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Preface

author in biofluid dynamics to undergraduate bioengineering

students every other semester between 2003 and 2007 at
SASTRA University, Thanjavur, India, and to graduate students of
nanotechnology for two years. Transport phenomena and biomedical
engineering are two vast fields spanning different engineering
branches and clinical medicine branches.

Transport phenomena has been the subject of study for the past
67 years by many an engineering student—both in our nation and
worldwide. The unified study of heat transfer, mass transfer, and
momentum transfer that developed as branches of classical physics
many years ago saw the arrival of transport phenomena as a core
course in the engineering curriculum. With the plethora of resources
available to the student of the next millennium, the emphasis in
theory is changing from engineering correlations to mechanistic
modeling. Rather than refer to engineering charts in a handbook or
wait for experimental data to be measured and published by others,
the modern engineer wants to develop mathematical models from
first principles, make fewer assumptions, and predict more
phenomenological variables more reliably and with an improved
understanding of the underlying mechanisms. The advent of personal
computers, software for solving ordinary and partial differential
equations, and software for flow visualization has shifted the onus to
the engineer to make those judicious choices after careful analysis
using the resources available and to develop critical thinking skills.
Fundamental basis and control volume can be used to develop
governing equations for a given problem. The “slice-balance”
approach is used to develop mathematical models.

Although a wide range of different applications is possible using
this approach, of particular interest is the application of the principles
of transport phenomena to bioengineering systems. What can a
engineer do in the hospital? He or she can aid the physician with
theories and methods to fight and eradicate disease. The goal of
eradicating disease by 2050 can be achieved by applying transport

I I This book is a natural outgrowth from the instruction by the

Xiii
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phenomena to the human anatomy. The medical significance of this
subject is high. This book has been written to reflect physiological
significance rather than elaborate mathematics. The equations of
continuity, momentum, energy, and mass can be applied to the human
anatomical systems. These equations are checked to ensure that they
are in accordance with the Clausius inequality, and the solutions are
presented showing the term-by-term medical significance. Iterative
solutions are used when necessary. Elegant, closed-form analytical
solutions to the models are developed using different methods. The
range of application of the models is clearly stated. Friction
factors are used where appropriate. Flow regimes are delineated,
and 50 different flow types are discussed. For the first time, surface
tension concepts, viscoplastic fluids, and the finite speed momentum
transfer equations are discussed. Worked examples are presented to
illustrate the application of the theory developed to various organs in
the human anatomy. Boundary and time conditions are selected to
provide better insight into the phenomena. Formulation of problems,
from the real patient to pencil and paper equations, is emphasized.
Applications that are on the rise include:

* The use of flow visualization by tracer technique to identify
the arterial block in the form of an angiogram

* The design of a dialysis machine to cure end-stage renal
disease

e Better prediction of how oxygen is transported across the
blood capillary wall and into the tissue space

* Better understanding of nitric oxide (NO) transport

* Better prediction of the rheology of blood flow in the
capillaries

¢ Better understanding of the reversible oxygenation of blood

¢ The development of better drug delivery systems

* Better prediction of drug profiles in the human anatomy
using single and multiple pharmacokinetic models

¢ Better prediction of the work done by the heart
¢ Applying the Bernoulli law to the flow to the heart

* The design and development of tissue and artificial organs

The student will learn to apply transport theory to complex
medical phenomena. The Nobel laureate Krogh’s work on oxygen-
devoid regions in tissue are derived for Cartesian and cylindrical
coordinates.

Literature available in journals and conference proceedings is
referred to throughout this book. Patent literature is also cited to
ensure that the reader obtains a balanced perspective on the theory
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and where it is applied. The book is self-contained, with prelimi-
nary chapters devoted to fluid mechanics and molecular diffusion.
Appendices include a refresher on the Bessel differential equation and
a table of Laplace transforms. The utility of this subject is expected to
increase as more transport coefficient information is used to scale up
into bioartificial organs. As modern patients allow physicians to
perform more surgery on them, engineers will find themselves wanted
in the hospital.

In order to make this book self-contained, two preliminary
chapters review the prerequisite knowledge needed in fluid
mechanics and diffusion. In Chap. 3, the three important develop-
ments that gave impetus to the emergence of the field of biofluid
transport phenomena are discussed in detail: the discovery of osmosis
and osmotic pressure, the permeability of a solvent across a membrane
and Starling’s law, and diffusion of solute across a membrane. Van't
Hoft’s law to determine osmotic pressure, Darcy’s law of permeability,
Starling’s law for the combined effect of hydrostatic pressure and
osmotic pressure, Deen’s sieving coefficient, Maxwell’s effective
diffusion coefficient for suspensions, Kedem-Katchalsky equations,
and the Staverman reflection coefficient are elaborated on. The
hydraulic conductance of solvent, Lp, the permeability of solute, P ,
and the Staverman reflection coefficient ¢ are three important
parameters in solute transport across membranes. Eight worked
examples illustrating the use of theories described are presented. The
sieving coefficient and Staverman reflection coefficient are related by
S,=1-0.Oxygen-depleted regions (identified by the theory of Krogh)
are identified by mathematical modeling in cylindrical and Cartesian
coordinates. Simultaneous metabolic reactions and diffusion lead to
the zone of null transfer after a critical length.

In Chap. 4, blood rheology and transport are discussed. The
composition of the blood and the Fahraeus-Lindqvist effect are
discussed. The marginal zone theory is elaborated upon. An explicit
relation for plasma layer thickness is derived. A list of 46 viscoplastic
fluids is given in Table 4.1. The yield stress concept is an idealization
and has not been measured directly. The transient velocity profile
obtained by the damped wave momentum transfer and relaxation
equation is obtained under different geometries. Four regimes of
solutions are found. Subcritical damped oscillations in velocity are
found for fluids with large relaxation times. The method of relativistic
transformation of coordinates, the method of separation of variables,
and the method of complex velocity are used to obtain closed-form
analytical solutions.

In Chap. 5, the Hill equation is derived. The Bohr shift in the Hill
plot is explained. Oxygen-depleted regions of tissue are obtained
from mathematical modeling. Michaelis-Menten kinetics are modeled
in the asymptotic limits of high and low concentrations. Finite speeds
of diffusion are accounted for by the damped wave diffusion and

XV
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relaxation equation. The Krogh tissue cylinder is modeled under
transient conditions, and the kinetics obeyed in the asymptotic limit
of high concentration of oxygen (zeroth-order rate) and low con-
centration of oxygen (first-order rate). For intermediate values, a
numerical solution is needed. An infinite Fourier series solution is
obtained. NO diffusion in blood and tissue is similar to that of oxygen,
but is not the same. NO participates in a set of reactions in parallel.
The instantaneous fractional yield of a heme complex during parallel
reactions of NO is solved for and shown in Fig. 5.8.

In Chap. 6, pharmacokinetics are discussed. There can be three
types of drug concentration as a function of time, as shown in Fig. 6.1:
slow absorption, maxima and rapid bolus, and constant-rate delivery.
Single-compartment models are developed for first-order absorption
with elimination and second-order absorption with elimination. The
model solution is obtained by the method of particular integral for a
first-order ordinary differential equation (ODE), and given by Eq. (6.39).
Single-compartment models also are developed for zeroth-order
absorption with elimination, Michaelis-Menten absorption with
elimination, and reactions-in-circle absorption with elimination. The
conditions when subcritical damped oscillations can be expected are
derived. A two-compartment model for absorption with elimination
is shown in Fig. 6.17. The concentration that has diffused to the tissue
region in the human anatomy is accounted for in addition to the
concentration of drug in the blood plasma. The implementation of
the pharmacokinetic models on personal computers is discussed.

Tissue design, as discussed in Chap. 7, evolved as a separate
discipline from the field of biomaterials during a scientific conclave
in 1988. Langer and Vacanti defined tissue engineering as “an
interdisciplinary field that applies the principles of engineering and
life sciences toward the development of biological substitutes that
restore, maintain, or improve tissue function.” The 3-D tissue
formation is supported by a structure called a scaffold. Scaffolds need
to be biodegradable. Lower critical solution temperature (LCST) and
upper critical solution temperature (UCST) are also important
considerations in the phase separation of polymers. However, they
are covalently attached, thus preventing separation at the macroscale.
Phase separation is limited to the nanoscale. Biomimetic materials are
designed to mimic a natural biological material. Copolymers with
block microstructure have been found to self-assemble and organize
into periodic nanophases. One property of biomaterials worthy of
mimicking is the capability for self-repair.

Chapter 8 is devoted to bioartificial organ design and develop-
ment. One of the key technical hurdles in the successful transplantation
of bioartificial organs is immunoisolation. A bioartificial pancreas can
be used to treat diabetes mellitus, and is an improved therapy
compared with insulin therapy. Pharmacokinetic models have been
developed to describe glucose and insulin metabolism. Much of the
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research and development in the field of artificial kidney design has
been in development of novel dialyzing membranes, autosterilizable
membranes, reduction in the 200 to 300 liters of dialyzing fluid
required, the development of blood-compatible polymers for the
membranes, etc. A hollow-fiber artificial lung used in extracorporeal
circulation to remove carbon dioxide (CO,) from the blood and add
oxygen to the blood is shown in Fig. 8.5.

Chapter 9 is devoted to bioheat transport. Two important
applications of bioheat transport in medicine are thermal therapy
and cryopreservation. Nanoscale effects in the time domain are
important in a number of applications. The transient temperature
profile under damped wave conduction and relaxation is derived for
various geometries. Four regimes of solutions are found by the
method of relativistic transformation of coordinates. The Taitel
paradox is resolved by the use of a final condition in time. For systems
with large relaxation times, that is, T, > (a%/m%a), subcritical damped
oscillations can be seen in the temperature. The heat generated within
the human anatomy on account of the several metabolic reactions
and the heat transfer to the surroundings can be described using the
bioheat transfer equation. This was first introduced by Pennes. The
issues with regard to body regulation of temperature are discussed.
The thermophysical properties of biological properties and other
materials are discussed. The bioheat transfer equation may be
modified by the damped wave conduction and relaxation equation in
order to account for the finite speed of heat propagation.

Kal Renganathan Sharma, Ph.D., PE.
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CHAPTER 1

Fundamentals of
Fluid Mechanics

Learning Objectives
e Review 50 flow types

¢ Newtonian and non-Newtonian fluids

¢ “Yield stress” fluids

¢ Thermodynamic properties of fluids

¢ Maxwell’s relations

e Derive ideal gas law

e System, surroundings, and states

e Viscosity of fluid

¢ Equation of continuity

¢ Navier-Stokes equation, Euler equation, Bernoulli equation

e Viscometers-Efflux, rolling ball, Coutte, bubble, cone and
plate, falling ball, rotating disk, and torsional

Biomedical engineering is rapidly emerging as a distinct discipline.
The fundamentals and basic principles of transport phenomena need
to be integrated with biofluid dynamics and quantitative physiology
as well as into the biomedical /bioengineering curriculum. The design
of hemodialysis devices, oxygen transport to tissues, transport in the
kidneys, interstitial transport in solid tumors, drug delivery systems,
pharmacokinetic analysis, layered flow of the core and plasma layers
of blood, etc., will be discussed in this textbook. In order to render the
work self-contained, a preliminary review of fluid mechanics and dif-
fusion is undertaken in the first two chapters.

Sir Isaac Newton published the Philosophia Naturalis Principia
Mathematica in 1687 [1]. His work started the larger discipline of
mechanics. Engineering mechanics (statics and dynamics) is the

1
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1.1

1.2

Chapter One

study of equilibrium and forces on bodies and the kinematic motion
of bodies in constant and variable accelerations. Newton devoted his
second book to fluid mechanics. Since the days of the sloping wells of
the Indus Valley civilization around 2900 B.c., the water systems and
aqueducts of Roman civilization, and the lead and clay pipes of the
Hellenistic city of Pergamon, Turkey, fluid mechanics has been a fas-
cinating subject of study. The first recognizable contribution came
with Archimedes’s buoyancy principle in Greece around 250 B.c.
Pioneers in the field include L. Vinci, E. Torricelli, B. Pascal,
D. Bernoulli, J. Bernoulli, L. Euler, d’Alembert, Lagrange, Laplace,
Poisson, Poiseuille, C.L. Navier, G.G. Stokes, L. Prandtl, O. Reynolds,
G.I Taylor, etc.

The application of transport phenomena to human physiology
began in recent years.

Fluids

Any form of matter that can flow is considered a fluid. It can be a lig-
uid or gas. Thus, a fluid is a gas or a liquid that flows when subjected
to sufficient shear stress. Shear force is the tangential component of a
force field. Divided by the area normal to it, the force serves as the
average shear stress over the area. Shear stress at a given point is the
limiting value of shear force to an area in the limit of the area reduced
to a point. In 2001 the Nobel Prize in physics went to work that iden-
tified a fourth state of matter: Bose-Einstein condensate. If it flows, it
can be considered a fluid.

Continuum hypotheses assume that the fluid consists of homogeneous
properties, such as uniform density throughout the fluid considered.
This is despite the fact that at a molecular level, the mass is concentrated
in a small region called the nucleus. The protons and neutrons are where
the bulk of the mass lies. The electrons that orbit the protons and neu-
trons form the volume of the elements. Molecules of gases are separated
by vacuum regions. Often, problems of flow are concerned with sub-
stances in the larger, macroscopic scale, and the molecular, or microscale,
phenomena may be assumed to not make an engineering difference.
Thus, it is assumed that the fluid will behave as if it were continuous in
structure. Mass and momentum associated with substances within a
control volume are regarded as distributed uniformly over that volume
instead of being concentrated in a small fraction of it.

Control volume refers to a region of volume considered the basis
for developing the theory of fluid flow in and out of the region.

56 Fluid Flow Types

Since the pioneering work of Euler, Bernoulli, Navier, and Stokes, for
several centuries investigators have been accumulating knowledge in
fluid mechanics. Fifty six different fluid flow types can be identified
[2, 3]. These are presented in Table 1.1.
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S. No. Flow Type S. No. Flow Type

1 Three-dimensional 29 Plug

2 Accelerating 30 Poiseuille

3 Adiabatic 31 Prandtl boundary layer

4 Annular 32 Pulsatile

5 Ballistic 33 Raleigh

6 Buoyant 34 Reacting

7 Bubbly 35 Slip

8 Capillary 36 Slug

9 Choked 37 Solenoidal
10 Compressible 38 Sonic
11 Critical 39 Squeeze
12 Darcy’s 40 Steady
13 Electrolytic 41 Subcritical
14 Fanno 42 Subsonic
15 Filtration 43 Supercritical
16 Gravity 44 Supersonic
17 Hele-Shaw 45 Tangential
18 Hypersonic 46 Three-phase
19 Incompressible 47 Tranquil
20 Intraocular 48 Transient
21 Irrotational 49 Transition
22 Jet 50 Transonic
23 Knudsen 51 Turbulent
24 Laminar 52 Two-phase
25 Layered 53 Vacuum
26 Magnetic 54 Viscoelastic
27 Marangoni 55 Vortex
28 Osmotic 56 Womersley

TaBLe 1.1 56 Different Fluid Flow Types

Osborn Reynolds [4] presented his experimental investigation of
the circumstances that determine whether the motion of water shall
be direct or sinuous and of the laws of resistance in parallel channels
to the Royal Society 122 years ago. To this day the dimensionless
group (pVd/u) named after him, called the Reynolds number, is used
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extensively. It gives the ratio of the inertia forces and viscous forces,
and is used to delineate laminar flow from turbulent flow.

A glass tube was mounted horizontally with one end in a tank
and a valve on the opposite end. A smooth bell-mouth entrance was
attached to the upstream end with a dye jet arranged so that a fine
stream of dye could be injected at any point in front of the bell
mouth.

Reynolds took the average velocity, V, as the characteristic veloc-
ity and the diameter of the tube as the characteristic length. For small
flows, the dye stream moved in a straight line through the tube, indi-
cating that the flow was laminar. As the flow rate was increased,
Reynolds’s number increased, since d, p, and p were held constant
and V was directly proportional to the rate of flow. With increasing
discharge a condition was reached at which the dye stream wavered
and then suddenly broke up and was diffused throughout the tube.
The nature of the flow had changed to a turbulent one with its violent
interchange of momentum that had completely disrupted the orderly
movement of laminar flow. By careful manipulation of the variables,
Reynolds was able to obtain a value of Re = 12,000 before turbulence
set in. Later investigators obtained a value of 40,000 using the same
equipment as Reynolds. They let the water stand in the tank for sev-
eral days before the experiments and took precautions to avoid
vibrating the water or equipment. These numbers are referred to as
the upper critical Reynolds number. Starting with turbulent flow in a
glass tube, Reynolds found that it was always laminar when the veloc-
ity is reduced to enable Re < 2000. This is the lower critical Reynolds
number. With the usual piping installation, the flow will change from
laminar to turbulent in the range of Reynolds numbers from 2000 to
4000. The Reynolds number may be interpreted as the ratio of the
bulk transfer of momentum to the momentum by shear stress.

Hele-Shaw [5] refers to two-dimensional laminar flow between
closely spaced plates. Laminar flow is defined as flow in which the
fluid moves in layers, or laminas, one layer gliding smoothly over an
adjacent layer with only a molecular interchange of momentum. Tur-
bulent flow, however, has an erratic motion of fluid particles with a
vibrant transverse interchange of momentum. Reynolds number cal-
culations have been popular with many a successful practitioner and
have withstood the test of time for more than 12 decades.

In 1904, Prandtl [6] presented the concept of the boundary layer.
It provides the important link between ideal fluid flow and real fluid
flow. For fluids with small viscosity, the effect of internal friction in a
fluid is appreciable only in a narrow region surrounding the fluid
boundaries. From this premise, the flow outside the narrow region
near the solid boundaries may be considered ideal flow or potential
flow. Relations within the boundary layer region can be computed
from the general equation for viscous fluid. The momentum equation
permits developing an approximate equation for boundary layer
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growth and drag. When motion is started in a fluid with small viscos-
ity, the flow is initially irrotational. The fluid at the boundaries has
zero velocity relative to the boundaries. As a result, there is a steep
velocity gradient from the boundary into the flow. The velocity gradi-
ent in a real fluid sets up near the boundary shear forces that reduce
the flow relative to the boundary. The fluid layer that has had its
velocity affected by the boundary shear is called the boundary layer.

The velocity in the boundary layer approaches the velocity in the
main flow asymptotically. The boundary layer is very thin at the
upstream end of a streamlined body at rest in an otherwise uniform
flow. As this layer moves along the body, the continual action of shear
stress tends to slow down additional fluid particles, causing the thick-
ness of the boundary layer to increase with distance from the upstream
point. The fluid in the layer is also subjected to a pressure gradient,
determined from the potential flow, that increases the momentum of
the layer if the pressure decreases downstream and decreases its
momentum if the pressure increases downstream (adverse pressure
gradient). The flow outside the boundary layer may also bring
momentum into it. For smooth upstream boundaries, the boundary
layer starts out as a laminar boundary layer in which the fluid parti-
cles move in smooth layers. As the laminar boundary layer increases in
thickness, it becomes unstable and finally transforms into a turbulent
region in which the fluid particles move in zigzag paths, although
their velocity has been reduced by the action of viscosity at the bound-
ary. Where the boundary layer has become turbulent, there is still a
very thin layer next to the boundary that has laminar motion. It is
called the laminar sublayer.

Adiabatic flow is that flow during which no heat is transferred to
or from the fluid. Isentropic flow is reversible, adiabatic, and friction-
less in nature. Steady flow is said to occur when conditions such as
velocity and temperature are invariant at a certain point in time.
When the conditions of flow do change with time, the flow is said to
be unsteady, or transient. When all the points in the flow field have
the same velocity, the flow is said to be in plug or uniform flow. Vortex
flow, or rotational flow, is said to occur when fluid particles exhibit
rotation about any axis. When the fluid within the region has no rota-
tion, the flow is described as irrotational flow. One-dimensional flow
neglects variations or changes in velocity, pressure, temperature, con-
centration, etc., transverse to the main flow direction. When there is
no change in flow normal to the planes of flow along an identical
path, the flow is described as two-dimensional. Three-dimensional flow,
the generalized description of flow, is described by the u, v, and w
components of the velocity vector as a function of space coordinates
X, Y,z and t.

A streamline is the imaginary continuous line drawn through the
fluid so that it has the direction of the velocity vector at every point.
A stream tube, or stream filament, is a tube with a small or large

5
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cross-section of any convenient shape that is entirely bounded by
streamlines. A stream tube can be visualized as an imaginary pipe in
the mass of flowing fluid through the walls of which no net flow is
occurring. A path line is the path followed by a material element of
fluid. When flow is steady, the streamline and path line coincide. In
transient flow, the path line generally does not coincide with the
streamline.

A dye or smoke is frequently injected into a fluid in order to trace
its subsequent motion. The resulting dye or smoke trials are called
streaklines. For steady fluids, streaklines, path lines, and streamlines
are coincidental. In two-dimensional flows, streamlines are contours
of the stream function. Streamlines in two-dimensional flows can be
obtained by injecting fire-bright particles such as aluminum dust into
the fluid, brilliantly lighting one plane and taking a photograph of the
streaks made in a short time interval. Tracing on the picture continu-
ous lines that have the direction of the streaks at every point portrays
the streamlines for either steady or unsteady flow. Flow patterns may
be detected using laser interferometers and Wollaston prism. The
tracer particles are illuminated by creating laser sheets, and photo-
graphs reveal the streamlines, when a sphere settles in a fluid, for
example.

Incompressible flow is said to occur when, during study, the density
is not changed. Compressible flow [7] is when the density changes dur-
ing flow are more than 5%. The equation of state, in addition to the
equation of continuity, equation of mass, equation of momentum,
and equation of energy need be considered. The Mach (Ma) number
is obtained by taking the ratio of the velocity of fluid to the velocity of
sound. When Ma < 1, the flow is said to be subsonic, and for Ma > 1,
the flow is said to be supersonic. When Ma = 1, the flow is said to be
sonic, or critical. Isothermal compressible flow is often encountered in
long transport lines where there is sufficient heat transfer to maintain
constant temperature. Annular flow is found to happen in a cylindri-
cal annulus. Choked flow is said to occur at the throat of a convergent
divergent nozzle when the fluid reaches the sonic condition. Regard-
less of how low the exit pressure is, the mass flow remains a constant.
The flow properties at the throat and the entire subsonic section of the
convergent divergent nozzle are frozen. One-dimensional flow with
heat addition is called Raleigh line flow.

A plot of thermodynamic properties of enthalpy versus entropy is
available in the form of a Mollier diagram for such flow. When fric-
tional effects are included, it is referred to as Fanno-line flow.

Flow can be classified as rapid or tranquil. When flow occurs at
low velocities so that a small disturbance can travel upstream, it is
said to be in tranquil flow conditions. Upstream conditions is affected
by downstream conditions, and the flow is controlled by the down-
stream conditions. The delineating dimensionless group is the Froude
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number, F (v/(g])'/?) for the tranquil flow F < 1. When flow occurs at
such high velocities that a small disturbance such as an elementary
wave is swept downstream, the flow is described as shooting or rapid
(F > 1). Small changes in downstream condition do not effect any
change in upstream condition. When flow is such that the velocity is
just equal to the velocity of an elementary wave, the flow is said to be
critical (F = 1). Subcritical refers to tranquil flow at velocities that are
less than critical, and supercritical corresponds to rapid flows when
velocities are greater than the critical point. Time-dependent flow is a
function of the history of fluid.

Knudsen flow is said to occur when the mean free path of the mol-
ecule is greater than the width of the channel, and the process is
described by the pressure and temperature of the system. Ballistic, or
relaxational, flow is said to occur when the accumulation of momen-
tum is higher than an exponential rise; when the width of the channel
is small, the velocity of the fluid exhibits subcritical damped oscillations.
Oscillations exist in pulsatile floww—for example, in the inhalation and
exhalation of oxygen and carbon dioxide. Radial flow, or squeeze flow,
is said to happen when the r component of the velocity becomes a
salient consideration.

The Rayleigh—-Benard instabilities arise due to natural convection,
and the Marangoni flow is said to happen on account of thermocapil-
lary stress. When chemical reactions take place during flow, the con-
dition is described as reacting flow. Capillary flow can be said to occur
with blood in arteries and veins. Subatmospheric pressure conditions
lead to vacuum flow. Tangential flow emanates from moving circular
objects. Slip flow is the transition between molecular and viscous flow.
The slip boundary condition permits flow at the wall of the container.
Two-phase flow refers to the flow of more than one fluid, such as gas-
solid, liquid-gas, etc. At certain superficial velocities of gas in liquid
during two-phase flows various regimes can be seen, such as:

1. Bubbly flow. Gas escapes in the form of bubbles and some-
times there exists a maximum bubble size.

2. Slug flow. Slugs are formed. This is when the bubble reaches
the size of the apparatus and is called a slug.

Osmotic flow was discovered by Dutrochet in the 1800s. The flow
of fluid from a region of low solute concentration to a region of higher
solute concentration is referred to as osmotic flow. Flow induced by
electrolytes or cathode-anode difference is referred to as electrolytic
flow. In a similar fashion, magnetic flow is said to occur under the
influence of magnetic forces. Electrorheological fluids are smart flu-
ids that have been used recently in automatic transmissions of auto-
mobiles. They undergo an order-of-magnitude change in viscosity
when the electric field is changed externally. Viscoelastic flow is said to

1
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happen when both elastic and viscous effects can be seen. Buoyant
flow is said to happen when buoyant forces cause flow. Fluid flow
that occurs inside the human eyeball is called intraocular flow.

Thermodynamic Properties of Fluids

Thermodynamics was developed in the 19th century based on the
need to describe the operation of steam engines and to set forth the
limits of what the steam engines can accomplish. The laws that gov-
ern the development of power from heat and the applications of heat
engines were discussed in this new discipline. The first and second
laws of thermodynamics deal with internal energy, U (J/mole); heat,
Q (J/mole); work done, W (J/mole); and entropy, S (J/K/mole). These
are all macroscopic properties. These do not reveal microscopic mecha-
nisms. System and surroundings are defined prior to applying the
laws of thermodynamics. The fundamental dimensions that would
be used are as follows:

1. Length, L (m)

2. Time, t (s)

3. Mass, M (kg or mole)
4. Temperature, T (K)

The system of units (SI) is preferred in this textbook. A meter
is defined as the distance traveled by light in vacuum during
1/299,792,458 of a second. A kg, kilogram, is set as the mass of
platinum/iridium cylinder kept at the International Bureau of
Weights and Measures at Sevres, France. Kelvin is a unit of tempera-
ture and is given as 1/273.16 of the thermodynamic temperature of
the triple point of water. The amount of a substance with as many
molecules as there are atoms in 0.012 kg of C,,, carbon, is one gram
mole of the substance. One gram mole of any substance consists of
Avogadro number of molecules (6.023 E 23 molecules/mole).

The word thermodynamics is coined from the Greek: therme means
heat and dynamis means power. Heat means energy in transit, and
power relates to movement. Thus, thermodynamics is a branch of
physics where the effects of changes in temperature, pressure, and
volume on physical systems are studied at the macroscopic scale by
analyzing the collective motion of their particles through the use of
statistics. The essence of thermodynamics is the study of the move-
ment of energy and how energy instills movement. The study includes
the discussion of the three laws of thermodynamics, the efficiency of
engines and refrigerators, entropy, equation of state, thermodynamic
potential, internal energy, and system and surroundings. Thermody-
namics may be classified as classical thermodynamics and statistical
thermodynamics. The term thermodynamics was coined by James Joule
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in 1858 to designate the science of relations between heat and power.
The first book on thermodynamics was written in 1859 by William
Rankine, originally trained as a physicist. He taught at the University
of Glasgow as a civil and mechanical engineering professor.

Otto von Guericke designed the world’s first vacuum pump in
1650. Robert Boyle and Robert Hooke built an air pump in 1656. Pres-
sure exerted by a fluid was found to be inversely proportional to vol-
ume according to the Boyle’s law. Denis Pipin, an associate of Boyle,
built a bone digester that was used to raise high-pressure steam. The
idea of a piston and cylinder emanated from Pipin, although Tom Savery
built the first engine in 1697.

The father of thermodynamics is Sadi Carnot. He wrote Reflections
on the Motive Power of Fire in 1824. This was a discourse on heat, power,
and engine efficiency. The Carnot engine, Carnot cycle, and Carnot
equations are named after him. Credit is given to Rankine, Clausius,
Thompson, and Kelvin for the three laws of thermodynamics. Chemi-
cal engineering thermodynamics is the study of the interrelation of
heat with chemical reactions or with a physical change of state within
the laws of thermodynamics. Between 1873 and 1876, |. W. Gibbs
authored a series of papers on the equilibrium of heterogeneous sub-
stances. He developed the criteria whereby a process would occur
spontaneously. Graphic analyses and the study of energy, entropy,
volume, temperature, and pressure were introduced. The early 20th-
century chemists G. N. Lewis, M. Randall, and E. A. Guggenheim began
to apply the mathematical methods of Gibbs to the analysis of chemi-
cal processes. Classical thermodynamics originated in the 1600s. The
laws of thermodynamics were developed into the form we use today
in the late 1800s. The pre-classical period is the 250 years between
1600 and 1850. Thermometry originated first, and this was followed
by the hypotheses of an adiabatic wall and led to calorimetry.

The pre-classical period was filled with discussions that were
confused and controversial. Galileo may be credited with the discov-
ery of thermometry. He attempted to quantitate the subjective expe-
riences of hot and cold. In the Hellenistic era, air was known to
expand upon the application of heat. Galileo used this in his bulb and
stem device—called a thermometer—that is still in use today, although
it was once called a barothermoscope. Torricelli, a student of Galileo,
developed the barometer. He showed that the time taken to drain an
open tank using an orifice at the bottom is proportional to the square
root of the height of the fluid in the tank. Liquids used in the ther-
mometer evolved from water, to alcohol, to gas, to mercury in the
modern era. Thermometry requires two reference temperatures: the
freezing point and the boiling point of water at atmospheric pres-
sure. The temperature of a mixture of two liquids at two different
temperatures may be obtained by calculating a weighted average of
the two. In 1760, Joe Black suggested a modification to the mixing rule



10

Chapter One

through the use of specific heat. He pointed out that heat, not tem-
perature, was conserved during the mixing process. This discussion
formed the subject of metaphysics. Twenty years later, Count Rumford
showed by experimentation that mechanical work was an infinite
source of caloric heat. He called for the revival of a mechanical concept
of heat.

Only a century later did Maxwell, Boltzmann, and Gibbs connect
the microscale energy to the macroscale calorimetry. In 1824, S. Carnot’s
ideas led to the replacement of caloric theory by the first and second
laws of thermodynamics. The concepts of heat reservoirs, reversibility,
and requirement of a temperature difference to generate work from heat
were introduced. The Carnot cycle was analogous to a waterfall in a
dam. In 1847, Helmholtz came up with the principle of conservation of
energy. Joule established the equivalence of mechanical, electrical,
and chemical energy to heat. Caloric was later split into energy and
entropy. Heat and work were forms of energy and were asymmetric.
Entropy is conserved in a reversible process, and energy is conserved
during a Carnot cycle. These developments occurred in 1850 when
Clausius, Kelvin, Maxwell, Planck, Duhem, Poincare, and Gibbs pre-
sented their works.

1.3.1 Pressure
Pressure exerted by a fluid is the force per unit area acting on either

the external surface of the object or the walls of the enclosed container.
Thus:

_dF

P=7z

(1.1)

where F is the normal force and A is the area upon which the force is
exerted.

Pressure is a scalar quantity. The depth of the oceans is character-
ized by the hydrostatic pressure, P = hpg, where & is the depth from
the mean sea level, p is the density of the fluid, and g is the accelera-
tion due to gravity. The SI units for pressure are Pascal, or N/m?. The
standard atmospheric pressure is an established constant, and is
1.01325 E05 N/m?. Other units for pressure include atmosphere (atm),
barometric (bar), manometric (mmHg), torr, and imperial units such
as pounds per square inch (psi). The absolute pressure is different
from gauge pressure. Gauge pressure is given by the amount in excess
of atmospheric pressure. Although gauge pressure can take on nega-
tive values, especially under vacuum conditions, reports of negative
absolute pressure are controversial. During the transpiration phase of
plants and when the van der Waals interparticle forces become attrac-
tive rather than repulsive when they are close to each other, some
investigators report a negative absolute pressure. This apparently
comes from a negative value for the force.
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1.3.2 Kinetic Representation of Pressure
Consider a box of gas molecules. Let each of the molecules have a
velocity, v, with three components: v, v , and v,. Let the box be a cube
of side I (m). When one of the gas molecules collides with one of the
walls of the container, assuming an elastic collision, the momentum
change during collision may be given by:

Rate of momentum change due to one collision

=mv_—(-mv ) =2mov, (1.2)

where m is the mass of a molecule.

Assuming a roundtrip of 2/, the time taken between two colli-
sions of the same molecule with the same wall, the time taken between
collisions is

== (1.3)

Frequency of collisions on account of one molecule:

v
=== 14
o (1.4)
Rate of change of momentum at the wall:
_ v, 2mu_
-2l

(1.5)

Rate of change of momentum at the wall on account of N molecules:

L mul mogy

i IR A (1.6)
The force exerted by N molecules at the wall is equal to the rate of

change of momentum from Newton’s second law. The pressure

exerted by the fluid from Eq. (1.1) is F/A and hence:

mv?,  mo? 2
B 132+ 133+--~+ 13“’\] (1.7)

Defining the root-mean-square velocity of the molecule as:

N<v?>=0v?+0} + 03 +---+ 0%, (1.8)
and accounting for the motion of molecules in three dimensions,
combining Egs. (1.7) and (1.8) gives:

_ mN <v*>

P
30

=p <v*> (1.9)

where the density of the fluid, p, can be seen to be mN/P. Equation (1.11)
gives the kinematic representation of pressure [8].
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1.3.3 Derivation of Ideal Gas Law
From the Boltzmann equipartition energy theorem, the temperature

of the fluid can be written as:
mo?  3k,T

2 2

(1.10)

Combining Egs. (1.9) and (1.10) and multiplying and dividing the
numerator and denominator by the Avogadro number, A, ;

P mN3k, A, <T> =E (1.11)
A3P 14
where V = molar volume, m®/mole.

Thus, PV = RT for one mole of the gas can be derived. This is the
ideal gas law. The assumptions in the box of molecules were elastic
collision and that the gas molecule occupies negligible volume com-
pared to the volume of the container. In Eq. (1.13) it can be seen that
A, is the Avogadro number. A k, yields the universal gas constant R
(J/mole/K). Further, mN/A,, gives the number of moles of gas, N
present in the box. Also, A, I/mN gives the molar volume of the gas.

1.3.4 Maxwell’s Relations
Some important parameters of energy will be used in later discussions.

Five such parameters are introduced here. These are:
Internal energy, U (J/mole)

Enthalpy, H (J/mole)

Gibbs free energy, G (J/mole)

=N e

Helmbholtz free energy, A, (J/mole)
5. Entropy, S (J/K/mole)

These are also called state functions. Some important relation-
ships among the state functions U, H, G, A, and S are as follows:

H=U+PV (1.12)
G=H-TS (1.13)
A=U-TS (1.14)

Therefore, G may also be written as A+ PV or U - TS + PV. Amay also
be written as G - PV.

The free energy, G, of a system is the amount of energy that can
be converted to work at a constant temperature and pressure. It is
named after the thermodynamicist Gibbs. Helmholtz free energy, A,
of a system is the amount of energy that can be converted to work at
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a constant temperature. Enthalpy was first introduced by Clapeyron
and Clausius in 1827, and represented the useful work done by a
system. Entropy of a system, S, represents the unavailability of the
system energy to do work. It is a measure of randomness of the mol-
ecules in the system, and is central to the quantitative description of
the second law of thermodynamics. Internal energy, U, is the sum of
the kinetic energy, potential energy, and vibrational energy of all the
molecules in the system.

From the first law of thermodynamics, which shall be formally
introduced in the next chapter, it can be seen that:

dQ +dW = dU (1.15)

where dQ is the heat supplied from the surroundings to the system,
dW is the work done on the system, and dU is the internal energy
change. When work is done by the system, dW =—-PdV

or

dQ-PdvV =du (1.16)
In Chapter 9, it can be seen that dQ = TdS. Hence:

TdS—-PdV=dUu (1.17)
It may be deduced from Eq. (1.17) that:

au
(a_s)v =T (1.18)

au
(a_vjs =P (1.19)

The reciprocity relation can be used to obtain the corresponding
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

2u U
9S50V 9V as (1.20)

Combining Egs. (1.18) and (1.19) with Eq. (1.20):

oT oP
B e

In a similar fashion [9], expressions can be derived from dH as
follows:

dH=d(U + PV) =dU + PdV + VdP (1.22)

13
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From the first law of thermodynamics, Eq. (1.15):

dH=dQ - PdV +PdV+VdP=dQ + VAP =TdS+ VdP  (1.23)

it may be deduced from Eq. (1.23) that:

oH
[ﬁl =T (1.24)

OH
[E)_Pl =V (1.25)

The reciprocity relation can be used to obtain the corresponding
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

?H  9H
9SoP _ aPas (1.26)

Combining Eqgs. (1.24) and (1.25) with Eq. (1.26):

oT oV
B o

In a similar fashion, the corresponding Maxwell relation can be
derived from dG:

dG =d(H - TS) =dH - TdS - SdT (1.28)

Combining Eq. (1.28) with the first law of thermodynamics given by
Eq. (1.15):

dG=TdS + VdP - TdS - SdT
=VdP - SdT (1.29)

it may be deduced from Eq. (1.29) that:
G
(a_P)T =V (1.30)

G
[a—ij =-§ (1.31)

The reciprocity relation can be used to obtain the corresponding
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

PG 9G
9PIT _ 9T P (1.32)
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Combining Egs. (1.30) and (1.31) with Eq. (1.32):

avj (as]

—| =—|= (1.33)
(BT , aP )

In a similar fashion, the corresponding Maxwell relation can be
derived from dA:

dA=d(U-TS)=dU - TdS - SdT (1.34)

Combining Eq. (1.34) with the first law of thermodynamics given by
Eq. (1.15):

dA =TdS -PdV — TdS - SdT
=—PdV - SdT (1.35)

it may be deduced from Eq. (1.35) that:

0A
&RJT:—P (1.36)
0A
(a—TjV = —5 (137)

The reciprocity relation can be used to obtain the corresponding
Maxwell relation. The reciprocity relation states that the order of dif-
ferentiation does not matter. Thus:

PA A
VaT _ aTov (1.38)

Combining Egs. (1.36) and (1.37) with Eq. (1.38):
apj (asj
—| =|5= (1.39)
(aT v oV .
Example 1.1 Show for an ideal gas that C - C =R.

H=U+PV (1.40)

For an ideal gas, PV = RT.
Hence, Eq. (1.40) becomes:

H=U+RT (1.41)

Differentiating Eq. (1.41) with respect to T:

9H _JUu _ » (1.42)

oT ~ oT

15
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it can be seen that:

oH au
MY ) 143

Combining Egs. (1.42) and (1.43):

C —C, =R for an ideal gas.
P o

1.3.5 Work

The work associated with the action of a force from mechanics of par-
ticles and rigid bodies may be written as:

W =|Fds cos® (1.44)

where 0 is the angle made by the line of action of force and the path
taken by the particle. In a piston-cylinder arrangement, when the gas
in the cylinder expands when heat is supplied to it from the sur-
roundings, the work done by the system can be written as:

W =-|P.-A-ds=-[PdV (1.45)

The minus sign normalizes the work quantity. When the gas in the
cylinder expands, the work is done by the system, dV is positive, the
pressure decreases, and the minus sign keeps the work done positive.
In the differential form:

dW =-PdV (1.46)

As suggested by Eq. (1.45), the work done by the system consisting of
gas is the area under the curve of a PV diagram of the gas.

Example 1.2 Ice Cube Sliding Down an Inclined Plane
What happens to the internal energy of an ice cube that slides down an inclined
plane with an angle 6 and a length of the incline 1 (see Fig. 1.1)? Assume that

Ficure 1.1 Ice cube on an inclined plane with friction.
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the heat gained by the ice during the motion is proportional to the square of its
velocity.

F =mg sin® — umg cos© (1.47)
W=[Fdl = [ (mg sin6 - pmg cos 0)d (1.48)
=mgl (sin® — W cos 0) (1.49)

Change in kinetic energy of the ice cube:

v]% =2gl(sin®—cosb) (1.50)

Q=c2gl (sin® - cosB) (1.51)
From the first law of thermodynamics:

AU =Q+ W=2cgl (sin — . cos 0) + mgl (sin6 — 1 cos 0) (1.52)

1.3.6 Heat

Energy transfers from a hot body to a cold body in a spontaneous
manner when they are brought in contact with each other. The degree
of hotness or coldness is defined by a quantity called temperature.
The units of temperature, T, of a system are °C, Celsius, or °F, Fahren-
heit. The conversion of Fahrenheit to Celsius can be given by:

_ 5(T(F)-32)

T(°C) 9

(1.53)
Thermometers are used to measure temperature. They are made of
liquid-in-glass constructs. A uniform tube filled with a liquid such as
mercury or alcohol is allowed to expand, depending on the degree of
hotness or coldness of the system under scrutiny and the length of the
column measured. The length of the column is calibrated against
standard reference points, such as the freezing point of water at atmo-
spheric pressure at 0°C and the boiling point of water at atmospheric
pressure 100°C. These two points are divided into 100 equal spaces
called degrees.

The thermodynamic temperature scale is defined by the Kelvin
scale. The conversion of °C, degree Celsius, to K, kelvin, can be given
by:

T(K)=T(°C) +273.15 (1.54)

The lower limit of the Kelvin scale is 0 K or —273.15°C. The Interna-
tional Temperature Scale of 1990 (ITS-90) is used to calibrate thermo-
meters. Fixed points used are the triple point of hydrogen at —259.35°C
and the freezing point of silver at 961.78°C. The Rankine temperature
scale can be directly related to the Kelvin scale:

T(R) = 1.8 T(K) (1.55)
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Q is the amount of heat in joules that is transferred from surround-
ings into the system. Although the temperature difference is the driv-
ing force, the energy transfer is Q in joules of energy. The heat trans-
fer is transient in nature. The study of heat transfer is a separate subject
in itself, and will be discussed in detail in later chapters. The modes
of heat transfer—conduction, convection, radiation, and of late,
microscale mechanisms such as wave heat conduction—shall be dis-
cussed later.

A calorie is defined as the quantity of heat when one gram of
water was heated or cooled by one unit of temperature. A British ther-
mal unit (Btu) is the quantity of heat that, when transferred, can effect
a 1 degree Fahrenheit (F) change in one pound of water. The SI unit of
energy is in joules. One joule equals one newton meter (Nm).

The modern notion of heat stemmed from the experiments con-
ducted by James P. Joule in 1850 [10]. He placed known quantities of
water, oil, and mercury in an insulated container and agitated the
fluid with a rotating stirrer. The amount of work done on the fluid by
the stirrer and the temperature changes of the fluid were accurately
recorded. He observed that a fixed amount of work was required per
unit mass for every degree of temperature raised on account of stir-
ring. A quantitative relationship was established between heat and
work. Thus, heat was recognized as a form of energy.

The concepts of adiabatic wall and diathermal wall are used in dis-
cussions about heat engines and heat and work interactions. Consider
an object, A, at a temperature, T,, immersed in a fluid at a different
temperature, T,. The temperature of object A will attain the tempera-
ture of fluid B after a certain time. This is the transient response of a
step change in temperature at the interfaces of object A. Should the
temperature of object A remain relatively unchanged after a certain
time after the step change in temperature, the wall of object A sepa-
rating it from fluid B is said to be an adiabatic wall. Should the tem-
perature of object A reach the temperature of fluid B instantaneously,
the wall separating object A from fluid B is said to be a diathermal
wall. Depending on the thermal-response characteristics of object A,
the transient response of temperature T, to the fluid temperature T,
for all other materials would lie somewhere between the adiabatic
wall and the diathermal wall. The adiabatic wall and diathermal
wall are idealizations that are used in thermodynamic discussions
later on.

1.3.7 System, Surroundings, and States of a System

A closed system is defined as a set of components under study whose
boundaries are impervious to mass flow. Surroundings are the rest of
the universe other than the closed system. An open system is defined
as a set of components under study whose boundaries permit mass
flow across the interfaces. If the closed system is bounded by an
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adiabatic wall, it is said to be an isolated system. Composite systems
consist of two or more systems. Restraints are barriers in a system
that do not permit certain changes. In a simple system there are no
adiabatic walls, impermeable walls, or external forces. The phase of a
system is the state of matter it is in. The phase rule can be written as:

F=C-P+2 (1.56)

where F is the degrees of freedom, C is the number of components,
and P is the number of phases in the system.

A thermodynamic state is defined as a condition of a system char-
acterized by properties of the system that can be reproduced. States
can be at stable equilibrium or unstable or metastable equilibrium.
The states can be in nonequilibrium as well. Equilibrium states are
those where the macroscale changes are invariant with time. These
will figure in the discussions on fugacity and vapor liquid equilib-
rium later on.

For closed systems with prescribed internal restraints there exist
stable equilibrium states that are characterized by two independent
variable properties in addition to the masses of the chemical species
initially introduced.

A change of state is characterized by a change in at least one prop-
erty. The path taken refers to the description of changes in the system
during a change of state. When the intermediate values during a path
are at equilibrium states, the path is said to be quasi-static.

All systems with prescribed internal restraints will change in a
fashion so as to approach one and only one stable equilibrium state
for each of the subsystems during processes with no net effect on the
environment. The entire system is said to be in equilibrium.

Properties of the system may be classified as primitive or derived.
Experimental measurements define the primitive property of a sys-
tem. Properties that can only be defined by changes in the state are
derived properties. However, these can be derived from the primitive
properties.

1.3.8 Reversibility and Equilibrium

When two systems are nearly completely closed by adiabatic walls,
except for the one through which they come in contact with each
other, the states of the two systems change for some time and cease
after a while. This condition is referred to as the state of thermal equi-
librium. When two systems are in thermal equilibrium with a third
system, they should also be in thermal equilibrium with each other.
This shall be stated formally as the zeroth order of thermodynamics
as Guggenheim introduced it.

The spontaneous transfer of heat, such as in the example stated
previously, is generally irreversible in nature. To add to the weightless
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pulleys and frictionless planes, a reversible process is one where the
changes in a series of states are at equilibrium with each other. Change
in a continuous succession of equilibrium states is said to be reversible.
It is quasi-static. In the piston-cylinder assembly discussed in the pre-
vious sections, the work done during the reversible process is more
than that done during the irreversible one. When the weight in a
gauge is removed suddenly, the process is irreversible. A reversible
process is more gradual.
Entropy can be defined during a reversible process as follows:

AS=Q. /T

TdS =dQ (1.57)

For an irreversible process, entropy can be defined as:

TdS > dQ (1.58)

For a reversible process:

TdS=dQ (1.59)

Viscosity of Fluid

Consider a pair of large, flat, parallel plates, each with a surface area of
SA separated by a distance Z. In the space between the plates (Fig. 1.2)
is a fluid initially at rest. At time t = 0, the upper plate is set in motion
at a constant velocity, V. As time progresses, momentum is transferred

Stationary fluid, t < 0

y
<

t>0

A

Large ¢

Ficure 1.2 Development of a steady linear velocity profile in a viscous fluid
between two plates.
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from the top plate to the fluid adjacent to it and then to another layer
adjacent to that layer, and so on. At a steady state, a linear velocity
profile of the fluid is realized, as shown in Fig. 1.2. This is not chaotic
or turbulent, but steady and laminar in character.

A force, F, is required to maintain the motion of the upper plate.
Such flows can be described by Newton’s law of viscosity:

F Jv

sz =S—A=—H§ (160)

where T_ = shear stress
u = viscosity of the fluid
v = velocity of the fluid at any location z
SA = area of the flat plate
F = force required to set the plate in motion

Thus, Newton’s law of viscosity states that the shearing force
per unit area is proportional to the negative of the velocity gradient.
This was derived from empirical observations. A more generalized
Newton’s law of viscosity that is more applicable for some special
types of fluids will be discussed later. The form given in Eq. (1.62),
when attempting to derive it from simple kinetic theory of gases, arises
as a first term in an expansion, and additional terms can be expected.
Viscosity is a property of a fluid that measures the resistance of flow
of fluids with molecular weight less than 4,000 to 6,000. Such fluids
are called Newtonian fluids. Other systems, including polymers with
high molecular weight, are classified as non-Newtonian fluids.

The flow of viscous fluids can be viewed as momentum-transfer
phenomena. In the example considered in Fig. 1.2, momentum trans-
fers from a flat plate to the fluid through contact with layer after layer
of fluid. When posed as a problem in momentum transfer, the system
becomes analogous to what is encountered in heat-transfer and mass-
transfer problems. The equivalent property of the fluid from thermal
diffusivity in heat conduction and mass diffusivity in molecular dif-
fusion is kinematic viscosity in momentum transfer:

u
V=— 1.61

Typical viscosity values of industrial systems span a wide range, from
10 kg/m/s for air at ambient temperature to that of glycerol at
1 kg/m/s. Some systems, such as polydimethylsiloxane or silicone
oil, are more viscous. Some “smart” fluids, such as electrorheological
fluids used in automatic power transmission fluid, undergo an order
of magnitude increase in viscosity as the electrical charge applied is
doubled. Viscosity of fluids changes with temperature.

A simple expression for viscosity of a fluid can be derived using
kinetic theory of gases, as shown in the following paragraphs:

2
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From a molecular view, the viscosity can be derived and the
momentum transport mechanism can be illustrated [11]. Consider
molecules to be rigid, nonattracting spheres of mass, m, and diame-
ter, d. The gas is assumed to be at rest, and the molecular motion is
considered. The following results of kinetic theory for a rigid sphere
dilute gas in which small temperature, pressure, and velocity gradi-
ents are used:

Mean molecular speed <u> = 8:—:3: (1.62)
Wall collision frequency per unit area, Z = % n’<u> (1.63)
1
Mean free path, A= ———— 1.64
P T2 ) (1.64)

The molecules reaching any plane in the gas have, on average, had
their last collision at a distance a from the plane, where:

a=2/3% (1.65)

In order to determine the viscosity of a dilute monatomic gas, con-
sider the gas when it flows parallel to the x axis with a velocity gradient
dv_/0z. Assuming the relations for the mean free path of the molecule,
wall collision frequency, distance to collision, and mean velocity of
the molecule are good during the nonequilibrium conditions, the flux
of momentum in the x direction across any plane z is found by sum-
ming the x momenta of the molecules that cross in the positive y
direction and subtracting the x momenta of those that cross in the
opposite direction. Thus:

T =Zmv| _ —Zmo| (1.66)

z+a

It may be assumed that the velocity profile is essentially linear for a
distance of several mean free paths. Molecules have a velocity repre-
sentative of their last collision. Accordingly:

v =v|-2/3Adv /oz
X|Z—ﬂ X|Z X (1‘67)
vl . =v|+2/3\dv /dz
Substituting Egs. (1.67) into Eq. (1.66):
T =-1/3nm<u>Adv /dz (1.68)

Equation (1.68) corresponds to Newton’s law of viscosity, with
the viscosity given by:

u=1/3p<u>»r (1.69)

This expression for viscosity was obtained by Maxwell in 1860.
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Some fluids whose flow does not conform to Newton’s law of
viscosity but do conform to the following expression are called non-

Newtonian fluids:
o0
SR Fr

where 7 is the power law exponent. Only when n = 1 does the equa-
tion revert to the Newtonian law of viscosity. When n < 1, the fluid is
said to exhibit pseudoplastic behavior; when n > 1, the fluid is said to
be dilatant.

“Yield Stress” Fluids

For nearly a century, a class of fluids has been referred to as “yield
stress” fluids. The shear stress versus shear rate relationship they are
expected to follow is shown in Fig. 1.3.

As can be seen in Fig. 1.3, the y intercept is finite and represents a
yield stress: a stress below which the fluid behaves like a solid and
does not flow. This classification is attributed to Lord Bingham. Exam-
ples of such fluids are blood, tomato puree, tomato paste, fermenta-
tion broth, suspensions, slurries, etc. Most of the fluids recognized as
yield stress fluids are two-component mixtures. The constitutive rheo-
logical equations used to describe blood are:

1. Casson model
2. Hershey-Buckley model
3. Bingham model

In a paper, Barnes and Walters [12] posed some questions as to
the validity of the yield stress model. Their experimental findings

X

Shear stress

To

Y Shear rate

Ficure 1.3 “Yield stress” fluids.
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reveal that as more sophisticated instruments with improved capa-
bilities are used, the yield stress measured for the same fluid becomes
lower and lower in value at lower shear rates. Barnes and Walters
also pointed out that “yield stress” is often an idealization and not
very many investigators report experimental measurements of yield
stress.

Barnes and Walters found that “yield stress” is an idealization
and when given accurate measurements, no yield stress exists. They
used a controlled stress rheometer for commercially available polyvi-
nyl alcohol (PVA) latex with 0.5% aqueous carbopol solution. The
shape of the curve of the shear stress/shear rate descended from the
linear region in erstwhile yield stress plots to a power law region that
can pass through the origin. They used the Cross model to fit the
experimental data.

Hartnett and Hu [13] made some experimental measurements
spanning several months in an attempt to measure the terminal set-
tling velocity of a nylon ball in carbopol solution. More than six
months’ movement of a few markings, although infinite for engineer-
ing purposes, can be considered as no movement at all. So yield stress
is an engineering reality.

Yield stress is considered a figment of investigators” extrapolation.

Equation of Conservation of Mass

The equation of conservation of mass for any fluid can be derived as
shown in Fig. 1.4.

Consider a stationary volume element AxAyAz through which the
fluid is flowing (Figure 1.4):

(Rate of mass in) — (rate of mass out) * (reaction rates)

= (rate of mass accumulation) (1.70)

Ficure 1.4 Regjon of control volume AxAyAz fixed in space through which
fluid is moving.
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For the case when there is no chemical reaction:

AxAz (po|, - po,|,, )+ AxAY (po |, — pv

v+ Ay z|z+Az)

+AyAz(p v | —po | . ) =AxAyAz dp /ot (1.71)

X+ Ax

Dividing Eq. (1.71) by AxAyAz and taking the limits as the incre-
ments in the three directions, Ax, Ay, Az goes to zero.

o _ [dpv,) s d(po,) . A(pv,) 172)
ot ox ay 0z

Equation (1.71) can be written in terms of the substantial derivative:
Dp/Dt =—p(dv_/0x + avy/ay +0dv_/0dz) (1.73)
where the total derivative is given by:

Dp/Dt=0dp/dt+v,0p/dx +v,dpdy +v,0p/0z) (1.74)

at a steady state for a fluid at constant density:
0=-p(dv,/dx +dv,/dy + dv,/ dz) (1.75)

Equation (1.75) is the differential form of the equation of continuity.
An integral form of the equation of continuity can be written as:

d/ot[pdv+]pVdA=0

0 cs (1.76)

where cv refers to the control volume and cs to the control surface.

A control volume refers to a region in space, and is useful in ana-
lyzing situations where flow occurs into and out of the space. The
boundary of a control volume is its control surface. The size and
shape of the control volume are entirely arbitrary. They can be made
to coincide with solid boundaries in parts. The control volume is also
referred to as an open system.

Equation of Motion

The equation of motion can be derived using a momentum balance
on the control volume, as shown in Fig. 1.4.

(Rate of momentum in) — (rate of momentum out)
+ (sum of forces acting on system)

= (rate of momentum accumulation) (1.77)
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Consider the x component of momentum into and out of the volume
element shown in Fig. 1.4. Momentum flows into and out of the vol-
ume element by two mechanisms:

1. Convection or bulk fluid flow

2. Molecular transfer (velocity gradients)

AyAz (T | —1 |

xxlx xxlx + Ax)

+AxAy (T_]. -1

zx|z+Az)

+AxAz (T,), —1,],.,,

momentum by molecular transfer

) = net transfer of x component

T, is the normal stress on the x face and t,, is the tangential stress on
the y face from viscous forces. By convection:

)+ AxAz (p o v |

X+ Ax: y xy_p vyvx|y +Ay)
+AxAy (t(povp | —poo, ) =nettransfer of

z x'z

AyAz (p v2| - p v

z +Az

X component momentum by convection (1.78)

The sum of the external forces arises from that of hydrostatic pressure
and gravity. The resultant force in x direction is:

AYyAz (p|, = pl., ) + P 8, AxAYAz (1.79)

(AxAyAz) d(pv)/ ot = rate of accumulation of momentum  (1.80)

Substituting Eqgs. (1.78) to (1.80) into Eq. (1.77), dividing throughout
AxAyAz, and obtaining the limits as Ax, Ay, Az going to zero, the x
component of the equation of motion of the fluid can be obtained:

d(pv,) /ot =—[d(pv?)/ox + a(pvxvy)/ay +d(pv_v)/0z]
- [0t /0x + 0t /oy + 0t /0z]
—dp/dx +pg, (1.81)

The equation of momentum in the x can be written in terms of the
substantial derivative as:

pDV /Dt =-Vp—(dt,/ox+ 01, /dy+ 9t /0z) +pg, (1.82)

where V is the vector differential operator. Adding the x component,
y component, and z components of momenta and using the substan-
tial derivative, the equation of motion, including all three compo-
nents, can be written as:

pDV/Dt=-Vp+u V3V +pg (1.83)
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1.8 Navier-Stokes, Euler, and Bernoulli Equations

Equation (1.83) is the Navier-Stokes equation [14]. Neglecting the vis-
cous effects, Eq. (1.83) can be reduced to the Euler equation [15]:

pDV/Dt=-Vp + pg (1.84)

In one dimension at steady state, the Euler equation can be integrated
to yield the Bernoulli equation [16] between two locations of the flow-
ing fluid at 1 and 2:

2

2
Py 9

Pl -P
+5+8% pz+2

+82, (1.85)

P1
The fluid is assumed to be incompressible in the previous equations.
For compressible flow, the equations of continuity, momentum, and
energy can be derived again.

Between 1730 and 1760 the field of fluid dynamics blossomed. This
was largely due to the work of Leonhard Euler and Daniel and Johann
Bernoulli. He realized that pressure was a point property and differences
in pressure cause an acceleration of fluid elements. The equations of con-
tinuity and momentum were developed around this time. The equation
of energy came about later, in 1839, due to the work of de Saint Venant.

Euler’s legendary fame among 18th-century mathematicians and
scientists is due to his work in fluid mechanics. One of Euler’s profes-
sors was Johann Bernoulli, who tutored Euler in mathematics. Johann
Bernoulli, his son Daniel, and Euler were the three men who had a lot
to do with the early development of the field of fluid mechanics. Daniel
Bernoulli published his book Hydrodynamica in 1738. Flow in pipes,
manometers, and jet propulsion were some of the topics covered in
this work, and the Bernoulli equation is named after him. Johann
published the book Hydraulica.

Euler succeeded Daniel Bernoulli as a professor of physics. By 1741,
Euler had authored 90 papers and the two-volume book Mechanica. He
prepared at least 380 papers for publication in Berlin. Euler had a major
disagreement with Frederick the Great over some financial aspects of
Berlin society of Sciences which was transformed into a major acad-
emy. First blinded by his insight into fluid dynamics, later in life Euler
became physically blind. On September 18, 1783, Euler conducted
business as usual, performing some calculations on the motion of bal-
loons and discussing the discovery of the planet Uranus. He developed
a brain hemorrhage, and his last words were “I am dying.”

Euler was called the “great calculator” of the 18th century. He has
made irreversible contributions to mathematical analysis, theory of
numbers, mechanics, astronomy, and optics. He is credited with
devising calculus of variations, the theory of differential equations,
complex variables, and special functions. He also invented the concept
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of finite differences. The equations developed by Euler are used to
this day in modern industrial practice.

Measurement of Viscosity of Fluid

Reliable, accurate, and precise values of viscosity of a fluid at a given
temperature and pressure can be obtained using different viscome-
ters. The accuracy of the device and precision of the device are two
different things. A digital readout to the third decimal place may be
precise, but not necessarily accurate. Accuracy is the margin of error,
or error bar or confidence interval, surrounding the measured value
within which the true value may lie. The error bar denotes the exper-
imental error associated with the instrument and the personnel used
to operate the equipment.

1.9.1 Efflux Viscometer

The traditional methods of viscosity measurement of a liquid have
changed over time. Viscosity used to be measured in terms of seconds
needed for the liquid to exit a tube. These viscometers are called efflux
viscometers, or short tube viscometers. The time needed for a given
volume of fluid to discharge under the forces of gravity through a
short-tube orifice at the base of the instrument is measured. The vis-
cometers are called Redwood in England, Engler in Germany, and
Saybolt in United States. Viscosity is recorded as Redwood or Saybolt
seconds. Based on calibration, the Saybolt universal, for example,
gives the Stokes viscosity as 0.0226t — 1.95/1 for fluids with an efflux
time between 32 and 100 seconds. It can be seen that for higher-
viscosity fluids, the relationships in the calibration are different. Fur-
thermore, viscosity changes with temperature and pressure. The
changing relationships of viscosity with temperature and pressure
have also been studied by some investigators. For reliable measure-
ments during the test, it is advisable to not let the conditions of pres-
sure and temperature change appreciably.

1.9.2 Falling Ball Viscometer

The falling ball viscometer is based on Stokes’ settling of falling spheres
in a fluid attaining its terminal settling velocity. The terminal settling
velocity of the falling sphere in a fluid is reached when the forces of
gravity are balanced by the forces of buoyancy and drag. Once the
terminal settling velocity of a sphere is measured using video pho-
tography and the density of the solid and fluid, as well as the diam-
eter of the solid are known, Stokes’ law can be used to calculate the
viscosity of the fluid. For instance, steel ball bearings are dropped in
glycerin to check the viscosity of industrial fluids. Nylon balls were
allowed to fall through carbopol solution to measure the type of fluid,
whether Newtonian or otherwise. The glass container carrying the
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sphere must be wide enough so that the wall effects can be neglected.
The expression used to calculate the viscosity is the terminal settling
velocity of the sphere, and can be written as:

Vo 2r’8(p, —py)
s 9“

Aspherical particles can also be used to settle. The sphericity of the
particle can be used in the calculations. Renganathan, Clark, and
Turton [17] developed charts for distance traveled by accelerating
spheres in a fluid prior to attaining terminal settling velocity. The
change of drag coefficient with Reynolds number is also taken into
account. Numerical solutions to the equation of motion were obtained
and the results presented in easily usable charts.

(1.86)

1.9.3 Cone-and-Plate Viscometer

The liquid whose viscosity needs to be measured is placed between a
stationary flat plate and an inverted cone whose apex just contacts
the plate (Fig. 1.5). The cone is rotated at a known angular velocity, 2,
in a cone-and-plate viscometer, and the torque, Ty, required to turn the
cone is measured. An expression for viscosity of the liquid in terms of
the angular velocity of the rotation of the cone, torque needed, and
the angle made by the cone with the plate. This is usually about
1 degree. The expression for the torque required to turn the cone can
be shown as:

_2 3
T, = 0 TUQR (1.87)
where 6 = angle made by the cone with the flat plate
R =radius of the cone
u = viscosity of the liquid.

1.9.4 Coutte Viscometer

A Coutte viscometer is a member of a class of rotational rheometers.
The torque needed to rotate a solid object in contact with a fluid is
measured and the viscosity deduced from the derived expression. A
modified Coutte viscometer is called a Stabiner viscometer. Here the
inner cylinder is hollow and allowed to float, thereby avoiding bearing

Ficure 1.5 H
Side view of cone-

and plate

viscometer and ]
velocity distribution N
in control volume. >
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Torsion wire

Suspended bob R
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Revolving fluid

Ficure 1.6 Coutte viscometer.

friction. Speed and torque measurements are made by remotely rotat-
ing a magnetic field.

A schematic of a Coutte viscometer is shown in Fig. 1.6. The cup
holds the fluid whose viscosity needs to be measured. It is made to
rotate with a constant angular velocity, ®,. The revolving viscous lig-
uid causes the suspended bob to turn. A point is reached when the
torque produced on account of momentum transfer in the liquid
becomes equal to the product of the torsion constant, k,, and the angu-
lar displacement of the bob. The angular displacement, 6 , is mea-
sured using a mirror mounted on the bob by noting the deflection of
a light beam. A steady tangential annular flow is maintained between
two coaxial cylinders. The end effects due to the bob height, H, can be
neglected. The equations of continuity and momentum for the liquid
in tangential flow can be written as follows [see 11]: The density and
viscosity of the liquid are assumed to remain constant and unaffected

by the flow.
d(1d(rvy))|
E(; pral i 0 (1.88)
W _ e
The boundary conditions are:
r=R, v,=0 (1.90)
r=kR, V=0, (1.91)
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Integrating Eq. (1.88) twice and solving for the boundary conditions,
it can be shown that the tangential velocity of the fluid can be repre-
sented at steady state by:

(1.92)

Once the velocity distribution is available, the momentum flux can be

estimated as:
2
R k?
T, = —2UW®, (7) [1_ sz (1.93)

The torque acting on the inner cylinder is then obtained as:

2
T = 4nuwDR2H[1I_{ k2] =k, (1.94)

Thus, measuring the angular velocity of the cup and the angular
deflection of the bob enable the viscosity of the liquid to be deter-
mined. When a critical Reynolds number is reached, Taylor vortices
form and turbulent flow ensues upon further increasing the velocity.

1.9.5 Parallel Disk Viscometer

In a parallel disk viscometer, a liquid whose viscosity needs to be mea-
sured is placed in the gap of thickness, B, between the two disks of
radius, R, and held in place by surface tension. The torque needed to
turn the upper disk at an angular velocity of ® is measured and the
lower disk is fixed. Assuming creeping, the working equation for
obtaining viscosity of the liquid can be shown to be:

| 2BT,
" nmoR*

" (1.95)

In a parallel disk compression viscometer, a liquid is allowed to fill com-
pletely the region between two circular disks of radius R. The bottom
disk is fixed, and the upper disk is made to approach the lower one
very slowly with a constant speed v, starting from a initial height H,,.
The instantaneous height is given by H(t). It can be shown that the
force needed to maintain the constant velocity is given by Eq. (1.96),
where V is the volume of the liquid sample:

_ Buy,V?
T 2mH(t)?

F(t) (1.96)
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The H(t) is measured as a function of time and then the viscosity is
determined from:
1 1 N 4F t
H(t H? 3unR*

(1.97)

where F is a constant applied force.

1.9.6 Rolling Ball Viscometer

A rolling ball viscometer is designed based upon the results of analyz-
ing laminar flow in a narrow slit. A Newtonian fluid is in laminar
flow in a narrow slit formed by two parallel walls a distance 2B apart.
Edge effects can be omitted as B << W. Performing a differential
momentum balance, the following expressions for the momentum-
flux and velocity distributions can be derived:

TXZ:[POZPL];C (1.98)

— (PO — 1:)L)B2 1 i ’
=T ou |TTB (1.99)
where P =p + pgh.

The rolling ball viscometer is shown in Fig. 1.7. A ball is rolled
down the walls of a cylinder held at an incline angle B with the hori-
zontal. The sector formed between the cross-sections of the rolling
ball and cylinder at any given instant can be shown to be a function
of the polar angle, 6 and z.

_Jr2_.2
s=2(R- r)[cos2 (gj + %} (1.100)

1.9.7 Torsional Oscillatory Viscometer

In a torsional oscillatory viscometer, the fluid is sandwiched between a
“cup” and a “bob.” Sinusoidal oscillations are imposed in the cup in
the tangential direction. This causes the suspended bob to oscillate

Ficure 1.7
Rolling ball
viscometer.
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with the same frequency but with a different amplitude and phase.
The torsion wire used to suspend the bob also oscillates at the same
frequency and amplitude as that of the bob. The ratio of amplitudes
between the cup and bob and the phase lag are a function of the vis-
cosity of the liquid. Small oscillations are considered. The problem
remains linear for small oscillations. The solution to the governing
equations can be obtained by Laplace transform methods.

Newton's second law of motion can be applied to the cylindrical
bob for the special case when the annular space between the cup and
bob are evacuated. It can be shown that the natural frequency of the
system is o, = \/m , where I is the moment of inertia of the bob and
k is the spring constant for the torsion wire. Furthermore, Newton’s
second law of motion can be applied to the bob:

d*0, d [ vy
I e =—ko, + (ZnRL)(R)[urg[TD . (1.101)
The initial conditions are:
t = (0%=5ro (1102)
a6,
T 0 (1.103)

The governing equation of motion for fluid and the time and space
conditions can be written as:

o _, 910
P ~Hor T or e

(1.104)
t=0, v,=0
— — deR
r=R,  v,=R~] (1.105)
r=xR, Uy = KRde—“R (1.106)

dt

0 _.(t) is a sinusoidal function of time that causes the forced oscil-
lations of the cup and the induced oscillations of the bob. For close
clearances between the cup and bob, x is close to 1. The variables are
made dimensionless, and the resulting governing equations are
solved for by the method of complex velocity. It can be shown that
based on these results, the amplitude ratio can be given by:

0 AMi®
R _ £ (1.107)
Ok sinh,/@ =
(1-52)——M | AMiGcosh,| -2
® M

M
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v /I k. = ©
where M = m E, T=t T, m_fﬁ_o (1108)
4 _ 3 —
A= 2nR*Lp(k—1) _ 2nR3Lp(x 1)0 (1.109)

I ! JkI o

1.9.8 Bubble Viscometer

In bubble viscometers, the time required for an air bubble to rise in fluid
is an inverse measure of the viscosity of the fluid. Calibration is used
to standardize the technique in the desired viscosity ranges. Viscom-
eters for non-Newtonian fluids are also called rheometers or plastome-
ters. A piston-cylinder arrangement is used in Norcross viscometers.
Material is drawn through the clearance between the piston and cyl-
inder by raising the piston periodically.

Summary

A preliminary review of fluid mechanics was presented in this chap-
ter. Sir Isaac Newton devoted his entire second book to fluid mechan-
ics. Any form of matter that can flow when subjected to a shear stress
is considered a fluid. Continuum hypotheses assume that the fluid
consists of homogeneous properties, such as uniform density,
throughout the fluid, although in atoms the mass is concentrated at
the nuclei. Control volume refers to a region of space considered the
basis for developing the theory of fluid flow in to and out of the
region. Fifty-six different flow types were compared and contrasted
with each other (Table 1.1).

The fundamental dimensions are length, time, mass, and temper-
ature. The word thermodynamics comes from the Greek words
therme, which means heat, and dynamis, which means power. Pres-
sure exerted by a fluid is the force per unit area acting on either the
external surface of the object or the walls of the enclosed container.
Both hydrostatic and kinetic pressures also were discussed. Starting
with a box of molecules, an expression for kinetic pressure as a
function of the root-mean-square velocity of the molecules was
derived. This led to the derivation of the ideal gas law. Maxwell’s
relations between internal energy, U; enthalpy, H; Gibbs’ free energy,
G; Helmholtz free energy, A; and entropy, S, were introduced.

The first law of thermodynamics was written in differential form.
Expression for work done as a function of the pressure and volume of
the gas in the cylinder of the piston-cylinder arrangement was devel-
oped. Joule’s experiments and how the modern concept of heat evolved
were discussed. The concepts of closed and open systems, surround-
ings, and states of system were introduced. The phase rule was stated.
The concepts of reversibility and equilibrium were introduced.
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Viscosity of a fluid and Newton's law of viscosity were reviewed.
The myths and realities of yield stress were discussed. Experimental
evidence that the yield stress has never been directly measured but
inferred by extrapolation was presented. Different methods to mea-
sure viscosity of a fluid, such as efflux viscometer, falling ball viscom-
eter, cone-and-plate viscometer, rolling ball viscometer, torsional
oscillatory viscometer, bubble viscometer, etc., were discussed.

The equation of conservation of mass was derived in Cartesian
coordinates for any fluid in motion. The equation of conservation of
mass was presented in cylindrical and spherical coordinates in the
differential form. The integral form of the equation of continuity was
also presented. The equation of motion for any fluid in motion in
Cartesian coordinates was derived. The Navier-Stokes equation was
recognized, and the term by term physical significance was dis-
cussed. The reduction to the Euler equation in the special case of
inviscid flow was shown. The Euler equation was integrated with the
Bernoulli equation, which serves as the law of mechanical energy
balance.
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Exercises

Problems

1.0 Potential flow. A sphere of diameter, d, moves with a velocity, v, in an incom-
pressible ideal fluid. Determine the potential flow of the fluid past the sphere.

2.0 Reynolds number. A municipal water distribution system reports a dis-
charge rate of 4 gallons a minute. Determine the Reynolds number of water
flowing in a pipe with a diameter of 4 inches at room temperature. Is the fluid
laminar or turbulent? The viscosity of water can be taken as 1 cp.

3.0 Machnumber. Asupersonicjet is travelling at a speed of 400 m/s. Calculate
the Mach number of the fluid flowing past the jet.

4.0 Torricelli’s theorem. Derive the Torricelli’s theorem for the efflux velocity
of a fluid drained from a cylindrical tank with diameter D and orifice diameter
d. The height of the fluid in the tank can be taken to be H.

5.0 Calculate the time taken to drain the tank in Exercise 4.0.

6.0 Friction factor. What is the length of a ¥s-inch hose needed to water the
kitchen garden over the weekend at a discharge rate of 1 liter /hour?

7.0 Liquid drop. Calculate the size of a drop formed on account of surface
tension as a function of the pressure difference between the atmosphere and
within the drop.

8.0 Gravity waves [18]. The free surface of a liquid is in equilibrium with the
gravitational field and exists as a plane. Upon some external perturbation,
motion of liquid is propagated by means of what are called gravity waves. They
appear mainly on the surface of the liquid and affect the interior of the fluid to a
lesser extent. The inertial term in the Euler equation can be neglected (Eq. 1.84)
in comparison with the dv/ ot term. During the time interval of the order of the
period 7 of the oscillations of the fluid particles in the waves, these entities travel
a distance of the order of the amplitude a of the wave. Their velocity is of the
order of a/t and varies over the time intervals of the period of oscillation and
over the distances of wavelength, A. The time derivative of velocity is of the order
of v/1 and the space derivatives are of the order of v/A. Show that the condi-
tion (v-V)v << dv/ dt is equivalent to a << A i.e., the amplitude of the oscillations
in the wave is smaller compared with the wavelength. The inertial term in the
Euler equation can be neglected and potential flow can be expected. Show that
the following set of equations will govern the motion of the waves:

Ap=0
8_¢+ A =0

0z got?
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9.0 Show that the following equations can be solutions to the governing
equations of gravity waves described in Exercise 8.0:

k
x—x, = —Aae"ZO cos (kx, — wt)

k
z-z,= —Aae"ZD sin (kx, — wt)

where x, z are the coordinates of the moving fluid particles.

10.0 The isentropic compressibility can be written as:

= 1fov
T oloP )
Derive the speed of sound to be:

v
a= |—
K‘:

11.0 Show that for one mole of an ideal gas:
C,-C =R
12.0 Show that for an adiabatic process;
PV7Y =Const

C
where, v = C—p

13.0 Describe the significance of each term in the Navier-Stokes equation.
14.0 How is the Euler equation derived from the Navier-Stokes equation?
15.0 How is the Bernoulli equation derived from the Euler equation?

16.0 When the pressure of the ideal gas is reduced by half, what happens to
the velocity of the molecules?

17.0 Two ports are drilled into a pipe with varying cross-sections carrying
water. The ports are connected to a manometer, and the pressure differential
was found to be 37 cmHg. If the elevation of both ports is the same, what is
the velocity of the fluid at the lower pressure port compared with the velocity
of the fluid at the larger pressure port? The ratio of the cross-sectional areas
between the low pressure and high pressure port can be taken as 4.

18.0 Calculate the mass flow rate of the air from the fan. The fan spins at
60 RPM. The cross-sectional area of the blades can be taken to be 1/8" x 4".
The room is at 37°C. The air can be assumed to obey the ideal gas law. The
composition of air can be taken to be 78% nitrogen and 21% oxygen. The radius
of the blade is 1.5 ft.

3
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19.0 A smoking lounge is to accommodate 20 heavy smokers. According
to the American Society of Heating, Refrigerating, and Air-Conditioning
Engineers (ASHRAE), the fresh air requirement is 25 lit/s per person. Calculate
the minimum duct area and the minimum flow rate required if the maximum
velocity of the air is 10 m/s.

20.0 Oilis drilled at a refinery from a depth of 200 ft. When 1 lit/min of oil is
discharged at the surface, calculate the rating of a pump that operates at 80%
efficiency should the diameter of the rig be 2 inches. The density of oil can be
assumed to be 1.6 gm/cc.

21.0 Amagat of France in the late 19th century used a mercury manometer
to perform measurements for the first time in the history of mankind. Estimate
the height of the manometer needed for measurements in mine shaft up to
500 bar.

22.0 An entourage of engineers visited the moon. They used a spring scale
to measure the mass of some ice cubes. At a reading of 21, what is the mass of
ice and the weight of the moon? The moon’s gravity is 1/6th that of Earth.

23.0 What is the difference between hydrostatic pressure and kinetic
pressure?

24.0 Centuries from now, when there is an acute energy shortage, people
will shop for energy in supermarkets. Cylinders of gas may be purchased and
connected to any number of Carnot engines or other efficient devices stocked
athome. Devise a convenient method to allow a person to comparison shop by
providing a unit cost of energy in joules per dollar. The ambient temperature
and pressure are 300 K and 1 x 10° Nm™. The heat capacity at constant volume
may be taken as 20.7 J/mol/K. Consider a cylinder 1 m? in volume initially at
8 x 10° Nm2 and 400 K that sells for $0.32.

25.0 Show that for any gas:

-3 [ (3))

Hint: Use the relation in change of variables in differentiation:
) (L) L [L) (2
o) o), \ay) \ox),

26.0 Show that for any gas
oP oH
ore {518,
4 oT ), \\ 9P ).
27.0 Show that the free energy change during any isothermal and isochoric

compression process from P, to P, is given by VAP.

28.0 Show that the entropy change during an isothermal expansion of an
ideal gas from V; to V, can be given by RIn(V,/V)).
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29.0 Show that the entropy change during an isobaric expansion of an ideal
gas can be written as C,, In (Tf/T,.).

30.0 Show that the free energy change during an isothermal process in an
ideal gas can be written as RT In (Pf /P).

31.0 Show that the solution to Example 29.0 may be written in terms of initial
and final volumes as Cp ln(Vf/ V).

32.0 Derive the Gibbs-Helmholtz equation given in the form:

JAG
P1/P2 1,1

33.0 Show that:

J0AH
AH =AU+ P[a_Pl
34.0 Show that:
oAU
Yy
35.0 Show that:
0AA
AA=AU+T [B_ij

36.0 Given x is the compressibility factor —1/V(dV/dP) and o is the coef-
ficient of thermal expansion, show that:

(3_5j _o
v x
37.0 Water is in laminar flow in a narrow slit formed by two parallel walls a

distance of 2 w apart. Show that with the velocity of water down the walls v_
as a function of x, the axial distance between the plates can be shown to be:

APw? [ [ x JZJ
v, = 1-|—
= 2uL w
38.0 A fluid flows down the inclines of a conical surface with the apex at
the top. Show that the film thickness as a function of distance, s, down the

incline is given by:
[ 3'_17]1 ]1/3
8=l %
nsgp? sin 2P

where [ is the cone half-angle and 7 the mass flow rate.
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39.0 Contactless pick-up device. Bernoulli’s law can be applied to design a
device that can be made to pick up objects without coming in contact with
the device. Semiconductor wafers can help prevent damage to the device due
to mechanical contact. If air is allowed to impinge on the design through an
orifice, show that as the air comes in contact with the object to be lifted, the
flow changes from azimuthal to radial flow and the velocity of flow increases.
This causes a suction pressure, which can be used to pick up the object. How
does the suction pressure capable of development vary with the velocity of
air, the diameter of the orifice, and other relevant parameters?

40.0 Chimney design. How tall should a chimney be constructed to create a
draft flow of 1 m/s? An exhaust fan is available to generate a flow velocity of
5m/s across a duct in the roof. What would happen should the chimney be
given a taper with a lower diameter on top of the chimney?



CHAPTER 2

Principles of
Diffusion

Learning Objectives

¢ Diffusion phenomena confirmation by experiments in Spacelab
¢ Fick’s laws of diffusion

¢ Bulk motion and total molar flux

¢ Damped wave diffusion and relaxation

¢ Diffusion in gases, liquids, solids, and porous solids

e Steady state and transient diffusion

¢ Diffusion coefficient as a function of temperature

¢ Diffusion in polymers

¢ Transient wave diffusion in semi-infinite medium

e Periodic boundary condition

2.1 Diffusion Phenomena

Diffusion is a phenomenon of migration of a species from a region of
higher concentration to a region of lower concentration under the
driving force of a concentration gradient [1]. There can be other driv-
ing forces, such as temperature difference, the large concentration
gradient of a second species, osmotic potential, steam sweep, centrip-
etal forces, pressure drop, electromotive forces, surface tension gradi-
ent, surface forces, etc., that can cause the transfer of species from one
point to another, oftentimes in a secondary manner.

The term molecular diffusion refers to the Brownian motion of mol-
ecules as observed by Einstein [2] and movement from a region of
higher concentration to a region of lower concentration. This is in
accordance with the second law of thermodynamics: the Clausius
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inequality. The movement of a species from a region of lower concen-
tration to a region of higher concentration in a spontaneous manner
is infeasible. This is because not all heat can be converted to work
without some heat being rejected to the atmosphere. Heat always
flows from a hotter temperature to a colder temperature by the phe-
nomenon of molecular conduction. By analogy, the molar species also
moves from a region of higher chemical potential to that of a region
of lower chemical potential. The direction of transfer equalizes the
concentration.

There can be no negative concentration. As the third law of ther-
modynamics states, the lowest attainable temperature is 0 K. By anal-
ogy, the lowest concentration attainable is 0 mol/m?. This will be
used in later discussions to obtain a plane of zero concentration, a
penetration length, etc.

Diffusion is central to separation operations widely used in the
chemical and biotechnology industries. It is used to better understand
the transport of solutes in the living cells and to design artificial
organs, and it plays a pivotal role in the sequence distribution analysis
in genome projects. The efficiency of distillation and dispersal of pol-
lutants can be derived from principles of diffusion. As cities around
the world face a drought crisis, the desalination of seawater for pota-
ble water needs is going to be increasingly relied upon. This is the
method of choice in the deserts of the Middle East, where energy is
abundant and cheap and drinking water is scarce. The Bhabha Atomic
Research Center (BARC), at Trombay in Mumbai, India, has set up the
world’s largest desalination plant at the atomic power plant at Kalpa-
kkam about 50 km near Chennai. This plant has two sections. One
section produces 1.8 million liters of potable water a day from sea
water using the reverse-osmosis method, and the other section pro-
duces 4.5 million liters a day using the thermal method. Another
desalination plant with two units at 50,000 liters per hour was inaugu-
rated at Koodankukulam in Tirunelveli, Tamil Nadu, using reverse-
osmosis technology. In order to desalinate sea water, several transfer
operations, such as reverse osmosis, electrodialysis, ion exchange,
extraction, flash vaporization, molecular sieve filtration, and pervapo-
ration, can be used. The principles of diffusion and mass transfer can
help evaluate the technical feasibility of each operation at a large scale
at the lowest possible cost without much harm to the environment in
a safe manner. The chemical reactions performed on a large scale dur-
ing the commercial manufacture of products are often conducted in
the presence of a catalyst. During the reaction, the critical reactant has
to diffuse through the catalyst and approach the active site for reaction
and encounter the other reactant prior to reacting and forming the
product. Diffusion in the catalyst needs to be understood for better
design. The useful product has to be separated from the unreacted
reactants and other by-products using mass transfer separation opera-
tions where diffusion is a critical governing phenomenon.
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Albert Einstein observed that a cube of sugar placed in the bot-
tom of a hot teacup diffuses and a uniform concentration of sugar
throughout the entire cup is the result. The term thermophoresis refers
to processes where the primary driving force of diffusion is the tem-
perature difference. Diffusophoresis is when a large drop in concen-
tration of a second species drives the transfer of the first species.
Osmosis is where osmotic potential drives the flow of solvent from a
region of low solute concentration to a region of higher solute con-
centration. In reverse osmosis, the solvent is pumped from a region of
higher solute concentration to a region of lower solute concentra-
tion. The wilting of lettuce when salted is a good example of an
osmosis phenomenon, as the water oozes out of the leafy vegetable
and the turgor pressure gives in to a shrunken mass. In sweep diffu-
sion, steam sweeps away the solute with it. The centripetal forces
during centrifugation result in different forces upon different masses,
which in turn results in separation. Pressure diffusion is characterized
by a pressure drop, AP, in the direction of transfer. Electrolysis refers
to the movement of charged particles subject to an electromotive
force. Surface diffusion is the movement of species of interest on the
surface of the solid. Surface tension gradient can be utilized in sepa-
ration by foaming.

Fick’s First and Second Laws of Diffusion

In the mid-1800s Fick [3,4] introduced two differential equations that
provide a mathematical framework to describe the otherwise random
phenomena of molecular diffusion. The flow of mass by diffusion
across a plane was proportional to the concentration gradient of the
diffusant across the plane. The components in a mixture are trans-
ported by a driving force during diffusion. The molecular motion is
Brownian. The ability of the diffusant to pass through a body is
dependent on the diffusion coefficient, D, and the solubility coeffi-
cient, S. The permeability coefficient, P, is given by:

P=(DS) (2.1)

Fick’s laws of diffusion were proposed in the year 1855. Adolf E.
Fick, the youngest of five children, was born on September 3, 1829,
to a civil engineer. During his secondary schooling, Fick was inter-
ested in mathematics and was enamored of the work of Poisson. His
brother, a professor of anatomy at the University of Marburg, per-
suaded him to switch from a career in mathematics to a career in
medicine. Carl Ludwig was Fick’s tutor at Marburg. Ludwig
strongly believed that medicine and life itself have a basis in math-
ematics, physics, and chemistry. His thesis dealt with the visual
errors caused by astigmatism. Ironically, most of Fick’s accomplish-
ments do not depend on diffusion studies at all, but on his more
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general investigations of physiology. He did outstanding work in
mechanics in hydrodynamics and hemorheology, and in the visual
and thermal functioning of the human body.

In his first diffusion paper [3], Fick interpreted the experiments
from Graham with interesting theories, analogies, and quantitative
experiments. He showed that diffusion can be described on the same
mathematical basis as Fourier’s law of heat conduction [5] and Ohm’s
law of electricity. Fick’s first law of diffusion can be written as:

oC
J= —ADg (2.2)
where | is defined as the one-dimensional molar flux. The diffusivity
is the proportionality constant that depends on the material under
consideration.

Fick’s second law of diffusion can be derived by considering a thin
shell of thickness, Ax, with constant cross-sectional area, A, across
which the diffusion is considered to occur. A mass balance in the incre-
mental volume, considered AAx for an incremental time, Af, neglect-
ing any reaction or accumulation of the species, can be written as:

(mass in) — (mass out) * (mass reacted/generated)
=mass accumulated (2.3)

AKJ - ],,.) = AAx AC (2.4)

Dividing Eq. (2.4) throughout by AAxAt and obtaining the limits as Ax
and At goes to zero:
J ,dC
s A 5 (2.5)
Combining Eq. (2.5) and Eq. (2.2), the governing equation for the dif-
fusing species becomes apparent when the area across which the dif-
fusion occurs is a constant:

9’C _aC

Equation (2.6) is sometimes referred to as Fick’s second law of dif-
fusion [4]. This is a fundamental equation that describes the transient,
one-dimensional diffusion of diffusing species. Fick attempted to
integrate Eq. (2.6) and was discouraged by the numerical effort
needed. He found the second derivative difficult to measure experi-
mentally, and he found that the second difference increases exception-
ally with the effect of experimental errors. Finally, he demonstrated in
a cylindrical cell the steady-state linear concentration gradient of
sodium chloride. He used a glass cylinder containing crystalline
sodium chloride in the bottom and a large volume of water in the top.
By periodically changing the water in the top volume, he was able to
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establish a steady-state concentration gradient in the cylindrical cell.
He confirmed his equation from this steady-state gradient.
In three dimensions, Fick’s first law of diffusion can be written as:

J”=-DVC (2.7)
where the differential operator V is given by:
.0 .0 d
V—la+]@+k$ (28)
such that:
.dC  .dC oC
Vc—la—x'l'jw'i‘kg (29)

In the special case of Eq. (2.9), the one-dimensional case of Eq. (2.7)
results. Diffusion may be viewed as a process by which molecules
intermingle as a result of their kinetic energy of random motion.

On Earth, density differences within a liquid system often result in
convective mixing of the fluid. This gravity-induced convection, cou-
pled with gravity-independent diffusion, contributes to the overall
mass transfer within the system. In space, the convective contribution
is greatly reduced, and a closer examination of the diffusion contribu-
tion can be observed.

Skylab Diffusion Demonstration Experiments

The Skylab science demonstration was the first in a series of investi-
gations designed by Fascimire et al. [6] to study low-gravity diffusive
mass transfer. The specific objective of the demonstration was to pho-
tographically document the diffusion of tea in water in spacecraft. In
preparation for the experiment, Skylab pilot Jack Lousma filled a
half-inch-diameter, six-inch-long transparent tube three-fourths of
the way full with water. A highly concentrated tea solution was then
delivered to the water surface via a 5-cc syringe through a synthetic
fiber wad. The tube was then capped. The fiber pad was employed to
try to bring the tea and water in contact without any entrapped air.
Three attempts to produce the wad were unsuccessful. During the
fourth wad/attempt, “a good bubble-free interface” was realized.
The next day, Lousma reported that no diffusion of the tea in the lig-
uid had occurred. Thus, the experiment was initiated again.

During this new experimental run, the wad was removed and the
tea was delivered on top of the water. After an air bubble between the tea
and water was removed via the syringe, a “smooth, continuous inter-
face” was achieved. The tea was allowed to diffuse during the next three
days. Post-flight 16-mm photographs of the diffusion were analyzed. In
51.15 hours, the visible diffusion front advanced 1.96 cm. It was noted
that the diffusion front became increasingly parabolic during the dem-
onstration and very little diffusion occurred near the container wall.
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A similar ground-based experiment was performed for comparison to
the space investigation. After 45.5 hours, three different zones were vis-
ible: a dark area, an area of medium darkness, and a very light area. The
medium-colored area had advanced 1.6 cm in 45.5 hours.

If a few crystals of K,CrO,, potassium chromate, are placed at the
bottom of a tall bottle filled with triple distilled water, the yellow color
will slowly spread throughout the bottle. At first, the color will be
concentrated in the bottom of the bottle. After a day, it will penetrate
upward a few centimeters. After several years, the solution will appear
homogeneous. The process responsible for the movement of the
colored material is diffusion. Diffusion was studied by Albert Einstein.
He noted that as sugar dissolves in water, the viscosity of the solution
increases. The Stokes-Einstein equation is used for estimating diffu-
sion coefficients for molecules in liquid phase. Diffusion is a molecular
phenomenon. At a microscopic level, molecules do undergo Brownian
random motion. However, the driving force sets some direction to the
transfer of the species under consideration. In gases, diffusion progresses
at a rate of about 10 cm/min; in liquids, the rate is about 0.05 cm/min;
in solids, its rate is about 100 nm/min.

Diffusion varies less with temperature, although for polymers,
Arrhenius relationships have been reported for changes of diffusion
coefficients with temperature. The slow rate of diffusion makes it a
rate-limiting step in cases where it occurs sequentially with other
phenomena. The rates of distillation are limited by diffusion and that
of industrial reactions on porous catalysts. The rate of diffusion limits
the speed of absorption of nutrients in the human intestine and the
control of microorganisms in the production of penicillin. The rate of
corrosion of steel, splat cooling of metallic glasses, dopant diffusion
in silicon chip manufacturing, the release of flavor from food, and the
delivery of drugs to tumor cells are limited by diffusion.

The equalizing effect of diffusion needs to be distinguished from
other methods of producing a uniform mixture, such as bulk convec-
tive mixing. Agitation also is used in homogenization. The energy for
movement from diffusion comes from the thermal energy of the mol-
ecules. The rate of evaporation of water at 25°C into complete vacuum
was calculated as 3.3 kg/m?/s. Placing a layer of stagnant air at 1 STP
and 100 microns thickness above the water surface reduces the rate of
evaporation by a factor of about 600.

Bulk Motion, Molecular Motion, and Total Molar Flux

Consider two containers of CO, gas and He gas separated by a parti-
tion, as shown in Fig. 2.1. The molecules of both gases are in constant
motion and make numerous collisions with the partition. If the parti-
tion is removed, the gases will mix due to the random velocities of
their molecules. In sufficient time, a uniform mixture of CO, and He
molecules will result in the container.
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Ficure 2.1 Container with a partition separating helium and carbon dioxide.

The helium molecules will move to the bottom and the carbon
dioxide molecules will move to the top. If the two species are denoted
by A and B, and the total fluxes as N, and N, then the net flux, N, can
be written as:

N=N,+N, (2.10)

The movement of A comprises two components, one due to the bulk
motion N and the fraction x, of N, which is A, and the second compo-
nent resulting from the diffusion of A, J:

N,=Nx,+J" @.11)
N, =Nx, +J; 2.12)

Adding Egs. (2.11) and (2.12):

N=N+["+]; (2.13)
aC oC
or —D a_ZA = “Ba a_ZB (2.14)

If C, + C, is constant, then D, , =D, .

Example 2.1 Unimolar diffusion. Consider the diffusion of a liquid, A, evaporating
into a gas, B, in a partially filled tall tube. Assume that the liquid level is maintained
atz=z. At the top of the tube at z =z, a stream of gas mixture of A-B flows steadily
past, thereby maintaining the mole fraction of A at X,,. At the liquid-gas interface,
the gas phase concentration of A expressed as a mole fraction is X, . This is the gas
phase concentration of A corresponding to the equilibrium with the liquid at the
interface, i.e., X, is the vapor pressure of A divided by the total pressure, p}*/P, ,
provided that A and B form an ideal gas mixture. It is further assumed that the
solubility of B in liquid A is negligible. The entire system is presumed to be held at
constant temperature and pressure. Gases A and B are assumed to be ideal. When
this evaporating surface attains steady state, there is a net motion of A away from
the evaporating surface and vapor B is stationary. Obtain the concentration profile

4
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at steady state for A in the head space:
N,=0 (2.15)

aC
N, =N, =Dy 2 (2.16)

In terms of mole fractions:

dx
N, (1=3,)=-CD,p 5% (2.17)

A mass balance over an incremental volume of height Az at a steady state across
a constant cross-sectional area, A:

A =0 (2.18)

Combining Egs. (2.18) and (2.17) and integrating the resulting second-order dif-
ferential equation with respect to z gives:

1 ox, (2.19)
(i-x,) 9z

A second integration then gives:
-In(1-x,)=cz+c, (2.20)

The two integration constants can be solved for by using the information given
as boundary conditions at locations 1 and 2:

In(1-X,,) _ (z=2) In(1=X,,) (2.21)

(1-x,) (z,-z) (1-X,,)

1-X,) (1-X,, (f] (2.22)
(1-x,) \1-X,,
N, = [&jln Xp (2.23)
L5 Xp
These expressions are used during the experimental measurement of gas

diffusivities.

2.5 Diffusivity in Gases

The diffusion coefficients of binary hydrocarbon-hydrocarbon gas
systems at low pressures below about 3.5 MPa can be predicted using
Gilland’s method [7]:

D, = (0.1014T"5(1/M, + 1/M,)*%) /P, , (V3 + V)
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CO, H, He |Ar |0, |HO |N, |Arr | CH,
co, 0.646 | 0.597 | 0.133 |0.156 | 0.202 | 0.165 |0.400 | 0.00215
H, 1.706 |0.902 1 0.891 |0.915 |0.779 |0.71 |0.726
He 0.742 |0.822 | 0.908 |0.794 |0.658 | 0.494
Ar 0.216 0.675
0, 0.282 |0.181 0.176 1.1
H,0 0.293 |0.260 | 0.212
N, 0.148
Air 0.196
CH

TaBLe 2.1 Measured Values of Diffusion Coefficients in Gases at 1 atm Pressure
and Data Available at Nearest Temperature to 298 K (cm?/s)

where subscript 1 refers to the solute and subscript 2 refers to the
solvent. The units of T, P, and V are R, psia, and cm’/gmole, respec-
tively, and diffusivity is given by ft*/hr.

There is no universal theory that predicts a priori all the diffusion
coefficients. Experimental measurements have to be relied upon.
Sometimes the experimental measurements are difficult to make and
the quality of the results is not adequate. The estimates of diffusion
coefficients of gases at room temperature are about 0.1 cm?/s, that of
liquids 107> cm?/s, and that of solids 107'° cm?/s. Diffusion coefficients
in polymers lie between that of solids and liquids. Binary diffusion
coefficients in gases for pairs of gases are given in Table 2.1.

The most widely cited method for theoretical estimation of gas-
eous diffusion is that developed independently by Chapman and
Cowling [8]. This theory is accurate to an average of about 8%
yields:

D =(1.86 E-3 T2 (1/M, + 1/M,)""?) /pc, Q2 (2.24)

where D = diffusion coefficient in cm?/s

T = absolute temperature in K
p = pressure in atmospheres

M = molecular weight

6,,and Q = molecular properties
0,, = collision diameter; is the arithmetic average of the
diameters of the atoms of the species present

Q = collision integral

Some other correlations for diffusivities for gases are available in the
literature. Reid, Sherwood, and Prausnitz [9] compared predictions
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from different correlations with 68 experimental values of D,,. The
amount of error, ease of calculations, range of applicability, empirical
parameters, uses, and underlying mechanistic theory from which the
correlations were derived are some of the considerations prior to
using any of the available correlations.

For nonpolar binary mixtures at low pressure, Wilke and Lee
state [10]:

T2,[M,,, (0.0027-0.0005,/M,,

D, = (2.25)
AB Po?,Q,
For polar binary mixtures and low pressure, Brokaw states [11]:
0.001858T%2,/M
5= > = (2.26)
Pcy Q)

For self-diffusivity, high pressure, p, <1.5, Mathur and Thodos state [12]:

10.7*10°°T,
Do =—"pp (2.27)
For supercritical mixtures, Catchpole and King state [13]:
—.667 MA
5.152RD,T, (p~%7 - 0.4510)| 1+ R
Dap = 0.667 ’ (2.28)
1+
Vea

Observations show that for many polyatomic gases and mixtures,
D,,P is constant up to 1000 K and 700 atm. The characteristic length
0, isin A.

Diffusion Coefficients in Liquids

Diffusion coefficients in liquids such as common organic solvents,
mercury, and molten metal fall in the order of magnitude of 10 cm?/s.
The diffusion can even be slower, sometimes even 100 times slower,
for high-molecular-weight solutes like polystyrene and polybutadi-
ene. Diffusion in liquids is slower compared with the gases, and can
become the rate-limiting step in simultaneous reaction and diffusion.

A demonstration experiment was performed to illustrate diffusion
phenomena in liquids. One hundred milliliters of three solutions were
poured into a large filter funnel, with adequate care taken not to mix
the layers. The top layer was made up of hydrochloric acid (HCI) dis-
solved in toluene. The middle layer was a universal indicator in water.
The bottom layer was ammonia (NH,) dissolved in chloroform (CHCL,).
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The HCI from the top layer diffused into the middle layer, and the
color in the second layer changed, indicating an acid. The bottom
ammonia layer was also diffusing into the middle layer, and the color
changed, indicating a base. Eventually, when the ammonia from the
bottom layer and HCl from the top layer diffused into the second layer
and mixed, the indicator turned into the color for a neutral solution.

2.6.1 Stokes-Einstein Equation for Dilute Solutions
The Stokes-Einstein equation can be used to calculate diffusion coef-
ficients in liquids:
kT kT

D= i 6TUR (2.29)
where k, is the Boltzmann constant, fis the frictional drag coefficient, T'is
the temperature, {1 is the viscosity of the surrounding medium, and R is
the radius of the solute that is diffusing. Equation (2.29) can be derived
as follows. A rigid solute sphere is assumed for the molecule diffusing in
a common solvent. The frictional drag force acting on the molecule
opposing its motion is proportional to the velocity of the sphere:

Drag force=f v, (2.30)

where v, is the velocity of the molecule. From Stokes’ law [14] for a
sphere moving in a fluid, f = 6nuR , the driving force was taken by
Einstein [2] to be the negative of the chemical potential gradient
(=Vu,) defined per molecule:

-V, = (6muR )v, (2.31)

Equation (2.31) is valid when the molecule reaches a steady-state
velocity. This is when the net force acting on the molecule is zero. The
solution is assumed to be ideal and dilute.

W, =0 +k,TIn(x,) = +kTInC,—kTInC, (2.32)

For dilute solutions, the concentration of the second species, C,,
far exceeds the solute concentration and can be taken as a constant.
The gradient at a constant temperature, then, is:

vC
Vi, =k,T -z =~(6uR )o, (2.33)
A
—k,T
(67'C—HR0)VCA_CAUA_]/A (234)

Comparing Eq. (2.34) with Fick’s law of molecular diffusion given
in Eq. (2.7), the Stokes-Einstein relationship of Eq. (2.29) results.

a
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Equation (2.34) is valid only at a steady state. Oftentimes in tran-
sient applications, there is a sudden step-change in concentration, i.e.,
the driving force is imposed on the system. The molecule will experi-
ence an accelerating regime prior to reaching steady state. During the
accelerating regime:

d

Vi, - (6muR )o, = m% (2.35)

where m is the mass of the molecule,
do, __
mC, 2% =—(6nuR )C,v, (2.36)
dt

k. TA

or A ge __m I, (2.37)

_6nuR0 A (6muR,) ot

Equation (2.37) is the generalized Fick’s law of diffusion that accounts
for the acceleration regime of the molecule as well as the steady-state
regime. An expression for the relaxation time for molecular diffusion
falls out of the analysis:

m mD
Y= Rk, kT (239

In terms of P, the system pressure for ideal gas, the relaxation time
can be written as:

MD
T, = PP

== (2.39)

where p,_is the molar density of the species migrating. The velocity of
mass diffusion is given by:

v, = \/E = ,/kB—T (2.40)
‘Er m

Equation (2.40) can be rewritten in terms of the molar gas con-
stant and molecular weight as:

D fRT
Um— \/;— ﬁ (241)

The kinetic representation of pressure can be written after observing
that a molecule moving in a one-dimensional cube with a velocity of
v_undergoes a momentum change of 2mv_upon one collision with the
wall. The number of collisions on the wall can be estimated by first
calculating the time taken by the molecule to make the round trip
from the wall after a collision to the opposite wall and return as 21/v..
The number of collisions undergone by a molecule is v_/21. The rate of
transfer of momentum to the surface from the molecular collisions is
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then mov */1. The total force exerted by all the molecules colliding can
be obtained by summing the contribution from each molecule, and
the pressure is obtained by dividing the sum by the area of the wall
and is given by Resnick and Halliday [15]:

_m
ot 3

p (Uil +0%,+ 02+ ) (2.42)
Let N, be the number of molecules in the system and n the number of
molecules per unit volume. Then Eq. (2.42) can be rewritten after mul-
tiplying the numerator and denominator by N :

X

P = mn<vf(> = p<vz> = %p<02> (2.43)

As the molecules treated as particles move in random, there is no pre-
ferred direction in the box. Hence, v> = v? + v2 + v2. The square root of v*
is called the root mean squared speed of the molecule, and is a widely

accepted average molecular speed. From the ideal gas law, P, .= pRT /M.
Combining this with Eq. (2.41):
Ak, T
1 _RT_Av% (2.44)

3<v?> M M

Comparing Eqgs. (2.44) and (2.40), it can be seen that the velocity of
mass is one-third of the root mean square velocity. This could be due
to the fact that only one-dimensional diffusion has been considered.
When all three dimensions are considered, these two velocities would
be identical, although derived from different first principles.

The governing equation for concentration in Cartesian, cylindrical,
and spherical coordinates, taking into account the generalized Fick’s law
of mass diffusion and relaxation, is given by the following equations:

ac, ¥c, ¥c, ¥c,| ac, ac,[ v,
Tm{ or " Uoxat T voyat T ozor | ot T ox ot T

aC,| dv, oC,[ 9o, _ |e’c, o, oC,
+ 3y {rmr o5 +o, |+ e T, 5 +v,|=D e + 3y + 52 +R,

(2.45)

#C,  PC, u @C,  #C,]. ac,[ v,
TW{ or " Urarat v dear 2 azar | ar o T

10C, d7, aC, Jv, aC,
T {’WW“’S oz o T o

~J1afac,) 19c, ¥c,
=P [75@ or J+r_2 a0r "oz |t (2.46)

3
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PC,  PC, v, PC, 1 ¥C,) ac,[ dv,
Yl 3 T 3ot 7 900t T rsing agat | ar | T o
19, [ oo, 1 ac,[ oo, aC,
"7 o0 {TWWH’G T sing g | ot Ve T ot
~[10a(,0c, 1 o[ .aC, 9 ¥C,
_D{rz or [r ar ||" 7sing 90 sin® 30 | 72sinZe 0¢? TRy
(2.47)

Six reasons were listed to seek a generalized Fourier’s law of heat
conduction (details given in Chap. 9). By analogy, the generalized
Fick’s law of diffusion needs to be considered:

” aC a i
J"=-Dy—54-1, E)]t (2.48)

The Stokes-Einstein formula for diffusion coefficients is limited to
cases in which the solute is larger than the solvent. As a result, other
correlations have been derived for cases when the solute and solvent
size are similar. Predictions in liquid are not as accurate as in gases.
The Wilke and Chang [16] correlation for diffusion in liquids was an
empirical correlation, and is given by:

D =7.4E -8 (M,)V2T/uv>s (2.49)

Example 2.2 Effect of temperature on relaxation time. Write an expression for the
relaxation time during diffusion of the considered species in liquids. Combine
this expression with that of the effect of temperature on a diffusion coefficient,
and obtain the dependence of relaxation time on temperature.

Equation (2.38) can be multiplied by the Avogadro number and:

© =DM/RT (2.50)
Combining Eq. (2.50) with Eq. (2.49):
T =7.4E -8 (OM,)**/Ruv>oe (2.51)

It can be seen that the relaxation time becomes independent of tem-
perature and depends only on the viscosity of the fluid and molecu-
lar size parameters.

Hildebrand adapted a theory of viscosity to self-diffusivity:

D, =B(V-V,)/V (2.52)

ms ms

where V is the molar volume and V', _is the molar volume when flu-
idity is zero. The Siddiqi and Lucas correlation [17] for aqueous



Principles of Diffusion

solutions can be written as:

DY, =2.98 E — 7 V0347310 (2.53)

For hydrocarbon mixtures, the Haydeek-Minhas [18] correlation can
be used:

DY, =13.3 E-8 T147u {0V Dy o7 (2.54)

When electrolytes are added to a solvent, they dissociate to a certain
degree. It would appear that the solution contains at least three compo-
nents: solvent, anions, and cations. If the solution is to remain neutral
in charge at each point, assuming the absence of any applied electric
potential field, the anions and cations diffuse effectively as a single
component, as with molecular diffusion. The diffusion of the anionic
and cationic species in the solvent can thus be treated as a binary mix-
ture. The theory of dilute diffusion of salts is well developed and has
been experimentally verified. For dilute solutions of a single salt, the
Nernst-Haskell equation is applicable:

DY, =RT/F2(|1/n* |+|1/n |)/(1/30+1/29) (2.55)

where D? is diffusivity based on molarity rather than on normality of

dilute salt A in solvent B in cm?/s.

2.6.2 Diffusion in Concentrated Solutions

The correlations discussed previously pertain to the diffusion in
dilute solutions. With increased concentration, some things are differ-
ent and the considerations will be different. Diffusion coefficients
vary with the volume fraction of the solute, oftentimes in a complex
manner with a extremamas. Diffusion coefficients are no longer a
proportionality constant, but do vary with the concentration and
become concentration-dependent. In one approach, the hydrody-
namic interaction of the spheres was taken into account and the fric-
tion factor f corrected for per Batchelor [19]:

f=6muR (1+1.5¢, +--) (2.56)

in which ¢, is the volume fraction of the solute. Substituting Eq. (2.50)
in Eq. (2.34):

=V, = (6npR )(1 +1.5¢, + -+-) v, = mdv, /dt (2.57)
k,TVc, +mc,do, /dt = —(6mpuR )(1 +1.5¢, + +-]c,0, (2.58)
or —(k,T/6muR )/ (1+1.50, +---1Vc,

=m/6muR_ /(1+1.50, +---10]" /ot +]” (2.59)

%
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and D=k, T/6muR (1+1.5¢, +--)
T =m/6nuR_ /(1+1.5¢ +--) (2.60)
For nonideal solutions, the chemical potential can be written as:
w, = +kTIn(cy,) (2.61)
where 7, is the activity coefficient.
vu, =k,T/cy,(y,Ve, +¢,Vy,)

Substituting Eq. (2.55) in Eq. (2.34):

—DVc, (1 +dlny,/dlnc,) = J” + m/(6xuR ) 3] /ot (2.62)

The correction for diffusion coefficient given in Eq. (2.59) may be
attributed to a cluster of molecules in the solution.

Diffusion in Solids

2.7.1 Mechanisms of Diffusion

Atomic diffusion in solids is of increased interest since the phenom-
enal growth in very large-scale integration (VLSI) of transistors on
the silicon chip. Interstitial or substitutional mechanism of diffusion
is said to occur when atoms occupy specific sites in a lattice. In an
interstitial mechanism of diffusion, an impurity jumps from one
interstitial site to the next. In a substitutional mechanism of diffusion,
an impurity jumps from one lattice site to the neighboring vacant lat-
tice site. Since the concentration of vacancies is low, substitutional
diffusion is much slower than interstitial diffusion. In concentrated
diffusion, the atom replaces the lattice atom and moves through the
interstices.

The mechanism of diffusion varies greatly, depending upon
the crystalline structure and the nature of the solute. For crystals
with lattices of cubic symmetry, the diffusivity is isotropic, but not
so for noncubic crystals. Interstitial mechanism of diffusion refers
to small diffusing solute atoms passing through one interstitial
site to the next. The matrix of atoms of the crystal lattice move
apart temporarily to provide the necessary space. When there are
vacancies and lattice sites are unoccupied, an atom in an adjacent
site may jump into such a vacancy. This mechanism is called
vacancy mechanism.

The NEC Corporation [20] has developed an interstitial concen-
tration simulation method. Here a mesh is set in a simulation region
of a semiconductor device. Under a condition that an area outside of
the simulation region is infinite, a provisional interstitial diffusion
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flux at the boundary of the simulation region is calculated. Then, an
interstitial diffusion rate at the boundary of the simulation is calcu-
lated by a ratio of the provisional interstitial diffusion flux to the pro-
visional interstitial concentration. Finally, an interstitial diffusion
equation is solved for each element of the mesh using the interstitial
diffusion rate at the boundary.

Crowd ion mechanism refers to the displacement of an extra atom
that can displace several atom positions, thus producing a diffusion
flux. The diffusivity in a single crystal is always substantially smaller
than that of a multicrystalline sample because the latter has diffusion
along the grain boundaries.

For diffusion in metals, Franklin [21] and Stark [22] gave the fol-
lowing expression:

D= angu) (2.63)

where 4, is the spacing between the atoms, N, is the fraction of sites
vacant in the crystal, and o is the jump frequency—that is, the number
of jumps per unit time from one position to the next.

Example 2.3  Steady diffusion in a hollow cylinder. Develop the concentration profile
in a hollow cylinder when a species is diffusing without any chemical reaction.
Consider the concentration of the species to be held constant at the inner and
outer surface of the cylinder at C,; and C, , respectively.

A mass balance on a thin shell of thickness, Ar, at radius, 7, in the cylinder
would yield:

J.2nrL = ]\ 2n(r + Ar)L =0 (2.64)

In the limit when Ar — 0:

_D (2.65)
or
Upon integration:
c
Ji=- 71 (2.66)
oC
or D,y A= —071 (2.67)
Upon integration:
C,= chln(r) ve, (2.68)

AB
From the boundary conditions, c, and c, can be solved for:
r=R,C,=C, (2.69)
r=R,C,=C, (2.70)

o



Chapter Two

c = Dyg (CAU - CAi) (2.71)
1
ln(%]
(CAo - CAI')
C2 = CAo - ln(RU)—R
In [F’:]

c,=C, -In(R) (C, -C,)/In(R /R) (2.72)
C,~C, In(r)-In(R) (2.73)

Cao=Cui In &
R

Defining a log mean radius:

(R,-R) 2.74)
<R,>= R L
R
c.-C In [7]
AT Ao _ 2.75
CAo - CAi <Rl Ru - Ri ( )

2.7.2 Diffusion in Porous Solids

Solute movement by diffusion can be by virtue of concentration dif-
ference or by means of pressure difference. Micropores, mesopores,
and macropores can be distinguished by means of the pore sizes.
Several publications discuss pore diffusion along with gas-solid reac-
tions and catalysis. A Knudsen diffusion may be identified when the
mean free path of the molecule is comparable to the pore size. When
the pore size to the mean free path of the molecule ratio is about 20,
molecular diffusion prevails. When d/A < 0.2 rate of diffusion is a
function of the collision of the gas molecules and wall, Knudsen dif-
fusion is said to occur:

N, =du,Ap/3RTI (2.76)

where u, is the molecular velocity of A. The Knudsen diffusion
coefficient:

D,,=d/3 (8RT/mM,)" 2.77)
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and the mean free path, A, is expressed as:

A =3.2u (RT/2nM) (2.78)

In the range of d/A from roughly 0.2 to 20, both molecular diffusion
and Knudsen diffusion are important:

N,=(D AB,eff p,/RTz) In(N,,/N(1 + DAB eff/DKA,eff) Y/
(N,/N1+D /DKA AR (2.79)

B,eff

Hydrodynamic flow of gases will occur when there is a difference in
absolute pressure across a porous solid. Consider a solid consisting of
uniform straight capillary tubes of diameter d, and length [ reaching
from the high-pressure side to the low-pressure side. Assuming lami-
nar flow, Hagen-Poiseuille’s law for a compressible fluid that obeys
the ideal gas law can be written as:

N,=d*p,., (p,,—P,,)/32WRT (2.80)

The entire pressure difference is assumed to be the result of friction in the
pores and ignores entrance and exit losses and kinetic energy effects.

2.7.3 Diffusion in Polymers

The diffusion coefficients for polymers lie in between that of solids
and liquids. Different systems where diffusion of high-molecular-
weight substances become of importance is when the polymer forms
a solute of a dilute solution or one component of a polymer-polymer
blend. A polymer blend can be miscible, immiscible, compatible, or
incompatible. When two polymers are mixed to yield a product with
improved property, it is said to be compatible blend. When two poly-
mers mix at a molecular level, they are said to be miscible blends. A
concentrated system where the volume fraction of the polymer solute
is large is another category where diffusion has to be treated in a dif-
ferent manner compared to other systems.

A polymer molecule dissolved in a solvent can be envisioned as a
necklace comprising spherical beads connected by string [23]. The
polymer molecules are separated and only interact through the sol-
vent. The Stokes-Einstein equation for the diffusion coefficient of
the polymer can be used for a Flory theta solvent. The root mean
square radius of gyration used as a measure of the size of the poly-
mer can be used as the radius of the solute in the Stokes-Einstein
formula. These values can be measured by light scattering. For con-
centrated solutions, the diffusivity is given by:

=D,(1 +dlny,/dlno,) (2.81)

39
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D, includes the solute’s activation energy. This must be sufficient to
overcome any attractive forces that constrain its near neighboring
polymer segments. This coefficient can be expected to vary with the
free volume of the polymer chains. Only the fraction of the free vol-
ume, the hole-free volume, will be accessed by the solute:

D,= D exp(-E/RT) exp(-0,V, + ®,V, /(® K, + ®,K,)) (2.82)
where E is the solute-polymer attractive energy, ,is the mass frac-
tions, V, is the specific critical free volumes, and K; is the additional
free volume parameters. These parameters are strong functions of the
actual temperature minus the glass transition temperatures.

For polymer blends, the Rouse model is suggested:

D=kT/NJ (2.83)

where N is the degree of polymerization and ( is the friction coeffi-
cient characteristic of the interaction of a bead with its surroundings.

Transient Diffusion [24-31]

The transient concentration profile due to molecular diffusion can be
described using Fick’s second law of diffusion and the damped wave
diffusion and relaxation equation. The parabolic Fick model and
damped wave diffusion and relaxation model for transient mass flux
at the surface for the problem of transient diffusion in a semi-infinite
medium subject to a step-change in concentration at the surface was
found by Sharma [25] to be within 10% of each other for times ¢ > 21,
(Fig. 9.7). This checks out with the Boltzmann transformation—the
hyperbolic governing equation reverts to the parabolic at long times.
At short times, there is a “blow-up” in the parabolic model. In the
hyperbolic model, there is no singularity. This has significant implica-
tions in several industrial applications, such as gel acrylamide elec-
trophoresis used in obtaining the sequence distribution of DNA and
protein microstructure.

The Fick regime is valid for materials with small relaxation times,
long times, and moderate-to-small mass flux rates. The wave regime
and the hyperbolic model are valid for short times, high mass flux
rates, and materials with large relaxation times. There were some con-
cerns expressed in the literature that the hyperbolic mass diffusion
equation violates the second law of thermodynamics. The equation
was shown to yield well-bounded solutions in accordance with the
second law of thermodynamics by Sharma [24] when final condition
in time was used. This condition is a more realistic representation of
the transient events in molecular diffusion in practice. The physical
significance of the damped wave equation needs to be borne in mind
when applying it.
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The solution developed by Baumeister and Hamill [32] by the
method of Laplace transforms was further integrated into a useful
expression. A Chebyshev polynomial approximation was used to
approximate the integrand with the modified Bessel composite func-
tion of space and time of the first kind and first order. The error
involved in Chebyshev economization was 4.1 x 10° n&. The useful
expression for transient temperature was shown in Fig. 9.8 for a typi-
cal time of © = 5. The dimensionless temperature as a function of
dimensionless distance is shown in Fig. 9.8. The predictions from
Baumeister and Hamill and the solution obtained by the method of
relativistic transformation are within 12% of each other, on average.
Close to the wavefront, the error in the Chebyshev economization is
expected to be small and verified accordingly. Close to the surface,
the numerical error involved in the Chebyshev economization can be
expected to be significant. This can be seen in Fig. 9.8 close to the
surface. The method of relativistic transformation yields bounded
solutions without any singularities. The transformation variable y is
symmetric with respect to space and time. It transforms the partial
differential equation (PDE) that governs the wave temperature into a
Bessel differential equation. The penetration distance beyond which
there is no effect of the step change in temperature at the surface for a
considered instant in time is shown in Fig. 9.8. The solutions from the
relativistic transformation of coordinates is an improvement over the
Baumeister and Hamill solution and parabolic Fourier solution in
depicting the transient heat events in a semi-infinite medium subject
to a step change in boundary temperature. Four regimes in the tran-
sient temperature solution for the hyperbolic governing equation
using the method of relativistic transformation of coordinates are rec-
ognized, and closed-form analytical solutions in each regime are
given without any singularities. The transient temperature is also
found in accordance with the second law of thermodynamics in all
four regimes.

2.8.1 Fick Molecular Diffusion—Semi-Infinite Medium
Consider a semi-infinite medium at an initial concentration of a spe-
cies, A, at C, (Fig. 2.2). For times greater than 0, the surface at x=01is

maintained at a constant surface concentrationat C,=C,,C, >C,.

x=0 X — o0

Ficure 2.2 Semi-infinite medium with initial concentration at C,.
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The boundary conditions and initial condition are as follows:

t=0,C,=C,, (2.84)
x=0,C,=C,. (2.85)
x=0,C,=C, (2.86)

The transient concentration in the semi-infinite medium can be
obtained by solving the Fick parabolic mass diffusion equations using
the Boltzmann transformation n = x/ J4Dt as follows. The governing
equation for molecular diffusion in one dimension using Fick’s sec-
ond law can be written as:

aC, 2’C,

ot~ Pa g

Equation (2.87) is a parabolic PDE of the second order in space and
time.

(2.87)

Let:
- Ci-Ch) n= * (2.88)
(CAS _CA()) 4DABt
Equation (2.87) becomes:
_mou _d*u Dy
2t0n  on? 4D, 289)
_2nou_ O 290
or an - anz ( . )

The three conditions, one in time and two in space, given by Egs. (2.84)
to (2.86) become:

n=0,u=1 (2.91)
N=co,u=0 (2.92)

Thus a PDE of the second order in space and time can be transformed
into an ordinary differential equation (ODE) in one variable. The trans-
formation m= x/ 4Dt is called the Boltzmann transformation. The
solution to the ODE in the transformed variable, 1, can be written as:

1
u= cl_[e‘"zdn +c, (2.93)
0

The integration constants, ¢, and c,, can be solved for using the bound-
ary conditions given by Egs. (2.91) and (2.92). Thus:

_C-Cu)

AT a)) o
u (C,.—C,) er [ '—4DA31‘J (2.94)



Principles of Diffusion

The mass flux can be written as:

S S NN 2.95
J (CAS_CAO) DAB \/HGXP[ 4DABtJ ( )

The dimensionless mass flux at the surface is then given by:

g = (2.96)

2.8.2 Damped Wave Diffusion and Relaxation

The semi-infinite medium is considered to study the spatio-temporal
patterns that the solution of the non-Fick damped wave diffusion and
relaxation equation exhibits. This kind of consideration has been used
in the study of Fick mass diffusion. The boundary conditions can be of
different kinds, such as the constant wall concentration, the constant
wall flux (CWF), pulse injection, convective, impervious, and expo-
nential decay. The similarity or Boltzmann transformation worked out
well in the case of the parabolic PDE, where an error function solution
can be obtained in the transformed variable. The conditions at infinite
width and zero time are the same. The conditions at zero distance
from the surface and at infinite time are the same.

Baumeister and Hamill [32] solved the hyperbolic heat conduc-
tion equation in a semi-infinite medium subjected to a step change in
temperature at one of its ends using the method of Laplace transform.
The space-integrated expression for the temperature in the Laplace
domain had the inversion readily available within the tables. This
expression was differentiated using Leibniz’s rule, and the resulting
temperature distribution was given for 1 > X as:

(C,-Cp) _ (-X © (—p PP -X?
RO =

The method of relativistic transformation of coordinates is evaluated
to obtain the exact solution for the transient temperature. Consider a
semi-infinite slab at initial concentration, C,, imposed by a constant
wall concentration, C,, for times greater than zero at one of the ends.
The transient concentration as a function of time and space in one
dimension is obtained. Obtaining the dimensionless variables:

c,-C ”
(C41—Ch) .T_%;X:\/Dx Jr= = J
mr T
" \/T:(CAS_CAO)

(Cas=Cao) T
The mass balance on a thin spherical shell at x with thickness Ax is
written in one dimension as —dJ*/0X = du/dt. The governing equa-
tion can be obtained in terms of the mass flux after eliminating the

u=

(2.98)
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concentration between the mass balance equation and the non-Fick
expression:
a]* N 82]* B 82]*
Jt 91>  9X?
It can be seen that the governing equation for the dimensionless mass
flux is identical in form to that of the dimensionless concentration.
The initial condition is:

(2.99)

t=0,*=0 (2.100)

The boundary conditions are:
X=o0o,[*=0 (2.101)
X=0,C=C;u=1 (2.102)

Let us suppose that the solution for [* is of the form w exp(-nT) for
7> 0 where W is the transient wave flux. Then, when n =%, Eq. (2.99)
becomes:

w w  Pw
— == 2.103
ot> 4 ox? ( )
The solution to Eq. (2.103) can be obtained by the following rela-
tivistic transformation of coordinates for T > X. Let n = (1> — X?). Then
Eq. (2.103) becomes:
*w ,%w  _odw

Fye =4T an2 +2E (2104)

2
=4x2 25 %% (2.105)

Combining Egs. (2.104) and (2.105) into Eq. (2.103):

w  dw -—w
2 _x2y = T
4(r*-X )a ~+4 5 0 (2.106)

2
”2%”%_%‘):0 (2.107)

Equation (2.107) can be seen to be a special differential equation
in one independent variable. The number of variables in the hyper-
bolic PDE has thus been reduced from two to one. Comparing
Eq. (2.107) with the generalized form of Bessel’s equation, it can be
seenthata=1,b=0,c=0,s =%, and d = . The order of the solution
is calculated as 0 and the general solution is given by:

/TZ _ XZ /TZ _ XZ
L = [+ oy 5

w=Cly

(2.108)
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The wave flux, w, is finite when 1 = 0, and hence it can be seen
that ¢, can be seen to be zero. The c, can be solved from the boundary
condition given in Eq. (2.102). The expression for the dimensionless
mass flux for times, 7, greater than X is thus:

J*=c exp (_71)10 [l\/‘cz - XZ} (2.109)

2

For large times, the modified Bessel’s function can be given as an
exponential and reciprocal in square root of time by asymptotic
expansion. Consider the surface flux, i.e., when in Eq. (2.109) X is set
as zero:

T
_ exp [Ej
J*=c,exp (?Tj \/E = Cri‘c (2.110)

For times when exp(t) is much greater than the mass flux, it can
be seen that the second derivative in time of the dimensionless flux in
Eq. (2.99) can be neglected, compared with the first derivative. The
resulting expression is the familiar expression for surface flux from
the Fourier parabolic governing equation for constant wall concen-
tration in a semi-infinite medium, and is given by:

(2.111)

Comparing Eq. (2.111) and Eq. (2.110) it can be seen that ¢, is 1. Thus,
the dimensionless heat flux is given by:

Jr= exP(%Tj I, [—TZ_Xz] (2.112)

2

The solution for J* needs to be converted to the dimensionless con-
centration, u, and then the boundary conditions applied. From the
mass balance:

L9 _ou
0X ot

Thus, differentiating Eq. (2.112) wrt to X and substituting in Eq. (2.113)
and integrating both sides wrt 1. For 7 > X:

1 Il%\/’cQ—X2
u= J.eXp[Tj ﬁ d’C+C(X) (2114:)

It can be left as an indefinite integral and the integration constant can
be expected to be a function of space. The ¢(X) can be solved for by

(2.113)
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examining what happens at the wavefront. At the wavefront, n =0
and time elapsed equals the time taken for a mass disturbance to
reach the location x given the wave speed sqrt ,/D/t . The govern-
ing equations for the dimensionless mass flux and dimensionless
concentration are identical in form. At the wavefront, Eq. (2.106)
reduces to:

w_w
on 16
or w= c’exp1 =c’ (2.115)
16
u=cexp—-=c'exp—- (2.116)
Thus, o(X) = c’exp%.
1 11%\112—}(2 -X
Thus, u= J.Xexp7ﬁd‘c+c expT (2117)

From the boundary condition in Eq. (2.102) it can be seen that ¢’ = 1.
Thus, for 1 > X, it can be seen that the boundary conditions are satis-
fied by Eq. (2.117), and it describes the transient concentration as a
function of space and time that is governed by the hyperbolic wave
diffusion and relaxation equation. The flux expression is given by
Eq. (2.112).

It can be seen that expressions for dimensionless mass flux and
dimensionless concentration given by Eq. (2.112) and Eq. (2.117) are
valid only in the open interval for T > X. When 1 = X, the wavefront
condition results and the dimensionless mass flux and concentration
are identical:

]* =U= exp% = exp(%} (2118)

When X > 1, the transformation variable can be redefined as 1 =
X? — 1% Equation (2.106) becomes:

Fw dw w

The general solution for this Bessel equation is given by:

w=c], {ﬂ] +c,Y, {ﬂl (2.120)

2 2
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The wave temperature, W, is finite when n =0, and hence it can be
seen that ¢, can be seen to be zero. The ¢, can be solved from the
boundary condition given in Eq. (2.56). The expression in the open
interval or the dimensionless heat flux for times T smaller than X is
thus:

(2.121)

On examining the Bessel function in Eq. (2.121), it can be seen that
the first zero of the Bessel occurs when the argument becomes 2.4048.
Beyond that point the Bessel function will take on negative values,
indicating a reversal of heat flux. There is no good reason for the mass
flux to reverse in direction at short times. Hence, Eq. (2.121) is valid
from the wavefront down to where the first zero of the Bessel func-
tion occurs, and the plane of zero transfer explains the initial condi-
tion verification from the solution.

By using the expression at the wavefront for the dimensionless
mass flux, ¢, can be solved for and found to be 1. Equation (2.121) can
also be obtained directly from Eq. (2.112) by using I,(m) = J(in). The
expression for temperature in a similar vein for the open interval X > 1
is thus:

/TZ _ XZ

]1[ 2 :l
u= J‘Xexp[%]—d‘lwexp(%] (2.122)

Tz_Xz

Consider a point X in the semi-infinite medium. Three regimes can
be identified in the mass flux at this point from the surface as a function of
time. The series expansion of the modified Bessel composite function
of the first kind and zeroth order was used using a Microsoft Excel
spreadsheet on a Pentium IV desktop microcomputer. The four regimes
and the mass flux at the wavefront are summarized as follows:

1. The first regime is a thermal inertia regime when there is no
transfer.

2. The second regime is given by Eq. (2.121) for the mass flux and
[x2 _ 12
= exp( J T, [Ll (2.123)

The first zero of the zeroth-order Bessel function of the first
kind occurs at 2.4048. This is when

24048 =—F7— Tiag =4/X*-23.132 (2.124)
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Thus, 7, is the inertial lag that will ensue before the mass flux
is realized at an interior point in the semi-infinite medium at
a dimensionless distance X from the surface. By way of dem-
onstration, one value of X is used, i.e., 5. Thus, for points
closer to the surface the time lag may be zero. Only for dimen-
sionless distances greater than 4.8096 is the time lag finite.
For distances closer than 4.8096 sqrt(at), the thermal lag expe-
rienced will be zero. For distances:

x>4.8096,/at,, (2.125)

The time lag experienced is given by Eq. (2.124) and is sqrt (X* -
4B?%) where B, is the first zero of the Bessel function of the first
kind and zeroth order, and is 2.4048. In a similar fashion, the
penetration distance of the disturbance for a considered
instant in time, beyond which the change in initial tempera-
ture is zero, can be calculated as:

X pop =423.132+ 17

3. The third regime starts at the wavefront and is described by
Eq. (2.112).

o exp(—?fj Iy [_VTZ—XZ ] (2.126)

2
4. At the wavefront, J* = u = exp(—X/2) = exp(-1/2).

The expressions for transient concentration derived in the previous
section need to be integrated prior to use. More easily usable expres-
sions can be developed by making suitable approximations. Realiz-
ing that for a PDE, a set of functions instead of constants (as in the
case of an ODE) needs to be solved from the boundary conditions, the
cin Eq. (2.101) is allowed to vary with time. This results in an expres-
sion for transient concentration that is more readily available for
direct use. Extensions to three dimensions in space are also straight-
forward in this method.

In this section, the exact solution for the constant wall concentra-
tion problem in a semi-infinite medium in one dimension is revisited
since the discussion by the method of Laplace transforms by Bau-
meister and Hamill. This section will attempt to derive an expression
that does not need further integration. Consider a semi-infinite slab
at initial concentration, C,, subjected to a sudden change in concen-
tration at one of the ends to C. The mass propagative velocity is V, =
sqrt (D,,/7 ). The initial condition:

t=0,Vx,C=C, (2.127)
t>0,x=0,C=C, (2.128)
t>0,x=0C=C, (2.129)
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Obtaining the dimensionless variables:

_(C_Co). _b
u_(CS—CO)’T_T ; X=,/D1 (2.130)

mr

The mass balance on a thin spherical shell at x with thickness Ax is
written. The governing equation can be obtained after eliminating J”
between the mass balance equation and the derivative with respect to
x of the flux equation and introducing the dimensionless variables:

ou, Fu_ o
o0t 91> 9X>
Suppose u = exp(-—n1) w (X, 7). By choosing n = %, the damping com-

ponent of the equation is removed. Thus, for n = %, the governing
equation becomes:

(2.131)

Sv_w_ow
otz 4 ox?
The solution to Eq. (2.132) can be obtained by the following relativ-

istic transformation of coordinates for T > X. Let 1 = (1> — X?). Then
Eq. (2.132) becomes:

(2.132)

*w w Jdw
¥ el 0
o " on? " o
PW _ 52 W, 9w (2.133)
X2 oz~ am

Combining Egs. (2.133) and (2.132):

2 —
4(T2_x2)37f+4g_1:_%=o (2.134)
Pw  dw mnw
2 —_— =
e . (2.135)

Equation (2.135) can be seen to be a special differential equation in
one independent variable. The number of variables in the hyperbolic
PDE has thus been reduced from two to one. Comparing Eq. (2.135)
with the generalized form of Bessel’s equation, it can be seen thata =1,
b=0,c=0,s="%, and d = —Ys. The order of the solution is calculated as
0 and the general solution is given by:

l /TZ _ XZ /,.52 _ X2
w=cl)|—F— —_—

+ czKol >

The wave temperature, w, is finite when =0, and hence, it can be
seen that ¢, can be seen to be zero. The ¢, can be solved from the

> (2.136)
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boundary condition given in Eq. (2.128). For X =0, u is 1. Writing the
expression for at X = 0:

1=c, exp [_71) I, [@] (2.137)

c, can be eliminated by dividing Eq. (2.136) after setting c, = 0 by
Eq. (2.137) to yield in the open interval of T > X:

Je-x?
|5
u=—"t_ 4 (2.138)

%

In the open interval X > 1:
XZ _ TZ
= (2.139)

It can be inferred that an expression in time is used for c,. A domain-
restricted solution for short and long times may be in order. The dimen-
sionless concentration profile as a function of dimensionless distance
for different values of dimensionless times is shown in Fig. 2.3.

2.8.3 Periodic Boundary Condition

Consider a semi-infinite slab at initial concentration, C,, imposed by
a periodic concentration at one of the ends by C,+ C, cos(wt). The
transient concentration as a function of time and space in one dimen-
sion is obtained. Obtaining the dimensionless variables:

(C_Co). _
c. "

. X = X

t
U= —;
Tmr

u=(C-C)/(C);

1 mr

t=t/1; X=x/sqrt(D1) (2.140)

The mass balance on a thin shell at x with thickness Ax is written. The
governing equation is obtained after eliminating | between the mass
balance equation and the derivative with respect to x of the flux equa-
tion and introducing the dimensionless variables. The initial condi-
tion is:

t=0,C=C,u=0 (2.141)
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Damped wave diffusion and relaxation
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Ficure 2.3 Concentration profile under damped wave diffusion and relaxation
in semi-infinite medium.

The boundary conditions are:
X=e,C=C,;u=0 (2.142)
X=0,C=C,+ C, cos(ot); u = cos(w*1) (2.143)

Let us suppose that the solution for u is of the form f(x)exp(-iw*t) for
7> 0 where o is the frequency of the concentration wave imposed on
the surface and C, is the amplitude of the wave. Then:

(i) f exp(—in*t) + (P0*? )f exp(—ioT) = f” exp(—io*t)  (2.144)
2 fl0*? + iw*) =f”

AX) = c exp(-iXw*sqrt (0* + 1)) (2.145)

[J!
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d can be seen to be zero as at X =<, u =0.

u =cexp(-iXw* \/m)exp(—im* T) (2.146)
From the boundary condition at X =0:
cos(w*1) = real part (cexp(—iw*t) )orc=1 (2.147)
u = exp(—Xw*(A + iB)exp(—iw*1))
= exp(—Aw* X)exp(—i(BX0* + 00*1)) (2.148)
where A +iB =isqrt(0* + 1) (2.149)
Squaring both sides:
A’ - B2+ 2ABi =7 (0* +1) =—0* —i (2.150)

A2-B’=-0*;2AB=-1orB=-1/2A

or A?-1/4A?=-o* (2.151)
A? = (—0* £ sqrt (0*2+1))/2;B=-1/2A (2.152)

Obtaining the real part:
u = exp(—Aw*X)cos(w*(BX + 1)) (2.153)

The time lag in the propagation of the periodic disturbance at the
surface is captured by the previous relation. Thus, the boundary con-
ditions can be seen to be satisfied by Eq. (2.145). In a similar vein to
the supposition of f(x)exp(—i®*t), the mass flux J” can be supposed to
be of the form J* = g(x)exp(—iw*1). Thus:

__f
S s (2.154)

Combining the f from Eq. (2.145) into Eq. (2.154):
J* =—0*(A + iB) exp(—-Xw*(A + iB)exp(-iw*1)) (2.155)
=-0*(A + iB) exp(~Aw*X)exp(—i(BXw* + 0*1))
=-0*(A + iB)exp(—A®*X)(cos(BX®* + w*1) + isin(BXw* + 0*1))

Obtaining the real part:

] =

o* exp(—A0*X)(B sin(0*(BX + 1)) — Acos(0*(BX + 1)))
(2.156)

mr
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Summary

Diffusion is a phenomenon whereby a species migrates from a region
of higher concentration to a region of lower concentration. The driving
force for motion is the concentration gradient. The Skylab demonstra-
tion experiments by Fascimire documents the diffusion of tea in water
under reduced gravity conditions. The lowest achievable concentra-
tion is 0 molm™ by law. Fick’s first and second laws can be written as:

ac,
I="Didox
O°C, _9G
i9x2 ot

The N and | fluxes are distinguished from each other. | describes the
molecular diffusion and N the migration due to bulk motion. The dif-
fusion coefficient varies with temperature. In gases, the correlations
of Chapman and Enskog, Wilke-Lee, Mathur and Thodos, and Catch-
pole and King are presented. Binary diffusion coefficient values for
commonly available gases are given in Table 2.1. For liquids, the
Stokes-Einstein relation for diffusion coefficients was derived. Dur-
ing the derivation, when accounting for the acceleration regime of the
solute molecule, the generalized Fick’s laws of diffusion were
derived:

],,+MiDija]”__ RT £
RT ot  |6nuR | ox

Correlations of Nernst-Haskell for electrolytes were mentioned.
The effect of concentration, i.e., dilute versus concentrated solutions,
were discussed separately. Correlations of Wilke-Chang, Siddiqi-
Lucas, and Haydeek-Minhas were included. The diffusion mecha-
nism in solids was discussed. The different mechanisms of diffusion,
such as vacancy mechanism, interstitial mechanism, substitutional
mechanism, and crowd ion mechanism were outlined. The Knudsen
diffusion when the mean free path of the molecule is greater than the
diffusion path, such as in pore diffusion, was discussed. The diffu-
sion in polymers and the Arrhenius dependence of diffusion coeffi-
cient with temperature were discussed.

The transient diffusion in a semi-infinite medium was studied
under a constant wall concentration boundary condition using Fick’s
second law of diffusion and the damped wave diffusion and relaxation
equation. The latter can account for the finite speed of propagation of
mass. Anew procedure called the method of relativistic transformation
was developed to obtain bounded and physically realistic solutions.
These were compared with the solution from Fick’s second law of dif-
fusion obtained using Boltzmann transformation and the solution pre-
sented in the literature by Baumesiter and Hamill [32]. Four different

3
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regimes of the solution were recognized: an inertial regime with zero
transfer, a second regime characterized by a Bessel composite function
of space and time of the zeroth order and first kind, a third regime
characterized by a modified Bessel composite function of space and
time of the zeroth order and first kind, and a wavefront regime. The
characteristics of the solution to the damped wave diffusion and relax-
ation equation, subject to the periodic boundary condition by the
method of complex concentration, were discussed. The transient con-
centration profile from the relativistic transformation method was pre-
sented in an easy-to-use chart in Fig. 2.3. The profile has a point of
inflection and zero curvature at X = 0. Mathematical expressions for
penetration length and inertial lag time were derived.
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Exercises

Review Questions

1.0 What is the difference between self, binary, and ternary diffusion coef-
ficients?

2.0 During Brownian motion, the molecules follow a random zigzag path
and sometimes move in the opposite direction, compared with the imposed
concentration difference driving the diffusion. Is this a violation of the second
law of thermodynamics?

3.0 What are the differences between multicomponent diffusion and binary
diffusion?

4.0 What happens to the formula for total flux during equimolar counterdif-
fusion, compared with that for molecular diffusion?

5.0 Correlations for diffusion in gases, liquids, and solids were discussed.
What would be appropriate for liquid diffusing in a solid or gases diffusing
in a liquid?

6.0 Discuss the units of each term in the equation P = DS.

7.0 Explain the effect of temperature on the mass propagation velocity. What
happens to the diffusion coefficient and relaxation time at high pressure?

8.0 Why are insects larger in size in the tropics compared with the insects
in the Arctic region?

9.0 Are the forces of gravity taken into account in the derivation of the
Stokes-Einstein relationship for diffusivity coefficients?

10.0 Can you expect a plane of zero concentration or null transfer during
drug delivery in the tissue region? How so?

11.0 Diffusion coefficient is a proportionality constant in Fick’s first law of
diffusion, independent of concentration. For concentrated solutions, it is said
to vary with concentration. How can this be interpreted?
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12.0 State the Onsager reciprocal relations. Show that D, =D,,.

13.0 What was Landau’s observation of the infinite speed of propagation?
14.0 What is penetration length?

15.0 What is inertial lag time?

16.0 What is the first zero of the Bessel function of the first order? How is
this used in the derivation of the penetration length and inertial lag time in a
three-dimensional medium?

17.0 Examine [ (t/2)exp(-1/2) in terms of extremamas and asymp-
totic limits. Under what conditions can I (t/2) be reduced to a simpler
expression?

18.0 What is the meaning of a negative mass flux? What happens to the ratio
of accumulation and diffusion ?

Problems

19.0 Estimate of diffusion coefficient of argon in hydrogen. Calculate the diffusion
coefficient of argon in hydrogen at 1.5 atm and 310 K. Compare this with the
experimental values reported in the literature.

20.0 Parabolic law of oxidation. During the corrosion of metals, an
oxide layer is formed on the metal. Assuming that the oxygen diffuses
through the oxide layer, show that the thickness of the oxide layer, 9,
can be given by (C, , D,,t/p,)"/? using Fick’s law of diffusion. A gentle
breeze is blowing at a constant velocity of U over the corroded layer.
Is this going to increase the rate of corrosion due to the convection
contribution?

21.0 Sacred pond. Evaporation from ponds is retarded by the introduction
of lotus leaves in the sacred ponds in temples. Assume that in a pond of area
9 m x 9 m, 4,130 leaves, each with a diameter of 3”, were placed. Calculate
the reduction in diffusion rate on account of the reduction in area in the path
of evaporation.

22.0 Diffusion of oxygen through spiracles. Many insects breathe through
spiracles. Spiracles are open tubes that extend into the insect’s body.
Oxygen diffuses from the surrounding air and gas exchange takes place
through the walls. For every mole of oxygen diffusing in, there is one
mole of CO, diffusing out. To prevent water loss, the walls of the spiracle
are coated with a cuticle of 10 pm thickness. The oxygen concentration
outside the cuticle is constant and is 5% of the equilibrium concentra-
tion. What is the local oxygen flux in the spiracle to the tissue? Derive an
oxygen concentration profile within the tissue. Is the spiracle an efficient
method of respiration? (Spiracle radius = 100 um; spiracle length = 9 mm;

ocuticle = 3 E-5 em?/s; D_ . = 0.15 cm?/s; oxygen solubility in tissue C, =
0.2 mmol/L.)
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23.0 Scrubbing of SO,. During coal combustion, the emission of sulfur dioxide
from power plants can be reduced by using CaO scrubbers. In the scrubber:
2Ca0 +250, + 0, — 2CaSO,

Consider the diffusion of SO, into a spherical particle of CaO. Show that a
governing equation can be derived from the shell balance as:

0 aC -
AB 1297 (rz 81’A ] =k7C,

Show that the concentration profile of SO, in the spherical lime particle can be

written as:
k/l/
L7 |=—
C_A ~ 1/2 [ DAB ]
Ch k"
o XI,|R =
1/2[ Dg j
The Thiele modulus is: 0=R K
Dp

24.0 Coextrusion. In the manufacture of the casings of the solid rocket
motor (SRM), the material requirements are bifunctional. They have to
have high hoop strength on one side and high ablation resistance on the
other. In order to prepare such materials, the technology of coextrusion is
utilized. In a twin-screw extruder, both the materials are extruded together.
During the residence time of the polymers in the extruder, the interdif-
fusion of either material into the other occurs. Calculate the interlayer
thickness as a function of the extruder residence time and diffusivities of
the two materials.

25.0 Diffusion coefficient of milk in the refrigerator. Estimate the diffusion coef-
ficient of lactic acid in the refrigerator. Compare this with the value at room
temperature and that of the milk through the plastic container.

26.0 Restriction mapping. Endonucleases, or restriction enzymes, cut the
unmethylated DNA at several sites and restrict its activity. About 300 restric-
tion enzymes are known, and they act upon 100 distinct restriction sites that
are palindromes. Some cut leaves with blunt ends and others leave them
sticky. The restriction fragment lengths can be measured by using the tech-
nique of gel electrophoresis. The solid matrix is the gel usually agarose or
polyacrylamide—which is permeated with a liquid buffer. As DNA is a nega-
tively charged molecule when placed in an electric field, the DNA migrates
toward the positive pole. DNA migration is a function of its size. Calibration
is used to relate the migration distance as a function of size. Migration dis-
tance of DNA under a field for a set time is measured. The DNA molecule
is made to fluoresce and made visible under ultraviolet light by stainingthe
gel with ethidium bromide. A second method is to tag the DNA with a radio
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active label and then expose the x-ray film to the gel. Show that the migration
under gel electrophoresis can be given by:

oE aC
]ﬁrag = _(ZAuAF)g_ frag a_;

Show that the governing equation can be written in one dimension as:

9*C J%E
O: fragaTZA_(ZAMAF)a?

27.0 Pheromone and insect control. During insect control, controlled release
of pheromones are used. Pheromones are sex attractants released by insects.
When mixed with an insecticide and used, it annihilates all of one sex of a
particular insect pest. The pheromone sublimation rate in the impermeable
holder is given as:

S,=9E-16(1-1E-6C,)

where C, is the concentration in the vapor. The diffusivity through the polymer
is 1.2 E-11 cm?/s. It can be assumed that the pheromone outside the chamber
is 0. If the polymeric diffusion barrier is 600 microns thick and has an area of
1.6 cm? what is the concentration of pheromone in the vapor? How fast is the
pheromone released by the device?

28.0 Oxygen transport in the eye. The cornea is a unique, living tissue and is
a transparent window through which light enters the eye to be focused on
the retina, thus forming the images of our surroundings and enabling sight.
When the eye is open, it receives all of its oxygen requirements from the sur-
rounding air. Other nutrients are likely delivered via the tear duct fluid that
bathes the outer surface of the cornea or the aqueous humor, which fills the
chamber behind the cornea and in front of the lens. Some oxygen may enter
the aqueous humor from a vasculature in the muscle around the periphery
of the lens. When the eye is closed, it is cut off from the O, source in the air.
There is a rich microvascular bed (well perfused with high vascular density
on the inner surface of the eyelid) that supplies the cornea with oxygen and
possibly other nutrients. What is the pO, at the surface of the cornea when
the eye is closed?

Thickness Diffusion Coefficient VO, (mLO, - mL
Layer (um) (cm?/s) tissues?)
Epithelium 40 3.8 E-10 2.0E4
Stroma 450 3.8 E-10 1.0 E5
Endothelium 10 3.8E4 20E4

Table of Model Parameters

29.0 Loss from beverage containers. Soft drink bottles are made out of plastic.
The contents diffuse at a slow rate through the walls of the container and out
into the air, and result in some losses. It has been suggested to coat the inner
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wall of the container to reduce the losses. With a coating thickness of 25 pm and
a diffusion coefficient in the coating of 1 E-9 m?/s, what would be the benefit to
the manufacturer? Assume a thickness of 1.5 mm for the plastic container and
a diffusion coefficient of the contents in the plastic container as 1 E-6 m?/s.

30.0 Reaction and diffusion in a nuclear fuel rod. In autocatalytic reactions, such
as during nuclear fission, the neutrons can be studied by a first-order reaction.
The mass balance in a long cylindrical rod with a first-order autocatalytic reac-
tion can be written at steady state as:

19(r,
il (]V)+k/I/C:0

r or
The long cylindrical rod is at zero initial concentration of autocatalytic reac-
tant, A. The surface of the rod is maintained at a constant concentration, C,
for times greater than zero. The boundary conditions are:

aC
r=0, =

or 0
r=R,C=C,

Show that the steady-state solution can be obtained as follows after redefin-
ingu=C/ C;:

Pu/oX*+1/X o /oX+K u =0
X2 /0X?+ X ou /X + Xk wr =0
This equation can be recognized as the Bessel equation. The solution is:
w=c, J, (XVk*) +c, Y, (XVk*)

It can be seen that ¢, = 0 as the concentration is finite at X = 0. The boundary
condition for surface concentration is used to obtain ¢, Thus:

¢, =1/], (RVk*/Dr)
Thus:
w=], (XVk*)/], (RNk*/Dt)

31.0 Grooming hair with oil. In order to keep the hair on the human skull from
becoming dehydrated, it is oiled or hair cream is applied every day. During the
course of the day estimate the loss of the oil from the human hair by diffusion.
Show that there are two contributions. One is from the molecular diffusion
from the head to the atmosphere in the vertical direction and the other is by
convection from a wind blowing in the horizontal direction. Show that the
governing equation can be given by:
Q*u _Ud,, du

hair

0z> D ox
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Show that the solution for the concentration profile of the oil in the surround-
ing region of the human skull at a steady state can be given by:

=1 f|l 7 Pem
u= er X

Assuming that the diameter of the hair is 2 microns, the velocity of airis 1 m/s,
and the diffusivity is 1 E-5 m?/s, estimate the time taken for the layer of cream
of 1 micron to be replaced. Make suitable assumptions, such as the cranial area
is 2,500 cm?* and the length of the hair is 5 cm.

32.0 Dyeing of the wool. A dye bath at a concentration C, and a volume V is
used to dye wool that is bathed in it. The dye diffuses into the wool. Measuring
the concentration of the dye in the wool as a function of time, can you a)
estimate the diffusion coefficient of the dye (ff so, how and b) estimate the
relaxation time?

33.0 Dopant profile by ion implantation. Ion implantation is used to introduce
dopant atoms into the semiconductor material to alter its electrical conductiv-
ity. During ion implantation, a beam of ions containing the dopant is directed
at the semiconductor surface. For example, boron atoms are implanted into
silicon wafers by Lucent Technologies. Assume that the transfer of boron into
the silicon surface is on account of both the convection and diffusion contribu-
tions at a steady state. Show that the governing equation for the transfer of
boron at the gas-solid interface is given by:

ac, 2C,

9z 4B g2

Given a characteristic length I, show that the equation can be reduced to:

_pe Ou_ Ou
"9Z 972
and the solution is:
u= 1_ P]ss e—PemZ

m

34.0 Soot from the steam engine. The steam engine that powers the train that
takes you from Chennai to N. Delhi in 31 hours discharges coal dust at a steady
rate of 68 kg-mol/hr. The train moves at a velocity of 90 km/hr. Estimate the
thickness of soot that will deposit on a passenger sitting near the window of
seat S6 during the entire journey. S6 is about 200 feet from the engine. Assume
that the diffusion coefficient of the soot in air is 1 E-6 m?/sec. Repeat the
analysis for a wind speed of 10 km/hr. (Hint: Bulk concentration of soot in
surrounding air can be calculated by considering a basis of time, such as that
taken for the passenger to move 600 feet to the discharge point in fixed space,
and in that time, the discharge amount is calculated from the discharge rate
and the dispersed region from the penetration length in all three directions.)

35.0 Steady diffusion in a hollow sphere. Develop the concentration profile in
a hollow sphere when a species is diffusing without any chemical reaction.
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Consider the concentration of the species to be held constant at the inner and
outer surfaces of the cylinder at C,, and C, , respectively. Show that:

R.
1——
CA_CAi _[ VJ

36.0 Determination of diffusivity. Unimolar diffusion can be used to estimate
the binary diffusivity of a binary gas pair. Consider the evaporation of CCl,,
carbon tetrachloride, into a tube containing oxygen. The distance between the
CCl, level and the top of the tube is 16.5 cm. The total pressure in the system
is 760 mmHg and the temperature is -5°C. The vapor pressure of CCl, at that
temperature is 29.5 mmHg. The area of the diffusion path in the diffusion tube
may be taken as 0.80 cm?. Determine the binary diffusivity of O,~CCl, when in
an 11-hour period after a steady state, 0.026 cm® of CCl, is evaporated.

37.0 Helium separation from natural gas. McAfee proposed a method to sepa-
rate helium from natural gas. He noted that Pyrex glass is almost imperme-
able to all gases but helium. The diffusion coefficient of helium is 25 times the
diffusion coefficient of hydrogen. Consider a Pyrex tubing of length, L, and
inner and outer radii, R, and R . Show that the rate at which helium will diffuse
through the Pyrex can be given by:

_ 21.ELDHe,pyrex (CHe,l - C

] He —
In (I;—’:]

38.0 Solid dissolution into a falling film. A liquid is flowing in laminar motion
down a vertical wall. The wall consists of a species that is slightly soluble in the
liquid. Show that the governing equation for species diffusing into the liquid
from the wall can be written as:

He,2 )

Pu_uLou
9z2 D ox

Show that an error function solution results for this PDE.

39.0 Carburizing steel. Low-carbon steel can be hardened in order to improve
the wear resistance by carburizing. Steel is carburized by exposing it to gas,
liquid, or solid that provides a high carbon concentration at the surface. Given
the percent carbon versus depth graphs for various times at 930°C, how can
the diffusion coefficient be estimated from the graphs?

40.0 Electrophoretic term. For some systems, there is a minus sign in the elec-
trophoretic term, as shown in the following equation. What are the implications
of the minus sign in this equation? How will this manifest in applications?

. 0C, (zFm dj,
=P, _[RT]CA”W ot
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CHAPTER 3

Osmotic Pressure,
Solvent Permeability,
and Solute Transport

Learning Objectives

Discuss osmosis, osmotic pressure, and van’t Hoff’s law

Learn permeability of a solvent across a membrane, Starling’s
law

Familiarize with diffusion mechanisms of a solute across
a membrane

Discuss hindered diffusion of a solute through pores
Apply the Kedem-Katchalsky equation

Discuss flow through porous media, Darcy’s law
Derive Starling’s law

Measure a permeability coefficient

Use Staverman’s reflection coefficient and the sieving
coefficient

Estimate effective diffusivity in suspensions

Design a dialysis system to filter out toxic solutes from the
bloodstream

Characterize body fluids
Apply the Nernst equation

Understand electrodialysis and mass exchangers
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There were three important developments in the history of biofluid
transport phenomena in human anatomy. These are as follows:

1. The discovery of osmosis and osmotic pressure

2. Permeability of a solvent across a membrane and Starling’s
law

3. Diffusion of a solute across a membrane

3.1 Van't Hoff’s Law of Osmotic Pressure

The concept of osmotic pressure is illustrated in Fig. 3.1. When a bal-
loon made out of a semipermeable membrane and filled with salt
solution is immersed in a bath of pure water, the water will travel
from the jar into the balloon and the size of the balloon will increase
until equilibrium is reached in terms of the chemical potential on
both sides of the membrane. The semipermeable membrane chosen
can permit only water and not the solute to a large extent. The flow
of water is an example of the concept of osmotic pressure. Osmosis is
the flow of solvent from a region of low solute concentration to a
region of high solute concentration. The pressure difference that
causes this flow is called osmotic pressure. This pressure is caused
by the presence of solutes. Hence, it is called colloid osmotic pressure.
For human plasma in the blood, the colloid oncotic pressure is about
28 mmHg. The colloid osmotic pressure is small, compared with the
osmotic pressure developed when a human cell is placed in pure
water. The total osmotic pressure of the intracellular fluid would
be 5450 mmHg at 37°C.

Ficure 3.1 Concept of osmotic pressure.
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Osmotic pressure is caused by the presence of solutes such as
K*ions; phosphocreatine; Mg*, Cl-, HCO,", and HPO*" ions; carno-
sine; amino acids; creatine; lactate; Na* ions; urea; adenosine
triphosphate (ATP), hexose monophosphate; and others. A number
of solute molecules contribute to the osmotic pressure. Some of
them are dissociating. For example, NaCl dissociates to the Na* and
CI ions. Each ion particle exerts its own osmotic pressure, and the
charge of the ion has no bearing on the osmotic pressure. Substances
such as glucose do not dissociate, and the osmotic pressure exerted
is based upon its concentration. The term osmole is introduced to
account for the effect of a dissociating solute. Therefore, one osmole
is defined as one mole of a nondissociating substance. One mole of
dissociating NaCl is equivalent to two osmoles. Osmolarity defines
the number of osmoles per liter of solution. For physiological solu-
tions, the unit used for convenience is mOs. If a cell is placed within
a solution that has a lower concentration of solutes or osmolarity,
the cell is in a hypotonic solution and establishment of osmotic equi-
librium requires the osmotic flow of water into the cell. The influx of
water into the cell results in swelling of the cell and a subsequent
decrease in its osmolarity. On the other hand, if the cell is placed
in a solution with a higher concentration of solutes or osmolarity—
that is, a hypertonic solution—osmotic equilibrium requires osmotic
flow of water out of the cell. An isotonic solution is a fluid that has
the same osmolarity of the cell. When cells are placed in an isot-
onic solution, there is neither swelling nor shrinkage of the cell.
Examples of isotonic solutions are 0.9 percent by weight NaCl in
water solution and 5 percent by weight of glucose solutions with
respect to a human cell.

Lettuce leaves in a salad wilt when salt is added. The osmotic
pressure exceeds the turgor pressure in the cells of the lettuce, and
the water oozes out. The process of wilting is thus accelerated with
the addition of common salt. The water droplets on the surface of the
leaves come from the interior of the lettuce plant cells. Consequently,
the turgor pressure and internal rigidity of the leaves are lowered and
they wilt. The process of water transport out of the cells caused by an
increase in external salt concentration is an example of osmosis
phenomena.

Dutrochet discovered the phenomena of osmosis. He made sys-
tematic observations of osmotic pressure in the 1800s. He observed
that small animal bladders filled with dense solution and then com-
pletely closed and plunged in water became turgid and swollen
excessively. Water flowed into the bladder so as to dilute the solution
inside.

Osmotic phenomena do not violate the second law of thermody-
namics. The entropy of the solution is larger than that of the solvent.
When brought in contact with each other, the combined system strives
to reach a state where the entropy is even higher. This can happen
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only when the solvent moves from low solute concentration to the
solution with higher solute concentration.

Van't Hoff’s law can be used to determine the osmotic pressure in
terms of the concentration of the solution. It is derived from the con-
cept that fugacity of different phases needs to be equal at equilibrium.
Thus, Fig. 3.1 shows that at equilibrium, the temperature and fugac-
ity of the water and that of the solution must be equal. Fugacity is a
measure of the chemical potential of the system. As discussed previ-
ously, the difference in the chemical potential between the solution
and the solvent causes the osmotic flow from a region of low solute
concentration to a region of high solute concentration.

f(T,P,)=f(T,P) (3.1)

The fugacity of a solution can be written in terms of the pure-component
fugacity using the Poynting factor. The mole fraction of water and the
activity coefficient of water are also needed. The Poynting factor
corrects for the effect of pressure on the pure-component fugacity
where V_ is the molar volume:

fw = ’wawfw exp(— RT

The osmotic pressure is given by (P, — P, ) = n and can be solved for
from Eq. (3.2) as:

n=(P,—P)= —Ié—Tln(ywxw) (3.3)

For an ideal solution, the activity coefficient may be taken as 1. For
dilute systems using Taylor series expansion, the logarithmic func-
tionality can be approximated as:

In(x ) =In(1-x) =—(x) (3.4)
Substituting Eq. (3.4) in Eq. (3.3) provides:

RTx,
T= :

=RTC, (3.5)

w

Equation (3.5) is called van’t Hoff’s law, and it is used to determine
the osmotic pressure. Equation (3.3) may be used when activity
coefficient information is available. If the solution contains N ideal
solutes, the osmotic pressure can be obtained as a sum of the contri-
butions from each solute:

RTx, N
n= =RTZCS]. (3.6)

w j=1
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3.2

The number of molecules and not the absolute weight of the solute
determines the osmotic pressure of the solution.

Example 3.1  Concentration of orange juice by osmosis. In the food processing indus-
try, in order to concentrate orange juice, the water needs to be removed. A plastic
bag containing orange juice at 1 wt % sucrose concentration is dropped into a
brine solution at 35 wt % NaCl by weight. Calculate the osmotic pressure devel-
oped that will concentrate the juice.

At equilibrium, the fugacity of water will be equal between the juice phase
and brine phase:

fjmce :fbrine (3_7)

The fugacity of the solution can be written in terms of the pure-
component fugacity using the Poynting factor. The mole fraction of
water and the activity coefficient of water are needed. The Poynting
factor corrects for the effect of pressure on the pure-component fugac-
ity where V_ is the molar volume. For ideal solutions, the activity
coefficient can be taken as 1:

1x f, Uexp(—an'j /RT)=1x ,f exp(-V =,/RT) (3.8)

wj

Mole fractions have to be calculated for water in juice and brine
solutions:

RT ., | x,,
T=m,-n,=Int=m,-m, :—V_ln Zub

w wj

_8.314%298 In 0.86
- 1.8E-5 0.999

] =204 atm.

Darcy’s Law for Fluid Transport in Porous Media

Oftentimes, the fluid flow and solute transport are across pores in
biological transport phenomena. Porous media are solid materials
with an internal pore structure. The pores can be macropores or micro-
pores. The pore size and structure vary from one organ to another and
between organisms. Nanostructured materials consist of a regular
array of cylindrical pores. Interconnected channels may lead to a
sponge or foam structure. Polymer gels form a fiber matrix. Tissues
often contain a porous structure. The extravascular region can be
viewed as a porous medium. The region consists of cells and an inter-
stitial region, and the pores are saturated with interstitial fluid. Pores
exist in between cells, much like the spaces between grains in a pile of
sand. They also exist in between extracellular fibrous molecules as
part of a fiber matrix. A composite material is formed by embedding
a fiber-matrix structure in the granular structure. Pores in the intersti-
tial region are either isolated or connected. Tissues are comprised of
blood vessels, cells, and interstitial regions. The interstitium is com-
prised of an extracellular matrix and interstitial fluid.
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Synthesized protein and polysaccharide molecules, such as
proteoglycans, collagen, elastin, fibronectin, and laminin, form the
extracellular matrix. A mechanical scaffold of tissue is provided by
the extracellular matrix. It also serves as a substrate for cell adhesion
and cell migration. Pores are characterized by their surface area and
porosity:

_ area(interfacial)

# volume (39)
_ volume(pores)
"~ volume(total) (3.10)

where s is the specific surface area and € is the porosity of the
medium. Porous structures are deformable on application of load.
The spatial distribution of pores can change on application of mechan-
ical stress.

Pores can be classified depending on their connectivity as follows:

1. Passing penetrable pores
2. Nonpassing penetrable pores
3. Isolated pores

4. Tortuous channels

A pore is considered a passing pore when it connects to at least
two subdomains of the outer surface of finite porous media. The
passing pores may connect to two boundaries of the material, regard-
less of its geometry: rectangular, cylindrical, or spherical. A nonpass-
ing pore connects to only one subdomain of the outer surface. Both
passing and nonpassing pores are said to be penetrable pores. Pores
without any connections to the outer surface of the porous media are
considered isolated. Tortuous channels occur when the length of the
pore is greater than the thickness of the specimen—that is, tortuosity

may be defined as:
2
Lmin

where L is the length of the diffusion path through the pore and L__
is the shortest distance between the departure and arrival points of
the solute in the medium. Accessibility of pores to solutes depends on
the molecular structure and property of the solute. Common sense
would dictate that a solute with a solute size greater than the pore
size would not be penetrable. But there are instances when macro-
molecules with an initial size greater than the pore size have coiled
up and penetrated the pore!
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The size of a flexible molecule is defined by its radius of gyration.
Oftentimes, not all the pore volume is available for solute transfer.
This can be quantitated by using the parameter called the partition
coefficient. The partition coefficient gives the ratio of the available
pore volume for solute diffusion to the porosity of the medium. For
example, Ogston [1] developed a statistical model to include the
effects of molecular exclusion in an oriented fiber matrix:

q) _ lex 0|1+ rsolute ’
=exp - (3.12)

where 6 = volume fraction of fibers
T e = radii of solute
Tine = Tadii of fiber
¢ = partition coefficient in the porous media

The partition coefficient is an indicator of solute partitioning at
equilibrium, between external solutions, and the void space in the
porous media. In human anatomy, for example, the partition coeffi-
cient for albumin in the liver was found to be 0.5, 0.61 in the dermis,
and 0.9 in the gut. The porosity was 0.163, 0.302, and 0.094 in the liver,
dermis, and gut, respectively.

Fluid flow through porous media has been studied for more than
150 years. Similar to Ohm’s law of electricity, Fourier’s law of heat
conduction, Fick’s law of molecular diffusion, and Newton’s law of
viscosity, Darcy’s law can be written for fluid flow through porous
media as follows [2]:

KA oP
Q= T (3.13)

where Q = throughput of the fluid
K = permeability of the medium to the fluid
A = the cross-sectional area across which flow occurs
1 = the viscosity of the fluid
P =pressure
z = distance of the flow field

Darcy observed that water percolates through sand at a flow
rate proportional to the pressure gradient and inversely propor-
tional to the viscosity of the fluid. Although derived from empirical
observations, attempts have been made to derive Darcy’s law after
disregarding friction within the fluid. Darcy’s law is used to
describe fluid flow in interstitium. Extending Eq. (3.13) in three
dimensions:

v=—-K.VP (3.14)
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where the superficial velocity vector is given as a dot product of per-
meability and pressure gradient in all three Cartesian coordinates: x,
y,and z.

Darcy’s law implies the use of a continuum where the material is
assumed to be homogeneous throughout. Three length scales are
recognized:

1. Average size of pores: F ore
2. Length L over which the macroquantities such as fluid
velocity and pressure are defined: L >>r

pore

3. Tyoe Sa<L (the volume a° is a basis volume)

Two phases can be recognized in the basis volume—that is, the
void phase and the solid phase. The principle of conservation of mass
and the principle of conservation of momentum can be applied to
fluid flow in porous media. Equation (1.73) applied to fluid flow in a
porous medium will yield:

Vo= esource - esink (315)
Combining Egs. (3.14) and (3.15):
Vo=-V.(KVP)=0__ .—0,, (3.16)

When the source and sink are zero, the Laplace equation results:

V2P=0 (3.17)

Starling’s Law for Fluid Transport

The combined effect of osmotic pressure and hydrostatic pressure
can be seen in Starling’s law [3], which gives the relation between the
flow of fluid across the capillary wall or a porous membrane and
the pressure difference across the capillary. The volumetric fluid
transfer rate, ], across the capillary membrane is given as:

J
LS

pc

= AP, - An=AP, (3.18)

where the effective pressure, AP, is the result of the hydrodynamic
pressure; drop, AP,; and the osmotic pressure difference, Ar. L is the
hydraulic conductance, and S_is the effective peripheral surface area
through which the fluid flows. The hydraulic conductance is often
determined by experiment. It varies from 1 E-9 m?s/kg in capillaries
in the kidneys’ glomeruli to 1 E-14 m?s/kg for endothelial cells found
in the capillaries of the rabbit brain. One use of Eq. (3.7) is to better
understand the flow of plasma across the capillary wall in human
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anatomy. This can be used in the seawater reverse osmosis (SWRO)
systems used to desalinate seawater to drinking potable water. The
hydraulic conductance can also be derived from the properties of the
system. Thus, should the membrane be viewed as a series of parallel
cylindrical pores:

L —TZAP‘W 3.19
P\ 8ut,S. (3-19)
where A, = the cross-sectional area of the pore of radius

7 in the capillary wall
S, = the peripheral area
t = the wall thickness.
The ratio A /S, = the porosity of the capillary wall, e.

Oftentimes, the solvent moving across the membrane will carry
with it the solute molecules. Some molecules will be filtered on
account of their large size. Even when the membrane is semiper-
meable, some solute diffusion will take place. The solute separation
on account of size can be accounted for by the introduction of the
sieving coefficient, S,. The sieving coefficient is defined as the ratio of
the solute concentration in the filtrate, C , to the solute concentration
of the feed solution, C,. Theoretical expressions based on the motion
of a spherical solute moving through a cylindrical pore have been
developed in order to estimate the value of the sieving coefficient [4].
The expression given by Deen can be written as a seventh-degree
polynomial expression for the sieving coefficient in terms of the ratio
of solute radius to the capillary pore radius as follows:

C
C—p =5,=1-4.67A*+3.837 A%+ 1.67A*
f

—2.015A°+0.015A%+0.163)\7 (3.20)

where A is the ratio of the solute radius, 4, to the capillary pore radius,
"o 10€ sieving coefficient as a function of the ratio of solute radius
to capillary pore radius is shown in Fig. 3.2. With a root mean square
(RMS) error of 0.04 percent, the sixth-degree term in Eq. (3.20) can be
omitted and Eq. (3.20) written as:

C
C—p =S5, =1-4.67A* +3.837A% +1.67A* —2.0151° + 0.163)\7 (3.21)
f

Concentration polarization refers to the formation of a coat of retained
solutes on the feed side of the membrane.

At high filtration rates, the formation of a concentration polariza-
tion layer has been found, which will change the protein transport.
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Effect of solute radius on sieving coefficient
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Fieure 3.2 Sieving coefficient as a function of a solute radius.

A sieving coefficient including the polarization effects can be defined
as S and represents the ratio of the solute concentration in the filtrate
(C ) %o that of the solute concentration in the bulk blood, C, , [5]:
S = S S, : (3.22)
Couk ]
1- Se)exp(—k—J +S,

m

where j is the flux of filtration and k  is the film mass transfer coeffi-
cient. For laminar flow, the film mass transfer coefficient can be
obtained from the following empirical correlation for Sherwood
number Sk = (k,D/D,)

D
Sh=3.66+0.104P¢,, TC L (3.23)

0.8
Pe
[1+0 016(L/D ) ]

where Pe = the Peclet number (mass) (VD /L)
D_= the diameter of the capillary
D = the binary diffusivity
L = the length of the capillary

Equation (3.11) was developed later for cases where velocity and con-
centration profiles are not yet fully developed. When the flow
becomes fully developed, the Sherwood number reaches 3.66, its
asymptotic value. For cylindrical channels, the hydraulic diameter
D,, can be used in place of the capillary diameter. Hydraulic diameter
can be defined as four times the channel cross-sectional area divided
by the wetted perimeter.
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3.4 Solute Diffusion across the Membrane

The solute diffusion across the membrane can be treated with Fick’s
laws of diffusion at steady state and the generalized Fick’s laws of
diffusion discussed in Chap. 2 for transient applications. Different
diffusivities, such as pore diffusion, diffusion in polymeric systems,
and convective effect, can be added together.

Diffusion of solutes through pores can be of different kinds [6]: (1)
viscous flow, (2) molecular flow or Knudsen diffusion, (3) surface dif-
fusion, (4) capillary condensation diffusion, (5) molecular sieving dif-
fusion, and (6) diffusion solubility diffusion. When the pore radius is
much larger compared with the size of the solute, diffusion happens in
a unfettered manner, much like water flowing in a circular pipe. When
the mean free path of the solute molecule is larger than the pore radius,
Knudsen diffusion is said to occur. The classical laws of diffusion can
no longer be applied to describe the phenomena. Rather, the kinetic
theory of pressure and temperature is used to describe the mechanism.
Solute chemistry, or interactions between the solute and the wall, can
give rise to surface diffusion. During capillary condensation, there is
increased vapor pressure of a liquid inside the pore. It exists when sur-
face tension is a non-negligible factor. The sieving mechanism is found
during the transport of linear and branched alkanes using zeolites. The
branched alkanes diffuse into the alkanes at one-fifteenth the rate of
linear alkanes. The reason is that the linear alkanes are smaller in size
and can fit in the pores rather well. Diffusion solubility mechanism
involves dissolution of solute in the medium and permeation later.

The size of the solute can be estimated from the Stokes-Einstein
relation presented in Chap. 1 [Eq. (1.39)]. The diffusivity of the solute
in the liquid needs to be known. If the diffusivity is not known, the
solute size can first be estimated from the following equation, assum-
ing that the solute of molecular weight, M , is a sphere with a density
of approximately 1 gm/cm?® and is the same as that of the solute in the
solid phase:

1/3
3M,,

Renkin and Curry [7,8] looked at diffusion coefficients for various
solutes as a function of the molecular weight for dilute solutions. An
empirical equation was developed using a least squares regression fit
of the experimental observations at 37°C:

D=1.013*1074(M, )4 (3.25)

Biological systems are heterogeneous in nature. The diffusion coeffi-
cients of the solute would depend on the medium through which it
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diffuses. Several diffusion coefficients can be recognized. These are as
follows:

Solute diffusion coefficient in blood or tissue, D,,
Solute diffusion coefficient in plasma, Dpl

Solute diffusion within pores of a capillary wall, D__

e

Solute diffusion in the interstitial fluid, D, ,

S N

Solute diffusion within cells, D_,

9. Solute diffusion in water, D

The Stokes-Einstein equation for diffusion coefficients of solutes
in dilute solutions may be used to estimate D , the diffusion coeffi-
cient of the solute in plasma. The pore diffusion coefficient can be
estimated after considering the available surface area for diffusion.
The poreis A . The path taken by the solute through the pores may
be tortuous. Thus, the diffusion distance may be greater than the
membrane thickness, ¢__, in reality.

Steric exclusion and hindered diffusion can also be accounted for in
the expressions for diffusion of the solute, depending on the problem
at hand. Steric exclusion refers to the problem that occurs when only
the volume in the pores and not that of the solute is available for dif-
fusion. The fraction of the pore volume available to the solute for
diffusion is given by a partition coefficient, K:

2
a
K= [1 _ 7) (3.26)

Due to steric exclusion the equilibrium concentration of a solute is
less within the pore mouth than in the bulk solution. Attractions
between the solute and pores are ignored.

The hydrodynamic drag experienced by the solute is referred to
as the hindered diffusion. The Renkin equation [7,8] gives the ratio of
the pore diffusivity to that of the bulk diffusivity:

D
B 14,12+ 5.202 0,012 ~ 4182

+1.1405 +1.946 = 0.95) = Ko (3.27)

where A is the ratio of the solute radius to the pore mouth radius. The
partition coefficient, K, captures the steric exclusion. The rest of the
term accounts for the hydrodynamic drag faced by the diffusing sol-
ute through the pore. Gaydos and Brenner [9] give a different expres-
sion for pore diffusivity as a function of the ratio of solute radius to
the pore radius:

Doore 1,95 1noy—1.540 (3.28)
D 8 ’ ’
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Ficure 3.3 Renkin equation and Brenner equation for pore diffusion
coefficient.

The error in writing Eq. (3.28) is O(A?). This is about 2 percent when
the pore diffusion coefficient is about half of the intrinsic diffusion
coefficient. Equations (3.27) and (3.28) are shown in Fig. 3.3.

Fick’s law of diffusion for a solute in pores may be written as:

J,=~DA, K== (3.29)

where Ko = RHS of Eq. (3.27) and 1 is the tortuosity required to take
into account the actual path of the solute diffusion through the
membrane.

The diffusion of solute through blood and cells can be represented
by an effective diffusion coefficient. The transport across suspensions
may be applicable here. Maxwell [10] had developed an expression
for diffusion in suspensions:

D
D.

int

— 2Dint + Dcell_ 2¢(Dint — Dcell)
2D, . +D_,+¢6D,, D

int ~ cell )

bl

(3.30)

Furthermore, D *D, =D,  and ¢ is the volume fraction of the cells in
blood. Maxwell had developed his expression for the suspension of
spheres. Cells are not spherical. So sphericity for cells may be used to
correct for the actual shape of cells. Using Monte Carlo simulations,
some investigators [11] have developed a empirical equation for the
diffusion coefficient in blood for a wide range of volume fractions,
which can be seen to be:

D D
D—M:1—[1—DL“](1.73¢—0.82¢2+0.09¢3) (3.31)

int int
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The interstitial fluid is a gel of macromolecules. Solute diffusion
happens around the random network of macromolecular chains.
Reduction in diffusivity due to macromolecules has been accounted
for by Brinkman, and is given as a one-parameter equation:

D,

int _

1

e (3.32)

1+xa+

where  is the one parameter that is a function of the macromolecular
structure of the interstitial fluid and can be obtained by fitting exper-
imental data for solute diffusion in gel.

The effective diffusivities of different sizes of solutes through
tumor and normal tissue were studied by Jain [12]. They found a
greater reduction in solute diffusivity for normal tissue compared
with tumor tissue. The interstitial volume in normal tissue was smaller
compared with the tumor tissue. They used a fiber-matrix model
based on Curry [13], and the diffusion coefficients were given by:

D
F”:exp[—(l+%] /v(])f ] (3.33)

The interstitial space is viewed as a matrix of fibers with radius a, ¢f
is the fiber concentration, and v is the specific volume of the fibers.
The solute diffusion can also be described using a solute perme-
ability similar to the solvent permeability. The solute flux can be
written as:
J.= PmS(CSf - Csp) (3.34)

where P is the permeability of the solute and S is the membrane
surface area. The two concentrations, C_ and C_, are that of the solute
in the feed side of the membrane and tﬂe permeate side of the mem-
brane, respectively. Solute diffuses from a region of higher concentra-
tion to a region of lower concentration. The permeability is given by
the product of effective diffusivity of the solute in the membrane
divided by the thickness of the membrane. Thus:

D A e K®
P = pore AW .
- (3.35)

mem

Renkin and Curry [8] performed a variety of experiments for solutes
with different sizes. They summarized their findings on permeability
coefficients in the form of empirical correlations as follows:

P,5=0.0184a"12 g<1nm (3.36)

P 5=0.0287a7%°* a>1nm (3.37)
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The combined effect of hydraulic pressure and osmotic pressure
and the solute flux can be written from the application of irreversible
thermodynamics (Kedem and Katchalsky [14]). The cross-coefficients
that are from the secondary effects are equal according to the Onsager
relations. The relative flow between the solvent and solute is capable
of providing a separation of the solute and solvent. The sieving mech-
anism is called ultrafiltration, and when the solute permeability is low,
it is referred to as reverse osmosis:

J= SLP(AP — 6RTAC) (3.38)
L

J.=SL [—cAP + —SRTACJ (3.39)
s 14 Lp

where | is the flux of the solvent and J_is the flux of the solute.

The parameter 6 = -L,_ /L is called the Staverman reflection coeffi-
cient [15]. If the membrane is permeable to solvent and not to the
solute, 6 = 1. When ¢ = 0, the membrane is equally permeable to both
solvent and solute. Equation (3.16) gives the flux of solvent across the
semipermeable membrane, and Eq. (3.17) gives the flux of solute.

The total rate of solute transfer through the pores of the capillary
wall can be obtained by multiplying the solute concentration by
the combined flow rate of the solution due to both applied pressure
difference and the concentration difference. Thus:

L
N,=CLS [AP(l -0)+ (L—q - c]RTAC] (3.40)
P
Substituting Eq. (3.16) in Eq. (3.18):
L
N=CJ(1-0)+CSL, [L—S—Gz]An (3.41)
P
When solute transfers by only diffusion—that is, no flow of solvent:
Ls 2
N, ,=CL,SRTAC L_p_ 6 |=P,SAC,, (3.42)

Equation (3.19) can be modified using Eq. (3.20) as shown:
N,=CJ(1-0)+P,SAC (3.43)

Oftentimes, the problem is in obtaining the three parameters: L, the
hydraulic conductance of the solvent; P , the permeability of the sol-
ute; and o, the Staverman reflection coefficient. Anderson and Quinn
[9] showed that the sieving coefficient is the same as 1-0 using a
hydrodynamic equation accounting for hindered particle motion in
small pores.
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Ficure 3.4 Staverman reflection coefficient as a function of A.

3.5

Thus, from Eq. (3.9) and the relation between the sieving coeffi-
cient and the Staverman reflection coefficient, a polynomial expres-
sion for the Staverman reflection coefficient can be written as follows:

0=A%(4.67—-3.837AL—-1.6712+2.015A% - 0.0151* = 0.1631%)  (3.44)

Equation (3.32) is plotted and shown in Fig. 3.4.

Derivation of Starling’s Law
Starling’s law, which describes the permeation of solvent across the
membrane, can be derived from hydrostatic pressure and chemical
potential considerations. The solvent that filters out of the membrane
is called the permeate, and the solution that is being filtered is called
the feed. The water flux or solvent flux can be written as:

D_ A
— Csolv (345)

’_ solv
J'= ]Csolvp - t

mem

The equilibrium chemical and pressure potential in the permeate and
feed sides can be written as:

W +V,.P,+RTC, =y +V,P +RTC, (3.46)

Equation (3.46) can be rearranged and a partition coefficient, K,
introduced:

Cp = Cf (Kexp (AV%D (3.47)

where K is the partition coefficient at some average reference pres-

sure, <P>.
_ Au+AV<P>
K= exp( RT j (3.48)
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Equations (3.47) and (3.48) can be expanded in a Taylor series and:

AVAP
g c APKC AV 350
an AC = —RT (3.50)
Substituting Eq. (3.50) in Eq. (3.45):
, _APDKAV
= Rt - L,AP (3.51)

mem

where L is the hydraulic permeability of membrane to solvent. The
net solvent flux, including the osmotic pressure, can be written as:

J' =L (AP - cAm) (3.52)

Patlak, Goldstein, and Hoffman [10] account for the diffusion term in
Eq. (3.21) as follows:
aC

N,=CJ(1-06)-D, 5~ (3.53)

Assuming constant solute transfer, Eq. (3.22) can be “solved for” as
follows:

JaC, J(1-o0)
5 = ¢ +C, DS (3.54)
JdC, oz
o CPeme by o
1-o)t
where Peclet number, Pe, is defined as (%) (3.56)

The physical significance of the Peclet number is that it gives a ratio
of the solute transfer by convection divided by the solute transfer by
molecular diffusion. When the Peclet number is small and close to
zero, the solute transfer is dominated by a molecular diffusion mech-
anism. When the Peclet number is large and close to infinity, the sol-
ute transfer is dominated by bulk convection.

Integrating Eq. (3.24):

C,=c,+c, exp(tzpe ] (3.57)

mem

The integration constants can be solved for by imposing the follow-
ing boundary conditions:

2=0,C=C, (3.58)
z=t C.=C (3.59)
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C,-C
The constants can be seen to be ¢, = S v
1-exp(Pe)
Cf
Cp 1—exp(Pe) o 1
C. = b (3.60)
2 (1—exp(Pe))

This analysis is applicable at steady state for dilute systems where the
constant solute transfer assumption yields a rich dividend.

Starling’s Law Is Not Universal

The flow of fluid across membranes is governed by Starling’s law.
When membranes are comprised of uniform macrostructures, the
flux of fluid is predicted well using Starling’s law. The flow of fluid
depends on the pressure differences across the membrane and the
hydraulic conductance. Microvessel walls are nonuniform. This can
be seen in the glycocalyx, the endothelium, and the basement mem-
brane. Endothelial cells, interendothelial cleft, and junction protein
strands are not uniform.

Experimental observations have been made that are inconsistent
with the predictions of Starling’s law.

Blood in a capillary, for example, with a hydrostatic pressure
difference of about 15 mmHg in the arterial end and an osmotic
pressure difference of 26 mmHg would be expected to filter water
into the interstitial space and out of the artery. The reflection coeffi-
cient may be taken as 1. With the osmotic pressure difference remain-
ing the same, the net pressure drop would be 17 - 1(27) ~-10 mmHg
at the veins. The driving force has changed in direction (Fig. 3.5)
and the water can be expected to filter from interstitial space into
the veins.

21 mmHg Artery

A

> 7

—7 mmHg Veins

Ficure 3.5 Filtration pressure drop in arteries and veins.
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3.7

Experimental observations of Michel and Phillips [16] provide a
counterexample to the filtration/reabsorption prediction. Starling’s
law has been modified by Hu and Weinbaum [10] as:

] =L,S(AP—cAm) (3.61)

The model consists of four different regions, such as glycocalyx, a
junction cleft between endothelial cells with a junction protein strand
in the middle, a semicircular region for albumin mixing at the exit of
the cleft, and the extravascular space between the semicircular region
and the mid-plane of the microvessel. Three different cases in the
model can be identified:

Case (a): AP > A, blood pressure is 35 cm water, and 7 is 27.2 cm
water. Interstitial blood and osmotic pressures are 0. Convective
effects are much greater than diffusive effects at break junctions.
There is no accumulation. Osmotic pressure drop across the glycoca-
lyx layer is the primary causative factor.

Case (b): Arterial and interstitial blood pressures and osmotic
arterial pressure are the same as in Case (a). Osmotic interstitial pres-
sure increases to 27.2 cm water. The osmotic pressure difference is 0.
The solvent flux increases compared with Case (a). Experimental
observations come close to theoretical predictions.

Case (c): Interstitial blood pressure, osmotic arterial, and intersti-
tial pressures are the same as in Cases (a) and (b). Arterial blood pres-
sure decreases from 35 cm water to 10 cm water. (AP — 6AT) is lower
than in Cases (a) and (b). No fluid reabsorption. Some accumulation
due to back-diffusion.

Molecular Probes to Measure Permeability
of Transcapillary Pathways (Curry [13])

Single capillary methods were developed at Oxford Laboratory to
measure the permeability of solutes across capillary walls. Dyes were
developed by the time of World War I. They explored the possibility
of using chemically different dyes, large and small, to study the per-
meability of the capillary wall in greater detail. A micromanipulator
was used to cannulate and perfuse the capillaries in frog mesentery
with various colored dyes dissolved in frog Ringer’s solution. By
measuring the time it takes the dye to appear outside the vessels as
an index of the permeability of the capillary, the chemical and physi-
cal properties of the pathways for solute exchange across the walls of
segments of frog microvessels were studied. It was found necessary
to measure the capillary pressure. It was realized that the rate at
which solutes traverse the capillary wall depends on the permeabil-
ity of the membrane wall as well as the driving force for solute
exchange. The Kedem-Katchalsky equations, with the use of the
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Staverman reflection coefficient, can be used to quantitate the
exchange of solutes across the capillary membrane. The driving
forces are the concentration difference of the solute, AC, and the fric-
tional drag force exerted by solvent on diffusing solutes.

The flux of a tracer through a single porous pathway is written
using Eq. (3.31). Two mechanisms can be recognized—namely the
solute molecular Fickian diffusion and the solvent drag. Whether
the process is diffusion-limited or solvent-drag-limited depends on
the solute diffusion velocity within the pores relative to the velocity
of water convective flow. This can be quantitated using the Peclet
number mass as defined by Eq. (3.36). When Peclet number is greater
than 3, solvent drag dominates the exchange. The magnitude of sol-
ute exchange is determined by the permeability coefficient, P ; the
hydraulic conductance, Lp; and the Staverman reflection coefficient.
The effective osmotic pressure is also captured in the reflection coef-
ficient representation. In the experiments, it is important to ensure
that the contribution from other solutes such as plasma proteins is
negligible.

Figure 3.6 shows a schematic of a capillary cannulated with two
micropipettes at a Y branch. This is used to measure the permeability
of a fluorescent solute. Either a control washout solution is used
to perfuse the capillary from the pipette on the left or a perfusate
containing a-lactalbumin labeled with fluorescent tetramethylrhod-
amine isothiocyanate from the pipette on the right is used. A rapid
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Fieure 3.6 Cannulated glass micropipettes at a Y branch for measurement
of permeability coefficient.
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change in the solution-perfusing capillary lumen can be detected.
A photomultiplier tube (PMT) is used as a detector. The output of
PMT is plotted as a function of time. Frog Ringer’s-albumin solution
is used to perfuse the capillary without any fluorescent dye. This
establishes the baseline representing no solute transfer. Rapid fill of
capillary lumen by the same perfusate is labeled with the fluorescent
probe. This is accomplished by a simple switch of perfusion pres-
sures to preset values such that there is no mixing of the perfusates in
the capillary lumen. The step-change in fluorescent intensity at fill
point is proportional to the number of fluorescently labeled mole-
cules in the capillary lumen. The initial solute transport across the
capillary wall was measured from the initial rate of increase in fluo-
rescence intensity (d1/dt),. When solute was washed out of the capil-
lary lumen, extra capillary solute began to diffuse back into capillary
lumen. A 10-sec time interval is provided.

Perfusion of vessel segments with Ringer’s perfusate containing
tracers with molecular weights greater than 500 gm/mole in the
absence of plasma proteins increases the permeability of the micro-
vessel wall. It was realized that not measuring the capillary pressure
compromised the interpretation of measurements of the time it took
colored tracers to appear in terms of the properties of transcapillary
pores. This problem was solved by developing novel methods to
measure capillary pressure and transcapillary filtration rate.

Figure 3.6 illustrates a method to measure the permeability of a
segment of a microvessel to a fluorescently labeled solute under con-
ditions where both the solute concentration gradient and the hydro-
static and osmotic pressures determining water flow across the wall
are measured directly. The true diffusive permeability coefficient is
measured only when the net filtration pressure in all pathways is
0—that is, when there is no coupling of solute flux to transcapillary
water flows. When these conditions are not adhered to an apparent
permeability coefficient is measured. This is larger than the true diffu-
sive permeability. Transcapillary solute flux is measured at a series of
pressures, and the true permeability is identified by extrapolation to
the condition of zero volume flow. The membrane coefficients that
capture solvent drag, L (1 — 0), are identified from the increase in
transcapillary flux as pressure increases. This method has been suc-
cessfully applied by several investigators to frog microvessels and in
mammalian vessels.

Example 3.2 Effective pore size of gel. Transplantation of insulin-secreting
cells in a pancreas using nanotechnology can be a way to cure type 1 diabetes.
Nanoporous biocapsules are bulk and surface micromachined to make
available uniform and controlled pore sizes as small as 7 nm, tailored sur-
face chemistries, and precise microarchitectures. This provides immunoi-
solating microenvironments for cells. Such a design may overcome some
prior limitations associated with conventional encapsulation and delivery
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technologies, including chemical instabilities, material degradation, and
fracture and broad membrane pore sizes.

For immunoprotection of pancreatic cells, the immunoprotection membrane
ought to allow permeability of glucose, insulin, oxygen, and other metabolic
products to ensure islet functionality and therapeutic effectiveness. The nanop-
ore microfabricated membranes were tested (Desai [14]) for diffusion of biomol-
ecules such as glucose with a molecular weight of 180 kDa, human albumin with
a molecular weight of 67 kDa, human IgG with a molecular weight of 150 kDa,
vitamin B,, with a molecular weight of 1200 kDa, myoglobin with a molecular
weight of 17,000 kDa, and bovine serum albumin (BSA) with a molecular weight
of 69,000 kDa.

Tests were conducted at 37°C over 4 hours in a diffusion chamber with two
compartments, A and B, with fixed volumes of 2 mL separated by the desired
membrane and sealed with O rings and screwed together. The measured dif-
fusion coefficients are seen to be in million cm?/s for glucose as 4.5, human
albumin and human IgG as 0.13, vitamin B, as 1.7, myoglobin as 0.4, and BSA
as 0.1. What is the effective pore size of the membrane? Use a suitable equation
described in the text.

Pore Radius | 252 nm
kDa cmA2/s Nm cmA2/s Min.
# | Solute MW Dbl Solute | a/r K w Kw D Dbl/D | Error
Radius
0.0000 1.00
1 | Human 67 9.00E-06 | 30.4 0.1205 | 0.77 | 0.75 | 0.58 | 1.46E-05 | 0.615 | 0.001
albumin
2 | Glucose 180 4.50E-06 | 42.2 0.1674 | 0.69 | 0.66 | 0.46 | 9.29E-06 | 0.484 | 0.001
3 | Human IgG 150 1.30E-07 | 39.7 0.1575 | 0.71 | 0.68 0.48 1.01E-05 | 0.013 | 0.219
4 | Vitamin B, | 1,200 | 1.70E-06 | 79.3 0.3149 | 0.47 | 0.40 | 0.19 | 3.88E-06 | 0.438 | 0.062
5 | Myoglobin 17,000 | 4.00E-07 | 191.8 | 0.7612 | 0.06 | 0.08 0.00 1.15E-06 | 0.349 | 0.118
6 | BSA 69,000 | 1.00E-07 | 305.8 | 1.2137 | 0.05 | -0.31 | -0.01 | 6.02E-07 | 0.166 | 0.033
0.433

Equation (3.12) was used to calculate the solute radius given the molecular
weight, Eq. (3.13) was used to estimate the diffusion coefficient of the solute
in water, and Eq. (3.15) was used to calculate the diffusivity ratio of solute in
blood and in water. The density of solute was taken to be 1 gm/cm?®. The Renkin
equation prediction is shown as a solid curve. The pore radius was iterated until
the least squared error was minimized using a Microsoft Excel spreadsheet. At
252 nm, the error was minimized. The measured diffusivity ratios and predicted
ratios are shown in Fig. 3.7.

Example 3.3 Effective diffusivity through spherical suspensions. Islets of
Langerhans are spheroidal aggregates of cells that are located in the pancreas
and secrete hormones that are involved in glucose metabolism [17]. Type 1
diabetes can be cured by transplanting isolated islets. Islets removed from
the pancreas lose their internal vascularization and are dependent on the
diffusion of oxygen from the external environment and through the oxygen-
consuming islet tissue to satisfy the metabolic requirements of the cells. Islets
can be viewed as a suspension of tissue spheres. The diffusivity of oxygen was
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Ficure 3.7 Measured diffusivity ratio and prediction from Renkin equation
for pore diffusion.

measured. The islets were isolated from male rats using a modified digestion
and purification technique under a dissecting microscope and cultured for a
day in nonattacking polystyrene Petri dishes containing 5.6 mm of glucose,
50 U/mL of penicillin, 50 pg/mL streptomycin, and 10 percent newborn calf
serum. The material was placed in an incubator at a temperature of oxygen
uptake measurements. A known number of islets were placed in a tube that
contained 45 mL of culture medium and 5 mL of air. The tubes were intermit-
tently rotated to prevent settling and aggregation of the islets and to enhance
oxygen transfer. The oxygen uptake chamber was equipped for measuring
the oxygen-dependent lifetime of Pd-coproporphyrin phosphorescence to
provide rapid and accurate measurements of oxygen concentration down to
values as low as 0.05 pM. The chamber was a glass cuvette that contained a
small Teflon-coated magnetic stirring bar rotated at a speed of 1,200 rpm. A
sample of 1,500 islets was loaded in the cuvette, which was filled with phos-
phate-buffered saline (pH 7.4) containing 0.35 gm/lit HEPES buffer, 0.5 gm /lit
bovine serum albumin, and 300 mg/L glucose supplemented with 0.01 uM
palladium coproporphyrin and 1-5 U/mL catalase. The cuvette was capped
with a ground-glass stopper to eliminate the gas phase. The measured effective
diffusivity of oxygen through the islets was found to be 1.31 E — 5 cm?/s. Take
the diffusivity of oxygen in interstitial fluid to be 2.1 E — 5 cm?/s. Should
the diffusivity in the cells be 1.72 E — 5 cm?/s, calculate the volume fraction
of the islets in the suspension.
From Eq. (3.18):

D, D
D_hl:1-(1—#“](1.73(1)—0.82&+0.09¢3) (3.62)

int int
D,=131E-5cm?/s
D, =21E-5cm?/s

D, =172E-5cm/s

0.762=1.730—0.82¢% +0.09¢°

This equation required a numerical solution. Using a Microsoft Excel spread-
sheet, the volume fraction of the islets was found to be 0.6.
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Example 3.4 Plasmapheresis membranes made of polycarbonate. Plasmapheresis is a
blood separation procedure used to isolate blood cells from plasma. In hemo-
filtration, the “cut-off” for the passage of molecules through the membrane
is 10°— 5*10* Dalton molecular weight and the cut-off in molecular weight of
species in plasmapheresis is 3*10° Dalton. A German manufacturer developed
a polycarbonate membrane with an average pore diameter of 0.4 um and a
porosity of 0.65. The membrane thickness was about 100 pm. A polycarbonate
polymer solution was cast onto a smooth surface and contacted with a gel
medium, followed by precipitation of membrane and gelled layer to form the
membrane. Calculate the hydraulic conductance of capillary flow.

From Eq. 3.8:

0.65(0.2E - 6)2

- _Q6502E-6F 555k g 3.63
» =8 100E-671E—3 > 2b - oms/kg (369

The viscosity of plasma fluid was assumed to be that of water at room
temperature.

Example 3.5 Saline water injection. What ought to be the pump pressure to inject
3.6 mL/hr of saline water at a 10 wt % NaCl into the human bloodstream across
a membrane of thickness 0.1 microns? The membrane has a porous structure with
a pore radius of 500 nm.

The pump pressure head has to overcome the osmotic pressure and filter
through the pores in accordance with Starling’s law.
Hydraulic conductance:

2
L At _ 3.14*(500E-9)*
Y 8*0.001*1E-9

mem

=2.45E-16m*s/kg (3.64)

From Starling’s law:

—_E=9  40.2am

_ g
AP=-1_
LPS 2.45E-16

Now, the pressure head at the pump is given by:

AP= AP—RTln(xw)Vi: 40.2+46 = 86.2atm (3.65)

w

Example 3.6 Blood-purifying hematocatharsis unit. The human urinary system is
made up of kidneys, the bladder, two ureters, and a single urethra. The kidneys
are a pair of organs resembling kidney beans measuring around four to five
inches in length and two to three inches in width. They are situated against the
rear wall of the abdomen in the middle of the back, with on located on either
side of the spine, beneath the liver on the right and the spleen on the left. Healthy
kidneys in the average adult person process about 125 mL/min, or 180 liters of
blood per day, and filter out about 2 liters of waste product and extra water in
the urine. The kidneys remove excess minerals and wastes, and regulate the
composition of such inorganic ions as sodium, phosphorous, and chloride in
the blood plasma at a nearly constant level. Potassium is controlled by the
kidneys for proper functioning of the nerves and muscles, particularly those
of the heart.

Blood urea nitrogen (BUN), a waste product produced in the liver as the
end product of protein metabolism, is removed from the blood by the kidneys
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in the Bowman’s capsule along with creatinine, a waste product of creatinine
phosphate—an energy-storing molecule produced largely as a result of muscle
breakdown. Most kidney diseases, such as diabetes and high blood pressure,
are caused by an attack on nephrons, causing them to lose their filtering capac-
ity. The damaged nephrons cannot filter out the poison as they should. If the
problem worsens and renal function drops below 10 to 15 percent that person
has end-stage renal disease. When a person’s kidneys fail, harmful wastes build
up in the body, their blood pressure elevates, and the blood retains fluid. The
person will soon die unless his or her life is temporarily prolonged by a kidney
transplant [18]. In order to prevent the immune system from attacking the for-
eign kidney, the patient will take immunosuppressant medications for the rest
of his or her life.

When the kidneys are functioning properly and the concentration of an ion
in the blood exceeds its kidney threshold value, the excess ions and proteins in
the filtrate are not reabsorbed but are released in the urine, thus maintaining
near-constant levels. Maintaining constant levels is achieved by the mechanism
of reverse osmosis, osmosis, and ion-exchange filtration.

Dialysis machines are the most widely used temporary lifesaving invention
for patients with end-stage renal disease (Fig. 3.8). Hemodialysis machines are
described as large, stationary, hydromechanical devices. In order to function,
they require the following accessories:

O 00 N O Ul W N

=
=]

. Arterial line

. Blood pump

. Heparin infusion pump

. Dialyzer filter

. Venous line

. Blood flow and pressure monitors

. Air/foam detectors

. Motors

. Regulators and piping to carry 500-800 mL/min of dialysis solution

. Aqueous solutions of Ca, Mg, Na, K, and other minerals from large mixing-

holding vats to the patient’s dialyzer and from there to the drain

Blood compartment

Wast ducts
Blood cells <@ aste procucts

0

1
Dialysis solution ¥ Semipermeable
membrane

Ficure 3.8 Blood purifying hemocatharsis unit.
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With hemodialysis, the patient must be dialyzed three times a week. Each
treatment lasts approximately three to four hours. Although the dialyzers are
removing poisons, there are side effects, caused primarily by the dialyzers
themselves.

Dialyzer filters are made of cellulose acetate, polysulfone, or similar materials
and are sterilized with a solution of ethylene oxide, bleach, or formaldehyde.
Dialyzer filters have just one membrane pore size, with a cut-off point larger
than creatinine at 113.1 amu. Removed with creatinine is urea at 60.1 amu, water,
and essential electrolytes, such as Na, K, Ca, Mg; however, these are not replaced
during dialysis. Phosphorous molecules at 123.9 amu are not removed by dialy-
sis, and large amounts are deadly to the patient. Find the pore size of the filter.

Creatine

MW 113 gm/mole
a 3.45671E-08 34.56711
density 1.09 gm/cc
urea 60

density 1.3 gm/cc

a 2.63953E-08 26.39531
Se 0.763596

Molecular Formula for Creatinine: C,H,N,O

Creatinine comes from the Greek word kreas, which means flesh. It is a break-
down product of creatinine phosphate in the muscle. It is produced at a constant
rate by the human anatomy. Creatinine is actively filtered out by the kidneys.
Some of it is secreted by the kidneys into the urine. Creatine levels in blood and
urine may be used to calculate the all-important glomerular filtration rate. It is
clinically important in the evaluation of renal function.

From Fig. 3.9, the ratio of solute radius to pore radius can be read as 0.25.
Therefore, the pore radius is 105.8 nm. Equation (3.9) has been plotted in
Fig. 3.4.
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Fieure 3.9 Sieving coefficient versus ratio of solute radius to pore radius.
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Equation (3.9) is also shown in table form after computing the values using a
Microsoft Excel spreadsheet.

A Se

0 1

0.05 0.988814
0.1 0.957284
0.15 0.908568
0.2 0.845926
0.25 0.772647
0.3 0.691976
0.35 0.607046
0.4 0.520815
0.45 0.436003
0.5 0.355039
0.55 0.280006
0.6 0.2126
0.65 0.15409
0.7 0.105285
0.75 0.066516
0.8 0.037617
0.85 0.017918
0.9 0.006257
0.95 0.000985
1 0

Example 3.7 Glucose transport using the Kedem-Katchalsky equation. The trans-
port of glucose across the capillary wall is 3.0*10° umole/hr. Glucose is a
water-soluble and lipid-insoluble solute. The mean pressure of blood in the
capillary is 17.3 mmHg; the interstitial pressure of blood is -3 mmHg. The col-
loid osmotic pressure inside the capillary and the interstitial fluid are 28 and
8 mmHg, respectively. The capillary length is 1 mm, and the inside diameter is
10 um. It can be assumed that all the glucose transported to the extracapillary
space is consumed rapidly by the cells. All plasma protein is retained by the
capillary wall. The average concentration of glucose in plasma is 7 umole/mL.
The filtration rate is 5.75 E — 6 uL/hr. Calculate the Staverman reflection coef-
ficient and the pore radius through which the solute transfers.

Glucose comes from the Greek words glukus, meaning sweet, and ose, meaning
sugar. An important carbohydrate in human physiology, it is a monosaccharide
and is a source of energy and metabolic intermediate compound.

Molecular formula for glucose: C H1,0,

Molecular weight: 180.16 gm/mole

Density: 1.54 gm/cc

From Eq. (3.12), the molecular radius of glucose can be calculated as = 36 nm.
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From Eq. (3.24), the permeability coefficient can be calculated as:
P 5=0.0287(36)°* =8.21*10"nm%s (3.65)

_8.21*107
mTxmr100*104
J=5.75 E-6 uL/hr
N =3.0 E-5 umole/hr
From Eq. (3.31), the Staverman reflection coefficient can be calculated
as 0.255.
From Fig. 3.2, A =0.26.
Hence, the pore radius = 0.26*36 = 9.36 nm.

=1.31E-8m/s (3.66)

Example 3.8 Thermofiltration of plasma. Diseases usually have undesirable ele-
vated levels of plasma solutes, such as toxins, excessive antibodies, and other
metabolites. Plasma filtration has been used to separate undesirable solutes from
blood plasma. Successful treatment of such diseases involves removal of unde-
sirable plasma solutes from the blood plasma using membrane filtration.

Cholesterol has been determined to be an important component of arte-
rial plaque formation in atherosclerosis as well as in hypercholesterolemia.
Cholesterol circulates in the blood and is linked to large protein molecules. One
form of cholesterol-carrying protein, called low-density lipoprotein (LDL), is
known to promote atherosclerosis. About two-thirds or more of the total blood
cholesterol is transported in LDL. Another form, called high-density lipoprotein
(HDL), is known to be protective against the disease process. Therefore, the selec-
tive removal of LDL and maintenance of HDL is important in the treatment of
atherosclerosis and the therapeutic control of hypercholesterolemia.

The observed sieving coefficients for different solutes are given in the follow-
ing table. What is the pore diameter used in filtration?

Solute Sieving Coefficient at 25°C
Albumin 0.71
Fibrinogen 0.05
LDL cholesterol 0.03
HDL cholesterol 0.71

Based on Fig. 3.6, the corresponding A is read from the charts for albumin, fibrin-
ogen, LDL cholesterol, and HDL cholesterol as 0.3, 0.8, 0.88, and 0.3, respectively.
Given that the molecular weight of cholesterol is 386 (C,,H,,O), the solute radius
can be estimated from Eq. (3.12) as (3*386/4/Pi/6.023E23/1.5)".333 = 0.47 nm.

The membrane pore radius is then 0.47*0.3 =2.4 A.

Equation (3.12) is not reliable in calculating the solute radius given the molecu-
lar weight, as these solutes are macromolecules. However, Eq. (3.12) is valid
should the solute be approximated to a spherical solid.

3.8 Body Fluids

The human anatomy contains three types of fluids: extracellular flu-
ids, intracellular fluids, and transcellular fluids. Sixty percent of
human anatomy is comprised of fluids. Thus, a 100-kg male would
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Ficure 3.10 Adult circulatory system for blood.

contain 60 liters of fluid volume at room temperature. Interstitial
fluid circulates within the spaces between cells. About 36 wt % of the
body mass consists of extracellular fluids, about 21 wt % of body
mass is comprised of interstitial fluid, and 4 wt % of body mass is
made up of plasma. Figure 3.10 shows the main organs where the
fluids flow in to and out of.

The bulk of the body mass is water. The rest consists of fat, pro-
teins, and carbohydrates. Sodium, potassium, calcium, magnesium,
chlorine, phosphorous, sulfur, iron, and iodine are also present in
trace amounts. Food, air, and water enter the human anatomy every
day, and air, sweat, urine, and feces are excreted every day. Metabolic
activities consume part of the energy in the food ingested, and water
is produced along with the metabolic reactions. Some water is lost
through the human dermis.

Blood volume is about one-eighth the total body fluid volume.
Sixty percent of the blood volume is comprised of plasma, and the
rest is the cells in the blood, such as red blood cells (RBC), white
blood cells (WBC), and blood platelets. The cells are filled with intra-
cellular fluid. Hematocrit denotes the blood volume occupied by the
red blood cells. This can be measured using a centrifuge. Corrections
can be allowed for trapped plasma in the cells. After correcting for the
trapped quantities, it is called true hematocrit. Transcellular fluids are
cerebrospinal, intraocular, pleural, pericardial, synovial, sweat, and
digestive fluids. Tracer techniques have been developed to measure
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the quantities and composition of these fluids. For example, radioac-
tive water is used to measure total body mass consisting of water and
radioactive sodium is used to measure extracellular fluid volume.
Interstitial fluid volume can be obtained by carefully accounting for
the different fluids.

The smallest element of the cardiovascular system is the capillar-
ies. Interstitial fluid is formed here from the plasma as filtrate. Vital
substances are exchanged in the capillaries. The capillary wall con-
sists of a porous, semipermeable membrane. The typical dimensions
of a capillary are 10 pm in diameter, 1 mm in length, and the repre-
sentative residence times in the capillary are one to two seconds.
There are three types of capillaries: continuous, fenestrated, and dis-
continuous. Oftentimes, the solute diffusion through the capillary
wall can become an important consideration. The muscles, skin, and
lungs consist of continuous capillaries. Continuous capillaries can
also be seen in fat, nervous system, and connective tissues. A cross-
sectional view [7] of a capillary reveals the basement membrane,
pinocytotic channels, endothelial cells, pinocytotic vesicles, and an
intercellular cleft. The paths of solute movements are several. The
pinocytotic channel occupies 1/100th of the total capillary surface
area, and typical dimensions are 6 to 7 nm.

Transport of solutes across the wall can be by several different
mechanisms. One such mechanism is the intercellular cleft and
pinocytotic vesicles and channels. The cleft is a slit-pore of about 6 to
7 nm. The plasma proteins’ molecular size is greater than the capil-
lary slit-pore diameter. Thus, their entry into the capillary is blocked.
Smaller molecules, such as ions, glucose, and metabolic waste prod-
ucts, will readily pass through the capillary wall.

Oxygen and carbon dioxide are lipid-soluble. They can diffuse
directly through the endothelial cells that line the cell wall. No pore
diffusion is involved. The rates of diffusion are observed to be higher
compared with the water-soluble substances. There are two other
mechanisms by which solutes can be transported across the capillary
walls other than through the slit-pores. These mechanisms are called
pinocytosis and receptor-mediated transcytosis. The pinocytosis mecha-
nism is similar to how the microorganism amoeba ingests substances.
Stimulated by the presence of the solute, the plasma membrane
engulfs the solute, grows in size, and upon migration to the posterior
of the membrane, is released. During receptor-mediated transcytosis,
the solute/ligand first binds with receptors that complement them,
then concentrates the solute regardless of its specificity, followed
by complexation of the ligand receptor, and then it is endocytosed.
Release of solutes can lead to 80 percent transport of insulin by this
process.

Cell membranes are comprised of a lipid bilayer with a head-to-
tail configuration. The head of the lipid layer is hydrophilic and the tail
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is hydrophobic. The hydrophilic heads face into the aqueous environ-
ment inside and outside of the cell, and the hydrophobic tails are
sandwiched between the heads of the lipid molecules. In addition to
the lipids, proteins are found scattered in the cell membrane. These
proteins also participate in the transport of specific molecules across
the cell membrane. Others serve as catalysts in reactions, while some
serve as enzymes. Proteins can be classified as transmembrane or
peripheral. Carrier proteins and channel proteins are membrane
transport proteins. The cell membrane is usually impermeable to
polar or other water-soluble molecules.

Sometimes, solutes are pumped against their electrochemical gra-
dient by a process called active transport. This is an uphill phenome-
non that requires cellular energy. Proper functioning of the cells
requires that the concentration differences of ions such as sodium
and potassium be maintained in order to preserve the resting mem-
brane potential. The energy needed for active transport is made avail-
able by adenosine triphosphate (ATP) molecules. ATP is a nucleotide
and consists of an adenine base, ribose sugar, and a triphosphate
group. ATP is converted to adensoine diphosphate (ADP) by the
action of the enzyme ATPase, which is an example of active transport
in the sodium-potassium pump. The K-Na pump transports sodium
ions out of the cell and at the same instant transfers potassium ions
into the cell. The carrier protein protrudes through the two sides of
the cell membrane. It has three receptor sites for binding sodium ions
and also has ATPase activity. Two receptor sites for the carrier protein
are available outside the cell membrane. ATPase is activated upon
binding to receptor sites, and a high-energy phosphate bond from
ATP is liberated. The energy in the phosphate bond causes a confor-
mational change in the carrier protein that allows for the passage of
the sodium and potassium ions. Active transport can also be driven
by ion gradients during secondary active transport.

Nernst Equation

The Gibbs free energy change of diffusion and the movement of ions
in the presence of an electric field can be estimated as follows. The
Gibbs free energy change due to the movement of a solute by diffu-
sion from a region of high concentration to a region of low concentra-
tion is given by:

1

AG, =-RTIn [%j (3.67)

where C = the region of high concentration
C, = the region of low concentration
AG,, = the free energy change due to diffusion

13
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In a similar fashion, the Gibbs free energy change for the movement
of an ion across the cell membrane and into a cell at a voltage, V, rela-
tive to the outside is given by:

AG, =zFV (3.68)

elec

where z is the charge on the ion and F is the Faraday’s constant. The
Nernst equation can be derived by balance or equilibrium of the con-
centration and voltage gradients for an ion. The driving force for the
transport of solutes is the combined effect of their concentration gra-
dient and the electrical potential difference that is found across the
membrane. The electrochemical gradient denotes the combined effect
of charge and solute concentration on the transport of a molecule.
Membrane potential is created when the charged molecules flow
through channels in a cell membrane. For example, a higher concen-
tration of sodium ions within the cell compared with the surround-
ings will cause leakage currents out of the cell. The loss of charged
ions will make the interior of the cell negative in charge. This creates
the membrane potential. As sodium ions are lost, the membrane
potential grows. A point is reached where the negative charge created
within the cell begins to inhibit the loss of charged ions due to the
differences in sodium concentration. Thus, equilibrium membrane
potential for the cell is reached.
Equating Egs. (3.15) and (3.16):

V= —%m (%J (3.69)

1
Equation (3.17) is the Nernst equation and can be used to calculate
the equilibrium membrane potential. R is the universal molar gas
constant, T is the absolute temperature in Kelvin, F is the Faraday’s
constant (2.3*10* cal/V/gmol), and z is the charge on the ion.

Electrodialysis

Dialysis is a membrane-separation technique used to remove toxic
metabolites from blood in patients suffering from kidney failure. The
first artificial kidney was developed in 1940 and was based on cello-
phane. In the 1990s, most artificial kidneys were based on hollow-
fiber modules with a membrane area of 1 m?. Cellulose fibers were
replaced with polycarbonate, polysulfone, and other polymers, which
have higher fluxes and are less damaging to the blood. Blood is circu-
lated through the center of the fiber, while isotonic saline, the dia-
lysate urea, creatinine, and other low-molecular-weight metabolites
in the blood diffuse across the fiber wall and are removed with the
saline solution. The process is slow, requiring several hours to remove
the required low-molecular-weight metabolites from the patient, and
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must be repeated one to two times per week. More than 100,000
patients in hospitals use these devices on a regular basis.

The largest application of membranes is the artificial kidney. Sim-
ilar hollow-fiber devices are being explored for medical uses, includ-
ing an artificial pancreas, in which islets of Langerhans supply insulin
to patients with diabetes, or an artificial liver in which adsorbent
materials remove bilirubin and other toxins. In carrier facilitated trans-
port, the membrane used to perform the separation contains a carrier
that preferentially reacts with one of the components to be trans-
ported across the membrane. Liquids containing a complexing agent
are used. Membranes are formed by holding the liquids through cap-
illary action in the pores of a microporous film. The carrier agent reacts
with the solute on the feed side of the membrane and then diffuses
across the membrane to release the solute on the product side of the
membrane. The carrier agent is then reformed and diffuses back to
the feed side of the membrane. The carrier acts as a shuttle to trans-
port one component of the feed to the other side.

Metal ions can be transported selectively across a membrane
driven by the flow of hydrogen or hydroxyl ions in the other direc-
tion pumped counter currently around the outside of the fibers
(Fig. 3.11). High membrane selectivities can be achieved using facili-
tated transport. There are no commercial processes yet using this
method. This is due to the instability of the membrane and the carrier
agent. Dialysis is the earliest molecularly separative membrane proc-
ess discovered. Fick’s law of diffusion and the generalized laws of
diffusion are applicable in describing the transport of solute mole-
cules across the membrane to the other side. A multistage dialysis
separation procedure can be envisioned for desalinating sea water.

Dialysate

Blood Blood

Dialysate

Fieure 3.11 Schematic of a hollow-fiber mass exchanger used as an artificial
kidney dialyzer used to remove urea and toxic metabolites from blood.
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Depending on the ratio of the pore size of the membrane and the
solute radius, the salt concentration on the other side of the first
stage can be estimated using the sieving coefficient expressions dis-
cussed in the previous sections. Up to one-half the feed concentra-
tion of the feed of solute can be obtained on the permeate side of the
membrane. Thus, at every stage, a maximum of halving of concen-
tration takes place. Starting with 3.6 wt % NaCl of sea water, a
suitable dialysis membrane can, in after n stages, reduce the con-
centration of the NaCl in both sides of the membrane down to 100 ppm
or 0.01 percent. After the first stage, if sufficient time is allowed for
equilibrium to be attained by diffusion, both sides of the dialysis
membrane will be at 1.8 wt %. Repeated over n stages, this would be
1.8,0.9,0.45,0.225,0.113, 0.055, 0.028, 0.014, and 0.0007, respectively.
For example, after nine stages, the concentration of sea water will
reach potable water allowable limits down to less than 100 ppm
(Figs. 3.12, 3.13).

The recovery of caustic from hemicellulose in the rayon process
was well established in the 1930s and has been used in modern times
in the paper pulp industry. Isobaric dialysis as a unit operation is
emerging and is used to remove alcohol from beverages and in the
production of products derived from biotechnology. By the end of

Feed brackish water solution

Desalted water I:(>

Cathode =

C

+ Anode

+A A -C

cr || cr cr

Concentrated salt
solution

Fieure 3.12 Schematic of electrodialysis apparatus with alternating anode and
cathode up to 100 cell pairs.
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Ficure 3.13 Countercurrent dialysis and distillation to separate alcohol from
beverages.

1992, 40 key beer breweries had installed worldwide industrial dialy-
sis plants with an annual capacity of 189 million liters. The schematic
of an example industrial dialysis process is shown in Fig. 3.11.

Alcohol is removed from beer by dialysis, and the alcohol is dis-
tilled from the dialysate. The raffinate is recycled as a distillate stream.
The combination of dialysis and distillation preserves the flavor of
the product. Dialysis is an isothermal operation. It is an important
parameter in the biotechnology industry. Dialysis facilitates the
removal of salts from heat-sensitive or mechanically labile com-
pounds such as vaccines, hormones, enzymes, and other bioactive
cell secretions. Dialysis is combined with ultrafiltration to offer diafil-
tration which offers a more efficient process efficiency. The media and
extracellular environment in bioreactors can be controlled using dia-
filtration. Novel bioreactor designs are possible using dialyzers. The
extraluminal region of a hollow-fiber dialyzer provides an excellent
growth environment for mammalian cells when the lumen is per-
fused with oxygen and nutrients. In the production of monoclonal
antibodies, for example, a bench-top bioreactor can readily equal the
antibody production of several thousand mice.

This technology is in the developmental stage. Attempts have
been made to separate biological fluids using a dialysis membrane.
Removal of a buffer from a protein solution or concentrating polypep-
tide and hyperosmotic dialysate are examples. Microdialysis is a spe-
cialized application of the technique. A U-shaped dialysis capillary is

17
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surgically implanted into the tissue of a living animal. Isotonic dia-
lysate is pumped through the tubing at a flow rate low enough to
allow equilibration with small solutes in the host’s extracellular por-
tion of the tissue. It helps in sampling tissues. Perfusate rate is low, at
1 nL per minute.

Electrodialysis (ED) [20] has been found to be the most economical
to desalinate brackish water at a feed NaCl concentration of a little
over 1 wt %. The apparatus for ED as shown in Fig. 3.12 is basically an
array of anode and cathode membranes terminated by electrodes. The
membranes are separated from each other by gaskets, which form
fluid compartments. Compartments that have the A membrane on the
side facing the positively charged anode are electrolyte depletion com-
partments. The remaining compartments are electrolyte concentrating
compartments. The concentrating and depleting compartments alter-
nate throughout the apparatus. The feed solution is supplied to all
compartments. Piping is provided in a fashion so that the concentrated
solution is removed from one end and the diluate is removed from
the other. In the case of desalination of brackish water, for example,
the feed contains a little more than 1 wt % salt solution, the diluate
is the potable drinking water at less than 100 ppm NaCl concentration,
and the concentrated solution is the brine solution that can be allowed
to segregate and removed at the bottom of the apparatus.

Holes in the gaskets and membranes register with each other to
provide two pairs of internal hydraulic manifolds to carry fluid into
and out of the compartments. One pair communicates with the deple-
tion compartments and the other with the concentrated compart-
ment. Much effort has been spent on the design of the entrance and
exit channels from the manifolds to the compartments to prevent
unwanted cross-leak of fluid intended for one class of compartment
into the other class. As the trend in membrane architecture leads to
thinner membranes, the design becomes more difficult. A cell pair
refers to a contiguous group of two membranes and the associated
two fluid compartments. A group of cell pairs and the associated end
electrodes is called a stack or pack. Generally, 100 to 600 cell pairs are
arranged in a single stack. The choice depends on the capacity of ED,
the uniformity of flow distribution achieved among the several com-
partments of the same class in stack, and the maximum total direct
current potential desired. One or more stacks may be arranged in a
filter press configuration designed to compress the membranes and
gaskets against the force of fluid flowing through the compartments,
thereby preventing fluid leaks to the outside and internal cross-leaks
between compartments. Hydraulic rams are used for large presses,
and rods provide the compression for small presses. Commercial
membranes have a thickness of 150 to 500 p. The compartments
between the membranes have a typical thicknesses of 0.5 to 2 mm. The
thickness of a cell pair is, therefore, in the range of 1.3 to 5.0 mm. One
hundred cell pairs have a combined thickness of 30 cm. The effective
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area of a cell pair for current conduction is generally on the order of
0.2 to 2 m?. Electric current applied to the stack is limited by economic
considerations. The power consumption is I’R. In relatively dilute
electrolyte, the electric current that can be applied is diffusion-limited.
This is the ability of ions to diffuse through the membranes.

The membranes used in the ED apparatus are ion-selective. The
stack of membranes is prepared on a plate-and-frame concept. Anion-
exchange membranes contain positively charged entities, such as
quaternary ammonium groups, fixed to the polymer backbone. These
membranes may permit negatively charged ions and exclude posi-
tive ions. Cation exchange membranes contain fixed negatively
charged groups such as sulfonic acid groups. They permit positively
charged ions to move through them.

3.11 Oxygen-Depleted Regions by Theory of Krogh
in Cylindrical Coordinates

A microscopic view reveals a repetitive arrangement of capillaries
surrounded by a cylindrical layer of tissue. An idealized sketch of the
capillary bed and the corresponding layer of tissue idealized into a
cylinder is shown in Fig. 3.14. Let the radius of the tissue layer be r..
The residence time of the blood in the capillary is in the order of 1 sec.
The wave diffusion and relaxation time is comparable in magnitude
to the residence time in the blood. Krogh [21] developed this cylindri-
cal capillary tissue model to study the supply of oxygen to muscle.
The tissue space surrounding the capillary is considered a continuous
phase, although it consists of discrete cells. An effective diffusivity,
D,, can be used to represent the diffusion process in the tissue. The
driving force for the diffusion is the consumption of the solute by the
cells within the tissue space.

The Michaelis-Menten equation can be used to describe the meta-
bolic consumption of the solute in the tissue space. The equation may
be written as:

R _ Vm CT

_ 'm=T 3.70
- (K,+C;) (3.70)

Capillary r

Tissue

Ficure 3.14 An idealized sketch of capillary bed and surrounding tissue layer.
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where C,_ is the concentration of the solute in the tissue space. For
consumption of the solute, R, it will have a positive value and for
solute production, it will have a negative value. V,  represents the
maximum reaction rate. The maximum reaction rate occurs when
<C>>>K . Thereaction rate is then in zero order in solute concentra-
tion. The blood flows through the capillary with an average velocity
of V. A steady-state shell balance on the solute in the blood from z to
z + Az can be written as:

ac 2
_VE - ZKo(C - CT(rc+tm)) (371)

where K| is represented by an overall mass transfer coefficient. The
overall mass transfer coefficient represents the combined resistance
of fluid flowing through the capillary k  and the permeability of the
solute in the capillary wall P . A steady-state shell balance at a given
value of z from r to r + Ar may also be written for the solute concentra-
tion in the tissue space:

Dy i(r dch—R:O (3.72)

Trodr\ dr

The boundary conditions for Egs. (3.71) and (3.72) are:

z=0,C=C, (3.73)
r=r+t, C.=CJl . (3.74)
r=r.,dC./dr=0 (3.75)

The axial diffusion is neglected in the tissue space in comparison with
the radial diffusion. From the zero-order rate of reaction, R=R is a
constant. Solving for Eq. (3.72) with the boundary conditions given in
Egs. (3.73) and (3.75):

R 2R r
— — (12 — 2 o _ T %
CT CT|rc+tm (1’ (T’C + tm) ) 4DT ZDT ln(rc +tm) (376)

The variation of concentration as a function of z can be calculated by
equating the change in solute concentration within the blood to the
consumption of solute in the tissue space:

R
C=C, - V—:z (r2=(r,+t )z (3.77)
Equation (3.76) is combined with Eq. (3.77):
| C = Ry (2 t)? R”K2 t)? 3.78
Tlre+tm o__w(rT_(rc-’_ 111))2_2_1,: o(rT_(rc+ m)) ( : )
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Combining Egs. (3.76), (3.77), and (3.78):

R Z&m _r
D 'r2D, \r +t, (3.79)

C.—-C=(r—(r+t)) 1
T

R R
0 2 2 0 2 2
— (= +t ))z— ri—(r.+t
V},CZ ( T ( c m) ) 2rc ( T ( c m) )
It can be deduced that under certain conditions some regions may not
receive any solute. A critical radius of tissue can be identified, r .,
and defined as the distance beyond which no solute is present in the
tissue.
Atr=r

critical”

dC,/dr=0 (3.80)

and C.=0 (3.81)

T

This can be solved for from Eq. (3.79) after replacing r, with r The

equation is nonlinear.

critical”

3.12 Cartesian Coordinates

Idealize Fig. 3.14 in the Cartesian coordinates and obtain the solu-
tion for the concentration of the solute in the tissue space. The gov-
erning equations for the concentration of the solute in the capillary
and in the tissue can be written after taking the r in Fig. 3.14 as x
[22-23]:

ac 2

—V—=—KO(C—C

= (3.82)

T(n+tmm>)

Considering the effects of diffusion in x direction only in the tissue
and assuming a zero-order reaction rate:

> C
=" (3.83)

Integrating, and substituting for the boundary conditions:

x=x+t,C.=CJl ., (3.84)
x=x.,dC /dx=0 (3.85)
-1"x,/D,,=c, (3.86)

C,—Cl..,,, =("72D, ) x> = (x_+ 1 )

—1"x,/D,, (x—(x,+1)) (3.87)
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The variation of concentration as a function of z can be calculated by
equating the change in solute concentration within the blood to the
consumption of solute in the tissue space:

VAC - VAC=r"zA, (3.88)
C=C, -1"zA,/VA (3.89)
Equation (3.89) is combined with Eq. (3.87):

r”A,JA=2/x K, (C-C| (3.90)

rc+ tm)

C =C-Kpx 1A /2A (3.91)

T|rc+ tmem

Therefore:

CT - Co=r"zAT/VA+ KOxc AT /2A + ("' /2D

AB)

X (2= (x +t )?)—r"xT/D,, (x—(x +t,)) (3.92)

At a critical distance from the capillary wall, the concentration in the
solute will become zero. This can be solved for from Eq. (3.92). At and
beyond the critical distance:

dC,/dx=0=C, (3.93)

replacing x, with x

critical:
0=C,+r"zA /VA+Kx 1A J2A + (" /2D, ) (x,+ 1Y)
/Dy (x—(x +t__ ) (3.94)

critical

2(-1r"/2D,,)=C,+1"zA,/VA+Kx 1A /2A - (r""/2D,,)
/D, (x—(x+t)  (3.95)

xcritical

2 ’77
x(x,+t )—r"x

critical

The quadratic equation inx ., is then:
14x<2ritical2 + Bxcritical + C = 0 (396)
where:
RO
A= - 2D, (3.97)
+t )R
B= —(xc R, (3.98)
D,
2
— RUZAT KaxcRoA T Ro Ra (xc + tm)
C=C,+ VA T oA _(ZDABXEH’”] +D—AB (3.99)
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When the solution of the quadratic expression for the critical distance
in the tissue is real and found to be less than the thickness of the tis-
sue, the onset of zero concentration will occur prior to the periphery
of the tissue. This zone can be seen as the anorexic or oxygen-depleted
regions in the tissue.

Summary

The three important developments that gave impetus to the emer-
gence of the field of biofluid transport phenomena are the discovery
of osmosis and osmotic pressure, permeability for a solvent across
the membrane and Starling’s law, and diffusion of solute across the
membrane. Osmosis is the flow of solvent from a region of low solute
concentration to a region of high solute concentration. The pressure
difference that creates flow is caused by the presence of solutes, and
is called the colloid osmotic pressure. If a cell is placed within a solu-
tion that has a lower concentration of solutes, water flows into the cell
and the system is considered hypotonic. When the cell is placed in a
solution that has a higher concentration of solutes, water flows out of
the cell and the system is considered hypertonic. When the system
isotonic, there is neither swelling nor shrinking of cells. Dutrochet
discovered the phenomena of osmosis in the 1800s.

Van't Hoff’s law can be used to determine the osmotic pressure in
terms of the concentration of the solution. It can be derived by equat-
ing fugacities of the solvent and solution. The Poynting correction
factor and Taylor series expansion are used in the derivation.

Porous membranes are solid materials with an internal pore
structure comprised of macropores and micropores. Pores can be
classified into passing penetrable pores, nonpassing penetrable pores,
isolated pores, and tortuous channels. Pores are characterized by the
surface area and porosity. When the length of the pore is greater than
the thickness of the specimen, the pore is said to be tortuous. Darcy’s
law may be written for fluid passage through the pores, relating the
discharge rate, Q, to the permeability of medium, ¥; cross-sectional
area, A; viscosity of fluid, pi; and pressure gradient, dP/9z.

The combined effect of osmotic pressure and hydrostatic pressure
is described by Starling’s law, which provides the relation between
the flow of fluid across the capillary wall or a porous membrane and
the pressure difference across the capillary. Both the hydrostatic and
osmotic pressure drops are accounted for. A hydraulic conductance,
L,, can be defined for flowing fluid as a function of pore radius,
peripheral area, and wall thickness. Starling’s law can be derived
from pressure and chemical potential considerations. Starling’s law
applicability is not universal, but it has been improved upon.

Oftentimes, solvent moving across the membrane will carry with
it some solute molecules. A sieving coefficient, S , has been developed
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to account for solute separation based on molecular size. Analytical
expressions based on the motion of a spherical solute through a
cylindrical pore have been derived to estimate S,. The mathematical
expression given by Deen can be written as a seventh-degree polyno-
mial for the sieving coefficient in terms of the ratio of the solute radius
to the capillary pore radius [Eq. (3.20)]. Formation of the concentra-
tion polarization layer was also discussed.

There are several kinds of diffusion of solutes through mem-
branes: viscous flow, molecular flow, surface diffusion, capillary con-
densation, molecular sieving diffusion, and solubility diffusion. The
solute size can be calculated as a function of molecular weight directly
from Eq. (3.24). Renkin and Curry [7,8] presented an expression for
diffusion coefficient as a function of the molecular weight of the
migrating species in Eq. (3.25). There are several diffusion coeffi-
cients, such as solute diffusion coefficient in blood and tissue, D,;
solute diffusion coefficient in plasma, D ; solute diffusion within the
pores of a capillary wall, D___; solute diffusion in the interstitial fluid,
D, ; solute diffusion within the cell, D_,; and solute diffusion in
water, D. Expressions for steric exclusion and hindered diffusion
were provided. The Renkin equation gives the ratio of pore diffusiv-
ity to that of bulk diffusivity [Eq. (3.27)]. The Renkin euation is a
seventh-degree polynomial in 2, the ratio of the solute radius with
pore mouth radius

The mathematical expression developed by Maxwell for diffu-
sion through blood and cells is given by Eq. (3.30). Expression for
diffusion coefficient in blood developed using Monte Carlo simula-
tions as a function of the volume fraction of cells in blood is given by
Eq. (3.31). The effect of molecular weight as evidenced in polymers
developed by Brinkman is given by Eq. (3.32). The effective diffusivi-
ties of different sizes of solutes through tumor and normal tissue
developed by Jain [10] is given by Eq. (3.33). The solute diffusion can
also be accounted for by use of a solute permeability [Eq. (3.35)].
Renkin and Curry [8] developed empirical relations [Egs. (3.36) and
(3.37)] to solute permeability as a function of solute size.

The combined effect of hydrostatic pressure and osmotic pressure
and the solute flux is captured by the Kadem-Katchalsky equation
[Egs. (3.38) and (3.39)]. They were derived by the application of irre-
versible thermodynamics. A Staverman reflection coefficient gives
the ratio of the hydraulic conductance of a solute to that of a solvent.
Oftentimes, the three parameters need to be solved for: L , the hydrau-
lic conductance of solvent; P , the permeability of the solute; and o,
the Staverman reflection coefficient. Anderson and Quinn [13]
showed that the sieving coefficient, S,= 1 - ¢, using hydrodynamic
equation accounting for hindered particle motion is small pores.

Eight worked examples illustrating the use of the theory described
were presented. The human anatomy is comprised of three types of
body fluids: extracellular fluids, intracellular fluids, and transcellular
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fluids. The Nernst equation also was derived. It can be used to calcu-
late the equilibrium membrane potential.

Dialysis is a membrane separation process that lets solute diffuse
across the membrane and from the permeate and retentate at desired
concentrations. A mass exchanger is used in hospitals to treat human
patients with kidney disease by removing toxic metabolites from
urea. Industrial dialysis and reclamation of alcohol from beer was
shown with examples from commercial operations used throughout
the world. The electrodialysis apparatus was shown with a schematic
as a method to reduce common salt concentrations in alternate com-
partments of anode and cathode.

Oxygen-depleted regions were identified by the theory of Krogh
using mathematical modeling in both cylindrical and Cartesian coor-
dinates. Simultaneous metabolic reactions and diffusion leads to the
zone of null transfer after a critical length. A numerical solution is
needed for cylindrical coordinates. Closed form analytical solution is
derived for Cartesian coordinates.
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Exercises

Questions for Discussion

1.0 Can the osmotic pressure be used to cause a flow that can operate a
turbine and generate electricity? Why?

2.0 Can Kedem-Katchalsky equations violate the second law of thermody-
namics? Can transport occur from low concentration to high concentration of
the said species?

3.0 Will recycling in sea water reverse osmosis (SWRO) plants reduce the
pressure needed at the pump?

4.0 What is the reason for the higher water flux in the membranes developed
later, such as a polyamide membrane, compared with the cellulose acetate
membrane?

5.0 Should there be a temperature difference between the feed and permeate
sides? What will happen to the predictions of van’t Hoff’s law?

6.0 Can osmotic pressure be extended to other systems such as gases?

7.0 Consider a layered solution. A higher concentration of solute is found
in the bottom and a lower concentration of solute is found at the top. Will the
solvent flow from the top of the jar to the bottom by osmosis? Why?

8.0 What are the energetic considerations during osmotic flow?

9.0 Can the osmotic pressure and hydrostatic pressure cancel out each other,
resulting in zero net flow?
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10.0 Why are not a lot of trees found near the beach or coastline?

11.0 Can 100 percent separation be effected by use of semipermeable mem-
brane technology?

12.0 Is osmotic pressure accounted for in the development of Darcy’s law?
Why?

13.0 Sketch the different mechanisms of pore diffusion: viscous flow,
Knudsen diffusion, capillary condensation, surface diffusion, molecular siev-
ing, and diffusion solubility mechanism.

14.0 How would you write a generalized Starling’s law, taking into account
the observations that rendered it not universal?

15.0 What are some of the important considerations during transient solvent
filtration and solute diffusion?

Problems That Require Analysis—Reverse Osmosis

Reverse osmosis (RO), ultrafiltration, molecular sieves, and electrodialysis
can be used to separate liquid solutions. Reverse osmosis and ultrafiltration
differ in the solute size rejected. Conventional filtration rejects particles of
the size of 10 um and above, the ultrafiltration rejects solute sizes of 10 nm to
10 um, and the reverse osmosis rejects solute sizes in the ionic range of
1 pm to 0.1 nm. The driving force for RO, ultrafiltration, and molecular
sieve operations comes from a pressure difference. No filter cake is
allowed to form. The driving force in electrodialysis is an induced elec-
tric field and polarization of the ions to the anode and cathode. The
compartments are made from alternating anode and cathode, and the
ions are segregated from the diluate water in alternating compart-
ments. It is used to desalinate brackish water and is found to be the most
economical method at low salt concentration in the feed, at little over
1 wt %. Any material that can exclude molecular species by size is referred
to as a molecular sieve. These are made up of inorganic materials that pos-
sess uniform pores with diameters less than 2 nm (microrange) or 2 to
20 nm (mesorange).

In reverse osmosis, the solvent from the solution is pumped across a semi-
permeable membrane, opposing the osmotic pressure difference with the
solute largely rejected by the membrane (Fig. 3.16). For example, in sea water
desalination by reverse osmosis, the osmotic pressure will cause a flow from
the region of low solute concentration to a region of higher solute concentra-
tion. Pressure is supplied in order to overcome this so that the solvent from
the sea water flows across a semipermeable membrane that permits only the
solvent and not the solute. Although the membrane rejects the solute, some
will diffuse across the pores.

The drinking water needs of major cities around the world can be met using
the reverse osmosis method for desalination, as the drought conditions in
major cities have become an important concern. In the Middle East gulf region,
where the energy is cheap and river water scarce, sea water reverse osmosis
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Reverse osmosis
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Ficure 3.15 Water flux and salt rejection for various SWRO semipermeable
membranes.

(A-F. Sea water membranes operate at 5.5 Mpa and 25°C. H-J. Brackish
water membranes operate at 1,500 mg/L NaCl feed, 1.5 Mpa, and 25°C.
K-S. Nanofiltration membranes operate at 500 mg/L NaCl feed, 0.74 Mpa,

and 25°C.)

Cellulose acetate/triacetate E- Other thin-film composites
Linear aromatic polyamide F- Asymmetric membranes
Cross-linked polyether G- FilmTec, BW 30
Cross-linked fully aromatic polyamide H- Toray, SU -700

I- Du Pont A-15 Q- Toray, UTC 60

J, K, L- Nitto-Denko, NTR-739HF R- Toray, UTC 20HF
NTR-729HF, NTR-7250 S- FilmTec, NF50

0- Toray, UTC-40HF P- FilmTec, NF70

Solute Some solute that has
rejected diffused through the pores
High pressure Low pressure

Solvent passes
through

Osmotic flow

Ficure 3.16 Transport processes during reverse osmosis.
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(SWRO) plants are increasingly relied upon to obtain potable drinking water
(Fig. 3.17). Reverse osmosis is also used in the food industry to concentrate
fruit juices. Reverse osmosis is dominated by desalination—that is, by remov-
ing salt from water. It is used in the treatment of sea water, brackish water,
and the reclamation of municipal waste water. It is used in boiler feed water
pretreatment in order to avoid scale formation later on. The market for ultra
pure water is growing; thus, reverse osmosis is used in injectable pharmaceu-
ticals and for semiconductors, water for domestic use, sweetener concentra-
tion, and fruit juice concentration and fermentation product recovery.

In the 1950s, it was shown that cellulose acetate RO membranes were capa-
ble of separating salt from water. But the water fluxes obtained were too small
to be feasible in practice. Since then, RO membrane technology has improved
a great deal. Recently DuPont patented a polyamide membrane made from
interfacial polymerization that has a high solvent flux, and turbulence is used
to reduce the concentration polarization layer thickness formed during the
operation of the RO during desalination. Advances in thin-film composite
membranes and polymer materials have widened the applications of RO from
desalination to treatment of hazardous wastes, material recovery in electro-
plating industries, production of ultra pure water, water softening, food pro-
cessing, dairy, and the semiconductor industry.

The advantages of these systems over traditional separation processes,
such as distillation, extraction, ion exchange, and adsorption, are that RO is
a pressure-driven process, there are no energy-intensive phase changes, and
expensive solvents or adsorbents are not needed. RO processes have a simple
design and are easy to operate compared with other traditional methods.

Membrane properties play a pivotal role in the performance of RO tech-
nology and depend on the chemical structure of the membrane. An ideal RO
membrane is low in cost, resistant to chemical and microbial attack, possesses
high mechanical and structural stability over long period of operation and a
wide range of temperature, and has the desired separation characteristics for
the given system.

RO membranes are classified into asymmetric membranes (contain-
ing one polymer) and thin-film composite membranes. Asymmetric RO
membranes have a thin permselective skin layer of about 100 nm thick-
ness supported on a more porous sublayer of the same polymer. The dense
skin layer determines the fluxes and selectivities of these membranes. The
porous layer serves as a mechanical support for the skin layer. Asymmetric
membranes are formed by a phase-inversion polymer precipitation process.
In this process, a polymer solution is precipitated into a polymer-rich solid
phase that forms the membrane and a polymer-poor liquid phase that forms
the membranes or void spaces. Composite RO and ultrafiltration mem-
branes are thin films consisting of a thin polymer barrier layer formed on
one or more porous support layers, which is a different polymer compared
with the barrier layer. The surface layer determines the flux and separation
characteristics of the membrane. The porous backing is intended largely to
support the barrier layer. The barrier layer is extremely thin, thus allowing
for high water fluxes. The most important thin-film composite membranes
are made by interfacial polymerization, a process in which a highly porous
membrane such as polysulfone is coated with an aqueous solution of a
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Ficure 3.17 Schematic of an SWRO semipermeable membrane process.

polymer or monomer and then reacted with a cross-linking agent in a water-
immiscible solvent.

16.0 Sea water reverse osmosis semipermeable membrane process. Prepare a pre-
liminary estimate of an SWRO plant where the inlet NaCl composition is
3.6 percent by weight and the outlet composition is 100 ppm. A typical RO
process schematic is given in Fig. 3.16. What should the size of the pump be?
The RO membrane used is a linear aromatic polyamide. The expected water
supply for the township is 6.3 million liters per day. Spiral-wound modules
are used with an interfacial area of 5 m?/gm. How much membrane is needed?
The operating temperature is 25°C. What would be the reduction in pump
pressure if recycling is used (Sharma [20])?

17.0  Effect of solute concentration. Van't Hoff’s law, as given by Eq. (3.5), was
derived assuming that the solute concentration was small. For not-so-dilute
systems, what would be the expression for osmotic pressure? What effect does
it have in the solution in Exercise 16.0? Use the In(x_) in the van’t Hoff’s law
instead of the Taylor series approximation. What effect does it have?

In the Taylor series expansion of In(1 - x ), another two terms are taken:

x2 x8
ln(xw):ln(l—xs)~—xs+?5—?s (3.100)

Equation (3.3) becomes, on substituting for Eq. (3.100):

3
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18.0 Use of reflection coefficient. A brackish water body is desalinated using
the reverse osmosis method. The concentration of the NaCl feed is 15 gm /liter.
A FilmTec NF40HF semipermeable membrane is used. How much water flux
can be handled when a spiral module with interfacial area of 8 m2/gm is
used and exit water at a concentration of 100 ppm is produced? The operating
temperature is 37°C. How much membrane is needed? What is the pressure
needed at the high pressure pump?

19.0 Hydraulic conductance in the human body. Calculate the normal rate of net
filtration for the human body. Assume that the capillaries have a total surface
area of 413 m? and that the slit-pore surface area is 3/1000 of the total capillary
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surface area. Assume that the porous structure of the capillary wall is a series
of parallel cylindrical pores with a diameter of 7 nm. Plasma filtrate may be
considered as Newtonian fluid with a viscosity of 1 cp. The mean net filtration
pressure for the capillary was just calculated to be 0.3 mmHg. The capillary
characteristics are as follows:

Inside diameter: 10 um Length (L): 0.1 cm

Wall thickness, tm: 0.5 pm Average blood velocity: 0.05 cm/s
Pore fraction: 0.001 Wall pore diameter: 6-7 nm

Inlet pressure: 30 mmHg Outlet pressure: 10 mmHg

Mean pressure: 17.3 mmHg Colloid osmotic pressure: 28 mmHg

Interstitial fluid pressure: -3 mmHg
Interstitial fluid colloid osmotic pressure: 8 mmHg

20.0 Blood storage in the army. For transfusion purposes, in the army,
donated human blood is stored for a month. There is interest in improv-
ing the storage procedure such as concentrating red cells, white cells, plate-
lets, vitamins, proteins, sugars, minerals, hormones, and enzymes by water
removal. Ultrafiltration devices are sought by the army to remove water, with
50 percent by volume water, to levels low enough to effect significant volume
reduction during blood storage. The temperatures have to be kept low during
separation to prevent hemolysis. Use an ultrafiltration membrane and for
a solute rejection of 80 percent, find the pore radius of the membrane from
the expression for the sieving coefficient. The solute radius can be taken as
an effective radius of the different ions present in the blood. For the given
pore size of the membrane, and for a membrane thickness of 1 mm, what is
the hydraulic conductance during flow of water across the membrane? The
interfacial area of the membrane, the amount of water that can be treated,
and the volume and weight of the membrane needed can be related to the
information in Fig. 3.16. Choose a membrane for the given solute rejection,
and by trial and error in a Microsoft Excel spreadsheet, obtain the throughput
that can be handled during ultrafiltration of blood and the pressure needed
at the high pressure pump.

21.0 Reverse osmosis to separate acrylonitrile from water. In the manufacture
of Acrylonitrile Butadiene Styrene (ABS) engineering thermoplastics using
a continuous polymerization process, for every pound of product manufac-
tured, a little over a pound of water is generated that contains acrylonitrile
(CH,= CHCN). A 5 percent Acrylonitrile (AN) solution of water needs to
be separated by reverse osmosis, and the product needs to have AN less than
1 ppm. A membrane made of cross-linked polyether resin at an interfacial area
of 10 m?/gm and 1 mm thickness is used. How much membrane is needed
for a solute rejection of 99.9 percent? What is the pore size of the membrane?
What is the throughput of water it can handle? What is the pressure at the high
pressure pump on the feed side?

22.0 Effect of concentration polarization layer. During reverse osmosis in sea
water desalination, the salt is rejected by the semipermeable membrane and
is accumulated near the feed side of the membrane (Fig. 3.16). Perform a
mass balance of the solvent in the region of the concentration polarization
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layer and the membrane, and show that the flux will decrease with time—
that is:

J/L,S=(AP-RIC,

0/89)/(1/L,S +RTC

ot /85) (3.102)

where 3 is the polarization layer and ¢ is the time of operation.

23.0 Hydraulic conductance. Consider water that contains polychlorinated
biphenyls (PCBs) and tetrachlorinated ethylenes (TCEs) at 4.5 percent and
2.0 percent by weight, respectively. A reverse osmosis membrane of 0.5 mm
thickness is used. The membrane is Toray, SU-700. What is the rejection rate
for SU-700? What is the flux rate the Toray membrane can handle per day with
an interfacial area of 13 m?/gm? How much membrane is needed to produce
a filtrate with a concentration of 1 ppb? For a throughput of 22,500 liters/day,
what is the osmotic pressure? What is the hydraulic conductance (LVS) of the
system? What should the pressure at the pump be?

24.0 Starch removal. Anew membrane on the market was tested and found to
have permeability, L S, of 1 E —4 m*s/kg under a pressure difference of 10 atm.
The membrane handles 4.8 percent of partially hydrolyzed starch (MW 17,000)
as feed and puts out a product at 175 ppm. What is the Staverman reflection
coefficient? What is the throughput of water the membrane can handle? What
is the solute rejection rate of the membrane? Can you provide the pore diam-
eter and length of the membrane for a thickness of the membrane of 500 um
when 100 cc of the membrane is used?

25.0 Tallest tree in the world. What is the limit on the height of a tree? Include
the Bernoulli law as well as the osmotic pressure drop. Assume that the leaves
on the tree top have a starch concentration of 10 wt %.

26.0 Porous membrane. A copolymer with a high acrylonitrile content of sty-
rene acrylonitrile (SAN) is tested for use as a reverse osmosis membrane. The
pore radius is 200 nm. For a solution of 1 percent by weight of polyethylene
glycol of 18,000 molecular weight in water, what is the sieving coefficient?
Using this as the Staverman reflection coefficient, what is the pressure at the
pressure pump to reduce the water content to less than 1 ppb in the filtrate
side? What is the hydraulic conductance? Show that the effect of the molecular
weight has reduced the pressure needed at the pump in such as fashion that
the solvent filtration pressure drop is the limiting factor, compared with most
RO processes where the osmotic pressure is the limiting factor. Show that the
water flux rate this membrane can handle is 26,000 liters /day for a 1 mm thick
membrane and effective volume of 1 cc.

27.0  Effect of molecular weight of the solute. In some applications of RO technol-
ogy, such as the desalination of sea water, the cost-limiting step is the osmotic
pressure that needs to be overcome in order to achieve the desired degree of
separation. This leads to a large pump size. As the molecular weight of the
solute increases, for the same solute concentration by weight, say, 3.6 wt %,
what is the molecular weight of the solute when the pressure drop needed for
the hydraulic motion of the solvent alone is greater than or equal to the osmotic
pressure from the solute? Make suitable assumptions about the Staverman
reflection coefficient.
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28.0 Effect of operating temperature. In Exercise 16.0, what happens to the pres-
sure needed at the high pressure pump during winter? Consider an operat-
ing temperature at 4°C, an inlet salt concentration of 4.4 wt %, and a product
expected salt concentration of 42 ppm. For the same membrane used in the
worked example, what is the reduction in pressure needed at the pump?

29.0 Salt precipitation by freezing. Based on the results in Exercise 16.0, esti-
mate the energy needed to pump the sea water using a high pressure pump
to achieve the desired separation objectives. Make a comparative study of
the decrease in solubility of NaCl with temperature. As you compress the sea
water, at what point does it become ice, or at what point does it become favor-
able for salt precipitation? In which route is less energy required?

30.0 Virial expansion of osmotic potential. The osmotic pressure for albumin
was developed by fitting a curve to experimental data and presented as:

n=0.345p, +2.657E - 3p2 + 2.26E — 5p° (3.103)

where p, is in mgm/mL and = is in cm of water. Show that this form of the
equation can be derived from van’t Hoff’s law for nondilute solutions by a
series expansion of the concentration of solute in absolute mass units instead
of molar units.

31.0  Effect of gravity in fluid flow through porous medium. Modify Darcy’s law
in order to take into account gravity forces and show that:

v=-K(VP-pg) (3.104)

32.0 Apply the principle of conservation of momentum, and derive the
Laplace equation for the case of zero source and sink of fluid.

33.0 In Worked Example 3.2, the data point for BSA deviated from the fit
of equation to data. Can the equation for solute radius, given the molecular
weight, be applied to BSA? Discuss.

34.0 Treatment of type 1 diabetes. Nanoporous biocapsules can be used to
transport insulin-secreting cells by providing an immunoisolating microen-
vironment. For immunoprotection of pancreatic cells, the immunoprotection
membrane ought to allow permeation of glucose, insulin, oxygen, and other
metabolic products to ensure islet functionality and therapeutic effectiveness.
The sieving coefficient for vitamin B,, may be taken as 0.7. What ought to be
the size of the pores in the membrane should the molecular mass of vitamin
B,, be 1355? The molecular formula for the antioxidant is C_,H,CoN,,O, P. Itis
involved in the metabolism of every cell of the body. It affects DNA synthesis
and regulation, energy production, and fatty acid synthesis.

35.0 Islets of Langerhans. Islets of Langerhans are spheroidal aggregates
of cells that are located in the pancreas (Fig. 3.18). Islets may be viewed as a
suspension of tissue spheres. Some islets were isolated from male rats under
a dissecting microscope, as discussed in Worked Example 3.3, and cultured.
Rotation of tubes prevented settling and aggregation of islets. Oxygen uptake
measurements were conducted. The oxygen uptake chamber was equipped
for measurement of the oxygen-dependent lifetime of Pd-coproporphyrin
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Ficure 3.18 Islets of Langerhans.

phosphorescence to enable rapid and accurate measurements of oxygen concen-
tration up to low concentrations. The measured effective diffusivity of oxygen
through the islets was found to be 5.0 E — 5 cm?/sec. Given that the volume
fraction of the cells was 50 percent, calculate the diffusion coefficient of oxygen
in interstitial fluid. The diffusion coefficient in the cell is 2.5 E - 5 cm?/s.

36.0 Calculate the Brinkman parameter in Problem 21.0.

37.0 The Renkin equation takes into account the effects of hindered diffusion
of the solute, especially the hydrodynamic drag experienced by the solute. The
equation gives the ratio of pore diffusivity to that of bulk diffusivity:

% =1-4.10+5.202 - 0.01A> - 4.180*+ 1.14A°+1.94° —0.95)" = Ko~ (3.105)
where A is the ratio of the solute radius to the pore mouth radius. The partition
coefficient K captures the steric exclusion. ® accounts for the hydrodynamic
drag faced by the diffusing solute through the pore. What is the error involved
in neglecting the cubic term in the seventh-degree polynomial expression—
that is, — 0.01 A*?

38.0 Inthe Maxwell’s expression for diffusion coefficients in suspensions, the
diffusion coefficient in the blood can be calculated given the volume fraction of
cells, the diffusion coefficient in the interstitium, and the diffusion coefficient
in the cell. Given the diffusion coefficient in the suspension and the diffusion
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coefficient in the volume fraction of cells, can the diffusion coefficient in the
interstitium be estimated? Is a numerical solution necessary?

39.0 Blood cells can be isolated from plasma using a blood separation tech-
nique called plasmapheresis, as discussed in Worked Example 3.4. Given that
the hydraulic conductance of the membrane is 2.0 E-6 m?s/kg and the thick-
ness of the membrane is 90 um, find the radius of the pore given that the
porosity is 0.5.

40.0 Intravenous therapy. Liquid substances are introduced into the veins
using IV therapy, or intravenous therapy. Rather than using a catheter, a novel
device pumps the fluid across a semipermeable membrane into the blood-
stream. Suppose the membrane thickness is 500 nm and has a pore size of
80 nm. What is the desired pump pressure to inject 0.9 perent NaCl solution
at 3.6 mL/hr? Assume that the saline concentration in the blood is zero. In
practice, the intravenous therapy is by transonic flow, as the saline concentra-
tion in the bloodstream is also 0.9 percent by weight. The pump pressure has
to overcome the osmotic pressure and filter through the pores in accordance
with Starling’s law.

41.0 Sieving coefficient of dialyzer filter. As discussed in Worked Example 3.6,
hemodialysis machines are stationary hydromechanical devices. They are used
to prolong life temporarily for patients with end-stage renal disease. A dialyzer
filter made of cellulose acetate has a pore size of 125 nm. Creatinine and urea
have to pass through the filter and phosphorous has to be retained. Calculate
the sieving coefficient of the filter.

42.0 Glucose transport across a capillary. Calculate the transport rate of glucose
across the capillary wall. Glucose is a water-soluble and lipid-insoluble solute.
The mean pressure of blood in a capillary is 17.3 mmHg, and interstitial blood
pressure is -3 mmHg. The colloid osmotic pressure inside the capillary and
the interstitial fluid are 28 and 8 mmHg, respectively. The capillary length is
900 um and the inside diameter is 9 pm. It may be assumed that glucose is
rapidly consumed by the cells upon transport. The average concentration of
glucose in the plasma is 6 umole/mL. The Staverman reflection coefficient can
be taken as 0.424, and the pore radius can be taken as 15 nm.

43.0 Concentration of protein. A small bag containing albumin protein solution
is dropped into a bath containing water. The molecular weight of albumin is
69,000 gm/mol. The bag wall is made up of a semipermeable membrane. What
is the osmotic pressure developed? Will the bag increase or decrease in size?

44.0 “Pot hole” in a membrane. Suppose a “pot hole” forms in a dialysis mem-
brane used to filter toxic solutes from the bloodstream. What will happen to
the expression for flow rate of fluid across the membrane?

45.0 Hydraulic conductance of ultrafiltration membrane. Ultrafiltration mem-
branes are used to clean a sanitation pond. For a clean water flow rate of
1 mL/min/cm? at 50 psi, calculate the hydraulic conductance. Should the
thickness of the membrane be 500 nm? Assuming a porosity of 0.6, what is
the pore radius?
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46.0 Combined hydrostatic and osmotic flow. In a given system, the solvent fil-
tration rate is in an opposite direction compared with solute diffusion across
the membrane. Show that N, the transport rate of solute, would be zero when

J=-.

47.0  Derive Darcy’s law permeability coefficient. Given that the Patlak, Goldstein
et al. [14] account for the diffusion as follows:

aC

N,=CJ(1-0)-D,S st (3.106)
Incorporate Darcy’s law by realizing that | = fﬁss—zp in Eq. (3.97). At steady

state, the principle of conservation of mass can be applied and:

_ON{

= 3.107
~ 0 ( )

Transform the governing equation [Eq. (3.103)]. Write pressure in terms of
concentration by using P = hpg, and derive an expression for the permeability
K. Express the permeability coefficient as a function of the Staverman reflection
coefficient, viscosity of the solvent, diffusion coefficient of the solute, density
of the solute, and density of the solvent. What is the physical significance of
this derivation?

48.0 Permeability coefficient of membrane to solute. Derive an expression for the
permeability coefficient of the membrane to the solute comprised of cylindrical
pores. The population of pores is N, pore radius is r, , membrane thickness is
t oo and diffusion coefficient of solute in the pore. Consider either one dimen-
sion diffusion of solute in pores or apply Kedem-Katchalsky equations at
J =0, called the zero convection velocity condition.

49.0 What would be the hydraulic conductance of the membrane to the
solvent described in Exercise 34.0?

50.0 Ultrafiltration of starch solution. An ultrafiltration membrane recently
developed by Omega Membranes, Inc., rejects 90 percent of a 3.6 wt % of par-
tially hydrolyzed starch. The molecular weight of starch is 17,000 gm/mole.
The permeability of the membrane to water is 0.63 m/day under a pressure
drop of 4 atm. The volumetric flow is zero when 5 sq cm of membrane sepa-
rates 66 cc of starch solution from the same volume of pure water. The osmotic
pressure difference is 80 percent of the original value in one week. Find the
Darcy’s law permeability, solute permeability, and the reflection coefficient.

51.0 Removal of aluminum from blood. Aluminum (Al) has been found to
be deposited in the bones of dialysis patients. In healthy individuals, Al is
excreted through the kidneys. Patients accumulate Al in the body when the
intake is greater than the excretion rate during dialysis treatment. The sources
of Al are aluminum-hydroxide-based phosphate binders, drinking water and
food storage containers made of Al, and a range of prescription drugs. In a
modern, open-pore, high-flux dialyzer, only a reduction of 40 percent of the
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Al level is achieved during passage through the dialyzer. The remaining Al
settles in bones. This may cause bone cysts and osteomalacia. After five years
of dialysis treatment, significant Al deposits in bones and tissues, causing the
patient’s health to deteriorate.

A complexing agent is used to react with Al and then filtered. The dosage
of complexing agents should be in sufficient quantities to facilitate removal
of Al ions. Ion-protein complexes are allowed to form. It is then filtered
across a semipermeable membrane filter. The coagulant molecular weight
is 20,000 gm/mole. What is the pore size of the semipermeable membrane
for a rejection of 85 percent of Al coagulant by the membrane?

52.0 Hemodialysis and ultrafiltration. Hemodialysis is an example of a dialy-
sis process that is assisted using ultrafiltration. A hemodialyzer is used to
remove waste products such as urea, creatinine, and uric acid from blood. The
patient’s blood is introduced into the hemodialyzer under the patient’s perfu-
sion pressure and flows past a semipermeable membrane. The blood solutes
containing the wastes permeate through the membrane into the dialysate.
The dialysate is a sterilized solution formulated to regulate solute permeation
through the membrane. Osmosis can result in water from the dialysate flowing
into the blood, causing edema. To avoid this, hemodialysis is used in conjunc-
tion with ultrafiltration to remove excess water. The dialysate is prepared using
pure water obtained from the reverse osmosis process. Using Fig. 3.15, select
a suitable membrane for RO to generate pure water for hemodialysis and
ultrafiltration. Use the information given in Worked Example 3.6.

53.0 Apply the theory of Krogh and develop a mathematical model for
diffusion of oxygen from blood capillaries into the tissue space along with
simultaneous metabolic reactions in spherical coordinates. Is a numerical
solution needed?

54.0 In the food processing industry, during the concentration of orange
juice, water needs to be removed. A plastic bag containing orange juice at
1 wt % sucrose concentration is dropped into a brine solution. Calculate the
concentration of NaCl by % weight for hypotonic state, hypertonic state, and
transonic state.

55.0 Islets of Langerhans are spheroidal aggregates of cells that are located
in the pancreas and secrete hormones that are involved in glucose metabo-
lism [17]. Type 1 diabetes can be cured by transplanting isolated islets. Islets
removed from the pancreas lose their internal vascularization and are depen-
dent on the diffusion of oxygen from the external environment and through
the oxygen-consuming islet tissue to satisfy the metabolic requirements of the
cells. Islets can be viewed as a suspension of tissue spheres. The diffusivity of
oxygen is measured. The islets were isolated from male rats using a modified
digestion and purification technique under a dissecting microscope and cul-
tured for a day in nonattacking polystyrene Petri dishes containing 5.6 mm of
glucose, 50 U/mL penicillin, 50 ug/mL streptomycin, and 10 % newborn calf
serum. The material was placed in an incubator at a temperature of oxygen
uptake measurements. A known number of islets were placed in a tube that
contained 45 mL of culture medium and 5 mL of air. The tubes were intermit-
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tently rotated to prevent settling and aggregation of the islets and to enhance
oxygen transfer. The oxygen uptake chamber was equipped for measuring
the oxygen-dependent lifetime of Pd-coproporphyrin phosphorescence to
provide rapid and accurate measurements of oxygen concentration down to
values as low as 0.05 uM. The chamber was a glass cuvette that contained a
small Teflon-coated magnetic stirring bar that rotated at a speed of 1,200 rpm.
A sample of 1,500 islets was loaded in the curette, which was filled with
phosphate-buffered saline (pH 7.4) containing 0.35 gm/lit HEPES buffer,
0.5 gm/lit bovine serum albumin, and 300 mg/L glucose supplemented with
0.01 uM palladium coproporphyrin and 1-5 U/mL catalase. The cuvette
was capped with a ground-glass stopper to eliminate the gas phase. The
measured effective diffusivity of oxygen through the islets was found to
be 2.31 E — 6 cm?/s. Take the diffusivity of oxygen in interstitial fluid to be
4.1 E - 6 cm?/s. Should the diffusivity in the cells be 3.5 E — 6 cm?/s, calculate
the volume fraction of the islets in the suspension.

56.0 Plasmapheresis is a blood separation procedure used to isolate blood
cells from plasma. In hemofiltration, the “cut-off” for the passage of molecules
through the membrane is 1,000 to 50,000 Dalton molecular weight and the
cut-off in molecular weight of species in plasmapheresis is 3 million Dalton. A
German manufacturer developed a polycarbonate membrane with an average
pore diameter of 200 nm and a porosity of 0.45. The membrane thickness was
about 10 pm. A polycarbonate polymer solution was cast onto a smooth surface
and contacted with a gel medium, followed by precipitation of membrane and
gelled layer to form the membrane. Calculate the hydraulic conductance of
capillary flow.

57.0 What ought to be the pump pressure to inject 1.6 ml/hr of saline water
ata 15 wt % NaCl into the human blood stream across a membrane of thickness
50 nm. The membrane has a porous structure with a pore radius of 5 nm.

58.0 Healthy kidneys in the average adult person process about 125 ml/min
or 180 liters of blood /day and filter out about 2 liters of waste product and extra
water in the urine. The kidneys remove excess minerals and wastes and regu-
late the composition of such inorganic ions as sodium, phosphorous and chlo-
ride in the blood plasma at a nearly constant level. Blood urea nitrogen, BUN,
a waste product produced in the liver as the end product of protein metabolism
is removed from the blood by the kidneys in the Bowman’s capsule along with
creatinine, a waste product of creatinine phosphate as energy storing molecule
produced largely from muscle breakdown. When a person kidneys fail, harm-
ful wastes build up in their body, their blood pressure elevates and the blood
retains fluid. The person will soon die unless their life is temporarily prolonged
by either a kidney transplant their immune system attacks the foreign kidney
requiring that the patient take immunosuppressant the rest of their life.

With hemodialysis the patient must be dialyzed three times a week: each
treatment lasting from 3-4 hrs. Although the dialyzers are removing poisons
there are side-effects caused primarily by the dialyzers themselves. Dialyzer
filters are made of cellulose acetate, polysulfone or similar materials and steril-
ized with a solution of ethylene oxide, bleach or formaldehyde. Dialyzer filters
have a membrane pore size of 90 nm. Find the radius of the solute that will be
cut-off or rejected by the filter.
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59.0 The transport of glucose across the capillary wall is 5.010° umole /hr.
Glucose is a water soluble and lipid insoluble solute. The mean pressure of
blood in capillary is 17.3 mm Hg, interstitial pressure of blood is -3 mm Hg.
The colloid osmotic pressure inside the capillary and the interstitial fluid are
28 and 8 mm Hg respectively. The capillary length is 1 mm and inside diameter
is 10 um. It can be assumed that all the glucose transported to the extra capil-
lary space is consumed rapidly by the cells. All plasma protein is retained by
the capillary wall. Average concentration of glucose in plasma is 4 pmole/ml.
Filtration rate can be taken as 10.75 E — 6 uL./hr. Calculate the Staverman reflec-
tion coefficient and the pore radius through which the solute transfers.

60.0 Diseases usually have undesirable elevated levels of plasma solutes
such as toxins, excessive antibodies and other metabolites. Plasma filtration
has been used to separate undesirable solutes from blood plasma. Successful
treatment of such diseases involves removal of undesirable plasma solutes
from the blood plasma using membrane filtration.

Cholesterol has been determined to be an important component of arte-
rial plague formation in atherosclerosis as well as in hypercholesterolemia.
Cholesterol circulates in the blood linked to large protein molecules. One form
of cholesterol carrying protein called low-density lipoprotein, LDL is known
to promote atherosclerosis. About 2/3™ or more of the total blood cholesterol
is transported in LDL. Another form, called high density lipoprotein, HDL,
is known to the protective against the disease process. Therefore the selective
removal of LDL and maintenance of HDL is important in the treatment of
atherosclerosis and the therapeutic control of hypercholesterolemia.

The observed sieving coefficients for different solutes are given in the
following table. What would be the pore diameter used in filtration.

Solute Sieving Coefficient at 25°C
Albumin 0.51

Fibrinogen 0.03

LDL Cholesterol 0.1

HDL Cholesterol 0.94
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CHAPTER 4

Rheology of Blood
and Transport

Learning Objectives

e Better understand the Fahraeus-Lindqvist effect
¢ Develop marginal zone theory

e Explicit relation for plasma layer thickness

¢ Determine the manifestation of ballistic transport

¢ Discuss Casson’s equation, Bingham equation, and damped
wave and momentum transfer equation

e Womersley flow

e Apply the Bernoulli equation to cardiovascular flow work
done by the heart

Blood is a colloidal dispersion system. This fluid system consists of
cells and plasma. Major proteins found in the blood are albumin,
globulin, and fibrinogen. The three main cells present in the blood are
red blood cells (RBCs), white blood cells (WBCs), and platelets. The
RBCs, or erythrocytes, tend to occupy 95 percent of the cellular com-
ponent of the blood. They play a critical role in the transport of oxy-
gen through hemoglobin contained within the RBCs. The density of
RBCs is higher than that of plasma. The RBC volume fraction is called
the hemotocrit and typically varies between 40 and 50 wt %. The true
hemotocrit H is about 96 percent of the measured hematocrit, Hct.
RBCs can form stacked-coinlike structures called rouleaux. Rouleaux
tend to clump together to form aggregates. They often break up in
conditions of high shear or increased volumetric flow rate. About
5 percent of the blood consists of platelets. They are responsible for
blood coagulation and homeostasis. The leukocytes, or WBCs, form
the basis of the cellular component of the immune system. The effect
of blood platelets and WBCs on the flow characteristics of the blood
can be expected to be low on account of their low volume fraction.
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4.1 Marginal Zone Theory

The marginal zone theory proposed by Haynes [1] can explain the
Fahraeus-Lindquist effect. When the viscosity of blood was attempted
to be measured using cylindrical tube viscometers, it was found
that the viscosity measurements changed with changes in tube
diameter! This happened at high shear rates. Viscosity measurements
during tube flow at high shear rates greater than 100 sec™! were found
to depend on the diameter of the tube. When the diameter of the tube
is less then 500 pum, the viscosity of the blood will decrease accord-
ingly, down to tube diameters of 4 to 6 pm.

This effect is attributed to the existence of a cell-free layer adja-
cent to the tube wall referred to as the plasma skimming layer. The
occurrence of layered blood flow in capillaries and the existence of a
cell-free layer in flowing blood have been confirmed using high-
speed video photography. Simultaneously, an axial accumulation of
the cells near the center of the tube results in a core layer—an expres-
sion for the apparent viscosity in terms of plasma layer thickness,
tube diameter, and the hemotocrit in the marginal zone theory.

The blood flow within a tube or some other vessel is divided into
two regions: a central core that contains cells with a viscosity of u_and
a cell-free plasma peripheral layer with thickness & and a viscosity of
plasma denoted by . (Fig. 4.1) In each region, the flow is considered
Newtonian and at steady state. For the core region, the governing
equation neglecting the ballistic effects can be written as [2]:

APr oS

TVZZE:_ME o (41)
The boundary conditions can be written as:
r=R-— 6’ Ti;)re - ,.Clrazlasma (42)
vt
=0, ==%=0 4.3
r p» (4.3)

R S Plasma layer

Core layer T

Ficure 4.1 Layered blood flow in circular conduits.
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The first boundary condition stems from the continuity of the trans-
fer of momentum across the interface between the core and plasma
layers. The second boundary condition derives from the realization
that axial velocity reaches a maximum value at the center of the tube.
This ought to be the case based on symmetry arguments. In a similar
fashion, for the plasma layer, the governing equation and boundary
conditions can be written as:

APr ov?
plasma — S =M, (4.4)

The boundary conditions of the blood flow in the plasma layer can be
written as:

r=R, v’ =0 (4.5)
r=R-39, v/ =v¢ (4.6)

At the wall, the fluid is considered to be at rest and at zero velocity. At
the interface of the plasma and core layers, the velocity needs to be the
same from continuity considerations, without any accumulation. Equa-
tions (4.1) and (4.4) can be integrated and the integration constants
solved for using the previously mentioned four boundary conditions.
The discharge rate of the plasma and core layers can be found to be [3]:

_ WAP
- 8L

RS e o0 I
p o

c

Q, (R2— (R~ 3)2)? (47)

The total discharge rate of the blood is equal to the sum of the flow
rates in the core and plasma regions, and is given by:

TAPR? 8)'(, M

Slit Limit of Layered Flow

The blood flow within a rectangular conduit, as used in a dialysis
machine, is divided into two regions: a central core that contains cells
with a viscosity of p_and a cell-free plasma peripheral layer with
thickness 8 and a viscosity of plasma denoted by p, (Fig. 4.2). In each
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Slit limit of layered blood flow

A
Plasma layer / 5
B A

l ¥ Core layer

Ficure 4.2 Plasma layer and core layer of blood flowing across a rectangular
slit of width 2B, length L, and plasma layer thickness 3.

region, the flow is considered to be Newtonian and at a steady state.
For the core region, the governing equation neglecting the ballistic
effects can be written as:

_ APy 0T
Ty = oL =-U, 3y (4.10)
The boundary conditions can be written as:
y=R-§, ty°= ri’;asma (4.11)
9v¢
=0, ==%=0 (4.12)
Yy dy

The first boundary condition stems from the continuity of the trans-
fer of momentum across the interface between the core and plasma
layers. The second boundary condition is derived from the realiza-
tion that axial velocity reaches a maximum speed at the center of the
tube. This ought to be the case based on symmetry considerations. In
a similar fashion, for the plasma layer, the governing equation and
boundary conditions can be written as:
P
TE;‘“““ _APy_ -u aﬁ (4.13)

2L P oy

The boundary conditions of the blood flow in the plasma layer can be
written as:

y=B, v;’ =0 (4.14)
y=B-9, v’ =v (4.15)

At the wall, the fluid is considered to be at rest and at zero velocity. At
the interface of the plasma and core layers, the velocity needs to be
the same from continuity considerations, without any accumulation.
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Equations (4.10) and (4.13) can be integrated and the integration
constants solved for using the previously mentioned four boundary
conditions. The fluid velocity of the plasma and core layers can be

found to be:
or AP ) (4.16)
o2l B '

__APB? SV, M) (yY
L) [1—[1—5 [1_17’:]_(?) HC] (4.17)

The total discharge rate of the blood is equal to the sum of the flow
rates in the core and plasma regions, and is given by:

2B3WAP V(. u
sz[l—(l—gj [l—u—i]] (4.18)

Explicit Expression for Plasma Layer Thickness

Plasma layer thickness & can be obtained by fitting apparent viscos-
ity data and using Eq. (4.9) or Eq. (4.18), depending on whether the
conduit is circular or rectangular. The core hemotocrit variation as a
function of the tube diameter or slit width can also be obtained. A
relation between the core hematocrit, H, and the feed hematocrit,
H,, and the thickness of the plasma layer is needed. An equation is
needed to describe the dependence of the blood viscosity on the
hematocrit since the value of H_ will be larger than H, because of the
axial accumulation of the RBCs. This relative increase in the core
hematocrit will make the equation in the core have a higher viscos-
ity than the blood in the feed. The following equation developed by
Charm and Kurland [4] may be used to express the dependence of
the viscosity of the blood at high shear rates on the hematocrit and
temperature:

1
H=p, (mj (4.19)
Hy
or oH=1-— (4.20)
[
1107
where o=0.070exp|2.49H + T exp(-1.69H) (4.21)
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where the temperature is in kelvins. These equations are valid to a
hematocrit of 0.6 with an accuracy of 10 percent. The viscosity of the
blood p and the core layer hematocrit, H,, can be related as:

=0 4.22
W=l o) (4.22)
defining 6’ =1-(3/R).

The solution for the plasma layer thickness & is implicit and
requires solving for two equations and two unknowns:

Mapp _ (1=0,H,)
u,  (1-oc*o H,)

(4.23)

H _ ~2)2
H 1. (1-07)

H
: o’ [2(1—62)+02 %]

c

(4.24)

The plasma layer thickness ¢ is implicit in Egs. (4.23) and (4.24). An
explicit expression for ¢ is desirable. This was developed by Sharma
[5]. Equation (4.21) was examined using a Microsoft Excel spread-
sheet (Fig. 4.3).

Upon examination of Eq. (4.21), it was found that the temperature
parameter used to describe the variation of viscosity of blood varied
linearly with H when checked against oH at a given temperature.
This is shown in Fig. 4.3 at 300 K. This can be expressed mathemati-
cally for the core layer and plasma layer respectively as:

o H =mH_+c (4.25)
oy Hp=mH.+c (4.26)

Dependence of viscosity on hematocrit

0.2 0.3 04 0.5 0.6 0.7
Hematocrit

Ficure 4.3 Variation of temperature parameter oH with hematocrit H.
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The slope and intercept may be obtained by the least squares regres-
sion line between atH and H, as shown in Fig. 4.3 m and ¢ would vary
with the temperature. It is interesting that m and ¢ are independent of
the layer—that is, the core or plasma layer or the feed!

A material balance can be written over the two phases in the tube,
and it can be realized that:

H,=0¢%H, (4.27)
Equation (4.25) is divided with Eq. (4.26):

oH,  mH +c

L =—r 4.2
o H. mH;+c (428)
It can be seen from Eq. (4.28) that:
n
o H, =1-—" (4.29)
app
It can also be seen upon minor rearrangement that:
4 Hp 2
o Ho*=1- =o.H; =0,;0°H, (4.30)
app
Or
= |-L 4.31
or c o (4.31)
Combining Eqgs. (4.30) and (4.31):
i mH +c¢ 130
c H H, (4.32)
+c
o2
Let 6?=s, and it can be seen that Eq. (4.32) is quadratic in s:
H. -1
2+ [mTTJS +1=0 (4.33)

A solution to Eq. (4.33) can readily be obtained. Thus, an explicit
expression for the plasma layer thickness in terms of the tube hema-
tocrit has been developed. The tube hematocrit, H,, can be read from
the linear regression line between o and H at a given temperature
once the apparent viscosity of the tube is known.
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4.4 Constitutive Relations—Yield Stress Myth

As was briefly discussed in Chap. 1, several equations have been pro-
posed for use as constitutive relations to describe blood rheology.
One of them is the Bingham yield stress fluid [6].

Some examples of fluids whose rheology has been described

using the Bingham model are listed in Table 4.1 [7].

S. No. | Fluid S. No. Fluid
1 Acrylic rubber/polyethyl 24 Metal oxides/water
acrylate
2 Applesauce 25 Orange juice concentrate
3 Blood 26 Paint
4 Borite/water 27 Plastic rocket propellant
5 Butter 28 Polymer latex/water
6 Carbon black/oil 29 Printing ink
7 Cement raw mix 30 PVC/organic liquids
8 Cement/clay/water 31 Rubber/benzene
9 Chemical-mechanical 32 Sewage sludge
polishing
10 Clay methanol 33 Silica/Newtonian liquid
11 Clay water 34 Styrene-co-DVB/PS/DEP
12 Coal/Newtonian liquid 35 Sulfur/water
13 Drilling mud 36 Sweet potato puree
14 Explosives—Water/gelling 37 Thorium oxide/methanol
agent and oxidizer
15 Fermentation broth 38 Tomato puree
16 Glass/glycerol 39 Tomato sauce
17 Glass/polymer 40 Toothpaste
18 Graphite /water 41 Tritolyl phosphate/
castor oil
19 Grease 42 Water/animal wastes—
fertilizer
20 Inorganic solid/polymer/ 43 Water/bentonite
solvent
21 Iron oxide/ethylene glycol 44 Water/benzene
22 Mayonnaise 45 Wood pulp/water
23 Meat extract 46 Xanthan gum/water
TasLe 4.1 List of Viscoplastic Fluids
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Most of the examples listed in Table 4.1 are slurries, pastes, and
suspensions. The Bingham equation can be written as shown in
Fig. 1.3 as:

0v

X

T, =17 — 1, W’ for |’Exy| 21, (4.34)

where 1, is the yield stress and 1 is the plastic viscosity. For values of
shear stress less than the yield stress, the velocity gradient or shear
rate would be zero. The Bingham model is a special case of a model
suggest by Schwedoff many years ago:

—x (4.35)

As discussed in Chap. 1, experimental evidence presented by Barnes
and Walters from constant stress rheometers indicate that the yield
stress concept is an idealization. Given accurate measurements, no
yield stress exists. The non-Newtonian power law models are ade-
quate to describe the rheology of the “Bingham” fluids. Yield stress is
a British standard that represents the stress below which the sub-
stance behaves as an elastic solid and above which it is a liquid with
a plastic viscosity. With the advent of better instrumentation, Eq. (4.34)
is only an idealization that is valid at high shear rates. The yield stress
was extrapolated and never directly measured. A range of constant
stress instruments was developed as the Deer rheometer, which
allows for accurate stress measurements to be made at shear rates as
low as 1 E-6 sec”'. Conventional rheometers, such as the Weissenberg
rheogoniometer, can provide viscosity measurements above shear
rates of 0.01 sec™. They found that lower the specifications of the
instrument of shear rate lower were the measured yield stress for the
same fluid at the same temperature and pressure!

Hartnett and Hu, as discussed in Chap. 1, argue that yield stress
is an engineering reality. Nylon and Teflon balls were placed in carbo-
pol solutions to study the yield stress myth. Photographs obtained
every week for several months after 14 weeks revealed that Teflon
ball A dropped a distance equal to approximately half the ball diam-
eter was interpreted as “no appreciable movement.” Reviewers called
attention to the Harntett and Hu's reference which predicts that a
sphere will fall in a viscoplastic medium only for values of dimen-
sionless parameter [1.51:0 /(p,—p)g | less than 0.143, where 1, is the
yield stress. Since the Teflon ball moved in the carbopol solution,
the value of the yield stress must be less than 107 dynes/cm?. With the
emergence of nanotechnology, if the yield stress of fluids is low, they
ought to be measured directly. Higher values inferred by extrapola-
tion may not be sufficient. Should the non-Newtonian models be bet-
ter suited for the Bingham fluids, those ought to be used.
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This kind of rationale may be applicable to the Casson and
Herschel-Buckley models discussed in the literature to describe
blood flow.

Generalized Newton’s Law of Viscosity

Newton’s law of viscosity relates the shear stress to the shear rate
with the constant of proportionality, the viscosity of the fluid, which
offers resistance to flow:

v

T, =K ay" (4.36)

where T _is the shear stress, dv/dy is the velocity gradient, and pis the
absolute viscosity. The negative sign in Eq. (4.1) is written to normal-
ize the momentum transfer direction. Consider a plate at y =/, pulled
at a constant velocity V atop a stationary liquid. The layer of the
liquid adjacent to the plate is also subjected to motion. The layer
adjoining the bottom surface is stationary. The velocity gradient can
be calculated as V/I. This, multiplied by the absolute viscosity, gives
the shear stress in magnitude. If the force acting on the plate is F and
the area of the plate is A, then:

F Vp
Txy ZZZ—HT (437)

The right-hand side of Eq. (4.37) represents the rate of momentum
transfer. yis the kinematic viscosity with units of m?/s. The direction of
momentum transfer is in the downward direction, from atop the liquid
towards the origin. Hence, in order to render F/A =1 positive, the neg-
ative sign is added to Eq. (4.1). Consequently, T may be viewed as the
momentum flux in the y direction. In addition the momentum flux and
velocity gradient must have opposite signs to stay within the bounds
of the second law of thermodynamics. Momentum transfers from the
high velocity region to a low velocity region by molecular transfer, and
the other direction is not allowed. The shear stress expression, when
combined with the equation of momentum, results in a PDE that can
be solved and the solution expressed as an infinite Fourier series. The
singularity in Fourier series representation can be addressed by the use
of the damped wave momentum and relaxation equation:

az)x aTW
R T (4.38)

The damped wave momentum transfer and relaxation equation can arise
from the accumulation term in the kinetic theory of gases and deriva-
tion of physical properties of monatomic gases from molecular
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properties. From a molecular view, the viscosity can be derived and
the momentum transport mechanism can be illustrated [2]. This deri-
vation is revisited here. Consider molecules to be rigid, nonattracting
spheres of mass m and diameter d. The gas is assumed to be at rest, and
the molecular motion is considered. The following results of kinetic
theory for a rigid sphere dilute gas in which temperature, pressure,
and velocity gradients are small are used:

Mean molecular speed <u> = % (4.39)

Wall collision frequency per unit area:
Z=Yan'<u> (4.40)
Mean free path A = L (4.41)

\2md*n’

The molecules reaching any plane in the gas have, on average, had
their last collision at a distance a from the plane where:

2
a= ) (4.42)

In order to determine the viscosity of a dilute monatomic gas, con-
sider the gas when it flows parallel to the x axis with a velocity
gradient dv_/dz. Assuming the relations for the mean free path of
the molecule, wall collision frequency, distance to collision, and
mean velocity of the molecule are good during the nonequilibrium
conditions, the flux of momentum in the x direction across any plane
z is found by summing the x momentum of the molecules that cross
in the positive y direction and subtracting the x momentum of those
that cross in the opposite direction. Thus:

T =Zmv]| _ —-Zmv]

xlz+a

(4.43)

It may be assumed that the velocity profile is essentially linear for a
distance of several mean free paths. Molecules have a velocity repre-
sentative of their last collision. Accordingly:

2\ 9o,
vl =v] - 33 (4.44)
2} 9,
vl . =vl+ 3 5% (4.45)
Substituting Egs. (4.9) and (4.10) into Eq. (4.8):
v
T =-1/3nm<u>h == (4.46)

= 0z
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Equation (4.46) corresponds to Newton’s law of viscosity, with the
viscosity given by:

u=1/3p<u>A7 (4.47)

Maxwell obtained this relation in 1860. It can be seen that prior to
writing Eq. (4.8), the accumulation of momentum was neglected. This
may be a good assumption at steady state, but not at short-time tran-
sient events. Thus, considering a time increment t*, the momentum is
the momentum of molecules in minus momentum of molecules out
minus the accumulation of momentum in the incremental volume
under consideration near the surface. The accumulation of momen-
tum may be written in terms of:

v.=Zmv| _—Zmv| —td/oH{Zmv ]| _—-Zmv]  } (4.48)

xlz+a

where t* is some characteristic time constant. To simplify matters,
Eq. (4.13) is used in Eq. (4.8) to give:

avx * atzx
sz =—Uu % —t T (449)

4.5.1 Flow Near a Horizontal Wall Suddenly Set in Motion

Consider a fluid with constant density p and constant viscosity u atop
a horizontal plate. The fluid medium is assumed to be in a contin-
uum. In most cases, at the macroscopic scale, the molecular structure
of the fluid is not taken into account. Mass is concentrated in the
nuclei of atoms and is far from uniformly distributed over the vol-
ume occupied by the liquid. Nonuniform distribution can be seen in
other variables, such as composition and velocity, when viewed on a
microscopic scale. The continuum supposition is that the behavior of
fluids is the same as if they were perfectly continuous in structure
and physical quantities such as mass and momentum associated with
matter contained within a given volume will be regarded as being
spread uniformly over that volume, instead of being concentrated in
a small fraction of it. Atop the horizontal plate is a semi-infinite
medium of fluid. The fluid is stationary at time zero. For times greater
than zero, the plate is set at a constant velocity V. The velocity in the
z direction as a function of space and time is of interest. An error func-
tion results when Newton's law of viscosity is used for the fluid. The
spatiotemporal velocity of the fluid is obtained from the damped
wave momentum transfer and relaxation equation. From the equation
of motion, neglecting convection effects:

v, dv, v,

Tmom 32 T V2

-2¢ (4.50)
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Let u=v /V;t=t/t__;Z=z/sqrt(yT_ ) (4.51)
The one time and two space conditions are:

t=0,u=0 (4.52)

Z=0,u=1 (4.53)

Z=co,u=0 (4.54)

%+%:%—2Acc (4.55)

where Acc = (gt /V)is a dimensionless number that represents the
ratio of gravity forces to the ballistic “force” that corrects for the accu-
mulation of momentum and can be called the accumulation number.

Sharma [8] has developed a closed-form analytical solution to the
governing equation presented in Eq. (4.55) by the method of relativ-
istic transformation. The solution is:

Fort> Z:
2 _ 72
u= Ll/2NT-27) (4.56)
T
u[3)
T 2 _ 72
Ty Y i 4.57)
pV2u 4
Tmom
For Z >t
N
yo /N2 - (4.58)
T
03]
T 2_ 2
S g’EIO Z'-1 (4.59)
pV2u 4
T

mom

The solution exhibits some space-time symmetry with respect to the neg-
ative values as well as with each other. It can be seen that for a plate at
some point in the interior of the semi-infinite medium, the shear force
exerted by the fluid on the plate is bifurcated. In fact, it has four different
regimes. The first is the thermal inertia regime. In this regime there is no
action of the fluid on the plate. In the second regime, the shear stress is
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given by Eq. (4.94), which is a product of the decaying exponential and
a Bessel composite function of the first kind and zeroth order. The third
regime after the wave front is represented by Eq. (4.93), and is a prod-
uct of a modified composite Bessel function of the first and zeroth
orders. The momentum inertia can be calculated as:

Tinertia = SATH(Z? — 23.1323) (4.60)
The fourth regime is the wave front where

T z
u=e 2 =¢ 2 (4.61)

In the first regime, the shear force may be negative should the Bessel
function’s negative sign have meaning. This could be the first few
ripples that the plate sees from the disturbance from the surface. The
shear force can be in the opposite direction, and eventually, after
the thermal time lag has elapsed, the force is in the right direction.
The shear stress undergoes a maxima. The second regime is a steep
rise (Fig. 4.4). The first regime is an inertial time of up to 3.597 in
dimensionless quantities. The third regime is a tailed fall. The curva-
ture changes from convex to concave. There is an inflection point in
the third regime. There is a skew to the right, and the kurtosis may be
compared to the Maxwell distribution.

On examining Eq. (4.92), it can be seen that when Z > 1, the expres-
sion for the dimensionless velocity becomes a Bessel composite func-
tion. This is because when Z > 1, the argument in the modified Bessel
composite function within the square root sign becomes negative.
The square root of -1 is i. Furthermore:

Jo(x) =1 (ix) (4.62)

0.1
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0 20 40 60 80

Dimensionless time

Ficure 4.4 Three regimes of dimensionless shear stress in the interior of a
semi-infinite fluid suddenly pulled by a plate at a constant velocity from the
bottom.
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Hence, Eq. (4.92) becomes, for Z > 1

. Jo(1/2N 22 %)
T
)

It is generally realized in analysis such as in boundary layer the-
ory that after a finite region from the moving plate the fluid will be at
the initial state or will have zero velocity. The first zero of the Bessel
function occurs at 2.4048. Beyond that, the velocity predicted will be
negative. Although the denominator in Eq. (4.63) will dampen the
oscillations, why would the velocity of fluid be negative after a said
distance from the moving flat plate at the boundary for a given time
instant under consideration? Since it is damped oscillatory, the effect
of the surface disturbance for distances further than sqrt(23.13 + t?)
acts differently on account of the ballistic transport. It can be taken as
zero from an analogy from heat wave conduction and relaxation or
mass wave diffusion and relaxation. If it is taken as zero, the bound-

ary layer thickness for a given instant in time greater than zero is
given by:

(4.63)

8(t) =sqrt(23.13 + 1?) (4.64)

Beyond this distance, the fluid velocity can be taken to be zero from
the analogy from heat or mass diffusion and relaxation.

The model prediction of Eq. (4.63) gives negative values for veloc-
ity beyond the boundary layer thickness. Velocity is a vector. In the
momentum balance equation from which the solution is derived, the
velocity is preserved through the analysis. Hence, a negative velocity
could mean that the velocity of the fluid is in the opposite direction
compared with the velocity of the flat plate. Up to the first root of the
Bessel function, the second regime for the dimensionless velocity
profile holds good. For a given instant of time, for values of Z smaller
than the instant of dimensionless time, the third regime, or the modi-
fied Bessel composite function solution is applicable. The negative
values for the velocity can be due to the ballistic transport mecha-
nism. The disturbance swims back from the region beyond the bound-
ary layer. This is a type of ripple effect and backflow phenomena that
needs to be borne out by experiment. It can be seen in graphical form
as follows. For large values of the argument, the Bessel function can
be approximated with a cosinuous function as follows:

u=sqrt(4/(n(Z* — 1°)"/?)) cos[YA(Z*> - )" > — /4] /(I(t/2)  (4.65)

In Figs. 4.5 and 4.6 are plotted the dimensionless velocity for a given
instant in time (T = 5) as a function of dimensionless distance. In
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Ficure 4.5 Dimensionless velocity of fluid in a semi-infinite fluid from a
moving flat plate.
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Ficure 4.6 Damped oscillatory behavior of dimensionless velocity far from
the flat plate in semi-infinite medium.

Fig. 4.4, it can be seen that close to the flat plate the dimensionless
velocity obeys Eq. (4.98) and is valid for dimensionless distances
less than the instant in time under consideration. This is given by
the modified composite Bessel spatiotemporal function of the first
kind and zeroth order divided by the modified Bessel function in
time of the first kind and first order. For dimensionless distances
greater than the time instant under consideration, the Bessel com-
posite spatiotemporal function of the first kind and zeroth order
divided by the modified Bessel function in time of the first kind and
zeroth order gives the dimensionless velocity profile. Beyond the
first zero of the Bessel function, the solution predicts damped oscil-
lations for the dimensionless velocity. Up to the first zero of the Bes-
sel function, the velocity of the fluid is positive. In this case, this
value can be calculated to be sqrt(22.21 + 16) = 6.18. Beyond 6.18, the
velocity is in the negative direction. This is the subcritical damped
oscillatory regime, and it needs to be verified by experiment. The
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ballistic transport mechanism gives credence to some wave motion
for certain conditions. This was seen in model predictions in the
heat and mass transfer sections as well. However, for the fluid prob-
lem, it manifests as a vector, and a minus sign indicates a reversal of
flow in the direction opposite to the movement of the flat plate.

4.5.2 Transient Vertical Darcy Flow
As discussed in earlier sections, during the study of emptying a pipe,
a filled tube with porous packing was considered. Darcy’s law can be
used to relate the pressure gradient to the flow velocity. The solution
for the resulting governing equation and for the vertical component
of the velocity of the fluid is obtained.

The equation of motion considering the ballistic transport effects for
the vertical component of the velocity of the fluid can be written as:

(8202 %, du, BUZJ o, dv, (ap)
T omP +0 + +p==-+v +ToomY | o

912 2 9zot ot oz a oz of
__op_ (4.66)
- aZ pg

From Darcy’s law:

__[x)or
'UZ = —(EJ{E - pgi| (467)

p _(w)9o,
ooz (E ot (4.68)
where « is the permeability of the porous medium. Equation (4.66)
becomes:

azvz+ azvz+avz Jv, o Fmom Jdu,
TmomP| 57 0520 ot 0z )T \PT ) o

L T (4.69)
29z K *©

It can be assumed that during the drainage the velocity of liquid in the
tube, v, is independent of z and is only a function of time. Or this can
be arrived at by writing the equation of continuity. This is true for wide
reservoirs where the height in the container does not change apprecia-
bly. Thus, at constant density, the equation of momentum becomes:

aZUZ VY lmom avz v —
Tmom( FYE J"‘[l—T]?—;UZ =0 (470)
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Let 1=
Tmom
0% VT dv, Y1
z 1— mom |~ "z mom — 4.71
[812}-( K jar x 0 (@.71)
Let pp = Yimom
K

Pb is a sort of a permeability number that gives the ratio of the kine-
matic viscosity times the relaxation time of momentum divided by
the Darcy permeability of the medium. It may represent the ratio of
viscous forces and ballistic transport “forces” to the permeability
forces.

Let = 4.72)
d%u du

The solution to Eq. (4.73), which is a second-order ODE with constant
coefficients, can be written as:

u=ce "+ el (4.74)

From the constraint at infinite time—that is, # = 0, ¢, can be seen to be
Zero.

The initial condition can be written assuming a pseudo-steady
state and using Torricelli’s theorem:

J28H =¢, (4.75)

Thus:

u=,/2¢gHe™ (4.76)

4.5.3 Transient Vertical Darcy Flow under Reduced Gravity
In Sec. 4.5.2, during the study of emptying a pipe filled with liquid, a
tube with porous packing was considered, and the apparatus was
taken in a Space Shuttle and into the galaxy. Darcy’s law is then used
to relate the pressure gradient with the flow velocity as follows. The
resulting governing equation is considered and a solution is obtained
for the vertical component of the velocity of the fluid.

The equation of motion considering the ballistic transport effects
for the vertical component of the velocity of the fluid can be given by
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Eq. (4.66). From Darcy’s law in a new gravitational field in the Space
Shuttle in the galaxy:

0
v, = (a’;’ pg) 4.77)

where « is the permeability of the porous medium. After neglecting
the pressure changes with time, Eq. (4.77) becomes:

%0 - aZUZ N avz a?)z ( )avz + avz n wo 0 (4.78)
TmomP| 52 U0 T o 0z TP P 70 &

It can be assumed that during the drainage, the velocity of liquid in the
tube, v, is independent of z and is only a function of time. Or this can
be arrived at by writing the equation of continuity. This is true for wide
reservoirs where the height in the container does not change apprecia-
bly. Thus, at constant density, the equation of momentum becomes:

v, | dv, vy
‘Emom[ pYe ]+ 5 Tl 0 (4.79)
Lett=t/t__
v | dv, YT
[FJ-F?-FTUZ =0 (480)
where Pb=vyt___/x.

Pb is a sort of a permeability number that gives the ratio of the
kinematic viscosity times the relaxation time of momentum divided
by the Darcy permeability of the medium. It may represent the ratio
of viscous forces and ballistic transport “forces” to the permeability
forces. Let u=v,/g1

mom

*u  Jdu

e +8_+ Pb(u)=0 (4.81)
Equation (4.81) is a second-order ODE with constant coefficients and
is homogeneous. The solution to Eq. (4.81) may be written as:

u=e 2|ce 2

[ B cei“””’] (4.82)

From the constraint at infinite time, that is, uexp(t/2) = 0, c, can be
seen to be zero. The initial condition can be written assuming a
pseudo-steady state and using Torricelli’s theorem:

J28H =¢,

= [2¢H (e-V1-40) (4.83)
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Ficure 4.7 Subcritical damped oscillations with positive permeability.

It can be seen that for small values of the permeability number, that
is, when Pb > 1/4:

u=,/2¢gHe 2cos [%J (4.84)

2

The positive gradient of pressure dependence of velocity of flow
through a porous medium can happen in packings in which the chan-
nel size changes on account of pressure. When the channel size
decreases with increased pressure, the flow velocity through the
porous medium also will decrease. The dimensionless velocity as a
function of dimensionless time is shown in Fig. 4.7, and subcritical
damped oscillations can be seen. After a time, the velocity changes
direction on account of the added consideration of the ballistic trans-
port, which takes into consideration the accumulation of momentum
in the momentum flux expression.

4.5.4 Shear Flow between Two Plates Moving in
Opposite Directions at Constant Velocity with
Separation Distance 2a
Consider two flat plates (Fig. 4.8) pulled in opposite directions at a
constant velocity V with confined fluid. Let the separation distance
between the plates be 24. The initial velocity of the fluid is zero. Define

the axes in a fashion so that the plate velocity is in the * x direction
and the shear stress acts in and imparts the momentum transfer in the
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Z=+a

Ficure 4.8 Two plates pulled at constant velocity in opposite directions with
confined fluids.

z direction. The governing equation for the velocity for the fluid at
constant density and viscosity, neglecting pressure and gravity effects
in one dimension, including the ballistic transport term for correcting
for the accumulation of momentum, can be written as:

’v, N dv, v, (4.85)
KT TR '

Let T=t/1;Z=z/sqrt(yt);u=(v,-V)/V (4.86)
The governing equation in the dimensionless form is then:

ou 2*u d*u

7o oz (87

The solution can be assumed to consist of a steady-state part and a
transient part, that is, u = u’ + u*. The steady-state part and boundary
conditions can be selected in such a fashion that the transient portion
becomes homogeneous:

azuss
0= —— 4.88
The boundary conditions are:
Z=0,u=-1 from symmetry (4.89)
a
Z= ,u=0 (4.90)
VT,
a
Z= - ,u=-2 (4.91)
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Solving for Eq. (4.88):
u*=c Z+c, (4.92)

From the boundary condition given in Eq. (4.89), c, can be seen to be
—1. From the boundary condition given in Eq. (4.90), c, can be seen to
be 1/Z . Equation (4.91) is obeyed by Eq. (4.92). Thus:

. Z
w= 1 (4.93)

The equation and time and space conditions for the transient portion
of the solution can be written as:

out  %ut  J*ut
- 27 4.94
ot o oz (4.94)
The initial condition: =0, u'=-1 (4.95)
The final condition: T=e0, u'=0 (4.96)

The boundary conditions are now homogeneous after the expression
of the result as a sum of steady-state and transient parts, and are:

u=0,Z=0 (4.97)
Z=+Z,u'=0 (4.98)

The solution is obtained by the method of separation of variables.
Initially, the damping term is eliminated using a substitution such as
u' = W exp(-nt). Equation (4.94) then becomes at n = %:

IPW W W
= -— 4.99
0X? oJt* 4 (499)
Equation (4.99) also can be solved by the method of separation of
variables:
Let W=g(1)¢(2) (4.100)

Equation (4.99) becomes:

8(M " (2) =-8(M)0(2)/4+8"(1) 6(2) (4.101)

2 __1,80_ 4 (4.102)

0Z) 4 g
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The space domain solution is:
®(Z)=c, sin(A, Z) +c, cos (A Z) (4.103)
From the boundary conditions:
X=0,u=0, it can be seen that c,=0 (4.104)
®(Z) =c, sin(A Z) (4.105)

From the boundary condition given by Eq. (4.98):

0=c sin(A2) (4.106)
nw=AZ, (4.107)
nm T
= T Vay (4.108)
T (nm
0= % (4.109)

Since a is a nonzero quantity, n can take on the values 1, 2, 3, .... The
time domain solution would be:

iz o)
g=cpe V4 h +c,e V4 & (4.110)

From the final condition given by Eq. (4.96), not only does the tran-
sient velocity have to decay out to zero, but also the wave velocity.
Because W =u' exp(t/2), at time infinity, the transient velocity is zero
and any number multiplied by zero is zero even if it is infinity, W =0
at the final condition. Applying this condition in the solution in Eq. (4.110),
it can be seen that c, = 0. Thus:

o 1
= 2 in —(-1)"e" 26 ‘/F sin(A,Z) (4.111)

1
A, is described by Eq. (4.108). C, can be derived using the orthogonal-
ity property and can be shown to be —(2/nmw)(1 — (—1)"). It can be seen
that the model solutions given by Eq. (4.111) is bifurcated, that is, the
characteristics of the function change considerably when a parameter
such as the separation distance of the plates is varied. Here, a decay-
ing exponential becomes an exponentially damped cosine function.
This is referred to as subcritical damped oscillatory behavior.

For a < 2w sqrt(yT1), all the terms in the infinite series will pulsate.

This is when the argument within the square root sign in the expo-
nentiated time domain expression becomes negative and the result
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becomes imaginary. Using De Moivre’s theorem and taking a real
part for the small width of the slab:

ut = ;cneff cos (‘c, A~ %]sin(%nZ) (4.112)

At Z=Z7 /2, the dimensionless velocity:

o _1 1
t— 2 2 _
u 21 c.e cos[r,f?un 4] (4.113)

This is shown in Figs. 4.9 and 4.10. The maximum velocity can be
expected to undergo subcritical damped oscillations. The oscillations
are overdamped by the decaying exponential in terms of time.

4.5.5 Vertical Flow between Plates Moving in
Opposite Directions

The governing equation for the fluid between two moving plates in
the opposite direction (Fig. 4.11) is obtained after considering the
additional forces of pressure and gravity. A permeability law between
pressure gradient and flow velocity where the velocity increases as
the pressure gradient becomes lower is assumed. This can be seen
during elutriation in gas-solid flow and pneumatic conveying under
certain conditions. The dimensionless velocity variation of the fluid
spatiotemporally is discussed. The two plates are moved in opposite
directions along the z axis. Thus, the shear stress or momentum trans-
fer is in the x direction, the horizontal axis. Let the separation between
the two vertical plates be given by 2.

0.2
— X=0
0.1 -
=
'<§ 0.0 -
[}
~ 0.1
g‘s
E -0.2 1
5 0.3
E
A 0.4
-0.5
706 T T T
0.25 1.25 225 3.25

Dimensionless time

Ficure 4.9 Subcritical damped oscillations in a fluid between two moving
plates in opposite direction Z= a/2(yt)

PR
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Ficure 4.10 Subcritical damped oscillations in a fluid between two moving
plates in opposite direction Z=-a/2sart(yt, . )-

+V

-V

X=-a X=+a

Ficure 4.11 Fluid in between two vertical plates moving in opposite
directions with constant velocity.

The governing equation, including the pressure gradient and
gravity forces, and after writing the pressure gradient in terms of the
velocity of flow and neglecting the changes in pressure gradient with
time, can be written as:

v, ) dv, YT .. 0%v,
[axz j+ Tk =2 @1
-V
Let r:ri;zz\/i;h(vzv %pb:“iom (4.115)
‘r YT,
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The governing equation in the dimensionless form is then:

%u  ou 9%u

— +==+Pb(u)+Pb=— 4.116

Jt*  0J1 w) 0Z? ( )
The solution can be assumed to consist of a steady-state part and a
transient part, that is, u = u' + u*. The steady-state part and boundary
conditions can be selected in such a fashion that the transient portion
becomes homogeneous:

Ph)+ Ph+ 22— (4.117)
9z2 '

The boundary conditions are:
Z=0,u=-1 fromsymmetry (4.118)
Z= L, u* =0 (4.119)

T,
R (4.120)
v,
Solving for Eq. (4.117):

u® = c, sin(Pb'/?Z) + ¢, cos (Pb'/?Z) + c, (4.121)

From the boundary condition given in Eq. (4.118):

c,+c,=-1 (4.122)
0=c,sin(Pb Z,) +c, (cos(Pb'*Z,) = 1) + 1 (4.123)
—2=—c, sin(Pb Z,) +c, (cos (Pb'*Z ) - 1) + 1 (4.124)

or ¢, = —c,(cot (Pb*/?Z ) — 1/sin(Pb*/*Z,) + 1/sin (Pb'/*Z ) (4.125)

c,==2/(sin(Pb*/?Z ) — 1/sin?(Pb"?Z)) (4.126)

The boundary condition given in Eq. (4.119) assumes that the viscous
effects predominate over the gravitational and pressure effects. The
equation and time and space conditions for the transient portion of
the solution can be written as:

o%ut  out ; o%u!
R Ph=—— 127
= + P + Pb(u')+ Pb 37 (4.127)
The initial condition: t=0, u'=-1 (4.128)

The final condition: T=o0, u'=0 (4.129)
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The boundary conditions are now homogeneous after the expression
of the result as a sum of steady-state and transient parts, and are:

=0,Z=0 (4.130)
Z=+Z,u'=0 (4.131)

The solution is obtained by the method of separation of variables.
Initially, the damping term is eliminated using a substitution such as
= W exp(-nT). Equation (4.127) then becomes at n = V2

2 2
awz( 1Jw PW (4.132)

072 4

For large permeability numbers, Eq. (4.132) can be transformed into a
Bessel equation with the following substitution:

Fort>Z, and Pb > %, n=1v-2? (4.133)

As shown in earlier sections, Eq. (4.132) is transformed into:

PW W
4 +4—+4|Pb-=|W=0 4.134
nanz n [ ] ( )

The solution is a Bessel composite function and can be written by:

d= Pb%

W=c], (Pb %) (4.135)

u=ce:J, (Pb—%}(tz —72) (4.136)
From the boundary condition:

“l=u=ce?],t / Pb—— (4.137)

Eliminating c between Eqs. (4.136) and (4.137):

T, [Pb - %)(12 - 72

s3]

u=-

(4.138)

usl»—t
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Ficure 4.12 Transient velocity of viscous fluid flow in porous medium with a
positive permeability coefficient between vertical plates.

It can be seen that Eq. (4.138) describes the velocity profile in between
the vertical plates considering the viscous, gravitational, and perme-
ability effects. The spatiotemporal velocity is given by a Bessel com-
posite function of the first kind and zeroth order (Fig. 4.12). This is
expected to be valid for permeability numbers greater than %. The
expression exhibits space symmetry and subcritical damped oscilla-
tions can be expected. The Bessel function can be approximated as:

/ 1o o T

- cos[ Pb 4(1 Z?) 4}

S
Ccos| T Pb_Z_Z

4.5.6 Transient Laminar Flow in a Circular Conduit

Consider the laminar flow in a circular pipe of narrow dimensions in
transience. The damped wave momentum transfer and relaxation
equation is written as:

u=- (4.139)

v at,,
Ty = M5, Tmom 3y (4.140)
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The governing equation for the axial velocity as a function of the
radial direction can be written after combining the modified Newton's
law of viscosity, including the relaxation term, with the momentum
balance equation to yield:

0%v dv AP v d( dv
Tm0m87+§_p_L+?§(r§j (4141)
Let the dimensionless variables be:
AP
1=t P X=—u=—2 ;P = Tmom (4.142)
Tmom \/VTmom Umax vamax
The dimensionless governing equation then becomes:
Pu ou_p Lou ou (4.143)
012 9t X dX x> '

The solution is assumed to be a sum of two parts, that is, the steady-
state and transient parts. Let u = u* + u'. Then the governing equation
becomes:

1 9us  9°us

=Py -
0=P*%7x T oxz

(4.144)

azut+a_w— *+la_ut+azuf
012 01 X 0X = oX?

(4.145)

Integrating the equation for the steady-state component of the veloc-
ity with respect to X:
us  PX?

X 2

+c (4.146)

At X = 0, the gradient of the velocity is zero, as a condition of
extremama can be expected from symmetry considerations. So it can
be seen that C’ = 0. Integrating the resulting equation, again with
respect to X:

>:<X2

=L Tt (4.147)

From the boundary condition at X = X

&' =PX2/4 (4.148)

*P2 2
and us = 45 TR [1-[%)} (4.149)
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The above relation is the Poiseuille distribution. Specifically, is the
Hagen-Poiseuille flow in laminar pipes at steady state where P* is
given by Eq. (4.142). The rest of the problem obtains the transient
part. First, the damping term is removed by a substitution: u' = W x
exp(-nt). At n =Y, the governing equation reduces to:

82_W+la_W=_ﬁ+az_W (4.150)
X% X oX 4 ot?
The basis for this substitution is to recognize that the damped wave
conduction and relaxation equation, which is of the hyperbolic type,
has a damping component and wave component to it. In order to bet-
ter study the characteristics of the wave component, it would be
desirable to remove the damping component from the governing
equation. The transformation given in Eq. (4.145) was selected in
order to delineate the damping component and the wave component
of the transient temperature. Furthermore, it is realized that transient
temperatures decay out in time exponentially. This leads to the neg-
ative exponent in the exponentiated term. At n = %%, it can be seen
that the governing equation in transient temperature reverts to an
equation for wave temperature. This happens to be a Bessel special
differential equation.

The method of separation of variables can be used to obtain the
exact solution to the Eq. (4.150). The boundary and time conditions
for the transient portion of the velocity are then:

1=0,u'=1 (4.151)
7 = infinity, u' = 0 (4.152)
>0, X=X, u'=0 (4.153)
X =0, symmetry considerations (4.154)
Let W= V(1)6(X) (4.155)
The wave equation becomes:
v, 9
“//”—%= ¢ $§=—x§ (4.156)
Thus:
X20" + X¢'+ XA =0 (4.157)

This can be recognized as a Bessel equation of the first order (App. A)
and the solution can be written as:

¢=cJ,AX) (4.158)
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c, can be seen to be zero, as ¢ is finite at X = 0. From the boundary

condition at X = R/sqrt(vt__ ):
cJ,(AX)=0 (4.159)
VT
A, :%(2.4048+(n—1)n) (4.160)

n=1,23,....
Now the time domain part of the wave is obtained by solving the
second-order ODE:
V,’ 1 2
——=— 4.161
vV 4 o (4.161)

z 1 1
ue2 =W = (CSET 2_7‘% + C4€_r Z_}‘ﬁ )q) (4162)

At infinite times, the right-hand side becomes infinitely large. The
left-hand side is zero multiplied by infinity and is zero. At steady
state, the velocity is bounded and hence, the constant c, is set to zero.
It can be seen that for small channel dimensions, that is, when R <
4.8096 sqrt(vt__ ), the solution is periodic with respect to time. The
general solution for such cases can be written as:

n= iCﬂe_% cos (T I - % j T, X) (4.163)
1

The initial condition can be taken to be the maximum velocity in plug
flow. So the initial superficial velocity essentially at plug flow becomes
a periodic profile, as in Hagen-Poiseuille flow when channels are
formed. The transient portion is governed for small channels by the
generalized Newton'’s law of viscosity. So the initial condition is:

Thus:

1:;cn]0(an) (4.164)
The constant can be solved for by the orthogonality property:
Xp
[ 1,0, X)dx
=" XOR
J- (0 X)dX (4.165)
0

The maximum transient velocity is given by that at the center of the

circular tube:
o 1
u, =.ce? cos[T /;;ﬁ _Z) (4.166)
1
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4.5.7 Oscillations in a U-Tube Manometer

Consider the oscillations in a U-tube manometer. The additional
ballistic term is used to discuss the velocity and the height in the
manometer.

The governing equation in the z direction in the U-tube manometer
integrated with respect to z between the two points in the manometer,
1 and 2, on either side may be written as follows:

d?v, Jdv, 2gz

Tmom atz + o +T=O (4167)

avz /0t is independent of z, L, where L is the length of the column:

P =P, (4.168)
V_ =~V _, (from continuity) (4.169)
Vi=V2 (4.170)

Writing v_as dz/dt, Eq. (4.167) can be written as:

*z 0’z 2gz
et N 4171
AT A @.171)

Let the oscillation number

Osc=(gt2 /L;t=t/t  ;Z=2z/L (4.172)
Equation (4.171) becomes:
°Z 9°Z
¥+W+ZOSCZO (4173)

The third-order ODE with constant coefficients is homogeneous and
can be solved for as follows:

P+7+20sc=0 (4.174)

Equation (4.174) can be compared with the general form of the cubic
equation:

P+ay?+ar+a;=0 (4.175)
Let e and f be defined as:
e=1/3a,-1/92=-1/9 (4.176)

f=1/6(a,a,-3a)—1/27a}=—(Osc +1/27) (4.177)
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where a,=20sc;a,=0;a,=1 (4.178)
Consider e+f2>0 (4.179)
This is when:

Osc > -2/27 (4.180)

The oscillation number is the ratio of the gravitational force divided
by the relaxation frequency normalized by the length of the column
in the U-tube. The oscillation number will always be positive; hence,
Eq. (4.173) will be valid for real systems. In such cases, the cubic equa-
tion solution results in one real root and two imaginary roots. Let:

= (F+ @+ £

= (Osc[(1 +2/270sc)"/2 — 1] =1/27)1/3 (4.181)
52 — (f_ (33 +f2)1/2)1/3
= —(Osc[(1 +2/270sc))2 — 1] + 1/27)1/3 (4.182)

The cubic roots are then:

r,=(s,+s,)—a,/3 (4.183)
r,=1/2(s, +s,) —a,/3 +isqrt(3)/2 (s, — 5,) (4.184)
r,=1/2(s, +s,) —a,/3 +isqrt(3)/2 (s, — 5,) (4.185)

Thus, for a finite oscillation number, the displacement will pulsate:

Z =cexp(r t) + c,exp(r,t) + c,exp(r,t) (4.186)

The imaginary roots can be seen to predict the oscillations (Fig. 4.13)
that are subcritical and damped. Using De Moivre’s theorem and

|— Oscillation number = 147.2

0/\/\/\/\

Displacement

-1 T
0 5

Dimensionless time

Ficure 4.13 Subcritical damped oscillations in a U-tube manometer,
including the ballistic transport term.
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obtaining the real parts, the term that contributes the subcritical
damped oscillations can be written as:

—T[—(S]+52)-l] s +s, 1
Z=c'e 23 COS[’C[ 1 > 2 —g}] (4.187)

C’ can be solved for using the initial condition for velocity. The other
conditions are the velocity at zero time and infinite time to solve for
the other two integration constants.

4.5.8 Tangential Flow Induced by a Rotating Cylinder

The velocity distributions and pressure distributions during the tan-
gential laminar flow of an incompressible fluid induced by a sudden
rotating cylinder at constant velocity is examined in this section. The
rotation of the cylinder of radius R is at a tangential velocity of V,
(Fig. 4.14). The radial and azimuthal velocity components are zero.
The equation of motion can be written as:

?vy v, 0*v, dv, 9 (19d(ryy)
‘”mom[atz toree /P TMarlr or (4.189)

6 component:

20, 97, ?p pug  Ip
P‘mom[‘ij”mm otor v~ or (.189)

r component:

%
0= ~ +pg (4.190)

r = infinity
tang.
vel =0

r =R, tang.
vel -V

Ficure 4.14 Tangential flows past a cylinder.
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It can be seen that the pressure gradient in the z direction does not
change with time; hence, T d°p/dt0z is zero. Once v, is solved for
from Eq. (4.189), the radial pressure distribution can then be calcu-
lated using Eq. (4.190). The tangential velocity is assumed to be a
function of time and the radial space coordinate. Equation (4.188) is
made dimensionless by the following substitutions:

t r (4
T= s X = su=—2 (4.191)
Tmom Vtmom VS
The dimensionless governing equation then becomes:
’u  du 0 [19uX)
Rl R el 192
a2 ot +ax(x oxX (4192
Let uxX=Vv (4.193)
The dimensionless governing equation then becomes:
2 2
V. vV _ 19V 9V (4194)

92 Tt T XX Taxe

The damping term is removed from the governing equation. This
is done realizing that the transient velocity decays with time in an
exponential fashion. The other reason for this maneuver is to study
the wave equation without the damping term. Let V = w exp(-nt).
By choosing n = %, the damping component of the equation is
removed.

Thus, for n =%:

W 1 W W o°W
— =t 4.195
X2 XX 4 o (4.195)
Equation (4.195) can be solved by using the method of relativistic
transformation of coordinates. Consider the transformation variable
m for v > X:

n=1-X> (4.196)
Equation (4.195) becomes:

2
o W+2na—w—nﬂ:0 (4.197)

2
R ORI

2OW MW W
or Yo 2on 16

(4.198)
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Comparing Eq. (4.198) with the generalized Bessel equation, the solu-
tionisa=1/2;b=0;c=0;d =-1/16; and s = %. The order p of the
solution is then p =2 sqrt(1/16) = V&

W = ¢ (T — X2)V41, (\/7))

to,( - X)L, (% - ij (4.199)

c, can be seen to be zero, as W is finite and not infinitely large at 1 =0.
An approximate solution can be obtained by eliminating c, between
the equation derived from the boundary condition at X = X, and
Eq. (4.199) after setting c, to be zero. It can be noted that this is a mild
function of time, however, as the general solution of a PDE consists of
n arbitrary functions when the order of the PDE is n compared with
n arbitrary constants for an ODE. From the boundary condition at
X=X

X=e 2¢,(? =X} ,\[(T* - X3) (4.200)
[y
(12 _X2)1/4 11/2 (E ’52 _XZJ
= (12— X2)I/4 1
R 11/2 E«HZ_XIZQ
In terms of elementary functions, Eq. (4.201) can be written as:
sin h(%\/rz - ij
(1
smh(i,l‘cz —Xfij
In the limit of X, going to zero, the expression becomes for 7 > X:

sinh(%\/rz—ij

. T
sinh (Ej

1
_oe-gyn D (5 e

- (12—X2)1/4 1
R 11/2 E«'TZ_XIZQ

(4.201)

U= (4.202)

(4.203)

u=

For X > 1:

(4.204)



Rheology of Blood and Transport

Equation (4.204) can be written in terms of trigonometric functions
as:

sin(%\/Xz —’EZJ
u= (4.205)

sinh(%Jtz —Xﬁj

Four different regimes can be seen. The first regime is that of the ther-
mal lag and consists of no change from the initial velocity. The second
regime is when:

T, 2= X2 -4
ag

or T = sqrt(XpZ —47m%) =3.09 when X =7 (4.206)

For times greater than the time lag and less than X , the dimensionless
velocity is given by Eq. (4.204). For dimensionless times greater than
7, for example, the dimensionless velocity is given by Eq. (4.201). For
distances closer to the surface compared with 2w, the time lag will be
zero. The fourth regime is at the wavefront. Here, u = exp(-X/2) =
exp(—1/2). The radial pressure distribution can be estimated from
the following equation:

20, dv, ?p pug  Ip
P[‘TWJ* otor 1~ or (4.207)

It can be seen that for materials with relaxation greater than a certain
threshold value, the instantaneous pressure values will be pulsation
values.

Tangential Flow at Small Distances

In writing Eq. (4.194), the assumption made that large distances were
involved was valid. Obtain the governing equation from the tangen-
tial shear term and obtain the solution for the tangential flow prob-
lem by relaxing the assumption at large distances:

v, v, 9%7, dv, 9 (19(rvy)
ptmn‘[atz toaroe | TP M arlr or (4:208)

Let V = u/X where u, X, and 7 are defined using the dimension-
less variables in Eq. (4.191). Equation (4.208) becomes:

%V 9V 39V 9V

e T XX Taxe

(4.209)

The damping term is removed from the governing equation. This is
done realizing that the transient velocity decays with time in an

1
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exponential fashion. The other reason for this maneuver is to study

the wave equation without the damping term. Let V = wexp(-nt). By

choosing n =1, the damping component of the equation is removed.
Thus, for n =%:

82W 3dW W W
- 4.21
oXZ XX 4 aw (4.210)
Equation (4.210) can be solved using the method of relativistic trans-
formation of coordinates. Consider the transformation variable 1 for
> Xas:
n="1-X? (4.211)

Upon applying relativistic transformation, Eq. (4.210) becomes:

PW W W
P #1005 -0 =0 4.212)

4n?

PW Smaw W
e +7“W_nﬁzo (4.213)

or

Comparing Eq. (4.213) with the generalized Bessel equation, the solu-
tionisa=5/2;b=0; c=0;d =-1/16; and s = %. The order p of the
solution is then p = 3/2 sqrt(1/16) = Va:

Or W=c ( XZ 3/41 ( l Xz))
+oy (TP - X2, ( N _XZJ (4.214)

c, can be seen to be zero, as W is finite and not infinitely large at 1 =0.
An approximate solution can be obtained by eliminating c, between
the boundary condition and the Eq. (4.214) after setting c, to be zero.
It can be noted that this is a mild function of time, however, as the
general solution of a PDE consists of n arbitrary functions when
the order of the PDE is n, compared with n arbitrary constants for
the ODE. From the boundary condition at X = X

1 =
% =¢ 26, - X3V, . [(z2 - x2) (4.215)

1
T Exind

- (Tz _ X2)3/4 1
13/2 5\/12 _Xlzz

(4.216)
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For X > 1:

le—j

T (X2 1
Iy, E\/TZ - Xk

4.5.9 Transient Flow Past a Sphere

Consider a solid sphere settling in an infinite fluid at terminal settling
velocity. Of interest is the transient velocity in the tangential direction
of the sphere as a function of 7. Defining the stream function as fol-
lows and neglecting the ¢ and r component velocities:

(4.217)

1 Jdy
rsin® or

0 = (4.218)

The 6 component of the velocity, considering only its dependence in
r direction, becomes:

Py 82 _va J 10y
Tmom 320y " otor 7 or (r Br(r or (4.219)
Let =t x- T (4.220)
Tmom \/VTmom
- 1 oy
Then % = Xsin® Vi or (4.221)
>y Py 1 9 Jd (1 ay
79X T 9taX X oX [X axX (Ya_x (4.222)
Integrating with respect to X:
82\|1 oy _ 0’ Iy
o T ot ax? (4.223)

Let y =y exp(—t/2). This will remove the damping term in the govern-
ing equation to give:

P P
a}gg = % + % (4.224)

Using the relativistic transformation [8]:

n=vt-x (4.225)
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For 1 > X the governing equation without the damping term becomes:
4An % /on>+4dy/on-y/4=0 (4.226)
or %% /on*+nady/on —ny/16=0 (4.227)

Comparing Eq. (4.227) with the generalized Bessel equation, the solu-
tion can be written as:

x=ce 21, (%\/TZ - XZJ (4.228)
A [%\/12 - ij

= 2 4.22
%=1 om SINO “e NEWE (4.229)
From the boundary condition at r = R:
B I (%J‘cz - Xﬁ)
0 =U = - (4.230)

1
o= Uy —.ecle 2
Vrmom sin ‘“:2 - Xl%

For X > 1:

Il E TZ_X]ZQ

1
2, TZ—XI% ]l[E\IXZ—TZJ
0=\ o (1 ) (4.231)

Eliminating c, between Egs. (4.230) and (4.229) for 1 > X:

1
I| =12 -X?
v, ?-X32 1(2 ¢ ]
Ut = ‘Ez — X2 1 (4232)
II[E TZ—XI%]

4.5.10 Radial Flow between Two Concentric Spheres
Consider the radial flow between two concentric spheres of an incom-
pressible, isothermal liquid. The transient velocity distribution is
examined using the damped wave momentum transfer and relax-
ation equation. Let the radii of the two spheres be R and mR,
respectively. The governing equation for the radial component of
the velocity can be written as:
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T [l I(r*v,) +&32<r2vr>J+[rmm 9(r*v,) +er[ 1 a(er,)]

r2  ot? r2 otor r2 ot r2  or
+1 op +£8(rzvr) ——la—p+laz(rzv’) (4.233)
mom| gty | 2 At  por 1> or ’

In order to obtain the dimensionless form of the governing equation,
the substitution given in Eq. (4.233) is used, and after neglecting the
nonlinear term using the creeping flow assumption:

( 1 a2(x2u)]+[ 1 a(xzu)mj( 1 a(xzu)j+[aZP* j+ 1 9(X?u)

X2 or X2 ot X2 X otoX )" X2 ot
P 1 P(Xu)

=—a—X+ X2 X2 (4.234)
where p=—=> .- %~ % (4.235)
pUR Z]mom UR
The space boundary conditions can be written as
r=R,v =0, (4.236)

From the equation of continuity for a constant density system:

1 d(pr’v,)
P P 0 (4.237)
r’v =c, =R%, (4.238)
The velocity at mR is then:
v, =0/ m? (4.239)
Thus,
us=(R/r?-1 (4.240)
XZ
= X—§ -1 (4.241)
The time conditions are:
1=0,u=-1 (4.242)

Let the velocity consist of steady-state and transient components:

u=u*+u (4.243)
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P* 2 2 2X2

~ox _§+?+ e (4.244)
Pr=-X?/X*+2InX-2/X +c, (4.245)
X =0, P is finite and, therefore, c,=0 (4.246)
us = (X2 /X2 (4.247)
Xus=X? (4.248)

Thus, P'=c,
The transient dimensionless velocity can be written as:

( 1 az(xzu)H 1 9<X2”>+u)[ 1 a(XZu)J 1 9XP) (4 249)

X2 o ) \xT or X2 oxX )TX2 ot
1 0%(X%u
= _F Z;Xz ) (4.250)
Let V= Xu:
PV V(. V) v _ PV

The method of separation of variables can be used to solve Eq. (4.251):

Let V=g(X)6(7) (4.252)
0"g+X*[0'g+g0]g0+g0" =g"0 (4.253)

Dividing by g6 throughout:

0 ge = g? —X2g/(0+0) =\ (4.254)

[0” + 6] can be set to zero to obtain a separation of the time and space
variables. From this constraint:

0+06=c (4.255)
Then 07/6=1-)\ (4.256)
Equation (4.256) can be used to obtain the 6. The 6 obtained from this

constraint may not meet the 6" + 6 = 0 requirement. Hence, the solu-
tion is an approximation:

8’ /g=-M\ (4.257)
8 =c,e™V M 4o e ITN (4.258)
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At steady state, the velocity profile is given by Eq. (4.247). Hence, c,
can be taken as zero, as 0 is not infinite at infinite time:

0=c,e I (4.259)

In order to solve for the constants c, and c,, redefine X as follows:

Y=X-X (4.260)

R

Equation (4.254) then becomes

§'(Y)/g=-\} (4.261)
g=c,sin(AY)+c, cos (A)Y) (4.262)
at Y=0,u'=g0=0 (4.263)
Hence, ¢,=0 (4.264)
g=c,sin (AY) (4.265)
at Y=Y u=u—-u=1/m-1-1/m*+1=0 (4.266)
Hence, A= forn=1,2,3.... (4.267)
mR
= N mom "1 (4.268)
mR
Thus:

V= Ecne*m sin(A,, (X = X)) (4.269)
1

c, can be solved using the orthogonal property and the initial condi-
tion, and shown to be (2/nm) (1 — (=1)"). It can be seen that when:

VT T
Nmen— > (4.270)
2pR2
dort, > ";ji (4.271)

The solution is given after using the De Moivre’s theorem and obtain-
ing the real parts:

Xu=V =13 c,cos T/1-A2 sin(A, (X - X)) 4272)

n=1
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The maximum velocity is obtained when A X =1/2. The velocity is sus-
tained periodically. When the velocity changes in sign, the radial veloc-
ity becomes inward in direction. This occurs when the distance between
the spheres is small. The energy for the oscillations is provided by the
kinetic energy from the inflow of the fluid from the surface at R. The
pressure drop at steady state can be calculated from Eq. (4.234).

4.5.11 Squeeze Flow between Parallel Disks

Consider the outward radial squeeze flow between two parallel cir-
cular disks (Fig. 4.15). A potential application is in a lubricant system
consisting of two circular disks between which a lubricant flows radi-
ally. The flow takes place because of a pressure drop, Ap, between the
inner and outer radii, 7, and r,. Perform the analysis, including the
transient effects.

The equation of motion for v, can be written as:

10*(rv,) v, 9*(rv,)) (Toom 0(r0,) 10(rv,)
Tmom[? o Ty atar JTTr ot U\ ar

?*p | 19(rv) v, 1 9(rv,)
”mom(wJ*? a +(‘mom7+”e T

+ avr + a&
az Z]Z Tmom at
_a_p+ 9 (19(rv,) +azv,
=T MRl Tor 9z2 (4.273)

flow out

Ficure 4.15 Radial outflow between two circular parallel disks.
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Considering only the radial component of velocity from the equation
of continuity:

1d(prv,)

= 4.274
r or 0 ( )

Obtain the dimensionless form of Eq. (4.273) using the following
substitutions:

Dimensionless velocity: U= 5 L (4.275)
ref
. . . t

Dimensionless time: T= . (4.276)

Dimensionless distance: X = z (4.277)
thom

Dimensionless radius: Y= ! (4.278)
YTmom

Dimensionless pressure: P* = S A (4.279)

pvrbvmom
Peclet (momentum): Pe .= vv—rb (4.280)
1 9%(Yu) 0%P* 1 d(Yu) 1 9(Yu)
(y o J+(araYJ+ Y ot T “Pemon| Y oy
__o + 82_u 4.281
Y 9Y? (4.281)
Let Yu=V (4.282)
Then Eq. (4.281) becomes:
2 2 # 2 D
V. dV 9’V _ | JP d*P (4.283)

7 o X oY ' 9tov

Equation (4.283) is obeyed when the right-hand side and left-hand
side go to zero or constant.

The solution of (9*V/912)+(dV/91)—(9?V/dX?)=0 is sought as
follows:

Let V=Vs+ V' (4.284)
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The solution is assumed to consist of a steady-state and transient
part. At steady state:

102V oP*
Y oxz oy (4.285)
Integrating with respect to Y:
217 ss #
IV _ AP (4.286)
")
In| =
Yl
+ o2
or Ve = ap” X +c,X+c, (4.287)
In| =
Y
At X=0,0u/0X=0 (4.288)
so ¢, can be set to zero.
Solving for c, from the boundary condition at
X=xX,u=0 (4.289)
AP*(X? - X?)
V= ————~ (4.290)

Yz
2“‘@

The transient part of the solution can be obtained by solving the fol-
lowing equation:
*V N V9V
Jot?  odt  9X?

=0 (4.291)
The damping term can be removed from Eq. (4.291) by V = Wexp(—1/2).
Equation (4.291) becomes, as shown in Ref. 8:

PW_ W PW
X* 4 or

(4.292)

The solution to Eq. (4.292) can be obtained by the method of separa-
tion of variables:
Let W =f(1)g(X) (4.293)
Equation (4.292) then becomes:
frlf-%u=¢"/g=-\? (4.294)
g=c¢,sin(A X) +c, cos (A X) (4.295)
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From the boundary condition at X =0, thatis, g’ =0, it can be seen that
¢, can be set to zero:

g=c,cos (A X) (4.296)

From the boundary condition at X=+ X, ¢ =0:

A X, = @ n=1,2,3,.... (4.297)

f= cgeTV]’xi + c4e’TVH‘% (4.298)

At infinite time, u =0 and V =uX =0. Wis Vexp(t/2) and is zero at
infinite time. Hence, ¢, needs to be set to zero. Thus:

= i 2n-1nz
— — 4 - 7
uY_V_;e Fcos( T j (4.299)
c, can be solved from the initial condition, which is when the fluid is
at the reference velocity. c, can be shown to be 4(-1)"*!/(2n—1).
For large values of relaxation times, the characteristic nature of
the solution changes from decaying exponential to subcritical damped
oscillatory. This happens when:

bZ
Toom > 7 (4.300)

4.5.12 Periodic Boundary Condition
Blood flow in and out of the heart is periodic. Blood flows from the
right ventricle into the pulmonary artery upon contraction of the
heart muscle and from the left ventricle into the aorta. Backflow of
blood is prevented by heart valves. Pressure and flow vary with time
over the period of contraction and relaxation of the heart. During the
phase of systole, the blood is pumped from the heart; during the phase
of diastole, no blood is pumped from the heart and the ventricles fill
with blood. An infinite Fourier series can be used to represent the
pressure and velocity waveforms. Pressure waveform representation
requires a minimum of 6 harmonics, and 10 harmonics are needed to
describe the velocity waveform. The velocity profile in response to an
oscillating pressure field was determined by Womersley [9].

For transient flow, based on dimensionless analysis, two dimen-
sionless groups to describe the flow and velocity fields have been
identified. The two dimensionless groups are:

1. Reynolds number (pv2R/ ). Itis the ratio of the inertial forces
to the gravity forces in the system. It is a quantitative criterion
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to delineate the laminar flow and turbulent flow, as discussed
in Chap. 1.

2. Strouhal number St=L_/t* <v,> The characteristic time t*
for oscillatory flow is proportional to the reciprocal of the fre-
quency ®. The Womersley number is sometimes used in place
of the Strouhal number:

W=R f% (4.301)

The dominant frequency in blood flow used in Eq. (4.301) is the one that
arises from the heart beat. Womersley numbers for different vessels
are given in Table 4.2.

The velocity distribution can be obtained as follows. Consider the
laminar flow of a Newtonian fluid in a rigid, long, circular blood ves-
sel. This vessel is subjected to an oscillating pressure field v, = v, = 0.
The azimuthal velocity, v, is a function of radial position only. The
equation of momentum, or the Navier-Stokes equation, that governs
the profile of v, as a function of space and time can be written as
follows:

duv,  Jp J , dv,

p 5 ——$+u§(r > )+pg (4.302)

The pressure gradient imposed is periodic and:

Ap

Lcos(mt) (4.303)

ap — iot) —
v Real(Ae™®") =
The method of complex velocity can be used to analyze the manifes-

tation of the oscillating pressure gradient in the velocity flow field.
Let:

v = e (4.304)

Vessel Radius (mm) w

Artery (Femoral) 2.7 3.9

Artery (Left coronary) 4.25 6.15

Artery (Right coronary) 0.97 1.82

Artery (Anterior disc) 1.7 2.4

Artery (Terminal) 0.5 0.72

Aorta (Proximal) 15 21.7

TasLe 4.2 Womersley Number for Different Blood Vessels
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where ¢ is a function of z only. Substituting Eq. (4.304) into Eq. (4.302),
Eq. (4.302) becomes, neglecting gravity effects:

L oy 0 00 .
10t N _ 10t — 1ot
piwe' ' — e > (r > ) Ae (4.305)
pind — L d + r 12 +A=0 (4.306)

Equation (4.306) is compared with the generalized Bessel equation.
The boundary conditions are:

dv,
r=0, W =0 (4307)
r=R, v.=0 (4.308)

The solution can be seen to be:

AL Wr
A 0 R ,
= ——Z |0t (4.309)

1-
Uz i(np ]O(iS/Zw)

In the time span of the heartbeat, the non-Newtonian finite momen-
tum transfer effects may become significant and cannot be ignored.
Consider the oscillations of a fluid in a tube of radius R about a
mean position where an oscillating pressure gradient is imposed on
the system using the momentum transfer and relaxation equation.
The pressure gradient imposed is periodic with respect to time with
frequency o:
P

5 =% real part of exp(iot) (4.310)

The equation of motion for the vertical component of the velocity in

the pipe, taking into account the finite speed momentum transfer
effects, can be written as:

8sz+ 0?0, N avz+ Jv,
Plmom| 32 T30z | 7| Tmom 3 7%= | o2

9’p dv,  dp 0 BUZ 0%v, 4311
+Tm°‘“[atazj+p o = oz THarU gt tes (3N
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From the equation of continuity, neglecting the radial and angular
component of velocities and considering an incompressible fluid:
I(pv.) _

5, =0 (4.312)

and v, = ¢(r)

Hence, after non-dimensionalizing and neglecting the gravity
effects and keeping the tube horizontal, the equation of motion can be
written as:

ju=-l T peo D (4313

2 "ot ToxXor 9z "X

(4.314)

’u  du  9°P* JoP" 9 (X Bu)
X

The nonhomogeneity in the boundary condition can be removed by

supposing that the solution can consist of two parts, one transient

and the other a steady-state part:

Let u = ¢(X) exp(io't) + u* (4.315)
A - foexplio)
where o =0T (4.316)

mom

The steady-state part of the solution can be written as:

oP" 9 (_ du
= (Xa_xj (4.317)

Integrating both sides with respect to Z:

AP" 0 (_ du
T X (Xa—Xj (4.318)

Integrating with respect to X:

, AP* _ du
¢’=0asatX=0,0u/0X=0 (4.320)

"+ XAP*/L=u*=v__ /v (4.321)
At X=X, (4.322)

ref
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C'=v,_ /v~ XAP'/L (4.323)

zmax

w=v__ /v —(X,—X)AAX) cos(w'T) (4.324)

ref

The transient part of the velocity profile can be solved for as follows
by assuming that the velocity also has a periodic component with the
same frequency o:

-0 ¢+ 0ie* + i [ =—f"+ ¢ i — X¢” 0" (4.325)

Assuming f and ¢ are the same:

*#2

X2¢ +0) +X¢[m* 1) 0 (4.326)

Comparing Eq. (4.326) with the generalized Bessel equation:

a=1/0%b=0;c=0;s=Yd=i/0' -1, p=(0?-1)/w? (4.327)

For high dimensionless frequency, the order of the Bessel solution can
be taken as 1. The solution can be presented as:

0=cX12T, (2 X(mL—1j] +c X, [2 /X(mi—l)] (4.328)

¢” can be set to be zero because ¢ is finite at X = 0. Realizing that

I(ix) = ] (x):

d=c'X"?], (2 X(% + 1]] (4.329)

¢’ can be solved from the boundary condition of zero velocity at r = R
or X=X

_ U, max — (X 1/2 1
0. (X2, [2 X [—iw* +1 (4.330)
sz _ Uzmax X 1/2] 2 X L_i_l (4331)
Z)rel . ! i('o;k

Vom0 [X 1
Tﬁxé = X—R]1 21X E-'_l cos (0*T) (4.332)
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Ficure 4.16 Dimensionless velocity responses to an oscillating pressure
gradient imposed on tube flow by momentum transfer and relaxation equation.

At high frequency:

Uzmax - 2

Deman 70, _ | X LVX) \/7 (w'7) (4.333)
Uzmax ]1 (2ﬂ

Equation (4.333) is shown in Fig. 4.16.

Friction Factors

Many engineering flow problems fall under the categories of flow in
circular pipes and flow past spherical objects. The “Peace Pipeline
Project” is designed to construct a pipeline to meter out oil from the
Gulf region, such as from Iran to North Delhi, India, through a host of
countries, such as Turkmenistan, Afghanistan, Pakistan, and India.
The optimal number of pipes needed is derived in Sharma [10].
Examples of flow in pipes are piping oil in pipes, the flow of water in
channels, the extrusion of polymer through a die, the flow of fluid
through a filter, pulsatile flow from the lungs to the nostrils, blood
flow through the capillaries, and flow during reverse osmosis in
desalination. Examples of flow around submerged objects are the
flow of air around the airplane wing, motion of fluid around parti-
cles, fluid flow in fluidized bed combustors, reactors, and heat
exchangers circulating fluidized beds. In such problems, there is a
relationship between the pressure drop and the volume rate of flow.
In flow past submerged objects, the drag force is important. Some-
times experimental data are utilized to obtain correlations for the
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drag coefficients for the appropriate geometry and flow situation.
In this section, the notion of friction factor is introduced and charts
can be found in chemical engineering, bioengineering, mechanical
engineering, and civil engineering handbooks. Often times, friction
factors are defined for steady-state scenarios. In this section, friction
factor for transient flow driven by damped wave momentum trans-
fer and relaxation is introduced.

A force is exerted by the flowing fluid on the solid surface it is in
contact with. This has been calculated at steady-state for incompress-
ible flow under various conditions. This force consists of two parts:
one that would act even when fluid is stationary and additional force
associated with the kinetic behavior of the fluid:

F = AK f (4.334)

A is the characteristic area, K is a characteristic energy per unit vol-
ume, and a dimensionless quantity, £, is called the friction factor. For
circular tubes of radius R and length L, f is defined as:

F, = (rRL)(1/2p <v>?) f (4.335)

For a fully developed pipe flow, a force balance on the fluid between
0 and L in the direction of flow yields:

F =nR* (Ap + pg (h,— h,) = nR* (AP) (4.336)
Comparing Egs. (4.326) and (4.327):

1D AP
_v_ar 4.337
f 4L ( )

1 <v>?
2p

This is usually referred to as the Fanning friction factor. For flows
around submerged objects, the characteristic area A is usually taken
to be the area obtained by projecting the solid onto a plane perpen-
dicular to the velocity of approach of the fluid. Then k is taken to be
1/2p v2, where v_ is the approach velocity of the fluid at a large dis-
tance from the object. Thus, for flow past a sphere at steady state:

F, = (RR2)(1/2p 02) (4.338)

The resultant force of gravity and buoyancy driving the motion of the
sphere is given by:

3 —
p_ T e.—p)

= (4.339)
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Comparing Egs. (4.329) and (4.330), for the net force to be zero, as it is
at the terminal settling velocity of the fluid:

= 48D(p.—p) (4.340)

3po2

The friction factor in Eq. (4.331) is referred to as drag coefficient, and

is represented by C,,. For a long, smooth, horizontal pipe of length L

at steady state for fluid with constant p and p, the force exerted by the
fluid on the inner pipe wall for either laminar or turbulent flow is:

oar

0 r=R

L2n a
E=[[-uS: Rdodz (4.341)
0

Comparing Eqgs. (4.340) and (4.341):

=R (4.342)

Thus, the friction factor is a function of the Reynold’s number and the
L/D ratio.

For laminar, steady, incompressible flow in circular pipe, the
Hagen-Poiseuille flow distribution is given by:

Z;ss_ApRz r 2
=4I 1—(§J (4.343)

Substituting Eq. (4.343) in Eq. (4.342), f can be calculated as:

f=16/Re (4.344)

where Re = p<v_>2R/|.

Equation (4.335) has been found to be valid for Reynold’s num-
bers less than 2100. For turbulent flow in a smooth, circular tube, the
friction factor is given by the Blasius formula:

0.0791
The Blasius formula is valid for a Reynold’s number less than 10°. The
friction factor during flow between two plates moving in opposite
directions when governed by the momentum transfer and relaxation
equation is given by:

f — 4.346
or Tnom > Ty (4.346)
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- 1 1
. he Ll 4347
u ;cne ZCOS[‘C A2 4]sm(an) (4.347)
oo T 1
8u‘/BZ|b=21‘7un(—1)"cne ZCOS[‘C,/li—ZJ (4.348)

The definition used for the friction factor at steady state is retained

and:

f=-v_, /sqrt(yt_ ) uou/0Z/(p/2 <v>?)

(4.349)

<u'>= i— (1= (=1)")* exp(-1/2) cos (sqrt((A2 - 1/4)t)/n*n*>  (4.350)

Combining Eqs. (4.347), (4.348), and (4.349):

f=-v_, /sqrt(yt_ ) nou/0Z/(p/2 <v>?) (4.351)
Defining Re = (p <v>b/)
i 2(1—(=1)" )(—1)”*137% cos (t, A2 — %]
= Rle 1 - (4.352)
. . cos[‘c,}kﬁ —ZJ
21, —(1-(-1)")%e 2 B a—

For example, taking the first few terms in the infinite series in
Eq. (4.352):

1 1
) COS(T’M%_Z)+COSET’M§_Z]

f=Re -
cos| Ty|AT ——

4) 1 1

— 4 ———cos| T, |\ - =

n? In? 5 4

For the flow around the sphere, the friction factor can be shown to be:

(4.353)

fera (4.354)
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This can be derived from Stokes’ law. This has been found valid for
Re < 0.1 in the creeping flow regime.

Other Constitutive Relations

Notable in the literature among the equations used as a constitu-
tive relation to describe blood rheology is Casson’s equation. The
shear stress and shear rate dependence for a Casson fluid is show
in Fig. 4.17.

As the shear rate increases, the apparent viscosity decreases in
Casson fluids. This could mean that the particulate aggregates become
smaller, and at some point the fluid reverts to Newtonian behavior. In
blood, the aggregates are formed by RBCs. At low shear rates, the
apparent viscosity of Casson fluid is high, indicating aggregates of
RBCs. Casson’s equation may be written as:

90,
Ji= 5+ a?;l (4.355)

The pressure drop and flow data from blood in tubes can be used in
a log graph to obtain the transition point where the fluid reverts from
Casson to Newtonian behavior. The momentum balance equation
and the Casson equation can be combined to obtain the governing
equation for fluid flow in a circular pipe. This can be solved and the
velocity profile obtained as:

A g e

n
|
N |
T la
N|g
—

Shear stress

Shear rate

Ficure 4.17 Casson fluid shear stress-shear rate relation.
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When the shear stress equals the yield stress, the corresponding
radius r* can be denoted as the critical radius.

Bernoulli Equation for Blood Pumped by the Heart

The generalized mechanical energy balance equation can be written
to account for the pumping work performed by the heart in the
human anatomy to cause blood to flow through the arteries. This
equation is also referred to as the Bernoulli equation for work done
by the heart. The changes in fluid pressure, potential energy, and
kinetic energy during the flow of blood can be accounted for by this
equation. The flow is assumed to be at a steady state. The density of
the fluid is also assumed to be constant, or the flow is said to be
incompressible. The Bernoulli equation, which was introduced in
Chap. 1, can be written between two locations in the bloodstream in
human anatomy, 1 and 2, as follows:
&} ot Py ;

P %
o +8z,+ MW, = 0 +8z, + > +h

5 (4.357)

friction
Each term in the equation has units of energy per unit mass and rep-
resents the pressure head, potential energy, and kinetic energy at
locations 1 and 2 in the blood flow stream. The work done by the
heart is given by W , and 1 is the efficiency of the pump work. The fric-
tion losses can also be accounted for by h

friction”

Summary

Blood is a colloidal dispersion. It consists of RBCs (90 percent), WBCs
(1 percent), platelets (5 percent). The RBC volume fraction is called
the hematocrit and typically varies between 10 and 50 wt %. The
Fahraeus-Lindqvist effect is the change observed in the viscosity of
blood during flow with a change in the diameter of the circular conduits.
The marginal zone theory was developed to explain the Fahraeus-
Lindqvist effect. The discharge rate of blood flow as a function of
plasma layer thickness, viscosity of the core layer, viscosity of the
plasma layer, radius of the conduit, and pressure drop was derived
from first principles.

The blood flow in a dialysis machine is through rectangular con-
duits. The discharge rate of blood through a narrow slit 2B distance
apart as a function of the core layer, plasma layer viscosities, and
pressure drop was derived for Newtonian fluids. Expression for
plasma layer thickness as a function of core layer hematocrit, H , and
feed hematocrit, H,, can be developed. The mathematical expression
was derived by Charm and Kurland [4] to capture the dependence of
the viscosity of the blood at high shear rates on hematocrit and tem-
perature. The solution for plasma layer thickness § is implicit and
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requires solving two simultaneous nonlinear equations and two
unknowns. An explicit method for obtaining plasma layer thickness
was developed by Sharma [5]. The temperature parameter used to
describe the variation of blood viscosity is expressed as a linear
function of hematocrit for core and plasma layers. This leads to the
simplification of the system of two simultaneous nonlinear equa-
tions into a single quadratic expression for the square of the plasma
layer thickness.

A list of 46 viscoplastic fluids was given in Table 4.1. The yield
stress concept is an idealization and has not been measured directly.
It has been found by extrapolation from high shear data. Other con-
stitutive relations that may be applicable to describe blood flow, such
as Casson fluid, were discussed briefly. An expression to represent
the shear stress versus shear rate behavior that may be applicable to
describe blood flow is the generalized Newton’s law of viscosity. This
expression can be used to account for the finite speed of propagation
of momentum. This is significant in transient applications. The
damped wave momentum transfer and relaxation equation can be
derived from the kinetic theory of gases or by analogy to molecular
diffusion from the Stokes-Einstein equation, taking into account the
acceleration of the molecules; or by analogy to molecular conduction
from the free electron theory, taking into account the acceleration of
the electrons due to a collision with an obstacle.

The transient velocity profile that arises when a flat plate is sud-
denly subject to velocity V is derived using the damped wave momen-
tum transfer and relaxation equation for a semi-infinite medium of
fluid. A novel procedure called the method of relativistic transforma-
tion was used to obtain closed-form analytical solutions for the veloc-
ity profile for a initial, stagnant, semi-infinite fluid. Four regimes of
solution for velocity profile can be recognized: (a) an inertial regime;
(b) a regime at long times at a given location, T > X, characterized by
a modified Bessel composite function in space and time of the zeroth
order and first kind; (c) a regime at shorter times at a given location,
T oin < T < X, characterized by a Bessel composite function in space
and time of the zeroth order and first kind; and (d) a regime at the
wavefront, T = X. Some interesting features can be seen from the
model solutions. These include space-time symmetry, point of inflec-
tion in the velocity profile, zero curvature at X = 0, and subcritical
damped oscillations under certain conditions. Mathematical expres-
sions for inertial lag time and penetration distance were derived.

The transient velocity profile during vertical flow subject to a
Darcy pressure gradient was developed using damped wave momen-
tum transfer and relaxation equation. The permeability number is an
important dimensionless group that governs the flow characteristics.
For permeability numbers, Pb > %4, the solution changed in character



Rheology of Blood and Transport

from monotonic decay to cosinuous oscillatory. These oscillations
were found to be subcritical and damped.

The transient velocity profile between two plates moving in
opposite directions at velocity V and —V separated by distance 2a was
studied using the damped wave momentum transfer and relaxation
equation. The method of separation of variables was used to obtain
closed-form analytical solutions expressed as infinite Fourier series.
The solution was found to be bifurcated. For certain fluids with large
momentum relaxation times, the velocity is expected to transition
from monotonic exponential decay to cosinuous damped oscillatory.
Subcritical damped oscillations can be expected under certain condi-
tions. The solution was found to be in accordance with Clausius
inequality. The final condition in time at steady state was used, lead-
ing to dropping a growing exponential term in the time domain.

The transient velocity profile of fluid under vertical flow between
two plates moving in opposite directions at velocity V and -V sepa-
rated by distance 2a was studied using the damped wave momentum
transfer and relaxation equation. For large permeability numbers, the
governing equation for wave velocity was seen to be a Bessel differ-
ential equation. The velocity profile of fluid under vertical flow
between two plates considering the viscous, gravitational, and per-
meability effects was derived. The profile was characterized by a
Bessel composite function in space and time of zeroth order and first
kind. The expression was valid for Pb > %. It is subcritical damped
oscillatory.

The transient velocity profile of a viscous fluid in a circular
conduit using damped wave momentum transfer and relaxation
equation was derived using the method of separation of variables.
An infinite Fourier series expression for velocity profile was devel-
oped. At large relaxation times, subcritical damped oscillations in
velocity can be expected.

The oscillations in a U-tube manometer were modeled using the
damped wave momentum transfer and relaxation equation. The
third-order ODE was analyzed. The conditions where oscillations can
be expected were also derived. This is when the oscillation number is
> —2/27. A mathematical expression for displacement of fluid that is
damped oscillatory was obtained.

Transient tangential flow in an infinite medium, transient flow
past a sphere, flow between concentric spheres, and radial flow
between parallel disks were studied using the damped wave
momentum transfer and relaxation equation. The velocity profile
under periodic boundary conditions also was derived. The use of
friction factors under transient flow was reviewed. The Bernoulli
equation was written, taking into account the work done by the heart
causing blood to flow.
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Exercises

Review Questions
1.0 What does hematocrit mean?
2.0 What are the differences between RBCs and WBCs?

3.0 What happens when the diameter of the blood-flowing capillary is
decreased?

4.0 What are the key parameters of the marginal zone theory?

5.0 Whatwould be the key parameters should the assumption of Newtonian
fluid be replaced with non-Newtonian fluid in the marginal zone theory?

6.0 Is there allowance for boundary layer formation in the marginal zone
theory?

7.0 What is the difference between plasma layer thickness and boundary
layer thickness?

8.0 Will the plasma layer thickness change with a change in temperature?

9.0 What are the advantages of using the explicit method for calculation of
plasma layer thickness?

10.0 Can a viscoplastic fluid that is homogeneous and made of one compo-
nent be found?

11.0 Why is yield stress an idealization?
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12.0 What is the physical significance of the relaxation time of momentum?

13.0 How many regimes were found in the transient velocity profile gov-
erned by the damped wave momentum transfer and relaxation equation?

14.0 What is penetration distance?
15.0 What is momentum inertial lag time?

16.0 What is a permeability number? What happens at Pb > 0.25 during
vertical flow subject to a Darcy pressure gradient governed by the damped
wave momentum transfer and relaxation equation?

17.0 What are the differences in a transient velocity profile for a fluid moving
between two vertical plates at constant velocity when the plates are moving
in the same direction and when the plates are moving in opposite directions?
The governing equation is the damped wave momentum transfer and relax-
ation equation.

18.0 What are the differences in the transient velocity profile during vertical
flow when the fluid is governed by the parabolic momentum transfer equation
and the hyperbolic momentum transfer equation?

19.0 What are subcritical damped oscillations in velocity?

20.0 What is the significance of the oscillation number during oscillations of
a fluid in a U-tube manometer?

21.0 Discuss the transient velocity profile during tangential flow past a
sphere governed by the damped wave momentum transfer and relaxation
equation.

22.0 Discuss the transient velocity profile during flow between two concen-
tric spheres governed by the damped wave momentum transfer and relaxation
equation.

23.0 Discuss the transient velocity profile during radial flow between paral-
lel disks governed by the damped wave momentum transfer and relaxation
equation.

24.0 Discuss the transient velocity profile when the periodic boundary con-
dition is used when the fluid is governed by the damped wave momentum
transfer and relaxation equation.

25.0 What is the term-by-term significance of the Bernoulli equation for the
pump work done by the heart?

26.0 Why are friction factors important in the flow of blood in human
anatomy?

27.0 What is meant by rheology of blood flow?

28.0 How will you measure the relaxation time of momentum of blood?
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29.0 Will there be two relaxation times of momentum of blood, one for the
core layer and one for the plasma layer?

30.0 What are the issues in a system described by a third-order ODE?

Problems

31.0 Aflatplate is moved suddenly between two fluids of kinematic viscos-
ity, v, and v,, and relaxation times t___ and t___, respectively. The fluid at the
two surfaces that binds them is stationary. Compute the force exerted on the
plate, and obtain the distance of the plate from the wall for balance.

Show that the governing equations for the two fluids may be written as:

u /9t + Ju /9t = 0*u/9X?
K0%u /9t + du/at = Bo*u/9dX?

where u = vx/ 1%

T = t/Tmom

X = Z/(’Y’tmoml)
B=1%/v
k=T /T

mom2’ “mom1

The nonhomogeneity in the boundary condition can be removed by superpos-
ing the steady-state and transient solutions:

Let the distance of the plate from the top surface be b and the distance from
the bottom surface be a:

Letu=u*+u'

Show that at steady state:

u*=1-X/X, (fluid on top of the plate)
u*=X/X_ +1 (fluid below the plate)

After removing the damping terms, show that the governing equations for
the transient component of the fluid atop the plate and for the fluid below the
plate can be written after a u = wexp(-t/2) substitution:

’w/ov? —w/4 = *w/oX?

The u = wexp(—t/2x) substitution for the governing equation for the fluid
below the plate:

’w/or* —w/ 4 = (B/x)*w/0X?
The space and time conditions are:
X=0,u'=0

X=X,u'=0; X=X, u'=0,7=0, u=0. Use the method of separation of variables
to solve for the transient component of the dimensionless velocity. Show that u'=
X ¢, exp(=t/2)exp(-tsqrt(1/4-A,2) sin(A X) where A, =nn/X,,n=1,2,3,...and
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where ¢, =2(1 - (-1)")/nn. Furthermore, for a small distance between the plate
and the bounded surface, show that u' = 3. c, exp(-1/2)cos(tsqrt(A, > — 1/4)x
sin(A, X).

In a similar fashion, for the fluid below the plate, show that u' = Zf c,X
exp (—t/2)exp (—tsqrt(1/4x> - { H))sin((ic/B)/2C X) where { =nn/X ,n=1,2,3...
and where ¢, =2(1 - (-1)")/nm.

Derive the force on the plate during transient flow and equate the contribu-
tions of the fluid on top of the plate and from the bottom of the plate. Make use
of the integrating factor if necessary. Is the force oscillatory for small separation
distances between the late and the bounded surface?

32.0 Microlayer composites were coextruded in up to 3,713 alternating layers.
The interdiffusion of two miscible layers of polycarbonate and copolyester was
studied at temperatures from 200 to 230°C at the polymer laboratory at Case
Western Reserve University. Extend the analysis in Problem 1.0 to # layers.

33.0 From the analysis in Exercise 32.0, can the layer rearrangement be pre-
dicted? What secondary flows can be predicted?

34.0 Consider n layers of n different fluids on top of each other in a vertical
container. Extend Torricelli’s theorem to obtain the efflux velocity of the fluid
from the bottom of the container. Derive the azimuthal velocity as a function
of space and time.

35.0 The flow of blood in a circular pipe for the plasma layer and core layer
was studied, and the discharge rate as a function of the intrinsic viscosity of
the plasma and core layers and the thickness of the plasma layer radius of the
capillary was derived. Derive the discharge rates as a function of pressure drop
and other parameters of flow for the slit flow limit.

Let the width of the flat plates be 2W, the area of the cross-section be A, and
the thickness of the core layer be 25 . The boundary conditions are:

x=0,00/9z=0
x=W,v?’=0
x=0,T °=1 °,0/=0°
C zx X X X

Show that at steady state:

Op/0x =1, (@%0,/32) = ¢, =~(p, = p)/L
0,5 = (Ap/ 20 L)W - 2) = Ap82/2L(1 /= 1/1)
0= (Ap/20 LYW~ 2)

Show that the average flow rates in the core and plasma layers can be calcu-
lated as:

6(
<v5>=2/87 [ 205 dz=(Ap/u L)W?/2-82/4) - Ap82/L(1/u, ~ 1/u,)
0
= (ApWS2/1L) AW/8 )2~ 1)~ 4ApW(E3)/L(1L /- 1/
Q' = 4W(Ap/ 1 L)W= 827 /(W +3)
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36.0 For the geometry and space conditions shown in Problem 5.0, derive
the transient pressure and velocity distributions as a function of z and time.
What is the critical thickness prior to the onset of subcritical oscillations in
the flow rate?

37.0 Repeat the analysis in Problem 1.0 for a vertical plate. Study the response
to an oscillating velocity introduced by the vertical plate.

38.0 Consider the coaxial flow between two cylinders. The free stream velocity
approaching the coaxial cylinders is constant at V. Develop the transient velocity
profile in the annulus using the damped wave momentum transfer and relax-
ation equation. What is the average velocity? Where is the location of maximum
velocity? Obtain the pressure drop versus discharge rate relationships at steady
state and transient state. Use the method of separation of variables, and let the
inner and outer radii be R and xR, respectively, and develop the conditions
where subcritical oscillations in the velocity can be observed. What is the force
exerted by the fluid on the surface? Defining the friction factor f as:

F =f(1/2p <v>?)A,

Obtain the friction factor at a steady state and transient state for large pipes
and at a transient state for small pipes. A, may be taken as the wetted surface
area, which is 2nLR (1 + x).

39.0 Bulk flow effect. Consider a one-dimensional flow due to a constant pres-
sure drop along with bulk flow. Show that after neglecting the viscous effects,
the governing equation can be written as:

Tom (070 /0 +v 0% /0tdx) + (1, dv /ot +v )(dv /0x) +dv /ot = Ap/pL

At steady state:
vx2/2 =c+x(Ap/L)

Letv =v+0!
X X X

t=t/t, su=0v/V

ref /

morn; X= x/VTmom: pPr= Ap/(pvref L/‘cmom)

Show that the transient portion of the solution will obey:
(Q*u/ 0t + ud*u/019X) + (du /9t + u)(du/9X) + ou/at=0
Let u = V(1)g(X)
V'g+Vg Vg +g'V(Vig+Vg)+V'g=0
VI/IV+V/V/QV +V)==-¢ =¢*

gx)=—x+d
V'+V'(1-2c2V)-V%*=0

Seek a solution for V using the Frobenius method.
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40.0 In the chapter, the radial flow between two concentric spheres of an
incompressible, isothermal liquid was derived. The transient velocity distribu-
tion is examined using the damped wave momentum transfer and relaxation
equation. Let the radii of the two spheres be R and mR, respectively. The gov-
erning equation for the radial component of the velocity can be written. The
velocity is assumed to consist of steady-state and transient parts. From the
steady-state part of the solution to the velocity profile obtain the friction factor
as a function of the Reynold’s number for laminar flow. The transient velocity
profile is derived by the method of separation of variables. Obtain the friction
factor for transient flow for large spheres and small spheres.

41.0 A conical thrust bearing idealized as a cone of vertex angle 26 and maxi-
mum cone radius R rests and revolves over a uniform fluid layer of thickness
d at a constant angular velocity o. Derive the transient and steady-state veloc-
ity profileand obtain expressions for the torque required and the rates of heat
dissipation in the bearing at steady state and transient state using the damped
wave momentum transfer and relaxation equation.

42.0 In the falling ball viscometer, the shear rate is given by the terminal
settling velocity of the sphere over the radius of the falling ball and the shear
stress by 2/9¢R(p,— p). Consider the acceleration regime of the settling sphere.
Develop the friction factor and Reynold’s number relationship during accelera-
tion. Show how the falling ball viscometer can be used to obtain the viscosity
and relaxation time information from experiments.

43.0 Examine the rotating cylinder viscometer in transient and steady-state
conditions. The radii of the cylinders are 3.2 cm and 3 cm, and the outer cylin-
der is suddenly rotated at 180 rpm. For a liquid filled in the annular space to a
depth of 8 cm, the torque produced on the inner cylinder is 10~ Nm at steady
state. Use the damped wave momentum transfer and relaxation equation,
and obtain the spatiotemporal velocity profile. Calculate the viscosity of the
liquid. Develop a procedure to obtain the relaxation time of the liquid using
the transient torque data.

44.0 There is interest in a “Peace Pipeline” to bring gas from Iran to North
Delhi via different countries such as Afghanistan, Pakistan, and possibly
Turkmenistan. Prepare a preliminary estimate of the pipe size required for a
transcontinental pipeline between the Gulf region and North Delhi. It has to
handle 1000 std m®/hr of natural gas at an average pressure drop of 3 atm abs
at an average temperature of 25°C. What is the maximum force exerted by
the pipe? Is this during transience or steady state? What is the ideal friction
factor relation to be used? What is the optimal number of pipes to minimize
the total cost to achieve the objectives of the task? Using the damped wave
momentum transfer and relaxation time equation, obtain the time it takes to
reach steady state and the conditions needed to avoid subcritical damped
oscillations.

45.0 Consider a hot circular pipe through which a fluid is flowing in laminar
flow. Obtain the transient velocity profile using the damped wave momen-
tum transfer and relaxation equation. Obtaining an average velocity, use the
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governing equation for heat transfer and plug the derived expression for the
velocity in the azimuthal direction.

T(°T/0F + < v, &°T/0toz +dT/ot =o(l/r d/9r (rdT/or)

Obtain the transient temperature profile using the damped wave heat con-
duction and relaxation equation. Obtain the hydrodynamic boundary layer
thickness to the thermal boundary layer thickness. Discuss the implications
of Prandtl number in transience.

46.0 In Ref. 8, a general substitution was used to reduce the hyperbolic PDE
in one space dimension into a parabolic PDE. Consider all three space dimen-
sions, and seek a suitable general substitution to reduce the hyperbolic PDE
in three space and time dimensions into a parabolic PDE.

47.0 Obtain the pressure and velocity distribution as a function of z and ¢ in
a hemispherical cup using the extended Euler equation in one dimension and
two dimensions, respectively. What is different in the predictions of the efflux
time, velocity, and pressure profile?

Volume of a partially filled sphere = 7t/6h, (3r,> + 1)

48.0 Develop the friction factor for a bubble moving through a liquid. Obtain
the transient and steady-state relationships. What assumptions are necessary?

49.0 Consider an elutriating bed of particles. Write the governing equation
for v_. Obtain the pressure drop versus flow rate in a circular pipe for mate-
rials with a positive permeability coefficient. Obtain the conditions where
the velocity will exhibit subcritical damped oscillations using the extended
Euler equation, making allowance for Darcy’s law with a positive permittivity.
In an elutriating bed, as the superficial velocity increases, the pressure drop
decreases. This is in contrast to Darcy’s law for packed beds when the pressure
drop is increased for increased flow rates. Use the damped wave momentum
transfer and relaxation equation.

50.0 Intravenous infusion. Gravity flow is used for a patient infusion system.
The fluid is allowed to flow out an IV bag by gravity flow. A 400-mL IV bag
containing an aqueous solution is connected to a vein in the forearm of a
patient. Pressure at the veins is 1 atm. The IV bag is placed on a pedestal such
that the entrance to the tube leaving the IV bag is 1.8 meters above the vein
into which the IV fluid enters. The length of the IV bag is 26 cm. The IV is fed
through an 16"-gauge tube, and the total length of the tube is 3 m. Compute
the flow rate of the IV fluid. Estimate the time needed to completely deplete
the contents of the bag.

51.0 The cardiac output in human anatomy is about 5 L/min. Blood enters
the right side of the heart at a pressure of 1 atm. It flows via the pulmonary
arteries to the lungs at a mean pressure of 1.0144 atm. Blood returns to the left
side of the heart through the pulmonary veins at a mean pressure of 1.0105 atm.
The blood is then ejected from the heart through the aorta at a mean pressure
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of atm. Apply the Bernoulli equation and estimate the power or rate of work
done by the heart.

52.0 One type of a compact mass exchanger used for detoxification of blood
uses tubes whose cross-sectional area is an equilateral triangle. Each of the
sides of the triangle is H. When blood is forced to flow through these mass-
exchanger elements, it can be expected that the core layer and plasma layer
form according to the Fahraeus-Lindqvist effect. Calculate the total discharge
rate of the blood as a function of the viscosity of the core layer, viscosity of the
plasma layer, plasma layer thickness, length of the tube, pressure drop, and
any other parameters needed.

53.0 Repeat Exercise 52.0 for a trapezoidal cross-section of width 2 and b
separated by H.

54.0 Calculate the total discharge rate of the blood in a circular tube with
radius R as a function of viscosity of core layer, viscosity of plasma layer, plasma
layer thickness, length of the tube, pressure drop, and any other parameter that
is needed when the fluid is said to be non-Newtonian. For such fluids:

v, !
=

55.0 Repeat Exercise 54.0 for flow through a rectangular narrow slit 2B apart
and width W.

56.0 The marginal zone theory and the discharge rate of blood as a function of
the applied pressure drop, length of the circular conduit, radius of the circular
conduit, viscosity of the core and plasma layer, and plasma layer thickness was
derived in Sec. 4.1. This was at steady state. In Sec. 4.5.6, the transient flow in a
circular conduit was studied using the damped wave momentum transfer and
relaxation equation. Now study the flow of blood in the core and plasma layers
in transit using the damped wave momentum transfer and relaxation equa-
tion. What are the interesting features of the solution to the transient velocity
profile?Under what conditions of the relaxation time of momentum and plasma
layer thickness can subcritical damped oscillations in velocity be expected?
Under these circumstances, what will happen to the plasma layer formation?

57.0 Repeat Exercise 56.0 for rectangular slit 2B apart and width W.

58.0 Repeat Exercise 56.0 for a triangular cross-section, as described in
Exercise 56.0.

59.0 The cardiac output in human anatomy is about 5 lit/ min. What would
be the fluid velocity in the human arm, human leg, human spinal region,
human stomach, etc.? What idealization of the geometry would you recom-
mend for each region of the human anatomy? Assume steady state.

60.0 How will you design an electronic blood pressure monitor for human
anatomy in a noninvasive manner using the theory developed in Sec. 4.5.12?
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CHAPTER 5
Gas Transport

Learning Objectives

¢ Learn Hill plot and equilibrium dissociation

¢ Simultaneous diffusion and reaction in Islets of Langerhans
¢ Michaelis-Menten kinetics

e Asymptotic limits at high and low concentrations

¢ Transient oxygen diffusion in capillary and tissue layers

¢ Oxygen concentration profile in cell-free plasma layer

¢ Continue discussion on Krogh tissue cylinder

¢ Include wave diffusion effects in transient conditions

¢ Kinetics of nitric oxide formation, diffusion, and transport

5.1 Oxygenation Is a Reversible Reaction

Oxyhemoglobin, HbO, , dissociates to hemoglobin, Hb, and oxygen
via an equilibrium reaction. Hemoglobin binds to oxygen to form
oxyhemoglobin at high partial pressures of oxygen, usually in the
lungs. Heme means group and globin represents the globular protein.
Hemoglobin is a metalloprotein with a molecular weight of 68,000 gm /
mole. It consists of four polypeptide chains, two of them o type and
two of them P type. It is contained in the RBCs of vertebrates. Ninety-
seven percent of RBCs is Hb. Hb transports oxygen from the lungs or
gills to the rest of the anatomy, where the oxygen is released for use
in cells. It possesses oxygen-binding capacity. Hemoglobin was dis-
covered by Hunefeld in 1840. Funke grew Hb crystals in water and
alcohol. In 1959, Perutz elucidated the structure of hemoglobin by
x-ray crystallography. He was awarded the Nobel Prize for it in 1962.
At full saturation, all erythrocytes are in the form of oxyhemoglobin.
As the erythrocytes diffuse to tissues deficient in oxygen, the partial
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pressure of oxygen will decrease, resulting in the decrease of oxygen
and hemoglobin from oxyhemoglobin.

kg
HKO,, & Hb+n0, (5.1)
b

The equilibrium reaction is shown in Eq. (5.1), where k. is the forward
reaction rate, and k, is the reverse reaction rate, and 7 is the number of
molecules of oxygen that bind with hemoglobin. Chemical equilibrium
is the state at which the chemical activities, usually denoted concentra-
tions of the reactants and products, are invariant with time. At this
juncture, the forward and reverse reaction rates are equal. They are not
zero, and the process is in a state of dynamic equilibrium.
An equilibrium rate constant, Keq, can be defined as follows:

=1L (5.2)

The rate of oxygenation can be written as:

dCHbO
S =k Crio + K CCl, (5.3)

Equation (5.3) may be written provided the rate of the forward reac-
tions is simple and obeys the first-order kinetics and the rate of reverse
reaction is first order with respect to hemoglobin and nth order with
respect to oxygen. At equilibrium, Eq. (5.3) becomes zero and:

n
— CHbCozn
HbO,, — K
eq

C (5.4)

The extent of oxygenation can be quantitated by a term called satura-
tion. Defining saturated hemoglobin as ¢:

Chio 1
o= M= (5.5)
Cip * Cro,, 14 Cr
Cino,,
Combining Egs. (5.5) and (5.4):
1 o
o= =2 (5.6)
1+ Kneq Cozn + Kecl
COZn
Assuming ideal gas law:
_Fo (5.7)



Gas Transport

Plugging Eq. (5.7) in Eq. (5.6):

o 15,
(b, + Ko(RTY) o

Equation (5.8) can be made simpler to use by defining a certain p,,—
that is, the partial pressure of oxygen at which 50 percent of the
oxygen-binding sites are filled. Thus, when ¢ = 0.5:

P5
0.5=—1t (5.9)
Pl + K (RT)

Obtaining the reciprocal of Eq. (5.9) and rearranging it can show
that:

pso = KU"(RT) (5.10)

Substituting Eq. (5.10) in Eq. (5.8):

o= PO 5.11
(Vb + 72 1D

Equation (5.11) is referred to as the Hill equation. It is named after
Archibald V. Hill, who was awarded the Nobel Prize in physiology or
medicine in 1922 for his discovery relating to the production of heat
in the muscle. A plot of ¢ versus the partial pressure of oxygen is
called the Hill plot. It can be seen that as temperature varies, the plot
will vary. The values of 7 and p,; can be obtained by a log-log plot of
the experimental values of the partial pressure of oxygen and the
saturation level of hemoglobin upon suitable modification.

This can be seen in Fig. 5.1 The curve is sigmoidal in shape. When
the temperature is increased, as indicated in Eq. (5.10), the p,, will
increase, provided the equilibrium rate constant does not change
significantly. This can result in the dissociation curve shifting to the
right. This is represented by the dashed curve in Fig. 5.1. Another
cause attributable to the shift of the curve to the right in Fig. 5.1 with
an increase in temperature is the denaturing of the bond between the
oxygen and hemoglobin.

The sigmoidal shape of the Hill plot is attributed to the coopera-
tive binding of oxygen to the four polypeptide chains. Cooperative
binding is the increased affinity for more oxygen to bind with hemo-
globin once the first oxygen atom has attached itself to hemoglobin.

Other factors that can change the equilibrium rate constant K
and p,, are pH and organic phosphates. An increase in acidity or a
decrease in pH results in what is referred to as the Bohr shift.
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Dissociation of oxygen from oxyhemoglobin

0.9

0.8 1 —

0.7 =

0.6 2

0.5 1 +

0.4 1 -

0.3 1 e

0.2 1 et

0.1 1 il

o<~~~ F71————+—1—

0 20 40 60 80
Partial pressure of oxygen (mmHg)

Saturation level

Fieure 5.1 Oxygen dissociation from oxyhemoglobin—the Hill plot.

During Bohr shift, the curve in the Hill plot will shift to the right.
Due to the increase in sensitivity to acid, more oxygen needs to be
given up. 2.3-diphosphoglycerate (DPG) organic phosphate binds to
hemoglobin. This decreases the affinity of oxygen, causing a shift of
the curve to the right in the Hill plot [1].

Each heme group in hemoglobin contains one iron (Fe) atom that
is capable of binding one oxygen molecule via ion-induced dipole
forces. The oxidation state of Fe in oxyhemoglobin is 3, not 2. The
polypeptide chains in Hb bind together by noncovalent interactions.
The binding is said to be cooperative. When oxygen binds to the iron
complex, the Fe atom moves back toward the center of the plane of
the porphyrin ring. The imidazole side chain of the histidine residue
interacting at the other pole of the iron is pulled toward the porphy-
rin ring. The binding of oxygen is a cooperative process. When one
subunit in hemoglobin is attached to oxygen, the other subunits
undergo a conformational change, resulting in an increase in affinity
to oxygen. This is why the Hill plot is sigmoidal in shape (Fig. 5.1).

The oxygen-binding capacity of Hb is decreased in the presence of
carbon monoxide (CO). This is because CO also competes for the avail-
able binding sites for oxygen. This effect can be seen in tobacco smok-
ers. In heavy smokers, 20 percent of the active sites in Hb are blocked.
The affinity of CO to Hb is 200 times greater than that with oxygen.
Small amounts of CO can reduce the oxygen transport capability of
hemoglobin. When Hb combines with CO, it forms a bright pink com-
pound called carboxyhemoglobin. Due to pollution, air containing CO
can cause headache, nausea, and even unconsciousness.

Henry’s law can be applied to estimate the partial pressure of
oxygen:

po, = HC

2 OZ

(5.12)
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H is the Henry’s law constant, and C,, is the concentration of the dis-
solved oxygen concentration in the blood The Henry’s law constant for
human blood at 37°C is 0.75 mmHg/uM.

The equilibrium rate constant, K_, changes in response to tem-
perature. This is described by van’t Hoff's equation:

dln(K,.)  AH

dT  RT?

where AH is the enthalpy change for the reaction. Equation (5.13) was

integrated and an expression developed in terms of K at two differ-
ent temperatures. Thus:

ln[%] = -%(Tl— le (5.14)

Furthermore, it is known that:

(5.13)

_AG _AH AS

Keq =e RT =¢ RTgR (5.15)

Equation (5.15) follows from the relation AG = AH — TAS. G is the
Gibbs free energy, as discussed in Chap. 1.

Diffusion of Oxygen in Tissue and Blood

Oxygen availability becomes limited in some regions of the tissue.
The metabolic rate in the cells and the demand for oxygen is greater
than the oxygen that has diffused to that region. Oxygenation becomes
a diffusion-limited process. Due to this phenomena, growth of multi-
cellular systems over 100 um does not happen. A condition called
hypoxia has been observed in Brockmann bodies in fish. Oxygen-
partial pressures were measured in the islet organs placed in culture.
A microelectrode was used to detect oxygen-partial pressure in the
surrounding region of an islet organ that is 800 pm in diameter and
within the cells. Within a distance of 100 um for the case of no convec-
tion [2], Po, is close to zero. A condition called necrosis is reached
where the Cells begin to die without sufficient oxygen supply. The
experiments with convection showed increased p,, at the surface and
core regions of the islet.

Oxygen supply, in addition to diffusion, comes about by the cir-
culatory system and through the hemoglobin molecule. Oxygen is
carried in the blood by convection to capillaries by the circulatory
system.

Islets of Langerhans (Fig. 3.18) are spheroidal aggregates of cells
that are located in the pancreas [2]. They secrete hormones that are
involved in glucose metabolism, particularly insulin. Transplantation
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of isolated cells is a promising treatment for some forms of type 1
diabetes. Islets removed from the pancreas are devoid of their inter-
nal vascularization. The metabolic requirement of the cells requires
oxygen to diffuse from the external environment and through the
oxygen-consuming islet tissue. The oxygen supply is a critical limit-
ing factor for the functionality and feasibility of islets that are encap-
sulated, placed in devices for implantation, cultured, and used in
anaerobic conditions. Theoretical models are needed to describe the
oxygen diffusion. The parameters of the model require knowledge of
the consumption rate of oxygen, oxygen solubility, and the effective
diffusion coefficient to oxygen in the tissue.

5.2.1 Fick Diffusion and Michaelis-Menten Kinetics in
Spherical Coordinates

Colton et al. [3] developed an oxygen reaction and diffusion
model. They assumed that the islet preparation is a suspension of
tissue spheres that can be divided into m groups. Each sphere in
group i (1 <i < m) has the same equivalent radius, R, that varies
from group to group. The tissue is assumed to be uniform, with
constant physical properties that are invariant in space. The gov-
erning equation for oxygen diffusion and reaction in spherical
coordinates with azimuthal symmetry, accounting for Fick’s dif-
fusion, can be written as:

aC, Naf .9 Culo
h _ = I ] > | )
ot D [rz) or [r or | Cy+C, (5.16)

where D, = the diffusion coefficient in the tissue
C,, = the total enzyme or complexation species concentration
C,, = the Michaelis constant

The oxygen consumption rate is assumed to obey the Michaelis-Menten
kinetics. Equation (5.16) describes the interplay of transient diffusion
and metabolic consumption of oxygen in the tissue in spherical coor-
dinates. The concentration of oxygen, C;, , can be expressed in terms
of its partial pressure, p,, . This is obtained by using the Bunsen solu-
bility coefficient, o, such that:

Co,= P, (5.17)

Substituting Eq. (5.17) in Eq. (5.16), Eq. (5.16) becomes:

IPo 1)0 P, CroPo
2 2 2 [ 2
%5 = %Dr (rzj ar|" Tor Chi+Po, (5:18)
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The product o,.D,. can be seen to the product of solubility and diffu-
sivity, and hence is the permeability of oxygen in the tissue. The
Michaelis constant, C,,, is also modified: C’,, expressed in units of
mmHg. The initial condition can be written as:

Po, = Po,, =0 (5.19)
From symmetry at the center of the sphere:

apo2
ar

=0 (5.20)

At the surface, the oxygen diffusive transport from within the sphere
must be equal to the oxygen transport by convection across the
boundary layer surrounding each sphere:

dp
Ji= kiam(pOZm_ Po, R))=0o,D; a;,)z (5.21)

where p,, (R;) = the partial pressure of oxygen at the surface,

k, = the mass transfer coefficient between the surround-
ing space and the surface of the sphere,

o, = the oxygen solubility in the surrounding space.

The total rate of oxygen transfer N from the surrounding space to all
of the spheres can be summed up as:

m

- —va Pu
N= E‘]' (4nRi2)nsfi ==V, ot (5.22)

where V= the volume of the surrounding space is given by
n_= the total number of spheres,
f; = the fraction of spheres in group i.

The initial condition for the surrounding space is:
Po,, = Po,, (0), t=0 (5:23)

The mass transfer coefficient can be obtained from suitable Sherwood
number correlations. For instance, the mass transfer coefficient for
spherical particles in an agitated tank in the islet size range of 100 to
300 um can be written as:

kd u 304 0.15 epid?
_ it imp i
Sh, = D 2+[poJ [d } f( " J (5.24)

tank
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where € is the power input per unit fluid mass and f is the function
that has to be obtained from experimental data.

Numerical methods are needed to obtain the solution to Eq. (5.18).
This is because of the nonlinearity of Michaelis-Menten kinetics.
Closed formed analytical solutions to Eq. (5.18) can be obtained in the
asymptotic limits of the following:

1. High concentration of oxygen: The rate is independent of p,
(zeroth order).

2. Low concentration of oxygen: The rate is first order with
respect to Po,

The reasons for choosing the asymptotic limits are elucidated in
Fig. 5.2. It can be seen that at low reactant concentrations, the rate is
linear [4]. At high enzyme or complexing agent concentrations, the
rate is invariant with respect to concentration. Hence, a zeroth order
can be assumed at high concentrations and a first order at low reac-
tant concentrations.

Thus, at high reactant concentrations, Eq. (5.18) becomes:

P, 1)a( %o,
o, BT :atDT(r_Zjﬁ r 7 +rmax (525)

Equation (5.18) can be nondimensionalized as follows:

r r_ R2
= X =yt = ———mai (5 06)
Rzz Po,~Po,, R; (pozo_ Po,, )Dr(xt

Rate concentration curve for michaelis-menten kinetics
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Ficure 5.2 Rate-concentration curve obeying Michaelis-Menten kinetics.
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Equation (5.25) becomes:
ou 1 0 (g ,0u), .
2t X7 oX (X axj”max 6.27)

The zeroth-order reaction at high concentrations of oxygen is a het-
erogeneity in the partial differential equation. Systems such as this
can be solved for by assuming that the solution consists of a steady-
state part and a transient part:

Letu=wus+u' (5.28)

Substituting Eq. (5.28) in Eq. (5.27), Eq. (5.27) becomes:

a1 a (),
3T - X2 9X (X X +rr (5.29)
Equation (5.29) holds good when:
L1 (o
“Trax = X2 3% (X ax) (5.30)
out 1 9 [,,ou

Equation (5.30) can be integrated twice and the boundary condition
given by Eq. (5.20) applied to yield:
X%

u> = T +d (532)

In order to obtain the solution of the integration constant 4 in Eq. (5.32),
the boundary condition given by Eq. (5.21) needs to be modified.
Assuming that after attaining steady state, the surface concentration of
the sphere would have reached the surrounding space concentration, 4
can be solved for the solution for the Po, at steady state, written as:

(R =) (5.33)

TR

The solution to Eq. (5.31) may be obtained by separating the variables
as follows:

Let u' = V(1)3(X)
Then Eq. (5.31) becomes:

V() 1 9

V() g(X)X2 X

(X2g'(X))=-A} (5.34)
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Hence, V=ce " (5.35)
X2g”(X)+2Xg(X) + X2A2¢(X) =0 (5.36)

Comparing Eq. (5.36) with the generalized Bessel function [5]:
a=2c=0;s=1;d=2A*;p=1/2

The solution to Eq. (5.36) can be seen to be:

A, X A, X
g(X)=61]”i;§” brd, ]”f/(g” )

From the boundary condition given by Eq. (5.20), it can be seen that
d, can be set to zero and:

(5.37)

J12*X) (5.38)
X

gX)=¢

The eigenvalues A, can be solved for from the boundary condition
given by Eq. (5.21). In the dimensionless form, Eq. (5.21) may be writ-

ten as:
o, |( kR _odu
_[oc )[D J”_ax'“Ri 539

t T

where (k.R,/D;)=Bi,, the Biot number (mass). This represents the
ratio of mass transfer from the surrounding space and the diffusion
within the sphere. To simplify matters from a mathematical stand-
point, Eq. (5.38) can be written in terms of elementary trigonometric

functions as:
B 2 sin(A X)
8X)=¢;,| ™ X (5.40)

The eigenvalues can be obtained from the solution of the following
transcendental equation:

A X
tan(A, X) = " 1 (5.41)
1-—"Bi X

t

The general solution for the dimensionless p,, can be written as:

U= icne‘xﬁ‘ LX)
g VX

(5.42)
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The eigenvalues are given by Eq. (5.41). The ¢, can be solved for from
the initial condition given by Eq. (5.19) using the principle of orthog-
onality and:

R; ]1/2 (}\'nX)
Do) e
R -

c =
n JR' ]%/2(7»71X)dx

0 X

Thus, the oxygen concentration profile at high oxygen concentra-
tion is obtained. At a low concentration of oxygen, the rate of con-
sumption is first order. The governing equation, Eq. (5.18), can be

written as:
o 1)0 P,
2 _ 2 2 | _
o —; _afDT(rzjar =, kppo2 (5.44)

Obtaining the dimensionless form of Eq. (5.44):

u 1 0 ou
Wzﬁa_x(xza_xj_q’z“ (5.45)
where
pOz r DTt kpRzz
u= ;X=—;1=—L1;¢>=—"L— (5.46)
Po R; R? o,D;

2m

It can be recognized that ¢ is the Thiele modulus. Equation (5.45) can
be solved for by the method of separation of variables. Let u =

V(1)g(X):

V,_ 1 i za_g _ (42 2
ST 8X[X axj‘ (02 +22) (5.47)

The solution in the time domain can be seen to be:
V = e e (5.48)
The solution in the space domain can be seen to be:
X2g”(X)+2Xg'(X)+ X?(0% +12) g(X) =0 (5.49)
Comparing Eq. (5.49) with the generalized Bessel function [5]:

a=2;c=0;s="1;d=(0>+A2); p=1/2
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The solution to Eq. (5.49) can be seen to be:

I, (2vorx) .. (a2 +o?)
c \/f +d, \/?

From the boundary condition given by Eq. (5.20), it can be seen that

d, can be set to zero and:
i (‘ [A2 + 02 X)
JX
The eigenvalues, A, can be solved for from the boundary condition
given by Eq. (5.21). In the dimensionless form, Eq. (5.21) may be writ-

ten as:
o, |( kR u
_ [(X_tj (D—TJ u= X’ Ri (5.52)

where (k,R./D;)=Bi,, the Biot number (mass). This represents the
ratio of mass transfer from the surrounding space of the diffusion
within the sphere. To simplify matters from a mathematical stand-
point, Eq. (5.51) can be written in terms of elementary trigonometric

functions as:
7 sin((AZ+92X)
8X)=c, (5.53)
n\/ A2 +0? X

The eigenvalues can be obtained by solving the following transcen-
dental equation:

tan(|A2 +07X) = —VX;WZX (5.54)
1-2up; x

t

g(X)=

(5.50)

The general solution for the dimensionless p,, can be written as:

e ol
=D)ce _
5 VX

The eigenvalues are given by Eq. (5.54). The ¢, can be solved for from
the initial condition given by Eq. (5.19) using the principle of orthog-

onality and:
R, J172 (\/ At ¢2X)
I

R h/z(\/xi +¢2X)
L, X

(5.55)

ax

(5.56)
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Thus, the oxygen concentration profile at low oxygen concentration
is obtained.

5.2.2 Wave Diffusion Effects

In the times associated with the oxygen consumption, the finite speed
of diffusion effects cannot be ignored. The damped wave diffusion
and relaxation effects may be included (Sharma [6]) in the following
manner.

At low oxygen concentration, a first-order rate of reaction can be
assumed. A semi-infinite medium of tissue is considered. A step
change in concentration is given at the surface. At times zero, the con-
centration of oxygen is at an initial value. At infinite distances, the con-
centration of oxygen would be unchanged at the initial value. The
mass balance equation for oxygen can be written as:

9, aC,
= kcoz == (5.57)

where k is the lumped first-order reaction rate constant. Combining
Eq. (5.57) with the damped wave diffusion and relaxation equation:

aC o,

O,

Jo, ==Pr 5"~ "

(5.58)

the governing equation is obtained. T is the mass relaxation time.
When it is zero, Eq. (5.58) reverts to Fick’s law of diffusion. When the
rate of mass flux is greater than an exponential rise, the wave regime is
the more dominant mechanism of transport, compared with the Fick
regime. Equation (5.58) is differentiated by x, Eq. (5.57) is differenti-
ated by ¢, and the cross term 9?]/dtdx between the two equations is:

PCo, _ FCo o
DT Fy =T, e +(1+ Tmy)T-i- 0, (559)

The governing equation for oxygen concentration in the tissue is
obtained in the dimensionless form by the following substitutions:

C

0, X

D.t

T “mr

k'=kt ,u= (5.60)

t
; T=—;X =
mr’ 4 4
C Ty

Oz

The governing equation is a partial differential equation of the hyper-
bolic type. It is second order with respect to time and space:

u % 0 .
87=W+(1+k*)a—:+k'u (5.61)
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The space and time conditions are:

X=0u=1,X=c0,u=0
T=0,u=0

(5.62)

Equation (5.61) can be solved by a recently developed method called
relativistic transformation of coordinates. The damping term is first
removed by Eq. (5.61) by e". Choosing n=(1+k") /2 and letting W =
ue™, Eq. (5.61) becomes:

PPW _PW  W(I-k")?
X2 o2 4

(5.63)

The significance of W is that it can be recognized as the wave concen-
tration. During the transformation of Eq. (5.61) to Eq. (5.62), the
damping term has vanished.

Now let us define a spatiotemporal symmetric substitution:

n=1-Xfort>X
Equation (5.62) becomes:

LW W (1K)
on? “an LT

n =0 (5.64)

Comparing Eq. (5.64) with the generalized Bessel equation :

(1KY
16

a=1;b=0,c=0;s=%; d=—

The order p =0.
Jd/s =1 i(1 — k*) and is imaginary. Hence, the solution is:

W=c I [—'1_ k*|\émJ+czKo [—h_ k|ﬁm]

(5.65)

¢, can be seen to be zero from the condition that at n =0, W is finite:

[|1—k*
W=c,I, >

(5.66)

From the boundary condition at X = 0:

T(1+k*) |1 — Kt
le 2 ZC]IO T (567)
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c, can be eliminated between Egs. (5.66) and (5.67) in order to yield:

I, G\/IZ - X [1-k'

u=
10(%|1—k*)

This is valid fort> X, k* #1. For X > t:

j (5.68)

T (%\/XZ - [1- k*j
U= (5.69)
I| Sf1-&°
012
At the wavefront, 1= X:
(k) (k)
u=e "2 =¢ X2 (5.70)

The mass inertia can be calculated from the first zero of the Bessel

function at 2.4048. Thus:
X 5 -23.1323

5.71
P 5.71)

inertia

The concentration at an interior point in the semi-infinite medium is
shown in Fig. 5.3. Four regimes can be identified. These are:
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Ficure 5.3 Dimensionless concentration at an interior point Xp =10ina
semi-infinite medium during simultaneous reaction and diffusion. k' = 0.5.
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1. Zero-transfer inertial regime: 0 0<t<7T, .
2. Times greater than the inertial regime and less than at the
wavefront: Xp >1T

3. Wavefront: 1= Xp

4. Open interval of times greater than at the wavefront: T> X

During the first regime of mass inertia, there is no transfer of mass
up to a certain threshold time at the interior point X = 10. The second
regime is given by Eq. (5.69), represented by a Bessel composite func-
tion of the first kind and zeroth order. The rise in dimensionless con-
centration proceeds from the dimensionless time 2.733 up to the
wavefront at X = 10.0. The third regime is at the wavefront. The
dimensionless concentration is described by Eq. (5.70).

The fourth regime is described by Eq. (5.68) and represents the
decay in time of the dimensionless concentration. It is given by the
modified Bessel composite function of the first kind and zeroth order.
Figure 5.4 shows the three regimes of the concentration when k* = 2.0.
It can be seen from Fig. 5.4 that the mass inertia time has increased to
8.767. The rise is nearly a jump in concentration at the interior point
Xp =10.0. When k*=0.25, as shown in Fig. 5.5, the inertia time is 7.673.
In Fig. 5.6, the three regimes for the case when k* = 0.0 are plotted. In
Table 5.1, the mass inertia time for various values of k* for the interior
point X =10.0 is shown. k"needs to be sufficiently far from 1 to keep
the inertia time positive.

The steady-state solution for Eq. (5.61) can be written as:

u* = exp(—(k*)'/? X) (5.72)

0.4
. 0.35

u

o
w

0.25

e
o

<
—
9

e
-

0.05 Xp=10

Dimensionless concentration

0 5 10 15 20
Dimensionless time, T

[\

5

Ficure 5.4 Dimensionless concentration at an interior point X =10 in a
semi-infinite medium during simultaneous reaction and diffusion. k' = 2.0.
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Ficure 5.5 Dimensionless concentration at an interior point Xp =10ina
semi-infinite medium during simultaneous reaction and diffusion. k* = 0.25.
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Ficure 5.6 Dimensionless concentration at an interior point Xp =10ina
semi-infinite medium during simultaneous reaction and diffusion. k* = 0.0.

Krogh Tissue Cylinder
The Krogh tissue cylinder was briefly discussed in Sec. 3.11. In the
early part of the 20th century, A. Krogh, a Danish physiologist,
described oxygen delivery to tissues when the concentration of oxy-
gen in the blood is uniform. More advanced models that include the
variation of concentration along the length of the capillary have been
developed in the literature. Krogh idealized the capillary and tissue
region such that capillaries supply oxygen to a cylindrical region sur-
rounding each capillary (Fig. 3.14). This pattern may be applicable in
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S. No. k (kK’t_) Mass Inertia Time (t/7_)
1. 0.01 8.741
2. 0.1 8.452
3. 0.25 7.673
4. 0.3 7.266
5. 0.4 5.979
6. 0.5 2.733
7. 1.75 7.673
8. 2.0 8.767
9. 4.0 9.871

10. 8.0 9.976

11. 25.0 9.998

12. 10.0 10.0

TaBLe 5.1 Mass Inertia Time vs. k* for Interior Point Xp = 10.0.

some cases, but not in the brain tissue, where the capillary arrange-
ment is more complex.

5.3.1 Transient Oxygen Fick Diffusion and
Michaelis-Menten Kinetics

Consider the oxygen diffusion in the tissues at transient state. The
governing equation for one-dimensional diffusion of oxygen in the
tissue can be written considering only the Fick diffusion and
Michaelis-Menten kinetics for the consumption of oxygen as:

9Co, 1) a [ 9C,, CroCo,
at ZDT(?Jﬁ[’ ar | CyeC, (-73)

where D, is the diffusion coefficient of oxygen in the tissues. The
boundary conditions are:

aC

r=R,,-D, afz =0 (5.74)
Y= RC’C02 = CR (5.75)
t=0,C, =0 (5.76)

Closed formed analytical solutions to Eq. (5.73) can be obtained in the
asymptotic limits of the following:
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1. High concentration of oxygen: The rate is independent of
oxygen concentration (zeroth order).

2. Low concentration of oxygen: The rate is first order with
respect to concentration of oxygen.

The reasons for choosing the asymptotic limits are elucidated in
Fig. 5.2. It can be seen that at low reactant concentrations the rate is
linear. At high enzyme or complexing agent concentrations the rate is
invariant with respect to concentration. Hence, a zeroth order can be
assumed at high concentrations and a first order at low reactant con-
centrations. Thus, at high reactant concentrations, Eq. (5.73) becomes:

G, 1) o[ 9C,,
3 =DT(7—)§(1’ o +rmax (577)

Equation (5.73) can be nondimensionalized as follows:

Let ‘C:E,’uzﬁ;X:L;r* :ﬁ (578)
RS ~Co, R, = (_C02 )DT
Equation (5.77) becomes:
ou 1 9 ou ;
%‘X_a_x[xa_x)”max (5.79)

The zeroth-order reaction at high concentrations of oxygen is a het-
erogeneity in the partial differential equation. Systems such as this
can be solved for by assuming that the solution consists of a steady-
state part and a transient part:

Let u=u*+u' (5.80)

Substituting Eq. (5.80) in Eq. (5.79), Eq. (5.79) becomes:

w10 (o),
ot~ X ax(x axX j“max 6.81)

Equation (5.81) holds good when:

L1 (o
—rmax-iﬁ[x axj (552

ou' 1 o (,0u
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Equation (5.82) can be integrated twice and the boundary condition
given by Eq. (5.74) applied to yield:

X2 I;ax rI:laX
u”> = T+d+Tll’1(X) (584)

In order to obtain the solution of the integration constant 4 in
Eq. (5.84), the boundary condition given by Eq. (5.75) is used. The solu-
tion for the C_ concentration profile of oxygen in the tissue space
surrounding the blood capillary at steady state can be written as:

(X2 =X 12 (1)

+maX1
"X

e 4 2 -

(5.85)

Equation (5.85) is plotted for various values of dimensionless reac-
tionrater’ inFig.5.7. A certain X less than 1 can be calculated where
the dimensionless concentration becomes 1. This is when the concen-
tration of oxygen drops to zero and is the zone of zero transfer. This
happens before the arrival of the tissue space boundary, where there
is no flux, and can be expected at large reaction rates.

Dimensionless concentration profile for oxygen in tissue

0.6

rmax =2

o
W
1

=
~
PR R S R T

o ¢
o
P R

Dimensionless concentration, u®
=)
W
1

e
—_
1

Dimensionless distance, X

Ficure 5.7 Dimensionless concentration profile of oxygen in tissue space
for various values of maximum reaction rate.
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The solution to Eq. (5.83) may be obtained by separating the vari-
ables as follows:

Let u'=V(1)8(X)

Then Eq. (5.83) becomes:

V@ _ 1 9 sy 5.86
V() ~ g00X 9xX 8 XD =—1, (550
Hence, V =ce M (5.87)
X2g”(X) + Xg'(X) + X?A2g(X) =0 (5.88)

Comparing Eq. (5.88) with the generalized Bessel function:

a=1¢c=0,s=1,d=2* p=0 (5.89)

The solution to Eq. (5.88) can be seen to be:
8(X)=c,J,(A, X)+d Y, (A, X) (5.90)

Based on the fact that at X = 0, the concentration of acid cannot be
unbounded, it canbe seen thatd, canbe set to zeroand g(X) = ¢,/ (A, X)
This is in the limit of the capillary radius tending to zero. The eigen-
values, A, can be solved for from the boundary condition given by
Eq. (5.91):

Joh, X )=0, r=R, (5.91)
The eigenvalues can be obtained as:
X A, =24048+(n-Dr, n=1,2,3.... (5.92)

The general solution for the dimensionless concentration can be
written as:

u= icne‘xﬁr I, X) (5.93)
0

The eigenvalues are given by Eq. (5.92). The ¢, can be solved for from
the initial condition given by Eq. (5.76) using the principle of orthog-
onality and:

) j: T, X)dX

c,=— (5.94)
jRO J2(h,X)dX
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Thus, the oxygen concentration profile at high oxygen concentration
is obtained. At a low concentration of oxygen, the rate of oxygen gen-
eration may be approximated as obeying first-order kinetics. The
governing equation for simultaneous diffusion and reaction of acid
can be written as:

aC, 1)a[ 9C,
Obtaining the dimensionless form of Eq. (5.95):
ou 1 0 (. 0u 2
X ax( J o (5:96)
where
Co, =G r D._t kR?
— 2 2c — L T .82 _"""0
U= —C02 ; X = RTTR Ho) D, (5.97)

It can be recognized that ¢ is the Thiele modulus. The transient part
of the concentration profile can be solved for by separating the vari-
ables. Let u = V(1)g(X):

Vi_ 1 9 [x98)__(y2422
VT ox BX(Xan— (02 +22) (5.98)

The solution in the time domain can be seen to be:
V = e e (5.99)
The solution in the space domain can be seen to be:
X2g"(X)+ Xg/(X)+ X2 (9% +12) g(X) = 0 (5.100)
Comparing Eq. (5.100) with the generalized Bessel function:
ll=1,‘C=O;S=1;d=(¢2+7\'§);}7=0
The solution to Eq. (5.100) can be seen to be:

gX)=c¢J, (\17‘;21 +¢2X)+C2YO (\Jki +¢2X) (5.101)

Based on the realization that the concentration cannot become
unbounded at X = 0, it can be seen that c, is 0. This is especially true
for capillaries with a small radius:

§(X)=¢J, (\/%i +67 X) (5.102)
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The eigenvalues, A, can be solved for from the boundary condition at
X=1

~2+er, (a2 +e2)=0 (5.103)
and 3.8317 + (n— I)m = A2 +¢? (5.104)

The general solution for the dimensionless C, can be written as:

u=Yc,e 0k (24 ?x) (5.105)
0

The eigenvalues are given by Eq. (5.104). The c, can be solved for
from the initial condition and using the principle of orthogonality:

jjj Jo(\22 + 07 x)ax
o j{fﬁ J2(ya2 +92)ax

Thus, the oxygen concentration profile at low oxygen concentration
is obtained.

(5.106)

5.3.2 Anoxic Regions

The original Krogh model did not include the transient effects. It also
did not include the axial variation of oxygen concentration. Axial
variation in oxygen concentration can be accounted for by a steady-
state mass balance on the bloodstream (Sec 3.11). This can be used to
obtain the anoxic region. This is where the oxygen concentration
becomes zero even before reaching the boundary. It is also called the
lethal corner.

The Krogh model makes the following assumptions:

Axial diffusion of oxygen in the blood is insignificant.
Axial diffusion of oxygen in tissue is insignificant.

Other reactions with oxygen are insignificant.

Ll e

Zeroth-order kinetics is assumed for oxygen uptake for large
concentrations of oxygen (Fig. 5.2).

5. Capillaries are arranged in a regular array. The central capil-
lary is surrounded by cylinders of tissue.

6. Oxyhemoglobin and oxygen reaction is reversible and occurs
uniformly throughout the bloodstream.

7. Oxygen release in plasma is at a uniform rate. RBCs are not
recognized as discrete bodies.
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8. Mass transfer resistance in the endothelium and cell-free fluid
layer are insignificant.

Since the Krogh model in the early part of the 20th century, other
geometries have been considered for idealization of capillaries and
tissue space. Examples are hexagonal, rectangular, triangular, etc.
Complex geometries require numerical procedures for obtaining model
solution(s). The organization of arteriolar and venular ends of adjacent
capillaries has an effect on oxygen concentration in the tissue space.

5.3.3 Diffusion in the Cell-Free Plasma Layer

The oxygen concentration in the plasma layer in the absence of any
reaction can be obtained as follows:

aCOZ 1) 9 BCOZ
at :Dpl(r—jg[r ar (5107)

The boundary conditions can be written as:

r=Ryy, Cp =C (5.108)

0,"

The second boundary condition is derived from the oxygen balance
between the flowing blood in convection and diffusion:

aC
-2nR LD, a—fz =1L (rR? - nR?) (5.109)
r=R

¢

The initial condition is that at:

t=0, CO2 =0

Obtaining the dimensionless form of Eq. (5.107):

ou 1 0 ou

ot X—W(XWJ (5.110)
where

Co, = Co,r Dt

_ 2 % .y _ L — T
u= _CO . /X - RC /’.E R2 (5111)
2

The boundary condition given by Eq. (5.109) imposes a mathematical
heterogeneity on the equations. Systems such as this can be solved for
by assuming that the solution consists of a steady-state part and a
transient part:

Let u=us+ut (5.112)
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Substituting Eq. (5.112) in Eq. (5.110), Eq. (5.110) becomes:

Ju' 1 0 o(u' +u*)
ot "X 0X (X ax J (5.113)
Equation (5.113) holds good when:
1 0 (. 0u®
0= X_B_X(X 8_Xj (5.114)
with the boundary condition:
duss
T—Rc,a—X—T (5115)
h _rRi-R) (5.116)
where = —a—a .
2D,C,,
ou' 1 9 [, du
with the boundary condition:
Ju'
r—RC,a—X—O (5.118)

Integrating Eq. (5.114) twice and solving for the integration constants
from the boundary conditions:

r(R2-R2) (
Coz = Cozk —Tln R—RB (5119)

pl
The oxygen concentration profile in the cell-free layer at steady state
is given by Eq. (5.119). This was developed by Groebe [7]. They also
include a fraction of the length of the capillary occupied by the RBCs.
This can go in the denominator with 2D . The fraction is usually 0.5,
50 2°0.5 = 1. Equation (5.119) is valid for R ,< 7 <R .
The transient part of the concentration profile of oxygen in
the cell-free layer can be solved for by separating the variables.
Let u = V(1)g(X):

Vi1 9 (498 __2
7SS aX(X axj‘ (x2) (5.120)
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The solution in the time domain can be seen to be:

V = ce i (5.121)

The solution in the space domain can be seen to be:

X2g"(X)+Xg/(X)+ X2(A2)g(X) = 0 (5122)

Comparing Eq. (5.122) with the generalized Bessel function:

a=1c=0;s=1;d=(A2); p=0 (5.123)
The solution to Eq. (5.122) can be seen to be:
8X)=c,J,(A, X)+c,Y,(A,X) (5.124)

Based on the realization that the concentration cannot become
unbounded at X = 0, it can be seen that c, is 0. This is from the sym-
metry condition:

8(X)=c,Jy(A,X) (5.125)

The eigenvalues, A , can be solved for from the boundary condition
given by Eq. (5.118). Hence:

3.8317 + (n— )m=An (5.126)

The general solution for the transient dimensionless concentration
can be written as:

u=y c.e (A, X) (5.127)
0

The eigenvalues are given by Eq. (5.126). The c, can be solved for
from the initial condition given by Eq. (5.109) using the principle of
orthogonality and:

) j; Tk, X)dX

€=
jRO J2(h,X)dX

(5.128)

Thus, the oxygen concentration profile in the cell-free layer is
obtained.

5.3.4 Wave Diffusion Effects during Diffusion
in the Plasma Layer

Given that typical radius of the capillary is 5 um, the residence time
of blood in the capillary is on the order of a few seconds, and the
nonhomogenous inner structure of blood, the relaxation time (mass)
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can be on the order of several seconds. The ballistic term in the gen-
eralized Fick’s law of diffusion cannot be neglected. In this section,
the wave diffusion effects in the cell-free plasma layer are attempted
to be taken into account.

The oxygen concentration in the plasma layer in the absence of
any reaction can be obtained from the governing equation for the
concentration of oxygen, including the damped wave diffusion and
relaxation effects, as follows:

C, aC, 1 af ac,
Tmr—atz + Y, =Dpl(r—)§ r o (5129)

The boundary conditions can be written as:

r=Ry, Co, =C,. (5.130)

where R, is the radius of the core layer with aggregates of RBCs and
it demarcates the plasma layer of interest.

The second boundary condition is derived from the oxygen bal-
ance between the flowing blood in convection and diffusion:

aC
~2nR LDy, a—fz =1L (rR? - nR?) (5.131)
r=R,

The initial condition is that at:
t=0, COz =0 (5.132)

Obtaining the dimensionless form of Eq. (5.129):

ou d*u 1 9 ou
W+ﬁ-iﬁ[ W] (5.133)
where
c, -C .
R M S S (5.134)
_COZ* \/DTTr Ty

The boundary condition given by Eq. (5.131) imposes a mathematical
heterogeneity on the equations. Systems such as this can be solved for
by assuming that the solution consists of a steady-state part and a
transient part:

Let u=us+u' (5.135)
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Substituting Eq. (5.135) in Eq. (5.133), Eq. (5.133) becomes:

Ju' %' 1 9 o(u! +u™)
ot o T XX [X ax J (5:136)
Equation (5.136) holds good when:
1 0 ou®
0= YB_X[XB_X] (5.137)
with the boundary condition:
auSS R
I’—RC,a—X—T’ (5138)
. ._r(R2-RY) 5.139)
where r= .
ZDpo o
out oJut 1 9 ou!
with the boundary condition:
ou'
r=R,55=0 (5.141)

Integrating Eq. (5.137) twice and solving for the integration constants
from the boundary conditions:

=C. - Mln(Lj (5.142)

0, ~ “~or
:~ 0 2D, Rep

C

The oxygen concentration profile in the cell-free layer at steady state
is given by Eq. (5.142). This was discussed in the previous section.
The transient part of the concentration profile of oxygen in the cell-
free layer can be solved for by separating the variables. Let u =

V(1)g(X):

VLYo 9598 e
R E)X(X ax]‘ (x2) (5.143)

The solution in the time domain can be seen to be:

1[ e n/1-4x§]
ce T2

V=e2 2 tde (5.144)
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It can be seen that the system reaches steady state after some time. At
steady state, Ve”? would become 0 multiplied by a countable large
number tending to infinity. Zero multiplied by any finite number is
zero. The time taken to reach steady state is usually not more than a
few hours. So ¢¥? is large at steady state, yet finite or tending to count-
able infinity. In this case, zero multiplied by a large number is zero. At
steady state, V would be zero. This means that d has to be set to zero
in Eq. (5.144). This comes from the “final condition” in time.
The solution in the space domain can be seen to be:

X2g”(X)+ Xg'(X)+ X?(A2) g(X) =0 (5.145)
Comparing Eq. (5.145) with the generalized Bessel function:
azl;c:O;s:l;d:(kﬁ);p:O (5.146)
The solution to Eq. (5.145) can be seen to be:
8X)=c,J,(A, X)+c,Y, (A, X) (5.147)
Based on the realization that the concentration cannot become

unbounded at X = 0, it can be seen that c, is 0. This is from the sym-
metry condition:

g(X)=c,J,(A, X) (5.148)

The eigenvalues, 7»”, can be solved for from the boundary condition
given by Eq. (5.130). Hence:

3.8317 + (1 — =1 X,, (5.149)

The general solution for the transient dimensionless concentration
can be written as:

0 T Ty 1-4A2
u=yceze 2 J(AX) (5.150)
0

It can be seen that for large values of relaxation times of the fluid,
Eq. (5.150) becomes bifurcated. For:

A, >1/2 (5.151)

Equation (5.150) would become:

u=3 . Zcos(ty412 1)1y, %) (5.152)
0
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The eigenvalues are given by Eq. (5.126). Equation (5.151) is valid
when:

R
58.7D;

T > (5.153)

For a plasma layer thickness of 1 n and the diffusion coefficient of
105 m?/s, the threshold relaxation time of the fluid would be 27 ns, so
there is a good chance that the concentration of oxygen in the plasma
layer would exhibit subcritical damped oscillations.

The ¢, can be solved for from the initial condition given by Eq. (5.132)
using the principle of orthogonality and:

RC
) jRRB Ty, X)dX

c, = (5.154)
jR J2(h,X)dX

Thus, the oxygen concentration profile in the cell-free layer is
obtained, including the wave diffusion effects.

Nitric Oxide Formation and Transport

in Blood and Tissue

Nitric oxide (NO) is a vasodilator. The widening of blood vessels
when the surrounding smooth muscle cells relax is called vasodila-
tion. Au contraire, the narrowing of blood vessels is called vasocon-
striction. NO gas is an important signaling molecule and is involved
in many physiological and pathological processes. In order to protect
the liver from ischemic damage, a certain threshold level of NO is
required. Excess NO can result in tissue damage and vascular col-
lapse. Chronic expression of NO is associated with many carcinomas
and inflammatory conditions, such as juvenile diabetes, multiple
sclerosis, arthritis, and ulcerative colitis.

The NO has to diffuse through the blood vessel wall and then
binds to the enzyme in smooth muscle cells. Cyclic guanine mono-
phosphate (cGMP) is produced, and the smooth relaxation of muscle
is completed. During hypoxia, which is a state of no or low oxygen
concentration in the blood, NO is produced. NO production is sen-
sitive to the presence of acetylcholine, histamine, adenosine tri-
phosphate (ATP), and adenosine diphosphate (ADP), and is also
stimulated by elevated stress levels. The triple-bonded structure of
nitrogen and oxygen reacts with it, hemoglobin, and proteins, and
binds with guanylate cyclase enzyme. The lifetime of NO is only a
few seconds. Progression of atherosclerosis and septic shock are
affected by changes in the release of NO. It participates in neuro-
transmission, smooth muscle cell formation and development, and
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changes the adhesion potential of leukocytes to endothelium. NO
plays a role in the modulation of the hair cycle, synthesis of reactive
nitrogen intermediates, penile erections, etc. Sildenafil, sold under
the brand name Viagra, stimulates erections by increased signaling
via NO pathways in the penis.

The concentration of NO can be measured using a reaction with
ozone. Such reactions are called chemiluminescent reactions. The reac-
tion produces light that can be detected using a photodetector:

NO+0O,; = NO, +0, +light (5.155)

The light can be detected using electron paramagentic resonance
(EPR). The heat produced by the formation of NO is endothermic. NO
production is elevated in people living at high altitudes, which aids
them in avoiding hypoxia by increasing pulmonary vasculature
vasodilation.

NO is produced by the reaction of nicotinamide adenine dinu-
cleotide phosphate (NADPH ) with oxygen and L-arginine. Another
by-product of this nitric oxide synthase (NOS), enzyme-catalyzed
reaction is L-citrulline.

NO:

1. Reacts in parallel with proteins, such those found in hemo-
globin, myoglobin, and soluble guanyl (sGC)

2. Reacts in parallel with cyclase and cytochrome. The reaction
between NO and hemoglobin is complex. At first, NO reacts
with the heme group of hemoglobin that is deoxygenated
and forms a stable complex with iron. The reaction is first
order with respect to NO and hemoglobin:

k
NO + Hb(Fe™)0, — NO% + Hb(Fe>*) (5.156)

3. Reacts irreversibly with oxygen and reversibly with thiol
groups (-SH):

k
ANO+0, +2H,0—>4H* +4NO; (5.157)

The reaction rates of the parallel reactions can be analyzed as
follows:

dcC
Thbre = dlibpe = leNOCHhFeOZ (5.158)
Cro
" noy= g =~4k,CheCo, (5.159)
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Fractional yield during parallel reactions of NO
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Ficure 5.8 Instantaneous fractional yield of heme complex during parallel
reactions of NO.

The product distribution can be obtained by defining an instantaneous
fractional yield (Figure 5.8). Thus, at any C,

ac k,CyoC

HbFe _ 1 HbFeO,

_dCNO klcNOCHbFeO + 4k2C12\IOC

(p:

(5.160)

Assuming plug flow reactor behavior, the final product yield can be
calculated as:

0 1 CA"[OJ kchhFeO iC (5.161)
P Croi ~ CNOf Cror kICHhFeOZ+ 4kzcocho o .
k,C k,C +4k, C
or HbFeO, 1~ HbFeO, NOf (5.162)

= n

* ~ (4,Cy0)Ch0, = C NOf kchbFe02+ 4k2COZCNOi
The transport of NO is similar to the transport of oxygen, but not
exactly the same. Unlike oxygen, NO is generated via a surface reac-
tion in the surface of the endothelium. NO diffuses in the blood and
tissue. Consider the schematic in Fig. 5.9.

Capillary radii through which blood flows are approximately 25
to 75 um. A mathematical model is developed to describe the diffu-
sion of NO in the blood and tissue. The distance over which NO acts
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Tissue /

A
] |

Ficure 5.9 NO diffusion in blood and tissue.

in the tissue can be calculated. The governing equation for NO diffu-

sion in the blood and tissue, including Fick and non-Fick transient

diffusion effects, can be written for the blood and tissue space as:
Blood space:

*Cyo dCyo _Cho L1 dCyo

0 4 (1K) S K C = S+ 2 (5.163)
where:
Xzt kt =kt =+ (5.164)
Dyr, T

Tissue space:

2, 2
aacz +(1+k) NO+k"C (;j[aafgo+%%J (5.165)

where D, and D,, are the diffusion coefficients of NO in tissue space
and blood space, respectively. T, and 1, are the relaxation times of
NO in the blood and tissue space, respectively, and are assumed to be
equal as a first approximation and are 7.

The time and blood and tissue space conditions for C,,, can be
written as follows:

dCyo
T—O,T—O (5166)
r=R_,Cy(tissue) = Cy(blood) (5.167)
0Cyp
rew 22N 2 (5.168)
r:RC,r=DMaCﬂ—D Cno (5.169)

or T or

pLi|
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where I' is the metabolic production rate of NO at the surface of the
capillary in the endothelium. Assuming no accumulation at the sur-
face, the metabolic production rate of NO has to be equal to the sum
of the rates of diffusion into the blood and tissue space. Due to
opposite directions of NO movement in the blood and tissue spaces,
there is a sign change in front of the Fick term in the blood space in
Eq. (5.169):

t=0,Cyo =Cyo; (5.170)
Heterogeneity is introduced by Egs. (5.169), (5.163), and (5.165),
which can be solved for in the following manner:

Let the solution be assumed to consist of steady-state and tran-
sient parts;

Cyo =Clio +C5, (5.171)

The solutions to Egs. (5.163) and (5.165) are same as the solutions to:

PCl L 9Ch . _PChp  13Ck,
W+(1+k)a—+k CNO—aT-F? X (5172)
and
#(7ss azcls\;o 1 ac;\?o
k CNO = W*‘g X (5173)
and
2Ct act D, \(9Cly . 1Ck,

Py +(1+k"‘)WNO+k*C§VO:(D—MJ[ e +X8_XJ (5.174)

and
D aZCss 1 aCSS
KOs = _TJ[ NO +_ﬂJ (5.175)
NO [Db, 0X? X dX

The boundary condition in Eq. (5.169) is applied in its entirety to the
solution of the steady-state component of the solution. The transient
part of the solution has a co-continuous derivative, making the equa-
tions homogeneous. The solution to Eq. (5.173) and the concentration
profile for NO at steady state in the blood space can be written as:

Cs, = cly(Vk* X) +dK, (k" X) (5.176)
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Applying th