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FOREWORD

Every now and then, a good book comes along and quite rightfully makes itself
a distinguished place among the existing books of the electric power engineering
literature. This book by Professor Arieh Shenkman is one of them.
Today, there are many excellent textbooks dealing with topics in power
systems. Some of them are considered to be classics. However, many of them
do not particularly address, nor concentrate on, topics dealing with transient
analysis of electrical power systems.
Many of the fundamental facts concerning the transient behavior of electric
circuits were well explored by Steinmetz and other early pioneers of electrical
power engineering. Among others, Electrical T ransients in Power Systems by
Allan Greenwood is worth mentioning. Even though basic knowledge of tran-
sients may not have advanced in recent years at the same rate as before, there
has been a tremendous proliferation in the techniques used to study transients.
The application of computers to the study of transient phenomena has increased
both the knowledge as well as the accuracy of calculations.
Furthermore, the importance of transients in power systems is receiving more
and more attention in recent years as a result of various blackouts, brownouts,
and recent collapses of some large power systems in the United States, and
other parts of the world. As electric power consumption grows exponentially
due to increasing population, modernization, and industrialization of the
so-called third world, this topic will be even more important in the future than
it is at the present time.
Professor Arieh Shenkman is to be congratulated for undertaking such an
important task and writing this book that singularly concentrates on the topics
related to the transient analysis of electric power systems. The book successfully
fills the long-existing gap in such an important area.

Turan Gonen, Ph.D., Fellow IEEE
Professor and Director
Electric Power Educational Institute
California State University, Sacramento
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PREFACE

Most of the textbooks on electrical and electronic engineering only partially
cover the topic of transients in simple RL , RC and RL C circuits and the study
of this topic is primarily done from an electronic engineer’s viewpoint, i.e., with

an emphasis on low-current systems, rather than from an electrical engineer’s
viewpoint, whose interest lies in high-current, high-voltage power systems. In
such systems a very clear differentiation between steady-state and transientffff

behavior of circuits is made. Such a division is based on the concept that steady-

state behavior is normal and transients arise from the faults. The operation of
most electronic circuits (such as oscillators, switch capacitors, rectifiers, resonant

circuits etc.) is based on their transient behavior, and therefore the transients

here can be referred to as ‘‘desirable’’. The transients in power systems are

characterized as completely ‘‘undesirable’’ and should be avoided; and subse-

quently, when they do occur, in some very critical situations, they may result

in the electrical failure of large power systems and outages of big areas. Hence,

the Institute of Electrical and Electronic Engineers (IEEE) has recently paid

enormous attention to the importance of power engineering education in gene-

ral, and transient analysis in particular.

It is with the belief that transient analysis of power systems is one of the

most important topics in power engineering analysis that the author proudly

presents this book, which is wholly dedicated to this topic.

Of course, there are many good books in this field, some of which are listed

in the book; however they are written on a specific technical level or on a high

theoretical level and are intended for top specialists. On the other hand, intro-

ductory courses, as was already mentioned, only give a superficial knowledge

of transient analysis. So that there is a gap between introductory courses and

the above books.

The present book is designed to fill this gap. It covers the topic of transient

analysis from simple to complicated, and being on an intermediate level, this

book therefore is a link between introductory courses and more specific technical

books. In the book the most important methods of transient analysis, such as

the classical method, Laplace and Fourier transforms and state variable analysis
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are presented; and of course, the emphasis on transients in three-phase systems
and transmission lines is made.
The appropriate level and the concentration of all the topics under one cover
make this book very special in the field under consideration. The author believes
that this book will be very helpful for all those specializing in electrical engineer-
ing and power systems. It is recommended as a textbook for specialized under-
graduate and graduate curriculum, and can also be used for master and doctoral
studies. Engineers in the field may also find this book useful as a handbook
and/or resource book that can be kept handy to review specific points.
Theoreticians/researchers who are looking for the mathematical background of
transients in electric circuits may also find this book helpful in their work.
The presentation of the covered material is geared to readers who are being

exposed to (a) the basic concept of electric circuits based on their earlier study
of physics and/or introductory courses in circuit analysis, and (b) basic mathe-
matics, including differentiation and integration techniquesffff
This book is composed of eight chapters. The study of transients, as men-
tioned, is presented from simple to complicated. Chapters 1 and 2 are dedicated
to the classical method of transient analysis, which is traditional for many
introductory courses. However, these two chapters cover much more material
giving the mathematical as well as the physical view of transient behavior of
electrical circuits. So-called incorrect initial conditions and two generalized
commutation laws, which are important for a better understanding of the
transient behavior of transformers and synchronous machines, are also discussed
in Chapter 2.
Chapters 3 and 4 give the transform methods of transient analysis, introducing

the Laplace as well as the Fourier transforms. What is common between these
two methods and the differences are emphasized. The theoretical study of theffff
transform methods is accompanied by many practical examples.
The state variable method is presented in Chapter 5. Although this method
is not very commonly used in transient analysis, the author presumes that the
topic of the book will not be complete without introducing this essential and
interesting method. It should be noted that the state variable method in its
matrix notation, which is given here, is very appropriate for transient analysis
using computers.
Naturally, an emphasis and a great amount of material are dedicated to
transients in three-phase circuits, which can be found in Chapter 6. As power
systems are based on employing three-phase generators and transformers, the
complete analysis of their behavior under short-circuit faults at both steady-
state and first moment operations is given. The overvoltages following switching-
off in power systems are also analyzed under the influence of the electric arc,
which accompanies such switching.
In Chapter 7 the transient behavior of transmission lines is presented. The
transmission line is presented as a network with distributed parameters and
subsequently by partial differential equations. The transient analysis of suchffff
lines is done in two ways: as a method of traveling waves and by using the
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Laplace transform. Different engineering approaches using both methods areffff
discussed.
Finally, in Chapter 8 an overview of the static and dynamic stability of power
systems is given. Analyzing system stability is done in traditional ways, i.e., by
solving a swing equation and by using an equal area criterion.
Throughout the text, the theoretical discussions are accompanied by many
worked-out examples, which will hopefully enable the reader to get a better
understanding of the various concepts.
The author hopes that this book will be helpful to all readers studying and

specializing in power system engineering, and of value to professors in the
educational process and to engineers who are concerned with the design and
R&D of power systems.
Last but not least, my sincere appreciation goes to my wife, Iris, who prodi-
giously supported and aided me throughout the writing of this book. I am also
extremely grateful for her assistance in editing and typing in English.
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Chapter #1

CLASSICAL APPROACH TO TRANSIENT
ANALYSIS

1.1 INTRODUCTION

Transient analysis (or just transients) of electrical circuits is as important as

steady-state analysis. When transients occur, the currents and voltages in some

parts of the circuit may many times exceed those that exist in normal behavior

and may destroy the circuit equipment in its proper operation. We may distin-

guish the transient behavior of an electrical circuit from its steady-state, in that

during the transients all the quantities, such as currents, voltages, power and

energy, are changed in time, while in steady-state they remain invariant, i.e.

constant (in d.c. operation) or periodical (in a.c. operation) having constant

amplitudes and phase angles.

The cause of transients is any kind of changing in circuit parameters and/or

in circuit configuration, which usually occur as a result of switching (commuta-

tion), short, and/or open circuiting, change in the operation of sources etc. The

changes of currents, voltages etc. during the transients are not instantaneous

and take some time, even though they are extremely fast with a duration of

milliseconds or even microseconds. These very fast changes, however, cannot

be instantaneous (or abrupt) since the transient processes are attained by the

interchange of energy, which is usually stored in the magnetic field of inductances

or/and the electrical field of capacitances. Any change in energy cannot be

abrupt otherwise it will result in infinite power (as the power is a derivative of

energy, p=dw/dt), which is in contrast to physical reality. All transient changes,
which are also called transient responses (or just responses), vanish and, after

their disappearance, a new steady-state operation is established. In this respect,

we may say that the transient describes the circuit behavior between two steady-

states: an old one, which was prior to changes, and a new one, which arises

after the changes.

A few methods of transient analysis are known: the classical method, The

Cauchy-Heaviside (C-H) operational method, the Fourier transformation
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method and the Laplace transformation method. The C-H operational or sym-
bolic (formal) method is based on replacing a derivative by symbol s ((d/dt)<s)
and an integral by 1/s

AP dt< 1sB .
Although these operations are also used in the Laplace transform method, the
C-H operational method is not as systematic and as rigorous as the Laplace
transform method, and therefore it has been abandoned in favor of the Laplace
method. The two transformation methods, Laplace and Fourier, will be studied
in the following chapters. Comparing the classical method and the transforma-
tion method it should be noted that the latter requires more knowledge of
mathematics and is less related to the physical matter of transient behavior of
electric circuits than the former.
This chapter is concerned with the classical method of transient analysis. This
method is based on the determination of differential equations and splitting theffff
solution into two components: natural and forced responses. The classical
method is fairly complicated mathematically, but is simple in engineering prac-
tice. Thus, in our present study we will apply some known methods of steady-
state analysis, which will allow us to simplify the classical approach of tran-
sient analysis.

1.2 APPEARANCE OF TRANSIENTS IN ELECTRICAL CIRCUITS

In the analysis of an electrical system (as in any physical system), we must
distinguish between the stationary operation or steady-state and the dynamical
operation or transient-state.
An electrical system is said to be in steady-state when the variables describing
its behavior (voltages, currents, etc.) are either invariant with time (d.c. circuits)
or are periodic functions of time (a.c. circuits). An electrical system is said to
be in transient-state when the variables are changed non-periodically, i.e., when
the system is not in steady-state. The transient-state vanishes with time and a
new steady-state regime appears. Hence, we can say that the transient-state, or
just transients, is usually the transmission state from one steady-state to another.
The parameters L and C are characterized by their ability to store energy:
magnetic energy w

L
=1
2
yi=1

2
L i2 (since y=L i), in the magnetic field and electric

energy w
C
=1
2
qv=1

2
Cv2 (since q=Cv), in the electric field of the circuit. The

voltage and current sources are the elements through which the energy is
supplied to the circuit. Thus, it may be said that an electrical circuit, as a
physical system, is characterized by certain energy conditions in its steady-state
behavior. Under steady-state conditions the energy stored in the various induc-
tances and capacitances, and supplied by the sources in a d.c. circuit, are
constant; whereas in an a.c. circuit the energy is being changed (transferred
between the magnetic and electric fields and supplied by sources) periodically.
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When any sudden change occurs in a circuit, there is usually a redistribution
of energy between L -s and C-s, and a change in the energy status of the sources,
which is required by the new conditions. These energy redistributions cannot
take place instantaneously, but during some period of time, which brings about
the transient-state.
The main reason for this statement is that an instantaneous change of energy
would require infinite power, which is associated with inductors/capacitors. As
previously mentioned, power is a derivative of energy and any abrupt change
in energy will result in an infinite power. Since infinite power is not realizable
in physical systems, the energy cannot change abruptly, but only within some
period of time in which transients occur. Thus, from a physical point of view it
may be said that the transient-state exists in physical systems while the energy
conditions of one steady-state are being changed to those of another.
Our next conclusion is about the current and voltage. To change magnetic
energy requires a change of current through inductances. Therefore, currents in
inductive circuits, or inductive branches of the circuit, cannot change abruptly.
From another point of view, the change of current in an inductor brings about
the induced voltage of magnitude L (di/dt). An instantaneous change of current
would therefore require an infinite voltage, which is also unrealizable in practice.
Since the induced voltage is also given as dy/dt, where y is a magnetic flux, the
magnetic flux of a circuit cannot suddenly change.
Similarly, we may conclude that to change the electric energy requires a
change in voltage across a capacitor, which is given by v=q/C, where q is the
charge. Therefore, neither the voltage across a capacitor nor its charge can be
abruptly changed. In addition, the rate of voltage change is dv/dt= (1/C) dq/dt=
i/C, and the instantaneous change of voltage brings about infinite current,
which is also unrealizable in practice. Therefore, we may summarize that any
change in an electrical circuit, which brings about a change in energy distribution,
will result in a transient-state.
In other words, by any switching, interrupting, short-circuiting as well as any
rapid changes in the structure of an electric circuit, the transient phenomena
will occur. Generally speaking, every change of state leads to a temporary
deviation from one regular, steady-state performance of the circuit to another
one. The redistribution of energy, following the above changes, i.e., the transient-
state, theoretically takes infinite time. However, in reality the transient behavior
of an electrical circuit continues a relatively very short period of time, after
which the voltages and currents almost achieve their new steady-state values.
The change in the energy distribution during the transient behavior of electri-
cal circuits is governed by the principle of energy conservation, i.e., the amount
of supplied energy is equal to the amount of stored energy plus the energy
dissipation. The rate of energy dissipation affects the time interval of the tran-ffff
sients. The higher the energy dissipation, the shorter is the transient-state.
Energy dissipation occurs in circuit resistances and its storage takes place in
inductances and capacitances. In circuits, which consist of only resistances, and
neither inductances nor capacitances, the transient-state will not occur at all
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and the change from one steady-state to another will take place instantaneously.
However, since even resistive circuits contain some inductances and capacitances
the transients will practically appear also in such circuits; but these transients
are very short and not significant, so that they are usually neglected.
Transients in electrical circuits can be recognized as either desirable or unde-
sirable. In power system networks, the transient phenomena are wholly undesir-
able as they may bring about an increase in the magnitude of the voltages and
currents and in the density of the energy in some or in most parts of modern
power systems. All of this might result in equipment distortion, thermal and/or
electrodynamics’ destruction, system stability interferences and in extreme cases
an outage of the whole system.
In contrast to these unwanted transients, there are desirable and controlled
transients, which exist in a great variety of electronic equipment in communica-
tion, control and computation systems whose normal operation is based on
switching processes.
The transient phenomena occur in electric systems either by intentional switch-
ing processes consisting of the correct manipulation of the controlling apparatus,
or by unintentional processes, which may arise from ground faults, short-circuits,
a break of conductors and/or insulators, lightning strokes (particularly in high
voltage and long distance systems) and similar inadvertent processes.
As was mentioned previously, there are a few methods of solving transient
problems. The most widely known of these appears in all introductory textbooks
and is used for solving simpler problems. It is called the classical method. Other
useful methods are Laplace (see Chap. 3) and Fourier (see Chap. 4) transforma-
tion methods. These two methods are more general and are used for solving
problems that are more complicated.

1.3 DIFFERENTIAL EQUATIONS DESCRIBING ELECTRICAL
CIRCUITS

Circuit analysis, as a physical system, is completely described by integrodiVi eren-VV

tial equations written for voltages and/or currents, which characterize circuit
behavior. For linear circuits these equations are called linear differential equa-ffff
tions with constant coefficients, i.e. in which every term is of the first degree in
the dependent variable or one of its derivatives. Thus, for example, for the
circuit of three basic elements: R, L and C connected in series and driven by a
voltage source v(t), Fig. 1.1, we may apply Kirchhoff ’s voltage law

v
R
+v
L
+v
C
=v(t),

in which

v
R
=Ri

v
L
=L

di

dt

v
C
= P i dt,
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Figure 1.1 Series RL C circuit driven by a voltage source.

and then we have

L
di

dt
+Ri+

1

C P i dt=v(t). (1.1)

After the differentiation of both sides of equation 1.1 with respect to time, theffff
result is a second order differential equationffff

L
d2t
dt2
+R

di

dt
+
1

C
i=
dv

dt
. (1.2)

The same results may be obtained by writing two simultaneous first order
differential equations for two unknowns,ffff i and v

C
:

dv
C
dt
=
1

C
i (1.3a)

Ri+L
di

dt
+v
C
=v(t). (1.3b)

After differentiation equation 1.3b and substitutingffff dv
C
/dt by equation 1.3a, we

obtain the same (as equation 1.2) second order singular equation. The solution
of differential equations can be completed only if the initial conditions areffff
specified. It is obvious that in the same circuit under the same commutation,
but with different initial conditions, its transient response will be diffff fferent.ffff
For more complicated circuits, built from a number of loops (nodes), we will
have a set of differential equations, which should be written in accordance withffff
Kirchhoff ’s two laws or with nodal and/or mesh analysis. For example, con-
sidering the circuit shown in Fig. 1.2, after switching, we will have a circuit,
which consists of two loops and two nodes. By applying Kirchhoff ’s two laws,
we may write three equations with three unknowns, i, i

L
and v

C
,

C
dv
C
dt
+ i
L
− i=0 (1.4a)

L
di
L
dt
+R1 iL+Ri=0 (1.4b)

L
di
L
dt
+R1 iL−vC=0 (1.4c)
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Figure 1.2 A two-loop circuit.

These three equations can then be redundantly transformed into a single second
order equation. First, we differentiate the third equation of 1.4c once withffff
respect to time and substitute dv

C
/dt by taking it from the first one. After that,

we have two equations with two unknowns, i
L
and i. Solving these two equations

for i
L
(i.e. eliminating the current i) results in the second order homogeneous

differential equationffff

L CR
d2i
L
dt2
+ (L+CRR1 )

di
L
dt
+ (R+R1 )iL=0. (1.5)

As another example, let us consider the circuit in Fig. 1.3. Applying mesh
analysis, we may write three integro-diVi erential equationsVV with three unknown
mesh currents:

L
di1
dt
−L
di2
dt
+R1 i1=v(t)

L
di2
dt
−L
di1
dt
+ (R2+R3 )i2−R3 i3=0 (1.6)

−R3 i2+R3 i3+
1

C P i3dt=0.
In this case it is preferable to solve the problem by treating the whole set of
equations 1.6 rather than reducing them to a single one (see further on).

Figure 1.3 A three-loop circuit.
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From mathematics, we know that there are a number of ways of solving
differential equations. Our goal in this chapter is to analyze the transientffff
behavior of electrical circuits from the physical point of view rather than
applying complicated mathematical methods. (This will be discussed in the
following chapters.) Such a way of transient analysis is in the formulation of
differential equations in accordance with the properties of the circuit elementsffff
and in the direct solution of the obtained equations, using only the necessary
mathematical rules. Such a method is called the classical method or classical
approach in transient analysis. We believe that the classical method of solving
problems enables the student to better understand the transient behavior of
electrical circuits.

1.3.1 Exponential solution of a simple differential equationffff

Let us, therefore, begin our study of transient analysis by considering the simple
series RC circuit, shown in Fig. 1.4. After switching we will get a source free
circuit in which the precharged capacitor C will be discharged via the resistance
R. To find the capacitor voltage we shall write a differential equation, which inffff
accordance with Kirchhoff ’s voltage law becomes

Ri+v
C
=0, or RC

dv
C
dt
+v
C
=0. (1.7)

A direct method of solving this equation is to write the equation in such a
way that the variables are separated on both sides of the equation and then to
integrate each of the sides. Multiplying by dt and dividing by v

C
, we may

arrange the variables to be separated.

dv
C
v
C
=−

1

RC
dt. (1.8)

The solution may be obtained by integrating each side of equation 1.8 and by
adding a constant of integration:

P dvCv
C
=−

1

RC P dt+K,

Figure 1.4 A series RC circuit.
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and the integration yields

ln v
C
=−

1

RC
t+K (1.9)

Since the constant can be of any kind, and we may designate K= ln D, we have

ln v
C
=−

1

RC
t+ ln D,

then

v
C
=De

−
t

RC. (1.10)

The constant D cannot be evaluated by substituting equation 1.10 into the
original differential equation 1.7, since the identity 0ffff ¬0 will result for any value
of D (indeed: D(−1/RC)RCe−t/RC+De−r/RC=0). The constant of integration
must be selected to satisfy the initial condition v

C
(0)=V0VV , which is the initial

voltage across the capacitance. Thus, the solution of equation 1.10 at t=0
becomes v

C
(0)=D , and we may conclude that D=V0VV . Therefore, with this

value of D we will obtain the desired response

v
C
=V0VV e

−
t

RC. (1.11)

We shall consider the nature of this response by analyzing the curve of the
voltage change shown in Fig. 1.5. At zero time, the voltage is the assumed value
V0VV and, as time increases, the voltage decreases and approaches zero, following
the physical rule that any condenser shall finally be discharged and its final
voltage therefore reduces to zero.
Let us now find the time that would be required for the voltage to drop to

Figure 1.5 The exponential curve of the voltage changing.
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zero if it continued to drop linearly at its initial rate. This value of time, usually
designated by t, is called the time constant. The value of t can be found with
the derivative of v

C
(t) at zero time, which is proportional to the angle c between

the tangent to the voltage curve at t=0, and the t-axis, Fig. 1.5, i.e.,

tan l3−
V0VV
t
=
d

dt AV0VV e− t

RCB
t=0
=
−V0VV
RC
,

or

t=RC

and equation 1.11 might be written in the form

V
C
VV =V0VV e

−
t

t. (1.12)

The units of the time constant are seconds ([t]=[R][C]=V ·F), so that the
exponent t/RC is dimensionless, as it is supposed to be. The time constant may
be easily found graphically from the response curve, as can be seen from Fig. 1.5:
the interception point, B, of the tangent line AB with the time axis determine
the time constant t. This line segment OB is called under-tangent. It is interesting
to note that the under-tangent remains the same no matter at which point the
tangent to the curve is drawn (see under-tangent O∞B∞).
Another interpretation of the time constant is obtained from the fact that in

the time interval of one time constant the voltage drops relatively to its initial
value, to the reciprocal of e; indeed, at t=t we have (v

C
/V0VV )= e−1=0.368

(36.8%). At the end of the 5t interval the voltage is less than one percent of its
initial value. Thus, it is usual to presume that in the time interval of three to
five time constants, the transient response declines to zero or, in other words,
we may say that the duration of the transient response is about five time
constants. Note again that, precisely speaking, the transient response declines
to zero in infinite time, since e−t�0, when t�2.
Before we continue our discussion of a more general analysis of transient
circuits, let us check the power and energy relationships during the period of
transient response. The power being dissipated in the resistor R, or its reciprocal
G, is

p
R
=Gv2

C
=GV 2

0
e−2t/RC , (1.13)

and the total dissipated energy (turned into heat) is found by integrating
equation 1.13 from zero time to infinite time

w
R
=P2
0
PP pRdt=V0VV G P2

0
PP e−2t/RC=−V 20G RC2 e−2t/RCK2

0
=
1

2
CV 2
C
.

This is actually the energy being stored in the capacitor at the beginning of the
transient. This result means that all the initial energy, stored in the capacitor,
dissipates in the circuit resistances during the transient period.
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Figure 1.6 A circuit of Example 1.1 (a) and two plots of current and voltage (b).

Example 1.1

Consider a numerical example. The RL circuit in Fig. 1.6(a) is fed by a d.c.
current source, I0=5A. At instant t=0 the switch is closed and the circuit is
short-circuited. Find: 1) the current after switching, by separating the variables
and applying the definite integrals, 2) the voltage across the inductance.

Solution

1) First, we shall write the differential equation:ffff

v
L
+v
R
=L

di

dt
+Ri=0,

or after separating the variables

di

i
=
R

L
dt.

Since the current changes from I0 at the instant of switching to i(t), at any
instant of t, which means that the time changes from t=0 to this instant, we
may perform the integration of each side of the above equation between the
corresponding limits

P i(t)
I
PP
0

di

i
= P t
0
PP −RL dt.

Therefore,

ln i | i(t)
I
0

=−
R

L
t | t
0
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and

ln i(t)− ln I0=
R

L
t, or ln

i(t)

I0
=−

R

L
t,

which results in

i(t)

I0
=e−

R

L
t

Thus,

i(t)=I0e
−
R

L
t=5e−2000t ,

or

i(t)=I0e
−
t

t=5e
−

t

0.5·10−3 .

where

R/L=
40

20·10−3
=2000 s−1,

which results in time constant

t=
L

R
=0.5ms.

Note that by applying the definite integrals we avoid the step of evaluating the
constant of the integration.

2) The voltage across the inductance is

v
L
=L

di

dt
=L

d

dt
(5e−2000t )=20·10−3 ·5· (−2000)e−2000t=−200e−

t

0.5, V

(time inms).

Note that the voltage across the resistance is v
R
=Ri=40·5e−t/0.5=200e−t/0.5,

i.e., it is equal in magnitude to the inductance voltage, but opposite in sign, so
that the total voltage in the short-circuit is equal to zero. The plots of the
current and voltage are shown in Fig. 1.6(b).

1.4 NATURAL AND FORCED RESPONSES

Our next goal is to introduce a general approach to solving differential equationsffff
by the classical method. Following the principles of mathematics we will consider
the complete solution of any linear differential equation as composed of twoffff
parts: the complementary solution (or natural response in our study) and the
particular solution (or forced response in our study). To understand these



12 Chapter #1

principles, let us consider a first order differential equation, which has alreadyffff
been derived in the previous section. In a more general form it is

dv

dt
+P(t)v=Q(t). (1.14)

Here Q(t) is identified as a forcing function, which is generally a function of
time (or constant, if a d.c. source is applied) and P(t), is also generally a function
of time, represents the circuit parameters. In our study, however, it will be a
constant quantity, since the value of circuit elements does not change during
the transients (indeed, the circuit parameters do change during the transients,
but we may neglect this change as in many cases it is not significant).
A more general method of solving differential equations, such as equationffff

1.14, is to multiply both sides by a so-called integrating factor, so that each side
becomes an exact differential, which afterwards can be integrated directly toffff
obtain the solution. For the equation above (equation 1.14) the integrating
factor is e∆Pdt or ePt, since P is constant. We multiply each side of the equation
by this integrating factor and by dt and obtain

ePtdv+vPePtdt=QePtdt.

The left side is now the exact differential offfff vePt (indeed, d(vePt)=
ePtdv+vPePtdt), and thus

d(vePt)=QePtdt.

Integrating each side yields

vePt= P QePtdt+A, (1.15)

where A is a constant of integration. Finally, the multiplication of both sides
of equation 1.15 by e−Pt yields

v(t)=e−Pt P QePtdt+Ae−Pt, (1.16)

which is the solution of the above differential equation. As we can see, thisffff
complete solution is composed of two parts. The first one, which is dependent
on the forcing function Q, is the forced response (it is also called the steady-
state response or the particular solution or the particular integral ). The second
one, which does not depend on the forcing function, but only on the circuit
parameters P (the types of elements, their values, interconnections, etc) and on
the initial conditions A, i.e., on the ‘‘nature’’ of the circuit, is the natural response.
It is also called the solution of the homogeneous equation, which does not
include the source function and has anything but zero on its right side.
Following this rule, we will solve differential equations by finding naturalffff
and forced responses separately and combining them for a complete solution.
This principle of dividing the solution of the differential equations into twoffff
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components can also be understood by applying the superposition theorem.
Since the differential equations, under study, are linear as well as the electricalffff
circuits, we may assert that superposition is also applicable for the transient-
state. Following this principle, we may subdivide, for instance, the current into
two components

i= i∞+ i◊,

and by substituting this into the set of differential equations, say of the formffff

∑ AL didt+Ri+ 1C P i dtB=∑ vs ,
we obtain the following two sets of equations

∑ AL di∞dt+Ri∞+ 1C P i∞ dtB=∑ vs ,
∑ AL di◊dt +Ri◊+ 1C P i◊ dtB=0.

It is obvious that by summation (superimposition) of these two equations, the
original equation will be achieved. This means that i◊ is a natural response
since it is the solution of a homogeneous equation with a zero on the right side
and develops without any action of any source, and i∞ is a steady-state current
as it develops under the action of the voltage sources v

s
(which are presented

on the right side of the equations).
The most difficult part in the classical method of solving differential equationsffff
is evaluating the particular integral in equation 1.16, especially when the forcing
function is not a simple d.c. or exponential source. However, in circuit analysis
we can use all the methods: node/mesh analysis, circuit theorems, the phasor
method for a.c. circuits (which are all given in introductory courses on steady-
state analysis) to find the forced response. In relation to the natural response,
the most difficult part is to formulate the characteristic equation (see further
on) and to find its roots. Here in circuit analysis we also have special methods
for evaluating the characteristic equation simply by inspection of the analyzed
circuit, avoiding the formulation of differential equations.ffff
Finally, it is worthwhile to clarify the use of exponential functions as an
integrating factor in solving linear differential equations. As we have seen inffff
the previous section, such differential equations in general consist of the secondffff
(or higher) derivative, the first derivative and the function itself, each multiplied
by a constant factor. If the sum of all these derivatives (the function itself might
be treated as a derivative of order zero) achieves zero, it becomes a homogeneous
equation. A function whose derivatives have the same form as the function itself
is an exponential function, so it may satisfy these kinds of equations. Substituting
this function into the differential equation, whose right side is zero (a homogen-ffff
eous differential equation) the exponential factor in each member of the equationffff
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might be simply crossed out, so that the remaining equation’s coefficients will
be only circuit parameters. Such an equation is called a characteristic equation.

1.5 CHARACTERISTIC EQUATION AND ITS DETERMINATION

Let us start by considering the simple circuit of Fig. 1.7(a) in which an RL in
series is switching on to a d.c. voltage source.
Let the desired response in this circuit be current i(t). WeWW shall first express

it as the sum of the natural and forced currents

i= i
n
+ i
f
.

The form of the natural response, as was shown, must be an exponential
function, i

n
=Aest (*). Substituting this response into the homogeneous

differential equation, which isffff L (di/dt)+Ri=0, we obtain L s est+R est=0, or

L s+R=0. (1.17a)

This is a characteristic (or auxiliary) equation, in which the left side expresses
the input impedance seen from the source terminals of the analyzed circuit.

Z
in
(s)=L s+R. (1.17b)

We may treat s as the complex frequency s=s+ jv (for more about complex
frequencies see any introductory course to circuit analysis and further on in
Chap. 3). Note that by equaling this expression of circuit impedance to zero,
we obtain the characteristic equation. Solving this equation we have

s=−
R

L
and t=

L

R
. (1.18)

Hence, the natural response is

i
n
=Ae

−
R

L
t
. (1.19)

Figure 1.7 An RL circuit switching to a d.c. voltage source (a) and after ‘‘killing’’ the source (b).

(*)Here and in the future, we will use the letter s for the circuit parameters’ dependent exponent.
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Subsequently, the root of the characteristic equation defines the exponent of
the natural response. The fact that the input impedance of the circuit should
be equaled to zero can be explained from a physical point of view.(*) Since the
natural response does not depend on the source, the latter should be ‘‘killed’’.
i.e. short-circuited as shown in Fig. 1.7(b). This action results in short-circuiting
the entire circuit, i.e. its input impedance.
Consider now a parallel L R circuit switching to a d.c. current source in which
the desired response is v

L
(t) , as shown in Fig. 1.8(a). Here, ‘‘killing’’ the current

source results in open-circuiting, as shown in Fig. 1.8(b).
This means that the input admittance should be equaled to zero. Thus,

1

R
+
1

sL
=0,

or

sL+R=0,

which however gives the same root

s=−
R

L
and t=

L

R
. (1.20)

Next, we will consider a more complicated circuit, shown in Fig. 1.9(a). This
circuit, after switching and short-circuiting the remaining voltage source, will
be as shown in Fig. 1.9(b). The input impedance of this circuit ‘‘measured’’ at
the switch (which is the same as seen from the ‘‘killed’’ source) is

Z
in
(s)=R1+R3//R4//(R2+sL ),

or

Z
in
(s)=R1+A 1R3+ 1R4+ 1

R2+sL B−1 .

Figure 1.8 A parallel RL circuit switching to d.c. current source (a) and after ‘‘ killing’’ the source (b).

(*)This fact is proven more correctly mathematically in Laplace transformation theory (see further
on).
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Figure 1.9 A given circuit (a), determining the input impedance as seen from the switch (b) and as

seen from the inductance branch (c).

Evaluating this expression and equaling it to zero yields

(R1R3+R1R4+R3R4 )(R2+sL )+R1R3R4=0,

and the root is

s=−
R
eq
L
, where R

eq
=
R1R3R4+R1R2R3+R1R2R4+R2R3R4

R1R3+R1R4+R3R4
.

It is worthwhile to mention that the same results can be obtained if the input
impedance is ‘‘measured’’ from the inductance branch, i.e. the energy-storing
element, as is shown in Fig. 1.9(c).
The characteristic equation can also be determined by inspection of the
differential equation or set of equations. Consider the second-order diffff fferentialffff
equation like in equation 1.2

L
d2i(t)
dt
+R

di(t)

dt
+
1

C
i(t)=g(t). (1.21)

Replacing each derivative by sn, where n is the order of the derivative (the
function by itself is considered as a zero-order derivative), we may obtain the
characteristic equation:

L s2+Rs1+
1

C
s0=0, or s2+

R

L
s+

1

L C
=0. (1.22)
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This characteristic equation is of the second order (in accordance with the
second order differential equation) and it possesses two rootsffff s1 and s2 .
If any system is described by a set of integro-differential equations, like inffff

equation 1.6, then we shall first rewrite it in a slightly different form as homogen-ffff
eous equations

AL ddt+RB i1−L ddt i2+0·i3=0
−L 1

d

dt
i1+AL 2 ddt+R2+R3B i2−R3 i3=0 (1.23)

0·i1−R3 i2+A1C P dtB i3=0.
Replacing the derivatives now by sn and an integral by s−1 (since an integral is
a counter version of a derivative) we have

(L s+R1 )i1−sL i2+0·i3=0

−L si1+ (L s+R2+R3 )i2−R3=0 (1.24)

0·i1−R3 i2+A 1sC+R3B i3=0.
We obtained a set of algebraic equations with the right side equal to zero. In
the matrix form

CL s+R1 −sL 0

−sL L s+R2+R3 −R3

0 −R3
1

Cs
+R3D Ci1i2i3D=C000D (1.24a)

With Cramer’s rule the solution of this equation can be written as

i
1,n
=
D1
D

i
2,n
=
D2
D

i
3,n
=
D3
D
, (1.24b)

where D is the determinant of the system matrix and determinants D1 , D2 , D3
are obtained from D, by replacing the appropriate column (in D1 the first column
is replaced, in D2 the second column is replaced, and so forth), by the right side
of the equation, i.e. by zeroes. As is known from mathematics such determinants
are equal to zero and for the non-zero solution in equation 1.24 the determinant
D in the denominator must also be zero. Thus, by equaling this determinant to
zero, we get the characteristic equation:

K sL+R1 −sL 0

−sL sL+R2+R3 −R3

0 −R3
1

sC
+R3 K=0,
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or

(sL+R1 )(sL+R2+R3 ) A 1sC+R3B−R23 (sL+R1 )−s2L 2LL A 1sC+R3B=0
Simplifying this equation yields a second-order equation

s2+AR1,eqL + 1

R
2,eq
CB s+ 1

L C
j=0, (1.25)

where

R
1,eq
=
R1R2
R1+R2

R
2,eq
=

R1+R2
R1/R3+R2/R3+1

j=
1+R2/R3
1+R2/R1

.

We could have achieved the same results by inspecting the circuit in Fig. 1.3
and determining the input impedance (we leave this solution as an exercise for
the reader). The characteristic equation 1.25 is of second order, since the circuit
(Fig. 1.3) consists of two energy-storing elements (one inductance and one
capacitance).
There is a more general rule, which states that the order of a characteristic
equation is as high as the number of energy-storing elements. However, we
should distinguish between the elements, which cannot be replaced by their
equivalent and those which can be eliminated by simplifying the circuit. We
therefore shall first combine the inductances and capacitances, which are con-
nected in series and/or in parallel, or can be brought to such connections. For
instance, in the circuit in Fig. 1.10(a) we may account for five L -s/C-s elements.
However, after simplification their number is reduced to only two energy-storing
elements, as shown in Fig. 1.10(b). Therefore, we may conclude that the given
circuit and its characteristic equation are of second order only. Another example
is the circuit in Fig. 1.10(c), which contains three inductive elements and two
resistances (after switching). By inspection of this circuit, we may simplify it to
only one equivalent inductance:

L
eq
=L 1+

L 1L 2
L 1+L 2

.

Therefore, the circuit is of the first order. The equivalent resistance is R
eq
=

R1+R2 .
In such ‘‘reduced’’ circuits, the inductances and capacitances are associated
with their currents (through inductances) and voltages (across capacitances),
which at t=0 define the independent initial conditions (see further on). The
number of these initial conditions must comply with the order of the characteris-
tic equation, so that we will be able to determine the integration constant, the
number of which is also equal to the order of the characteristic equation.
In more complicated circuits we may find that a few, let us say k inductances
are connected in a so-called ‘‘inductance’’ node, as shown in Fig. 1.11(a) and
(b). Taking into consideration that, in accordance with KCL, the sum of the
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Figure 1.10 A given circuit of five L /C elements (a) and its equivalent of only two L /C elements (b),

a circuit of three L elements (c) and its equivalent of only one L element.

Figure 1.11 An ‘‘inductance’’ node of three inductances (a), an ‘‘inductance’’ node of two inductances

and two current sources (b), a ‘‘capacitance’’ loop of three capacitances (c) and a ‘‘capacitance’’ loop

of two capacitances and one voltage source.

currents in a node is zero, we may conclude that only k−1 inductance currents
are independent. This means that the contribution to the order of the characteris-
tic equation, which will be made by the inductances, is one less than the number
of inductances. The ‘‘capacitance’’ loop, Fig. 1.11(c) and (b) is a dual to the
‘‘inductance’’ node, so that the number of independent voltages across the
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capacitances in the loop will be one less than the number of capacitances. Thus,
if the total number of inductances and capacitances is n

L
and n

C
respectively,

and the number of ‘‘inductance’’ nodes and ‘‘capacitance’’ loops is m
L
and

m
C
respectively, then the order of the characteristic equation is n

s
=

n
L
+n
C
−m
L
−m
C
. Finally, it must be mentioned that the mutual inductance

does not influence the order of the characteristic equation.
By analyzing the circuits in their transient behavior and determining their
characteristic equations, we should also take into consideration that the natural
responses might be different depending on the kind of applied source: voltageffff

or current. Actually, we have to distinguish between two cases:

1) If the voltage source, in its physical representation (i.e. with an inner resistance
connected in series) is replaced by an equivalent current source (i.e. with the
same resistance connected in parallel ), the transient responses will not change.
Indeed, as can be seen from Fig. 1.12, the same circuit A is connected in (a) to
the voltage source and in (b) to the current source. By ‘‘killing’’ the sources (i.e.
short-circuiting the voltage sources and opening the current sources) we are
getting the same passive circuits, for which the impedances are the same. This
means that the characteristic equations of both circuits will be the same and
therefore the natural responses will have the same exponential functions.

2) However, if the ideal voltage source is replaced by an ideal current source,
Fig. 1.13, the passive circuits in (a) and (b), i.e. after killing the sources, are
different, having diffff fferent input impedances and therefore diffff fferent naturalffff

responses.

Figure 1.12. A circuit with an applied voltage source (a) and with a current source (b).
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Figure 1.13 Circuit with an applied ideal voltage source (a) and an ideal current source (b).

1.6 ROOTS OF THE CHARACTERISTIC EQUATION AND
DIFFERENT KINDS OF TRANSIENT RESPONSES

1.6.1 First-order characteristic equation

If an electrical circuit consists of only one energy-storing element (L or C) and
a number of energy dissipation elements (R’s), the characteristic equation will
be of the first order:

For an RL circuit

L s+R
eq
=0 (1.26a)

and its root is

s=−
R
eq
L
=−

1

t
, (1.26b)

where

t=
L

R
eq

is a time constant.

For an RC circuit

1

sC
+R
eq
=0 (1.27a)

and its root is

s=−
1

R
er
C
=−

1

t
, (1.27b)
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where t=R
eq
C is a time constant. In both cases the natural solution is

f
n
ff (t)=Aest , (1.28a)

or

f
n
ff (t)=Ae

−
t

t, (1.28b)

which is a decreasing exponential, which approaches zero as the time increases
without limit. However, as we have seen earlier (in Fig. 1.5), during the time
interval of five times t the difference between the exponential and zero is lessffff
than 1%, so that practically we may state that the duration of the transient
response is about 5t.

1.6.2 Second-order characteristic equation

If an electrical circuit consists of two energy-storing elements, then the character-
istic equation will be of the second order. For an electrical circuit, which consists
of an inductance, capacitance and several resistances this equation may look
like equations 1.22, 1.25 or in a generalized form

s2+2a+v2
d
=0. (1.29)

The coefficients in the above equation shall be introduced as follows: a as
the exponential damping coeYe cient and v

d
as a resonant frequency. For a series

RL C circuit a=R/2L and v
d
=v0=1/

�L C. For a parallel RL C circuit a=
1/2RC and v

d
=v01/

�L C, which is the same as in a series circuit. For more
complicated circuits, as in Fig. 1.3, the above terms may look like
a=1
2
(R
1,eq
/L+1/R

2,eq
C), which is actually combined from those coefficients for

the series and parallel circuits and v
d
=v0j , where j is a distortion coefficient,

which influences the resonant/oscillatory frequency.
The two roots of a second order (quadratic) equation 1.29 are given as

s1=−a+
√a2−v2

d
(1.30a)

s2=−a−
√a2−v2

d
, (1.30b)

and the natural response in this case is

f
n
ff (t)=A1es1t+A2es2t . (1.31)

Since each of these two exponentials is a solution of the given differentialffff
equation, it can be shown that the sum of the two solutions is also a solution
(it can be shown, for example, by substituting equation 1.31 into the considered
equation. The proof of it is left for the reader as an exercise.)
As is known from mathematics, the two roots of a quadratic equation can
be one of three kinds:

1) negative real different, such asffff |s2 |>|s1 | , if a>vd ;
2) negative real equal, such as |s2 |=|s1 |=|s | , if a=vd and
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3) complex conjugate, such as s1,2=−a± jvn , if a<vd and then

v
n
=√v2

d
−a2 is the frequency of oscillation or natural frequency (see fur-

ther on).

A detailed analysis of the natural response of all three cases will be given in the
next chapter. Here, we will restrict ourselves to their short specification.

1) Overdamping. In this case, the natural response (equation 1.31) is given as
the sum of two decreasing exponential forms, both of which approach zero as
t�2. However, since |s2 |>|s1 | , the term of s2 has a more rapid rate of decrease
so that the transients’ time interval is defined by s1 (ttr#5(1/ |s1 | )). This response
is shown in Fig. 1.14(a).

2) Critical damping. In this case, the natural response (equation 1.31) converts
into the form

f (t)= (A1t+A2 )e−st , (1.32)

which is shown in Fig. 1.14(b).

3) Underdamping.UU In this case, the natural response becomes oscillatory, which
may be imaged as a decaying alternating current (voltage)

f (t)=Be−at sin (v
n
t+b), (1.33)

Figure 1.14 An overdamped response (a), a critical response (b) and an underdamped response (c).
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which is shown in Fig. 1.14(c). Here term a is the rate of decay and v
n
is the

angular frequency of the oscillations.
Now the critical damping may be interpreted as the boundary case between
the overdamped and underdamped responses. It should be noted however that
the critical damping is of a more theoretical than practical interest, since the
exact satisfaction of the critical damping condition a=v

d
in a circuit, which

has a variety of parameters, is of very low probability. Therefore, the transient
response in a second order circuit will always be of an exponential or oscillatory
form. Let us now consider a numerical example.

Example 1.2

The circuit shown in Fig 1.15 represents an equivalent circuit of a one-phase
transformer and has the following parameters: L 1=0.06 H, L 2=0.02 H, M=
0.03 H, R1=6 V, R2=1 V. If the transformer is loaded by an inductive load,
whose parameters are L

ld
=0.005 H andR

ld
=9 V, a) determine the characteristic

equation of a given circuit and b) find the roots and write the expression of a
natural response.

Solution

Using mesh analysis, we may write a set of two algebraic equations (which
represent two differential equations in operational form)ffff

(R1+sL 1 )i1−sM i2=0

−sM i1+ (R2+sL 2+Rld+sL ld )i2=0.

The determinant of this set of two equations is

det=KR1+sL 1 −sM

−sM (R2+Rld )+s(L 2+L ld )
K

= (L 1L ∞2−M2)s2+ (R1L ∞2+R∞2L 1 )s+R1R∞2 ,

where, to shorten the writing, we assigned L ∞
2
=L 2+L ld and R∞2=R2+Rld.

Figure 1.15 A given circuit for example 1.2.
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Letting det=0, we obtain the characteristic equation in the form

s2+
R1L ∞2+R∞2L 1
L 1L ∞2−M2

s+
R1R∞2

L 1L ∞2−M2
=0.

Substituting the given values, we have

s2+
6·0.025+10·0.06
0.06·0.025−0.032

s+
6·10

0.06·0.025−0.032
=0,

or

s2+12.5·102s+10·104=0.

The roots of this equation are:

s1=C− 12.52 +SA12.52 B2−10D ·102=−0.860·102 s−1
s2=C− 12.52 −SA12.52 B2−10D ·102=−11.60·102 s−1,

which are two different negative real numbers. Therefore the natural responseffff
is:

i
n
(t)=A1e−86t+A2e−1160t,

which consists of two exponential functions and is of the overdamped kind.
It should be noted that in second order circuits, which contain two energy-

storing elements of the same kind (two L -s, or two C-s), the transient response
cannot be oscillatory and is always exponential overdamped. It is worthwhile
to analyze the roots of the above characteristic equation. We may then obtain

s1,2=
1

2(L 1L ∞2−M2)
[(R1L ∞2+R∞2L 1 )±

√(R1L ∞2+R∞2L 1 )2−4(L 1L ∞2−M2)R1R∞2]

(1.34)

The expression under the square root can be simplified to the form:
(R1L ∞2+R∞2L 1 )2+4R1R∞2M2>0, which is always positive, i.e., both roots are
negative real numbers and the transient response of the overdamped kind. These
results once again show that in a circuit, which contains energy-storing elements
of the same kind, the transient response cannot be oscillatory.
In conclusion, it is important to pay attention to the fact that all the real
roots of the characteristic equations, under study, were negative as well as the
real part of the complex roots. This very important fact follows the physical
reality that the natural response and transient-state cannot exist in infinite time.
As we already know, the natural response takes place in the circuit free of
sources and must vanish due to the energy losses in the resistances. Thus,
natural responses, as exponential functions est, must be of a negative power
(s<0) to decay with time.
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1.7 INDEPENDENT AND DEPENDENT INITIAL CONDITIONS

From now on, we will use the term ‘‘switching’’ for any change or interruption
in an electrical circuit, planned as well as unplanned, i.e. different kinds of faultsffff
or other sudden changes in energy distribution.

1.7.1 Two switching rules ( laws)

The principle of a gradual change of energy in any physical system, and specifi-
cally in an electrical circuit, means that the energy stored in magnetic and
electric fields cannot change instantaneously. Since the magnetic energy is
related to the magnetic flux and the current through the inductances (i.e., w

m
=

li
L
/2), both of them must not be allowed to change instantaneously. In transient

analysis it is common to assume that the switching action takes place at an
instant of time that is defined as t=0 (or t=t0 ) and occurs instantaneously,
i.e. in zero time, which means ideal switching. Henceforth, we shall indicate two
instants: the instant just prior to the switching by the use of the symbol 0

−
, i.e.

t=0
−
, and the instant just after the switching by the use of the symbol 0

+
, i.e.

t=0
+
, (or just 0), as shown in Fig. 1.16. Using mathematical language, the

value of the function f (0
−
), is the ‘‘limit from the left’’, as t approaches zero

from the left and the value of the function f (0
+
) is the ‘‘limit from the right’’, as

t approaches zero from the right.
Keeping the above comments in mind, we may now formulate two switch-

ing rules.

(a) First switching law (or first switching rule)

The first switching rule/law determines that the current (magnetic flux) in an
inductance just after switching i

L
(0
+
) is equal to the current (flux) in the same

inductance just prior to switching

i
L
(0
+
)= i
L
(0
−
) (1.35a)

l(0
+
)=l(0

−
). (1.35b)

Equation 1.35a determines the initial value of the inductance current and enables

Figure 1.16 The instants: prior to switching (0
−
), switching (0) and after switching (0

+
).
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us to find the integration constant of the natural response in circuits containing
inductances. If the initial value of the inductance current is zero (zero initial
conditions), the inductance at the instant t=0 (and only at this instant) is
equivalent to an open circuit (open switch) as shown in Fig. 1.17(a). If the initial
value of the inductance current is not zero (non-zero initial conditions) the
inductance is equivalent at the instant t=0 (and only at this instant) to a
current source whose value is the initial value of the inductance current I

s
=

i
L
(0), as shown in Fig. 1.17(b). Note that this equivalent, current source may
represent the inductance in a most general way, i.e., also in the case of the zero
initial current. In this case, the value of the current source is zero, and inner
resistance is infinite (which means just an open circuit).

(b) Second switching law (or second switching rule)

The second switching rule/law determines that the voltage (electric charge) in a
capacitance just after switching v

C
(0
+
) is equal to the voltage (electric charge) in

the same capacitance just prior to switching

v
C
(0
+
)=v
C
(0
−
) (1.36a)

q(0
+
)=q(0

−
). (1.36b)

Equation 1.36a determines the initial value of the capacitance voltage and

Figure 1.17 An equivalent circuit for an inductance at t=0, with a zero initial current (a) and with
current i

L
(0) (b).
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enables us to find the integration constant of the natural response in circuits
containing capacitances. If the initial value of the voltage across a capacitance
is zero, zero initial conditions, the capacitance at the instant t=0 (and only at
this instant) is equivalent to a short-circuit (closed switch) as shown in
Fig. 1.18(a). If the initial value of the capacitance voltage is not zero (non-zero
initial conditions), the capacitance, at the instant t=0 (and only at this instant),
is equivalent to the voltage source whose value is the initial capacitance voltage
V
s
VV =v

C
(0) , as shown in Fig. 1.18(b). Note that this equivalent, voltage source

may represent the capacitance in a most general way, i.e., also in the case of
the zero initial voltage. In this case, the value of the voltage source is zero, and
inner resistance is zero (which means just a short-circuit).
In a similar way, as a current source may represent an inductance with a
zero initial current, we can also use the voltage source as an equivalent of the
capacitance with a zero initial voltage. Such a source will supply zero voltage,
but its zero inner resistance will form a short-circuit.
If the initial conditions are zero, it means that the current through the
inductances and the voltage across the capacitances will start from zero value,
whereas if the initial conditions are non-zero, they will continue with the same
values, which they possessed prior to switching.
The initial conditions, given by equations 1.35 and 1.36, i.e., the currents

Figure 1.18 An equivalent circuit for a capacitance, at t=0, with zero initial voltage (a) and with
non-zero initial voltage v

C
(0) (b).
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through the inductances and voltages across the capacitances, are called indepen-
dent initial conditions, since they do not depend either on the circuit sources or
on the status of the rest of the circuit elements. It does not matter how they
had been set up, or what kind of switching or interruption took place in
the circuit.
The rest of the quantities in the circuit, i.e., the currents and the voltages in
the resistances, the voltages across the inductances and currents through the
capacitances, can change abruptly and their values at the instant just after the
switching (t=0

+
) are called dependent initial conditions. They depend on the

independent initial conditions and on the status of the rest of the circuit elements.
The determination of the dependent initial conditions is actually the most
arduous part of the classical method. In the next sections, methods of determin-
ing the initial conditions will be introduced. We shall first, however, show how
the independent initial conditions can be found.

1.7.2 Methods of finding independent initial conditions

For the determination of independent initial conditions the given circuit/network
shall be inspected at its steady-state operation prior to the switching. Let us
illustrate this procedure in the following examples.

Example 1.3

In the circuit in Fig. 1.19, a transient-state occurs due to the closing of the
switch (Sw). Find the expressions of the independent initial values, if prior to
the switching the circuit operated in a d.c. steady-state.

Solution

By inspection of the given circuit, we may easily determine 1) the current
through the inductance and 2) the voltages across two capacitances.

1) Since the two capacitances in a d.c. steady-state are like an open switch the

Figure 1.19 The circuit of example 1.3 at instant time t=0
−
.
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inductance current is

i
L
(0
−
)=

V
s
VV

R1+R2
.

2) Since the voltage across the inductance in a d.c. steady-state is zero (the
inductance provides a closed switch), the voltage across the capacitances is

v
C
(0
−
)=R2 iL (0−).

This voltage is divided between two capacitors in inverse proportion to their
values (which follows from the principle of their charge equality, i.e., C1vC1=
C2vC2 ), which yields:

v
C1
(0
−
)=R2 iL (0−)

C2
C1+C2

v
C2
(0
−
)=R2 iL (0−)

C1
C1+C2

.

Example 1.4

Find the independent initial conditions i
L
(0
−
) and v

C
(0
−
) in the circuit shown

in Fig. 1.20, if prior to opening the switch, the circuit was under a d.c. steady-
state operation.

Solution

1) First, we find the current i4 with the current division formula (no current is
flowing through the capacitance branch)

i4=Is
R5

R5+R4+R3//R1
=I
s

R5 (R1+R3 )
R1R3+R1R4+R1R5+R3R4+R3R5

.

Using once again the current division formula, we obtain the current through
the inductance

i
L
(0
−
)= i4

R3
R3+R1

= i
s

R3R5
R1R3+R1R4+R1R5+R3R4+R3R5

.

Figure 1.20 The circuit prior to the switching t=0
−
of example 1.4.
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2) The capacitance voltage can now be found as the voltage drop in resistance
R1

v
C
(0
−
)=R1 iL (0−).

The examples given above show that in order to determine the independent
initial conditions, i.e., the initial values of inductance currents and/or capacitance
voltages, we must consider the circuit under study prior to the switching, i.e. at
instant t=0

−
. It is usual to suppose that the previous switching took place a

long time ago so that the transient response has vanished. We may apply all
known methods for the analysis of circuits in their steady-state operation. Our
goal is to choose the most appropriate method based on our experience in
order to obtain the quickest answer for the quantities we are looking for.

1.7.3 Methods of finding dependent initial conditions

As already mentioned the currents and voltages in resistances, the voltages
across inductances and the currents through capacitances can change abruptly
at the instant of switching. Therefore, the initial values of these quantities should
be found in the circuit just after switching, i.e., at instant t=0

+
. Their new

values will depend on the new operational conditions of the circuit, which have
been generated after switching, as well as on the values of the currents in the
inductances and voltages of the capacitances. For this reason we will call them
dependent initial conditions.
As we have already observed, the natural response in the circuit of the second
order is, for instance, of form equation 1.31. Therefore, two arbitrary constants
A1 and A2 , called integration constants, have to be determined to satisfy the
two initial conditions. One is the initial value of the function and the other one,
as we know from mathematics, is the initial value of its first derivative. Thus,
for circuits of the second order or higher the initial values of derivatives at t=
0
+
must also be found. We also consider the initial values of these derivatives

as dependent initial conditions.
In order to find the dependent initial conditions we must consider the analyzed
circuit, which has arisen after switching and in which all the inductances and
capacitances are replaced by current and voltage sources (or, with zero initial
conditions, by an open and/or short-circuit). Note that this circuit fits only at
the instant t=0

+
. For finding the desirable quantities, we may use all the known

methods of steady-state analysis. Let us introduce this technique by considering
the following examples.

Example 1.5

Consider once again the circuit in Fig. 1.20. We now however need to find the
initial value of current i2 (0+) , which flows through the capacitance and therefore
can be changed instantaneously.
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Solution

We start the solution by drawing the equivalent circuit for instant t=0
+
, i.e.

just after switching, Fig. 1.21. The inductance and capacitance in this circuit are
replaced by the current and voltage sources, whose values have been found in
Example 1.4 and are assigned as I

L0
and V

C0
VV .

The achieved circuit has two nodes and the most appropriate method for its
solution is node analysis. Thus,

−I
s
+G3VabVV +IL0+ i2 (0)=0,

where G3=1/R3 . Substituting VabVV =VC0VV +R2 i2 (0) for VabVV we may obtain

i2 (0)(1+G3R2 )=Is−IL0−G3VC0VV ,

or

i2 (0)=
I
s
−I
L0
−G3VC0VV

1+G3R2
.

Example 1.6

Let us say that we are interested in finding the initial value of the input current
in the circuit of Example 1.3, shown in Figure 1.19.

Solution

Since the current we are looking for is a current in a resistance, which can
change abruptly, we shall consider the circuit at instant t=0

+
. This circuit is

shown in Fig. 1.22 where the inductance is replaced by a current source and
the capacitances are replaced by voltage sources.
The quickest way to find i

in
(0
+
) is by using the superposition principle. For

this purpose, we shall consider two circuits: in the first one only the voltage
sources are in action (circuit (b) in Fig. 1.22) and in the other one only the
current source is in action (circuit (c) in Fig. 1.22). By inspection of the first
circuit and by applying Kirchhoff ’s voltage law to the outer loop, we have

i∞
in
(0
+
)=
V
s
VV −V

C1
VV −V

C2
VV

R1
.

Figure 1.21 An equivalent circuit for Example 1.5.
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Figure 1.22 The circuit for finding i
in
(0
+
) (a), the subcircuit with voltage sources (b) and the subcir-

cuit with a current source (c).

By inspection of the second circuit in which the current source is short-circuited,
we have

i◊
in
(0
+
)=0.

Therefore, finally

i
in
(0
+
)= i∞
in
(0
+
)=
V
s
VV −V

C1
VV −V

C2
VV

R1
.

Example 1.7

As a numerical example, let us consider the circuit in Fig. 1.23. Suppose that
we wish to find the initial value of the output voltage, just after switch Sw
instantaneously changes its position from ‘‘1’’ to ‘‘2’’. The circuit parameters
are: L=0.1 H, C=0.1mF, R1=10 V, R2=20 V, Rld=100 V, Vs1VV =110 V and
V
s2
VV =60 V.

Solution

In order to answer this question, we must first find the independent initial
conditions, i.e., i

L
(0
+
) and v

C
(0
+
) . By inspection of the circuit for instant t=0

−
,

Fig. 1.23(a), we have

i
L
(0
−
)=

V
s1
VV

R1+Rld
=

110

100+10
=1 A,
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Figure 1.23 A given circuit for Example 1.7(a) and its equivalent at t=0
+
(b).

and

v
C
(0
−
)=V
s1
VV

R1
R1+Rld

=110
10

100+10
=10 V.

With two switching rules we have

i
L
(0
+
)= i
L
(0
−
)=1 A

v
C
(0
+
)=v
C
(0
−
)=10 V,

and we can now draw the equivalent circuit for instant t=0
+
, Fig. 1.23(b). By

inspection, using KCL (Kirchhoff ’s current law), we have

R
ld
i2+R2 (i2+ i1 )=−Vs1VV +Vs2VV +vC (0). (1.37)

Keeping in mind that i2= io and i1= iL (0) , we obtain

i2 (0)=
−V
s1
VV +V

s2
VV +v

C
(0)−R2 iL (0)

R2+Rld
=
−110+60+10−20·1

20+100
=−0.5 A.

Thus the initial value of the output current is −0.5 A. Note that, prior to
switching, the value of the output current was −1 A, therefore, with switching
the current drops to half of its previous value.
The circuit of this example is of the second order and, as earlier mentioned,
its natural response consists of two unknown constants of integration. Therefore,
we shall also find the derivative of the output current at instant t=0

+
. By

differentiating equation 1.37 with respect to time, and taking into considerationffff
that V

s1
VV and V

s2
VV are constant, we have

(R2+Rld )
di
o
dt
+R2

di
L
dt
=
dv
C
dt
,

and, since
di
L
dt
=
1

L
v
L
and
dv
C
dt
=
1

C
i
C
,

di
o
dt K
t=0
=

1

R2+Rld C1C iC (0)−R2L vL (0)D .
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By inspection of the circuit in Fig. 1.23(b) once again, we may find

v
L
(0)=V

s1
VV +R

ld
i
o
(0)−R1 iL (0)=110+100(−0.5)−10·1=40V.

i
C
(0)=−i

o
(0)− i

L
(0)=0.5−1=−0.5 A.

Thus,

di
o
dt K
t=0
=

1

20+100 A −0.50.1·10−3
−
10

0.1
40B=−75 A s−1.

1.7.4 Generalized initial conditions

Our study of initial conditions would not be complete without mention of the
so-called incorrect initial conditions, i.e. by which it looks as though the two
switching laws are disproved.

(a) Circuits containing capacitances

As an example of such a ‘‘disproval’’, consider the circuit in Fig. 1.24(a). In this
circuit, the voltage across the capacitance prior to switching is v

C
(0
−
)=0 and

after switching it should be v
C
(0
+
)=V
s
VV , because of the voltage source. Thus,

v
C
(0
+
)≠v
C
(0
−
),

and the second switching law is disproved.
This paradox can be explained by the fact that the circuit in Fig 1.24(a) is
not a physical reality, but only a mathematical model, since it is built of two
ideal elements: an ideal voltage source and an ideal capacitance. However, every
electrical element in practice has some value of resistance, and generally speaking
some value of inductance (but this inductance is very small and in our future
discussion it will be neglected). Because, in a real switch, the switching process
takes some time (even very small ), during which the spark appears, the latter
is also usually approximated by some value of resistance. By taking into con-
sideration just the resistances of the connecting wires and/or the inner resistance
of the source or the resistance of the spark, connected in series, and a resistance,
which represents the capacitor insulation, connected in parallel, we obtain the

Figure 1.24 An incorrect circuit model of a source and a capacitor (a) and its corrected version (b).
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circuit shown in Fig. 1.24(b). In this circuit, the second switching law is correct
and we may write

v
C
(0
+
)=v
C
(0
−
).

Now, at the instant of switching, i.e., at t=0, the magnitude of the voltage
drop across this resistance will be as large as the source value. As a result the
current of the first moment will be very large, however not unlimited, like it is
supposed to be in Fig. 1.24(a). In order to illustrate the transient behavior in
the circuit discussed, let us turn to a numerical example. Suppose that a 1.0 nF
condenser is connected to a 100 V source and let the resistance of the connecting
wires be about one hundredth of an ohm. In such a case, the ‘‘spike’’ of the
current will be I

d
=100/0.01=10,000 A, which is a very large current in a 100 V

source circuit (but it is not infinite). This current is able to charge the above
condenser during the time period of about 10−11 s, since the required charge is
q=CV=10−9 ·102=10−7 C and Dt$Dq/Di=10−7/104=10−11 s. This period
of time is actually equal to the time constant of the series RC circuit, t=RC=
10−2 ·10−9=10−11 s.
From another point of view, the amount of the charge, which is transferred

by an exponentially decayed current, is equal to the product of its initial value,
I0 and the time constant. Indeed, from Fig. 1.25, we have

q= P i dt=I0 P2
0
PP e−t/tdt=I0 (−t)e−t/tK2

0
=I0t, (1.38)

i.e., q=10,000·10−11=10−7 C, as estimated earlier. This result (equation 1.38)
justifies using an impulse function d (see further on) for representing very large
(approaching infinity) magnitudes applying very short (approaching zero) time
intervals, whereas their product stays finite, as shown in Fig. 1.25.
Note that the second resistance R2 is very large (hundreds of mega ohms),

so that the current through this resistance, being very small ( less than a tenth
of a microampere), can be neglected.
In conclusion, when a capacitance is connected to a voltage source, a very
large current, tens of kiloamperes, charges the capacitance during a vanishing
time interval, so that we may say that the capacitance voltage changes from
zero to its final value, practically immediately. However, of course, none of the

Figure 1.25 A large and fast decaying exponent and an equivalent impulse.
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Figure 1.26 A circuit in which the second switching law is ‘‘disproved’’: prior switching (a) and after

switching (b).

physical laws, neither the switching law nor the law of energy conservation, has
been disproved.
As a second example, let us consider the circuit in Fig. 1.26(a). At first glance,
applying the second switching law, we have

v
C1
(0
+
)=v
C1
(0
−
)=V
s
VV

v
C2
(0
+
)=v
C2
(0
−
)=0.

(1.39)

But after switching, at t=0, the capacitances are connected in parallel,
Fig. 1.26(b), and it is obvious that

v
C1
(0
+
)=v
C2
(0
−
) (1.40)

which is in contrast to equation 1.39.
To solve this problem we shall divide it into two stages. In the first one, the
second capacitance is charged practically immediately in the same way that was
explained in the previous example. During this process, part of the first capaci-
tance charge is transferred by a current impulse to the second capacitance, so
that the entire charge is distributed between the two capacitances in reciprocal
proportion to their values. The common voltage of these two capacitances,
connected in parallel, after the switching at instant t=0, is reduced to a new
value lower than the applied voltage V

s
VV .

In the second stage of the transient process in this circuit, the two capacitances
will be charged up so that the voltage across the two of them will increase up
to the applied voltage V

s
VV . To solve this second stage problem we have to know

the new initial voltage in equation 1.40. We shall find it in accordance with
equation 1.36b which, as was mentioned earlier, expresses the physical principal
of continuous electrical charges, i.e. the latter cannot change instantaneously.
This requirement is general but even more stringent than the requirement of
continuous voltages, and therefore is called the generalized second switching law.
Thus,

q
S
(0
+
)=q
S
(0
−
)=C1vC1 (0−). (1.41)

This law states that: the total amount of charge in the circuit cannot change
instantaneously and its value prior to switching is equal to its value just after the
switching, i.e., the charge always changes gradually.
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Since the new equivalent capacitance after switching is C
eq
=C1+C2 , we

may write

q
S
(0
+
)= (C1+C2 )vC1 (0+)=C1vC1 (0−).

Since, in this example, v
C1
(0
−
)=V
s
VV , we finally have

v
C1
(0
+
)=

C1
C1+C2

v
C1
(0
−
)=

C1
C1+C2

V
s
VV . (1.42)

With this initial condition, the integration constant can easily be found.
It is interesting to note that by taking into consideration the small resistances
(wires, sparks, etc.) the circuit becomes of second order and its characteristic
equations will have two roots (different real negative numbers). One of themffff
will be very small, determining the first stage of transients, and the second one,
relatively large, will determine the second stage.
Let us now check the energy relations in this scheme, Fig. 1.26, before and
after switching. The energy stored in the electric field of the first capacitance
(prior to switching) is w

e
(0
−
)=1
2
C1V 2C1 (0−)=

1
2
C1V 2s and the energy stored in the

electric field of both capacitances (after switching) is w
e
(0
+
)=

1
2
(C1+C2 )v2C (0+). Thus, the energy ‘‘lost’’ is

Dw
e
=w
e
(0
−
)−w

e
(0
+
)=
C1V 2s
2
−
C1+C2
2 A C1VsVVC1+C2B2= C1C2V 2s

2(C1+C2 )
.

(1.43)

This energy actually dissipates in the above-discussed resistances.
When two capacitances, connected in series, switch to the voltage source, as
shown in Fig. 1.27(a), the transients will also consist of two stages. In the first
stage, the current impulse will charge two capacitances equally to the same
charge

q(0
+
)=V
s
VV
C1C2
C1+C2

, (1.44)

Figure 1.27 Two capacitances in series are connected to the voltage source: incorrect (a) and correct

(b) circuits.
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but to different voltages, in reciprocal proportion to their values:ffff

v
C1
(0
+
)=V
s
VV

C2
C1+C2

, v
C2
(0
+
)=V
s
VV

C1
C1+C2

. (1.45)

However, in accordance with the correct equivalent circuit in Fig. 1.27(b), the
final steady-state voltages (at t�2) across two capacitances must be determined
by the voltage division in proportion to their resistances:

v
C1
(2)=V

s
VV

R1
R1+R2

, v
C2
(2)=V

s
VV

R2
R1+R2

. (1.46)

This change in voltages, from equation 1.45 to equation 1.46, takes place during
the second stage with the time constant t= (C1+C2 )/(G1+G2 ) (proof of this
expression is left to the reader as an exercise).
Finally it should be noted that the very fast charging of the capacitances by
the flow of very large currents (current impulses) results in relatively small energy
dissipation, so that usually no damage is caused to the electrical equipment.
Indeed, with the numerical data of our first example, we may calculate

w
d
=RI2

dP2
0
PP e−2tt=RI2d t2=10−2(104)2 ·10−11 ·0.5=0.5·10−5 J,

which is negligibly small. Checking the law of energy conservation, we may find
that the energy being delivered by the source is

w
s
= P2
0
PP VsVV i dt=VsVV P2

0
PP C dvCdt dt=CVsVV P Vs

0
PP dvC=CV 2s ,

and the energy being stored into the capacitances is w
e
=1
2
CV 2
s
, i.e., half of the

energy delivered by the source is dissipated in the resistances. Calculating this
energy yields

Dw
s
=
CV 2
s
2
=
10−9 ·104
2

=0.5·10−5 J,

as was previously calculated.

(b) Circuits containing inductances

We shall analyze the circuits containing inductances keeping in mind that such
circuits are dual to those containing capacitances and using the results, which
have been obtained in our previous discussion.
Consider the circuit shown in Fig. 1.28 in which the current prior to switching
is i
L
(0
−
)=I0 and after switching is supposed to be iL (0+)=0 , so that the first

switching law is disproved

i
L
(0
+
)≠ i
L
(0
−
).

However, by taking into consideration the small parameters G, R
L
, and C, we
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Figure 1.28 An incorrect circuit containing a disconnected inductance (a) and its improved equiva-

lent (b).

may obtain the correct circuit, shown in Fig 1.28(b), in which all the physical
laws are proven.
In this circuit, the open switch is replaced by a very small conductance G
(very big resistance), so that we can now write i

L
(0
+
)= i
L
(0
−
), but because of

the vanishingly small time constant t=GL , the current decays almost
instantaneously.
From another point of view the almost abrupt change of inductance current
results in a very large voltage induced in inductance, v

L
=L (di/dt), which is

applied practically all across the switch, and causes an arc, which appears
between the opening contacts of the switch. Let us estimate the magnitude of
such an overload across the coil in Fig. 1.28(a), having 0.1 H and 20 V; , which
disconnects almost instantaneously from the voltage source, and the current
through the coil prior to switching was 5 A. Assume that the time of switching
is Dt=10 ms (note that this time, during which the current changes from the
initial value to zero, can be achieved if the switch is replaced by a resistor of at
least 50 kV, as shown in Fig. 1.28(b)), then the overvoltage will be
VmaxVV $L (Di/Dt)=0.1·5·105=50 kV.
Such a high voltage usually causes an arc, which appears between the opening
contacts of the switch. This transient phenomenon is of great practical interest
since in power system networks the load is mostly of the inductance kind and
any disconnection of the load and/or short-circuited branch results in over-
voltages and arcs. However, the capacitances associated with all the electric
parts of power systems affect its transient behavior and usually result in reducingffff

the overvoltages. (We will analyze this phenomenon in more detail also taking
into consideration the capacitances, see Chapter 2).
Consider next the circuit in Fig. 1.29, which is dual to the circuit in Fig. 1.26.
(It should be noted that the duality between the two circuits above, Figs 1.28
and 1.29, and the corresponding capacitance circuits, in Figs 1.24 and 1.26, is
not full. For full duality the voltage sources must be replaced by current sources.
However, the quantities, the formulas, and the transient behavior are similar.)
In this circuit, prior to switching i

L1
(0
−
)=I0 and iL2 (0−)=0. Applying the first



Classical Approach to T ransient Analysis 41

Figure 1.29 A circuit containing two inductances, in which the first switching law is ‘‘disproved’’:

prior to switching (a) and after switching (b).

switching law we shall write

i
L1
(0
+
)= i
L1
(0
−
)=I0

i
L2
(0
+
)= i
L2
(0
−
)=0.

(1.47)

After switching the two inductances are connected in series, Fig 1.29(b), therefore

i
L1
(0
+
)= i
L2
(0
−
), (1.48)

which is obviously contrary to equation 1.47. However, we may consider the
transient response of this circuit as similar to that in capacitance and conclude
that it is composed of two stages. In the first stage, the currents change almost
instantaneously, in a very short period of time Dt�0, so that voltage impulses
appear across the inductances. In the second stage, the current in both induc-
tances changes gradually from its initial value up to its steady-state value. In
order to find the initial value of the common current flowing through both
inductances connected in series ( just after switching and after accomplishing
the first stage) we may apply the so-called first generalized switching law (equa-
tion 1.35b). This law states that: the total flux linkage in the circuit cannot change
instantaneously and its value prior to switching is equal to its value just after
switching, i.e. the flux linkage always changes gradually.
If an electrical circuit contains only one inductance element, then

L i
L
(0
+
)=L i

L
(0
−
) or i

L
(0
−
)= i
L
(0
+
),

and the first switching law regarding flux linkages (equation 1.35b) is reduced
to a particular case with regard to the currents. For this reason the first switching
law, regarding flux linkages, is more general.
Applying the first generalized law to the circuit in Fig. 1.29, we have

L 1 iL1 (0−)+L 2 iL2 (0−)=L 1 iL1 (0+)+L 2 iL2 (0+), (1.49)

or since i
L1
(0
+
)= i
L2
(0
+
)= i
L
(0
+
) we have

i
L
(0
+
)=
L 1 iL1 (0−)+L 2 iL2 (0−)

L 1+L 2
.
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Substituting i
L2
(0
−
)=0 and i

L1
(0
−
)=I0 the above expression becomes

i
L
(0
+
)=

L 1
L 1+L 2

I0 . (1.50)

This equation enables us to determine the initial condition of the inductance
current in the second stage of a transient response.
The energy stored in the magnetic field of two inductances prior to switching
is

w
m
(0
−
)=
L 1 i2L1 (0−)
2

+
L 2 i2L2 (0−)
2

, (1.50a)

and after switching

w
m
(0
+
)=
(L 1+L 2 )i2L (0+)

2
. (1.50b)

Then the amount of energy dissipated in the first stage of the transients, i.e., in
circuit resistances and in the arc, with equations 1.50a and 1.50b will be

Dw
m
=w
m
(0
−
)−w

m
(0
+
)=
1

2

L 1L 2
L 1+L 2

[i
L1
(0
−
)− i
L2
(0
−
)]2 . (1.51)

(Developing this formula is left to the reader as an exercise.) For the circuit
under consideration the above equation 1.51 becomes

Dw
m
=
1

2

L 1L 2
L 1+L 2

I2
0
. (1.52)

It is interesting to note that this expression is similar to formula 1.43 for a
capacitance circuit. Let us now consider a numerical example.

Example 1.8

In the circuit in Fig. 1.30(a) the switch opens at instant t=0. Find the initial
current i(0

+
) in the second stage of the transient response and the energy

Figure 1.30 A circuit for Example 1.8: prior to switching (a) and after switching (b).
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dissipated in the first stage if the parameters are: R1=50 V, R2=40 V, L 1=
160mH, L 2=40mH, VinVV =200 V.

Solution

The values of the two currents in circuit (a) are

i
L1
(0
−
)=
V
in
VV

R1
=
200

50
=4 A

and

i
L2
(0
−
)=
V
in
VV

R2
=
200

40
=5 A.

Thus, the initial value of the current in circuit (b), in accordance with equation
1.49, is

i
L
(0
+
)=
L 1 iL1 (0−)−L 2 iL2 (0−)

L 1+L 2
=
160·4−40·5
160+40

=2.2 A.

Note that for the calculation of the initial current i(0
+
) in circuit (b), we took

into consideration that the current i
L2
(0
−
) is negative since its direction is

opposite to the direction of i(0
+
) , which has been chosen as the positive direction.

The dissipation of energy, in accordance with equation 1.51, is

Dw
m
=
L 1L 2[iL1 (0−)− iL2 (0−)]2

2(L 1+L 2 )
=
160·40·10−3 (4+5)2
2(160+40)

$1.3 J.

As a final example, consider the circuit in Fig. 1.31. This circuit of two
inductive branches in parallel to a current source is a complete dual to the
circuit in Fig. 1.27, in which two capacitances in series are connected to a
voltage source.
Prior to switching the inductances are short-circuited, so that both currents
i
L1
(0
−
) and i

L2
(0
−
) are equal to zero. The current of the current source flows

through the switch. (In the dual circuit, the voltages across the capacitances
prior to switching are also zero.) At the instant of switching the currents through

Figure 1.31 A circuit of two parallel inductances and a current source, which is a complete dual to

the circuit with two series capacitances and a voltage source.
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the inductances change almost instantaneously, so that their sum should be I
s
.

This abrupt change of currents results in a voltage impulse across the opening
switch. Since this voltage is much larger than the voltage drop on the resistances,
we may neglect these drops and assume that the inductances are connected in
parallel. As we know, the current is divided between two parallel inductances
in inverse proportion to the value of the inductances. Thus,

i
L1
(0
+
)=I
s
L 2

L 1+L 2
and i

L2
(0
+
)=I
s
L 1

L 1+L 2
. (1.53)

These expressions enable us to determine the initial condition in the second
stage of the transient response. The steady-state values of the inductance currents
will be directly proportional to the conductances G1 and G2 . Hence, the induced
voltages across the inductances will be zero (the inductances are now short-
circuited) and the resistive elements are in parallel (note that in the capacitance
circuit of Fig. 1.27 the voltages across the capacitances in steady state are also
directly proportional, but to the resistances, which are parallel to the capaci-
tances). Thus,

i
L1
(2)=I

s
G1

G1+G2
and i

L2
(2)=I

s
G2

G1+G2
.

Knowing the initial and final values, the complete response can be easily
obtained (see the next chapter).

1.8 METHODS OF FINDING INTEGRATION CONSTANTS

From our previous study, we know that the natural response is formed from a
sum of exponential functions:

f
n
ff (t)=A1es1t+A2es2t+ · · ·=∑

n

1
A
k
es
k
t . (1.54)

where the number of exponents is equal to the number of roots of a characteristic
equation. In order to determine the integration constants A1 , A2 , . . . An it is
necessary to formulate n equations, which must obey the instant of switching,
t=0 (or t=t0 ). By differentiation of the above expressionffff (n−1) times, we may
obtain

A1+A2+ · · ·=∑
n

1
A
k
= f
n
ff (0)

s1A1+s2A2+ · · ·=∑
n

1
s
k
A
k
= f ∞
n
(0)

· · ·

sn−1
1
A1+sn−12 A2+ · · ·=∑

n

1
sn−1
k
A
k
= f (n−1)
k
(0),

(1.55)
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where it has been taken into consideration that

A
k
es
k
t |
t=0
=A
k

d

dt
A
k
es
k
tK
t=0
=s
k
A
k

· · ·

d(n−1)

dt(n−1)
A
k
es
k
tK
t=0
=sn−1
k
A
k
.

(1.56)

The initial values of the natural responses are found as

f
n
ff (0)= f (0)− f

f
ff (0)

f ∞
n
(0)= f ∞(0)− f ∞

f
(0)

· · ·

f (n−1)
n
(0)= f (n−1)(0)− f (n−1)

f
(0)

(1.57)

Thus, for the formulation in equation 1.55 of its left side quantities, we must
know:

(1) the initial values of the complete transient response f (0) and its (n−1)
derivatives, and

(2) the initial values of the force response f
f
ff (0) and its (n−1) derivatives.

The technique of finding the initial values of the complete transient response in
(1) has been discussed in the previous section. In brief, according to this
technique: a) we have to determine the independent initial condition (currents
through the inductances at and voltages across the capacitances at t=0

−
), and

b) by inspection of the equivalent circuit which arose after switching, i.e., at t=
0, we have to find all other quantities by using Kirchhoff ’s two laws and/or
any known method of circuit analysis. For determining the initial values in (2),
the forced response must also be found. Let us now introduce the procedure of
finding integration constants in more detail.
Consider a first order transient response and assume, for instance, that the
response we are looking for is a current response. Then its natural response is

i
n
(t)=Aest .

Knowing the current initial value i(0
+
) and its force response i

f
(t) we may find

A= i(0
+
)− i
f
(0). (1.58)

If the response is of the second order and the roots of the characteristic equation
are real, then

i
n
(t)=A1es1t+A2es2t , (1.59)

and after differentiation, we obtainffff

i∞
n
(t)=s1A1es1t+s2A2es2t . (1.59a)
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Suppose that we found i(0) and i∞(0), and also i
f
(0) and i∞

f
(0), then with

equation 1.57

i
n
(0)= i(0)− i

f
(0)

i∞
n
(0)= i∞(0)− i∞

f
(0),

(1.60)

and in accordance with equation 1.55 we have two equations for determining
two unknowns: A1 and A2

A1+A2= in (0)

s1A1+s2A2= i∞n (0).
(1.61)

The solution of equation 1.61 yields

A1=
i∞
n
(0)−s2 in (0)
s1−s2

A2=
i∞
n
(0)−s1 in (0)
s2−s1

.

(1.61a)

If the roots of the characteristic equation are complex-conjugate, s1,2=a± jvn ,
then A1 and A2 are also complex-conjugate, A1,2=Ae±jq and the natural
response (equation 1.59) may be written in the form

i
n
(t)=Ae+jqe−ate+jv

n
t+Ae−jqe−ate−jv

n
t=Be−at sin (v

n
t+b), (1.62)

where B=2A and b=q+90°. Taking a derivative of equation 1.62 we will
have

i∞
n
(t)=−Ba e−at sin (v

n
t+b)+Bv

n
e−at cos (v

n
t+b). (1.63)

Equations 1.62 and 1.63 for instant t=0, with the known initial conditions
(equation 1.60), yield

B sin b= i
n
(0),

−Ba sin b+Bv
n
cos b= i∞

n
(0).

(1.64)

By division of the second equation by the first one, we have

v
n
cot b=

i∞
n
(0)

i
n
(0)
+a,

and the solution is

b=tan−1 C vn in (0)i∞
n
(0)+ai

n
(0)D (1.65a)

B=
i
n
(0)

sin b
. (1.65b)

The natural response (equation 1.62) might be written in a different form (whichffff
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is preferred in some textbooks)

i
n
(0)=e−at (M sin v

n
t+N cos v

n
t), (1.66)

where

M=B cos b and N=B sin b. (1.67)

Then, by differentiating equation 1.66 and with the known initial conditions,ffff
the two equations for determining two unknowns, M and N, may be written as

N= i
n
(0),

Mv
n
−aN= i∞

n
(0),

(1.68a)

and

M=
i∞
n
(0)+ai

n
(0)

v
n

. (1.68b)

Knowing M and N we can find B and b and vice versa. Thus for instance

b=tan−1
N

M
and B=√M2+N2

(substituting M and N from equation 1.68 into these expressions yields equa-
tion 1.65).
If the characteristic equation is of an order higher than two, the higher
derivatives shall be found and the solution shall be performed in accordance
with equation 1.55.

Example 1.9

Using the results of Example 1.7 (Fig. 1.23), find the two integration constants
of the natural response of current i

o
. The circuit of Example 1.7 after switching

is shown here in Fig. 1.32(a).

Figure 1.32 A given circuit for Example 1.9: prior to switching (a) and its equivalent in steady-state

operation (b).
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Solution

From Example 1.7 it is known that i
o
(0)=−0.5 A and i∞

o
(0)=−75 A s−1. To

find the two constants of the integration we have to know: 1) the two roots of
the second order characteristic equation and 2) the forced response.

1) In order to determine the characteristic equation we must short-circuit the
voltage sources and find the input impedance by opening, for instance, the
inductance branch, Fig. 1.32(a),

Z
in
=R1+sL+

(R2+1/sC)Rld
R2+Rld+1/sC

.

Equaling zero and substituting the numerical values, we obtain the characteristic
equation

s2=350s+9.17·104=0,

and the roots are a complex-conjugate pair s1,2=−175± j247 s−1.

2) By inspection of the circuit in the steady-state operation, Fig. 1.32(b), we
have

i
o,f
=
−110
100+10

=−1 A.

(Note that this current is negative, since it flows opposite to the positive
direction, assigned by a solid arrow). Now we can find the initial values of the
natural response. With equation 1.60 and noting that i∞

o,f
=0, we have

i
o,n
(0)= i

o
(0)− i

o,f
(0)=−0.5− (−1)=0.5 A

i∞
o,n
(0)=−75−0=−75 A s−1.

Since the roots are complex numbers, we shall use equation 1.65 (or equation
1.68):

b=tan−1
0.5·247

−75+0.5·175
=84.2°

B=
0.5

sin 84.2°
=0.502.

(With equation 1.68 N= i
n
(0)=0.5 andM= (−75+175·0.5)/247=0.0506 and

b=tan−1(0.5/0.0506)=84.2°).
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TRANSIENT RESPONSE OF BASIC CIRCUITS

2.1 INTRODUCTION

In this chapter, we shall proceed with transient analysis and apply the classical
approach technique, which was introduced in the previous chapter, for a further
and intimate understanding of the transient behavior of different kinds offfff
circuits. It will be shown that by applying the so-called five-step solution we
may greatly simplify the transient analysis of any circuit, upon any interruption
and under any supply, so that the determination of transient responses becomes
a simple procedure.
Starting with relatively simple RC and RL circuits, we will progress to more

complicated RL C circuits, wherein their transient analysis is done under both
kinds of supplies, d.c. and a.c. The emphasis is made on the treatment of RL C
circuits, in the sense that these circuits are more general and are more important
when the power system networks are analyzed via different kinds of interrup-ffff
tions. All three kinds of transients in RL C circuit, overdamped, underdamped
and critical damping, are analyzed in detail.
In power system networks, when interrupted, different kinds of resonances,ffff

on a fundamental or system frequency, as well as on higher or lower frequencies,
may occur. Such resonances usually cause excess voltages and/or currents. Thus,
the transients in an RL C circuit under this resonant behavior are also treated
and the conditions for such overvoltages and overcurrents have been defined.
It is shown that using the superposition principle in transient analysis allows

the simplification of the entire solution by bringing it to zero initial conditions
and to only one supplied source. The theoretical material is accompanied by
many numerical examples.

2.2 THE FIVE STEPS OF SOLVING PROBLEMS IN TRANSIENT
ANALYSIS

As we have seen in our previous study of the classical method in transient
analysis, there is no general answer, or ready-made formula, which can be
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applied to every kind of electrical circuit or transient problem. However, we
can formulate a five-step solution, which will be applicable to any kind of circuit
or problem. Following these five steps enables us to find the complete response
in transient behavior of an electrical circuit after any kind of switching (turning
on or off different kinds of sources, short andffff /or open-circuiting of circuit
elements, changing the circuit configuration, etc.). We shall summarize the five-
step procedure of solving transient problems by the classical approach as follows:

1) Determination of a characteristic equation and evaluation of its roots.
Formulate the input impedance as a function of s by inspection of the circuit,
which arises after switching, at instant t=0

+
. Note that all the independent

voltage sources should be short-circuited and the current sources should be
open-circuited. Equate the expression ofZ

in
(s) to zero to obtain the characteristic

equation Z
in
(s)=0 . Solve the characteristic equation to evaluate the roots.

The input impedance can be determined in a few different ways: a) As seenffff
from a voltage source; b) Via any branch, which includes one or more energy
storing elements L and/or C (by opening this branch). The characteristic equa-
tion can also be obtained using: c) an input admittance as seen from a current
source or d) with the determinant of a matrix (of circuit parameters) written in
accordance with mesh or node analysis.
Knowing the roots s

k
the expression of a natural response (for instance, of

current) may be written as

i
n
(t)=∑

k
A
k
es
k
t , for real roots (see 1.31)

or

i
n
(t)=∑

k
B
k
sin (v

n,k
t+b

k
), for complex roots (see 1.33)

2) Determination of the forced response. Consider the circuit, which arises after
switching, for the instant time t�2, and find the steady-state solution for the
response of interest. Note that any of the appropriate methods (which are
usually studied in introductory courses) can be applied to evaluate the solu-
tion i

f
(t).

3) Determination of the independent initial conditions. Consider the circuit, which
existed prior to switching at instant t=0

−
. Assuming that the circuit is operating

in steady state, find all the currents through the inductances i
L
(0
−
) and all the

voltages across the capacitances v
C
(0
−
). By applying two switching laws (1.35)

and (1.36), evaluate the independent initial conditions

i
L
(0
+
)= i
L
(0
−
), v
C
(0
+
)=v
C
(0
−
). (2.1)

4) Determination of the dependent initial conditions. When the desirable response
is current or voltage, which can change abruptly, we need to find their initial
values, i.e. at the first moment after switching. For this purpose the inductances
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must be replaced by current sources, having the values of the currents through
these inductances at the moment prior to switching i

L
(0
−
) and the capacitances

should be replaced by voltage sources, having the values of the voltages across
these capacitances prior to switching v

C
(0
−
). If the current through an inductance

prior to switching was zero, this inductance should be replaced by an open
circuit (i.e., open switch), and if the voltage across a capacitance prior to
switching was zero, this capacitance should be replaced by a short circuit (i.e.,
closed switch). By inspecting and solving this equivalent circuit, the initial values
of the desirable quantities can be found. If the characteristic equation is of the
second or higher order, the initial values of the derivatives must also be found.
This can be done by applying Kirchhoff ’s two laws and using the other known
initial conditions.

5) Determination of the integration constants. With all the known initial condi-
tions apply equations (1.58), (1.61) or (1.65), (1.68), and by solving them find
the constants of the integration (see section 1.8). The number of constants must
be the same as the order of the characteristic equation. For instance, if the
characteristic equation is of the first order, then only one constant of integration
has to be calculated as

A= i(0
+
)− i
f
(0), (2.2a)

and the complete response will be

i(t)= i
f
(t)+[i(0

+
)− i
f
(0)]est . (2.2b)

Keeping the above-classified rules in mind, we shall analyze (in the following
sections) the transient behavior of different circuits.ffff

2.3 FIRST ORDER RL CIRCUITS

2.3.1 RL circuits under d.c. supply

Let us start with a simple RL series circuit, which is connected to a d.c. voltage
source, to illustrate how to determine its complete response by using the 5-step
solution method. This circuit, shown in Fig, 2.1(a), has been previously analyzed
(in its short-circuiting behavior) by applying a mathematical approach.

1) Determining the input impedance and equating it to zero yields

Z
in
(s)=R+sL=0. (2.3a)

The root of these equations is

s=−
R

L
. (2.3b)



52 Chapter #2

Figure 2.1 A series RL circuit switching at t=0 (a), the current plot after switching (b) and the
voltages v

L
(t) and v

R
(t) (c).

Thus, the natural response will be

i
n
(t)=Ae

−
R

L
t
. (2.3c)

2) The forced response, i.e. the steady-state current (after the switch is closed,
at t�2, the inductance is equivalent to a short circuit) will be

i
f
(t)=

V
s
VV

R
=I
2
. (2.4)

3) Because the current through the inductance, prior to closing the switch, was
zero, the independent initial condition is

i
L
(0
+
)= i
L
(0
−
)=0.

4) Since no dependent initial conditions are required, we proceed straight to
the 5th step.

5) With equation 2.2a we have

A=0−
V
s
VV

R
=−I

2
,
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and

i(t)=I
2
−I
2
e
−
R

L
t
=I
2A1−e−RL tB . (2.5)

This complete response and its two components, natural and forced responses,
are shown in Fig. 2.1(b). Note that the natural response, at t=0, is exactly
equal to the steady-state response, but is opposite in sign, so that the whole
current at the first moment of the transient is zero (in accordance with the
initial conditions). It should once again be emphasized that the natural response
appears to insure the initial condition (at the beginning of the transients) and
disappears at the steady state (at the end of the transients). It is logical therefore,
to conclude that in a particular case, when the steady state, i.e., the forced
response at t=0, equals the initial condition, the natural response will not
appear at all(*).
The time constant in this example is

t=
L

R
or in general t=

1

|s |
.

The time constant, in this example, is also found graphically as a line segment
on the asymptote, i.e. on the line of a steady-state value, determined by the
intercept of a tangent to the curve i(t) at t=0 and the asymptote, as shown in
Fig. 2.1(b).
Knowing the current response, we can now easily find the voltages across
the inductance, v

L
and the resistance, v

R
:

v
L
=L

di

dt
=L

d

dt
[I
2
(1−e−(R/L)t)]=L

V
s
VV

R A−RL B (−e−(R/L)t)=VsVV e−(R/L)t ,
and

v
R
=Ri=V

s
VV (1−e−(R/L)t ),

where V
s
VV =RI

2
.

Both these curves are shown in Fig 2.1(c). As we can see at the first moment
the whole voltage is applied to the inductance and at the end of the transient
it is applied to the resistance. This voltage exchange between two circuit elements
occurs gradually during the transient.
Before we turn our attention to more complicated RL circuits, consider once
again the circuit of Fig 1.8, which is presented here (for the reader’s convenience)
in Fig. 2.2(a). The time constant of this circuit has been found (see (1.20)) and
is the same as in a series RL circuit. Therefore the natural response (step 1) is
Ae−(R/L)t. The forced response (step 2) here is i

L,f
=I
s
and the initial value (step

3) is zero. Hence, the integration constant subsequently (step 5) is A=0−I
s
=

(*)This statement is only true in first order circuits.
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Figure 2.2 An RL parallel circuit (a), the circuit in which the inductance discharges through a

resistance (b) and the plots of the discharging current and voltage (c).

−I
s
. Thus, the complete response will be i

L
=I
s
(1−e−(R/L)t ), which is in the

same form as in the RL series circuit.
To complete our analysis of a simple RL series circuit, consider the circuit in
Fig. 2.2(b), in which the switch changes its position from ‘‘1’’ to ‘‘2’’ instantane-
ously and the inductance ‘‘discharges’’ through the resistance. In this case, the
natural response, obviously, is the same as in the circuit (a), but the forced
response is zero. Therefore, we have i

L
=Ae−(R/L)t=I

s
e−(R/L)t , where A=I

s
since the initial value of the inductance current (prior to switching) is I

s
. This

response and the voltage across the inductance and the resistance are shown in
Fig. 2.2(c). Verifying the voltage response is left to the reader.
Let us illustrate the 5-step method by considering more complicated circuits
in the following numerical examples.

Example 2.1

In the circuit, Fig. 2.3(a), find current i2 (t) after opening the switch. The circuit
parameters are V1VV =20 V, V2VV =4 V, R1=8 V, R2=2 V, R3=R4=16 V and
L=1mH.

Solution

1) We start our solution by expressing the impedance Z(s) of the circuit that
arises after switching, at the instant t=0

+
. WeWW shall determine Z

in
(s) as seen

from source V2VV . (However, the impedance Zin(s) can be found in a few differentffff
ways, as will be shown further on.) By inspecting the circuit in Fig. 2.3(b) we
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Figure 2.3 The given circuit (a), its equivalent for t=0 (b), its equivalent for t�2 (c), its equivalent
for t<0 (d) and the curve of current i2(t) (e).

have

Z
in
(s)=sL+R2+

R3R4
R3+R4

.

Substituting the numerical values and equating the expression to zero yields

10−3s+2+8=0.

This equation has the root

s=−100 s−1 and t=0.01 s,

and the natural response will be

i
2,n
=Ae−100t .

2) The forced response, i.e., the steady-state current i
2,f
, is found in the circuit,

Fig. 2.2(c) that is derived from the given circuit after the switching, at t�2,
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while the inductance behaves as a short circuit

i
2,f
=
V2VV
R
eq
=
4

10
=0.4 A.

3) The independent initial condition, i.e., i
L
(0
−
) is found in the circuit prior to

switching, shown in Fig. 2.3(d). Using Thevenin’s equivalent for the left part of
the circuit, as shown in (d), we have

i2 (0+)= i2 (0−)=
V2VV −VThVV
R2+RTh

=
4−10
2+4

=−1 A.

4) None of the dependent initial conditions is needed.

5) In order to evaluate constant A, we use equation 2.2a: A= i2 (0+)− if (0)=
−1−0.4=−1.4 A. Thus the complete response is i2 (t)=0.4−1.4e−100t A,
which is sketched in Fig. 2.3(e).

Example 2.2

For the circuit shown in Fig. 2.4(a) find the current response i1 (t) after closing
the switch. The circuit parameters are: R1=R2=20 V, L 1=0.1 H, L 2=0.4 H,
V
s
VV =120 V.

Figure 2.4 A given circuit for Example 2.2(a), its equivalent at time t=0
+
(b) and the plot of current

i1(t) and its components (c).
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Solution

1) The input impedance is found as seen from the L 2 branch (we just ‘‘measure’’
it from the open switch point of view), with the voltage source short-circuited

Z
in
(s)+sL 2+R2+

R1sL 1
R1+sL 1

.

Equating this expression to zero and after simplification, we get the characteristic
equation

s2+
R1L 1+R2L 1+R1L 2

L 1L 2
+
R1R2
L 1L 2

=0,

or by substituting the numerical data

s2+3·102s+104=0.

Thus, the roots of this equation are

s1=−38.2 s−1, s2=−262 s−1,

and the natural response is

i
1,n
=A1e−38.2t+e−262t.

2) By inspecting the circuit after the switch is closed, at t�2, we may determine
the forced response

i
1,f
=
V
s
VV

R1
=
120

20
=6 A.

3) By inspection of the circuit prior to switching we observe that i
L1
(0
−
)=

120/20=6 A and i
L2
(0
−
)=0. Therefore, the independent initial conditions are

i
L1
(0
+
)=6A, i

L2
(0
+
)=0.

4) Since the characteristic equation is of the second order, and the desired
response, which is a current through a resistance, can be changed abruptly, we
need its two dependent initial conditions, namely:

i1 (0) and
di

dt K
t=0
.

By inspection of the circuit in Fig. 2.4(b) for instant t=0
+
, we may find t1 (0)=

6 A. (Note that in this specific case the current i1 does not change abruptly
and, therefore, its initial value equals its steady-state value, but because the
circuit is of the second order, the transient response of the current is expected.)
By applying KCL we have i1= iL1−iL2 and after the differentiation andffff

evaluation of t=0 we obtain

di

dtK
t=0
=
di1
dt K
t=0
−
di2
dt K
t=0
=
1

L 1
v
L1
(0)−

1

L 2
v
L2
(0).
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Since, Fig. 2.4(b), v
R1
(0)=V

s
VV , then v

L1
(0)=0 and v

R1
(0)=v

L2
(0)=120 V.

Therefore, we have

di

dtK
t=0
=0−

120

0.4
=−300,

and we may obtain two equations

A1+A2= i(0)− if (0)=6−6=0

s1A1+s2A2=
di

dtK
t=0
−
di
f
dt K
t=0
=−300−0=−300.

Solving these two equations yields A1=−1.34, A2=1.34 and the answer is

i1 (t)=6−1.34e−38.2t+1.34e−262t A.

This current and its components are plotted in Fig. 2.4(c).

Example 2.3

Consider the circuit of the transformer of Example 1.2, which is shown here in
Fig. 2.5 in a slightly different form. For measuring purposes, the transformer isffff
connected to a 120 V d.c.-source. Find both current i1 and i2 responses.

1) The characteristic equation and its roots have been found in Example 1.2:
s1=−86 s−1, s2=−1160 s−1. Therefore, the natural responses are

i
1,n
=A1e−86t+A2e−1160t

i
2,n
=B1e−86t+B2e−1160t .

2) The forced responses are found by inspection of the circuit after switching
(t�2):

i
1,f
=
V
s
VV

R1
=
120

6
=20 A, i

2,f
=0.

3) The independent initial conditions are zero, since prior to switching no
currents are flowing through the inductances: i1= (0+)= i1 (0−)=0, i2= (0+)=
i2 (0−)=0.

4) In order to determine the integration constant we need to evaluate the
current derivatives. By inspection of the circuit in Fig. 2.5(b), we have v

L1
(0)=

120 V, v
L2
(0)=0, and

L 1
di1
dt K
t=0
+M

di2
dt K
t=0
=120

L 2
di2
dt K
t=0
+M

di1
dt K
t=0
=0.
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Figure 2.5 The circuit of a transformer (a), its equivalent for t=0
+
(b) and the plots of two cur-

rents (c).

Solving these two relatively simple equations yields

di1
dt K
t=0
=5000,

di2
dt K
t=0
=−6000.

5) With the initial value of i
1,n
(0)= i1 (0)− i1,f (0)=0−20=−20 and the initial

value of its derivative

di
1,n
dt K
t=0
=
di1
dt K
t=0
−
di
1,f
dt K
t=0
=5000−0=5000,

we obtain two equations in the two integration constants of current i1
A1+A2=−20

s1A1+s2A2=5000,

for which the solution is: A1=−19.7, A2=−0.3. In a similar way, the two
equations in the two integration constants of current i2

B1+B2=0
s1B1+s2B2=−6000,

for which the solution is B1=−0.52, B2=0.52.
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Therefore, the current responses are

i1=20−19.7e−86t−0.3e−1160t

i2=−0.52e−86t+0.52e−1160t.

These two currents are sketched in Fig. 2.5(c). Note that the second exponential
parts decay much faster than the first ones and are not shown in Fig. 2.5(c).
Note also that the second exponential term in i1 is relatively small and might
be completely neglected.

Example 2.4

As a final example of inductive circuits let us consider the ‘‘inductance’’ node
circuit, which is shown in Fig. 2.6(a). Find the currents i1 and i2 after switching,
if the circuit parameters are: L 1=L 2=0.05 H, L 3=0.15 H, R1=R2=R3=1 V
and V

s
VV =15 V.

Solution

1) Let us determine the characteristic equation by using mesh analysis. The

Figure 2.6 A circuit containing an ‘‘inductance node’’ (a), its equivalent at t=0 (b) and the plots of
the currents and their components (c).
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impedance matrix is

Cs(L 1+L 3)+R1+R3 −(sL 3+R3)

−(sL 3+R3) s(L 2+L 3)+R2+R3
D=C 0.2s+2 −(0.15s+1)

−(0.15s+1) 0.2s+2 D
Equating the determinant to zero and after simplification, we obtain the charac-
teristic equation

0.0175s2+0.5s+3=0,

for which the roots are

s1=−8.6 s−1, s2=−20 s−1.

Thus, the natural responses of the currents are

i
1,n
=A1e−8.6t+A2e−20t

i
2,n
=B1e−8.6t+B2e−20t .

2) The steady-state values of the currents are zero, since after switching the
circuit is source free.

3) The independent initial conditions can be found by inspection of the circuit
in Fig. 2.6(a) prior to switching and keeping in mind that all the inductances
are short-circuited

i1 (0)= i1 (0−)=
V
s
VV

R1+R2//R3
=
15

1.5
=10 A

i2 (0)= i2 (0−)=
10

2
=5 A.

Note that only two initial independent currents can be found (although the
circuit contains three inductances), since the third current is dependent on two
others. However, because the circuit is of the second order, the two initial values
are enough for solving this problem.

4) Next, we have to find the initial values of the current derivatives for which
we must find the voltage drops in the inductances v

L1
(0) and v

L2
(0) for the

instant of switching, i.e., t=0. By inspection of the circuits in Fig. 2.6(b), we
have

v
L1
(0)+v

L2
(0)=−15, v

L1
(0)+v

L3
(0)=−15, (2.6a)

v
L2
(0)=v

L3
(0). (2.6b)

With KCL we may write i1= i2+ i3 and by differentiationffff

di1
dt
=
di2
dt
+
di3
dt
, or

v
L1
L 1
=
v
L2
L 2
+
v
L3
L 3
.
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With equation 2.6b we have

1

L 1
v
L1
=A 1L 2+ 1L 3B vL2, or vL2= L 2L 3

(L 2+L 3 )L 1
v
L1
=60.75v

L1
,

and with equation 2.6a v
L1
=−8.57 V and v

L2
=−6.43 V. Therefore,

di1
dt K
t=0
=
v
L1
L 1
=−

8.57

0.05
=−171.4 A s−1

di2
dt K
t=0
=
v
L2
L 2
=−

6.43

0.05
=−128.6 A s−1.

5) We may now obtain a set of equations to evaluate the integration constant

A1+A2=10

s1A1+s2A2=−171.4.

for which the solution is A1$2.5, A2$7.5. In a similar way we can obtain

B1+B2=5

s1B1+s2B2=−128.6,

and the solution is B1$−2.5, B2$7.5. Therefore, two current responses are

i1=2.5e−8.6t+7.5e−20t

i2=−2.5e−8.6t+7.5e−20t.

The plots of these currents and their components are shown in Fig. 2.6 (c).

2.3.2 RL circuits under a.c. supply

As we already know, the natural response does not depend on the source
function, and therefore the first step of the solution, i.e. determining the charac-
teristic equation and evaluating its roots, is the same as in previous cases. This
is also understandable from the fact that the natural response arises from the
solution of the homogeneous differential equation, which has zero on the rightffff
side. The forced response can be determined from the steady-state solution of
the given circuit. The symbolic, or phasor, method should be used for this
solution.
To illustrate the above principles, let us consider the circuit shown in Fig. 2.7.
The solution will be completed by applying the five steps as previously done.
In the first step, we have to determine the characteristic equation and its root.
However, for such a simple circuit it is already known that s=−R/L . Therefore
the natural response is

i
n
=Ae−t/t, where t=L /R. (2.7)

In the next step, our attention turns to obtaining the steady-state current.
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Figure 2.7 A series RL circuit switching to an a.c. source.

Applying the phasor method we have

Ĩ
m
=
Ṽ
m
VV

Z
=

V
m
VV

√R2+ (vL )2
% (y

v
−Q),

where Ṽ
m
VV =V

m
VV ejy

v
and Ĩ

m
=I
m
ejy
i
are voltage and current phasors respectively

and Q=y
v
−y
i
=tan−1 (vL /R) is the phase angle difference between the voltageffff

and current phasors. Thus,

i
f
=I
m
sin (vt+y

i
), (2.8)

where

I
m
=

V
m
VV

√R2+ (vL )2
, y
i
=y
v
−Q.

In the next two steps, 3 and 4, we shall determine the only initial condition,
which is necessary to find the current through the inductance. Since prior to
switching this current was zero, we have i(0

+
)= i(0

−
)=0. In the final step, with

this initial value we may obtain the integration constant

A= i(0)− i
f
(0)=−I

m
sin y

i
. (2.9)

Thus, the complete response of an RL circuit to applying an a.c. voltage source
is

i= i
f
+ i
n
=I
m
sin (vt+y

i
)−I
m
sin y

i
e−t/t. (2.10)

This current and its components are plotted in Fig. 2.8(a).
Note that the initial values of i

f
(0) and i

n
(0) are equal and opposite in sign,

so that with zero initial conditions the actual current i(t) always starts with the
zero value. If switching occurs at the instant that y

i
=±p/2, then the total

response reaches its maximum value at the point of one-half a period. This
extreme value of the current may increase up to twice that of the amplitude of
the steady-state current and occurs if the time constant of the circuit is much
greater than the period of the a.c. current so that the natural response current
decays relatively slowly. Thus, if t&T , where T is a period of an a.c. current,
then imax�2Im . This is shown in Fig 2.8(b). If, however, the time constant of
the circuit is small compared to the period of the a.c. current, the natural current
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Figure 2.8 The transient response of a series RL circuit when switching to an a.c. voltage source (a)

and maximal (b), minimal (c) and zero (d) responses.

decreases quickly during the first half period and no considerable excess current
can develop, as shown in Fig. 2.8(c). If the phase angle y

i
is zero, which means

that the forced (steady-state) current passes through zero at the instant of
switching, no transient current (equation 2.9) occurs, so that the a.c. current
immediately starts in its normal way, Fig. 2.8(d).
In highly inductive circuits, which are common for industrial networks, the

displacement angle between the voltage and current is nearly 90°. Thus the
favorable case, Fig. 2.8(d), corresponds to the switching on at the maximum
instantaneous voltage, which usually occurs in high voltage circuit breakers.
The switching-on process in such breakers is initiated by a discharged spark
between the breaker contacts, wherein the contacts approach each other rela-
tively slowly compared with the a.c. frequency, and when the voltage passes its
maximum.
We shall now illustrate the transients in a.c. circuits by the following numerical
examples.

Example 2.5

In an RL circuit of Fig. 2.7, the switch closes at t=0. Find the complete
current response and sketch its plot, if r=10 V, L =0.01 H, and
v
s
=120�2 sin (1000t+15°) V.
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Solution

1) The time constant of the circuit is

t=
L

R
=
0.01

10
=10−3=1ms

and the natural response is

i
n
=Ae−1000t .

2) The steady-state current is calculated by phasor analysis. The impedance of
the circuit is Z( jv)=R+ jvL=10+ j10=�210%45° V, the voltage source
phasor is Ṽ

s,m
VV =100�2ej15° . Thus, the current phasor will be

Ĩ
f
=
Ṽ
s,m
VV

Z
=
100�2%15°
10�2%45°

=10%−30° A,

and the current versus time is

i
f
=10 sin (1000t−30°) A.

3) The initial condition is zero, i.e., i(0
+
)= i(0

−
))=0.

4) Non-dependent initial conditions are needed.

5) The integration constant can now be found A= i(0)− i
f
(0)=

0−10 sin(−30°)=5 and the complete response is i=
10 sin (1000t−30°)+5e−1000t A, which is sketched in Fig. 2.9.

Example 2.6

At the receiving end of the transmission line in a no-load operation, a short-
circuit fault occurs. The impedance of the line is Z= (1+ j5) V and the a.c.

Figure 2.9 A current response in a series RL , of example 2.5, circuit switched to the a.c. source.
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voltage at the sending end is 10 kV at 60 Hz. a) Find the transient short-circuit
current if the instant of short-circuiting is when the voltage phase angle is 1)
−p/4+Q; 2) −p/2+Q and b) estimate the maximal short-circuit current and
the applied voltage phase angle under the given conditions.

Solution

a) First we shall evaluate the line inductance L=x/v=5/2p60=
0.01326$13.3mH. The voltage at the sending end versus time is
v
s
=10�2 sin (vt+y

v
).

1) The time constant of the line (which is represented by RL in series) is t=
L /R=13.3/1=13.3ms or s=−1/t=−75.2 s−1 and the natural current is

i
n
=Ae−75.2t

2) The steady-state short current (r.m.s.) is found using phasor analysis:

Ĩ
f
=
10%y

v
1+ j5

=
10%y

v
5.1%78.7°

=1.96%y
v
−78.7°.

Thus

i
f
=I
m
sin(377t+y

v
−78.7°),

where

I
m
=1.96�2 A and v=2p60=377 rad/s.

3) Because of the zero initial condition, i(0
+
)= i(0

−
)=0.

5) We omit step 4) (since no dependent initial conditions are needed) and
evaluate constant A for two cases:

(1) y
v
=−180°/4+78.7°=33.7°

and A= i(0)− i
f
(0)=0−I

m
sin(33.7°−78.7°)= (�2/2)I

m
.

Therefore, the complete response is

I
sc
=I
m
sin (vt−p/4)+ (�2/2)I

m
e−75.2t.

(2) y
v
=−180°/2+78.7°=−11.3°

and A= i(0)− i
f
(0)=0−I

m
sin(−11.3°−78.7°)=I

m
.

Therefore, the complete response is

i
sc
=I
m
sin(vt−p/2)+I

m
e−75.2t.

b) The maximal value of the short-circuit current is dependent on the initial
phase angle of the applied voltage and will appear if the natural response is the
largest possible one as in (2), i.e., when A=I

m
. The instant at which the current
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reaches its peak is about half of the period after switching. To find the exact
time we have to equate the current derivative to zero. Thus,

di
sc
dt
=
di
f
dt
+
di
n
dt
=0, or

di
f
dt
=−

di
n
dt
.

Performing this procedure we may find

I
m
v cos(vt+y

v
−Q)=I

m
1

t
sin (y

v
−Q)e

−
t

t ,

or in accordance with (2)

cos (vt−p/2)=
1

vt
e
−
vt

vt .

Taking into consideration that

vt=
x

L
·
L

R
=5

we may solve the above transcendental equation finding

vt(max)$3.03 rad.

Therefore, the short-circuit current, of the form i
sc
=I
m
sin (vt−p/2)−I

m
e−t/t,

will reach its maximal value at vt(max)$3.03 rad, Fig. 2.10, and this value will
be

Imax=Im (sin (3.03−p/2)+e−3.03/5)$1.54Im .

Example 2.7

The switch in the circuit of Fig. 2.11 closes at t=0, after being open for a long

Figure 2.10 A plot of the short-circuit current in which it reaches its maximal value.
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Figure 2.11 A given circuit of Example 2.7 (a), its equivalent at t=0 (b) and the current plot (c).

time. Find the transient current i3 (t), if R1=R2=R3=10 V, L=0.01 H and
V
sm
VV =120�2V at f=50 Hz and y

v
=30°.

Solution

1) The simplest way to determine the characteristic equation is by observing it
from the inductive branch

Z(s)=sL+R2+R1//R2=0.

With the given data we have

0.01s+15=0, or s=−1500 s−1,

and

i
3,n
=Ae−1500t .

2) The forced response of the current will be found by nodal analysis

Ṽ
a
VV =

Ṽ
s
VV

R1 C 1R1+ 1

R2+ jxL
+
1

R3D
=

120%30°

2+
1

1+ j0.314

=41.1%35.6°,
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where x
L
=vt=314·0.01=3.14 V. Thus

Ĩ3=
Ṽ
a
VV

R3
=4.11%35.6° and i

3,f
=4.11�2 sin (vt+35.6°).

3) The independent initial condition may be obtained from the circuit prior to
switching:

Ĩ
L
=

V9 sVV
R1+R2+ jxL

=5.92%21.1°.

Therefore, i
L
(0
−
)=5.92�2 sin 21.1°=3.0 A.

4) With the superposition principle being applied to the circuit in Fig. 2.11(b),
we obtain

i3 (0)= i∞3 (0)+ i◊3 (0)=
60�2

20
−
3

2
=2.74 A.

Note that the current i3 is a resistance current and it changes abruptly.

5) The integration constant is now found as

A= i3 (0)− i3,f (0)=2.74−4.11
�2 sin 35.6°=−0.64.

Therefore,

i3 (t)=4.11
�2 sin (vt+35.6°)−0.64e−1500t A,

which is plotted in Fig. 2.11(c).

Example 2.8

As our next example consider the circuit in Fig. 2.12 and find the current
through the switch, which closes at t=0 after being open for a long time. The
circuit parameters are: R1=2 V, x1=10 V, R2=20 V, x2=50 V and VmVV =15 V
at f=50 Hz and y

v
=−15°.

Solution

1) After short-circuiting, the circuit is divided into two parts, so that each of

Figure 2.12 A given circuit for Example 2.8.
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them has two different time constants:ffff

t1=
L 1
R1
=
x1
vR1
=
10

314·2
=15.9ms, or s1=−1/t1=−62.9 s−1,

t2=
L 2
R2
=
x2
vR2
=

50

314·20
=7.96ms, or s2=−1/t2=−125 s−1.

Thus, the natural response of the current contains two parts:

i
sw,n
=A1e−62.9t+A2e−125t.

2) The right loop of the circuit is free of sources, so that only the left side
current will contain the forced response:

i
1,f
=

15

√22+102
sin (314t−15°−tan−110/2)=1.47 sin (314t−93.7°) A.

3) The independent initial conditions, i.e., the currents into two inductances
prior to switching, are the same:

i
L
(0
+
)= i
L1
(0
−
)= i
L2
(0
−
)=

15

√222+602
sin(−15°−tan−160/22)=−0.234 A.

4–5) Since non-dependent initial conditions are required, we may now evaluate
the integration constants:

A1= iL (0)− i1,f (0)=−0.234−1.47 sin(−93.7)=1.23,

A2= iL (0)−0=−0.234.

Therefore, the answer is:

i
sw
=i1− i2=1.47 sin (314t−93.7°)+1.23e−62.9t+0.234e−125t A.

Example 2.9

Our final example of RL circuits will be the circuit shown in Fig. 2.13, in
which both kinds of sources, d.c. and a.c., are presented. Consider the above
circuit and find the transient current through resistance R1 . The circuit
parameters are: R1=R2=5 V, L=0.01 H, Is=4 A d.c. and v

s
(t)=

100�2 sin (1000t+15°) V.

Solution

1) The characteristic equation for this circuit may be determined as

Z(s)=R1+R2+sL=0 or 0.01s+10=0,

which gives

s=−1000 s−1 or t=1ms.
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Figure 2.13 A given circuit of Example 2.9 (a), its equivalent for t=0 (b) and the plots of the current
and its components (c).

Thus,

i
1,n
=Ae−1000t .

2) The forced response (using the superposition principle) is

i
f
= i
(Is)
+ i
(vs)
=−2+

100√2
√102+102

sin (1000t+15°−45°)

=−2+10 sin (1000t−30°) A.

3) The inductance current prior to (and after) switching is i
L
(0)= i

L
(0
−
)=

I
s
=4 A.

4) The initial value of the current through R1 (the dependent initial condition)
is found in the circuit of Fig. 2.13(b). By inspection of this circuit, we shall
conclude that this current is zero (since both branches with current sources,
which possess an infinite inner resistance, behave as an open circuit for the
voltage source, and the two equal current sources are connected in the right
loop in series without sending any current to the left loop). Thus, i1 (0)=0.
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5) The integration constant, therefore, is obtained as A= i1 (0)− i1,f (0)=
0+2−10 sin (−30°)=7 A. Hence,

i1 (t)=−2+10 sin(1000t−30°)+7e−1000tA.

This current is plotted in Fig. 2.13(c).

2.3.3 Applying the continuous flux linkage law to L-circuits

As we have observed earlier (see Section 1.7.4), when an RL circuit is discon-
nected from a source, say for instance a d.c. source, by the rapid opening of a
switch a very high voltage appears across the switch, which may result in a
breakdown of the circuit insulation. In this section, we shall review this phenom-
enon by introducing a number of examples in which the problem is solved using
the continuous flux linkage principle. Let us consider the circuit in Fig. 2.14(a).
The current prior to switching is i(0

−
)=I0=V0VV /R and, according to the switch-

ing law, at the first moment after switching it remains the same

i(0
+
)=I0 .

Because the resistance of an open switch is infinite R
sw
�2 , the voltage across

the switch will also be infinite v
sw
�2. In reality an infinite voltage will not be

reached, since the resistance of the actual switches in the open position is very
high, but not infinite. Another reason that the voltage cannot reach infinity is
that the spark appears between the switch contacts, and the stored energy is

Figure 2.14 A series RL circuit switched off instantaneously (a), an RL circuit with a parallel

resistance and capacitance (b) and an RL circuit with a resistance and capacitance parallel to

the switch (c).
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dissipated in ionizing the air surrounding the contacts. This phenomenon is
used in special inductance coils for generating high voltage peaks (for instance,
in the ignition system of an automobile such a coil is used to initialize the arcs
across the spark plugs to ignite the gasoline in the engine cylinders).
In power circuits, such excess voltages are detrimental and must be avoided.
It is useful to connect a substantial resistance parallel to the circuit, Fig. 2.14(b),
or, which is even better, parallel to the switch (or breaker), Fig. 2.14(c). In these
figures, C represents the stray capacitance shunting the breaker. The presence
of an inductance and capacitance raises the differential equation to one of theffff
second order, which will be examined in the following sections. Let us next
consider a few examples of the switching phenomenon in first order RL circuits.

Example 2.10

In the circuit of Fig. 2.15, which contains two coils, the switch opens almost
instantaneously and coil L 2 , whose current prior to switching was different fromffff
that of coil L 1 , is connected in series with coil L 1 . (a) Find the transient current
and (b) Estimate the voltage drop between the switch contacts, if the estimated
switching time is Dt#10 ms. The circuit parameters are: L 1=20mH, L 2=
80mH, R1=2 V, R2=R3=4 V and VsVV =12 V (see also Example 1.8).

Solution (a)

1) By inspection of the circuit after switching, we observe that two coils are
connected in series, thus

s=
R1+R2
L 1+L 2

=
6

(20+80)10−3
=60 s−1,

and the natural response is

i
n
=Ae−60.

2) The forced response is:

i
L
=

V
s
VV

R1+R2
=
12

2+4
=2 A.

Figure 2.15 A given circuit for Example 2.10.
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3) The currents in each coil prior to switching are:

i1 (0−)=
V
s
VV

R1+R3//R2
=
12

2+2
=3 A and i2 (0−)=

1

2
i1 (0−)=1.5 A.

4) Using the first generalized switching law regarding flux linkages (1.35b), we
may write

L 1 i1 (0−)+L 2 i2 (0−)= (L 1+L 2 )i(0+).

Therefore the common current i(0
+
) in both coils after switching is

i(0
+
)=
20·3+80·1.5
20+80

=1.8 A.

5) The integrating constant is

A= i(0
+
)− i
f
(0)=1.8−2=−0.2,

and the complete constant is

i
f
+ i
n
=2−0.2e−60t A.

Solution (b)

To approximate the voltage drop we use the expression

v
sw
(0)$L 2

|Di2 |
Dt
.

Since the current rise is Di2= i2 (0−)− i(0+)=1.5−1.8=−0.3 A, therefore

v
sw
$80·10−3

0.3

10·10−6
$2.4·103=2.4 kV.

Example 2.11

In the circuit of Fig. 2.16, with L 1=L 2=24mH, M=12mH and R1=R2=
1 V, the switch opens practically instantaneously after being closed for a long
time. Find the current i2 and estimate the voltage drop in the switch, if
Dt
sw
$1 ms.

Figure 2.16 A given circuit of Example 2.11.
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Solution

1) The time constant of the secondary circuit is

t=
L 2
R2
=
24·10−3
1

=24ms or s=−41.7 s−1

and the natural response is

i
2,n
=Ae−41.7t .

2) Since the circuit after switching is source free, the forced response is zero:
i
2,f
=0.

3) The initial value of the current in the transformer secondary may be found
in accordance with the principle of flux linkage continuance (first generalized
switching law), i.e.,

(l
L
+l
M
)
t=0
+

= (l
L
+l
M
)
t=0
−

,

or

L 1 i1 (0+)−Mi2 (0+)+L 2 i2 (0+)−Mi1 (0+)=L 1 i1 (0−)−Mi2 (0−)

+L 2 i2 (0−)−Mi1 (0−).

Since i2 (0−)=0, i1 (0−)=4 A and i1 (0+)=0, we have (L 2−M)i2 (0+)=
(L 1−M)i1 (0−) and since L 1=L 2 , we have i2 (0+)= i1 (0−)=4 A.

5) Omitting step 4 (since non-dependent initial values are needed) we obtain

A= i2 (0)− i2,f (0)=4,

and

i2=4e−41.7t.

The voltage drop across the switch will be

v
sw
=K L −Di1Dt −M Di2Dt K= (24·4+12·4)10−310−6

=144·103=144 kV.

Checking the energy preservation, we may find:

The energy prior to switching:

L 1 i21 (0−)
2

+
L 2 i22 (0−)
2

+Mi1 (0−)i2 (0−)=
L 1 i21 (0−)
2

=
24·10−3 ·42

2
=192mJ,

and the energy after switching:

L 1 i21 (0+)
2

+
L 2 i22 (0+)
2

+Mi1 (0+)i2 (0+)=
L 2 i22 (0+)
2

=
24·10−3 ·42

2
=192mJ,

which are the same.
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Figure 2.17 A given circuit for Example 2.12.

Example 2.12

In the circuit of Fig. 2.17 containing the mutual inductance, the switch opens
practically instantaneously, after being closed for a long time. Find the transient
response of current i1 for two cases: (a) Both dotted terminals are connected to
the common node ‘‘a’’ and (b) Only one dotted terminal is connected to the
common node ‘‘a’’. The circuit parameters are R1=5 V, R2=R3=10 V, L 1=
0.1 H, L 2=0.2 H, M=0.05 H and VsVV =60 V.

Solution (a)

1) The characteristic equation will be determined by writing the KVL equation
for the right loop and equating it to zero (note that after switching i1= i2= i
and all the elements are connected in series):

[R1+R2+s(L 1+L 2−2M)]i=0.

Thus,

(0.1+0.2−0.1)s+5+10=0 and s=−75 s−1.

Therefore, the natural response is

i
n
=Ae−75t.

2) The steady-state current is

i
f
=

V
s
VV

R1+R2
=
60

5+10
=4 A.

3) The initial value of the current i(0
+
) shall now be found using the first

generalized law, i.e.,

i1 (0+)(L 1+L 2−2M)= i1 (0−)L 1+ i2 (0−)L 2−[i1 (0−)+ i2 (0−)]M,
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or

i1 (0+)=
i1 (0−)L 1+ i2 (0−)L 2−[i1 (0−)+ i2 (0−)]M

(L 1+L 2−2M)

=
6·0.1+3·0.2−9·0.05
0.1+0.2−0.1

=3.75 A,

where the currents prior to switching are (by inspection of the circuit in
Fig. 2.17): i1 (0−)=6 A and i2 (0−)=3 A.

4–5) The integration constant can now be evaluated as

A= i(0)− i
f
(0)=3.75−4=−0.25,

and the complete response is

i(t)=4−0.25e−75t A.

Solution (b)

1) The exchange of the position of the dotted terminals results in a positive
sign connection of the mutual inductance. Therefore,

[R1+R2+s(L 1+L 2+2M)]i=0,

or

15+0.4s=0 and s=−37.5 s−1.

Thus,

i
n
=Ae−37.5t.

2) The forced response is not influenced by the dotted terminal exchange and
remains the same i

f
=4 A.

3) The initial condition is now found as

i1 (0+)=
i1 (0−)L 1+ i2 (0−)L 2+[i1 (0−)+ i2 (0−)]M

(L 1+L 2+2M)

=
6·0.1+3·0.2+9·0.05
0.1+0.2+0.1

=4.125 A.

4–5) The integration constant is

A=4.125−4=0.125,

and the complete response in this case is

i(t)=4+0.125e−37.5t A.

Example 2.13

Our last example in this section will be the circuit shown in Fig. 2.18(a). This
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Figure 2.18 A given circuit for Example 2.13(a) and the circuit after the short-circuiting for the

second stage of the transients (b).

circuit represents the equivalent of a d.c. supply network. At the instant of time
t=0, the short-circuit fault occurs at node ‘‘a’’ and when the short-circuit
current i

sc
through the breaker reaches the value I=500 A, the circuit breaker

opens practically instantaneously. Find the transient response of current i2 after
the fault. The circuit parameters are R1=1 V, R=R2=9 V, L 1=0.01 H, L 2=
0.45 H and V

s
VV =1100 V.

Solution

First stage (the period between a short circuit t=0 and opening the circuit
breaker, BR, t=t1 ).

1) Since the circuit is divided into two sub circuits: the left one with current i1
and the right one with current i2 , we shall obtain two time constants and two
natural responses:

(1) t1=
L 1
R1
=
0.01

1
=0.01 s, or s1=−100 s−1 and i

1,n
=A1e−100t ,

(2) t2=
L 2
R2
=
0.45

9
=0.05 s, or s2=−20 s−1 and i

2,n
=A2e−20t .

2) The forced responses in these circuits are:

(1) i
1,f
=
V
s
VV

R1
=
1100

1
=1100 A, (2) i

2,f
=0.

3) The initial conditions of the above two currents may be obtained by inspec-
tion of the given circuit prior to short-circuiting

(1) i1 (0−)=
V
s
VV

R1+R2//R3
=
1100

1+4.5
=200 A, (2) i2 (0−)=

1

2
i1 (0−)=100 A.
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4–5) The integration constants are

(1) A1= i1 (0)− i1,f=200−1100=−900,

(2) A2= i2 (0)− i2,f=100−0=100.

The complete response in each of the circuits is

(1) i1 (t)=1100−900e−100t A, (2) i2 (t)=100e−20t A.

In order to determine the instant of time, at which the breaker opens, we must
solve the equation

i
Br
= i1− i2 |t=t

1

=500,

or

1100−900e−100t
1
−100e−20t

1
=500.

This transcendental equation can now be solved by the iteration approach.
Since the time constant of the second circuit is relatively large, we assume that
current i2 is a constant. Thus, the first estimation of time t1 will be found as

900e−100t
1
=1100−600, and −100t1= ln

500

900
or t(1)

1
=5.6ms

For the second estimation we assume that current
i2=100e−20·5.6·10−3=89.4 A, therefore, now

900e−100t
1
=511,

to which the solution is

t(2)
1
=−

ln(511/900)

100
=0.566·10−2$5.7ms.

Since this result is very close to the previous one, no more estimations are
needed, and the value t1=5.7ms is taken as the answer.

Second stage (the period of time after the breaker opens t>5.7ms)

1) In this stage the circuit consists of only one loop, whose characteristic
equation is

R1+R2+s(L 1+L 2 )=0.

.
Upon substitution of the numerical data the time constant becomes

t=
0.46

10
=0.046 s, or s=21.7 s−1.

2) The forced response is

i
2,f
=
1100

1+9
=110 A.
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3) The current values prior to switching are

i1 (0−)= i1 (t1 )=1100−900e−100·5.7·10−3=591 A,

i2 (0−)= i2 (t1 )=100e−20·5.7·10−3=89 A.

The initial value of i2 after switching (note that both currents are now equal),
in accordance with the first generalized law, is

i2 (0+)=
i1 (0−)L 1+ i2 (0−)L 2

L 1+L 2
=
591·0.01+89·0.45

0.46
$100 A.

4–5) The integration constant can now be found A= i2 (0)− if=100−110=
−10.

Therefore, the complete response of current i2 after the short-circuit fault is

i2 (t)=100e−20t for 0<t<5.7

i2 (t)=110−10e−21.7(t− t1) for 5.7<t<2.

Note that at the moment t=5.7ms the current changes rapidly (however, the
total magnetic flux of both inductances remains the same).

2.4 RC CIRCUITS

We shall approach the transient analysis of RC circuits keeping in mind the
principle of duality. As we have noted the RC circuit is dual to the RL circuit.
This means that we may use all the achievements and results we obtained in
the previous section regarding the inductive circuit for capacitance circuit analy-
sis. For instance, the time constant of a simple RL circuit has been obtained as
t
L
=L /R, for a simple RC circuit it must be t

C
=C/G (i.e., L is replaced by C

and R by G, which are dual elements). Since G=1/R, the time constant of an
RC circuit can, of course, be written as t

C
=RC . In the following sections, more

examples of such duality will be presented.

2.4.1 Discharging and charging a capacitor

Consider once again the RC circuit (also see section 1.3.1) shown in Fig. 2.19(a),
in which R and C are connected in parallel. Prior to switching the capacitance
was charged up to the voltage of the source V

s
VV . After opening the switch, the

capacitance discharges through the resistance. The time constant of the circuits
is t=RC and the initial value of the capacitance voltage is V

C0
VV =V

s
VV . The forced

response component of the capacitance voltage is zero, since the circuit after
switching is source free. Thus,

v
C
(t)=V

C0
VV e

−
t

RC . (2.11)
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Figure 2.19 A circuit of a parallel connection of resistance and capacitance (a) and the plots of the

discharging voltage and current (b).

The current response will be

i
C
=C

dv
C
dt
=−

V
C0
VV

R
e
−
t

RC . (2.12)

Note that 1) the current changes abruptly at t=0 from zero (prior to switching)
to V
C0
VV /R and 2) its direction is opposite to the charging current. This current

and the capacitance voltage are plotted in Fig. 2.19(b). Also note that the
voltage curve in Fig. 2.19(b) is similar to the current curve in the RL circuit,
and inversely the current curve is similar to the voltage curve in the RL circuit,
as shown in Fig. 2.2(c). This fact is actually another example of duality.
Let us now show that the energy stored in the electric field of the capacitance
completely dissipates in the resistance, converging into heat, during the tran-
sients. The energy stored is

w
e
=
CV 2
C0
2
. (2.13)

The energy dissipated is

w
R
=P2
0
PP v2CR dt=V 2C0R P2

0
PP e− 2tRC dt=−RCV 2C02R

e
−
2t

RC K2
0
=
CV 2
C0
2
. (2.14)

Hence, the energy conservation law has been conformed to.
Consider next the circuit of Fig. 2.20, in which the capacitance is charging
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Figure 2.20 An RC circuit in which the capacitance is charging (a) and the plots of the voltage and

current responses (b).

through the resistance after closing the switch. The natural response of this
circuit is similar to the previous circuit, i.e.,

v
C,n
=Ae−t/RC.

However, because of the presence of a voltage source, the forced response (step
2) will be v

C,f
=V
s
VV , since in the steady-state operation the current is zero (the

capacitance is fully charged), and the voltage across the capacitance is equal to
the source voltage.
Next, we realize that the initial value of the capacitance voltage, prior to
switching (step 3), is zero, and the constant of integration (step 5) is obtained
as A=0−V

s
VV =−V

s
VV .

The complete response, therefore is

v
C
=V
s
VV −V

s
VV e−t/RC=V

s
VV (1−e−t/RC ). (2.15)

The current response can now be found as

i
C
=C

dv
C
dt
=
V
s
VV

R
e−t/RC . (2.16)

Both responses, voltage and current, are plotted in Fig. 2.20(b). Note again that
these two curves are similar to the current and voltage response curves respec-
tively in the RL circuit as shown in Fig. 2.1(b) and (c).

2.4.2 RC circuits under d.c. supply

Let us now consider more complicated RC circuits, fed by a d.c. source. If, for
instance, in such circuits a few resistances are connected in series/parallel, we
may simplify the solution by determining R

eq
and reducing the circuit to a

simple RC-series, or RC-parallel circuit. An example of this follows.

Example 2.14

Consider the circuit of Fig. 2.21 with R1=R2=R3=R4=50 V, C=100 mF and
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Figure 2.21 A given circuit of Example 2.14 (a) and its simplified equivalent (b).

V
s
VV =250 V. Find the voltage across the capacitance after the switch opens at
t=0.

Solution

After the voltage source is ‘‘killed’’ (short-circuited), we may determine the
equivalent resistance, which is in series/parallel to the capacitance, Fig. 2.21(b):
R
eq
= (R1//R2+R4 )//R3 , which, upon substituting the numerical values, results

in R
eq
=30 V. Thus, the time constant (step 1) is

t=R
eq
C=30·100·10−6=3ms, and v

C,n
=Ae−t/3 , (t is in ms).

By inspection of the circuit in its steady-state operation (t�2) the voltage
across the capacitor (the forced response) can readily be found (step 2): v

C,f
=

50 V. The initial value of the capacitance voltage (step 3) must be determined
prior to switching:

v
C
(0
+
)=v
C
(0
−
)=V
s
VV

R3
R3+R4

=250
50

100
=125 V.

Hence, the integration constant (step 5) is found to be A=v
C
(0)−v

C,f
=

125−50=75, and the complete response is

v
C
(t)=50+75e−t/3.

With the above expression of the integration constant (see step 5), the com-
plete response in the first order circuit can be written in accordance with the
following formula (given here in its general notation, for either voltage or
current):

f (t)= f
f
ff + f

n
ff = f

f
ff + ( f0ff − ff,0ff )e−t/t, (2.17)

where f0ff and ff,0ff are the initial values of the complete and the forced responses
respectively. Or in the form

f (t)= f
f
ff (1−e−t/t)+ f0ff e−t/t , (2.18)
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and for zero initial conditions ( f0ff =0)

f (t)= f
f
ff (1−e−t/t). (2.19)

In the following examples, we shall consider more complicated RC circuits.

Example 2.15

At the instant t=0 the capacitance is interswitched between two voltage sources,
as shown in Fig. 2.22(a). The circuit parameters are R1=20 V, R2=10 V, R3=
R4=100 V, C=0.01 F, and the voltage sources are Vs1VV =60V and Vs2VV =120V.
Find voltage v

C
(t) and current i2 (t) for t>0.

Solution

1) The input impedance, Fig. 2.22(b), is:

Z
in
(s)=

1

sC
+R2//R3//R4 .

Upon substitution of the numerical data and equating it to zero yields

1

s
102+

50

6
=0, or s=−12 s−1,

Figure 2.22 A given RC circuit of Example 2.15 (a), a circuit for determining the input impedance

and the forced response (b), a circuit for determining the initial value (c) and the curves of the

voltage and current responses (d).
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and the natural response becomes

v
C,n
=Ae−12t .

2) The forced response is found as the voltage drop in two parallel resistances
R
3,4
=50 V. With the voltage division formula, we obtain

v
C,f
=V
s
VV

R
3,4

R2+R3,4
=120

50

10+50
=100 V.

3) The initial value of the capacitance voltage must be determined from the
circuit prior to switching, as shown in Fig. 2.22(c). Applying the voltage division
once again, we have

v
C
(0
+
)=v
C
(0
−
)=60

100

20+100
=50 V.

5) (Step 4 is omitted, as it is unnecessary). In accordance with equation 2.17
we obtain

v
C
(t)=100+ (50−100)e−12t=100−50e−12t V.

Current i2 can now be easily found as, Fig. 2.22(b),

i2 (t)= iR+ iC=
v
C
R
3,4
+C

dv
C
dt
=2−1e−12t+0.01(−50)(−12)e−12t

=2+5e−12t A.

Both curves, of v
C
and i2 , are plotted in Fig. 2.22(d). Note that the current i2

changes abruptly from zero to 7 A. Our next example will be a second order
RC circuit.

Example 2.16

Consider the second order RC circuit shown in Fig. 2.23(a), having R1=R3=
200 V, R2=R4=100 V, C1=C2=100 mF and two sources VsVV =300 V and Is=
1 A. The switch opens at t=0 after having been closed for a long time. Find
current i2 (t) for t>0.

Solution

1) We shall determine the characteristic equation by using mesh analysis for
the circuit in Fig. 2.23(a) after opening the switch and with ‘‘killed’’ sources

A 1sC1+ 1

sC2
+R1+R2B i2− 1

sC2
i3=0

−
1

sC2
i2+A 1sC2+R3B i3=0.
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Figure 2.23 A second order RC circuit of Example 2.16 (a), an equivalent circuit for the calculation

of the independent initial conditions (b) and an equivalent circuit for the calculation of the dependent

initial conditions.

Equating the determinant for this set of equations to zero, we may obtain the
characteristic equation (note that C1=C2=C)

A 2sC+R1+R2B A 1sC+R3B−A 1sCB2=0.
Upon substituting the numerical data the above becomes 6s2+700s+104=0,
and the roots are s1=−16.7 s−1 and s2=−100 s−1. Therefore, the natural
response becomes

i
2,n
=A1e−16.7t+A2e−100t A.

2) By inspection of the circuit in Fig. 2.23(a), in its steady-state operation (after
the switch had been open for a long time), we may conclude that the only
current flowing through resistance R2 is the current of the current source, i.e.,
i
2,f
=I
s
=1A.

3) In order to determine the independent initial condition, i.e. the capacitance
voltages at t=0, we shall consider the circuit equivalent for this instant of time,
shown in Fig. 2.23(b). Using the superposition principle, we may find the current
through resistance R3 as

i3=
V3VV

R2+R3+R4
−I
s

R4
R2+R3+R4

=
300

400
−1
100

400
=0.5 A,

and the voltage across capacitance C
2
as v

C2
=V
C20
VV =V

s
VV −R3 i3=300−
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200·0.5=200 V. In a similar way

i4=
V3VV

R2+R3+R4
+I
s
R2+R3

R2+R3+R4
=
300

400
+1
100+200
400

=1.5 A,

and

v
C1
(0)=V

C10
VV =R4 i4=100·1.5=150 V.

4) Since the response that we are looking for is the current in a resistance, it
can change abruptly. For this reason, and also since the response is of the
second order, we must determine the dependent initial conditions, namely i2 (0)
and di2/dt | t=0 . This step usually has an abundance of calculations. (This is
actually the reason why the transformation methods, in which there is no need
to determine the dependent initial conditions, are preferable). However, let us
now perform these calculations in order to complete the classical approach.
In order to determine i2 (0) we must consider the equivalent circuit, which fits

instant t=0, Fig. 2.23(c). With the mesh analysis we have
R1[i2 (0)−Is]+R2 i2 (0)=VC10VV −V

C20
VV , or

i2 (0)=
V
C10
VV −V

C20
VV +R1Is
R1+R2

=
150−200+200·1
200+100

=0.5 A.

For the following calculations, we also need the currents through the capaci-
tances, i.e., through the voltage sources, which represent the capacitances. First,
we find current i3 :

i3= (VsVV −VC20VV )/R3= (300−200)/200=0.5 A,

then

i
C1
(0)=I

s
− i2 (0)=1−0.5=0.5 A

i
C2
(0)= i2 (0)+ i3 (0)=0.5+0.5=1.0 A.

In order to determine the derivative of i2 , we shall write the KVL equation for
the middle loop (Fig. 2.23(c)):

−v
C1
−R1 (Is− i2 )+R2 i2+vC2=0.

After differentiation we haveffff

(R1+R2 )
di2
dt
=
dv
C1
dt
−
dv
C2
dt
=
1

C
(i
C1
−i
C2
),

or

di2
dt K
t=0
=

1

(R1+R2 )C
(i
C1
−i
C2
)=

1

300·10−4
(0.5−1)=−16.7.

5) In accordance with equation 1.61 we can now find the integration constants

A1+A2= i2 (0)− i2,f (0)=0.5−1
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s1A1+s2A2=
di2
dt K
t=0
−
di
2,f
dt K
t=0
=−16.7−0,

or

A1+A2=−0.5

−16.7A1−100A2=−16.7,

to which the solution is

A1=
−0.5(−100)+16.7
−100+16.7

=−0.8

A2=−0.5−A1=−0.5+0.8=0.3.

Thus the complete response is

i2 (t)=1−0.8e−16.7t+0.3e−100t A.

2.4.3 RC circuits under a.c. supply

If the capacitive branch switches to the a.c. supply of the form v
s
=

V
sm
VV sin (vt+y

v
), as shown in Fig, 2.24(a), the forced response of the capacitance

Figure 2.24 An RC circuit under an a.c. supply (a), the transient response when the overvoltage

occurs (b) and the transient response with the current peak (c).
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voltage will be

v
C,f
=V
Cm
VV sin (vt+y

v
−Q−p/2). (2.20)

Here phase angle y
v
(switching angle), is appropriate to the instant of switching

t=0

V
cm
VV =

1

vC

V
sm
VV

√R2+ (1/vC)2
(2.21a)

and

Q=tan−1(−1/RvC) (2.21b)

Since the natural response does not depend on the source, it is

v
C,f
=Ae−t/RC .

With zero initial conditions, i.e., v
C
(0)=0, the integration constant becomes

A=v
C
(0)−v

C,f
(0)=−V

Cm
VV sin(y

v
−Q−p/2). (2.22)

Thus, the complete response of the capacitance voltage will be

v
C
(t)=V

Cm
VV [sin(vt+y

v
−Q−p/2)−sin (y

v
−Q−p/2)e−t/RC], (2.23)

and of the current

i
C
(t)=C

dv
C
dt
=I
m Csin (vt+yv−Q)+ 1

vRC
sin (y

v
−Q−p/2)e−t/RCD ,

(2.24)

where

I
m
=vCV

Cm
VV =

V
sm
VV

R√1+ (1/vRC)2
(2.25)

and

A=
I
m

vRC
sin (y

v
−Q−p/2). (2.26)

Since, during the transient behavior, the natural response is added to the
forced response of the voltage and current, it may happen that the complete
responses will exceed their rated amplitudes. The maximal values of overvoltages
and current peaks depend on the switching angle and time constant. If switching
occurs at the moment when the forced voltage equals its amplitude value, i.e.
when the switching angle y

v
=Q and with a large time constant, the overvoltage

may reach the value of an almost double amplitude, 2V
Cm
VV . This is shown in

Fig. 2.24(b). It should be noted that the current in this case will almost be its
regular value, since at the switching moment its forced response equals zero,
and the initial value of the natural response (equation 2.26) is small because of
the large resistance due to the large time constant, Fig. 2.24(b). (Compare with
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Figs. 2.9 and 2.10 of the current response in an RL circuit under an a.c. supply).
On the other hand, if the time constant is small due to the small resistance R,
the current peak, at t=0, may reach a very high level, many times that of its
rated amplitude, Fig. 2.24(c). However the overvoltage will not occur.
We shall now consider a few numerical examples.

Example 2.17

In the circuit of Fig. 2.25(a), with R1=R2=5 V, C=500 mF and
v
s
=100�2 sin (vt+p/2), find current i(t) after switching.

Solution

There are two ways of finding the current: 1) straightforwardly and 2) first to
find the capacitance voltage and then to perform the differentiationffff i=C(dv

C
/dt).

We will present both ways.

1) The time constant (step 1) is t=RC=5·500·10−6=2.5·10−3, therefore s=
−1/t=−400 s−1 and the natural response is i

n
=Ae−400t. The forced response

(step 2) is

i
f
=I
m
sin(vt+p/2−Q)=17.5 sin(vt+141.8°),

where

I
m
=

100√2
√52+ (1/314·5·10−4 )2

=17.5 A

and

Q=tan−1
−1/(314·5·10−4)

5
=−51.8°.

The initial value of the capacitance voltage (the initial independent condition,
step 3) must be found in the circuit of Fig. 2.25(a) prior to switching

v
C
(0
−
)=
100√2·6.37
√102+6.372

sin Ap2−tan−1 −6.3710 −
p

2B=40.8 V,
where

x
C
=

1

314·5·10−4
=6.37 V.

The initial value of the current, which is the dependent initial condition (step
4) may be found from the equivalent circuit, for the instant of switching, t=0,
which is shown in Fig. 2.25(b):

i(0)=
100√2−40.8

5
=20.1 A.
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Figure 2.25 A given circuit for Example 2.15 (a), its equivalent for calculating i(0) (b) and the plot

of the current (c).

The integration constant and complete response (step 5) will then be

A
i
= i(0)− i

f
(0)=20.1−17.5 sin 141.8°=9.3 A,

and

i(t)=17.5 sin (314t+141.8°)+9.3e−400t A.

2) The difference in the calculation according to way 2) is that we do not needffff
Step 4. Step 1 is the same; therefore, the natural response of the capacitance
voltage is v

C,n
=Ae−400t , and we continue with Step 2:

v
C,f
=
100√2·6.37
√52+6.372

sin(314t+p/2+51.8°−p/2)=111.3 sin (314t+51.8°) V.

Step 3 has already been performed so we can calculate the complete response
as

v
C
(t)=111.3 sin(314t+51.8°)−46.7e−400t V,

where

A
v
=v
C
(0)−v

C,f
(0)=40.8−111.3 sin 51.8°=−46.7.
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The current can now be evaluated as

i=C
dv
C
dt
=17.5 sin(314t+51.8°+p/2)+9.3e−400t A,

where

I
m
=5·10−4 ·314·111.3=17.5 and A

i
=5·10−4 (−400)(−46.7)=9.3 A,

which is the same as previously obtained. The plot of current i is shown in
Fig. 2.25(c).

Example 2.18

In the circuit of Fig. 2.26(a), the switch closes at t=0. Find the current in the
switching resistance R3 . The circuit parameters are: R1=R2=R3=10 V, C=
250 mF and v

s
=100�2 sin (vt+y

v
) at f=60 Hz. To determine the switching

angle y
v
, assume that at the instant of switching v

s
=0 and its derivative

is positive.

Solution

The voltage is zero if y
v
is 0° or 180°. Since the derivative of the sine wave at

0° is positive (and at 180° it is negative), we should choose y
v
=0°.

1) To determine the time constant (step 1) we shall first find the equivalent
resistance R

eq
=R2+R1//R3=10+5=15 V. Thus, t=ReqC=15·250·10−6=

3.75ms and s=−1/t=−267 s−1. Therefore, the natural response is

i
3,n
=Ae−267tA.

2) The forced response shall be found by using node analysis

Ṽ
a
VV − Ṽ

s
VV

R1
+

Ṽ
a
VV

R2− jxC
+
Ṽ
a
VV

R3
=0.

Figure 2.26 A given RC circuit for Example 2.16 (a) and its equivalent for determining the initial

value of the current i3 (0) (b).
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Upon substituting 1/377·2.5·10−4=10.6 for x
C
, 141%0° for Ṽ

s
VV and 10 for R3

and R1 the above equation becomes

Ṽ
a
VV −141
10

+
Ṽ
a
VV

10− j10.6
+
Ṽ
a
VV

10
=0,

to which the solution is

Ṽ
a
VV =55.9%−11.42° and Ĩ3=

Ṽ
a
VV

R3
=
55.9%−11.42°

10
=5.59%−11.42°.

The forced response, therefore, is

i
3,f
=5.59 sin(377t−11.42°) A.

3) The initial value of the capacitance voltage is found by inspection of the
circuit prior to switching. By using the voltage division formula we have

Ṽ
C
VV =

Ṽ
s
VV (−jx

C
)

R1+R2− jxC
=
141(−j10.6)
20− j10.6

=66.0%−62.07°.

Therefore,

v
C
(0)=66.0 sin (−62.07°)=−58.3 V.

4) The initial value of the current may now be found by inspection of the circuit
in Fig. 2.26(b), which fits the instant of switching, t=0. At this moment, the
value of the voltage source is v

s
(0)=0 and the capacitance voltage is v

C
(0)=

−58.3 V. Using nodal analysis again, we have

V
a
VV

10
+
V
a
VV +58.3
10

+
V
a
VV

10
=0,

to which the solution is V
a
VV =−19.4 V and the initial value of current is

i3 (0)=
V
a
VV

R3
=
−19.4
10

=−1.94 A.

5) The integration constant will be A= i3 (0)− i3,f (0)=
−1.94−5.59 sin(−11.42°)=−0.83, and the complete response is

i3=5.59 sin (377t−11.42°)−0.83e−267t A.

Example 2.19

As a last example in this section, consider the circuit in Fig. 2.27(a), in which
R=100 V, C=10 mF and two sources are v

s
=1000�2 sin (1000t+45°) V and

I
s
=4 A d.c. Find the response of the current through the voltage source after
opening the switch and sketch it.
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Figure 2.27 A given RC circuit of Example 2.17 (a), its equivalent for instant t=0 (b) and the plot
of current i (c).

Solution

The time constant (step 1) is t=RC=100·10−5=10−3=1ms or
s=−1000 s−1 and i

n
=Ae−1000t. The forced current (step 2) is found as a

steady-state current in Fig. 2.27(a) after opening the switch

Ĩ=
Ṽ
s
VV

R+ jx
C
=
1000√2%45°
100− j100

=10%90°

in which

x
C
=1/vC=1/103 ·10−5=100 V.

Thus,

i
f
=10 sin(1000t+90°) A.

The initial value of the capacitance voltage (step 3) must be evaluated in the
circuit 2.27(a) prior to switching. By inspecting this circuit, and noting that the
resistance and the current source are short-circuited, we may conclude that this
voltage is equal to source voltage v

C
(0)=v

s
(0).

By inspection of the circuit in Fig. 2.27(b), we shall find the initial value of
current i (step 4), which is equal to the current source flowing in a negative
direction, i.e., i(0)=−4 A. (Note that two voltage sources are equal and opposed
to each other.)
Finally the complete response (step 5) in accordance with equation 2.17 will
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be:

i= i
f
+[i(0)− i

f
(0)]est=10 sin (1000t+90°)−14e−1000t A,

where i
f
(0)=10 sin 90°=10 A. The plot of this current is shown in Fig. 2.27(c).

Note that the period of the forced current is

T=
2p

1000
=2p10−3 s or T=2pms.

2.4.4 Applying a continuous charge law to C-circuits

As we have observed earlier (see section 1.7.4) switching on circuits containing
capacitances may result in very high pulses of current. (This phenomenon is
dual to overvoltages in circuits containing inductances when switching them off
as studied in section 2.3.3). When trying to solve these kinds of circuits the
second switching law for capacitance voltages is usually disproved. However,
as we already know, the problem might be solved by the principle of physics
that electric charges are always continuous and cannot be abruptly changed.
In this section we shall continue analyzing these kinds of circuits by introducing
more numerical examples.

Example 2.20

Consider the circuit shown in Fig. 2.28(a), in which capacitance C3 switches on
in parallel to capacitance C2 . The resistances of the wires are very low and are
presented by two resistors R2=R3#0.1 V. The rest of the parameters are R1=
40 kV, C1=4 mF, C2=1 mF, C3=3 mF and VsVV =100 V. (a) Assuming that the
voltage change of two capacitances C2 and C3 occurs abruptly, find the charging
current i, and the voltage v2 across the capacitances, connected in parallel, in
the second stage of transients. (b) Find the time and the charge interchanging
between these two capacitances and the current pulse.

Solution

(a) After switching, capacitances C2 and C3 are connected in parallel with C2,3=
C2+C3=4mF, as shown in the circuit of Fig. 2.28(b). (The resistances R1 and
R2 are neglected in comparison with R1 ). The time constant of this circuit (step
1) is t=R1Ceq=40·103 ·2·10−6=80·10−3=80ms, where

C
eq
=
C1C2,3
C1+C2,3

=
4·4

4+4
=2 mF,

and the root of the characteristic equation is s=−1/t=−12.5 s−1. The natural
responses of the current and voltage will be:

i
n
=Ae−12.5t

v2=Be−12.5t .
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Figure 2.28 A given circuit for Example 2.20 (a), a circuit of the steady-state operation (t�2) (b),
an equivalent circuit of the instant of switching t=0 (c) and the plots of the current and voltage (d).

The forced response (step 2) of the current is equal to zero as a steady-state
current through the capacitance at the d.c. supply. However, the forced response
of the capacitance voltages becomes half of the supply voltages, as divided
between two equal capacitances C1 and C2,3 . Thus, if=0 and v2,f=50V.
Next, we shall find the initial value of the voltage of the two capacitances in
parallel (step 3). With the generalized second switching law (1.36b), or the
principle of continuous charges, we have

v2 (0)=
C2vC2 (0−)+C3vC3 (0−)

C2+C3
.

Here v
C3
(0
−
) should be zero and v

C2
(0
−
) can be found with the voltage division

formula

v
C2
(0
−
)=V
s
VV

C1
C1+C2

=100
4

4+1
=80 V.

Thus,

v2 (0)=
1·80+3·0
1+4

=20 V.

In the next step (step 4) we shall find the initial value of the current, as the
dependent initial condition. By inspection of the equivalent circuit fitting instant
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t=0, Fig. 2.28(c), we obtain

i(0)=
V
s
VV −v

C1
(0)−v

C2
(0)

R1
=
100−20−20
40·103

=1.5mA.

The integration constants (step 5) are

A= i(0)− i
f
(0)=1.5−0=1.5mA

B=v2 (0)−v2,f (0)=20−50=−30 V.

The complete response of the current and capacitance voltage can now be
written

i(t)=1.5e−12.5t A

v2 (t)=50−30e−12.5t V.

Both curves are sketched in Fig. 2.28(d).

(b) In order to find the time of the first stage of the transients we must take
into consideration the wire resistances. Thus, after switching, the time constant
of the right loop of the circuit, in which the first stage of the transients takes
place, may be estimated as t=2R1Ceq=0.2·0.75·10−6=0.15 ms. Here:

C
eq
=
C2C3
C2+C3

=
1·3

1+3
=0.75 mF.

The time of the first stage is estimated as T$5t=0.75 ms, which is about
2·10−6 times shorter than the second stage.
The charge of C2 , q2 (0−)=C2v2 (0−)=1·10−6 ·80=80 mC, prior to switching

decreases, during the first stage to q2 (0+)=C2v2 (0+)=1·10−6 ·20=20 mC. Thus,
the interchange of the charges between two capacitances is Dq=80−20=
60 mC. The current peak will be I

d
=v
C2
(0)/2R2=80/0.2=400A, which results

in transferring the charge Dq=I
d
t=400·0.15·10−6=60 mC, as previously

calculated.

Example 2.21

In the circuit of Fig. 2.29(a) the capacitance C2 has been charged prior to
switching up to voltage −6 V. Find current i and voltage v

C
after switching, if

R1=300 V, R2=600 V, C1=300 mF, C2=200 mF and VsVV =36 V.

Solution

In order to find the time constant and the root of the characteristic equation
(step 1), we must find the equivalent resistance and capacitance:

R
eq
=R1//R2=

300·600

300+600
=200 V,

C
eq
=C1//C2=C1+C2=300+200=500 mF.



98 Chapter #2

Figure 2.29 A circuit of Example 2.21 (a) and its equivalent at instant t=0 (b).

Thus, t=R
eq
C
eq
=200·500·10−6=0.1 s and s=−1/t=−10 s−1, and the natu-

ral responses are

i
n
=Ae−10t , v

C,n
=Be−10t .

The forced responses (step 2) are:

i
f
=

V
s
VV

R1+R2
=

36

300+600
=0.04 A=40mA,

v
C,f
=V
s
VV

R2
R1+R2

=36
600

300+600
=24 V.

The initial value of the voltage of these two capacitances (step 3) shall be found
using the second generalized law and by taking into consideration that (in the
circuit prior to switching) v

C2
(0
−
) is negative, i.e., v

C2
(0
−
)=−6 V, and V

C1
VV (0

−
)=

24V. Hence,

v
C
(0)=

C1vC1 (0)+C2vC2 (0)
C1+C2

=
300·24+200(−6)
300+200

=12 V.

The initial value of the current, which is a dependent initial condition (step 4),
is found in the circuit of Fig. 2.29(b) for instant t=0. By inspection, we find:

i(0)=
V
s
VV −v

C2
R1

=
36−12
300

=0.08 A=80mA.

Now the integration constants (step 5) can be found

A= i(0)− i
f
(0)=80−40=40mA

B=v
c
(0)−v

C,f
(0)=12−24=−12 V.

Thus, the complete responses are

i(t)=40+40e−10t=40(1+e−10t)mA

v
C
(0)=24−12e−10t V.

Example 2.22

As a last example for this section, consider the circuit shown in Fig. 2.30(a), in
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Figure 2.30 A given circuit of Example 2.22 (a) and its equivalent at the instant of switching, t=0 (b).

which upon switching, the configuration of the circuit has been changed, namely,
resistor R2 connects in series to resistor R1 and capacitance C1 being uncharged
connects in parallel to capacitance C2 . Assume that the switching occurs instan-
taneously and find all the current responses, i1 (t), i2 (t) and i3 (t) after switching.
The circuit parameters are: R1=R2=5 V, R3=10 V, C1=750 mF, C2=250 mF
and V

s
VV =240 V.

Solution

The time constant (step 1) may be easily found after determining the equivalent
resistance and capacitance:

R
eq
= (R1+R2 )//R3= (5+5)//10=5 V,

C
eq
=C1+C2=250+750=1000 mF.

Therefore, the time constant is t=R
eq
C
eq
=5·10−3=5ms and s=−1/t=

−200 s−1. The natural responses of the currents, therefore, are

i
1,n
=A1e−200t , i3,n=A3e−200t

and

i2= i1− i3= (A1−A3 )e−200t.

The forced responses (step 2) are found in the circuit after switching in its
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steady-state operation:

i
1,f
= i
3,f
=

V
s
VV

R1+R2+R3
=

240

5+5+10
=12 A,

i
2,f
= i
C
=0.

The initial value of the voltage across the two capacitances (in parallel ) (step
3) may be found using the principle of continuous charge (the second generalized
law):

v
C
(0)=

C1vC1 (0−)+C2vC2 (0−)
C1+C2

=
0+250·160
750+250

=40 V,

where v
C1
(0
−
)=0 and v

C2
(0
−
)=240·10/(5+10)=160 V. The initial values of

the currents, which are dependent initial conditions (step 4), can be obtained
in the equivalent circuit of Fig. 2.30(b). Since the potential of node ‘‘a’’ is 40 V,
we have:

i1 (0)=
240−40
10

=20 A,

i3 (0)=
40

10
=4 A, i2 (0)= i1 (0)− i3 (0)=20−4=16 A.

The integration constants (step 5) are:

A1= i1 (0)− i1,f (0)=20−12=8 A

A2= i2 (0)− i2,f (0)=16−0=16 A

A3= i3 (0)− i3,f (0)=4−12=−8 A,

and the complete responses of the three currents are:

i1 (t)=12+8e−200t A

i2 (t)=16e−200t A

i3 (t)=12−8e−200t A.

Note that current i2 (t) might also be found as the difference betweenffff i1 and i3 ,
i.e., i2 (t)= i1 (t)− i3 (t)=16e−200t A, which is the same as was found earlier.
It is worthwhile to calculate current i2 , which is actually the current through
two parallel capacitances, also as i2=Ceq (dvC/dt) . In order to do this we
first have to find the capacitance voltage. Since its forced value is
240·10/(5+5+10)=120 V, we have

v
C
(t)=120+ (40−120)e−200t=120−80e−200t V,

and

i2 (t)=Ceq
dv
C
dt
=10−3(−80)(−200)e−200t=16e−200t A,

which again is the same as was calculated earlier.
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2.5 THE APPLICATION OF THE UNIT-STEP FORCING FUNCTION

The reason that any transient responses at all appear in electrical circuits is
because of the discontinuity or switching actions which take place at an instant
of time that is defined as t=0 (or t=t0 ). In studying transient responses, it is
convenient, in many cases, to use a special function, which represents this kind
of discontinuous or switching action, and is called a unit-step function. Thus,
the operation of a switch in series with a voltage source is equivalent to a
forcing function, which is zero up to the instant that the switch is closed and is
equal to the value of the voltage source thereafter. This change of voltage occurs
abruptly (since we are considering the switch as an ideal device working instanta-
neously), expressing a discontinuity of the voltage at the instant the switch is
closed. Such kinds of functions, which are discontinuous or have discontinuous
derivatives, are called singularity functions. The two most important of them
are the unit-step function and the unit-impulse function (see further on). Thus,
the mathematical definition of the unit-step forcing function is

u(t)=G0 t<0

1 t>0.
(2.27a)

or

u(t−t0 )=G0 t<t01 t>t0 .
(2.27b)

Therefore, the unit-step function is zero for all negative values of its argument
(t<0) and is unity for all positive values (t>0). This is shown in Fig. 2.31.
Note that at the instant of time t=0 is not defined: but it is zero as a left limit
and unity as a right limit. In accordance with equation 2.27a, a switching action
takes place at the instant t=0 and in accordance with equation 2.27b at instant
t=t0 (t0≠0, since, if t0=0 we get equation 2.27a). To indicate that any voltage
source of the value V is switching at t=0 (or t=t0 ) to a general network, we
write v(t)=Vu(t), which is illustrated in Fig. 2.32(a). Such representation of
switching on sources by using a unit forcing function instead of a switch by
itself is common and useful in transient analysis. (Note that the unit-step
function is itself dimensionless.)
Because of the wide use of the unit-step function in transient analysis, we

Figure 2.31 A unit-step function applied at t=0 (a) and applied at t=t0 (b).
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Figure 2.32 A circuit in which the voltage source is applied at t=0 (a) and its switching equivalent
drawn correctly (b) and incorrectly (c).

shall explain the features of this function in more detail. In the circuit of
Fig. 2.32(a) the ideal voltage source possesses a zero internal impedance, so that
circuit A is short-circuited the entire time, also prior to t=0, even when the
applied voltage equals zero. We have the same conditions in the circuit (b),
which is therefore the correct equivalent of the circuit with the discontinuous
forcing function (a). (Note that the switch in this circuit is an ideal instantane-
ously operating switch.) The circuit in (c) cannot be the correct equivalent of
(a) since prior to switching circuit A is open-circuited. However, after switching,
t≥0, the circuits in (c) and (a) are equivalent, and if this is the only time interval
we are interested in, and if the initial currents which flow from the two circuits,
A in (a) and in (c), are identical at t=0, then Fig. 2.32(c) becomes a useful
equivalent of Fig. 2.32(a).
The circuit with a discontinuous current source is a dual of the circuit with
a discontinuous voltage source and is shown in Fig. 2.33. The above explanation
regarding the voltage source may be easily understood from this figure. Using
two unit step functions, we can obtain the rectangular pulse of a forcing function,
as is shown in Fig. 2.34.
To show an application of the unit-step function in transient analysis, let us
consider a numerical example in which a pulse current is applied.

Example 2.23

In the circuit, shown in Fig. 2.35(a), find the output voltage, if the current pulse
of amplitude I=2 A and duration t0=0.01 s, shown in Fig. 2.35(b), is applied
to this circuit.
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Figure 2.33 A circuit in which the current source is applied at t=0 (a) and its switching equivalent
drawn correctly (b) and incorrectly (c).

Figure 2.34 A rectangular forcing function (a) and a combined source, which yields the rectangular

pulse (b).

Solution

The output voltage can be represented as

v
o
(t)=v∞

o
(t)+v◊

o
(t),

where v∞
o
(t) is the part of the total response due to the positive current source

acting alone and v◊
o
(t) is the part due to the negative current source acting

alone. Starting with the first part of the output voltage and following the five
steps, we must do as follows:

1) To obtain the characteristic equation we shall equal the input admittance to
zero, since the current source possesses an infinite impedance (an open circuit):

Y
in
YY =

1

15
+

1

10+1/(1/100+1/2s)
=
1

15
+
100+2s
1000+220s

,
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Figure 2.35 A circuit of Example 2.23 (a), the input current pulse (b), an equivalent circuit for

determining v∞
o
(0) (c), an equivalent circuit for determining v◊

o
(t0) (d) and the output voltage

response (e).

or

250s+2500=0 and s=−10 s−1.

(Alternatively, we may obtain the characteristic equation by equaling the admit-
tance, seen from the inductance branch, to zero, which is left for the reader as
an exercise.) Thus,

v∞
o
(t)=A∞e−10t V.

2) The forced response is zero as a voltage drop across an inductance in a d.c.
circuit, thus, v

o,f
=0.

3) Inspecting the circuit for t<0, we have i
L
(0
−
)=0, so that i

L
(0
+
)=0.

4) In the circuit drawn for t=0, Fig. 2.35(c), we have

v∞
o
(0)=100i∞

2
(0)=100·2

15

110+15
=24 V.
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5) The integration constant, therefore, is A∞=v∞
o
(0)−v∞

o,f
=24−0=24. and the

first part of the voltage response is v∞
o
(t)=24e−10t V.

To find the second part of the voltage v◊
o
(t) we start from step 3, since the

root of the characteristic equation and the forced response have already been
found, i.e., s=−10 s−1 and v◊

o,f
=v∞
o,f
=0.

3) The independent initial condition for the inductance current at the instance
of second commutation, t0 , is

i◊
L
(t
0
−

)=
1

L P t0
0
PP v∞odt= 242 P 0.01

0
PP e−10t=

12

−10
e−10tK0.01

0
=0.12 A.

4) To find the initial condition of v◊
o
in the second transient interval we must

consider the given circuit for t=t0 , in which the inductance is represented by
a current source of 0.12 A.

i◊
3
=2

15

110+15
+0.12

25

100+25
=0.264 A

and v◊
o
(t0+)=−100·0.264=−26.4V.

5) We can now find the constant of integration: A◊=v◊
o
(0)−v

o,f
=−24.6−0=

−24.6V, and

v◊
o
(t)=−24.6e−10t V for t>t0 .

Then

v
o
=v∞
o
+v◊
o
=24e−10t−24.6e−10(t− t

0
) V for t>t0 .

To simplify this expression we designate t∞=t−t0 or t=t∞+t0 , then

v
o
=24e−10t

0
e−10t∞−24.6e−10t∞=−2.9e−10t∞ ,

which means that the y-axis has been moved to the new origin at t0 , i.e., now
t0=0.
The output voltage and inductance current are shown in Fig. 2.35(e). Note
that the output voltage form is almost a rectangular pulse, i.e. similar to the
input current pulse. In other words, the current pulse is transferred to the
voltage pulse. Note also that this is correct in the case that t0%t or t0/t%1,
where t=L /R

eq
.

2.6 SUPERPOSITION PRINCIPLE IN TRANSIENT ANALYSIS

In this section, we shall show how the property of superposition can be used
for solving problems in transient analysis. Suppose that a new branch connects
to a general active network A after closing the switch and, suppose that we are
looking for the transient current in any other branch of the network, say i1 , as
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shown in Fig. 2.36(a). The transient behavior of the entire circuit can be written
as a superposition of two regimes: 1) the previous one, which existed prior to
switching and 2) an additional one, which is a result of the switching. Therefore,
the unknown current i1 will be the sum of the two currents. The first one, i∞1 is
the current which flowed in branch ‘‘1’’ before switching, figure (b), and the
second one, i◊

1
, is the additional current which appears in circuit P, figure (c).

This circuit arises from the original circuit A, in which all the sources have been
‘‘killed’’ and the switch is replaced by a voltage source, which is oppositely
equal to the voltage across the open switch in circuit A, as shown in Fig. 2.36(c).
(Remember that ‘‘to kill’’ a source means that the source is replaced by its inner
resistance/impedance, or that the ideal voltage source is simply short-circuited
and the current source is simply open-circuited.) Hence,

i1= i∞1+ i◊1 or i1= i1pr+i1ad , (2.28)

where i∞
1
is the previous current and i◊

1
is the additional one. It is very important

to note that, in the additional circuit, the independent conditions are zero.
If any branch in a general network is disconnected, as shown in Fig. 2.37(a),
we may apply the principle of duality, which means that the switch in the
passive circuit must be replaced by a current source that is oppositely equal to
the current through the closed switch in circuit A, as shown in Fig. 2.37(c). The
required current i1 will then again be the sum of the previous current, which
flows in the circuit with the switch closed, Fig. 2.37(b), and the additional
current, which will flow in the passive circuit with the source current, Fig. 2.37(c),
as indicated in equation 2.28. The above technique is illustrated in the following
examples.

Figure 2.36 A given circuit (a), a previous circuit prior to switching (b) and the additional passive

circuit with a voltage source (c).
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Figure 2.37 A given circuit (a), a previous circuit prior to switching (b) and the additional passive

circuit with a current source (c).

Example 2.24

In the circuit, shown in Fig. 2.38(a), find current i after opening the switch,
using the principle of superposition. The parameters of the circuit are: v

s
=

100 sin vt at f=60 Hz, vL=10 V and R1=R2=10 V.

Solution

First, we find the currents in the circuit of Fig. 2.38(a) prior to switching

i∞=
100

√52+102
sin (vt+y

i
)=8.94 sin (vt−63.4°) A,

Figure 2.38 A circuit prior to switching (a) and the additional circuit (b).
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where the current phase angle is y
i
=0−tan−1 (10/5)=−63.4°, and

i
sw
=
i∞
2
=4.47 sin (vt−63.4°).

Now we shall find the transient current in the circuit of Fig. 2.38(b), in which
the initial value of the inductance current is zero. The characteristic equation
is

Y=
1

sL
+
1

R1
=0 or sL+R1=0,

and its root is

s=
R1
L
=−

10

10/v
=−377 s−1.

Hence, the natural response is

i◊
n
=Ae−377t.

The forced response of current i◊
f
is found with phasor analysis:

Ĩ∞
f
= Ĩ
sw

R1
R1+ jvL

= (4.47%−63.4°)
10

10+ j10
=3.16%−108.4°.

Therefore,

i◊
f
(t)=3.16 sin (vt−108.4°) A.

Since the initial value of this current is zero (zero initial conditions), we have

A=0− i◊
f
(0)=−3.16 sin(−108.4°)=3.0 A.

Thus, the total response of current i is

i= i∞− i◊=8.49 sin (vt−63.4°)−3.16 sin (vt−108.4°)−3e−377t A. (a)

The initial value of this current at t=0 is i(0)=−8 A, which is the current
through the inductance prior to switching (i∞(0)=8.94 sin(−63.4°)$−8 A).
Note that the same current can be found as current i1 through resistance R1 ,

since in the original circuit both currents are equal. The forced response of this
current is determined as

Ĩ◊
1,f
= Ĩ
sw

jvL

R1+ jvL
=4.47%−63.4°

j10

10+ j10
=3.16%−18.4°,

or, as versus time,

i◊
1,f
=3.16 sin (vt−18.4°).

Since i◊
L
(0)=0, the initial value of the current through resistance R1 is

i◊
1
(0)=4.47 sin (−63.4°)=−4 A,



Classical Approach to T ransient Analysis 109

and the integration constant for this current is A=−4−3.16 sin(−18.4°)=
−3. Hence the total current is

i1= i∞1+ i◊1=4.47 sin (vt−63.4°)+3.16 sin (vt−18.4°)−3e−377t A.
(b)

This current at t=0 yields i1 (0)=−8 A, which is again the value of the
inductance current prior to switching. Both results (a) and (b) can be simplified
to the same expression

i(t)=5√2 sin (vt−45°)−3e−377t A.

Example 2.25

In the circuit, having all R’s of 10 V, C=1 mF and V
s
VV =60 V, shown in

Fig. 2.39(a), the switch closes at time t=0. Find current i1 using the superposit-
ion theorem.

Solution

First, we shall find the previous current i∞
1
and the voltage across the open

switch. By inspection of the circuit in Fig. 2.39(a), we may find

i∞
1
=

V
s
VV

R1+R3+R4
=
60

3·10
=2 A and V

sw
VV =R4 i∞1=10·2=20 V.

To find the time constant of the circuit in Fig. 2.39(b), we must determine R
eq

Figure 2.39 A circuit of Example 2.25 prior to switching (a) and an additional circuit for finding

the transient response (b).
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seen from the capacitance (note that R4 is short-circuited by the voltage
source): R

eq
=R2+R1//R3=15 V and t=ReqC=15·10−6 s, or s=−1/s=

−66.7·103 s−1.
The forced response of the current in Fig. 2.39(b) will be found as:

i◊
1,f
=

V
sw
VV

R1+R3
=

20

10+10
=1 A.

The initial value of current i◊
1
, since the capacitance voltage is zero (which

means that the capacitance is short-circuited, i.e., zero initial conditions), will
be

i∞
1
(0)=

1

2

V
sw
VV

R3+R1//R2
=
1

2

20

10+5
=0.667 A.

Therefore, the arbitrary constant will be: A= i◊
1
(0)− i◊

1,f
=0.667−1=

−0.133 A. The additional current now is

i◊
1
=1−0.333e−66.7·103t A,

and the total current will be:

i1= i∞1+ i◊1=3−0.333e−66.6·103t A.

2.7 RL C CIRCUITS

This section is devoted to analyzing very important circuits containing three
basic circuit elements: R, L , and C. These circuits are considered important
because the networks involved in many practical transient problems in power
systems can be reduced to one or to a number of simple circuits made up of
these three elements. In particular, the most important are series or parallel
RL C circuits, with which we shall start our analysis.
From our preceding study, we already know that the transient response of a

second order circuit contains two exponential terms and the natural component
of the complete response might be of three different kinds: overdamped, under-ffff
damped or critical damping. The kind of response depends on the roots of the
characteristic equation, which in this case is a quadratic equation. We also
know that in order to determine two arbitrary integration constants, A1 and
A2 , we must find two initial conditions: 1) the value of the function at the
instant of switching, f (0), and 2) the value of its derivative, (df/dt) |

t=0
.

In the following section, we shall deepen our knowledge of the transient
analysis of second order circuits in their practical behavior and by solving
several practical examples

2.7.1 RLC circuits under d.c. supply

We shall start our practical study of transients in second order circuits by
considering examples in which the d.c. sources are applied. At the same time,
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we must remember that only the forced response is dependent on the sources.
Natural responses on the other hand depend only on the circuit configuration
and its parameter and do not depend on the sources. Therefore, by determining
the natural responses we are actually practicing solving problems for both kinds
of sources, d.c. and a.c. However, it should be mentioned that the natural
response depends on from which source the circuit is fed: the voltage source or
the current source. These two sources possess different inner resistances (imped-ffff
ances) and therefore they determine whether the source branch is short-circuited
or open, which influences of course the equivalent circuit.
In our next example, we shall elaborate on the methods of determining
characteristic equations and show how the kind of source (voltage or current)
and the way it is connected may influence the characteristic equation. Let us
determine the characteristic equation of the circuit, shown in Fig. 2.40, depend-
ing on the kind of source: voltage source or current source and on the place of
its connection: (1) in series with resistance R1 , (2) in series with resistance R2 ,
(3) between nodes m–n.

(1) Source connected in series with resistance R1
If a voltage source is connected in series with resistance R1 , Fig. 2.40(b), we
may use the input impedance method for determining the characteristic equa-
tion. This impedance as seen from the source is

Z(s)=R1+ (R2+1/sC)//(R3+sL ).

Figure 2.40 A given circuit (a), a circuit in which a voltage source is connected to the branch of R1
(b) and a circuit in which a current source is connected to the branch of R1 (c).



112 Chapter #2

Performing the above operation and upon simplification and equating Z(s) to
zero we obtain

(R1+R2 )L Cs2+ (∑ RiRjC+L )s+ (R1+R3 )=0. (2.29)

where WR
i
R
j
=R1R2+R1R3+R2R3 , and the roots of (2.29) are

s1,2=−
1

2 AReqL + 1

R12CB±S14SS AReqL + 1

R12CB2−e 1L C ,
where

R
eq
=
WR
i
R
j

R1+R2
, R12=R2+R2 and e=

R1+R3
R1+R2

.

If a current source is connected in series with resistance R1 we may use the input
admittance method. By inspection of Fig. 2.40(c), and noting that the branch
with resistance R1 is opened (Y1YY =0), we have

Y (s)=0+
1

R2+1/sC
+

1

R3+sL
=0,

or, after simplification,

L Cs2+ (R2+R3 )Cs+1=0, (2.30)

and the roots of (2.30) are

s1,2=−
1

2

R23
L
±S14SS AR23L B2− 1

L C
, where R23=R2+R3 .

Since the characteristic equations 2.29 and 2.30 are completely different, andffff
therefore their roots are also different, we may conclude that the transientffff
response in the same circuit, but upon applying different kinds of sources, willffff
be different.ffff

(2) We leave this case to the reader to solve as an exercise.

(3) Source is connected between nodes m–n.

If a voltage source is connected between nodes m–n, the circuit is separated into
three independent branches: 1) a branch with resistance R1 , in which no tran-
sients occur at all; 2) a branch withR2 andC in series, for which the characteristic
equation is R2Cs+1=0; and 3) a branch with R3 and L in series, for which
the characteristic equation is L s+R3=0.

If aI current source is connected between nodes m–n, by using the rule Y
in
YY (s)=0

we may obtain

Y
mn
YY =

1

R1
+

1

R2+1/sC
+

1

R3+sL
=0.
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Performing the above operations and upon simplification, we obtain

(R1+R2 )L Cs2+(∑ RiRjC+L )s+ (R1+R3 )=0, (2.31)

where W R
i
R
j
is like in equation 2.29. Note that this equation (2.31) is the same

as (2.29), which can be explained by the fact that connecting the sources in
these two cases does not influence the configuration of the circuit: the voltage
source in (1) keeps the branch short-circuited and the current source in (3)
keeps the entire circuit open-circuited. In all the other cases the sources change
the circuit configuration.
In the following analysis we shall discuss three different kinds of responses:ffff
overdamped, underdamped, and critical damping, which may occur in RL C
circuits. Let us start with a free source simple RL C circuit.

(a) Series connected RL C circuits

Consider the circuit shown in Fig. 2.41. At the instant t=0 the switch is moved
from position ‘‘1’’ to ‘‘2’’, so that the capacitor, which is precharged to the initial
voltage V0VV , discharges through the resistance and inductance. Let us find the
transient responses of v

C
(t), i(t) and v

L
(t). The characteristic equation is

R+sL+
1

sC
=0, or s2+

R

L
s+

1

L C
=0. (2.32)

The roots of this equation are

s1,2=−
R

2L
±SAR2L B2− 1

L C
(2.33a)

or as previously assigned (see section 1.6.2)

s1,2=−a±
√a2−v2

d
, (2.33b)

where a=R/2L is the exponential damping coefficient and v
d
=1/�L C is the

resonant frequency of the circuit.

An overdamped response: Assume that the roots (equation 2.32) are real (or
more precisely negative real ) numbers, i.e., a>v

d
or R>2�L /C. The natural

Figure 2.41 A series connected RL C circuit.
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response will be the sum of two decreasing exponential terms. For the capaci-
tance voltage it will be

v
C,n
=A1es1t+A2es2t.

Since the absolute value of s2 is larger that that of s1 , the second term, containing
this exponent, has the more rapid rate of decrease.
The circuit in Fig. 2.41 after switching becomes source free; therefore, no
forced response will occur and we continue with the evaluation of the initial
conditions. For the second order differential equation, we need two initialffff
conditions. The first one, an independent initial condition, is the initial capaci-
tance voltage, which is V0VV . The second initial condition, a dependent one, is the
derivative dv

C
/dt, which can be expressed as a capacitance current divided by

C

dv
C,n
dt K
t=0
=
1

C
i
C,n
(0)=0. (2.34)

This derivative equals zero, since in a series connection i
C
(0)= i

L
(0) and the

current through an inductance prior to switching is zero. Now we have two
equations for determining two arbitrary constants

A1+A2=V0VV ,

s1A1+s2A2=0.
(2.35)

The simultaneous solution of equations 2.35 yields

A1=
V0VV s2
s2−s1

and A2=
V0VV s1
s1−s2

. (2.36)

Therefore, the natural response of the capacitance voltage is

v
C,n
=

V0VV
s2−s1

(s2es1t−s1es2t ). (2.37)

The current may now be obtained by a simple differentiation of the capacitanceffff
voltage, which results in

i
n
(t)=C

dv
C
dt
=CV0VV

s1s2
s2−s1

(es
1
t−es

2
t )=

V0VV
L (s2−s1 )

(es
1
t−es

2
t ). (2.38)

(The reader can easily convince himself that s1s2=1/L C.) Finally, the inductance
voltage is found as

v
L,n
(t)=L

di
n
dt
=

V0VV
s2−s1

(s1es1t−s2es2t ). (2.39)

The plots of v
C,n
, i
n
, and v

L,n
are shown in Fig. 2.42(a). As can be seen from the

inductance voltage plot, at t=0 it abruptly changes from zero to −V0VV , at the
instant t=t1 it equals zero and after that, the inductance voltage remains
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Figure 2.42 The natural responses of v
C,n
, v
L,n
and i

n
in a series connected RL C circuit: overdamped

(a), and underdamped (b).

positive. The instant of t1 can be found from the equation s1es1t1−s2es2t1=0,
to which the solution is

t1=
ln(s2/s1 )
s1−s2

. (2.40)

At this instant of time, the current reaches its maximum. By equating dv
L,n
/dt

to zero it can be readily found that v
L,n
has its maximal value at t=2t1 . The

overdamped response is also called an aperiodical response. The energy exchange
in such a response can be explained as follows. The energy initially stored in
the capacitance decreases continuously with the decrease of the capacitance
voltage. This energy is stored in the inductance throughout the period that the
current increases. After t=t1 , the current decreases and the energy stored in
the inductance decreases. Throughout the entire transient response, all the
energy dissipates into resistance, converting into heat.

An underdamped response: Assume now that the roots of equation 2.32 are
complex conjugate numbers, i.e., a<v

d
or R<2�L /C, and s1,2=−a± jvn ,

where v
n
=�v2

d
−a2 is the frequency of the natural response, or natural fre-

quency, and a=R/2L is, as previously, the exponential damping coeYe cient. As
we have observed earlier (see section 1.6.2), the natural response of, for instance,
the capacitance voltage in this case becomes a damped sinusoidal function of
the form (1.33):

v
C,n
(t)=Be−at sin (v

n
t+b), (2.41a)

where the arbitrary constants B and b can be found as was previously by
solving two simultaneous equations

B sin b=V0VV ,

−a sin b+v
n
cos b=0,
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to which the solution is (also see (1.65)):

B=
V0VV
sin b

and b=tan−1
v
n
a
.

By using trigonometrical identities we may also obtain:

sin b=
tan b

√1+tan2 b
=

v
n

√a2+v2
n

B=
V0VV
√a2+v2

n
v
n

=V0VV Sa2v2
n
+1 or B=V0VV

v
d
v
n
,

where

v
d
=√a2+v2

n
.

We may also look for the above response in the form of two sinusoids as in
(1.66):

v
C,n
(t)=e−at(M sin v

n
t+N cos v

n
t). (2.41b)

In this case, the arbitrary constants can be found, as in (1.68), with

(dv
C,n
/dt) |
t=0
=0

and v
C,n
(0)=V0VV :

N=v
C,n
(0)=V0VV

M=
a

v
n
V0VV .

This results in

b=tan−1
N

M
=
v
n
a
and B=√M2+N2=V0VV Sa2v2

n
+1=V0VV

v
d
v
n
,

which is as was previously found. Therefore,

v
C,n
(t)=e−at A av

n
V0VV sin vnt+V0VV cos vntB , (2.42a)

or

v
C,n
(t)=V0VV

v
d
v
n
e−at sin (v

n
t+b). (2.42b)

The current becomes

i
n
(t)=C

dv
C,n
dt
=V0VV

v
d
v
n
Ce−at[−a sin(v

n
t+b)+v

n
cos (v

n
t+b)]

=
V0VV
v
n
L
e−at sin (v

n
t+b+n),
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where tan n=v
n
/(−a) and, since tan b=v

n
/a, b+n=180°. Therefore,

i
n
(t)=−

V0VV
v
n
L
e−at sin v

n
t. (2.43)

The inductance voltage may now be found as

v
L,n
(t)=L

di
n
dt
=−

V0VV
v
n
e−at[−a sin v

n
t+v

n
cos v

n
t]

=−
V0VV vd
v
n
e−at sin (v

n
t+n)=

V0VV vd
v
n
e−at sin (v

n
t−b). (2.44)

The plots of v
C,n
, i
n
, and v

L,n
are shown in Fig. 2.42(b). This kind of response

is also called an oscillatory or periodical response.
The energy, initially stored in the capacitance, during this response is inter-
changed between the capacitance and inductance and is accompanied by energy
dissipation into the resistance. The transients will finish, when the entire capaci-
tance energy CV0VV /2 is completely dissipated.

Critical damping response: If the value of a resistance is close to 2�L /C, i.e.,
R�2�L /C, the natural frequency v

n
=�1/L C−R2/4L 2L �0 and the ratio in

equation 2.43 sin v
n
t/v
n
�0
0
is indefinite. Applying l’Hopital’s rule, gives

lim
v
n
�0 Asin vntv

n
B= d/dvn (sin vnt)d/dv

n
(v
n
) K
v
n
�0
=
t cos v

n
t

1 K
v
n
�0
=t.

Therefore in this critical response the current will be

i
n
(t)=−

V0VV
L
te−at, (2.45)

which is also aperiodical. The capacitance voltage can now be found as

v
C,n
(t)=

1

C P in (t)dt= 1C A−V0VVL B 1a2 e−at(−at−1),
or since a2=1/L C,

v
C,n
=V0VV (1+at)e−at. (2.46)

Finally, the inductive voltage is

v
L,n
(t)=L

di
n
dt
=−V0VV (e−at−ate−at)=−V0VV (1−at)e−at. (2.47)

It is also worthwhile to introduce here the graphical representation of the
roots of the characteristic equation. On the complex plane the roots, which
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Figure 2.43 The location of the roots of the characteristic equation on the complex plane: over-

damped response (a), critical damping response (b), and underdamped response (c).

define the three different cases of the transient response, are located as shownffff
in Fig. 2.43.
The position of the roots on the complex plane, Fig. 2.43 (in other words the
dependency of a specific kind of natural response on the relationship between
the circuit parameters), is related to the quality factor of a resonant RL C circuit.
Indeed, by rewriting the critical damping condition as R/2L=1/�L C we have
1
2
=�L /C/R=Q, this in terms of the resonant circuit is the quality factor. (In
our future study, we shall call Z

c
=�L /C a surge or natural impedance.) Hence,

if Q<1/2 (the position of the roots is shown in (a)), the natural response is
overdamped, if Q>1/2 it is underdamped (c) and if Q=1/2 the response is
critical damping (b). Hence, the natural response becomes an underdamped
oscillatory response, if the resistance of the RL C circuit is relatively low com-
pared to the natural impedance.
In (a), two negative real roots are located on the negative axis (in the left half
of the complex plane), which indicates the overdamped response. Note that
|s2 |>|s1 | and therefore es2t decreases faster than es1t. In (b), two equal negative
roots s1=s2=−a, which indicate the critical damping, are still located on the
real axis at the boundary point, i.e., no real roots are possible to the right of
this point. In (c), the two roots become complex-conjugate numbers, located on
the left half circle whose radius is the resonant frequency v

d
. This case indicates

an underdamped response, having an oscillatory waveform of natural frequency.
Note that the two frequencies ± jv

d
represent a dissipation-free oscillatory

response since the damping coefficient a is zero. This is, of course, a theoretical
response: however there are very low resistive circuits in which the natural
response could be very close to the theoretical one. Finally, in Fig. 2.44 the
change of the form of the natural response with regard to decreasing the damping
coefficient is shown.

(b) Parallel connected RLC circuits

The circuit containing an RL C in parallel is shown in Fig. 2.45. At the instant
of t=0 the switch is moved from position ‘‘1’’ to position ‘‘2’’, so that the initial
value of the inductance current is I0 . In such a way, this circuit is a full dual
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Figure 2.44 The transformation of the natural response in an RL C circuit by decreasing the damping

coefficient a.

Figure 2.45 A parallel-connected RL C circuit.

of the circuit containing an RL C in series with an initial capacitance voltage.
In order to perform the transient analysis of this circuit we shall apply the
principle of duality. As a reminder of the principle of duality: the mathematical
results for RL C in series are appropriate for RL C in parallel after interchanging
between the dual parameters (R�G, L�C, C�L ), and then the solutions for
currents are appropriate for voltages and vice versa. The roots of the characteris-
tic equation will be of the same form: s1,2=−a±

�a2−v2d , but the meaning
of a is different:ffff a=G/2C (instead of a=R/2L for a series circuit), however, it
is more common to write the above expression as a=1/2RC. The resonant
frequency v

d
=1/�L C remains the same, since the interchange between L and

C does not change the expression.

Underdamped response: The common voltage of all three elements is appropriate
to the common current in the series circuit, therefore (see equation 2.38).

v
n
(t)=

I0
C(s2−s1 )

(es
1
t−es

2
t ). (2.48)
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The inductor current is appropriate to the capacitor voltage in the series circuit,
therefore (see (2.37))

i
L,n
(t)=

I0
s2−s1

(s2es1t−s1es2t ). (2.49)

In a similar way, we shall conclude that the capacitor current is appropriate to
the inductance voltage (see equation 2.39)

i
C,n
(t)=

I0
s2−s1

(s1es1t−s2es2t ). (2.50)

In order to check these results we shall apply the KCL for the common node
of the parallel connection and by noting that i

R,n
(t)=v

n
(t)/R , we may obtain

i
L,n
+i
C,n
+ i
R,n
=0,

or

I0
s2−s1 As2es1t−s1es2t+s1es1t−s2es2t+ 1

RC
es
1
t−
1

RC
es
2
tB

=
I0
s2−s1 As2+s1+ 1

RCB (es1t−es2t )=0,
since s2+s1=−2a=−1/RC.

Overdamped response: The analysis of the overdamped response in a parallel
circuit can be performed in a similar way to an underdamped response, i.e., by
using the principle of duality. This is left for the reader as an exercise.

(c) Natural response by two nonzero initial conditionsNN

Our next approach in the transient analysis of an RL C circuit shall be the more
general case in which both energy-storing elements C and L are previously
charged. For this reason, let us consider the current in Fig. 2.46. In this circuit
prior to switching, the capacitance is charged to voltage V

C0
VV and there is current

I
L0
flowing through the inductance. Therefore, this circuit differs from the oneffff

Figure 2.46 RL C circuit with a non-zero initial condition.
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in Fig. 2.41 in that the initial condition of the inductor current is now i
L
(0
−
)=

I
L0
, but not zero. The capacitance current is now, after switching, i

C
(0)=

−i
L0
(0)=−I

L0
. By determining the initial value of the capacitance voltage

derivative in equation 2.34, we must substitute −I
L0
for i
C
(0) . Therefore,

dv
C
dt K
t=0
=−

1

C
I
L0
,

and the set of equations for determining the constants of integration becomes

A1+A2=VC0VV

s1A1+s2A2=− (1/C)IL0 ,
(2.51)

to which the solution is

A1=AVC0VV + IL0s2CB s2s2−s1 and A2=AVC0VV + IL0s1CB s1s1−s2 . (2.52)

The natural responses of an RL C circuit will now be

v
C,n
(t)=AVC0VV + 1

s2C
I
L0B s2s2−s1 es1t+AVC0VV + 1

s1C
I
L0B s1s1−s2 es2t,

(2.53)

or in a slightly different wayffff

v
C,n
(t)=

V
C0
VV

s2−s1
(s2es1t−s1es2t )+

I
L0

C(s2−s1 )
(es
1
t−es

2
t ), (2.54)

which differs from equation 2.37 by the additional term due to the initial valueffff
of the current I

L0
.

The current response will now be

i
n
(t)=

V
C0
VV

L (s2−s1 )
(es
1
t−es

2
t )+

I
L0

s2−s1
(s1es1t−s2es2t ), (2.55)

and the inductance voltage

v
L,n
(t)=

V
C0
VV

s2−s1
(s1es1t−s2es2t )+

L I
L0

s2−s1
(s2
1
es
1
t−s2
2
es
2
t ). (2.56)

The above equations 2.54–2.56 can also be written in terms of hyperbolical
functions. Such expressions are used for transient analysis in some professional
books.(*) We shall first write roots s1 and s2 in a slightly different formffff

s1,2=−a±c, where c=
√a2−v2

d
, (2.57a)

(*)Greenwood, A. (1991) Electrical T ransients in Power Systems. Wiley, New York, Chichester,
Brisbane, Toronto, Singapore.



122 Chapter #2

then

s2−s1=−2c, s1s2=a2−c2=v2d=1/L C,

and

es
1,2
t=e−ate±ct=e−at(ect+e−ct)=e−at[cosh ct± sinh ct]. (2.57b)

With the substitution of equation 2.57(a) for s1,2 and taking into account the
above relationships, after a simple mathematical rearrangement, one can readily
obtain

v
C,n
(t)=CVC0VV Acosh ct+ ac sinh ctB+ IL0cC sinh ctD e−at, (2.58)

and

i
n
(t)=C−VC0VVcL sinh ct+IL0Acosh ct− ac sinh ctBD e−at. (2.59)

It should be noted that 1/cC and cL ( like 1/vC and vL ) are some kinds of
resistances in units of Ohms.
For the overdamped response

s1,2=−a± jv,

which means that c must be substituted by jv and the hyperbolic sine and
cosine turn into trigonometric ones

v
C,n
(t)=CVC0VV Acos vnt+ av

n
sin v

n
tB+ IL0v

n
C
sin v

n
tD e−at,

or

v
C,n
(t)=e−at CA IL0v

n
C
+
V
C0
VV a

v
n
B sin vnt+VC0VV cos v

n
tD . (2.60)

(Which, by assumption I
L0
=0, turns into the previously obtained one in equa-

tion 2.42a.)
At this point we shall once more turn our attention to the energy relations
in the RL C circuit upon its natural response. As we have already observed, the
energy is stored in the magnetic and electric fields of the inductances and
capacitances, and dissipates in the resistance. To obtain the relation between
these processes in a general form we shall start with a differential equationffff
describing the above circuit:

L
di

dt
+v
C
+Ri=0.

Multiplying all the terms of the equation by i=C(dv
C
/dt), we obtain

L i
di

dt
+Cv

C
dv
C
dt
+Ri2=0.
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Taking into consideration that

f
df

dt
=
1

2

d

dt
( f 2)

we may rewrite

d

dt AL i22 B+ ddt ACv2C2 B+Ri2=0,
or

d

dt AL i22 +Cv2C2 B=−Ri2. (2.61)

The term inside the parentheses gives the sum of the stored energy and, therefore,
the derivative of this energy is always negative (if, of course, i≠0), or, in other
words, the total stored energy changes by decreasing. The change of each of
the terms inside the parentheses can be either positive or negative (when the
energy is exchanged between the inductance and capacitance), but it is impos-
sible for both of them to change positively or increase. This means that the
total stored energy decreases during the transients and the rate of decreasing is
equal to the rate of its dissipating into resistance (Ri2 ).
At this point, we will continue our study of transients in RL C circuits by
solving numerical examples.

Example 2.26

In the circuit of Fig. 2.47 the switch is changed instantaneously from position
‘‘1’’ to ‘‘2’’. The circuit parameters are: R1=2 V, R2=10 V, L=0.1 H, C=
0.8mF and V

s
VV =120 V. Find the transient response of the inductive current.

Solution

The given circuit is slightly different from the previously studied circuit in thatffff
the additional resistance is in series with the parallel-connected inductance and
capacitance branches.
In order to determine the characteristic equation and its roots (step 1), we

Figure 2.47 A given circuit for Example 2.26.
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must indicate the input impedance (seen from the inductance branch)

Z(s)= (R2+sL )+R1//(1/sC),

which results in

s2+AR2L + 1

R1CB s+R1+R2R1

1

L C
=0,

or

s2+725s+7.5·104=0,

where

2a=AR2L + 1

R1CB= 100.1+ 103
2·0.8

=725 s−1

v
d
=
R1+R2
R1

1

L C
=
2+10
2

103
0.1·0.8

=7.5·104 rad/s.

Thus,

s1,2= (−3.625±
√3.6252−7.5)·102=−125,−600 s−1

and

v
C,n
(t)=A1e−125t+A2e−600t.

Since the circuit after switching is source free, no forced response (step 2) is
expected.
The initial conditions (step 3) are:

v
C
(0)=v

C
(0
−
)=V
s
VV

R2
R1+R2

=120
10

2+10
=100 V

i
L
(0)= i

L
(0
−
)=

V
s
VV

R1+R2
=
120

2+10
=10 A.

The initial value of the current derivative (step 4) is found as

di
L
dt K
t=0
=
v
L
(0)

L
=
v
C
(0)−R2 iL (0)
L

=
100−10·10

L
=0.

By solving the two equations below (step 5)

A1+A2=10,

s1A1+s2A2=0,

we have (see equation 2.36)

A1=
I
L0
s2

s2−s1
=
10(−600)
−600+125

=12.6, A2=
I
L0
s1

s1−s2
=
10(−125)
−125+600

=−2.6.
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Thus,

i
L
(t)=12.6e−125t−2.6e−600t A.

In the next example, we will consider an RL C circuit, having a zero independent
initial condition, which is connected to a d.c. power supply.

Example 2.27

In the circuit with R=100 V, R1=5 V, R2=3 V, L=0.1 H, C=100 mF and
V
s
VV =100 V, shown in Fig. 2.48, find current i

L
(t) for t>0. The voltage source is

applied at t=0, due to the unit forcing function u(t).

Solution

The input impedance seen from the inductive branch is

Z
12
(s)=R1+sL+AR2+ 1sCB //R,

or, after performing the algebraic operations and equating it to zero, we obtain

Figure 2.48 A given circuit for Example 2.27 (a), an equivalent circuit for instant t=0 (b) and the
current plot (c).
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the characteristic equation

s2+AReqL + 1

(R+R2 )CB s+R+R1R+R2

1

L C
=0,

where

R
eq
= (RR1+RR2+R1R2 )/(R+R2 ).

Substituting the numerical values yields

s2+176.2s+10.2·104=0,

to which the roots are:

s1,2=−88.1± j307 s−1.

Since the roots are complex numbers, the natural response is

i
L,n
(t)=Be−88.1t sin(307t+b).

The forced response is

i
L,f
=

V
s
VV

R+R1
=
100

100+5
=0.952 A.

The independent initial conditions are zero, therefore

v
C
(0)=0 and i

L
(0)=0.

The dependent initial condition is found in circuit (b), which is appropriate to
the instant of switching t=0:

di
L
dt K
t=0
=
v
L
(0)

L
=
i(0)R2
L
=

V
s
VV R2

(R+R2 )L
=

100·3

(100+3)0.1
=29.2.

The integration constant can now be found from

B sin b= i(0)− i
f
(0)=0−0.952=−0.952

−aB sin b+v
n
B cos b=

di

dtK
t=0
−
di
f
dt K
t=0
=29.2−0=29.2,

to which the solution is

b=tan−1
307

− (29.2/0.952)+88
=79.4° and B=−

0.952

sin 79.4°
=−0.968.

Therefore, the complete response is

i
L
= i
L,f
+i
L,n
=0.952−0.968e−88t sin(307t+79.4°) A.

To plot this curve we have to estimate the time constant of the exponent, t=
1/88$11ms, and the period of sine, T=2p/307$20ms. The plot of the current
is shown in Fig. 2.48(c).
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Example 2.28

In the circuit with R1=R2=10 V, L=5mH, C=10 mF and VsVV =100 V, in
Fig. 2.49, find current i2 (t) after the switch closes.

Solution

The input impedance seen from the source is Z
in
(s)=R1+sL+R2//(1/sC). Then

the characteristic equation becomes

s2+AR1L + 1

R2CB s+R1+R2R2

1

L C
=0.

Substituting the numerical values and solving this characteristic equation, we
obtain the roots:

s1,2= (−6± j2)103 s−1.

The natural response becomes

i
2,n
=Be−6·103t sin (2·103t+b).

The forced response is

i
2,f
=

V
s
VV

R1+R2
=
100

10+10
=5 A.

The independent initial conditions are

i1 (0)= iL (0)=
V
s
VV

R1+R2
=
100

10+10
=5 A and v

C
(0)=0.

In order to determine the initial conditions for current i2 , which can change
abruptly, we must consider the given circuit at the moment of t=0. Since the
capacitance at this moment is a short-circuit, the current in R2 drops to zero,
i.e., i2=0. With the KVL for the right loop we have

R2 i2−vC=0 or R2 i2=vC ,

and

di2
dt K
t=0
=
1

R2

1

C
i3 (0)=

1

10·10−5
5=5·104.

Here i3 (0)= i1 (0)=5 A, since i2 (0)=0.

Figure 2.49 A given circuit for Example 2.28.
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Our last step is to find the integration constants. We have

B sin b= i2 (0)− i2,f (0)=−5

−6·103 sin b+2·103 cos b=
di2
dt K
t=0
=5·104,

to which the solution is

b=tan−1
−5·2·103

50·103−30·103
=−26.6°, B=

−5
sin(−26.6°)

=11.2.

Therefore, the complete response is

i2=5+11.2e−6000t sin(2000t−26.6°) A.

Example 2.29

Consider once again the circuit shown in Fig. 2.40, which is redrawn here,
Fig. 2.50. This circuit has been previously analyzed and it was shown that the
natural response is dependent on the kind of applied source, voltage or current.
We will now complete this analysis and find the transient response a) of the
current i(t) when a voltage source of 100 V is connected between nodes m–n,
Fig. 2.50(a); and (b) of the voltage v(t)when a current source of 11 A is connected
between nodes m–n, Fig. 2.50(b). The circuit parameters are R1=R2=100 V,
R3=10 V, L=20mH and C=2 mF.

Solution

(a) In this case an ideal voltage source is connected between nodes m and n.

Figure 2.50 A circuit for Example 2.29 driven by a voltage source (a) and by a current source (b).
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Therefore each of the three branches operates independently, and we may find
each current very simply.

i
1,f
=
V
s
VV

R1
=
100

100
=1 A (no natural response)

i2= i2,f+i2,n=0+
V
s
VV

R2
es
2
t=1e−5000t A,

where s2=−
1

RC
=

1

100·2·10−6
=5000 s−1,

i3= i3,f+i3,n=
V
s
VV

R3
−
V
s
VV

R3
es
3
t=10−10e−500t A,

where s3=−
R3
L
=

10

20·10−3
=−500 s−1.

Therefore, the total current is

i= i1+ i2+ i3=11+e−5000t−10e−500t A.

(b) In this case, in order to find the transient response we shall, as usual, apply
the five-step solution. The characteristic equation (step 1) for this circuit has
already been determined in equation 2.29. With its simplification, we have

s2+CReqL + 1

(R1+R2 )CD s+R1+R3R1+R2

1

�L C
=0,

where R
eq
= (R1R2+R1R3+R2R3 )/(R+R2 ).

Upon substituting the numerical data the solution is

s
1,2
= (−2.75± j2.5)103 s−1.

Thus the natural response will be

v
n
=Be−2.75·103t sin(2.5·103t+b) V.

The forced response (step 2) is

v
f
=I
s
R1R3
R1+R3

=11
100·10

100+10
=100 V.

The independent initial conditions (step 3) are zero, i.e., v
C
(0)=0, i

L
(0)=0.

Next (step 4) we shall find the dependent initial condition, which will be used
to determine the voltage derivative:

the voltage drop in the inductance, which is open circuited

v
L
(0)=I

s
(R1//R2 )=11·50=550 V;



130 Chapter #2

the capacitance current, since the capacitance is short-circuited

i
C
(0)=I

s
R1
R1+R

=11
100

200
=5.5 A;

the initial value of the node voltage (which is the voltage across the inductance)
v(0)=v

L
(0)=550 V. In order to determine the voltage derivative we shall apply

Kirchhoff ’s two laws

i
R
+ i
C
+ i
L
=I
s
, v=R1 iR=R2 iC+vC ,

and, after differentiation, we haveffff

di
R
dt
+
di
C
dt
+
di
L
dt
=0

dv

dt
=R2

di
C
dt
+
dv
C
dt
.

By taking into consideration that

dv
C
dt K
t=0
=
i
C
(0)

C
,
di
L
dt K
t=0
=
v
L
(0)

L
and i

R
=
v

R1
,

the solution for (dv/dt) |
t=0
becomes

dv

dt K
t=0
=

R1
R1+R2 AiC (0)C −

R2
L
v
L
(0)B ,

which, upon substitution of the data, results in (dv/dt) |
t=0
=0.

The integration constant, can now be found by solving the following set of
equations

B sin b=v(0)−v
f
(0)=550−100=450

−2.75·103 sin b+2.5·103 cos b=
dv

dt K
t=0
−
dv
f
dt K
t=0
=0.

The solution is

b=tan−1
2·5

2.75
=42.3°

B=
450

sin 42.3°
=669.

Therefore, the complete response is

v(t)=100+669e−2.75·103t sin(2.5·103t+42.3°) V.

Note that this response is completely different from the one achieved in circuitffff
(a). However, the forced response here, i.e., the node voltage, is 100 V, which is
the same as the node voltage in circuit (a) due to the 100 V voltage source.
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2.7.2 RLC circuits under a.c. supply

The analysis of an RL C circuit under a.c. supply does not differ very muchffff
from one under d.c. supply, since the natural response does not depend on the
source and the five-step solution may again be applied. However, the evaluation
of the forced response is different and somehow more labor consuming, sinceffff
phasor analysis (based on using complex numbers) must be applied. Let us now
illustrate this approach by solving numerical examples.

Example 2.30

Let us return to the circuit shown in Fig. 2.51 of Example 2.26 and suppose
that the switch is moved from position ‘‘2’’ to ‘‘1’’, connecting this circuit to the
a.c. supply: v

s
=V
m
VV sin(vt+y

v
), having V

m
VV =540 V at f=50 Hz and y

v
=0°.

Find the current of the inductive branch, i
L
, assuming that the circuit parameters

are: R1=2 V, R2=10 V, L=0.1 H and the capacitance C=100 mF, whose value
is chosen to improve the power factor.

Solution

The characteristic equation of the circuit has been found in Example 2.26, in

Figure 2.51 A given circuit of Example 2.30 (a), circuit equivalent at t=0 (b) and the plot of current
i
L
(c).
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which

a=
1

2 AR2L + 1

R1CB= 12 A100.1+ 1042 B=2.55·103
and

v2
d
=
R1+R2
R1

1

L C
=
2+10
2

104
0.1
=0.6·106.

Thus, the roots are

s1,2= (−2.55±
√2.552−0.6)103$(−0.12,−5.0)103 s−1

and the natural response is

i
L,n
=A1e−120t+A2e−5000t.

The next step is to find the forced response. By using the phasor analysis
method we have

Ĩ
L,m
=
Ṽ

Z
in

Z1
Z2+Z1

=
540

105%−17.4°
31.8%−90°

10
=16.4%−72.6° A,

where

Z2=R2+ jvL=10+ j31.4=32.9%72.3°, Z1=− j1/vC=− j31.8

and

Z
in
=R1+Z2//Z1=105%−17.4°.

The forced response is

i
L,f
=16.4 sin (314t−72.6°).

Since no initial energy is stored either in the capacitance or in the inductance,
the initial conditions are zero: v

C
(0)=0 and i

L
(0)=0 . By inspection of the

circuit for the instant t=0, Fig. 2.51(b), in which the capacitance is short-
circuited, the inductance is open-circuited and the instant value of the voltage
source is zero, we may conclude that v

L
(0)=0 . Therefore, the second initial

condition for determining the integration constant is

di
L
dt K
t=0
=
v
L
(0)

L
=0.

Thus, we have

A1+A2= iL (0)− iL,f (0)=0−16.4 sin(−72.6°)=15.65

s1A1+s2A2=
di
L
dt K
t=0
−
di
L,f
dt K
t=0
=0−16.4·314 cos(−72.6°)=−1540,
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and

A1=
(−5·15.65+1.54)103
(−5+0.12)103

=15.72, A2=15.65, A1=−0.07$0.

Therefore, the complete response is

i
L
(t)=16.4 sin(314t−72.6°)+15.7e−120t A.

This response is plotted in Fig. 2.51(c), whereby the time constant of the expo-
nential term is t=1/120=8.3ms.

Example 2.31

A capacitance of 200 mF is switched on at the end of a 1000 V, 60 Hz transmission
line with R=10 V and load R1=30 V and L=0.1 H, Fig. 2.52. Find the tran-
sient current i and sketch it, if the instant of switching the voltage phase angle
is zero, y

v
=0.

Solution

The characteristic equation is obtained by equating the input impedance to
zero

s2+2as+v2
d
=0,

Here

a=
1

2 AR1L + 1

RCB= 12 A300.1+ 10410·2B=4·102
and

v2
d
=
R+R1
R

1

L C
=
10+30
10

104
0.1·2

=20·104,

Figure 2.52 A given circuit of Example 2.31 (a) and the current plot (b).
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which results in the roots

s1,2=−a±
√a2−v2

d
= (−4±√16−20)102= (−4± j2)102 s−1.

Thus, the natural response is

i
n
(t)=Be−400t sin(200t+b).

The forced response is found by phasor analysis

Ĩ=
Ṽ
s
VV

Z
in
=

1000

21.2%−50°
=47.2%50°,

where

Z1=R1+ jvL=30+ j37.7=48.2%51.5°,

Z2=− j
1

vC
=− j

10

377·2
=− j13.3

and

Z
in
=R+

Z1Z2
Z1+Z2

=10+
48.2%51.5° ·13.3%−90°
30+ j37.7− j13.3

=21.2%−50°.

Therefore,

i
f
=47.2√2 sin (377t+50°)=66.8 sin(377t+50°) A.

The independent initial conditions are v
C
(0)=0, i

L
(0)=25.7 sin 43.3°=17.6 A,

since prior to switching:

Ĩ
L,m
=

V
s
VV √2

√(R+R1 )2+x2L
=

1000√2
√402+37.72

=25.7 and Q=tan−1
37.7

40
=43.3°.

The next step is to determine the initial values of i(0) and (di/dt) |
t=0
. Since the

input voltage at t=0 is zero and the capacitance voltage is zero, we have i(0)=
[v
s
(0)−v

C
(0)]/R=0. The initial value of the current derivative is found with

Kirchhoff ’s voltage law applied to the outer loop

−v
s
+Ri+v

C
=0,

and, after differentiation, we haveffff

di

dtK
t=0
=
1

R Advsdt − dvCdt B
t=0
=
1

10
[533− (−88)]103=62.1·103.

Here

dv
s
dt K
t=0
=1000√2·377 cos y

v
=533·103
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and

dv
C
dt K
t=0
=
1

C
i
C
=
104
2
(−17.6)=−88·103,

because i
C
(0)=−i

L
(0)=−17.6 (note that i(0)=0). Hence, we now have two

simultaneous equations for finding the integration constants

B sin b= i(0)− i
f
(0)=0−47.2√2 sin 50°=−51.1

−4·102B sin b+2·102B cos b=
di

dtK
t=0
−
di
f
dt K
t=0

=62.1·103−47.2√2·377 cos 50°=45.9·103,

for which the solution is

b=tan−1
2·102

45.9·103/(−51.1)+4·102
=158.2° and B=

−51.1
sin 158.2°

=−137.6.

Thus, the complete response is

i=66.8 sin(377t+50°)−137.6e−400t sin (200t+158.2°).

The plot of this curve can be seen in Fig. 2.52(c).

2.7.3 Transients in RLC resonant circuits

An RL C circuit whose quality factor Q is high (at least as large as 1/2) is
considered a resonant circuit and, when interrupted, the transient response will
be oscillatory. If the natural frequency of such oscillations is equal or close to
some of the harmonics inherent in the system voltages or currents, then the
resonant conditions may occur. In power system networks, the resonant circuit
may arise in many cases of its operation.
In transmission and distribution networks, resonance may occur if an
extended underground cable (having preponderant capacitance) is connected to
an overhead line or transformer (having preponderant induction). The natural
frequency of such a system may be close to the lower harmonics of the generating
voltage. When feeder cables of high capacitances are protected against short-
circuit currents by series reactors of high inductances, the resonance phenome-
non may also arise. Banks of condensers, used, for example, for power factor
correction, and directly connected under full voltage with the feeding transfor-
mer, may form a resonance circuit, i.e., where no sufficient damping resistance
is present. Such circuits contain relatively small inductances and thus the fre-
quency of the transient oscillation is extremely high.
Very large networks of high voltage may have such a great capacitance ofVV
the transmission lines and the inductance of the transformers, that their natural
frequency approaches the system frequency. This may happen due to line-to-
ground fault and would lead to significant overvoltages of fundamental fre-
quency. More generally, it is certain that, for every alteration in the circuits
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and/or variation of the load, the capacitances and inductances of an actual
network change substantially. In practice it is found, therefore, that the reso-
nance during the transients in power systems, occur if and when the natural
system frequency is equal or close to one of the generalized frequencies. During
the resonance some harmonic voltages or currents, inherent in the source or
in the load, might be amplified and cause dangerous overvoltages and/or
overcurrents.
It should be noted that in symmetrical three-phase systems all higher harmon-
ics of a mode divisible by 2 or 3 vanish, the fifth and seventh harmonics are
the most significant ones due to the generated voltages and the eleventh and
the thirteenth are sometimes noticeable due to the load containing electronic
converters.
We shall consider the transients in the RL C resonant circuit in more detail
assuming that the resistances in such circuits are relatively low, so that R%Z

C
,

where Z
C
=�L /C, which is called a natural or characteristic impedance (or

resistance); it is also sometimes called a surge impedance.

(a) Switching on a resonant RLC circuit to an a.c. source

The natural response of the current in such a circuit, Fig. 2.53 (see sections 1.62
and 2.72) may be written as

i
n
=I
n
e−at sin(v

n
t+b). (2.62)

The natural response of the capacitance voltage will then be

v
C,n
=
1

C P indt=In e−at

C(a2+v2
n
)
[−a sin(v

n
t+b)−v

n
cos(v

n
t+b)],

upon simplification, combining the sine and cosine terms to a common sine
term with the phase angle (90°+d),

v
C,n
=V
C,n
VV e−at sin[v

n
t+b− (90°+d)], (2.63)

where

V
C,n
VV =I

nSLC , (2.64a)

Figure 2.53 A resonant RL C circuit.
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d=tan−1 A av
n
B , (2.64b)

and

(a2+v2
n
)=v2
d
+
1

L C
. (2.65)

The natural response of the inductive voltage may be found simply by differenti-ffff
ation:

v
L,n
=L
di
i,n
dt
=L I

n
e−at [−a sin (v

n
t+b)+v

n
cos(v

n
t+b)],

or after simplification, as was previously done, we obtain

v
L,n
=I
nSLC e−at sin[vnt+b+ (90°+d)]. (2.66)

It is worthwhile to note here that by observing equation 2.63 and equation 2.66
we realize that v

C,n
is lagging slightly more and v

L,n
is leading slightly more

than 90° with respect to the current. This is in contrast to the steady-state
operation of the RL C circuit, in which the inductive and capacitive voltages
are displaced by exactly±90° with respect to the current. The difference, whichffff
is expressed by the angle d, is due to the exponential damping. This angle is
analytically given by equation 2.64b and indicates the deviation of the displace-
ment angle between the current and the inductive/capacitance voltage from 90°.
Since the resistance of the resonant circuits is relatively small, we may approxi-
mate

v
n
=S 1L CSS −AR2L B2$ 1

√L C
and tan d$R/2�L /C. (2.67)

For most of the parts of the power system networks resistance R is much smaller
than the natural impedance �L /C so that the angle d is usually small and can
be neglected.
By switching the RL C circuit, Fig. 2.53, to the voltage source

v
s
=V
m
VV sin(vt+y

v
) (2.68)

the steady-state current will be

i
f
=I
f
sin(vt+y

i
), (2.69)

the amplitude of which is

I
f
=

V
m
VV

√R2+ (vL−1/vC)2
, (2.70)
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and the phase angle is

y
i
=y
v
−Q, Q=tan−1

vL−1/vC
R

. (2.71)

The steady-state capacitance voltage is

v
C,f
=
I
f
vC
sin(vt+y

i
−90°). (2.72)

For the termination of the arbitrary constant, b, we shall solve a set of equations,
written for i

n
(0) and v

C,n
(0) in the form:

i
n
(0)= i(0)− i

f
(0)

v
C,n
(0)=v

C
(0)−v

C,f
(0).

Since the independent initial conditions for current and capacitance voltage are
zero and the initial values of the forced current and capacitance voltage are
i
f
(0)=I

f
sin y

i
, and v

C,f
(0)=−(I

f
/vC) cos y

i
we have

I
n
sin b=0−I

f
sin y

i

−I
nSLC cos b=0+ IfvC cos yi . (2.73)

The simultaneous solution of these two equations, by dividing the first one by
the second one, results in

tan b=
v

v
n
tan y

i
. (2.74)

Whereby the phase angle b of the natural current can be determined and, with
its value, the first equation in 2.73 give the initial amplitude of the transient
current

I
n
=−I

f
sin y

i
sin b

=−I
f
siny

iS1+ 1

tan2y
i
AvnvB2 ,

or

I
n
=−I

fSsin2yi+AvnvB2 cos2 yi . (2.75)

The initial amplitude of the transient capacitance voltage can also be found
with equation 2.64(a)

V
C,n
VV =I

nSLC=−IfSLCSsin2 yi+AvnvB2 cos2 yi ,
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or, with the expression V
C,f
VV =I

f
/vC (see equation 2.72), we may obtain

V
C,n
VV =−V

C,f
VV SAvv

n
B2 sin2 yi+cos2yi . (2.76)

From the obtained equations 2.74, 2.75 and 2.76 we can understand that the
phase angle, b, and the amplitudes, I

n
and V

C,n
VV , of the transient current and

capacitance voltage depend on two parameters, namely, the instant of switching,
given by the phase angle y

i
of the steady-state current and the ratio of the

natural, v
n
to the a.c. source frequency, v. Using the obtained results let us

now discuss a couple of practical cases.

(b) Resonance at the fundamental ( first) harmonic

In this case, with v
n
=v the above relationships become very simple. According

to equation 2.74

tan b=tan y
i
and b=y

i
, (2.77)

i.e., the initial phase angles of the natural and forced currents are equal.
According to equations 2.75 and 2.76

I
n
=−I

f
and V

C,n
VV =−V

C,f
VV , (2.78)

which means that the amplitudes of the natural current and capacitance voltages
are negatively equal (in other words they are in the opposite phase) to their
steady-state values. Since the frequencies v and v

n
are equal, we can combine

the sine function of the forced response (the steady-state value) and the natural
response, and therefore the complete response becomes

i=I
f
(1−e−at) sin(vt+y

i
)

v
C
=V
C,f
VV (1−e−at ) sin(vt+y

i
−90°).

(2.79)

The plot of the transient current (equation 2.79) is shown in Fig. 2.54. As can
be seen, in a resonant circuit the current along with the voltages reach their
maximal values during transients after a period of 3–5 times the time constant
of the exponential term. Since the time constant here is relatively low, due to

Figure 2.54 A current plot after switching in a resonant circuit.
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the small resistances of the resonant circuits the current and voltages reach
their final values after very many cycles. It should be noted that these values
of current and voltages at resonance here, are much larger than in a regular
operation.

(c) Frequency deviation in resonant circuits

In this case, equations 2.77 and 2.78 can still be considered as approximately
true. However since the natural and the system frequencies are only approxi-
mately (and not exactly) equal, we can no longer combine the natural and
steady-state harmonic functions and the complete response will be of the form

i=I
f
[sin(vt+y

i
)−e−at sin(v

n
t+y

i
)]

v
C
=V
C,f
VV [sin(vt+y

i
−90°)−e−at sin(v

n
t+y

i
−90°)].

(2.80)

Since the natural current/capacitance voltage now has a slightly different fre-ffff
quency from the steady-state current/capacitance voltage, they will be displaced
in time soon after the switching instant. Therefore, they will no longer subtract
as in equation 2.79, but will gradually shift into such a position that they will
either add to each other or subtract, as shown in Fig. 2.55. As can be seen with
increasing time the addition and subtraction of the two components occur
periodically, so that beats of the total current/voltage appear. These beats then
diminish gradually and are decayed after the period of the 3–5 time constant,
t. It should also be noted that, as seen in Fig. 2.55, the current/capacitance
voltage soon after switching rises up to nearly twice its large final value; so that
in this case switching the circuit to an a.c. supply will be more dangerous than
in the case of resonance proper. By combining the trigonometric functions in
equation 2.80 (after omitting the damping factor e−at and the phase angle y

i
,

Figure 2.55 A plot of the current when the natural and fundamental frequencies are approxi-

mately equal.
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i.e., supposing that the switching occurs at y
i
=0) we may obtain

i=2I
f
sin
v−v

n
2

t·cos
v+v

n
2
t

v
C
=−2V

C,f
VV sin

v−v
n

2
t·cos

v+v
n

2
t.

(2.81)

These expressions represent, however, the circuit behavior only a short time
after the switching-on, as long as the damping effect is small. In accordanceffff
with the above expressions, and by observing the current change in Fig. 2.55,
we can conclude that two oscillations are presented in the above current curve.
One is a rapid oscillation of high frequency, which is a mean value of v and
v
n
, and the second one is a sinusoidal variation of the amplitude of a much

lower frequency, which is the difference betweenffff v and v
n
, and represents the

beat frequency.

(d) Resonance at multiple frequencies

In this case, the transient phenomena are largely dependent on the instant of
switching, i.e. on the angle y

i
. Two extreme cases are of particular interest: 1)

y
i
=0 and 2) y

i
=90°.

If the switching occurs the moment at which y
i
=90°, i.e., at the instant at

which the steady-state current is maximal, while the capacitance voltage passes
through zero, then the natural phase angle (equation 2.74) will also be

b=90°.

Then, see equations 2.75 and 2.76,

I
n
=−I

f
and V

C,n
VV =−

v

v
n
V
C,f
VV , (2.82)

and the total current and voltage become

i=I
f
[sin(vt+90°)−e−at sin(v

n
t+90°)]

(2.83)
v
C
=V
C,f
VV Asin vt− vv

n
e−at sin v

n
tB .

For the cases in which the natural frequency v
n
is higher than the forced

frequency v, the current rises, at the instant half a cycle after the instant of
switching, to almost twice the amount of the steady-state current, which is
shown in Fig. 2.56. The excess capacitance voltage in this case, however, is
relatively small due to the small ratio of the frequencies in the second term of
the capacitance voltage, which lowers its natural response.
If the switching occurs, the moment at which y

i
=0, i.e., at the instant the

steady-state current passes through zero and the capacitance voltage reaches
its maximum, the natural current phase angle (equation 2.74) will also be zero

b=0,



142 Chapter #2

Figure 2.56 A plot of the current when y
i
=90°.

and, in accordance with equations 2.75 and 2.76,

I
n
=−

v
n
v
I
f
and V

C,n
VV =−V

C,f
VV . (2.84)

Now the total current waveform and the total capacitance voltage waveform
become

i=I
f Asin vt−e−at vnv sin vntB

v
C
=V
C,f
VV [sin(vt−90°)−e−at sin(v

n
t−90°)],

which is almost inversely what is was in the former case. The plots of both the
current and voltage are shown in Fig. 2.57. As can be seen, half a natural period
after the switching moment the capacitance voltage is nearly doubled. The total
current in this case may reach enormously high values due to the large ratio of

Figure 2.57 The plots of the current (a) and the capacitance voltage (b) for the case where y
i
=0.
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Figure 2.58 The plot of the capacitance voltage for y
i
=90° and v

n
<v.

the frequencies, which determine the natural component initial amplitude, when
the natural frequency is higher than the system frequency.
For cases in which the natural frequency is lower than the force frequency, the
transient phenomenon is significantly changed. Hence, here the most dangerous
case is where the switching on occurs at the initial phase y

i
=90° and the

capacitance voltage (equation 2.83) rises to almost as much as the ratio of the
frequencies v/v

n
times the amount of its final value, Fig. 2.58.

In conclusion, as was previously mentioned, some parts of power system
networks, particularly the windings of electrical machines and transformers,
predominantly possess inductances, while other parts, particularly underground
cables and high-voltage overhead lines, predominantly possess capacitances.
Hence, the possibility of resonant conditions always exists, and by switching-on
in such circuits the resonant phenomena may appear. The magnitude of the
transient currents and voltages is dependent on the natural frequency and its
ratio to the forced frequency as well as the instant of switching. Since it can
never be predicted at what exact instant the switching occurs, we must always
expect and analyze the most unfavorable cases.

2.7.4 Switching-off in RLC circuits

We have seen in sections 1.74 and 2.3.3 that very high voltages may develop if
a current is suddenly interrupted. However, the presence of capacitances, which
are associated with all electric circuit elements, as shown in Fig. 2.14, may
change the transient behavior of such circuits. Thus, the raised voltages charge
all these capacitances and thereby the actual voltages will be lower. To show
this, consider a very simple approximation of such an arrangement by the
parallel connection of L and C, as shown in Fig. 2.59. After instantaneously
opening the switch, the current of the inductance flows through the capacitance
charging it up to the voltage of V

C
VV . The magnetic energy stored in the induc-

tance, W
m
WW =1

2
L I2
L
, where I

L
is the current through the inductance prior to

switching, will be changed into the electric energy of the capacitance
W
e
WW =1

2
CV 2
C
. Since both amounts of energy, at the first moment after switching,
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Figure 2.59 A circuit in which a coil with a parallel capacitance is disconnected from the voltage

source.

are equal (by neglecting the energy dissipation due to low resistances), we have

CV 2
C
2
=
L I2
L
2
,

and the maximal transient overvoltage appearing across the switch is

V
C
VV =SLC IL . (2.85)

Recalling from section 1.74, Fig. 1.28(a), that the overvoltage, by interrupting
the coil of 0.1 H with the current of 5 A, was 50 kV, we can now estimate it
more precisely. Assuming that the equivalent capacitance of the coil and the
connecting cable is C=6 nF, and is connected in parallel to the coil, as shown
in Fig. 2.59,

V
C
VV =S 0.1

6·10−9
5=20.4 kV.

Hence, for reducing the overvoltages, capacitances should be used. Subsequently,
by connecting the additional condensers of large magnitudes, the overvoltage
might be reduced to moderate values.
For a more exact calculation, we shall now also consider the circuit resistances.
By using the results obtained in the previous section, we shall take into consider-
ation that when the circuit is disconnected, the forced response is absent.
However, the independent initial values are not zero, hence the initial value of
the transient (natural ) current through the inductive branch is found as

I0= iL (0)−0, (2.86a)

and similarly for the capacitance voltage

V0VV =vC (0)−0. (2.86b)

With the current derivatives

di
L
dt K
t=0
= (1/L )v

L
(0)=

V0VV −RiL (0)
L

and
di
L,n
dt K
t=0
=
di
L
dt K
t=0
−0,
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we have two equations for determining two integration constants

I
n
sin b=I0 , (2.87a)

I
n
(−a sin b+v

n
cos b)=

V0VV −RI0
L

. (2.87b)

By dividing equation 2.87b by equation 2.87a, and substituting R/2L for a and

√1/L C− (R/2L )2

for v
n
upon simplification we obtain

tan b=
√L /C− (R/2)2
V0VV /I0−R/2

. (2.88a)

For circuits having small resistances, namely if R/2%�L /C, the above equation
becomes

tan b=
√L /C

V0VV /I0−R/2
. (2.88b)

Using equation 2.88 with equation 2.87a, we may obtain (the details of this
computation are left for the reader to convince himself of the obtained results)

I
n
=SISS 20+ (V0VV −RI0/2)2L /C− (R/2)2

$SISS 20+CL (V0VV −RI0/2)2, (2.89)

and with equation 2.64a

V
C,n
VV =SLC In=SLC I20+ (V0VV −RI0/2)2

1− (C/L )(R/2)2
$SLC I20+AV0VV − 12 RI0B2

(2.90)

The above relationships express, in an exact and approximate way, the ampli-
tudes of transient oscillations of the current and capacitance voltage. They are
valid for switching-off in any d.c. as well as in any a.c. circuit.

Example 2.32

Assume that, for reducing the overvoltage, which arises across the switch, by
disconnecting the previously considered coil of 0.1 H inductance and 20 V inner
resistance, the additional capacitance of 0.1 mF is connected in parallel to the
coil, Fig. 2.59. Find the transient voltage across the switch, if the applied voltage
is 100 V dc.

Solution

We shall first find the current phase angle. Since (R/2=10)% (�L /C=103),
using equation 2.88b and taking into consideration that V0VV =VsVV and I0=VsVV /R,
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we have

tan b=
√L /C
R−R/2

=
√1/L C L
R/2

=
v
n
a
.

The damping coefficient and the natural frequency are

a=
R

2L
=
20

2·0.1
=100 s−1, v

n
=

1

√L C
=

1

√0.1·0.1·10−6
=104

rad
s
,

therefore,

b=tan−1
v
n
a
=tan−1100=89.4°.

In accordance with the approximate expression (equation 2.90), we have

V
C,n
VV =SLC V 2sR2−AVsVV − 12 VsVV B2$VsVV √L /CR =100

1000

20
=5·103 V.

(Note that this value is less than the previous estimation.) The capacitance
voltage versus time (equation 2.63) therefore, is

v
C,n
(t)=−V

C,n
VV e−at sin (vt+b−d−90°)$−5e−100t sin(104t−2d) kV.

Where d is a displacement angle (equation 2.64b): d=tan−1(a/v
n
)$0.6° (note

that b$90°−d=89.4° as calculated above). The negative sign of the capaci-
tance voltage indicates the discharging process.
The voltage across the switch can now be found as the difference betweenffff

the voltages of the source and the capacitance. Thus,

v
sw
=V
s
VV −v

C
(t)=100+5·103e−100t sin (104t−1.2°) V,

which for t=0 gives v
sw
zero. Instead, v

sw
(0)=100+5·103 sin(−1.2°)$0.

The plot of v
sw
is shown in Fig. 2.60 (the source voltage here is unproportion-

ally enlarged relative to the transient voltage to clarify the relation between

Figure 2.60 A plot of the voltage across the switch in the circuit of Fig. 2.59 after opening the switch.
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these two voltages). As can be seen this voltage does not suddenly jump to its
maximal value, but rises as a sinusoidal and reaches the peak after one-quarter
of the natural period (which in this example is about 1.57ms). Within this time,
the contacts of the switch (circuit breaker) must have separated enough to avoid
any sparking or an arc formation.
The circuit in Fig. 2.61(a) represents a very special resonant circuit, in which
R1=R2=

�L /C. As is known, the resonant frequency of such a circuit may be
any frequency, i.e., the resonance conditions take place in this circuit, when it
is connected to an a.c. source of any frequency. If such a circuit is interrupted,
for instance by being switched off,ffff the two currents i

C
and i

L
are always

oppositely equal. In addition, since the time constants of each branch are equal
(t
L
=L /R1=R2C=tC ), both currents decay equally, as shown in Fig. 2.61(b).

Therefore, no current will flow through the switch when interrupted, providing
its sparkless operation.

(a) Interruptions in a resonant circuit fed from an a.c. sourceII

Finally, consider a resonant RL C circuit when disconnected from an a.c. source.
The initial condition in such a circuit may be found from its steady-state
operation prior to switching. Let the driving voltage be v

s
=V
m
VV sin(vt+y

v
),

then the current and the capacitance voltage (see, for example, the circuit in
Fig. 2.59) are

i=I
m
sin(vt+y

i
)

v
C
=V
m
VV sin(vt+y

v
),

(2.91)

where

I
m
=

V
m
VV

√R2+ (vL )2
and Q=tan−1

vL

R
(y
i
=y
v
−Q). (2.92)

Figure 2.61 A special resonant circuit (a) and two transient currents after switching (b).
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The initial conditions may now be found as

i(0)=I
m
sin y

i
=I0

v
C
(0)=V

m
VV sin y

v
=V0VV .

(2.93)

Since the forced response in the switched-off circuit is zero, the initial values
(equation 2.93) are used as the initial conditions for determining the integration
constants in equation 2.87. Therefore, by substituting equation 2.93 in equations
2.88–2.90, and upon simplification and approximation for very small resistances,
we obtain

tan b=SLC Im sin yiV
m
VV sin y

v
=
v
n
v

sin y
i

sin y
v
sin Q

, (2.94)

where it is taking into account that the ratio

V
m
VV

I
m
=
vL

sin Q
,

and

I
n
=I
mSsin2yi+A v

v
n
sin QB2 sin yv$ImSsin2yi+Avv

n
B2 cos2 yi

(2.95)

V
C,n
VV =V

s
VV SAvn sin Qv B2 sin2 yi+sin2yv$VsVV SAvnvB2 sin2 yi+cos2yi,

(2.96)

where the second approximation (the right hand term) is done for Q$90°, i.e.,
sin Q$1 and sin y

v
=sin (y

i
+90°)=cos y

i
.

As can be seen from the above expressions, the natural current and capaci-
tance voltage magnitudes are dependent on the phase displacement angle Q (or
the power factor of the circuit), on the ratio of the natural frequency v

n
and

the system frequency v, and on the current phase angle y
i
, which is given by

the instant of switching. Therefore, in RL C circuits with a natural frequency
higher than the system frequency (which usually happens in power networks),
the transient voltage across the capacitance may attain its maximal value, which
is as large as the ratio of the frequencies. This occurs in highly inductive circuits
with Q$90° due to the interruption of the current while passing through its
amplitude, i.e., when y

i
=90°. However, the switching-off practically occurs at

the zero passage of the current, i.e., when y
i
=0. In this very favorable case the

transient voltage amplitude, with equation 2.96, will now be equal to the voltage
before the interruption. The voltage across the switch contacts reaches a maxi-
mum, which, with small damping, is twice the value of the source amplitude

v
sw,max=2VsVV ,
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and then decays gradually. The initial angle of the transient response in this
case, with equation 2.94, will be

b$0.

Suppose that the circuit in Fig. 2.59, which has been analyzed, represents, for
instance, the interruption at the sending end of the underground cable or
overhead line having a significant capacitance to earth, while the circuit in
Fig. 2.62 may represent the interruption at the receiving end of such a cable or
overhead line. One of such interruptions could be a short-circuit fault and its
following switching-off.ffff The analysis of this circuit is rather similar to the
previous one. The difference, though, is that here the initial capacitance voltageffff
is zero and the forced response is present. Therefore, the initial conditions for
the transient (natural ) response will be

i
L,n
(0)= i

L
(0)− i

f
(0)=I0

v
C,n
(0)=0−v

C,f
(0)=V0VV ,

(2.97)

and for the current derivative, we have

di
L,n
dt K
t=0
=
1

L
v
L
(0)−

di
f
dt K
t=0
=
v
s
(0)−Ri

L
(0)

L
−
di
f
dt K
t=0
.

The current through the inductance prior to switching might be found as a
short-circuit current

i
sc
=

V
m
VV

√R2+ (vL )2
sin (vt+y

v
−Q
sc
), (2.98a)

where

Q
sc
=tan−1

vL

R
, (2.98b)

and y
v
is a voltage source phase angle at switching instant t=0.

Since switching in a.c. circuits usually occurs at the moment when the current
passes zero, we shall assume that I0=0 and yi (0)=yv−Qsc=0 (or the voltage
phase angle at the switching moment is equal to the short-circuit phase angle).

Figure 2.62 An RL C circuit, which arises after having been short-circuited.
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Thus,

I0=0 and y
v
=Q
sc
. (2.99)

The forced response of the current and the capacitance voltage are found in the
circuit after the disconnection of the short-circuit current, i.e. in the open-circuit,
in which the cable or the line is disconnected (no load operation). In this regime
the entire circuit is highly capacitive (1/vC&vL ). Therefore, we have

I
f
$V
m
VV vC and Q

f
$−90°. (2.100)

Now, the two equations for finding the integration constant are

I
n
sin b=0− i

f
(0)$−I

f
sin (y

v
+90°)=−I

f
cos y

v

I
n
(−a sin b+v

n
cos b)=

V
m
VV sin y

v
L

−v
n
I
f
sin y

v
,

(2.101)

for which the solution is

tan b=
−v
n
v

(v2
n
+v2) tan y

v
+av

. (2.102)

Since in power system circuits the natural frequency usually is much higher
than the system frequency, the above expression might be simplified for low
resistive circuits to

tan b$−
v

v
n
tan y

v
. (2.102a)

Thus, the oscillation amplitudes of the natural current and capacitance voltage
are

I
n
=
I
f
cos y

v
sin b

=I
f
√1+cot2b$I

f
v
n
v
sin y

v
, (2.103)

V
C,n
VV =SLC In$SLC If vnv sin yv=VmVV sin yv , (2.104)

where I
f
=vCV

m
VV . Let us illustrate this case in the following example.

Example 2.33

Determine the maximum voltage across the breaker and the transient current
after it opens, disconnecting the system’s short-circuit fault, as shown in
Fig. 2.63(a). The system is fed by an underground cable, through a reactor
(whose purpose is to reduce the short-circuit current). The parameters of the
reactor and the cable are L 1=6.13mH, R0=0.2 V/km, L 0=0.318mH/km and
C0=0.267 mF/km. The system voltage is 10 kV (rms) at 60 Hz and the fault
occurs at 13.5 km from the sending end. Suppose that the arc, which appears
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Figure 2.63 A given circuit for Example 2.33 (a) and the plots of the capacitance voltage (b) and

transient current (c).

at the first moment of switching, is extinguished at a current pause, i.e. at its
zero value.

Solution

The total circuit parameters are: L=L 1+L 0 l=6.13+0.318·13.5=10.4mH,
C=C0 l=0.267·13.5=3.6 mF, R=R0 l=0.2·13.5=2.7 V.

The natural frequency and damping coefficient are

v
n
$

1

√L C
=

1

√10.4·10−3 ·3.6·10−9
=5.17·103 rad/s

a=
R

2L
=

2.7

2·10.4·10−3
=130 s−1,

and the characteristic impedance is

R
c
=SLC=S10.4·10−33.6·10−6

=53.7 V.
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The forced current amplitude and phase angle are

I
f
=
V
s
VV

Z
in
=
10√2
733

=13.6√2 A and Q
in
$−90°,

where

Z
in
=√R2+ (vL−1/vC)2

=√2.72+ (377·10.4·10−3−1/377·3.6·10−6 )2$733 V.

Since the short current switching-off occurs at y
i
=0, the forced voltage initial

angle should be (2.99)

y
v
=Q
sc
=tan−1

vL

R
=tan−1

3.9

2.7
=53.1°,

and the forced current phase angle will be

y
i
=y
v
−Q
in
=53.1°− (−90°)=143.1°.

Now we can find the phase angle of the natural current (equation 2.102a)

tan b$
−v

v
n
tan y

v
=

−377
5.17·103 tan 53.1°

=−54.7·10−3 and b=−3.13°.

The magnitude of the transient capacitance voltage is (equation 2.104)

V
C,n
VV $V

m
VV sin y

v
=10√2 sin 53.1°=8.0√2 kV,

and the complete capacitance voltage is

v
C
(t)=10√2 sin(vt+53.1°)+8.0√2e−130t sin (5.17·103t−93.1°) kV.

The transient current oscillation amplitude (equation 2.103) is

I
n
$I
f
v
n
v
sin y

v
=13.6√2

5.17·103
377

sin 53.1°=149.2√2 A,

and the complete current response is

i(t)=13.6√2 sin (vt+143.1°)+149.2√2e−130t sin(5.17·103t−3.13°) A.

Checking for t=0 yields

i(0)=13.6√2 sin(143.1°)+149.2√2 sin(−3.13°)$0

(since the switching occurs at the zero current), and

v
C
(0)=10√2 sin 53.1°+8.0√2 sin(−93.1°)$0

(since the cable was short-circuited prior to switching).
The voltage across the breaker is equal to the capacitance voltage and its
maximum will occur at the moment when the forced response reaches its first
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maximum and the natural response is positive. Thus,

tmax,v=
(90°−53.1°)/57.3°

v
=
0.644

377
$1.71ms,

(note that 1 rad=57.3°) and the maximum voltage is

V
sw,
VV max$10

√2+8.0√2e−130t
max,v
=16.4√2=23.2 kV.

The current maximum will occur at the moment when the natural response
reaches its first maximum, i.e., at the time

tmax,i=
(90°+3.13°)/57.3°
5.17·10−3

=0.314ms,

and the maximum current is

Imax$[13.6 sin (vtmax,i+143.1°)+149.2·e−130tmax,i)
√2=212 A.

The plots of the capacitance voltage and the current are shown in Fig. 2.63(b)
and (c).
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Chapter #3

TRANSIENT ANALYSIS USING THE LAPLACE
TRANSFORM TECHNIQUES

3.1 INTRODUCTION

In the introductory courses of circuit analysis the transient response is usually
examined for relatively simple circuits of one or two energy storage elements.
This analysis is based on general (or classical ) techniques, involves writing the
differential equations for the network, and proceeds to use them to obtain theffff
differential equation in terms of one variable. Then the complete solution,ffff
including the natural and forced responses, has to be obtained. The tedium and
complexity of using this technique is in determining the initial conditions of the
unknown variables and their derivatives and then evaluating the arbitrary
constants by utilizing those initial conditions. This procedure usually requires
a great amount of work, which increases with the complexity of the network.
Therefore, we now focus our attention on more effective methods of transientffff
analysis.
A simplification of solving different problems can be achieved by usingffff
mathematical transformation. We are already familiar with one kind of mathe-
matical transformation: the phasor transform technique, which allows simplify-
ing the solution of the circuit steady-state response to sinusoidal sources. As
we have seen, this very useful technique transforms the trigonometrical equations
describing a circuit in the time domain into the algebraic equations in the
frequency domain. Then the solution for the desirable variable (being actually
manipulated by complex numbers) is transformed back to the time domain.
In this chapter a very powerful tool for the transient analysis of circuits, i.e.,
the L aplace transform techniques, will be introduced. This method enables us to
convert the set of integro-differential equations describing a circuit in its tran-ffff
sient behavior in the time domain to the set of linear algebraic equations in the
complex frequency domain. Then using an algebraic operation, one may solve
them for the variables of interest. Finally, with the help of the inverse transform,
the desired solution can be expressed in terms of time. The paramount benefit
of applying the Laplace transform to circuit analysis is in ‘‘automatically’’ taking



156 Chapter #3

the initial conditions into account: they appear when a derivative or integral is
transformed.
Moreover, the concept of the frequency-domain equivalent circuit, based on

the Laplace transform analysis, will be introduced. These circuits can be ana-
lyzed using techniques such as nodal and mesh analysis, Thevenin’s and Norton’s
theorems, source transformations and so on, as described in earlier chapters.
So, the transform method in general can be represented by the expression

f (t)<F(s),

which shows the one-to-one correspondence between the time-domain function
f (t) and its frequency domain transform F(s), where s=s+ jv is the complex
frequencyff .

3.2 DEFINITION OF THE LAPLACE TRANSFORM

The so called two-sided or bilateral L aplace transform of F(t) is defined as(*)

F(s)= P2
−

PP
2
e−stf (t)t dt. (3.1)

In circuit analysis problems the forcing and response functions do not usually
exist endlessly in time, but rather they are initiated at some specific instant of
time selected as t=0. Thus, such functions that do not exist for t<0 can be
described with the help of unit step functions as f (t)u(t) (see sections 2.5 and
3.3.1). For these functions the Laplace transform defining integral is taken with
the lower limit at t=0

−
(**) :

F(s)= P2
−

PP
2
e−stf (t t)u(t)dt= P2

0
PP
−

e−stf (t)t dt. (3.2)

The latter integral defines the one-sided or unilateral L aplace transform, or simply
the Laplace transform of f (t). The lower limit t=0

−
(as distinguished from t=

0 or t=0
+
) in a one-sided Laplace transform is taken in order to include the

effect of any discontinuity atffff t=0, such as an impulse function and independent
initial conditions such as currents in inductances i

L
(0
−
) and voltages across

capacitances v
C
(0
−
).

The direct Laplace transform (3.2) may also be indicated as L{ f (t)}=F(s)
so that L implies the Laplace transform and means that once the integral in
equation 3.2 has been evaluated, f (t), which is a time domain function, is
transformed to F(s), which is a frequency domain function.

(*)The terms ‘‘two-sided’’ or bilateral are used to emphasize the fact that both positive and negative
times are included in the range of integration.
(**)In transient analysis of electric circuits t=0

−
is denoted as the time just before the switching

action, and t=0
+
as the time just after the switching action, representing radically different statesffff

of the circuit. Mathematically, f (0
−
) is the limit of f (t) as t approaches zero through negative values

(t<0), or the limit from the right, and f (0
+
) is the limit as t approaches zero through positive values

(t>0), or the limit from the left.
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However, the Laplace transform of a function f (t) exists only if the integral
(3.2) converges, or

P2
0
PP | f (t) |e−s1tdt<2, where s1=Re (s).

This means that if the magnitude of f (t) is restricted, or increases not faster
than the exponential, i.e.,

| f (t) |<Meat (3.3)

for all positive t the integral will converge and the region of convergence is
given by a<s1<2, as shown in Fig. 3.1(a). A function f (t) which fits this
condition is shown in Fig. 3.1(b). The physically possible functions of time, or
functions which are common in practice, always have a Laplace transform. (An
example of the function, which does not satisfy conditions of equation 3.3, is
et2, but not tn or nt .)
If we have a transformation L{ f (t)}, then we must have an inverse transforma-

tion L−1{F(s)}= f (t), which is mathematically defined as

f (t)=
1

2pjp P c+j2
c
PP
−j2

estF(s)ds. (3.4)

3.3 LAPLACE TRANSFORM OF SOME SIMPLE TIME FUNCTIONS

For a better understanding of Laplace transformations, we shall begin by using
this technique to determine the Laplace transforms for those time functions
most frequently encountered in circuit analysis.

3.3.1 Unit-step function

As was mentioned already in Chapter 2 (see section 2.5), very often in circuit
analysis a switching action takes place at an instant that is defined as t=0 (or

Figure 3.1 The illustration of the region of convergence in the Laplace transform definition (a); the

function increasing (b).
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t0=0). We may indicate this action by using a unit-step function, which is

u(t)=G0 t<0 (t<t0 )

1 t>0 (t>t0 ),

as shown in Fig. 3.2.

Figure 3.2 The unit-step function: u(t) (a) and u(t−t0) (b).

Thus, the unit-step function is zero for all values of its argument (time), which
are less than zero (or negative in the case of (t−t0 )) and which is unity for all
positive values of its argument. By multiplying, for example, the voltage source
value V

s
VV by the unit-step function: v(t)=V

s
VV u(t), we indicate that this voltage

source is connected to the network at the moment of time t=0 (or if v(t)=
V
s
VV u(t−t0 ), at the time t−t0 ).
In accordance with the Laplace transform definition (equation 3.2), we may

write

L{u(t)}=P2
0
PP
−

e−stu(t)dt=P2
0
PP e−stdt=− 1s e−stK2

0
=
1

s

for Re[s]=s>0, i.e., that the region of convergence is the right half of the s-
plane, except for the j-axis. Therefore,

u(t)<
1

s
. (3.5)

3.3.2 Unit-impulse function

Another singularity function, which is often used for circuit analysis, is the unit-
impulse function. As was stated earlier, the impulse function is defined as

d(t)=0 for t≠0 and P2
−

PP
2
d(t)dt=1.

Therefore, we have for any function f (t)d(t)= f (0)d(t) since d(t)=0 for t≠0.
Now, by definition of Laplace transform

L{d(t)}=P2
0
PP
−

e−std(t)dt=P 0+
0
PP
−

e0d(t)dt=P 0+
0
PP
−

d(t)dt=1.
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Thus,

d(t)< 1. (3.6)

3.3.3 Exponential function

The next function of great interest is the exponential function f (t)=eat with a
real, positive or negative, i.e.,

L{eatu(t)}=P2
0
PP
−

e−steatdt=P2
0
PP
−

e−(s−a)tdt=−
1

s−a
e−(s−a)K2

0
=
1

s−a
.

(3.7)

For both positive and negative a, the converge conditions are Re[s]>a, then
s−a>0, and e−(s−a)t�0 as t�2. Thus,

e±atu(t)<
1

s%a , (3.7a)

where a is always positive. Considering a imaginary quantity a=± jv yields

e±jvtu(t)<
1

s% jv (3.7b)

for Re[s]>0, since |e±jvt |=e0=1.

3.3.4 Ramp function

As an additional example, let us consider the ramp function tu(t):

L{tu(t)}=P2
0
PP
−

testdt.

By a straightforward integration by parts [u=t, v=−(1/s)e−st]:

L{tu(t)}=−t
1

s
e−stK2
0
− P2
0
PP −1s e−stdt=0− 1s2 e−stK2

0
=
1

s2
.

Therefore,

tu(t)<
1

s2
. (3.8)

3.4 BASIC THEOREMS OF THE LAPLACE TRANSFORM

For further evaluation of Laplace transform techniques, several basic theorems
will be introduced.
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3.4.1 Linearity theorem

This theorem is based on linearity properties of integrals: if f1ff (t) and f2ff (t) have
Laplace transforms F1 (s) and F2FF (s) respectively, then

L{ f1ff (t)+ f2ff (t)}=F1 (s)+F2FF (s), (3.9)

i.e., the Laplace transform of the sum of two (or more) time functions is equal
to the sum of the transforms of the individual time functions, and conversely

L−1{F1 (s)+F2FF (s)}=L−1{F1 (s)}+L−1{F2FF (s)}= f1ff (t)+ f2ff (t). (3.10)

It is also obvious that for any constant K

Kf (t)<KF(s). (3.11)

From this it follows that the Laplace transform of a constant (for example, of
a constant voltage/current source) for t≥0, is its value divided by s:

V0VV u(t)<
V0VV
s
. (3.12)

As an example of the use of the linearity theorem, we will show the easiest
way of obtaining the Laplace transform of the sinusoidal function sin vt. Since

sin vt=
1

2j
(ejvt−e−jvt),

in accordance with equation 3.7b, we have

L{sin vt}=
1

2j A 1s− jv− 1

s+ jvB= (s+ jv)− (s− jv)2j(s2+v2)
=

v

s2+v2
. (3.13)

As a second example, let us consider the exponential of the form (1−e−at)
which is often met in circuit analysis:

L{(1−e−at)u(t)}=
1

s
−
1

s+a
=

a

s(s+a)
. (3.14)

As an example of using the opposite relationship (equation 3.10), let us determine
the inverse Laplace transform of

F(s)=
1

(s+a)(s+b)
. (3.15)

Using the partial-fraction expansion (see further on), we can split equation 3.15
into two parts:

F(s)=
1

(b−a)(s+a)
−

1

(b−a)(s+b)
,

whose identity to equation 3.15 can be easily verified. In accordance with
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equation 3.10, we have

f (t)=
1

b−a
e−atu(t)−

1

b−a
e−btu(t)=

1

b−a
(e−at−e−bt)u(t).

Thus,

1

b−a
(e−at−e−bt)u(t)<

1

(s+a)(s+b)
. (3.16)

3.4.2 Time differentiation theoremffff

Time differentiation and integration (see further on) are the main theorems offfff
Laplace transform techniques, which allow us to transform the derivatives and
integrals appearing in the time-domain circuit equations.
Let F(s) be the known transform of a time function f (t), then

L GdfdtH=P2
0
PP
−

e−st
df

dt
dt,

and its integration by parts: u=e−st and dv= (df/dt)dt gives

L GdfdtH= f (t)e−stK2
0
−

− P2
0
PP
−

f (t)(−s)e−stdt

= lim
t�2
f (t)e−st− f (0

−
)+s P2

0
PP
−

f (t)e−stdt.

The first limit must approach zero (since F(s) exists) and the last integral is
F(s). Thus,

L GdfdtH=sF(s)− f (0−). (3.17)

When the initial value of a function is zero, we simply have

L GdfdtH=sF(s). (3.17a)

By taking the derivative of a derivative, it may be shown that the differentiationffff
properties for higher-order derivatives are

L Gd2f2dt H=s2F(s)−sf (0−)− f ∞(0−) (3.18a)

LGd3f3dt H=s3F(s)−s2f (02 −
)−sf ∞(0

−
)− f ◊(0

−
). (3.18b)

In conclusion, when all initial conditions are zero, differentiating once withffff
respect to t in the time domain corresponds to one multiplication by s in the
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frequency domain; differentiating twice in the time domain corresponds toffff
multiplication by s2 in the frequency domain and so on. Therefore, differentiationffff
in the time domain is equivalent to multiplication by operands, which, of course,
results in a substantial simplification. Note that when the initial conditions are
not zero, by applying the differentiation theorem their presence is taken intoffff
account.
To demonstrate the use of the differential properties of the Laplace transform,ffff

let us consider the following example.

Example 3.1

Using Laplace transform techniques, find the current i(t) in the series RL circuit
driven by a constant voltage source, Fig. 3.3(a). Assume L=5 H, R=4 V, v

s
(t)=

6u(t) V and the initial value of the current is 4 A.

Solution

In accordance with KVL the loop equation is

5
di

dt
+4i=6u(t). (3.19)

Assuming that the Laplace transform of the current is I(s) and using the Laplace
transform rules, with which we are already familiar, we transform the time
domain equation 3.19 into the frequency domain.

5[sI(s)−4]+4I(s)=
6

s
. (3.20)

Solving equation 3.20 for I(s) yields

I(s)=1.5
0.8

s(s+0.8)
+

4

s+0.8
, (3.20a)

and with equations 3.7 and 3.14 we obtain

i(t)=1.5(1−e−0.8t)u(t)+4e−0.8tu(t)= (1.5+2.5e−0.8t)u(t) A. (3.20b)

Figure 3.3 A circuit under study in Example 3.1 (a); circuit under study in Example 3.2 (b).
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Note that instead of solving a differential equation 3.19, we actually solved theffff
algebraic equation 3.20.
The time differentiation theorem also helps us to establish additional Laplaceffff
transform pairs. For example, consider L{cos vt u(t)}. Using equation 3.17a
yields

L{cos vt u(t)}=L G1v ddt (sin vt)u(t)H= 1v s v

s2+v2
=

s

s2+v2
,

i.e.,

cos vt u(t)<
s

s2+v2
. (3.21)

3.4.3 Time integration theorem

Let F(s) be the known transform of a time function f (t); then the Laplace
transform of an integral as the time function can be determined in accordance
with the definition (equation 3.2)

L GP t
0
PP
−

f (t)dtH=P2
0
PP e−st CP t

0
PP f (t)dtD dt.

Integrating by parts: u=∆t
0
−

f (t)dt and dv=e−st, yields

L GP t
0
PP
−

f (t)dtH=CP t
0
PP
−

f (t)dtD C− 1s e−stD K2
0
−

− P2
0
PP
−

−
1

s
estf (t)dtt

= P 0−
0
PP
−

f (t)dt A− 1s e0B+ P2
0
PP
−

f (t)dt−A− 1s e−2B
+
1

s P2
0
PP
−

e−stf (t)t dt.

Since the first two terms on the right have vanished (note again that Re(s) is
sufficiently large so f (t)e−st�0 as t�2) and the last integral is the Laplace
transform of f (t), we obtain

P t
0
PP
−

f (t)dt<
F(s)

s
(3.22)

which means that the integration in the time domain corresponds to the division
by s in the frequency domain. In some cases, when the integral in equation 3.21
is taken for the low limit not zero but any positive or negative quantity a (for
example when the capacitance in the electric circuit was precharged; thus the
voltage across the capacitance is

v
C
=
1

C P t
−

PP
2
i
C
dt,
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dividing the whole integral into two integrals, we obtain

L GP t
−

PP
2
f (t)dtH=L GP 0−

−

PP
2
f (t)dt+ P t

0
PP
−

f (t)dtH=L {F0FF }+LGP t
0
PP
−

f (t)dtH
=
F(s)

s
+
F0FF
s
, (3.23)

where F0FF is the value of the first integral (initial capacitance voltage) and F(s)
is the Laplace transform of the considered function f (t). To demonstrate how
the integration theorem helps us in circuit analysis, we shall consider the
following example.

Example 3.2

Using Laplace transform techniques, find the output voltage v
out
(t) in the series

RC circuit shown in Fig. 3.3(b). Assume R=5 V, C=0.5 F, with an initial
voltage v

C
=3 V and v

s
(t)=12u(t) V.

Solution

The voltage loop equation in the time domain is

12u(t)=2 P t
−

PP
2
i(t)dt+5i(t). (3.24)

Taking the Laplace transform of both sides of equation 3.24 and sinceTT v
C
(0
−
)=

3 V, we obtain

12

s
=
3

s
+
2

s
I(s)+5I(s). (3.25)

Solving equation 3.25 for I(s) yields

I(s)=
1.8

s+0.4
.

Since v
out
=5i(t) , its Laplace transform is

V
out
VV (s)=5

1.8

s+0.4
=

9

s+0.4
,

which immediately gives v
out
(t)u(t)=9e−0.4tV.

It should be emphasized that if the time functions are zero at t=0 (zero
initial conditions) the linearity, differentiation and integration rules for phasorffff
transform are identical to those for Laplace transform (only jv has to be
replaced by s). Consequently, the phasor impedance treatment of electric circuits
and the Laplace transform impedance (see further on) analysis are identical. (Of
course, we have to remember that these two techniques have different meanings:ffff
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the phasor analysis gives the sinusoidal steady-state response, while the Laplace
transform relates to zero-state response to any Laplace transformable function.)
In conclusion, consider the complex exponential function e(−s+jv)t and its
transform equivalent

e(−s+jv)tu(t)<
1

s+ (s+ jv)
. (3.26)

After separating real and imaginary parts of both sides of equation 3.26 and
using linearity properties, we obtain two additional transform pairs

e−stcos vt u(t)<
s+s

(s+s)2+v2
, (3.26a)

e−stsin vt u(t)<
v

(s+s)2+v2
. (3.26b)

Now let V and V
*
be a complex conjugate pair, then using linearity properties

again, we obtain

L−1 G V

s+ (s+ jv)
+

V
*

s+ (s− jv)H=Ve−(s+jv)t+V* e−(s−jv)t
=2 |V |e−st cos (vt+y)u(t), (3.27)

where y=%V.
Table 3.1 summarizes some of the more useful transform pairs (some of them
were obtained above).

3.4.4 Time-shift theorem

Consider the transform of a time function shifted t seconds in time as shown
in Fig. 3.4. Using the definition of the Laplace transform, we obtain

L{ f (t−t)u(t−t)}=P2
0
PP
−

f (t−t)u(t−t)e−stdt=P2
t
PP f (t−t)e−stdt.

Let t−t=h, then

P2
t
PP f (t−t)e−stdt=P2

0
PP
−

f (h)e−s(t+h)dh=e−st P2
0
PP
−

f (h)e−shdh=e−stF(s).

Thus,

f (t−t)u(t−t)<e−stF(s), (3.28)

i.e., shifting by t seconds in the time domain results in multiplication by e−st
in the frequency domain.
As an example of the application of this theorem, consider half a period of a
sinusoidal function, as shown in Fig. 3.5(a). It can be represented as the sum of
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Table 3.1TT Laplace transform pairs

F(s)=L{ f (t)} f (t)=L−1{F(s)}

1 1 d(t)

u(t)
2

1

s

tu(t)
3

1

s2

tn−1

(n−1)!
u(t) n=1, 2, . . .4

1

sn

e−atu(t)
5

1

s+a

1

a
(1−e−at)u(t)6

1

s(s+a)

1

a2
[at−(1−eat)]u(t)7

1

s2 (s+a)

te−atu(t)
8

1

(s+a)2

(1−at)e−atu(t)
9

s

(s+a)2

tn−1

(n−1)!
e−atu(t) n=1, 2, . . .10

1

(s+a)n

1

b−a
(e−at−e−bt)u(t)11

1

(s+a)(s+b)

1

ab C1+ 1

a−b
(be−at−ae−bt)D u(t)12

1

s(s+a)(s+b)

1

a−b
(ae−at−bebt)u(t)13

s

(s+a)(s+b)

1

v
sin vt u(t)14

s

s2+v2

cos vt u(t)
15

s

s2+v2

1

a2
(1−cos vt)u(t)16

1

s(s2+v2)

sin(vt+y)u(t)
17

s sin y+v cos y
s2+v2

cos (vt+y)u(t)s cos y−v sin y
s2+v218

1

v
e−at sin vt u(t)19

1

(s+a)2+v2

e−at cos vt u(t)
20

s+a
(s+a)2+v2
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Table 3.1TT (Continued)

1

a2+v2 C1−e−at Acos vt+ av sin vtBD u(t)21
1

s[(s+a)2+v2]

e−at sin (vt+y)u(t)
22

(s+a) sin y+v cos y
(s+a)2+v2

e−at cos (vt+y)u(t)
23

(s+a) cos y−v sin y
(s+a)2+v2

1

2v
t sin vt u(t)24

s

(s2+v2)2

t cos vt u(t)
25

s2−v2
(s2−v2)2

C 1sv3 sin vt− 1

2v2
t cos vtD u(t)26

1

(s2+v2 )2

1

a
sinh (at)u(t)27

1

s2−a2

cos (at)u(t)
28

s

s2−a2

1

2a
t sinh(at)u(t)29

s

(s2−a2)2

1

b
e−at sinh(bt)u(t)30

1

(s+a)2−b2

e−at cosh(bt)u(t)
31

s+a
(s+a)2−b2

1

a2−b2 C1−e−atAcosh bt+ ab sinh btBD u(t)32
1

s[(s+a)2−b2]

e−atAcosh bt− ab sinh btBu(t)33
s

(s+a)2−b2
1

�s

1

�pt34

2S tp35
1

s�s

Figure 3.4 A function of time, f (t), (a) and the same function delayed by t (b).
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Figure 3.5 The positive half period of the sinusoidal function (a); shifted sinusoidal function (b).

two sinusoidal functions while the second one is delayed by half a period T /2,
as shown in Fig. 3.5(b). Thus, f1ff (t) can be written as

f1f (t)=sin vt+sin v At−T2B u At−T2B ,
then in accordance with equations 3.13 and 3.28

L{ f1ff (t)}=
v(1+e−sT/2 )
s2+v2

. (3.29)

The time-shift theorem is also useful in evaluating the Laplace transform of
periodic time functions. Suppose that f (t) is a periodic function (for t≥0) with
period T,TT and F1 (s) is the known transform of only the first period f1ff (t). Then
the original f (t) can be represented as the infinite sum of f1ff (t), delayed by an
integer multiplied by T:TT

f (t)= ∑
2

n=0
f1ff (t−nT ).

With the linearity and time-shift properties, the transform of f (t) will be

F(s)= ∑
2

n=0
e−nTsF1 (s)=F1 (s) ∑

2

n=0
e−nTs. (3.30)

The last sum in equation 3.30 is an infinitely decreasing geometric progression
of the ratio e−Ts, hence its sum is given by the formula 1/(1−e−Ts ). Therefore,

F(s)=
F1 (s)
1−e−Ts

, (3.31)

where

F1 (s)=L{ f1ff (t)]=P T
0
PP
−

e−stf (t)t dt.

To illustrate the use of this transform theorem, let us apply it to the rectified
sinus shown in Fig. 3.6. In accordance with equation 3.29 and using equation
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Figure 3.6 The sinusoidal shape function in full-wave rectification.

3.31, we obtain the transform of a periodic sinusoidal in full-wave rectification:

F(s)=
v(1+e−sT/2)

(s2+v2)(1−e−Ts)
. (3.32)

In another example of applying the time-shift theorem, let us find the Laplace
transform of a triangular pulse train, Fig. 3.7(a). We first obtain the Laplace
transform of the triangular pulse as the sum of ramp ‘‘1’’, shifted ramp ‘‘2’’ and
shifted step functions ‘‘3’’ as shown in Fig. 3.7(b). Therefore,

F1 (s)=
1

T s2
−
1

T s2
e−sT−

1

s
e−sT=

1

T s2
(1−e−sT )−

1

s
e−sT . (3.33)

Now, to obtain the transform of a periodic pulse train, we divide equation 3.33
by (1−e−sT ):

F(s)=
1

T s2
−

e−sT

s(1−e−sT )
. (3.34)

3.4.5 Complex frequency-shift property

Shifting the origin of the transform in the frequency domain by s0 has the same
effect as multiplying the functionffff f (t) by e−s

0
t in the time domain. Indeed,

L{ f (t)e−s
0
t}=P2

0
PP
−

f (t)e−s
0
te−stdt= P2

0
PP
−

f (t)e−(s+ s
0
)t=F(s+s0 ). (3.35)

This property of Laplace transform is especially useful in generating additional
transforms.

Figure 3.7 Triangular pulse train (a) and pulse representation (b).
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For example, we can use the frequency-shift property to find the Laplace
transform of f (t)=e−at cos v0t u(t).Using the Laplace transform of cos v0t u(t)
(equation 3.21), we have

e−at cos v0t u(t)<
s+a

(s+a)2+v2
0
, (3.36)

which is the same as equation 3.26a.
As a second example, let us find the Laplace transform of f (t)=te−s

0
tu(t).

With the help of (3.8), we have

te−s
0
tu(t)<

1

(s+s0 )2
. (3.37)

3.4.6 Scaling in the frequency domain

Scaling in the frequency domain, i.e. replacing s by s/a and dividing the transform
by a, has the same effect as multiplyingffff t by a in time domain. If

L{ f (at)}= P2
0
PP
−

f (at)e−stdt,

then changing the variable l=at, yields

P2
0
PP
−

f (l)e−(s/a)l A1aB dl= 1a F AsaB .
Therefore,

f (at)<
1

a
F AsaB , (3.38a)

which is the same as

F(as)<
1

a
f AtaB . (3.38b)

This property also can be useful in obtaining additional transforms.

Example 3.3

Find the Laplace transform of the function f1ff (5t), if the Laplace transform of
f (t) is F(s)=1/(s3+4).
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Solution

In accordance with equation 3.38a

F1 (s)=
1

5
F As5B= 15 1

(s/5)3+4
=

25

s3+500
.

3.4.7 Differentiation and integration in the frequency domainffff

Another property of interest will be obtained after examining the derivative of
F(s) with respect to s:

d

ds
F(s)=

d

ds P2
0
PP
−

e−stf (t)t dt.

Providing the differentiation of the integrand with respect toffff s gives the results:

P2
0
PP
−

−te−st f (t)dtt = P2
0
PP
−

[−tf (t)]e−stdt,

which is simply the Laplace transform of [−tf (t)]. This means that diVi erentia-VV

tion in the frequency domain results in multiplication by−t in the time domain:

−tf (t)<
d

ds
F(s). (3.39)

To illustrate the use of this rule, let us find the Laplace transform of higher
powers of t. Noting that tu(t)<1/s2, we apply the frequency domain differentia-ffff
tion theorem as follows:

L{−t2u(t)}=
d

ds

1

s2
=−2

1

s3
,

or

t2u(t)
2
<
1

s3
. (3.40)

Continuing with the same procedure, we find

t3
3!
u(t)<

1

s4
, (3.41)

and in general

t(n−1)

(n−1)!
u(t)<

1

sn
. (3.42)

Next, let us examine the integration of F(s) with respect to s and with the
lower limit s=2:

P s
2
PP F(s)ds= P s

2
PP CP2

0
PP
−

f (t)e−stdtD ds.
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Interchanging the order of integration yields

P s
2
PP F(s)ds= P2

0
PP
−

CP s
2
PP e−stdsD f (t)dt= P2

0
PP
−

C− 1t e−stD f (t)dt
= P2
0
PP
−

−
f (t)

t
e−stdt,

which is the Laplace transform of f (t)/(−t). Thus, the integration in the frequency
domain results in division by −t in the time domain

f (t)

−t
< P s
2
PP F(s)ds, (3.43)

or by changing the limits in the integral

f (t)

t
< P2
s
PP F(s)ds. (3.43a)

For example, we have already obtained the pair (equation 3.14):

(1−e−at)<
a

s(s+a)
, for t≥0.

With the frequency integration theorem

L G1−e−att H= P2
s
PP a

s(s+a)
ds.

.
In accordance with the integral tables, the last integral is

P2
s
PP a

s(s+a)
ds=−ln

s+a
s K2
s
= ln

s+a
s
.

Therefore

1−e−at
t

< ln
s+a
s
, for t≥0. (3.44)

The Laplace transform theorems and some properties which have been dis-
cussed here are summarized in Table 3.2.

3.5 THE INITIAL-VALUE AND FINAL-VALUE THEOREMS

These two fundamental theorems enable us to evaluate f (0
+
) and f (2) by

examining the limiting values of the transform F(s).
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Table 3.2TT Laplace transform operations

Operation f (t), t≥0 F(s)

∑
n

i=1
F
i
FF (t)Addition ∑

n

i=1
f
i
ff (t)

aF(s)
Scalar multiplication af (t)

df

dt
sF(s)−f (0

−
)Time differentiation,ffff

where f (0
−
), f ∞(0

−
) are

s2F(s)−sf (0
−
)−f ∞(0

−
)the initial conditions d2f2

dt2

P t
0
PP
−

f (t)dt
Time integration,

1

s
F(s)

where ∆0
−
−2
f (t)dt is the

initial condition 1

s
F(s)+

1

s P 0−
−

PP
2
f (t)dtP t

−

PP
2
f (t)dt

Time shift f (t−a), a≥0 e−adF(s)

Frequency shift f (t)eAat F(s±a)

Frequency dF(s)

ds
−tf (t)

differentiationffff

P2
s
PP F(s)dsFrequency integration

f (t)

t

f (at), a≥0 1

a
F AsaBScaling

lim
s�2
sF(s)Initial value f (0

+
)

Final value, where all
lim
s�0
sF(s)poles of sF(s) lie in f (2)

LHP

1

2j
[F(s−jv)−F(s+jv)]f (t) sin (vt)sin or cos

multiplication in the
time domain f (t) cos (vt) 1

2
[F(s−jv)+F(s+jv)]

Convolution f1ff (t) 1 f2ff (t) F1 (s)F2FF (s)

d

dt
[ f1ff (t) 1 f2ff (t)]

=f1ff (0) f2ff (t)

+ P t
0
PP
−

f ∞
1
(t) f2ff (t−t)dtDu Hamel integral sF1(s)F2FF (s)

=f1ff (t) f2ff (0)

+ P t
0
PP
−

f1ff (t) f ∞2(t−t)dt

Time periodicity:

(1) the transform of P T
0
PP
−

f (t)e−stdt F1 (s)the first period

(2) the transform of
f (t)=f (t+nT )

F1 (s)
1−e−Tsperiodical function
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T he initial-value theorem: Consider the Laplace transform of the derivative
(equation 3.17)

L GdfdtH=sF(s)− f (0−)= P2
0
PP
−

df

dt
e−stdt. (3.45)

By breaking the integral into two parts and approaching s infinity, we obtain

lim
s�2 AP 0+0PP

−

e0
df

dt
dt+ P2

0
PP
+

e−st
df

dt
dtB= lims�2 P 0+0PP

−

df= f (0
+
)− f (0

−
),

(3.46)

since the second integral approaches zero with s�2.
Now taking the limit of both sides of equation 3.45 and applying the results
of equation 3.46 yields

lim
s�2
[sF(s)− f (0

−
)]= f (0

+
)− f (0

−
),

or, after removing f (0
−
) from the limit, we obtain

lim
s�2
[sF(s)]= f (0

+
).

Therefore, in general

lim
t�0
+

f (t)= lim
s�2
[sF(s)], (3.47)

i.e., the initial value of the time function f (t) can be obtained from its Laplace
transform by multiplying the transform by s and evaluating the limit of sF(s)
by letting s approach infinity. It should be noted that if f (t) is discontinuous at
t=0, then the initial value is the limit as t�0

+
, i.e., the limit from the right.

The initial value theorem is useful in checking the results of a transformation
or an inverse transformation. Thus in Example 3.1 we obtained the transform
of the current (equation 3.20a)

I(s)=
1.2

s(s+0.8)
+

4

s+0.8
. (3.48)

Applying the initial-value theorem yields

i(0)= lim
s�2
[sI(s)]= lim

s�2 A 1.2s+0.8+ s4

s+0.8B=4 A,
which is in agreement with the initial condition given.

T he final-value theorem: To prove the final value theorem, let us again consider
the Laplace transform of the derivative df/dt

P2
0
PP
−

df

dt
e−stdt=sF(s)− f (0

−
), (3.49)
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and take the limit as s�0 for both sides of equation 3.49. Taking the limit for
the left side of equation 3.49 yields

lim
s�2 P20PP

−

df

dt
e−stdt= P2

0
PP
−

df

dt
dt= f (2)− f (0

−
),

and for the right side

lim
s�2
[sF(s)− f (0

−
)]= lim
s�2
[sF(s)]− f (0

−
).

Equating these two results, we have

f (2)= lim
s�2
[sF(s)],

or in general

lim
s�2

f (t)= lim
s�2
[sF(s)] (3.50)

which is known as the final value theorem.
Of course, we can apply this theorem only if the limit of f (t), as t becomes
infinite, exists. In other words, this requires that all the poles of F(s)(*), except
one simple pole at the origin (which gives the constant value of f (t)), lie within
the left half of the s plane.
Considering again, for example, the transform for current (equation 3.48)
from Example 3.1 and applying the final-value theorem yields

i(2)= lim
s�0
[sI(s)]= lim

s�0 A 1.2s+0.8+ s4

s+0.8B=1.5 A,
which is evident by inspection of the circuit in Fig. 3.3(a) in its steady-state
behavior, i.e. at t�2.
It is interesting to check the final value of the sinusoidal function. In accor-
dance with (3.50), we obtain

lim
s�0
[sF(s)]= lim

s�0

sv

s2+v2
=0.

However, it is evident that the sinusoidal function: f (t)=sin vt does not have
a final value. Looking again at

F(s)=
v

s2+v2
=

v

(s+ jv)(s− jv)

we can conclude that this transform fails the requirement that all the poles
(except one) lie within the left half of the s plane, i.e. that Re[s

k
]<0 (here

Re[s
1,2
=0]).

(*)The roots of the denominator of F(s) are considered as the poles of F(s).
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3.6 THE CONVOLUTION THEOREM

The convolution of two functions is defined as(*)

f1ff (t) 1 f2ff (t)= P t
0
PP
−

f (t) f (t−t)dt, (3.51)

and its Laplace transform is given by

L { f1ff (t) 1 f2ff (t)}=F1 (s)F2FF (s). (3.52)

Thus, the operation of convolution in the time domain is equivalent to multi-
plication in the frequency domain. Or, the inverse transform of the product of
the transforms is the convolution of the individual inverse transforms. It is this
property, among others, which makes the Laplace transform so useful in circuit
analysis, especially since digital computers can be used for evaluating the convo-
lution integral.
To prove the convolution theorem, let us calculate

J=D L{f1 (t) 1 f2 (t)}= P2
0
PP
−

CP t
0
PP
−

f1 (t)f2 (t−t)dtD e−stdt,
and since f (t−t)=0 for all t>t, we may replace the upper limit ‘‘t’’ in the
internal integral by ‘‘2’’ and then interchange the order of integration:

J= P2
0
PP
−

f1ff (t) CP2
0
PP
−

f2ff (t−t)e−stdtD dt.
Now in the inside integral we make the substitution t∞=t−t and dt=dt∞ (note
that the lower limit remained 0

−
, since only for t≥0

−
does the function

f2ff (t∞)≠0). Thus,

J= P2
0
PP
−

f1ff (t) CP2
0
PP
−

f2ff (t∞)e−st∞dt∞D e−stdt.
The bracketed term is F2FF (s), which is not a function of t and can be pulled out
of the integral, so we have

J=F1 (s)F2FF (s).

Thus

f1ff (t) 1 f2ff (t)<F1 (s)F2FF (s). (3.52a)

Since the right-hand side of equation 3.52a does not depend on the order of
multiplication F1 and F2FF , consequently we can again conclude that the convolu-
tion is commutative.
As a simple example of the use of the convolution theorem, let us find the

(*)The lower limit in the convolution integral is taken here as t=0
−
, like in a one-sided Laplace

transform, in order to include the effect of any discontinuity atffff t=0.
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convolution of f1ff (t)=t and f2ff (t)=e−at for t>0:

f1ff (t) 1 f2ff (t)=L−1{F1 (s)F2FF (s)}=L−1G1s2 1s+aH . (3.53)

The inverse transform of equation 3.53 can be obtained by the partial fraction
expansion (see further on), so

L−1 G1s2 1s+aH=L−1 G 1as2− 1

a2s
+

1

a2(s+a)H= 1a t− 1a2 (1−e−at), t≥0.
Therefore,

t 1 e−at=C1a t− 1a2 (1−e−at)D u(t). (3.54)

The convolution theorem can be used for finding the Laplace transform of the
functions which include square roots: �t. Indeed, if F1 (s)< f1f (t) then

F2
1
(s)< f (t)= P t

0
PP f1ff (t) f1f (t−t)dt.

Changing the variable s=t−t/2 and the integral limits respectively yields

f (t)= P t/2
−

PP
t/2
f1f At2+sB f1f At2−sB ds.

Now for f1ff (t)=1/
�t we obtain

f (t)= P t/2
−

PP
t/2

ds

√t/2+s√t/2−s
= P t/2
−

PP
t/2

ds

√(t/2)2−s2
=sin−1

s

t/2Ks=t/2
s=−t/2

=p.

By taking the Laplace transform of both sides of f (t)=p we have

F2
1
(s)=

p

s
or F1=Sps .

Therefore,

1

√t
<Sps .

Taking the integral of f1f (t)

P t
0
PP 1√t dt=2√t,

and using the integration theorem, we finally have

√t<
√p

2s√s
.
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It is known, from basic circuit analysis, that the output voltage v
out
(t) at some

point in a linear circuit driven by the input v
in
(t) can be obtained by convolving

v
in
(t) with the impulse response h(t) (response on a unit impulse at t=0 with

initial conditions zero)

v
out
(t)=v

in
(t) 1 h(t). (3.55)

Taking the Laplace transform of both sides of equation 3.55 yields

V
out
VV (s)=V

in
VV (s)H(s),

where H(s) is the transform of the impulse response, so

L{h(t)}=H(s)=
V
out
VV (s)

V
in
VV (s)

. (3.56)

The ratio (equation 3.56) was termed as the transfer function. Since the same
rules are used by Laplace transform derivative and integral representations
(with zero initial conditions) and by complex frequency analysis (see Table 3.3),
there is considerable similarity between the transfer function and the Laplace
transform of impulse response (equation 3.56). This is an important fact that
will be used in Laplace transform techniques to analyze the transient behavior
of some circuits.

Example 3.4

Find the transfer function H(s)=V
out
VV (s)/V

n
VV (s) of the circuit shown in Fig. 3.8(a).

Solution

First we represent the circuit elements in the frequency domain as shown in
Fig. 3.8(b). Then we find Z

eq
of the parallel connection C and (L+R2 ):

Z
eq
(s)=

(2s+6)
1

s

2s+6+
1

s

=
s+3

s2+3s+0.5
,

Table 3.3TT Laplace transform impedances of R, L , C elements

Time-domain s-domain Laplace transform Impedance
Element relationship relationship with i

L
(0
−
)=0,

Z(s)=
V (s)

I(s)
i(t) I(s)=Iest v

C
(0
−
)=0

V (s)=RIest R
R v=Ri V (s)

V (s) RIe
=RI(s)

L V (s)=sL Iest V (s)=sL I(s) sLv L
di

dt

v=
1

C P idtC V (s)=
1

sC
I st V (s)=

1

sC
I(s)

1

sC
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Figure 3.8 A circuit (a) and its Laplace transform model (b).

and the voltage

V
out
VV (s)=V

in
VV (s)

Z
eq

R1+Zeq
=
0.5s+1.5
s2+3.5s+2

.

Therefore, the transfer function is

H(s)=
V
out
VV

V
in
VV
=
0.5s+1.5
s2+3.5s+2

. (3.57)

3.6.1 Duhamel’s integral

Suppose that the circuit response to a voltage unit-step function, u(t)< (1/s), is
known and assigned as g(t). Then, the Laplace transform of the input current
might be found as

I
in
(s)=

V
in
VV (s)

Z
in
(s)
=sV

in
VV (s)

1

sZ
in
(s)
,

where

1

sZ
in
(s)
=G(s)<g(t),

and

V
in
VV (s)<v

in
(t).

Therefore, the Laplace transform of the current can be written as

sV (s)G(S).

Applying now the convolution theorem (equation 3.52a) and the differentiationffff
properties (for the case when the initial values are zero) (equation 3.17a) we can
obtain

[sV
in
VV (s)][G(s)]<v∞

in
(t) 1 g(t)
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or

i
in
(t)= P t

0
PP
−

v∞
in
(t)g(t−t)dt.

This integral is known as Duhamel’s integral (one of its forms) or superposition
integral, since the total response is obtained as superimposed responses to
varying voltages delayed by Dt (note that integration actually means
summation).
When the initial values are none zero, we should subtract the initial voltage
v
in
(0
−
), in accordance with equation 3.17, from the first factor: [sV

in
VV (s)] , which

results in

I
in
(s)=[sV

in
VV (s)−v

in
(0
−
)][G(s)]+v

in
(0
−
)G(s).

This means that in the time domain the current is

i
in
(t)=v

in
(0
−
)g(t)+ P t

0
PP
−

v∞
in
(t)g(t−t)dt.

The other forms of Duhamel’s integral in general notation are given in Table 3.2.
As a simple example of using Duhamel’s integral, let us find the current for
t>T in the series RC circuit if the voltage forcing function is a triangular pulse,
as shown in Fig. 3.7(b). The Laplace transform of the reaction to a unit-step
function is

G(s)=
1

s AR+ 1sCB =
1

R As+ 1

RCB ,
which in time domain gives

g(t)=
1

R
e
−
t

RC .

Using the first form of Duhamel’s integral yields:

i(t)= P t
0
PP
−

v∞
in
(t)g(t−t)dt

= P T
0
PP 1

TR
e
−
t−t
RC dt=

C

T Ae TRC−1B e− t

RC .

(The reader may be convinced that the method using Duhamel’s integral is
much simpler than the straightforward solution.)

3.7 INVERSE TRANSFORM AND PARTIAL FRACTION EXPANSIONS

The analysis of a circuit by Laplace transforms yields the transform expression
( like equation 3.57, for example) of the desired variable. The next step, therefore,
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is to go from the Laplace transform back to the time function, i.e. from the
frequency domain to the time domain.
This section will represent methods more useful in engineering for finding
f (t) when F(s) is known, avoiding the complex integration of equation 3.4.
These methods convert F(s) into a sum of terms, each of which can be found
in Table 3.1 (or in more complete tables of Laplace transforms, in suitable
handbooks). It is typically the case that F(s) is the ratio of polynomials:

F(s)=
N(s)

D(s)
=
a
n
sn+a

n−1
sn−1+ · · ·+a1s+a0

b
m
sm+b

m−1
sm−1+ · · ·+b1s+b0

. (3.58)

If the degree of N(s) is larger or equal to the degree of D(s), the numerator can
be divided by the denominator to obtain the quotient Q(s) and the remainder
R(s). Hence

F(s)=Q(s)+
R(s)

D(s)
=Q(s)+P(s), (3.59)

where R(s)/D(s) is a proper fraction. Let us consider the following example.

Example 3.5

Find the quotient and the remainder of the given F(s)

F(s)=
s3+5s2+8s+7
s2+4s+3

.

Solution

Dividing the numerator by the denominator

s3+5s2+8s+7 K s2+4s+3s+1

s3+4s2+3s

s2+5s+7

s2+4s+3

s+4

yields

F(s)=s+1+
s+4

s2+4s+3
. (3.60)

Note that the time function, whose Laplace transform is the quotient polyno-
mial, is obtained directly from
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L−1{q
n−m
sn−m+q

n−m−1
sn−m−1+ · · ·+q1s+q0}

=q
n−m
d(n−m)(t)+ · · ·+q1d∞(t)+q0d, (3.61)

where d(n−m), d(n−m−1), . . . d∞(t) are derivatives of the unit impulse function.
For further treatment the proper fraction polynomials R(s) and D(s) have to

be coprime, that is, any non-trivial common factor has to be cancelled out.
There are a few methods for expanding a proper fraction into partial fractions.
We will discuss two of them: 1) equating coefficients and 2) Heaviside’s expan-
sion theorem. Each of them may be the best to use, depending on the situation.

3.7.1 Method of equating coefficients

(a) Simple poles

We first assume that the rational function F(s) has simple poles, i.e. that the
denominator of (3.58) has simple zeros. Then the proper fraction of equation
3.59 may be written as

P(s)=
R(s)

D(s)
=

R(s)

(s−p1 )(s−p2 ) . . . (s−pm )
=
A1
s−p1

+
A2
s−p2

+ · · ·+
A
m

s−p
m
.

(3.62)

The constants A
i
are known in mathematics as residues of the appropriate pole

p
i
. The equating coefficients method for determining A

i
is illustrated in

Example 3.6.

Example 3.6

Find the time function f (t) if its Laplace transform is given by equation 3.60
(see Example 3.5).

Solution

First, we have to find the zeros of the equation s2+4s+3=0, which will be
the poles

p
1,2
=−2±√4−3=−1,−3.

Therefore, in accordance with equation 3.62, the partial fraction expansion of
the proper fraction (equation 3.60) is

s+4
(s+1)(s+3)

=
A1
s+1

+
A2
s+3

. (3.63)

Now combining two terms on the right side of this equation (by finding a
common denominator) yields

s+4
(s+1)(s+3)

=
(A1+A2 )s+ (3A1+A2 )

(s+1)(s+3)
.
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The constants A1 and A2 are found by equating like coefficients in the numera-
tors. Thus,

A1+A2=1, 3A1+A2=4,

or

A1=
3

2
, A2=−

1

2
.

Therefore F(s) is given by

F(s)=s+1+
3/2

s+1
−
1/2

s+3
.

Using the table of Laplace transform we obtain

f (t)=d∞(t)+d(t)+A32 e−t− 12 e−3tB u(t).
(b) Multiple poles

The following example illustrates the case when the denominator has repeated
roots.

Example 3.7

Find the time domain function of the Laplace transform, which is given by

F(s)=
s+2
(s+3)2

.

In this case, the expansion is given in the form

s+2
(s+3)2

=
A1
s+3

+
A2
(s+3)2

.

Combining terms on the right gives

s+2
(s+3)2

=
A1 (s+3)+A2
(s+3)2

.

Equating like coefficients in the numerators yields

A1=1, 3A1+A2=2 and A2=−1.

Therefore,

F(s)=
1

s+3
−

1

(s+3)2
,

and

f (t)= (e−3t−te−3t)u(t).
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In general, the method of equating the coefficients produces m simultaneous
equations for determination A

i
( i=1, 2 . . . m) constants. When m is large (usually

more than three) and when the poles are complex, Heaviside’s method is more
appropriate.

3.7.2 Heaviside’s expansion theorem

This method allows determining the unknown residue A
i
by using one equation,

which contains only one residue. To develop it we should again distinguish
between different kinds of poles.ffff

(a) Simple poles

Consider equation 3.62 and multiply both sides by (s−p1 ):

(s−p1 )R(s)
(s−p1 )(s−p2 ) . . . (s−pm )

=A1+
(s−p1 )A2
(s−p2 )

+ · · ·+
(s−p1 )Am
(s−p

m
)
.

Now we note that if s=p1 then every term on the right side is zero, except A1 ,
while on the left side the (s−p1 ) terms in the numerator and denominator are
cancelled. Therefore, A1 can be evaluated as follows

A1= (s−p1 )
R(s)

D(s) K
s=p
1

(3.64)

or, in general,

A
k
= (s−p

k
)F(s)K

s=p
k

=
N(p
k
)

am

i=1
i≠k

( p
k
−p
i
)

, (3.64a)

where F(s) is the Laplace transform function in proper fraction form and N(s)
is its numerator. Note that the substitution of the poles p

k
for s in equation

3.64 and equation 3.64a has to be performed after canceling the term (s−p
k
)

in the nominator and denominator.
Let us, for example, evaluate the residues of equation 3.63 from Example 3.6

F(s)=
s+4

(s+1)(s+3)
,

using the general formula of equation 3.64. We have, since p1=−1 and
p2=−3,
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A1= (s+1)F(s)=
s+4
s+3K

s=−1
=
3

2

A2= (s+3)F(s)=
s+4
s+1K

s=−3
=−

1

2
,

which is, of course, identical to the results of Example 3.6.
Once the residues have been found, the Laplace transform, in accordance
with partial fraction expansion, may be written as

F(s)=
N(s)

D(s)
= ∑
m

k=1

A
k

s−p
k
, (3.65)

and the time domain function is

f (t)=L−1{F(s)}=A ∑m
k=1
A
k
ep
k
tB u(t). (3.66)

(b) Multiple poles

Suppose that the function F(s) has a double pole at p1 and the remaining poles
are simple, which means that the denominator has a double zero at p1 and
hence

D(s)= (s−p1 )2 (s−p2 ) · · · (s−pm ).

Then the partial fraction expansion may be written as

F(s)=
N(s)

D(s)
=
A
11

s−p1
+

A
12

(s−p1 )2
+ ∑
m

k=2

A
k

s−p
k
. (3.67)

Multiplying both sides of equation 3.67 by (s−p1 )2 and letting s=p1 , yields as
before

A
12
= (s−p1 )2F(s)K

s=p
1

=
N(p1 )

( p1−p2 )( p1−p3 ) . . . ( p1−pm )
. (3.68)

To find A
11
we again multiply both sides of equation 3.67 by (s−p1 )2

(s−p1 )2F(s)K
s=p
1

=A
11
(s−p1 )+A12+ (s−p1 )2 ∑

m

k=2

A
k

s−p
k
.

After differentiating the last expression with respect toffff s and letting s=p1 , we
obtain

A
11
=A dds [(s−p1 )2F(s)]B K

s=p
1

. (3.69)

Note that the differentiation is performed after canceling the termffff (s−p1 )2 in
the bracketed expression, and substituting p1 for s has to be done after
differentiation.ffff
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In general, when F(s) has a multiple pole p
q
, which is repeated r times, i.e.

the denominator of F(s) contains a factor of (s−p
q
)r, the residues at the multiple

pole are evaluated as

A
q,i
=

1

(r− i ) ! C d(r−i)ds(r−i)
(s−p

q
)rF(s)D

s=p
q

. (3.70)

The time domain expression corresponding to these terms can be obtained as

f (t)=CAq1+Aq2t+Aq3 t22!+ · · ·+Aqr t(t−r)(r−1)!D epqt . (3.71)

Example 3.8

Let F(s)=
s+2
s3(s+1)2

; find the time domain function.

Solution

The given Laplace transform has the poles p1=0 repeated three times and p2=
−1 repeated twice. Thus,

A
11
=C 12! d2ds2 s+2(s+1)2D

s=0
=4, A

12
=C 11! dds s+2(s+1)2D

s=0
=−3,

A
13
=C s+2(s+1)2D

s=0
=2

and

A
21
=C 11! dds s+2s3 D

s=−1
=−4, A

22
=Cs+2s3 D

s=−1
=−1.

Hence, in accordance with equation 3.71, the time domain function is

f (t)=[4−3t+t2− (4+t)e−t]u(t).

(c) Complex poles

As we know from mathematics, polynomials with real coefficients may only
have a pair of complex-conjugate poles, i.e. any complex pole in the denominator
of F(s) will be accompanied by its complex-conjugate pole. Then the correspond-
ing residues are also a complex-conjugate pair, so only one of them must be
found. Combining these two terms, yields to the appropriate time-domain
fraction of the whole response.
Let the complex-conjugate pair be p1=−a± jb and the corresponding resi-
dues be A1 and A

*
AA1 , which are a complex-conjugate pair. Hence, using the

exponential form

A1=|A1 |ejy1 and A
*
AA1=|A1 |e−jy1
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we can write the expansion of F(s), which is appropriate to complex poles, as

F
c1
FF =

|A1 |ejy1
s+a1− jb1

+
|A1 |e−jy1
s+a1+ jb1

, (3.72)

and its time-domain inverse is

L−1{F
c1
FF (s)}=|A1 |ejy1e−(a1−jb1)t+|A1 |e−jy1e−(a1+jb1)t

=|A1 |e−a1t[ej(b1t+y1)+e−j(b1t+y1)]

=2 |A1 |e−a1t cos (b1t+y1 )u(t). (3.73)

This expression shows that the complex poles are associated with the time-
domain response which is similar to the natural response of an underdamped
second-order circuit.
Note that equation 3.73 can be simply obtained as a double real part of an
inverse transform of only one of the fractions in equation 3.72. Indeed,

2 Re CL−1 G |A1 |ejy1s+a1− jb1HD=2 Re[ |A1 |ejy1e−(a1−jb1)t]
=2 |A1 |e−at cos (b1t+y1 )u(t). (3.74)

Example 3.9

Find f (t) if F(s) is given by

F(s)=
s+4

s2+2s+5
.

Solutions

First, we find the roots of the denominator, which are the poles of F(s): p
1,2
=

−1± j2. Hence,

F(s)=
s+4

(s+1− j2)(s+1+ j2)
.

Now, in accordance with Heaviside’s Expansion formula (equation 3.64), we
have

A1=
s+4

s+1+ j2K
s=−1+j2

=
3+ j2
j4
=
1

2
− j
3

4
=0.9e−j32° .

Therefore,

f (t)=2 Re[0.9e−j32°e−(1−j2)t]=1.8e−t cos (2t−32°)u(t).

The time-domain function of a complex-conjugate pair fraction can be obtained,
using the complex residues in rectangular form A1=a1r+ja1i . Then the partial
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fraction, which is appropriate to the complex poles, will be

F
c1
FF (s)=

a
1r
+ja
1i

s+a1− jb1
+
a
1r
−ja
1i

s+a1+ jb1
, (3.75)

and its inverse transform is

f
c1
ff (t)= (a

1r
+ja
1i
)e−(a

1
−jb
1
)t+ (a

1r
−ja
1i
)e−(a

1
+jb
1
)t ,

or, using Euler’s formula,

f
c1
ff (t)=e−a

1
t2(a
1r
cos b1t−a1i sin b1t)u(t). (3.76)

In conclusion, it is worthwhile giving one other notation of a residue evalua-
tion formula (see equations 3.64 and 3.64a).
If the pole factor (s−p1 ) cannot be easily canceled (for example when the
denominator D(s) is not given in factored form), then the residue A1 must be
treated as limit:

A1= lim
s�p
1

R(s)
(s−p1 )
D(s)

,

which in accordance with l’Hopital’s Rule gives

A1=R(s) lim
s�p
1

d

ds
(s−p1 )

d

ds
(D(s))

=R(s)
1

D∞(s)K
s=p
1

. (3.77)

3.8 CIRCUIT ANALYSIS WITH THE LAPLACE TRANSFORM

There are two basic approaches to using Laplace transforms to find the circuit
complete response. The first is to write differential equations describing theffff
circuit and then to solve them using the Laplace transform of the variable and
its derivatives. The advantage of this approach is that the Laplace transform
provides an algebraic method for solving differential equations. Taking theffff
inverse transform gives the time domain solution.
A second method of finding a circuit response is based on a model that
directly describes relationships between the Laplace transforms of the circuit
variables and its elements. This Laplace model is in some way similar to the
frequency-domain circuits developed earlier.
First, we will discuss the differential equations approach. Consider the second-ffff

order circuit shown in Fig. 3.9. Then the KVL equation around the loop and
the differential equation forffff v

C
are

L
di

dt
+v
C
+Ri=v

s
, C

dv
C
dt
= i.

These two equations are sufficient to solve the two unknown variables. The
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Figure 3.9 A second-order series connection RL C circuit.

Laplace transform of these two equations is

L [sI(s)− i(0
−
)]+V

C
VV (s)+RI(s)=V

in
VV (s)

C[sV
C
VV (s)−v

C
(0
−
)]=I(s).

(3.78)

Let the initial condition be i(0
−
)= i(0)=I0 and vC (0−)=vC (0)=VC0VV and after

rearranging the equations 3.78 we have

(R+sL )I(s)+V
C
VV (s)=V

in
VV (s)+L I0

−I(s)+sCV
C
VV (s)=CV

C0
VV .

(3.79)

Solving equation 3.79 for I(s) using Cramer’s rule, we have

I(s)=
sCV
in
VV (s)

L Cs2+RCs+1
+
sC[L I0− (1/s)V// C0

VV ]

L Cs2+RCs+1
(3.80)

or

I(s)=Y
in
YY (s)V

n
VV (s)+Y

in
YY (s)W0WW (s), (3.81)

where

Y
in
YY (s)=

sC

L Cs2+RCs+1

is the Laplace transform of the input impedance and W0WW (s)=L I0− (1/s)V// C0
VV is

the initial condition representation. Equation 3.81 shows that I(s) is the sum of
two terms: one due to the input source and the second due to all the initial
conditions. Going back to the time-domain, we can say that circuit variables
contain two terms: a zero-state response (when all the initial conditions are
zero) and a zero-input response (when all the inputs are zero).

Example 3.10

Let the elements of the circuit in Fig. 3.9 be normalized and have the values
L=1 H, R=3 V and C=1/2 F. Let the voltage input v

s
(t)= (10 sin t)u(t) and

the initial condition I0=2 A and VC0VV =5V. Find i(t).

Solution
Since the Laplace transform of the input voltage is V

in
VV (s)=10/(s2+1) , expression
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(3.80) after substituting the numerical values yields

I(s)=
s

s2+3s+2
10

s2+1
+

2s−5
s2+3s+2

.

The roots of the denominators are s1=−1, s2=−2 and s3,4=± j . Therefore,
using partial fractions, we obtain

I(s)=
A1
s+1

+
A2
s+2

+
A3
s− j

+
A
*
AA3
s+ j

.

Performing the computation, we obtain

A1= K 10s

(s+2)(s2+1)
+
2s−5
s+2 K

s=−1
=−12

A2= K 10s

(s+1)(s2+1)
+
2s−5
s+1 K

s=−2
=13

A3= K 10s

(s2+3s+2)(s+ j )K
s=j
=

j10

(−1+3j+2)2j
=1.58%−71.6°.

So,

i(t)=[−12e−t+13e2t+3.16 cos (t−71.6°)]u(t).

The second approach which leads to more simplicity in Laplace transform
circuit analysis uses the Laplace circuit model, which can be analyzed by
frequency-domain methods. In these models, all the elements are expressed in
terms of their impedances (admittances) at a complex frequency s (see Table 3.3
at the end of the chapter) and the voltage/current sources – by their Laplace
transforms, i.e. as a function of s. Then one of the known methods (KVL, KCL,
nodal/mesh analysis, Thevenin-Norton’s theorem, etc.) can be used for identi-
fying the desired variable transform. Finally, the time-domain response may be
found with the help of the inverse transform (partial fraction expansion).
In the next few paragraphs we will illustrate how this technique may be used

for circuit analysis with Laplace transform, starting with networks without
initial energy stored (zero initial conditions).

3.8.1 Zero initial conditions

As an example, let us examine the circuit shown in Fig. 3.10(a). First, we convert
the circuit to frequency-domain (or to its Laplace transform representation) as
shown in Fig. 3.10(b). Let the voltage across the capacitance C2 , which is output
voltage, be of interest. It may be found by the node equation. The output
voltage is the node 1 voltage V1VV . Therefore

V1VV −Vin,1VV
R1

+
V1VV

R2+1/sC1
+
V1VV −Vin,2VV
R3

+sC2V1VV =0.
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Figure 3.10 A two node circuit expressed in time-domain (a) and in the s-domain (b).

Solving for V1VV (VoutVV ) yields

V
out
VV (s)=

a1s+a0
b2s2+b1s+b0 AVin,1VV (s)

R1
+
V
in,2
VV (s)

R3 B , (3.82)

where

a1=R1R2R3C1 a0=R1R3
b1= (R1R2+R1R3+R2R3 )C1 b0=R1+R3
b2=R1R2R3C1C2 .

Now, in accordance with the transfer function concept

V
out
VV (s)=H1 (s)Vin,1VV (s)+H2 (s)Vin,2VV (s), (3.83)

and we can use the results in equation 3.83 for different inputs. It is obviousffff
that

H1 (s)= (1/R1 )H0 (s), H2 (s)= (1/R3 )H0 (s),

H0 (s)=
a1s+a0

b2s2+b1s+b0
.
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To find v
out
(t) we need to evaluate the inverse transform of each term in equation

3.83

v
out
(t)=L−1{H1 (s)Vin,1VV (s)}+L−1{H2 (s)Vin,2VV (s)}. (3.84)

Example 3.11

Determine the voltage across the resistance R in the circuit shown in Fig. 3.11(a),
which is already expressed in terms of the Laplace transform. The normalized
elements are L 1=L 2=1 H, R=1 V, v1=cos tu(t), v2=1d(t)V.VV

Solution

The first step is to convert the voltage sources to current sources and, after
simplification, we obtain a simple circuit as shown in Fig. 3.11(b) and (c). Thus

I0 (s)=
1

L 1 (s2+1)
+
1

sL
=
s2+s+1
s(s2+1)

Y (s)=
1

s
+
1

s
+
1

1
=
s+2
s
,

and

v
R
=I0 (s)

1

Y (s)
=

s2+s+1
(s+2)(s2+1)

.

Figure 3.11 A circuit under study in Example 3.11: frequency-domain representation (a); circuit with

current sources (b); final circuit (c).
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Using the partial fraction expansion yields

V
R
VV =

A1
s+2

+
A2
s− j

+
A
*
AA2
s+ j

.

Therefore

A1= K s2+s+1s2+1 K
s=−2

=0.6

A2= K s2+s+1(s+2)(s+ j )K
s=j
=

j

(s+ j )2j
=0.2236%−26.6°.

Then the desirable voltage in time-domain is

V
R
VV (t)=0.6e−2t+0.447 cos(t−26.6°) V for t≥0.

3.8.2 Non-zero initial conditions

As noted in the beginning of this chapter, the important advantage of the
Laplace transform method is taking ‘‘automatically’’ into account the initial
conditions. In the Laplace model approach, it is done by the appropriate
frequency-domain equivalent of an inductor L with initial current and a capaci-
tor C with initial voltage.
First, consider the initially charged inductor shown in Fig. 3.12(a). Since

Figure 3.12 A Laplace model of an inductor with initial current: time-domain circuit (a); inductor

representation in series with a voltage source (b); inductor representation in parallel with a current

source (c).
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v(t)=L (di/dt), then

V (s)=sL I(s)−L i(0
−
). (3.85)

In accordance with this expression, the Laplace model for the inductor might
be represented by a voltage source in series with an uncharged inductor, as
shown in Fig. 3.12(b). An alternative Laplace model for the inductor can be
obtained by converting the voltage source into the current source as shown in
Fig. 3.12(c). Note that the voltage source in Fig. 3.12(b) is the transform of an
impulse, while the current source in Fig. 3.12(c) is the transform of a step-
function.
Considering the initially charged capacitor shown in Fig. 3.13(a) and in
accordance with i=C(dv/dt), yields

I(s)=sCV (s)−Cv(0
−
). (3.86)

The Laplace model of a capacitor with equation 3.86 is shown in Fig. 3.13(b).
(It is the dual of the inductor model in Fig. 3.12(b).) By converting the current
source in Fig. 3.13(b) into the voltage source, the second alternative of the
capacitor model can be obtained as shown in Fig. 3.13(c). The voltage and
current sources due to non-zero initial conditions, as represented above, are
called initial-condition generators.
By using initial-condition generators, the Laplace transform circuit model is
completed and can be analysed by frequency-domain methods when the initial
conditions are not zero. The following examples illustrate these techniques.

Figure 3.13 ALaplace model of initial charged capacitor: time-domain circuit (a); capacitor represen-

tation in parallel with a current source (b); capacitor representation in series with a voltage source (c).
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Figure 3.14 The given circuit of Example 3.12 (a); its normalized Laplace model (b).

Example 3.12

Find the complete response of the current i(t) in the circuit shown in Fig. 3.14(a),
if i(0
−
)=0.2 A and v

C
(0
−
)=80 V.

Solution

To work with more convenient numbers, we first normalize them by choosing
the impedance normalization factor K

m
and frequency normalization factor

K
f
. Let K

m
=10−2 and K

f
=10−4, then R

new
=10−2R

old
=1V, L

new
=

(10−2/10−4 )L
old
=10H and C

new
=(1/10−210−4)C

old
=0.1 F. The Laplace model

circuit with normalized elements is shown in Fig. 3.14(b). Note that, to keep
the same currents, voltage sources are also normalized in accordance to K

m
.

Using mesh analysis, we have

A1+10s+ 0.1s B Im1− 0.1s Im2= 1s+2− 0.8s
−
0.1

s
I
m1
+A1+ 0.1s B Im2= 0.8s .

Solving for I
m1
gives

I
m1
(s)=

0.2s2+0.04s+0.01
s(s2+0.2s+0.02)

,

with the poles p1=0 and p2,3=−0.1± j0.1 . Using the partial fraction expansion
yields

I
m1
(s)=

A1
s
+

A2
s+0.1− j0.1

+
A
*
AA2

s+0.1+ j0.1
,

where

A1= K 0.2s2+0.04s+0.01s2+0.2s+0.02 K
s=0
=0.5

A2= K 0.2s2+0.04s+0.01s(s+0.1+ j0.1) K
s=−0.1+j0.1

=0.212%135°.



196 Chapter #3

Then the current in time-domain is

i(t)=0.5+0.424e−0.1t cos (0.1t+135°) A for t≥0.

Returning to the original circuit, i.e. that the actual natural frequency of the
circuit is

s
old
=
s
new
K
f
=104 (−0.1± j0.1)=103± j103,

then

i(t)=0.5+0.424e−103t cos (103t+135°). (3.87)

Inspection of the circuit in Fig. 3.14(a) shows that the steady-state value of the
current is 0.5 A, which is in agreement with the above results. Also checking
the initial value of the current gives

i(t)=0.5+0.424 cos 135°=0.2 A.

The waveform of the current (equation 3.87) begins at a value of 0.2 A and
approaches 0.5 A with decayed oscillation in approximately 5ms.

Example 3.13

The circuit of Fig. 3.15(a) is in steady-state behavior. At t=0 the second voltage
source is applied in series with the capacitor. Find the transient response of the
capacitor voltage v

C
(t) .

Solution

Using the superposition approach, we construct the Laplace model circuit in
which the second voltage source acts alone (Fig. 3.15(b)). Then the Laplace
transform of a desirable voltage can be written as

V
C2
VV (s)=−

V2VV
s

1/sC

Z
in
(s)
,

where

Z
in
(s)=

(10+0.1s)100
110+0.1s

+
104
s
=
10(s2+200s+11·104)

s(0.1s+110)
.

Therefore,

V
C2
VV (s)=−

(0.1s+110)104
(s2+200s+11·104)s

=
104
s

0.1s+110
(s+a)2+v2

.

Using the method of equating the coefficients, this voltage can be obtained as

V
C2
VV (s)=−

10

s
+10

s+a
(s+a)2+v2

,

where a=100 1/s and v=316 1/s.
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Figure 3.15 The given circuit of Example 3.13 (a); the Laplace model of the circuit driven by only

the second source (b); the capacitor voltage waveform (c).

In accordance with the table of Laplace transform pairs, we obtain

v
C2
(t)=10(e−at cos vt−1)u(t) V.

Since the capacitor voltage v
C1
caused by the first voltage source is 10 V, the

entire capacitor voltage will be

v
C
(t)=v

C1
+v
C2
=10e−100t cos 316t V for t≥0,

which is shown in Fig. 3.15(c).

3.8.3 Transient and steady-state responses

With the Laplace transform we can determine the transient and steady-state
responses of the circuit variables. In order not to get involved in complicated
notations, we will consider a simple example.
Let us say that the desired response of a circuit is described by a second-
order differential equationffff

a2
d2y
dt2
+a1

dy

dt
+a0y(t)=b1

dw

dt
+b0w(t), (3.88)
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and the initial conditions are y(0
−
)=y0 , y∞(0−)=y∞0 . Taking the Laplace trans-

form of both sides of equation 3.88 gives (remember that w(t) applies for t≥0)

a2[s2Y (s)−sy0−y∞0]+a1[sY (s)−y0]+a0Y (s)=b1sW (s)+b0W (s),WW

or

(a2s2+a1s+a0 )Y (s)+ (−a2y0s−a2y∞0−a1 )= (b1s+b0 )W (s).

Solving for the Laplace transform Y (s) yields

Y (s)=W (s)WW
b1s+b0

a2s2+a1s+a0
+

W0WW (s)
a2s2+a1s+a0

, (3.89)

where W0WW (s)=a2y0s+a2y∞0+a1y0 , i.e., includes all of the terms that involve the
initial conditions of y and its derivatives.
Noting that the first expression includes the transfer functionH(s)=Y (s)/W (s)
(since it is separated from the initial conditions) we can finally write

Y (s)=H(s)W (s)+B(s), (3.90)

where B(s)=W0WW (s)/(a2s2+a1s+a0 ).
Now, taking the inverse Laplace transform of equation 3.90 via partial fraction
expansion, we pay attention that the term H(s)W (s) has two groups of poles:
due to W (s)WW and H(s), while the term B(s) only has poles due to H(s). Therefore,
the time response of y(t) can be grouped into two kinds of terms

y(t)=L−1{H(s)W (s)}|
p
w

+L−1{H(s)W (s)+B(s)}|
p
h

, (3.91)

where the first term includes all the partial fractions which correspond to the
pole p

w
of W (s)WW , while the second one includes all the partial fractions which

correspond to the poles p
h
of H(s). Now, if all the poles of H(s) are strictly in

the left half of the s-plane (LHP), which is the most practical case, the steady-
state value of y(t) is entirely due to the first term:

y
ss
(t)= lim L−1{H(s)W (s)}|

p
w

, (3.92a)

i.e., y
ss
will be non-zero if and only if W (s) has at least one pole on the j-axis

or in the right half of the s-plane (RHP). It means that only the input sources
determine the steady-state response.
The natural response is determined in accordance with the second term of
equation 3.91:

y
nat
(t)=L−1{H(s)W (s)+B(s)}|

p
h

(3.92b)

which is entirely due to the poles of H(s) and, if all of them are in the LHP,
the natural response must eventually die out. However, the transient response
or complete response, which is given by (3.91), is obviously determined by the
poles of the circuit (H(s)) and the poles of the input sources (W (s)). Note again
that the transfer function denominator roots determine all the natural frequen-
cies, i.e. the roots of a2s2+a1s+a0=0 in the above example.
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Example 3.14

Determine the forced and natural responses of the output voltage in the circuit
of Fig. 3.16(a) assuming that the capacitor was pre-charged with v

C0
=6V and

v
g
=4e−tu(t) V.

Solution

First, we construct the Laplace transform model, shown in Fig. 3.16(b), of the
given circuit. Next, we write the nodal equation for this circuit model:

V1VV −
4

s+1
+
V1VV
s
+
V1VV −6/s
2/s

−0.58
V1VV
s
=0,

or

V1VV (0.5s2+s+0.42)
s

=
4

s+1
+3.

Solving for V1VV yields

V
out
VV (s)=V

1
VV (s)=

8s

(s+1)(s2+2s+0.84)
+

6s

s2+2s+0.4
.

The natural frequencies are p
1h
=−0.6, p

2h
=−1.4 and the forced frequency is

Figure 3.16 The circuit under study in Example 3.14 (a) and its Laplace model (b).
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p
w
=−1. Therefore, the residues of the first term are

A
1h
=

8s

(s+1)(s+1.4)K
s=−0.6

=−15, A
2h
=

8s

(s+1)(s+0.6)K
s=−1.4

=−35,

A
w
=

8s

s2+2s+0.4K
s=−1

=50,

and the residues of the second term are

A∞
1h
=

6s

s+1.4K
s=−0.6

=−4.5, A∞
2h
=

6s

s+0.6K
s=−1.4

=10.5.

The time-domain responses are:

the forced response

v
out,f
=50e−tu(t),

the natural response

v
out,h
= (−15e−0.6t−35e−1.4t−4.5e−0.6t+10.5e−1.4t)u(t)

= (−19.5e−0.6t−24.5e−1.4t)u(t),

and the complete transient response is

v
out
= (50e−t−19.5e−0.6t−24.5e−1.4t)u(t) V,

which proves the initial voltage

v
out
(0)=v

C0
=50−19.5−24.5=6V.

3.8.4 Response to sinusoidal functions

Circuit responses to sinusoidal inputs are widely met in Power Systems Analysis.
The transient analysis of such circuits by the Laplace transform might be
simplified if the sinusoidal input function is taken as a complex function ẽ(t)=
Ẽejvt where Ẽ=E

m
ejy is the phasor. The relation between the complex function

and the actual input is given by

e(t)=Im{ẽ(t)}=Im{Ẽejvt}=E
m
sin (vt+y).

The Laplace transform of the complex input will be just Ẽ(s)<Ẽ/(s− jv). Then
the Laplace transform of the output will be

X̃(s)=Ẽ(s)H(s)=
E
m
ejy

s− jv
H(s). (3.93)

Taking the inverse transform yields

x̃(t)=E
m
ejyH( jv)ejvt+E

m
ejy ∑
n

k=1
lim
s�p
k

(s−p
k
)H(s)

s− jv
. (3.94a)
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If the initial conditions are not zero, they have to be evaluated as imaginary
quantities I

L
(0
−
)= ji

L
(0
−
), V
C
VV (0
−
)= jv

C
(0
−
) (since the imaginary part of the

complex representation of phasors corresponds to the time-domain functions).
Then, in accordance with equation 3.91, the complete complex response will be

x̃(t)=E
m
ejyH( jv)ejvt+ ∑

n

k=1
lim
s�p
k
CEmejy (s−pk )H(s)s− jv

+ (s−p
k
)B(s)D epkt .

(3.94b)

With the complex response in equation 3.94a or 3.94b the actual response will
be

x(t)=Im{x̃(t)}. (3.95)

We will illustrate this method by the following example.

Example 3.15

In the circuit shown in Fig. 3.17(a), the switch closes at time t=0 after having
been opened for a long time. Find i2 (t) assuming that the circuit is driven by
the sinusoidal voltage source v

g
=180 sin (314t+30°) V.

Figure 3.17 The circuit under study in Example 3.15 (a) and its Laplace model (b).
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Solution

To determine the initial condition we must first calculate the capacitor steady-
state voltage (before the switch is closed). The voltage source complex represen-
tation is ṽ

g
=180ej30°ej314t. So,

V
C
VV ( jv)=

V
g
VV ( jv)

R1+R2+1/jvC
1

jvC

=
180ej30°

90− j1/(314·80·10−6)
1

j314·80·10−6
=72.3e−j36.2° V.

Therefore, the voltage across the capacitor at t=0
−

v
C
(0
−
)=72.3 sin(−36.2)=−43.0 V.

Now we will construct the Laplace transform model circuit shown in
Fig. 3.17(b). The Laplace transform of the voltage source, which is taken as a
complex function, is V

g
VV (s)=180ej30°/(s− j314). The initial capacitor voltage

v
C
(0
−
)=−43 V is replaced by an initial-condition generator whose value is

equal to the Laplace transform of this voltage multiplied by j:

V
C0
VV = j

(−43)
s
.

In accordance with mesh analysis

80I1 (s)−50I2 (s)=
180ej30°

s− j314

−50I1 (s)+A110+ 12.5·103s B I2 (s)= j 43s .
Using Cramer’s rule yields

I2 (s)=
1.43ej30°s

(s− j314)(s+159)
+ j

0.546

s+159
.

Taking the inverse Laplace transform (with the help of the Laplace transform
pairs, Table 3.1) we obtain

ĩ2 (t)=1.43ej30° C 1

− j314−159
(− j314ej314t−159e−159t)D+ j0.546e−159t

=128ej(314t+56.9°)+ (0.646e−j33.2°+ j0.546)e−159t.

Finally, the imaginary part of the above expression gives the time-domain
current
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i2 (t)=1.28 sin (314t+56.9°)+[0.646 sin (−33.2°)+0.548]e−159t

=1.28 sin (314t+56.9°)+0.159e−159t A.

3.8.5 Thevenin and Norton equivalent circuits

Thevenin/Norton’s theorem can also be useful by circuit analysis via Laplace
transform techniques. As we have already noted the Thevenin/Norton equivalent
can be applied to the Laplace transform circuit model, using frequency-domain
analysis. Here, the Thevenin/Norton equivalent can be especially helpful in
reducing the initial state response to the zero-state response.
Consider any active one-port network shown in Fig. 3.18(a). The switch, after
having been opened for a long time, closes at t=0 (or any given time t0 ) and
the external branch ab is connected to the network. The Thevenin equivalent
of the given network after closing the switch is shown in Fig. 3.18(b). It is
obvious that this circuit is initially quiescent, so its response is ZSR (zero-state
response). Therefore, the Laplace transform for the current I

ab
is

I
ab
(s)=

V
oc
VV (s)

Z
Th
(s)+Z

ab
(s)
. (3.96)

Anyway, it should be emphasized that the complete response of currents and
voltages of the given network (except the branch ab) results from the superposi-
tion of two networks (a) and (b) in Fig. 3.18, i.e. the ZSR of currents and
voltages has to be added to their previous steady-state values. The following
example illustrates this technique.

Figure 3.18 The illustration of Thevenin and Norton equivalents in Laplace transform representa-

tions: the active network with an open switch (a); the Thevenin equivalent with a voltage source

(b); the active network with a closed switch (c); the Norton representation with a current source (d).
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Example 3.16

The switch in the circuit shown in Fig. 3.19(a) closes after having been opened
for a long time. Find the currents through the capacitor i

C
(t) and through the

inductor i
L
(t) .

Solution

The open circuit voltage across the switch is

V
oc
VV =V

g
VV

R2
R1+R2

=200
10

10+10
=100 V.

The Thevenin equivalent impedance of the circuit is

Z
Th
=
(R1+sL )R2
R1+R2+sL

=
100+s
20+0.1s

.

The Thevenin equivalent of the Laplace transform circuit is shown in
Fig. 3.19(b). Thus, the Laplace transform of the capacitor current is

I
C
(s)=

V
oc
VV (s)

Z
Th
+Z
ab
=
100

s

1

(100+s)/(20+0.1s)+103/s

=
100(0.1s+20)
s2+200s+20·103

=
100(0.1s+20)

(s+100− j100)(s+100+ j100)
,

where roots of the denominator are p
1,2
=−100± j100 . Therefore,

A
1C
= K 100(0.1s+20)s+100+ j100K

s=−100+j100
=5− j5=5√2e−j45° ,

and, in accordance with equation 3.73, the inverse Laplace transform will be

i
C
(t)=10·√2e−100t cos(100t−45°) A.

Figure 3.19 Circuit for Example 3.16 (a) and its Thevenin equivalent in s-domain (b).
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To find the inductor current in circuit Fig. 3.19(b) we first use the current
divider formula

I
L
(s)=I

C
(s)

R2
R1+sL+R2

=
100(0.1s+20)·10

(s2+200s+20·103)(0.1s+20)

=
1000

(s+100− j100)(s+100+ j100)
,

which yields

A
1L
= K 1000

s+100+ j100K
s=−100+j100

=− j5=5e−j90° ,

and

i
L
(t)=10e−100t cos (100t−90°)=10e−100t sin 100t A.

The steady-state value of the inductor current in Fig. 3.19(a), i.e. before the
switch is closed:

I
L
(0
−
)=

V
g
VV

R1+R2
=
200

10+10
=10 A.

Therefore, the complete response of the current is

i
L
(t)=10+10e−100t sin 100t A.

Note that initial capacitance current i
C
(0)=10�2 cos(−45°)=10 A is in

agreement with its value, which can also be obtained by inspection of the circuit
in Fig. 3.19(a):

i
C
(0)=I

L
(0
−
)=10 A.

This result may also be obtained by straightforward calculation of i
L
(0) in

accordance with the above formula: i
L
(0)=10+10·e0 sin 0=10 A.

When the switch in any branch is opened after having been closed for a long
time, as shown in Fig. 3.18(c), the equivalent circuit can be constructed by using
a current source insert instead of the switch as shown in Fig. 3.18(d). The value
of the current source is equal, and its direction is opposite, to the current
flowing through the closed switch (short circuit current) just before its opening.
Therefore, the rest of the network is passive, i.e. all the network sources are
killed and it can be represented by its Thevenin impedance, as shown in
Fig. 3.18(d). It is obvious again that this circuit is having zero initial conditions.
For getting the complete response, the ZSR of the circuit in Fig. 3.18(d) has to
be superimposed on the previous steady-state regime of the circuit in Fig. 3.18(c).

Example 3.17

In the circuit shown in Fig. 3.20(a), the switch is opened at time t1=0.2 s, while
the whole circuit has been driven by the voltage source v

g
=10u(t) V since t=
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Figure 3.20 Circuit for Example 3.17 (a) and its Norton equivalent in s-domain (b).

0. Let R1=1 V, R2=4 V and C=1/2 F. Find the output voltage vout and
capacitance voltage v

C
versus time.

Solution

First, we construct the Laplace transform circuit having zero initial conditions.
For this purpose, we must find the current through the switch at the time t=t1 .

i
sw
(t)=

V
g
VV

R1
e−at=10e−2t, t≥0,

since a=1/(R1C)=2 s−1 and isw (0)= (10/1)=10A.

Changing the variable t=t1+t∞ yields

i
sw
(t∞)=10e−2t

1
e−2t∞=6.7e−2t∞ , t∞≥0,

and the transformed current is

I
sw
(s)=6.7

1

s+2
.

Next we calculate the Laplace transform internal impedance measured at the
ab terminals (see Fig. 3.20(b)).

Z
ab
(s)=

4(1+2/s)
4+1+2/s

=0.8
s+2
s+0.4

.

The Laplace transform of the output voltage is

V
out
VV (s)=Z

ab
(s)I
sw
(s)=5.36

1

s+0.4
,

and taking the inverse transform we obtain

v
out
(t∞)=5.36e−0.4t∞ V, t∞≥0,

since, because the voltage before opening the switch was zero, the complete
response is the same. Next, we use voltage division to obtain the expression for
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the transformed capacitor voltage in Fig. 3.20(b):

V
C
VV (s)=−V

out
VV (s)

2/s

1+2/s
=−10.72

1

(s+0.4)(s+2)
.

In accordance with the Laplace transform pairs (see Table 3.1) we have

v
C(ZSR)

(t∞)=
−10.72
0.4−2

(e−2t∞−e−0.4t∞ )=67(e−2t∞−e−0.4t∞ ) V, t≥0.

To get the complete response, we have to find the previous capacitor voltage,
i.e., before the switch was opened (see circuit in Fig. 3.20(a))

v
C(pr)
(t)=10(1−e−2t)= (10−6.7e−2t∞ ) V.

Therefore, the complete response is

v
C
(t∞)=v

C(ZSR)
+v
C(pr)
=10−6.7e−0.4t∞ V, t∞≥0.

Note that, according to this expression, the capacitor voltage at t∞=0 is 3.3 V,
which is equal to the capacitor voltage at the moment of the switch commutation
in Fig. 3.20(a).

3.8.6 The transients in magnetically coupled circuits

The Laplace transform techniques are also very useful for the analysis of coupled
circuits. Consider the magnetically coupled circuits shown in Fig. 3.21(a). The
KVL mesh equations are

R1 i1+L 1
di1
dt
+M

di2
dt
=v1 (t)

R2 i2+L 2
di2
dt
+M

di1
dt
=v2 (t).

(3.97)

Assuming non-zero initial conditions, the Laplace transform of equation 3.97

Figure 3.21 Magnetically coupled circuit (a) and its Laplace model (b).
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gives

R1I1 (s)+sL 1I1 (s)−L 1 i1 (0−)+sMI2 (s)−Mi2 (0−)=V1VV (s)

R2I2 (s)+sL 2I2 (s)−L 2 i2 (0−)+sMI1 (s)−Mi1 (0−)=V2VV (s).
(3.98)

Combining terms yields

Z1 (s)I1 (s)+sMI2 (s)=V1VV (s)+L 1 i1 (0−)+Mi2 (0−)

sMI1 (s)+Z2 (s)I2 (s)=V2VV (s)+L 2 i2 (0−)+Mi1 (0−).
(3.99)

The Laplace transform circuit model in Fig. 3.21(b) represents equations
equation 3.99 by the s-domain impedances and two voltage sources in each
loop. The voltage sourcesMi1 (0−) andMi2 (0−) represent the time-domain effectffff
of the initial stored energy in the mutual inductance due to the currents i1 and
i2 . Solving equation 3.99 for I1 (s) and I2 (s) gives

I1 (s)=
(V1VV (s)+B1 )(s+a2 )− (V2VV (s)+B2 )(M/L 2 )s

L 1 (1−k2 )(s2+as+b)
(3.100a)

I2 (s)=
(V2VV (s)+B2 )(s+a1 )− (V1VV (s)+B1 )(M/L 1 )s

L 2 (1−k2 )(s2+as+b)
, (3.100b)

where

a1=R1/L 1 , a2=R2/L 2 , k=
M

√L 1L 2
,

a=
a1+a2
1−k2

, b=
a1a2
1−k2

,

(3.101)

and

B1=L 1 i1 (0−)+Mi2 (0−)

B2=L 2 i2 (0−)+Mi1 (0−),
(3.102)

are initial-condition equivalent generators of the first and the second loops
respectively. It is worthwhile noting that in accordance with equation 3.100 the
mutual coupled circuit has a second order characteristic equation: s2+as+b=
0, i.e., the mutual inductance does not increase the order of the circuit response.

Example 3.18

The mutually coupled circuit in Fig. 3.22(a) has V
in
VV =120V, R=60 V, L=0.2 H,

M=0.1 H. The switch is closed at t=0 after having been opened for a long
time. Find the currents i1 (t) and i2 (t) for t≥0.

Solution

First, we must find the initial conditions:

i2 (0−)=0 and i1 (0−)=
V

R
=2 A.
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Figure 3.22 Circuit for Example 3.18.

In accordance with equations 3.101 and 3.102

a1=a2=
R

L
=300 s−1, k=

M

L
=0.5, a=

2a1
1−k2

=
600

1−0.52
=800 s−1,

b=
a2
1

1−k2
=
3002
1−0.52

=12·104 s−1, B1=L i1 (0−)=0.2·2=0.4,

B2=Mi1 (0−)=0.1·2=0.2.

With the help of equation 3.100, we obtain the transformed currents

I1 (s)=
(120/s+0.4)(s+300)− (120/s+0.2)0.5s

0.2·0.75(s2+800s+12·104)
=
2(s2+600s+12·104)
(s2+800s+12·104)

=
2(s2+600s+12·104)
s(s+200)(s+600)

I2 (s)=
(120/s+0.2)(s+300)− (120/s+0.4)0.5s

0.2·0.75(s2+800s+12·104)
=

800(s+300)
(s2+800s+12·104)

=
800(s+300)

s(s+200)(s+600)
,

i.e., the poles are p0=0, p1=−200, p2=−600 1/s. Therefore, the appropriate
residues are:

A
10
= lim
s�0
sI1 (s)=

2·12·104
12·104

=2, A
20
=2,

A
11
=
2(s2+600s+12·104)

s(s+600) K
s=−200

=−1, A
12
=−1,

A
21
=
2(s2+600s+12·104)

s(s+200) K
s=−600

=−1, A
22
=−1,

which gives the time-domain currents
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i1 (t)= (2−e−200t+e−600t) A

i2 (t)= (2−e−200t+e−600t) A.

In conclusion, it is worthwhile mentioning that the L aplace transform tech-
nique is also widely used for solving electromechanical problems. Consider, for
example, the starting transients of a no-load shunt exciting d.c. motor (see
Fig. 3.23). The torque equation is

T=mi=J
dv

dt
,

where the motor torque T (Nm) is proportional to the current, J (kgm2) is the
moment of inertia and v (rad/s) is the angular velocity.
The Kirchhoff ’s-law voltage equation for the motor is

V=Ri+L
di

dt
+kv,

where the term kv is the generated, or back, voltage which is proportional to
the angular velocity, and R, L are the resistance and the inductance of the
armature winding. With zero-initial conditions the Laplace transform of these
two equations will be

mI=JsV

V

s
= (R+sL )I+kV,

where V(s) and I(s) are the Laplace transform of the angular frequency and the
current respectively. Solving the above equations for V and I yields

V=V
m

JL

1

s As2+RL s+ kmJL B

Figure 3.23 An electromechanical system with a shunt exciting d.c. motor.
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and

I=V
1

L

1

s2+
R

L
s+
km

JL

.

The roots of the denominator are s
1,2
=−a±b, where a=R/2L and

b=√a2− (km/JL ). Thus, in accordance with the table of Laplace transform
pairs, we obtain

v(t)=
V

k C1−Acosh bt+ ab sinh btB e−atD ,
where V/k=v0 is the no-load angular velocity, and

i(t)=
V

bL
e−at sinh bt,

where i(0
−
)=0 because of zero-initial conditions and i(2)=0 since the motor

is no-loaded and the losses in this example were neglected.
The condition of oscillations is R2<4k2L /J, and then s

1,2
=−a± jb.
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Chapter #4

TRANSIENT ANALYSIS USING THE FOURIER
TRANSFORM

4.1 INTRODUCTION

Like the Laplace transform, discussed in the previous chapter, the Fourier
transform is very useful for transient analysis of electrical circuits. The Fourier
transform, just as the Laplace transform, converts a function of time (time-
domain function) into a function of frequency (frequency-domain function).
However, in distinction to the Laplace transform, the Fourier transform trans-
forms the time functions into a function of jv, a pure imaginary frequency,
rather than a function of s=c+ jv, which is a complex frequency. (More about
the relation between Fourier and Laplace transforms further on.) From another
point of view, the Fourier transform extends the Fourier series, which represents
any periodic (but not non-periodic) function by an infinite sum of harmonics of
different frequencies. The Fourier coeffff fficients of such harmonics are functions
of multiple nv0 of a basic frequency v0 , and are therefore discrete quantities
corresponding to the integer n.
However, in circuit analysis there are many cases in which the forcing func-
tions are non-periodic: such as different kinds of pulses and signals in communi-ffff
cation engineering systems, or pulses resulting from lightning or some other
strokes in power engineering systems. In these cases, as will be seen in this
chapter, we may be able to find a Fourier transform F( jv)=|F( jv) |ejY(YY v) of a
non-periodic function, whose amplitude, |F( jv) | and phase Y(YY v) spectra are
continuous rather than discrete, i.e., they are functions of v (but not of nv).
The conversion of a non-periodic time function to a function of frequency v
allows us to analyze the transient behavior of any linear circuit by using their
frequency characteristics, such as: impedance Z( jv), admittance Y ( jv) and/or
transfer coefficientK( jv). This means that we will be able to use all the methods
of steady-state analysis by applying them to the transient analysis, which again
will reduce the integro-differential operating in the time domain to more simpleffff
algebraic operations in the frequency domain.
Thus, the Fourier transform extends the phasor concept, which has been
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developed for sinusoidal (periodic) functions to non-periodic functions, which
are more general than just sinusoids.

4.2 THE INTER-RELATIONSHIP BETWEEN THE TRANSIENT
BEHAVIOR OF ELECTRICAL CIRCUITS AND THEIR SPECTRAL
PROPERTIES

The study of transient behavior of electrical circuits in the previous chapter
shows that this behavior is largely related to their frequency characteristics.
This was especially evident from applying the Laplace transform. Thus, if the
voltage was applied to the input of an electric circuit, whose Laplace transform
was given as

V1 (s)<v1 (t),

then the Laplace transform of its response, for example of the current, can be
found as

I1 (s)=V1 (s)/Z(s)=V1 (s)Y(s), (4.1a)

where

Z(s)=Z( jv) |
jv=s

or Y(s)=Y( jv) |
jv=s
.

Here the complex impedance Z( jv) or the admittance Y( jv) are actually the
frequency characteristics of the circuit. In exactly the same way, we can represent
the transfer function

H(s)=H( jv) |
jv=s
,

and with this function the Laplace transform of the output voltage will be

V2 (s)=H(s)V1 (s). (4.1b)

In finding the response function of the circuit to any forcing function the
properties of the circuit are completely determined by its frequency characteristic
Z( jv), Y( jv) or H( jv). This relationship between the frequency characteristics
of the system and its behavior in transients is obvious when taking into consider-
ation the physical properties of the circuit elements. Thus the inductance, which
prevents an abrupt change of current, is characterized by changing, in particular
by increasing, its reactance (X) by increasing the frequency; and in the same
way the capacitance, which prevents an abrupt change of the voltage, is charac-
terized by changing, in particular by increasing, its susceptance (B) by increasing
the frequency. The availability of resonant oscillations during the transients
also depends on the characteristics of the system, i.e., its impedance/admittance.
Expressions like equation 4.1 are completely analogous to the phasor expres-

sions for different harmonics in the steady-state analysis. Using the Fourierffff
series in a non-sinusoidal analysis, we might write

I
n
=V
n
/Z ( jv)=Y( jv)V

n
,
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where jv= jnv0 is the discrete frequency of different harmonics:ffff I
n
=I ( jnv0 )

and V
n
=V ( jnv0 ). Thus, the discrete spectra of the current, In in accordance

with the above expression, can be found if we are able to find the spectra of
the forcing function, for instance, V

n
by knowing its Laplace transform V(s) or

straightforwardly by applying the Fourier series coefficient formulas.
However, if the forcing function is non-periodical, which happens in many

cases where this function is exponential, rectangular or any kind of pulse, its
spectra cannot be found by just replacing s by jv. (More precisely, as will be
shown further on, in some special cases of the above functions, the frequency
characteristics can be found anyway by replacing s by jv.) As is known, using
the Fourier series this problem cannot be solved either, since the Fourier series
is appropriate only for periodic functions.
Our goal in this chapter, therefore, is to develop a method which allows
extending the phasor concept to non-periodic functions. The solution is the
Fourier transform, which is, as we already mentioned, an extension of the
Fourier series to non-periodic functions.

4.3 THE FOURIER TRANSFORM

4.3.1 The definition of the Fourier transform

Let us proceed to define the Fourier transform by first recalling the spectrum
presentation of the periodic function. In the simplest case of one harmonic
A sin (vt+y) (Fig. 4.1a) its amplitude and phase spectra will be as shown in
Fig. 4.1b. Using the complex form of sinusoids,

A sin (vt+y)=
A

2j
[ej(vt+y)−e−j(vt+y)]=

A

2
[ej(vt+y−p/2)+e−j(vt+y−p/2)](*),

Figure 4.1 Sinusoidal faction (a) and its spectra: in real notation (b) and complex notation (c).

(*)Note that in this expression the additional angle −p/2 appears for a cosine presentation of the
sinusoidal function. It should be noted, however, that in this book we are using sine presentation
rather than cosine.



216 Chapter #4

we may take into consideration also negative frequencies as in the second term,
in the brackets, of this expression. (It has to be mentioned that the definition
of a negative frequency has a purely mathematical meaning without any physical
connection.) In this case, the amplitude and phase spectra will be as shown in
Fig. 4.1(c). As can be seen, both spectra are presented by two ordinates corre-
spondingly for positive and negative frequencies. The amplitude spectrum com-
ponents are symmetrical about the vertical axis and the phase spectrum
components are symmetrical about the origin.
As is known, if any current or voltage wave is not sinusoidal, but periodical,
it may be represented by the infinite Fourier series. In trigonometrical form it
will be:

f (t)=
a0
2
+ ∑
2

n=1
A
n
sin (nv0t+yn ),

where amplitudes A
n
and phases y

n
can be expressed as

A
n
=√a2

n
+b2
n
, y
n
=tan−1

a
n
b
n
,

and

a0=
2

T P T
0
PP f (t)dt,

a
n
=
2

T P T
0
PP f (t) cos nv0t dt, (4.2)

b
n
=
2

T P T
0
PP f (t) sin nv0t dt, n=0, 1, 2, . . . .

In accordance with the above expressions, the amplitude A
n
= f (nv0 ) and phase

y
n
= f (nv0 ) spectra of a non-sinusoidal function may be sketched, as functions

of nv0 . With a complex, or exponentional form of the Fourier series:

f (t)= ∑
2

n=−2
C
n
ejnv
0
t , (4.3)

where

C
n
=
1

2
(a
n
− jb
n
), C

−n
=
1

2
(a
n
+ jb
n
), C0=

1

2
a0

and (4.3a)

%C
n
=−tan−1

b
n
a
n
; %C

−n
=−%C

n
=tan−1

b
n
a
n
.

The amplitude |C
n
|= f (nv0 ) and phase %Cn= f (nv0 ) spectra will be functions

of both positive and negative frequencies: the amplitude spectrum will be sym-
metrical about the vertical axis, and the phase spectrum will be symmetrical
about the origin. Note that both the amplitude and phase spectra are discrete
functions of harmonic frequencies.
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Coefficients C
n
can be determined by substituting the expressions for a

n
and

b
n
(equation 4.2) into equation 4.3a by changing the limits of integration, i.e.,

C
n
=
1

T P T/2
−

PP
T/2
f (t)(cos nv0t− j sin nv0t)dt=

1

T P T/2
−

PP
T/2
f (t)e−jnv

0
tdt.

An example of such discrete spectra of a periodic function is a train of rectangular
pulses, having duration d, period T and amplitude V

0
VV , which is shown in

Fig. 4.2(a) and its spectra are shown in Fig. 4.2(b) and (c). Here the magnitudes
are |C

n
|=eV0VV Sa(nep), where Sa(x) is called a sampling function or sinc function

Figure 4.2 A train of rectangular pulses (a), its discrete amplitude (b) and phase (c) spectras.
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(in mathematics: sinc x= (sin px)/px=Sa (px)) and it might be calculated with
most mathematical programs like MATHCAD, MATHLAB etc).
However, there are many important forcing functions that are not periodic
functions, such as a single rectangular pulse, an impulse function, a step function
and a rump function. Another example of a non-periodic function is an impulse
voltage waveform, which appears in high-voltage transmission lines, when a
stroke of lightning influences the line conductors(*).
Frequency spectra may also be obtained for such non-periodic functions;
however, they will be continuous spectra, rather than discrete. These spectra
can be obtained by using the Fourier transform, which is an extension of the
Fourier series for non-periodic functions. With such spectra we will be able to
extend the frequency analysis and the phasor concept to non-periodic functions.
Thus, the Fourier transform, in contrast to the Fourier series, is a function
of the continuous frequency v (but not of discrete frequency nv) and corres-
ponds to the time-domain non-periodic function. To develop the Fourier trans-
form technique we shall consider the non-periodic function f (t), Fig. 4.3a, as
defined on an infinite interval.
This function should satisfy the Dirichlet conditions: in any finite interval,
f (t) has at most a finite number of finite discontinuities, a finite number of
maxima and minima and ∆2

−2
| f (t) |dt<2, i.e., the integral converges. To be

able to extend the use of the Fourier series to a non-periodic function we will
define a new function f

per
ff (t) which is identical to f (t) on the interval

Figure 4.3 A non-periodic function (a) and its periodic extension (b).

(*)Gonen, T. (1988) Electric Power T ransmission System Engineering. Wiley, New York, Chichester,
Brisbane, Toronto, Singapore.
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−T /2<t<T /2 and is periodic of any period T>t
2
−t
1
as shown in Fig. 4.3b.

Such a function f
per
ff (t) is said to be the periodic extension of f (t) and might be

represented by the Fourier series. The given non-periodic function f (t), therefore,
is also given by the same Fourier series, but only in the interval (−T /2, T /2).T
Outside of this interval, this function cannot be represented by the Fourier
series. Using the exponential form of the Fourier series for f

per
ff (t) we will have

f
per
ff (t)=

1

2
∑
2

n=−2
C
n
ejnv
0
t , (4.5)

where

C
n
=
1

T P T/2
−

PP
T/2
f
per
ff (t)e−jnv

0
tdt. (4.6)

Our intention is to let T�2, in which case

f
per
ff (t)� f (t). (4.7)

We will then have extended the Fourier series concept to the non-periodic
function f (t) by considering it to be periodic with an infinite period. Since now
T�2 and then v0=2p/T becomes vanishingly small, we may represent this
limit by a differential, i.e.,ffff v0�dv so that:

1

T
=
v0
2p
�
dv

2p
(when T�2). (4.8)

Now, the harmonic discrete frequency nv
0
will approach the continuous fre-

quency variable v, since v
0
becomes vanishingly small (v0�0) and all the

nearby frequencies approach a smoothly changing frequency v
0
. In other words,

n tends to infinity as v
0
approaches zero, such that the product is finite:

nv0�v. (4.9)

Substituting equation 4.6 into equation 4.5, and taking into consideration
equations 4.7 and 4.9, we may obtain

f (t)=
1

2p
∑
2p

T C P2
−

PP
2
f (t)e−jvtdtD ejvt. (4.10)

The inner integral (in brackets) is a function of jv (not of t) and we assign it to
F( jv), so that

F( jv)= P2
−

PP
2
f (t)e−jvtdt, (4.11)

and it is the Fourier transform of f (t). Then as

T�2 A1T � dv2p (equation 4.8)B and 2p

T
�dv,
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the sum in equation 4.10 becomes an integral:

f (t)=
1

2p P2
−

PP
2
F( jv)ejvtdv, (4.12)

which is called the inverse Fourier transform.
These two expressions above are known as the Fourier transform pair

GF( jv)= P2−PP 2 f (t)e−jvtdt (4.13a)

f (t)GG =
1

2p P2
−

PP
2
F( jv)ejvtdv, (4.13b)

which are also often stated symbolically as

GF( jv)=F[ f (t)] (a)

f (t)GG =F−1[F( jv)], (b)
(4.14)

where F denotes the operation of taking the Fourier transform. These two
expressions in equation 4.14 may also be indicated as

f (t)<F( jv). (4.15)

The Fourier transform as seen in equation 4.13a is a transformation of the
function f (t) from the time domain to the frequency domainff and corresponds to
the Fourier coefficient expressions in equation 4.3a. Equation 4.13b, the inverse
transform, is an opposite transformation of the complex function F( jv) from
the frequency domainff into the time domain and is a direct analogy to the Fourier
series (equation 4.3). Another explanation of these two analogies is to say that
the Fourier transform is a continuous representation (with v being a continuous
variable) of a non-periodic function, whereas the Fourier series is a discrete
representation (with nv0 being a discrete variable) of a periodic function. Finally,
it must be indicated that the Fourier transform-pair relationship is unique: for
a given function f (t) there is one specific F( jv) and for a given F( jv) there is
one specific f (t).
The following examples show how we can use the above-developed expres-
sions to find the Fourier transform of a non-periodic function and its spectra.

Example 4.1

Let us find the Fourier transform of the exponential function

f (t)=e−atu(t) (a>0). (4.16)

Using equation 4.13a we have

F[e−atu(t)]= P2
−

PP
2
e−atu(t)e−jvtdt= P2

0
PP e−(a+jv)tdt= 1

− (a+ jv)
e−(a+jv)K2

0
.
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Because a>0, the upper limit results in zero (since the imaginary part e−jvt
represents the rotation features of the exponential amplitude e−at and is therefore
bound while the exponential approaches 0)(*). Thus, we have

F[e−atu(t)]=
1

a+ jv
, (4.17a)

or

e−atu(t)<
1

a+ jv
(a>0), (4.17b)

and

F( jv)=
1

a+ jv
. (4.17c)

In accordance with the obtained expressions (14.17) the amplitude spectra of
an exponential function will be

[F( jv)]=
1

√a2+v2
, (4.18)

and its phase spectrum

Y(YY v)=−tan−1
v

a
. (4.19)

The exponential function (14.16) and its spectra (14.18) and (14.19) are shown
in Fig. 4.4a–c.

Figure 4.4 Exponential function (a) and its amplitude (b) and phase (c) spectra.

(*)Note that the function e−at (a>0) does not have a Fourier transform, since the integral
∆2
−2
e−at e−jvtdt of its lower limit approaches infinity (infinite value).
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Example 4.2

As another example, let us find the Fourier transform of the single rectangular
pulse.

f (t)=GV0VV −
d

2
<t<

d

2

0 −
d

2
>t>

d

2
,

which is shown in Fig. 4.5(a). By the definition in equation 4.13a we have

F( jv)= P2
−

PP
2
f (t)e−jvtdt=V0VV P d/2

−

PP
d/2
e−jvtdt=

V0VV
− jv

(e−j(vd/2)−ej(vd/2)), (4.20a)

F( jv)=
2V0VV
v Aej(vd/2)−e−j(vd/2)j2 B= 2V0VVv sinvd2 =V0VV d sin (vd/2)vd/2

, (4.20b)

or shortly

f (t)=Gat time d

2
<t<

d

2
: V0VV

−
d

2
>t>

d

2
: 0 H<V0VV d Sa Avd2 B , (4.20c)

where Sa(vd/2) is the sampling function. This function yields the continuous
spectrum of a rectangular pulse (Fig. 4.5) which is shown in Fig. 4.5(b).
Whenever vd/2=kp (k=1, 2, . . .) or the frequencies v=2p/d, 4p/d, . . . the above
spectrum curve crosses the v-axis, i.e., is zero. For vd/2= (p/2)(2k+1) the
spectrum curve reaches the maximum points which are F( jv) |max=
V0VV d/(p/2)(2k+1). Note that in this case the phase spectrum equals zero.
We should again emphasize that this spectrum is a continuous function of v

as opposed to the discrete spectrum of a periodic sequence of rectangular pulses
(as shown in Fig. 4.2). Note also that the value of the continuous spectrum in

Figure 4.5 A rectangular pulse (a) and its spectrum (b)
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equation 4.20 is as a product of the value of the pulse and the value of its
duration, i.e., dimensionally it is indicated as ‘‘volts times seconds’’, or ‘‘volts per
unit frequency’’. In the case of a discrete spectrum the value of its magnitude is
given just in the same dimension as a periodic function (volts, or amperes). In
order to better understand the above differences we should analyze more deeplyffff
the relationship between the Fourier transform and Fourier series and look into
some of the properties of F( jv).

4.3.2 Relationship between a discrete and continuous spectra

To define the relationship between the discrete spectra of a non-sinusoidal
periodic function and the continuous spectra of a non-periodic function we
should use the complex form of the Fourier series. In Table 4.1 the basic formulas
of the Fourier series and of the Fourier transform are given.
As was previously mentioned, any periodic function has discrete or line
spectra for both its magnitude and phase. However, as the period increases, the
lines of the discrete spectra become more dense with more lines. In Fig. 4.6 the
changing of the magnitude spectrum of a train of rectangular pulses by increas-
ing its period, which is the same as decreasing the scaled duration e=d/T isTT
shown. The solid line, or the envelope of the magnitude spectrum, in this figure
crosses the frequency axis at the nv0d/2=pk, or nv0=2pk/d (n=k/e, k=
±1,±2, . . .), which means that the zero point of the envelope does not depend
on T,TT but only on the duration d. However, when period increases, the number
of lines, N, between the origin and the first zero, which is the same as between
two adjoining zeros, increases directly proportional to T.TT Note also that the
product nv0 remains the same as can be seen from Fig. 4.6.
This number of lines might be calculated as

N=n−1=
2p

v0d
−1=

1

e
−1. (4.21)

The line magnitudes of the discrete spectrum are inversely proportional to the
period or directly proportional to the scaled duration e, as can be seen from

Table 4.1TT Basic formulas of Fourier series and Fourier transform

Fourier series Fourier transform

(periodic function) (non-periodic function)

f (t)=
1

2p P2
−

PP
2
F ( jv)ejvtdvf (t)=

1

2
∑
2

n=−2
c
n
ejnv
0
t

C
n
=
2

T P T/2
−

PP
T/2
f (t)e−jnv

0
tdt F ( jv)= P2

−

PP
2
f (t)e−jvtdt

C
n
=c
n
ejy
n

F ( jv)=|F( jv) | ejy(v)
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Figure 4.6 The changing of the spectrum as duration e decreases.

expression (4.4) and Fig. 4.6, i.e. the broken-line curve is lower and approaches
zero, as T�0, and finally coincides with the horizontal axis.
If we multiply the Fourier coefficients 1/2C

n
by period T and then let the

period become infinite (T�2), then the frequency interval v0=2p/T between
the lines of the discrete spectrum approaches zero and the discrete spectrum
will turn into a continuous spectrum of a non-periodic rectangular pulse of
duration d. On the other hand the Fourier coefficients, being multiplied by
period T,TT become non-dependent on the period and their magnitudes will not
change, i.e. the envelope curve is not dependent on T and follows the expression

F( jv)=P d/2
−

PP
d/2
e−jvtdt=d

sin (vd/2)

vd/2
.

The above explanation is illustrated in Fig. 4.7.
It is obvious that the above example of a rectangular pulse can be generalized
to any other kind of non-periodic function. In this case it is always possible to
choose such a T,TT that

F( jv)= P2
−

PP
2
f (t)e−jvtdt= P T/2

−

PP
T/2
f (t)e−jvtdt. (4.22)

The periodic function, which coincides with the above non-periodic function
f (t) in the interval −T /2, T /2T and is of period T will have the line spectrum in
accordance with the equation

1

2
C
n
=
1

T P T/2
−

PP
T/2
f (t)e−jnv

0
tdt. (4.23)
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Figure 4.7 The transformation of a discrete spectrum into a continuous one.

By comparing these two equations 4.22 and 4.23 one can conclude that the
continuous spectrum F( jv) (4.22) of the non-periodic function, being scaled by
1/T iTT s identical to the envelope of the line spectrum (4.23) of the periodically
repeated given function:

1

2
C
nN 1T =T2 Cn= P T/2

−

PP
T/2
f (t)e−jnv

0
tdt=F( jv) |

v=nv
0

. (4.24)

From the above it also follows that the phase spectrum:

Y
n
=Y (v) |

v=nv
0

. (4.25)

Since the continuous spectrum is actually a line spectrum scaled by frequency
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1/T,TT its measurement is in the unit of a function multiplied by a unit of time,
as was previously mentioned.

4.3.3 Symmetry properties of the Fourier transform

Our objective in this section is to establish several of the symmetrical properties
of the Fourier transform in order to use them in our further studies. Replacing
e−jvt in equation 4.13a by trigonometric functions, using Euler’s identity, we
will get

F( jv)= P2
−

PP
2
f (t) cos vt dt− j P2

−

PP
2
f (t) sin vt dt (4.26)

All the functions, cos vt and sin vt, are real functions of time, therefore both
integrals in equation 4.26 are real functions of v. Thus, we may write

F( jv)=A(v)− jB(v)=|F( jv) |ejw(v), (4.27)

where

A(v)= P2
−

PP
2
f (t) cos vt dt (4.27a)

B(v)= P2
−

PP
2
f (t) sin vt dt (4.27b)

and

|F( jv) |=√A2(v)+B2(v) (4.27c)

w(v)=tan−1
−B(v)
A(v)

. (4.27d)

Replacing v by (−v) shows that A(v) and |F( jv) | are both even functions of
v, and B(v) and w(v) are both odd functions of v. Let us now consider
three cases.

(a) Function f (t) is an even function of t

As is known, an even function is symmetrical about the vertical axis, and an
odd function is symmetrical about the origin. Since the cosine and sine are even
and odd functions of t respectively, then f (t) cos vt is an even function and
f (t) cos vt is an odd function of t. Therefore the integral of symmetrical limits
in equation 4.27b is zero, i.e., B(v)=0 and

F( jv)=A(v)= P2
−

PP
2
f (t) cos vt dt=2 P2

0
PP f (t) cos vt dt. (4.28)

With those results we may conclude that the Fourier transform of an even
function is a real even function of v and the phase function in (4.27d) is zero
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or p for all v. Replacing e−jvt in (4.13b) by trigonometrical functions, yields

f (t)=
1

2p P2
−

PP
2
F( jv) cos vt dv+ j

1

2p P2
−

PP
2
F( jv) sin vt dv. (4.29)

Since F( jv) is a real and even function of v, the second integrand is an odd
function of v which results in a zero imaginary part of equation 4.29. Thus, in
this case

f (t)=
1

p P2
0
PP A(v) cos vt dv. (4.30)

Comparing the equations 4.28 and 4.30, we may see that the arguments v and
t might be interchanged, i.e., considering

F( jt)=F(−jt)

(since it is an even function) as a function of t, then its spectrum should be
f (v)= f (−v) as shown in Fig. 4.8 (a and b).

(b) Function f (t) is an odd function of t

In this case the function f (t) cos vt is an odd function of t and f (t) sin vt is an
even function of t. Therefore, the integral in equation 4.27a is zero, i.e. A(v)=
0 and

F( jv)=− jB( jv)=− j2 P2
0
PP f (t) sin vt dt, (4.31)

i.e., F( jv) is a pure imaginary and odd function of v and therefore w(v) is

Figure 4.8 Interchange between the function and its spectrum: (a) a rectangular pulse f (t) and its

spectrum F( jv), (b) a rectangular pulse spectrum f (v) of the time sinc function.
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±p/2. The function F( jv) cos vt is an odd function of v, therefore the first
integral in equation 4.29 turns into zero and

f (t)=
1

p P2
0
PP B(v) sin vt dt. (4.32)

The interchanging properties of the time function and its spectrum are applicable
also in this case, i.e. consideration of the function

F(−jt)=−F( jt)

as a function of time yields its spectrum as f (v).

(c) Function f (t) is a non-symmetrical function, i.e., neither even nor odd

Any non-symmetrical function can be presented as the sum of an even and odd
function, i.e.,

f (t)= f
e
ff (t)+ f

o
ff (t).

However,

f (−t)= f
e
ff (t)− f

o
ff (t),

which means that such a function does not obey either an even or odd function
definition. Performing summation and subtraction of the above expression we
obtain

f
e
ff (t)=

1

2
[ f (t)+ f (−t)], f

o
ff (t)=

1

2
[ f (t)− f (−t)].

With this result of splitting a non-symmetrical function into two subfunctions:
even and odd, we may prove that in this case F( jv) is a complex function,
whose real part is even while the imaginary part is an odd function of v. Finally,
we note that the replacement of v by −v in equation 4.27 gives the conjugate
complex of F( jv), i.e.,

F(−jv)=A(v)+ jB(v)=F* ( jv),

and we have

F( jv)F(−jv)=F( jv)F* ( jv)=|F( jv) |2=A2(v)+B2(v). (4.33)

4.3.4 Energy characteristics of a continuous spectrum

If f (t) is a periodic function of either the voltage across or the current through
a circuit, then (1/T ) ∆T

0
f 2(t)dt is proportional to the average power delivered to

this circuit. With a complex form of the Fourier series, applied to a non-
sinusoidal function, we obtain

1

T P T
0
PP f 2(t)dt= ∑

2

n=−2
ACn2 B2 , (4.34)
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which might be interpreted as the sum of the powers of all the amplitude
spectrum components of a given function(*). In accordance with the previously
explained relationship between the discrete and continuous spectra (para. 4.3.2),
we can easily obtain an expression similar to equation 4.34, but for the non-
periodic function f (t). For this purpose we first multiply equation 4.34 by T
and replace (1/2)C

n
by (1/T ) |F( jv) |

v=nv
0

:

P T
0
PP f 2(t)dt= 1T ∑ |F( jv) |2v=nv0 . (4.35)

Now, when T�2 and nv0=v, then

1

T
=
v0
2p
=
v/n

2p K
n�2
�
dv

2p

and replacing the sum in equation 4.35 by the integral, we obtain

lim
T�2

∑
2

n=−2

1

T
|F( jv) |2

v=nv
0

=
1

2p P2
−

PP
2
|F( jv) |2dv. (4.36)

or, finally

P2
−

PP
2
f 2(t)dt=

1

2p P2
−

PP
2
|F( jv) |2dv, (4.37)

This equation is a very useful expression known as Parseval ’s theorem, which
confirms the connection between the energy associated with f (t) and its
spectrum. In other words, equation 4.37 shows that the energy of the signal can
be calculated either by an integration over all the time of applying the signal in
the time domain or by an integration over all the frequencies in the frequency
domain.
In accordance with this theorem, we are able to calculate the energy associated

with any bandwidth of a given function by integrating |F( jv) |2 over an appro-
priate frequency interval, i.e., that portion of the total energy lying within the
chosen interval, or energy density (J/Hz). In other words, the shape of |F( jv) |2
gives the ‘‘picture’’ of energy distribution in the spectrum of a non-periodic
function, as is shown, for example, in Fig. 4.9. For instance, 90% of the total
energy of a rectangular pulse is concentrated into the frequency interval from
v=0 to v=2p/d. The narrower the pulse the wider the bandwidth interval,
where most of the energy is concentrated.
In the physical world, we may find examples of this phenomenon. For instance,
a lightning stroke, which is of very short duration, produces observable signal
frequencies over the entire communication spectrum from the relatively low
frequencies used in radio reception to the considerably higher ones used in
television reception.

(*)The above equation is also known by the statement that the power delivered to the circuit by a
non-sinusoidal function is equal to the algebraic sum of the powers of all the harmonics, which
represent this function.
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Figure 4.9 The amount of energy |F ( jvt) |2dv associated with f (t) lying in the bandwidth dv.

Example 4.3

As an example of using Parseval’s theorem, let us assume that a 5 kV impulse
of rectangular form, shown in Fig. 4.5(a), is applied to the input of an electrical
circuit. Let us find the energy delivered to the circuit if R

in
=1 V and the

duration of the impulse t=2ms.

Solution

The Fourier transform of such an impulse in accordance with equation 4.20b
is

F( jv)=V0VV t Sa Avt2 B=V0VV t sin (vt/2)vt/2
,

which in this case is pure a real function. Using Parseval’s theorem, we have

W
1
WW
V
=
1

2p P2
−

PP
2
|F( j ) |2dv=

(V0VV t)2
2p P2

−

PP
2
Asin (vt/2)vt/2 B2dv.

By changing the variable x=vt/2 we have dv= (2/t)dx and

W
1
WW
V
=
V 2
0
t

p P2
−

PP
2
Asin xx B2dx= 25·106 ·2·10−3p

3.142=50 kJ(*).

The same might be calculated straightforwardly

W
1
WW
V
= P2
−

PP
2
v2(t)dt=25·106 · tKt/2

−t/2
=25·106 ·2·10−3=50 kJ.

.

(*)The value of the integral in this expression can be calculated with computer programs like
MATLAB, MATCAD or tables of integrals.
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4.3.5 The comparison between Fourier and Laplace transforms (similarities and
differences)ffff

As was shown in section 3.2 the one-sided Laplace transform is a function of s:

F(s)= P2
0
PP f (t)e−stdt, (4.38)

where s is a complex argument with a real part c and an imaginary part v, i.e.,
s=c+ jv. It also was shown that the Laplace transform exists only if the
integral in equation 4.38 converges, i.e., the function f (t) is restricted:

| f (t) |<Meat while a<c<2. (4.38a)

The Fourier transformation is defined over the entire time and not just for the
positive values of time. However, in the circuit analysis, as was previously
mentioned, the forcing functions and their responses are usually initiated at t=
0. Therefore, for such functions the Fourier transform (equation 4.13a) might
be written as

F( jv)= P2
0
PP f (t)e−jvtdt. (4.39)

Comparing the above two equations 4.38 and 4.39, we may find that, by
assuming in the Laplace transform (equation 4.38) that c=0 and s= jv, both
transforms are quite similar. However, the integral in equation 4.39 converges,
if

| f (t) |<Meat while a<0. (4.39a)

This restriction is stronger than equation 4.38a, and means that the given
function f (t) does not exceed some exponentially decreasing functions. Some of
the functions useful in circuit analysis do not meet this condition. For instance,
functions such as unit functions, ramp functions, increasing exponential func-
tions, and periodic functions belong to this category. For the function which
does possess condition (equation 4.39a) we may find the Fourier transform by
just replacing s by jv in the Laplace transform, i.e.,

F( jv)=F(s) |
s=jv
. (4.40)

This way of finding the Fourier transform or function spectra for most of the
non-periodic functions is the simplest and most convenient one, i.e., for this
purpose we can simply use the Table of Laplace transform pairs (see Table 3.1).
The inverse Fourier transform (equation 4.13b) is also similar to the inverse

Laplace transform

f (t)=
1

2pjp P c+j2
c
PP
−j2

F(s)estds, (4.41)

if we assume in equation 4.13b that c=0 and s= jv, which means that the
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integration in equation 4.41 takes places on an imaginary axis. The restriction
(equation 4.39a) also satisfies equation 4.38a, thus a<c in equation 4.38a also
means a<0 in (4.39a), since c=0. Therefore, for all the functions which meet
condition of equation 4.39a, we may use all the rules for finding the inverse
Fourier transform by applying those derived for the Laplace transform in
Chap. 3. Finally we should note that, for functions that do not meet conditions
of equation 4.39a, we still may calculate their Fourier transform, however not
straightforwardly (see further on).

4.4 SOME PROPERTIES OF THE FOURIER TRANSFORM

Keeping in mind the similarity between Fourier and Laplace transformations,
a brief account of the properties of the Fourier transform will be given here
(the proof is similar to that given in section 3.4 for the Laplace transform).

(a) Property of linearity

If f1ff (t) and f2ff (t) have Fourier transforms F1 ( jv) and F2 ( jv) respectively, then

F[ f1ff (t)± f2ff (t)]=F1 ( jv)±F2 ( jv), (4.42)

i.e., the Fourier transform of the sum (difference) of two (or more) time functionsffff
is equal to the sum (difference) of the transforms of the individual time functionsffff
and conversely:

F−1[F1 ( jv)%F2 ( jv)]=F−1[F1 ( jv)]±F−1[F2 ( jv)]= f1ff (t)± f2ff (t).
(4.43)

It is also obvious that for any constant K

Kf (t)<KF( jv). (4.44)

The above properties are also known as superposition and homogeneity
properties.

(b) DiVi erentiation propertiesVV

Let us derive the transformation of the derivative of function f (t). If F( jv) is
the Fourier transform of f (t), then

F GdfdtH= P2
−

PP
2
e−jvt

df

dt
dt.

Its integration by parts, u=e−jvt and dv=df,ff gives

F GdfdtH= f (t)e−jvtK2
−2
+ jvP2

−

PP
2
f (t)e−jvtdt= jvF( jv), (4.45)

since the first term in this expression gives zero for both limits t=±2 (note
that the given function, having a Fourier transform, must vanish to zero when
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|t |�2). Thus, differentiating a time-domain function corresponds to the multi-ffff
plication of a frequency-domain function F( jv) by the factor jv. So we may
write

F GdfdtH= jvF( jv). (4.46)

This result may be readily extended to the general case for derivatives of order
n

F GdnfndtnH= ( jv)nF( jv). (4.46a)

For the one-sided Fourier transform in which the first term in equation 4.45
turns into f (0), so in this case, we will have

F GdfdtH= jvF( jv)− f (0), (4.46b)

which is similar to the differentiation property of the Laplace transform (it isffff
obvious due to the similarity between the one-sided Fourier transform and
Laplace transform).

(c) Integration propertiesII

Let G( jv) be a spectrum of an integral g(t)=∆t
−2
f (t)dt. In accordance with

the differentiation theorem, we may find that the Fourier transform of theffff
function f (t)=dg/dt will be

F( jv)= jvG( jv).

Thus,

G( jv)=
F( jv)

jv
,

or

F GP t
−

PP
2
f (t)dtH=F( jv)jv , (4.47)

i.e., the integration in the time domain corresponds to the division by jv in the
frequency domain. For the one-sided Fourier transform this result will not be
changed, since the integral from −2 to 0 turns into zero and the lower limit
in equation 4.47 will simply be zero. However, in order for the function g(t) to
be transformable, g(2) must be equal to 0 (in other words, this requires that
g(2)=∆2

−2
f (t)dt=F(0)=0). If this condition is not satisfied, then the more

general result is

F GP t
−

PP
2
f (t)dtH=F( jv)jv +pF(0)d(v). (4.47a)
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(More explanations and examples of using this result can be seen further on in
the following sections.)

(d) Scaling properties

Next let us consider one of the most interesting properties of the Fourier
transformation – the effect of changing the time scale of a function, i.e. replacingffff
argument t by a new one at, where a is some positive constant. If the given
function is f (t), the time-scaled function becomes f (at). Taking the Fourier
transformation of such a function, we have

F{ f (at)}= P2
−

PP
2
f (at)e−jvtdt. (4.48)

By changing the variable l=at the differentialffff dt becomes dl/a and substituting
this in equation 4.48, we obtain

F{ f (at)}=
1

a P2
−

PP
2
f (l)e−j(v/a)ldl=

1

a
F AjAA vaB . (4.49)

From this relation we may conclude that the scaling of the variable t in the
time domain results in a reciprocal scaling of the variable v in the frequency
domain. In addition, there is a scaling of the spectrum magnitude F( jv) by 1/a.
Scaling properties of the Fourier transform provide a mathematical justifica-
tion for the phenomenon described in the preceding sections that shortening
the duration of a pulse, i.e., expressing it in a larger scale (a>1) as f (at), results
in an a times wider spectrum F( jv/a) being expressed in a smaller scale v/a.
Thus, for instance, a pulse f (t) which occurs from 0 to 1 s after scaling by a=
5, transforms to a pulse of the same form which will occur from 0 to 1/5 s
(since f (t1 )= f [a(t1/a)] where t1/a is a new time after scaling). The frequency
spectrum F( j(v/5)) will be five times wider because of the new frequency scale.

(e) Shifting properties

As another significant property of the Fourier transform, let us consider the
effect of shifting, or delaying, in the time domain. That is, let us find theffff
transform of f (t−t) where t is a shifting constant. By defining a new variable
of integration l=t−t in equation 4.13b, we have

f (t−t)=
1

2p P2
−

PP
2
F( jv)ejv(t−t)dv=

1

2p
e−jvt P2

−

PP
2
F( jv)ejvtdv,

or

F[ f (t−t)]=e−jvtF( jv). (4.50)

The physical meaning of this result is that a delay in the time domain (the
function f (t−t) is delayed t seconds in respect to f (t)) corresponds to a phase
shift by −vt in the frequency domain.
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(f ) InterchangingII t and v properties

Finally, let us consider once again the property of interchanging t and v in the
Fourier transform pairs. In the discussion about the symmetrical properties
(section 4.3.3), we have already considered such an interchanging. Now let us
show that this property is general and can be applied to any function f (t)-
symmetrical and non-symmetrical. To prove this statement, we first change the
sign of v in equation 4.13b and put the factor 1/2p inside the integral:

f (t)= P2
−

PP
2

1

2p
F(−jv)e−jvtd(−v)= P2

−

PP
2

F(−jv)
2p

e−jvtdv. (4.51)

Secondly, we multiply both sides of equation 4.13a by 1/2p and change the sign
of v:

1

2p
F(−jv)=

1

2p P2
−

PP
2
f (t)ejvtdt. (4.52)

Now, by interchanging t and v in equations 4.51 and 4.52, we have

f (v)= P2
−

PP
2

F(−jt)
2p

e−jvtdt, (4.53a)

1

2p
F(−jt)=

1

2p P2
−

PP
2
f (v)ejvtdv, (4.53b)

or in short

1

2p
F(−jt)< f (v). (4.54)

Comparing this expression with equation 4.15 we may state that, if the time
function f (t) has as its spectrum the function F( jv), then the time function
F(−jt) will have as its spectrum the function f (v).
With the help of these properties, we can get a new set of transform pairs by
simply using known ones. For instance by applying equation 4.54, with the
results of Example 4.2 given in equation 4.20, we have

1

2p

2V0VV
− jt

sin
− jtt
2
<GV0VV |v |<

t

2

0 |v |>
t

2
,

or after taking −j out of sine:

V0VV t Sa
tt

2
<G2pV0VV |v |<

t

2

0 |v |>
t

2
,
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which means that the rectangular pulse in the frequency domain represents a
spectrum of a sinc function in the time domain as shown in Fig. 4.8.
Other properties of the Fourier transform may be readily derived in a way

and manner used in connection with the Laplace transform due to the similarity
between both transforms. The above discussed Fourier transform properties
and some other important ones are summarized in Table 4.2.

Table 4.2TT Fourier transform operations

Operation f (t) F ( jv)

1 Addition ∑
n

n=1
f
i
ff (t) ∑

n

n=1
F
i
( jv)

2 Scalar multiplication Kf (t) KF ( jv)

3 Time differentiation:ffff

(a) two-sided transform jvF( jv)
d

dt
f (t)

(b) one-sided transform jvF ( jv)− f (0)
d

dt
f (t)

4 Time integration

(a) P2
−

PP
2
f (t)dt=0 P t

−

PP
2
f (t)dt

F ( jv)

jv

P t
−

PP
2
f (t)dt F ( jv)

jv
+pF (0)d(v)(b) P2

−

PP
2
f (t)dt≠0

5 Time-shift f (t±a) e±jvaF( jv)

6 Frequency-shift f (t)e± jv
0
t F[ f (v±v0)]

1

a
F AjAA vaB7 Time-scaling f (at)

8 Frequency differentiationffff (−jt) f (t)
d

dt
F ( jv)

P2
−

PP
2
F ( jv)dv9 Frequency integration

f (t)

(−jt)

10 Convolution in time domain f1 (t) 1 f2ff (t) F1 ( jv)F2 ( jv)

11 Multiplication in time domain

(a) by sine f (t) sin v1t
1

2j
(F[ j(v−v1 )]−F[ j(v+v1 )])

(b) by cosine f (t) cos v1t
1

2
(F[ j(v−v1 )]+F[ j(v+v1 )])

P2
−

PP
2
f 2 (t)dt

1

2p P2
−

PP
2
|F( jv) |2dv12 Parseval’s theorem
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Figure 4.10 A pulse (a), its magnitude (b) and phase (c) spectra (d=t).

As an example of using Fourier transform properties let us derive the spectrum
of the rectangular pulse shown in Fig. 4.10(a). This pulse is positioned at
0<t<t and may be considered as shifting in respect to the pulse of Example
4.2 (note that t=d). Therefore, in order to obtain its spectrum we shall use the
time shifting property. With the results of equation 4.20 in Example 4.2, and
using equation 4.50, we have

F{ f
shift
ff (t)}=FGFAt− t2BH= 2V0VVv sin vt2 e− j vt2

Thus, the magnitude spectrum (Fig. 4.10(b))

|F( jv) |=V0VV t Sa
vt

2
,

which is the same as in Example 4.2. The phase spectrum, however, will be

Y(v)=−
t

2
v,

which is declined lines changing from 0 to −p, as shown in Fig. 4.10(c), i.e.,
taking into consideration the sign of sin (vt/2), we have

Y(v)=−
t

2
v for 0<v<

2p

t Asin vt2 >0B
Y(v)=−

t

2
v+p for

2p

t
<v<

4p

t Asin vt2 <0B .
Our conclusion from this example is that time shifting does not influence the
magnitude spectrum of the function, but changes its phase spectrum.

4.5 SOME IMPORTANT TRANSFORM PAIRS

For our future study of the Fourier transform technique, we shall develop the
Fourier transform expression for those functions frequently used in circuit
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analysis. For this purpose we will do it either straightforwardly, using equations
4.13, or by applying the Fourier transform properties listed in Table 4.2.

4.5.1 Unit-impulse (delta) function

As we have already discussed in the previous chapter, the unit-impulse or delta
function is defined as a time function which is zero when its argument is less
or greater than zero and which is infinite when its argument is zero, while
having a unit area, i.e.,

d(t−t0 )=0 t−t0≠0 (t≠t0 ) (4.55a)

P2
−

PP
2
d(t−t0 )=1 t−t0=0 (t=t0 ). (4.55b)

If the switching operation occurs at t=0 (which always can be done by choosing
t0=0), we have

d(t)=0 t≠0 (4.56a)

P 0+
0
PP
−

d(t−t0 )=1 t=0. (4.56b)

Multiplication of the delta function by a constant will not affect equation 4.55affff
and equation 4.56a, because the value of this function must still be zero when
the argument is not zero and approaches infinity at t=0. However, this multi-
plication will change the integrals’ value in equation 4.55b and equation 4.56b:

P2
−

PP
2
Ad(t)dt=a. (4.57)

This means that the area under the impulse is now equal to the multiplying
factor, which is called the strength of the impulse. Following this rule we may
interpret the multiplication of the delta function by any other function as
follows:

P2
−

PP
2
f (t)d(t)dt= f (0), or (4.58a)

P2
−

PP
2
f (t)d(t−t0 )dt= f (t0 ). (4.58b)

In this case, therefore, the strength of the impulse is the value of that function
at the time for which the impulse argument is zero. For instance, the strength
of the impulse multiplied by sine-function f (t)d(t)=sin (vt+60°) d(0) is �3/2.
This property of a unit impulse function is sometimes called the sampling
property. The graphical symbol for an impulse, used commonly, is an arrowhead
line erected at the moment of the time when the impulse is applied (Fig. 4.11).
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Figure 4.11 Positive and negative impulses of different strengths are plotted at the time of theirffff

appearances (a), a spectrum of impulse function (b).

The strength of the impulse is usually indicated by adjusting the arrow, as
shown in Fig. 4.11(a).
Now bearing in mind the above properties of the impulse function and using
the equation for finding the Fourier transform, we obtain

F{d(t−t0 )}= P2
−

PP
2
e−jvtd(t−t0 )=e−jvt0 (4.59a)

and

F{d(t)}= P2
−

PP
2
e−jvtd(t)=e−jvtK

t=0
=1, (4.59b)

or

F
d
( jv)=1. (4.60)

This function is shown in Fig. 4.11(b) as the straight line of a unit magnitude.
Note that the spectrum of the impulse function is infinite, since it goes to
infinity. The result of equation 4.59a may also be written as

F{d(t−t0 )}=e−jvt0=cos vt0− j sin vt0 . (4.61)

Therefore, the energy density of a delta function is unity:

|F{d(t−t0 )}|2=cos2 vt0+sin2 vt0=1. (4.62)

This result states that the energy (released in a unit input resistance) per unit
bandwidth is unity at all frequencies. Since the impulse function has an infinite
bandwidth, the total energy in the unit impulse is infinitely large (note that a
unit impulse function is only a mathematical model of real pulse source functions
which are, of course, bound).
In order to find the reverse Fourier transform of a unit impulse spectrum, we
shall use the property of the Fourier transform which states that there is a
unique one-to-one correspondence between a time function and its Fourier
transform. Therefore, we can say that the inverse Fourier transform of e−jvt

0
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is d(t−t0 ), thus

F{e−jvt
0
}=
1

2p P2
−

PP
2
e−jvt

0
ejvtdv=d(t−t0 ), (4.63)

or in the symbolic way:

d(t−t0 )<e−jvt0 . (4.64)

Next, by using the property of interchanging arguments t and v in Fourier
pairs, we may readily obtain from equation 4.64.

ejv
0
t<2pd(v−v0 ), (4.65a)

which might be interpreted as a Fourier pair for a unit impulse in the frequency
domain located at v=v0 . By changing the sign of the pulse location v0 to
−v0 , we obtain

e−jv
0
t<2pd(v+v0 ). (4.65b)

By letting v0=0 we obtain

1<2pd(v), (4.66a)

from which it follows that

K<2pKd(v). (4.66b)

Thus, the frequency spectrum of a constant K function in the time domain is a
2pK strength impulse in the frequency domain. An interpretation of this result
is that a d.c. voltage or current forcing function, whose frequency is considered
as zero, i.e., v0=0, has its Fourier transform in accordance with equation 4.66.
Although the time functions in equation 4.65 are complex functions of time,
which are not appropriate in the existing world of reality, with their help we
can obtain in a very simple way the frequency spectra of such important
functions as sine and cosine. Thus,

F{cos v0t}=F G12 (ejvt+e−jvt)H=pd(v−v0 )+pd(v+v0 ), (4.67)
or

cos v0t<p[d(v−v0 )+d(v+v0 )], (4.68a)

and similarly

sin v0t< jp[d(v+v0 )−d(v−v0 )]. (4.68b)

The above expressions indicate that the frequency spectra of sinusoidal functionsff
are given as a pair of impulses, located at v=±v0 .
This result actually corresponds to the representation of a sinusoidal function
by imaginary frequencies s± jv0 , which was used in our previous study of
circuit analysis for instance, in the symbolic or complex method.
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Figure 4.12 A short pulse (a) and its amplitude (b) and phase (c) spectra.

Example 4.4

Consider once again the rectangular pulse shown in Fig. 4.12(a). This pulse of
a unit area (since d(1/d)=1) approaches a unit impulse when d�0. In accor-
dance with the result of Example 4.2 (see equation 4.20b) its spectrum is

F( jv)=
2

vd
sin
vd

2
. (4.69)

By approaching d�0 in equation 4.69, we will obtain the Fourier transform of
the unit impulse:

F
d
( jv)= lim

d�0

sin (vd/2)

vd/2
=1. (4.70)

Figure 4.12(b) shows the transformation of the spectrum (equation 4.69) into
the spectrum (equation 4.70). The zero points of the spectrum, given for a sinc
function (1) at k(2p/d) (k=1, 2, . . .), move to the right along the frequency axis
to higher frequencies (2) so that for d=0, the whole spectrum approaches a
straight line (3). Note that the phase spectrum of the impulse function, applied
at t0=0, is zero. However, the phase spectrum of the impulse, applied at the
time t0 , will be in accordance with equation 4.64, F( jv)=e−jvt0 , which gives

Y(v)=−t0v. (4.71)

Graphically it is a straight line having an angle of declination a3tan−1(−t0 )
as shown in Fig. 4.12(c).

4.5.2 Unit-step function

Our next consideration will be the unit-step function u(t). In the previous
chapter we introduced this function, which usually indicates a switching or
failure action. It is defined (Fig. 4.13) as

u(t)=G0 t<01 t>0,
(4.72a)
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Figure 4.13 A unit-step function: at t=0 (a) and at t=t0 (b).

or

u(t−t0 )=G0 t<t01 t>t0 .
(4.72b)

Thus, the unit-step function is zero for all values of its argument (time) which
are less than zero (t<0) or less than t0 (t>t0 ) (note that in both cases the
argument (time) is just negative), and is unity for all positive values of its
argument (t>0) or (t>t

0
). In order to find the Fourier transform of the unit-

step function, we must indicate that this function is the kind of function whose
transform cannot be obtained straightforwardly. This happens because the
integral in equation 4.13 is unbound, which means that the unit-step function
does not approach zero as t approaches infinity. One common way of achieving
the Fourier transform of the unit-step function is by representing it as a sum of
a constant and a signum function (Fig. 4.14):

u(t)=
1

2
[1+sgn (t)]=

1

2
+
1

2
sgn (t). (4.73)

In accordance with equation 4.66 the transform of the first member in equation
4.73 will be pd(v). As is known the second member in equation 4.73, a signum

Figure 4.14 A signum function (a) and a representation of a unit function by the sum of a constant

and a signum function (b).
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function, is defined as

sgn (t) G−1 t<01 t>0.
(4.74a)

or

sgn (t)=u(t)−u(−t). (4.74b)

The signum function can also be written as

sgn (t)= lim
c�0
[e−ctu(t)−ectu(−t)].

Factor e±ct is used here (as a convergence factor) to insure the approaching of
unit step zero, as t gets very large (i.e., when t�2). On the other hand, by
approaching c�0, we are getting back to the originally given signum function.
Using the definition of the Fourier transform, we obtain

F{sgn (t)}= lim
c�0 C P20PP e−cte−jvtdt− P 0−PP 2 ectejvtdtD

= lim
c�0 A−e−ctc+ jv K2

0
−
−ect
c− jv K0

−2
B= limc�0 − j2vc2+v2

=
2

jv
.

Thus,

sgn (t)<
2

jv
, (4.75)

and

F{u(t)}=F G12H+FG12 sgn (t)H=pd(v)+ 1jv ,
or

u(t)<pd(v)+
1

jv
. (4.76)

The first term represents an impulse, in the frequency domain, of strength p
occurring at v=0. The second term is the same as the Laplace transform of a
unit-step function in which s has been replaced by jv.
The magnitude and phase spectra of the unit-step function are shown in
Fig. 4.15. Note that the magnitude spectrum of a unit-step contains the harmon-
ics of all the frequencies, however the energy density at the low frequency
harmonics is much higher. When v�0 the magnitude spectrum and its energy
approach infinity. In general, any unbound signal is characterized by an infinite
amount of energy.
Sudden spouts of d.c. or a.c. currents of industrial frequency (for instance by
starting motors or short-circuiting) are similar to a unit-step function with a
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Figure 4.15 Magnitude (a) and phase (b) spectra of a unit-step function.

high energy density at low frequencies. This is the reason that most interference
occurs on low-frequency radio broadcasts ( long waves) and are almost invisible
on high frequencies (short waves).

4.5.3 Decreasing sinusoid

Such a sine function is defined as

f (t)=e−at sin v0t u(t),

and its Fourier transform might be found as

F( jv)= P2
0
PP e−at sin v0te−jvtdt= v0

(a+ jv)2+v2
0
. (4.77)

This results in magnitude spectrum

|F( jv) |=
v0

√(a2+v2
0
−v2)2+4a2v2

, (4.78)

and phase spectrum

Y(v)=−tan−1
2av

a2+v2
0
−v2

. (4.79)

The curves of |F( jv) | and Y
(v)

are shown in Fig. 4.16, where

v(max)=
√v2+a2.

4.5.4 Saw-tooth unit pulse

We can use the differentiation property to find the Fourier transform avoidingffff
the straightforward integration of 4.13(b), which is in many cases extremely
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Figure 4.16 A decreasing sinusoidal function (a) and its magnitude (b) and phase (c) spectra.

difficult. Let us illustrate this method on the saw-tooth pulse, Fig. 4.17, where
F( jv) represents the unknown spectrum of this pulse. After a single differentia-ffff
tion the saw-tooth pulse (a) takes the form (b). Now we add an equal and
opposite impulse to the signal in (b) to cancel the appearing one. The result is
the rectangular pulse remaining in (c). The second integration gives two impulses
in (d), whose transform can be easily found, as (1/a)(1−e−jva ). Hence, by

Figure 4.17 A unit saw-tooth pulse (a), its first differentiation (b), after adding a unit impulse (c)ffff

and after the second differentiation (d).ffff
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equaling:

1

a
(1−e−jva)= ( jv)2F(v)+ jve−jva,

we obtain

F(v)=
−1+ (1+ jv)e−jva

av2
.

This method, actually, is generalized because of the fact that any signal may be
approximated as a piecewise-linear, in which case the signal reduces to impulses
after two (or three) differentiations.ffff

4.5.5 The Fourier transform of a periodic time function

Here we face the same problem, which we had in section 4.5.2 looking for the
Fourier transform of a unit-step function. Any periodic function is, obviously,
unbound, since it does not approach zero, as t approaches infinity. In order to
obtain the Fourier transform of a periodic function we should distinguish
between two cases: two-sided and one-sided transforms. The two-sided Fourier
transform of a sinusoidal function, as shown in Fig. 4.17(a), has already been
found in section 4.5.1 (see equation 4.68)].
However, in circuit analysis, the most frequently used forcing periodic func-
tions are sinusoidal functions applied at t=0, shown in Fig. 4.18(b). In this
case, we can define such a function as

f (t)=sin v0t u(t). (4.80)

Using the Fourier transform property of multiplication by sine/cosine in the
time domain (see entry 11 in Table 4.2) we have

Figure 4.18 Sinusoidal function: (a) for both sides of the t-axis and (b) for only the positive side of

the t-axis (t>0).
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F{u(t) sin v0t}=
1

2j
(F
u
FF [ j(v−v0 )]−FuFF [ j(v+v0 )])

=
1

2j Apd(v−v0 )+ 1

j(v−v0 )
−pd(v+v0 )−

1

j(v+v0 )B
=
p

2j
[d(v−v0 )−d(v+v0 )]+

v0
v2
0
−v2

.

Thus

sin v0tu(t)<
jp

2
[d(v+v0 )−d(v−v0 )]+

v0
v2
0
−v2

. (4.81)

Note that the second member on the right side of equation 4.81 might be readily
obtained from the Laplace transform of the sinusoid by replacing s by jv:

F{sin v0t}=L{sin v0t}s=jv=
v0

s2+v2
0
K
s=jv
=

v0
v2
0
−v2

(4.82)

The first member on the right side of equation 4.81 represents the switching
property of the unit-step function.
Table 4.3 gives the Fourier transform pairs for most of the familiar time
functions encountered in circuit analysis. They may be used for finding the
inverse transform of frequency domain functions, as was done for the Laplace
transform method.

4.6 CONVOLUTION INTEGRAL IN THE TIME DOMAIN AND ITS
FOURIER TRANSFORM

In the circuit analysis technique, applying Fourier transforms, the multiplication
of two transforms (namely, the transform of the forcing function and the system
function) is frequently used to obtain the transform of the response function.
The inverse-transform operation must be performed to obtain the response
function. In a similar way, as was shown in the previous chapter (with respect
to the Laplace transform), we may state that the inverse transform of the
product of two Fourier transforms is the convolution integral, i.e.,

f
res
ff (t)=F−1{F1 ( jv)F2 ( jv)}= f1ff (t)1 f2ff (t), (4.85a)

where

f1ff (t)1 f2ff (t)= P2
−

PP
2
f1ff (t) f2ff (t−t)dt= P2

−

PP
2
f1ff (t−t) f2ff (t)dt. (4.85b)

Two integrals given by equation 4.85b are the two forms of the convolution
integral in a very general form. By using equation 4.85 we shall take into
consideration the physically realizable properties of electrical systems. Thus, the
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Table 4.3TT Fourier transform pairs

f (t) F ( jv)

1 d(t) 1

2 d(t−t0) e−jvt
0

3 1 2pd(v)

4 u(t) pd(v)+
1

jv

5 sgn(t)
2

jv

6 ejv
0
t 2pd(v−v0 )

7 e−atu(t)
1

a+ jv

8 te−atu(t)
1

(a+ jv)2

9 sin v0t jp[d(v+v0 )−d(v−v0)]

10 cos v0t p[d(v+v0)+d(v−v0)]

11 sin v0t u(t)
jp

2
[d(v+v0 )−d(v−v0)]+

v0
v2
0
−v2

12 cos v0t u(t) p[d(v+v0)+d(v−v0)]+
jv0
v2
0
−v2

13 e−at sin v0t u(t)
v0

(a+ jv)2+v2
0

14 e−at cos v0t u(t)
a+v0

(a+ jv)2+v2
0

15 u(t+t/2)−u(t−t/2) t
sin vt/2

vt/2

response of the system cannot begin before the forcing function is applied. Let
us say that f2ff (t)¬h(t) is the response of the system, usually resulting from the
application of a unit impulse at t=0; (see section 3.6). Therefore, h(t) cannot
exist for t<0 which means that in the second integral of equation 4.85b the
integrand is zero when t<0 and the low limit of integration may be changed
and the response function is

f
res
ff = f1ff (t)1 f2ff (t)= P2

0
PP f1ff (t−t)h(t)dt. (4.86a)

For the same reason, in the first integral of equation 4.85b, f2ff (t−t)¬h(t−t)
cannot exist for t<t, which means that the integrand is zero when t−t is
negative. The upper limit in this integral, therefore, may be changed and the



T ransient Analysis Using the Fourier T ransform 249

response function is

f
res
ff = f1ff (t)1 f2ff (t)= P t

−

PP
2
f1ff (t)h(t−t)dt. (4.86b)

Before continuing our discussion of applying the Fourier transformation method
in circuit analysis, let us consider an example of using the convolution integral.

Example 4.5

Using the convolution integral, find the output voltage v
o
(t) in the series RL

circuit, if the input v
i
(t) is a rectangular voltage pulse of 6 V in amplitude that

starts at t=0 and has a duration of 1 s (Fig. 4.19(a)). Assume that L=5 H and
R=4 V.
Mathematically the input voltage may be written as v

i
(t)=u(t)−u(t−1).

The impulse response h(t) for the given circuit (Fig. 4.19(a)) might be evaluated
as follows. Using the phasor method for analyzing circuits in the frequency
domain or the so-called symbolic method (see further on), we obtain

H( jv)=V
o,
VV
d
( jv)=V

i,
VV
d

R

R+ jvL
=1

4

4+ jv5
=0.8

1

0.8+ jv
,

or, with entry 7 in Table 4.3,

h(t)=0.8e−0.8tu(t).

Now, applying the convolution integral yields

v
o
(t)=v

i
(t)1h(t)= P2

−

PP
2
6[u(t−t)−u(t−t−1)][0.8e−0.8tu(t)] dt

(4.87)

or separating equation 4.87 into two integrals, we have

v0 (t)=4.8 P2
−

PP
2
u(t−t)e−0.8tu(t)dt−4.8 P2

−

PP
2
u(t−1−t)e−0.8tu(t)dt.

The first integral should be taken in the limits from 0 to t and the second in

Figure 4.19 The given circuit (a) and the input v
i
(t) and output v

o
(t) voltages (b).
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the limits from t to t−1. Thus,

v0 (t)=G 4.8 P t0PP e−0.8tdt=6(1−e−0.8t) 0<t<1

−4.8 P t−1PP e−0.8tdt=6(e0.8−1)e−0.8t=7.35e−0.8t 1>t>2.

This function is shown in Fig. 4.19(b).

4.7 CIRCUIT ANALYSIS WITH THE FOURIER TRANSFORM

As we already know, the Fourier transform extends the Fourier series to a non-
periodic function transforming the discrete spectra into continuous ones.
Therefore, we can state that the Fourier transform represents the non-periodic
function as an infinite sum of the harmonics, i.e. periodic functions possessing
vanishingly small amplitudes. Therefore, we may apply the phasor concept and
symbolic (complex) method used for steady-state analysis of the circuits driven
by sinusoidal forcing functions.
Thus, considering the general circuit of Fig. 4.20 in the time domain we will
obtain a differential equation, which describes the relation between the inputffff
(forcing) voltage v

i
(t) and the output (response) voltage v

o
(t):

a0v0 (t)+a1
dv
o
(t)

dt
+a2

d2v
o
(t)

dt2
+ · · ·=b0vi (t)+b1

dv
i
(t)

dt
+b2

d2v
i
(t)

dt2
+ · · · .

(4.88)

Taking the Fourier transform of both sides of equation 4.88 and using the
differentiation and linearity properties, yields:ffff

[a0+a1 ( jv)+a2 ( jv)2+ · · ·]Vo ( jv)=[b0+b1 ( jv)+b2 ( jv)2+ · · ·]Vi ( jv),
(4.89)

where V
i
( jv) and V

o
( jv) are the Fourier transforms of the input and output

functions v
i
(t) and v

o
(t). From this result we may write

H( jv)=
V
o
( jv)

V
i
( jv)
=
b0+b1 ( jv)+b2 ( jv)2+ · · ·
a0+a1 ( jv)+a2 ( jv)2+ · · ·

(4.90)

Figure 4.20 General passive circuit.
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where H( jv) is identified as a network or system function (usually as an impulse
response).
This is exactly the same result as would be obtained by the application of
the phasor method and analyzing the circuit of Fig. 4.20 in the frequency
domain. Note also that the same result could be achieved with the Laplace
transform simply by replacing s by jv, in an expression like equation 3.58 in
the previous chapter. Therefore, the above conclusion allows us to apply all the
methods based on the phasor concept, using the impedances Z( jv) and admit-
tances Y( jv) for finding the quantity H( jv) and solving other problems which
relate to the Fourier transform. The only difference is that here the forcingffff
functions, inputs, and the response functions, outputs, are Fourier transforms
rather than phasors. This means that in the time domain the forcing functions
and the responses are arbitrary (any) non-periodic functions rather than sinu-
soidal functions. In conclusion, just as the use of phasor (symbolic) transforms
simplified the determination of the steady-state sinusoidal response, the use of
Fourier transforms of various forcing functions can simplify the determination
of the complete response of both the natural and forced components. The reason
for this is quite simple: in both techniques, the differentiation in the time domainffff
is represented in the frequency domain by multiplication by the factor jv; and
similarly integration is related to division by the factor jv. By these means,
relatively complicated differential andffff /or integral expressions are reduced to a
relatively simple algebraic function of v.
The next step in Fourier transform analysis is to find the time-domain
description of the response transform for which we must evaluate an inverse
Fourier transform technique. Some of the methods of this procedure will be
developed in the following chapters. With the above remarks in mind, let us
now consider some specific analysis problems.

Example 4.6

Let the decreasing exponential voltage v
in
(t)=e−5tu(t) be applied to a given

circuit and be related to the output voltage v
o
(t) by the equation

dv
o
dt
+3v

o
=3v

in
.

Transforming the equation into the frequency domain using the Fourier tech-
nique, we have

( jv+3)V
o
( jv)=3V

in
( jv),

and the transfer function is

H( jv)=
V
o
( jv)

V
in
( jv)
=

3

3+ jv
.

According to Table 4.3 the Fourier transform of the applied function will be

V
in
( jv)=

1

5+ jv
.



252 Chapter #4

Therefore, the transform of the output voltage is

V
o
( jv)=H( jv)V

in
( jv)=

3

(3+ jv)(5+ jv)
.

By partial fraction expansion (see section 3.7) we obtain

V
o
( jv)=4.5

1

3+ jv
−4.5

1

5+ jv
.

By using the linearity property of the Fourier transform and the table of Fourier
transform pairs, we have

v
o
(t)=4.5(e−3t−e−5t)u(t).

4.7.1 Ohm’s and Kirchhoff ’s laws with the Fourier transform

Supposing that V
in
( jv) is the Fourier transform of voltage v

in
(t) , applied to the

one-port circuit having the impedance Z( jv), we may find the Fourier transform
of the input current as

I
in
( jv)=

V
in
( jv)

Z( jv)
=Y ( jv)V

in
( jv). (4.91)

This expression may be presented as Ohm’s law in Fourier transform form.
For two-port circuits the input/output quantities might be found if the spectral

characteristics of the transform coefficient K( jv) or the transfer admittance/
impedance Y21YY ( jv)/Z21 ( jv) are known.
Then the transform of the output voltage will be

V2 ( jv)=K21 ( jv)V1 ( jv), (4.92a)

or the output current will be

I2 ( jv)=Y21YY ( jv)V1 ( jv). (4.92b)

Note that these two expressions are similar to Ohm’s law in Fourier trans-
form form.
In a similar way, using the phasor method, Kirchhoff ’s laws’ equations can

be written and analyzed.

4.7.2 Inversion of the Fourier transform using the residues of complex functions

The inverse Fourier transform for the above expressions can be found with the
help of the residues of complex functions. Thus, if the Fourier transform of the
given function is of the form (like in 4.91) we have

F1 ( jv)
F2 ( jv)

< ∑
n

k=1

F1 ( jvk )ejvktC dd
j
v
F2 ( jv)D

v=v
k

= j ∑
n

k=1

F1 ( jvk )ejvktC ddv F2 ( jv)D
v=v
k

, (4.93a)
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where v
k
are the roots of the equation F2 ( jv)=0. If the expression in the

denominator is of the form F2 ( jv)= jvF3 ( jv), which means that F2 ( jv) has a
zero root v0=0, then the inverse Fourier transform will be

F1 ( jv)
jvF3 ( jv)

<
F1 (0)
F2 (0)

+ ∑
n−1

k=1

F1 ( jvk )ejvkt

v
k C ddv F3 ( jv)D

v=v
k

. (4.93b)

These formulas (equation 4.93) are useful for cases in which a voltage/current
source is applied (at t=0) to the circuit with zero initial conditions. Note that
for such circuits all the voltages/currents for t<0 are zero, which means that
a one-sided Fourier transform is used:

F( jv)= P2
0
PP f (t)e−jvtdt.

Formulas such as those in equation 4.93 are sometimes called ‘‘switching formu-
las’’ since they are used when the circuits are switched to different sources, i.e.ffff
for t>0.

Example 4.7

The T-circuit, shown in Fig. 4.21(a), is connected to the d.c. voltage source atTT
t=0. Find the current i2 (t) using a switching formula.

Solution

The transfer admittance of the circuit is

Y21YY ( jv)=
1

R+R//
1

jvC

·
1/jvC

R+
1

jvC

=
1

2R+ jvR2C
.

Therefore, since the Fourier transform of the input voltage is V/jv, we have

I2 ( jv)=Y21YY ( jv)V ( jv)=
V

jv(2R+ jvR2C)
.

Figure 4.21 T-circuit (a) and the waveform of the current (b).TT
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Figure 4.22 Input voltage waveform (a), a given circuit (b), and an input current waveform (c).

In this expression, in accordance to equation 4.93b, F3FF ( jv)=2R+ jvR2C,
F∞
3
( jv)= jR2C and the root v1= j2/RC. Thus,

i2 (t)=
V

2R
+

Ve
−
2

RC
t

j(2/RC)( jR2C)
=
V

2R A1−e− 2

RC
tB .

This waveform of the current i2 (t) is shown in Fig. 4.21(b).

Example 4.8

A rectangular pulse of voltage, Fig. 4.22(a), is applied to the series RL circuit
shown in Fig. 4.22(b). Find the circuit current.

Solution

The transform of the given waveform of the applied voltage may be found by
using equation 4.20a for the rectangular pulse in the interval 0–d, i.e.

V ( jv)=
V0VV
jv
(1−e−jvd ).

The transform of the circuit impedance is simply Z( jv)=R+ jvL= jL (v− jj),
where j=R/L then, with Ohm’s law, for the Fourier transforms in equation
4.91 we have

I( jv)=
V0VV (1−e−jvd )
j2vL (v− jj)

=−
V0VV
L

1−e−jvd
v(v− jj)

.

or

I( jv)=−
V0VV
L

1

v(v− jj)
+
V0VV
L

e−jvd

v(v− jj)
=I∞( jv)+I◊( jv).

The first part of the time-domain function i(t) is found by using the partial
fraction expansion (first multiplying the given fraction by ( jj)2 ):

−j2
( jjv)[ jj(v− jj)]

=
1

jjv
+

1

jj(v− jj)
=−

1

j

1

jv
+
1

j

1

j+ jv
.
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In accordance with Table 4.3 (the 5th and 7th entries) and taking into consider-
ation that u(t)=1

2
sgn (t)+1

2
, we have:

1

jv
<−

1

2
sgn (t)=−u(t)+

1

2
,

1

j+ jv
<e−jtu(t).

Therefore,

i∞(t)=−
V0VV
L j C−Au(t)− 12B+e−jtu(t)D=V0VVR (1−e−jt )− 12 V0VVR .

The second part of the current i(t) differs from the first one by the sign and theffff
shifting factor e−jvt, therefore,

i◊(t)=−
V0VV
R
(1−e−j(t−d) )u(t−d)+

1

2

V0VV
R
,

and finally

i(t)= i∞(t)+ i◊(t)=
V0VV
R
[(1−e−jt )u(t)− (1−e−j(t−d))u(t−d)].

The same results might be obtained by using the switching formula of equation
4.93b. We may write the first part of I( jv) as

I∞( jv)=−
V0VV
L

j

jv(v− jj)
,

where F1 ( jv)= j, F3FF ( jv)=v− jj and v1= jj. Then,

i∞(t)=−
V0VV
L A j− jj+ je−jtjj B=V0VVR (1−e−jt ),

and for the second part we have

i◊(t)=−
V0VV
R
(1−e−j(t−d) ).

Therefore,

i(t)=
V0VV
R
[(1−e−jt )− (1−e−j(t−d))], for t>0.

A plot of this waveform is shown in Fig. 4.22(c).
In general, the time domain current according to equation 4.91 may be found
as an inverse Fourier formula

i(t)=
1

2p P2
−

PP
2
Y ( jv)V

n
VV ( jv)ejvtdv. (4.94)
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Let us consider, for instance, applying a constant voltage source V0VV to any one-
port circuit having the admittance

Y ( jv)=G(v)− jB(v)=
cos Q

|Z( jv) |
− j

sin Q

|Z( jv) |
. (4.95)

Using for the input voltage the integral notation of a unit function(*)

u(t)=
1

2
+
1

p P2
−

PP
2

sin vt

v
dv (4.96)

we have

i(t)=
V0VV
2Z(0)

+
V0VV
p P2
−

PP
2

sin (vt−Q)
v |Z( jv) |

dv

=
V0VV
2Z(0)

+
V0VV
p P2
0
PP cos Q sin vtv |Z( jv) |

−
V0VV
p P2
0
PP sin Q cos vtv |Z( jv) |

dv,

or with equation 4.95

i(t)=
G(0)V0VV
2
+
V0VV
p P2
0
PP G(v) sin vtv dv−

V0VV
p P2
0
PP B(v) cos vtv dv. (4.97)

This expression is valid for any instant of time; however, the current in the
given circuit should be zero for t<0. Then for t>0 i(−t) should be zero, which
results in

G(0)V0VV
2
−
V0VV
p P2
0
PP G(v) sin vtv dv−

V0VV
p P2
0
PP B(v) cos vtv dv=0. (4.98)

By subtracting equation 4.98 from equation 4.97, we finally have

i
tot
= i(t)− i(−t)=

2V0VV
p P2
0
PP G(v) sin vtv dv (for t>0). (4.99)

This formula can be used for finding the one-port current when only the resistive
(active) spectrum of the one-port impedance is known. Thus, if the resistive
spectrum of the circuit is given, the most efficient method of calculating the
input current is the Fourier transform technique.

Example 4.9

As an example of using this method, let us examine a simple circuit shown in
Fig. 4.23(a). (This circuit may be considered as a first moment simplified equiva-
lent circuit of a power transformer, which is a capacitor, C, connected to a

(*)This presentation of a unit function is based on the known integral

P2
0
PP sin axx dx=Gp/2 for a>0

−p/2 for a<0
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Figure 4.23 A given circuit (a), an applied voltage (b) and the waveform of the voltage across the

resistance (c).

cable transmission line, represented by its characteristic resistance, R (see further
on in Chapter 7).) Assume that a pulse voltage of rectangular form, 4.23(b), is
applied to this circuit and find the voltage across the cable.

Solution

We first should find the real part of the transmission coefficient for v2 (t)

K
R
(v)=Re C R

R+1/jvCD=Re C jvCR1+ jvCRD= (vCR)2
1+ (vCR)2

=
(vt)2
1+ (vt)2

,

where t=RC (time constant). By treating the voltage pulse as two constant
voltages shifted by time interval t, we will have for the first voltage applied at
t=0

v∞
2
(t)=

2V0VV
p P2
0
PP KR (v) sin vtv dv=

2V0VV
p P2
0
PP (vt)2
1+ (vt)2

sin vt

v
dv.

By assigning x=vt we have v=x/t, dv= (1/t)dx and

v∞
2
(t)=

2V0VV
p P2
0
PP x sin(x/t)t1+x2

dx=
2V0VV
p

p

2
e
−
t

t=V0VV e
−
t

t .(*)

The second part of the voltage differs from the first one by the sign and theffff
shifting factor e−jvd. Therefore,

v◊
2
(t)=−V0VV e

−
t−d
t u(t−d).

(*)The integral in this expression is tabulated integral: P2
0
PP x sin axb2+x2

=
p

2
e−(ab).
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Finally, we have

v2 (t)=v∞2 (t)+v◊2 (t)=V0VV Ce− tt u(t)−e− t−dt u(t−d)D .
A plot of this waveform is shown in Fig.4.23(c).

4.7.3 Approximate transient analysis with the Fourier transform

In previous paragraphs, we have introduced how to use the Fourier transform
for solving problems in circuit transient analysis; but as we have seen, only
simple problems can be analyzed using the Fourier method straightforwardly.
The main difficulty is in the evolution of the inverse transform integral.
However, the main significance of using the Fourier transform is in the fact
that any impulse (such as signals in communication or lightning strokes in
power systems) may be presented by its spectra and with the frequency character-
istic of the circuit or system function (which usually is known) we can find the
spectra of the system input or output response. Since there is a direct connection
between Fourier transform techniques and sinusoidal steady-state analysis, the
ratio of the phasor response to the phasor forcing function presents the transfer
function or the system function

F
o
( jv)

F
in
( jv)
=K
oi
( jv)=

B

A
ej(b−a),

where A and B are the magnitudes and a and b the phase angles of the input
and output phasor for each value of v. Moreover, we may conclude that the
phasor analysis of linear circuits, which is presented in introductory courses, is
but a special case of the more general techniques of Fourier transform analysis
being studied here. As it was previously shown, the use of Fourier transforms
and system functions enables us to handle non-sinusoidal, non-periodic forcing
functions and responses. In many cases, when the analytical expression of a
system function is not known, there is the possibility of achieving it experimen-
tally. In both cases, the system function is given either analytically or experimen-
tally. To find the time-domain response, we must apply the inverse Fourier
transform

f (t)=
1

2p P2
−

PP
2
F( jv)ejvtdv, (4.100)

where F( jv) may be presented, for instance, as a product of a forcing function
V( jv) and a system function K( jv):

F( jv)=V
in
( jv)K

oi
( jv),

However, in most practical cases, when the function is fairly complicated, the
evaluation of an inverse Fourier transform can be extremely difficult. To find
the time-domain description of the response function in such cases, we may
apply approximate methods.
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(a) Method of trapezoidsMM

One of these methods is known as the method of trapezoids. To use this method
only the real part of the integrand function in equation 4.100 is necessary. To
show this, we must first simplify the inverse Fourier transform expression of
equation 4.100. Let us assume

F( jv)=G(v)− jB(v) and ejvt=cos vt+ j sin vt.

Then the integral in equation 4.100 will be

f (t)=
1

2p GP2
−

PP
2
[G(v) cos vt

+B(v) sin(vt)]dv+ j P2
−

PP
2
[G(v) sin vt−B(v) cos (vt)]dvH .

The second integral in the above expression should be equal to zero, since the
real-time function f (t) cannot include an imaginary part. This decision also
follows from the fact that the integrand is an odd function of v (G(v) is even
and B(v) is odd, therefore G(v) sin(vt) is odd and so is B(v) cos (vt)).With the
same consideration, we may conclude that the integrand of the first integral is
an even function of v. Therefore the first integral may be replaced by a double
quantity of the same integral, but in limits of 0 and 2:

f (t)=
1

p P2
0
PP [G(v) cos vt+B(v) sin(vt)]dv. (4.101a)

Furthermore, for the functions, which are zero, i.e. f (t)=0, for t<0 by changing
the sign of t, we have

f (−t)=
1

p P2
0
PP [G(v) cos vt+B(v) sin vt]dv. (4.101b)

By adding equation 4.101b to equation 4.101a we obtain a simple expression
for the inverse Fourier transform

f (t)=
2

p P2
0
PP G(v) cos vt dv for f (t)=0 |

t<0
. (4.102)

Usually function G(v) is finite for t=0 and G(v)�0 for t�2, then we can
provide the integration of equation 4.102 by parts:

f (t)=
2

p P2
0
PP 1t G(v)d sin vt= 2pt GG(v) sin vtKv=2

v=0
− P2
0
PP sin vt dG(v)dv

dvH ,
which finally gives

f (t)=−
2

pt P2
0
PP dG(v)dv

sin vt dv. (4.103)
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With this expression, we may find the approximate time-domain response, if
the frequency response G(v) is known.
Suppose the analytical or experimental curve of G(v) is known, as it is shown,

for example, in Fig. 4.24(a). We then approximate the given curve G(v) by the
piecewise-linear curve G(v) so that a series of trapezoids can be built, whose
bases are parallel to the v axis, one side is perpendicular and the other is at an
angle to the v axis. In such a way, we have obtained in the above example
three trapezoids g1 , g2 and g3 as shown in Fig. 4.24(b), which by their summation
give the approximate curve G(v):

G(v)$G(v)= ∑n

i=1
g
i
(v).

Consider now a single trapezoid g
i(v)
, which is shown in Fig. 4.25. For such a

Figure 4.24 Given curve G(v) (a) and its approximating trapezoids (b).

Figure 4.25 A single trapezoid of approximation curve G(v).
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trapezoid its derivative will be:

dG(v)

dv
=G0 for 0<v<v

i
−d
i

−g
0i
/2d
i
for v

i
−d
i
<v<v

i
+d
i
.

Then the formula in equation 4.103 yields

f (t)=
2

pt

g
0i
2d
i
P vi+di
v
PP
i
−d
i

sin vt dv=−
g
0i
pd
i
t2
[cos (v

i
+d
i
)t−cos (v

i
−d
i
)t]

=2
g
0i
v
i

p

sin v
i
t

v
i
t

sin d
i
t

d
i
t
,

and

f (t)=∑ f
i
ff (t)=

2

p
∑ g
0i
v
i
Sa (v

i
t) Sa (d

i
t). (4.104)

The time response (equation 4.104) may be calculated using the tables of sinc
function or with an appropriate computer program. It should be noted that the
approximation of G(v) by several trapezoids gives in many practical cases good
results. The method of trapezoids, actually, is a generalized method because of
the fact that any signal may by approximated as a piecewise-linear, in which
case the signal reduces to impulses after two (or three) differentiations.ffff

Example 4.10

As an example of using this method let us assume that, at the time t=0, an
exponential pulse V0VV e−at, shown in Fig. 4.26(a), is applied to RL equivalent
circuit, Fig. 4.26(b). Our goal is to find the voltage across the inductance, i.e.,
an output voltage. The Fourier transform of the output voltage may be found
as

V
o
( jv)=V

in
( jv)K

oi
( jv).

Here:

V
in
( jv)=

V0VV
a+ jv

(see 7th entry in Table 4.3) and

K
oi
( jv)=

jvL

R+ jvL
=

jvt

1+ jvt
,

where t=L /R. The real part of V
o
VV ( jv) then will be

G(v)=V0VV K jvt

(a+ jv)(1+ jvt) K=V0VV −v2t(1+at)
(a−v2t)2+ (v(1+at))2

.

The positive plot of this function, for a=1ms and t=5ms, is shown in
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Figure 4.26 An exponential pulse (a), RL circuit (b), a positive plot of |V
o
( jv) | (c), the obtained

trapezoids (d) and the resulting curves of the output voltage v
o
(t).
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Fig. 4.26(c). This plot might be divided into 4 trapezoids, as shown in
Fig. 4.26(d). Then in accordance with equation 4.104 and the data obtained
from Fig. 4.26(d) the time-domain response of the output voltage can be calcu-
lated, and the result is shown in Fig. 4.26(c), curve 1. Note that at the first
moment the whole voltage applied to the circuit is transferred to the output:
v
o
(0)=v

in
(0), since the current, i(0), is equal to zero.

This example is, of course, simple enough to use approximate methods and
can be easily solved analytically, for instance with switching formula in equation
4.93. (The result is 0.25·(5e−t−e−0.2t ), which is also shown in Fig. 4.26(d),
curve 2. However, we brought this example to illustrate the above method,
which can be used for solving complicated problems using appropriate computer
programs.
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Chapter #5

TRANSIENT ANALYSIS USING STATE
VARIABLES

5.1 INTRODUCTION

When the dynamic behavior of a circuit is under consideration, the equations
representing the circuit, say in node or mesh analysis, are generally integro-
differential. They can then be transformed into one scalar diffff fferential equationffff
of the second or higher order. However, the differential equations of a circuitffff
may also be written as a set of first-order differential equations, or whenffff
expressed in matrix form it results in a first-order vector differential equationffff
of the form

ẋ= f (x, w, t),

where x is a vector of unknown variables called state variables, w represents
the set of inputs and t is the time.
The set of first-order differential equations written in such a form is called affff
state equation and the vector x represents the state of the network. State
equations play an important role in the study of the dynamic behavior of a
circuit. There are three basic advantages in using the state equations in this
form. (1) There is an enormous amount of mathematical knowledge for solving
such equations while the equations by themselves can be derived from formal
topological properties of the circuit, using the matrix approach. (2) It can be
easily and naturally extended to nonlinear and time-varying or switched net-
works and is, in fact, the approach most often used in characterizing such
networks and (3) it is easily programmed for and solved by computers.
In this chapter, we shall formulate, derive and solve first-order vector

differential equations, i.e. state equations. As before, we shall be limited here toffff
linear, time-invariant circuits that may be reciprocal or nonreciprocal. On the
other hand, this approach is applicable to circuits of any complicity, especially
with computer-aided analysis. In this study, when using a computer is suggested,
we are referring to the MATHCAD or MATHLAB programs which are also
suitable for symbolic computation.
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5.2 THE CONCEPT OF STATE VARIABLES

Two general methods of circuit analysis are usually studied in-depth in introduc-
tory courses in circuit analysis(*), namely nodal analysis and mesh analysis.
Both of these methods are very useful for resistive d.c. and RL C a.c. circuits in
their steady-state behavior. The basic variables in these two kinds of circuits,
node voltages and mesh currents, were constant quantities, i.e. with no variation
in time. Thus, the nodal and mesh equations in such circuits happen to be
algebraic equations, without derivatives and integrals. However, node voltages
or mesh currents when used as basic variables in transient analysis are expressed
as a function of time. Therefore, the node and loop equations here are in general
integro-differential equations of the second order.ffff
Consider, as an example, the circuit in Fig. 5.1, in which the inductor current
and two capacitor currents may be expressed as

i
L2
=
1

L 2 P t0PP (vn1−vn2 )dt+I0 , (5.1a)

i4=C4
dv
C4
dt
=C4

dv
n2
dt

i5=C5
dv
C5
dt
=C5

dv
n3
dt

(5.1b)

Figure 5.1 Circuit of the example for writing node and mesh equations.

(*)See for example W. H. Hayt and J. E. Kemmerly (1998) Engineering Circuit Analysis,
McGraw-Hill.
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Then the node equations may be written by inspection of the circuit as:

(G1+G2 )vn1+
1

L 2 P t0PP vn1dt− 1L 2 P t0PP vn2dt−G1vn3=− is1−I0
−
1

L 2 P t0PP vn1dt+G6vn2+C4 dvn2dt + 1L 2 P t0PP vn2dt−G6vn3=I0
−G1vn1−G6vn3+C5

dv
n3
dt
= i
s1
. (5.2)

Once these equations are solved for the node voltages v
n1
, v
n2
and v

n3
, the

remaining variables are easily obtained.
However, the presence of the integrals of unknowns in node equations 5.2
causes some difficulties in the solution. The integrals can be eliminated by
differentiating the equations in which they appear, but this will increase theffff
order of the derivatives. An easier way of analyzing would be if we avoid the
appearance of the integrals altogether. We note that an integral appears in the
present example of node equations when the current of an inductor is eliminated
by using equation 5.1a. In a similar way, the integrals appear in mesh equations
when the voltages of the capacitors are eliminated by substituting their v–i
relationship. Therefore these integrals will not appear if we leave both the
capacitor voltages and inductor currents as variables using a mixed set of
equations, i.e. based on Kirchhoff ’s laws.
Let us illustrate this idea of using capacitor voltages and inductor currents

as unknown variables in the same example of the circuit in Fig. 5.1. We may
write three independent KCL equations for the nodes 1n, 2n and 3n, and three
KVL equations for loops (meshes) indicated by the dashed arrows:

i∞
1
+ i
L2
+ i3=−is1 ,

−i
L2
+ i4+ i6=0, (5.3a)

−i∞
1
+ i5− i6= is1 ,

v
L2
+v
C4
−v3=0,

−v
C4
+v6+vC5=0, (5.5b)

v3−vC5−v1=0.

Substituting equation 5.1b for i4 and i5 , taking into consideration that
L 2 (diL2/dt)=vL2 and eliminating all branch voltages except for the capacitor
voltages by using the v–i relationships, and after rearranging the terms, yields

C4
dv
C4
dt
= i
L2
= i6 ,

C5
dv
C5
dt
= i∞
1
+ i6+ is1 , (5.4)

L 2
di
L2
dt
=−v

C4
+R3 i3
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R6 i6=vC5−vC4 (5.5a)

i∞
1
+ i3= iL2−is1
R1 i∞1−R3 i3=vC5 .

(5.b)

These are six equations in six unknowns. However, we can reduce the number
of equations that must be solved simultaneously. We note that equations 5.5a
and 5.5b are algebraic, i.e., they contain no derivatives or integrals. They can
be used to eliminate the rest of the unknown variables in (5.4) except v

C4
, v
C5

and i
L2
, whose derivatives are involved in these equations. The algebraic equa-

tions 5.5a and 5.5b can be easily solved (the first one trivially) to yield

i6=−
1

R6
v
C4
+
1

R6
v
C5

i∞
1
=

1

R1+R3
v
C5
+

R3
R1+R3

i
L2
−

R3
R1+R2

i
s1

(5.6)

i3=−
1

R1+R3
v
C5
+

R3
R1+R3

i
L2
−

R1
R1+R3

i
s1
.

Finally, these equations can be substituted into equation 5.4 to yield, after
rearrangement,

C4
dv
C4
dt
=
1

R6
v
C4
−
1

R6
v
C5
+i
L2

C5
dv
C5
dt
=−

1

R6
v
C4
−
R1+R3+R6
R6 (R1+R3 )

v
C5
+

R3
R1+R3

i
L2
+i
s1

(5.7a)

L 2
di
L2
dt
=−v

C4
−

R3
R1+R3

v
C5
+
R3R1
R1+R3

i
L2
−
R1R3
R1+R3

i
s1
,

or in matrix form, after dividing by the coefficients on the left,

d

dt CvC4vC5i
L2
D=C 1

C4R6
−

1

C4R6

1

C4

−
1

C5R6

R1+R3+R6
C5R6 (R1+R3 )

R3
C5 (R1+R3 )

−
1

L 2
−

R3
L 2 (R1+R3 )

R1R3
L 2 (R1+R3 )
D CvC4vC5iL2D

+C 0

1

C5

−
R1R3

L 2 (R1+R3 )
Dis1 . (5.7b)
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The resulting matrix equation 5.7b represents three first-order differential equa-ffff
tions in three unknowns. It is called the state equation and the variables v

C4
,

v
C5
and i

L2
are called the state variables.

As can be seen, the advantage of this method is that no integrals appear, and
subsequently no second derivatives occur as a result of the differentiation. Theffff
initial conditions, or initial state of the circuit, are the initial values of the
capacitor voltages and inductor currents, which usually can be independently
specified in the circuit, i.e. their values just after t0 are determined by their
values just before t0 . This is the second reason for choosing capacitor voltages
and inductor currents as unknown variables.
Further advantages in describing the network by first-order differential equa-ffff
tions are:

1) A simple systematic method for writing such equations can be formulated
by using the graph theory.

2) A systematic matrix solution may be applied for solving these first-order
differential equations. It may be easily programmed for a numerical andffff
symbolic solution with appropriate computer software.

3) It is quite easy to extend the state-variable representation to time-varying
and nonlinear networks.

The concept of state variables, or just state, satisfies two basic conditions of
circuit analysis:
a) If at any time, say t0 , the state is known (which is the initial condition or
initial state), then the state equations uniquely determine the state at any
time t>t0 for any given input. In other words, given the state of the circuit
at time t0 and all the inputs, the behavior of the circuit is completely deter-
mined for all t>t0 .
b) The state and the input uniquely determine the value of the remaining
circuit variables.

Proof a) From the theory of differential equations we know that the initialffff
values of the variables uniquely define, by differential equations, such as 5.7,ffff
the value of the variables for all t≥t0 . In other words, the state (vC (t), iL (t))
can be expressed by the state equations in terms of the initial state.

Proof b) We may use the substitution (or compensation) principle, which states
that in any linear circuit any voltage drop across a passive element, say the
capacitance, may be substituted by an independent voltage source equal to this
drop. In addition, any current through a passive element, say the inductance,
may be substituted by an independent current source equal to this current.
Hence, we will replace all the inductors by independent current sources whose
values i

L
(t) are given by the found state variables and all the capacitors by

independent voltage sources whose values are equal to the found state variables
v
C
(t) . As a result, we will obtain a pure resistive network in which any variable
can be determined by any well-known method of resistive circuit analysis.
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For example, let the desired output quantities be v3 and v6 in the circuit being
considered in Fig. 5.1. Since v3=R3 i3 and v6=R6 i6 , by multiplying the third
and the first equations of 5.6 correspondingly by R3 and R6 , we have

v3=−
R3

R1+R3
v
C5
+
R1R3
R1+R3

i
L2
−
R1R3
R1+R3

i
s1

v6=−vC4+vC5 ,

where v
C4
, v
C5
and i

L2
represent the voltage and current sources, which substitute

the elements C4 , C5 and L 2 subsequently. The above expressions in matrix form
are

Cv3v6D=C 0 −
R3

R1+R3

R1R3
R1+R3

−1 1 0 D CvC4vC5i
L2
D+C− R1R3

R1+R3
0 D [is1]. (5.8)

This matrix equation is called an output equation.
Both the state equation 5.7b and the output equation 5.8 equations may be

written in compact matrix notation as

ẋ=Ax+bw (5.9a)

y=cx+dw, (5.9b)

where x is the state vector, w is the input and y is the output vector. The
meanings of matrixes, A, b, c and d, which are dependent upon circuit elements,
are obvious from equations 5.7b and 5.8.
Next, we shall consider the number of independent state variables that repre-

sent the transient behavior of a network.

5.3 ORDER OF COMPLEXITY OF A NETWORK

As is known, node-voltage, mesh-currents, and mixed variable equations (based
on Kirchhoff ’s two laws) completely represent any electrical circuit. Recall that
the number of independent node-voltage equations, i.e., number of independent
Kirchhoff ’s current law (KCL) equations, is B− (N−1), where B is the number
of branches and N is the number of nodes. These numbers are determined only
by the graph of the circuit and not by the types of the branches, i.e. they would
not be influenced if the branches were all resistors, or if some were capacitors
and/or inductors. However, in resistive circuits driven by d.c. sources the node
or mesh equations are algebraic, with no variation in time. On the other hand,
when capacitors or inductors are present, the equations will be integro-
differential. Hence, the question is how many independent variables representffff
the circuit in its transient (dynamic) behavior. We know that each capacitor
and each inductor introduces a variable in such behavior since the v-i character-
istic of each contains a derivative or integral. We also know that, for a unique
solution of differential equations, the arbitrary constants have to be determined.ffff
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The number of these constants is equal to the number of independent initial
conditions that can be specified in a circuit. It is also known that the number
of initial conditions is related to the energy-storing elements, capacitors and
inductors, and in general is equal to the number of such elements in the circuit.
The exceptions are the, so-called, all-capacitor loops and all-inductor cut-sets.
Consider the circuit shown in Fig. 5.2. There are five energy-storing elements,
but in this circuit there is an all-capacitor loop, consisting of two capacitors C1
and C2 and a voltage source, and an all-inductor cut-set (see dashed line in
Fig. 5.2) consisting of three inductors L 3 , L 4 and L 5 . In this case, the capacitor
voltages and inductor currents will be restricted by KVL and KCL, namely

v
C1
+v
C2
=v
s8

(5.10a)

i
L4
+i
L5
= i
L3
, (5.10b)

which means that one of the voltages and one of the currents can be determined
if the other is known. This also means that the initial values of both v

C1
and

v
C2
cannot be prescribed independently, nor can the initial values of all three

currents i
L3
, i
L4
and i

L5
. Therefore, each of the constraint relationships, such as

equations 5.10a and 5.10b, reduce the number of independent variables.
In other words, the order of complexity of any network equals the total
number of energy-storing elements minus the number of all-capacitor loops and
the number of all-inductor cut-sets. Thus, the order of complexity of the circuit
of Fig. 5.2 is 5−1−1=3. Note that (1) all-capacitor loops may also consist
of ideal voltage sources and all-inductor cut-sets may also include ideal current
sources, and (2) only independent all-capacitor loops and all-inductor cut-sets
are taken into account(*).

Figure 5.2 Circuit with an all-capacitor loop and an all-inductor cut-set.

(*)The opposite situation, when the circuit consists of all-inductor loops and all-capacitor cut-sets,
does not influence the order of complexity, but it influences the values of the natural frequencies,
namely s=0. For more about all-capacitor loops/cut-sets and all-inductor cut-sets/loops see in
Balabanian, N. and Bickart T. A. (1969) Electrical Network T heory, John Wiley & Sons.
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Figure 5.3 Second order circuit.

5.4 STATE EQUATIONS AND TRAJECTORY

Consider the circuit in Fig. 5.3. Let us use capacitor voltage v
C
and inductor

current i
L
as state variables. Applying KCL to node 1n and KVL to the right

loop and outer loop, we obtain

C
dv
C
dt
=−i

L
+ i1 , L

di
L
dt
=v
C
−R2 iL (5.11)

R1 i1+vC=vs , (5.12)

Eliminating the non-desirable variable i1 from equation 5.12 and substituting it
into equation 5.11, after rearranging the terms, gives the state equations

dv
C
dt
=−

1

CR1
v
C
−
1

C
i
L
+
1

CR1
v
s
,

di
L
dt
=
1

L
v
C
−
R2
L
i
L
,

(5.13)

or in matrix form

dx(t)

dt
=Ax(t)+bw(t), (5.14)

where:

x(t)=CvC (t)i
L
(t)D is a vector of state variables,

A=C− 1

CR1
−
1

C

1

L
−
R2
L D is a constant 2×2 matrix,
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b=C− 1R10 D is a constant vector,
w(t)=v

s
(t) is the scalar input, or input vector.

For solving equation 5.14, the initial conditions of the inductor current and
of the capacitor voltage have to be known. Thus, the pair i

L
(0)=I0 and vC (0)=

V0VV is called the initial state

x0=CI0V0VV D (5.15)

The zero input response, i.e., circuit response when w(t)=0,

dx(t)

dt
=Ax(t) (5.16)

is completely determined by the initial state equation 5.15. Thus, if we consider
[i
L
(t), v
C
(t)] as the coordinates of a point on the i

L
−v
C
plane, then as t increases

from 0 to 2 the point [i
L
(t), v
C
(t)] will trace a curve, which is called the state-

space trajectory and the plane i
L
−v
C
is called the state-space of the circuit. It

is obvious that the trajectory curve starts at the initial point (I0 , V0VV ) and ends
at the origin (0, 0) when t=2. Since v

C
(t) and i

L
(t) are the components of the

state vector x(t), the trajectory defines it in the state space. The velocity of the
trajectory (di

L
/dt, dv

C
/dt) can be obtained from the state equation 5.16. In other

words, the trajectory of the state vector in a two-dimensional space characterizes
the behavior of a second order circuit, i.e., for every t, the corresponding point
of the trajectory specifies i

L
(t) and v

C
(t) .

As an example, three different kinds of trajectory, for: a) overdamped, b)ffff
underdamped and 3) loss-less, are shown in Fig. 5.4(d). Note, that in the first
case, the trajectory starts at (0.7, 0.9), when t=0, and ends at the origin (0, 0),
when t=2. In the second case, the trajectory is a shrinking spiral starting at
the same point and terminating at the origin. Finally, when the circuit is loss-
less (which of course is an ideal circuit) the trajectory is an ellipse centered at
the origin whose semi-axes depend on the circuit parameters L and C and the
initial state [i

L
(0), v

C
(0)] . The ellipse shape trajectory indicates that the response

is oscillatory.
For suitably chosen different initial states (usually uniformly spaced points)ffff
in the i

L
−v
C
plane we obtain a family of trajectories, called a phase portrait, as

shown in Fig. 5.5(a).
As we have already mentioned, the state equations in matrix representation
may be easily programmed to a numerical solution. Let us illustrate the approxi-
mate method for the calculation of the trajectory. We start at the initial point,
determined by the initial state x0[vC (0), iL (0)]T, and step forward a small interval
of time to find an estimate of x at this new time. From this point we step



274 Chapter #5

Figure 5.4 Waveforms forWW i
L
and v

C
in the second order circuits of an overdamped response (a),

underdamped response (b), loss-less response (c) and state trajectories (d).

Figure 5.5 State trajectories: phase portrait (a) and for Example 5.1 (b): 1) an approximation with

Dt=0.2 s and 2) an exact trajectory.
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forward again and estimate x after another short interval of time and so on.
The estimate of x at the new time is found by evaluating dx/dt at the old time
using the differential equation 5.16 and estimating the new value offfff x by the
formula

x
new
=x
old
+Dt AdxdtB

old
, (5.17)

where Dt is the ‘‘step length’’. This step-by-step method is known as Euler’s
method.
Essentially, we are using a straight-line approximation to the function in each
interval. In other words, this method is based on the assumption that if a
sufficiently small interval of time Dt is chosen, then during that interval the
trajectory velocity dx/dt is approximately constant. Thus, the straight-line seg-
ment, which approximates the trajectory on each step of calculation, is

Dx=AdxdtB
const
Dt.

It is obvious that the approximation calculated in this manner reaches the exact
trajectory when Dt approaches zero. In practice, the value of Dt that should be
selected depends primarily on the accuracy required and on the length of the
time interval over which the trajectory is calculated. Once the trajectory is
computed, the response of the circuit is easily obtained by plotting each of the
state variables v

C
, i
L
versus time.

Example 5.1

Let us employ Euler’s (first-order) method to calculate the state trajectory and
capacitor voltage versus the time of the circuit shown in Fig. 5.3.

Solution

Let the values of the circuit elements be R1=1 V, R2=1 V, L=1 H, C=1 F
and the initial state be I0=1 A and V0VV =1 V.

Then, substituting the above parameters in the matrix A, we have the state
equation 5.16 as

dx

dt
=C−1 −11 −1D x,

and the initial state is

x(0)=C11D
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Let us pick Dt=0.1 s. Using equation 5.17 yields the state at 0.1 s:

x(0.1)=C11D+0.1 C−1 −11 −1D C11D=C0.81 D .
Next, we can obtain the state at t=2Dt=0.2 s:

x(0.2)=C0.81 D+0.1 C−1 −11 −1D C0.81 D=C0.620.98D .
From these two steps, we can write the state at (k+1)Dt in terms of the state
at kDt

x[(k+1)0.1]=A1+0.1 C−1 −1

1 −1DB x(kDt)=C0.9 −0.10.1 0.9 D x(kDt).
In accordance with this formula the computer-aided calculation results are
shown in Fig. 5.5(b). If we use Dt=0.01, the resulting trajectory will coincide
with the exact trajectory.
In conclusion, the general recurrence formula for approximating the trajectory
may be written as(*)

x[(k+1)Dt]= (1+DtA)x(kDt). (5.18)

5.5 BASIC CONSIDERATIONS IN WRITING STATE EQUATIONS

In this section, we shall introduce a systematic method for writing state equa-
tions. This method is based on the topological properties of the network and
is called the ‘‘proper tree’’ method. However, we must first consider KCL and
KVL equations based on a cut-set and loop analysis.

5.5.1 Fundamental cut-set and loop matrixes

As is known from matrix analysis, the matrix formulation of independent KCL
equations is given by using the reduced incident matrix A. Recall that for any
connected graph, having N nodes and B branches, A has N−1 rows and B
columns. Thus, the set of N−1 linearly independent KCL equations, written
on the node basis, has the matrix form

Ai=0. (5.19)

However, equation 5.19 is not the only way of writing KCL equations. It may
also be done on the cut-set basis. A cut-set is defined as a set of k branches
with the property that if all k branches are removed from the graph, it is
separated into two parts. As an example, consider the graph shown in Fig. 5.6.

(*)For a more accurate approximation of the state-space trajectory, the Runge-Kutta fourth-order
method can be used (see, for example in Bajpai, A. C., et al. (1974) Engineering Mathematics, John
Wiley & Sons.
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Figure 5.6 Two distinct cut-sets indicated by dashed lines.

Two distinct cut-sets are shown by dashed lines, namely C1= (b2 , b6 , b7 ) and
C2= (b1 , b3 , b5 , b6 ). Recall now the generalized version of the KCL. By enclosing
one of the cut parts of the circuit in the balloon-shaped surface, (see the dotted-
dash line in Fig. 5.6(b)) we can write a KCL equation for this particular cut-
set

− i1+ i3− i4+ i5=0.

The number of such KCL equations is obviously equal to the number of distinct
cut-sets. However, as we know, the number of independent KCL equations is
N−1, where N is the number of nodes in the graph/circuit. Naturally, we are
interested in writing linearly independent cut-set equations. For this purpose,
we shall introduce the so-called fundamental cut-set. Choosing any tree in the
graph, we define a fundamental cut-set as that associated with the tree branch,
i.e. every tree branch together with some links constitutes a unique cut-set of
the graph. Such a cut-set is shown, for example, in Fig. 5.7. As can be seen,
removing the tree branch t3 separates the tree into two parts T1TT and T2TT . Then
the links l

a
and l

b
together with twig t3 constitute a unique cut-set. Indeed,

removing any of the remaining links, even all of them (thin lines), cannot

Figure 5.7 An example of a graph, tree and fundamental cut-set.
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separate either T1TT or T2TT into two parts. Therefore, the above cut-set is unique.
Obviously, each of the fundamental cut-sets is independent of any other, because
each of them contains one and only one twig. Since the number of twigs in any
tree is N−1, we can write N−1 linearly independent KCL equations following
N−1 fundamental cut-sets. Note that the orientation of each fundamental cut-
set is defined by the direction of the associated twig as shown in Fig. 5.7.
We will next consider the oriented graph of Fig. 5.8(a). A chosen tree is shown
by heavy lines, and four fundamental cut-sets associated with four twigs (since
a given graph has five nodes) are marked by dashed lines. For the sake of
convenience, we first number the twigs from 1 to 4 and the links from 5 to 7,
and adopt a reference direction for the cut-set, which agrees with the tree branch
defining the cut-set. Applying KCL to the four cut-sets, we obtain

cut-set 1: i1 + i7=0

cut-set 2: i2 +i6+ i7=0

cut-set 3: i3 − i5+ i6− i7=0

cut-set 4: i4− i5+ i6 =0,

or in matrix form

(5.20)

Figure 5.8 Fundamental cut-sets for the chosen tree (dashed lines) (a) and fundamental loops (dashed

lines) (b).
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In general, the KCL equations based on the fundamental cut-sets may be
written in the short form:

Qi=0, (5.21)

where Q is the fundamental cut-set matrix associated with the tree. The order
of the Q matrix is (N−1)×B, and its jk-th element is defined as follows:

q
jkG 1 if branch k belongs to cut-set j and has the same direction

−1 if branch k belongs to cut-set j and has the opposite direction

0 if branch k does not belong to cut-set j.

Note that the fundamental cut-set matrix in equation 5.20 includes a unit sub-
matrix of order (N−1), which is the number of fundamental cut-sets and the
number of twigs. Therefore,

Q=[1
t
Q
l
], (5.22)

where Q
l
is a sub-matrix of the order (N−1)×l, i.e. it consists of (N−1) rows

and of l (number of links) columns. The fundamental cut-set matrix Q will
always have the form of equation 5.22 because each fundamental cut-set contains
one and only one twig and its orientation agrees with the reference direction of
the cut-set, by definition.
Next, we shall introduce the loop matrix. Mesh analysis, which is commonly
studied in introductory courses in circuit analysis, is not the only method of
writing a set of independent equations based on KVL. Another and actually
more flexible method, which allows us to derive independent KVL equations,
is based on the so-called fundamental loop. Every link of a co-tree (complement
of the tree) together with some twigs, which are connected to the link, constitutes
a unique loop associated with the link. Indeed, there cannot be any other path
between two nodes of the tree, to which the link is connected. If there were two
or more paths between two nodes of the tree, they will form a loop; this
contradicts the main property of a tree. The set of fundamental loops is indepen-
dent, since each of them contains one and only one link, i.e. every loop differsffff
from another by at least one branch. Therefore, each link uniquely defines a
fundamental loop. Hence, the number of fundamental loops is equal to the
number of links, i.e. B− (N−1). Each fundamental loop has a reference direc-
tion, which is defined by the direction of its associated link, as shown in
Fig. 5.8(b).
So we use the fundamental loops to define B− (N−1) linearly independent

KVL equations. For the graph in Fig. 5.8(b), we may write the following three
independent KVL equations:

Loop 1: v3+v4+v5 =0

Loop 2: −v2−v3−v4 +v6 =0

Loop 3: −v1−v2−v3 +v7=0
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or in matrix form

(5.23)

In general, the KVL equations based on fundamental loops may be written in
the short form:

Bv=0, (5.24)

where B is the fundamental loop matrix associated with the tree. The order of
the B matrix is l×B, where l is the number of loops, and its jk-th element is
defined as follows:

b
jkG 1 if branch k belongs to loop j and has the same direction as the loop

−1 if branch k is in loop j and has the opposite direction

0 if branch k is not in loop j.

Note that the fundamental loop matrix in equation 5.23 includes a unit sub-
matrix of order l, which is the number of fundamental loops and also the
number of links. Therefore, we can express B in the form

B=[B
t
1
l
], (5.25)

where B
t
is a sub-matrix of l× (N−1), i.e. it consists of l (number of links)

rows and of t=N−1 (number of twigs) columns. The unit matrix in B results
from the fact that each fundamental loop contains one and only one link and
by convention the reference directions of the fundamental loops are the same
as that of the associated links.
Let us think that twig voltages are a set of the basic independent variables.
Since each fundamental loop is formed from twigs and only one link, the link
voltage can always be expressed in terms of twig voltages. Therefore, the branch
voltages in any circuit can be determined by twig voltages, when the latter ones
are used as independent variables. Indeed, in accordance with equations 5.24
and 5.25

[B
t
1
l
] Cvtv

l
D=0, (5.26)

where the branch voltage vector v is partitioned into two sub-vectors: v
t
and
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v
l
, which are, respectively, the twig-voltage sub-vector and link-voltage sub-
vector. Performing the multiplication yields

B
t
v
t
+v

l
=0,

or

v
l
=−B

t
v
t
. (5.27)

This means that link voltages are determined by twig voltages. Obviously, we
can write the twig branch-voltage sub-vector as

v
t
=1
t
v
t
. (5.28)

Combining equations 5.27 and 5.28, we have

Cvtv
l
D=C 1t−B

t
D vt , (5.29)

or simply

v=C 1t−B
t
D vt , (5.30)

which states that all the branch voltages in any circuit can be expressed in
terms of twig voltages.
Now, let us again examine the fundamental cut-sets. Since each fundamental
cut-set is formed from links and only one twig, we can express the twig-currents
in terms of link-currents. Therefore, using the link-currents as basic independent
variables, we can always determine the all branch currents by the independent
variables. After partitioning the branch currents into twig-currents and link-
currents, with equations 5.21 and 5.22, we have

[1
t
Q
l
] Citi

l
D=0, (5.31)

where i
t
and i

l
are, respectively, the twig-current and link-current sub-vectors.

Then two matrixes in equation 5.31 can be multiplied to yield

i
t
+Q

l
i
l
=0,

or

i
t
=−Q

l
i
l
. (5.32)

Combining equation 5.32 and the identity i
l
=1

l
i
l
, yields

Citi
l
D=C−Ql1

l
D il , (5.33)

or

i=C−Ql1
l
D il , (5.34)
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which again states that all branch currents in any circuit can be expressed in
terms of link currents.
A useful relation between two matrixes Q and B can now be determined.

Recall T ellegen’s theorem in the form

vT i=0. (5.35)

By taking the transpose of v (equation 5.30), we obtain

vT=AC 1t−B
t
D vtBT=vTt C 1t−B

t
DT=vT[1t−BTt ]. (5.36)

After substituting equations 5.36 and 5.34 into equation 5.35 we have

vT
t
[1
t
−BT
t
] C−Qt1

l
D il=0, for all vt and all il . (5.37)

Since vT
t
≠0 and i

l
≠0 then

[1
t
−BT
t
] C−Qt1

l
D=0. (5.38)

Performing the multiplication, we obtain the identities

Q
l
=−BT

t
(5.39a)

and

B
t
=−QT

l
. (5.39b)

This relationship between two sub-matrixes Q
l
and B

t
results from the fact that

both fundamental cut-set matrix Q
l
and fundamental loop matrix B

t
give the

topological relation between graph branches and fundamental cut-sets and
fundamental loops respectively. Also, note that both matrixes Q

l
and B

t
come

from the same tree.
Replacing −B

t
by QT

l
in equation 5.30, we obtain

v=C 1tQT
l
D vt=QTvt , (5.40)

which can be interpreted as a matrix transformation of twig-voltages into branch
voltages. Similarly, replacing −Q

l
by BT

t
in equation 5.34, we obtain

i=CBTt1
l
D il=BT il , (5.41)

which is a matrix transformation of link-currents into branch currents.
Finally, substituting equations 5.40 and 5.41 into Tellengen’s theorem (equa-
tion 5.35), we have

vT
t
QBT i

l
=0, for all v

t
and i

l
, (5.42)
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which can be reduced to the following relation between the matrixes

QBT=0. (5.43)

In conclusion, the following comments on loop and cut-set matrixes have to
be made. The methods of circuit analysis based on loop and cut-set matrixes
are more flexible, allowing more possible applications than the node and mesh
analyses. So, as we remember, the mesh analysis based on mesh matrix M is
restricted to the planar graph only, whereas the fundamental loop matrix B,
based on tree, is applicable to any graph including non-planar, by means of
allowing us to write a maximal number of linearly independent KVL equations.
The concept of duality is usually applied (in introductory courses) to planar
graphs and planar circuits by means of node and mesh terms. By now, we may
extend this concept to fundamental matrixes B and Q, pertaining to non-planar
graphs and circuits. So, the listing of dual terms can be extended as follows:

Twig – Link,
Fundamental cut-set – Fundamental loop,
Twig voltage, v

t
– Link current, i

l
,

Fundamental cut-set matrix, Q – Fundamental loop matrix, B.

Thus, two graphs, G1 and G2 having the same number of branches, are dual if
the number of fundamental cut-sets of one of them is equal to the number of
fundamental loops of the second and their Q and B matrixes are identical,
namely

Q1=B2 .

5.5.2 ‘‘Proper tree’’ method for writing state equations

Our aim now is to write the state and output equations in the form of equation
5.9

ẋ(t)=Ax(t)+bw(t) (5.44a)

y(t)= cx(t)+dw(t), (5.44b)

where x is the state vector containing all the capacitor voltages and all the
inductor currents, w is the input vector containing all the independent voltage
and current sources, driving the circuit and y is the desired output vector. A, b,
c and d are constant matrixes whose elements depend on circuit parameters.
Equation 5.44a is a first order matrix differential equation with constant matrixffff
coefficients. ẋ is the first derivative of the state vector x, i.e. it consists of the
derivatives of the state variables dv

C
/dt and di

L
/dt . WeWW note that these quantities

are given by currents in the capacitors C(dv
C
/dt) and voltages across inductors

L (di
L
/dt) . To evaluate capacitor currents in terms of other currents, we must

write cut-set equations and to evaluate inductor voltages in terms of other
voltages we must write loop equations. Therefore, it turns out that we could
do this if, using the concept of cut-set and loop analysis, we chose a tree which
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Figure 5.9 A circuit of the example for writing state equations (a), the oriented graph and proper

tree (b).

includes all the capacitors but no inductors. Such a tree is called a proper tree(*)
We can complete the proper tree if the number of twigs is larger than the
number of capacitors by adding resistors and voltage sources. Thus, the induc-
tors, the remaining resistors and possibly the current sources will constitute the
co-tree links.
Following this method, we may write a fundamental cut-set equation for each
capacitor-twig, in which the capacitor current C(dv

C
/dt) is expressed in terms

of other currents. We may write a fundamental loop equation as well for each
link inductor in which the inductor voltage L (di

L
/dt) is expressed in terms of

other voltages. We shall also take into consideration that the basic variables in
cut-set/loop analysis are twig voltages and link currents. Hence, we shall use
the appropriate v–i relationships for resistive and active elements. Thus for twig
resistors we use the form v

t
=Ri and for the link resistors i

l
=Gv. For the same

reason we put the voltage sources into the twigs and the current sources into
the links. (To fulfill these requirements, we can use a source transformation and
shifting techniques.) At this point, let us illustrate the above description by the
following example. For the sake of generality, we will divide the solution
procedure into five steps. Consider the circuit shown in Fig. 5.9(a).

Step 1 Choosing the state variables

The circuit contains two capacitors and one inductor. Therefore, the state
variables are v

C1
, v
C2
and i

L4
, and the state vector is

x=CvC1vC2i
L4
D . (5.45)

Step 2 Choosing the proper tree

(*)If a circuit contains an all-capacitor loop or an all-inductor cut-set, a proper tree does not exist.
For such cases see in Balabanian, N. and Bickart, T. A. (1969) Electrical Network T heory, John
Wiley & Sons.
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The proper tree picked for the circuit, shown in Fig. 5.9(b), includes two capaci-
tors and resistor R3 .

Step 3 Writing the fundamental cut-set equationsWW

These equations are written in such a way that the capacitor currents are
defined by other link currents and/or current sources (if such are present), and
the remaining currents are written in terms of inductor currents and/or cur-
rent sources.

cut-set 1: C1
dv
C1
dt
=−i5− i6 (5.46)

cut-set 2: C2
dv
C2
dt
=−i

L4
+ i5− i7

cut-set 3: G3v3+ i5= iL4 . (5.47)

Step 4 Writing the fundamental loop equationsWW

The loop equations are written in such a way that the inductor voltages are
defined by other twig voltages and/or voltage sources (if such are present), and
the remaining voltages are written in terms of capacitor voltages and/or voltage
sources

Loop 1: L 4
di
L4
dt
=v
C2
−v3 (5.48)

Loop 2: −v3+R5 i5=vC1−vC2 (5.49)

Loop 3: R6 i6=vC1−vs1
Loop 4: R7 i7=vC2−vs2

H . (5.50)

The last two steps lead to state equations

C1
dv
C1
dt
=− i5− i6

C2
dv
C2
dt
=− i

L4
+ i5− i7 (5.51)

L 4
di
L4
dt
=v
C2
−v3 .

Step 5 Expressing the right-hand side of the state equations in terms of state
variables and/or inputs. In this example, currents i5 , i6 , i7 and voltage v3 have
to be expressed in terms of the capacitor voltages v

C1
, v
C2
and the inductor

current i
L4
. By solving equations 5.50, we have

i6=
1

R6
v
C1
−
1

R6
v
s1
, i7=

1

R7
v
C2
−
1

R7
v
s2
, (5.52)

equations 5.47 and 5.49 form a set of two algebraic equations of two unknowns:
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C−1 R5G3 1 D Cv3i
5
D=CvC1−vC2i

L4
D (5.53)

Solving equation 5.53 yields

v3=−
1

1+R5G3
v
C1
+

1

1+R5G3
v
C2
+

R5
1+R5G3

i
L4

(5.54)

i5=
G3

1+R5G3
v
C1
−

G3
1+R5G3

v
C2
+

1

1+R5G3
i
L4
.

Finally, equations 5.52 and 5.54 can be substituted into equation 5.51 to yield,
after rearrangement and dividing through the equations by appropriate
C1 , C2 , L 4 ,

d

dt CvC1vC2i
L4
D=C− 1+aR6G3R6C1

aG3
C1

−
a

C1
aG3
C2

−
1+aR7G3
R7C2

−
1−a
C2

a

L 4

1−a
L 4

−
aR5
L 4
D CvC1vC2iL4D

+C 1R6C1 0

0
1

R7C2
0 0
D Cvs1vs2D , (5.55)

where a=1/(1+R5G3 ).
Note that state equations here are written in the matrix form of equation
5.44a where the input vector (in this example) is w=[v

s1
v
s2
]T and the meanings

of matrixes A and b are obvious.
Suppose now that the remaining branch variables, i.e. v3 , i5 , i6 and i7 are a
desired output. Then, using equations 5.54 and 5.52, we can express the output
in terms of the state variables and the input as

Cv3i5i6i7D=C−a a aR5
aG3 −aG3 a

1/R6 0 0

0 1/R7 0 D CvC1vC2iL4D+C 0 0

0 0

−1/R6 0

0 −1/R7
D Cvs1vs2D .

(5.56)

This is an output equation in the form of equation 5.44b, where the output
vector is y=[v3 i5 i6 i7]T and the meanings of the constant matrixes are
obvious.
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Remark. The capacitor charges and the inductor fluxes can also be used as
state variables. Then in the above example the state vector will be

x=[q1 q2 l4]T,

where q1=C1vC1 , q2=C2vC2 and l4=L 4 iL4 .
Substituting v

C1
=q1/C1 , vC2=q2/C2 and i4=l4/L 4 in equation 5.55, and

after simplification, we obtain

d

dt Cq1q2l
4
D=C− 1+aR6G3R6C1

aG3
C2

−
a

L 4
aG3
C1

−
1+aR7G3
R7C2

−
1+a
L 4

a

C1

1−a
C2

−
aR5
L 4
D C q1qC2l4 D

+C 1R6 0

0
1

R7
0 0
D Cvs1vs2D (5.57)

which is the state equation using the charges and fluxes as state variables.
It is worthwhile mentioning that some other variables in the circuit may be
used as state variables. For example, a current through a resistor in parallel
with a capacitor or voltage across a resistor in series with an inductor can be
treated as state variables. Also any linear combination of capacitor voltages or
inductor currents may be used as state variables. This can be helpful in writing
state equations when the circuit consists of all-capacitor loops or all-inductor
cut-sets. The next step would be to solve the state equations. However, before
doing so, we shall consider the general approach for deriving state equations
in matrix form.

5.6 A SYSTEMATIC METHOD FOR WRITING A STATE EQUATION
BASED ON CIRCUIT MATRIX REPRESENTATION

Consider a network whose elements are inductors, capacitors, resistors and
independent sources. As stated, we assume that capacitors do not form a loop
and inductors do not form a cut-set. We also assume that the network graph
is connected and as a first step we will pick a proper tree. WeWW can obviously
include all capacitors into the tree branches, since they do not form any loop.
Usually, it might be necessary to add some resistors and/or voltage sources in
order to complete the tree. Then all the inductors will be assigned to the links.
In the next step we shall partition the circuit branches into four sub-sets: the
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capacitive twigs, the resistive twigs, the inductive links and the resistive links.
For the sake of specifics, we shall use an example to illustrate this procedure.
Consider again the circuit shown in Fig. 5.9(a). The circuit graph and the

proper tree are shown in Fig. 5.9(b). The KCL equations for the fundamental
cut-sets, in accordance with equation 5.31, are

[1
t
Q
l
]C iCiG– –iL
i
R
D=0, (5.58)

where subvectors of twig and link currents are

i
t
=CiCi

G
D , il=CiLi

R
D

and i
C
, i
G
, i
L
and i

R
are in turn subvectors representing currents in capacitive

and resistive (conductive) twigs and inductive and resistive links, respectively.
In our example, these four subvectors are

i
C
=CiC1i

C2
D , iG=[iG3], iL=[iL4], iR=C iR5iR6i

R7
D (5.59)

and the equation 5.58 becomes

(5.60)

The KVL equations may be written in the form (see equation 5.26)

[B
t
1
l
]C vCvG– –vL
v
R
D=0, (5.61)
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where

v
t
=CvCv

G
D , vl=CvLv

R
D

are subvectors of twig and link voltages and v
C
, v
G
, v
L
, v
R
are in turn subvectors

representing voltages across the capacitive and resistive (conductive) twigs and
inductive and resistive links, respectively. For the circuit in Fig. 5.9(a) the voltage
subvectors are

v
C
=CvC1v

C2
D , vG=[vG3], vL=[vL4], vR=C v

R5
v
R6
−v
sR6

v
R7
−v
sR7
D=Cvl5v6v

7
D
(5.62)

where v
sR6
represents v

s1
and v

sR7
represents v

s2
. The KVL equation 5.61 becomes

(5.63)

Note that B
t
=−QT

l
.

Next we shall use the v-i, or i-v characteristics to introduce branch equations.
We will employ the concept of a generalized branch, i.e. combining passive and
active elements together. However, we must now take into consideration four
different branches: two for twigs and two for links, as shown in Fig. 5.10. Asffff
was mentioned earlier, we shall assume that the voltage sources are located in
the link branches and the current sources are located in the twig branches.
Therefore, in matrix form we have:

capacitor twigs i
C
=C

d

dt
v
C
+ i
sC

inductor links v
L
=L

d

dt
i
L
+v
sL

(5.64)

resistor twigs i
G
=Gv

G
+ i
sG

resistor links v
R
=Ri

R
+v
sR

(5.65)

where the matrixes C, L, G and R are the branch parameter matrixes; namely,
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Figure 5.10 Generalized branches with independent sources: twig capacitor (a), twig resistor (b),

link resistor (c) and link inductor (d).

the twig capacitance matrix, the link inductance matrix, the twig conductance
matrix and the link resistance matrix, respectively. Note that C, L, G and R
are square diagonal matrixes, but if the circuit consists of coupled elements
(mutual inductances and/or dependent sources), L, G and R might not be
diagonal any more. For the example in Fig. 5.9

C=CC1 0

0 C2
D , L=[L 4] (5.66)

G=[G3], R=CR5 0

R6
0 R7
D . (5.67)

The vectors v
sR
, v
sL
and i

sG
, i
sC
represent the independent voltage and current

sources, which in the present example are

v
sR
=C 0vs1v

s2
D , vsL=0 , isG=0, isC=0 . (5.68)

Equation 5.64 can be rewritten to yield

C
d

dt
v
C
= i
C
− i
sC
, L

d

dt
i
L
=v
L
−v
sL
. (5.69)

To bring these equations to the form of state equations, we must eliminate the
variables. For this purpose, we shall solve the KCL equation 5.58 and KVL
equation 5.61 equations together with the branch equations 5.64 and 5.65.
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Equations 5.58 and 5.61 can be rewritten as

CiCi
G
D=−Ql CiLi

R
D=−CQCL QCRQ

GL
Q
GR
D CiLi
R
D (5.70a)

and

CvLv
R
D=−Bt CvCv

G
D=−CBLC BLGB

RC
B
RG
D CvCv
G
D (5.70b)

where in the following solution matrixes Q
l
and B

t
are partitioned into submat-

rixes. The order of each of the submatrixes in equations 5.70 is determined by
the number of twigs (which is the number of rows) and by the number of
corresponding links (which is the number of columns) in equation 5.70a and
vice versa in equation 5.70b. For example, the number of rows in Q

CL
(equation

5.70a) is equal to the number of capacitor currents in i
C
(capacitor twigs) and

the number of its columns is equal to the number of inductor currents in i
L

(inductor links). It can also be shown that there are simple relations between
Q
l
and B

t
submatrixes, namely

B
LC
=−QT

CL
, B
LG
=−QT

GL
, B
RC
=−QT

CR
, B
RG
=−QT

GR
. (5.71)

The undesirable variables i
C
and v

L
in equation 5.69 can now be expressed from

equation 5.70 to yield

i
C
=−Q

CL
i
L
−Q
CR
i
R

(5.72a)

v
L
=−B

LC
v
C
−B
LG
v
G
, (5.72b)

and after substituting these two expressions into equation 5.69, we obtain

C
d

dt
v
C
=−Q

CL
i
L
−Q
CR
i
R
− i
sC

(5.73)

L
d

dt
i
L
=−B

LC
v
C
−B
LG
v
G
−v
sL
.

However, we still need to eliminate i
R
and v

G
. Substituting i

G
and v

R
from

equation 5.70 into equation 5.65, and after rearrangement, results in two simulta-
neous matrix equations in two unknowns i

R
and v

G
,

Ri
R
+B
RG
v
G
=M (5.73a)

Q
GR
i
R
+Gv

G
=N , (5.73b)

where

M=−B
RC
v
C
−v
sR
and N=−Q

GL
i
L
− i
sG

(5.74)

Solving these two equations by the substitution method yields

i
R
=R−1
eq
(−B

RG
G−1N+M ) (5.75a)

v
G
=G−1
eq
(−Q

GR
R−1M+N ), (5.75b)
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where

R
eq
=R−B

RG
G−1Q

GR
(5.76a)

G
eq
=G−Q

GR
R−1B

RG
. (5.76b)

Finally, we substitute equation 5.75 with equation 5.74 in equation 5.73 to
obtain, after rearrangement, the state representation is follows

d

dt CvCi
L
D=CC 0

0 LD−1 CA111 A112A1
21
A1
22
D CvCi
L
D

+CC 0

0 LD−1 Cb111 b112 b113 b114b1
21
b1
22
b1
23
b1
24
D C isCisGvsLv
sR
D (5.77)

agbgc
A

agggbgggc
A1

agbgc
b

aggggggbggggggc
b1

where the matrix terms are

A1
11
=Q
CR
R−1
eq
B
RC

A1
12
=−Q

CL
−Q
CR
R−1
eq
B
RG
G−1Q

GL
A1
22
=B
LG
G−1
eq
Q
GL
A1
21
=−B

LC
−B
LG
G−1
eq
Q
GR
R−1B

RC

(5.78)

b1
11
=−1 b1

12
=−Q

CR
R−1
eq
B
RG
G−1 b1

13
=0 b1

14
=Q
CR
R−1
eq

b1
21
=0 b1

22
=B
LG
G−1
eq

b1
23
=−1 b1

24
=−B

LG
G−1
eq
Q
GR
R−1.
(5.79)

Let us now use the above expressions to calculate the A and b matrixes in our
example.
First we determine the submatrixes of the Q

l
matrix

Q
l CQCL QCRQ

GL
Q
GR
D=C 0 1 1 0

1 −1 0 1

−1 1 0 0D.KKKKKKKKKKCC K
K
K
K

K
K

KK

Then with equation 5.76 and equation 5.71 we have

R
eqCR5 0

R6
0 R7
D− C100D C 1G3D [1 0 0]=C 1+R5G3G3

0 0

0 R6 0

0 0 R7
D

R−1
eq
=CaG3 0 0

0 1/R6 0

0 0 1/R7
D, where again a= 1

1+R5G3
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G
eq
=[G3]+[1 0 0] C1/R5 0 0

0 1/R6 0

0 0 1/R7
DC−100 D=C1+R5G3R5 D=C 1aR5D

G−1
eq
=[aR5]

A1
11
=C 1 1 0

−1 0 1D CaG3 0

1/R6
0 1/R7

D C−1 +1−1 0

0 −1D
=−C(aG3+1/R6 ) −aG3

−aG3 (aG3+1/R7
D

A1
22
=[1][aR5][−1]=−[aR5]

A1
12
=−C01D−C 1 1 0

−1 0 1D CaG3 0 0

0 1/R6 0

0 0 1/R7
D C−100 D [1/G3][−1]

=−C 11−aD
A1
21
=−[0 −1]−[1][aR5][1 0 0] C1/R5 0 0

0 1/R6 0

0 0 1/R7
D C−1 +1−1 0

0 −1D
=[a (1−a)]

CC 0

0 LD−1=CC1 0 0

0 C2 0

0 0 L 2
D−1=C1/C1 0 0

0 1/C2 0

0 0 1/L// 4
D

Therefore the A matrix is

A=CC 0

0 LD−1 CA111 A112A1
21
A1
22
D=C− 1+R6aG3R6C1

aG3
C1

−
a

C1
aG3
C2

−
1+R7aG3
R7C2

−
1−a
C2

a

L 4

1−a
L 4

−
aR5
L 4
D ,KKKKKKKKKKKKKKKKKKKKKK

K
K
K
K
K
K
K
K
K
K
K

KK

which agrees with the results previously obtained (see equation 5.55).
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To find the b matrix we will calculate equation 5.79. Since only the v
sR
vector

is present we need only two elements of b:

b1
14
=C 1 1 0

−1 0 1D CaG3 0 0

0 1/R6 0

0 0 1/R7
D=C aG3 1/R6 0

−aG3 0 1/R7
D

b1
24
=−[1][aR5][1 0 0] C1/R5 0 0

0 1/R6 0

0 0 1/R7
D=−[a 0 0]

Therefore, the reduced b matrix is

b=CC 0

0 LD−1 Cb114b1
24
D=C aG3/C1 1/R6C1 0

−aG3/C2 0 1/R7C2
−a/L 4 0 0 D

which also agrees with the results in equation 5.55. Note that a voltage source
in link 5 is absent (v

sR5
=0), therefore the above matrix can be reduced even

more, namely

b=C1/R6C1 0

0 1/R7C2
0 0 D

which is exactly the same as in equation 5.55.
Comparing the systematic method for writing state equations with the intu-
itive approach, which we first presented in the previous sections, we may
conclude that it is rather complicated. In many practical instances, the final
results can be arrived at much easier and faster by following the intuitive
approach. However, the systematic method has an appreciable advantage for
computer-aided analysis, since it can be easily programmed.

5.7 COMPLETE SOLUTION OF THE STATE MATRIX EQUATION

We will now turn to the solution of the state equation of the form of equation
5.44a, repeated here for convenience:

ẋ(t)=Ax(t)+bw(t). (5.80)

5.7.1 The natural solution

We will begin by considering the natural or zero-input (non-forced) solution;
that is w(t)=0. Equation 5.80 then simplifies to

ẋ(t)=Ax(t) or ẋ(t)−Ax(t)=0. (5.81)
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It is customary to compare a vector problem with its scalar version. In this
case, the scalar version of equation 5.81 is

dx(t)

dt
=ax(t). (5.82)

The solution of equation 5.82, that satisfies the initial condition x(0), is

x(t)=eatx(0).

Suppose we try the same form for the solution of equation 5.81, that is

x(t)=eAtx(0). (5.83)

where eAt is called the matrix exponential and is an example of a function of
matrix A.

5.7.2 Matrix exponential

In mathematics the matrix exponential is defined similarly to a scalar exponen-
tial (or complex exponential ), i.e. in terms of the power series expansion:

eAt=1+
t

1!
A+

t2
2!
A2+ · · ·+

tk

k!
Ak+ · · ·= ∑

2

k=0

tk

k!
Ak. (5.84)

Since A is a square matrix of order n, the matrix exponential eAt is also a square
matrix of order n.

Example 5.2

As an example, let us take the matrix of Example 5.1, namely

A=C−1 −11 −1D
then

A2=C−1 −11 −1D C−1 −1

1 −1D=C 0 2

−2 0D , A3=C2 −22 2 D
and

eAt=C1 00 1D+t C−1 −11 −1D+ t22 C 0 2

−2 0D+ t36 C2 −22 2 D+ · · ·
=C1−t+ t33+ · · · −t+t2− t33+ · · ·t−t2+

t3
3
+ · · · 1−t+

t3
3
+ · · · D . (5.85)

As can be seen from equation 5.85, each of the elements of the matrix eAt is a
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continuous function of t. Term-by-term diTT fferentiation of the matrix exponentialffff
(equation 5.84) results in

d

dt
(eAt)=A+tA2+

t2
2!
A3+

t3
3!
A4+ · · ·

=A A1+tA+ t22! A2+ t33! A3+ · · ·B=AeAt, (5.86)

i.e., the formula for the derivative of a matrix exponential is the same as it is
for a scalar exponential. Substituting equation 5.83 into the matrix differentialffff
equation 5.81, results in identity:

AeAtx(0)=AeAtx(0).

Thus, we have established that equation 5.83 is indeed the solution to equa-
tion 5.81.
We must now show that the inverse of a matrix exponential exists and equals
(eAt)−1=e−At. For the latter we can write

e−At=1−At+A2
t2
2!
−A3

t3
3!
+ · · ·+ (−1)kAk

tk

k!
+ · · · .

Now let this series be multiplied by the series for the positive exponential in
equation 5.84. This term-by-term multiplication results in 1 since all other terms
are cancelled. Thus,

eAte−At=1.

This result tells us that the matrix e−At is the inverse of eAt, since by definition
the product of the matrix by its inverse gives a unit matrix. This result can be
used, first of all, to show that in general if the initial vector x(0) is known for
some time, for instance t0 , namely xnat (t0 ) then the solution will be

x
n
(t)=eA(t− t

0
)x(t0 ). (5.87)

Indeed, substituting t=t0 , results in identity:

x
n
(t0 )=eAt0e−At0x(t0 )=1x (t0 ),

where we have used

eA+B=eA ·eB.

(This can be verified by using equation 5.84 for both sides of equality.)

5.7.3 The particular solution

To find the complete solution to equation 5.80, we must now find the particular
solution to the differential equation, i.e. the forced response. For this purpose,ffff
assume a solution of the form

x
p
(t)=eAtq(t), (5.88)
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where q(t) is an unknown function to be determined. In order to be a solution,
equation 5.88 has to satisfy the differential equation. Substituting equation 5.88ffff
in equation 5.80 gives

d

dt
[eAtq(t)]=AeAtq(t)+bw(t),

or

AeAtq(t)+eAt
dq(t)

dt
=AeAtq(t)+bw(t).

Thus

dq(t)

dt
=e−Atbw(t). (5.89)

Integrating, we obtain

q(t)=q(t0 )+ P tPP
0

e−Atbw(t)dt.

Thus, the particular solution is

x
p
(t)=eAtq(t)=eAtq(t0 )+ P tPP

0

eA(t− t)bw(t)dt.

To evaluate q(t0 ), we use the complete solution being evaluated at t0

x (t) |
t=t
0

=x
n
(t)+x

p
(t)=eA(t− t

0
)x(t0 )+eAtq (t0 )+ P tPP

0

eA(t− t)bw(t)dtK
t=t
0

,

or

x(t0 )=x (t0 )+eAt0 q(t0 )+0,

which implies that q(t0 )=0.
Hence, finally the complete solution of the state equation 5.80 is

x(t)=eA(t− t
0
)x(t0 )+ P tPP

0

eA(t− t)bw(t)dt. (5.90)

To evaluate this solution the basic calculation is a determination of the matrix
exponential eAt. This will be discussed in the next subsection.

5.8 BASIC CONSIDERATIONS IN DETERMINING FUNCTIONS OF A
MATRIX

In this section, we shall examine two methods of computing eAt in closed form.
This matrix exponential is a particular function of a matrix. The simplest
functions of a matrix are powers of a matrix and polynomials. As we have seen,
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the matrix exponential can be represented by an infinite series of such functions.
The matrix polynomial has the form

f (A)=An+a
n−1
An−1+ · · ·+a1A+a01 . (5.91)

The generalization of polynomials is an infinite series:

f (A)=a01+a0A+a2A2+ · · ·+akAk+ · · ·= ∑
2

k=0
a
k
Ak. (5.92)

The function f (A) is itself a matrix, and in the last case each of the matrix
elements is an infinite series. This matrix series is said to converge if each of
the element series converges.
We will begin with a brief description of some of the properties of matrixes
that will be useful in our studies.

5.8.1 Characteristic equation and eigenvalues

An algebraic equation that often appears in network transient analysis is

lx=Ax, (5.93)

where A is a square matrix of order n. The problem is to find scalars l and
vectors x that satisfy this equation. A value of l for which a nontrivial solution
of x exists, is called an eigenvalue, or characteristic value ofA. The corresponding
vector x is called an eigenvector, or characteristic vector, of A. After collecting
the terms on the left-hand side, we have

[l1−A]x=0. (5.94)

This equation will have a nontrivial solution for x only if the matrix [l1−A]
is singular, i.e.,

det[l1−A]=0. (5.95)

This equation is known as the characteristic equation associated with A. It is
also closely related to the auxiliary (characteristic) equation of the corresponding
differential equation of orderffff n for the system. The determinant on the left-hand
side of equation 5.95 is actually a polynomial of degree n in l and is called the
characteristic polynomial of A. For each value of l that satisfies the characteristic
equation, a nontrivial solution of equation 5.94 can be found. To illustrate this
procedure, consider the following example.

Example 5.3

Let us find the eigenvalues and eigenvectors of a matrix of the second order

A=C2 13 4D .
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The characteristic polynomial is also of order two:

det Gl C1 00 1D−C2 13 4DH=det Cl−2 −1

−3 l−4D=l2−6l+5
=(l−5)(l−1)=g(l).

Thus, l2−6l+5=0 is the characteristic equation of the matrix. The roots of
the characteristic equation, or the eigenvalues, are

l1=5 and l2=1.

To obtain the eigenvector corresponding to the eigenvalue l1=5, we solve
equation 5.94 by using the given matrix A. Thus

GC5 00 5D−C2 13 4DH Cx1x2D=C00D
or

C 3 −1

−3 1 D Cx1x2D=C00D and x2=3x1 .

Therefore

Cx1x2D=C x13x1D=C13D [x1] for any value of x1 .
The eigenvector corresponding to the eigenvalue l2=1 is obtained similarly.

C−1 −1−3 −3D Cx1x2D=C00D
from which

Cx1x2D=C x1−x1D=C 1−1D [x1] for any value of x1 .
The first method to be discussed for finding functions of a matrix is based on
the Caley-Hamilton theorem.

5.8.2 The Caley-Hamilton theorem

This theorem states that every square matrix satisfies its own characteristic
equation. For example, if we substitute A for l in the characteristic equation of
Example 5, we obtain the matrix equation

g(A)=A2−6A+5·1=0,

where, again, 1 is an identity matrix and 0 is a matrix whose elements are all
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zero. Thus,

C2 13 4D C2 13 4D−6 C2 13 4D+5 C1 00 1D=C 7 6

18 19D−C12 6

18 24D+C5 00 5D
=C0 00 0D .

The equation is certainly satisfied in this example.
The Caley-Hamilton theorem permits us to reduce the order of a matrix
polynomial of any higher order to be of an order no greater than n−1, where
n is the order of the matrix. For example, if A is a square matrix of order 3,
then its characteristic equation is

g(l)=l3+a2l2+a1l+a0=0, (5.96)

and by the Caley-Hamilton theorem we have

A3+a2A2+a1A+a01=0.

Then

A3=−a2A2−a1A−a01. (5.97)

Thus, A3 may be expressed in terms of the matrixes of an order not higher than
2 and identity matrix. Hence, the given polynomial of order 3 is reduced to a
polynomial of order 2. To extend these results to polynomials of an even higher
order, we multiply equation 5.97 throughout by A to obtain

A4=−a2A3−a1A2−a0A. (5.98)

Substituting equation 5.97 for A4, we obtain

A4= (a2
2
−a1 )A2+ (a2a1−a0 )A+a2a01 . (5.99a)

To generalize these results, let us develop an iterative formula for expressing
higher powers of A. WeWW assign the obtained coefficients in equation 5.99 by
upper script, as follows

A4=a(1)
2
A2+a(1)

1
A+a(1)

0
1. (5.99b)

Multiplying this expression throughout by A, and collecting like terms, yields

A5= (−a2a(1)2 +a(1)1 )A2+ (−a1a(1)2 +a(1)0 )A+ (−a0a(1)2 )1=a(2)2 A2+a(2)1 A+a(2)0 1,

where again a(2)
2
, a(2)
1
, a(2)
0
are the new coefficients and a2 , a1 , a0 are as before

the coefficients of the characteristic equation 5.96. Now the iterative formula
for this case, n=3, can be written as

A3+k= (−a2a(k−1)2
+a(k−1)
1
)A2+ (−a1a(k−1)2

+a(k−1)
0
)A+ (−a0a(k−1)2

)1

=a(k)
2
A2+a(k)

1
A+a(k)

0
1. (5.100)

Note that this formula also works fine for the first calculation of A4 (equation
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5.99) if the coefficients in equation 5.97 are assigned as a(0)
2
=−a2 , a(0)1 =−a1

and a(0)
0
=−a0 . Generalizing this result (equation 5.100) for any matrix of order

n, we can write

An+k= (−a
n−1
a(k−1)
n−1
+a(k−1)
n−2
)An−1

+ (−a
n−2
a(k−1)
n−1
+a(k−1)
n−3
)An−2+ · · ·+ (−a0a(k−1)n−1

)1. (5.101)

This gives us an expression for An+k, k=0, 1, 2, . . . , in terms of An−1, An−2, . . . , A
and 1.
Continuing this process, we see that any power of A can be represented as a
weighted polynomial in A of an order, at most n−1. Hence, functions of
matrixes, including eAt, that can be expressed as a polynomial(*)

f (A)=a01+a1A+ · · ·+akAk+ · · ·= ∑
2

k=0
a
k
Ak, (5.102)

may be reduced to the expression

f (A)=b01+b1A+ · · ·+bn−1An−1= ∑
n−1

k=0
b
k
Ak. (5.103)

Here, the coefficients b0 , b1 , . . . , bn−1 are functions of a0 , a1 , . . . , an−1 and
a0 , a1 , . . . . Their approximate calculation can be carried out by the iterative
method used in the calculation of higher powers of A in equation 5.101 and by
using equation 5.102. However this straightforward method can be lengthy.

Example 5.4

(a) Let us first calculate a simple matrix function f (A)=A4, where A is the
matrix of the previous example. Since the characteristic equation of A is
l2−6l+5=0, we have

A2=6A−5·1,

where a1=−6 and a0=5. Using an iterative formula, and noting that in the
first calculation a(0)

1
=−a1 and a(0)0 =−a0 , yields

A3=[−a1a(0)1 +a(0)0 ]A+ (−a0a(0)1 )1

=[6·6−5]A+ (−5·6)1=31A−30 1,

where a(1)
1
=31 and a(1)

0
=−30. Hence,

A4=[(6)(31)−30]A−5·31 1=156A−155 1,

and finally

A4=156 C2 13 4D−C155 0

0 155D=C157 156

468 469D
(*)In general, any analytic function of matrix A can be expressed as a polynomial in A of an order
no greater than one less than the order of A. For proof see N. Balabanian and T. A. Bickart (1969)
Electrical Network T heory, John Wiley & Sons.
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(b) As a second example, let us calculate a matrix potential f(A)A =eAt for t=
1 s, using the approximation up to fifth term:

eA$1+A+
1

2!
A2+

1

3!
A3+

1

4!
A4

= 1+A+
1

2
(−5·1+6A)+

1

6
(−30·1+31A)+

1

24
(155·1+156A)

=−12.96·1+15.67A

and finally

eA$C−13 0

0 −13D+15.7 C2 13 4D=C18.4 15.747.1 49.8D .
We shall next develop an easier, one-step method for finding b-coefficients in

the function of matrix expression (equation 5.103). Let us return to the character-
istic equation of matrix A

g(l)=|l1−A |=ln+a
n−1
ln−1+ · · ·+a1l+a0=0. (5.104)

The eigenvalues l1 , l2 , . . . , ln , which are the roots of the characteristic equation
5.104, obviously satisfy the equation 5.104 as well as matrix A (in accordance
with the Caleg-Hamilton theorem). Therefore, using the same procedure as
before, we can derive an expression similar to equation 5.103 for the eigenvalues
instead of the matrix by itself, namely:

f (l)=b0+b1l+b2l2+ · · ·+bn−1ln−1= ∑
n−1

k=0
b
k
lk. (5.105)

It is understandable that this expression holds for any l that is a solution of
the characteristic equation 5.104, that is for any eigenvalue of the matrix A.

(a) Distinct eigenvalues

Assume first that the eigenvalues are distinct; that is, that none is repeated.
Substituting l1 , l2 , . . . , ln in equation 5.105 gives n equations in n unknown b’s:

b0+b1l1+b1l21+ · · ·+bn−1ln−11 = f (l1 )

b0+b1l1+b2l22+ · · ·+bn−1ln−12 = f (l2 )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

b0+b1ln+b2l2n+ · · ·+bn−1ln−11 = f (ln ).

(5.106)

The coefficients b0 , b1 , . . . , bn−1 can then be obtained as the solution to this
linear system of scalar equations, i.e. the inversion of the set of equations 5.106
gives the solution. With the known b-coefficients, the function of the matrix
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representation problem is solved:

f (A)= ∑
n−1

k=0
b
k
Ak. (5.107)

Example 5.5

Let us illustrate this process with the same simple example (as in Example 5.4):

(a) Find f (A)=A4, if A=C2 13 4D
The characteristic equation is (see Example 5.3)

g(l)=l2−6l+5=0.

Thus, the eigenvalues are

l1=5, l2=1.

In accordance with equation 5.106, we have

b0+b15=54 ,

b0+b11=14 .

Solving these simple equations for unknowns b0 and b1 , gives

b1=156, b0=−155.

The solution for A4 is found by using equation 5.107

f (A)=A4=−155·1+156·A

which is the same as the results obtained in the previous example.

(b) Find f (A)=eAt for the same matrix A

The equations for unknowns b0 and b1 in this case will be

b0+5b1=e5t,

b0+b1=et.

Solving this equation gives

b1=
1
4
e5t−1

4
et, b0=−

1
4
e5t+5

4
et.

Thus, the matrix exponential is

eAt= (−1
4
e5t+5

4
et)1+ (1

4
e5t−1

4
et)A

= (−1
4
e5t+5

4
et) C1 00 1D+ (14e5t−14et) C2 1

3 4D .
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By an obvious rearrangement, this becomes

eAt=C14e5t+34et 14e5t−14et3
4
e5t−3

4
et 3
4
e5t+1

4
etD . (5.108)

It is interesting to compare these results with those obtained in the previous
example. The approximate, up to fifth term, evaluation of the exponents e5 and
e1 (t=1 s) gives

e5$1+5+
1

2!
52+

1

3!
53+

1

4!
54=65.4

e1$1+1+
1

2!
+
1

3!
+
1

4!
=2.71.

Substituting these results in equation 5.108 yields

eA$ C18.4 15.647.0 49.7D
which agrees with the previous results.
Therefore, the series form of the exponential may permit some approximate

numerical results; it does not lead to a closed form. However, with the help of
the Caley-Hamilton theorem, we obtained the closed-form equivalent for the
exponential eAt (equation 5.107). We shall now return our consideration to the
complete solution of the state equation in the form of equation 5.90, repeated
here for convenience:

x(t)=eA(t− t
0
)x(t0 )+ P tPP

0

eA(t− t)bw(t)dt. (5.109)

The following example illustrates this computation.

Example 5.6

Find the complete solution of the state equation describing the circuit in Fig. 5.9,
considered before. For the sake of convenience, it is redrawn here again in
Fig. 5.11(a). Let the circuit element values be C1=1 F, C2=2 F, L 4=1 H, G3=
1 S, R5=1 V, R6=2/7 V, R7=1/3 V.

Solution

Substituting these parameters into equation 5.55, we obtain the following A
matrix

A=C−4 1
2
−1
2

1
4
−7
4
−1
4

1
2

1
2
−1
2
D . (5.110)
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Figure 5.11 A circuit of Example 5.6 (a) and its steady-state equivalent (b).

The characteristic equation is

g(l)=|l ·1−A |= Kl+4 −1
2

1
2

−1
4
l+7
4

1
4

−1
2

−1
2
l+1
2
D=0.

Thus,

g(l)= (l+4)[(l+7
4
)(l+1

2
)+1
4
]=0.

Simplifying yields

(l+4)(l2+9
4
l+9
8
)=0. (5.111)

Thus, the eigenvalues of A are

l
1,2
=−

9

8
±SA9282− 98B=−1.125±0.375

or

l1=−0.75, l2=−1.5, l3=−4.

Using the results of equation 5.106, we can evaluate b0 , b1 , and b2 from the
equations

b0−0.75b1+ (−0.75)2b2=e−0.75t

b0−1.5b1+ (−1.5)2b2=e−1.5t

b0−4b1+ (−4)2b2=e−4t ,

which in the matrix form are

C1 −0.75 0.56251 −1.5 2.25

1 −4 16 D Cb0b1b2D=Ce−0.75te−1.5t

e−4t D . (5.113)
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The solution for b’s is found by inversion, as

Cb0b1b2D=C1 −0.75 0.56251 −1.5 2.25

1 −4 16 D−1 Ce−0.75te−1.5t

e−4t D
=C 2.462 −1.6 0.1385

2.256 −2.533 0.2769

0.4103 −0.5333 0.1231D Ce−0.75te−1.5t

e−4t D
=C 2.462e−0.75t −1.6e−1.5t 0.1385e−4t

2.256e−0.75t −2.533e−1.5t 0.2769e−4t

0.4103e−0.75t −0.5333e−1.5t 0.1231e−4tD . (5.114)

With b’s now known, matrix eAt will be

eAt=C1 0 00 1 0

0 0 1D b0+C−4 0.5 −0.5

0.25 −1.75 −0.25

0.5 0.5 −0.5 D b1
+C 15.87 −3.125 2.125

−1.563 3.063 0.438

−2.125 −0.875 −0.125D b2 .
Substituting equation 5.114 for b’s and collecting like terms yields the final
results

eAt=C−0.048 −0.154 −0.256−0.077 −0.229 −0.384

0.256 0.769 1.283 D e−0.75t+C 0.066 0.4 0.133

0.2 1.2 0.4

−0.133 −0.8 −0.267D e−1.5t
+C 0.985 −0.246 0.123

−0.123 0.031 −0.015

−0.123 0.031 −0.015D e−4t. (5.115)

Now suppose that the initial state vector at t0=0 is x (0)=[0.5 1.5 1]T, then
the natural solution (for w(t)=0) in equation 5.109 is

x
nat
(t)=eAtx (0)=C−0.511e−0.75t +0.767e−1.5t +0.246e−4t−0.766e−0.75t +2.30e−1.5t −0.031e−4t

2.564e−0.75t −1.534e−1.5t −0.031e−4tD .
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(5.116)

The next step is to find the particular or forced solution of the state equation.
Let the input vector w(t)=[1 1]T. Substituting the circuit parameters into
matrix b in equation 5.55, we obtain

b=C3.5 0

0 1.5

0 0 D . (5.117)

Since the input is a constant (d.c.), evaluating the integral in equation 5.55
results, for t0=0, in

P t
0
PP eA(t− t)bw dt=−A−1eA(t− t)bw | t0=A−1[eAt−1]bw, (5.118)

where the inverse of the A matrix is found as follows

A−1=C−4 1
2
−1
2

1
4
−7
4
−1
4

1
2

1
2
−1
2
D−1=C−0.222 0 0.222

0 −0.5 0.25

−0.222 −0.5 −1.528D . (5.119)

Performing now, all the calculations in equation 5.118, with equations 5.119,
5.115, 5.117 and w=[1 1]T, we obtain the particular solution

x
par
(t)=C 0.547e−0.75t−0.556e−1.5t−0.769e−4t+0.7780.821e−0.75t−1.667e−1.5t+0.096e−4t+0.750

−2.735e−0.75t+1.111e−1.5t+0.096e−1.5t+1.528D . (5.120)
The final result of the complete solution is simply obtained by combining the
above two solutions: the natural (equation 5.116) and the particular (equation
5.120), which leads to

x(t)=x
nat
+x
par
=C 0.034e−0.75t+0.211e−1.5t−0.523e−4t+0.7780.052e−0.75t+0.633e−1.5t+0.065e−4t+0.750

−0.171e−0.75t−0.423e−1.5t+0.065e−4t+1.528D Cvc1vc2i
L4
D .

(5.121)

Figure 5.12 shows the state variables v
c1
, v
c2
, i
L4
behavior versus time.

The computer calculation of the state variables in the above example, using
the MATHCAD program is shown in Appendix I. (Note that the computing
results are slightly different from those obtained above.)ffff
To complete this example, suppose that voltage v3 is of interest. Then the
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Figure 5.12 Two capacitor voltages and inductor current curves versus time of Example 5.6.

output equation 5.56 simplifies to

v3 (t)=[−a a aR5]x (t)=[−
1
2
1
2
1
2
] Cvc1vc2i
L4
D .

Thus, the output voltage is

v
out
(t)=v3=

1
2
(−v
c1
+v
c2
+ i
L4
)

=−0.077e−0.75t−0.0005e−1.5t+0.327e−4t+0.750 V. (5.122)

Note that by inspection of the given circuit in its d.c. steady-state behavior, i.e.
the capacitors are open-circuited and the inductor is short-circuited as shown
in Fig. 5.11(b), we may find

v
c1
(2)=

v
s1

R5+R6
R5=

1

1+2/7
·1=0.778 V

v
c2
(2)=

v
s2

R3+R7
R3=

1

1+1/3
·1=0.75 V

i
L
(2)=v

c1
/R5+vc2/R3=0.778+0.75=1.528 A,

which is in agreement with the final results in equation 5.121.

(b) Multiple eigenvalues

If some of the eigenvalues of A (roots of the characteristic equation g(l)≠0)
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are not distinct and there are repeated values (for example l1=l2 ), then in this
case, the number of independent equations in 5.106 would be fewer than n
unknown coefficients b . The following theorem allows us to extend the solution
for finding all b’s to the case of repeated eigenvalues.

T heorem:(*) Let A be the n×n matrix with n0 distinct eigenvalues l1 , l2 , . . . , ln0
and m multiple eigenvalues (n0<n, if no eigenvalue is repeated, then n0=n).
Let the eigenvalue l

i
occur with multiplicity r

i
, and define the polynomials

P(A)= ∑
n−1

k=0
b
k
A, (5.123)

and

P(l)= ∑
n−1

k=0
b
k
lk. (5.124)

Then the matrix function f (A) is identical to the matrix polynomial P(A) (see
5.107) if the following conditions are obeyed:

for each distinct eigenvalue

f (l
i
)=P(l

i
) i=1, 2, . . . , n0 (5.125a)

for each multiple eigenvalue

dq

dlq
f (l) |
l=l
i

=
dq

dlq
P(l) |

l=l
i

,

i=n
0+1
, n
0+2
, . . . , n

0+m
, q=0, 1, 2, . . . , r

i
−1 (5.125b)

that the first condition (equation 5.125a) gives us only n0 (n0<n) independent
equations for finding n unknown b-coefficients. However, the second condition
(equation 5.125b) yields the remaining equations needed to solve for
b0 , b1 , . . . , bn−1 . For this purpose equation 5.125b shall be rewritten in terms of
the unknown b’s

dq

dlq
f (l) |
l=l
i

=
dq

dlq
∑
n−1

k=0
b
k
lk |
l=l
i

= ∑
k−1

k=q
k(k−1)· · · (k−q+1)b

k
lk−q
i
,

i=n
0+1
, n
0+2
, . . . , n

0+m
, q=0, 1, 2, . . . , r−1 (5.126)

The total number of independent equations, therefore, will be

n0+∑
m

1
r
i
=n.

Example 5.7

As an example of the determination of a matrix function when A has multiple

(*)The proof can be found in the book by Balabanian N. and Bickart T. A. (1969) Electrical Network
T heory, John Wiley & Sons.
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eigenvalues, let us consider the same circuit in Fig. 5.11 of the previous example
with slightly different parameters, namely:ffff R6=1/3 V, R7=2/5 V (the rest of
the parameters are the same). Suppose we wish to find eAt.

Solution

The A matrix in this case will be

A=C−72 1
2
−1
2

1
4
−3
2
−1
4

1
2

1
2
−1
2
D

which yields the characteristic equation

g(l)=Cl+72 −1
2

1
2

−1
4
l+3
2

1
4

−1
2

−1
2
l+1
2
D

= (l+7
2
)(l+3

2
)(l+1

2
)+1
4
l+3
8
= (l+7

2
)(l2+2l+1)=0.

Thus, the eigenvalues are l1=−
7
2
and double l2=−1, i.e. the multiplicity r=

2. Therefore, for the first distinct eigenvalue, in accordance with equation 5.125a,
we have

b0+b1 (−
7
2
)+b2 (−

7
2
)2=e−(7/2)t,

and for the double eigenvalue, in accordance with equation 5.125b we have

b0+b1 (−1)+b2 (−1)2=e−t, q=0

b1+2b2 (−1)=te−t , q=1.

Since

df (l2 )
dl K

l
2
=−1
=
d

dl2
(el
2
t )K
l
2
=−1
=te−t,

the above equations in the matrix form are

C1 −7/2 49/41 −1 1

0 1 −2D Cb0b1b2D=Ce−3.5te−t

te−t D .
The solution for b’s gives

Cb0b1b2D=C0.16e−3.5t+0.84e−t+1.4te−t0.32e−3.5t−0.32e−t+1.8te−t

0.16e−3.5t−0.16e−t+0.4te−tD .
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With b’s known, the desired matrix is

eAt=C1 0

1

0 1D b0+C−3.5 0.5 −0.5

0.25 −1.5 −0.25

0.5 0.5 −0.5 D b1
+C 12.125 −2.75 1.875

−1.375 2.25 0.375

−1.875 −0.75 −0.125D b2 .
Substituting the b’s from the previous solution, and after simplifying, we obtain

eAt=C 0.98e−3.5t+0.02e−t−0.05te−t −0.28e−3.5t+0.28e−t−0.2te−t 0.14e−3.5t−0.14e−t−0.15te−t

−0.14e−3.5t+0.14e−t−0.1te−t 0.04e−3.5t+0.96e−t−0.4te−t −0.02e−3.5t+0.02e−t−0.3te−t

−0.14e−3.5t+0.14e−t+0.15te−t 0.04e−3.5t−0.04e−t+0.6te−t 1.02e−3.5t−0.02e−t+0.45te−t D .
(c) Complex eigenvalues

We shall illustrate the computation of a matrix exponential when some of the
roots of the characteristic equation are complex quantities, considering the
following example.

Example 5.8

Let the circuit in Fig. 5.11 (of the previous example) have the same parameters,
excluding R6=2/5 V and R7=1/2 V. Our purpose is again to compute eAt.

Solution

We substitute the above parameters into the A matrix of equation 5.55 to yield

A=C−3 1
2
−1
2

1
4
−5
4
−1
4

1
2

1
2
−1
2
D .

Thus, the characteristic equation of A is

g(l)= (l+3)(l+5
4
)(l+1

2
)+1
4
l+3
4
=0,

or after a rearrangement of terms

(l+3)(l2+7
4
l+7
8
)=0,

Therefore, the eigenvalues are

l1=−3, l2,3=−
7
8
±√49–56

64
=−0.875± j0.331.

Note that two complex eigenvalues are a conjugate pair. Thus, in accordance
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with equation 5.106, we have

b0+b1 (−3)+b2 (−3)2=e−3t

b0+b1 (−0.875+ j0.331)+b2 (−0.875+ j0.331)2=e−0.875t ej0.331t

b0+b1 (−0.875− j0.331)+b2 (−0.875− j0.331)2=e−0.875t e−j0.331t.

Next, we solve these equations to yield for b’s:

b0=0.819e−3t+e−0.875t(3.86 sin 0.331t+0.811 cos 0.331t)

b1=0.378e−3t+e−0.875t(5.46 sin 0.331t−0.378 cos 0.331t)

b2=0.216e−3t+e−0.875t(1.39 sin 0.331t−0.216 cos 0.331t).

Hence, matrix eAt will be

eAt=C1 0

1

0 1D b0+C−3 0.5 −0.5

0.25 −1.25 −0.25

0.5 0.5 −0.5 D b1
+C 8.875 −2.375 1.625

−1.187 1.563 0.313

−1.625 −0.625 −1.125D b2 .
Finally, substituting the above results for b’s, after simplifying, we obtain

eAt=C 0.973e−3t−0.174f1+0.027f2 −0324e−3t−0.572f1+0.324f2 0.162e−3t−0.470f1−0.162f2
−0.162e−3t−0.280f1+0.162f2 0.054e−3t−0.787f1+0.946f2 −0.027e−3t−0.930f1+0.027f2
−0.162e−3t+0.470f1+0.162f2 −0.054e−3t+1.86f1−0.054f2 −0.027e−3t+0.960f1+1.027f2

D
where f1=e−0.875t sin 0.331t, f2=e−0.875t cos 0.331t.
Suppose we now wish to know the zero input response of the circuit to the
initial vector, x(0)=[1 1 0]T, i.e. the capacitors are initially charged to 1 V
each. Then,

x
nat
(t)=eAt[1 1 0]T=Cvc1vc2i

L4
D

=C 0.649e−3t+e−0.875t(−0.746 sin 0.331t+0.351 cos 0.331t)−0.108e−3t+e−0.875t(−1.073 sin 0.331t+1.108 cos 0.331t)

−0.108e−3t+e−0.875t(2.329 sin 0.331t+0.108 cos 0.331t) D .
These two voltage curves and one current curve versus time are shown in
Fig. 5.13.
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Figure 5.13 Two capacitor voltages and inductor current curves versus time of Example 5.8 in the

case of complex-conjugate eigenvalues.

5.8.3 Lagrange interpolation formula

One other method of computing functions of a matrix is based on the Lagrange
interpolation formula (this formula is also known as the Silvestre formula).
Thus, knowing the eigenvalues l’s of matrix A, any function of A may be
determined as:

f (A)= ∑
n

i=1 A ank=1
k≠1

A−l
k
1

l
i
−l
k B f (li ), (5.127)

where an

k=1
k≠1

means the product of terms
A−l

k
1

l
i
−l
k
where k takes the values

1, 2, . . . , n but excluding k= i. For example, using the data of Example 5.6,
equation 5.127 implies that

eAt=
(A+1.5·1)(A+4·1)
(−0.75+1.5)(−0.75+4)

e−0.75t+
(A+0.75·1)(A+4·1)
(−1.5+0.75)(−1.5+4)

e−1.5t

+
(A+0.75·1)(A+1.5·1)
(−4+0.75)(−4+1.5)

e−4t.

Substituting matrix A (equation 5.110) and performing all the arithmetic, leads
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to

eAt=C−0.050 −0.154 −0.256−0.077 −0.230 −0.385

0.256 0.769 1.282 D e−0.75t+C 0.067 0.4 0.133

0.2 1.2 0.4

−0.133 −0.8 −0.267D e−1.5t
+C 0.985 −0.246 0.123

−0.123 0.031 −0.015

−0.123 0.031 −0.015D e−4t
which agrees with the previous results obtained in equation 5.115.
The Lagrange interpolation formula can be easily programmed, which is an
advantage in computer-aided calculations.

5.9 EVALUATING THE MATRIX EXPONENTIAL BY LAPLACE
TRANSFORM

In conclusion, let us introduce the Laplace transform application for solving
the matrix differential equation. To simplify the procedure, we first apply theffff
Laplace transform to the homogeneous equation (see equation 5.81):

d

dt
x(t)−Ax(t)=0. (5.128)

Applying the Laplace transform to equation 5.128, we get

sX(s)−X(0)−AX(s)=0, (5.129)

where X(s) is the Laplace transform of x(t). Supposing that X(0)=1 (equation
5.129) can be written as follows:

(s ·1−A)X(s)=1, (5.130)

or

X(s)= (s ·1−A)−1. (5.131)

Now, we take the inverse transform to get x(t)

x(t)=L−1{(s·1−A)−1}=eAt. (5.132)

As can be seen, since we have taken X(0)=1, this expression is also equal to
the matrix exponential eAt.

Example 5.9

Let us apply this result to the simple circuit shown in Fig. 5.14, where the
proper tree branches are emphasized.
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Figure 5.14 A circuit of Example 5.9.

Solution

The capacitor voltage v
C
and the inductor current i

L
are the state variables in

this case. The fundamental cut-set equation and two fundamental loop equations
yield

C
dv
C
dt
=−i

L
+ i1

L
di
L
dt
=v
C
−R2 iL

R1 i1=−vC+vs or i1=−
1

R1
v
C
+
1

R1
v
s
.

To eliminate a non-desirable variable, i1 , in the first equation, in this simple
case, the third equation shall be inserted into the first one for i1 . Thus, the state
equations are

dv
C
dt
=−

1

R1C
v
C
− i
L
+
1

R1
v
s

di
L
dt
=
1

L
v
C
−
R2
L
i
L
,

or in the matrix form

d

dt CvCi
L
D=C−1/R1C −1

1/L −R2/L
D CvCi
L
D+C1/R10 D [vs]. (5.133)

Let the element values be C=1.0 F, L=4/3 H, R1=2/5 V, R2=2/3 V and vs=
1 V. This yields the coefficient matrixes A and b

A=C−5/2 −1

3/4 −1/2D , b=C5/20 D (5.134)
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and the input matrix w=[v
s
]=[1]. Next, we find the matrix [s1−A] and its

determinant

s1−A=Cs+52 1

−3
4
s+1
2
D

det (s1−A)= (s+5
2
)(s+1

2
)+3
4
=s2+3s+2= (s+1)(s+2).

The inverse matrix [s·1−A]−1 is now easily obtained as

[s·1−A]=C s+1
2

(s+1)(s+2)
1

(s+1)(s+2)

−
3
4

(s+1)(s+2)

s+5
2

(s+1)(s+2)D
=C− 1

2
s+1

+
3
2
s+2

1

s+1
−
1

s+2

−
3
4
s+1

+
3
4
s+2

3
2
s+1

−
1
2
s+2D .

A partial-fraction expansion was performed in the last step. The inverse Laplace
transform of this expression is

L−1[s·1−A]−1=C−12e−t+32e−2t e−t−e−2t−3
4
e−t+3

4
e−2t 3

2
e−t−1

2
e−tD=eAt. (5.135)

(It is left as an exercise for the reader to verify this result using one of the above
given methods for determining a matrix exponential.)
Suppose that the initial conditions are v

C
=1 V and i

L
(0)=0 , and then the

natural response will be

x
n
(t)=CvC,ni

L,n
D=eAt C10D=C−12e−t+32e−2t−3

4
e−t+3

4
e−2tD . (5.136)

Note that the verification of equation 5.136 at t=0 yields the initial values of
v
C
(0) and i

L
(0) . The particular solution of equation 5.133 may also be obtained

with equation 5.135 using, for example, equation 5.118. Thus,

x
p
(t)=A−1[eAt−1]bw=C−14 1

2
−3
8
−5
4
D C−12e−t+32e−2t e−t−e−2t

−3
4
e−t+3

4
e−2t 3

2
e−t−1

2
e−2tD C520D

or after performing all the calculations

x
part
(t) CvC,pi

L,p
D=C 54e−t−158 e−2t+58−15

8
e−t+15

16
e−2t+15

16
D .

By inspection (see the circuit in Fig. 5.13) it can be easily verified that the
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steady-state values of the capacitor voltage and the inductor current agree with
those found below:

v
C,p(2)

=5
8
V and i

L,p(2)
=15
16
A.

The Laplace transform is one of the ways of evaluating the matrix exponential.
However, if we are going to use the Laplace transform for circuit analysis, we
may do it straightforwardly using the methods described in Chapter 3. The
methods of matrix function evaluation, considered in this chapter, are the most
general and suitable for computer-aided computation.
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Chapter #6

TRANSIENTS IN THREE-PHASE SYSTEMS

6.1 INTRODUCTION

In the previous chapters we have discussed transients in single-phase circuits.
However, practically all-electric power is generated, transmitted, distributed and
utilized in three-phase systems. Three-phase networks are generally more com-
plicated than single-phase circuits. The complication arises from the interconnec-
tion and displacement angle between phases, the triplicate number of
components and the branches introduced by the three phases and, also, because
of the need to sometimes consider mutual coupling between phases. Naturally,
we started our study of transient analysis with single-phase circuits, while
establishing the principles and different methods, and gaining experience inffff
techniques of solving problems. Our continued analysis of transients in three-
phase networks, therefore, will be based on our previous study.
There are two basic methods for the analysis and calculation of transients in
three-phase circuits: 1) to extend the single-phase approach and 2) to use
symmetrical components. The first approach is based on the use of the general-
ized current/voltage phasor of the three-phase system and the two axes represen-
tation of a synchronous machine. The single-phase approach, hence, considers
the three-phase system as one entity and that a disturbance occurring at one
point affects the whole system, and that the transient components excited areffff
not symmetrical and do not obey the three-phase relationships like in steady-
state behavior. The method of symmetrical components has been used for many
years to calculate the steady-state behavior of three-phase networks when some
part of the network happens to run under unbalanced conditions (primarily
with an unbalanced load). The method may also be used to analyze unsymmetri-
cal faults, such as: the single-phase to earth fault, the phase-to-phase short
circuit, etc. The method of symmetrical components, actually, removes the
unsymmetrical conditions and allows the computation to proceed much the
same as for symmetrical three-phase short-circuit conditions, with, of course,
some extra complications of the whole procedure.
In this chapter we will discuss the short-circuit faults (symmetrical as well as
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unsymmetrical ) at different points of a three-phase system and the transientffff
overvoltages. The emphasis will be placed on the analysis of the terminal short
circuits of power transformers and generators.

6.2 SHORT-CIRCUIT TRANSIENTS IN POWER SYSTEMS

The dominant causes of disturbance of the normal operation of power systems
are short-circuits. Short-circuit currents are generally of a magnitude many
times that of their rated values. In consequence, high dynamic and thermal
stresses are generated, which affect the electrical equipment. In the case of shortffff
circuit to earth, unacceptable contact potentials arise, which can lead to damage
to the equipment and personal danger. Hence, in planning and designing electric
power networks the highest consideration must be given to short-circuit analysis
and short-circuit current estimations. Knowing the value of short-circuit cur-
rents and their flow is also necessary for the specification of protective devices.
The following sections are dedicated to short-circuit transient analysis and
different methods of calculating short-circuit currents.ffff
In three-phase systems a distinction is made between the following kinds of
short-circuits:

a) Three-pole short-circuit, in which the three voltages at the short-circuit point
are all zero, and the three conductors are symmetrically loaded by the short-
circuit currents, as shown in Fig. 6.1(a). Hence this kind of short-circuit fault is
called symmetrical and the analysis of this kind of short circuit is performed
on a single-phase representation. It should be noted that this kind of short
circuit is relatively rare, but it is usually the most dangerous since the short-
circuit currents developed in this fault are of the highest magnitude. They are

Figure 6.1 Designation of short-circuit faults: three-pole short circuit (a), a single-pole-ground short

circuit (b), two-pole-ground fault (d) and double-earth fault (e).
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important for specifying the equipment under the short-circuit fault. Since the
three-phase voltage at this kind of fault drops to zero, stability problems arise
and non-static loads, such as induction motors, run down to stand still (see
further on in Chapter 8).
The other four kinds of short-circuits are entirely unsymmetrical conditions.
In particular, the voltages at the short-circuit point are not all zero. As a result
of the unsymmetrical conditions, mutual couplings are introduced between the
phase conductor and the neutral conductor, if present.

b) The single-pole short-circuit between one of the phases and earth, Fig. 6.1(b).
This kind of fault is the most frequently encountered. Sometimes when the
network possesses a low neutral earth impedance, the fault current can even
exceed the largest currents produced by a three-pole short-circuit.

c) The two-pole short-circuit without an earth fault, Fig. 6.1(c), in which only
two phase voltages at the short-circuit point are zero. In this kind of short-
circuiting the short-circuit currents are usually less than those produced by a
three-pole short circuit. However, if the short-circuit location is close to the
generator, the subsequent short-circuit current can become greater than in the
three-pole case.

d) The two-pole short-circuit with an earth fault, Fig. 6.1(d). This kind of fault
may occur in a system with a grounded neutral and has similar characteristics
to the previous one.

e) The double earth fault, which occurs in a system with an isolated neutral,
Fig. 6.1(e). The short-circuit currents in this case may not exceed the rated
values, but are significant with regard to the determination of the contact
potential and dimension of the earthing systems.

6.2.1 Base quantities and per-unit conversion in three-phase circuits

In the analysis of power networks it is common to use a so-called ‘‘per unit’’
system (denoted p.u.) for expressing network quantities rather than a system of
actual units (V, A, V, etc.). According to this system all the quantities are
expressed as fractions of reference quantities, or base values, such as base
apparent power Sb (VA), base voltage, VbVV , and/or base current, IbII . It is obvious
that it is enough to choose only two of these quantities since they are related
by the expression

Sb=
√3VbVV Ib . (6.1)

Usually the base voltage is chosen, in addition to the base power, and the base
current is calculated as

Ib=
Sb
√3VbVV

, (6.1a)

where VbVV and Ib are the line quantities.
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Hence, the p.u. quantities will be:

VpuVV =
V

VbVV
(p.u. voltage) (6.2a)

IpuII =
I

IbII
(p.u. current) (6.2b)

Spu=
S

Sb
, PpuPP =

P

Sb
, Qpu=

Q

Sb
(p.u. power) (6.2c)

and the most important p.u. quantity, the p.u. impedance and its components:

Zpu=
Z
V

Zb
, Rpu=

R
V

Zb
, XpuXX =

X
V
XX

Zb
. (6.3)

Here the base impedance, Zb , is established with Ohm’s Law as

Zb=
VbVV
√3Ib

=
V 2b
Sb
. (6.4)

With equation 6.4 we can write

Zpu=ZV
Sb
V 2b
, Rpu=RV

Sb
V 2b
, XpuXX =X

V
XX
Sb
V 2b
. (6.5)

Note that in expressions (equations 6.3–6.5) the impedances and their compo-
nents are per-phase quantities. It should also be denoted that all the expressions
(equations 6.1–6.5) are proper for a one-phase network. In such a case the �3
must be omitted, and all the quantities are phase or just circuit values. With
the known p.u. value, the actual value can be obtained as

Z
V
=Zpu

V 2b
Sb
=Zpu

VbVV
√3Ib

. (6.6)

The p.u. system is widely used in ‘‘Electric machine and transformer’’ courses,
where the parameters of electric machines and transformers and their character-
istics are usually expressed in per-unit quantities. It stands to reason, therefore,
that the p.u. system is used in ‘‘Power system’’ courses, since power systems
consist, primarily, of synchronous generators, transformers and motors. All such
equipment varies widely in size, power, voltages etc. However, for equipment
of the same type the p.u. impedances, voltage drops and losses are in the same
order, regardless of size.
For example, if the primary winding reactance of a 50 kVA, 6.6 kV single-

phase transformer is X1=38.5 V, then this reactance measured in p.u. will be

X1,pu=
X1,V
Zb
=
38.5

871
=0.044,
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where the base impedance is

Zb=
V 2r
Sr
=
6.62 ·103
50

=871 V.

Per-unit quantities are often expressed as a percentage. Percent quantities differffff
from per-unit by a factor of 100. Hence, the above p.u. reactance, in percent,
will be X1,%=4.4%. All the transformers of the same series as the above
transformer will have about the same percent reactance regardless of their power.
The p.u. values of different items of apparatus by themselves, such as transfor-ffff

mers, synchronous generators, motors etc. are given in terms of their own
kVA/MVA power and voltage ratings. Hence, for any power system in which
several pieces of equipment are involved, it is necessary to refer all the given
p.u. values to the system base values: base MVA power and base voltage. Thus,
if Z(r)pu is the per-unit impedance (reactance) for rated values, the same impedance
(reactance) referred to the base values, will be

Z(b)pu=Z(r)pu
SbV 2r
SrV 2b

, (6.7)

which shows that the ‘‘new’’ p.u. value is directly proportional to the ratio of
powers and inversely proportional to the ratio of the squared voltages. If VrVV =
VbVV , then

Z(b)pu=Z(r)pu
Sb
Sr
. (6.7a)

As already mentioned, in a three-phase system XpuXX is a per-phase reactance,
Sb (Sr ) is a three-phase power and VbVV (VrVV ) is a line voltage.
The single base power chosen is to be relatively large, at least equal to, or
larger than, the highest power source in the network. All the system impedances
will then be related to this base power. The base voltages, however, differ inffff
the dependence on the level of transformation. As we know, these voltages are
intended for supplying the transmission and distribution lines over a range from
a few thousand volts to a million volts. Hence, the entire power network may
have many different voltage levels. By analyzing such a network, all the imped-ffff
ances must be referred to one voltage level. Since all voltages and currents are
related directly or inversely as the turn ratio of transformers in any part of
power systems, all voltages, currents, volt-amperes and impedances will have
the same per-unit values regardless of where they appear in the system. Applying
the per-unit values allows the elimination of different voltage levels and repre-ffff
sents the entire network on a single voltage level. This is another reason for
using a per-unit system of representing the power system quantities.
Let us discuss this topic in more detail. If some particular device is located
on the voltage level, which differs from the base voltage level, which is chosenffff
as a main or system base voltage (sb), its base quantities should be calculated
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as

V (b)=
1

n1n2 . . .nk
V (sb) , I(b)= (n1n2 . . .nk )I(sb), (6.8)

where n1 , n2 , . . . , nk are the turn ratios of the transformers, which are connected
in series between the location of the device and the main base level (the turn
ratios must be taken in the direction of the main voltage level towards the level
of the device location).
The device’s actual impedance, which referred (reflected) to the main voltage
level, will be

Z(sb)
V
=n2
1
n2
2
···n2
k
Z(b)
V
=n(2)eqZ(b)V ,

where

neq$VsbVV /VbVV (6.9)

With neq the p.u. value of the impedance is

Z(sb)pu =Z(sb)V
Sb
V 2sb
=n2eqZ(b)V

Sb
V 2sb
=Z(b)
V

Sb
V 2b
=Z(b)pu . (6.10)

This important result shows that the p.u. impedance value referred to the system
(main) base voltage can be calculated with the same expression (equation 6.5)
as has been referred to the base voltage of the equipment location, regardless
of which system (main) base voltage is chosen.
It is important to note that for the same reason the p.u. impedance of a
transformer is the same whether it is referred to the primary or secondary side.
Indeed, let us assume that the p.u. impedance, which referred to the primary
(step-down transformer), is Z1 , and that which referred to the secondary is Z2=
Z1/n2, where n is the turn ratio (n=N1/N2NN =V1rVV /V2rVV ). then

Z1pu=Z1
Sr
V 21r
,

and

Z2pu=Z2
Sr
V 22r
=Z1

Sr
n2V 22r

=Z1
Sr
V 21r
=Z1pu .

Hence, the result is the same as the p.u. impedance, which is referred to the
primary.
It shall be noted that, since the voltages at the sending V1VV and receiving V2VV
ends of a transmission line are different (because of the voltage drop), the lineffff
rated voltage is usually taken as an average value

V
l
VV ,r=

V1VV +V2VV
2

(6.11)



T ransients in T hree Phase Systems 325

The average values of the voltages are taken as base voltages for each of the
voltage levels in the network(*).
The turn ratio, i.e., the ratio of rated voltages, of the power network transfor-
mers may not be the same as the ratio of the average voltages of different levels,ffff
so that the impedance referring can be done in two ways: approximate or exact.
The referring in accordance to the base-average voltages is approximate. In this
case the turns ratio of the transformers (or the ratio of their rated voltages) is
taken equal to the ratio of the level voltages. If the base voltages are related by
the turn ratios of the transformers, the referring is accounted as an exact one.
Let us illustrate these two approaches of expressing p.u. impedances in the
following example.

Example 6.1

Consider the three-phase network whose one-line diagram is shown in Fig. 6.2.
The rating values and p.u. reactances of the generator and the transformers as
well as the parameters of the transmission line and current-limiting reactor are
indicated in this diagram. For the calculation of a short-circuit current draw
the equivalent circuit and find all the p.u. reactances, which are referred to the
generator voltage level in two ways: 1) approximately and 2) exactly.

Solution

We first have to specify the base volt-ampere power, which for a given network
it is reasonable to choose a value of 100MVA.

Figure 6.2 A one-line diagram of a given network (a) and its equivalent circuit in terms of p.u. (b).

(*)The average voltages are usually in accordance with those recommended by electric companies
or general standards.
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1) Approximate evaluation. The rated voltages on each level will be as base
values, i.e., on the generator level: VbIVV =13.8 kV, on the line level: VbIIVV =115 kV
and on the distribution level: VbIIIVV =10 kV.
The base currents in accordance with equation 6.1a are

IbIII =
100

√3·13.8
=4.18 kA, IbIIII =

100

√3·115
=0.5 kA, IbIIIII =

100

√3·10
=5.77 kA.

Then the p.u. reactances are obtained in accordance with equation 6.7a as:

for the generator XgXX =0.21
100

75
=0.28 pu,

for the sending end transformer

XT1XX =0.1
100

50
=0.2 pu,

for the receiving and transformer

XT2XX =0.125
100

50
=0.25 pu,

for the transmission line in accordance with equation 6.5

X
l
XX =0.4·100

100

1152
=0.30 pu,

for the current-limiting reactor

XrctXX =0.05
100

3.46
=1.45 pu,

where Sre=
√3·10·0.2=3.46MVA is the reactor rating apparent power.

2) Exact evaluation. The base voltage on the generator level, as in the previous
calculation, will be VbIVV =13.8V. The base voltages on the line level and on the
distribution level, in accordance to the turn ratio of the transformers, will be
(equation 6.8),

VbIIVV =
1

13.8/121
=121 kV and VbIIIVV =

1

115/11
=11.6 kV

The base currents are (equation 6.1a)

IbIII =
100

√3·13.8
=4.18 kA, IbIIII =

100

√3·121
=0.48 kA, IbIIIII =

100

√3·11.6
=4.98 kA.

The per-unit reactances are obtained as:

for the generator (equation 6.7a)

XgXX =0.21
100

75
=0.28 pu,
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i.e., the same as in the previous calculation (since the base voltage on the
generator level did not change),

for the sending and transformer

XT1XX =0.1
100

50
=0.2 pu,

i.e., it did not change either for the same reason,

for the receiving end transformer (equation 6.7)

XT2XX =0.125
100

50 A115121B2=0.23 pu
(since the base voltage and the rated voltage are not equal ),

for the transmission line (equation 6.5)

X
l
XX =0.4·100

100

1212
=0.27 pu

for the current-limiting reactor (equation 6.7)

XreXX =0.05
100

3.46 A 1011.6B2=1.08 pu.
Finally, it might be good to point out that using per-unit quantities in short-
circuit fault analysis simplifies to a great extent the numerical calculations
manually and/or by using computers.

6.2.2 Equivalent circuits and their simplification

As the equivalent circuit of the power system network in per-unit quantities is
established, the next step in short-circuit calculation is to simplify the network.
Using the known methods of circuit analysis we may, in most cases, simplify
the network so that only a single equivalent generator will feed the short-circuit
fault through an equivalent impedance. The following will remind the reader of
the most useful of these methods.

(a) Series and parallel connections

We start with the series and parallel connections, simplifying them by well-
known formulas. Thus, if we have a few generators operating in parallel (usually
at the same power station), as shown in Fig. 6.3, we may integrate them into a
single one by using this formula (sometimes called Millman’s formula).

Eeq=
E1Y1YY +E2Y2YY + · · ·+EnYnYY
Y1YY +Y2YY + · · ·+YnYY

=
∑
n
EY

∑
n
Y

, XeqXX =
1

∑
n
Y

, (6.12)

where

Y1YY =
1

X1
, Y2YY =

1

X2XX
, ·· · Y

n
YY =

1

X
n
XX
.
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Figure 6.3 Three generators in parallel (a) and the equivalent circuit (b).

For only two generators the above formula will be

Eeq=
E1X1+E2X2XX
X1+X2XX

, XeqXX =
X1X2XX
X1+X2XX

. (6.13)

These formulas are valid for any value of E’s (EMF’s) including zero.
In particular, the load may be treated as a main generator having zero EMF
(E=0). Then such a generator can be combined with others, instead of connect-
ing the zero potential point of the load with the point of the short-circuit fault,
as shown in Fig. 6.4. This consideration of the load is approximate; however, it
allows us to easily simplify the network. As can be seen in Fig. 6.4(b) the
generators can be gradually integrated all together into one single generator,
as shown in Fig. 6.4(c). With two more steps, as shown in Figs. 6.4(c) and (d)
the given network is simplified to a single generator and a single reactance. In
contrast to the above procedure, the connection of zero potential points, as
shown in Fig. 6.4(a) (see the dashed line) gives rise to a more complicated circuit,
which includes two loops.

(b) Delta-star (and vice-versa) transformation

The delta-star transformation can also be useful for the simplification of net-
works having a short-circuit fault. For introducing this technique, let us consider
the network shown in Fig. 6.5(a). In the first step the star X3XX −X4X −X5XX is
replaced by delta (shown by dash lines) whose reactances are calculated by the
following formulas

X8=X3+X4+
X3X4
X5

, X9=X4+X5+
X4X5
X3

, X10=X3+X5+
X3X5
X4

.

Replacing the parallel connecting reactances with their equivalents, we obtain
the circuit in Fig. 6.5(b). In the next step we transform the delta X8−X11−X12
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Figure 6.4 A network containing a load (a), the load has been replaced by a generator having zero

EMF (b), two steps of simplifying the circuit (c) and (d).

Figure 6.5 A given network (a), a network after a star-delta transformation (b) and a network after

a delta-star transformation (c).



330 Chapter #6

into a star by using the formulas

X13=
X8X11

X8+X11+X12
, X14=

X8X12
X8+X11+X12

, X15=
X11X12

X8+X11+X12
.

The obtained circuit, Fig. 6.5(c), can now be simplified, as was previously done,
into one having a single generator and a single impedance.

(c) Using symmetrical properties of a networkUU

We may use symmetrical properties to simplify a given network. Consider the
network shown in Fig. 6.6(a). If the rating values of transformers, reactors and
cables are identical, the entire network is symmetrical relative to the fault point
and can be simplified as shown in Fig. 6.6(b). The rest of the elements may not
be included in this circuit, since the fault current will not flow through them.
The obtained scheme has two parallel branches and can be easily simplified to
a single reactance.

6.2.3 The superposition principle in transient analysis

By neglecting the magnetic saturation in synchronous machines and transfor-
mers (which is common practice in the transient analysis of power systems), the
power network may be treated as a linear system. Hence, the principle of
superposition can be applied to its analysis. As was shown in section 2.6, to
find the short-circuit current at the fault point, we may superimpose two regimes:

Figure 6.6 A symmetrical network (a) and its simplification (b).
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Figure 6.7 A given network (a), the network of a previous regime (b) and the network due to the fault.

1) a previous one, i.e. prior to fault and 2) the additional one, which arises due
to the fault. To illustrate this technique, consider the network shown in Fig. 6.7.
It is obvious that the fault conditions will not change, if we insert in the fault
point two voltage sources equal in magnitude, but opposite in sign, as shown
in this figure. The magnitude of these sources should be chosen equal to the
voltage value at the fault prior to the fault (if this voltage is not known, the
rated value can be used). Following the superposition principle the network in
Fig. 6.7(a) can now be represented as two separate networks.
The first one, shown in Fig. 6.7(b), is actually the network of a normal
operation, prior to the fault occurring. The second one, shown in Fig. 6.7(c), is
the network of the fault regime. Usually the operational conditions (the voltages
at the nodes and the branch currents) are known, so that only the network in
figure (c) must be analyzed. This network is simpler than the given one, since
it has only one source, and therefore might be easier to simplify to a single
reactance. The total currents will be found by the summation of the normal
condition currents and the fault currents found in the circuit of Fig. 6.7(c).

Example 6.2

The equivalent circuit of part of a power system is shown in Fig. 6.8. The p.u.
impedances of the generators, transformers and transmission lines, as well as
the generators’ EMF’s, are indicated on the scheme. (The one-line diagram of
the network and the calculations of the p.u. values are given in Appendix II.)
Simplify this network up to a single source and single impedance.

Solution

As a first step we replace two parallel EMF’s, E1 and E5 , by their equivalent
one (since all the values are in per unit quantities, the indication p.u. is omitted)

Eeq1=
1.25/(0.64+0.19)
1/0.83+1/4.55

=1.06,
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Figure 6.8 A given network (a), after the first step of simplification (b) and the resulting circuit (c).

and

Xeq1XX =
1

1/0.83+1/4.55
=0.70.

In the same way we replace three parallel EMF’s E1 , E3 and E4 by Eeq2

Eeq2=
1.33/2.05+1.33/2.15+1/0.55
1/2.05+1/2.15+1/0.55

=
1.818

2.771
=0.656,

and

Xeq2XX =1/2.771=0.360.

As a result we obtain the circuit shown in Fig. 6.8(b).
The next step is the delta-star transformation and replacing two EMF’s by
a total one

X
a
=

0.32·0.82

0.32+0.82+0.84
=
0.262

1.68
=0.160,

X
b
=
0.32·0.54

1.68
=0.100,

X
c
=
0.54·0.82

1.68
=0.260.
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Now, the total EMF is obtained as

Etot=
1.06·0.46+0.656·0.94

0.46+0.94
=
1.104

1.4
=0.789,

XtotXX =
0.46·0.94

1.4
+0.26+0.83=1.40.

The resulting circuit is shown in Fig. 6.8(c).

6.3 SHORT-CIRCUITING IN A SIMPLE CIRCUIT

As we have already mentioned, in the majority of the fault situations, such as
short-circuiting a single conductor to ground or earth (a one-phase short-circuit)
or short-circuiting between two conductors (a two-phase short-circuit), the
power system network becomes unsymmetrical. However, we shall start our
study of transients in three-phase systems with a symmetrical three-phase fault,
where all three conductors touch each other or fall to ground. Although this
kind of fault occurs in only a very small percentage of cases, it is very severe
for the system and its devices. The very extreme magnitudes of the fault currents
in such faults give engineers the ratings of the circuit breakers and other
equipment of the power network to be used.
In the case of a symmetrical three-phase fault in a symmetrical system, we
can use a single-phase approach, which simplifies to a great degree the calcula-
tion of the short-circuit currents and performance of the transient analysis. By
simplifying the system network, as was discussed in the previous sections, we
may reduce it to the simplest circuit including a single source and a single
impedance.
In the case of unsymmetrical faults, the most common method of analysis is
to use symmetrical components (see further on), in which we attempt to find
the symmetrical components of the voltages and the currents at the point of
unbalance and connect the sequence networks, which are, in fact, symmetrical
circuits. Hence, the following analysis can be made by again using a single-
phase representation.
For a better understanding of the short-circuit phenomena in a three-phase
system let us first consider the simple circuit, shown in Fig. 6.9, in which a

Figure 6.9 A simple three-phase circuit under a symmetrical three-phase fault.
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symmetrical three-phase fault occurs. Following the classical approach in tran-
sient analysis (see Chaps. 1 and 2) we may represent the total fault current, say
in phase ‘‘a’’, as the sum of a forced and a natural response

i
sc
= i
f
+ i
n
=I
m,f
sin (vt+y

v
−Q
sc
)+Ae−(R

sc
/L
sc
)t , (6.14)

where I
m,f
=V
m
VV /Z

sc
is an amplitude of the forced response, which is a steady-

state short-circuit current,

Z
sc
=√R2

sc
+ (vL

sc
)2, Q

sc
=tan−1

vL
sc

R
sc

are the magnitude and the angle of the total impedance up to the fault point F
and y

v
is an applied voltage phase angle at the moment of the short-circuiting.

Suppose that the current prior to short-circuiting was

i
ld
=I
m,ld
sin (vt+y

v
−Q
ld
), (6.15)

where I
m.ld
=V
m
VV /Z

ld
is the amplitude of the current under normal load condi-

tions, just prior to short-circuiting,

Z
ld
=√R2

ld
+ (vL

ld
)2 and Q

ld
=tan−1

vL
ld

R
ld

are the total impedance and the angle of a total impedance of the load and the
system under normal operation. Then the integrating constant is

A= i
n0
= i
ld
(0)− i

f
(0)=I

m,ld
sin (y

v
−Q
ld
)−I
m,f
sin (y

v
−Q
sc
), (6.16)

and the time constant of the exponential term is

t=
L
sc
R
sc
. (6.17)

Finally, we have the expressions of the natural and total responses:

i
n
=Ae−t/t=[I

m,ld
sin (y

v
−Q
ld
)−I
m,f
sin (y

v
−Q
sc
)]e−t/t, (6.18)

and

i
sc
=I
m,f
sin (vt+y

v
−Q
sc
)− i
n0
e−t/t . (6.19)

Since the current in phase ‘‘a’’ is determined, the rest of the currents in phases
‘‘b’’ and ‘‘c’’ may be found by replacing the current of phase ‘‘a’’ by −120° for
the current of phase ‘‘b’’ and by 120° for the current of phase ‘‘c’’. In Fig. 6.10
the three-phase phasor diagram of all three currents is given.
In accordance with the phasor concept, the phasors on the phasor diagram
are vectors rotated in a counterclockwise direction at an angular velocity of v,
rad/s, and their projections on axis ‘‘t’’ (or on an axis of imaginary numbers)
give the instantaneous values of the currents/voltages. Hence, the differences offfff
two phasors (I

m,ld
−I
m,f
) in each of three phases (dashed phasors) represent the

vectorized values of the integration constants, and their projection on axis t
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Figure 6.10 The phasor diagram of three-phase currents in a simple circuit at the three-phase short-

circuit fault.

gives the initial values of the natural responses in the corresponding phase a, b
and c. Such a representation clearly shows that the initial value of a natural
response may vary from its maximal value, when the vector (I

m,ld
−I
m,f
), i.e.,

the dashed line, is parallel to axis t, to zero, when this vector is perpendicular
to axis t. The position of this vector on the diagram is dependent on the applied
voltage phase angle y

v
at the moment of fault. In the latter case the exponential

term is absent, which means that the forced current at the instant of switching
is equal to the current prior to switching and no transient response takes place
at all. It is obvious that such conditions may occur only in one of the phases.
For the conditions of the phasor diagram, shown in Fig. 6.10, the short-circuit
currents versus time in all three phases are shown in Fig. 6.11.
As can be seen from the current plots in Fig. 6.11, the transient currents in
three phases, due to the aperiodic term, are different. Hence, we shall say thatffff
even the three-phase short circuit is not symmetrical. In one of the phases the
instantaneous current might be much larger than in the others. However, after
the aperiodical term decays, the short-circuit current becomes symmetrical.
The exponential term can be separated from the short-circuit current oscillo-
gram, as shown in Fig. 6.11(c). As can be seen, the exponential term is a medium
line in between two envelopes: an envelope of positive amplitudes and an
envelope of negative amplitudes. We may also say that the exponential term
represents the curve axis of a short-circuit current causing the current to be
unsymmetrical.
The initial value of the exponential term also depends on the previous regime.
It is easy to see that the largest value of the integration constant may be
achieved, if in the previous regime the current was leading (Fig. 6.12(b)). Since
the capacitance load in power systems is uncommon, the most severe case may
occur if, prior to the fault, the network was under no load operation, Fig. 6.12(c).
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Figure 6.11 The short-circuit currents in a simple three-phase circuit.

The maximal value of the short-circuit current in the latter case will appear
if the forced response current, at the instant of the fault, passes its maximum
(positive or negative), so that i

n0
$I
m,f
For the short-circuited network, which

is primarily of inductive impedance, this takes place when the applied voltage
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Figure 6.12 The most unfavorable conditions for the largest value of an aperiodic term to appear:

1) the lagging load (a), 2) the leading load (b) and 3) no-load operation (c).

passes its zero point. The plot of the short-circuit current under such conditions
is shown in Fig. 6.13.
Note that the time constant T

a
TT may be found experimentally from the short-

circuit oscillogram, as shown in Fig. 6.13 (also refer to section 1.3.1). The time
constant here is measured as an under-tangent, T

a
TT , along axis t. To achieve

good precision, using this method, point g must be taken at the beginning (the
highest) part of the exponential curve.
We may estimate the highest peak (or just ‘‘peak’’) of a short-circuit current

by using the ‘‘peak-coe‘ Ye cient’’. Since the highest peak is found to occur at about

Figure 6.13 A plot of a short-circuit current having a maximal exponential component.
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t$T /2 (i.e. at 50 Hz in 10ms and at 60 Hz in 8ms) after the incidence of the
short-circuit, we have

i
pk
=I
m,f
+ i
n0
e−(T/2t)= (1+e−(T/2t))I

m,f
=k
p
I
m,f

where k
pk
is the peak coefficient. Thus,

k
pk
=1+e−(T/2t). (6.20a)

The time constant, t, changes between zero (L=0) to infinity (R=0), therefore
the peak coefficient lies in the range

1<k
p
<2 (6.20b)

(except for the much less common case of the leading current, shown in
Fig. 6.12(b)).
Due to the resistivity of the short-circuit network, the exponential term finally

vanishes. Usually the time constant of power system networks is relatively large
(t=0.01–0.2 s), so that it takes a few periods for the exponential term to decay.
To check the thermal stability of electrical equipment under short-circuit fault
conditions, the r.m.s value of the short-circuit current in its initial stage has to
be estimated. Since this current is unsymmetrical, i.e., consisting of two compo-
nents: sinusoidal, or a.c., and exponential, or d.c., we may calculate its r.m.s.
value as

I
sc
=√I2

f
+I2exp (6.21)

where I
f
=I
m,f
/�2 is an r.m.s. value of a.c. and IexpI is an r.m.s. value of the

exponential term. The r.m.s. value of the exponential term may be estimated as
its average value in the interval of one period T or approximately, as the value
in the middle point of the period, as shown in Fig. 6.14.
The highest r.m.s. value of a short-circuit current will appear at the first period

Figure 6.14 Calculation of an average value of the exponential term.
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after the instant of fault. Thus, with equation 6.20a and in accordance with
equation 6.21 we obtain

I
sc,pk
=√I2

f
+[(k

pk
−1)�2I

f
]2=I

f
√1+2(k

pk
−1)2 (6.22a)

and with equation 6.20b, the range limits of I
sc,pk
are

1<
I
sc,pk
I
f
<√3. (6.22b)

The value of i
pk
is used by project engineers for checking the electrodynamic

stability of electrical equipment under short-circuit fault conditions.

6.4 SWITCHING TRANSFORMERS

6.4.1 Short-circuiting of power transformers

The short-circuit phenomenon in any transformer must be analyzed as a tran-
sient response in mutual (magnetically interlinked) elements. Considering a
three-phase transformer as a symmetrical element (which is an approximation
of a three-phase core type transformer) we may reduce it to a single-phase
circuit, as shown in Fig. 6.15. In this equivalent circuit a transformer is repre-
sented as two identical circuits. The resistance and inductance of the secondary
winding are referred to the primary winding. Note that, as previously shown,
p.u. impedances, resistances and inductances of a transformer are the same
regardless of which winding they are referred to. This means that both the

Figure 6.15 An equivalent single-phase transformer under the load (a) and under the short-circuit

fault (b).
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primary and secondary circuits have identical p.u. parameters. It should also
be noted that the ratio of the winding inductance to its resistance is equal in
both windings as is usual in power transformers (since the amounts of copper
in the primary and secondary windings are nearly equal ). Hence we may assume
that the parameters of the secondary winding, which are referred to the primary,
are about of the same values as the primary, and represent the transformer by
two similar circuits, Fig. 6.15. Also note that this equivalent transformer has a
unit turns ratio. We may also say that when the analysis is done in p.u.
quantities, the actual values of the primary and secondary circuits may be
obtained by simply multiplying the p.u. value of each current by an appropriate
rated value.
By using the superposition properties discussed previously, we may separate
the previous, i.e., the prior to short-circuiting, operation of the transformer and
its transient behavior having zero initial conditions. To find its natural response
we shall solve two homogeneous equations

L
di
1,n
dt
+Ri

1,n
+M

di
2,n
dt
=0

L
di
2,n
dt
+Ri

2,n
+M

di
1,n
dt
=0.

(6.23)

The characteristic equation has been developed in Example 1.2 (Chapter 1) and
it roots are given by equation 1.34, which under the given conditions (that L 1=
L 2=L and R1=R2=R) yields

s1,2=
1

L 2LL −M2
[RL±√(RL )2−R2(L 2L −M2)]=

R(LAM)
L 2LL −M2

, (6.24a)

or

s1=−
R

L+M
=−

1

t
m
, s2=−

R

L−M
=−

1

t
l

, (6.24b)

and the time constants are

t
m
=
L+M
R
, t

l
=
L−M
R
. (6.24c)

Hence, the natural currents are

i
1,n
=A1e−t/tm+A2e−t/tl , i2,n=B1e−t/tm+B2e−t/tl . (6.25)

The transformer’s equivalent circuit (Fig. 6.15) is of the second order and
therefore both currents consist of two exponential terms, having two differentffff
time constants. The larger one t

m
is determined by the sum of the winding

inductance L and the mutual inductanceM and is related to the main magnetic
flux linked to both windings. The smaller one t

l
is determined by the differenceffff

between the inductances L and M and is related to the leakage flux. As is
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known from the power transformer theory, the difference betweenffff L and M
represents the leakage inductance of the transformer windings and usually has
a relatively small value. Thus,

L
l
=L−M.

In the next step (step 2 of the classical approach) we shall find the forced
response, i.e. the steady-state short-circuit current of a transformer. By neglecting
the resistances and using the phasor approach: i=Iejvt and v=Vejvt, for the
transformer in Fig. 6.15(b) we may write

jvL I1+ jvMI2=VsVV

jvMI1+ jvL I2=0.
(6.26)

From the second equation we have

I2=−
M

L
I1 . (6.27a)

Substituting this in the first equation (equation 6.26) yields (for the magnitudes)

I1=
V
s
VV L

v(L 2LL −M2)
=

V
s
VV L

v(L+M)(L−M)
. (6.27b)

Because of the small leakage we may neglect in the sum (L+M) the differenceffff
between inductance L and mutual inductance M (L$M). Then the above
expression simplifies to

I
1,f
=I
sc
=

V
s
VV

v2(L−M)
=
V
s
VV

2vL
l

=
V
s
VV

X
l
XX
, (6.27c)

where L
l
is the leakage inductance of one winding and X

l
XX is the leakage

reactance of a transformer. The p.u. value of the steady-state short-circuit
current, therefore, is

I
sc
Ir
=
V
s
VV

X
l
XX Ir

=
VrVV
V
sc
VV
,

i.e., as a ratio of the system voltage, which is usually the same as a rated voltage,
and the voltage drop of the transformer caused by the short-circuit current (the
voltage at the short-circuit test). Thus if, for instance, a relatively low power
distribution transformer has a 4% short-circuit voltage, it will develop a steady-
state short-circuit current

I
sc
Ir
=
100

4
=25,

i.e., 25 times the normal current in either of the transformer windings.
The next step is finding the independent initial conditions, i.e. the value of
both currents at the instant of switching. For this reason we have to take into
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consideration that prior to switching the transformer carried a magnetizing, or
exciting, current (the current at no-load), which is obtained from the first
equation (equation 6.26). At zero secondary, it yields

I
M
=
V
s
VV

vL
. (6.28)

The p.u. value of the magnetizing current for power transformers lies in the
0.5–3% range; the first number is appropriate for very large transmission
transformers (200–300MVA) and the second one is appropriate for relatively
small distribution transformers. The magnetizing current, which is an open-
circuit current, relates to the short-circuit current, with equation 6.27c and
equation 6.28, as

I
M
I
sc
=
V
s
VV

vlN VsVV2vL
l

=
2L

l

L
$
2L

l

M
. (6.29)

It is worthwhile to mention that the same results can be obtained by inspection
of the equivalent circuit of a transformer with a cancelled mutual inductance,
Fig. 6.16(a), and its common approximation with the magnetized branch moved
to the transformer input, Fig. 6.16(b). As can be seen from Fig. 6.16(b), after
neglecting the resistances and assuming L$M, the magnetized current I

M
and

short-circuit current I
sc
become the expressions as in equations 6.27c and 6.28.

Let us consider the most unfavorable instant of the short-circuiting, when
the steady-state primary current i

1,f
passes through its maximum I

1,f
(equation

6.27). Since both currents, the magnetizing and the short-circuit current, are

Figure 6.16 An equivalent circuit of a transformer with a cancelled mutual inductance (a) and an

approximate circuit with the magnetized branch moved to the input (b).
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almost purely inductive, and thus having nearly the same phase angle, we may
write

i
1,n
(0)= i1 (0)− i1,f (0)=IM−I1,f, (6.29a)

and

i
2,n
(0)=0− i

2,f
(0)=

M

L
i
1,f
(0)=

M

L
I
1,f
. (6.30)

Next we shall find the dependent initial conditions, i.e., the derivatives of both
natural currents at t=0. The equations (equation 6.23) may be rewritten as

L
di
1,n
dt K
t=0
+M

di
2,n
dt K
t=0
=Ri

1,n
(0)=I

m
−I
1,f

M
di
1,n
dt K
t=0
+L
di
2,n
dt K
t=0
=Ri

2,n
(0)=

M

N
I
1,f
.

Solving these two equations for each of the derivatives yields

di
1,n
dt K
t=0
=−R C L

L 2LL −M2
I
m
−
L 2L +M2
L (L 2LL −M2)

I
1,fD

di
2,n
dt K
t=0
=−R C −ML 2LL −M2

I
m
+

2M

L 2LL −M2
I
1,fD . (6.31)

We can now obtain the integration constant by solving two simultaneous
equations (see equation 1.55 and Example 2.3).
For the primary current i

1,n
:

G A1+A2=Im−I1,f
−R
L+M

A1+
−R
L−M

A2=−R C L

L 2LL −M2
I
m
−
L 2L +M2
L (L 2LL −M2)

I
1,fD ,

which yields

A1=
1

2
I
m
−
L−M
2L

I
1,f
=
1

2
I
m
−
1

2

L
l

L
I
1,f
,

A2=
1

2
I
m
−
L+M
2L

I
1,f
$
1

2
I
m
−I
1,f
.

(6.32)

For the secondary current, i
2,n
:

G B1+B2=
M

L
I
1,f

−R
L+M

B1+
−R
L−M

B2=−R C ML 2L −M2 Im+ 2M

L 2LL −M2
I
1,fD ,
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which yields

B1=
1

2
I
m
−
L−M
2L

I
1,f
=
1

2
I
m
−
1

2

L
l

L
I
1,f
,

A2=−
1

2
I
m
+
L+M
2L

I
1,f
$−

1

2
I
m
+I
1,f
.

(6.33)

These results actually show that B1=A1 and B2=−A2 . The expressions for
A1 (B1 ) and A2 (B2 ) may be simplified: with equation 6.29 we have

A1=B1=
1

2
I
m
−
1

2

L
l

L

L

2L
l

I
m
=
1

4
I
m
.

And, since I
m
is negligibly small relative to I

sc
,

A2=−B2$−I1,f=−Isc .

Finally,

i
1,n
=
1

4
I
m
e−t/t
m
−I
sc
e−t/tl , i2,n

=
1

4
I
m
e−t/t
m
+I
sc
e−t/tl. (6.34)

These expressions show that the short-circuiting of the transformer results in
the appearance in both windings of two exponential (aperiodic) currents, which
superimpose with the steady-state short-circuit currents. The first one decays
relatively slowly with the large time constant t

m
, however it is insignificantly

small and can be neglected. The second one decays much faster with the smaller
time constant t

l
, but its initial value is as large as the amplitude of the steady-

state short-circuit current. Half a cycle after short-circuiting, the exponential
term is added to the steady-state short-circuit current, which results in an almost
double amplitude value. This means that a transformer having a leakage induc-
tance in the order of 4–10% will develop a maximal short-circuit current of
50–20 times the rated value. A typical curve of such a short-circuit current
versus time is shown in Fig. 6.17,
It should be noted that by neglecting the very small effect of the transientffff

Figure 6.17 A typical waveform of a transformer’s short-circuit current.
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magnetizing currents in equation 6.34, the transient response to short-circuiting
a transformer is similar that in the simple RL circuit having an inductance as
a total leakage inductance of the transformer and the total resistance of both
its windings. Hence, for the analysis of the short-circuit phenomena in any
power network, we may replace every transformer by a single inductance in
series with a resistance, both referred either to the high- or low-voltage side.

6.4.2 Current inrush by switching on transformers

Upon switching on a power transformer, an inrush of a magnetizing (exciting)
current may initially reach a very high level of eight times the rated current,
even under no-load conditions. From our previous study, we know that in linear
RL circuits, even under the most unfavorable conditions, the transient current
may not exceed the double value of its forced response. However, the magnetiz-
ing circuit of the transformer is non-linear due to its iron core. Hence, to analyze
the transient phenomenon in the transformer we have to take into consideration
the saturation of its magnetizing characteristic, i.e. B= f (H).
The inrush is most severe when the transformer is switched on at the instant
the voltage goes through zero with such polarity that the flux increases in the
direction of the residual flux. For these conditions, we may write

v
s
=√2V

s
VV sin vt=

dl

dt
=N

dw

dt
.

The value of the flux is then found by integration:

w=
√2V
s
VV

N P t
0
PP sin vt dt+w(0), (6.35a)

where w(0)=W0 is the residual flux. Thus

w=
√2V
s
VV

vN
(1−cos vt)+W0=−Wm cos vt+Wm+W0 . (6.35b)

Since we neglected all the resistances (representing the winding and core
losses), the aperiodic (d.c.) component, W

m
+W0 , is obtained as a constant

quantity. However, due to these losses, the aperiodic term decays very slowly
according to the large time constant of the magnetizing circuit. Then, at
vt=p (half a period after switching) the instantaneous flux will be

wmax=2Wm+W0 .

The magnetic flux density under steady-state conditions is B
m
$1.3 T. If W0 is

assumed to equal 0.6W
m
, then the maximal flux density, which in a transformer

is directly proportional to the flux, will be

Bmax= (2+0.6)·1.3$3.4T.

This value is far beyond the rated range and according to the magnetizing
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Figure 6.18 A magnetizing curve (a) and an inrush current of transformer (b).

curve, shown in Fig. 6.18(a), the magnetizing force, H (which is directly propor-
tional to the magnetizing current) may reach as large a value as 8–10 times its
rated value. The typical curve of an inrush current for a transformer switched
at zero instantaneous voltage is shown in Fig. 6.18(b). Note that the waveform
of this current is not sinusoidal due to the presence of high harmonics (as a
result of the non-linearity of a transformer magnetize characteristic).

6.5 SHORT-CIRCUITING OF SYNCHRONOUS MACHINES

High-magnitude transient currents, or short-circuit currents, in the stator wind-
ings of a synchronous generator occur, particularly if the voltage at its terminals
is suddenly changed by a considerable amount. This may happen as a result of
a faulty switching operation, or by any other fault, which brings about short-
circuiting, such as a result of bad synchronizing in the faulty position of the
poles, by energizing a rotating machine by sudden connection to full voltage,
etc. In such cases the transient currents may be much greater than the normal
operating currents of the machine. Depending on the design of the machine
and the process of switching excess currents, up to ten times the normal current
may develop in the windings. In view of the large size of most modern generators,
this would release an enormous amount of energy in the network, which might
be dangerous for the normal operation of the network equipment.
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The stator and rotor windings of a synchronous machine are mutually cou-
pled, but in distinction to a transformer, due to the rotation of the rotor, they
continuously change their relative position in the space. As a result of that,
their mutual inductances are not constant, but vary in time. This leads to
differential equations with variable coeffff fficients, whose analysis and solution are
very cumbersome.(*)
To simplify the practical approach to the calculation of short-circuit currents
we shall make a few common assumptions. It should be noted that by any
sudden change of the operation conditions of a synchronous machine, its
revolution is disturbed and its angular velocity changes, which gives rise to
mechanical oscillations. Obviously, the detailed analysis of the transient beha-
vior of the synchronous generator becomes even more complicated. Thus, the
first assumption is that the revolution of the generator does not change and
remains constant during the transients.
As previously, we shall neglect the resistance of the generator windings and
the short-circuit impedances of the generator will be considered approximately
as an inductive reactance. The resistances will then be taken into consideration
by determining the damping coefficients of decaying the transient currents.
To simplify the entire calculation of transients in a three-phase system and
reduce it to a one-phase presentation, the generalized phasor of three-phase
system currents will be introduced as well as the two-phase model of the
synchronous machine.

6.5.1 Two-axis representation of a synchronous generator

Three-phase synchronous generators fall into two general classifications: 1)
cylindrical (or round ) rotor (high-speed turbogenerators) or 2) salient-pole rotor
( low-speed hydrogenerators). While the air gap in the cylindrical rotor construc-
tion is practically of uniform length that of the salient-pole rotor is much longer
in between the poles, Fig. 6.19.
We shall review here the two-axis representation of synchronous generators
using the salient-rotor generator as an example rather than the cylindrical one,
since the latter constitutes a particular case of the former. In Fig. 6.20 the
schematic cross-section of a salient-rotor generator is given. Here the rotor has
two axes: the direct axis d, which is in the direction of the magnetizing, or field
flux, W

d
and the quadrature axis q, which is perpendicular to axis d midway

between the poles. Accordingly, the generator is represented by two reactances
X
d
and X

q
and two EMF’s, E

d
and E

q
in the direct axis and the quadrature

axis respectively. The above two components of the EMF can always be com-
bined in one phasor of a total generated EMF (or terminated voltage), E

af
.

The stator three-phase winding carries three currents, which are displaced by
120° relative to each other. Following the idea of a one-phase representation of

(*)For a detailed discussion of this problem see, for example, C. Concordia, Synchronous Machines,
John Wiley & Sons, New York, 1957.
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Figure 6.19 Two kinds of rotors: cylindrical rotor (a) and salient-pole rotor (b).

Figure 6.20 Salient rotor and phasor diagram in a two-axis representation.

a synchronous machine we shall transform the stator three-phase current system
into one generalized current phasor I.
Consider the usual representation of a three-phase current by three phasors,
as shown in Fig. 6.21a. The three instantaneous currents i

a
, i
b
and i

c
can then

be obtained as the projections of the three phasors on the time axis t, while the
star of phasors is rotating with an angular velocity v.
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Figure 6.21 Determining instantaneous currents in a three-phase system: with three-phase phasors

(a) and with one generalized phasor (b).

The same results may be derived using only one rotating phasor, or a so
called generalized phasor, but with its projection on three time axes, which
coincide with the axes of a three-phase stator winding, as shown in Fig. 6.21(b).
If the generalized current phasor is rotated in the same direction as the phase-
phasors, the sequence of the time axes should be taken as opposite to those of
the phase-phasors, i.e., a�c�b.
Now, this single phasor can be expanded into two quadrature components,
according to two rotor axes, I

d
and I

q
, as shown in Fig. 6.20. Here, l

d
is the

flux linkage, produced by the field current, l
ald
and l

alq
are the armature reaction

and stator winding leakage fluxes, produced by the currents I
d
and I

q
respectively

and l is the resultant flux linkage, which induces the terminal voltage V. In
accordance with the phasor diagram for EMF’s we may write

Ṽ
d
VV =E

d
− jX

d
I
d
, Ṽ
q
VV =− jX

q
I
q
, (6.36a)

and

Ṽ=V
d
VV +V

q
VV or |V |=√V 2

d
+V 2
q
, (6.36b)

where X
d
and X

q
are the generator direct-axis and quadrature-axis reactances.

Finally, if the phasors I
d
and I

q
are known, and taking into consideration

that Ĩ
a
+ Ĩ
b
+ Ĩ
c
=0, the phase-phasors can be expressed as

I
a
=I
d
cos a+I

q
sin a

I
b
=I
d
cos (a+2p/3)+I

q
sin (a+2p/3) (6.38a)(*)

I
c
=I
d
cos (a−2p/3)+I

q
sin (a−2p/3),

(*)If the sum of the phase current phasors is not equal to zero, then each phase current consists of
a zero sequence term.
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where a is the angle between the rotor direct axis and the axis of the phase a
winding.
In turn, the two components of a generalized current can be expressed by
the phase currents:

I
d
=
2

3
[I
a
cos a+I

b
cos (a+2p/3)+I

c
cos (a−2p/3)]

I
d
=
2

3
[I
a
sin a+I

b
sin (a+2p/3)+I

c
sin (a−2p/3)].

(6.38b)

Thus, the generalized current completely represents the three-phase stator cur-
rents and allows for the reduction of a three-phase generator to a one-phase
machine, having constant mutual inductances between the stator and rotor,
which is

M
eq
=
3

2
M,

whereM is the mutual inductance between the phase winding of the stator and
rotor winding, when the axis of the stator winding coincides with the direct
axis of the rotor.
As was previously mentioned, the cylindrical-rotor generator is a particular
case of a salient-pole rotor. Thus, since the air gap lengths of both the d and q
axes of the cylindrical rotor are the same, we have X

d
$X
q
and all the expres-

sions obtained for a salient-pole generator are valid for a cylindrical rotor
generator.

6.5.2 Steady-state short-circuit of synchronous machines

As we know the steady-state regime, or the forced response, takes place after
the natural responses decay, i.e., a few seconds after the moment of short-
circuiting. However, for the sake of protecting all kinds of electrical equipment
and providing the dynamic stability of synchronous generators operating in
parallel, the short-circuit fault in present-day power systems is disconnected
very fast (by means of modern relay protection and switch gears), Therefore,
steady-state short-circuit conditions are very uncommon. We shall, however,
start our analysis of the synchronous generators’ behavior under short-circuit
conditions with the steady-state short-circuit. In order to get the total response
and estimate the maximal magnitudes of short-circuit currents in the first
moments of the fault, we must know the forced responses, i.e., the steady-state
short-circuit currents. In addition, the study of steady-state short-circuit beha-
vior of a synchronous generator contributes largely to a better understanding
of the whole process.
The steady-state short-circuit behavior of a synchronous generator depends
to a greater degree on the automatic voltage regulator (AVR). Excitation of aAA
synchronous generator is derived from a d.c. supply with a variable voltage.
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Figure 6.22 An excitation arrangement for a synchronous generator with AVR.

Originally, the main exciter consisted of an a.c. exciter with an integral diode
or thyristor rectifiers rotating on the rotor (main) shaft, thus avoiding any brush
gear, Fig. 6.22. In general, the AVR’s are set out to control the output voltage
of the synchronous generator, by controlling the exciter. The other important
function of such regulators is to force the field current usually up to its maximal
value at the event of a short-circuit fault, which requires a very fast-acting
regulator. As a result of the AVR action, the steady-state short-circuit current
might be larger than during the transients and even at the first moment of
switching.

(a) Short-circuit ratio (SCR) of a synchronous generator

When short-circuiting occurs across the terminals of the generators or nearby,
the magnetic saturation of their characteristics must be taken into consideration
since the values of the voltages and of the inductances substantially depend on
the magnetic saturation. The open-circuit (no-load) characteristic (OCC), or the
magnetic curve, is the graph of the generated voltage against the field current,
I
fl
, of the machine on open circuit and running at synchronous speed. The

typical OCC of turbo- and hydro-generators in p.u. are shown in Fig. 6.23. The
air-gap line represents the linear part of the open-circuit characteristic and
ignores saturation (Fig. 6.24).
For our further consideration, we will also need the short-circuit characteristic
(SCC), which is the graph of a stator current against a field current with the
terminals short-circuited. Both OCC and SCC are shown in Fig. 6.24.
With these two characteristics we may calculate, first of all, both the unsatu-
rated and saturated (its approximate value) synchronous reactances of the
generator. The p.u. unsaturated reactance is obtained with the air-gap (unsatu-
rated) line as the ratio of the open-circuit voltage ( length ac) and the short-
circuit current ( length ad), both produced by the same field current (0a). Thus,

X
du
XX =

ac

ad
pu. (6.39a)

With the saturated air-gap line (of ), also called the modified air gap line, and
by the same procedure we may obtain the saturated reactance:

X
d
=
bc∞
be
pu. (6.39b)
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Figure 6.23 Typical open-circuit characteristics of turbogenerator (T) and hydrogenerator (H).

Figure 6.24 Open- and short-circuit characteristics of a synchronous generator.
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As can be seen, the saturated reactance is less than the unsaturated reactance,
and is usually taken as the active value of the synchronous reactance of a
generator.(*) It is important to understand this feature of all magnetic circuits.
The reactance is reciprocally proportional to the reluctance (or magnetic con-
ductivity), which is a function of the permeability (m) of the magnetic material.
Since the permeability by saturation is getting larger, the reluctance subsequently
decreases, which results in a lower reactance.
The second important parameter of a synchronous generator, which is
obtained by the above two characteristics is the short-circuit ratio (SCR). It is
defined as the ratio between the field current required for nominal open-circuit
voltage and that required to circulate the full-load current in the armature
winding when short-circuited. Thus with Fig. 6.24

SCR=
ob

og
. (6.40)

With SCR the p.u. steady-state short-circuit current at the generator terminals
will be

I
sc,2
=SCR I

fl
, (6.41a)

where I
fl
is a known magnetizing, or field, current in p.u. The steady-state short-

circuit current in natural units (i.e., in amperes) will be

I
sc,2
=SCR I

fl
Ir ,A

where Ir is a generator rated (nominal ) current. The value of SCR in accordance
with the OCC, and SCC in Fig. 6.24 is 0.67 (this value is typical for turbogenera-
tors; for hydrogenerators it can be taken as 1.1).
Comparing triangles D ohg and D oeb and noting that gh=bc∞ we have

gh

be
=
og

ob
or
bc∞
be
=

1

ob/og
,

i.e.,

X
d,pu
XX =

1

SCR
. (6.42)

The direct-axis synchronous reactance X
d
of a synchronous generator (it is

often replaced by the so-called synchronous reactance X
s
) includes the combined

effect of the leakage reactanceffff X
l
X and the reactance X

ad
XX of the armature reaction.

The value of the leakage reactances is usually in the range of 0.1–0.15 (for
turbogenerators), 0.15–0.25 (for hydrogenerators).
As a reminder of the basic conditions at the terminal short-circuit (s.c.), the

phasor diagram and the Potier triangle are shown in Fig. 6.25. The rotor current

(*)For more about the effect of saturation and calculation of the saturation value offfff XdXX , see, for
example, in McPerson, G. and Laramore, R. D. (1990) Electrical Machines and T ransformers, Wiley
& Sons.
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Figure 6.25 The phasor diagram (a) and OCC with a Potier triangle (b).

I
fl
produces a magnetomotive force (MMF) F

d
, which induces in the stator

winding an electromotive force (EMF) E
d
. Since the terminal voltage at short-

circuiting is zero, this voltage is required to overcome the armature reaction
E
ad
= jX

ad
XX I
sc
and the leakage reactance voltage drop E

l
= jX

l
X I
sc
, Fig. 6.25a. The

corresponding fractions of F
d
are also shown on the phasor diagram as leading

the appropriate EMF by 90°. Note that the armature reaction F
ad
FF , is in phase

with F
d
, since the short-circuit current is actually a zero-power-factor, or pure

reactive, current.
With the known E

l
point A, which is the upper vertex of the Potier triangle

on the OCC, is determined. Point C, which is determined by the field current,
required to produce a rated short-circuit current, gives the second vertex of the
triangle. Point B, which is determined by the perpendicular drawn from vertex
A to the abscissa, gives the third vertex. Length BC is the component of the
field current required to overcome the MMF of the armature reaction and,
therefore, is proportional to the stator current. The other component OB pro-
duces F

l
F , required for inducing E

l
to overcome the leakage reactance voltage

drop. Note that since point A is located on the linear part of OCC, the quantities
E
d
, E
ad
and X

d
are appropriate for an unsaturated generator.

Example 6.3

Use the open-circuit and short-circuit characteristics, shown in Fig. 6.26, for a
133.5MVA three-phase 13.8 kV 60 Hz generator, to: a) find the unsaturated and
saturated synchronous reactances in ohms and in p.u.; b) determine SCR; and
c) draw the Potier triangle, if the leakage reactance is 0.145, and determine the
scale of the stator current on the axis of the field current (abscissa).
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Figure 6.26 The OCC, SCC and Potier triangle for Example 6.3.

Solution

a) The unsaturated synchronous reactance (equation 6.39a) is (see Fig. 6.26)

X
du
XX =

ac

ad
=
1

0.6
=1.67 pu

The rated impedance of the generator (equation 6.4) is

Zr=
13.82 ·106
133.5·106

=1.43 V.

Thus, the unsaturated reactance in ohms is

X
du
XX =ZrXduXX =1.43·1.67$2.93V.

The saturated reactance (equation 6.39b) is (see Fig. 6.26)

X
d
XX =

bc∞
be
=
1

0.67
=1.49 pu

or in ohms

X
d
XX =ZrXdXX =1.43·1.49$2.13 V.

b) The short-circuit ratio (equation 6.40) with Fig. 6.21 is

SCR=
ob

og
=
1

1.49
$0.67,

which is the reciprocal of X
d
XX .
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c) The vertex A is determined by the ordinate E
1,pu
=0.145 and the vertex C

by the abscissa OC=1.45, which is the p.u. field current required to produce a
rated short-circuit current (see Fig. 6.26). The rated current of the generator is

Ir=
Sr

√3·13.8·103
=5580 A.

Since the length BC determines the portion of the field current, which produces
F
ad
FF to overcome the armature current reaction (F

ad
FF =X

ad
XX I
sc
), and therefore it is

proportional to this current, we may determine the scale of the stator current
on the abscissa as

m
I
=
Ir
BC
=
5580

1.35
$4130 A/cm.

The Potier triangle is shown in Fig. 6.26.
With the known p.u. field (magnetizing) current, I

fl
, the steady-state short-

circuit (s.c.) current can easily be found as

I
sc,2
=SCR I

fl
Ir .

However, this value of an s.c. current is valid only for an unsaturated generator,
or for a linear OCC, i.e., in accordance with an air-gap line, which is, of course,
only a rough approximation. For a more precise calculation of an s.c. current
the graphical solution shall be introduced.

(b) Graphical solution

We shall start the graphical solution representation with a simple case of a
short-circuit fault occurring on the main line fed by a single generator, as shown
in Fig. 6.27. The generator is represented by the OCC and the leakage reactance
X
l
X ; the terminal voltage is V and X

F
X is the reactance of the external network

(the resistances, as usual, are neglected).
The EMF of the generator required to overcome the leakage voltage and the

terminal voltage is

E
g
=E
l
+V= (X

l
X+X

F
X )I
sc
=X
eq
X I
sc
. (6.43)

This expression (since X
l
X and X

F
X are constants) can be represented graphically

Figure 6.27 An equivalent circuit of a short-circuited synchronous generator through an external

reactance.
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as a straight line, as shown in Fig. 6.28. As has already been shown, the abscissa
of the OCC can also be used as an axis of an armature current with an origin
in point C and its positive direction opposes the positive direction of the axis
of the field current. Hence, the straight line of E

g
= f (I

sc
) should be plotted from

this point C with the slope angle

a=tan−1(X
l,pu
X +X

F,pu
X ),

i.e., line CM in Fig. 6.28.
The EMF of the generator is dependent on two quantities: 1) a magnetizing
current I

fl
(in accordance with its OCC) and 2) an s.c. current I

sc
(in accordance

with equation 6.43. Hence, the actual EMF will be given by the intersection,
point M, of the two characteristics: the OCC and the straight line CM, as
shown in Fig. 6.28.
The actual s.c. current will be determined by point N and can be expressed

by the length ON∞ according to the scale of the axis I
sc
(see Example 6.2). Note

that this method of determining I
sc
is actually a graphical solution of two

equations (one of them is the OCC given as a curve and the second one is a
straight line given by expression 6.43) on two unknowns: E

g
and I

sc
, i.e.,

E= f (I
fl
), E=X

eq
X I
sc
. (6.44)

(Also note that there is a relationship between I
fl
and I

sc
, e.g., given by equation

6.41a when the fault occurs at the generator terminals.)
Next we may separate the total EMF, induced by the stator winding, into

two parts (in accordance with the circuit in Fig. 6.27): the leakage voltage drop
E
l
and the terminal voltage V. FVV or this purpose we shall draw the Potier triangle

Figure 6.28 The graphical representation of two functions: 1) E
g
=f (I

fl
), which is the OCC and 2)

E
g
=f (I

sc
) in accordance with equation 6.43).
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ABC: vertex C is determined by the field current required for a rated s.c. current,
i.e., OC=1/SCR and vertex A (the triangle altitude) is determined by E

l
.

We then plot the reactance axis as a continuation of the triangle leg AB
(Fig. 6.28). The length AB, which represents the leakage voltage E

l
, is propor-

tional to X
l
X (E

l
=X
l
X I
sc
) and therefore it determines the scale of reactance:

m
x
=
X
l
X

AB
, pu/cm.

Then, length AF on the reactance axis will give X
F
X in the same scale, while the

lengths OA∞ and A∞M∞ on the voltage axis will give the leakage voltage E
l
and

the terminal voltage V respectively.
So far, in the above solution, the generator, previously to short-circuiting,

was running under no-load conditions. Usually, short-circuits do not occur
under no-load, but under the full operation of the power plant. Thus, the
generators will carry a considerable current prior to the occurrence of a short-
circuit, and in order to compensate for the armature reaction of the load current,
the generator should be excited by a substantially higher field current than by
the no-load field current in Fig. 6.28, which is often by a multiple of this value.
If the field current under full load is known, we start the solution by indicating
point C1 according to the value of this current. Then we move the Potier
triangle with the reactance axis, toward point C1 so that its vertex C coincides
with point C1 , as shown in Fig. 6.29.
Now, as in the previous case, we shall determine point F1 , in accordance
with the value of X

F
X and plot the line C1M1 through F1 . The projection of M1

on the I
sc
axis, point N1 , gives the value of the steady-state short-circuit current,

I
sc,2
. To find the remaining terminal voltage V we must extend the hypotenuse

Figure 6.29 The graphical solution for finding the steady-state value of a short-circuit current.
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A1C1 of the Potier triangle up to the OCC, point D. Then length M1P1 will
give the p.u. value of the generator terminal voltage. It is obvious that the above
procedure can be performed for any given field (magnetizing) current and for
any external reactance. However, if the field current is not known, we may
determine it as follows. The leakage voltage E

l
as length ab=AB should be

added to the rated voltage VrVV level (dashed line b∞b) so that point A reaches the
OCC, as shown in Fig. 6.29. Then the length bc=1/SCR should be plotted on
the same line b∞b and the obtained triangle D abc is the Potier triangle. Point
c, projected on the abscissa, as point C1 , will determine the required field
current. On the OCC in Fig. 6.29: E

ag
is the air-gap EMF and E

af
is the total

EMF generated by the field current I
fl
. Let us now introduce the graphical

solution in the following example.

Example 6.4

The synchronous generator, prior to short-circuiting, is operated under full
load. Use the parameters and OCC of Example 6.3 to find the s.c. current and
the terminal voltage of the generator if the fault is placed at the external
reactances 1) 0.3 and 2) 0.9.

Solution

In Fig. 6.30 the OCC and the Potier triangle ABC from Example 6.3 are given.
First we move the Potier triangle into the position of D abc, so that ab=AB.

Figure 6.30 The graphical solution of Example 6.4.
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Then, the field current of the generator under full load is given by point C1 ,
which is the projection of c on the abscissa, and the new position of the Potier
triangle is D A1B1C1 .

1) On the X-axis, which is an extension of A1B1 , we determine point F1 in
accordance with the value of the external reactance 0.3. The intersection of the
straight line, drawn from C1 through F1 to OCC, gives point M1 , which is the
graphical solution of our problem. The length C1N1, measured as 1.68, is the
p.u. value of the s.c. current. Thus,

I
sc,2
=1.68Ir=1.65·5580$9.4 kA.

The length M1P1 , measured as 0.25, is the p.u. value of the terminal voltage:

V=0.25·13.8=3.45 kV.

2) On the X-axis we determine point F2 in accordance with the second value
0.9. Then the intersection point M2 gives the solution of the s.c. current ( length
CN2):

I
sc,2
=1.15Ir=1.15·5580$6.4 kA,

and of the terminal voltage ( length M2P2):

V=0.91VrVV =0.91·13.8$12.6 kV.

Note that, in the first case, the intersection point M1 lies on the straight part
of the OCC. Therefore, the s.c. current can be found with the unsaturated
reactance. Indeed, the total reactance up to the fault is

X
tot
XX = (X

du
XX +X

F
X )Xr= (1.67+0.3)·1.43=2.82 V,

and

I
sc,2
=13.8/2.82=4.89 kA.

Since the generator prior to fault was under full load operation, its field current
was about twice as large as under no-load (see the diagram in Fig. 6.30), the
actual s.c. should be

I
sc,2
=4.89·2.00$9.8 kA,

which is pretty close to the s.c estimated graphically.
It should also be noted that the actual PF of the generator load prior to the
short-circuiting has not been taken into consideration, i.e. the armature reaction
is considered as a pure reactive. However this approximation does not signifi-
cantly change the final results.
In the above solution the field current has been kept constant, regardless of
the distance to the fault (i.e. the value of the external reactance) and the level
of the terminal voltage. However, as has already been mentioned, nowadays
synchronous generators are equipped with an automatic voltage regulation
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system (AVR), which endeavors to hold the terminal voltage constant by chang-
ing the field current. Thus, if the short-circuit occurs far away from the power
station, i.e. the external reactance is large enough so that the decrease in the
terminal voltage will be unsubstantial, then the response of the AVR in increas-
ing the field current will be low. On the other hand, if the short-circuit fault
occurs close to the generator terminals, the drop in its voltage will be significant
and the AVR response in increasing the field current will be very strong. It is
also possible that the field current will reach its maximal value, but despite that
the terminal voltage will remain lower than its normal level. Hence, we shall
distinguish between two possible regimes:

a) the maximal field current regime, in which I
fl
=I
fl,max and V2VV ≤VrVV ; and

b) the rated (nominal) voltage regime V
2
VV =VrVV and Ifl≤Ifl,max .

In order to determine in which of the two regimes the generator is operating,
and to perform the graphical solution in these cases, let us consider the diagram
shown in Fig. 6.31.
In this diagram OC

m
represents the maximal field current I

fl,max and as
previously B

m
a is a reactance axis. We shall now find the maximal value of X

F
X ,

in which the voltage drop, in the case of the maximal field current, will be equal
to the rated voltage, VrVV =1. For this purpose we must plot a line from point R,
which is positioned on the voltage axis at VrVV =1, parallel to the hypotenuse of
the Potier triangle up to the intersection point K on the OCC. By connecting
K with the origin C

m
we obtain point k, on the x-axis, so that the length A

m
k

gives the desired reactance X
F,cr
X , which is called the critical reactance. Indeed,

from the plotted diagram, it can be seen that the air-gap EMF, E
ag
, at any

Figure 6.31 The graphical solution when the field current is not constant.
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point on the OCC, which is lower than point K, less the leakage voltage E
l
(at

this point length QW ), will be smaller than unity ( lower than at point R). At
point K we have

E
ag,k
−E
l,Q
=QK=1.

For typical synchronous generators the critical fault reactance can be approxi-
mated as X

F,cr
X $0.5 and therefore, I

2,cr
$2. As soon as X

F,cr
X is found we may

conclude that:

a) if X
F
X ≤X

F,cr
X the regime of the maximal field current takes place,

b) if X
F
X ≥X

F,cr
X the regime of the rated voltage takes place.

It is obvious that if X
F
X =X

F,cr
X , both regimes take place at the same time.

In the first case the graphical solution is held in the same way, which has
been previously explained for the constant field current taking the maximal
field current as a constant. The second case requires some additional discussion.
Since the terminal voltage in this regime is the straight lineKR, which represents
this voltage as a function of the field current, it can be treated as an extension
of the OCC (instead of the curve KH). Then, the s.c. current will be determined
by point S on the intersection of C

m
g (g is given by X

F
X ) and KR. The projection

of RS on the abscissa, i.e., I
sc
-axis, length C

m
T , gives the p.u. value of the steady-

state s.c. current. The field current in this regime is smaller than I
fl,max . To find

its value we have to project point S on the OCC as point S1 and to plot line
CS1 in parallel to C

m
S. Then length OC will determine the actual field current.

Example 6.5

The generator of the previous example is equipped with the AVR, which ensures
increasing the field current under the fault conditions up to I

fi,max=4 pu. Find
I
sc,2
and the generator terminal voltage V

g
VV , if the short-circuit fault occurred

at 1) X
F
X =0.3 and 2) X

F
X =0.9. Determine the kind of regime: I

fl,max or Vg,VV r , for
both cases.

Solution

In Fig. 6.32 the OCC of the generator and the Potier triangle are redrawn.
Since the maximal field current at the full operation of AVR is I

fl,max=4 pu,
the Potier triangle is moved to position A

m
B
m
C
m
. Next we plot lines KR (point

R is at the rated voltage VrVV ) and CmK. The intersection of line CmK with the
x-axis at point k gives the critical reactance X

cr
XX , which is 0.68 pu. Thus the fault

critical reactance is

X
F,cr
X =X

cr
XX −X

l
X=0.78−0.145=0.64.

1) Hence, at the fault of X
F
X =0.3, which is less than critical, the generator

operates under the regime of the first kind, i.e., the maximal field current. To
find the s.c. in this case we determine the total reactance X

tot
XX =0.145+0.3$0.45
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Figure 6.32 The graphical solution of Example 6.5.

on the x-axis at the point d1 and plot line CmM1 through this point. The
projection of point M1 on the abscissa, i.e., point N1 , indicates the s.c. of the
generator

I
sc,2
=C
m
N1 ·Ir=2.3·5.58=12.8 kA,

and length M1P1 gives the terminal voltage

V
2
VV =M1P1 ·VrVV =0.72·13.8=9.9 kV.

2) The total fault reactance in this case is X
tot
XX =0.145+0.9=1.05, i.e., larger

than the critical reactance and therefore the generator operates under the second
kind of regime, in which the terminal voltage is of the rated value. The solution
will be given by line C

m
M2 plotted through point d2 on the x-axis at the value

of 1.05. The s.c. current is determined by N2 , which is the projection of M2 .
Thus,

I
sc,2
=C
m
N2 ·Ir=1.1·5.58=6.2 kA,

or, since the terminal voltage is unity,

I
sc,2
=
1

0.9
5.58=6.2 kA,

and the terminal voltage

V
2
VV =VrVV =13.8 kV.
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To find the field current at this regime we have to plot line M2M∞2 in parallel
to the abscissa and line M∞

2
C2 in parallel to M2Cm . Point C2 will indicate the

field current, which, therefore, is I
fl
=2.7 pu and less than the maximal.

(c) Influence of the loadII

The load of power systems, especially induction motors that compose 50–70%
of the entire load, largely influence the transient behavior of the synchronous
generators under short-circuit faults. Generally speaking, any load connected
to the same node as the short-circuit line, Fig. 6.33, changes the current values
and their flow in the affected network. Thus, by simplifying the network to getffff
an equivalent circuit, we simply connect the load branch in parallel to the short-
circuited branch, as shown in Fig. 6.33(b). This results in lowering the total
fault reactance and consequently in decreasing the generators’ voltages, which
in turn results in decreasing the s.c. currents and changes their distribution in
the whole network. Hence, the load connections must be taken into consider-
ation by the short-circuit fault analysis. On the other hand the exact consider-
ation of the load presents a lot of difficulties. The most typical kinds of loads:
lightning, heating and mechanical operating (primarily induction motors), are
not constant, but vary as a function of the voltage power (V 1.6 in the case of a
lightning load and V 2 in the case of heating and induction motors). Furthermore,
induction motors stop operating (their rotor speed reduces to zero), when the
voltage is decreased 70%; and the motor turns into a short-circuited branch
(this situation is very dangerous for induction motors and they would be
disconnected by means of the protection relays).
Generally speaking, all kinds of loads also depend on frequency. However,
information regarding the characteristics of composite loads with frequency is
scarce. With the small frequency changes during most of the short-circuit faults,
this effect is neglected in calculations.ffff
A detailed analysis of the different ways of load considerations (which is notffff
given here as it is beyond the scope of this book) shows that for the purpose

Figure 6.33 A simple network for illustrating the influence of the load on the short-circuit analysis.
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of s.c. current calculations a good approximation can be achieved by considering
the composite loads as a constant reactance of the 1.2 pu value.

Example 6.6

Suppose that the load of the generator of Example 6.5 is connected to its
terminals as shown in Fig. 6.33. Find the generator’s s.c. current if the value of
the load is 85% of the generator rated power and the fault occurs at the p.u.
reactance of 0.3 (the generator is equipped with AVR).

Solution

In accordance with the above recommendation, we shall represent the load as
a 1.2 reactance. Hence, the reactance referred to the generator power is

X
ld
X =1.2

1

0.85
=1.41.

The equivalent fault reactance in this case, Fig. 6.33(b), will be

X
eq
X =0.3//1.41=0.25,

and

X
tot
XX =0.25+0.145$0.4.

Since this reactance is less than critical, the regime of the generator is of maximal
field current. Determining the above value on the x-axis, in Fig. 6.32, point d3 ,
and plotting line C

m
M3 through this point, we obtain the solution at point N3 .

Thus

I
sc,2
=C
m
N3 ·Ir=2.4·5.58=13.4 kA,

and

V
2
VV =M3P3 ·VrVV =0.57·13.8$7.87 kV.

As expected, consideration of the load results in increasing the s.c. current of
the generator and in decreasing its terminal voltage (compare with the results
of Example 6.5 for X

F
X =0.3). Note that decreasing the terminal voltage results

in decreasing the short-circuit current in the fault branch.

(d) Approximate solution by linearization of the OCC

A disadvantage of the graphical method is that its accuracy depends on the
scale of the draft and experience of the performer of the graphical calculations.
From this standpoint analytical methods are always preferable. However, to
perform an analytical approximation of the short-circuit fault of a synchronous
generator taking into consideration the saturation of its magnetic circuit, we
need to know the analytical approximation of its OCC. The simplest one is a
linearization of a given curve with a single straight line. It is obvious, however,
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that replacing the whole curve of the OCC with one straight line will give a
very bad approximation. So, usually, only a specific part of the curve, which is
considered as a working part, is replaced by a straight line. For generators
having AVR (nowadays most synchronous generators are equipped with a
voltage regulation system) the working part of the OCC, in accordance with
Fig. 6.34, is A

m
K∞ (note that the continuation of the generator characteristic in

this case is also a straight line KR). This part of the OCC may be approximated
by the straight line A

m
N, which for a typical OCC is expressed as

E
g
=0.20+0.8I

fl
. (6.45)

(For different OCCs the numerical parameters in this expression may beffff
different.)ffff
The synchronous reactance of the generator, which is represented by a linear
OCC, can also be estimated as a constant quantity. We shall obtain this value
by considering a short-circuit fault at generator terminals. We then have

X
s
XX=

E
g

I
sc,2
=

E
g

SCR I
fl
, (6.46)

where E
g
is in accordance with equation 6.45.

Since the position of point K∞ is different from those of pointffff K on an actual
OCC, we shall find a new value of the critical reactance X∞

F,cr
for the linear

characteristic. At point K∞ the terminal voltage is unity, the field current is still

Figure 6.34 The linear approximation of a typical OCC.
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maximal and therefore the induced EMF is also maximal. Hence

V
2
VV =E

g,max−XsXX I2,cr=1,

which gives the critical short-circuit current

I
2,cr
=
E
g,max−1
X
s
XX

, (6.47)

where

E
g,max=0.20+0.8Ifl,max and X

s
XX=

E
g,max

SCR I
fl,max

.

With equation 6.44 the critical reactance is

X
F,cr
X =

1

I
2,cr
. (6.48)

If the generator is operating under maximal field current, i.e., X
F
X ≤X

F,cr
X , then

I
2
=
E
g,max

X
s
XX+X

F
X
≥I
2,cr
, (6.49a)

and

V=X
F
X I
FF 2
≤1. (6.49b)

If X
F
X ≥X

F,cr
X , which means that the generator operates under rated voltage, then

I
2
=
1

X
F
X
≤I
2,cr

and V
2
VV =1. (6.50)

Example 6.7

For the generator of Example 6.5 find the s.c. current using the linearization
method.

Solution

First we shall estimate the critical reactance. With equation 6.45 through equa-
tion 6.48 we have (in p.u.)

E
g,max=0.2+0.8·4=3.4, XsXX=

3.4

0.67·4
=1.27,

and

I
2,cr
=
3.4−1
1.27

=1.89, X
F,cr
X =

1

1.89
=0.53.

1) Since the fault reactance in the first case, X
F1
X =0.3 pu, is less than the critical
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reactance, by using equation 6.49, we have

I
2
=

3.4

1.27+0.3
=2.16 and V

2
VV =0.3·2.16=0.648

or in natural units

I
2
=2.16·5.58=12.1 kA and V

2
VV =0.648·13.8=8.94 kV.

The generator in this case is operated under maximal field current.

2) Since the fault reactance in the second case X
F2
X =0.9pu, which is greater

than critical, we use equation 6.50. Thus,

I
2
=
1

0.9
=1.11 and V

2
VV =1,

or in natural units

I
2
=1.11·5.58=6.2 kA and V

2
VV =1·13.8=13.8 kV.

The generator in this case is operated under the nominal terminal voltage with
less than maximal field current. The latter one may be estimated as

I
fl
=
I
2
SCR

=
1.11

0.67
=1.66.

Comparing the obtained results, for both cases of operation, with those of
Example 6.5, we may conclude that the difference between them is less thanffff
10% (note that the accuracy of all the engineering calculations is between
5–10%).

(e) Calculation of steady-state short-circuit currents in complicated power
networks

As has been previously mentioned, most of the synchronous generators in a
modern power system are equipped with AVR and, therefore, may operate
under a short-circuit fault in one of two regimes: 1) maximal field current or 2)
rated, i.e. normal terminal voltage. Depending on the kind of regime, each of
the generators has to be represented by a different equivalent circuit: 1) in theffff
first regime – with the OCC and X

l
X (using the graphical method) or with E

g,max
and X

s,
XX max (using the linearization method) and 2) in the second regime – as

an ideal voltage source, i.e. with E
g
=1 and X

s
XX=0 (in both the graphical and

linearization methods).
The determination of the kind of regime is made by comparing the actual
short-circuit current of each of the generators with its critical value, I

2,cr
, or

the external reactance up to the fault with its critical value, X
F,cr
X . However, the

s.c. currents of each of the generators are the goal of our solution and are not
known at the first stage of the analysis, i.e. determining the equivalent circuit.
To overcome this difficulty the iteration method, or method of successive
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approximations, may be applied. In accordance with this method, in the first
calculation, as a starting point, the generators are represented by one of the
two regimes, i.e. just by inspection of their location relative to the fault point.
Those generators which are relatively ‘‘close’’ to the fault (by means of the
estimated value of the reactance from the generators up to the fault) should be
represented by an equivalent circuit as they operate under the regime of maximal
field current, and those which are relatively ‘‘far’’ from the fault – as they operate
under the regime of a normal voltage. Then, the results of this calculation, i.e.,
the first iterate, shall be compared with the critical ones, and the generator
representation, which has been incorrectly chosen, should be changed. The
calculation will be repeated and the results, i.e. the second iterate, shall be
checked again and so on. In the final iterate all the generators will be represented
in accordance with their actual behavior.
A straightforward method of s.c. fault analysis can also be applied to a
complicated network, by means of a computer-aided calculation. With the
superposition principle we may represent the s.c. current as a sum of the partial
(or individual ) currents caused by each generator acting alone:

I
sc,2
=∑
i
I
sc,i
=∑
i
B
F,i
E
i
, (6.51)

where B
F,i
are the transfer susceptances (reciprocal of reactances) between a

fault branch and each of the generator branches. These susceptances can be
found by means of matrix analysis:

B
F,i
=
D
F,i
D
,

where D is the determinant of the network reactances’ matrix, written in accor-
dance with mesh analysis, and D

F,i
is its appropriate cofactor. With these results

an equivalent circuit, in which every generator is individually connected to the
fault point, as shown in Fig. 6.35, may be obtained. Here, each generator is
connected to the fault with the reactance X

F,i
X =1/B

F,i
. Now each of the reac-

tances and/or currents (equation 6.51) can be compared with the critical reac-
tance and/or critical currents and the correct representation of each generator

Figure 6.35 An equivalent circuit of a complicated network obtained by using the superposition

principle.
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will be chosen. An example of a short-circuit fault calculation in a complicated
power network is given in Appendix III.

6.5.3 Transient performance of a synchronous generator

Mutually coupled stator and rotor windings of electrical machines, in distinction
to the transformers, are in motion with respect to each other. The d.c. winding
of the rotor of the synchronous generator moves with respect to the a.c. three-
phase stator winding so that the mutual inductances between these two windings,
and even between different phases of the stator winding, change with time. Thisffff
leads to differential equations with variable coeffff fficients, which results in a very
cumbersome analysis and difficult understanding of the whole transient process.
However, we may describe and analyze the transient behavior of the synchron-
ous generator using an artifice. We shall use the generalized current phasor for
the stator windings and the two-axis representation of a synchronous machine
(see section 6.5.1), which reduce the three-phase system to a single one.
Furthermore, we will make a couple of common assumptions, which allow us
to not only simplify the analysis, but also to obtain results that are still close
to the actual ones.
Firstly, we assume that the rotor angular speed v stays constant during the
whole transient process. For the machine with a damper winding in the rotor
poles, we assume that the influence of the damper currents on the transient
process can be obtained by superimposing the appropriate calculations on the
transient results obtained first for the generator without damper windings. In
the first stages of the transients we shall also neglect the winding resistances,
being very small compared to their reactances ( less than 10% for the stator
winding, even when including the external network, and about 1% for the rotor
winding). The influence of the resistances on the entire process will be taken
into consideration as the cause of decaying all the natural responses. Transient
analysis of synchronous generators will be given for a salient pole generator, as
a more general case. For the round rotor generator the results may then be
obtained by equaling the reactances on both axes.

(a) T ransient EMF, transient reactance and time constant

It should be noted that the transient equivalent circuit of a generator differsffff
from those representing it in the steady-state regime. This is shown in Fig. 6.36(a)
and its simplification in Fig. 6.36(b). Here E

d
is the EMF, induced by the

magnetizing or field current, and

X
d
=X
ad
XX +X

l
X (6.52)

is the synchronous reactance of a generator (sometimes designated as X
s
). The

value of E
d
is obtained by OCC in accordance with I

fl
(or I
m
).

However, since by the sudden interruption of a synchronous machine, the
total magnetic flux has to be considered and kept constant, the rotor leakage
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Figure 6.36 An equivalent circuit of a synchronous generator for steady-state operation (a) and its

simplification in two axes (b).

reactance must be taken into account and added to the equivalent circuit ( just
like the leakage reactance of a transformer primary).
The equivalent circuit of the synchronous generator for the transient behavior
is shown in Fig. 6.37(a). In this circuit the rotor and stator windings on the
direct axes including the rotor winding leakage reactance are shown. Since the
rotor and the stator magnetic fields are rotated with the same speed (as we
have previously assumed), i.e., they remain fixed with respect to one another;
we may treat this circuit as a transformer. Here, as in the previous circuit, X

ad
XX

is an armature reaction reactance (sometimes it is called the magnetizing reac-
tance), and X

rl
XX and X

sl
XX are the leakage reactances of the rotor and the stator

respectively. Note that in p.u. notation the magnetizing reactance expresses the
relation between the rotor and stator currents:

I
d
=
I
fl
X
ad
XX
. (6.53)

This circuit can be transformed into those shown in Fig. 6.37(b), in which the
mutual inductance is illuminated. (Note that the p.u. values of the inductances
and their corresponding reactances are equal and, therefore, the reactances can
be used in place of inductances and vice versa.) We may now apply the Thevenin
theorem to get the circuit in (c) and finally a very simple circuit including a
voltage source and a single reactance, as shown in (d):

E∞
d
=E
Th
=E
fl
X
ad
X

X
rl
XX +X

ad
XX
, (6.54a)

and

X∞
d
=X
Th
+X
sl
XX =

X
rl
XX X
ad
XX

X
rl
XX +X

ad
XX
+X
l
X , (6.54b)
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Figure 6.37 The equivalent circuit of the synchronous generator for transient behavior: in the d-

axis as for a two-winding transformer (a), its simplification (b), after applying the Thevenin theorem

(c), its Laplace transform equivalent (d) and the interconnection between the equivalent circuits in

the d- and q-axes (e).

where E∞
d
and X∞

d
are the transient EMF (generated voltage) and the transient

reactance.
In some technical books the transient reactance X∞

d
is given in the form

X∞
d
=X
d
XX −

X2
ad

X
rl
XX +X

ad
XX
=X
d
XX− (1−s

fd
)X
ad
XX ,

where s
fd
=X
rl
XX /(X

rl
XX +X

ad
XX ) is the leakage coefficient of the rotor winding. Then

X∞
d
=X
d
−X
ad
XX +s

fd
X
ad
XX =X

l
X+

X
rl
XX X

ad
XX

X
rl
XX +X

ad
X
,

which is as was previously obtained.
Recall that similar results were obtained for power transformers (see sec-
tion 6.4.1), i.e. the entire magnetic circuit of a transformer can be represented
by only a single reactance, which incorporates all the magnetic fluxes of both
windings in a total flux. In accordance with the principle of a constant flux
linkage, this total flux must be kept constant at the instant of switching. Hence,
the equivalent circuit in Fig. 6.37(d) represents the synchronous generator at
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the moment of short-circuiting. The equivalent circuit in the q-axis remains the
same, since no additional winding in this axis is present (in distinction to the
rotor equipped with the damper winding – see further on). Electromagnetic
force E∞

d
, being induced by a total flux linkage, also stays constant at the moment

of fault, which allows us to calculate the first moment short-circuit current of
the generator.
Knowing the above two transient parameters E∞

d
and X∞

d
of a synchronous

generator we may readily obtain the first moment a.c. ( periodic) and d.c. (aperi-
odic) components of the short-circuit current. Thus, after short-circuiting in
Fig. 6.37(d), we have

I∞
d0
=
E∞
d0
X∞
d
, (6.55a)

or as an instantaneous value:

i
d
=
E∞
d0
X∞
d
cos vt, (6.55b)

where the initial, or switching, angle y
i
is taken as zero.

The d-axis component of the terminal voltage prior to switching will then be

V
d0
VV =E∞

d0
−X∞
d
I∞
d0
. (6.56)

The steady-state s.c. current can be found from the circuit for the steady-state
analysis, Fig. 6.36. After short-circuiting V

d
VV =0 we have

I
d,2
=
E
d
X
d
. (6.57)

Next we shall find the quadrature-axis component of the voltage. Consider
the phasor diagram shown in Fig. 6.38, which is drawn for a round-pole generator
with X

d
=X
q
. From this diagram we obtain

Ẽ
d
= Ṽ
d
VV + jX

d
Ĩ
d
= Ṽ− Ṽ

q
VV + jX

d
Ĩ
d
. (6.58a)

Since Ṽ
q
VV =− jX

q
Ĩ
q
=− jX

d
Ĩ
q
we have

Ẽ
d
= Ṽ+ jX

d
Ĩ. (6.58b)

(Here and further on the tilde sign~stands for phasor quantities.)
Considering triangle ABC, we may determine angle d, between E

d
and V,VV

which is known as the load angle:

d=tan−1
X
d
I cos Q

V+X
d
XX I sin Q

. (6.59)

With this angle the V
q0
VV component is

V
q0
VV =V0VV cos d0 . (6.60a)
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Figure 6.38 Phasor diagram for a round-pole generator.

and the q-axis component of the current is

I
q0
=
V
q0
VV

X
q
. (6.60b)

The two components of the s.c. current (equations 6.55a and 6.60b) are
actually the initial values of the two components of the s.c. current. To find the
transient s.c. current we must solve the differential equations for each of theffff
two components. To simplify the solution we will use the superposition principle
and consider each of the currents as a sum of the current prior to switching,
and a transient current due to switching. This current is found as a result of
applying, to the passive circuit, the voltages equal and opposed to those which
existed at the fault point prior to switching. In doing so we must remember
that the two equivalent circuits in the d- and q-axes in transient behavior are
not unconnected any more. Thus, any change of current in one will induce
voltage in the second just like in transformer windings, Fig. 6.37(e). With the
Laplace transform technique we may write

I∞
d
X∞
d
−sI∞
q
X
q
=V
q0
VV ,

−I∞
q
X
q
−sI∞
d
X∞
d
=V
d0
VV .

(Note that here, as in some technical books, the voltage induced by current I
q



T ransients in T hree Phase Systems 375

is also assigned as V
q
VV , although it is directed on the d-axis, and subsequently

the voltage induced by current I
d
is assigned as V

d
VV .) Solving the above equations

yields

I∞
d
=
1

X∞
d
A−Vd0VV s

s2+1
−V
q0
VV

1

s2+1B
I∞
q
=
1

X
q
AVq0VV s

s2+1
−V
d0
VV

1

s2+1B .
Taking the inverse transform (using the table of the Laplace transform pairs)
we may obtain

i∞
d
=−

V
d0
VV

X∞
d
cos vt−

V
q0
VV

X∞
d
sin vt

i∞
q
=
V
q0
VV

X∞
q
cos vt−

V
d0
VV

X
q
sin vt.

(6.61)

Next we can find the s.c. current in each of the three phases of a stator
winding. Thus, for instance, for phase a, by substituting equation 6.61 in the
first equation of 6.38a (note that in order to obtain the instantaneous value of
the short-circuit currents, the argument vt must be added to angle a under the
cos and sin functions), and after algebraic simplifications we may obtain

i
a
=
E∞
dm,0
X∞
d
cos (vt+a)+I

d,2v
cos (2vt+a)+I

da
cos a

+I
q,2v
sin (2vt+a)+I

qa
sin a, (6.62)

where

I
d,2v
=
V
dm,0
VV (X∞

d
−X
q
)

2X∞
d
X
q

and I
q,2v
=
V
qm,0
VV (X∞

d
−X
q
)

2X∞
d
X
q

(6.63)

are the double frequency component amplitudes, and

I
da
=−

V
dm,0
VV (X∞

d
+X
q
)

2X∞
d
X
q

and I
qa
=−

V
qm,0
VV (X∞

d
−X
q
)

2X∞
d
X
q

(6.64)

are the d.c., or aperiodic components, and a is the angle between the a-phase
axis and d-axis. (Here the subscript ‘‘m’’ in EMF and voltages stands for the
amplitude values.)
The appearance of the double frequency term in the stator transient current
may be explained by considering the transient current in the rotor field winding.
The sudden change of the stator currents in turn results in the appearance of a
transient current in the rotor winding to keep the total magnetic flux constant.
This current is of two components. As the three-phase stator current of basic
frequency abruptly increases, the armature reaction on the d-axis also increases
respectively. The transient current will appear in the field winding to compensate
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for the rise of this reaction. Since it is proportional to the change of the stator
current, we may write its p.u. expression as

I
fl,n
=

X
ad
XX

X
ad
XX +X

rl
XX
(I∞
d
−I
d,0
)=
X
d
−X∞
d

X
ad
XX

V
d,0
VV

X∞
d
. (6.65)

The magnetic field produced by the d.c. component of the stator currents
remains fixed in the air gap space and therefore is rotated with respect to the
rotor with synchronous speed. This results in inducing an a.c. component in
the field transient current. Since the field current, at the first moment, does not
change, the initial value of an a.c. component is oppositely equal to the d.c.
component. Subsequently, the resulting current in the field winding is

i
fl
=I
fl,f
+ i
fl,n
=I
fl,0
−
X
d
−X∞
d

X
ad
XX

V
dm,0
VV

X∞
d
cos vt, (6.66)

where I
fl,0
=E
d0
/X
ad
XX .

The a.c. term in the rotor produces a pulsating magnetic flux, which can be
resolved into two components, having equal (half of the original ) amplitudes,
and revolving with synchronous speed in opposite directions. The component,
which revolves in the direction opposite to that of the rotor, is actually fixed in
the space and interferes, therefore, with the magnetic field of the d.c. component
of the stator current, decreasing it slightly.
The component, which revolves in the same direction as the rotor, produces
a magnetic field rotating in space with double the speed of the rotor and
inducing in the stator windings the double frequency component. This component,
however, is relatively small and when using engineering calculations is usually
neglected.
The resistances of the generator windings, which have been neglected when
determining the magnitudes of the transient currents, are responsible for decay-
ing all these currents so that only the steady-state a.c. term in the stator and
the d.c. term in the rotor remain invariable. The decay process is of an exponen-
tial form and the damping factors are mainly determined by the ratio of the
resistance to the leakage inductance of the circuits. Since large synchronous
machines have very small resistances compared to their considerable leakage
reactances, their transient currents decrease very slowly and may predominantly
determine the transients in a few seconds.
We may recognize two kinds of currents and the fields related to them, one
of which adheres to the stator windings and the other to the rotor field winding.
Each of them has a different damping factor or time constant, which primarilyffff
depends on the value of their resistances, related to the reactances. Thus, the
stator resistances (including the external network) may be roughly estimated to
be 10% of its leakage reactance, and the rotor circuit resistance may be about
1% of its leakage reactance.
The time constant of the rotor circuit is usually known and is given as a
generator catalogue parameter. This time constant is related to the mutual flux
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linkage between the rotor and stator windings and is determined by an open-
circuit test. This time constant determines the rate of increasing the field current
(and therefore the generator open-circuit terminal voltage), when the constant
voltage V

fl
VV is suddenly applied to the field winding. Since the field winding is a

simple L R circuit, the differential equation for the rotor circuit may be writtenffff
as

dl
fl
dt
+I
fl
R
fl
=V
fl
VV ,

or

1

R
fl

dl
fl
dt
+I
fl
=I
fl,2
, (6.67)

where I
fl,2
=V
fl
VV /R

fl
is a long-term (steady-state) field current. Since the open-

circuit terminal voltage is approximately proportional to the field current: E
d
=

X
ad
XX I
fl
, where X

ad
XX is the mutual reactance/inductance, we have

E
d,2
=E
d
+
X
ad
XX

R
fl

dl
fl
dt
. (6.68)

Using the relation between the transient EMF E∞
d
and l

fl
:

E∞
d
= (X

ad
XX /[X

fl
X +X

ad
XX )]l

fl
, equation 6.68 becomes

E
d,2
=E
d
+T
d0
TT
dE∞
d
dt
, (6.69)

where

T
d0
TT =

X
fl
X +X

ad
XX

R
fl

(6.70)

is the open-circuit time constant in p.u. (as the basic time is tb=1/v s), or in
seconds

T
d0
TT =

X
fl
X +X

ad
XX

vR
fl
. (6.71)

Since E
d
=X
d
I
d
and E∞

d
=X∞
d
I
d
, then E∞

d
=(X∞

d
/X
d
)E
d
, and substituting E∞

d
in

equation 6.69 with (X∞
d
/X
d
)E
d
, we have

T ∞
d
dE
d
dt
+E
d
=E
d,2
, (6.72)

where the transient time constant is

T ∞
d
=
X∞
d
X
d
T
d0
TT . (6.73)

For the short-circuit fault, remote from the generator, the transient time constant
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is given by the equation

T ∞
d
=
X∞
d
+X
F
X

X
d
+X
F
X
T
d0
TT , (6.74)

where X
F
X is the external reactance. If the system (external ) impedance contains

a relatively high resistance R
ex
, the transient time constant is given by the

extended relationship

T ∞
d
=
R2
F
+(X∞

d
+X
F
X )(X

d
+X
F
X )

R2
F
+ (X

d
+X
F
X )2

T
d0
TT . (6.75)

The transient time constant T ∞
d
lies in the range of 0.4 to 2 s for high power,

high voltage turbogenerators and 0.7 to 2.55 s for salient-pole hydrogenerators.
In low power generators T ∞

d
may be less than 0.2 s.

The d.c. or aperiodical terms of both the stator and rotor windings are
actually exponential functions and each of them decays with an appropriate
time constant, which is determined by the parameters of that winding to which
they are linked. Thus, the d.c. term of the rotor current and, adherent to it, the
a.c. transient term of the stator current, decay at the rate of the above transient
time constant T ∞

d
, which is determined primarily by the time constant of the

rotor winding, T
d0
TT .

The d.c. (aperiodic) and double-frequency components in the stator currents
die out with the armature time constant T

a
TT . Although the initial value of the d.c.

components in different phases is determined by the switching moment, or byffff
the initial phase angle of the prior to switching phase currents, the total MMF,
produced by these currents, is stationary in space and of a magnitude which is
independent of the initial phase angle. This stationary MMF reacts with the
rotating rotor alternately on the d- and q-axes. Therefore, the inductance associ-
ated with the d.c. component may be regarded as a sort of average of X∞

d
and

X
q
, More precisely, by observing equation 6.64 we may conclude that the

reactance, which determines the d.c. (aperiodic) term, is X2=X∞dXq/(X∞d+Xq )
(also known as the negative-sequence of a synchronous machine – see further
on). Thus, by using this reactance, the stator winding transient time constant
may be determined as:

in p.u. (6.76)T
a
TT =

2X∞X

R
a
(X∞
d
+X
q
)
=
X

R
a
pu

or in seconds (6.77)T
a
TT =

2X∞X

R
a
v(X∞
d
+X
q
)
=
X

R
a
v
s

For high-voltage generators, T
a
TT is in the range of 0.07 to 0.5 s and for low-

voltage generators its value lies in the range of 0.01 to 0.1 s. If the short-circuit
occurs at a distance from the generator, then the time constant is given as

T
a
TT =

X2+XexX
R
a
. (6.78)
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The rotor rotation relative to the fixed MMF of the d.c. component in the
stator causes the a.c. component of the fundamental frequency in the field
current to appear. This a.c. component in the field current, as has been previously
mentioned, is responsible for the double-frequency component of the armature
short-circuit current. The time constant T

a
TT therefore also applies to the a.c.

component in the rotor current and to the double-frequency component of the
stator current.
The a.c. component of s.c. current, which appears at the first moment of
switching (equation 6.62) differs from the steady-state s.c. current, which can beffff
approximately determined by the saturated reactance X

d
, or by using the

linearization method (see section 6.5.2), as E
d
/X
d
XX (equation 6.57). This differenceffff

may then be expressed as

DI∞
d
=
E∞
d0
X∞
d
−
E
d
X
d
=I∞
d0
−I
d,2
. (6.79)

The first component is a transient current, which decays at the rate of the
transient time constant; therefore, the difference,ffff DI∞

d
, also decays at the same

rate, so that the short-circuit a.c. current at fundamental frequency falls off from
its initial value I∞

d0
to its final value of the steady-state short-circuit current with

the time constant T ∞
d
.

In conclusion, the total transient response current of a synchronous generator
to the short-circuit fault at its terminal (phase a) and total rotor field current

i
a
=CAE∞d0mX∞

d
−
E
dm
X
d
B e−t/T∞d+EdmX

d
D cos (vt+a)

−
V
d0m
VV (X∞

d
+X
q
)

2X∞
d
X
q

e−t/T
a
cos a+

V
d0m
VV (X∞

d
−X
q
)

2X∞
d
X
q

e−t/T
a
cos (2vt+a)

+
V
q0m
VV (X∞

d
+X
q
)

2X∞
d
X
q

e−t/T
a
sin a+

V
q0m
VV (X∞

d
−X
q
)

2X∞
d
X
q

e−t/T
a
sin (2vt+a), (6.80)

i
fl
=I
fl0
+
V
dm,0
VV

X∞
d

X
d
−X∞
d

X
ad
XX

e−t/T∞
d
−
V
dm,0
VV

X∞
d

X
d
−X∞
d

X
ad
XX

e−t/T
a
cos vt. (6.81)

Both currents and their components are plotted in Fig. 6.39.
The initial value of the aperiodic term may be obtained by combining two
components: of axes d and q

A=
V
d0m
VV cos a+V

q0m
VV sin a

2X∞
d
X
q
/(X∞
d
+X
q
)
. (6.82)

(b) T ransient eVe ects of the damper windings: subtransient EMF, subtransientVV

reactance and time constant

Nowadays synchronous machines are usually equipped with damper windings,
which consist of short-circuited turns, or bars of copper strip set in poles. The
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Figure 6.39 The short-circuit currents of a synchronous generator at sudden fault at its terminals:

stator current (a) and rotor current (b).

reason for using the damper windings is to aid in starting and to reduce (to
damp) mechanical oscillatory tendencies, which may arise under different faults,ffff
and thereby to increase the dynamic stability of the generator. The damper
windings are placed in both axes, d and q, as can be seen from Fig. 6.40.
The damper winding does not change in principle the nature of the transients.
Its influence results in increasing the short-circuit current magnitudes and in
the appearance of an additional component on the q-axis, which is a subtransient
EMF E◊

q
. Presenting an additional winding on a rotor makes the straightfor-

ward analysis of the generator transients even more complicated. However,
analyzing the generator equivalent circuit in both axes, shown in Figure 6.41,
will allow us to get the final results in a much easier way.
As can be seen, the equivalent circuit in the d-axis differs from those inffff
Fig. 6.37 by an additional mutual winding (damper winding). By illuminating
the mutual inductance (in a similar way as for a three-winding power transfor-
mer) we may obtain the circuit shown in (b), and by applying the Thevenin
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Figure 6.40 The damper windings in axes d and q.

Figure 6.41. An equivalent circuit of a synchronous machine having damper windings and its simpli-

fication: in the d-axis (a, b and c) and in the q-axis (d, e and f ).
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theorem the one shown in (c). In the resulting circuit E◊
d
is called a subtransient

EMF and X◊
d
is a subtransient reactance:

E◊
d
=

E
d
/X
fl
X +E

pd
/X
pd
X

1/X
fl
X +1/X

pd
X +1/X

ad
XX

(6.83)

and

X◊
d
=

1

1/X
rl
XX +1/X

pd
X +1/X

ad
X
+X
l
X . (6.84)

The subtransient EMF E◊
d
may also be determined by using the known terminal

voltage and load current prior to short-circuiting:

E◊
d0
=V
d0
VV +X◊

d
I
d0
. (6.85a)

The phasor diagram for a synchronous generator having damper windings is
shown in Fig. 6.42.
For the generators havingX◊

d
=X◊
q
, the initial subtransient EMF can be easily

found from the simplified phasor diagram of a synchronous generator with a
damper winding, shown in Fig. 6.42(b). Thus,

E◊
0
=√(V0VV cos Q0 )2+ (V0VV sin Q0+X◊I0 )2, (6.85b)

or approximately as a projection on V0VV ,

E◊
0
$V0VV +X◊I0 sin Q0 . (6.85c)

Figure 6.42 Phasor diagram for a synchronous generator with a damper winding (a) and a simplified

phasor diagram for the generator having X◊
d
=X◊
q
(b).
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The subtransient parameters on the q-axis may be obtained by using the
equivalent circuit in Fig. 6.41 (d, e and f ). After simplification we have

E◊
q
=

E
pq
/X
pq
X

1/X
pq
X +1/X

aq
XX

(6.86)

and

X◊
q
=

1

1/X
pq
X +1/X

aq
X
+X
l
X . (6.87)

Similar to equation 6.85a we have

E◊
q0
=V
q0
VV −X◊

q
I
q0
. (6.88)

The subtransient time constants are found as

T ◊
d
=
X◊
d
X∞
d
T ◊
d0

(6.89)

and usually

T ◊
q
$T ◊
d
, (6.90)

where T ◊
d0
is a subtransient open-circuit d-axis time constant of a generator

having a damper winding. The subtransient time constant is relatively small,
T ◊
d
<T ∞
d
, and is in the range of 20 to 50ms.

For the generator with damper windings the magnitudes of the fundamental
frequency subtransient currents at the first moment of the fault are given by
expressions

I◊
d0
=
E◊
d0
X◊
d
, I◊
q0
=
E◊
q0
X◊
q

(6.91)

and

I◊
0
=√I◊2

d0
+I◊2
q0
. (6.92)

Similar to equation 6.80, the total short-circuit current versus time for a generator
with damper windings is

i
a
=CAE◊d0mX◊

d
−
E∞
d0m
X∞
d
B e−t/T∞∞d+AE∞d0mX∞

d
−
E
dm
X
d
B e−t/T∞d+EdmX

d
D cos (vt+a)

−
V
d0m
VV (X◊

d
+X◊
q
)

2X◊
d
X◊
q

e−t/T
a
cos a+

V
d0m
VV (X◊

d
−X◊
q
)

2X◊
d
X◊
q

e−t/T
a
cos (2vt+a)

−
E◊
q0m
X◊
q
e−t/T∞∞

q
sin (vt+a)+

V
q0m
VV (X◊

d
+X◊
q
)

2X◊
d
X◊
q

e−t/T
a
sin a

+
V
q0m
VV (X◊

d
−X◊
q
)

2X∞
d
X
q

e−t/T
a
sin (2vt+a). (6.93)
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When the s.c. fault occurs after some external reactance X
F
X in all the previous

expressions, this reactance must be added to the generator reactances on both
axes.
As previously mentioned, this short-circuit current differs from that of affff
generator without damper windings (equation 6.80) by the presence of the
subtransient term E◊

d0
/X◊
d
and the term on the q-axis E◊

q0
/X◊
q
. Both of these

terms, however, decay very fast, at the rate of the time constants T ◊
d
and T ◊

q
.

After these two components die out, the instantaneous s.c. current is practi-
cally similar to those of a generator without damper windings. (Precisely speak-
ing the damper winding also influences the transient process after decaying the
subtransient currents: as an additional short-circuited winding on the d-axis it
results in an increase in the aperiodic component in the field current to a slightly
higher value than in the first moment of the fault. However, in practice this
phenomenon is usually neglected. It should also be noted that for turbogenera-
tors having X◊

d
$X◊
q
, the double frequency component in the s.c. currents is

practically absent.)
In conclusion, the change of the r.m.s. or amplitude values, the envelope curve
of an a.c. short-circuit (fundamental frequency) versus time is plotted in Fig. 6.43.
As can be seen, this curve consists of three stages of the transient process:
subtransient, transient and steady-state. The subtransient stage is given by the
differenceffff

DI◊
d0
=I◊
d0
−I∞
d0
,

and the transient stage is given by the differenceffff

DI∞
d0
=I∞
d0
−I∞
d2
.

Figure 6.43 The r.m.s. (envelope) curve of the periodic term and exponential term of a short-circuit

current for a generator having a damper winding.
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The aperiodic (or exponential ) component, which is decaying from its initial
value A with the time constant T

a
TT , is also plotted in Fig. 6.43. The curves in

Fig. 6.43 can be used for experimentally determining the generator time con-
stants, as shown in the figure.
The decaying process of the a.c. term of the short-circuit current can also be
explained by increasing the generator reactances gradually from X◊

d
to X∞

d
and

toX
d
(remember that X◊

d
<X∞
d
<X
d
) during the transient process. This phenom-

enon is opposed to the one in the first moment of short-circuiting: the armature
reaction flux W

ad
being suddenly increased, is opposed to the damper windings

flux and is forced out of the poles to some extent, thereby increasing the
reluctance and yielding a reduced synchronous reactance X◊

d
. As the time of

the transients progresses, W
ad
moves back on through the pole, which yields a

relatively low reluctance path, and therefore the reactance will increase.

(c) T ransient behavior of a synchronous generator with AVR

If the generator is equipped with AVR (automatic voltage regulator), the voltage
supplied to the field winding does not keep constant, but is increased at the
moment of short-circuiting. It can be approximately assumed that this rise of
the supplied voltage is exponential. Hence, equation 6.72 may now be written
in the form

T ∞
d
dE
d
dt
+E
d
=E
d,max− (Ed,max−Ed0

−

)e−t/T
ff
. (6.94)

Here on the right side of the differential equation is an exponential functionffff
having its prior to switching value E

d0
−

and the final, steady-state value E
d,max ;

T
ff
TT is the time constant of the supplied voltage circuit (exciter and/or power
supply circuit). The range of this constant is 0.4 to 1 s.
The natural solution of this equation as we already know is a simple exponent

E
d,n
=Ae−t/T∞

d
. (6.95)

The forced solution should be of the same form as the forced function

E
d,f
=B+Ce−t/T

ff
. (6.96)

The integration constants A, B and C might be found by applying the known
quantities: prior to switching (t=0

−
) value E

d0
−

, the initial (t=0
+
) value

E
d0
+

[E
d0
+

=E∞
d0
(X
d
/X∞
d
)] and the final or steady-state value E

d,max (in accor-
dance with the known I

ff,max ). Omitting all the algebraic calculations we may
obtain the integration constants as

B=E
d,max , C=DEd

T
ff
TT

T ∞
d
−T
ff
TT
, (6.97a)

where DE
d
=E
d,max−Ed0

−

and

A=−(E
d,max−Ed0

+

)−DE
d
T
ff
TT

T ∞
d
−T
ff
TT
. (6.97b)
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Thus, we finally have

E
d
(t)=E

d,f
+E
d,n
=E
d,max+DEd

T
ff
TT e−t/T

ff

T ∞
d
−T
ff
TT

−CEd,max−Ed0
+

+DE
d
T
ff
TT

T ∞
d
−T
ff
TT D e−t/T∞d , (6.98)

which results in E
d0
+

at t=0 and in E
d,max at t�2, i.e. in accordance with the

given initial and steady-state conditions.
For the generator without AVR the time constant T

ff
TT should be infinite, i.e.,

T
ff
TT =2, and the differential equation 6.94 turns intoffff

T ∞
d
dE
d
dt
+E
d
=E
d0
−

.

The solution of this equation is

E
d
(t)= (E

d0
+

−E
d0
−

)e−t/T∞
d
+E
d0
−

. (6.99)

By rearranging the terms in equation 6.98 and after performing the appropriate
algebraic calculations, we may obtain

E
d
(t)=[(E

d0
+

−E
d0
−

)e−t/T∞
d
+E
d0
−

]+ (E
d,max−Ed0

−

)F(t)

=E
d(withoutAVR)+DEd(withAVR) , (6.100a)

where

F(t)=1−
T ∞
d
e−t/T∞

d
−T
ff
TT e−t/T

ff

T ∞
d
−T
ff
TT

. (6.100b)

The above expression clearly shows that due to AVR the EMF of the generator
increases gradually during the transients by DE

d(withAVR) relatively to the EMF
of the generator without AVR. This in turn results in increasing the transient
a.c. term of the short-circuit current. Dividing equation 6.100a by X

d
and taking

into consideration that E
d
= (X

d
/X∞
d
)E∞
d
and E

d0
−

/X
d
=I
2
, we have

I∞(t)=[(I∞
d
−I
2
)e−t/T∞

d
+I
2
]+DI

2
F(t), (6.101)

where DI
2
=I
2,max−I2 and I2,max is the steady-state short-circuit current due

to the maximal increased by AVR field current. The term in the brackets on
the right hand side in equation 6.101 is the transient a.c. component of the
short-circuit current without AVR, and DI

2
is its increase due to AVR. The

short-circuit current, given by equation 6.101, which is actually the r.m.s. enve-
lope curve of an a.c. component, is plotted in Fig. 6.44 for two cases: with and
without AVR. Note that, in the very beginning of the transients, the two curves
are practically the same, which means that the subtransient current is not
influenced by AVR. This current decays before the AVR has had time to affectffff
the generator EMF.
As was earlier shown, operating regime of the AVR depends on the fault
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Figure 6.44 An envelope curve of the transient current for two cases: 1, without AVR; 2, with AVR

and 3, the increase on the current due to AVR.

point location. Namely, if the external reactance is lower than the critical one.
i.e., X

F
X <X

cr
XX , then the AVR operates under the condition of maximal field

current. If, however, X
F
X >X

cr
XX , then the AVR operates under the condition of

nominal/rated terminal voltage, V=V
nom
VV . Hence, in the first case the short-

circuit current varies in accordance with equation 6.101, but in the second case
the current is limited by the value of V

nom
VV /(X∞

d
+X
F
X ).

(d) Peak values of a short-circuit current

For some conditions (such as to check the dynamic stability of electric equipment
under short-circuit conditions or for the proper design of relay protection), it
is necessary to know the maximum instantaneous or peak value of the short-
circuit current. In highly inductive circuits the peak current appears nearly half
a period after the occurrence of the short-circuit.
Neglecting the double-frequency term, we shall take into consideration the
subtransient a.c. term I◊

d
and the exponential term A (equation 6.82), so that

the peak value will be

i
pk
=√2I◊

d
+Ae−0.01/T

a
, (6.102)

or by approximating A$√2I◊
d
, and with T

a
TT =0.05 (or X/R=1.5) we have

i
pk
=√2I◊

d
(1+e−0.01/T

a
)=√2k

pk
I◊
d
$√2·1.8I◊

d
, (6.103)

where, as previously (equation 6.20a),

k
pk
=1+e−0.01/T

a

is the peak coeYe cient.
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Furthermore, because of very small damping, the exponential term approaches
unity and the maximal peak is simply

i
pk
=2√2I◊

d
(6.104)

The r.m.s. value of the peak current can be calculated in accordance with equation
6.22a

I
pk
=I◊
d
√1+2(k

pk
−1)2,

and for T
a
TT =0.05 (k

pk
=1.8) we have

I
pk
=1.52I◊

d
.

As can be seen, the peak coefficient depends on the value of the time constant.
Thus, for T

a
TT =0.008 (X/R=2.5) the peak coefficient decreases to 1.3 and

i
pk
=√2·1.3I◊

d
and I

pk
=1.1I◊

d
.

However, the aperiodic component should be taken into consideration for the
periods of less than t=0.15 s after the short-circuit fault occurs.

Example 6.8

For a synchronous generator having the following p.u. parameters: X
l
XX =0.1,

X
d
=1.2, X∞

d
=0.25, X

q
=0.6, R=0.005 and T

d0
TT =8.5 s: a) find all the compo-

nents of the transient short-circuit current at t=0, b) write the expression of
the s.c. current in phase a and in the field (rotor) winding versus time, c) write
the expression of the s.c. current envelope and plot the phase a current and the
envelope curve and d) calculate the peak value of the s.c. current. Prior to
short-circuiting the generator has been operated at the rated voltage V=1 and
0.8 of the rated current with PF=0.85 (Q=31.8°) and f=50 Hz (the AVR
is absent).

Solution

a) To find E
d
and E∞

d
we must calculate the power angle d (see the phasor

diagram in Fig. 6.38). For this purpose we first calculate the angle j:

j=tan−1
V sin Q+X

q
I

V cos Q
=tan−1

1·sin 31.8°+0.6·0.8
1·0.85

=49.8°

and d=j−Q=49.8°−31.8°=18.0°.
Now we may find

E
d
=VcosVV d+X

d
I sin j=1·cos 18.0°+1.2·0.8 sin 49.8°=1.70

E∞
d
=VcosVV d+X∞

d
I sin j=1·cos 18.0°+0.25·0.8 sin 49.8°=1.1.

Then the s.c. current components at t=0 are:
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a.c. (or periodic)

I∞
d0
=
E∞
d0
X∞
d
=
1.1

0.25
=4.4, I

2
=
E
d0
X
d
=
1.70

1.2
=1.42,

and

DI
d
=I∞
d0
−I
2
=4.4−1.42=2.98;

d.c. (or aperiodic)

I
da
=
V
d0
VV (X

q
+X∞
d
)

2X
q
X∞
d
=
0.951·(0.6+0.25)
2·0.6·0.25

=2.69

I
qa
=
V
q0
VV (X

q
+X∞
d
)

2X
q
X∞
d
=
0.310·(0.6+0.25)
2·0.6·0.25

=0.878,

where

V
d0
VV =V cos d=1·cos 18.0°=0.951

V
q0
VV =X

q
I
q
=X
q
I cos j=0.6·0.8 cos 49.8°=0.310;

2v (or double frequency)

I
d,2v
=
V
d0
VV (X

q
−X∞
d
)

2X
q
X∞
d
=
0.951·(0.6−0.25)
2·0.6·0.25

=1.11

I
q,2v
=
V
q0
VV (X

q
−X∞
d
)

2X
q
X∞
d
=
0.310·(0.6−0.25)
2·0.6·0.25

=0.362.

b) The time constants are:

T
a
TT =

X2
vR
=

0.353

314·0.005
=0.225,

where

X2=
2X∞
d
X
q

X∞
d
+X
q
=
2·0.25·0.6

0.25+0.6
=0.353,

and

T ∞
d
=T
d0
TT
X∞
d
X
d
=8.5·

0.25

1.2
=1.77.

The s.c. current of phase a versus time for the initial angle a=30° will be

i
a
(t)=√2[(1.42+2.98e−t/1.77) cos (vt+30°)−2.69e−t/0.225 cos 30°

−1.11e−t/0.225 cos (2vt+30°)+0.878e−t/0.225 sin 30°

−0.362e−t/0.225 sin (2vt+30°)],
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or, after simplification,

i
a
(t)= (2.01+4.21e−t/1.77 ) cos (vt+30°)

−2.67e−t/0.225−1.65e−t/0.225 cos (2vt+11.9°).

Note that at t=0, the d- and q-components are

I
d0
=4.4−2.69−1.11=0.60, I

q0
=0.878−0.362=0.516,

and I0=
√0.602+0.5162=0.79$0.8, as it is given.

The rotor winding current, i.e., the field current, is calculated with equation
6.81:

i
fl
(t)=I

fl0
+ i
fl,a0
+ i
fl,v0
=1.55+4.65e−t/1.77−4.65e−t/0.225 cos vt,

where

I
fl0
=
E
d0
x
ad
=
1.70

1.1
=1.55, X

ad
XX =X

d
−X

l
XX =1.2−0.1=1.1

and

I
fl,a0
=−I

fl,v0
=
√2V
d0
VV

X∞
d

X
d
−X∞
d

X
ad
XX

=
√2·0.951
0.25

·
1.2−0.25
1.1

=4.65.

c) The envelope curve may be obtained (by neglecting the 2v-component) as

I
d
(t)=√2(1.42+2.98e−t/1.77−2.69e−t/0.225), I

q
(t)=√2·0.878e−t/0.225.

The phase a s.c. current versus time as well as the envelope curve are given in
Fig. 6.45.

d) The peak value of the s.c. current (which arises after about t=0.01 s) is

I
pq
$2.01+4.21−0.01/1.77+2.67e−0.01/0.225=8.8,

or by using the approximate formula 6.103

i
pk
=√2·1.8·4.4=11.2.

The difference in the above results is because the approximate formula is givenffff
for a no-loaded generator and therefore the initial value of an aperiodic compo-
nent is as high as the subtransient s.c. current. However, in our example the
generator prior to switching was operated under load and the aperiodic compo-
nent is much lower.

Example 6.9

A turbogenerator is connected to the system through a power transformer. The
parameters of these two apparatuses are: 1) turbo-generator – 125MVA, 15.8 kV,
PF=0.8, and X

l
XX =0.1, X

d
=X
q
=1.35, X∞

d
=0.2, X◊

d
=0.13, X◊

q
=0.15, T

a
TT =

0.1 s, T ∞
d0
=11.45 s, T ◊

d0
=0.25 s, T ◊

q0
=0.55 s; 2) transformer – 120MVA,

242/15.8 kV, v
sc
=11.5%. For the three-pole short-circuit fault at the secondary

of the transformer, find the subtransient s.c. current as its r.m.s. value versus
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Figure 6.45 Short-circuit current of phase a versus time (a) and envelope curve of the short-circuit

current without AVR (b) and with AVR (see Example 6.10) (c).

time (an envelope curve). The prior to switching operating conditions of the
generator were as follows: P=100MVA, PF=0.8, V

t
VV =16.5 kV (without AVR).

Solution

The rated and load currents of the generator are

I
r
=

125

√3·15.8
=4.6 kA, I

ld
=

100

√3·15.8
=3.5 kA.
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Thus, the generator current, prior to switching, in p.u. is

I0=
3.5

4.6
=0.76,

and the operating voltage in p.u. is

V0VV =
16.6

15.8
=1.05.

In accordance with the phasor diagram (see Fig. 6.42)

E
d0
=√(1.05·0.8)2+ (1.05·0.6+1.35·0.76)2=1.85,

where cos Q0=0.8 and sin Q0=0.6.
The angle between the current I0 and the EMF Ed0 is

j=tan−1=
1.05·0.6+1.35·0.76

1.05·0.8
=tan−1 1.97=63.1°.

Thus,

cos j=0.452 and sin j=0.883.

The power angle is

d0=63.1°−cos−1 0.8=26.2°,

and cos d0=0.897, sin d0=0.442.
The d- and q-components of the initial current and voltage can now be

calculated as

I
d0
=0.76·0.883=0.671 I

q0
=0.76·0.452=0.344

V
d0
VV =1.05·0.897=0.942 V

q0
VV =1.05·0.442=0.464.

The d- and q-components of the subtransient EMF are

E◊
d0
=V
d0
VV +X◊

d
I
d0
=0.942+0.13·0.671=1.03

E◊
q0
=V
q0
VV −X◊

q
I
q0
=0.464−0.15·0.344=0.412.

For further calculation we need to know the p.u. reactance of the transformer
referred to the generator power X

T
=0.115(125/120)=0.12 . The first moment

subtransient current components, therefore, will be

I◊
d0
=

E◊
d0

X◊
d
+X
T
=

1.03

0.13+0.12
=4.12

I◊
q0
=

E◊
q0

X◊
q
+X
T
=

0.412

0.15+0.12
=1.53,

and

I◊
0
=√I◊2

d0
+I◊2
q0
=√4.122+1.532=4.40.
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The steady-state s.c. current will be

I
2
=

E
d0

X
d
+X
T
=

1.85

1.35+0.12
=1.26.

To find the transient current we must first determine the transient EMF

E∞
d0
=V
d0
VV +X∞

d
I
d0
=0.942+0.2·0.671=1.08.

Hence, the transient current is

I∞
d0
=

E∞
d0

X∞
d
+X
T
=

1.08

0.2+0.12
=3.38,

and the subtransient and transient stages are given by

DI◊
d
=4.12−3.38=0.74, DI∞=3.38−1.26=2.12.

The aperiodic components (at t=0) are

I
da0
=
V
dF0
VV (X◊

d
+X◊
q
+2X

T
)

2(X◊
d
+X
T
)(X◊
q
+X
T
)
=
0.861·(0.12+0.15+0.24)

2·0.25·0.27
=3.32

I
qa0
=
V
qF0
VV (X◊

d
+X◊
q
+2X

T
)

2(X◊
d
+X
T
)(X◊
q
+X
T
)
=
0.50·(0.12+0.15+0.24)

2·0.25·0.27
=1.92,

where the voltages at the fault point are

V
dF0
=V
d0
VV −X

T
I
d0
=0.942−0.12·0.671=0.861

V
qF0
VV =V

q0
VV +X

T
I
q0
=0.464+0.12·0.344=0.50.

Note that since the subtransient reactances in the d- and q-axes are almost
equal, the double-frequency terms are neglected.
The subtransient and transient time constants are

T ◊
d
=
X◊
d
+X
T

X∞
d
+X
T
T ◊
d0
=
0.13+0.12
0.2+0.12

0.25=0.195 s

T ◊
q
=
X◊
q
+X
T

X
q
+X
T
T ◊
q0
=
0.15+0.12
1.35+0.12

0.55=0.101 s,

and

T ∞
d
=
X∞
d
+X
T

X
d
+X
T
T ∞
d0
=
0.2+0.12
1.35+0.12

11.45=2.49 s.

Thus, the r.m.s. value of the a.c. component versus time (the envelope curve) is

I
d
=0.74e−t/0.195+2.12e−t/2.49+1.26, I

q
=−1.53e−t/0.101.

The aperiodic terms in both axes are

I
da
=−3.32e−t/0.1, I

qa
=1.92e−t/0.1 .
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The initial value of the subtransient current is

I◊
0
=√4.122+1.532=4.4.

The initial value of the entire current is

I0=
√(I◊
d0
−I
da0
)2+ (−I

q0
+I
qa0
)2=√(4.12−3.32)2+ (−1.53+1.92)2$0.88.

(Note that this value varies slightly from the actual initial current because we
neglected the double-frequency terms.)

Example 6.10

For the generator of Example 6.8 find the a.c. component of the short-circuit
current (an envelope curve) if the generator is equipped with an AVR, having
I
fl,max=4.3 and TffTT =0.55 s.

Solution

Since the subtransient current decays very fast, practically before the AVR
substantially affects the field current increasing, we shall take into considerationffff
only the transient and steady-state currents. The steady-state s.c. current under
the maximal field current will be

I
2,max=

I
fl,max
X
ad
XX

=
4.3

1.1
=3.91,

where X
ad
X =X

d
−X

l
XX =1.2−0.1=1.1.

Thus,

DI∞
0
=I∞
0
−I
2
=4.4−1.42=2.98, DI

2
=I
2,max−I2=3.91−1.42=2.49.

The increasing function will be

F(t)=1−
T ∞
d
e−t/T∞

d
−T
ff
TT e−t/T

ff

T ∞
d
−T
ff
TT

=1−
1.77e−t/1.77−0.55e−t/0.55

1.77−0.55

=1+0.451e−t/0.55−1.45e−t/1.77.

From Example 6.8 we have

I
d(withoutAVR)=2.98e−t/1.77+1.42.

Therefore, we may now obtain

I
d
(t)=I

d(withoutAVR)+DI2F(t)=3.91+1.12e−t/0.55−0.63e−t/1.77,

which at t=0 again gives 4.4. This curve is also shown in Fig. 6.45.

6.6 SHORT-CIRCUIT ANALYSIS IN INTERCONNECTED (LARGE)
NETWORKS

In general an electric system is supplied by a number of generators of differentffff
designs and different ratings, which are interconnected in complicated networks.ffff
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In practice the operation of a single synchronous generator in an isolated
system, as has been discussed so far, is limited. The short-circuit analysis in
interconnected systems is very complicated. The short-circuit currents of each
of the generators are dependent on each other. The operation conditions of the
AVR of each of the generators will depend on the distance to the location point
of the fault. The mechanical oscillations of some of the generators will almost
always follow the short-circuit faults. All this makes the precise calculation
extremely complicated, if not impossible.
Therefore, in practical calculations it is common to make a few additional
simplifications:

1) Each of the generators has a round (cylindrical ) rotor, which allows us to
neglect the double-frequency component and operate with only one current,
alleviating the need of dividing the current and voltage onto two axes;

2) The periodic a.c. and aperiodic exponential terms are of the same form and
obey the same law of behavior, as for a single generator;

3) All the generators operate under a constant speed of rotation.

These assumptions allow us to obtain the final results of a short-circuit fault in
an interconnected system relatively easily and with accuracy, satisfying the
practical needs. We shall now illustrate our study with the following examples.

Example 6.11

Find the subtransient s.c. current and its peak value in the network, shown in
Fig. 6.46(a), if the three-pole fault occurs at the secondary (2) terminals of
transformer T1TT , point F. The two transformers T1TT and T2TT are identical and the
circuit breaker Br is closed.

Solution

Let the basic power be 600MVA. Then the p.u. reactances (see Fig. 6.46(b)) are
calculated as

X1=0.20
600

380
=0.32, X2=0.093

600

160
=0.35,

X3=0.38·200
600

2302
=0.86,

X4=X5=0.5(0.181+0.123−0.058)
600

60
=1.23, X6=X7$0,

X8=X9=0.5(0.181−0.123+0.058)
600

60
=0.58.
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Figure 6.46 A network diagram for Example 6.11 (a) and its simplification (b) and (c).

To simplify the network, we find

X
10
=0.32//(0.35+0.86)=0.25, X11=X4/2=0.62,

X
eq
X =0.25+0.62+0.58=1.45,

and

E◊
eq
=
1.05·1.21+1·0.32
1.21+0.32

=1.04.

Therefore, the subtransient current will be

I◊=
E◊
eq
X
eq
X
=
1.04

1.45
=0.72, or in amperes I

sc
=0.72

600

√3·37
=6.74 kA.

The peak current (equation 6.103) will be

i
pk
=√2·1.8I

sc
=2.6·6.74=17.2 kA.

Example 6.12

The power network, shown in Fig. 6.47(a), consists of two identical generators
G1 and G2 , two identical transformers T1TT and T2TT and a power station G3 , which
are connected by a 161 kV transmission line. All the circuit parameters are given
in Fig. 6.47(a). If a three-pole fault occurs at point F, find the s.c. current at the
moments of 0.1 s and 1 s. All the generators are equipped with AVR and the
circuit breaker Br is opened.
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Figure 6. 47 A network for Example 6.12 (a) and the stages of its simplification (b)–(e).

Solution

Since at the time of 0.1 s the subtransient currents are already decayed, we shall
represent the generators by their transient parameters. By choosing the basic
power of 300MVA, the circuit reactances are calculated as follows (see
Fig. 6.47(b)):

X1=X2=0.21
300

60
=1.05, X3=0.3, X4=X5=0.105

300

50
=0.63,

X6=
1

2
0.4·130

300

1612
=0.3, X7=0.08·1·

300

112
=0.2.

The obvious simplification of the circuit is then performed in three stages, as
shown in Fig. 6.47(c), (d) and (e). Generator G1 is relatively ‘‘close’’ to the fault
point; therefore it is treated separately, as shown in Fig. 6.47(e). First we find
the s.c. current flowing from this generator. The transfer reactance between the
generator and the fault point is found by transforming the Y-configuration in
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Fig. 6.47(d) to the D-configuration in Fig. 6.47(e):

X∞
trs1
=1.05+0.2+

1.05·0.2

1.07
=1.45,

and referred to the rated power of the generator X(n)
trs1
=1.45(60/300)=0.29.

Hence, the transient current is

I∞
01
=
E∞
1

X
trs1
XX

=
1.16

0.29
=4.0.

Next we shall calculate the steady-state s.c. current. To do this, the generators
must be represented by their synchronous reactances, X

d
, and steady-state

EMF, E
d
. Performing the same steps of circuit simplification we will obtain

X(n)
trs1
=1.37 and I

2,1
=
E
d1

X(n)
trs1
=
1.8

1.37
=1.31.

Suppose that the maximal field current and time constant of the generators are:
I
fl,max=4.7, TffTT =0.55 s and T ∞d0=8.5 s. Then we may find the maximal steady-
state s.c. current (equation 6.53)

I
2,1max=

I
fl,max
X
ad
XX

=
4.7

1.37−0.1
=3.7,

where X
ad
X =X

d
−X

l
XX . Then

DI∞
01
=I∞
01
−I
2,1
=4−1.31=2.69

DI∞
2,1
=I∞
2,1max−I2,1=3.62−1.31=2.31.

The transient time constant is

T ∞
d1
=T ∞
d0
X∞
trs1
X
trs1
XX

=8.5
0.29

1.37
=1.8.

Now we may find the increasing function (equation 6.100b)

F(t)=1−
1.8e−t/1.8−0.55e−t/0.55

1.8−0.55
=1+0.44e−t/0.55−1.44e−t/1.8.

The r.m.s. short-circuit current versus time without AVR is

I
sc1(withoutAVR)=2.69e−t/1.8+1.31,

and the total current due to the AVR action will be

I
sc1
(t)=I

sc1(withoutAVR)+DI2,1F(t)

=2.69e−t/1.8+1.3+2.31(1+0.44e−t/0.55−1.44e−t/1.8)

=3.7+1.05e−t/0.55−0.75e−t/1.8.
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Thus, the s.c. current of generator G1 is:

at t=0.1 I
sc1
(0.1)=3.9 or 3.9

60

√3·11
=12.3 kA,

at t=1.0 I
sc1
(1.0)=3.4 or 3.4

60

√3·11
=10.7 kA.

(Note that without AVR the s.c. current at 1 s would be 2.8 or 8.8 kA, i.e., less
than with the AVR.) Next we find the s.c. current flowing from the power station
and generator 2. The equivalent EMF in Fig. 6.47(d) is

E∞
2
=
1.16·0.6+1.21·1.68

1.68+0.6
=1.2.

The transfer reactance in Fig. 6.47(e) is

X(n)
trs2
=1.07+0.2+

1.07·0.2

1.05
=1.47,

which as referred to the rated power will be

X(n)
trs2
=1.47

360

300
=1.76.

Hence, the transient current flowing from the rest of the network will be

I∞
02
=
1.2

1.76
=0.674.

To determine in which regime the AVR is operated, we shall calculate the
terminal voltage of the equivalent generator in Fig. 4.67(d):

V
ter2
VV =X

F2
X I∞

02
=1.55·0.674=1.05>1,

where X
F2
X =X

trs2
XX −X∞

d
$1.76−0.21=1.55.

Since V
ter2
VV >1, the generators of the power station and G2 operate under

constant voltage and, therefore, the s.c. current flowing from the rest of the
network is almost constant. Its ampere value is

I
sc2
=0.674

360

√3·11
=12.7 kA.

Thus, the total s.c. currents are

I
sc2
(0.1)=12.3+12.7=25.0 kA, I

sc2
(1.0)=10.7+12.7=23.4 kA.

6.6.1 Simple computation of short-circuit currents

The simplest calculation of short-circuit transients is based on the assumption
that the fault circuit is connected to a system of infinite power. In this case the
inner impedance of such a system is taken as zero and its voltage is unity. The
change of the short-circuit current in this case is only due to the aperiodic
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component and can be approximated by using the peak coefficient. The periodic
component of the short-circuit current, therefore, may be found with just the
total reactance between the fault point and the system on the equivalent circuit

I
sc
=
1

X
tot
XX
. (6.105a)

The elements of the equivalent circuit are usually transformers, cables and/or
transmission lines. The short-circuit currents in such a calculation become a
little bit larger than in reality. However, because of its simplicity, this way of
calculating is widely used for a quick estimation of the s.c. currents and the
results might be appropriate for solving some of the practical problems. This
method is also used when the system configuration and its parameters are
unknown.
Up to this point in our transient analysis, power circuits, which have been
under consideration, consisted primarily of pure reactances, i.e., their very small
resistances have been neglected. It can be shown that if R≤ (1/3)X, then
neglecting such resistances results in increasing the periodic component of the
s.c. current only at a rate of less than 5%, which anyway is within the accuracy
of engineering calculations.
However, in the distribution networks the value of the resistances might be
much higher. In such cases the resistances should be taken into consideration:

1) by the correction of the time constant of the aperiodic component:

T
a
TT =

X

vR
,

and respectively of the peak coefficient

k
pk
=√2(1−e−0.01/T

a
),

2) if the ratio of R/X≥1/3, by the replacement of X
tot
XX with Z

tot
=√R2

tot
+X2
tot

in the formula

I
sc
=
1

Z
tot
. (6.105b)

Finally, the influence of the load, such as big motors and high power composed
loads, can be considered by equivalent parameters

X◊
Ld
=0.35, E◊

Ld
=0.8. (6.106)

A very rough approximation of the initial value of a subtransient s.c. can be
made by

I◊
sc
=
V
F0
VV

X◊
tot
, (6.107)

where V
F0
VV is the voltage prior to switching at the fault point F, and (if the

generator and/or system are represented by their subtransient reactances) X◊
tot

is the total subtransient reactance of the circuit up to the fault point.
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6.6.2 Short-circuit power

The product of the initial subtransient s.c. current I◊
sc
and the rated voltage with

the factor √3 gives the short-circuit power:

S◊
sc
=√3V

r
VV I◊
sc
. (6.108)

This power is used for characterizing the rate of the fault disturbance, which
includes both the s.c. current and the voltage at the fault point. The s.c. power
is primarily used for determining the breaking capacity, which is given in MVA,
and is included in the information which manufacturers of circuit breakers are
required to provide.
Sometimes the short-circuit power is given for the s.c. current at the switching
instant, i.e., at the moment that the circuit breaker opens its contacts, rather
than at t=0, and which is called the breaking current.

Example 6.13

In the network shown in Fig. 6.48(a), find the peak and r.m.s value of the s.c.
current when the three-pole fault occurs at points F1 and F2 .

Solution

Assuming S
B
=100MVA, the p.u. reactances will be as shown in Fig. 6.48(b):

X1=0.4·140
100

1612
=0.22, X2=0.105

100

50
=0.21, X3=0.04

5.24

0.5
=0.42,

where

I
B
=
100

√3·11
=5.24 kA and X4=0.08·2

100

112
=1.45.

The s.c current at point F1 will be

I
sc1
=

1

(0.22+0.21)
=2.32, or I

sc1
=2.32·5.24=12.2 kA.

Figure 6.48 A circuit diagram for Example 6.13 (a) and its equivalent circuit (b).
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Assuming T
a
TT =0.05 s (k

pk
=1.8), we have (see equation 6.103)

i
pk
=1.8·√2·12.2=31.1 kA,

and r.m.s. value is

I
pk
=√1+2(1.8−1)2I

sc
=1.52·12.2=18.5 kA.

For the short-circuiting at point F2 we have

X
tot
XX =0.43+0.42+1.45=2.23,

and

I
sc2
=
1

2.33
=0.429, or I

sc2
=0.429·5.24=2.45 kA.

The peak values with a 1.8 peak coefficient will be

i
pk
=1.8·√2·2.45=6.25 kA and I

pk
=1.52·2.45=3.72 kA.

However, the resistance of the cable is relatively high:

R
tot
=0.260·2

100

112
=0.43,

and by taking it into consideration we can calculate the s.c. current more
precisely. Thus, the time constant of the aperiodic component will be

T
a
TT =

X
tot
XX

vR
tot
=

2.33

314·0.43
=0.02,

and

k
pk
=1+e−0.01/0.02=1.6.

Hence,

i
pk
=1.6·√2·2.45=5.54 kA,

and

I
pk
=√1+2(1.6−1)2 ·2.45=3.21 kA.

If we now consider that the transformer is connected straight to the system
(by neglecting the transmission line), the s.c. current at point F1 will increase
by 35%, but at point F2 only by 7%.

Example 6.14

The power network shown in Fig. 6.49a includes a generator, synchronous
condenser (SC) and three compound loads. Taking into consideration SC and
all the loads, (a) find the first moment s.c. current and its peak value and (b)
calculate the short-circuit power.
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Figure 6.49 A network diagram for Example 6.14 (a), its equivalent circuit (b) and simplified cir-

cuit (c).

Solution

Assuming S
B
=100MVA, the p.u. reactances of all the circuit elements are

calculated and shown in Fig. 6.49(b). The loads are represented by X◊
ld
=0.35

and E◊
ld
=0.8. The given circuit is then simplified in a few obvious steps:

X12=0.2//1.17=0.18, E6=
1.08·1.17+0.8·0.2
1.17+0.2

=1.04,

X13=0.18+0.35+0.18=0.71, X14=1.94//4=1.31,

E7=
1.2·1.94+0.8·4
1.94+4

=0.93, X15=1.31+0.53+0.06=1.9,

X16=1.9//0.71=0.52,

X
eq
X =0.52+0.03+1.4=1.95, E

eq
=
1.04·1.9+0.93·0.71

1.9+0.71
=1.01.

The s.c. current flowing from the system through transformer T3TT is

I◊
S
=
1.01

1.95
=0.52 or in amperes I◊

S
=0.52·9.2=4.8 kA,
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where I
B
= (100/√3·6.3)=9.2 kA is the basic current.

The s.c. current flowing from the load is

I◊
Ld
=
0.8

5.83
9.2=1.26 kA.

Thus, the total short-circuit current is

I◊
sc
=I◊
S
+I◊
Ld
=4.8+1.26=6.06 kA.

The total peak current will be

i
pk
=1.8√2·4.8+√2·1.26=14.0 kA.

Note that the s.c. current from the load can be calculated straightforwardly,
without referring its parameters to the basic quantities. Indeed,

I◊
Ld
=
0.8

0.35
I
r
=2.29

6

√3·6.3
=1.26 kA,

which is the same as it was calculated previously.

(b) With the first moment s.c. current the short-circuit power at the load L -3
bus is

S◊
sc
=√3V

L3
VV I◊
sc
=√3·6.3·6.06=66.1MVA.

6.7 METHOD OF SYMMETRICAL COMPONENTS FOR
UNBALANCED FAULT ANALYSIS

Earlier we mentioned that truly balanced three-phase systems exist only in
theory. Actually many real systems are very nearly balanced and for practical
purposes can be analyzed as balanced systems, i.e., on per-phase basis. However,
sometimes the degree of unbalance cannot be neglected. Such cases may occur
during emergency conditions like unsymmetrical faults (one- or two-phase short-
circuiting), unbalanced loads, open conductors, unsymmetrical operation of
rotating machines, etc. Of course straightforward methods for the application
of Kirchhoff ’s laws might be used for such three-phase circuit analysis. However,
such cases may be calculated without difficulty by an indirect method in which
the unbalanced or unsymmetrical system is replaced by equivalent component
systems, each of which is symmetrical and balanced. The calculation of the
currents and voltages in these symmetrical systems is a simple process (since it
can be provided on a per-phase basis), and the superposition or vector addition
of these currents and voltages is then easily carried out to obtain the actual
results for the original unbalanced system.
This method, called the method of symmetrical components, was proposed by

Charles L. Fortescue in 1913(*) and was developed by C.F. Wagner and R.D.

(*)This method was published by Fortescue, C.L. (1918), ‘‘Method of symmetrical co-ordinates
applied to the solution of polyphase networks’’, AIEE T ransactions, 37.
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Evans later to apply it to the analysis of unsymmetrical faults in three-phase
systems. Today, the symmetrical component method is widely used in studying
unbalanced systems. Many electrical devices have been developed to operate
on the basis of the concept of symmetrical components. In this section we shall
briefly introduce this method followed by a few examples of its application.

6.7.1 Principle of symmetrical components

(a) Positive-, negative- and zero-sequence systems

Any unbalanced (unsymmetrical ) three-phase system of phasors can be resolved
into three balanced systems of phasors: (1) positive-sequence system, (2) nega-
tive-sequence system, and (3) zero-sequence system, as shown in Fig. 6.50, as
an example of a set of three unbalanced voltages.
The positive-sequence system is represented by a balanced system of phasors

Figure 6.50 The symmetrical components of three unbalanced voltages: given system of unbalanced

phasors (a); positive (+), negative (−) and zero (0) sequence components (b) and the graphical
addition of the symmetrical components to obtain the given set of unbalanced phasors (c).
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having the same phase sequence as the original unbalanced system. This set
consists of three-phase currents and three-phase line-to-neutral voltages supplied
by the power system generator and therefore of positive or counterclockwise
phase rotation. Thus, the phasors of the positive-sequence system are equal in
magnitude and displaced from each other by 120°, as shown by set ‘‘+’’ in
Fig. 6.50(b).
The negative-sequence system is represented by a balanced system of phasors

having the opposite phase sequence from the original system and, therefore, a
negative phase rotation. The phasors of the negative-sequence system are also
equal in magnitude and displaced from each other by 120°, set ‘‘−’’ in
Fig. 6.50(b). Thus, if a positive sequence is abc, a negative sequence will be acb.
The zero-sequence system is represented by three single phasors that are equal

in magnitude and are in phase, as shown by set ‘‘0’’ in Fig. 6.50(b). Note that
the zero-sequence system is also a set of rotating phasors.
Using subscripts 0, 1 and 2 to denote the zero, positive and negative sequences

we may write

Ṽ
a
VV = Ṽ

a1
VV + Ṽ

a2
VV + Ṽ

a0
VV

Ṽ
b
VV = Ṽ

b1
VV + Ṽ

b2
VV + Ṽ

b0
VV (6.109)

Ṽ
c
VV = Ṽ

c1
VV + Ṽ

c2
VV + Ṽ

c0
VV ,

i.e., three voltage phasors Ṽ
a
VV , Ṽ

b
VV , Ṽ

c
VV of an unbalanced set can be expressed in

terms of their symmetrical components as shown in Fig. 6.50(c).
With a unit phasor operator a (a=%120°; a2=%240°; a3=1; a−1=%−120°,

etc.) the positive-sequence set can be designated

Ṽ
a1
VV =V1VV %ya1 , Ṽb1VV =a2Ṽa1VV , Ṽc1VV =aṼa1VV (6.109a)

Ṽ
a2
VV =V2VV %ya2 , Ṽb2VV =aṼa2VV , Ṽc2VV =a2Ṽa2VV (6.109b)

Ṽ
a0
VV =V0VV %ya0 , Ṽb0VV = Ṽa0VV , Ṽc0VV = Ṽa0VV . (6.109c)

Substituting the above equations into equation 6.109, the phase voltages can
be expressed in terms of the sequence voltages as

Ṽ
a
VV = Ṽ

a0
VV + Ṽ

a1
VV + Ṽ

a2
VV

Ṽ
b
VV = Ṽ

a0
VV +a2Ṽ

a1
VV +aṼ

a2
VV (6.110a)

Ṽ
c
VV = Ṽ

a0
VV +aṼ

a1
VV +a2Ṽ

a2
VV ,

and in matrix form as

CṼaVVṼbVVṼ
c
VV D=C1 1 1

1 a2 a

1 a a2D CṼa0VVṼa1VVṼ
a2
VV D (6.110b)

or

[V
abc
VV ]=[a][Ṽ012VV ], (6.110c)
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where

[Ṽ
abc
VV ]=CṼaVVṼbVVṼ

c
VV D , [Ṽ012VV ]=CṼa0VVṼa1VVṼ

a2
VV D

and the operator matrix a is

a=[a]=C1 1 1

1 a2 a

1 a a2D .
To shorten the writing of the symmetrical components, later on we will ignore
the subscript ‘‘a’’ for phase a, which means that the symmetrical components
Ṽ
0
VV , Ṽ1VV and Ṽ2VV and Ĩ0 , Ĩ1 and Ĩ2 belong to the phase a voltages and currents.
Equations 6.110 are also known as the synthesis equations since they synthesize

the set of unbalanced phasors from three sets of symmetrical components. These
equations may be solved to find the symmetrical components of a known three-
phase system of unbalanced voltages or currents:

[Ṽ
012
VV ]=[a]−1[Ṽ

abc
VV ] (6.111)

or

CṼa0VVṼa1VVṼ
a2
VV D= 1

det[a] Ca4−a2 a−a2 a−a2a−a2 a2−1 1−a

a−a2 1−a a2−1D CṼaVVṼbVVṼ
c
VV D . (6.112)

By performing the appropriate computations with the phasor operators in
equation 6.112, as with complex numbers, we may simplify the inverse of matrix
[a] as follows

[a]−1=
1

3√3j C√3j √3j √3j

√3j √3%−150° √3%−30°

√3j √3%−30° √3%−150°D= 13 C1 1 1

1 a a2

1 a2 a D
where det[a]=3(a−a2)=3√3j. Therefore,

CṼa0VVṼa1VVṼ
a2
VV D= 13 C1 1 1

1 a a2

1 a2 a D CṼaVVṼbVVṼ
c
VV D , (6.113)
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i.e. the sequence voltages can be expressed in terms of phase voltages as

Ṽ
a0
VV =

1

3
(Ṽ
a
VV + Ṽ

b
VV + Ṽ

c
VV ) (6.114a)

Ṽ
a1
VV =

1

3
(Ṽ
a
VV +aṼ

b
VV +a2 Ṽ

c
VV ) (6.114b)

Ṽ
a2
VV =

1

3
(Ṽ
a
VV +a2 Ṽ

b
VV +aṼ

c
VV ). (6.114c)

These equations are also known as the analysis equations.
Of course, the synthesis and analysis equations can also be used for current
phasors

[Ĩ
abc
]=[a][Ĩ

012
] (6.115a)

[Ĩ
012
]=[a]−1[Ĩ

abc
]. (6.115b)

Example 6.15

Determine the symmetrical components for the line voltages Ṽ
a
VV =220%0° V,

Ṽ
b
VV =200%−150° V, and Ṽ

c
VV =180%120°V, Fig. 6.51(a), and construct their

phasor diagram.

Solution

In accordance with equation 6.114a we have

Ṽ
a0
VV = Ṽ

b0
VV = Ṽ

c0
VV =

1

3
(Ṽ
a
VV + Ṽ

b
VV + Ṽ

c
VV )

=
1

3
(220%0°+200%−150°+180%120°)

=−14.3+ j18.6=23.5%127.7° V.

Applying equation 6.114b, the positive components are

Ṽ
a1
VV =

1

3
(Ṽ
a
VV +aṼ

b
VV +a2 Ṽ

c
VV )

=
1

3
[220%0°+ (1%120°)(200%−150°)+ (1%240°)(180%120°)]

=191.1− j33.3=194.0%−9.9° V,

and

Ṽ
b1
VV =a2Ṽ

a1
VV = (1%240°)(194.0%−9.9°)=194.0%−129.9° V

Ṽ
c1
VV =aṼ

a1
VV = (1%120°)(194.0%−9.9°)=194.0%110.1° V.
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Figure 6.51 Three unbalanced voltages (a), their symmetrical components (b) and the original phasor

system as composed of the symmetrical components (c).

Applying equation 6.114c, the negative components are

Ṽ
a2
VV =

1

3
(Ṽ
a
VV +a2 Ṽ

b
VV +aṼ

c
VV )

=
1

3
[220%0°+ (1%240°)(200%−150°)+ (1%120°)(180%120°)]

=43.3+ j14.8=45.8%18.9° V,

and

Ṽ
b2
VV =aṼ

a2
VV = (1%120°)(45.8%18.9°)=45.8%138.9° V,

Ṽ
c2
VV =a2Ṽ

a2
VV = (1%240°)(45.8%18.9°)=45.8%−101.1° V.
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Using the above results the phasor diagrams for positive and negative symmetri-
cal components are constructed in Fig. 6.51(b). The diagram in Fig. 6.51(c)
shows that the original phasor system is obtained when the symmetrical compo-
nents are compounded either numerically or also graphically.
In the general case of an unsymmetrical three-phase, three-wire system, i.e.
when the neutral line is absent, the vector sum of three line currents is also
always ( like sum of line voltages) zero. Therefore, the zero-sequence components
for these unbalanced currents as well as for line voltages are zero. Furthermore,
we may conclude that in a four-wire system, since the neutral-wire current in
every case is the sum of line currents, the zero-sequence components, equation
6.114a, are equal to one-third of this current.
In the next example we shall show the resolving of an unbalanced set of
phase voltages into symmetrical components.

Example 6.16

A synchronous generator, which is connected to an infinite busbar system
Fig. 6.52(a), is subjected to a short-circuit line-to-line fault at its terminals. The
generator’s p.u. short-circuit currents are found (see further on) to be Ĩ

a
=−2.1,

Ĩ
b
=3.37%−71.8° and Ĩ

c
=3.37%71.8°. Find the symmetrical components of

these currents and construct their phasor diagram.

Figure 6.52 A circuit diagram for Example 6.15 (a) and the phasor diagram of the current

sequences (b).
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Solution

In accordance with equation 4.114a we obtain

Ĩ
a0
= Ĩ
b0
= Ĩ
c0
=
1

3
(−2.1+3.37%−71.8°+3.37%71.8°)=0.

This result should be expected since the sum of three-phase system currents
(without a neutral line) is always zero (as the sum of three vectors, which form
a triangle, see Fig. 6.52(b)).
In accordance with equation 4.114b we obtain the positive components:

Ĩ
a1
=
1

3
[−2.1+ (1%120°)(3.37%−71.8°)+ (1%−120°)(3.37%71.8°)]=0.8

Ĩ
b1
=a2Ĩ

a1
=0.8%−120°, Ĩ

c1
=aĨ

a1
=0.8%120°,

and in accordance with equation 4.114c, the negative components are

Ĩ
a2
=
1

3
[−2.1+ (1%−120°)(3.37%−71.8°)

+ (1%120°)(3.37%71.8°)]=−2.9

Ĩ
b2
=aĨ

a2
=−2.9%120°, Ĩ

c2
=a2Ĩ

a2
=−2.9%−120°.

In checking the results, we have Ĩ
a
= Ĩ
a1
+ Ĩ
a2
=0.8−2.9=−2.1. The phasor

diagram of the currents is shown in Fig. 6.52(b).
If the set of line voltages is balanced, it is obvious that the negative-sequence
for these voltages is zero; hence, the negative-sequence for the phase voltages
will also be zero. That is, the set of unbalanced phase voltages, forming a
balanced set of line voltages, resolves into positive- and zero-components, as
shown, for example, in Fig. 6.53. As can be seen the negative-sequence voltage,
Ṽ2VV , is absent and each of the phase voltages is equal to the sum of the positive-
and zero-sequences. Their values can then be easily found:

V
a,ph
VV =V1VV +V0VV

V
b,ph
VV =V

c,ph
VV =√(V/2)2−[V/(2·�3)−V0VV ]2,

where V is the given line voltage.

(b) Sequence impedances

Consider first the circuit of Fig. 6.54(a), which represents a three-phase, three-
wire, Y-connected, generally unbalanced system, i.e., Z

a
≠Z
b
≠Z
c
. The matrix

equation for phase voltages, across these three impedances, will be

CṼaVVṼbVVṼ
c
VV D=CZa 0 0

0 Z
b
0

0 0 Z
c
D CĨaĨbĨ
c
D (6.116a)
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Figure 6.53 A faulted network with balanced line voltages but unbalanced phase voltages (a) and

the phasor diagram of the symmetrical components (b).

or

[Ṽ
abc
VV ]=[Z

abc
][Ĩ
abc
]. (6.116b)

Here both the voltages and currents are unsymmetrical. Multiplying both sides
of equation 6.116b by [a]−1 and also substituting equation 6.115a, we obtain

[a]−1[Ṽ
abc
VV ]=[a]−1[Z

abc
][a][Ĩ0 Ĩ1 Ĩ2],

or, with equation 6.111,

[Ṽ
012
VV ]=[Z

012
][Ĩ
012
], (6.117)

where the matrix transformation is defined as

[Z012]=[a]−1[Zabc][a]. (6.118a)

Performing the matrix multiplication and upon simplification this transforma-
tion results in a sequence impedance matrix of an unbalanced load

[Z012]=CZ00 Z01 Z02Z10 Z11 Z12
Z20 Z21 Z22

D=CZ0 Z2 Z1Z1 Z0 Z2
Z2 Z1 Z0

D (6.118b)

where by definition the zero-sequence impedance is

Z0=
1

3
(Z
a
+Z
b
+Z
c
) (Z00=Z11=Z22=Z0 ), (6.119a)
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Figure 6.54 Three-phase, three-wire unbalanced system (Ĩ
n
=0) (a), three-phase, four-wire unbal-

anced system (Ĩ
n
≠0) (b).

the positive-sequence impedance is

Z1=
1

3
(Z
a
+aZ

b
+a2Z

c
) (Z02=Z10=Z21=Z1 ) (6.119b)

and the negative-sequence impedance is

Z2=
1

3
(Z
a
+a2Z

b
+aZ

c
) (Z01=Z12=Z20=Z2 ). (6.119c)

These component impedances have little physical significance but they are useful
in a general mathematical formulation of symmetrical-component theory. It
should be noted in this respect that the real parts of the component impedances
may possess negative signs even though the real parts of Z

a
, Z
b
and Z

c
are

all positive.
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Providing the matrix multiplication in equation 6.117 yields

Ṽ0VV =Z0 Ĩ0+Z2 Ĩ1+Z1 Ĩ2
Ṽ1VV =Z1 Ĩ0+Z0 Ĩ1+Z2 Ĩ2 (6.120)

Ṽ2VV =Z2 Ĩ0+Z1 Ĩ1+Z0 Ĩ2 .

Note that the sum of the sequence indexes (0, 1, or 2) of Z and Ĩ in the voltage
drops Z

i
Ĩ
j
in each of these equations gives the index of the voltage-sequence to

which these voltage drops belong. Therewith, 2+1=3 is considered as 0
(3−3=0) and 2+2=4 is considered as 1 (4−3=1), since there are only
three sequences (0, 1 and 2). This simple rule is known as the sequence rule.
Recall that the above symmetrical components (equation 6.120) are of the
a-phase voltage, i.e.,

Ṽ
a
VV = Ṽ0VV + Ṽ1VV + Ṽ2VV .

Applying, for example, the second equation of equation 6.120 to phase b and
making appropriate substitutions we may write

Ṽ
b
VV =Z

b1
Ĩ
b0
+Z
b0
Ĩ
b1
+Z
b2
Ĩ
b2

= (Z
a1
%−120°)Ĩ

a0
+Z
a0
(I
a1
%−120°)+ (Z

a2
%120°)(I

a2
%120°)

= (Z1 Ĩ0+Z0 Ĩ1+Z2 Ĩ2 )%−120°= Ṽa1VV %−120°.

This result shows that Ṽ
b1
VV is equal in magnitude to Ṽ

a1
VV and 120° displaced

behind Ṽ
a1
VV , as, of course, it should be for a positive-sequence system. An

opportunity is given to the reader to check in the above manner that

Ṽ
c1
VV = Ṽ

a1
VV %120° and Ṽ

c0
VV = Ṽ

b0
VV = Ṽ

a0
VV .

The sequence currents can be found by solving equation 6.117, i.e.,

[Ĩ
012
]=[Y

012
YY ][Ṽ

012
VV ], (6.121)

where [Y
012
YY ] is the associated sequence admittance matrix

[Y
012
YY ]=[Z

012
]−1 .

This sequence admittance matrix may be found in the same manner as the
impedance sequence matrix (equation 6.118a), i.e.,

[Y
012
YY ]=[a−1][Y

abc
YY ][a]. (6.122)

Indeed, applying the reversal rule to find the inverse of the product of the
matrixes, we obtain

[Z
012
]−1= ([a]−1[Z

abc
][a])−1=[a]−1[Z

abc
]−1[a],

where

[Z
abc
]−1=[Y

abc
YY ]=CYaYY 0 0

0 Y
b
YY 0

0 0 Y
c
YY D

and Y
a
YY =1/Z

a
, Y
b
YY =1/Z

b
, Y
c
YY =1/Z

c
.
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Therefore, similar to equation 6.119 we observe that:

the zero-sequence admittance is

Y0YY =
1

3
(Y
a
YY +Y

b
YY +Y

c
YY ), (6.123a)

the positive-sequence admittance is

Y1YY =
1

3
(Y
a
YY +aY

b
YY +a2Y

c
YY ), (6.123b)

and the negative-sequence admittance is

Y2YY =
1

3
(Y
a
YY +a2Y

b
YY +aY

c
YY ). (6.123c)

When the applied voltage sequence-components are known, the sequence-

components of the a-phase current may be readily found according to equation

6.121. Thus,

Ĩ0=Y0YY Ṽ0VV +Y2YY Ṽ1VV +Y1YY Ṽ2VV

Ĩ1=Y1YY Ṽ0VV +Y0YY Ṽ1VV +Y2YY Ṽ2VV (6.124)

Ĩ2=Y2YY Ṽ0VV +Y1YY Ṽ1VV +Y0YY Ṽ2VV .

Example 6.17

Let the line-to-line voltages and the phase impedances of the Y-connected,

three-wire, load, as shown in Fig. 6.54(a), be as follows:

Ṽ
ab
VV =200%0°V, Ṽ

bc
VV =141.4%−135°V, Ṽ

ca
VV =141.4%135°V

Z
a
=6 V, Z

b
=6%−30° V, Z

c
= j12 V.

Find the a-phase current symmetrical components.

Solution

The phase admittances are

Y
a
YY =0.1667 S, Y

b
YY =0.1667%30° S, Y

c
YY =− j0.08333 S.
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Then, employing equation 6.123, the sequence-component admittances are

Y0YY =
1

3
(0.1667+0.1443+ j0.08333− j0.08333)=0.1037 S

Y1YY =
1

3
[0.1667+ (1%120°)(0.1667%30°)+ (1%240°)(0.08333%−90°)]

=0.04485%111.71° S

Y2YY =
1

3
[0.1667+ (1%240°)(0.1667%30°)+ (1%120°)(0.08333%−90°)]

=0.08987%−27.63 S.

Resolving the above line-to-line voltages into symmetrical components yields

Ṽ
ab0
VV =

1

3
[200%0°+141.4%−135°+141.4%135°]=0

Ṽ
ab1
VV =

1

3
[200%0°+141.4(%−135°+%120°)+141.4(%135°+%240°)]

=157.7 V

Ṽ
ab2
=
1

3
[200%0°+141.4(%−135°+%240°)+141.4(%135°+%120°)]

=42.3 V.

The positive- and negative-components of the phase voltages are

Ṽ
a1
VV = Ṽ1VV =

157.7

√3
%−30°=91.1%−30° V

Ṽ
a2
VV = Ṽ2VV =

42.3

√3
%30°=24.4%30° V.

Note that even if Ĩ0=0 (since the neutral wire is absent) Ṽ0VV will possess a finite
value, which may be calculated in accordance with the first equation of 6.124:

Ṽ0VV =
1

Y0YY
(−Y2YY Ṽ1VV −Y1YY Ṽ2VV )

=
1

0.1037
[−(0.08987%−27.63°)(91.1%−30°)

− (0.04485%111.71°)(24.4%30°)]=69.08%119.47° V.

Now, the positive- and negative-sequence currents may be calculated in accor-
dance with equation 6.124

Ĩ1= (0.4485%111.71°)(69.08%119.47°)+0.1037(91.1%−30°)
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+ (0.08987%−27.63°)(24.4%30°)=8.42− j7.04=10.98%−39.9° A

Ĩ2= (0.08987%−37.63°)(69.08%119.47°)+ (0.04485%111.71°)(91.1%−30°)

+0.1037(24.4%30°)=2.58− j11.51=11.80%77.36° A.

Note that for a balanced load, i.e., Z
a
=Z
b
=Z
c
=Z
L
, the positive- and negative-

sequence impedances are zero and Z0=ZL . Thus,

CṼ0VVṼ1VVṼ2VV D=CZL 0 0

0 Z
L
0

0 0 Z
L
D CĨ0Ĩ1Ĩ2D . (6.125a)

This matrix equation indicates that there is no mutual coupling among the three
sequences and it can be separated into three independent equations

Ṽ0VV =ZL Ĩ0 , Ṽ1VV =ZL Ĩ1 , Ṽ2VV =ZL Ĩ2 . (6.125b)

Consider next the circuit of Fig. 6.54(b), in which, for more generality, a neutral
wire is represented by the impedance Z

nn∞
. In this case the matrix equation for

phase voltages (equation 6.116a) shall be written as

CṼaVVṼbVVṼ
c
VV D=CZa 0 0

0 Z
b
0

0 0 Z
c
D CĨaĨbĨ
c
D+CZnn∞Znn∞Z

nn∞
D [Ĩn].

Substituting equations 6.110c and 6.115a into this equation, and since Ĩ
n
=3Ĩ0 ,

we obtain

[a][Ṽ
012
VV ]=[Z

abc
][a][Ĩ

012
]+[Z

nn∞
][3Ĩ0].

Performing the matrix multiplication and upon simplification this equation
becomes

[a] CṼ0VVṼ1VVṼ2VV D=CZa+3Znn∞ Z
a

Z
a

Z
b
+3Z

nn∞
a2Z
b
aZ
b

Z
c
+3Z

nn∞
aZ
c
a2Z
c
D CĨ0Ĩ1Ĩ2D .

Multiplying both sides of this equation by [a]−1 yields

[Ṽ
012
VV ]=[Z∞

012
][Ĩ0 Ĩ1 Ĩ2],

where the sequence-impedance matrix can be expressed as

[Z∞
012
]=CZ0+3Znn∞ Z2 Z1Z1 Z0 Z2

Z2 Z1 Z0
D (6.126a)
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and

Z00=Z0+3Znn∞ . (6.126b)

Note again that for a balanced load, i.e., Z
a
=Z
b
=Z
c
=Z
L
, the positive- and

negative-sequence impedances are zero, Z1=Z2=0, and Z0=ZL . Thus,

CṼ0VVṼ1VVṼ2VV D=CZL=3Znn∞ 0 0

0 Z
L
0

0 0 Z
L
D CĨ0Ĩ1Ĩ2D . (6.127a)

This matrix equation may also be separated into three independent equations

Ṽ0VV = (ZL+3Znn∞ )Ĩ0 , Ṽ1VV =ZL Ĩ1 , Ṽ2VV =ZL Ĩ2 . (6.127b)

In accordance with these equations three sequence networks of the balanced
load may be drawn, as shown in Fig 6.55. Therefore, the positive- and negative-
network impedances for a balanced load are equal to each other and simply
equal the load phase impedance, but the zero-sequence network includes, in
addition, the triplicate neutral line impedance. It is important to mention that
with Z

nn∞
=2, i.e., for a three-wire system, the zero-sequence current Ĩ0 is zero

(Ĩ0=0). It follows from the first equation in 6.127b.
It is worthwhile to note that the impedances of sequence networks, Fig 6.55,

are not the same as the sequence impedances (equation 6.119) in equation 6.117.
To make this sentence clearer we shall consider the sequence networks’ imped-
ances as the ratio of the voltage and the current of the same sequence, which

Figure 6.55 Sequence networks: zero-sequence network (a), positive sequence network (b) and nega-

tive-sequence network (c).



T ransients in T hree Phase Systems 419

also are called the impedances to positive-, negative-, and zero-sequence currents.
Thus, if a balanced system of positive-sequence voltages is applied to a balanced
three-phase network, then the currents are also balanced and of positive-
sequence. So, the ratio of the positive-sequence phase voltages and the appro-
priate positive-sequence phase currents gives the positive-sequence network
impedance

Z
11
=
Ṽ
a1
VV

Ĩ
a1
=
Ṽ
b1
VV

Ĩ
b1
=
Ṽ
c1
VV

Ĩ
c1
. (6.128a)

In a similar manner we shall define the negative- and zero-sequence network
impedances

Z
22
=
Ṽ
a2
VV

Ĩ
a2
=
Ṽ
b2
VV

Ĩ
b2
=
Ṽ
c2
VV

Ĩ
c2
, (6.128b)

and, since Ṽ
a0
VV = Ṽ

b0
VV = Ṽ

c0
VV = Ṽ

0
VV and Ĩ

a0
= Ĩ
b0
= Ĩ
c0
= Ĩ
0
.

Z
00
=
Ṽ
0
VV

Ĩ
0
. (6.128c)

In other words, positive-sequence currents flowing in a balanced network pro-
duce only positive-sequence voltage drops, negative-sequence currents will pro-
duce only negative-sequence voltage drops and zero-sequence currents will
produce only zero-sequence voltage drops, as follows from equations 6.125a
and 6.127a.
Therefore, as has already been mentioned, for a balanced load the three-

sequence networks, Fig 6.55, can be separated and treated independently. It is
important to recall at this point that the zero-sequence system is not a three-
phase system but a single-phase system, i.e. the zero-sequence currents and
voltages are equal in magnitude and are in phase at any point in all the phases
of the system. Thus, the zero-sequence currents can only exist in a circuit if there
is a complete path for their flow.
Figure 6.56 shows zero-sequence networks for Y- and D-connected three-
phase loads. As can be seen from Fig 6.56(a), in a Y-connected load with an
open neutral wire, there is no return path to zero-sequence currents, hence the
zero-sequence impedance is infinite (in a zero-sequence network drawing this
infinite impedance is indicated by an open circuit). In the circuit of Fig 6.56(b)
the fourth wire, connecting the neutrals, provides a return path for the zero-
sequence currents, so that their sum, 3Ĩ0 , flows through this wire. If the neutral
wire impedance is Z

nn∞
, the zero-sequence voltage drop of 3Z

nn∞
Ĩ0 will be pro-

duced, across this impedance, by a triple zero-sequence current 3Ĩ0 . For this
reason an impedance of 3Z

nn∞
should be inserted in the zero-sequence network,

as shown in Fig 6.56(b). This result is in full agreement with those achieved
previously (equation 6.126b) by the mathematical treatment. Note that in the
particular case of Z

nn∞
=0 (solidly grounded neutrals) no potential differenceffff

exists between neutral points n-n∞, so they should be short-circuited. A
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Figure 6.56 Zero-sequence network equivalent for a Y-connected three-wire load (a), Y-connected

four-wire load (b) and D-connected load (c).

D-connected load, as shown in Fig 6.56(c), provides no path for zero-sequence
currents flowing in the line wires. Therefore, the zero-sequence impedance, as
seen from the source terminals, is infinite (open circuit). However it is possible
to have zero-sequence currents circulating within the delta circuit, if zero-
sequence voltages are applied independently, or by induction, in the delta circuit.
Consider, for example, the network shown in Fig. 6.57(a), in which the single-
pole short-circuit to earth occurs on the transmission line between transformers
T1TT and T2TT . The arrows in each of the generator and transformer windings show
the circulation paths of the zero-sequence currents. In accordance with these
possible zero-sequence currents flowing, the zero-sequence equivalent circuit is
formed and shown in Fig. 6.57(b).
Consider next, a more general case representing a circuit with unequal mutual
impedances (e.g. transmission lines, transformers and tree-core cables). We also
assume that there is mutual coupling between the phase branches and the neutral
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Figure 6.57 A network with a single-pole short-circuit to earth (a) and its zero-sequence equiva-

lent (b).

line (e.g., as in transmission lines with overhead ground wire), as shown in
Fig 6.58.
The KVL equation for phase a may be written as

Ṽ
a
VV =Z

aa
Ĩ
a
+Z
ab
Ĩ
b
+Z
ac
Ĩ
c
−Z
an
Ĩ
n
+ Ṽ
nn
VV
∞
,

where Ṽ
nn
VV
∞
=−Z

na
Ĩ
a
−Z
nb
Ĩ
b
−Z
nc
Ĩ
c
+Z
nn∞
Ĩ
n
and, as shown earlier, Ĩ

n
=3Ĩ0 .

For three phases, in matrix form, these equations can be expressed as

CṼaVVṼbVVṼ
c
VV D=CZaa Zab ZacZ

ba
Z
bb
Z
bc

Z
ca
Z
cb
Z
cc
D CĨaĨbĨ
c
D−CZna Znb ZncZ

na
Z
nb
Z
nc

Z
na
Z
nb
Z
nc
D CĨaĨbĨ
c
D

+C3(Znn∞−Zan ) 0 03(Z
nn∞
−Z
bn
) 0 0

3(Z
nn∞
−Z
cn
) 0 0D CĨ0Ĩ1Ĩ2D (129a)

where Z
aa
, Z
bb
, Z
cc
and Z

nn∞
are the phase and neutral self-impedances, and

Z
ab
=Z
ba
, Z
bc
=Z
cb
, Z
ca
=Z
ac
and Z

an
=Z
na
, Z
bn
=Z
nb
, Z
cn
=Z
nc
are the phase-

phase and phase-neutral mutual impedances. In reduced notation equation 6.129a
may be written as

[Ṽ
abc
VV ]=[Z

abc
][Ĩ
abc
]−[Z

nabc
][Ĩ
abc
]+3[Z

nn∞
][Ĩ
012
]. (6.129b)
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Figure 6.58 Mutually coupled three-phase network (a) and network for Example 6.18 (b).

Substituting equations 6.110c and 6.115a into this equation we obtain

[a][Ṽ
012
VV ]=[Z

abc
][a][Ĩ

012
]−[Z

nabc
[a][Ĩ

012
]+3[Z

nn∞
][Ĩ
012
],

or

[a][Ṽ
012
VV ]= ({[Z

abc
]−[Z

nabc
]}[a]+3[Z

nn∞
])[Ĩ
012
]=[Z

nabc
]
eq
[Ĩ
012
].
(6.130)

Solving this equation for [Ṽ
012
VV ] yields

[Ṽ
012
VV ]=[a]−1({[Z

abc
]−[Z

nabc
]}[a]+3[Z

nn∞
])[Ĩ
012
], (6.131a)

or

[Ṽ
012
VV ]=[Z(M)

012
][Ĩ
012
]. (6.131b)

Here [Z(M)
012
] is the sequence impedance matrix of a three-phase load with mutual

coupling. Performing all the matrix operations on the right side of equation
6.131a and after simplification the sequence impedance matrix can be expressed
as

[Z(M)
012
]

=C(Z0+2ZM0+3Znn∞−6Zn0 ) (Z2−ZM2−3Zn2 ) (Z1−ZM1−3Zn1 )(Z1−ZM1−6Zn1 ) (Z0−ZM0 ) (Z2+2ZM2 )

(Z2−ZM2−6Zn2 ) (Z1+2ZM1 ) (Z0−ZM0 )
D
(6.132)
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where, in addition to equation 6.119, we defined sequence mutual impedances:

Z
M0
=
1

3
(Z
bc
+Z
ca
+Z
ab
) (6.133a)

as a zero-sequence mutual phase impedance,

Z
M1
=
1

3
(Z
bc
+aZ

ca
+a2Z

ab
) (6.133b)

as a positive-sequence mutual phase impedance,

Z
M2
=
1

3
(Z
bc
+a2Z

ca
+aZ

ab
) (6.133c)

as a negative-sequence mutual phase impedance,

Z
n0
=
1

3
(Z
nc
+Z
nb
+Z
nc
) (6.133d)

as a zero-sequence mutual neutral impedance,

Z
n1
=
1

3
(Z
na
+aZ

nb
+a2Z

nc
) (6.133e)

as a positive-sequence mutual neutral impedance,

Z
n2
=
1

3
(Z
na
+a2Z

nb
+aZ

nc
) (6.133f )

as a negative-sequence mutual neutral impedance, and Z
nn∞
as the impedance of

a neutral line.
If neither self- nor mutual-impedances are equal, the application of equation
6.131b will show that there is a mutual coupling among three sequences and,
therefore, the sequence networks cannot be separated. The sequence currents
can be found by solving equation 6.131b:

[Ĩ
012
]=[Y (M)

012
][Ṽ
012
VV ], (6.134)

where [Y (M)
012
] is the associated sequence admittance matrix

[Y (M)
012
]=[Z(M)

012
]−1=CY00YY Y

01
YY Y

02
YY

Y
10
YY Y

11
YY Y

12
YY

Y
20
YY Y

21
YY Y

22
YY D . (6.135)

If a balanced voltage is applied to an unbalanced load (as frequently happens),
then the symmetrical component voltage matrix [Ṽ

012
VV ] reduces to only a posi-

tive-sequence component Ṽ1VV . Indeed, if the applied voltage is balanced, then

Ṽ
b
VV =a2 Ṽ

a
VV , Ṽ

c
VV =aṼ

a
VV .
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Substituting this in equation 6.113 yields

CṼ0VVṼ1VVṼ2VV D= 13 C1 1 1

1 a a2

1 a2 a D C ṼaVVa2V9 aVVaṼ
a
VV D=C 0ṼaVV0 D .

In other words, the three-phase balanced system consists only of the positive-
sequence components, Ṽ1VV = ṼaVV . However, if the system of line-to-line voltages is
balanced, then in general zero-sequence voltages may also be present. Thus, the
current sequences can be expressed as

CIa0Ia1I
a2
D=CY00YY Y

01
YY Y

02
YY

Y
10
YY Y

11
YY Y

12
YY

Y
20
YY Y

21
YY Y

22
YY D CṼ0VVṼ1VV0 D . (6.136)

However, if only a few mutual inductances are present, the solution may be
simplified, as can be seen from the following example.

Example 6.18

Consider a particular case of a mutually coupled three-phase network as shown
in Fig. 6.58(b). Let the self-impedances be Z

aa
= j1V, Z

bb
=2 V, Z

cc
= j3V and

only the mutual-impedances be Z
ac
=Z
ca
=− j0.5V. Find the current Ĩ

a
, if the

system of line-to-line voltages is balanced and given as Ṽ
ab
VV =100%0°, Ṽ

bc
VV =

100%−120°, Ṽ
ca
VV =100%120° V.

Solution

The impedance matrix is

[Z
abc
]=C j1 0 − j0.5

0 2 0

− j0.5 0 j3 D
and we first calculate [Y

abc
YY ]:

[Y
abc
YY ]=[Z

abc
]−1=

1

−5.5 CjCC 6 0 j1

0 −2.75 0

jCC 1 0 j2D .
Then, as in equation 4.132 and taking into consideration that
Y
n1
YY =Y

n2
YY =Y

n0
YY =Y

nn
YY
∞
=0, we may obtain the sequence admittance matrix as

[Y
012
YY ]=CY0YY +2YM0YY Y2YY −YM2YY Y1YY −YM1YY

Y1YY −YM1YY Y0YY −YM0YY Y2YY +2YM2YY

Y2YY −YM2YY Y1YY +2YM1YY Y0YY −YM0YY
D=CY00YY Y

01
YY Y

02
YY

Y
10
YY Y

11
YY Y

12
YY

Y
20
YY Y

21
YY Y

22
YY D ,
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where

Y0YY =
1

3(−5.5)
( j6−2.75+ j2)=0.1667− j0.4849=0.5128%−71.03° S

Y1YY =
1

3(−5.5)
( j6−2.75%120°+ j2%240)

=−0.1883− j0.1587=−0.2463%40.12° S

Y3YY =
1

3(−5.5)
( j6−2.75%240°+ j2%120°)

=0.0216− j0.4474=0.4479%87.23° S

and as in equations 4.133

Y
M0
YY =

1

3(−5.5)
(0+ j1+0)=− j0.06061 S

Y
M1
YY =

1

3(−5.5)
(0+ j1%120°+0)=0.06061%30° S

Y
M2
YY =

1

3(−5.5)
(0+ j1%240°+0)=0.06061%150° S.

Now the elements of matrix [Y
012
YY ] are

Y
00
YY =Y0YY +2YM0YY =0.6286%−74.62° S

Y
11
YY =Y

22
YY =Y0YY −YM0YY =0.4559%−68.55° S

Y
10
YY =Y

02
YY =Y1YY −YM1YY =−0.3061%38.13° S

Y
01
YY =Y20YY =Y1YY −YM2YY =0.4834%−81.18° S

Y
21
YY =Y1YY +2YM1YY =−0.1287%49.66° S.

Next we determine the sequence-voltages:

Ṽ1VV =
100

√3
%−30°=57.4%−30° V, Ṽ2VV =0.

Since Ĩ0=0, in accordance with the first equation in 4.136 we may calculate Ṽ0VV

Ṽ0VV =−
Y
01
YY

Y
00
YY
Ṽ1VV =−

0.4834%−81.18°
0.6286%−74.62°

57.74%−30°=−44.4%−36.56° V.

With the two other equations in 6.136 we have

Ĩ1=Y10YY Ṽ0VV +Y11YY Ṽ1VV =9.67− j25.66 A

Ĩ2=Y20YY Ṽ0VV +Y21YY Ṽ1VV =2.99+ j16.50 A
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and

Ĩ
a
= Ĩ1+ Ĩ2=12.66− j9.16=15.63%−35.89° A.

When the load is balanced, i.e., the mutual impedances are equal to each
other:Z

bc
=Z
ca
=Z
ab
=Z
M
andZ

na
=Z
nb
=Z
nc
=Z
np
and so the self-impedances:

Z
aa
=Z
bb
=Z
cc
=Z
L
, the sequence impedance matrix (equation 6.132) simplifies

to

[Z(M)
012
]=C(ZL+2ZM+3Znn∞−6Zn0 ) 0 0

0 (Z
L
−Z
M
) 0

0 0 (Z
L
−Z
M
)D .
(6.137)

As can be seen, there is no mutual coupling among the three sequences in this
case either, and the sequence circuit impedances are

Z
00
=Z
L
+2Z

M
+3Z

nn∞
−6Z

np
, Z11=Z22=ZL−ZM . (6.138)

Thus,

Ṽ0VV =Z00 Ĩ0 , Ṽ1VV =Z11 Ĩ1 , Ṽ2VV =Z22 Ĩ2 , (6.139)

The degree of current or voltage unbalances is usually estimated as:

for the zero sequence

m
0i
=
I
a0
I
a1
, m
0v
=
V
a0
VV

V
a1
VV
; (6.140a)

for the negative sequence

m
2i
=
I
a2
I
a1
, m
2v
=
V
a2
VV

V
a1
VV
. (6.140b)

Example 6.19

The Y-connected load, having self- and mutual-impedances Z
L
=1+ j22 V

and Z
M
= j6V; and the self- and mutual-impedance of a neutral line

Z
nn∞
=2+ j18 V and Z

np
= j2V is supplied by an unbalanced three-phase system

with the phase voltages being Ṽ
a
VV =100%−30°, Ṽ

b
VV =150%180° and Ṽ

c
VV =

75%60° V. Calculate the current in each branch of the load.

Solution

The first step is to calculate the sequence impedance matrix (in accordance with
equation 6.137):

Z
01
=Z
L
+2Z

M
+3Z

nn∞
−6Z

np
=1+ j22+2· j6+3(2+ j8)−6· j2=7+ j46=46.5%81.3° V
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and

Z11=Z22=ZL−ZM=1+ j22− j6=1+ j16=16.03%86.4° V.

Next we shall calculate the phase-sequence components of the unbalanced volt-
ages

Ṽ0VV =
1

3
(100%−30°+150%180°+75%60°)=10.0%150° V

Ṽ1VV =
1

3
(100%−30°+ (1%120°)(150%180°)+ (1%240°)(75%60°)]

=105%−51° V

Ṽ2VV =
1

3
(100%−30°+ (1%240°)(150%180°)+ (1%120°)(75%60°)]

=39%43° V.

Since there is no mutual coupling along the three sequences, the second step is
to calculate the phase-sequence components of the current Ĩ

a
. Thus,

Ĩ
a0
= Ĩ0=

Ṽ0VV
Z
00
=
10.0%150°
46.5%81.3°

=0.215%68.7° A

Ĩ
a1
= Ĩ1=

Ṽ1VV
Z
11
=
105%−51°
16.03%86.4°

=6.55%−137.4° A

Ĩ
a2
= Ĩ2=

Ṽ2VV
Z
22
=
39.0%43°
16.03%86.4°

=2.43%−43.4° A.

Therefore,

Ĩ
a
= Ĩ
a0
+ Ĩ
a1
+ Ĩ
a2
=0.215%68.7°+6.55%−137.4°+2.43%−43.4°

=6.60%−116.7 A

Ĩ
b
= Ĩ
a0
+a2Ĩ

a1
+aĨ

a2
=0.215%68.7°+ (1%240°)(6.55%−137.4°)+ (1%120°)(2.43%−43.4°)

=8.98%85° A

Ĩ
c
= Ĩ
a0
+aĨ

a1
+a2Ĩ

a2
=0.215%68.7°+ (1%120°)(6.55%−137.4°)+ (1%240°)(2.43%−43.4°)

=4.69%−31.5° A.

In the above treatment of three-phase loads, and the development of the
phase-sequence networks’ equivalent, it was derived that the values of these
network impedances are the same for currents of positive-, and negative-
sequences. In practice, such a result is quite in order in the case of ‘‘static’’
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circuits, such as transformers, transmission lines and the like, in which the
mutual inductances between the circuits of different phases are bilateral. Theffff
phase sequence, positive or negative, of the currents flowing in static circuits
does not change the impedances, so the same values of impedances in both the
positive-, and negative-sequence networks are used.
With rotating machinery, e.g. alternators, induction motors, synchronous
motors, etc., the impedance will have different values for currents of positiveffff
and negative phase-sequences. Indeed, the negative-network impedance, Z22 ,
can be determined by applying the negative-sequence voltages and measuring
the negative-sequence currents, when the machine is run at specified speed and
direction. Since the negative phase-sequence field (also called the backward field )
rotates in the direction opposite to the positive phase-sequence field (also called
the forward field ), it will also rotate opposite to the rotor. Thus, for instance,
for asynchronous machines the difference in speed between the backward fieldffff
and rotor is n

s
+n, where n

s
and n are rotating speeds of the field and rotor

respectively. This results in a slip for the backward field s2=2−s. Since the
regular slip s (i.e. slip for the forward field) is very small (s=0.02–0.05), the slip
s2 equals approximately 2, so that it is much larger than s. As a result the
negative-sequence currents will be larger than the positive-sequence currents
and, therefore, the impedance to currents of negative phase-sequence, Z22 , will
be lower than that to currents of positive phase-sequence, Z11 . To develop the
mathematical representation of rotating machine symmetrical-component
impedances we shall assume that the mutual inductances between the phases of
these machines are not bilateral, as shown in Fig 6.59. Thus, two different valuesffff
Z
p
and Z

q
are the mutual impedances of rotating machines (clockwise and

counterclockwise respectively) between the phases. The impedance matrix in

Figure 6.59 Equivalent circuit of a rotating machine.
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this case is of a circular form:

[Z
rpq
]=CZr Zp ZqZ

q
Z
r
Z
p

Z
p
Z
q
Z
r
D (6.141)

where Z
r
is the self-impedance of each phase and Z

p
≠Z
q
. Applying the matrix

transformation of the form of equation 6.118a yields

[Z(r)
012
]=CZ00 0 0

0 Z11 0

0 0 Z22
D (6.142)

where

Z00=Zr+Zp+Zq
Z11=Zr+a2Zp+aZq (6.143)

Z22=Zr+aZp+a2Zq
are the zero-, positive- and negative-sequence impedances of the machine. Thus,
the sequence matrix equation for a rotating machine will be

[Ṽ
012
VV ]=[Z(r)

012
][Ĩ
012
]. (6.144)

Since the matrix in equation 6.142 is diagonal, also in this case, this matrix
equation may be separated into three independent equations, each for each
sequence:

Ṽ0VV =Z0 Ĩ0 , Ṽ1VV =Z1 Ĩ1 , Ṽ2VV =Z2 Ĩ2 . (6.145)

(For the sake of simplicity here and further on single subscripts, 0, 1 and 2, are
used to indicate sequence-network impedances.) However, in distinction to the
‘‘static’’ load (see equations 6.125, 6.127 and 6.139) here the positive- and nega-
tive-network impedances are unequal, with the negative-network impedance
lower than the positive-network impedance, |Z2 |<|Z1 |(*).

Example 6.20

A three-phase, Y-connected, induction motor, having the positive- and negative-
sequence network impedances: Z1=3.6+ j3.6 V and Z2=0.15+ j0.5 V, is sup-
plied from an unsymmetrical three-wire system. The line voltages being V

ab
VV =

V
ca
VV =365V and V

bc
VV =312V, calculate the current in each phase of the motor.

Solution

The first step is to calculate the phase voltages. Drawing the triangle of line

(*)There is more about symmetrical components in Gonen, T. (1988) Electric Power T ransmission
System Engineering. Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.
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voltages as shown in Fig 6.60(a), we assumed that the neutral point n is located
at the midpoint of the line voltage V

bc
VV (it was already shown that the location

of a neutral point does not influence the positive- and negative-sequence volt-
ages, but only the zero-sequence; however the zero-sequence currents anyway
are zero, since Z

nn∞
=2). Choosing Ṽ

a
VV as a reference phasor, we have

Ṽ
b
VV =− j156 V, Ṽ

c
VV = j156 V

and

Ṽ
a
VV =√3652−1562=330 V.

The next step is to calculate the positive- and negative-sequence components of
the phase voltages

Ṽ1VV =
1

3
(Ṽ
a
VV +aṼ

b
VV +a2 Ṽ

c
VV )=

1

3
[330+ j156(−a+a2)]=200 V

and

Ṽ2VV =
1

3
(Ṽ
a
VV +a2 Ṽ

b
VV +aṼ

c
VV )=

1

3
[330+ j156(a−a2)]=20 V

Now, from positive- and negative-sequence circuits, Fig 6.60(b), we obtain

Ĩ1=
Ṽ1VV
Z1
=

200

3.6√2%45°
=39.3%−45° A

Figure 6.60 Phasor diagram (a) and sequence network for Example 6.20 (b).
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Ĩ2=
Ṽ2VV
Z2
=

20

0.522%73.3°
=38.3%−73.3° A.

Finally,

Ĩ
a
= Ĩ1+ Ĩ2=38.8− j64.5=75.3%−60° A

Ĩ
b
=a2 Ĩ1+aĨ2=−11.7− j17.7=21.2%123.5° A

Ĩ
c
=aĨ1+a2 Ĩ2=−27.1− j46.8=54.1%120° A.

6.7.2 Using symmetrical components for unbalanced three-phase system analysis

As we have already mentioned, the symmetrical components method is very
useful for analyzing and solving the unbalanced faults of power systems. To
illustrate this let us consider the most frequently occurring single line-to-ground
fault, which occurs when one conductor contacts the ground or the neutral
wire. Fig. 6.61 shows the general representation of a single line-to-ground fault
at a fault point F with fault impedance Z

F
. Usually, the fault impedance Z

F
is

ignored in fault studies. In general the voltage-current sequences’ relationship
for an unbalanced system is given by the matrix equation 6.117:

Ṽ012=Z012Ĩ012 . (6.146)

Here the elements of the sequence-impedance matrix usually are known.
However, neither the voltage nor current symmetrical components are known.
The remaining equations, called constraint equations, may be obtained using
the relationship between the symmetrical components in accordance with a
kind of unsymmetrical fault. Thus for the fault under consideration we have

Ĩ
b
= Ĩ
c
=0.

Then, using equation 6.115b, we have

Ĩ0= Ĩ1= Ĩ2=
1
3
Ĩ
a
. (6.147)

Now, the current-sequence matrix can be written in terms, for instance, of Ĩ0 as

I012=CĨ0Ĩ1Ĩ2D=C111D Ĩ0=CĨ∞, (6.148a)

where

Ĩ∞=[Ĩ0]= Ĩ0 (6.148b)

(note that in this particular case matrix Ĩ∞ is reduced to just a scalar I0 ), and

C=C111D (6.148c)
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Figure 6.61 Single line-to-ground fault (a) and interconnection of sequence networks (b).

Then equation 6.148a may be written in the general form as

Ĩ=CĨ∞, (6.149)

where matrix C is called a constraint matrix. This matrix transformation is
similar to those we used in mesh and nodal analysis, when a new set of variables,
currents and voltages were chosen, for some reason, instead of a previous one.
The new set of voltages’ matrix is then given as

Ṽ∞=CTṼ. (6.150)

(This also follows from the fact that the power volt-amperes of the network
calculated in terms of the old voltage and current matrixes (VTI*) must be the
same as when calculated in terms of the new voltage and current matrixes
(V∞TI∞*). Then the corresponding impedance matrix is given by

Z∞=CTZC, (6.151)
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and the equation in terms of the new set of variables is denoted by

V∞=Z∞I∞ (6.152)

Continuing with the above example, we apply equation 6.150 to yield

V∞=Ṽ∞
012
=CTV

012
=[1 1 1] C 0Ṽ1VV0 D= Ṽ1VV , (6.153)

where the symmetrical components of the applied voltages consist only of a
positive sequence since the three-phase sources of the network N1 and/or
network N2 in Fig. 6.61(a), which actually represent the power system genera-
tors, are symmetrical. The transformed impedance matrix (equation 6.151) is

Z̃∞
012
=[1 1 1][Z012] C111D . (6.154)

The sequence impedances of matrix Z012 are viewed from the fault point F and,
since the system generally is balanced and consists of the rotating loads as well
as the static ones, this impedance matrix [Z012] is diagonal with unequal
positive- and negative-sequence impedances

Z012=CZ0 0 0

0 Z1 0

0 0 Z2
D . (6.155)

Substituting this matrix into equation 6.154 and performing the multiplication
we easily obtain

Z∞=[Z0+Z1+Z2]. (6.156)

Substituting equations 6.153, 6.156 and 6.148b into equation 6.152 yields

Ṽ1VV =[Z0+Z1+Z2]Ĩ0 . (6.157)

Thus the matrix equation 6.152 in this case becomes the single scalar equation.
Then

Ĩ0=
Ṽ1VV

Z0+Z1+Z2
. (6.158)

These equations 6.157 and 6.158 are appropriate for Fig. 6.61(b), where, to meet
this relationship, the symmetrical component networks have to be connected
in series. The fault current of phase a, therefore, is (equation 6.147)

Ĩ (1)
sc
=3Ĩ0 . (6.159)
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Recall that the superscript indicates the following kind of faults: (1) a single-
pole ground fault, (2) two-pole fault and (1,1) two-pole-ground fault. The
numerical examples follow.

Example 6.21

The faulted network and all the parameters are given in Fig. 6.62(a). Form the
sequence networks and calculate the steady-state single-pole-to-ground short-
circuit current.

Solution

The p.u. reactances referred to S
B
=120MVA and to the average basic voltages

are shown in Fig. 6.62(b), where the three sequence networks are also given.

Figure 6.62 A given network for Example 6.21 (a) and the sequence networks (b).
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By simplifying the positive-sequence network we have

X
1,7
=0.9//2.9=0.69, X1,8=0.25+3.6=3.85,

X1,9=0.69+0.25+0.18=1.12,

and the equivalent reactance is

X
1,eq
=1.12//3.85=0.87.

The equivalent EMF is found as follows

E2=
1.67·2.9

0.9+2.9
=1.27 and E

1eq
=
1.27·3.85

1.12+3.85
=0.98.

The simplification of the negative-sequence network gives

X
2,7
=0.45//0.84=0.29, X2,8=0.25+1.05=1.3,

X2,9=0.29+0.25+0.18=0.72,

and

X
2,eq
=0.72//1.3=0.46.

Finally, the simplification of the zero-sequence network results in

X
0,eq
=0.25+0.54=0.79.

The zero sequence current will be (equation 6.158)

I(1)
0
=

0.98

0.87+0.46+0.79
=0.45.

And the short-circuit current in a single-pole-ground fault, therefore, is (equation
6.159)

I(1)
sc
=3I(1)

0
=3·0.45=1.35,

or

I(1)
sc
=1.35

120

√3·115
=0.81.

Example 6.22

Consider the low power system shown in Fig. 6.61(a) and assume that there is
a single-line-to-ground solid (i.e., Z

F
=0) fault involving phase a at the end of

a transmission line, i.e. at point a∞. Let the network N1 represent a generator
having phase voltages 240 V and the sequence impedances Z

s1
= j4V, Z

s2
= j2V

and Z
s0
= j1V; and the network N2 represents a load with ZL1=

22.22%25.84°=20+ j9.69V (which corresponds to 0.9 PF), Z
L2
= (8+ j5)V

and Z
L0
= (2.5+ j1)V. The transmission line sequence impedances are Z

l1=
Z
l2= j1 V and Zl0= j1.5 V. Also assume that the neutral wire/ground imped-
ances are Z

n
=Z
n∞
=0.5 V, and the fault impedance Z

F
is zero. At the fault
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point F, determine: (a) the sequence and phase currents and (b) the sequence
and phase voltages.

Solution

(a) Figure 6.63(a) shows the corresponding positive-, negative- and zero-
sequence networks which are interconnected in series. To reduce them we first
find the equivalent impedances:

Z
1eq
=
(Z
s1
+Z
l1
)Z
L1

Z
s1
+Z
l1
+Z
L1
=
( j4+ j1)(20+ j9.69)
20+ j14.69

=4.47%79.54° V

Z
2eq
=
(Z
s2
+Z
l2
)Z
L2

Z
s2
+Z
l2
+Z
L2
=
( j2+ j1)(8+ j5)

8+ j8
=2.50%77.01° V

Z
0eq
=
(Z
s0
+Z
l0
+3Z

n
)(Z
L0
+3Z

n∞
)

Z
s0
+Z
l0
+Z
L0
+3(Z

n
−Z
n∞
)
=
( j1+ j1.5+1.5)(2.5+ j1+1.5)

5.5+ j3.5

=1.84%40.61° V,

and the equivalent voltage source seen at the fault point (which is the Thevenin

Figure 6.63 Interconnection of zero-, positive- and negative-sequence networks (a) and an equivalent

network for Example 6.22 (b).
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voltage)

Ṽ
1eq
VV =V

s1
VV

Z
L1

Z
s1
+Z
l1
+Z
L1
=240

20+ j9.69
20+ j14.69

=215.0%−10.46° V.

The resulting equivalent sequence network interconnection is shown in
Fig. 6.63(b). Thus, the sequence currents of phase a are (equation 6.158)

Ĩ0= Ĩ1= Ĩ2=
V
1eq
VV

Z
0eq
+Z
1eq
+Z
2eq
=25.3%−81.42°A,

and the phase currents (Fig. 6.61a)

CĨa∞FĨb∞FĨ
c∞F
D=C1 1 1

1 a2 a

1 a a2D C25.3%−81.4°25.3%−81.4°

25.3%−81.4°D=C75.8%−81.4°0

0 D A.
(b) The sequence voltages are (in matrix representation)

Ṽ
F,012
=Ṽ
s,012
−Z
012
Ĩ
012
,

or

CṼ0VVṼ1VVṼ2VV D=C 0

215.0%−10.46°

0 D−C1.84%40.61° 0 0

0 4.48%79.54° 0

0 0 2.50%77.01°D
×C25.3%−81.42°25.3%−81.42°

25.3%−81.42°D=C−35.3+ j30.4498.3− j35.30

−63.0+ j4.86 D=C 46.6%139.19°104.4%−19.76°

63.2%175.59° D V,
and the phase voltages are

CṼaVV ∞FṼbVV ∞FṼ
c
VV
∞F
D=C1 1 1

1 a2 a

1 a a2D C 46.6%139.19°104.4%−19.76°

63.2%175.59° D
=C 0.02+ j0.00−87.7− j94.0

−18.1+ j185.4D=C #0
129%−133.0°

186%95.6° D V.
For the line-to line fault, shown in Fig. 6.64(a), if, for example, the fault occurs

on phases b and c, the constraint equations are

Ĩ
a
=0 and Ĩ

b
=−Ĩ

c
. (6.160)
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Figure 6.64 Line-to-line fault (a) and the interconnection of the sequence networks (b).

Applying now equation 6.115b we have

CĨ0Ĩ1Ĩ2D= 13 C1 1 1

1 a a2

1 a2 a D C 0Ĩb−Ĩ
b
D= j

√3 C 0Ĩb−Ĩ
b
D

or

Ĩ0=0 and Ĩ∞1=−Ĩ∞2=
j

√3
I
b
. (6.161)

Note that the absence of I0 can also be recognized from the fact that the zero-
sequence current fault path in the circuit of Fig. 6.64(a) is open, which is

indicated in Fig. 6.64(b) by ignoring the zero-sequence network.
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Hence the constraint matrix in terms of Ĩ1 would be written as

C=C 01−1D . (6.162)

Substituting this constraint equation into equations 6.150 and 6.151 and remem-
bering that only the positive-sequence source voltage is non-zero, we easily
obtain

[Ṽ
012
VV ]= Ṽ1VV and [Z

012
]=[Z1+Z2].

Thus, with equation 6.152 we have

Ṽ1VV =[Z1+Z2]Ĩ1 (6.163a)

and

Ĩ∞
1
=

Ṽ ∞
1

Z1+Z2
. (6.163b)

These equations are appropriate for Fig. 6.64(b), where only two symmetrical
component networks, positive and negative, are connected in series.
In accordance with equation 6.161 the short-circuit current in phase b is

Ĩ
sc,b
=− j√3I∞

1
. (6.163c)

Since at the fault point the voltage is zero we have

Ṽ
F,b
VV = Ṽ

F,c
VV ,

which gives

Ṽ
F
VV = Ṽ

F,b
VV − Ṽ

F,c
VV =0.

Then

Ṽ
F1
VV =

1

3
(Ṽ
F,a
VV +aṼ

F,b
VV +a2Ṽ

F,c
VV )=

1

3
[Ṽ
F,a
VV + (a+a2)Ṽ

F,b
VV ]

Ṽ
F2
VV =

1

3
(Ṽ
F,a
VV +a2Ṽ

F,b
VV +aṼ

F,c
VV )=

1

3
[Ṽ
F,a
VV + (a+a2)Ṽ

F,b
VV ],

and

Ṽ
F1
VV = Ṽ

F2
VV . (6.163d)

Example 6.23

Repeat Example 6.22 assuming that there is a line-to-line fault, involving phases
b and c at the end of the transmission line, i.e. at points b∞ and c∞.
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Solution

(a) In accordance with Fig. 6.64(b), where Ṽ
s1
VV ¬ Ṽ

1eq
VV , Z

1
¬Z
1eq
and Z2¬Z2eq

and with the other data of the previous example, the sequence currents are

Ĩ0=0

Ĩ1=− Ĩ2=
Ṽ
1eq
VV

Z
1eq
+Z
2eq
=

215%−10.46°
4.48%79.54°+2.50%77.01°

=30.8%−89.1° A,

and the phase currents are

CĨa∞FĨb∞FĨ
c∞F
D=C1 1 1

1 a2 a

1 a a2D C 0

30.8%−89.1°

30.8%90.9° D=C 0

53.3%−179.1°

53.3%0.9° D A.
(b) The sequence and phase voltages are

CṼ0VVṼ1VVṼ2VV D=C 0

215%−10.46°

0 D−C1.84%40.61° 0 0

0 4.48%79.54° 0

0 0 2.50%77.01°D
×C 0

30.8%−89.1°

30.8%90.9° D=C 0

77.1%−12.07°

77.0%−12.09°D V,
i.e., Ṽ1VV # Ṽ2VV , as can also be seen from Fig. 6.64(b), since ZF=0, and

CṼaVV ∞FṼbVV ∞FṼ
c
VV
∞F
D=C1 1 1

1 a2 a

1 a a2D C 0

77.06%−12.1°

77.06%−12.1°D=C154.1%−12.1°77.06%107.9°

77.06%107.9° D V.
Example 6.24

Repeat Example 6.21 and find the line-to-line short-circuit current.

Solution

The resulting sequence-network in this kind of fault is formed by a series
connection of positive- and negative-sequences. Therefore, the positive-sequence
current is

I1=
0.98

0.87+0.46
=0.71,
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and the short-circuit current (equation 6.163c) is

I(2)
sc
=√3·0.71=1.24,

or (in amperes)

I(2)
sc
=1.24

120

√3·115
=0.74 kA.

Example 6.25

In the power network shown in Fig. 6.65(a) a power station is connected through
an equivalent reactance to an infinite busbar. Assume that there is a line-to-
line fault involving phases b and c and find 1) the steady-state value of a short-
circuit current and 2) the currents flowing from the generator.

Solution

In accordance with the sequence networks shown in Fig. 6.65(b) we find that

X
1eq
=1.23//0.25=0.21 and E

1eq
=
1.7·0.25+1·1.23
1.23+0.25

=1.12,

X
2eq
=0.17//0.25=0.1.

Thus, the positive- and negative-sequence of the fault current are

Ĩ1=−Ĩ2=
1.12

j(0.21+0.1)
=− j3.61.

Figure 6.65 A network diagram for Example 6.25 (a) and the sequence networks (b).
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The phase currents of the fault point will be

Ĩ
sc,b
=− j√3(−j3.61)=−6.25 and I

sc,c
=6.25.

2) The sequence voltages of the fault point will then be (equation 6.163d)

Ṽ
1F
VV = Ṽ

2F
VV =−Ĩ2 ( jX2eq )=−j3.61( j0.1)=0.361.

We can now find the generator current sequence

Ĩ
1G
=
1.7−0.361
j1.23

=−j1.09, Ĩ
2G
=−

0.361

j0.17
= j2.12,

and the phase currents are

Ĩ
aG
=− j1.09+ j2.12= j1.03

Ĩ
bG
=a2(−j1.09)+a( j2.12)=−2.78− j0.51 or I

bG
=2.83

Ĩ
cG
=a(−j1.09)+a2( j2.12)=−2.78− j0.515 or I

cG
=2.83.

Note that the current in the non-faulted phase is about 40% of the current in
the faulted phases. This means that the short-circuit current flows not only
through the faulted phases, but also through a non-faulted phase.
Finally, consider the double line-to-ground fault on a transmission system, as
shown in Fig. 6.66(a). This fault occurs when two conductors are connected
through ground, Z

G
, or directly, to the neutral of a three-phase grounded, or

four-wire, system. If the fault is between phases b and c then

Ĩ
a
= Ĩ0+ Ĩ1+ Ĩ2=0, (6.164)

and the current-sequence matrix could be written in terms, for instance, of Ĩ0
and Ĩ1

Ĩ
012
=C 1 0

0 1

−1 −1D CĨ0Ĩ1D , i.e., C=C 1 0

0 1

−1 −1D .
By determining V∞ (equation 6.150) and Z∞ (equation 6.151) and substituting

them into equation 6.152 we obtain

C 0Ṽ1VV D=CZ0+Z2 Z2
Z2 Z1+Z2

D CĨ0Ĩ1D
and

Ĩ1=
KZ0Z2 0

Z2 Ṽ K
(Z0+Z2 )2−Z22

=
Ṽ1VV

Z1+Z2Z0/(Z2+Z0 )
(6.165)

which is interpreted as for the equivalent circuit shown in Fig. 6.66(b). Note
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Figure 6.66 Double line-to-line ground fault: general representation (a) and interconnection of

sequence networks (b).

that if Z
G
=2 , i.e., there is a line-to-line fault only, this circuit will reduce to

the circuit in Fig. 6.64(b).
The faults, considered above, are commonly called shunt faults. A variety of
series imbalances that occur in a power system are called series faults. A common
one is a broken or open conductor fault, as shown in Fig. 6.67(a). The constraint
equation for this fault is

Ĩ
a
= Ĩ0+ Ĩ1+ Ĩ2=0, (6.166)

or

Ĩ2=−Ĩ0− Ĩ1 .
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Figure 6.67 Single-phase open-fault (a) and interconnection of sequence networks (b).

Hence the constraint matrix in terms of Ĩ0 and Ĩ1 may be determined from the
equation

CĨ0Ĩ1Ĩ2D=C 1 0

0 1

−1 −1D CĨ0Ĩ1D
i.e.,

C=C 1 0

0 1

−1 −1D . (6.167)

With this constraint matrix the transformed voltage-sequence (equation 6.150)
and impedance-sequence (equation 6.151) matrixes can be expressed as

V∞=C 0Ṽ1VV D
and

Z∞=CZ0+Z2 Z2
Z2 Z1+Z2

D .
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Substituting these expressions into equation 6.152 yields

CZ0+Z2 Z2
Z2 Z1+Z2

D CĨ0Ĩ1D=C 0Ṽ1VV D (6.168)

and solving it for Ĩ1 (using, for instance, Kramer’s rule) we obtain

Ĩ1=
Ṽ1VV (Z0+Z2 )

Z1Z0+Z1Z2+Z0Z2
=

Ṽ1VV
Z1+Z0Z2/(Z0+Z2 )

. (6.169)

This result could be obtained straightforwardly from the parallel interconnection
of the three sequence-networks as shown in Fig. 6.67(b). Note that this kind of
sequence-network interconnection is actually the same as for a double line-to-
ground fault. The difference, however, is that here the interconnection circuitffff
refers to the line currents, whereas in the double line-to-ground case it refers to
the fault currents.

Example 6.27

An induction motor is supplied by a three-phase three-wire balanced system.
With the fault being the phase a conductor open, Fig. 6.68(a), find the line
currents of the remaining phases Ĩ

b
and Ĩ

c
and phase voltages across the load

Ṽ
a
VV
∞n∞
, Ṽ
b
VV
∞n∞
and Ṽ

c
VV
∞n∞
. Also find the voltages Ṽ

aa
VV
∞
and Ṽ

nn
VV
∞
. The supplied line voltage

is 400 V and the motor impedances are: positive-sequence Z
M1
=3.6+ j3.6V

and negative-sequence Z
M2
=0.15+ j0.5V. The line sequence impedances are

Z
l1
=Z
l2
=0.1+ j0.1 V. (The system impedances might be neglected, being rela-

tively very small.)

Solution

Since the neutral wire is absent, Z
nn∞
=2, only two sequence networks (positive-

and negative-sequence networks) are connected in parallel, as shown in
Fig. 6.68(b). Thus, the positive-sequence current is found as

Ĩ1=
Ṽ
s1
VV

Z1+Z2
=

231

3.7+ j3.7+0.25+ j0.6
=

231

5.84%47.4°
=39.6%−47.4° A,

where Ṽ
s1
VV =400/√3=231V.

Therefore,

Ĩ
b
=a2 Ĩ1+aĨ2= (a2−a)Ĩ1=− j

√3Ĩ1=68.5%−137.4° A

Ĩ
c
=−Ĩ

b
=68.5%42.6° A.

The phase voltages are found as

Ṽ
a
VV
∞n∞
=Z
M1
Ĩ1+ZM2 Ĩ2= (Z1M−Z2M )Ĩ1

= (3.45+ j3.10)(39.6%−47.4°)=183.7%−5.4° V

Ṽ
b
VV
∞n∞
=a2Z

M1
Ĩ1+aZM2 Ĩ2= (a2ZM1−aZM2 )Ĩ1



446 Chapter #6

Figure 6.68 An open-fault circuit (a) and the interconnection of sequence networks (b) for

Example 6.27.

= (5.09%−75°−0.522%193.3°)(39.6%−47.4°)=203%−116.6° V

Ṽ
c
VV
∞n∞
= (aZ

M1
−a2Z

M2
)Ĩ1=220%114.8°V.

To find the fault voltage Ṽ
aa
VV
∞
we shall first analyze the series unbalanced voltages:

Ṽ
aa
VV
∞
= Ṽ0VV + Ṽ1VV + Ṽ2VV

Ṽ
bb
VV
∞
= Ṽ0VV +a2 Ṽ1VV +aṼ2VV (6.170)

Ṽ
cc
VV
∞
= Ṽ0VV +aṼ1VV +a2 Ṽ2VV .

The constraint voltage equations are

Ṽ
bb
VV
∞
=0 Ṽ

cc
VV
∞
=0. (6.171)

Solving equation 6.170 with equation 6.171 yields

Ṽ1VV = Ṽ2VV = Ṽ0VV . (6.172)

The second step is to determine Ṽ2VV in accordance with the negative-sequence
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network, which is the part of the equivalent circuit shown in Fig. 6.68(b). Thus,

Ṽ2VV =−Z2 Ĩ2=−(0.25+ j0.6)(−39.6%−47.5°)

=0.65%67.4° ·39.6%−47.5°=25.7%19.9° V.

Therefore, with the first equation of (1.170) we have

Ṽ
aa
VV
∞
=3Ṽ2VV =77.1%19.9° V.

Since the neutral line is open the potential difference between neutral pointsffff n
and n∞ equals zero-sequence voltage. Thus,

Ṽ
nn
VV
∞
= Ṽ0VV =25.7%19.9° V.

In the final example of this section let us consider the influence of AVR on the
unsymmetrical faults.

Example 6.28

A two-pole-ground-fault occurs in the network shown in Fig. 6.69. Find at t=
0.5 s the short-circuit currents at the fault point F. The generators and transfor-
mers are identical and both generators are equipped with an AVR.

Solution

The network reactances, referred to the basic power S
B
=100MVA, are shown

in Fig. 6.69(b) and (c). Note that the reactances of the high voltage winding of
the transformers are not taken into account due to the symmetrical properties
of the network relative to the fault point position.
By simplification of the positive-sequence circuit, we have

X
1eq
=X
2eq
=
0.24+0.06

2
+0.23=0.38,

and for the zero-sequence circuit

X
11
=0.06//(2·0.12+0.06)=0.5, X12=0.05+0.8=0.85

and

X
0eq
=0.85//0.5=0.31.

In accordance with equation 6.165 we may calculate the positive-sequence of
the short-circuit current

Ĩ1=
1.15

j(0.38+0.38//0.31)
=− j2.1.
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Figure 6.69 A network diagram for Example 6.28 (a), positive- and negative-sequence circuit (b)

and zero-sequence circuit (c).

In accordance with Fig. 6.66(b) we have

Ĩ2=−Ĩ1
X
0eq

X
2eq
+X
0eq
= j2.1

0.31

0.38+0.31
= j0.94,

and

Ĩ0=−(Ĩ1+ Ĩ2 )=−(−j2.1+ j0.94)= j1.16.

Thus, the first moment short-circuit current (phase b) is

Ĩ
sc
=a2Ĩ1+aĨ2+ Ĩ0= (−0.5− j0.866)(−j2.1)+ (−0.5+ j0.866)( j0.94)+ j1.16

=−2.63+ j1.74 or I
sc
=3.15.
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Performing the same calculation for the steady-state s.c. yields

X
1eq
=X
2eq
=
1.2+0.06
2

+0.23=0.86.

The zero-sequence resistances do not change, therefore

X
0eq
=0.31.

The positive-sequence of the steady-state s.c. current can now be calculated as

Ĩ
1,2
=

1.8

j(0.86+0.86//0.31)
=− j1.65.

The negative- and zero-sequences of the s.c. current are

Ĩ
2,2
=−A− j1.65 0.31

0.86+0.31B= j0.44,
Ĩ
0,2
=− (−j1.65+ j0.44)= j1.21.

The short-circuit current (phase b) is then found as

I
2
=2.57.

With the maximal field current, I
fl,max=4.3, we have

I
2,max=

4.3

1.2−0.1
=3.91,

and

DI∞
0
=3.15−2.57=0.58, DI

2
=3.91−2.57=1.34.

Suppose that the transient time constants (see example 6.12) are T ∞
d
=1.8 s

and T
ff
TT =0.55 s. Then the s.c. current at t=0.5 s will be

I(1,1)
sc
(0.5)=0.58e−0.5/1.8+2.57+0.08·1.34=3.1,

where (see Example 6.12) F(0.5)=1+0.44e−0.5/0.55−1.44e−0.5/1.8=0.08. As
can be seen, the s.c. current, due to AVR action, has almost not changed.

6.7.3 Power in terms of symmetrical components

In general, the three-phase complex power of an unbalanced three-phase system
can be expressed as the sum of three complex powers of each phase

S93ph=P3ph+ jQ3ph=S9 a+S9 b+S9 c= ṼaVV Ĩ*a+ ṼbVV Ĩ*b+ ṼcVV Ĩ*c . (6.173)

The above in matrix notation will be

S93ph=[ṼaVV Ṽ
b
VV Ṽ

c
VV ] CĨaĨbĨ

c
D*=CṼaVVṼbVVṼ

c
VV DTCĨaĨbĨ

c
D* (6.174)
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or

S93ph=ṼTabc Ĩ*abc .

Using the matrix transformations

Ṽ
abc
=aṼ012 , Ĩabc=aĨ012 .

we may write

ṼT
abc
=ṼT
012
aT, Ĩ*

abc
=a*Ĩ*

012
.

Substituting these equations into equation 6.174 we obtain

S93ph=ṼT012 aTa*IT
˜*
012
,

where

aTa*T =C1 1 1

1 a2 a

1 a a2D C1 1 1

1 a a2

1 a2 a D=3 C1 0 00 1 0

0 0 1D .
Therefore

S93ph=3ṼT012 Ĩ*012=3[Ṽ0VV Ṽ1VV Ṽ2VV ] CĨ0Ĩ1Ĩ2D* (6.175a)

or

S93ph=3(Ṽ0VV Ĩ*0+ Ṽ1VV Ĩ*1+ Ṽ2VV Ĩ*2 ). (6.175b)

This significant result means that there are no cross terms (e.g., Ṽ0VV I*1 or Ṽ1VV I*2 )
in the expression of a power (equation 6.175). In other words, there is no
coupling of power among three sequences. It is also important to mention that
the symmetrical components of three-phase voltages and currents belong to the
same phase, i.e., in equation 6.175 all the sequence components are of phase a
(the subscript of phase a here is just ignored).

Example 6.29

For the motor operated under unbalanced conditions of Example 6.27 determine
the power delivered to the motor. Perform the calculations in two ways: (a)
using the symmetrical components of currents and voltages; and (b) straightfor-
wardly by calculating each phase power.

Solution

(a) First we shall calculate the sequence voltages across the motor. Since the
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zero-sequence current is zero, the zero-sequence voltage is also zero. The posi-
tive-sequence voltage may be calculated as

Ṽ
1M
VV =Z

1M
Ĩ1= (

√2·3.6%45°)(39.6%−47.4°)

=202%−2.4° V,

and similarly, the negative-sequence voltage is

Ṽ
2M
VV =Z

2M
Ĩ
2
= (0.15+ j0.5)(−39.6%−47.4°)

=20.7%−154.1° V.

Therefore, in accordance with equation 6.175b, we have

S9M=3[(202%−2.4°)(39.6%47.4°)+ (20.7%−154.1)(−39.6%47.4°)]

= (24.0%45°+2.46%73.3°) ·103=17.68+ j19.33 kW.

(b) In accordance with equation 6.173 and substituting the results of the previ-
ous example, we have

S9M=0+ (203%−116.6°)(68.5%137.4°)+ (220%114.8)(68.5%−42.6°)

= (13.91%20.8°+15.07%72.2°) ·103=17.61+ j19.29 kW.

Note that the minor differences ( less than 0.5%) in results (a) and (b) are dueffff
to rounding off the calculated numbers.

6.8 TRANSIENT OVERVOLTAGES IN POWER SYSTEMS

Transients occurring in a power system, primarily as a result of switching and
lightning strokes, cause overvoltages whose peak values can be much in excess
of the normal operating voltage. The first kind of overvoltage, caused by
switching, is considered an inner overvoltage, and the second kind, which is
caused by lightning, is considered an outer overvoltage. Estimation and/or
calculation of such overvoltages is of importance in the design of a power
system, particularly in consideration of the insulation requirements and the
protective equipment for the lines, transformers, generators etc.
Until recently outer overvoltages have been largely determined by the insula-
tion requirements. However, with much higher operating voltages now in use
of 500 kV and 750 kV, and the projected range likely to be 1000–1500 kV, the
inner overvoltages due to switching have become the major consideration.
The outer overvoltages appear on an overhead conductor of transmission

lines, caused by a lightning stroke, which can be as high as 200 kA (although
an average value is in the order of 20 kA). When such a current stroke arrives
on an overhead conductor, two equal current surges propagate in both directions
away from the point of impact. The magnitude of each voltage surge is estimated
therefore as (1/2)Z

c
i
peak
, where Z

c
is the conductor surge impedance, usually of

the value of 350 V to 400 V. Thus, the average voltage surges on a 400V
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transmission line will have a peak of (400/2)·20·103=4000 kV. A detailed
analysis of the traveling current and voltage waves, and the different methodsffff
of calculating the overvoltage in transmission lines, is given in the next chapter.
We will now continue with our consideration of inner overvoltages.

6.8.1 Switching surges

From our previous considerations (see section 2.7.4) we know that when a.c.
circuits are to be interrupted, as in the case of a switching short-circuit in any
line (Fig. 6.70(a)), the arc between the circuit-breaker contacts occurs and when
breaking the arc the recovery voltage suddenly appears across the open gap.
In our previous analysis of this circuit, however, we had assumed an instantan-

eous switching, i.e. that the air gap resistance was increased from zero to infinity
in zero time. Omitting the detailed analysis of the phenomenon of the burning
arc caused by an interrupted a.c. current (which is beyond the scope of this
book), we may perform our analysis under the assumption that the arc has a
constant length and possesses a rectangular volt-ampere characteristic, shown
in Fig. 6.71.
However, during the quashing period of the arc, the arc voltage does not

Figure 6.70 Switching of an s.c. fault: a network diagram (a) and an equivalent circuit (b).

Figure 6.71 A rectangular characteristic of a burning a.c. arc.



T ransients in T hree Phase Systems 453

remain constant, but gradually increases. After the interruption in such circuits,
like Fig. 6.70, transient oscillations occur, which have been analyzed in sections
2.7.3 and 2.7.4. With equations 2.62, 2.63 and 2.95, 2.96 they are

i
n
=I
n
e−at sin (v

n
t+b), v

C,n
$V
C,n
VV e−at sin (v

n
t+b−90°), (6.176a)

where v
n
=1/√L C, a=R/2L , tan b= (v/v

n
) tan y

i
,

V
C,n
VV $V

S
VV SAvnvB2 sin2 yi+cos2yi , In=SCL VC,nVV . (6.176b)

Such oscillations will occur, after the circuit-breaker contacts start to move, at
every zero passage of the current. At a few of the first passages, however, since
the restriking voltage is higher than the electric strength of the arc, the arc will
reignite, Fig. 6.72. As can be seen this happens four times at the reversal of the
current during the gradual separation of the contacts. The last time, however,
the transient voltage of the restriking oscillation does not succeed in igniting
the arc again and the circuit is ultimately switched. The number of reignitions
depends on the speed of the contact’s separation and the electric strength of
the arc, which in turn depends on the deionization process, i.e. on the diffusionffff
and recombination of the ions and the temperature of the arc and the
electrodes(*).
To analyze the overvoltages under the influence of a burning arc, we shall
derive the differential equations for the circuit, shown in Fig. 6.73, in which forffff
simplicity sake the relatively small resistances are neglected. Thus, with
Kirchhoff ’s two laws we have

L
di

dt
+v
B
=v
S
, v
B
=v
C
=
1

C P iC , i= iC+ iB, (6.177)

where v
B
is the voltage across and i

B
is the current through the arc.

Figure 6.72 Transient oscillations during the contact separation.

(*)For a more detailed analysis of the restriking voltage after interruption see in R. Rudenberg
(1969), T ransient Performance of Electric Power Systems, MIT Press.
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Figure 6.73 An equivalent circuit for analyzing the influence of a burning arc.

Or, substituting the third equation into the first one and expressing the
capacitance current by the second yields

L C
d2v
B

dt2
+v
B
+L
di
B
dt
=v
s
. (6.178)

Since the arc has a resistive characteristic, the voltage and current will have the
same form, and it is suitable to assume for the voltage (and current) the form
of the exponent

v
B
=v
B,0
e(t−t
0
)/T
B
T =v

B,0
e−t∞/T

B
T , (6.179)

where t
0
is the time at which the quenching starts and T

B
TT is the quenching time

constant, i.e. of the deionization process. This time constant is different forffff
different types of quenching agents: for air it is about 10ffff −3 s, for gases, as in
oil breakers, 10−4 s and for pure hydrogen 10−5 s.
The voltage change in accordance with equation 6.179 is shown in Fig. 6.74.
Before the time t0 the arc voltage within every half period will be nearly constant,
as in Fig. 6.71, and after t0 it will rise according to equation 6.179, which means
that with arc quenching its electric strength will increase. As can be seen, the
quenching curves of the current (starting at t0 ) depend on the capacitance in
parallel to the arc: from t∞=0 when C=2, to t∞=p/v when C=0 (see fur-
ther on).
Substituting equation 6.179 into equation 6.178 yields

L
di
B
dt
=v
s
−

1

v2
n
T 2
B
v
B,0
et∞/T
B
T −v

B,0
et∞/T
B
T , (6.180)

and by straightforward integration we have

i
B
= i
B,0
−v
B,0
T
B
TT

L A1+ 1

v2
n
T 2
B
B (et∞/TBT −1), (6.181)

where i
B,0
is the current at t0 , Fig. 6.74. This current can be found by integrating

only the first equation in 6.177 (the capacitance prior to interruption does not
act), and the solution is

i
B
=
V
s
VV

vL
sin (vt+h)+

v
B
vL
(p/2−vt). (6.182)

This current consists of two components: the first represents the steady-state
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Figure 6.74 Exponentially increasing quenching voltage and current curve.

inductive current in the circuit with a closed circuit breaker and lags behind
the applied voltage by 90°; the second component represents the linearly chang-
ing arc current. Note that the arc voltage, which opposes the current flow and
thereby changes the phase of the current, brings it more into phase with the
supply voltage, so that it will be less than 90°.
The displacement angle h may be found, using the condition that in the quasi-
steady-state regime the current must pass each half period through zero. Thus,

sin h=
p

2

v
B
V
s
VV
. (6.183a)

Knowing h, the initial current i0 can be found from its expression 6.182, or from
the plot in Fig. 6.74, and may be approximated as

i0=I sin h. (6.183b)

In accordance with equation 6.181, under the effect of an exponentially increas-ffff
ing quenching voltage, the current will decrease exponentially passing through
zero. This will happen when i

B
=0, then in accordance with equation 6.181 and

since i
B,0
= i0 we have

et∞/T
B
T =

i0L
v
B,0
T
B
TT (1+1/v2

n
T 2
B
)
+1. (6.184)
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The amplitude of the current prior to interruption can be determined approxi-
mately as

I$
V
s
VV

vL
, (6.185a)

then

i0L=
i0VsVV
Iv
. (6.185b)

Solving equation 6.184 for t∞ by using equation 6.185b, we have

t∞=T
B
TT ln C1+ i0I VsVVv

B,0

1

vT
B
TT (1+1/v2

n
T 2
B
)D . (6.186)

Due to the relatively small capacitance, the natural frequency is very high so
that the quantity 1/v2

n
T 2
B
might be approximated as a unity. Then, with time

constant T
B
TT $10−4 and with the most common ratios v

B,0
/V
s
VV $1/20 and

i0/I$1/5, we have

t∞=T
B
TT ln A1+ 15 ·20· 1

377·10−4 ·2B$4TBTT .
Thus, the approximate quenching time is about four times the quenching time
constant.
The extinction voltage in p.u. at the moment that the current attains zero is

determined by substituting condition 6.184 into equation 6.179, and using
equation 6.185b

v
B,pu
|
i=0
=v
ex,pu
=
v
B,0
V
s
VV
+

i0/I
vT
B
TT (1+1/v2

n
T 2
B
)
. (6.187a)

Now, equations 6.186 and 6.187a are giving better insight into the part of
the capacitance, in parallel to the arc. Thus, without the capacitance, the natural
frequency would be v

n
�2 and the quenching time will be maximal, while the

p.u. extinction voltage will reach the value:

v
ex,pu
=
v
B,0
V
s
VV
+
i0/I
vT
B
TT
. (6.187b)

With the previously used data, this voltage will be

v
ex,pu
=1/20+

1/5

377·10−4
$5.4,

On the other hand, by using a very large capacitance the natural frequency
approaches zero, so that the second term under the logarithm in equation 6.186
disappears and the quenching time therefore reduces to zero. The physical
explanation of this result is that the current shifts instantaneously from the arc
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to the capacitance. The extinction p.u. voltage in this case with a moderate
capacitance, giving a natural frequency of 103 Hz, will be much lower:

v
ex,pu
=
1

20
+

1/5

377·10−4[1+1/(2p ·103 ·10−4)2]
$1.5.

Our next goal is to derive the actual values of the restriking voltage, in
accordance with (6.176) and applying the switching laws. The charging current,
prior to the passage of the arc current through zero, is

i
C
=C

d

dt
(v
B,0
et∞/T
B
T )=

C

T
B
TT
v
B,0
et∞/T
B
T , (6.188)

which increases exponentially as does the voltage. At the end of the quenching
period this current, by substituting equation 6.184, is

i
C
(t∞)=

C

T
B
TT
v
B,0
+

i0
1+ (v

n
T
B
TT )2
. (6.189)

If the extinction voltage, at the moment of passing the current zero, has risen
to a value above the burning voltage of the arc, there is an expectation that
with the reversal of the current the electric strength of the arc will withstand
the appearing restriking voltage. For the sake of simplicity, we shall neglect the
small burning voltage v

B,0
in equations 6.187 and 6.189, and also the very small

current of fundamental frequency through the capacitance in the steady state.
Note also that at the moment of the appearance of the restriking voltage the
arc is extinct and i

C
= i
L
.

The initial conditions with equations 6.187a and 6.189, at t=0, will now be

V
C,n
VV cos b∞=v

C
(0)−v

C,f
(0)=

V
s
VV (i0/I )

vT
B
TT (1+1/v2

n
T 2
B
)
−V
s
VV (−cos (−h))

(6.190)

I
n
sin b∞= i

C
(0)− i

C,f
(0)=

i0
1+v2

n
T 2
B
−0, where b∞=90°−b.

(Note that at t=0, the moment of passing the current zero, the forced capaci-
tance voltage, i.e., the applied voltage v

s
, has the initial angle −h, as shown in

Fig. 6.74, for instance, for capacitance C1 .)
Dividing the first equation in 6.190 by the second one and noting that

I
n
/V
C,n
VV =�C/L (see equation 6.176b), we obtain for the initial phase angle b∞ of

the restriking oscillations

cot b∞=SCL C VsVV (1+v2nT 2B )vIT
B
TT (1+1/v2

n
T 2
B
)
+
V
s
VV cos h(1+v2

n
T 2
B
)

i0 D . (6.191)

Using equations 6.183b and 6.185a, and substituting the natural frequency from
equation 6.176b, simplifies the above expression to

cot b∞=v
n
T
B
TT + (1+v2

n
T 2
B
)
v

v
n
cot h, (6.192)

where h is related to the end of the quenching period, Fig. 6.74.
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Note that for instantaneous switching, i.e. with T
B
TT =0, this expression reduces

to the previous one, as in equation 6.176. However, by comparing equation
6.192 with those in 6.176a one should take into consideration that here h comes
instead of y

i
and the current is taken as a basic phasor, which means that b∞

must be replaced by (90°−b).
In power networks the value of v/v

n
is always about 10−2 or lower, which

in turn results in values of v
n
T
B
TT greater than unity, and equation 6.192 then

simplifies to

cot b∞=v
n
T
B
TT (1+vT

B
TT ) cot h. (6.193)

Furthermore, if the product v
n
T
B
TT is substantially larger than unity, as with

most of the circuit breakers in practice, cot2 b∞ will also be large compared to
unity, so thus

1/sin b∞=√1+cot2b∞$cot b∞,

and with equation 6.193 for the current in equation 6.190 we have

I
n
= i0

cot b∞
1+v2

n
T 2
B
$i0 A 1v

n
T
B
TT
+
v

v
n
cot hB . (6.194)

Now the amplitude of the transient voltage in equation 6.190 with equations
6.194, 6.183b and 6.185a becomes

V
C,n
VV =SLC In=SLC VsVVvL sin h A 1v

n
T
B
TT
+
v

v
n
cot hB ,

or, after simplification

V
C,n
VV =V

s
VV A 1vT

B
TT
sin h+cos hB . (6.195)

Comparing these results with (6.176b), given for instantaneous interruption,
we see that in the first term the reciprocal value of the quenching time constant
T
B
TT has taken the place of the natural frequency v

n
. Checking these results

numerically we may obtain for a medium network frequency of 10 kHz, with
instantaneous interruption, that the restriking voltage would be (wherein the
insignificant term with cos h is omitted):

V
C,n
VV =

v
n
v
V
s
VV sin h=

2p ·10·103
377

V
s
VV sin h=167V

s
VV sin h.

By gradual interruption with the quenching time constant of 10−4 s, an ampli-
tude develops of only

V
C,n
VV =

1

vT
B
TT
V
s
VV sin h=

1

377·10−4
sin h=26.5V

s
VV sin h.

Considering now the premature extinction by 10°, the interruption angle will



T ransients in T hree Phase Systems 459

be h=10°, as is often found with the interruption of s.c. currents, the p.u.
restriking voltage amplitude will be

V
C,n,pu
VV =

V
C,n
VV

V
s
VV
=26.5 sin 10°=4.6.

The restriking voltage will then be reduced by the damping effect at the rate offfff
the damping coefficient a (equation 6.176a). Note that such restriking oscillations
as shown in Fig. 6.75 start from the last extinction voltage v

ex
.

Once again recall that the physical reason for the much smaller restriking
voltage amplitude and the more favorable initial phase angle is the fact that,
by increasing the arc voltage, the current is shifted away from the arc to the
shunt capacitance before the final interruption is established. A resistance con-
nected across the contacts of the circuit breaker can significantly increase the
damping effect. With such a resistance the oscillation may be critically dampedffff
when R

dam
≥1
2
�L /C, so that the severity of the transient will be reduced.

6.8.2 Multiple oscillations

This kind of oscillation will occur if the circuit breaker is located not at the
place of the short-circuit, but rather at some distance away, as shown in Fig. 6.76.
This may represent a case in which the circuit breaker is located in between a
generator-fed bus and a current-limiting reactor.
The voltages across the two circuit meshes before the interruption are

V1VV =
L 1

L 1+L 2
V
s
VV , V2VV =

L 2
L 1+L 2

V
s
VV .

Figure 6.75 Restriking oscillations of the capacitance voltage and current.
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Figure 6.76 A case where a circuit breaker is connected between two meshes.

After the fault, from the instant at which the arc is finally extinct, the two
circuits are separated and each oscillates at its own natural frequency.

v
n1
=

1

√L 1C1
and v

n2
=

1

√L 2C2
.

The voltage across the circuit breaker is then given by the difference betweenffff
the two capacitive voltages

v
B
=v
C1
−v
C2
=V
s
VV cos vt−V1VV e−t/T1 cos vn1t−V2VV e−t/T2T cos vn2t.

Figure 6.77 shows the above voltages after interruption at zero current. As can
be seen from this figure, the restriking voltage across the circuit breaker has a
more complicated form due to the summation of two oscillations at differentffff
frequencies.

Example 6.30

Determine the overvoltage surge set up on a 66 kV cable fed through a bulk-
oil circuit breaker, when the breaker opens on a short-circuit fault. The network
and breaker parameters are R=7.8 V, L=6.5mH, C=0.16 mF and T

B
TT =10−4 s.

In order to increase the damping effect the shunt resistorffff R
sh
is connected in

parallel to the capacitance. What should its value be in order to damp the
oscillations during 2 or 3 natural periods?

Solution

The natural frequency is

v
n
=

1

√L C
=

1

√6.5·10−3 ·0.16·10−6
=3.1·104 rad/s.

The v
n
T
B
TT product is

n=v
n
T
B
TT =3.1·104 ·10−4=3.1.

With the assumption of a premature extinction by 10° as is often found with
the interruption of short-circuit currents, we will have h=10° and i0/I=
sin 10°=0.173. The quenching time, with equation 6.186 and with the previously
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Figure 6.77 Development of the voltages across two capacitances (a) and the voltage across the

circuit breaker (b).

assumed ratio v
B
/V
s
VV =1/120, will be

t∞=10−4 ln A1+ 0.173·20

377·10−4(1+1/3.12 )B=10−4 ln 82.7=0.442ms,
or vt∞=377·0.442·10−3=0.167 rad and the quenching angle will be h=
0.167·57.3=9.6° (as about what was assumed). Next, we determine the initial
angle b∞ (equation 6.193):

cot b∞=n(1+vT
B
TT ) cot h=0.31(1+377·10−4 ) cot 10°=18.2,

and b∞=3.15°. The p.u. extinction voltage (equation 6.187a) is

v
ex,pu
=
1

20
+

0.173

377·10−4(1+1/3.12)
=4.1.
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The amplitude of the transient voltage becomes (equation 6.195)

V
C,n
VV =V

s
VV A 1

377·10−4
sin 10°+cos 10°B$5.6VsVV ,

and the amplitude of the capacitance current is (equation 6.194)

I
C,n
= i0

cot b∞
1+v2

n
T 2
B
= i0

18.2

1+3.12
=1.71·0.173I=0.3I.

Note that for the same circuit the amplitude of the voltage oscillation, in
accordance with equation 6.176b, i.e., ignoring the arc and quenching time as
happens with an instantaneous switching at the same premature angle of 10°,
should be

V
C,n
VV =V

s
VV SAvnvB2 sin2 yi+cos2yi

=V
s
VV SA3.1·104377 B2 sin2 10°+cos2 10°=14.2VsVV ,

which is almost three times higher than in this example.
The desired damping may be derived by using a 2000 V resistor. Indeed, the
reader may easily convince himself that in this case the damping coefficient is

a=
R

2L
+

1

2R
sh
C
=

7.8

2·6.5·10−3
+

1

2·2000·0.16·10−6

=4.62·103 1/s, or t$0.2ms,

which is about 2.3T
n
TT .

Finally, we have:

v
C,n
(t)=5.6V

s
VV e−2.16·103t sin (3.1·104t−3.15°)

i
C,n
(t)=0.3Ie−9.6·103t cos (3.1·104t+86.9°).

Here the initial angle b∞ is negative as the interruption is assumed to have
occurred when the current changes from negative to positive values, as shown
in Fig. 6.78.
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Figure 6.78 Restriking oscillation of the capacitance voltage and current.
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Chapter #7

TRANSIENT BEHAVIOR OF TRANSMISSION
LINES (TL)

7.1 INTRODUCTION

Transient phenomena in TL occur, like in networks with bulk parameters, when
any change in their parameters, driving sources and/or configuration takes
place. In general, the transients are caused by lightning, switching or faults in
TL. Studies of transient disturbances on a transmission system have shown that
changes are followed by traveling waves, which at first approximation can be
treated as step front waves. For example, when the lightning’s strike influences
a line conductor, the induced voltage wave tends to divide into two halves, with
the two halves going in opposite directions. When a voltage wave reaches a
power transformer, for example, it causes a stress distribution, which is not
uniform and may lead to the breakdown of the insulation system. Transient
phenomena also occur in communication systems when signals of differentffff
forms are transmitted along the transmission line.
As the transmission line is a network with distributed parameters, its transient
analysis, like the steady-state behavior, has to be based on partial differentialffff
equations.

7.2 THE DIFFERENTIAL EQUATIONS OF TL AND THEIR
SOLUTION

Let R, G, L and C be the uniformly distributed parameters of the homogeneous
line throughout its length (i.e. related to the unit of line length). Then we can
represent the long line as a chain of an infinite number of incremental sections
dx with the parameters: resistance Rdx, inductance L dx, conductance Gdx and
capacitance Cdx connected in series and parallel as shown in Fig. 7.1i. Let x be
the distance from the sending-end to the considered section of the line; v and i
be the voltage and the current at the beginning of section dx and v+ (∂v/∂x)dx
and i+ (∂i/∂x)dx at the end of section dx.
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Figure 7.1i The incremental section of a transmission line.

Note that the voltage and current in a transmission line are functions of two
variables x and t. WeWW can now write two equations for this section by applying
Kirchhoff ’s two laws:

v=Av+∂v∂x dxB+Rdx i+L dx ∂i∂t
i=Ai+ ∂i∂x dxB+Gdx Av+∂v∂x dxB+Cdx ∂∂t Av+∂v∂x dxB .

Combining similar terms, dividing by dx and neglecting the quantities of second
order infinitesimality, we obtain two diVi erential equations of partial derivativesVV :

−
∂v
∂x
=Ri+L

∂i
∂t
,

−
∂i
∂x
=Gv+C

∂v
∂t
.

(7.1)

Equations 7.1 are known in classical physics as the equations of telegraphy.
They reduce to wave equations if R and G are set equal to zero. The solution
of equation 7.1 with known initial and boundary (terminal ) conditions allows
for obtaining the line current and voltage in any point of the line as a function
of time and distance from a terminal point.
The influence of resistance R and conductance G relative to L and C in

transmission lines is negligible (especially for fast running processes like high
frequency signals or transient phenomena). In addition, since the traveling time
of waves is relatively small, the influence of losses is scarcely significant. So to
simplify the analysis the line will be assumed to be loss-less. Therefore

∂v
∂x
=−L

∂i
∂t

(7.2a)

∂i
∂x
=−C

∂v
∂t
. (7.2b)
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Note that the negative signs in equations 7.2 are due to the fact that both
voltage v and current i decrease as x increases (the direction at which distance
x advances along the line).
Taking the partial derivative of equation 7.2a with respect to x and the
derivative of equation 7.2b with respect to t, we obtain

∂2v
∂x2
=−L

∂2i
∂x ∂t

(7.3)

∂2i
∂x ∂t

=−C
∂2v
∂t2
. (7.4)

Substituting equation 7.3 into equation 7.4, current i can be eliminated, so that

∂2v
∂x2
=L C

∂2v
∂t2
. (7.5)

Similarly, voltage v can be eliminated, so that

∂2i
∂x2
=L C

∂2i
∂t2
. (7.6)

Equations 7.5 and 7.6 are known as wave equations – they are identical for
both v and i. When one of these functions is found, the other can be found by
applying either equation 7.2a or 7.2b.
The solution of the wave equation can be determined intuitively. Paying

attention to the fact that the second derivatives of the voltage v and current i
functions, with respect to t and x, have to be directly proportional to each
other, means that the solution can be any function as long as both independent
variables t and x appear in the form:

w1,2=x±nt. (7.7)

Therefore, usually the solution of equation 7.5 will be

v(x, t)=v1+v2= f1ff (x−nt)+ f2ff (x+nt), (7.8)

which satisfies equation 7.5.
In order to ensure this and determine the meaning of n, let us substitute one

of the functions (equation 7.8), for example f1ff , in equation 7.5. Its first derivative
with respect to x is:

∂v1
∂x
=
∂f∂ 1f
∂w1

∂w1
∂x
=
∂f∂ 1ff
∂w1
, (7.9a)

and the second derivative is

∂2v1
∂x2
=
∂2f2 1ff
∂w2
1
. (7.9b)
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The first derivative of equation 7.8 with respect to t is:

∂v1
∂t
=
∂f∂ 1ff
∂w1

∂w1
∂t
=
∂f∂ 1ff
∂w1
(−n), (7.10a)

and the second derivative is

∂2v1
∂t2
=n2

∂2f2 1ff
∂w2
1
. (7.10b)

Substituting equations 7.9b and 7.10b in equation 7.5 yields

∂2f2 1f
∂w2
1
=L C n2

∂2f2 1ff
∂w2
1
.

This equation becomes an equality, if L C n2=1, or

n=
1

√L C
(m/s). (7.11)

Hence, n having unit meters per second represents the velocity and, as will be
shown in the following paragraph, it is the velocity of the voltage and current
wave propagation along the line. Similarly, it can be shown that the second term
( f2ff ) in equation 7.8 satisfies equation 7.5 with the same meaning of n.
Now the current function i may be found in accordance with equations 7.2a
and 7.9a. Indeed, substituting first ∂/∂w1 (where f1ff is the first function of equation
7.8) into equation 7.2a for ∂v/∂x gives

∂f∂ 1ff
∂w1
=−L

∂i1
∂t
,

and after integration, with respect to t

P ∂f∂ 1ff∂w1 dt=−L P ∂i1∂t dt
yields [1/(−n)] f1ff =−L i1 , since ∂w1/∂t=−n=const, or

i1=
1

nL
f
LL 1
f (x−nt)=

1

Zc
v1 , (7.12)

where

Zc=nL=
L

√L C
=SLC (7.13)

is the characteristic impedance of a loss-less transmission line.
Following the same steps, the second part of the current, i.e., i2 , may be

obtained with only a difference in the sign. Indeed, after the integration offfff
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equation 7.13 for f2ff and i2 we obtain (1/n) f2ff =−L i2 or

i2=−
1

nL
f2ff (x+nt)=−

1

Zc
v2 . (7.14)

Therefore, the entire current function is

i(x, t)=
1

Zc
[ f1ff (x−nt)− f2ff (x+nt)]= i1+ i2 . (7.15)

In conclusion, it must be mentioned that the actual shape of the voltage and
current functions and their components f1f and f2ff is defined by the initial and
boundary (or terminal ) conditions of a given problem, and also by the activa-
ting sources.

7.3 TRAVELING-WAVE PROPERTY IN A TRANSMISSION LINE

The behavior of the voltage and current functions of equations 7.8 and 7.15
can be understood by selecting some particular point on the wave (zero-crossing,
maximum/minimum etc.) and checking (following) it for different instances offfff
time. This result may be achieved by keeping the argument of v1 (or i1 ) constant,
for example, for point A of v1=0 in Fig. 7.1(a).

wA=x−nt=const. (7.16a)

This means that when t increases, x increases too, so Dx=nDt and this particular
point A moves a distance of Dx, as shown in Fig. 7.1(a). Thus, the voltage
function v1 , if plotted as a function of x for consecutive values of time as shown
in Fig. 7.1(a) (bold line), appears to move in the positive (+x) direction (broken
line). Hence, v1 and i1 are said to be the forward-traveling waves vf and if (or
incident waves).
Similarly, checking v2 (or i2 ) and keeping

wB=x+nt=const. (7.16b)

causes x to decrease as t increases, i.e., Dx=−nDt, which means that a particular
point (for example, point B) on the v2 wave shown in Fig. 7.1(c) appears to
move in the negative (−x) direction.
Hence, v2 and i2 are said to be the backward-traveling waves vb and ib (or

reflected waves). In both cases, n represents the velocity of the voltage and
current wave propagation, or simply the velocity of propagation.
In loss-less transmission lines the waves of voltage and current propagate

without changing their shape. The measurement instrument, such as an oscillo-
scope, which is connected for example at the point x1 of the line, will show the
voltage wave as a function of time as shown in Fig. 7.1(b) (bold line). Note that
the viewed curve is similar (although in a different scale) to the voltage distribu-ffff
tion on the line, i.e., as a function of x. The oscilloscope connected at the next
point x2 will show the same curve (broken line) but with a time delay of Dt=
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Figure 7.1 Traveling voltage wave as a function of distance x and as a function of time t: (a) and

(b) forward-traveling wave, (c) and (d) backward-traveling wave.

(x2−x1 )/n=l12/n, where l12 is the distance between the points x1 and x2
(Fig. 7.1(b). The backward-traveling wave pattern for different values of time isffff
shown in Fig. 7.1(d).
In conclusion, it must be mentioned that at any point on the line, including
points of discontinuity (i.e., at the end of the line at the point of the connection
of two different lines, etc.), the instantaneous voltage and current can beffff
expressed as

v=vf+vb (7.17a)

i= if+ ib , (7.17b)

where the voltage and current traveling wave pair is connected by the character-
istic impedance of the line Zc :

if=
vf
Zc
, ib=−

vb
Zc
. (7.18)

The negative sign in the relation between the voltage and current of the back-
ward-traveling waves is important. It is not dependent on how either the
coordinate system or the positive polarity/direction of voltage/current may be
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chosen. It is understandable in terms of the power shown that the power of a
backward-traveling wave is always negative, which indicates a movement of
energy in the negative direction of x, i.e. in the direction of travel of the vb (x, t)
and ib (x, t) waves.
It can be shown that in the transient behavior of TL, like in the steady state
regime, the power of a forward-traveling wave for example can be expressed in
terms of energy content and wave propagation velocity

Pf=WfWW n, (7.19)

where Pf=nf if is the power of the forward traveling wave.
Indeed, the energies stored in electric (C) and magnetic (L ) fields per unit
length of TL are

WeWW =
1

2
Cv2f , WmWW =

1

2
L i2f . (7.20)

Since the two components of energy storage are equal, the total energy content
stored per unit length is

WfWW =WeWW +WmWW =Cv2f=L i2f . (7.21)

Therefore, the above power can be expressed as

Pf=vf if=
v2f
Zc
=
Cv2f
√L C

=WfWW n. (7.22a)

Of course, the same result can be obtained for a backward-traveling wave

Pb=WbWW n. (7.22b)

Note that the total transient power is a sum of these two components, i.e., the
forward- and backward-traveling waves:

P=vi= (vf+vb )(if− ib )=vf if+vb ib+ (vb if−vf ib )=Pf+Pb
since

(vb if−vf ib )=AvbvfZc − vfvbZc B=0.
Example 7.1

The surge voltage of 1000 kV caused by lightning propagates along the transmis-
sion line, having the distributed parameters L=1.34mH/km and C=8.6 nF/km.

Determine: (a) The surge power in the line, (b) The surge current in the line.

Solution

(a) The total energy stored in an electromagnetic field per unit length of the
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line is

W=Cv2=8.6·10−9(1000·103)2=8.6·103 J/km

The surge velocity is

n=
1

√L C
=

1

√1.34·10−3 ·8.6·10−9
=295·103 km/s

Therefore, the surge power is

P=8.6·103 ·295·103$2500MW.

(b) The characteristic impedance of the line is

Zc=SLC=S1.34·10−38.6·10−9
=395 V.

Therefore the surge current is

i=
v

Zc
=
1000·103
395

=2.53 kA.

It should be noted that for the transient analysis of some problems, when the
voltage and current change versus time is needed, it is more convenient to
express the voltage and current-traveling waves in the form

v=vf+vb=w1 At−xnB+w2 At+xnB (7.23a)

i= if− ib=
1

Zc Cw1 At−xnB−w2 At−xnBD . (7.23b)

7.4 WAVE FORMATIONS IN TL AT THEIR CONNECTIONS

In practice, all kinds of transmission lines are necessarily terminated by sources
or by loads. In addition, a lumped impedance or lumped admittance network
may be inserted in tandem between sections of a line, or two (or more) differentffff
lines may be connected in a network junction. As has been already mentioned,
to determine traveling-wave functions, the boundary conditions of line termina-
tions must be taken into consideration. In other words, at any point of such
non-uniformness or discontinuity, i.e., transition points, Ohm’s and Kirchhoff ’s
law equations must be obeyed in addition to traveling-wave equations.
Therefore, if the voltage and current at such a transition point are known, it

can be written as

vT=vf+vb (7.24)

iT= if+ ib . (7.25)
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Taking into consideration the relation between the voltage and current traveling
waves (equation 7.18), according to equation 7.25 we obtain

Zc iT=vf−vb . (7.26)

Adding equations 7.24 and 7.26 we have

vT+Zc iT=2vf , (7.27)

or the forward-traveling wave will be

vf=
1

2
(vT+Zc iT ). (7.28)

Similarly, by subtracting equation 7.26 from equation 7.24 we obtain

vb=
1

2
(vT−Zc iT ), (7.29)

also from equation 7.26.

vb=vf−Zc iT . (7.30)

7.4.1 Connecting the TL to a d.c./a.c. voltage source

Consider the a.c. source, which is connected at t=0 to a power transmission
line. Such a source of industrial frequency of 50–60 Hz hardly changes during
the time which is needed for a wave to propagate in hundreds of kilometres
(note that the wave propagation time along a line of 1000 km length is about
30 ms as the period of the 50 Hz voltage source is 20·103 ms). Therefore, in the
initial stage of wave formation, the a.c. source can be treated as a d.c. source.
Now consider the transmission line connecting at the time t=0 to the d.c.
source VsVV having input impedance Zs as shown in Fig. 7.2(a). As the line was
not initially charged, no backward (reflection) waves exist at the first moment
after the connection. Therefore equations 7.24 and 7.25 yield

vT=vf , iT= if . (7.31)

Applying the boundary condition

vT=VsVV −Zs iT (7.32)

and solving equations 7.28 and 7.32 with equation 7.31 yields

vf=
Zc

Zs+Zc
VsVV =rsVsVV , (7.33)

where

rs=
Zc

Zs+Zc
(7.33a)

is the source transmission coefficient.
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Figure 7.2 Waves traveling on a line by connecting to a source: circuit diagram (a), equivalent circuitWW

(b), voltage and current distribution (c).

Note that the forward-traveling wave voltage (equation 7.33) might be deter-
mined in accordance with the equivalent circuit shown in Fig. 7.2(b) as the
voltage across the characteristic impedance Zc .
If the connecting source is ideal (Zs=0), the forward-traveling wave is simply

vf=VsVV . Assuming at this point that the source input impedance is pure resistive,
we can conclude that the voltage distribution along the line will be just the
voltage at the sending-end of the line with the time delay t=x/n as is shown
in Fig. 7.2(c), i.e., a step function wave.
Disconnecting a transmission line from the source also causes step function
waves to appear (Fig. 7.3). Assume that, at the disconnecting moment, the
current in the line was Is and the voltage was VsVV . Since after the disconnection
the current at the sending-end becomes zero iT= if+ ib+Is=0 and noting that
no reflection wave yet exists, we obtain

if=−Is , vf=−ZcIs . (7.34)

The voltage distribution will be a sum of the previous voltage VsVV and the
forward-traveling wave

v(x, t)=VsVV −ZcIs At−xnB , (7.35)

and it will be positive if the current Is is smaller than the charge current VsVV /Zc
(i.e., I

s
< (VsVV /Zc )) as shown in Fig. 7.3(b) or negative if vice versa.
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Figure 7.3 Waves traveling on line by disconnecting from a source: circuit diagram (a), voltage andWW

current distribution (b).

7.4.2 Connecting the TL to load

Consider the transmission line shown in Fig. 7.4(a). After turning on the switch,
the load impedance terminates the TL and the backward-traveling wave will
appear. To determine it, Ohm’s law must be obeyed for the receiving terminal
of the line:

vT=ZL iT. (7.36)

Taking into consideration that the line was charged by voltage, say VsVV , the
equations 7.24 and 7.25 with equation 7.18 yield

vT=vb+VsVV , iT= ib=−
vb
Zc
. (7.37)

Solving equations 7.36 and 7.37 gives

vb=−
Zc

Z
L
+Zc

VsVV , ib=
VsVV

Z
L
+Zc

. (7.38)
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Figure 7.4 Traveling waves by load connection: circuit diagram (a): voltage and current distribu-

tion (b).

Assuming that load impedance Z
L
is pure resistive (Z

L
=R
L
), the back-traveling

wave will be a step-wave as shown in Fig. 7.4(b):

vb (x, t)=rtVsVV At+x−l

n B , (7.39)

where r
t
=−Zc/(RL+Zc ) is the load transmission coefficient.

The step-wave also appears at the time when the resistive load is disconnecting
just as in disconnecting the source (Fig. 7.5(a)), ib=−IL and vb=ZcIL, where
I
L
is the load current in the line at the moment of disconnection.
The voltage distribution will be the sum of the previous voltage V

L
VV and the

backward-traveling wave:

v(x, t)=V
L
VV +ZcILAt+x−l

n B , (7.40)

as shown in Fig. 7.5(b). Note that disconnecting the load results in a voltage
increase, which in power TL can be significant.
Using the above studied technique, situations that are more complicated can
be solved as in the following example.
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Figure 7.5 Traveling waves by load disconnection: circuit diagram (a); voltage and current distribu-

tion (b).

Example 7.2

Determine the voltage and current waves due to the connection of the resistive
load R

L
=300V at the arbitrary point of the TL shown in Fig. 7.6(a). The

characteristic impedance of TL is 400 V and it is charged with initial voltage
V0VV =20 kV and initial current I0=50 A.

Solution

Since both directions of wave propagation (to the left and right from the
connection point) are symmetrical, both current waves will be equal to each
other, i.e., if= ib and vf=vb . Applying KCL and Ohm’s law,

i
L
=−(if+ ib )=−2if=−2ib , vL=RL iL=V0VV +vf=V0VV +vb . (7.41)

Solving equation 7.41 with the relation vf=Zc if , we obtain

ib= if=−
V0VV

2R
L
+Zc

=−
20·103
600+400

=−20 A
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Figure 7.6 Traveling waves by load connection at an arbitrary point on the line: circuit diagram

(a); voltage and current distribution (b).

and

vb=vf=Zc if=−
V0VV Zc
2R
L
+Zc

=−20
400

1000
=−8 kV.

The voltage and current distribution along the TL is shown in Fig. 7.6(b).

7.4.3 A common method of determining traveling waves by any kind of
connection

Consider an active network connecting to the junction of two lines, as shown
in Fig. 7.7(a). The forward-traveling wave will appear on the right line and the
backward-traveling wave on the left line. Both current waves can be determined
from the equivalent circuit in which the active network is presented by its
T hevenin equivalent and the two lines by their characteristic impedances, as
shown in Fig. 7.7(b). Note that the voltage source of the Thevenin equivalent
is simply the voltage across the switch at the zero initial condition of the lines.
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Figure 7.7 Active network connection and disconnection: circuit diagrams (a) and (c); the equivalent

circuits for connection and disconnection (b) and (d).

If the lines were initially charged, the final voltage and current distribution will
simply be the superposition of the initial values and the traveling waves.
If the switch is opening, i.e., the network is disconnecting, it has to be
represented in the equivalent circuit by an ideal current source as shown in
Fig. 7.7(c) and (d). Note that the value of the current source is equal to the
current which flowed through the switch just before it opened.
As an example, consider the line connecting to the voltage source with
inductive-resistive impedance, as shown in Fig. 7.8(a). Therefore, the equivalent
circuit will simply be the series connection of the source and the characteristic
impedance of the line as shown in Fig. 7.8b. The transient response of this
circuit gives the forward-traveling current wave at the sending-end as

if=
V0VV

R0+Zc A1−e− ttB ,
where t=L 0/(R0+Zc ) is the time constant of the circuit. The current distribu-
tion along the line will be

if (x, t)=
V0VV

R0+Zc A1−e− t−x/nt B ,
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Figure 7.8 Voltage source with input impedance connecting to the TL: circuit diagram (a); the

equivalent circuit (b); the current curve versus time, and current distribution along the line (c).

and is shown in Fig. 7.8(c), which corresponds to the moment of the arrival of
the wave at point x∞. The voltage wave is proportional to the current wave
vf=Zc if .

7.5 WAVE REFLECTIONS IN TRANSMISSION LINES

Consider, at first, a step-function forward-traveling wave or incident wave. The
moment that this wave reaches the receiving-end of the line (point 2) the
reflecting wave will appear. In the general case of a line terminated in impedance
ZT , the boundary condition is simply Ohm’s law(*)

vT=ZT iT. (7.42)

Let the front of the incident wave in expression 7.27 be V0VV (vf=V0VV ), then we
obtain

ZT iT+Zc iT=2V0VV , (7.43)

(*)In cases where the line terminations consist of inductances or/and capacitances, expression (7.42)
and subsequent ones are solved by means of the Laplace-transform method (see Chapter 3).
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or

iT=
2V0VV
ZT+Zc

. (7.44)

Expression 7.44 shows that the current at the receiving-end of the line can be
determined from the equivalent lumped-impedance circuit in which the line and
its termination are represented by their impedances connected in series, while
the circuit is activated by the double value of the incident wave, as shown in
Fig. 7.9. The voltage at the receiving-end (equation 7.42) can be expressed as

vT=
2ZT
ZT+Zc

V0VV =rrefV0VV , (7.45)

where rref is the refraction coefficient or transmission factor

r
t
=

2ZT
ZT+Zc

. (7.46)

The reflecting or backward-traveling wave are easily obtained as

vb=vT−vf=
2ZT
ZT+Zc

V0VV −V0VV =
ZT−Zc
ZT+Zc

V0VV =rrV0VV , (7.47)

where rr is the receiving-end reflection coefficient

rr=
ZT−Zc
ZT+Zc

. (7.48)

When the reflecting wave arrives at the sending-end, it reflects again. The
sending-end reflection coefficient will then be similar, i.e.,

rs=
Zs−Zc
Zs+Zc

, (7.49)

where Zs is the sending-end termination impedance or the generator input
impedance.

Figure 7.9 The incident wave arriving at the line termination: line diagram (a); equivalent circuit (b).
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Figure 7.10 The junction of two outgoing lines: line diagram (a); equivalent circuit (b).

The concept of an equivalent circuit can be used for any kind of discontinuity.
For example, in Fig. 7.10(a) the junction of three transmission lines is shown.
The equivalent circuit is shown in Fig. 7.10(b) in which the two outgoing lines
are represented by their characteristic impedances in parallel. The second exam-
ple of an inductance connected between two transmission lines is shown in Figs.
7.11(a) and (b). Here the elements, which formed the junction of discontinuity,
are represented in the equivalent circuit by their impedances in series.
In general, the equivalent circuit of any junction of discontinuity consists of
lumped impedances, which represent the elements connected to the junction,
and of the characteristic impedances of the lines. The circuit is driven by a
voltage source of a double value of the incident wave voltage function.
Let us examine several particular kinds of TL terminations.

7.5.1 Line terminated in resistance

In this case the reflecting wave has the same shape as the incident wave, i.e. the
shape of a step-function. (Note that the characteristic impedance of a loss-less
line is also pure resistance.) The reflection wave is determined by the reflection

Figure 7.11 The connection of lumped-impedance in between two lines: line diagram (a); equivalent

circuit (b).
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coefficient (equation 7.47)

vb=rrVfVV =
RT−Zc
RT+Zc

vf . (7.50)

The reflection coefficient rr can be positive or negative, depending on the relative
values of RT and Zc ; it varies between ±1 including zero, i.e., when RT=Zc
(natural termination).
The current reflected wave (equation 7.18) is

ib=− (vb/Zc ).

Then, the voltage vT and current iT at the receiving-end are simply the sum of
both the incident and reflected waves (equation 7.17):

vT=vf+vb , iT= if+ ib . (7.51)

Figure 7.12 shows the analysis of traveling waves when the line is terminated
in a resistance that is larger than the line characteristic impedance (i.e., RT>Zc ) .
Thus, vb is positive and ib is negative. Therefore, the traveling wave arrival at
the line termination results in increased voltage and reduced current, as shown
in Fig. 7.12(b). The opposite case when RT<Zc is shown in Fig. 7.13. Here the

Figure 7.12 Traveling waves after arrival at termination in which RT>Zc : circuit diagram (a);
voltage and current distributions (b).
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Figure 7.13 Traveling waves after arrival at termination in which RT<Zc : circuit diagram (a);
voltage and current distributions (b).

traveling wave arrival at the line termination results in reduced voltage and
increased currents as shown in Fig. 7.13(b).

Example 7.3

A line has a characteristic impedance of 400 V and a terminating resistance of
600 V. Assuming that the incident voltage wave is 100 kV, determine the
following: (a) The reflection coefficient of the voltage wave; (b) The reflection
coefficient of the current wave; (c) The backward-traveling voltage and current
waves; (d) The voltage across and current through the resistor.

Solution

(a) rrv=
RT−Zc
RT+Zc

=
600−400
600+400

=0.2.

(b) rri=
ib
if
=−

vb
ZcN vfZc=− vbvf=−rrv=−0.2.

(c) vb=rrvvf=0.2·100=20 kV

ib=−
vb
Zc
=−

20·103
400

=−50 A.
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(d) vT=vf+vb=100+20=120 kV

iT=
vT
RT
=
120·103
600

=200 A.

7.5.2 Open- and short-circuit line termination

The boundary condition for the current in an open-circuit termination is
iT=0. Therefore,

ib=−if . (7.52)

Using equation 7.18 yields

vb=−Zc ib=Zc if=vf . (7.53)

The same results, of course, can be obtained with a reflection coefficient. Since
the open-circuit termination is an extreme termination in impedance ZT�2 ,
the reflection coefficient is unity and vb=rrvf=vf . The total voltage at the
open-end is vT=vf+vb=2vf . Therefore, the voltage at the receiving-end is twice
the forward voltage wave and this doubled value propagates on the line, as
shown in Fig. 7.14(a).
The boundary condition for the voltage at the short-circuit termination is
vT=0 and therefore

vb=−vf . (7.54)

The short-circuit termination can be treated as the dual of the open-circuit
termination. Therefore, the previous results for voltage traveling waves are now
related to the current traveling waves and vice versa, concluding that the current
at the short-circuited end of the line is twice the forward current wave as shown
in Fig. 7.14(b).

Figure 7.14 Traveling waves pattern for: open-circuit line termination (a); short-circuit line termina-

tion (b).
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7.5.3 Junction of two lines

Applying the concept of an equivalent circuit to the junction of two lines (see
Fig. 7.15(b)), we can conclude that this case is similar to the line terminated in
resistance. Assume that Zc1>Zc2 where Zc1 and Zc2 are the characteristic
impedances of the first and second lines, respectively. For example, it might
represent the junction between an overhead line and an underground cable. If
a voltage surge of a step function form approaches such a junction along the
overhead line, the voltage at the junction decreases relative to the value of the
increment wave. The voltage surge along the cable will be in accordance with
the refraction coefficient (i.e. transmission factor):

vf2=rrefvf1=
2Zc2
Zc2+Zc1

vf1 . (7.55)

The reflection, i.e. backward-traveling wave, in accordance with the reflection
coefficient, is

vb1=rrvf1=
Zc2−Zc1
Zc2+Zc1

vf1 . (7.56)

Fig. 7.15(c) shows the waves occurring at the junction. It can be seen that the
wave, which is refracted or transmitted to the cable, is equal to the sum of the
forward and backward waves.
This property of cables to reduce the voltage surge is used in practice. When
an overhead line is terminated by a transformer, the incident of a voltage surge
on a transformer winding results in a very high voltage gradient at the winding
turns nearest to the line conductor, and may lead to the breakdown of the

Figure 7.15 Traveling voltage and current waves at junction of two lines: circuit diagram (a); the

equivalent circuit (b); the voltage and current distributions along two lines (c).
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insulation. By putting in a short cable between the overhead line and the
transformer, the magnitude of the voltage surge can be reduced before it reaches
the transformer.

Example 7.4

The characteristic impedances of an overhead line and underground cable
connected in series (Fig. 7.15(a)) are 400 V and 50 V respectively. The incident
surge voltage of 800 kV rms is traveling on the overhead line toward the
junction. Determine: (a) the surge voltage transmitted into the cable; (b) the
surge current transmitted into the cable; (c) the surge voltage reflected back
along the overhead line; (d) the power in the forward wave arriving at the
junction and the transmitted wave power.

Solution

(a) vf2=rrefvf1=
2Zc2
Zc2+Zc1

vf1=
2·50

50+400
800=178 kV(rms).

(b) if2=
vf2
Zc2
=
178

50
=3.56 kA(rms).

(c) vb1=vf2−vf1=178−800=−622 kV(rms).

(d) Pf1=
v2f1
Zc1
=
8002
400
=1600MW

Pf2=
v2f2
Zc2
=
1782
50
=634MW.

7.5.4 Capacitance connected at the junction of two lines

Figure 7.16(a) shows two lines connected in tandem and the capacitance con-
nected in parallel to both lines at the junction J. Such a connection may represent
two lines (incoming and outgoing) terminated in a transformer, since the beha-
vior of a transformer at the first instance of wave arrival is as a capacitance.
The equivalent circuit of the junction is shown in Fig. 7.16(b). Using the Laplace
transformmethod, we obtain the expression of the voltage across the capacitance
as

VCVV (s)=
2Zpar
Zc1+Zpar

Vf1VV (s), (7.57)

where

Zpar=
Zc2 (1/sC)
Zc2+1/sC

is the impedance of the parallel connection of C and Zc2 . Substituting Zpar into
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Figure 7.16 Traveling waves on two lines terminated by capacitance: circuit diagram (a); equivalent

circuit (b); voltage and current waves on both lines (c).
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equation 7.57 yields

VCVV (s)=
2Zc2

Zc1+Z2+sCZc1Zc2
Vf1VV (s), (7.58)

or

VCVV (s)=rrefVf1VV (s)
1/T

s+1/T
(7.59)

where rref=2Zc2/(Zc1+Zc2 ) is the transmission factor at infinite time (t�2)
after the capacitance is charged and T=ZeqC (where Zeq=Zc1Zc2/(Zc1+Zc2 )
is the time constant of the circuit.
Considering the step-function incident wave and substituting its Laplace
transform V0VV /s into equation 7.59 gives

VCVV (s)=rrefV0VV
1/T

s(s+1/T )
. (7.60)

Taking the inverse Laplace transform, the time function of the capacitance
voltage becomes

vC (t)=rrefV0VV (1−e−(t/T) ). (7.61)

Therefore the voltage distribution in the outgoing line will be

vf2 (x, t)=rrefV0VV (1−e−(t−x/n)/T ). (7.62)

The reflected wave in the first line can be obtained as

vb1=vC−vf1= (rref−1)V0VV −rrefV0VV e−(t/T).

Therefore the backward-traveling wave along the line is

vb1 (x, t)=rrV0VV −rrefV0VV e−(t−x/n)/T. (7.63)

The current traveling waves in both directions are the same shape as the voltage
traveling waves and their value is related to them in the characteristic impedance
of the corresponding line. The voltage and current distribution in both lines
are shown in Fig. 7.16(c).
In most practical analyses, the shape of the voltage/current waves caused by
lightning is considered as an impulse as shown in Fig. 7.17(a). In such an impulse,
the voltage/current rises quickly to a maximum value and then decays slowly
to zero. The crest time in which the voltage reaches its maximum value is
about 1.2 ms.
When the first moment of the wave incident is of interest, the shape of the
wave is simplified, having a constant value and ramped front as shown in
Fig. 7.17(b). When the relatively long-term (t&tcr ) response is of interest, the
voltage impulse of wave tail shape is considered, Fig. 7.17(c).
Now assume that the ramped front function incident wave reaches the junc-
tion of two lines with a capacitance connected to the junction. The ramped front
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Figure 7.17 Impulse voltage waveform: standard impulse (a); ramped front function approximation

(b); tail-shaped approximation (c); the superposition of two ramp functions (d).

function can be superposed from two ramp functions of slope h=V0VV /tcr : one
positive and one negative, while the letter is shifted by the crest time, tcr :

vf (t)=ht−h(t−tcr), (7.64)

as shown in Fig. 7.17(d). Substituting the Laplace transform of the ramp func-
tion vr=ht<h/s2 into equation 7.59 gives

VCrVV (s)=rth
1/T

s2(s+1/T )
. (7.65)

Taking the inverse Laplace transform, the capacitance voltage in the time
domain for time less than tcr becomes

vCr(t)=rth[t−T (1−e−(t/T))], t≤tcr. (7.66)

In accordance with equation 7.64, the capacitance voltage for the time larger
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then tcr will be

vCr(t)=rtV0VV C1+ Ttcr (e−(t/T)−e−(t−tcr)/TD , t≥tcr. (7.66a)

The capacitance voltage change for both instances of time is shown in
Fig. 7.18(a) and (b). First, notice that for t�2 the capacitance voltage is r

t
V0VV

which is the same as in the previous case of the step function wave response
(see equation 7.61). Secondly, as can also be seen from Fig. 7.18(b), the slope
of the resulting voltage has changed relative to the slope of the incident voltage
wave. In order to estimate this change, let us determine the equivalent slope as

Figure 7.18 The voltage change across the capacitance as a response to: infinite ramp function

incident wave (a); ramped front incident wave (b).
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a tan c, where the angle c is of a tangent drawn through a point p (t=tcr ):

tan c=CdvCdt D
t=t
cr

=r
t
V0VV
1

tcr
(1−e−t

cr
/T ).

Therefore, the equivalent crest time of the capacitance voltage can be expressed
as

teq=
r
t
V0VV

tan c
=

tcr
1−e−t

cr
/T
, (7.67)

i.e., the bigger T is in relation to tcr , the greater the change in the slope. (For
T≤1/3tcr the change in slope is not significant.)
When the relatively long-term (t&tcr) response is of interest, the voltage
impulse of the shape shown in Fig. 7.17(c) is considered. In simple terms this is
the decreasing exponential

vf (t)=V0VV e−t/T0TT , (7.68)

and T0TT is estimated in accordance with T0TT =timp/0.7 where timp is the time in
which the maximum value of the impulse in Fig. 7.17(a) decreases by half.
Substituting the Laplace transform of an exponential into equation 7.59 yields

V
C,
VV exp=rtV0VV

1

T (s+1/T0TT )(s+1/T )
, (7.69)

and with the inverse Laplace transform

v
C,exp (t)=rtV0VV

T0TT
T0TT −T

(e−t/T
0
TT −e−t/T ). (7.70)

The two exponential terms of equation 7.70 (see broken lines), the resulting
voltage (1) and the voltage wave impulse (2), are shown in Fig. 7.19. Equating
the derivative of equation 7.70 to zero yields the time in which the capacitance
voltage reaches its maximum,

t(max)=
T0TT T
T0TT −T

ln
T

T0TT
=a ln

T

T0TT
, (7.71)

and the scaled value of the maximum voltage is

V2VV max
r
t
V0VV
=ATT0TT Ba , (7.72)

where

a=
T /T0TT
1−T /T0TT

,

i.e., the maximum voltage is dependent on the ratio T /T0TT . If the ratio is
T /T0TT >0.5, then the capacitance results in reducing the maximum voltage by
more than half.
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Figure 7.19 The voltage change across the capacitance as a response to the exponential function

incident wave: curve 1, resulting voltage; curve 2, voltage incident wave. The broken lines are two

exponential terms.

7.6 SUCCESSIVE REFLECTIONS OF WAVES

Consider the TL, which is terminated in the generator input impedance Zs by
the sending-end and in load impedance ZT by the receiving-end (see the footnote
in section 7.5 on p. 480). Neither of them is equal to the characteristic impedance
Zc , so in theory an infinite succession of reflected waves results.
The first forward-traveling (f.t.) wave (a step-function voltage source is
assumed) will be (7.33)

vf1 (0, t)=rtVsVV =
Zc

Zs+Zc
V0VV u(t), (7.73)

where u(t) is a unit function. The first backward-traveling (b.t.) wave appears
after the first f.t. wave reaches the receiving end,

vb1 (l, t)=rrvf1=rrrtV0VV u(t−tr ), (7.74)

where tr=l/n is the delay time in which the f.t. wave reaches the receiving-end
of the line.
The second f.t. wave appears after the first b.t. wave reaches the sending-end

of the line and it can be found in accordance with the sending-end reflection
coefficient rs (equation 7.49):

vf2 (0, t)=rsrrrtV0VV u(t−2tr ). (7.75a)

In a similar way, the second b.t. wave becomes

vb2 (l, t)=rsr2r rtV0VV u(t−3tr ), (7.75b)
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or for kth incident t>ktr

vf,k (x, t)= (rsrr )k−1rtV0VV u A2(k−1)tr−xnB
(7.76)

vb,k (x, t)= (rsrr )k−1rrrtV0VV u At−2(k−1)tr−xnB .
The current waves are simply related to the voltage waves by a characteristic
impedance

if,k=
vf,k
Zc
, ib,k=−

vb,k
Zc
.

Thus, the complete response consists of an infinite series of voltage and
current step-function waves which are added successively as the wave front
travels from the source to its terminated end and back. Each of the forward-
and backward-traveling wave series can be treated as infinitely decreasing
geometric progressions having the ratio rsrr (which is less than one) and the
first terms r

t
V0VV and rrrtV0VV , respectively. Hence, the final value of the line voltage

at t�2 can be expressed as the sums of these two progressions,

v(x, t)=
r
t
V0VV

1−rsrr
+
rrrtV0VV
1−rsrr

=V0VV
ZT

Zs+ZT
, (7.77)

i.e., the steady-state voltage at the receiving-end of the line (note that the source
is simply a d.c. quantity and the line is loss-less).

7.6.1 Lattice diagram

The voltage at a given point and time can be determined graphically with the
help of the lattice diagram, suggested by Bewley(*). It gives a visual track
representation of a traveling voltage or current wave as it reflects back and
forth from the ends of the line, as shown in Fig. 7.20.
In the lattice diagram, the distance between the sending- and receiving-ends
is represented by the horizontal line and time is represented by two vertical
lines (tr is the time for a wave to travel the line length). The diagonal zigzag
line represents the wave as it travels back and forth between the ends or points
of discontinuities: the line sloping to the right gives a forward-traveling wave
in the increasing x direction, whereas the line sloping to the left gives the
backward-traveling wave in the decreasing x direction. The slopes of the zigzag
lines give the times corresponding to the distances traveled.
The value of each wave has been written above the corresponding line; each

reflection is determined by multiplying the incident wave by the appropriate
reflection coefficient rr or rt . Of course, the same lattice diagram can also

(*)Bewley, L.V. (1951) T raveling Waves on T ransmission Systems. Wiley, New York.
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Figure 7.20 Lattice diagram for transmission line.

represent the current traveling waves. Nevertheless, the fact that the reflection
coefficient for the current is always the negative of the reflection coefficient for
the voltage should be taken into account. The voltage and current at a given
point with the coordinates of time and distance along the line may then be
determined by drawing a vertical line through this point and adding all the
terms that are directly above that point corresponding to the intersections of
the sloping lines with the given vertical line. For example, the voltage at
t=4.5tr and x= (1/4)l is

v(0.25l, 4.5tr )=rtV0VV (1+rr+rsrr+rsr2r+r2s r2r ).

Example 7.5

Consider an underground cable line 1.6 km long with a characteristic impedance
of 50 V and a wave propagation velocity of 1.6·108m/s. The line is connected
to the d.c. ideal Zs=0 voltage source V0VV =1000 V and terminated in a 200 V
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resistor. (a) Determine the reflection coefficients at the sending- and receiving-
ends; (b) Draw the appropriate lattice diagram for voltage and current; (c)
Determine the value of voltage and current at t=5.5tr and x= (1/4)l; (d) Plot
the voltage and current versus time at line point x= (1/2)l.

Solution

(a) The reflection coefficients are

rs=
Zs−Zc
Zs+Zc

=
0−50
0+50

=−1, rr=
ZT−Zc
ZT+Zc

=
200−50
200+50

=0.6.

(b) The traveling time is

tr=
1.6·103
1.6·108

=10 ms.

The lattice diagram is shown in Fig. 7.21(a). The values of the voltage/current
traveling waves are written above the arrows.

(c) From the lattice diagram the voltage at the point A is

v A14 l, 5.5trB=1000+600−600−360+360=1000 V,
and the current is

i A14 l, 5.5trB= 150 (1000−600−600+360+360)=10.4 A.
(d) The plot of the voltage and current at the line point x=1/2l versus time
is shown in Fig. 7.21(b) and (c).

7.6.2 Bergeron diagram

Another convenient way of graphically determining voltages and currents at
the two ends of the line as a result of an incident wave reflection is by a diagram
attributed to Bergeron(*). This method is based on a graphical solution of a
system of two linear equations and can be explained by a single example of the
equivalent circuit of Fig. 7.2(b) shown again in Fig. 7.22(a), where the source is
designated by V0VV and its input impedance by Rs . The following two equations
express the two voltage-current loci (see Fig. 7.22(b)), one for the source (genera-
tor) and the other for the load (which here is the characteristic impedance Zc ):

v=V0VV −Rs i (7.78a)

(*)Bergeron, L. (1961) Water Hammer in Hydraulics and Wave Surges in Electricity.WW The American
Society of Mechanical Engineers, New York.
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Figure 7.21 Lattice diagram (a) and voltage (b) and current (c) plots of Example 7.5.
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Figure 7.22 A graphical solution of series source-load circuit: the circuit diagram (a); the voltage-

current loci (b).

and

v=Zc i. (7.78b)

Point A of their intersection gives the graphical solution of these two equations
as shown in Fig. 7.22(b). Note that the slopes of these two lines are given
by −Rs and Zc . It should also be noted that this graphical method is especially
appropriate for nonlinear elements, like surge arresters, for example.
The complete solution for a line terminated in the voltage source (V0VV , Rs ) at

the sending-end and in the resistor (RT ) at the receiving-end is given in
Fig. 7.23(a). Point A1 corresponds to the voltage and current at the sending-
end after the source switching t=0

+
( just like in Fig. 22(b)). Note that this

voltage gives the first forward-traveling wave. The voltage and current at the
receiving-end can be determined in accordance with the equivalent circuit similar
to the one shown in Fig. 7.9(b) since the line is initially quiescent. The line
drawing through point A1 and sloping in accordance to −Zc represents the
voltage-current locus of the source whose value is 2vf1 and whose input imped-
ance is Zc . (Note that in order to draw this locus it is not necessary to start
with the point which lies on the ordinate axis, i.e. of 2vf1, and if1=0, but it can
be drawn through any point which belongs to this locus, for example, point
A1 .) The intersection of this locus with the locus of the load resistor RT , point
B1 , yields the resultant voltage vT and current iT at the receiving-end immediately
after the arrival of 2vf1 . The first backward-traveling wave can then be obtained
as

vb1=vB1−vf1 , ib1= iB1− if1 . (7.79)

The equivalent circuit for calculating the next value of voltage and current at
the sending-end is shown in Fig. 7.23(b). In accordance with the above, the
locus, which determines the voltage and current at the sending-end, is parallel
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Figure 7.23 Bergeron diagram for TL with terminations Rs=0.2, RT=0.1Zc : Bergeron diagram
(a); equivalent circuit for the sending-end (b); the plot of the sending- and receiving-end voltages

versus time (c).

to the locus v=Zc i and passes through point B1 . (Note again that in order to
draw this locus it is not necessary to start with the point on the ordinate axis,
which is 2vb1 , ib1=0.) The intersection of this locus with the sending-end voltage
source locus, point A2 , gives the resultant voltage and current at x=0 at the
time of the arrival of vb1 and ib1 . The next forward-traveling wave will be

vf2=vA2−vb1 , if2= iA2− ib1 . (7.80)

This process may be continued for any desired number of intervals. The intersec-
tion of two loci, point C, which represent both ends, yields the limiting values
of line voltage and current as t�2 (which is also in accordance with equation
7.77). The plot of both the sending- and receiving-end voltages versus time
obtained with the help of the Bergeron diagram is shown in Fig. 7.23(c).

7.6.3 Nonlinear resistive terminations

The Bergeron diagram is the most suitable for reflecting wave determination
when the transmission line is terminated in a nonlinear element. One example
of such elements can be a surge arrester, which consists of an air gap and a
nonlinear resistor. Fig. 7.24(a) shows the equivalent circuit of the line terminated
in a surge arrester (SA), and Fig. 7.2(b) shows how the discharge voltage curve
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Figure 7.24 Transmission line terminated in a nonlinear resistor (surge arrester): equivalent circuit

(a); arrester characteristic construction (b).

of the arrester can be built using the graphical solution. Since the line has been
assumed to be initially quiescent, the voltage-current (v-i) locus of a nonlinear
resistor (curve a in Fig. 7.24(b)) is drawn from the origin. In the left-half plane
the equivalent surge voltage versus time (curve b) and volt-second characteristic
of an arrester’s air gap (curve c) are plotted. The intersection of these two curves,
point A, determines the initial voltage, which activates the surge arrester (see
the equivalent circuit (a) in Fig. 7.24)). The intersection of a sloped (in relation
to Zeq ) line ‘‘1’’ and the v-i locus (curve a), point 1a, gives the voltage drop
across the arrester, i.e., across the nonlinear resistor. The next voltage drops
across the nonlinear resistor in accordance with the surge voltage change can
be obtained in the same way (see points 2a, 3a and so on). Transferring these
points to the left-half plane in accordance with the appropriate time results in
the discharge voltage characteristic of an arrester: curve v(t). Note that, because
of nonlinearity, the voltage across the arrester hardly changes, being much
lower than the surge voltage and thereby protecting the high voltage equipment.

7.7 LAPLACE TRANSFORM ANALYSIS OF TRANSIENTS IN
TRANSMISSION LINES

As is known, any circuit equation, written in phasor notation, can be converted
into a Laplace transform equation by simply replacing jv with s. To use this
procedure, let us first consider a transmission line activated at its sending-end
by a sinusoidal voltage source. Applying the current and voltage phasors:
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Ĩ=Imejyi and Ṽ=ejyv , which become functions of x only (and since the multi-
plier ejvt is crossed throughout the equations), partial derivative equations 7.1
convert into ordinary differential equations:ffff (*)

−
dV

dx
= (R+ jvL )I=ZI (7.81a)

−
dI

dx
= (G+ jvC)V=YV, (7.81b)

where Z=R+ jvL and Y=G+ jvC are the impedance and admittance per
unit length, respectively. Differentiating equations 7.81 with respect toffff x gives

−
d2V
dx2
=Z

dI

dx
, −

d2I
dx2
=Y
dV

dx
,

and substituting the values of dI/dx and dV/dx according to equations 7.81, we
obtain

d2V
dx2
=ZYV (7.82a)

d2I
dx2
=ZYI. (7.82b)

Two ordinary second-order differential equations 7.82, which define theffff

current/voltage phasors change along the line, are similar (from a mathematical
point of view). Therefore, it is sufficient to solve one of them, for example
equation 7.82a for the voltage and realize the current from equation 7.81a.
The solution of the ordinary second-order differential equation 7.82a for theffff

voltage is of the form

V (x)=A1e−cx+A2ecx, (7.83a)

and for the current I, from equation 7.81a with equation 7.83, is

I=
c

Z
(A1e−cx−A2ecx ),

or

I=
1

Zc
(A1e−cx−A2ecx ). (7.83b)

(*)For the simplification of formula, writing the superscript ‘‘~’’, for denoting phasors, is omitted
throughout this chapter.
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The exponent power coefficient c is found as a root of the characteristic equation
s2=ZY,

±c=±√ZY=±√(R+ jvL )(G+ jvC), (7.84a)

which is a complex quantity, called the propagation constant, and

Zc=
Z

c
=SZSSY =SR+ jvLG+ jvC

=|Zc |ejh (7.84b)

is the characteristic impedance of the line with a magnitude |Zc | and argument
(angle) h:

|Zc |=4SR2+v2L 2LLG2+v2C2
, h=

1

2
tan−1

v(GL−RC)
RG+v2L C

.

(Here, the resistivity (R) and conductivity (G) of a TL are taken into account.
By neglecting R and G, argument h turns into zero, and |Zc | turns into the
previously obtained quantity, given by expression 7.13, i.e., Zc=

�L /C.)
In equations 7.83, A1 and A2 are the arbitrary constants, which have to be
selected to conform to the boundary conditions, and they are complex quantities:

A1=|A1 |ejy1 , A2=|A2 |ejy2 .

To solve equations 7.83 constants A1 and A2 shall be found from the known
boundary conditions. Let V1VV and I1 be the voltage and current of the sending-
end (x=0) of the line. According to (7.83) for x=0 we have V1VV =A1+A2 and
I1Zc=A1−A2 . Therefore,

A1=
1

2
(V1VV +ZcI1 ), A2=

1

2
(V1VV −ZcI1 ). (7.85)

Substituting equations 7.85 into 7.83, we obtain voltage V and current I in any
point of the line at the distance of x from its sending-end

V (x)=
1

2
(V1VV +ZcI1 )e−cx+

1

2
(V1VV −ZcI1 )ecx

(7.86a)

I(x)=
1

2 AV1VVZc+I1B e−cx− 12 AV1VVZc−I1B ecx .
Equations 7.86a are known as the equations of the transmission line in exponen-
tial form. Combining similar terms in equation 7.86a,

V (x)=
ecx+e−cx
2

V1VV −
ecx−e−cx
2

ZcI1

I(x)=−
ecx−e−cx
2

1

Zc
V1VV +

ecx+e−cx
2

I1 ,

and using the hyperbolic functions, these equations can be written in hyperbolic
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form

V (x)= (cosh cx)V1VV − (Zc sinh cx)I1
(7.86b)

I(x)=A− 1Zc sinh cxB V1VV + (cosh cx)I1 .
Now consider the case where the voltage V2VV and the current I2 of the receiving-
end of the line are known. Let x∞ be the distance between the receiving-end of
the line and the observed point. Since x=l−x∞ (l is the length of the line),
equations 7.83 will be

V=A1e−clecx∞+A2ecle−cx∞ , I=
1

Zc
(A1e−clecx∞−A2ecle−cx∞ ).

Let A3=A1e−cl and A4=A2ecl be the new boundary constants. Omitting the
prime-sign in x∞, but taking into consideration that the variable x is reckoned
from the receiving-end, we obtain

V=A3ecx+A4e−cx , I=
1

Zc
(A3ecx−A4e−cx ). (7.87)

Substituting x=0 allows for determining the boundary constants A3 and A4

A3=
1

2
(V2VV +ZcI2 ), A4=

1

2
(V2VV −ZcI2 ).

Equations 7.87 with the above arbitrary constants give the equations of a
transmission line when the receiving-end boundary conditions are known

V (x)=
1

2
(V2VV +ZcI2 )ecx+

1

2
(V2VV −ZcI2 )e−cx

(7.88a)

I(x)=
1

2 AV2VVZc+I2B ecx− 12 AV2VVZc−I2B e−cx.
Combining the similar terms in equations 7.88a, the transmission line equations
can be obtained in hyperbolic form

V (x)= (cosh cx)V2VV + (Zc sinh cx)I2
(7.88b)

I(x)=A 1Zc sinh cxB V2VV + (cosh cx)I2 .
For the sending-end of the line, i.e. when x=l, equations 7.88 become

V1VV = (cosh cl)V2VV + (Zc sinh cl)I2
(7.89)

I1=A 1Zc sinh clB V2VV + (cosh cl)I2 .
Equations 7.89 express the voltage and current phasors of the sending-end of
the line in terms of the voltage and current phasors of the receiving-end.
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7.7.1 Loss-less LC line

By replacing jv with s the above-obtained phasor equations become the
Laplace-transform equations. Thus, equations 7.89 become

V (x, s)=V2VV cosh cl+ZcI2 sinh cl
(7.90)

I(x, s)=
V2VV
Zc
sinh cl+I2 cosh cl.

where c is in accordance with equation 7.84 and after replacing jv with s
becomes

c=√(R+sL )(G+sC). (7.91a)

For a loss-less line (R=0 and G=0) it turns to

c=s√L C=s/n, (7.91b)

and the phasor equations 7.90 become the Laplace equations:

V (x, s)=V2VV cosh str+ZcI2 sinh str
(7.92)

I(x, s)=
V2VV
Zc
sinh str+I2 cosh str ,

where tr=l/n is the wave traveling time along the line. In order to find the
solution of (7.92), the boundary equations for voltage vs. current (or vice versa)
have to be taken into account.

7.7.2 Line terminated in capacitance

Consider the loss-less line, terminated in the capacitance and connected to the
ideal source d.c. as shown in Fig. 7.25(a). For this line the boundary equations
are:

V (0, s)=V0VV /s for the sending-end (7.93a)

I(l, s)=sCV (l, s) for the receiving-end. (7.93b)

Figure 7.25 The circuit diagram of the TL terminated in capacitance (a) and the graphical solution

of the characteristic equation (b) for a different ratioffff T /tr .
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Substituting these boundary conditions in the first equation 7.92 yields

V (l, s)=
V0VV

s(cosh str+sT sinh str )
=
V0VV
sF(s)

(7.94)

where T=C2Zc is a time constant.
In order to obtain the receiving-end voltage in the time domain, we obtain
the partial fraction expansions in the following form:

v(l, t)=
V0VV
F(0)

+ ∑
2

−2

V0VV
s
k
F∞(s
k
)
es
k
t , (7.95)

where s
k
are roots (or the network poles) of the characteristic equation

cosh str+sT sinh str=0. (7.96)

Since the loss-less line only consists of inductances and capacitances, the roots
of equation 7.96 are pure imaginary values (s

k
=± jv

k
). Therefore equation

7.96 changes into a trigonometrical equation

cot v
k
tr=
T

tr
v
k
tr . (7.97)

The graphical solution of equation 7.97 is shown in Fig. 7.25(b). The intersection
points of two plots, versus the variable v

k
tr , which represent two sides of

equation 7.97, give the characteristic equation roots (the radiant frequency v
k

results in the quotient obtained by the division of the abscissa of the intersection
points by tr ).
For any conjugate pair ± jv

k
the sum of equation 7.95 consists of the kth

cosine term

A
k
ejvt+A*AA

k
e−jvt=2A

k
cos v

k
t, (7.98)

where A
k
and A

*
AA
k
are also a conjugate pair. In order to determine A

k
, the

derivative of F(s) has to be found

F∞(s)K
s=±jv

=± jtr CA1+TtrB sin vktr+vktr Ttr cos vktrD . (7.99)

Then in accordance with equation 7.95 and using equation 7.99, we obtain

−A
k
=

V0VV

v
k
tr CA1+TtrB sin vktr+vktr Ttr cos vktrD

=
V0VV

v
k
tr

sin v
k
tr
+cos v

k
tr

. (7.100)

The first term of equation 7.95 is

V0VV
F(0)

=C V0VV
cosh str+sT sinh strDs=0=V0VV . (7.101)
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Figure 7.26 The dependence of magnitudes A1–A– 4 by the ratio T /tr .

Therefore the complete receiving-end voltage response is

v(l, t)=V0VV A1−∑2
1
2A
k
cosv

k
tB . (7.102)

Figure 7.26 shows the dependency of the magnitude A
k
by the ratio T /tr . It can

be concluded that for large ratios of T /tr (i.e. the capacitance is relatively big
and/or the line is short) the high harmonic magnitudes are negligibly small and
the first magnitude A1 approaches unity. This means that the line terminating
in a big capacitance behaves as a lumped L C circuit. Two plots of v(l, t) versus
t/tr for T /tr=0.5 and T /tr=2, are shown in Fig. 7.27. Note that for the ratio
T /tr=2 the voltage response curve is very close to the sinusoidal function. The
points of non-continuity of the first curve (in Fig. 7.27(a)) represent the arrival
of the incident waves.
It should be emphasized that solution of equation 7.92 immediately gives the
complete voltage compared to other techniques in which the voltage or current
are determined by means of the sum of the traveling waves.

7.7.3 A solution as a sum of delayed waves

As a further example of using Laplace transform techniques, let us again consider
the TL equations, for the phasor representation, given in exponential form (see
equations 7.88a). These equations can be rewritten in the following form:

V (x)=
V2VV +ZcI2
2

(ecx+r2 (s)e−cx ) (7.103a)
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Figure 7.27 The receiving-end voltage curve versus the scaled time t/tr : for the ratio T /tr=0.5 (a);
for the ratio T /tr=2 (b).

I(x)=
V2VV +ZcI2
2Zc

(ecx−r2 (s)e−cx ), (7.103b)

where r2= (Z2−Zc )/(Z2+Zc ) is the receiving-end reflection coefficient for the
phasor quantities and Z2=V2VV /I2 . Considering the voltage and current phasors
as Laplace transform quantities (i.e., by replacing jv by s) the above equations
become the Laplace transform equations.
To simplify the following analysis we will assume, as before, that the TL is
loss-less, therefore c=s�L C=s/n and equations 7.103 become

V (x, s)=
V2VV +ZcI2
2

(esx/n+r2 (s)e−sx/n ) (7.104a)

I(x, s)=
V2VV +ZcI2
2Zc

(esx/n−r2 (s)e−sx/n ). (7.104b)

Now consider the boundary conditions

V1VV (s)=
V0VV
s
(Z1=0), V2VV (s)=Z2 (s)I2 (s). (7.105)

Then equation 7.104a yields

V1VV (s)=
V2VV (s)+ZcV2VV (s)/Z2 (s)

2
(esl/n+r2 (s)e−sl/n ),



508 Chapter #7

which allows the voltage transfer function to be determined:

Hv (s)=
V2VV (s)
V1VV (s)

=
2

1+Zc/Z2

1

esl/n+r2 (s)e−sl/n
. (7.106)

For the given boundary conditions, equation 7.105, and after substituting I2=
V2VV /Z2 and V2VV =V1VV (s)Hv(s) (from equation 7.106) into equation 7.104a, this
equation can be expressed as

V (x, s)=
V0VV
s

es(x−l)/n+r2 (s)e−s(x+l)/n
1+r2e−2sl/n

. (7.107)

Assuming again that x is reckoned from the sending-end, i.e., x∞=l−x, but
omitting the prime-sign in x∞, after interchanging, we obtain

V (x, s)=
V0VV
s

e−sx/n+r2 (s)e−s(2l−x)/n
1+r2e−2sl/n

, (7.108a)

and similarly for the current

I(x, s)=
V0VV
sZc

e−sx/n+r2 (s)e−s(2l−x)/n
1+r2e−2sl/n

, (7.108b)

where x is reckoned from the sending-end. To simplify the solution and better
understand these techniques, consider an open-circuited receiving-end Z2�2,
i.e., r2 (s)=1. Therefore, equation 7.108a yields

V (x, s)=
V0VV
s

e−sx/n+e−s(2l−x)/n
1+e−2sl/n

. (7.109)

In order to find the inverse Laplace transform we note that the expression
1/(1+e−2sl/n) can be treated as the sum of the infinitely decreasing geometric
progression of the ratio q=−e−2sl/n, i.e.,

1

1+e−2sl/n
=1−e−2sl/n+e−4sl/n−e−6sl/n+ · · · .

Then equation 7.109 becomes

V (s, x)=
V0VV
s
(e−sx/n+e−s(2l−x)/n−e−s(2l+x)/n−e−s(4l−x)/n+e−s(4l+x)/n+ · · ·).

(7.110)

In accordance with the time-shift theorem, the time domain voltage is simply
the infinite sum of the delayed step-functions of V0VV

v(t, x)=V0VV Cu At−xnB+u At− 2l−xn B−u At− 2l+xn B
−u At− 4l−xn B+ · · · D , (7.111a)
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and similarly the time domain current is

i(t, x)=
V0VV
Zc Cu At−xnB−u At− 2l−xn B−u At− 2l+xn B
+u At− 4l−xn B+ · · · D . (7.111b)

In equation 7.111 the terms +u[t− (k2l−x)/n], (k=0, 1, 2, . . .) represent the
unit step-functions delayed by the time (k2l+x)/n in which the kth forward-
traveling wave arrives the point x and the terms −u[t− (k2l−x)/n] represent
the unit step-functions delayed by the time (k2l−x)/n in which the kth back-
ward-traveling wave arrives at point x. Figure 7.28 shows the voltage and
current changing in time at a half line distance.
As a next example, consider the line terminated in the capacitance. The
Laplace transform reflection coefficient in this case is

r2 (s)=
1/sC−Zc
1/sC+Zc

=−
s−a
s+a

, (7.112)

where a=1/T=1/CZc . In accordance with equation 7.112 equation 7.108 yields

V (s, x)=
V0VV /s

1−[(s−a)/(s+a)]e−2sl/n Ae−sx/n− s−as+a
e−s(2l−x)/nB . (7.113)

Again we will treat the expression

1

1−[(s−a)/(s+a)]/e−2sl/n

as the sum of the infinitely decreasing geometric progression having the ratio
[(s−a)/(s+a)]e−2sl/n (note that for Re[s]>0 the magnitude | (s−a)/(s+a) |<1)

Figure 7.28 Voltage (a) and current (b) plots versus time at the line point x=l/2.
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and the first member of unity. Therefore,

1

1−[(s−a)/(s+a)]e−2sl/n
=1+

s−a
s+a

e−2sl/n+As−as+aB2e−4sl/n+ · · ·
and

V (s, x)=
V0VV
s Ce−sx/n− s−as+a

e−s(2l−x)/n+
s−a
s+a

e−s(2l+x)/n−As−as+aB2e−s(4l−x)/n
+As−as+aB2e−s(4l+x)/n−As−as+aB3e−s(6l−x)/n+ · · ·D . (7.114)

The Laplace transform of the receiving-end voltage, i.e., voltage across the
capacitance, becomes

V (s, l)=
V0VV
s Ce−sl/n− s−as+a

e−sl/n+
s−a
s+a

e−3sl/n−As−as+aB2e−3sl/n
+As−as+aB2e−5sl/n−As−as+aB3e−5sl/n+ · · ·D . (7.115)

Note that the inverse Laplace transforms of the terms are

1

s

s−a
s+a

<−1+2e−at

1

s As−as+aB2<1−4ate−at
1

s As−as+aB3<−1+2(1−2at+2a2t2)e−at.
e

and therefore with the time-shift theorem we obtain

v(t, l)=V0VV (u(t−tr )− (−1+2e−a(t− tr) )u(t−tr )+ (−1+2e−a(t−3tr) )u(t−3tr )

−[1−4a(t−3tr )e−a(t−3tr)]u(t−3tr )

+{−1+2[1−2a(t−5tr )+2a2 (t−tr )2]e−a(t−5tr)}u(t−5tr )− · · ·),

(7.116)

where t=l/n is the wave traveling time along the line. The capacitance voltage
plots versus t in accordance with equation 7.116, for the ratios T /tr=0.5 and
T /tr=0.2 are shown in Fig. 7.29. (Note the similarity of the curves in Fig. 7.29
and Fig. 7.27.) However, since only a few first terms in equation 7.116 have
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Figure 7.29 Voltage across the capacitance as versus t for the ratios T /tr=0.5 (a) and T /tr=0.2 (b).

been taken into consideration, the curves in Fig. 7.29 give just a rough approxi-
mation of the voltages after only a couple of reflections.

7.8 LINE WITH ONLY L G OR CR PARAMETERSPP

In some practical applications of electrical engineering techniques we consider
networks in which the only significant parameters are L and G or C and R. An
example of the former is ground rods used for grounding line towers and other
power station (and substation) equipment. Under conditions of lightning impulse
stress, the rods have to be treated as a network with distributed parameters as
shown in Fig. 7.30(a). An example of the latter is an underground cable whose
insulation is very good (G=0) and inductance is negligible (L=0) as shown in
Fig. 7.30(b). The propagation constant and characteristic impedance in these
cases are

c(s)=√L Gs or c(s)=√CRs (7.117a)

Zc=SsLG or Zc=SRsCS . (7.117b)

The differential equations 7.1 in such cases are simplified:ffff

for the ground rod to

−
qv
qx
=L

qi
qt
, −

qi
qx
=Gv (7.118)
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Figure 7.30 The equivalent circuits of: ground rod (a); underground cable (b).

and for the underground cable to

−
qi
qx
=C

qv
qt
, −

qv
qx
=Ri. (7.119)

Let us consider the case of an underground cable in more detail.

7.8.1 Underground cable

A transmission line, which behaves in accordance with differential equationsffff
7.119, is an underground cable in which L and G can be neglected. Therefore
its propagation constant and characteristic impedance in Laplace transform
equations (see 7.84) are

c=√CRs=
√s
a

(7.120a)

Zc=SRSSC 1√s , (7.120b)

where a=1/√CR.
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Applying the step voltage function V0VV u(t) at the sending-end of an infinite
cable, and knowing that V1VV =ZcI1 , equation 7.186a yields

V (x, s)=
V0VV
s
e
−
x

a
�s
. (7.121)

Now the inverse Laplace transform gives

v(x, t)=V0VV A1−erfc x

2a√tB (7.122)

where erfc (u)=∆u
0
e−t2dt is the error function. The Laplace transform of the

current is

I(x, s)=
V (x, s)

Zc
=V0VV SCRSS 1

√s
e
−
x

a
�s

(7.123)

which gives the current in the time domain

i(x, t)=V0VV SCRSS 1

√pt
e
−
x2
4a2t . (7.124)

Example 7.6

An underground cable (‘‘very long’’) has distributed parameters R=1 V/km and
C=0.1 mF/km. Assuming that at time t=0 a step voltage source vs=500u(t) V
connects to the cable, find the voltage and current distribution along the cable
line at t1=10 ms and at t1=50 ms.

Solution

The parameters of the cable are a=1/√CR=3.16·103 and √C/R=3.16·10−4.
In accordance with equation 7.122 the voltage distribution along the line for
t1=10 ms is

v(x)=500 A1−erfc x20B V.
In accordance with equation 7.124 the current distribution along the line is

i(x)=500·3.16·10−4
1

√p10·10−3
e−(x2/400)=28.21e−(x2/400) A.

Similarly we may calculate the voltage and current curves versus x for the
second moment of time t2. The resulting curves for both moments of time are
shown in Fig. 7.31(a) and (b).
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Figure 7.31 The voltage (a) and current (b) distribution along the underground cable for two

different moments of time.ffff

In conclusion consider an underground cable of length l having a short-
circuited receiving-end and connecting to a voltage source of step function v1=
V0VV u(t). In accordance with equations 7.88b and 7.99 and assuming Z2=0 the
voltage Laplace transform at any point on the line is expressed in terms of V1VV
(but x is reckoned from the receiving-end):

V (x, s)=V1VV (s)
sinh cx

sinh cl
. (7.125)

With the Laplace transform of the sending-end voltage source V1VV (s)=V0VV /s
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equation 7.125 becomes

V1VV (x, s)=V0VV
1

s

sinh (x√s/a)

sinh (l√s/a)
=
F1 (s)
F2 (s)

. (7.126)

Using the partial fraction expansion formula, we obtain

v(x, t)=V0VV CF1 (0)F2 (0)
+ ∑
2

k=1

sinh cxes
k
t

s
k
F∞
2
(s) D , (7.127)

where s
k
are the roots of the characteristic equation sinh (l/a)√s=0.

Therefore,

c
k
l=

l

a
√s
k
= jkp, (7.128)

or

s
k
=−

k2p2a2
l2

. (7.129)

Evaluating the terms of equation 7.127 yields

F1 (0)
F2 (0)

= lim
s�0

sinh
x

a
√s

sinh
l

a
√s
� C x2a√s cosh xa √sl

2a√s
cosh

l

a
√sD
s=0

=
x

l
(7.130)

F1 (sk )=sinh
x

l
jkp= j sin

kpx

l
(7.131)

F∞
2
(s
k
)=
d

ds
sinh

l

a
�s K
s=s
k

=
l

2a√s
cosh

l

a
�s K
s=s
k

=
l2 cos kp
2a2jk2 p

.

Substituting equations 7.131, 7.130 and 7.129 into equation 7.127 yields

v(x, t)=V0VV Cxl+ 2p ∑2
k=1

(−1)k
k
sin
kpx

l
e−(kpa/l)2tD . (7.132)

Note that equation 7.132 gives the voltage at the receiving-end x=0 equal to
0 at any time and the voltage at the sending-end (x=l) equal to V0VV . The time
constants of the exponentials in equation 7.132 are proportional to the ratio
l2/a2=lClR=C

l
R
l
, i.e., they are equal to the product of the complete capaci-

tance and complete resistance of the cable.
Now, in accordance with the second equation of 7.119, we can obtain the
current

i(x, t)=−
1

R

qv
qx
=−

V0VV
Rl C1+2 ∑2

k=1
(−1)k cos

kpx

l
e−(kpa/l)2tD . (7.133)
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The voltage and current distributions along the cable are shown in Figs. 7.32(a)
and (b). Other problems of the transient behavior of cables having differentffff
terminations and different sending-end conditions can be solved in a similar way.ffff

Figure 7.32 The voltage (a) and current (b) distribution along the short-circuited underground cable.



Chapter #8

STATIC AND DYNAMIC STABILITY OF POWER
SYSTEMS

8.1 INTRODUCTION

Today’s power systems are interconnected networks of transmission lines linking
generators and loads into large integrated systems, some of which span entire
countries and even continents. The main requirement for the reliable operation
of such systems is to keep the synchronous generators running in parallel and
with an adequate capacity to meet the load demand. When synchronous
machines are electrically tied in parallel they must operate at the same frequency,
i.e. they must all operate at the same speed (measured in electrical radians
per second), which is called being in synchronism. If at any time a generator
increases the speed and the rotor advances beyond a certain critical angle,
counted between the rotor axis (usually the d-axis) and the system voltage
phasor (the power angle d), the magnetic coupling between the rotor and the
stator fails. In such a situation the rotor rotates relatively to the field of the
stator currents rather than being tied to this field, and pole slipping occurs, i.e.,
the generator loses its synchronism (falls out of step) with the rest of the system.
Each time the generator speed changes, stability problems arise. The disturbance
of the stability of the synchronous generators operating in parallel is one of the
most arduous faults of power systems and may result in outage of entire regions.

8.2 DEFINITION OF STABILITY

Synchronous machines do not easily fall out of step under normal conditions.
If a machine tends to speed up or slow down, synchronizing forces (see further
on) tend to keep it in step. However, certain conditions may arise, in which the
synchronizing forces for one or more generators may not be adequate and small
impacts on the system may cause these generators to lose synchronism. On the
other hand, if following an imbalance between the supply and demand created
by a change in the load, in the generation or in the network conditions, all
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interconnected synchronous machines remain in synchronism adjusting them-
selves to a new state of operation, then the system is stable and the generators
continue to operate at the same speed.
The perturbation could be of a major disturbance such as the loss of a
generator, a fault or the loss of a line, or it could be of small, random load
changes occurring under normal operation. The transients following system
perturbations are oscillatory in nature, but if these oscillations are damped
toward a new quiescent operating condition, we say that the system is stable.
Thus, we may state that: If the oscillatory response of a power system during the
transient period is damped and the system settles in a finite time to a new steady-
state condition, the system is stable.Otherwise, the system is considered unstable.
The stability problems may be divided into two kinds: steady-state, or static
stability and transient, or dynamic stability. The former is concerned with the
effect of gradual infinitesimal power changes and is defined as the ability of affff
synchronous generator to reestablish its given state of operation after such
changes. The latter, transient stability, deals with the effect of large, suddenffff
disturbances such as line faults, the sudden switching of lines, the sudden
application or removal of large loads, etc. The ability of the power system to
retain synchronism when subject to such disturbances is considered as dynamic
stability. Thus, the main criterion for stability in both regimes is that synchron-
ous machines maintain synchronism at the end of the period of small as well
as large disturbances.

8.3 STEADY-STATE STABILITY

Power systems form groups of synchronous generators (power station) intercon-
nected by transmission lines. Experience in operating and theoretical study
reveal that such transmission lines with synchronous machinery at both ends
show that there are definite limits beyond which the operation becomes unstable,
resulting in the loss of synchronism between the sending- and receiving-ends.
This problem is termed the stability of the tie line, even though in reality it
reflects the stability of two groups of machines. In order to understand this
problem we shall introduce a transmission line power-transfer characteristic.

8.3.1 Power-transfer characteristic

Consider a group of synchronous generators, which is connected through a
transmission line to a large system as shown in Fig. 8.1.
Here, the group of generators (power station) is represented by a single

equivalent synchronous generator, operating with the phase EMF (along the
quadrature axis) E

ph
, and the system is represented by the infinite bus, whose

voltage is kept constant regardless of any changes in the system behavior and
is taken as the reference. The total reactance of the equivalent circuit is

X=X
d
+X
T1
+X

l
XX +X

T2
.
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Figure 8.1 A group of generators connected to the system through a transmission line: one-line

diagram (a), equivalent circuit (b) and the phasor diagram (c).

In accordance with the phasor diagram in Fig. 8.1(c) we have

bc=E
d
sin d=ab cos Q=XI cos Q,

where d is the angle between the induced voltage of the generator E and the
reference voltage VVV
Thus,

I
a
=I cos Q=

E
ph
X
sin d,

and the generator power transmitted by a transmission line is

P
e
=3V

ph
VV I
a
=3
V
ph
VV E
ph

X
sin d=

VE

X
sin d, (8.1)

where E and V are the line voltages.
The physical significance of angle d is understandable from the phasor dia-
gram, in Fig. 8.1(c), where the rotor position, in relation to the phasors, is also
shown by a thin line. Subsequently, we realize that this angle is not only the
electrical angle between E and V,VV but it is also the mechanical angle between the
rotor q-axis and the reference axes. At no-load operation the rotor q-axis and
the reference axis coincide. With increasing shaft or input power, the rotor
advances (in the direction of the rotation) by angle d, which is therefore called
the power angle. The relationship of the power, developed by the generator,
versus d is given in equation 8.1 and plotted in Fig. 8.2. This plot, assuming E
and V are constant, is a pure sinusoid, having the amplitude of Pmax=EV/X,
and is called the power-transfer curve, or power-angle curve. It should be noted
that for motor action the rotor is retarded relative to the reference axis and d
becomes negative.
For the given constant values of the generator EMF E and the receiving-end
voltage V,VV the load of the transmission line can be gradually increased until a
condition is reached corresponding to point A in Fig. 8.2. At this point the
power transmitted is maximum and corresponds to angle d=90° (since the
resistances are neglected) and represents the static limit of stability (i.e. for a
gradually applied load) and any attempt to impose any additional load on the
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Figure 8.2 The power-angle curve.

line will result in the loss of the synchronism between the generator and the
system. However, since today’s generators are equipped with an AVR system,
the terminal voltage of such generators is kept constant during the period of
load changes. Hence, when increasing the load, the generator EMF will also
increase and the operating power-angle curve will change, resulting in a higher
limit of stability. This limit of stability may exceed the initial one by 30–40%.
Until now, system resistances have been neglected. However, sometimes trans-
mission line resistances are relatively significant and should be considered. In
this case, with the total impedance Z=R+ jX, the line current is

Ĩ=
Ẽ− Ṽ
√3Z

,

and the transmitted power will be

S=√3E* Ĩ=√3E*
Ẽ− Ṽ
√3Z

.

Substituting the polar forms of the quantities Ẽ=E%d, E
*
=E%−d, Z=z%Q

in the above expressions after simplification, yields

S=
E2
z
(cos Q− j sin Q)−

EV

z
[cos (d+Q)− j sin (d+Q)].

The real part of this expression gives the active power

P=
E2
z
cos Q−

EV

z
cos (d+Q). (8.2a)

For an easier comparison of this expression to the previous one (equation 8.1)
we assign an additional angle d=90°−Q to obtain

P=
EV

z
sin (d−a)+

E2
z
sin a. (8.2b)
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This power-angle curve is shown in Fig. 8.3. The maximum power transferred,
or static limit if stability, in this case is

Pmax=
EV

z
+
E2
z
sin a,

which is higher than in the case where the resistances are neglected. The critical
angle here is also larger than in the previous case, i.e., d

cr
= (90°+a)>90°.

The power-angle characteristic of the turbine, which governs the generator,
is a straight line, as shown in Fig. 8.4, since the power developed by the turbine
does not depend on angle d, which is a pure electrical parameter. At a steady-
state operation the mechanical power P

m
is equal to the electrical one and, as

can be seen from Fig. 8.4, for the given mechanical power P
m
, there are two

points of equilibrium, a and b, on the intersection of the turbine and generator
characteristics. This means that two steady-state regimes are possible at each

Figure 8.3 Power-angle curve for a system in which the resistances are considered.

Figure 8.4 Steady-state stability of a synchronous generator.
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of these points. However, the stable operation of the generator is possible only
at point a. Indeed, assuming that angle d is randomly increased by Dd, then the
generator has to transmit power P

e
=P
m
+DP while the turbine power remains

the same, P
m
. The difference betweenffff P

m
and P

e
is an accelerated power P

a
.

Therefore, the acceleration power in this case becomes negative: P
m
−P
e
=

−DP<0. This causes the generator to decelerate and return back to point a.
With an analogous assumption for point b we realize that increasing d by Dd,
the generator power will be decreased and the acceleration power will, therefore,
be positive. This causes the rotor of the generator to accelerate and d will
increase even more, actually up to 180°. The generator EMF E is at this position
in the opposite phase with the system voltage, and this situation is equivalent
to the short-circuit fault. The generator power drops to zero and it falls out
of step.
It is self-evident that assuming a random decrease of d at point a, we will

arrive at the same conclusion, i.e., the generator returns back to point a.
However, at point b, the generator, as previously, does not return to point b,
but its rotor decelerates until it reaches point a. Hence, the stable operation of
a generator in parallel with the system is possible only at point a, or in the
increasing part of the power-angle curve, i.e., when 0<d<90°. At angle d=
90° (∂P/∂d)

90°
=0, i.e., the system is at the limit, and the operation at this point

cannot be stable. The stability of the operation is often estimated by the
assurance factor

k
as
=
Pmax−Pm
P
m

. (8.3)

The steady-state stability limit is the maximum power that can be transmitted
in a network between sources and loads when the system is subject to small
disturbances. The stability is assured if the generator operates within the ‘‘safe
area’’ of the power characteristic, which is in about a 20% margin lower than
the steady-state stability limit. It should be noted that, as already has been
mentioned, this limit may be extended by the use of an automatic voltage
regulator (AVR). Besides the AVR, by analyzing the system stability, the effectsffff
of machine inertia and governor action should be taken into consideration.
These functions greatly increase the complexity of the analysis (this is beyond
the scope of this text). For more details the reader is referred to the book by
Anderson and Fouad(*).
Usually the normal operating load angle for modern machines is in the order
of 60 electrical degrees, and for the limiting value of 90°, this leaves 30° for the
‘‘safe area’’, to cover the large disturbances in the transmission line (see fur-
ther on).
In a system with several generators/power stations and loads the common

procedure is to reduce the network to the simplest form in which only the

(*)P. M. Anderson and A. A. Fouad (1980) Power System Control and Stability, Iowa State
University Press.
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relevant generators are connected to each other and which then allows the
transfer reactances to be calculated. The values of the load, the power angles
and the voltage are then calculated for the given conditions, and the steady-
state stability limit and the assurance factor are determined for each machine.
If those stability criteria are satisfactory, the loading is increased and the process
repeated. If the voltages change appreciably, the P−V, Q−V characteristics
of the load should be used with the redistribution of the power.

Example 8.1

A synchronous generator having a local load, represented by constant imped-
ance, is connected to an infinite bus through a transformer and a double circuit
transmission line. The direct axis generator synchronous reactance is 1.2 pu,
the load impedance is Z

load
=2%36° pu and the rest of the parameters are

shown in Fig. 8.5. Check the steady-state stability of the given system, if the
power transmitted to the systems is 0.5 pu and the generator terminal voltage
is kept as 1.1 pu.

Solution

First we find the angle of the generator terminal voltage V
T
VV =V2VV . The power-

angle equation is

P=
V
T
VV V

X23
sin d23 or 0.5=

1.1·1

0.6
sin d23 ,

where X
23
=0.1+1.0/2=0.6. Then

sin d23=0.273 and d23=15.8°.

The current is found as

Ĩ23=
Ṽ2VV − Ṽ3VV
X
23
=
1.1%15.8°−1
0.6%90°

=0.5− j0.1 pu.

Figure 8.5 Network of Example 8.1: one-line diagram (a), equivalent circuit (b) and its simplifica-

tion (c).
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The load current is found as

Ĩ20=
1.1%15.8°
2%36.8°

=0.55%−21°=0.513− j0.197 pu,

and the generator current is

Ĩ
G
= Ĩ20+ Ĩ23=0.513− j0.197+0.5− j0.1=1.05%−16.13° pu.

Then, the internal generator voltage (EMF) is

E=1.1%15.8°+ (1.05%−16.3°)(1.2%90°)=1.41+ j1.51=2.07%47.12° pu.

Hence, the angle between E and V is 47.12°. Since this angle is less than 90°
with a safe area of about 40°, the system is stable. The active power produced
by the generator is

P
G
=EI cos Q=2.07·1.05 cos[47.12°− (−16.3°)]$1.0 pu.

8.3.2 Swing equation and criterion of stability

Assume that upon some change in the system operation the balance between
the driving or mechanical input of the turbine P

m
and the electrical power of

the generator P
e
is disturbed, so that P

e
<P
m
. Then, the additional kinetic

energy will be stored by the rotated rotor, namely

J
v2
m
−v2
m0

2
= P t
0
PP (Pm−Pe )dt= P t

0
PP Padt, (8.4)

where J is the moment of inertia (in kg/m2) of all the rotating masses attached
to the shaft, v

m
=dd

m
/dt is an angular velocity of the shaft/rotor (in mechanical

rad/sec) and P
a
is an acceleration power. (In our future study we shall distinguish

between the electrical angle d
e
, or just d and the mechanical angle d

m
, i.e.,

d¬d
e
= ( p/2)d

m
, where p is the number of poles, or d

e
=pd

m
, where p is the

pole pairs, as it is adopted in some technical books.)
By differentiation, equation 8.4, we haveffff

Jv
m
dv
m
dt
=P
a
. (8.5a)

The change in the angular velocity about its initial or rated value is v
m
=

v
m0
+ (dd

m
/dt), then (dv

m
/dt)= (d2d

m
/dt2 ) and

Jv
m
d2d
m

dt2
=P
a
. (8.5b)

This equation, which governs the motion of the rotor of a synchronous machine,
represents the power-angle d change versus time, expressing the accelerating
power applied to the shaft, and is called a swing equation. Usually it is written



Static and Dynamic Stability of Power Systems 525

in a slightly different form, namelyffff

M
d2d
m

dt2
=P
m
−P
e
=P
a
, (8.6a)

where

M=Jv
m

(8.6b)

is an angular momentum, or moment of inertia (in joule·s/rad).
For a generator connected to an infinite bus, with operation at P0 and d0 ,
and small changes in d and in P (so that linearity may be assumed), we can
write

M
d2Dd
dt2
=−DP=−A∂P∂dB

0
Dd or M

d2Dd
dt2
+A∂P∂dB

0
Dd=0. (8.7)

The expression

∂P
∂d K
d=d
0

=P
m
cos d0

is defined as the synchronizing power coefficient or just synchronizing power
and is designated P

s
, i.e., P

s
= (∂P/∂d)0 . The characteristic equation of differentialffff

equation 8.7 is then

Ms2+P
s
=0, (8.8)

which has two roots

s1,2=±S−PsM . (8.9)

If (∂P/∂d)0 is positive, then both roots are imaginary numbers. In this case the
solution of equation 8.7 is oscillatory undamped (since the resistances are
neglected). Practically the oscillations decay and the stability is held (point a
in Fig. 8.4). However, if (∂P/∂d)0 is negative, both roots are real and one of
them is positive, causing an unlimited increase in d. In this case the stability is
lost (point b in Fig. 8.4). If damping is present (i.e. the resistances are taken
into consideration), equation 8.7 becomes

M
d2Dd
dt2
+K
d
dDd

dt
+A∂P∂dB

0
Dd=0, (8.10)

which results in a characteristic equation

Ms2+K
d
s+P

s
=0. (8.11)

Again, if (∂P/∂d)0 is positive, the solution is a damped sinusoid and the operation
is stable; in the opposite case, if (∂P/∂d)0 is negative, the stability is lost, i.e., the
sign of the sinchronizing power provides the criterion of stability. The derivative
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Figure 8.6 Two kinds of responses to a disturbance in the synchronous generator: 1) unstable,

2) stable.

∂P/∂d is positive on the increasing branch of the power-angle curve and negative
on the decreasing one, which confirms our previous conclusion that the opera-
tion at point a is stable, but at point b it is not. The two kinds of rotor motions,
according to two kinds of solutions, are shown in Fig. 8.6.
For practical purposes (as is convenient in analyzing power systems) we shall
normalize the swing equation. After dividing it by the rated power of the
synchronous machine S

r
, we have

M

S
r

d2d
m

dt2
=
P
a
S
r
=P
an
, (8.12)

where P
an
is a normalized accelerating power in p.u. We shall next introduce

the inertia constant H, which is one of the very important parameters of
synchronous machines. It is defined as a quotient of the kinetic energy W

k
WW ,

stored in the rotating rotor at rated angular velocity, and the rated power S
r
:

H=
W
k
WW

S
r
=
1

2

Jv2
m,r
S
r
=
1

2

M

S
r

v2
m,r
v
m
. (8.13)

By using equation 8.13, equation 8.12 becomes

2H

v
m,r

v
m
v
m,r

d2d
m

dt2
=P
an
. (8.14)

Since the change in angular velocity during the transient is relatively small,
(dd
m
/dt)%v

m,r
we may conclude that v

m
$v
m,r
(*) and equation 8.14 simplifies

(*)The angular frequency/velocity cannot change by a significant value before stability is lost. Thus
for 60 Hz, v

r
=377 rad/s, and a 1% change in v

m
, i.e., 3.77 rad/s, will change the angle d by 3.77 rad.

Certainly, this would lead to a loss of synchronism.
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to the swing equation in the form:

2H

v
r

d2d
dt2
=P
an
. (8.15)

Note that in equation 8.15 both angle d and the angular velocity v
r
can be

measured in electrical rad/s as well as in mechanical rad/s. WeWW will treat this
equation as written for electrical angle d and electrical angular frequency.
The inertia constantH is somewhat similar to a per-unit quantity even though
it is not a pure number. Since the quantities in the ratio, which express H
(equation 8.13) do not have the same units, namely the kinetic energy is
measured in MJ and the rated power in MVA, the unit of H is seconds. The
value of H is usually in the range of 1–5 s (the smaller numbers are for small
generators). The quantities of H given for a single generator may be modified
for use in studies of a system with many generators by converting from the
rating power S

r
to the system base power (as in our previous study):

H
sys
=H

S
r
S
b
. (8.16)

The physical meaning of the inertia constant is that its value in seconds gives
the time needed to accelerate the synchronous machine from zero speed to its
rated value when the rated input power is applied.
As an example of using the swing equation, let us calculate the natural
oscillations of a synchronous machine being subject to a small disturbance
about the equilibrium point, like point a in Fig. 8.3. Assume that a small change
in speed is given to the machine, i.e., v=v0+Dv0u(t), where Dv0 is the small
change in speed and u(t) is a unit step function. As a result of the change in
speed, there will be a change in angle d, i.e., d=d0+dD and, in accordance with
the power-angle curve, the electric power will be P

e
=P
e0
+P
eD
, while the

mechanical power P
m
remains constant and equal to P

e0
. Then, the accelerating

power P
a
=P
m
−P
e0
−P
eD
=−P

eD
and the swing equation for the small changes

becomes

2H

v
r

d2d
D

dt2
=−P

eD
=−P

s
d
D
, (8.17a)

or

2H

v
r

d2d
D

dt2
+P
s
d
D
=0, (8.17b)

where P
s
is the synchronizing power, and as has been shown is

P
s
=
∂P
∂d K
d
0

=P
m
cos d0 .

The swing equation here is a second-order differential equation (when theffff
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damping is neglected) and the characteristic equation of which is

2H

v
r
s2+P

s
=0. (8.18)

The two roots of this equation are

s1,2=±
√−P

s
v
r
/2H=± jv

n
, (8.19)

where v
n
=√P

s
v
r
/2H is the natural frequency of the synchronous machine

oscillations. Since the roots are imaginary numbers, the solution is pure sinusoid,
i.e. an undamped oscillation:

d
D
(t)=A sin (v

n
t+a).

To find the two unknown constants of integration, A and a, we shall determine
two initial conditions which, obviously, are

d
D
(0)=0,

dd
D

dt K
t=0
=v
D
(0). (8.20)

Thus,

A sin (v
n
+a) |

t=0
=0 or a=0

and

v
n
A cos v

n
t |
t=0
=v
D
or A=

v
D

v
n
.

Finally, we have

d
D
(t)=

v
D

v
n
sin v

n
t. (8.21)

Since the damping conditions are always present, these oscillations will decay
(as shown in Fig. 8.6, curve 2) and the synchronous machine will return to point
a of operation. The stability is held.

Example 8.2

A synchronous generator of reactance 1.25 pu is connected to an infinite bus
bar system of V=1 pu through a line and transformers of a total reactance of
0.5 pu. The generator’s inertia constant is H=5 s and EMF is 2.5 pu, and it
operates at a load angle of 47°. Find the expression of the oscillations set up
when the generator is subject to a sudden change of+0.5% of its speed.

Solution

The transmitted power of the generator is

P
e
=
EV

X
sin d=

2.5·1

1.25+0.5
sin 47°=1.04 pu,
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and the synchronized power is

P
s
=

2.5·1

1.25+0.5
cos 47°=0.974 pu.

Therefore, the angular frequency of oscillation is

v
n
=√0.974·(p ·60)/5=6.06 rad/s,

or

f
n
ff =6.06/2p=0.96 Hz.

The amplitude of oscillation will be

A=
v
D

v
n
=
0.005·377

6.06
=0.31 rad.

Thus

d
D
(t)=0.31 sin 6.06t rad.

8.4 TRANSIENT STABILITY

Transient stability is concerned with the effect of large disturbances, which areffff
usually due to faults, the most severe of which is a three-phase short-circuit
(since by this kind of short-circuit the three-phase voltage may drop down to
zero) and the most frequent is the single-line-to-earth fault. Some other kinds
of such disturbances are line switching, sudden load changes, etc.
These kinds of disturbances are of a critical nature since they entail the
sudden change of electrical output while the mechanical input from the turbine
does not have time to change, during the relatively short period of fault, and
remains practically constant. As a result, the rotor of the machine endeavors to
gain speed and to store the excess energy. If the fault persists long enough the
rotor angle will increase continuously and synchronism will be lost. Hence the
time of operation of the protection devices and circuit breakers is of great
importance.
The stability of the system may also be achieved using autoreclosing circuit
breakers. The circuit breakers open when the fault is detected and automatically
reclose after a prescribed period (usually less than 1 s). Due to the transitory
nature of most faults (especially in the case of the single-line-to-earth fault) the
circuit breaker often successfully recloses and the stability is held. However, if
the fault persists, sometimes an autoreclosing is repeated. The length of the
autoreclosing operation must be considered when the transient stability limits
are calculated.
The transient stability of a power system is a function of the type and location
of the disturbance to which the system is subjected. For instance, if two sections
of a system are connected by a pair of lines, one of which is switched out, the
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power-angle characteristic is changed, having a lower power peak. The balance
between the mechanical and electrical powers is disturbed, which causes tran-
sient stability problems. A more severe test of system stability is a short-circuit
fault on one line followed by its being switched out.
One of the purposes of the analysis of the system transient stability is to
determine a stability limit, usually in terms of a critical fault clearance and/or
autoreclosing time t

cr
. If, however, t

cr
is given, being the minimal available time

(as the fastest relay protection and circuit breakers have been anyway used) the
system stability test in this case is an estimation of the maximum load which
the system can carry without losing transient stability. In our next study using
the following examples we shall illustrate how to check the transient stability
of a system by solving the swing equation.
Therewith, some further assumptions and simplifications will be made. The
cylindrical rotor machine is assumed and, therefore, the direct and quadrature
axis reactances are assumed equal. Direct-axis transient reactance X∞

d
and tran-

sient EMF E∞
d
will be used for the machine representation. The input power for

the first seconds following a disturbance remains constant. (This assumption is
often made, as previously mentioned, considering that the mechanical system
of governors, steam or hydraulic valves, and the like, is relatively sluggish with
respect to the fast-changing electrical quantities. However, with improvements
in mechanical equipment, such as fast valving, electronic regulators etc., the
assumption of a constant input will not be valid and its appropriate change
should be taken into consideration.)

Example 8.3

Assume that, at the sending-end of one of the transmission lines in the system
shown in Fig. 8.7, a three-phase fault occurs. Develop and solve the swing
equation of the system, if the fault reactance is 0.07 pu. The inertia constant of
the generator is H=0.5 s and the frequency f=60 Hz. Initially the generator
delivers a 0.8 pu power with a transient EMF of 1.22 pu.

Solution

The power-angle characteristic prior to the fault is

P
e
=
1.22·1

0.6
sin d=2.03 sin d,

where E∞
d
=1.22 and X

tot
=0.6 (see Fig. 8.7(b)).

Performing Y�D transformation in the given circuit we obtain

Y12YY =
Y1YY Y2YY

Y1YY +Y2YY +Y3YY
=

(1/0.3)(1/0.3)

1/0.3+1/0.3+1/0.07
=0.528.

The electrical power output of the sending-end at the fault is

P
e
=1.22·1·0.528 sin d=0.644 sin d.



Static and Dynamic Stability of Power Systems 531

Figure 8.7 An equivalent circuit of the faulted network for Example 8.3 (a) and its simplifications

(b) and(c).

Therefore, with equation 8.15 the swing equation is

d2d
dt2
=
v
r
2H
(P
m
−P
e
),

or

d2d
dt2
=
377

10
(0.8−0.644 sin d)=37.7(0.8−0.644 sin d).

The solution of this nonlinear equation is obtained by the MATCAD program,
which for the initial conditions of d0=sin−1 (0.8/2.03)=23.2° (0.405 rad) and
v(0)=v0−vr=0 is shown in Fig. 8.8. As can be seen, the power angle increases
indefinitely and the system is unstable.

Figure 8.8 Angle-time curve for the faulted network of Example 8.3: at the first moment of the fault

(a) and after clearing the fault (b).
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Assume now that the fault is cleared in 0.2 s by opening the faulted line.
The equivalent circuit is now shown in Fig. 8.7(c), in which the total reactance
is

X12=0.3+0.6=0.9pu,

and the transient power will be

P
e
=
1.22

0.9
sin d=1.36 sin d.

Thus, the swing equation is

d2d
dt2
=37.7(0.8−1.36 sin d).

The initial values of d and v are calculated with the previous solution for time
0.2 s, which gives d0.2=0.788 rad and v0.2=3.56, and the time solution is now
shown in Fig. 8.9. (Note that for the new solution d0.2¬d0 and v0.2¬v0 .) As
can be seen the time change of the power angle is oscillatory and the first peak
of about dmax=1.26 rad is reached at t=0.238 s after which d is decreased until

Figure 8.9 Equal-area criteria for a stable system (a), critical case (b) and for an unstable system (c).
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it reaches a minimum value of about dmin=0.085 rad at t=0.756 s and the
oscillations of the rotor angle continue until they decay due to the damping
effect. For the system under study and for the given fault the synchronism isffff
not lost and the machine is stable.

8.4.1 Equal-area criterion

Consider once again the swing equation derived previously in the form

d2d
dt2
=
v
r
2H
P
a
. (8.22)

Multiplying both sides by 2(dd/dt), we have

A2 dddtB d2ddt2= vr2H Pa A2 dddtB ,
or

d CAdddtB2D=vrH Padd.
Integrating both sides gives

AdddtB2=vrH P d
d
PP
0

P
a
dd. (8.23)

This equation determines the quadrature of the relative speed of the machine
(with respect to a reference frame moving at a constant speed, for instance, like
the infinite bus) as proportional to the integral of P

a
versus d. For a rotor that

is accelerating, the condition of stability is that this speed becomes zero, or
negative, causing the motor to slow down. In other words, the increasing of
angle d is restricted and after reaching some maximal value, dmax , the angle
decreases. Thus, we may conclude that dmax exists and it is given by the condition

P d
d
PP
0

P
a
dd≤0. (8.24)

In the opposite case dd/dt does not become zero, the rotor will continue to
move and synchronism is lost (the angle increases unlimitedly).
The integral of P

a
dd in equation 8.24 represents an area on the P−d diagram.

Hence, the criterion for stability is that the area between the P−d curve and
the line of the power input P

m
(or P0 ) must be zero. The difference between theffff

P−d curve and the input power, i.e., the accelerating power, might be also
represented as a curve, P

a
(d), as shown in Fig. 8.9. Then the area under this

curve must be zero, which again means that the positive and negative areas are
equal. This is known as the equal-area criterion. Physically, this criterion means
that the rotor must be able to return to the system all the energy gained from
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the turbine during the acceleration period. This is shown in Fig. 8.9. In figure
(a) the positive area A1 is equal to the negative area A2 at the angle dmax , at
which the accelerating power is negative and the rotor slows down. Therefore,
the system is stable and dmax is the maximum rotor angle reached during the
swing. In figure (b) the positive and negative areas are equal at the point where
P
a
reverses its sign, which means that it is a critical case: the oscillations will

continue. However, due to the damping effect they will decay. The system isffff
stable and angle dmax is again the maximum rotor angle reached during the
first swing.
If the accelerating power reverses it sign before the two areas A1 and A2 are

equal, as in figure (c), angle d continues to increase and synchronism is lost.
The equal-area criterion is usually applied to the power-angle curve, where the
electrical and mechanical powers are plotted as a function of d. Note that the
accelerating power curve could have discontinuities due to the switching of the
network, faults occurring and the like.
A simple example of the equal-area criterion may be introduced by an
examination of the system stability if one of the two parallel lines, which connect
the generator to an infinite bus bar, is switched out (disconnected). The two
power-angle curves pertaining to a normal (curve 1) and one line (curve 2)
operation of the system are shown in Fig. 8.10.
The shaded area A1 is proportional to the kinetic energy stored in the rotor,

when the input power P0 is larger than the electrical power delivered by the
generator in accordance with curve 2, and in this case the rotor accelerates,
Fig. 8.10(a). The shaded area A2 represents the amount of energy, which the
rotor returns to the system. Since these two areas are equal the rotor initially
comes to rest at angle dmax (point c) whereupon its speed is again synchronous.
Having returned all of its extra kinetic energy back to the electrical circuit, the
rotor continues to decelerate (P

e
>P
m
) falling through point b and back towards

point a. Such oscillations will continue until completely damped at the new
angle d1 (d1>d0 , point b). However, if the initial operating power P∞0 and angle
d∞
0
are increased to such values that the area between d∞

0
and d∞

1
(A1 ) is just

Figure 8.10 Power-angle curves for two lines in parallel (curve 1) and one line (curve 2) and equal

area criterion: stable operation (a), critical operation (b) and nonstable operation (c).
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equal to the available area between d∞
1
and d∞max , where dmax=180°−d∞1 , it will

be the critical operation, Fig. 8.10(b). This would be the condition for maximum
input (P0,max ) power. If the input power is larger than P0,max , then the accelerat-
ing energy (A1 ) will be bigger than the available decelerating energy
(A1>A2,avail ). The excess kinetic energy will cause d to continue increasing
beyond d∞max and the energy would again be absorbed by the rotor (since Pe is
now decreasing with an increase in d, i.e., the slope is negative) and stability
will be lost, Fig. 8.10(c). The coefficient

k=
A
2,avail

−A1
A1

is sometimes defined as the transient stability security factor. Notice that (as
can be seen from Fig. 8.10) it is permissible for the rotor to oscillate past the
point where d=90°, as long as the equal-area criterion is met.
As another example of using the equal-area criterion, let us consider the fault
on one of two parallel lines as in Example 8.3. The power-angle curves pertaining
to a fault on one of two parallel lines are shown in Fig. 8.11. The fault is cleared
in a time corresponding to d1 , and the shaded area d0 to d1 , between the P0-
line and power-angle curve for the fault, A1 , indicates the energy stored. The
rotor swings until it reaches d2 so that A1=A2 , where A2 is the shaded area d1
to d2 between the P0-line and the power-angle curve for one line after the
faulted line has been switched out. Since d2 is less than the critical condition
angle d2max the system is stable. Critical conditions are reached when

d2=180°−sin−1 (P0/P2 ). (8.25)

The time corresponding to the critical clearing angle is called the critical
clearing time for a particular (normally full-load) value of power input. This
time is of great importance for system protection and to switchgear designers,

Figure 8.11 Equal-area criterion for the fault of one of two lines in parallel.



536 Chapter #8

Figure 8.12 Application of the equal area criterion to a critically cleared system.

as it is the maximum time allowable for the equipment to operate without
losing stability. The critical clearing angle for a fault on one of two parallel
lines, for instance, may be determined as follows. With the equal-area criterion,
as shown in Fig. 8.12, we have

P d1cr
d
PP
0

(P0−P1 sin d)dd=− P d2
d
PP
1cr

(P0−P2 sin d)dd,

and after integration

P0 (d1cr−d0 )+P1 (cos d1cr−cos d0 )=−P0 (d2−d1cr )−P2 (cos d2−cos d1cr),

from which the critical clearing angle is

cos d
1cr
=
P0 (d0−d2 )+P1 cos d0−P2 cos d2

P1−P2
. (8.26)

where, with equation 8.25, d2=180°−sin−1 (P0/P2 ). Knowing a critical angle
and swing frequency, the critical clearing time can be readily obtained.

Example 8.4

Apply the equal-area criterion to the system of Example 8.3.

Solution

We may calculate the critical clearing angle as follows. For this system
we have d0=23.2°, P0=0.8 pu, P1=0.644 pu, P2=1.36 pu and d2=
180°−sin−1 (0.8/1.36)=144.0°.
Calculation using equation 8.26 gives (note that electrical degrees must be
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expressed in radians)

cos d
1cr
=
0.8·(0.404−2.51)+0.644 cos 23.2°−1.36 cos 144.0°

0.644−1.36
=−0.007,

or

d
1cr
=cos−1(−0.007)=90.4°.

This situation is illustrated in Fig. 8.12.

8.5 REDUCTION TO A SIMPLE SYSTEM

When a number of generators are connected to the same bus bar, they can be
represented by a single equivalent machine. E

eq
and X

eq
may be found as

explained in section 6.2.2. The inertia constant H of the equivalent machine can
then be evaluated by equating the stored energy of the equivalent machine to
the total of the individual machines, which yields

H
eq
=H1

S1
S
b
+H2

S2
S
b
+ · · ·+H

n
S
n
S
b
, (8.27)

where S1 · · ·Sn are MVA powers of the generators and Sb is the base power. So,
consider, for example, a power station, which consists of three generators of
60MVA, 100MVA and 300MVA, having an H of 5 s, 6 s and 8 s respectively.
Making the base power equal to 100MVA, the inertia constant of an equivalent
machine will be

H
eq
=5

60

100
+6
100

100
+8
300

100
=33 s.

Consider two machines, having M1 and M2 ,which are connected through
transformers’ and lines’ impedances/reactances. The equations of motion for
small changes are

M1
d2Dd1
dt2

+A∂P1∂d12B0Dd12=0 (8.28)

M2
d2Dd2
dt2

+A∂P2∂d12B0Dd12=0,
where Dd12=Dd1−Dd2 .
By subtracting these two equations we may obtain a single equation of the
relative motion

d2Dd12
dt
+C(∂P1/∂d12 )0M1

−
(∂P2/∂d12 )0
M2 D Dd12=0, (8.29)
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for which the characteristic equation has two roots

s1,2=± jS(SS ∂P1/∂d12 )0M1
−
(∂P2/∂d12 )0
M2

. (8.30)

As was previously shown, if the quantity under the square root is positive, the
stability of both generators is assured.
Consider now, two synchronous generators (or group of generators) connected

by a reactance. In this case they may be reduced to one equivalent machine
connected through the reactance to an infinite bus bar system. The transient
equations of motion for the generators are

d2d1
dt2
=
DP1
M1

and
d2d2
dt2
=
DP2
M2
. (8.31)

Then the equation of motion for the two-machine system is

d2d
dt2
=
DP1
M1
−
DP2
M2
=A 1M1− 1

M2B (P0−Pe,max sin d), (8.32)

where d=d1−d2 is the relative angle between the machines and dd/dt is the
relative velocity of the two groups with respect to each other. Also note that
DP1=−DP2=P0−Pe,max sin d, where P0 is the input power and Pe,max is the
maximum transmittable power. For a single generator of M

eq
and the same

input power connected to the infinite bus bar system we have

M
eq
d2d
dt2
=P0−Pe,max sin d. (8.33)

Therefore, we may conclude that

M
eq
=
M1M2
M1+M2

, (8.34)

and that this equivalent generator has the same mechanical input as the actual
machines and that the load angle d in equation 8.33 is the angle between the
rotors of the two machines.
The most useful method of network reduction is by nodal elimination, in
which the network is finally represented by only the transfer reactances between
the reduced nodes, as any shunt impedances at these nodes do not influence
the power transferred.
The electrical network for the transient stability analysis will then obtain n
generator buses, to which the voltages (i.e. the internal generator transient
EMF’s) behind their transient reactances are applied. The values of EMF’s are
determined, as in the one-machine system, from the pre-transient conditions.
Loads are represented by passive admittances i.e., G

L
=P
L
/V 2
r
and

B
L
=Q
L
/V 2
r
, which are connected at the load nodes. Note that such a representa-

tion is very simplified. Since a network fault usually causes a reduction in the
voltages near the fault location, this will result in a decrease in the load power
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proportional to V 2. In the real system, however, the decrease in power is likely
to be less than this, but to occur in a more complicated manner. Since the load
usually contains a large proportion of non-static elements, such as induction
motors, the nature of the load characteristics is such that beyond the critical
point the motors will run down to a standstill and stall. For a more precise
analysis of system stability, therefore, it is important to consider the actual load
characteristic (see the next section), which makes such an analysis much more
complicated.
Passive impedances are connected between various nodes of the network
(representing transformers, lines, etc.), and the reference nodes of the active
elements and loads are connected in a common reference bus.
Now, let us say that in the given network there are n generator, or active
element, nodes and r (remaining) nodes with passive elements. Then the network
admittance matrix Y may be partitioned as

Y=C Y
nn
eY
nr

· · · · · · · · · · · · · · · · · · · ·

Y
rn
eY
rr
D . (8.35)

It can be shown that the matrix for the reduced network, which has only the
active nodes, is

Y
red
=Y
nn
−Y
nr
Y−1
rr
Y
rn
, (8.36)

which is of dimension (n×n), where n is the number of generators.
The maximum powers transferable between the relevant generators, before
and during a fault, can now be calculated from this reduced configuration of a
network. In accordance with equation 8.2a (note that here E¬E

i
, V¬E

j
and

(1/z) cos Q=G) we may write for the power of the i-ts generator

P
ei
=E2
i
G
ii
+ ∑
j=1
j≠i

E
i
E
j
Y
ij
YY cos (d

ij
−Q
ij
), i=1, 2, . . . , n, (8.37)

where Y
ii
=Y
ii
YY %−Q

ii
=G
ii
− jB

ii
is the admittance for node i and Y

ij
=

Y
ij
YY %−Q

ij
is the negative of the transfer admittance between nodes i and j. The

equations of motion are then given as

2H
i

v
r

dv
i
dt
+D
i
v
i
=P
mi
−CE2i Gii+ ∑j=1j≠i EiEjYijYY cos (dij−Qij )D (8.38)

dd
i
dt
=v
i
−v
r

i=1, 2, . . . , n.

The damping coefficient term Dv, which represents the turbine damping, genera-
tor electrical damping and the damping effect of electrical loads, is frequentlyffff
added in the swing equation. (Values of the damping coefficient used in the
stability studies are in the range of 1–3 pu.)
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8.6 STABILITY OF LOADS AND VOLTAGE COLLAPSE

If the load is purely static, i.e. represented by an impedance, the system will
operate stably even at low voltages. However, in reality the load contains non-
static elements such as induction motors. The nature of the load Q-V characteris-
tics, when they include a large proportion of induction motors, is non-linear.
Both characteristics P-V and Q-V for such a load are shown in Fig. 8.13. While
the active power characteristic is almost always a straight line, the reactive
power Q-V characteristic is a curve having a minimum or critical point and two
branches with positive and negative slopes.
Beyond the critical point c even a very small decrease in voltage causes an
increase in the reactive power Q, which in turn results in a decrease in the
voltage (since the voltage drop depends on the power DV

rct
VV =QX/V ) and so

forth. This process of voltage collapse is mathematically defined as dQ/dV�2,
i.e., on the left branch of the Q-V curve. The physical explanation of the voltage
collapse may be found in the behavior of induction motors. Beyond some
critical voltage the motors will run down to a standstill or stall. In this situation
induction motors consume pure reactive power, which at low voltage causes
very large currents similar to short-circuit currents. Finally, this results in very
low voltage.
In the power system the problem arises due to the relatively high impedance
of the connection between the load and the feeding bus, which can be considered
as an infinite bus bar. This happens when one line of two or more forming the
load connection is suddenly lost. Consider a simple network, shown in Fig. 8.14,
where the non-static load is supplied through a reactance from a constant
voltage source E. In this circuit

E=SAV+QXV B2+APXV B2 , (8.39)

Figure 8.13 Non-static power characteristics: active power-voltage characteristic (a) and reactive

power-voltage characteristic (b).
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Figure 8.14 A network with a load dependent on voltage.

or if

PX

V
%
V 2+QX
V

(which usually takes place)

E=V+
QX

V
. (8.40)

From the system viewpoint, it is worthwhile to develop a voltage stability
criterion with a dependency on E versus V,VV i.e., by using the E-V curve. This
curve (equation 8.40) is plotted in Fig. 8.15, where the two components V and
QX/V are also shown. Performing the differentiation of equation 8.40 withffff
respect to V yields

dE

dV
=1+AdQdV XV−QXB 1V 2=1+AdQdV −QVB XV . (8.41)

Here, when dQ/dV�−2, the term in the parentheses and, therefore, the entire
expression (8.41) approaches a negative infinity. Thus, we may conclude that if
dE/dV�−2, then the system is unstable and the voltage collapse takes place.
When dQ/dV is positive, the term in the parentheses is also positive
(dQ/dV>Q/V ) and therefore dE/dV>0, i.e. the system is stable, which means

Figure 8.15 E-V curve and its two components.
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that the sign of the derivative dE/dV provides the criterion of load stability. At
the critical point on the E-V curve, i.e., where dE/dV=0, we have

dQ

dV
=
Q

V
−
V

X
, (8.42)

or, since QX/V=E−V we have

Q

V
=
E

X
−
V

X

and

dQ

dV
=
E

X
−
2V

X
. (8.43)

This means that at dE/dV=0, the sign of dQ/dV is defined by the sign of
(E−2V ) and if it is negative, the system is unstable.

Example 8.5

Examine the voltage stability of a non-static load supplied from a 275 kV infinite
bus bar through a line of reactance 50 V per phase. The load consists of a
constant active power of 200MW and 200MVAr rating reactive power, which
is related to the voltage by the equation (in pu) Q=5(V−0.7)2+0.8.

Solution

With S
b
=200MVA and V

b
VV =275 kV the pu value of the line reactance is

X=
50·200

2752
=0.132 pu.

The load voltage can then be found from the equation

E=V+
QX

V
.

Thus,

E=V+
0.132

V
[5(V−0.7)2+0.8].

Since E=1 after simplification we have

V 2−1.159V+0.258=0.

Thus, the roots are

V
1,2
VV =0.858; 0.301.

Taking the upper value (which is suitable to a physical reality) we obtain

Q=5(0.858−0.7)2+0.8=0.925,
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and

dQ

dV
=10(V−0.7)=1.58.

Then,

dE

dV
=1+A1.58− 0.9250.858B 0.1320.858

=1.077.

Since the result is positive, the system is stable. (Note that PX/V=
1·0.132/0.858=0.15, which is much less than (V 2+QX)/V=
(0.8582+0.924·0.132)/0.858$1.)
The reader can now convince himself that, if one of the two parallel lines is
lost and the reactance changed to 0.264, dE/dV becomes negative and the system
is unstable, i.e., the voltage collapses.
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APPENDIX I

SOLVING EXAMPLE 5.6 USING THE MATHCAD PROGRAM(*)

Definition of the array first element subscript

ORIGIN¬1

Data:

C1:= 1 C2:= 2 L4:= 1 G3:= 1 R5:= 1

R6:=
2

7
R7:=

1

3
a:=

1

(1+R5·G3)

Matrix A

C− (1+a·R6·G3)R6·C1
a·
G3

C1

a

C1

a·
G3

C2

− (1+a·R7·G3)
R7·C2

(−1+a)
C2

a

L4

(1−a)
L4

−a·
R5

L4
D
= A−4 0.5 −0.5

0.25 −1.75 −0.25

0.5 0.5 −0.5 B
The characteristic equation

KA l+4 −0.5 0.5

−0.25 l+1.75 0.25

−0.5 −0.5 l+0.5BK�l3+6.25l2+10.125l+4.500
Finding the roots

coef:= A 4.510.136.251 B polyroots (coef )= A−3.998−1.504

−0.748B
(*)See page 307.
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Unity, initial, b and w matrixes

U:= A1 0 00 1 0

0 0 1B X0:= A0.51.51 B b:= A3.5 0

0 1.5

0 0 B w:= A11B
The matrix for finding b coefficients

d:= A1 −0.75 0.5625

1 −1.5 2.25

1 −4 16 B
d−1 ·Aexp(−0.75t)exp(−1.5t)

exp(−4t) B float, 4
�A 2.462 exp(−0.75t)−1.600 exp(−1.5t)+0.1385 exp(−4t)2.256 exp(−0.75t)−2.533 exp(−1.5t)+0.2769·exp(−4t)

0.4103 exp(−0.75t)−0.5333 exp(−1.5t)+0.1231 exp(−4t)B
The b-coefficients

b := A 2.462 exp(−0.75t)−1.600 exp(−1.5t)+0.1385 exp(−4t)2.256 exp(−0.75t)−2.534 exp(−1.5t)+0.2770·exp(−4t)

0.4103 exp(−0.75t)−0.5333 exp(−1.5t)+0.1231 exp(−4t)B
Calculating exp(At)

A:= A−4 0.5 −0.5

0.25 −1.75 −0.25

0.5 0.5 −0.5 B A2= A 15.875 −3.125 2.125

−1.563 3.063 0.438

−2.125 −0.875 −0.125B
A−1= A−0.222 0 0.222

0 −0.5 0.25

−0.222 −0.5 −1.528B
exp(At)= (U·b1+A·b2+A2 ·b3 )

Equation to calculate Xnat :

(U·b1+A·b2+A2 ·b3 ) ·X0
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which results in

Xnat := A −0.5101 exp(−0.75t)+0.7695 exp(−1.5t)+0.2466 exp(−4t)−0.7.67 exp(−0.75t)+2.303 exp(−1.5t)−3.079×10−2 exp(−4t)

2.565 exp(−0.75t)−1.534 exp(−1.5t)−3.074×10−2 exp(−4t) B
Equation to calculate Xpart :

A−1 ·[(U·b1+A·b2+A2 ·b3−U)·b·w]

which results in

Xpart := A 0.5426 exp(−0.75t)−0.5596 exp(−1.5t)−0.7699 exp(−4t)+0.77770.7500+0.8196 exp(−0.75t)−1.670 exp(−1.5t)+9.632×10−2 exp(−4t)

−2.738 exp(−0.75t)+1.112 exp(−1.5t)+9.59×10−2 exp(−4t)+1.528B
The total response X(t)=Xnat+Xpart :

X(t) := A 3.25×10−2 exp(−0.75t)+0.2099 exp(−1.5t)−0.5233 exp(−4t)+0.77775.29×10−2 exp(−0.75t)+0.633 exp(−1.5t)+6.553×10−2 exp(−4t)+0.7500

−0.173 exp(−0.75t)−0.422 exp(−1.5t)+6.516×10−2 exp(−4t)+1.528 B
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APPENDIX II

THE CALCULATION OF THE p.u.VALUES FOR A GIVENVV
NETWORK(*)

The 1-line diagram of the network of example 6.2 is shown in Fig. AII-1. The
parameters of the network elements are as follows.

Generators: G1- Sn=470MVA, VnVV =15.75 kV, E∞d=1.25, X∞d=0.3,
G2=G3- Sn=2×118MVA, VnVV =13.8 kV, E∞d=1.33, X∞d=0.38.

System- E
s
=1, X

s
=83 V.

Transformers: T1- S
n
=250MVA, V

n
VV =242/13.8 kV, X

s.c.
=11%,

T2- S
n
=120MVA, V

n
VV =220/11.0 kV, X

s.c.
=12%.

Autotransformers:
AT1-AA S

n
=480MVA, V

n
VV =242/121/15.75 kV, X

s.c.
=13.5/12.5/18.8%,

AT2-AA S
n
=360MVA, V

n
VV =525/242/13.8 kV, X

s.c.
=8.4/28.4/19.0%.

Transmission lines: l1=120 km, l2=95 km, l3=80 km, x0=0.4 V/km.

Load Ld- S
n
=250MVA, X

n
=1.2.

Fig. AII-1.

(*)See page 331.



550 Appendix II

The base values are chosen as:

S
b
=1000MVA, V

bI
VV =15.75 kV (main level ), V

bII
VV =15.75

242

15.75
=242 kV,

V
bIII
VV =121 kV, V

bIV
VV =242

525

242
=242 kV, V

bV
VV =242

11

220
=12.1 kV.

The p.u.values of the network elements are (see Fig. 6.8a):

G1- X
1
=0.3

1000

470
=0.64.

G2 , G3- X
2
=X
3
=0.38

1000

2·118
=1.61.

Sys- X
4
=83

1000

5252
=0.3.

AT1-AA X
5
=
1

2
·
13.5+12.5−18.8

100
·
1000

480
=0.075.

X
6
=
1

2
·
13.5−12.5+18.8

100
·
1000

480
=0.206.

X
7
=
1

2
·
−13.5+12.5+18.8

100
·
1000

480
=0.185.

AT2-AA X
8
=
1

2
·
8.4+28.4−19.0

100
·
1000

360
=0.247.

X
9
=
1

2
·
8.4−28.4−19.0

100
·
1000

360
$0.

X
10
=
1

2
·
−8.4+28.4+19.0

100
·
1000

360
=0.542.

T1- X
11
=
11

100
·
1000

250
=0.44.

T2- X
12
=
12

100
·
1000

120 A220242B2=0.83.
l1- X

13
=0.4·120

1000

2422
=0.82.

l2- X
14
=
1

2
0.4·95

1000

2422
=0.32.

l3- X
15
=0.4·80

1000

2422
=0.54.

Ld- X
16
=1.2

1000

250 A115121B2=4.34.



APPENDIX III

AN EXAMPLE OF A SHORT-CIRCUIT FAULT CALCULATION IN A
POWER NETWORK(*)

Find the short-circuit current at the fault point F using the linearization
approach for two cases: a) the AVRs are not activated; b) the AVRs are activated.

The one-line diagram of the network is shown in Fig. AIII-1. The parameters
of the network elements are as follows.

Turbo-generators: G1 S
n
=15MVA, V

n
VV =6.3 kV, SCR=0.68, I

f
=2.1,

and G2- I
fmax=4.

Hydro-generator: G3- S=60MVA, V
n
VV =10.5 kV, SCR=1, I

f
=1.75,

I
fmax=3.1.

Transformers: T1- S
n
=10MVA, V

n
VV =6/37 kV, X

s.c.
=7.5%,

T2- S
n
=40.5MVA, V

n
VV =121/37.5/10.5 kV, X

s.c.1
=11%,

X
s.c.2
=6%, X

s.c.3
=0.

Fig. AIII-1.

(*)See page 370.
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Transmission line- l=6.5km, x0=0.4 V/km.

Loads: Ld1- S
n
=24MVA, X

n
=1.2,

Ld2- S
n
=14MVA, X

n
=1.2,

Ld3- S
n
=36MVA, X

n
=1.2.

Reactor R1- I
n
=0.3 kA, V

n
VV =6.0 kV, X

x.c.
=4%.

The base values are chosen as:

S
b
=100MVA, V

b
VV =V

level
VV , I

bI
=
100

�3·6.3
=9.22 kA.

a) The p.u. values of the network elements, if the AVRs are not activated, are
(see Fig. AIII-2(a)):

G1 , G2- E1=0.2+0.8·2.1=1.88, X1=
1.88

0.68·2.1

100

30
=4.4;

G3- E2=0.2+0.8·1.75=1.6, X2=
1.6

1·1.75

100

60
=1.52;

T1- X
3
=
7.5

100

100

10
=0.75;

T2- X
4
=
11

100
·
100

40.5
=0.27, X

5
=
6

100
·
100

40.5
=0.15, X

6
=0;

l- X
7
=0.4·6.5

1000

372
=0.19;

Fig. AIII-2.
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Lds- X
8
=1.2

100

24
=5, X

9
=1.2

100

14
=8.6, X

10
=1.2

100

36
=3.33;

R1- X
11
=
4

100
·
9.2

0.3
·
6

6.3
=1.17 and E3=E4=E5=0.

The equivalent circuit of the network with the p.u. values of the network
elements is shown in Fig. AIII.2(a). By simplifying this circuit we obtain:

X
12
=0.75+0.19+0.15=1.09, X

13
= (3.33+0.27)//8.6=

3.6·8.6

3.6+8.6
=2.54

and E4,5=0;

X
14
=5//4.4=2.34 and E

1,eq
=
1.88·5

5+4.4
$1 (Fig. AIII.2(b)).

In the next step we have

X
15
=X
12
+X
2
//X
13
=1.09+

1.52·2.54

1.52+2.54
=2.04,

E
2,eq
=

1.6/1.52

1/1.52+1/2.54
$1 (Fig. AIII.2(c)),

and finally

X
eq
=2.04//2.34+1.17=2.27 and E

eq
=E
1,eq
//E
2,eq
=1.

Thus, the short-circuit current is I
s.c.
= (1/2.27)=0.441, or in amperes I

s.c.
=

0.441·9.2=4.06 kA.

The terminal voltage of G1 will be V1VV =1.17·0.441=0.516 and the currents of
each of the generators G1 and G2 will be

IG1=
E1−V1VV
X
1
=
1.88−0.516
4.4

=0.31

and

IG2=
E2−V2VV
X
15
=
1.6−0.775
2.04

=0.542,

where the voltage of V2VV can be found as

V2VV =V1VV +X12I21=0.516+1.09
1−0.516
2.04

−0.775.

To find the partial currents of each of the generators, which make up the fault
current we shall first transfer the Y-connection of the circuit, Fig. AIII.2(c), into
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the D-connection (see the dash lines). Thus,

X
1,F
=1.17+2.34+

1.17·2.34

2.04
=4.85 and I

G1,F
=
1

4.85
=0.206,

X
1,F
=1.17+2.04+

1.17·2.04

2.34
=4.23 and I

G2,F
=
1

4.23
=0.236.

We may solve the above problem using the straightforward method. For this
purpose we have to write and solve the matrix equation:

[Im]=[Zm]−1[Em],

where the matrixes are: mesh-current, mesh-impedance and mesh-EMF
matrixes.
The circuit in Fig. AIII.2(b), which has been obtained just after the trivial
stages of simplification, is redrawn in a slightly different way in Fig. AIII.3(a).ffff
The four meshes of this circuit are chosen in such a way (note that the branches
0n–1n and 1n–2n form a tree of the circuit graph) that the mesh currents depict
the short-circuit current (I3¬Isc )and the first and the second generator currents
(I1¬IG1 and I2¬IG2 ). The following solution is performed by the MATHCAD
program.

ORIGIN:=1

The mesh matrixes are

Zm:=A 9.4 5 −5 5

5 7.61 −5 6.09

−5 −5 6.17 −5

5 6.09 −5 8.63B Em:=A1.881.600 B ,
and the solution of the above matrix equation is

Im:=Zm−1 ·Em .

Fig. AIII-3.
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Thus, the mesh currents are

Im=A 0.310.5420.443

−0.305B ,
where the short-circuit current is I

s.c.
=0.443, and the generators currents are

I
G1
=0.31 and I

G1
=0.542, i.e., as previously calculated.

To find the generators’ partial currents of the short-circuit current, we shall
find the determinant of the impedance matrix and its two cofactors:

K A 9.4 5 −5 5

5 7.61 −5 6.09

−5 −5 6.17 −5

5 6.09 −5 8.63B K=377.932 K A 5 −5 5

7.61 −5 6.09

6.09 −5 8.63B K=41.431
− K A9.4 −5 5

5 −5 6.09

5 −5 8.63B K=55.88.
Now with equation 6.51 we have

I
G1,F
=B
F,1
E1=0.109·1.88=0.206, where BF,1=

D31
D
=
41.43

377.9
=0.109

and

I
G2,F
=B
F,2
E2=0.148·1.6=0.237, where BF,2=

D32
D
=
55.9

377.9
=0.148.

b) The p.u. values of the network elements, if the AVRs are activated, are (see
the numbers in the parenthesis in Fig. AIII-2(a), (b) and (c)):

E
1
=0.2+0.8·4=3.4, X

1
=
4.17

0.68·4

100

30
= 4.17 and X

cr,1
=
4.17

3.4−1
=1.74;

E
2
=0.2+0.7·3.1=2.37, X

2
=
2.37

1·3.1

100

60
=1.27 and X

cr,2
=
1.27

2.73−1
=0.93.

Thus, the critical currents are:

I
cr,1
=
1

1.74
=0.58 and I

cr,2
=
1

0.93
=1.08.
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All other parameters are as in the previous calculation. By circuit simplification
we assumed that generators G1 and G2 are operated in the maximal field regime
(since they are relatively ‘‘close’’ to the fault point) and generator G3 is operated
in the nominal voltage regime (since it is relatively ‘‘far’’ from the fault point).
In accordance with the circuit in Fig. AIII.2(c) we have

E
eq
=E
1,eq
//V
G3
VV =

1.85·1.09+1·2.27
2.27+1.09

=1.28 , where E
1,eq
=
3.4·5

4.17+5
=1.85,

and

X
eq
=X
14
//X
12
+X
11
=
2.27·1.09

2.27+1.09
+1.17=1.91.

Thus, the short-circuit current is I
s.c.
= (1.28/1.91)=0.67, or in amperes I

s.c.
=

0.67·9.2=6.2 kA.

The terminal voltage of G1 will be V
G1
VV =0.67·1.17=0.78 and the currents of

each of the generators G1 and G2 will be

I
G1
=
E1−V1VV
X
1
=
3.4−0.78
4.17

=0.628

and

I
G2
=I
L2
+I
G2,F
=
1

2.54
+
1−0.78
1.09

=0.596.

Since I
G1
>I
cr1
and I

G2
≤I
cr2
, the assumption about their regimes was correct.

With the straightforward method, applied to the circuit in Fig. AIII.3(b), we
can find the generators’ currents and therefore will know in which of the two
regimes the generators are operated. Thus, by applying the MATHCAD pro-
gram, we have:

The mesh-impedance and mesh-voltage matrixes are

Zm1:=A9.17 5 −5 5

5 7.36 −5 6.09

−5 −5 6.17 −5

5 6.09 −5 8.63B Em1:=A 3.42.3700 B ,
and the solution is

Im1:=Zm1−1 ·Em1,

which gives

Im1=A 0.5990.856

0.77

−0.505B .
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Since the current of the first generator, I
G1
=0.599, is larger than the critical

one, it is operated in the maximal field regime. However, since the current of
the second generator, I

G2
=0.856, is smaller than the critical one, it is operated

in the nominal (rated) voltage regime and its parameters should be changed to
V
G2
VV =1 and X

2
=0. (See the numbers in the parentheses in Fig. AIII.3(b).) Now

the new mesh matrixes are

Zm2:=A9.17 5 −5 5

5 6.09 −5 6.09

−5 −5 6.17 −5

5 6.09 −5 8.63B Em2:=A3.4100 B ,
and the solution is

Im2=A 0.6270.592

0.67

−0.394B .
Note that the short-circuit current, 0.67, and the currents of both generators,
0.627 and 0.592, are as previously calculated.
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INDEX

all-capacitor loops 271
all-inductor cut-sets 271
analysis equations 408
angular momentum 525
aperiodic component of synchronous

generator’s short-circuit current 375
appearance of transients 2
applying a continuous charge law 95
applying a continuous flux linkage

law 72
applying ideal sources 20
approximate solution for short-circuit of

synchronous generator 365
arc phenomenon 452–456
armature reaction reactance 353, 371
automatic voltage regulator (AVR) 350
autoreclosing 529

backward-traveling waves 469
base quantities 320
Bergeron’s diagram 496
bilateral Laplace transform 156
broken or open conductor fault

analysis 443–449

Caley-Hamilton theorem 299
complex eigenvalues 311
distinct eigenvalues 302
multiple eigenvalues 308
capacitance connected at junction of

TL 487
capacitance loop 19
capacitance termination of TL 504
Cauchy-Heaviside method 1, 2
characteristic equation 14, 50, 296
order of 20

characteristic impedance of TL 468, 497
charging a capacitor 80
circuit analysis with Fourier

transform 249
circuit simplification in short-circuit
analysis 327

delta-star transformation 328
star-delta transformation 328
superposition principle 330
symmetrical properties 330
classical approach 1, 4, 7
appearance of transients 2
applying ideal sources 20
auxiliary equation 14
capacitance loop 19
characteristic equation 14
classical method 4
constant of integration 8
critical damping 23
damping coefficient 22
dependent initial conditions 29
dependent initial conditions, method of

finding 31
determination of characteristic

equation 14
differential equation 4ffff
electric energy 2
energy distribution 3
exponential solution 7
first order characteristic equation 21
first switching law (rule) 26
forced response 12
generalized first switching law 41
generalized initial conditions 35
circuits containing capacitances 35
circuits containing inductances 39
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generalized second switching law 37
graphical interpretation of time

constant 9
ideal switching 26
independent initial conditions, method

of finding 29
inductance node 18
integration constants 31
integration factor 12
integro-differential equations 4, 6ffff

magnetic energy 2
methods of finding integration

constants 44
first order response 45
second order response 45
natural frequency 23
natural response 12
order of characteristic equation 20
overdamping 23
period of transient response 9
resonant frequency 22
roots of characteristic equation 21
roots of first order characteristic

equation 21
roots of second order characteristic

equation 21
second order characteristic

equation 22
second switching law (rule) 27
steady-state 2
time constant 9
transient-state 2
two switching rules 26
underdamping 23
zero initial conditions 28
comparison between the Fourier and

Laplace transforms 230
complex eigenvalues 311
complicated power network

analysis 368–370
concept of state variables 266
connection of sources in RL C

circuits 111
continuous charge law 95
continuous flux linkage law 72
convolution integral 247
convolution theorem (integral ) 176, 248
criterion of load stability 542
criterion of system stability 524, 525

critical damping 23, 117
critical reactance 361, 367
critical short-circuit current 367

damper winding 379
damping coefficient 22, 115
definition of stability 517
degree of unbalances 426
delta-star transformation 328
dependent initial conditions 29, 50
determination of characteristic

equation 50
determination of
dependent initial condition 50
independent initial conditions 50

determination of the forced response 50
determination of the integration

constants 51
determining traveling waves, a common

method 478–480
differential equation of TL 497ffff

direct axis of synchronous generator 347
direct-axis synchronous reactance 353
discharging a capacitor 80
distinct eigenvalues 302
double earth fault 320
double frequency component of

synchronous generator’s short-circuit
current 375

double line-to-line ground fault
analysis 442–443

Duhamel’s integral 179
dynamic stability 518

eigenvalues 298
electrical angle 519, 524
electromechanical systems, solving with

Laplace transform 210
electromotive force (EMF) 354
energy characteristic of a continuous

spectrum 228
energy relations during transients 120,

122
equal-area criterion 533
equating coefficients, method 182
multiple poles 183
simple poles 182
equivalent circuit of synchronous

generator



IndexII 561

due to damper winding 381
for steady-state operation 371
for transient behavior 372
equivalent lumped-impedance circuit of

TL 479
E-V curve 541
exiting current of power

transformers 342
exponential function 159
exponential solution 7
extinction voltage 456

field current of synchronous
generator 351, 353

field winding current of synchronous
generator 376

final value theorem 174
first order characteristic equation 21
first switching law (rule) 26
five-step solution 50
forced response 12, 50
forward-traveling waves 469
Fourier series 217
Fourier transform 213, 215, 219
approximation analysis, of 258
basic formulas of 223
circuit analysis, with 250
comparison between the Fourier and

Laplace transforms 231
convolution integral 247
decreasing sinusoid 244
definition of 215
delta function 238
differentiation properties 232ffff

energy characteristic of a continuous
spectrum 228

frequency domain 220
frequency spectra of sinusoidal
functions 240

infinite Fourier series 216
integration properties 233
interchanging properties 235
inverse transform 220
inversion using residues of complex

functions 252
linearity property 232
Ohm’s and Kirchhoff ’s laws 252
operations, of 236
pairs, of 247, 248

Parseval’s theorem 229
periodic extension of a non-periodic

function 219
periodic time function 246
rectangular pulse (pulses) 221, 222
continuous spectrum 222
discrete spectrum 222

relationship between a discrete and
continuous spectra 223

residues of complex functions 252
sampling function 217
sampling property 238
saw-tooth unit pulse 244
scaling properties 234
shifting properties 234
signum function 242
sinc function 217
spectral properties of the circuits 214
symmetry properties 224
even function 226
non-symmetrical function 228
odd function 227

time domain 220
trapezoid method 259
unit step function 241
unit-impulse function 238
volts per unit frequency 223
Fourier transform properties 231
differentiation properties 232ffff

integration properties 233
interchanging properties 235
linearity property 232
scaling properties 234
shifting properties 234
frequency deviation in resonant

circuits 139
frequency spectra of sinusoidal

function 240
functions of matrix 297
fundamental cut-set 277
fundamental cut-set matrix 279
fundamental loop 279
fundamental loop matrix 280

generalized first switching law 41
generalized initial conditions 35
circuits containing capacitances 35
circuits containing inductances 39
generalized phasor 349
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generalized second switching law 37
graphical interpretation of time

constant 9
graphical solution for short-circuit of

synchronous generator 356

Heaviside’s expansion theorem 184
complex poles 186
multiple poles 185
simple poles 184
hyperbolic form of TL equation 503

ideal switching 26
impedances to sequence currents 419
impulse voltage waveform 489
incident waves 469, 480
independent initial conditions 29, 50
inductance node 18
inertia constant 526
infinite bus 518
initial condition
dependent 50
independent 50
initial condition generators 195
initial value theorem 174
inrush current of power

transformers 345
instantaneous value of synchronous

generator’s short-circuit current 375
integration constants 31, 51
integration factor 12
integro-differential equations 6ffff

interruption in resonant circuits 147
inverse Fourier transform 219

junction of two lines 486

Lagrange interpolation formula 313
Laplace inverse transform 180
Laplace transform
analysis of TL 500–503
basic theorems, of 159
differentiation in the frequencyffff

domain 171
frequency-shift property 169
integration in the frequency
domain 171
linearity properties 160
scaling in the frequency domain 170

time differentiation theorem 161ffff

time integration theorem 163
time-shift theorem 165

circuit analysis with 188
non-zero initial conditions 193
zero initial conditions 190
complex frequency in 156
convolution theorem 176
definition of 156
differentiation in the frequencyffff

domain 171
Duhamel’s integral 179
electromechanical systems, solving

with 210
equating coefficients, method of 182
multiple poles 183
simple poles 182
exponential function 159
final-value theorem 174
frequency-shift property 169
Heaviside’s expansion theorem 184
complex poles 186
multiple poles 185
simple poles 184
impedances of 178
initial condition generators 194
initial value theorem 174
integration in the frequency

domain 171
inverse transform 180
linearity properties 160
magnetically coupled circuits, solving

with 207
one-sided (unilateral ) transform 156
operations of 173
pairs, of 166
partial fraction expansions, method

of 180
ramp function 159
scaling in the frequency domain 170
sinusoidal function, response to 200
steady-state response 198
techniques 155
Thevenin and Norton equivalent

circuits 203
time differentiation theorem 161ffff

time integration theorem 163
time-shift theorem 165
transient response with 197
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two-sided (bilateral ) transform 156
unit impulse function 158
unit step function 157
lattice diagram 494
leakage reactances 371
line with only L G/CR parameters 511
linearization of the OCC 365
line-to-line fault analysis 437–442
load influence 362
load transmission coefficient 476
loss-less line 504

magnetically coupled circuits, solving with
Laplace transform 207

magnetizing current
of power transformers 342
of synchronous generators 353
magnetomotive force (MMF) 354
matrix exponential 295
evaluating by Laplace transform 314
matrix transformations 412, 432
maximal field current regime 361
mechanical angle 519, 524
methods of finding integration

constants 44
first order response 45
second order response 45
moment of inertia 525
multiple eigenvalues 308
multiple oscillations 459
mutual impedances of rotating

machines 428

natural frequency 23, 115
of generators 528

natural response 12
natural solution with state variables 294
natural termination of TL 483
negative-sequence system 406
no-load characteristic of synchronous

generator 351
non-linear resistive termination of

TL 499
non-zero initial conditions 193

open-circuit characteristic (OCC) of
synchronous generator 351

open-circuit termination of TL 485
operational method 2

operator matrix 407
order of characteristic equation 20
overdamped response in parallel

circuits 120
overdamping 23, 113, 118

parallel connected RL C circuits 118
overdamped response 120
underdamped response 119
Parseval’s theorem 229
particular solution with state

variables 296
peak coefficient 337, 387
peak values of synchronous generator

short-circuit current 387
period of transient response 9
per-unit conversion 320
approximate evaluation 326
exact evaluation 326
phase portrait 273
phasor diagram of synchronous

generator 373
due to damper winding 382
positive-sequence system 405
Potier triangle 354
power in terms of symmetrical

components 449
power of short-circuit 401
power of traveling waves 471
power-angle curve 519
power-transfer characteristic 518
power-transfer curve 519
propagation constant 502

quadrature axis of synchronous
generator 347

quashing period of the arc 452
quenching time constant 454
Q-V characteristic (curve) 540

r.m.s. value of exponential term 348
r.m.s. value of short-circuit current 348,

388
rated (nominal ) voltage regime 361
RC circuits 80
under a d.c. supply 82
under an a.c. supply 88
receiving-end reflection coefficient 481
rectangular pulse 221
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continuous spectrum 222
discrete spectrum 222
reflected waves 469, 480
reflection coefficients 481
refraction coefficient 481
residues of complex functions 252
resonant frequency 22
resonant RL C circuits 135
displacement angle 137, 146
frequency deviation 140
interruption in a resonant circuit 147
resonance at multiple frequencies 141
resonance at the fundamental

frequency 139
switching on to an a.c. source 136
switching-off in 143
restriking oscillation 453
RL circuits 51
under a d.c. supply 51
under an a.c. supply 62
RL C circuits 110
connection of sources 111
critical damping response 117
energy relations 122
oscillatory response 117
overdamped response 113
parallel connected 118
periodic response 117
series connected 113
switching-off 143
transient response in terms of

hyperbolic functions 121
two nonzero initial conditions 120
under a d.c. supply 110
under an a.c. supply 131
underdamped response 115, 120
underdamped response in parallel

circuits 119
RL C resonant circuits 135
displacement angle 137, 146
frequency deviation 140
interruption in a resonant circuit 147
resonance at multiple frequencies 141
resonance at the fundamental

frequency 139
switching on to an a.c. source 136
switching-off in 143
roots of characteristic equation 21
rotating phasor 349

saturated reactance 351
saw-tooth unit pulse 244
second order characteristic equation 22
second switching law (rule) 27
security factor of transient stability 535
sending-end reflection coefficient 481
sequence admittance matrix 414, 423
sequence admittances 415
sequence impedance matrix 412, 422
sequence impedances of rotating

machines 429
sequence rule 414
sequence voltages 406
series connected RL C circuits 113
critical damping response 117
oscillatory response 117
overdamped response 113
periodic response 117
underdamped response 115, 120
series faults 443
short-circuit analysis in interconnected

networks 394
short-circuit characteristic (SCC) of

synchronous generator 351
short-circuit power 401
short-circuit ratio (SCR) 351, 353
short-circuit termination of TL 485
short-circuiting in a simple three-phase

circuit 328
short-circuiting of power
transformers 339

short-circuits in power systems 320
base quantities 320
circuit simplification 327
delta-star transformation 328
parallel connections 327
series connections 327
star-delta transformation 328
superposition principle 330
symmetrical properties 330
delta-star transformation 328
double earth fault 320
exiting current of power

transformer 342
inrush current of power

transformer 345
magnetizing characteristic of

transformer 345
magnetizing current of power

transformer 342
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peak coefficient 3327
per-unit conversion 320
approximate evaluation 326
exact evaluation 326
r.m.s. value of exponential term 338
r.m.s. value of short-circuit

current 338
short-circuiting in a simple circuit 333
short-circuiting of power

transformers 339
single-pole short circuit 320
star-delta transformation 328
switching transformers 339
three-pole short-circuit 320
two-pole short circuit 320
two-pole short-circuit with an earth

fault 320
shunt faults 443
signum function 242
simple computation of short-circuit

currents 399
sinc function 217
single line-to-ground fault analysis

431–437
single-pole short circuit 320
singularity function 101
source transmission coefficient 473
spectral properties of the circuits 214
stability limit 522
stability of loads 540
criterion of load stability 542
E-V curve 541
Q-V characteristic (curve) 540
voltage collapse 540, 541
stability of power systems 517
angular momentum 525
autoreclosing 529
criterion of stability 524, 525
critical clearing time 535
definition of 517
dynamic stability 518
electrical angle 519, 524
equal-area criterion 533
inertia constant 526
infinite bus 518
mechanical angle 519, 524
moment of inertia 525
natural frequency 528
power-angle curve 519

power-transfer characteristic 518
power-transfer curve 519
reduction to simple system 537–539
security factor of transient

stability 535
stability limit 522
static limit of stability 519
static stability 518
steady-state stability 518
swing equation 524, 527
synchronism 517
synchronizing power 525
transient stability 529
star-delta transformation 328
state equation in matrix form 268, 272
state variable analysis 265
all-capacitor loops 271
all-inductor cut-sets 271
basic considerations in writing state

equations 276
capacitor twigs 289
characteristic equation 298
concept of state variables 266
eigenvalues 298
Caley-Hamilton theorem 299
complex eigenvalues 311
distinct eigenvalues 302
multiple eigenvalues 308

functions of matrix 297
fundamental cut-set 277
fundamental cut-set matrix 279
fundamental loop 279
fundamental loop matrix 280
inductor links 289
initial state 269
input vector 273
Lagrange interpolation formula 313
matrix exponential 295
matrix exponential evaluating by

Laplace transform 314
natural solution 294
order of complexity 270
particular solution 296
phase portrait 276
resistor links 289
resistor twigs 289
state equation 265, 269
state equation in matrix form 268, 272
state equation writing, method of 283
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choosing state variables 284
choosing the proper tree 284
cut-set equations 285
loop equations 285
state variables 265, 269
systematic method for writing state

equations in matrix form 287
Tellegen’s theorem 282TT
trajectory of state-space 272, 273
unique cut-set 277
vector of state variables 272
static limit of stability 519
static stability 518
steady-state 2
steady-state short-circuit of synchronous

generator 350
steady-state stability 518
subtransient EMF 379, 382
subtransient reactance 379, 382
subtransient stage of synchronous

generator 384
subtransient time constant 379, 383
successive reflection of waves 493
sum of delayed waves 507
superposition principle in transient

analysis 105, 326
swing equation 524, 527
switching on in resonant circuits 136
switching surges 452
switching transformers 339
switching-off in RL C circuits 143
symmetrical components, method 404
analysis equations 408
constraint matrix 432, 439, 442, 444
degree of unbalances 426
impedance matrix transformation 412
impedances of sequence networks 418
impedances to negative-sequence

currents 419
impedances to positive-sequence

currents 419
impedances to zero-sequence

currents 419
matrix transformation 432
mutual impedances of rotating

machines 428
negative sequence admittance 415
negative-sequence impedance 413
negative-sequence network

impedance 419

negative-sequence system 406
operator matrix 407
phase-neutral mutual impedance 421
phase-phase mutual impedance 421
positive sequence admittance 415
positive-sequence impedance 413
positive-sequence network

impedance 419
positive-sequence system 405
power in terms of 449
principle of 405
sequence admittance matrix 414
sequence admittance matrix with

mutual coupling 423
sequence admittances 415
sequence impedance matrix 412
sequence impedance matrix with

mutual coupling 422
sequence impedances 411
sequence impedances of rotating

machines 429
sequence mutual impedance

matrix 423
sequence mutual impedances 423
sequence networks 419–420
sequence rule 414
sequence voltages 406
series faults 443
shunt faults 443
synthesis equations 407
unbalanced three-phase analysis,

with 431
broken conductor, sequence network
connection 446
broken or open conductor fault 443
double line-to-line ground fault 442
double line-to-line ground fault,
sequence network
interconnection 443
line-to-line fault 437
line-to-line fault, sequence network
interconnection 438
single line-to-ground fault 431
single line-to-ground fault, sequence
network interconnection 436

unit phasor operator 406
zero-sequence admittance 415
zero-sequence impedance 411
zero-sequence network impedance 419
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zero-sequence system 406
symmetrical components, method of 404
symmetry properties of Fourier

transform 224
even function 226
non-symmetrical function 228
odd function 227

synchronism 517
synchronizing power 525
synchronous machines, short-circuiting

of 347
approximate solution 365
armature reaction reactance 353
automatic voltage regulator

(AVR) 350AA
complicated network analysis 368–370
critical reactance 361, 367
critical short-circuit current 367
cylindrical rotor 347
direct axis 347
direct-axis synchronous reactance 353
electromotive force (EMF) 354
equivalent circuit of a complicated

network 369
field current 351, 353
generalized phasor 349
graphical solution 356
linearization of the OCC 365
load influence 364
magnetomotive force (MMF) 354
maximal field current regime 361
no-load characteristic 351
open-circuit characteristic (OCC) 351
Potier triangle 354
quadrature axis 347
rated (nominal ) voltage regime 361
rotating phasor 349
round rotor 347
salient-pole rotor 347
saturated reactance 351
short-circuit characteristic (SCC) 351
short-circuit currents in complicated

power networks 368
short-circuit ratio (SCR) 351, 353
steady-state short-circuit 350
synchronous reactance 353, 370
two-axis representation 347
unsaturated reactance 351
synchronous reactance 353, 370
synthesis equations 407

Tellegen’s theorem 282TT
Thevenin and Norton equivalent

circuits 203
Thevenin equivalent of TL 478
three-pole short-circuit 320
time constant 8
time constant of synchronous generator in

open circuit operation 377
total short-circuit current of synchronous

generator due to damper winding
383

trajectory of state-space 272, 273
transient behavior of synchronous

generator due to AVR 385
transient EMF 370, 372
transient overvoltages 451
arc phenomenon 452–456
extinction voltage 456
multiple oscillations 459
quashing period of the arc 452
quenching curves of the current 454
quenching time constant 454
restriking oscillation 453
switching surges 452
transient performance of synchronous

generator 370
aperiodic component 375
armature reaction reactance 371
armature time constant 378
damper winding 379
double frequency component 375
envelope curve 384, 387
equivalent circuit due to damper

winding 381
equivalent circuit for transient

behavior 372
field winding current 376
first moment a.c. (periodic)

component 373
first moment d.c. (aperiodic)

component 373
instantaneous value of a short-circuit

current 375
leakage reactances 371
open-circuit time constant 377
peak values of short-circuit

current 387
phasor diagram 373
phasor diagram due to damper

winding 382
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subtransient EMF 379, 382
subtransient reactance 379, 382
subtransient stage 384
subtransient time constant 379, 383
time constant in open circuit

operation 377
total rotor field current 379
total short-circuit current due to

damper winding 383
total transient response current 379
transient behavior due to AVR 385
transient EMF 370, 372
transient reactance 370, 372
transient stage 384
transient time constant 370, 377
transient reactance of synchronous

generator 370, 372
transient response in terms of hyperbolic

functions 121
transient stability 529
transient stage of synchronous

generator 384
transient time constant of synchronous

generator 370, 377
transients in three-phase systems 319
transients in transmission lines 465
backward-traveling waves 469
Bergeron’s diagram 496
capacitance connected at junction of

two lines 487
capacitance connected in parallel 487
capacitance termination 504
characteristic impedance 468, 497
connecting to load 475
connecting to voltage source 473
determining traveling waves, a common

method 478–480
differential equation of TL 466ffff

energy stored per unit length 471
equivalent lumped-impedance

circuit 479
forward-traveling waves 469
hyperbolic form of TL equation 503
impulse voltage waveform 489
incident waves 469, 480
junction of two lines 486
Laplace transform analysis,

of 500–503
lattice diagram 494

line with only L G/CR parameters 511
load transmission coefficient 476
loss-less line 504
natural termination 483
nonlinear resistive termination 499
open-circuit termination 485
power of traveling waves 471
propagation constant 502
receiving-end reflection coefficient 481
reflected waves 469, 480
reflection coefficients 481
refraction coefficient 481
sending-end reflection coefficient 481
short-circuit termination 485
source transmission coefficient 473
successive reflection of waves 493
sum of delayed waves 507
termination in resistance 482
Thevenin equivalent 478
transients in underground

cables 512–516
transmission factor 481
velocity of the wave propagation 468,

469
wave formation 472
transients in underground

cables 512–516
transient-state 2
transmission factor 481
trapezoidal method 258
two nonzero initial conditions, natural

response by 120
two switching rules 26
two-axis representation of synchronous

generator 347
two-pole short circuit 320
two-pole short-circuit with an earth

fault 320

unbalanced three-phase systems analysis
using symmetrical components 437
broken or open conductor fault 443
sequence network connection 446
double line-to-line ground fault 442
sequence network
interconnection 443

line-to-line fault 437
sequence network
interconnection 438
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single line-to-ground fault 431
sequence network
interconnection 436

underdamped response in parallel
circuits 119

underdamping 23, 115, 118 119
unilateral Laplace transform 156
unique cut-set 277
unit impulse function 158, 237
unit phasor operator 406
unit step function 101, 157, 241
unsaturated reactance 351

vector of state variables 272
velocity of the wave propagation 468,

469
voltage collapse 540, 541

wave formation 472

zero initial conditions 28, 190
zero-sequence system 406
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