will lead to an equation of the Klein-Gordon type that can be 
examined for the wave temperature without being clouded by the 
damping component. It can be shown that at n = ½, the governing 
equation for temperature, Eq. (9.89), can be transformed as:

   
∂
∂

− = ∂
∂

2

2

2

24
W W W

Xτ   (9.107)

Equation (9.107) for the wave temperature can be transformed 
into a Bessel differential equation by the following substitution. 
Let ψ = τ2 – X2. 
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This substitution variable ψ can be seen to be a spatiotemporal 
variable. It is symmetric with respect to space and time. It is for the 
open interval τ > X. Equation (9.107) becomes: 

  4 4
4

0
2

2ψ
ψ ψ

∂
∂

+ ∂
∂

− =W W W
  (9.108)

Equation (9.108) can be seen to be a Bessel differential equation, and 
the solution can be seen to be:

  W c I X c K X= − + −1 0
2 2

2 0
2 21 2 1 2( / ) ( / )τ τ   (9.109)

It can be seen that at the wavefront, that is, ψ = 0, W is finite and, 
therefore, c2 = 0. Far from the wavefront, close to the surface, the 
boundary condition can be written as:

  X = 0, u = 1 or W = 1exp(τ/2)  (9.110)

Because ψ is a spatiotemporal variable, the constants of integra-
tion c1 can tolerate a function in time up to an exponential relation 
in time. Applying the boundary condition at the surface, c1 can be 
eliminated between Eqs. (9.110) and (9.109) to yield in the open 
interval τ > X:

  u
I X

I
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−( )
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2 2
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1 2
2

/
( / )
τ
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In the domain X > τ, it can be shown that the solution for the dimen-
sional temperature by a similar approach is:

  u
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At the wavefront, ψ = 0, Eq. (9.108) can be solved and:

  ln( ) expW or W c= =




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ψ ψ
16 163   

The temperature at the wavefront is thus u = c3exp(–τ/2) = c3exp
(–X/2). From the boundary condition at X = 0, c3 = 1.0. Thus, at the 
wavefront:

  u
X= −



exp

2
  (9.113)
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From Eq. (9.112), the inertial lag time associated with an interior point 
in the semi-infinite medium can be calculated by realizing that the 
first zero of the Bessel function, J0(ψ), occurs at ψ = 2.4048. Thus:

  2 40482
2 2

2. = −
x tp

r

lag

rατ τ
  

  t xlag p
r

r= −2 223 132
τ
α

τ.   (9.114)

The penetration distance for a given time instant can be developed at 
the first zero of the Bessel function. Beyond this point, the interior 
temperatures can be no less than the initial temperature. Thus:

  Xpen = +23 132 2. τ   (9.115)

The surface heat flux for a semi-infinite medium subject to constant 
wall temperature solved by the Fourier parabolic heat conduction 
model and the hyperbolic damped wave conduction and relaxation 
model are compared with each other using a Microsoft Excel spread-
sheet. The parabolic and hyperbolic solutions for surface heat flux are 
shown side by side in Fig. 9.7. The “blow-up” in the Fourier model 
can be seen at short times. The hyperbolic model is well bounded at 
short times and reached an asymotic limit of q∗ = 1 instead of q∗ = ∞. 
There appears to be a cross-over at τ = ½. It was found that for τ > 3.8, 
the prediction of the hyperbolic model is within 10 percent of the 
parabolic models. It can be seen from Fig. 9.7 that at large times, the 
predictions of the parabolic and hyperbolic models are the same. For 
short times, both qualitatively and quantitatively, the predictions of 
the parabolic and hyperbolic models are substantially different.

It is not clear what happens at τ = 1/2. The hyperbolic governing 
equation can be transformed using the Boltzmann transformation as 
follows. Let γ = X/√τ. Equation (9.89) becomes: 
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∂
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For long times, such as τ > ½, the RHS of Eq. (9.116) can be dropped 
and the LHS solved for to yield the solution that is identical to that of 
the Fourier parabolic heat conduction equation, that is:

  u erf
X= −





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1
4τ

  (9.117)

When differentiated and the expression for flux obtained at the sur-
face and X = 0, it can be seen that both the parabolic heat conduction 
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equation and hyperbolic heat conduction equation predict the same 
fall of heat flux for large times. This is why beyond τ > ½, the predic-
tions of parabolic and hyperbolic models are close to each other, as 
seen in Fig. 9.7. For short times, τ < ½, the microscale time effects 
become important and when neglected, give rise to a singularity, 
which also can be seen from Fig. 9.7. So the hyperbolic heat conduc-
tion model needs to be used for short-time transient applications.

 The temperature solution obtained after the Chebyshev polyno-
mial approximation for the integrand in the Baumeister and Hamill 
solution and further integration is shown in Fig. 9.8. The condition 
selected was for a typical τ = 5 hyperbolic solution, and was plotted 
using a Microsoft Excel spreadsheet. This is shown in Fig. 9.8. The 
expression for temperature developed by using the method of rela-
tivistic transformation for the same condition of τ = 5 is also shown in 
Fig. 9.8. 
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FIGURE 9.7 Comparison of surface fl ux from the Fourier parabolic heat 
conduction and hyperbolic damped wave conduction and relaxation models.
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It can be seen that both the Baumeister and Hamill solution and 
the solution from the relativistic transformation are close to each 
other, within an average of 12 percent deviation from each other. It 
can also be seen that close to the surface or far from the wavefront the 
numerical errors expected from the Chebyshev polynomial approxi-
mation are large. For such conditions, the expression developed by 
the method of relativistic transformation may be used. For conditions 
close to the wavefront, the further integrated expression developed 
in this study may be used. The penetration dimensionless distance 
for τ = 5, beyond which there is no expected heat transfer, is given by 
Eq. (9.116), and is 6.94 by the method of relativistic transformation.

The Baumeister and Hamill solution is only for τ > X. Both the 
solutions for transient temperature for the damped wave conduction 
and relaxation hyperbolic equation from the method of Laplace trans-
forms and Chebyshev economization and the method of relativistic 
transformation are compared against the prediction for transient 
temperature by the Fourier parabolic heat conduction model. The 
transient temperature from the Chebyshev economization was found 
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to be within 25 percent of the error function solution for the parabolic 
Fourier heat conduction model. The hyperbolic model solutions com-
pare well with the Fourier model solution for transient temperatures 
close to the wavefront and close to the surface (to within 15 percent of 
each other). The deviations are at the intermediate values.

9.4.3  Method of Relativistic Transformation of 
Coordinates in an Infinite Cylindrical Medium

Consider a fluid at an initial temperature T0. The surface of the cylin-
der is maintained at a constant temperature Ts for times greater than 
zero. The heat propagative velocity is given as the square root of the 
ratio of the thermal diffusivity and relaxation time: Vh = sqrt(α/τr). 
The two time conditions, initial and final, and the two boundary con-
ditions are:

 t = 0, r > R, T = T0 (9.118)

  t > 0, r = R, T = Ts (9.119)

  r = ∞, t > 0, T = T0 (9.120)

The governing equation in temperature is obtained by eliminat-
ing the second cross-derivative of heat flux with respect to r and t 
between the non-Fourier damped wave heat conduction and relaxa-
tion equation and the energy balance equation in cylindrical coordi-
nates (Fig. 9.9). Considering a cylindrical shell of thickness ∆r: 

 ∆t( 2πrL qr – 2π(r + ∆r)L qr + ∆r) = ((ρCp) 2πLr∆r ∆T )  (9.121)

r = R
T = Ts

r = infinity
T = T0

FIGURE 9.9 Semi-infi nite medium in cylindrical coordinates heated from a 
cylindrical surface.
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In the limit of ∆r, ∆t going to zero, the energy balance equation in 
cylindrical coordinates becomes:

  −
∂

∂
=

∂
∂





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( )rq
r r

C T

t
r pρ   (9.122)

The generalized Fourier heat conduction and relaxation equation is:

  q k
T
r

q
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∂
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Multiplying Eq. (9.123) by r and differentiating with respect to r and 
then dividing by r:
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Differentiating Eq. (9.125) with respect to t:
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Substituting Eqs. (9.125) and (9.124) into Eq. (9.122), the governing 
equation in temperature is obtained as:
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Obtaining the dimensionless variables:
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The governing equation in the dimensionless form can be written as:
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The damping term is removed from the governing equation. This is 
done realizing that the transient temperature decays with time in an 
exponential fashion. The other reason for this maneuver is to study 
the wave equation without the damping term. Let u = wexp(–τ/2), 
and the damping component of the equation is removed to yield:

  
− + ∂
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= ∂

∂
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2τ   (9.129)
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Equation (9.129) can be solved by using the method of relativistic 
transformation of coordinates. Consider the transformation variable 
η as η = τ2 – X2 for τ > X. The governing equation becomes a Bessel 
differential equation for wave temperature:
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Comparing Eq. (9.131) with the generalized Bessel equation, the solu-
tion is:

 a = 3/2; b = 0; c = 0; d = –1/16; s = ½  

The order p of the solution is then p = 2 sqrt(1/16) = ½: 
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c2 can be seen to be zero, as W is finite and not infinitely large at η = 0. 
c1 can be eliminated between the boundary condition at the surface 
and Eq. 9.133. It can be noted that this is a mild function of time, how-
ever. The general solution of the PDE consists of n arbitrary functions 
when the order of the PDE is n compared with n arbitrary constants 
for ODE. From the boundary condition at X = XR:

   1 = exp(–τ/2) c1I1/2 (1/2 sqrt(τ2 – XR
2)/(τ2 – XR

2))1/4  (9.133)

 u = [(τ2 – XR
2)1/4 /(τ2 – X2)1/4 ][I1/2 (1/2 sqrt(τ2 – X2)/

 I1/2 (1/2 sqrt(τ2 – XR
2))]  (9.134)

In terms of elementary functions, Eq. (9.134) can be written as:
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In the limit of XR going to zero, the expression becomes:
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For X > τ:
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Equation (9.137) can be written in terms of trigonometric functions as:
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In the limit of XR going to zero, the expression becomes:
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The dimensionless temperature at a point in the medium at X = 7, for 
example, is considered and shown in Fig. 9.10. Three different regimes 
can be seen. The first regime is that of the thermal lag and consists of 
no change from the initial temperature. The second regime is when:

 τ 2lag = X2 – 4π2 or τlag = sqrt(Xp
2 – 4π2) = 3.09  when Xp = 7 (9.140)
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FIGURE 9.10 Transient temperature at a point X = 7 in the infi nite medium.



B i o h e a t  T r a n s p o r t  407

For times greater than the time lag and less than Xp, the dimen-
sionless temperature is given by Eq. (9.134). For dimensionless times 
greater than 7, the dimensionless temperature is given by Eq. (9.137). 
For distances closer to the surface compared with 2π, the time lag will 
be zero. 

9.4.4  Relativistic Transformation of Spherical 
Coordinates in an Infinite Medium

Consider a fluid at an initial temperature T0. The surface of a solid 
sphere is maintained at a constant temperature Ts for times greater 
than zero (Fig. 9.11). The heat propagative velocity is given as the 
square root of the ratio of the thermal diffusivity and relaxation time: 
vh = sqrt(α/τr). 

The two time conditions, initial and final, and the two boundary 
conditions are:

 t = 0, r > R, T = T0 (9.141)

  t = ∞, T = Ts for all R  (9.142)

  t > 0, r = R, T = Ts  (9.143)

  r = ∞, t > 0, T = T0  (9.144)

The governing equation in temperature is obtained by eliminating 
the second cross-derivative of heat flux with respect to r and t 
between the non-Fourier damped wave heat conduction and relaxa-
tion equation and the energy balance equation in spherical coordi-
nates. Considering a shell of thickness ∆r at a distance r from the 
center of the solid sphere: 

  ∆t(4πr2 qr – 4π(r + ∆r)2 qr + ∆r) = ((ρCp) 4πr2∆r ∆T)  (9.145)

r = R
T = Ts

r = infiinity
T = T0

FIGURE 9.11 
Infi nite medium 
heated from a 
solid spherical 
surface.
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Dividing Eq. (9.145) throughout with ∆r∆t, and in the limit of ∆r, 
∆t going to zero, the energy balance equation in cylindrical coordi-
nates becomes:
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The generalized Fourier heat conduction and relaxation equation is:
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Combining Eqs. (9.146) and (9.147), the governing equation in tem-
perature can be written as:
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Obtaining the dimensionless variables:
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The governing equation in the dimensionless form can be written as:
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The damping term is removed from the governing equation. This 
is done realizing that the transient temperature decays with time in 
an exponential fashion. The other reason for this maneuver is to study 
the wave equation without the damping term. Let u = w exp(–τ/2), 
and the damping component of the equation is removed to yield:
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Equation (9.151) can be solved by using the method of relativistic 
transformation of coordinates. Consider the transformation variable 
η as η = τ2 – X2 for τ > X. The governing equation becomes a Bessel 
differential equation for wave temperature:
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Comparing Eq. (9.153) with the generalized Bessel equation, the solu-
tion is:

 a = 2; b = 0; c = 0; d = –1/16; s = ½  

The order p of the solution is then p = 1; sqrt(d/s) = ½: 
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c2 can be seen to be zero, as W is finite and not infinitely large at η = 0. 
c1 can be eliminated between the boundary condition at the surface 
and Eq. (9.154). It can be noted that this is a mild function of time, 
however. The general solution of the PDE consists of n arbitrary func-
tions when the order of the PDE is n compared with n arbitrary con-
stants for the ODE. From the boundary condition at X = XR:

  1 = exp(–τ/2) c1I1/2 (1/2 sqrt(τ2 – XR
2)/(τ2 – XR

2)1/4) (9.155)
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This is applicable for τ > X.
For X > τ, the solution can be written as:
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Equation (9.157) can be written for X > τ. For X = τ, the solution at the 
wavefront is the result. This can be obtained by solving Eq. (9.152) at 
η = 0. In the limit of XR going to zero: 
for τ > X.
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For X > τ: 
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Seventeen terms were taken in the series expansion of the modi-
fied Bessel composite function of the first kind and first order and the 
Bessel composite function of the first kind and first order, respec-
tively, and the results plotted in Fig. 9.12 for a given Xp = 9 using a 
Microsoft Excel spreadsheet on a Pentium IV desktop microcomputer. 
Three regimes can be identified. The first regime is that of the thermal 
lag and consists of no change from the initial temperature. The sec-
ond regime is when:

τ 2lag = X2 – (7.6634)^2 or τlag = sqrt(Xp
2 – 7.66342) 

 = 4.72 when Xp = 9 (9.160)

The first zero of J1(x) occurs at x = 3.8317. The 7.6634 is twice the first 
root of the Bessel function of the first order and first kind. For times 
greater than the time lag and less than Xp, the dimensionless tempera-
ture is given by Eq. (9.160). For dimensionless times greater than 9, the 
dimensionless temperature is given by Eq. (9.159). For distances 
closer to the surface compared with 7.6634 sqrt(ατr), the thermal lag 
time will be zero. The ballistic term manifests as a thermal lag at a 
given point in the medium.

The parabolic Fourier model and hyperbolic model for transient 
heat flux at the surface for the problem of transient heat conduction 
in a semi-infinite medium subject to constant surface temperature 
boundary condition was found to be within 10 percent of each other 
for times t > 2τr (Fig. 9.7). This checks out with the Boltzmann 
transformation—the hyperbolic governing equation reverts to the 
parabolic at long times. At short times, there is a “blow-up” in the par-
abolic model. In the hyperbolic model there is no singularity. This has 
significant implications in several industrial applications, such as 
fluidized bed heat transfer, CPU overheating, gel acrylamide elec-
trophoresis, etc.
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FIGURE 9.12 Transient temperature at a point X = 9 in the infi nite spherical 
medium.
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The solution developed by Baumeister and Hamill by the method 
of Laplace transforms was further integrated into a useful expression. 
A Chebyshev polynomial approximation was used to approximate 
the integrand with a modified Bessel composite function of space and 
time of the first kind and first order. The error involved in Chebyshev 
economization was 4.1 10−5 ηξ. The useful expression for transient 
temperature was shown in Fig. 9.8 for a typical time of τ = 5. The 
dimensionless temperature as a function of dimensionless distance 
also is shown in Fig. 9.8. The predictions from Baumeister and Hamill 
and the solution by the method of relativistic transformation are 
within 12 percent of each other on the average. Close to the wave-
front, the error in the Chebyshev economization is expected to be 
small and verified accordingly. Close to the surface, the numerical 
error involved in the Chebyshev economization can be expected to be 
significant. This can be seen in Fig. 9.8 close to the surface. The method 
of relativistic transformation yields bounded solutions without any 
singularities. The transformation variable ψ is symmetric with respect 
to space and time. It transforms the PDE that governs the wave 
temperature into a Bessel differential equation. Three regimes are iden-
tified in the solution: an inertial zero-transfer regime, a regime 
characterized by Bessel composite function of the zeroth order and 
first kind in space and time, and a third regime characterized by 
modified Bessel composite function of the zeroth order and first 
kind in space and time.

Earlier attempts by other investigators to obtain an analytical 
solution for the damped wave conduction and relaxation equation in 
an infinite cylindrical medium were made by using the method of 
Laplace transformation. Singularities were found in the results for a 
step-change in temperature at the surface. In this study, the method 
of relativistic transformation is used in order to obtain an analytical 
solution to infinite cylindrical coordinates for the case of a step-
change in boundary temperature. The transformation η = τ2 – X2 was 
found to transform the governing equation in wave temperature into 
a Bessel differential equation in one variable, that is, the transforma-
tion variable. This was done for the case of an infinite spherical 
medium as well. The governing equation for wave temperature from 
the governing equation for transient temperature can be obtained 
either by multiplying the transient temperature equation with 
exp(τ/2) or removing the damping component from the governing 
equation by a u = w exp(–τ/2) substitution. The analytical solution for 
an infinite cylinder was characterized by a modified Bessel composite 
function in space and time of the first kind and half-order in the open 
interval of τ > X. This is when the wave speed (~r/t) is smaller than 
the diffusion speed √α/τr. For values of times less than the dimen-
sionless distance X, the solution is characterized by a Bessel compos-
ite function in space and time of the first kind and half order. This is 
when the wave speed is greater than the diffusion speed. The inertial 
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time-lagging regime marked the third regime of transfer. For the infi-
nite sphere, the solutions were characterized by a modified Bessel 
composite function in space and time of the first kind and first order, 
and by a Bessel composite function in space and time of the first kind 
and first order for the open intervals of τ > X and X > τ. The initial 
condition can be verified in the asymptotic limits of zero time. The 
transformation variable is symmetric with respect to space and time. 
No singularities were found in the analytical solutions for semi-infinite 
slab, infinite cylinder, and infinite sphere.

9.5 Finite Slab and Taitel Paradox
Taitel [9] considered a finite slab (Fig. 9.13) with two boundaries of 
width 2a heated from both sides. Both the sides are maintained at a 
constant temperature Ts for times t > 0. At initial time t = 0, the tem-
perature at all points in the slab is T0. The governing equation is given 
by Eq. (9.161). The four conditions used by Taitel—two in space and 
two in time—that are needed to completely describe a hyperbolic PDE 
that is second order with respect to space and with respect to time are:

  
∂
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= ∂
∂

u u u
Xτ τ

2

2

2

2   (9.161)

where u T T T T t X xs s r r= − − = =/ ; / ; /0 τ τ ατ  

 t = 0, −a < x < + a, T = T0, or u = 1 (9.162)

 t > 0, x = ± a, T = Ts, u = 0 (9.163)

 t = 0, ∂u/∂τ = 0 (9.164)

Taitel solved for Eq. (9.161), and for the conditions stated previously, 
obtained the analytical solution for damped wave conduction and 

T = TsT = Ts

x = –a x = a

FIGURE 9.13 Finite slab with two boundaries heated from both sides.
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relaxation in a finite slab. The solution obtained by Taitel for the cen-
terline temperature of the finite slab follows. They considered a con-
stant wall temperature, and the initial time conditions included a 
∂T/∂t = 0 term in addition to the initial temperature condition. The 
solution they presented is as follows:

 u = 
0

∞

∑bnexp(–τ/2)exp(–τ/2sqrt(1 – 4(2n + 1)2π2ατr/a2))    

     + 
0

∞

∑ cnexp(–τ/2) exp(+τ/2sqrt(1 – 4(2n + 1)2π2ατr/a2)) (9.165)

Multiplying both sides of Eq. (9.166) by exp(τ/2):

 uexp(τ/2) = W = 
0

∞

∑ bnexp(–τ/2sqrt(1 – 4(2n + 1)2π2ατr/a2))    

     + 
0

∞

∑  cnexp(+τ/2sqrt(1 – 4(2n + 1)2π2ατr/a2))  (9.166)

At infinite times, the LHS of Eq. (9.166) is zero times ∞ and is zero. 
The RHS does not vanish. For certain values of space and time, Taitel 
found that the analytical solution predicted values of temperature 
above the surface temperature. This is referred to in the literature as 
the temperature overshoot paradox. The temperature overshoot may 
be as a result of the growing exponential term in Eq. (9.165).

9.5.1 Final Condition in Time for a Finite Slab
Consider the finite slab shown in Fig. 9.13 subject to the following 
four conditions—two in space and two in time—that are required to 
complete a problem in a hyperbolic PDE that is second order with 
respect to space and second order with respect to time: 

 t = 0, –a < x < +a, T = T0, or u = 1 (9.167)

 t > 0, x = ±a, T = Ts, u = 0 (9.168)

 t = ∞, u = 0 (9.169)

Equation (9.167) is the final condition in time. Equation (9.161) is now 
solved for as follows.

Multiplying throughout Eq. (9.161) by exp(nτ):

  
∂

∂
= ∂

∂
+ ∂

∂

2

2

2

2

( )ue
X

e
u

e
un

n n
τ

τ τ
τ τ   (9.170)

Let w = uenτ. Then:
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= ∂
∂
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  (9.171)
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Combining Eqs. (9.171) and (9.170):

  
∂
∂

= ∂
∂

− + ∂
∂

− ∂
∂

+
2

2

2

2
22

w
X

w
nw

w
n

w
n w

τ τ τ   (9.172)

For n = ½, Eq. (9.172) becomes:

  
∂
∂

= ∂
∂

−
2

2

2

2 4
w

X
w w

τ   (9.173)

The w in Eq. (9.173) is the wave temperature. Equation (9.173) can be 
solved by the method of separation of variables:

     Let  u = V(τ) φ(X) (9.174)

Equation (9.173) becomes: 

  φ" (X)/ φ(X) = (V '(τ) + V "(τ))/V(τ) = –λn
2 (9.175)

 φ(X ) = c1Sin(λnX) + c2Cos(λnX )  (9.176)

From the boundary conditions: 

 At X = 0, ∂φ/∂X = 0,   so, c1 = 0 (9.177)

 φ(X) = c1Cos(λnX)  (9.178)

 0 = c1Cos(λnXa)  (9.179)

 (2n – 1)π/2 = λnXa (9.180)

 λn = (2n – 1)π sqrt(α τr)/2a, n = 1,2,3… (9.181)

The time domain solution would be:

 V = exp(–τ/2) (c3 exp(sqrt(1/4 –λn
2) τ )  

 + c4 exp(–sqrt(1/4 – λn
2)τ)) (9.182)

or Vexp(τ/2) = (c3 exp(sqrt(1/4 – λn
2) τ )  

 + c4 exp(–sqrt(1/4 – λn
2)τ))  (9.183)

From the final condition u = 0 at infinite time, so is Vφexp(τ/2) = W, 
the wave temperature at infinite time. Although 0∗∞ is of the indeter-
minate form, the compound function Vexp(τ/2) can be transformed 
into 0/0 the form and shown to become zero in the limit of infinite 
time. The wave temperature is that portion of the solution that 
remains after dividing the damping component either from the solu-
tion or the governing equation. For any nonzero φ, it can be seen that 
at infinite time, the LHS of Eq. (9.183) is a product of zero and infinity 
and a function of x, and is zero. Hence, the RHS of Eq. (9.183) is also 
zero, and in Eq. (9.182), c3 needs to be set to zero. Thus:

 u = 
1

∞

∑ cnexp(–τ/2) exp(–sqrt(1/4 – λn
2) τ) Cos(λnX)  (9.184)
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where λn is described by Eq. (9.181) and cn can be shown using the 
orthogonality property to be 4(–1)n+1/(2n – 1)π . It can be seen that 
Eq. (9.184) is bifurcated. As the value of the thickness of the slab 
changes, the characteristic nature of the solution changes from monot-
onic exponential decay to subcritical damped oscillatory. For a < π 
sqrt (ατr), even for n = 1, λn > ½. This is when the argument within the 
square root sign in the exponentiated time domain expression 
becomes negative and the result becomes imaginary. Using De Moivre’s 
theorem and taking a real part for the small width of the slab: 

 
u = 

1

∞

∑ 
cnexp(–τ/2) Cos(sqrt(λn

2 – 1/4) τ) Cos(λnX)  (9.185)

Equations (9.184) and (9.185) can be seen to be well bounded. These 
become zero at long times. This would be the time taken to reach 
steady state. Thus, for a ≥ π sqrt(α τr):

 
u = 

1

∞

∑ 
cnexp(–τ/2) exp(–sqrt(1/4 – λn

2) τ) Cos(λnX )  (9.186)

where cn = 4(–1)n+1/(2n – 1)π and λn = (2n – 1)π sqrt(α τr)/2a 
The centerline temperature for a particular example is shown in 

Fig. 9.14. Eight terms in the infinite series given in Eq. (9.186) were 
taken and the values calculated on a 1.9-GHz Pentium IV desktop 
personal computer. The number of terms was decided on the incre-
mental change or improvement obtained by doubling the number of 
terms. The number of terms was arrived at a 4 percent change in the 
dimensionless temperature.

The Taitel paradox is obviated by examining the final steady-state 
condition and expressing the state in mathematical terms. The W 
term, which is the dimensionless temperature upon removal of the 
damping term, needs to go to zero at infinite time. This resulted in 
our solution, which is different from previous reports and is well 
bounded. The use of the final condition is what is needed for this 
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problem to be used extensively in engineering analysis without being 
branded as violating the second law of thermodynamics. The condi-
tions that were the touted violations of the second law are not physi-
cally realistic. A bifurcated solution results. For a small width of the 
slab, a < π sqrt(α τr), the transient temperature is subcritical damped 
oscillatory. The centerline temperature is shown in Fig. 9.15.

 
u = 

0

∞

∑ 
cnexp(–τ/2) Cos(sqrt(λn

2 – 1/4) τ) Cos(λnX)  (9.187) 

The subcritical damped oscillations in the centerline temperature at 
various values of large relaxation times are shown in Fig. 9.16. The 
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relaxation time value that is greater than the subcritical damped oscil-
lations can be given by:

 
τ

π αr
a>

2

2  (9.188)

9.6  Finite Sphere Subject to Constant Wall Temperature
Consider a sphere at initial temperature T0. The surface of the sphere 
is maintained at a constant temperature Ts for times greater than zero. 
The heat propagative velocity is given as the square root of the ratio 
of thermal diffusivity and relaxation time, Vh = α τ/ r . The initial, 
final, and boundary conditions are:

  t = 0, 0 ≤ r < R, T = T0 (9.189)

 t = ∞, 0 ≤ r < R, T = Ts (9.190)

 t > 0, r = 0, ∂T/∂r = 0 (9.191)

 t > 0, r = R, T = Ts (9.192)

The governing equation can be obtained by eliminating qr between 
the generalized Fourier’s law of heat conduction and the equation 
from the energy balance of in – out = accumulation. This is achieved 
by differentiating the constitutive equation with respect to r and the 
energy equation with respect to t and eliminating the second cross-
derivative of q with respect to r and time. Thus:

  τ αr
T
t

T
t

T
r r

T
r

∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

2

2

2

2

2
  (9.193)

In the dimensionless form, Eq. (9.193) can be written in cylindrical 
coordinates as:

  
∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

u u u
X X

u
Xτ τ

2

2

2

2

2
   (9.194)

The solution is obtained by the method of separation of variables. 
First, the damping term is removed by the substitution u e w= −τ/2 . 
With this substitution, Eq. (9.194) becomes: 

  − + ∂
∂

= ∂
∂

+ ∂
∂

w w w
X X

w
X4

22

2

2

2τ   (9.195)

The method of separation of variables can be used to obtain the solu-
tion of Eq. (9.195):

Let  w = V(τ) φ (X ) (9.196)
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Plugging Eq. (9.196) into Eq. (9.195) and separating the variables that 
are a function of X only and τ only, the following two ODEs, one in 
space and another in time, are obtained:

  
d
dX X

d
dX

2

2
22

0
φ φ λ φ+ + =   (9.197)

  
d V
d

2

2
21

4
0

τ
λ= −







=   (9.198)

The solution for Eq. (9.197) is the Bessel function of half order and 
first kind:

 φ = c1 J1/2 (λ X) + c2 J−1/2 (λ X)  (9.199)

It can be seen that c2 = 0 as the concentration is finite at X = 0. Now 
from the boundary condition (BC) at the surface:

  φ λ
ατ

λ
ατ

=










+








−c J

R
c J

R

r r
1 1 2 2 1 2/ /   (9.200)

  
λ
ατ

πn

r

R
n= −( )1  for n = 2, 3.4… (9.201)

The solution for Eq. (9.198) is the sum of two exponentials in time, 
one that decays with time and another that grows exponentially with 
time: 

  V c cn n= −( ) + − −( )3
2

4
20 25 0 25exp . exp .τ λ τ λ    (9.202)

The term containing the positive exponential power exponent 
will drop out because with increasing time, the system may be 
assumed to reach steady state and the points within the sphere will 
always have temperature values less than that at the boundary. From 
the final condition in time, that is, at steady state:

  w ue= τ/2   (9.203)

Thus, w will have to be zero at infinite time. Therefore, c3 in 
Eq. (9.202) is found to be zero. The term containing the positive expo-
nential power exponent will drop out because with increasing time, 
the system may be assumed to reach steady state and the points 
within the sphere will always have temperature values less than at 
the boundary:

Thus:  V c n= − −( )4
20 25exp .τ λ   (9.204)
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or  u c J Xn n n= − − −






∞

∑ 1 2
0

2

2
0 25/ ( )exp .λ τ τ λ   (9.205)

The cn can be solved for from the initial condition by using the 
principle of orthogonality for Bessel functions. At time zero, the LHS 
and RHS are multiplied by J1/2(λm X ). Integration between the limits 
of 0 and R is performed. When n is not m, the integral is zero from the 
principle of orthogonality. Thus, when n = m: 

  c
J X

J c X
n

n

R

n

R=
−∫
∫

1 20

1 2
2

0

/

/

( )

( )

λ

λ
  (9.206)

It can be noted from Eq. (9.205) that when: 

  1/4 < λn
2  (9.207)

the solution will be periodic with respect to the time domain. This can be 
obtained by using De Moivre’s theorem and obtaining the real part 

to exp( . )− −i nτ λ2 0 25 . Thus, for materials with relaxation times 
greater than a certain limiting value, the solution for temperature will 
exhibit subcritical damped oscillations. Therefore: 

  τ
αr

R>
2

12 57.   (9.208)

And a bifurcated solution is obtained. From Eq. (9.207), it also can be 
seen that all terms in the infinite series will be periodic, that is, even 
for n = 2 when Eq. (9.208) is valid:

  u c J Xn n n= −( )∞

∑ 1 2
0

2 0 25/ ( )cos .λ τ λ   (9.209)

Thus, the transient temperature profile in a sphere is obtained for a 
step-change in temperature at the surface of the sphere using the 
modified Fourier’s heat conduction law. For materials with relaxa-
tion times greater than R2/12.57α, subcritical damped oscillations can 
be seen in the transient temperature profile. The exact solution for a 
transient temperature profile using finite-speed heat conduction is 
derived by the method of separation of variables. It is a bifurcated 
solution. For certain values of λ, the time portion of the solution is 
cosinous and damped, and for others it is an infinite series of Bessel 
functions of the first kind and half order and decaying exponential in 
time. Also, it can be shown that for terms in the infinite series with n 
greater than 2, the contribution to the solution will be periodic for 
small R. The exact solution is bifurcated.
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9.7  Finite Cylinder Subject to Constant 
Wall Temperature

Consider a cylinder at initial temperature T0. The surface of the sphere 
is maintained at a constant temperature Ts for times greater than zero. 
The heat propagative velocity is given as the square root of the ratio 
of thermal diffusivity and relaxation time, Vh = α τ/ r . The initial, 
final, and boundary conditions are the same as given for the sphere. 
The governing equation can be obtained by eliminating qr between 
the generalized Fourier’s law of heat conduction and the equation 
from energy balance of in – out = accumulation. This is achieved by 
differentiating the constitutive equation with respect to r and the 
energy equation with respect to t and eliminating the second cross-
derivative of q with respect to r and time. Thus:

  τ α α
r
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t
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T
r r

T
r

∂
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2
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The governing equation in the dimensionless form is then:

  
∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

u u u
X X

u
Xτ τ

2

2

2

2

1
  (9.211)

The solution is obtained by the method of separation of variables. 
First the damping term is removed by the substitution u e w= −τ/2 :

  − + ∂
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= ∂
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w w w
X X

w
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2

2τ   (9.212)

The method of separation of variables can be used to obtain the solu-
tion of Eq. (9.212):

Let  w = V(τ) φ (X) (9.213)

Plugging Eq. (9.213) into Eq. (9.212) and separating the variables that 
are a function of X only and τ only, the following two ODEs, one in 
space and another in time, are obtained:

  
d
dX X

d
dX

2

2
21

0
φ φ λ φ+ + =   (9.214)

  
d V
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4
0
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



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=   (9.215)

The solution to Eq. (9.214) can be seen to a Bessel function of the 
zeroth order and first kind and Bessel function of the zeroth order 
and second kind:
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It can be seen that c2 = 0 as the temperature is finite at X = 0. Now from 
the BC at the surface: 

  
λ
ατ

πn

r

R
n= + −2 4048 1. ( )  for n = 2,3.4…  (9.217)

The solution for Eq. (9.215) is the sum of two exponentials in time, 
one that decays with time and another that grows exponentially with 
time: 

  V c cn n= −( ) + − −( )3
2

4
20 25 0 25exp . exp .τ λ τ λ    (9.218)

The term containing the positive exponential power exponent 
will drop out because with increasing time, the system may be 
assumed to reach steady state and the points within the sphere will 
always have temperature values less than at the boundary. From the 
final condition in time, that is, at steady state:

  w ue= τ/2   (9.219)

Thus, w will have to be zero at infinite time. Therefore, c3 in 
Eq. (9.218) is found to be zero. The term containing the positive expo-
nential power exponent will drop out because with increasing time, 
the system may be assumed to reach steady state and the points 
within the sphere will always have temperature values less than at 
the boundary.

Thus:   V c n= − −( )4
20 25exp .τ λ   (9.220)

or  u c J Xn n n= − − −




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∞

∑ 0
0

2

2
0 25( )exp .λ τ τ λ    (9.221)

The cn can be solved for from the initial condition by using the 
principle of orthogonality for Bessel functions. At time zero, the LHS 
and RHS are multiplied by J0(λm X). Integration between the limits of 
zero and R is performed. When n is not m, the integral is zero from the 
principle of orthogonality. Thus, when n = m: 
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It can be noted from Eq. (9.221) that when: 

  1 /4 < λn
2  (9.223)

the solution will be periodic with respect to the time domain. This 
can be obtained by using De Moivre’s theorem and obtaining the 

real part to exp .− −( )i nτ λ2 0 25 . Thus, for materials with relaxation 
times greater than a certain limiting value, the solution for tempera-
ture will exhibit subcritical damped oscillations, and: 

  τ
αr

R>
2

9 62.   (9.224)

Thus, a bifurcated solution is obtained. Also from Eq. (9.221) it can be 
seen that all terms in the infinite series will be periodic, that is, even 
for n = 2, when Eq. (9.224) is valid:

  u c J Xn n n= −( )∞

∑ 0
0

2 0 25( )cos .λ τ λ    (9.225)

The transient temperature profile in a cylinder is obtained for a step-
change in temperature at the surface of the cylinder using the modi-
fied Fourier’s heat conduction law. For materials with relaxation 
times greater than (R2/9.62α) where R is the radius of the cylinder, 
subcritical damped oscillations can be seen in the transient tempera-
ture profile. The exact solution for a finite cylinder subject to constant 
wall temperature using finite speed heat conduction is derived by the 
method of separation of variables. It is a bifurcated solution. For cer-
tain values of lambda, the time portion of the solution is cosinous and 
damped, and for others it is an infinite series of Bessel functions of 
the first kind and half order and decaying exponential in time. Also, 
it can be shown that for terms in the infinite series with n greater than 
2, the contribution to the solution will be periodic for small R. 

The temperature overshoot found in the analytical solution of 
Taitel for the case of a finite slab subject to constant wall temperature 
was a cause for alarm as a possible violation of the second law of 
thermodynamics. In this study, the final condition in time is posed as 
one of the two space conditions and two time conditions needed in 
order to fully describe a second-order hyperbolic partial differential 
equation in two variables. In addition to the initial time condition, the 
constraint from the steady-state attainment is translated to a fourth 
time condition. The wave dimensionless temperature has to become 
zero at steady state, and the wave temperature itself has to attain 
equilibrium. When this condition is applied, a growing exponential 
in time vanishes and a well-bounded solution results for a finite 
sphere and a finite cylinder. Taitel used a condition at time zero that 
the time derivative of the temperature will be zero. This means any 
initial temperature distribution. It turns out this cannot be a physically 
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realistic fourth condition. The fourth condition in this study comes 
from what can be expected at steady state. The time derivative of 
temperature at zero time may have to be calculated from the model 
solution. In terms of degrees of freedom in time conditions, the con-
straint from steady state has to take precedence. The method of sepa-
ration of variables was used to obtain the analytical solution. The 
solutions were found to be bifurcated for all three cases of finite slab, 
finite sphere, and finite cylinder. 

When the relaxation time of the material under consideration 
becomes large, the temperature can be expected to undergo oscilla-
tions in the time domain. These oscillations were found to be sub-
critical damped oscillatory. For a finite sphere, when the relaxation 
times are greater than R2/(12.57α), the solution becomes subcritical 
damped oscillatory from monotonic exponential decay in time and is 
given as an infinite Bessel series solution of the half order and first 
kind. For a finite cylinder, when the relaxation times are greater than 
R2/(9.62α), the solution becomes subcritical damped oscillatory from 
monotonic exponential decay in time and is given as an infinite Bes-
sel series solution of the zeroth order and first kind. For a finite slab, 
when the relaxation times are greater than a2/πα, the solution becomes 
subcritical damped oscillatory from monotonic exponential decay in 
time and is given by an infinite Fourier series solution.

 The expressions for heat flux can be obtained from the energy 
balance equation and the convergence of the infinite series confirmed 
at the surface. Thus, the singularities found in the solution to the Fou-
rier parabolic equations for the same geometry are now absent in the 
solution to the damped wave conduction and relaxation hyperbolic 
equations. The main conclusions from the study are:

 1. The use of the final condition in time leads to bounded solutions.

 2. The temperature overshoot problem can be attributed to use 
of a physically unrealistic time condition.

 3. An analytical solution obtained for finite sphere, finite cylin-
der, and finite slab is found to be bifurcated.

 4. For materials with large values of relaxation times, such as 
given in Eq. (9.187) for a finite slab, Eq. (9.208) for the case of 
a finite cylinder, and Eq. (9.224) for the case of finite sphere 
subcritical damped oscillations in temperature can be found.

9.8 Thermophysical Properties
The thermophysical properties of the biological tissues and other 
materials are provided in Table 9.2 [11]. The role of fat as an insulator 
under the skin in the human anatomy can be evaluated using the 
thermophysical properties provided in Table 9.4. Consider the 



 Thermal 
Conductivity

Thermal 
Diffusivity

Heat
Capacity

Relaxation
Time

Mass
Density

S.No. Substance T (K) k (W/m/K) ` (m2/s)
Cp

(J/Kg/K) sr sec
q
(kg/m3)

Pressure 
(N/m2)

1 Air 300 0.025 2.11 E-5 1006 2.457E-10 1.177 101330

2 Water 300 0.609 1.5 E-07 4183 1.438E-09 996 101330

3 Bone 298 0.44 1.5E-07 1440 3.015E-09 1920 101330

4 Blood 298 0.642 1.7E-07 3889 1.629E-09 937 101330

5 Tooth enamel 310 0.92 4.2E-07 750 1.217E-08 2900 101330

6 Ice 273 2.22 1.1E-06 2050 1.068E-08 917.6 101330

7 Ethanol 300 783.5 4.1E-04 2454 3.150E-06 784 101330

8 Copper 300 401 1.2E-04 385 1.027E-05 8930 101330

9 Gold 298 318 1.3E-04 129 2.432E-05 19,300 101330

10 Gold 298 318 1.3E-04 129 4.6 ms 19,300 533.32

11 Titanium 273 22.4 9.4E-06 523 4.227E-07 4540 101330

12 Skin 310 0.442 1.2E-07 3471 1.25669E-09 1070 101330

13 Fat 298 0.21 6.9E-08 3258 6.367E-10 937 101330

TABLE 9.4 Thermophysical Properties of Biological Properties and Other Materials

424
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thicknesses of skin, fat, muscle, and bone to be 2.5 mm, 10 mm, 
20 mm, and 7.5 mm, respectively (Figure 9.17). The thermal conduc-
tivity of the muscle and bone is 0.5 W/m/K and 0.6 W/m/K, respec-
tively. The effect of the layer of fat on the heat flux from the human 
anatomy can be evaluated as as follows;

The governing equation for steady-state temperature in the compos-
ite assembly of skin, fat, muscle, and bone can be written as follows:

 

d T
dz

2

2 0=  (9.226)

The temperature profile can be seen to be linear with respect to the 
space coordinate. The heat flux can be seen to be a constant through 
the composite assembly. The effective thermal conductivity of the 
composite assembly can be written as:
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where kskin, kfat, kmuscle, and kbone are the thermal conductivities of the 
skin, fat, muscle, and bone, respectively. Examples of insulators of 
heat used to cover the human anatomy are fur, hair, and sweat. The 
effective thermal conductivity of hair on the human skull can be cal-
culated from the idealized model, where the hair is reduced to a com-
posite of cylindrical fibers aligned parallel to the axis and parallel to 
the flow of air. Let the thermal conductivity of fiber and air be taken 
as kfiber and kair, respectively. The effective thermal conductivity of a 
composite assembly of hair and air is shown to be [10]:
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1 φ   (9.228)

FatSkin Muscle Bone

FIGURE 9.17 Steady heat conduction through skin, fat, muscle, and bone 
layers.
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  (9.229)

where φ is the volume fraction of the fibers. The preceding expres-
sions tend to capture the role of fat and hair on the heat insulation 
process. 

9.9 Warm/Cool Sensations and Thermal Wear
The effect of damped wave conduction and relaxation on warm/
cool feeling of the human skin was studied by Sharma [12]. In this 
study a two-layer mathematical model was developed to study 
the transient heat conduction of the human skin and thermal fab-
ric layer during use to protect the human body from cold weather 
outdoors. 

A schematic of the relevant aspects from a cross-section of human 
skin near a finger pad is shown in Fig. 9.18. Many kinds of receptors 
in human skin are known to transmit information about the sur-
roundings to the central nervous system. The role of these receptors 
in generating sensations caused by stimuli from the surroundings is 
analyzed. The response in the receptors is physicochemical in nature. 
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FIGURE 9.18 Transient heat conduction in human skin and thermal wear in 
winter.
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The correlation between mechanical stimuli and sensation of touch 
from a neurophysiological standpoint was studied experimentally by 
earlier investigators. They discuss the relation between the surface 
roughness of fabric and the sense of touch. “Krause’s end bulb” is the 
receptor attributed with the sensation of coolness, and “Ruffini’s end-
ing” is the receptor that is responsible for the sensation of warmth. 
The transient heat conduction in the neighborhood of these receptors 
as the outside temperature plummets to low levels, which is typical 
of winter in the northern part of United States, needs to be modeled. 
The skin layer and the thermal layer assembly are approximated, as 
shown in Fig. 9.1. The blood flow in the vessels results in a constant 
temperature environment at x = b at T = Tbl, where Tbl is the blood 
temperature. The origin is taken at the interface between the winter 
surroundings and the outer surface of the thermal wear used to pro-
tect the skin from the winter weather. The thickness of the thermal 
fabric is a, and the interface of the thermal wear and human skin 
occurs at x = a. Let the ambient temperature be Tamb. In winter, this can 
be expected to be much lower than the blood temperature, that is, 
Tamb << Tbl.. The temperature difference between the blood vessels 
and the cold surroundings drives the problem. Let the dimensionless 
temperature time and penetration distance be defined with respect to 
the human skin parameters as follows:

  u
T T
T T

amb

bl amb

=
−
− ; τ

τ
= t

rs
; X

x

s rs

=
α τ

  (9.230)

9.9.1 Steady State
At steady state, the governing equation for temperature in the skin 
layer can be written as follows. A heat source in the skin layer gener-
ates heat to provide the warm feeling that comes in winter. Let this 
heat source be dependent on the temperature difference with the 
ambient temperature. The energy balance on a thin slice with thick-
ness ∆x and cross-sectional area A can be written as:

  −
∂
∂

+ − =
q
x

U T Tx
amb'"( ) 0   (9.231)

here U '" is the temperature-difference-dependent heat source. Writ-
ing the Fourier’s law of heat conduction for the heat flux, qx, in the 
dimensionless form, Eq. (9.231) may be written as:

  
∂
∂

= −
2

2

u
X

U u∗   (9.232)

where U U S S Cs ps rs∗ = ="'/ ; /ρ τ  
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The solution for Eq. (9.233) can be written as:

  u = A Sin(√U∗ X) + B Cos(√U∗ X) (9.233)

The boundary conditions at the interface of the skin tissue layer and 
the blood vessels can be written as:

 At X = Xb = 
b

s rsα τ
, u = 1 since T = Tbl (9.234)

Further, it can be assumed that there is no heat transfer from the skin 
layer to the blood vessels or vice versa. Thus:

 at X = Xb = 
b

s rsα τ
, 

∂
∂

=u
X

0   (9.235)

Applying these boundary conditions to the integration constants, A 
and B can be solved for and found to be Sin(√U∗Xb ) and Cos(√U∗Xa), 
respectively, and Eq. (9.234) can be seen to be:

 u = Cos U X Xb∗( )−



   (9.236)

In a similar fashion, the governing equation for the temperature in 
the thermal wear layer, that is, for 0 ≤ x ≤ a, or in terms of dimension-
less distance, 0 ≤ X ≤ Xa can be written in the dimensionless form at 
steady state as follows:

  
∂
∂

=
2

2 0
u

X
  (9.237)

The solution to Eq. (8) can be seen to be:

 u = CX + D (9.238)

The boundary conditions for the temperature in the thermal wear 
layer can be written as:

 X = 0, u = 0 (9.239)

 X = Xa, u (thermal wear) = u (skin) = Cos(Xb – Xa) (9.240)

Thus, C and D in Eq. (9.238) can be solved for using the boundary 
conditions given by Eqs. (9.239) and (9.240). Thus:

 u = 
xCos U X X

a
b a∗( )−



   (9.241)
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9.9.2 Transient State In Human Skin Layer
The energy balance equation in the skin layer during transient state 
can be written as:

  − ∂
∂

+ − = ∂
∂

q
x

U T T C
T
tbl s ps"'( ) ( )ρ   (9.242)

Combining Eq. (9.242) with the damped wave conduction and relaxa-
tion equation given by:

  q k
T
x

q
ts rs= − ∂

∂
− ∂

∂
τ   (9.243)

and making the terms dimensionless, the following governing equation 
can be written for the skin layer undergoing transient heat conduction:
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where u, τ, U∗, and X are defined by Eq. (9.230). It can be seen that the 
boundary conditions are not homogeneous. Hence, the solution is 
assumed to take the form:

  u = ut + us (9.245)

where ut is the transient temperature and us = steady-state tempera-
ture. The solution for us was solved for in the case 1 above (Fig. 9.1) 
and given by Eq. (9.241). The rest of the problem is obtaining the solu-
tion of the transient temperature subject to the following time and 
space conditions: 
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The initial and final time and space conditions can be written as:

 at τ = 0, ut = 1 (9.247)

 at τ = ∞, ut = 0 (9.248)

 at X = Xb , u
t = 0 (9.249)

 at X = Xa = ut = u – u (9.250)

Assuming that equilibrium is established rapidly at the interface, u – us 
in the RHS of Eq. (9.250) can be taken as zero. Hence, the boundary 
condition at X = Xa, u

t = 0.
The transient temperature, ut, can be expected to have an expo-

nential decaying component, or the damping component in Eq. 
(9.246) can be removed by the following substitution: ut = wexp(–nτ). 
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For n = (1 – U∗)/2, Eq. (9.246) is transformed into a governing equa-
tion of the wave temperature w:
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4

w w U w
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  (9.251)

Equation (9.251) can be solved for by the method of separation of 
variables. Let w = V(τ)φ(X). Then the terms in Eq. (9.251) can be sepa-
rated into two equations, one in space and one in the time domain:
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  (9.252)

The general solution in the space domain for the second-order ODE 
with constant coefficients can be seen to be:

 φ = c1Sin(λnX) + c2Cos(λnX) (9.253)

The boundary conditions given by Eqs. (9.249) and (9.250) are applied 
to Eq. (9.254). Thus:

 c2 = – c1Tan(λnXb) (9.254)

 λn = 
2n

X Xb a

π
( )− , n = 1,2,3,…… (9.255)

The time domain portion of the solution for the second-order ODE 
with constant coefficients can be written as:
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From the final condition given by Eq. (9.248) at τ = ∞, w = utexp
(+nτ) = 0∗∞ = 0. Hence, c3 can be seen to be zero. The general solution 
for the transient temperature can be written:
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B i o h e a t  T r a n s p o r t  431

λn is given by Eq. (9.255). cn can be solved for from the initial condition 
given by Eq. (9.247) and using the principle of orthogonality. cn is 
found to be:

  c
X X

n Tan Xn

n
b a

n b

=
− − −2 1 1
2 2

( ( ) )( )
( )π λ   (9.258)

9.9.3 Transient State In Thermal Fabric Layer
In a similar fashion, the transient temperature in the thermal wear 
layer can be calculated as follows. The governing equation for tran-
sient temperature in the thermal fabric layer can be written as:

  β
τ

γ
τ

∂
∂

= ∂
∂

+ ∂
∂

2

2

2

2

u
X
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where β = α αf s/ ; γ = τ τfr sr/  and u, τ, and X are the same as defined in 
Eq. (9.230). 

It can be seen that the boundary conditions are not homogeneous. 
Hence, the solution is assumed to take the form:

 u = ut + us (9.260)

where ut is the transient temperature and us = steady-state tempera-
ture. The solution for us was solved for in the section on steady-state 
previously and given by Eq. (9.241). The rest of the problem is obtain-
ing the solution of the transient temperature subject to the following 
time and space conditions: 
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  (9.261)

The initial and final time and space conditions can be written as:

 at τ = 0, ut = 1 (9.262)

 at τ = ∞, ut = 0 (9.263)

 at X = 0, ut = 0 (9.264)

 at X = Xa = ut = u – us  (9.265)

Assuming that equilibrium is established rapidly at the interface, u – us 
in the RHS of Eq. (9.265) can be taken as zero. Hence, the boundary 
condition at X = Xa, u

t = 0.
The transient temperature, ut, can be expected to have an expo-

nential decaying component, or the damping component in Eq. (9.261) 
can be removed by the following substitution: ut = wexp(–nτ). For 
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n = 1 2/ γ , Eq. (9.261) is transformed into a governing equation of the 
wave temperature w:
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24
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Equation (9.266) can be solved for by the method of separation of 
variables. Let w = θ(τ)g (X). Then the terms in Eq. (9.266) can be sepa-
rated into two equations, one in space and another in the time 
domain:

  β λ γ θ
θ γ

g
g m

" "= − = −2 1
4

  (9.267)

The general solution in the space domain for the second-order ODE 
with constant coefficients can be seen to be:

 g = c1Sin(λmX ) + c2Cos(λmX ) (9.268)

The boundary conditions given by Eqs. (9.264) and (9.265) are applied 
to Eq. (9.268). Thus: 

 c2 = 0  (9.269)
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The time domain portion of the solution for the second-order ODE 
with constant coefficients can be written as:
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From the final condition given by Eq. (9.265) at τ = ∞, w = utexp(+nτ) = 
0∗∞ = 0. Hence, c5 can be seen to be zero. The general solution for the 
transient temperature can be written: 
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λm is given by Eq. (9.270). dn can be solved for from the initial condi-
tion given by Eq. (9.262) and using the principle of orthogonality. dn is 
found to be: 
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The solutions to the transient heat conduction in the human skin 
layer and the thermal fabric layer, including the damped wave con-
duction and relaxation effects, were derived using the method of 
separation of variables. The use of the final condition in time leads to 
well-bounded, physically realistic solutions within the bounds of 
Clausius inequality. The transient temperature in the two layers at 
steady state is shown in Fig. 9.19. The nature of the temperature pro-
file is cosinous in the human skin layer and linear in the thermal fab-
ric layer. The parameters the profile is derived for are Xa = 3, Xb = 5, 
and U∗ = 2.0. The heat flux at steady state for the human skin layer 
and the thermal fabric layer is shown in Figure 9.20 for the parameters 
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FIGURE 9.19 Steady-state temperature in human skin layer and thermal 
fabric layer for Xa = 3.0, Xb = 4.0, and U∗ = 2.0.
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FIGURE 9.20 Steady-state temperature in human skin layer and thermal 
fabric layer for Xa = 3.0, Xb = 4, kf/ks = 5, and U∗ = 2.0.
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Xa = 3, Xb = 5, kf/ks = 5.0, and U∗ = 2.0. It can be seen from Fig. 9.20 that 
the interface heat flux undergoes a maxima. For the heat flux in 
dimensionless form with respect to the skin’s thermophysical proper-
ties, to be continuous, the ratio of the thermal conductivities of the 
thermal fabric layer and skin layer have to be a certain value and can-
not be specified independently. This can be deduced from model solu-
tions. The maximum heat flux at the interface of the two layers may be 
related to the heat flux reported by Yoneda and Kawabata [12].

It can be seen from the model solutions that the transient tem-
perature will undergo subcritical damped oscillations under certain 
conditions. These conditions are for large relaxation times of the skin 
and f for the thermal fabric layer. 

Thus, for large relaxation time values of the skin, that is, τrs > 
( ) ( ) /1 162 2 2+ −U b a s∗ π α , it can be seen that the temperature in the skin 
layer can be expected to exhibit oscillations. The nature of the oscilla-
tions will depend on the strength of the heat source, which is a function 
of the temperature difference with the ambient cold winter tempera-
ture. For heat source U∗ > 1, oscillations that grow with time may be 
expected. For heat source U∗ < 1, subcritical damped oscillations can be 
expected. The solution for these materials is then given by:
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where λn and cn are given by Eqs. (9.270) and (9.258), respectively. 
Eight terms in the infinite series in Eq. (9.274) were plotted in a 

Microsoft Excel spreadsheet, and the dimensionless temperature is 
plotted as a function of dimensionless time in Fig. 9.21. It can be seen 
that for human skin materials with large relaxation times, as dis-
cussed previously, the dimensionless temperature exhibits growing 
oscillations at a heat source of U∗ = 2.0. The general solution is given 
by Eq. (9.274).

In a similar fashion, under certain conditions, the temperature in 
the thermal fabric layer can be expected to undergo subcritical 
damped oscillations. Thus, for:

 τrf > 
a

s

2

24π α   (9.275)

the transient temperature in the thermal fabric layer can expect to 
undergo subcritical damped oscillations. Under these conditions, the 
transient temperature in the thermal fabric layer is given by:
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where dn and λm is given by Eqs. (9.273) and (9.270), respectively. 
Six terms in the infinite series given by Eq. (9.276) were taken, 

and the dimensionless temperature was plotted against dimension-
less time in the thermal layer for fabric materials with large relaxation 
times, as shown in Fig. 9.22. The γ chosen for the study was 0.15, and 
the temperature at X = 1.1 was obtained for Xa = 3.0. It can be seen that 
the temperature undergoes subcritical damped oscillations. 
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9.10  Regulation of Human Anatomical Temperature
The body temperature in humans is held in dynamic balance by the 
generation of heat through metabolic activities within the human 
anatomy and by transfer of heat outside the human anatomy to the 
surrounding environment. The heat gain, heat storage, and heat 
transfer mechanisms coexist in human anatomy. A number of research 
studies have been undertaken to investigate this dynamic balance 
through the use of laser irradiation of tissue. As seen from the discus-
sions in the previous sections, the thermophysical properties of the 
blood, skin, fat, and bone are different from each other. The modes of 
heat transfer can be molecular heat conduction, heat convection, heat 
radiation, and a fourth mode of heat transfer called damped wave 
conduction. Metabolism includes all the chemical reactions taking 
place within the human anatomy. Energy is liberated from chemical 
reactions that are exothermic. This is used to sustain life and to per-
form the various functions, basic and chosen. The work is done by the 
human anatomy. In plants, however, the energy is supplied by sun-
shine, which is converted to chemical energy by photosynthesis. The 
minimal rate of metabolism needed to sustain life is referred to as the 
basic rate of metabolism. This rate is obtained while the patient is 
awake and resting and is at a stressless state. Digestive activities 
should cease. The external hot weather does not cause any heat 
exchange or thermoregulation. There is enough energy generated at 
this state for the heart to pump blood throughout the human anat-
omy, retain normal electrical activity in the nervous system, and gen-
erate calories of energy. The basic rate of metabolism can be measured 
using the rate at which oxygen is consumed and the energy gener-
ated from the metabolism of oxygen. Some work done by the human 
anatomy is allowed. The energy needed for metabolic activity is 
obtained from chemical reactions that are coupled, resulting in a net 
decrease in free energy. The basic rate of metabolism in an average 
patient is roughly 75 watts. The major organs, such as brain, skeletal 
muscle, liver, heart, gastrointestinal tract, kidneys, lungs, etc., partici-
pate in the base metabolism. The muscles in the human skeleton 
require less energy at the resting state compared with the state of 
exercise. When the patient is asleep, the metabolic rate falls below the 
basic rate of metabolism. The metabolic rate of all other activities, 
such as walking, sitting, mating, eating, cooking, growing, etc., are 
higher than the basic rate of metabolism. The active rate of metabo-
lism can exceed the basic rate by a factor of 10 to 20 during strenuous 
exercise.

The basic rate of metabolism in Homo sapiens varies with the 
body mass m as m0.75. The relationship between the basic rate of 
metabolism and human anatomical parameters can be expressed in 
terms of the surface to volume ratio of the patient as (S/V)−1.5. As 
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discussed in the earlier section, the thermodynamic efficiency can 
be written as:

  η = =
W

W

W
G

max
∆

  (9.277)

The thermodynamic efficiency can be seen from Eq. (9.277) to be a 
ratio of the work done by the human anatomy to the maximum work 
capable of the same human anatomy. Neglecting the mass transferred 
into the human anatomy, the maximum work capacity of the human 
can be said to be equal to the free energy change of the system ∆G. 
During any real process, according to the second law of thermody-
namics, as discussed earlier section in this chapter, the entropy change 
will always be positive [Eq. (9.6)]. It can be realized that:

 ∆ = ∆ − ∆G H T S  (9.278)

It can be seen that |Wmax|>∆H for real processes. When the process is 
reversed, the entropic change is zero. Thus, the maximum thermody-
namic efficiency achievable can be seen to be:

  ηmax = −1 2

1

T
T   (9.279)

Within the human anatomy, mechanisms are in place that will take 
effect to cool the anatomy when the average temperature reaches 
35°C. The average temperature within the human anatomy is usually 
37°C. When the skin temperature drops below 22.5°C, cellular mech-
anisms will take effect that will result in the generation of heat. The 
core human anatomical temperature is maintained within a narrow 
range by use of insulation and heat production. 

Two mechanisms that can cause cooling within the human anat-
omy are vasodilation and evaporative cooling affected by sweat. 
After strenuous exercise, on account of vasodilation, the skin exterior 
appears a bit reddish. The blood near the skin surface is cooled and 
flows back to the veins and arteries, thereby affecting energy transfer. 
The human anatomy reduces heat loss in the temperature range of 24 
to 32°C by reducing blood flow to the dermis. Below 24°C, the vaso-
constriction mechanism is not sufficient and heat production is 
through shivering or physical activity. There appears a set point in 
thermoregulation. This regulatory process is a bit more complicated 
than a first-order feed-forward control process. Transient receptor 
potential (TRP) ion channels are sensitive to hot and cold tempera-
tures. TRP channels are activated upon a control action from the 
hypothalamus and stimulate the nerves. Nerve signals and hormone 
signals result in vasodilation/vasoconstriction, or blood flow regula-
tion and changes in metabolism and heat generation.
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9.10.1 Bioheat Transfer Equation 
The heat generated within the human anatomy on account of the sev-
eral metabolic reactions and the heat transfer to the surroundings can 
be described using the bioheat transfer equation. This was first intro-
duced by Pennes [15]. Combining the energy balance equation and 
Fourier’s law of heat conduction, the bioheat transfer equation can be 
written as:
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where Umet
 is the heat generated per unit volume on account of metab-

olism and Ublood is the heat removed per unit volume on account of 
blood flow. Expressions for heat removed per unit volume by blood 
flow can be written as:

  U Q C T Tpb bblood blood= −( )   (9.281)

where Qblood is the volumetric rate of blood flow and Cpb and Tb are the 
heat capacity of the blood and temperature of the artery, respectively.

Some investigators have found that the assumption that the 
venous blood temperature and tissue temperature are equal may not 
be valid. They attempted to provide separate energy balances for 
arterial and venous blood and examined the distribution of capillar-
ies. Experimental data vindicate the separate energy balances for 
blood and tissue. An expression for effective thermal conductivity for 
blood and tissue was suggested by Charny [14]:
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  (9.282)

where da is the vessel diameter, d is the spacing between blood ves-
sels, Peheat is the thermal Peclet number, and ρn is the number density 
of capillaries. The Peclet number is the ratio of convection to conduc-
tion modes of heat transfer.

9.10.2  Damped Wave Conduction and Relaxation Effects
The damped wave conduction effects may become important in the 
time frame associated with heat transfer between tissue and blood. 
They are not considered in Eq. (9.266). Here is an attempt to account 
for the damped wave conduction and relaxation effects in bioheat 
transfer. 

Consider a rod of length l, with one end maintained at temperature 
Ts. The other end is at the zero temperature (0 K). This is the lowest 
temperature achievable according to the third law of thermodynamics. 
The entropy is zero at 0 K. At time t = 0, the rod is at 0 K. For times 
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greater than zero, the temperature-dependent heat source is allowed 
to heat the rod. It is of interest to study the temperature distribution 
in the rod using the non-Fourier damped wave conduction and relax-
ation equation. 

A temperature-dependent heat source with the strength U" ' w/
m3/K is present in the rod (Figure 9.23) The energy balance on a thin 
section with thickness ∆x is considered at a distance x from the origin 
for an incremental time ∆t. Thus, in one dimension:

 (q A x – q A x+∆x + U "' TA ∆x) ∆t = A ∆x (ρCp) ∆T (9.283)

Dividing throughout the equation with respect to x and t and taking 
the limits as ∆x, ∆t goes to zero, and at a constant cross-sectional area, 
the energy balance equation becomes:

  − ∂
∂

+ = ∂
∂

q
x

U T C
T
tp"' ρ   (9.284)

The non-Fourier damped wave heat conduction and relaxation equa-
tion can be written as:

  q k
T
x

q
tr= − ∂

∂
− ∂

∂
τ   (9.285)

The governing equation for the temperature can be obtained by elim-
inating the heat flux between the energy balance equation and the 
constitutive law for heat conduction. Thus, differentiating the energy 
balance equation with respect to time and the constitutive equation 
with respect to x and eliminating the second cross-derivative of flux 
with respect to time and space yields:

  U T k
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Using the dimensionless variables:

   u
T
T

t
X

x

s r r

= = =; ;τ
τ ατ

  (9.287)

Heat source = U"'(W/cu.m/K)

x = 0, T = Ts x = 1, T = 0

FIGURE 9.23 Temperature-dependent heat source in a rod.



440 C h a p t e r  N i n e

The governing equation in temperature becomes:

  U u S
u

X
S

u
S U

u
"' ( "')+ ∂

∂
= ∂

∂
+ − ∂

∂

2

2

2

2τ τ   (9.288)

Let U U S∗ = "'/ , then the dimensionless governing equation can be 
written as:
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where S = (ρCp/τr) is the storage coefficient. It has units of w/m3/K. 
It can be seen from the governing equation that when S = U" ', the 
damped wave conduction and relaxation equation simplifies to a 
wave equation. The equation reverts to the governing equation seen 
for the finite slab at constant wall temperature when U" ' = 0. Thus, 
when U" '/S = 1:
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Let η = X2 – τ2 (9.291)

For X > τ, the governing equation will transform to: 
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Comparing Eq. 9.293 with the generalized Bessel equation; a = 1; b = 0; 
s = ½; d = U∗/4; c = 0. p = 2. sqrt(0) = 0; sqrt(d)/s = U∗1/2.

  u c J U X c Y U X= −( ) + −( )1 0
2 2

2 0
2 2∗ ∗( ) (τ τ   (9.294)

c2 can be seen to be zero, as u is finite at zero η.

Thus:  u c J U X= −( )1 0
2 2∗( )τ   (9.295)

This function exhibits damped wave behavior. This is valid until the 
first zero.

At the first zero of the Bessel function:

  5.7831 = U∗( X2 – τ2) (9.296)

   X
U

≥ +5 7831 2.
∗

τ   (9.297)
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The temperature u will be zero. For short times, a good portion of the 
rod will not have any temperature, even at an infinite heat source 
strength. This is a clear manifestation of the finite speed propagation 
of the heat. For τ > X:

  u c I U X= −1 0
2 2∗( )τ   (9.298)

From the boundary condition at X = 0:

  1 1 0
2= ( )c I U ∗ τ   (9.299)

Eliminating c1 between the two equations, an approximate solution 
for u can be written as:
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The general solution for the temperature in the rod with a temperature-
dependent heat source can be obtained as follows. Let the solution be 
expressed as a sum of steady-state and transient-state components of 
the dimensionless temperature.

Let u = uss + uτ (9.301)

Then Eq. (9.289) can be written as:
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The steady-state component will obey the equation:
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with the boundary conditions:

 X = 0, uss = 1 (9.304)

 X = Xl u
ss = 0 (9.305)

The solution to the second-order ODE will then be:

 uss = c'Sin(U∗1/2X) + c"Cos(U∗1/2X) (9.306)

From the boundary condition given in Eq. (9.304), c" can be seen to be 1. 
From the boundary condition given in Eq. (9.305):

 c' = –Cot(U∗1/2Xl) (9.307)
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The steady-state solution to the temperature is given by:

  uss = Cos(U∗1/2X) – Cot(U∗1/2Xl) Sin(U∗1/2X) (9.308)
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9.10.3 Critical Point of Null Heat Transfer
It can be seen that at steady state, the temperature is periodic with 
respect to position. This is an interesting result. It can also be noted 
that the mathematical expression given in Eq. (2.310) can take on neg-
ative values. A negative temperature cannot exist, as according to the 
third law of thermodynamics, the lowest temperature attainable is 0 K. 
At 0 K, the entropy of any system would be zero. The interpretation 
of the model solution in terms of the wave conduction and relaxation 
is that after a certain location in the rod, the temperature will be zero. 
This can be referred to as the critical point of zero heat transfer. This 
is shown in Fig. 9.24. This was generated using Microsoft Excel on a 
1.9-GHz Pentium IV personal computer. In Fig. 9.24, the heat source 
U∗ = U "'/S is 0.5, the length of the rod is 10 cm, the thermal diffusiv-
ity is 10-5 m2/s, and the relaxation time, τr , is 15 seconds. For X ≥ 
3.75, the temperature comes to the end temperature of ) K imposed on 
the right end of the rod. Beyond this region there is no heat transfer. 
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FIGURE 9.24 Dimensionless temperature along a rod heated by a 
temperature-dependent heat source.
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It can also be noted that the temperature within the rod exceeds the 
surface temperature. In this case, this is caused by the temperature-
dependent heat source. The maximum in temperature occurs at X = 
1.5. Further, since the temperature is higher within the rod, the heat 
flux direction will the reverse of what it was to begin with neat the 
zero time. Thus, the heat flow will be from the maximum location at 
X = 1.5 toward the X = 0 location, as well as from the X = 1.5 location 
to the X = Xl location. To begin with, the problem was one where the 
initial temperature was at 0 K. The surface temperature at X = 0 was 
Ts. At short times, the heat flux would be from the X = 0 location toward 
the right side of the surface. This has been reversed by the time the 
system reaches steady state. The heat source term is contributes the 
energy. 

The heat flux expression at steady state can be written as:
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  (9.310)

where  q q T k Cs p r∗ = / /ρ τ  
It can be seen from Fig, 9.25 that several things happen when the 
steady-state heat flux is plotted as a function of the distance in the 
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FIGURE 9.25 Dimensionless heat fl ux along a rod heated by a temperature-
dependent heat source.
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rod, according to the solution given in Eq. (9.310). The following dis-
tinctions can be recognized from this illustration. There exists a loca-
tion of maximum heat flux. In Fig. 9.25, for the assumed values of the 
length of the rod, the relaxation time, the ratio of heat source strength 
with the storage coefficient, and the location where the maximum 
heat flux occurs are at the dimensionless distance X = 1.5. There is a 
critical location in the rod beyond which there is no heat transfer. This 
is found to occur at X = 3.75 in Figs. 9.24 and 9.25. There are two loca-
tions in the rod where the heat flux changes direction. The cross-over 
locations occur at X = 0.5 and X = 2.55. These are locations of mini-
mum heat flux. The transient portion of the solution will then be:
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The boundary conditions are:

 X = 0, uτ = 0 (9.312)

 X = Xl, u
τ = 0  (9.313)

Equation (9.311) can be solved for by the method of separation of 
variables. First the damping term is removed by the substitution uτ = 
Wexp(–τ/2). Equation (9.311) becomes: 
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Letting n = (1– U∗)/2, Eq. (9.311) becomes:
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Equation (9.316) can be solved by the method of separation of 
variables.

Let  w = V(τ)φ(X) (9.317)

Equation (9.316) becomes:

  V"/V – 1/4( 1+ U∗)2 = φ"/φ = –λn
2 (9.318)
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The solution for the second-order ODEs can be written as follows:

 φ = c1Sin(λnX) + c2Cos(λnX)  (9.319)

From the boundary condition given in Eq. (9.312), c2 = 0. From the 
boundary condition given in Eq. (9.313):

 c1Sin(λnXl) = 0 (9.320)
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The time portion of the solution can be written as:
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The transient portion of the solution will decay out to leave the steady-
state portion of the solution. The zero temperature at x = l does the job 
of removing heat as it is generated in the rod. At infinite time w = 
uτ exp(τ/2) = 0 times infinity = 0. Thus, w = Vφ at infinite time = 0. There-
fore, V = 0 at steady state. Hence, the constant c1 is zero in Eq. (9.322):
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The general solution can be written as:
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where λn is given by Eq. (9.321). The cn can be solved for from the 
initial condition and is found to be:
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The general solution for dimensionless temperature can be written as 
follows:
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where λn is given by Eq. (9.321). It can be seen from the general solu-
tion that even for n = 1 in the infinite series:

 λn > (1+U∗)/2 or when l < 2πsqrt(ατr)/(1 + U∗) (9.327)

the temperature will undergo subcritical damped oscillations. This is 
for the cases when U∗ < 1. It can be seen that for U∗ > 1, the “damping 
term” will begin to grow in amplitude with time and cause a runa-
way reaction.

Summary
Two important applications of bioheat transport in medicine are ther-
mal therapy and cryopreservation. The word energy comes from the 
Greek words en meaning “in” and ergon meaning “work.” The inter-
play of energy and information is a theme that is emphasized in the 
field of biological thermodynamics [2]. The efficiency at which bio-
logical energy transport occurs is the ratio of useful work, defined as 
the total work less the work done by the system, to the energy input 
for volume expansion. The zeroth law of thermodynamics, the first 
law of thermodynamics, the second law of thermodynamics, the third 
law of thermodynamics, and the fourth law of thermodynamics were 
reviewed. The perpetual motion machine of the second kind (PMM2) 
was discussed, including how it violates the second law of thermody-
namics. Isobaric, isothermal, isentropic, and isochoric processes were 
analyzed. The three-step cycle, Carnot cycle, Otto cycle, and efficien-
cies achieved were reviewed. The law of conservation of energy was 
written.

Nanoscale effects in the time domain are important in a number 
of applications. Fourier’s law of heat conduction, Fick’s law of mass 
diffusion, Newton’s law of viscosity, and Ohm’s law of electricity are 
derived from empirical observations at steady state. There are six rea-
sons to seek a generalized Fourier’s law of heat conduction: i) The 
microscopic theory of reversibility of Onsager is violated; ii) Singu-
larities were found in a number of important industrial applications 
of the transient representation of temperature, concentration, and 
velocity; iii) The development of Fourier’s law was from observa-
tions at steady state; iv) An overprediction of theory to experiment 
has been found in a number of industrial applications; v) Landau and 
Lifshitz observed the contradiction of the infinite speed of propaga-
tion of heat with Einstein’s light speed barrier; and vi) Fourier’s law 
breaks down at the Casimir limit. The generalized Fourier’s law of 
heat conduction is given by Eq. (9.983) and was postulated independ-
ently by Cattaneo and Vernotte.

Consider a semi-infinite medium at an initial temperature of T0 
subject to a constant surface temperature boundary condition for 
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times greater than zero. The hyperbolic PDE that forms the governing 
equation of heat conduction is solved for by a new method called 
relativistic transformation of coordinates. The hyperbolic PDE is mul-
tiplied by eτ/2 and transformed into another PDE in wave tempera-
ture. This PDE is converted to an ODE by the transformation variable 
that is spatiotemporal and symmetric. The resulting ODE is seen to 
be a generalized Bessel differential equation. The solution with this 
approach is within 12 percent of the exact solution obtained by Baumeister 
and Hamill using the method of Laplace transforms. There are no 
singularities in the solution, but there are three regimes: an inertial 
regime, a regime characterized by a Bessel composite function of the 
zeroth order and first kind, and a regime characterized by a modified 
Bessel composite function of the zeroth order and first kind. 

Expressions for penetration length and inertial lag time are devel-
oped. The comparison between the solution from the method of rela-
tivistic transformation of coordinates and the method of Laplace 
transforms was made by use of Chebyshev polynomial approxima-
tion and numerical integration. The dimensionless temperature as a 
function of dimensionless distance for the parabolic and hyperbolic 
models are shown in Fig. 9.8. The hyperbolic models were solved for 
by using the methods of relativistic transformation and method of 
Laplace transforms.

In a similar manner, the exact solution to the hyperbolic PDE is 
solved for by the method of relativistic transformation of coordinates 
for the infinite cylindrical and infinite spherical media.

When heating a finite slab, the Taitel paradox problem is revisited. 
Taitel found that when the hyperbolic PDE was solved for, the interior 
temperature in the slab was found to exceed the wall temperature of 
the slab. This is in violation of the second law of thermodynamics. By 
using the final condition in time at steady state, the wave temperature 
was found to be become zero at steady state. When mathematically 
posed as the fourth condition for the second-order PDE, this condition 
leads to well-bounded solutions within the bounds of the second law 
of thermodynamics. For systems with large relaxation times, that is, τr > 
a2 2/π α, subcritical damped oscillations can be seen in the temperature. 
This is shown in Fig. 9.16. In a similar manner, the transient tempera-
ture for a finite sphere and finite cylinder are derived. 

The heat generated within the human anatomy on account of the 
several metabolic reactions and the heat transfer to the surroundings 
can be described using the bioheat transfer equation. This was first 
introduced by Pennes [15]. The issues in body regulation of tempera-
ture were discussed. The thermophysical properties of biological 
properties and other materials were discussed. The bioheat transfer 
equation may be modified by the damped wave conduction and 
relaxation equation in order to account for the finite speed of propa-
gation of heat.
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Exercises

Problems

1.0 Maxwell’s demon. Consider two containers filled with gas at the same tem-
perature T. When a molecule with a higher-than-average velocity in one container 
moves toward the wall separating the two containers, a gate-keeper demon opens 
the partition, grabs the molecule, and allows the molecule to reach the second con-
tainer. On account of this, the average velocity of the remaining molecules in the 
first container would be lower and hence, the first container’s temperature would 
have lowered from T. The molecules in the second container will have an average 
velocity higher than the initial velocity, and on account of which the temperature 
of the second container is expected to rise. Heat has transferred from container A 
to container B. Is this a violation of the second law of thermodynamics?

2.0 Refrigerator and turbine. A gentleman tried to do something with the heat 
discarded by a Carnot refrigerator. He wanted to use the heat as a hot tempera-
ture reservoir to do work and generate electricity. Can the electricity generated 
be used to power the refrigerator? Will this cycle last forever? If not, is this a 
PMM2 or PMM1?

3.0 Waste heat recovery. There are a number of discussions about waste heat 
recovery from steam power plants in the literature. What will happen to the 
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Carnot efficiency during waste heat recovery? Is this within the laws of ther-
modynamics?

4.0 Zeroth law of thermodynamics. If two systems are in thermal equilibrium 
with a third system, then those two are in thermal equilibrium with each other. 
Prove this and substantiate with examples.

5.0 Novel fuel from boiling wood chips. A lady raised hot water using a gas 
stove. Then she took the hot water and cooked wood chips into a novel fuel. 
This was a light-colored gas that emanated from the cooking utensils. She 
wanted to collect this gas and power up the stove. Can this cycle last forever? 
Is it a PMM1 or PMM2?

6.0 Seebeck effect. Two bodies with hot and cold temperatures are brought 
in contact with other. Electricity is generated due to the Seebeck effect. Can 
a graduate student use this electricity and power a heater that can raise the 
temperature of a body to a hot temperature? Can this cycle last forever? Can 
he pull some electrical energy to power up his CD player? Why not? Is this a 
PMM1 or PMM2?

7.0 When the pressure of the ideal gas is cut in half, what happens to the velocity 
of the gas molecules?

8.0 Brownian ratchet. A gear referred to as ratchet allows for rotation in one 
direction, and a pawl prevents rotation in the other direction. The ratchet is 
connected to a paddle wheel immersed in a bath at temperature TA. The mol-
ecules undergo Brownian motion. The molecular collisions with the paddle 
wheel result in a torque on the ratchet. Continuous motion of the ratchet may 
be expected. Work can be extracted with no heat gradient. Is this a PMM1 
or PMM2?

9.0 Bhaskara’s wheel. Bhaskara (1114–1185) was a 12th-century mathematician 
and astronomer. He headed up the astronomical observatory at Ujjain. Several 
moving weights are attached to a wheel (Fig. 9.26). The weights fall to a posi-
tion further from the center of the wheel after half a rotation. Since weights 
further from the center apply a greater torque, the wheel may be expected to 
rotate forever. Moving weights may be hammers on pivoted arms, rolling balls, 
mercury in tubes, etc. Is this a PMM1 or PMM2?

10.0 Self-flowing flask. Robert Boyle suggested that the siphon action may be 
used to fill a flask by itself. Is this possible? Why not?

11.0 Orffyreus wheel. In 1712, Bessler demonstrated a self-moving wheel 
that was later capable of lifting weights once set in motion. In 1717, he con-
structed a wheel 3.7 m in diameter and 14 in. thick. After two weeks, officials 
found the wheel moving at 2 RPM. Where does the energy for the motion 
come from?

12.0 Distinguish between the wave and Fourier regimes.

13.0 Examine the problem of heating an infinite medium with constant thermal 
diffusivity from a cylindrical surface with a radius R. Assume a dimensionless 
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heat flux at the wall as 1. Obtain the transient temperature using the parabolic 
Fourier equation. Is there a singularity in the solution expression?

14.0 Examine the problem of heating an infinite medium with constant ther-
mal diffusivity from a spherical surface with a radius R. Assume a dimen-
sionless heat flux at the wall as 1. Obtain the transient temperature using the 
parabolic Fourier equation. Is there a singularity in the solution expression?

15.0 Would Nernst’s observation of thermal inertial and oscillatory discharge be 
a seventh reason for seeking a generalized Fourier’s law of heat conduction?

16.0 Can the generalized Fourier’s law of heat conduction be derived from 
kinetic theory of gases? If so, what is the physical significance of the ballistic 
term?

17.0 Can the generalized Fourier’s law of heat conduction be derived from 
the Stokes-Einstein expression for diffusion coefficients? If so, what is the 
physical significance of the ballistic term?

18.0 Can the generalized Fourier’s law of heat conduction be derived from the 
free electron theory? If so, what is the physical significance of the ballistic term?

19.0 What is the time taken to reach the steady state in the problem of heat-
ing a finite slab when solved for by the hyperbolic PDE? How is this different 
from the solution from the parabolic PDE?

20.0 How would the solution to Exercise 19.0 change when the boundary 
condition of the finite slab is changed from constant wall temperature to con-
vective boundary condition?

FIGURE 9.26 Bhaskara’s unbalanced wheel.
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21.0 Can the method of relativistic transformation of coordinates be used 
to solve for the transient temperature in a semi-infinite medium subject to 
constant wall temperature in Cartesian coordinates in three dimensions? If so, 
what would the transformation variable be?

22.0 Can the method of relativistic transformation of coordinates be used to solve 
for the transient temperature in an infinite medium subject to constant wall 
temperature in cylindrical coordinates in three dimensions? If so, what would 
the transformation variable be?

23.0 Can the method of relativistic transformation of coordinates be used to solve 
for the transient temperature in an infinite medium subject to constant wall 
temperature in spherical coordinates in three dimensions? If so, what would 
the transformation variable be?

24.0 What are the expressions for penetration distance and inertial lag times 
for the transient temperature in a semi-infinite medium subject to constant 
wall temperature in one-dimensional Cartesian coordinates?

25.0 What are the expressions for penetration distance and inertial lag times 
for the transient temperature in an infinite medium subject to constant wall 
temperature in one-dimensional cylindrical coordinates?

26.0 What are the expressions for penetration distance and inertial lag times 
for the transient temperature in an infinite medium subject to constant wall 
temperature in one-dimensional spherical coordinates?

27.0 What are the expressions for penetration distance and inertial lag times 
for the transient temperature in a semi-infinite medium subject to constant 
wall temperature in three-dimensional Cartesian coordinates?

28.0 What are the expressions for penetration distance and inertial lag times 
for the transient temperature in an infinite medium subject to constant wall 
temperature in three-dimensional cylindrical coordinates?

29.0 What are the expressions for penetration distance and inertial lag times 
for the transient temperature in an infinite medium subject to constant wall 
temperature in three-dimensional spherical coordinates?

30.0 What is the time taken to reach the steady state in the problem of heating 
a finite cylinder when solved for by the hyperbolic PDE? How is this different 
from the solution from the parabolic PDE?

31.0 What would the solution to Exercise 30.0 be should the boundary condi-
tion of the finite cylinder be changed from constant temperature to convective 
boundary condition?

32.0 What is the time taken to reach the steady state in the problem of heating 
a finite sphere when solved for by the hyperbolic PDE? How is this different 
from the solution from the parabolic PDE?

33.0 What would the solution to Exercise 32.0 be should the boundary condi-
tion of the finite sphere be changed from constant temperature to convective 
boundary condition?
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34.0 In the analysis of transient temperature using the generalized Fourier’s 
law of heat conduction in one-dimensional Cartesian coordinates in a semi-
infinite medium, say that the temperature in the interior point p is given as 
a function of time. Obtain the general solution for the transient temperature. 
What is the temperature at X = 0?

35.0 Obtain the transient temperature in a right circular cone of infinite height with 
a constant apex temperature for times greater than 0. What is the effect of the 
change in area with distance from the apex of the cone?

36.0 Consider a finite slab subject to the convective boundary condition. 
Using a space-averaged expression for temperature, obtain the governing 
equation for transient temperature for the slab using the generalized Fourier’s 
law of heat conduction equation. The heat transfer coefficient is periodic in 
time and expressed as:

  
h h h tA= +0 Cos( )ω

  

37.0 Derive the transient temperature for the entire slab. Comment on the nature 
of the solution for materials with large relaxation times. Discuss the attenuation and 
phase lag.

38.0 Consider the earth’s crust heated by the sun. The initial temperature 
of the earth is at T0 imposed by a periodic temperature at the crust by T0 + 
TsCos(ωt).

39.0 By the method of Laplace transforms obtain the transient temperature 
in an infinite cylindrical medium subject to constant wall temperature for 
times greater than zero.

40.0 By the method of Laplace transforms obtain the transient temperature 
in an infinite spherical medium subject to constant wall temperature for times 
greater than zero.

41.0 How does the solution by the method of relativistic transformation 
compare with the solution obtained in Exercise 40.0?

42.0 How does the solution by the method of relativistic transformation 
compare with the solution in Exercise 39.0?

43.0 At what values of relaxation times of the materials above which subcriti-
cal damped oscillations in temperature would be expected for a finite cylinder 
subject to constant wall temperature?

44.0 At what values of relaxation times of the materials above which subcriti-
cal damped oscillations in temperature would be expected for a finite sphere 
subject to constant wall temperature?

45.0 Repeat Exercise 43.0 for the convective boundary condition.

46.0 Repeat Exercise 44.0 for the convective boundary condition.
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47.0 What happens to the convex temperature profile obtained from the 
Fourier equation when a hyperbolic PDE is used? What is the physical sig-
nificance of the change from concave to convex curvature in the transient 
temperature?

48.0 What happens at the wavefront in a semi-infinite medium in one-
dimensional Cartesian coordinates subject to a constant wall temperature 
boundary condition?

49.0 What happens at the wavefront in a semi-infinite medium in one-
dimensional Cartesian coordinates subject to a constant wall flux boundary 
condition?

50.0 What happens at the wavefront in a semi-infinite medium in three-
dimensional Cartesian coordinates subject to a constant wall temperature 
boundary condition?

51.0 What happens at the wavefront in an infinite medium in three-
dimensional cylindrical coordinates subject to a constant wall temperature 
boundary condition?

52.0 What happens at the wavefront in an infinite medium in three-dimensional spher-
ical coordinates subject to a constant wall temperature boundary condition?
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APPENDIX A
Generalized 

Bessel Differential 
Equation

The linear second-order differential equation shown in Eq. (A.1) 
is referred to as Bessel’s equation, and the solutions are termed 
“Bessel” functions. The solutions for this equation are avail-

able in Watson [1]. Certain types of differential equations are amena-
ble to a solution expressed as a power series. Such a series is said to 
converge if it approaches a finite value as n approaches infinity. The 
simplest test for convergence is the ratio test within the interval of 
convergence. The method of Frobenius is a convenient method to 
obtain a power series solution to a linear, homogeneous, second-order 
differential equation with variable convergent coefficients:

x
d y
dx

x
dy
dx

x p y2
2

2
2 2 0+ + − =( )  (A.1)

Equation (A.1), when expressed in the standard form, can be 
written as:

d y
dx x

dy
dx

x p
x

y
2

2

2 2

2

1
0+ + − =  (A.2)

The second-order, homogeneous, general ordinary differential 
equation can be expressed in the standard form as shown in Varma 
and Morbidelli [2]:

R x
d y
dx

P x
x

dy
dx

V x
x

y( )
( ) ( )2

2 2 0+ + =  (A.3)
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Comparing Eq. (A.2) with the standard form:

R(x) = 1; P(x) = 1; V(x) = x2 − p2 (A.4)

The functions R(x), P(x), and V(x) need be expanded as a power 
series and the coefficients of the power series calculated as:

 R0 = 1; R1 = R2 = R3 ……Rn = 0 (A.5)

 P0 = 1; P1 = P2 = P3 ……Pn = 0 (A.6)

 V0 = −p2; V2 = 1; (A.7)

 V1 = V3 = V4 = …… = Vn (A.8)

The solution to Eq. (A.3) by the method of Frobenius (Mickley, 
Sherwood and Reed [3]) states that there is at least one solution of the 
following form: 

y x A xs
n

n=
∞

∑
0

  (A.9)

Substituting Eq. (A.9) into Eq. (A.3), the indicial equation obtained 
can be written as:

s2 + (P0 − 1)s + V0 = 0 or s2 − p2 = 0  (A.10)

s1 = p; s2 = − p (A.11)

The recurrence relation for An in Eq. (A.9) can be seen to be: 

A
g s n A

f s nn

k
k

n

n k

=
− +

+
=

−∑ ( )

( )
1  (A.12)

The two solutions for the two roots in Eq. (A.11) are:

y x A x
x

p p k p k
p

k k

k1 0

2

21
1

1 2 2
( )

( )
( )( )...( ) !
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  (A.13)

y x B x
x

p p k p k
p

k k

k2 0

2

21
1

1 2 2
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= + −
+ − −
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 (A.14)

Equations (A.13) and (A.14) can be expressed in a more useful 
form by making use of the gamma function. The gamma function can 
be defined in the Euler form as:

Γ( )p e x dxx p= − −
∞

∫ 1

0

 p > 0 (A.15)
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Some mentionable properties of the gamma function are:

Γ(p+1) = pΓ(p) = , p > 0 

Γ(p + k) = (p+ k − 1)(p + k − 2)…(p+1)(p)Γ(p)

If p is a positive integer:

Γ(n + 1) = n! (A.16)

The gamma function generalizes the use of a factorial to noninte-
ger positive values of p. Thus:

Γ (9/2) = (7/2)(5/2)(3/2)(1/2) Γ(1/2)

Γ 1
2

1
2

0





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= =− −
∞

∫ e p dpp π   (A.17) 

The definition can be extended to negative noninteger values, but 
not for zero and negative numbers. For large values of the argument, 
the Stirling approximation may be used:

Γ( ) ~p
p

p
e

p
2π 



  (A.18) 

With the use of the gamma function, Eq (A.13) becomes: 
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 (A.19)

Using the notation for the Bessel function of the first kind and pth
order:
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 (A.20)

Equation (A.19) becomes:

y1(x) = C1 Jp(x) (A.21)

In a similar vein, Eq. (A.14), when p is neither zero nor a positive 
integer, can be written as:

 y2(x) = C2 J−p(x) (A.22)
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where
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  (A.23)

When p is zero or a positive integer, it can be shown that:

 y2(x) = C2 Yp(x) (A.24)

where Yp(x) is the Bessel function of the second kind and pth order. 
The Weber form can be written as:
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where γ is Euler’s constant:

γ = 0.577215…

In this case, the roots of the indicial equation are both equal to 
zero, and the second linearly independent form can be written as a 
Bessel function multiplied with a logarithmic function and a second 
infinite power series. Thus, the complete solution of the Bessel equa-
tion when p is a positive integer or zero can be written as:

y = C1 Jp(x) + C2 Yp(x) (A.26)

When p is neither an integer nor zero:

y = C1 Jp(x) + C2 J−p(x) (A.27)

The linear second-order ordinary differential equation given in 
Eq. (A.28) can be transformed into the Bessel equation given in 
Eq. (A.1) by a substitution: z = ix

x
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x p y2
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2
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z
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z
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When p is a positive integer or zero, the solution can be written 
as:

y = C1 Jp(ix) + C2 Yp(ix)

     or y = C1 Ip(x) + C2Kp(x) (A.30)

When p is neither an integer nor zero:

y = C1 Jp(ix) + C2 J−p(ix) (A.31)

or y = C1Ip(x) + C2I−p(x)  (A.32)

Ip(x) is referred to as the modified Bessel function of the first kind 
and pth order, and is defined by the expression:
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Kp(x) is referred to as the modified Bessel function of the second 
kind and pth order, and is defined by the expression:

 Kp(x) = π/2 ip+1 (Jp(ix) + iYp(ix)) (A.34)

The generalized form of Bessel’s equation can be written as:

x
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Equation (A.35) can be reduced to Eq. (A.1) after suitable trans-
formations (Mickley, Sherwood, and Reed [3]). The generalized solu-
tion for Eq. (A.35) may be written as:
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s

a
c= −
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p is the order of the Bessel equation. The different forms the 
Bessel solution assumes depend on the nature of sqrt(d)/s and p, as 
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given in Table A.1. For small values of x, the following approxima-
tions can be made for the Bessel functions:
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J x
p

xp

p
p

−
−

−
( ) ~

( )!
2

 (A.39)

Y x
p

xp

p
p( ) ~

( )!
,

2 1− −
π    p ≠ 0  (A.40)

Y x x0
2

( ) ~ ( )
π

ln  (A.41)

I x
p

xp p
p( ) ~

!
1

2
 (A.42)

I x
p

xp

p
p

−
−

−
( ) ~

( )!
2

 (A.43)

Kn(x) ∼ 2n−1(n − 1)! x−n (A.44) 

 K0(x) ∼ −ln(x) (A.45)

For large values, the general character may be obtained by the 
following substitution:

 y = x−1/2 u (A.46)

Equation (A.1) then becomes:
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2  (A.48)

S.No  d1/2/s p Zp Z−p

1. Real Neither zero nor integer Jp J−p

2. Real Either zero or integer Jp Yp

3. Imaginary Neither zero nor integer Ip I−p

4. Imaginary Either zero or integer Ip Kp

TABLE A.1 Forms of Bessel Solution
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For large values of x, it can be shown that:
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In a similar vein, the modified Bessel function can be approxi-
mated as:
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The first zero of the Bessel function of the first kind occurs for the 
zeroth order J0(x) at 2.4048, for the first order J1(x) at 3.8317, for the 
second order J2(x) at 5.1356, for the third order J3(x) at 6.3802, and for 
the fourth order J4(x) at 7.5883. The zeros of the Bessel function of the 
second kind occur for the zeroth order Y0(x) at 0.8936, for the first 
order Y1(x) at 2.1971, for the second order Y2(x) at 3.3842, for the third 
order Y3(x) at 4.5270, and for the fourth order Y4(x) at 5.6451. Both Jp(x)
and Yn(x) oscillate like damped sinusoidal functions and approach 
zero as x tends to infinity. The amplitude of the oscillations about 
zero decreases as x increases, and the distance between successive 
zeros of both functions decreases toward a limit of π as x increases. 
The zeros of Jp+1(x) separate the zeros of Jp(x). Ip(x), in contrast, increases 
continuously with x, and Kn decreases continuously. Bessel functions 
of order equal to half an odd integer can be represented in terms of 
the elementary functions:
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The recurrence relations among Bessel functions can be given by:

Jn+1/2(x) =
2 1n

x
−

Jn−1/2(x) − Jn−3/2(x) (A.58)

In+1/2(x) = −
2 1n

x
−

In−1/2(x) + In−3/2(x) (A.59)

The following relations can be proved using Eqs. (A.23) and 
(A.33):

d
dx  (xpZp(αx)) = αxpZp−1(αx), Z = J, Y, I (A.60)

d
dx  (xpZp (αx)) = −αxpKp−1(αx) (A.61)

d
dx  (x − pZp(αx)) = −αxpZp+1(αx), Z = J, Y, K (A.62)

d
dx  (x − pIp(αx)) = αx − pIp+1(αx),  (A.63)

d
dx  (Zp(αx)) = αZp−1(αx) − p/xZp(αx), Z = J, Y, I (A.64)

d
dx  (Kp (αx)) = −αxpKp−1(αx) − p/x Kp(αx) (A.65)

d
dx  (Zp(αx)) = −αZp+1(αx) + p/xZp(αx), Z = J, Y, K (A.66)

d
dx  (Ip(αx)) = αxpIp+1(αx) + p/x Ip(αx) (A.67)

2
d

dx Ip(αx) = α(Ip−1(αx) + Ip+1(αx)) (A.68)

2
d

dx Kn (αx) = −α(Kn−1(αx) + Kn+1(αx)) (A.69)
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Zp(αx) =
αx

p2  (Zp+1(αx) + Zp−1(αx)), Z = J, Y (A.70)

Ip(αx) = −
αx

p2  (Ip+1(αx) − Ip−1(αx)) (A.71)

Kn(αx) = αx
p2

 (Kn+1(αx) − Kn−1(αx)) (A.72)

When n is zero or an integer:

J−n(αx) = (−1)nJn(αx) (A.73)

I−n(αx) = In(αx) (A.74)

K−n(αx) = Kn(αx) (A.75)

The Bessel function Jn(x) and In(x) for various orders are plotted in 
Figs. A.1 and A.2.
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APPENDIX B
Inverse of Laplace 

Transforms

S.No. Transform Function f(t)

 1. Γ( )
,

k
sk

k > 0
t k−1

 2. 1
1
2s

n+
, n = 0,1,2,3…. 2

1 3 5 2 1

1
2n n

t

n

−

−( . . ....( ) π

 3. 1
( )

,
s a n− n = 1,2,3…..

e t
n

at n−

−

1

1( )!

 4. 1
2 2s a+

Sin at
a
( )

 5. s
s a2 2+

Cos(at)

 6. 1
2 2s a−

Sinh( )t
a

 7. s
s a2 2−

Cosh( )t
a

 8.  s/(s4 + 4a4) Sin(at)Sinh(at)/(2a2)

 9. 1/s (s − 1)n/sn Exp(t)/n! d n/dt n(t n exp(−t ))
Laquerre polynomial of 
degree n

10. (s − a)1/2 − (s − b)1/2 ½(exp(bt ) − exp(at))/(πt 3)

11. 1/(s1/2 + a) (πt )−1 − aexp(a2t )erfc(at 1/2)

12. 1/(s + a)/(s + b)1/2 1(b − a)1/2 exp(−at )
erf(t(b − a))1/2

13. (1 − s)n/sn+1/2 (πt)−1/2 n!/(2n)! H2n(t)
Hermite polynomial 
Hn(t ) = exp(−t2)dn/dtn exp(−t2)

(Continued)
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S.No. Transform Function f(t)

14. (s + a)−1/2(s + b)−1/2 exp(−(a + b)t/2)I0((a − b)t/2)

15. (s2 + a 2)−1/2 J0(at)

16. (s2 − a 2)−k, k > 0 (π)1/2/Γ(k) (t/2a)k−1/2 Ik−1/2(at )

17. exp(−sk)/s Sk(t) = 0, 0 < t < k = 1,
t > k, Heaviside unit 
step function

18. exp(−sk)/s j, j > 0 0, O < t < k
(t − k) j−1/Γ( j ), t > k

19. (1 − exp(−sk))/s 1 when 0 < t < k
0 when t > k

20. 1/2s + coth(sk/2)/2s S(k, t) = n, when (n − 1)
k < t < nk
n = 1,2,3…

21. 1/[s (exp(sk) − a)] 0, when 0 < t < k
1 + a + a2 +… + an−1,
when nk < t < (n + 1)k,
n = 1,2,3…

22. 1/s tanh(sk) M(2k, t) = (−1)n−1

when 2k(n − 1) < t < 2kn

23. 1/[s(1 + exp(−sk))] 1/2M(k, t ) + ½ =
(1 − (−1)n)/2
when (n − 1)k < t < nk

24. 1/s2 tanh(sk) H(2k, t) = t when 0 < t < 2k =
4k − t when 2k < t < 4k

25. 1/(sSinh(sk)) 2S(2k, t + k) − 2 = 2(n − 1)
when (2n − 3)k < t
< (2n − 1)k, t > 0

26. 1/(sCosh(sk)) M(2k, t + 3k) + 1 = 1 + (−1)n

when (2n − 3)k < t
< (2n − 1)k, t > 0

27. Coth(sk)/s 2S(2k, t ) − 1 = 2n − 1
when 2k(n − 1) < t < 2kn

28. k/(s2 + k2) Coth(πs)/2k sin(kt )

29. 1/[(s2 + 1)(1 − exp(−πs)] Sint when (2n = 2)π < t
< (2n − 1)π
0 when (2n − 1)π < t < 2nπ

30. 1/s exp(−k/s) J0(2(kt )1/2)

31. exp(−k/s)/s1/2 Cos(2(kt )1/2)/(πt )1/2

32. exp(k/s)/s1/2 Cosh(2(kt )1/2)/(πt )1/2

(Continued)
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S.No. Transform Function f(t)

33. exp(−k/s)/s3/2 Sin(2(kt )1/2)/(πk )1/2

34. exp(k/s)/s3/2 Sinh(2(kt )1/2)/(πk )1/2

35. 1/s j exp(−k/s), j > 0 (t/k)( j − 1)/2 Ji − 1(2(kt)1/2)

36. 1/s j exp(k/s), j > 0 (t/k)( j − 1)/2 Ii − 1(2(kt)1/2)

37. exp(−k(s)1/2), k > 0 k/[2(πt 3)1/2] exp(−k 2/4t )

38. 1/s exp(−ks1/2), k > 0 erfc(k/2t 1/2)

39. 1/s1/2 exp(−ks1/2), k > 0 1/(πt)1/2exp(−k 2/4t )

40. 1/s3/2 exp(−ks1/2), k > 0 2(t/π)1/2 exp(−k 2/4t ) − kerfc 
(k/2t 1/2)

41. aexp(−s1/2k)/(s(a + s1/2)),
k > 0

(−exp(ak)exp(a2t)erfc(at1/2 +
k/2t 1/2) + erfc(k/2t 1/2)

42. exp(−s1/2k)/s1/2/(a + s1/2) Exp(ak)exp(a2t )erfc(at 1/2 +
k/2t1/2)

43. exp(−k(s(s + a))1/2)/
(s(s+1))1/2

0, 0 < t < k exp(−at/2)I0
(a/2 (t2 − k2)1/2)

44. exp(−k(s2 + a2)1/2)/
(s2 + a2)1/2

0, when 0 < t < k
J0 (a(t2 − k2)1/2, when t > k

45. exp(−k(s2 − a2)1/2/(s2 − a2)1/2 0, when 0 < t < k
I0 (a(t2 − k2)1/2, when t > k

46. exp(−k(s2 + a2)1/2 − s)/
(s2 + a2)1/2

J0(a(t 2 + 2kt )1/2)

47. exp(−sk) − exp(−k(s2 + a2)1/2 0, when 0 < t < k
ak/(t2 − k2) J1(a(t2 − k2))1/2

48. exp(−k(s2 − a2)) − exp(−sk) 0, when 0 < t < k
ak/(t2 − k2)1/2 I1(a(t2 − k2)1/2),
t > k

49. a jexp(−k(s2 + a2)1/2)/
(s2 + a 2)1/2/(s2 + a2)1/2 + s) j,
j > −1

0, when 0 < t < k
[(t − k)/(t + k)]1/2j

Ji(a(t2 − k2)1/2), t > k

50. 1/s lns λ − lnt, λ = −.5772

51. 1/sk lns t k − 1 (λ/Γ(k)2 − lnt/Γ(k))

52. lns/(s − a) exp(at) (lna − Ei (−at))

53. lns/(s2 + 1) Cost Si (t ) − sint Ci (t )

54. slns/(s2 + 1) −sint Si (t ) − cost Ci (t )

55. 1/s ln(1 + sk) −Ei (−t/k)

56. ln[(s − a)/(s − b)] 1/t (exp(bt ) − exp(at))

57. 1/s ln(1 + k2s2) −2Ci(t/k)

(Continued)
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S.No. Transform Function f(t)

58. 1/s ln(s2 + a2), a > 0 2lna − 2 Ci(at)

59. 1/s2 ln(s2 + a2), a > 0 2/a(at lna + Sinat − atCi(at))

60. ln(s2 + a2)/s2 2/t(1 − Cos(at))

61. ln(s2 − a2)/s2 2/t(1 − Cosh(at))

62. tan−1(k/s) 1/t Sinkt

63. 1/s tan−1k/s Si(kt)

64. exp(s2k2)erfc(sk), k > 0 1/(kπ1/2) exp(−t2/4k2)

65. 1/s exp(s2k2)erfc(sk), k > 0 erf(t/2k)

66. exp(sk) erfc(sk)1/2, k > 0 k1/2/[π(t)1/2(t+ k)]

67. 1/s1/2 erfc(sk)1/2 0, 0 < t < k (πt )−1/2, t > k

68. 1/s1/2 exp(sk)
erfc(sk)1/2, k > 0

(π(t + k))−1/2

69. erf(k/s1/2) 1/πt Sin(kt1/2)

70. 1/s1/2 exp(k2/s) erfc (k/s1/2) 1/(πt)1/2 exp(−2kt1/2)

71. K0(sk) 0, 0 < t < k
(t 2 − k2)−1/2, when t > k

72. K0(ks1/2) 1/2t exp(−k2/4t)

73. 1/s exp(sk) K1(sk) 1/k (t(t + 2k))1/2

74. 1/s1/2 K1(ks1/2) 1/k exp(−k2/4t)

75. 1/s1/2 exp(k/s) K0(k/s) 2/(πt)1/2 K0(2kt)1/2

76. π exp(−sk) I0(sk) (t (2k − t))−1/2, 0 < t < 2k
0, t > 2k

78. −(γ + lns)/s, γ = Euler’s 
constant = 0.5772156

lnt

79. 1/as2 tanh(as/2) Triangular wave function

80. 1/s tanh(as/2) Square wave function

81. πa/(a2s2 + π2) coth(as/2) Rectified sine wave function

82. πa/[(a2s2 + π2)(1 − exp(−as)] Half-rectified sine wave 
function

83. 1/as2− exp(−as)/
s(1 − exp(−as))

Saw tooth wave function

84. Sinhsx/(sSinhsa) x/a + 2/π∑1
∞ (−1)n/n

Sin(nπx)/a Cos(nπt/a)

85. Sinhsx/(sCoshsa) 4/π∑1
∞ (−1)n/(2n − 1) 

Sin(2n − 1πx)/2a
Sin(2n − 1)πt/2a)

(Continued)
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S.No. Transform Function f(t)

86. Coshsx/sSinhsa t/a + 2/π∑1
∞ (−1)n/n

Cos(nπx)/a Sin(nπt/a)

87. Coshsx/sCoshsa 1 + 4/π ∑1
∞ (−1)n/(2n − 1) 

Cos(2n − 1)πx)/2a
Cos(2n − 1)πt/2a)

88. Sinhsx/s2 Coshsa x + 8a/π2 ∑1
∞ (−1)n/

(2n − 1)2Sin(2n − 1)πx)/2a
Cos(2n − 1)πt/2a)

89. Coshsx/s2Sinhsa t2/2a + 2a/π2 ∑1
∞ (−1)n/(n2)

Cos(nπx)/a (1 − Cos(nπt/a)

90 Sinhxs1/2/Sinhas1/2 2π/a2 ∑1
∞ (−1)nn exp(−n2π2t)/

a2 Sin(nπx/a)

91. Coshxs1/2/s1/2Sinhas1/2 1/a + 2/a ∑1
∞ (−1)nn

exp(−n2π2t)/a2 Cos(nπx/a)
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AA
absorption, 267, 302. See also Michaelis-

Menten absorption
of drugs, 268

subcritical damped oscillations in, 
293–295, 295f

first-order
drug accumulation in, 308
single-compartment models of, 

with elimination, 277–280, 
278f, 280f

of styrene inhalation, in rats, 283f
Krebs cycle in, 289–290, 290f
process of, 269f
second-order, single-compartment 

models of, 277–280, 278f, 280f
with elimination, 280–283, 281f,

282t, 283f
subcritical damped, with 

elimination, 296f–297f
two-compartment model for, with 

elimination, 297f, 305
zeroth-order

drug accumulation in, 309
with elimination, 283–285, 285f

acrylonitrile, reverse osmosis 
separating, from water, 131

activation energy, of solute, 60
active transport, 113
additive rate, 321
adenosine triphosphate (ATP)

for active transport, 113
in stress levels, 238

adiabatic flow, 5
adiabatic process, 380–381

reversible, 383–384
adiabatic wall, 18
adsorption, sequential, for thin films, 

338–339

alcohol, removal of, by dialysis, 117, 117f
aluminum, removal of, from blood, 

136–137
ammonia ions, 365
annular flow, 6
anoxic regions, 231–232
apparent distribution volume, 271
aragonite needles, 336
arc discharge process, 325
Argonne National Laboratory, 339
army, blood storage in, 131
Arrhenius relationships, 46
arteries, filtration pressure drop in, 

100, 100f
artificial tubules, bioartificial, 365
aspartic acid, with/without 

hydroxyapatite nanocrystals, 333f
atomic force microscopy, 336
ATP. See adenosine triphosphate
autogenous bone transplantation, 335

BB
B cells, 356
Ballistic flow, 7
BARC. See Bhabha Atomic Research 

Center
Bernoulli, Johann, 27
Bernoulli’s equation, for blood, in 

heart, 197
Bernoulli’s law, 40
Bessel function, 218

composite fraction in, 224
Bessel’s equation, 65–66
Bhabha Atomic Research Center 

(BARC), 42
Bhaskara’s wheel, 449, 450f
bifurcation, 237
Bingham model, 23, 148t
Bingham yield stress fluid, 148

Index

Note: Page numbers referencing figures are followed by an “f ”; page numbers 
referencing tables are followed by a “t”.
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bioactive compound, 323
bioartificial organs

artificial tubules, 365
composition of, 356–357
design of, 342–346, 343f

immunoisolation for, 355–356
extracorporeal artificial lung, 

366–369, 366f
glomerulus, 365
glycolytic oscillations in, 360–363, 

362f
kidney, 363–365
pancreas, 357–360, 360f

sandwich configuration of, 360f
summary of, 348, 369–370

biocompatibility, 334
biodegradability, of scaffolds, 320
biofluid transport

developments in, 84
discoveries for, 123

bioheat transfer equation, 438
biomaterial, 317

self-repair of, 331, 337
biomedical engineering, 1
biomimetic materials

equilibrium kinetics of, 330–335, 333f
for membranes, 339–342, 341f
self-assembly of, 328–330, 329f
structure-function relationships of, 

331–332
summary of, 347
thin films of, 335–339
water as, 328

biomineralization, in mollusks, 336
Biot number, 218, 220
Blasius formula, 194
block copolymers, 328
blood

in adult circulatory system, 111f
aluminum removal from, 136–137
clotting of, with artificial kidneys, 

364–365
as colloidal dispersion system, 141, 197
components of, 141
detoxification of, 207
in dialysis, 197
in heart, Bernoulli’s equation for, 197
NO diffusion in, 241f, 247
NO formation in, transport and, 

238–245, 240f–241f
oxygen diffusion in, 213–214
perfusion of, 271
relaxation effects in, damped wave 

conduction and, 438–442, 439f
removing toxins from, 115f
storage of, in army, 131
streams, gas currents with, 368
styrene concentration in, 282t
WBCs, 141

blood flow
in artificial lung, 367
in circular conduit, 144f
dominant frequency in, 188
friction factors for, 192–196
other constitutive relations for, 

196–197, 196f
periodic boundary conditions for, 

187–192, 188t, 192f
slit limit of, 143–145, 144f
in tube, 142–145, 142f

blood urea nitrogen (BUN), 106–107, 
273

blood vessels
velocity in, 187–191
Womersley number for, 188t

blood-purifying hematocatharsis unit, 
106–108, 107f

blow-up-, 389
body fluids, 110–113, 111f

summary of, 124–125
Bohr shift, 211–212
Boltzmann constant, 51, 392–393
bone

composition of, 332
growth of, assistance of, 

319–320
heat conduction through, 425f
morphogenic proteins, 320
reconstruction of, 335
replacement of, 319
transplantation, autogenous, 335

boundary layer, 5
Bowman’s capsule, 274
Boyle, Robert, 9
brain tissue, ethanol in, 310
Brenner equation, for pore diffusion 

coefficient, 93, 95f
Brokaw law, 50
Brownian ratchet, 449
bubble viscometer, 34
bubbly flow, 7
bulk motion, 46–48
BUN. See blood urea nitrogen
Buoyant flow, 8

CC
calorie, 18
cancer, incidence of, 374t
cannulated glass micropipettes, at Y 

branch, for permeability 
coefficient, 102f

capillaries
bed of, sketch of, 119f
condensation diffusion of, 93
filtration pressure drop in, 100, 100f
flow of, 7
oxygen transport in, 212
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capillaries (Cont.):
permeability of, 271

molecular probes for, 101–110, 
102f, 104t, 105f, 107f–108f,
108t–110t

transport across, 112
of glucose, 135, 139

carbon dioxide (CO2)
in mass exchanger, 369
separation of, 46, 47f
transport of, 112
from urea breakdown, 365

carbon monoxide (CO), 212
in SWNT, 325

carbon nanotube (CNT), 324
morphologies of, 325–236
thermal conductivity of, 325

carboxylic acid (COOH), 321
carburizing steel, 81
cardiac output, 206
cardiovascular disease, incidence of, 

374t
Carnot, Sadi, 9
Carnot cycle, 383–386, 383f–384f

four-step
on P-V diagram, 383f
on T-S diagram, 384f

Carnot engine, 385
efficiency of, 386
temperature in, 386, 386f

Carnot refrigerator, 386f, 448
Carnot’s theorem, 386
Cartesian coordinates, 53

equations for, 121–123
in infinite medium, -pulse boundary, 

265
problems for, 453
in semi-infinite medium, 393–395

-connective boundary, 257–260
Casson fluid, 196, 196f
Casson model, 23
Catchpole law, 50
cell(s)

B, 356
-based therapy, 319
energy uses in, 375
free plasma layer of, diffusion in, 

232–234
implantation of, in vitro, 355
pairs of, 118
T, 356
walls of, transport across, 112–113
white blood, 141

centerline temperature, in finite slab, 
with constant wall, 415f–416f

centrifugation, 43
cGMP. See cyclic guanine 

monophosphate
Chebyshev economization, 395–398

Chebyshev polynomials, 396t–397t
approximation of, 61, 398

chemiluminescent reactions, 239
chemosynthesis, 374
chimney, design of, 40
chloroform, 329
choked flow, 6
cholesterol, forms of, 139
chromophores, 335
circular conduit

blood flow in, 142f, 144f
transient laminar flow in, 168–171

circulatory system, blood in, 111f
closed system, 18
CNT. See carbon nanotube
CO. See carbon monoxide
CO2. See carbon dioxide
co-current gas/blood streams, 368
coextrusion, 77
collagen, 322, 332
colloid osmotic pressure, 84
colloidal dispersion system, blood as, 

141, 197
compatible blend, 59
complexation species concentration, 

214
composite fraction, 224
composite systems, 19
compressible flow, 6
computers, pharmacokinetic models 

of, 299–302, 301f
summary of, 305

concentration. See also dimensionless 
concentration; drug concentration

constant surface, 254
glucose, oscillations in, 371
gradient, 41–42
infinite medium-spherical-constant, 

263
in Michaelis-Menten kinetics, 216f
negative, 42
polarization layer, 131–132
profile, in semi-infinite medium, 71f
of protein, 135
of radioactive insulin, 344–346
styrene, in blood, 282t
total enzyme, 214

cone-and-plate viscometer, 29, 29f
conical thrust, 205
conservation of energy, 388–389
conservation of mass, 35

equation of, 24–25, 24f
constant surface concentration, 254
constant wall flux (CWF), 63, 416f
constant wall temperature

finite cylinder and, 420–423
in finite slab, 415f–416f
finite sphere and, 417–419

constant-pressure process, 381f
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constitutive relations
for blood flow, 196–197, 196f
yield stress myth and, 148–150, 148t

contactless pick-up device, 40
continuum hypotheses, 2
control theory, 360, 370
control volume, 2

region of, where fluid moves, 24f
use of, 25

convective boundary conditions, 
251–252

convoluted tubule, 274
COOH. See carboxylic acid
cool sensations

damped wave conduction and, 426
relaxation time and, 426–427
thermal wear and, 426–427

copolymers, 328–329
core layer, 142, 142f, 144f
Coshsx, 469t
counter-current

dialysis, 117f
gas/blood streams, 368

Coutte viscometer, 29–31, 30f
creatinine, molecular formula for, 108
cross-current, gas/blood streams, 368
crowd ion mechanism, 57
cryopreservation, 373, 446
crystal CdS synthesis, 337
CWF. See constant wall flux
cyclic guanine monophosphate 

(cGMP), 238
cylindrical coordinates, 53

oxygen-depleted regions in, by 
Krogh theory, 119–121, 119f

semi-infinite medium in, heated, by 
cylindrical surface, 403f

steady diffusion in, 57

DD
damped wave conduction

Fourier heat conduction and
hyperbolic, 401f
parabolic, 402f

from free electron theory, 391–393
in infinite cylindrical medium, 411
relaxation effects and, in tissue/

blood, 438–442, 439f
warm/cool sensations and, 426

damped wave diffusion
concentration profile under, 71f
relaxation and, 63

damped wave momentum transfer, 
relaxation equation and, 150–151

Darcy flow, transient vertical, 
157–158

under reduced gravity, 158–160, 160f
Darcy pressure gradient, 198

Darcy’s law
for fluid transport, in porous media, 

87–90
Laplace equation with, 90

De Moivre’s theorem, 164
degradation rate, 321
diabetes

IDDM, 357
type 1, 133

diafiltration, 117
dialysis

alcohol removal by, 117, 117f
blood in, 197
countercurrent, 117f
early forms of, 114–115
isobaric, 116–117

dialyzer
filters, 108
of kidneys, 115f

dialyzing membranes, novel types of, 
370

diastole, 187
diathermal wall, 18
diffusion. See also Fick diffusion

capillary condensation, 93
in cell-free plasma layer, 232–234
coefficients

of gas diffusivities, 48, 49t
in liquids, 50–56
in tissue, 214

in concentrated solutions, 55–56
damped wave, 63, 71f
equalizing effects of, 46
Gibbs free energy change of, 113
hindered, 94, 124, 134
in hollow cylinder, 57
in hollow sphere, 80–81
hyperbolic, 249–265
Knudsen, 58, 93
learning objectives of, 41
in metals, 57
of milk, 77
molecular, 41–42
molecular sieving, 93
of NO, in blood/tissue, 241f, 247
of oxygen

in blood, 213–214
hyperbolic, in islets of 

Langerhans, 249–250
parabolic, in islets of Langerhans, 

248–249
through spiracles, 76

parabolic, 248–265
phenomena of, 41–43
pollutants and, 42
in polymers, 59
pore diffusion coefficient

Brenner equation for, 93, 95f
Renkin equation for, 93, 95f
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diffusion (Cont.):
pressure, 43
-rate-limited, 271
in semi-infinite medium, 

dimensionless concentration in, 
during simultaneous reaction, 
223f–225f

Skylab, 45–46
in solids, 56–60
solubility diffusion, 93
of solute, across membranes, 93–98, 

95f, 98f
summary of, 73–74
sweep, 43
transient, 60–74, 61f, 71f, 226–231, 

228f
unimolar, 47
wave, 221–225, 223f–225f

in plasma layer, 234–238
diffusivity. See also gas diffusivities

determination of, 81
ratio, from Renkin equation, 105f
self-, 54
through spherical suspensions, 

104–105
thermal, for various materials, 424t

diffusophoresis, 43
dilute monatomic gas, viscosity of, 151
dilute solutions, Stokes-Einstein 

equation for, 51–55
dimensionless concentration

of drugs, in compartment, 294, 
295f–297f

profile, for tissue oxygen, 228f
in semi-infinite medium, during 

simultaneous reaction, diffusion 
and, 223f–225f

distal convoluted tubule, 274
distillation, efficiency of, 42
dominant frequency, in blood flow, 

188
dose, 304
Drexel University, 323
drift velocity, 392
drug concentration

dimensionless, in compartment, 294, 
295f–297f

during intravenous injection, 308
in plasma, 269f
profile for, 304
in rats, 314t
as time function, 280f

drugs
absorption of, 268

subcritical damped oscillations in, 
293–295, 295f

accumulation of
in first-order absorption, 308
in zeroth-order absorption, 309

drugs (Cont.):
administration of, 268
bioanalytical methods for, 270
bioavailability of, 300–301
biological affinity of, 271
controlled-rate delivery of, 269, 

269f
distribution of

issues with, 271–277, 274f, 276f
volume of, 303

immunosuppressive, 355
kidney elimination of, 273–275, 274f
liver elimination of, 273
metabolism rate of, 271
models for

computer implementation of, 
299–302, 301f, 305

multicompartment, 295–299, 297f
urine accumulation of, 307

Dutrochet, 85
dynamics, 8
dynamis, 34

EE
ECM. See extracellular matrix
efflux viscometer, 28
eigenvalues, 218–220
eight reactions, in circle, 295f
Einstein, Albert, 43, 46
Elaeocarpus angustfolius, 336
electrodialysis, 114–119, 115f–117f

schematic of, with alternating 
anode/cathodes, 116f

electrolysis, 43
electrolytes

concentrating compartments of, 118
depletion compartments of, 118
Nernst-Haskell equation, 55, 73

electrophoretic term, 81
electrospinning operation, 323
elimination

of drugs
by kidneys, 273–275, 274f
by liver, 273

first-order absorption and, single-
compartment models of, 
277–280, 278f, 280f

Michaelis-Menten absorption and, 
23f, 285–289, 287f

second-order absorption and, single-
compartment models of, 
280–283, 281f, 282t, 283f

subcritical damped absorption with, 
296f–297f

two-compartment model for, with 
absorption, 297f, 305

zeroth-order absorption with, 
283–285, 285f
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endonucleases, 77–78
endothermic, 239
energy, 374

activation, of solute, 60
biological transport of, 375
in cells, 375
conservation of, 388–389
flow of, 375
Gibbs free, change, of diffusion, 

113
internal, 379

engine
Carnot, 385–386, 386f
heat, 383
internal combustion, 387, 387f
steam, 80

engineering mechanics, 1–2
entropy, 20

of irreversible cycle, 386
for reversible cycle, 386

equilibrium
kinetics

of biomimetic materials, 330–335, 
333f

summary of, 347
membrane potential, 114
reversibility and, 19–20

ergon, 374
ethanol, in brain tissue, 310
Euler, Leonhard, 27
Euler equation, 206
excretion, 267, 302

renal, 271
extracellular matrix (ECM), 322–323
extracorporeal artificial lung, 366–369, 

366f
blood flow in, 367
hollow-fiber, 366f
mass exchanger for, 371

extracorporeal devices, 366
summary of, 370

extravascular region, 87
eyes, oxygen transport in, 78

FF
Fahraeus-Lindquist effect, 142
falling ball viscometer, 28–29

problems for, 205
Fanning friction factor, 193–194
Fanno-line flow, 6
fat, heat conduction through, 425f
Fe. See iron
fibroblasts, 318
Fick diffusion

laws of, 43–45, 51–52
Michaelis-Menten kinetics and, in 

spherical coordinates, 214–221, 
216f

Fick diffusion (Cont.):
molecular, in semi-infinite medium, 

61–63, 61f
transient oxygen-, Michaelis-Menten 

kinetics and, 226–231, 228f
filtration

dia-, 117
glomerular, 275
pressure drop, in arteries/veins, 

100, 100f
/reabsorption prediction, 101
thermo-, of plasma, 110, 110t
ultra-, 97, 136–137

final condition, in time, for finite slab, 
413–417, 415f–416f

finite cylinder
constant wall temperature and, 

420–423
heat flux in, 423

finite slab
constant wall temperature in, 

415f–416f
final time condition in, 413–417, 

415f–416f
oxygen hyperbolic diffusion in, for 

islets of Langerhans, 249–250
oxygen parabolic diffusion in, for 

islets of Langerhans, 248–249
Taitel paradox and, 412–413, 412f
with two boundaries, both sides 

heated, 412f
finite sphere, constant wall 

temperature and, 417–419
first law of thermodynamics, 34
first-order absorption

drug accumulation in, 308
single-compartment models of, with 

elimination, 277–280, 278f,
280f

of styrene inhalation, in rats, 283f
five laws of thermodynamics, 

metabolism and, 374–377
flow. See also blood flow; specific type, 

i.e., tangential flow
of capillaries, 7
in circular conduit, 142f, 144f,

168–171
of energy, 375
of fluids, 2–8, 3f, 89
of gases, 59
of molecules, 93
between moving plates, in opposite 

directions, 164–168, 164f–165f,
168f

near horizontal wall, in motion, 
152–157, 154f, 156f

in spheres, 179–184, 205
in tubes, with dimensionless 

velocity, 192f
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fluid(s)
Bingham yield stress, 148
bio-, 84, 123
body, 110–113, 111f

summary of, 124–125
Casson, 196, 196f
control volume of, in fixed space, 

24f
definition of, 2
dimensionless velocity in, from 

moving flat plate, 156f
flow of, 89

types of, 2–8, 3f
linear velocity profile of, between 

two plates, 20f
mechanics of, 34
non-Newtonian, 23
thermodynamic properties of, 

8–20
transport of

of biofluids, 84, 123
Darcy’s law for, in porous media, 

87–90
Starling’s law for, 90–93

viscoplastic, 148t
viscosity of, 20–23, 20f

measurement of, 28–34, 29f,
30f, 32f

viscous, positive permeability, 
transient velocity of, 168f

yield stress, 23–24, 23f, 198
fluorescence, intensity of, 103
foaming, methods of, 43
force

atomic, microscopy, 336
in friction, 193
shear, 2
van der Waals, 326

four reactions, in circle, 
292–293

Fourier heat conduction
damped wave conduction and

hyperbolic, 401f
parabolic, 402f

laws of, 54, 389
problems for, 450
reasons seeking, 389–391

free electron theory
damped wave conduction 

derivation from, 391–393
relaxation equation derivation from, 

391–393
friction

in blood flow, 192–196
Fanning, factor, 193–194
force in, 193
ice cube with, on inclined plane, 

16f
fugacity, 86–87

GG
Galileo, 9
gas diffusivities

coefficients of, 49t
diffusion, 48

experimental measurement of, 48
hydrodynamic flow of, 59
polyatomic, 50
theoretical measurements of, 49–50

gas streams, with blood streams, 368
gels

composition of, 341f, 342
pore size of, 103
preparation of, 341
undergoing phase change, 341f

Gibbs free energy change, of diffusion, 
113

Gilland’s method, 48
globin, 209
glomerular filtration, 275
glomerulus, bioartificial, 365
glucose

concentrations, oscillations in, 
371

insulin interaction with, 362f
metabolism of, pharmacokinetic 

models for, 361–363, 362f
negative feedback loop for, 362
transport of

across capillary, 135, 139
using Kadem-Katchalsky 

equation, 109–110
glycolytic oscillations, in bioartificial 

organs, 360–363, 362f
gravity

reduced, transient vertical Darcy 
flow under, 158–160, 160f

waves, 36
growth factors, identification of, 318

HH
half-rectified sine wave function, 468t
Haydeek-Minhas correlation, for 

hydrocarbon mixtures, 55
Hb. See hemoglobin
HbO2n. See oxyhemoglobin
heat, 10

bioheat transfer equation, 438
capacity, for various materials, 424t
engine, 383
experiments with, 18
in finite slab, with two boundaries, 

412f
measurements of, 17
null, transfer, 442–446, 442f–443f
scales for, 17–18
in semi-infinite medium, by 

cylindrical surface, 403f
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heat (Cont.):
in temperature dimensionless, along 

temperature dependent heated 
rod, 442f–443f

units of, 18
zero transfer of, 442

heat conduction
Fourier’s law of, 54, 389–391, 450

damped wave conduction and 
hyperbolic, 401f
parabolic, 402f

hyperbolic equation, in semi-infinite 
medium, 63

parabolic, 400–403
in physiology, 373–374
through skin/thermal wear, in 

winter, 426f, 427
transient, 433
through various tissues, 425f

heat flux, 392
in finite cylinder, 423
maximum, 444
relaxation equation for, 401f
in skin, with thermal wear, 433f
surface, 395, 400

for relaxation models, 401f
Heaviside unit step function, 466t
helium, separation of, 47f

from natural gas, 81
hematocrit, 111, 141

core, feed v., 145
temperature variation effect on, 146f
tube, 147
viscosity of, 146f

heme, 209
instantaneous fractional yield of, 

during NO parallel reactions, 
240f

hemodialysis, 137
deficiencies of, 363–364

hemoglobin (Hb), 209
Fe in, 212

Henry’s law, 212–213
Hermite polynomial, 465t
Hershey-Buckley model, 23
Hildebrand theory, of viscosity, 54
Hill, Archibald V., 211
Hill equation, 211

summary of, 245
Hill plot, 212f
hindered diffusion, 94, 124, 134
HIPCO, 325
hollow cylinder, diffusion in, 57
hollow spheres, diffusion in, 80–81
hollow-fiber

extracorporeal lung, 366f
mass exchanger, 115f

Hooke, Robert, 9
Howship’s lacunae, 332

human anatomical temperature, 447
regulation of, 436–437

hydraulic conductance, 132
in human body, 130–131

Hydraulica, 27
hydrocarbon mixtures, Haydeek-

Minhas correlation for, 55
hydrocarbon-hydrocarbon gas system, 

48
hydrodynamic flow, of gases, 59
Hydrodynamica, 27
hydrophilic, 112–113
hydrophobic, 113
hydroxyapatite, 332

formation of, on Langmuir-Blodgett, 
334

nanocrystals
aspartic acid with/without, 333f
uses of, 332

hyperbolic diffusion, 249–265
hypertonic solution, 85
hypotonic solution, 85
hypoxia, 238

II
ice cube, with friction, on inclined 

plane, 16f
IDDM. See insulin-dependent diabetes 

mellitus
ideal gas law, 53

derivation of, 12
idealization, 149
immune system

components of, 141
response of, 356

immunoisolation, 355–356
summary of, 369

immunosuppressive drugs, 355
incompressible flow, 6
Indus Valley, 2
inertial lag time, 447

in semi-infinite medium, 400
infinite cylindrical medium, 393–395

damped wave conduction in, 411
relativistic transformation in, 

403–407, 403f, 406f
relaxation equation in, 411

infinite medium
periodic boundary conditions, 

264–265
relativistic transformation in, of 

spherical coordinates, 407–412, 
410f

temperature, at point x = 7, 406f
wavefront in, in three-dimensional 

coordinates, 453
infinite medium-Cartesian-pulse 

boundary, 265
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infinite medium-cylindrical-boundary, 
260–263

infinite medium-cylindrical-constant, 
260

infinite medium-spherical connective 
boundary, 263–264

infinite medium-spherical periodic 
boundary, 264–265

infinite medium-spherical-constant 
concentration, 263

infinite medium-spherical-pulse 
boundary, 265

inflammation, with implant device, 343
initial temperature at T0, in semi-infinite

medium, 393f
input/output system, 301, 301f
instantaneous fractional yield, of 

heme, during NO parallel 
reactions, 240f

insulin
achieving artificial levels of, 357
concentrations, oscillations in, 371
glucose interaction with, 362f
mathematical release rates for, 

360–361
negative feedback loop for, 362
pharmacokinetic models for, 

361–363, 362f
radioactive, 343, 343f

concentration of, 344
arbitrarily large, 345–346
oscillations of, 346

as tracer, for implant device, 342–343
insulin-dependent diabetes mellitus 

(IDDM), 357
interference laminae, of thin films, 336
internal combustion engine, 387, 387f
internal energy, 379
intravenous infusion

continuous, 269f
drug concentration during, 308

problems about, 206
intravenous therapy, 135, 269f
inverse of Laplace transforms, 465t–469t
ion implantation, 80
iridescence, 335

study of, 348
iron (Fe), in Hb, 212
irrotational flow, 5
isentropic flow, 5
islet chamber, 372
islets of Langerhans, 133, 134f, 137–138

oxygen hyperbolic diffusion in, in 
finite slab, 249–250

oxygen parabolic diffusion in, in 
finite slab, 248–249

isobaric dialysis, 116–117
isobaric process, 378–379
isochoric process, 381–382, 381f

isothermal compressible flow, 6
isothermal process, 379–380

reversible, 382–384
isotonic solution, 85

JJ
Joule, James, 8–9

heat experiments by, 18

KK
K2CrO4. See potassium chromate
Kadem-Katchalsky equation

glucose transport using, 109–110
summary of, 124

kidney(s)
bioartificial, 363–365
dialyzer of, 115f
drug elimination by, 273–275, 274f
healthy, 138
transplantation of, 319

kinetic representation, of pressure, 
11, 52

KINETICA, 302
Kinetikos, 267, 302
King law, 50
Knudsen diffusion, 58, 93
Knudsen flow, 7
Krebs cycle, in absorption, 289–290, 

290f
Krogh theory, oxygen-depleted regions 

by, in cylindrical coordinates, 
119–121, 119f

Krogh tissue cylinder, 225, 246

LL
Lambert function, Michaelis-Menten 

kinetics and, 309
laminar boundary layer, 5
laminar flow, 4

problems about, 205–206
transient, in circular conduit, 

168–171
laminar sublayer, 5
Langmuir-Blodgett, hydroxyapatite 

formation on, 334
Laplace equation, with Darcy’s law, 

90
Laplace transforms, inverse of, 

465t–469t
laser vaporization process, 325
L-citrulline, 239
LCST. See low critical solution 

temperature
liberation, 267, 302
Lindsea lucida, 336
Lion Bioscience, 301
lipid vesicles, 329
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liquid(s)
diffusion coefficients in, 50–56
drop of, calculation of, 36

liver
drug elimination by, 273
transplant of, 319

loop of Henle, 274
low critical solution temperature 

(LCST), 326, 347
lungs, extracorporeal artificial, 

366–369, 366f, 371

MM
Mach number, 36
macropores, 87
magnetic flow, 7
mannuronic acid, 358
manometer, u-tube

oscillations in, 172–174, 173f, 199
subcritical damped oscillations in, 

173f
summary of, 199

Marangoni flow, 7
marginal zone theory, 142
mass

conservation of, 35
equation of, 24–25, 24f

density, for various materials, 
424t

exchanger
CO2 in, 369
for extracorporeal artificial lung, 

371
hollow-fiber, 115f

inertia time, 224, 226t
spectrometry, 270

Mathur law, 50
Maxwell’s demon, 448
Maxwell’s expression, 134–135
Maxwell’s relations, 12–16
Mechanica, 27
membranes

biomimetic materials for, 339–342, 
341f

dialyzing, 370
equilibrium, 114
material for, 348
osmotic pressure in, 84f
plasmapheresis, of polycarbonate, 

106
porous, 132
pot hole in, 135
reverse osmosis in, 129
solute diffusion across, 93–98, 

95f, 98f
synthetic materials used for, 

340–341
mesoscopic self assemblage, 342

metabolism, 267, 302
drug rate of, 271
five thermodynamics laws and, 

374–377
of glucose, pharmacokinetic models 

for, 361–363, 362f
metals

diffusion in, 57
to replace bone, 319

metaphysics, 10
method of relativistic transformation

of coordinates
in infinite cylindrical medium, 

403–407, 403f, 406f
in semi-infinite medium, 398–403, 

401f–402f
problems for, 451

Michaelis constant, 214
Michaelis-Menten absorption

elimination and, 23f, 285–289, 287f
Taylor series with, 21f

Michaelis-Menten kinetics
Fick diffusion and, in spherical 

coordinates, 214–221, 216f
Lambert function and, 309
rate-concentration curve obeying, 

216f
Taylor series with, 21f
transient oxygen Fick diffusion and, 

226–231, 228f
microencapsulation, 357–358
micropores, 87
milk, diffusion of, 77
molecular probes, for permeability, of 

transcapillary pathways, 101–110, 
102f, 104t, 105f, 107f–108f, 108t–110t

molecules
collisions of, 52–53
diffusion of, 41–42

sieving, 93
flow of, 93
motion of, 46–48

mollusks, biomineralization in, 336
momentum

accumulation of, 152
equations of, 26
transfer

damped wave, relaxation 
equation and, 150–151

in tube flow, with dimensionless 
velocity, 192f

monolayer formation, 338
morphology

of bone, 320
of CNT, 325–326
nanoscale, 327f
of precursor material, 327f
rhombohedral calcite, 336
spherulitic calcite, 336
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motion
bulk, 46–48
equation of, 25–28
flow in, near horizontal wall, 

152–157, 154f, 156f
machine, perpetual, 446

of second kind, 377–378
molecular, 46–48

multicompartment models, of drugs, 
295–299, 297f

multi-walled nanotube (MWNT), 
325

muscle, heat conduction through, 
425f

MWNT. See multi-walled nanotube

NN
NADPH. See nicotinamide adenine 

dinucleotide phosphate
nanoscale, 326, 446

morphologies of, 327f
Nature, 322
negative feedback loop, with glucose/

insulin interaction, 362
nephron, anatomy of, 274f
Nernst equation, 113–114
Nernst-Haskell equation, for 

electrolytes, 55
summary of, 73

Newton, Sir Isaac, 1
Newton’s law of viscosity, 21

generalized, 150–151
nicotinamide adenine dinucleotide 

phosphate (NADPH), 239
nitric oxide (NO), 238–239

diffusion of, in blood/tissue, 241f,
247

heme instantaneous fractional yield 
with, 240f

transport of, 240–241
in blood/tissue, 238–245, 

240f–241f
as vasodilator, 246

nitric oxide synthesis (NOS), 
239

NO. See nitric oxide
non-Newtonian fluids, 23
NOS. See nitric oxide synthesis
nuclear fuel rod, reaction in, 79
null heat transfer, critical point of, 

442–446, 442f–443f

OO
ODE. See ordinary differential 

equation
one-dimensional flow, 5
orange juice, osmosis in, 87

ordinary differential equation (ODE), 
245

second-order, 445
oscillations. See also subcritical 

damped oscillations
of dimensionless velocity, from flat 

plate, in semi-infinite medium, 
156f

in glucose/insulin concentrations, 
371

glycolytic, in bioartificial organs, 
360–363, 362f

of radioactive insulin, 346
torsional viscometer, 32–33
in u-tube manometer, 172–174, 

173f, 199
osmolarity, 85
osmole, 85
osmosis, 43. See also reverse osmosis

in orange juice, 87
reverse, 43

osmotic flow, 7
osmotic pressure

colloid, 84
in semipermeable membrane, 

84f
in solutions, 84f
van’t Hoff’s law of, 84–87, 84f

osteoblasts, 331
osteoclasts, 331
osteocompatibility, 334
Otto cycle, 387–388, 387f
oxidation, parabolic law of, 76
oxygen

availability of, 246
binding capacity of, 212
consumption of, 246
diffusion of

through spiracles, 76
in tissue/blood, 213–214
transient Fick, Michaelis-Menten 

kinetics, 226–231, 228f
dissociation of, from 

oxyhemoglobin, 212f
hyperbolic diffusion of, in islets of 

Langerhans, in finite slab, 
249–250

parabolic diffusion of, in islets of 
Langerhans, in finite slab, 
248–249

in tissue, dimensionless 
concentration profile for, 
228f

transport of
in capillaries, 112
in eyes, 78

zeroth-order reaction of, 217
oxygenation, as reversible reaction, 

209–213
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oxygen-depleted regions
by Krogh theory, in cylindrical 

coordinates, 119–121, 119f
summary of, 125

oxyhemoglobin (HbO2n)
oxygen dissociation from, 212f
summary of, 245

PP
pack, 118
PAN. See polyacrylonitrile
pancreas

bioartificial, 357–360, 360f
transplant of, 319

parabolic diffusion, 248–265
of oxygen, in islets of Langerhans, 

248–249
parabolic heat conduction, 400–403
parabolic law, of oxidation, 76
parallel disks

squeeze flow between, 184–187, 184f
viscometer for, 31–32

partition coefficient, 89
PDE. See preliminary differential 

equation
Peace Pipeline Project, 192

problems about, 205
Peclet number, 99
penetration length, 447
perfusion-rate limited, 271
periodic boundary conditions, 70–72, 

71f
for blood flow, 187–192, 188t, 192f
infinite medium, 264–265
for parabolic/hyperbolic diffusion, 

252–254
permeability

of capillaries, 271
molecular probes for, of 

transcapillary pathways, 
101–110, 102f, 104t, 105f,
107f–108f, 108t–110t

positive, subcritical damped 
oscillations with, 160f

coefficient, 103
cannulated glass micropipettes 

for, at Y branch, 102f
law of, 164
positive, transient velocity of, of 

viscous fluid flow, 168f
perpetual motion machine, 446

of second kind, 377–378
pH scale, in Bohr shift, 211–212
pharmacokinetics

models of
on computer, 299–302, 301f, 305
for insulin, 361–363, 362f
types of, 300

pharmacokinetics (Cont.):
population, 270
study of, 267–271, 269f
of styrene, in rats, 282

pharmacon, 267, 302
Philosophia Naturalis Principia 

Mathematica, 1
photomultiplier tube (PMT), 103
photosynthesis, 374
Pipin, Denis, 9
PK tool, 35f, 301
PLA. See polylactic acid
Planck’s law, 374
plasma

clearance of, 276
concentration of, 269f
layer of, 142f, 144f

cell-free, diffusion in, 232–234
skimming, 142
thickness of, explicit expression 

for, 145–147, 146f
wave diffusion effects in, 

234–238
thermofiltration of, 110, 110t

plasmapheresis, 135, 138
membranes, of polycarbonate, 106

plastometers, 34
plug, 5
PMT. See photomultiplier tube
Poiseuille distribution, 170
pollutants, diffusion and, 42
polyacrylonitrile (PAN), 327
polyatomic gases, calculations of, 50
polyion multilayer films, 337
polylactic acid (PLA), 320–321
polymers

co-, 328–329
diffusion in, 59
fabrication of, 322–323
self-assembly of, 330
solute attractive energy to, 60

polymersomes, 328
100-nm, cryogenic TEM image of, 

329f
population pharmacokinetics, 270
pore diffusion coefficient

Brenner equation for, 93, 95f
Renkin equation for, 93, 95f

pore radius
calculations for, 104t
sieving coefficient function of, solute 

radius ratio to, 108f
pore size, of gel, 103
pores, summary of, 123
porous media

fluid transport in, Darcy’s law for, 
87–90

transient velocity of, with positive 
permeability coefficient, 168f
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porous membrane, 132
potassium chromate (K2CrO4), in 

experiments, 46
potential flow, 36
precursor material, morphology of, 

327f
preliminary differential equation 

(PDE), 398, 405, 409, 411–413, 447
pressure, 10. See also osmotic pressure

constant-, process, 381f
Darcy gradient, 198
diffusion, 43
drop filtration, in arteries/veins, 

100, 100f
kinetic representation of, 11, 52
for various materials, 424t

protein(s)
bone morphogenic, 320
concentration of, 135
folding stability of, 329
self-assembly in, 331
signaling, 375

P-T diagram, three-step cycle in, 381f
pulsatile flow, 7
pulse boundary conditions, 250–252

in infinite medium, 265
P-V diagram, 383f

RR
radial flow, 7

outward, between two circular 
parallel disks, 184f

between two concentric spheres, 
180–184

problems for, 205
Raleigh line flow, 6
rate reaction, shear stress-shear, 196f
rate-concentration curve, obeying 

Michaelis-Menten kinetics, 216f
rats

drug concentration in, 314t
first-order absorption in, of styrene 

inhalation, 283f
pharmacokinetics in, of styrene, 282

Rayleigh-Benard instabilities, 7
reacting flow, 7
reactions in circle, 290, 290f

eight, 295f
four, 292–293
n reactions in, general case of, 293
three, 291–292

receptor-mediated transcytosis, 112
rectified sine wave function, 468t
reduction de abstractum, 386
reflection

coefficient, 130
Staverman, 97, 98f

maximum, wavelength of, 336

Reflections on the Motive Power of Fire, 9
relaxation effects, damped wave 

conduction and, in tissue/blood, 
438–442, 439f

relaxation equation
concentration profile under, 71f
damped wave diffusion and, 63
damped wave momentum transfer 

and, 150–151
derivation of, from free electron 

theory, 391–393
in infinite cylindrical medium, 411
surface heat flux for, 401f
temperature distribution for, by 

damped wave conduction, 402f
in tube flow, with dimensionless 

velocity, 192f
relaxation time

for skin, 434, 435f
temperature and, 54, 423
for thermal wear, 435f
for various materials, 424t
warm/cool sensations and, 426–427

renal clearance, 275–276, 276f, 303
renal excretion, 271
Renkin equation

diffusivity ratio from, 105f
for pore diffusion coefficient, 93, 95f

reparative medicine, 317
reverse osmosis, 43

analysis problems for, 127, 128f,
129

equation for, 97
membrane classification in, 129
schematic of, 130f
sea water, 130, 130f
to separate acrylonitrile, from water, 

131
transport processes during, 128f

reversibility, equilibrium and, 19–20
Reynolds number, 36

uses of, 187–188
rheometers, 34
rhombohedral calcite morphology, 

336
rolling ball viscometer, 32, 32f

SS
sacred pond, 76
saline water injection, 106
salt leaching technique, 324
salt precipitation, by freezing, 133
salt rejection, water flux and, 128f
sandwich configuration, of bioartificial 

pancreas, 360f
SAR/QSAR. See structure-activity 

relationship
saturation, 210
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Savery, Tom, 9
saw tooth wave function, 468t
SAXR. See small-angle x-ray 

reflectance spectroscopy
scaffolds

biodegradability of, 320
summary of, 346
in tissue design, 320–327, 327f

sea water reverse osmosis, 130, 130f
second law of thermodynamics, 

376–377
second-order absorption, single-

compartment models of, 277–280, 
278f, 280f

with elimination, 280–283, 281f,
282t, 283f

Seebeck effect, 449
self-assembly

of biomimetic materials, 328–330, 329f
of polymers, 330
in proteins, 331

self-diffusivity, 54
self-flowing flask, 449
self-repair, of biomaterial, 331, 337
semi-infinite medium

Cartesian, 257–260, 393–395
concentration profile in, 71f
in cylindrical coordinates, heated, 

by cylindrical surface, 403f
dimensionless concentration in, 

during simultaneous reaction, 
diffusion and, 223f–225f

dimensionless velocity in
damped oscillatory behavior of, 

156f
from moving flat plate, 156f

Fick molecular diffusion in, 61–63, 
61f

hyperbolic heat conduction equation 
in, 63

inertial lag time in, 400
with initial temperature at T0, 393f
method of relativistic transformation 

in, 398–403, 401f–402f
regimes of, 67–68
shear stress dimensionless in, with 

constant velocity, 154f
summary of, 73–74
temperature distribution in, by 

damped wave conduction, 
relaxation and, 402f

semipermeable membrane, osmotic 
pressure in, 84f

sequential adsorption, for thin films, 
338–339

shear flow, between two moving 
plates, in opposite directions, at 
constant velocity, 160–164, 161f

shear force, 2

shear stress, 2
dimensionless, in semi-infinite 

medium, with constant velocity, 
154f

-shear rate reaction, 196f
SI. See systems of units
sieving coefficient

at 25 degrees C, 110f
as function, of ratio of solute radius, 

to pore radius, 108f
in molecular diffusion, 93

single-compartment models
first-order absorption, with 

elimination, 277–280, 278f,
280f

second-order absorption, with 
elimination, 280–283, 281f,
282t, 283f

zeroth-order absorption, with 
elimination, 283–285, 285f

single-walled nanotube (SWNT), 325
Sinhas, 469t
six-stroke Otto cycle, in automobiles, 

387f
skin

grafts, 318
heat conduction through, 425f

in winter, 426f, 427
heat flux distribution in, with 

thermal wear, 433f
relaxation time for, 434, 435f
temperature of

at steady state, 427–428, 433f
at transient state, 429–431, 435f

Skylab diffusion system, 45–46
summary of, 73

slip flow, 7
slit limit, of layered blood flow, 

143–145, 144f
slug flow, 7
small-angle x-ray reflectance 

spectroscopy (SAXR), 337
SO2. See sulfur dioxide
solids

diffusion in, 56–60
porous, diffusion in, 58

solute
activation energy of, 60
concentration, effect of, 130
diffusion

coefficient for, 94
across membranes, 93–98, 95f, 98f

larger, than solvent, 54
molecular weight of, 132
-polymer attractive energy, 60

solution(s)
concentrated, diffusion in, 55–56
dilute, Stokes-Einstein equation for, 

51–55
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solution(s) (Cont.):
for dimensionless temperature, 

445–446
hypertonic, 85
hypotonic, 85
isotonic, 85
osmotic pressure in, 84f
steady state temperature, 442
UCST, 326, 347

solvent, solute larger than, 54
sonic flow, 6
spheres

finite, constant wall temperature 
and, 417–419

flow in, 179–184, 205
hollow, diffusion in, 80–81
radial flow of, two concentric, 

180–184, 205
transient flow past, 179–180
transient temperature in, 419

spherical coordinates, 53
in infinite medium, relativistic 

transformation in, 407–412, 
410f

Michaelis-Menten kinetics in, Fick 
diffusion and, 214–221, 216f

spherical medium, 263–265, 393–395
spherical suspensions, diffusivity 

through, 104–105
spherulitic calcite morphology, 336
splanchnic circulation, 268
square wave function, 468t
squeeze flow, 7

between parallel disks, 184–187, 
184f

Stabiner viscometer, 29
stack, 118
starch

removal of, 132
ultrafiltration of, 136

Starling’s law
derivation of, 98–100
for fluid transport, 90–93
as non-universal, 100–101, 100f
summary of, 123–124

Staverman reflection coefficient, 97, 
98f

steady flow, 5
steam engine, 80
STELLA, 302
steric exclusion, 94
Stokes law, 51
Stokes-Einstein equation, 46

for dilute solutions, 51–55
streamline, 5
streptavidin-containing films, 338
structural hierarchy, in tendons, 330
structure-activity relationship (SAR/

QSAR), 300

structure-function relationships, of 
biomimetic materials, 331–332

styrene
in blood, 282t
inhalation of, in rats, 283f
pharmacokinetics of, in rats, 282

subcritical damped absorption, with 
elimination, 296f–297f

subcritical damped oscillations, 238, 
245

in drug absorption, 293–295, 295f
with positive permeability, 160f
in u-tube manometer, 173f

subcritical flow, 7
substrates, for thin film formation, 

337, 348
sulfur dioxide (SO2), 77
supercritical flow, 7
supersonic flow, 6
surface concentration, 254
surface heat flux, 395, 400

for relaxation models, 401f
sweep diffusion, 43
SWNT. See single-walled nanotube
systemic circulation, 268
systems of units (SI), 8
systole, 187

TT
T cells, 356
T0 initial temperature, in semi-infinite 

medium, 393f
Taitel paradox, 447

finite slab and, 412–413, 412f
tangential flow, 7

rotating cylinder induced, 174–177, 
174f

at small distances, 177–179
time lag in, 177
transient, 199

Taylor series, 20, 304
with Michaelis-Menten kinetics, 21f

telescoping power series, 395–398
temperature. See also transient 

temperature
in Carnot engine, 386, 386f
constant wall

finite cylinder and, 420–423
in finite slab, 415f–416f
finite sphere and, 417–419

-dependent heat source, in rod, 439f,
442f–443f

dimensionless
solution for, 445–446
along temperature dependent 

heated rod, 442f–443f
hematocrit and, 146f
human anatomical, 436–437, 447
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temperature (Cont.):
LCST, 326, 347
negative, 442
operating, 133
at point x = 7, in infinite medium, 

406f
profile, convex, 453
relaxation time and, 54, 423
in semi-infinite medium, by damped 

wave conduction, relaxation 
and, 402f

of skin, at steady state, 427–428, 
433f

steady state solution for, 442
at T0, in semi-infinite medium, 393f
with thermal wear, at steady state, 

433f
UCST, 326, 347
wave, 67

tendons, structural hierarchy in, 330
thermal conductivity

of CNT, 325
in tissues, 425–426
for various materials, 424t

thermal diffusivity, 424t
thermal efficiency, 383, 385
thermal therapy, 373–374, 446
thermal wear

heat conduction through, in winter, 
426f, 427

relaxation time for, 435f
temperature with

at steady state, 433f
transient, 435f

transient state in, 431–435, 433f,
435f

warm/cool sensations and, 
426–427

therme, 34
thermodynamics

efficiency of, in humans, 437
first law of, 34
five laws of, metabolism and, 374–377
laws of, in physiology, 373–374
properties of, of fluids, 8–20
second law of, 376–377
state of, 19
third law of, 42
zeroth law of, 375–376, 449

thermofiltration, of plasma, 110, 110t
thermophoresis, 43
thermophysical properties, of 

biological tissues, 423–426
thermoreversible phase change, 341
Thiele modulus, 77
thin films

of biomimetic materials, 335–339
interference laminae of, 336
polyion multilayer, 337

thin films (Cont.):
sequential adsorption for, 338–339
streptavidin-containing, 338
substrates for, 337, 348
three-dimensional control of, 339

Thodos law, 50
three reactions in circle, 291–292
three-dimensional control, of thin 

films, 339
three-dimensional coordinates, in 

infinite medium, wavefront in, 
453

three-dimensional flow, 5
thrust, conical, 205
time. See also relaxation time

drug concentration and, 280f
in finite slab, final condition of, 

413–417, 415f–416f
lag

in semi-infinite medium, 400
in tangential flow, 177

tissue
brain, ethanol in, 310
diffusion coefficient in, 214
engineering of, 317–320
formation of, 320
heat conduction through, 425f
NO in

diffusion of, 241f, 247
transport of, 238–245, 240f–241f

oxygen in
diffusion in, 213–214
dimensionless concentration 

profile for, 228f
relaxation effects in, damped wave 

conduction and, 438–442, 439f
thermal conductivity in, 425–426
thermophysical properties of, 

423–426
tissue design

history of, 317–320
scaffolds in, 320–327, 327f
summary of, 346
three stages of, 318

topology, 326
Torricelli’s theorem, 36
torsional oscillatory viscometer, 32–33
total enzyme concentration, 214
total molar flux, 46–48
transcapillary pathways, permeability 

of, molecular probes for, 101–110, 
102f, 104t, 105f, 107f–108f,
108t–110t

transient diffusion, 60–74, 61f, 71f
Michaelis-Menten kinetics and, 

226–231, 228f
transient flow, 5

laminar, in circular conduit, 168–171
past spheres, 179–180
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transient flow (Cont.):
tangential, 199
vertical Darcy, 157–158

under reduced gravity, 158–160, 
160f

transient temperature
problems for, 452
profile, in sphere, 419
of skin, 429–431, 435f
with thermal wear, 435f

transient velocity
summary of, 198
in vertical flow, 198–199
of viscous fluid flow, in porous 

medium, with positive 
permeability coefficient, 168f

transport phenomena, study of, 2
tree, tallest, calculation of, 132
triangular wave function, 468t
tropomyosin, 331
T-S diagram, four-step Carnot cycle 

on, 384f
tube flow, dimensionless velocity in, 

by momentum transfer/
relaxation, 192f

tumor necrosis factor, 358
turbine, 448
turbulent flow, 4
two-compartment model, for 

absorption, with elimination, 
297f, 305

two-dimensional flow, 5
two-phase flow, 7
type 1 diabetes, treatment of, 133

UU
UCST. See upper critical solution 

temperature
ultrafiltration, 97, 137

of starch, 136
uniform flow, 5
unimolar diffusion, example of, 47
upper critical solution temperature 

(UCST), 326, 347
urea, breakdown of, 364–365
urine, accumulation in, of drugs, 307
u-tube manometer

oscillations in, 172–174, 173f, 199
subcritical damped oscillations in, 

173f
summary of, 199

VV
vacuum flow, 7
van der Waals force, 326
van’t Hoff’s law

of osmotic pressure, 84–87, 84f
summary of, 123

vascular grafts, 318
vasoconstriction, 238
vasodilator, NO as, 246
veins, filtration pressure drop in, 

100, 100f
velocity. See also transient velocity

in blood vessels, 187–191
constant, between two moving 

plates, in opposite directions, 
160–164, 161f

constant/dimensionless, shear 
stress, in semi-infinite medium, 
154f

dimensionless
damped oscillatory behavior of, in 

semi-infinite medium, 156f
in tube flow, by momentum 

transfer/relaxation, 192f
drift, 392
profile

linear, 20f, 22
transient, 197–199

vertical flow
between moving plates, in opposite 

directions, 164–168, 164f–165f,
168f

transient velocity in, 198–199
very large-scale integration (VLSI), 56
vesicles, 328

lipid, 329
viscoelastic flow, 7–8
viscometer

bubble, 34
cone-and-plate, 29, 29f
Coutte, 29–31, 30f
efflux, 28
falling ball, 28–29, 205
parallel disk, 31–32
rolling ball, 32, 32f
Stabiner, 29
torsional oscillatory, 32–33

viscoplastic fluids, list of, 148t
viscosity

derivation of, 22
of dilute monatomic gas, 151
of fluid, 20–23, 20f

measurement of, 28–34, 29f,
30f, 32f

of hematocrit, 146f
Hildebrand theory of, 54
Newton’s law of, 21, 150–151

viscous flow, 93, 168f
VLSI. See very large-scale integration
volume

apparent distribution, 271
control, 2

region of, where fluid moves, 24f
use of, 25

of drug, 303
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von Guericke, Otto, 9
vortex flow, 5

WW
warm sensations

damped wave conduction and, 426
relaxation time and, 426–427
thermal wear and, 426–427

water
in biomimetics, 328
crisis of, 42
flux, salt rejection and, 128f
in osmotic pressure, 84f
removal of, with artificial kidneys, 

364–365
reverse osmosis

acrylonitrile from, 131
with sea, 130, 130f

wave diffusion
damped

concentration profile under, 
71f

relaxation and, 63
effects of, 221–225, 223f–225f

in plasma layer, 234–238
wave flux, 65
wave functions, 468t
wave temperature, 67
wavefront, 66, 398–399, 402

problems for, 453
white blood cells (WBCs), 141

winter, heat conduction in, 426f,
427

Womersley number, for blood vessels, 
188t

wood chips, novel fuel from, 449
work, 16–17, 16f, 375–376

XX
x-ray

diffraction pattern, 322
small-angle, 337

YY
Y branch, cannulated glass 

micropipettes at, for permeability 
coefficient, 102f

yield stress fluids, 23–24, 23f, 148, 
198

yield stress myth, constitutive 
relations and, 148–150, 148t

ZZ
zero heat transfer, 442
zeroth law of thermodynamics, 

375–376, 449
zeroth-order absorption

drug accumulation in, 309
with elimination, 283–285, 285f

zeroth-order reaction, of oxygen, 
217
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