
The Architecture of High Performance Computers

The Architecture of
High Performance
Computers
Roland N. Ibbett
Reader in Computer Science,
University of Manchester

© Roland N. Ibbett 1982
Originally published by Springer-Verlag New York in 1982

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1982 by
The Macmillan PresS Ltd
London and Basingstoke

Sole distributors in the USA ahd Mexico
Springer Science+Business Media, LLC.

ISBN 978-1-4757-6717-9 ISBN 978-1-4757-6715-5 (eBook)
DOI 10.1007/978-1-4757-6715-5

Preface

Introduction

1.1 Historical Developments
1.2 Techniques for Improving Performance
1.3 An Architectural Design Example

2 Instructions and Addresses

1
2
3

2.1 Three-address Systems - The CDC 6600 and 7600 7
2.2 Two-address Systems - The IBM System/360 and /370 10
2.3 One-address Systems 12
2.4 Zero-address Systems 15
2.5 The MU5 Instruction Set 17
2.6 Comparing Instruction Formats 22

3 Storage Hierarcbies

3.1 Store Interleaving
3.2 The Atlas Paging System
3.3 IBM Cache Systems
3.4 The MU5 Name Store
3.5 Data Transfers in the MU5 Storage Hierarchy

4 Pipelines

4.1 The MU5 Primary Operand Unit Pipeline
4.2 Arithmetic Pipelines - The TI ASC
4.3 The IBM System/360 Model 91 Common Data Bus

5 Instruction Buffering

26
29
33
37
44

49
62
67

5.1 The IBM System/360 Model 195 Instruction Processor 72
5.2 Instruction Buffering in CDC Computers 77
5.3 The MU5 Instruction Buffer Unit 82
5.4 The CRAY-1 Instruction Buffers 87
5.5 Position of the Control Point 89

6 Parallel Functional Units

6.1 The CDC 6600 Central Processor
6.2 The CDC 7600 Central Processor
6.3 Performance
6 • 4 The CRA Y-1

7 Vector Processors

7.1 Vector Facilities in MU5
7.2 String Operations in MU5
7.3 The CDC Star-100
7.4 The CDC CYBER 205
7.5 Future Developments

References

Index

95
104
110
112

126
136
142
146
163

165

170

Preface

Computer architecture has always formed an essential part of
all single honours degree courses taught in the Department of
Computer Science at the Uni versi ty of Manchester, and the
material in this book is largely based on those parts of the
course which are concerned with the design of high performance
uniprocessors. One of the principal aims of the course has
al ways been to encourage students to discover the 'whys ' as
well as the 'hows' of computer architecture. For this reason I
have tried to place the computers described here in their
proper historical context, in order to show both why and how
they were developed. Similarly I have not tried to impose a
uniform nomenclature on to the material, but rather to use the
terms which came naturally to the designers and which are to
be found in the original documentation.

I am indebted to many people for advice and assistance in
the preparation of this book. At Manchester numerous
cOlleagues joined in discussions about the various topics
considered here, and the computer maintenance team kept MU5 in
good order while it processed the text. Elsewhere computer
maintenance engineers at various sites willingly answered
obscure questions about the machines in their charge, and
staff at Cray Research and Control Data Corporation vetted
parts of the manuscript. Particular mention should be made of
Chuck Purcell of CDC for much useful information, and I would
like to thank Professors T. Kilburn, D. B. G. Edwards, F. H.
Sumner and D. Morris for their constant encouragement and
advice over the years. Finally a word of appreciation to my
small son James for his 'help' with the manuscript.

Roland N. Ibbett

June 1982

1 Introduction

Computer architecture has been defined in a number of ways by
different authors. Amdahl, Blaauw and Brooks [1], for example,
the designers of the IBM System/360 architecture, used the
term to 'describe the attributes of a system as seen by the
programmer, i.e. the conceptual structure and functional
behaviour, as distinct !rom the organisation of the data flow
and controls, the logical design and the physical
implemen ta tion'. Stone [2], on the other hand, sta tes tha t
'the study of computer architecture is the study of the
organisation and interconnection of components of computer
systems'. The material presented here is better described by
this wider definition, but is particularly concerned with ways
in which the hardware of a computer can be organised so as to
maximise performance, as measured by, for example, average
instruction execution time. Thus the architect of a high
performance system seeks techniques whereby judicious use of
increased cost and complexity in the hardware will give a
significant increase in overall system performance.

1.1 BISTORICAL DEYELOPMEBTS

Designers of the earliest computers, such as the Manchester
University/Ferranti Mark 1 (first produced commercially in
1951 [3]), were constrained by the available technology
(val ves and Williams Tube storage, for example, wi th their
inherent problems of heat dissipation and component
reliability) to build (logically) small and relatively simple
systems. Even so, the introduction of B-lines and fast
hardware multiplication in the Mark 1 were significant steps
in the direction of cost-effective hardware enhancement of the
basic design. At Manchester this trend was developed further
in the Mercury computer, with the introduction of hardware to
carry out floating-point addition and multiplication. This
increased logical complexity was made possible by the use of
semiconductor diodes and the availability of smaller and more
reliable valves than those used in Mark 1, both of which
helped to reduce power consumption (and hence heat
dissipation) and increase overall reliability. A further
increase in reliability was made in the commercial version of
Mercury (first produced in 1957) by the use of the then newly

2 The Architecture of High Performance Computers

developed ferrite core store.

The limitations on computer design imposed by the problems
of heat dissipation and component reliability were decreased
dramatically in the late 1950s and early 1960s by the
commercial availability of transistors, and the first
generation of I supercomputers I (Atlas, Stretch, MULTICS and
the CDC 6600, for example [4,5,6,7]) appeared. These machines
incorporated features which have influenced the design of
succeeding generations of computers (the paging/virtual memory
system of Atlas and the multiple functional units of the 6600,
for example), and also highlighted the need for sophisticated
software, in the form of an operating system, intimately
concerned with acti'Vities within the hardware from which the
user (particularly in a multi-user environment) required
protection, and vice versa! In this book we shall follow the
developments of some of the ideas from these early
supercomputers into present day computer designs.

1.2 TECaRIQUES FOR IMPROVIRG PERFORMANCE

Improvements in computer archi tecture arise from three
principle factors

(1) technological improvements

(2) more effective use of existing technology

(3) improved software-hardware communication

Technological improvements include increases in the speed
of logic circuits and storage devices, as well as increases in
reliability. Thus the use of transistors in Atlas, for
example, not only allowed individual circuits to operate
raster than those in Mercury, but also allowed the use of
parallel adders, which invol ved many more logic circui ts but
which produced results very much more quickly than the simple
serial adders used in earlier machines. Corresponding changes
can be seen today as the scale of integration of integrated
circui ts continues to increase, allowing ever more complex
logical operations to be carried out within one silicon chip,
and hence allowing greater complexity to be introduced into
systems while keeping the chip speed and overall system
reliability more or less constant.

Making more effecti ve use of existing technology is the
chief concern of computer architecture, and almost all of the
techniques used can be classified under the headings of either
storage hierarchies or concurrency. Storage devices range from
being small and fast (but expensive) to being large and cheap

Introduction 3

(but slow) j in a storage hierarchy severa1 types, sizes and
speed of storage device are combined together, using both
hardware and software mechanisms, wi th the aim of presenting
the user with the illusion that he has a fast, 1arge (and
cheap) store at his disposal.

Concurrency occurs in various forms and at various levels
of system design. Low-1eve1 concurrency is typified by
pipeline techniques, inter1eaved storage and parallel
functiona1 units, for examp1e, all of which are 1arge1y
invisible to software. High-level concurrency, on the other
hand, typically invo1ves the use of a number of processors
connected together in some form of array or network, so as to
act in parallel on a given computationa1 task, and special
software is generally required in order to organise the
activities of these processors. In this book we sha11 be
1arge1y concerned with 10w-1eve1 concurrency techniques.

Communication between software and hardware takes p1ace
through the order code (or instruction set) of the computer,
and the efficiency wi th which this takes p1ace can
significant1y affect the overall performance of a computer
system. One of the difficu1ties with some 'powerfu1' computers
is that the 'power' is obtained through hardware features
which can on1y be fu11y exp10ited either by hand coding or by
the use of comp1ex and time-consuming a1gorithms in compilers.
This fact was recognised ear1y in the Manchester University
MU5 project, for examp1e, where an instruction set was sought
which wou1d permit the generation of efficient object code by
high-level 1anguage compilers. The design of this order code
was therefore influenced not on1y by the anticipated
organisation of the hardware, which was itse1f influenced by
the avai1ab1e techno10gy, but also by the nature of existing
high-level 1anguages. Thus the order code, hardware
organisation, and availab1e techno10gy all interact together
to produce the overall architecture of a given system. An
examp1e of such an interaction is given in the next section,
based on some of the ear1y design considerations for MU5 [8].

1.3 AI ARCBITECTURAL DESIGI EXAHPLE

At the time when the MU5 project was star ted (196617), the
fastest production techno10gy availab1e for its construction
was that being used by ICT (later to become ICL) for their
1906A computers. In this techno10gy, MECL 2.5 small sca1e
integrated circuits are mounted individually or in pairs on
printed circuit modules, together with discrete load
resistors, and up to 200 of these modules are interconnected
via mu1ti-1ayer p1atters. P1atters are mounted in groups of
six or nine within 10gic bays, with adjacent p1atters being

4 The Architecture of High Performance Computers

joined by pressure connectors. Inter-group and inter-bay
connections are via co-axial cables. The circui t delay for
this technology is 2 ns, but the wiring delay of 2 ns/ft
(through matched transmission line interconneetions) must also
be taken into aeeount. An average eonneetion between two
integrated eireuits mounted on modules on the same platter
involves a 1" eonneetion on eaeh module and a 4" eonneetion
between modules, involving 6" in all and giving an extra 1 ns
delay. Some additional delay also oeeurs beeause of the
loading of an output eireuit with following input eireuits,
and so for design purposes a figure of 5 ns was assumed for
the delay between the inputs of suceessive gates.

True
B 1-------0 XB

XIN

B Output Inverse
NI-------O Adder

Input

XIN ,------,I
Register Settled

True/lnverse Selected

Addition Complete

XB

I
1

-+-15ns
1

1

----I .. ~: lOns
I

1

-------------'.~: 35ns

I
I
I
I 45ns

LJ
Figure 1.1 An Index Arithmetie Unit

A 32-bit fixed-point adder/subtraeter eonstrueted in this
teehnology requires five gate delays through the adder, plus
one gate delay to seleet the TRUE or INVERSE of one of the
inputs to allow for subtraetion, giving a total delay of 30
ns. This adder/subtracter ean be ineorporated into an index
arithmetic unit as shown in figure 1. 1. A 10 ns strobe XIN
eopies new data into register BIN, the output from whieh is
steady after 5 ns. During the addition, information is strobed
into a register whieh forms part of the adder, and the 10 ns
strobe XB, whieh eopies the result of the addition into the
index register B, starts immediately after this internal adder
strobe has finished. The earliest time at whieh the next XIN

Introduction 5

strobe can start is at the end of XB, so that the m~n~mum time
between successive add/subtract operations in this unit is 45
ns.

This time is very much less that the access time to the
main store of MU5, a plated-wire store with a 260 ns cycle
time. (A sui table replacement semiconductor store, using 16K
MOS RAMs, would actually be even slower.) Thus, in the absence
of some additional technique, there would be a severe
mis-match between the operand accessing rate and the
arithmetic execution rate for index arithmetic instructions.
An examination of the operands used in high-level languages,
and studies of programs run on Atlas, indicated that over a
large range of programs, 80 per cent of all operand accesses
were to named scalar variables, of which only a small number
was in use at any one time. Thus a system which kept these
operands in fast programmable registers would be able to
achieve high performance, a technique commonly used in
existing computers. However, this is exactly the sort of
hardware feature which causes compiler complexity, and which
the designers of MU5 sought to avoid.

Associative
Address

Field

Address of Named
Operand

r -,
I I

I
I Operand

Value
Field

Value of Named
Operand

Figure 1.2 The MU5 Name Store

The alternative solution adopted in MU5 involves the
identification within each instruction of the kind of operand
involved, and the inclusion in the hardware of an
associati vely addressed buffer store for named variables, the
Name Store. This store has to operate in conjunction with the
main store of the processor, thus immediately introducing the
need for a storage hierarchy in the system. Having observed
this implication, further discussion of storage hierarchies
will be left until Chapter 3; there are additional
implications for the system architecture to be considered
here, based on the timing of Name Store operations.

The Name Store consists of two parts, as shown in figure
1.2; the associative address field and the operand value
field. During the execution of an instruction involving a

6 The Architecture of High Performance Computers

named variable, the address of the variable is presented to
the associative. field of the Name Store, and if a match is
found in one of its 32 associative registers, the value of the
variable can be read from the corresponding register in the
Name Store value field. The time required for association is
25 ns, and similarly for reading. Thus, in order for the index
arithmetic unit to operate at its maximum rate, the
association time, reading time and addition time for
successive instructions must all be overlapped (by introducing
buffer registers such as that shown dotted in figure 1.2). In
making provlslon for this overlap, however, another
archi tectural feature has been introduced - the organisation
of the processor as a pipeline. Further discussion of
pipelines will be left until Chapter 4, but it should now be
clear that there is considerable interaction between the
various facets of the architecture of a given computer system.

2 Instructions and Addresses

An important characteristic of the architecture of a computer
is the number of addresses contained in its instruction
format. Arithmetic operations generally require two input
operands and produce one result, so that a three-address
instruction format would seem natural. However, there are
arguments against this arrangement, and decisions about the
actual number of addresses to be contained within one
instruction are generally based on the intuitive feelings of
the designer (s) in relation to economic considera tions , the
expected nature of the implementation, and the type of operand
address and its size. An important distinction exists between
register addresses and store addresses, for example; if the
instruction for a particular computer contains only register
addresses, so that its main store is addressed indirectly
through some of these registers, then up to three addresses
can be accommodated in one instruction. On the other hand,
where full store addresses are used, multiple-address
instructions are generally regarded as prohibitively expensive
both in terms of machine complexity and in terms of the static
and dynamic code requirements. Thus one store address per
instruction is usually the limit (in which case arithmetic
operations are performed between the content of the store
location and the content of an implicit accumulator), although
some computers have variable-sized instructions and allow up
to two full store addresses in a long instruction format. In
this chapter we shall introduce examples of computer systems
which have three, two, one and zero-address instruction
formats, and discuss the relationships which exist between
each of these arrangements and the corresponding hardware
organisation.

2.1 THREE-ADDRESS SYSTEMS - THE eDe 6600 AHD 7600

The Control Data Corporation 6600 computer first appeared in
the early 1960s, and was superseded in the late 1960s by the
7600 system (now renamed CYBER 70 Model 76). l'he latter is
machine code compatible upward from the former, so that the
basic instruction formats of the two systems are identical,
but the 7600 is about four times faster than the 6600. The
6600 remains an important system for students of computer

8 The Architecture of High Performance Computers

architecture, however, since it has been partieularly well
doeumented [7], and an understanding of Hs organisation and
operation provides a proper background not only for an
appreciation of the design of the 7600 system, but also that
of the CRAY-1, whieh can be seen as a logieal extension of the
6600/7600 concepts from sealar to vector operation. The design
of all these machines will be discussed in more detail in
Chapter 6.

Per ipheral Add

~
Peripheral

Multiply Processors Ch
Multiply

Divide

Fixed Add

Increment

Central Scratch
Increment

Storage Pad -.-
Registers Boolean

Shift

Branch

Instruction 1
Stack H Scoreboard

Figure 2.1 CDC 6600 Processor Organisation

The 6600 was designed to solve problems substantially
beyond contemporary computer capability and, in order to
achieve this end, a high degree of functional parallelism was
introduced into the design of the central processor. An
instruction set and proeessor organisation whieh could exploit
this parallelism, while at the same time maintaining the
illusion, at least, of striet serial execution of
instructions, was therefore required. A three-address
instruction format provides this possibility, since suceessive
instructions can refer to totally independent input and result
operands . This would be qui te impossible wi th a one-address
instruction format, for example, where one of the inputs for
an arithmetic operation is normally taken from, and the result
returned to, a single implicit accumulator. Dependencies
between instruetions can still oceur in a three-address
system, of course; for example, where one instruetion requires
as its input the result of an immediately preeeding
instruetion, and the hardware must ensure that these are
strictly maintained. This would be difficult if full store
addresses were invol ved, but the use of three full store
addresses would, in any ease, have made 6600 instruetions

Instructions and Addresses 9

prohibitively long. There were, in addition, strong arguments
in favour of having a 'scratch-pad' of fast registers in the
6600 which could match the operand processing rate of the
functional units.

F

3

F

3

m k

3 3 3 3

m K

3 3 3

F denotes the major class of function
m denotes a mode within the functional unit
i identifies one of 8 registers within X, B or A
j identifies one of 8 registers within X, Bor A
k identifies one of 8 registers within X B or A

18

K 18-bit immediate field used as a constant or Branch destination

15 bit

30 bit

Figure 2.2 CDC 6600 Instruction Formats

Thus the overall design of the 6600 processor is as shown
in figure 2.1, and the instruction formats are as shown in
figure 2.2. There are three groups of sera tch-pad registers,
eight 60-bit operand registers (X), eight 18-bit address
registers (A), and eight 18-bit index registers (B). 15-bit
computational instructions take operands from the two X
registers identified by j and k, and return a result to the X
re~ister identified by i. Operands are transferred between X
registers and Central Storage by instructions which load an
address in to registers A 1-A5 (thus causing the corresponding
operand to be read from that address in store and loaded into
X1-X5), or into registers A6 or A7 (thus causing the conte nt
of x6 or X7 to be transferred to that address in store). The
contents of an A register can also be indexed by the contents
of aselected B register, and the B registers can also be used
to hold fixed-point integers, floating-point exponents, shift
counts, etc. The 30-bit instruction format (identified by
particular combinations of Fand m, as are the register
groups) is used where a literal ('immediate') operand is to be
used in an operation involving an A or B register, or in
control transfer (' Branch') instructions, where the value in
the K field is used as the jump-to, or destination, address.

The issuing of instructions to the functional units and the
subsequent updating of result registers is controlled by the
Scoreboard (section 6.1), which takes instructions in sequence
from the Instruction Stack (section 5.2.1). This in turn
receives instructions from Central Storage. The order code of
the central processor does not include any peripheral handling

10 The Architecture of High Performance Computers

instructions, since all peripheral operations are
independently controlled by the ten Peripheral Processors,
which organise data transfers between Central Storage and
input/output and bulk storage devices attached to the
peripheral channels. This relieves the central processor of
the burden of dealing with input/output, a further
contribution towards high performance.

2.2 TWO-ADDRESS SYSTEMS - TUE IBM SYSTEM/360 AND /370

The design objectives for the IBM System/360 [1,9] (introduced
in 1964) were very different from those for the CDC 6600. Here
the intention was to produce a line of processors (initially
six) with compatible order codes, but a performance range
factor of 50. Furthermore, whereas the CDC 6600 was intended
specifically for scientific and technological work, System/360
machines were required to be configurable for a variety of
tasks covering both scientific and data processing
applications. The former are dominated by floating-point
operations, where fast access to intermediate values requires
the provision of one or more registers close to the arithmetic
unit(s) in the central processor. Data processing
applications, on the other hand, frequently involve the
movement (and fairly simple manipulation) of long strings of
data, and direct two-address storage to storage operations are
much more appropriate than operations involving three store
addresses or operations involving the use of intermediate
values held in registers. Furthermore, in machines at the low
performance end of the range, logical registers are normally
implemented within main storage, and the extra store accesses
required for these registers would actually slow down this
type of operation.

Store addressing is itself a major problem in the design of
a compatible range of computers; to quote from IBM, in turn
quoting from DEC [10,11], 'There is only one mistake ... that is
difficult to recover from - not providing enough address
bits ... '. In the design of the IBM System/360 large models
were seen to require storage capacities in the millions of
characters, whereas small models required short addresses in
order to minimise code space requirements and instruction
access time. This problem was overcome by the use of index
registers to supply base addresses covering the entire 24-bit
address space, and small displacement addresses within
instructions. This can be seen in figure 2.3, which shows the
five basic instruction formats: register to register
operations (RR), register to indexed storage operations (RX),
register to storage operations (RS), storage and immediate
operand operations (SI), and storage to storage operations
(SS). All operand addresses consist of a 4-bit B field

Instructions and Addresses 11

specifying which of the 16 general registers provided is to be
used as a base, and a 12-bit displacement which is added to
the base value to form the store address. In the case of the
RX format, a further general register is specified by the X
field, for use as a conventional index register allowing
access to an element within an array, for example. In the RS
format this field becomes R3, used in the specification of the
number of registers involved in the simultaneous transfer of a
multiplicity of register contents to or from store. A typical
instruction using the RR format, for example, invol ves the
addition of the content of the register specified by R2 to the
content of register R1, the result being returned to R1.

Register Register
Operand 1 Operand 2
~

Op Code I R, I R.

B 4 4
Register

Operand 1
,-J'-.

I Op Code I R, I X, I 8.

B 4 4 4

Register Register
Operand 1 Operand 3
~

OpCode I R, I R3 I 8.

B 4 4 4

Immediate
Operand .

I Op Code I. 8,

B B 4

Length
Oper 1 Oper 2

~

Op Code I L, I t... I 8,

B 4 4 4

Address
Operand 2

A-

O.

12

Address
Operand 2 ..

O.

12

Address
Operand 1 .

0,

12

Address
Operand 1

"
0,

12

RR Format

RX Format

RS Format

SS Format

Address
Operand 2

"
8. o.
4 12

Figure 2.3 IBM System/360 Basic Instruction Formats

The number of registers to be provided was determined from
an extrapolation, at the time when the System/360 was
designed, of contemporary technological trends. These
indicated the probable availability of small high-speed
storage, and the design therefore incorporated what was then
considered to be a substantial number of logically
identifiable registers. These registers were to be physically

12 The Architecture of High Performance Computers

realised in core storage, local high-speed storage or
transistors, according to the model. There are, in fact, two
sets of addressable registers, sixteen 32-bit general purpose
registers used both as index registers and fixed-point
accumulators, and four 64-bit floating-point registers. Both
sets occupy the same logical address space, the operation code
determining which type of register is to be used in a given
operation. The choice of 16 addressable register locations
also allows the specification of two registers in a single
8-bi t byte, the smallest addressable uni t of information in
the System/360. The separation of the two sets, using
operation code information, allows instruction execution in
larger models to be carried out in a separate unH from, and
concurrently with, the preparation of subsequent instructions,
thus leading to higher performance (section 4.3).

Store addresses generated by the central processor of
almost all System/360 machines are 'real' addresses, each
referring directly to a physical location in main store. (The
same is also true of CDC 6600 addresses.) A move away from
this situation occurred with the introduction of the
System/370 in 1970 [10]. System/370 machines have essentially
the same order code as System/360 machines, with minor
modifications including, for example, the introduction of some
one-address instructions. Addresses in System/370 machines are
all 'virtual' addresses, however, which do not refer directly
to physical locations in main store, but are mapped on to
these locations by a dynamic address translation mechanism.
Such a system was first introduced on Atlas, and will be
described in some detail in Chapter 3.

2.3 ONE-ADDRESS SYSTEMS

Few high performance computers have strictly one-address
instruction formats, al though these are fairly common among
mini and microcomputers where economy of bits in instructions
is vital. The DEC PDP-10 [12], for example, has a single store
address within each instruction (figure 2.4), but also
specifies one of sixteen identical, general purpose registers,
rather than assuming a single implicit accumulator.
'One-and-a-half-address' might be a more appropriate
designation for this type of instruction, and clearly the IBM
System/360 RX format (figure 2.3) would fall into this class.
Instructions in MU5 (section 2.5), on the other hand, and its
commercial derivative, the ICL 2900 Series [13], can be
regarded as strictly one-address. There are only a few
registers, all serving different dedicated purposes , and the
register specification is therefore properly part of the
function code, rat her than addressing information.

Instructions and Addresses

Address Type

Accumulator Addre1

Index Register Address

Instruction Code j M Add emory ress

1

Accumulator Address- identifies 1 of 16 Accumulators
(General Registers)

Index Register Address-identifies 1 of same 16 Registers

Address Type- Direct or Indirect

Memory Address-Address or Uteral

Figure 2.4 DEC PDP-10 Instruction Format

13

The Atlas computer [4] had a single full-length (48-bit)
aeeumulator, closely assoeiated with the main floating-point
arithmetic unit, and so its A-eodes were strictly one-address,
with double B-modifieation (figure 2.5). The proeessor was
organised in a manner which allowed operands to be aceessed
from the 2 l.1S eycle-time core store at a rate mate hing the
exeeution rate of the main arithmetie unit (of the order of
0.5M instructions per seeond), thereby avoiding the need for
additional full-word buffer registers. This organisation
(figure 2.6) involved having aseparate 24-bit fixed-point
B-arithmetic unit elosely assoeiated with a 128-line B-store,
separate aecess meehanisms to the individual units of the core
store (interleaving, described in more detail in section 3.1),
and extensive overlapping of operations (pipelining).

Character Address
Index Register Address

Function Code

\
10

~
Word Address

1
7 I 7

111 20

Ba Bm t
L User/System Address

{
A-codes-Index Register Address

B-codes - Operating Register Address

Figure 2.5 Atlas Instruction Format

\
I 31

B-codes in Atlas were of the one-and-a-half-address type,
however, since they involved operations on one of the 128
B-lines specified by the Ba field in the instruction, Bm being
used to specify a single modifier. The B-store was implemented
as a fast co re store (0.7 l.1S cycle time) of 120 24-bit words,

14 The Architecture of High Performance Computers

together wi th eight flip-flop registers which served special
purposes . These included the floating-point accumulator
exponent, for example, and the three control registers (or
program counters) used for user programs, extracode and
interrupt control. The existence of these three control
registers allowed the machine to switch rapidly from one
context to another, while their inclusion wi thin the
addressable B-store avoided the need for separate control
transfer functions. Extracodes were a set of functions which
gave access to some 250 built-in subroutines held in the
high-speed (0.3 ~s) read-only fixed store. These included the
more complex mathematical functions such as sin, log, etc.,
peripheral control orders, input/output conversion routines,
etc. The extracodes made use of 30 of the B-lines, leaving 90
for use as index registers or fixed-point accumulators in user
programs.

Operating Peripherals
Controls

V-Store --
Accumulator ~ Mag. Tapes

Fixed
Store ,.. Disc

t
Control

Subsidiary
Store

• B-Store Main -Core

B-arithmetic Store

Unit Drums

Figure 2.6 The Atlas Computer System

User addresses in Atlas (defined by a 0 in their most
significant address bit) referred to a 1M word virtual address
space, and were translated into real addresses through a set
of page registers (as will be described in Chapter 3). The
real store in the prototype machine consisted of a total of
112K words uf core and drum storage, combined together through
the paging mechanism so as to appear to the user as a
tone-level t store. Thus a user t s total working store
requirements could not exceed this amount, but code and data
could be placed in any convenient part of the virtual address
space. This led to an informal segmentation of the address
space, a concept developed formally in MULTICS [6]. Formal

Instructions and Addresses 15

segmentation, or '2-dimensional addressing' is used in MU5 and
the ICL 2900 Series (section 2.5), and has appeared more
recently in minicomputers such as the Data General ECLIPSE
MV/8000 and microcomputers such as the Zilog z8000.

Atlas addresses with a 1 in the most significant bit were
system addresses rather than user virtual addresses, and
referred to the fixed store (containing the extracodes), the
subsidiary store (used as working space by the extracodes and
operating system), or the V-store. The latter contained the
various registers needed to control the tape decks,
input/output devices, paging mechanism, etc., thus avoiding
the need for special functions for this purpose . This
technique of incorporating peripherals into the address space
was sUbsequently used in a number of computer systems, notably
the PDP-11.

2.4 ZERO-ADDRESS SYSTEMS

If we consider an Algol program statement of the form

RESULT := (A + B) * «C + D) / (E + F»

then this could be compiled straightforwardly into one-address
instructions as

LOAD A
ADD B
STORE TEMPO
LOAD C
ADD D
STORE TEMP1
LOAD E
ADD F
REVERSE DIVIDE TEMP1
MULTIPLY TEMPO
STORE RESULT

We note that two temporary variables have to be allocated and
that these are re-used in the opposite order to that in which
they were created. This corresponds to a last-in, first-out,
or push-down stack arrangement, and where a multiplicity of
base registers is provided, this stack is usually implemented
by using one of the base registers as a stack pointer. Indeed,
on the PDP-11, the auto-increment and auto-decrement
addressing modes are specifically designed for this purpose.

An alternative arrangement is for the accumulator itself to
be implicitly treated as the top-of-stack location, and for
successive load orders to push previously loaded operands down

16 The Architecture of High Performance Computers

into the stack automatically. Arithmetic orders then operate
between the two most recently loaded operands, and leave their
result on the stack, so that no address specification is
required. These are therefore zero-address instructions, and
systems which use this arrangement are frequently known as
stacking machines.

Stacking machines offer particular advantages to compiler
writers, since the algorithm for translating from Algol into
Reverse Polish notation, and thence into stacking machine
code, is very simple. The expression in the example above
becomes, in Reverse Polish

A B + C D + E F + / • RESULT =>

Thus operands carry over into Reverse Polish without any
relative change of position, and the rule for arithmetic
operators is that the operator follows the two arithmetic
values on which it is designated to work. Burroughs computers
from the B5500 upwards are based on this system [1 ~]. The
push-down stack hardware consists of two or three registers at
the top of the stack and a contiguous area of memory that
permits the stack to extend beyond the registers.

Instructions in these machines are 12 bits long (packed
four to a word) , and fall into four categories: literal calls,
operand calls and address calls (all of which involve pushing
words into the stack), and operators. The operand calling
mechanism is complex, since the actions which occur depend on
the type of object found in store at the operand address
(formed by treating part of the instruction or the
top-of-stack word as an index, and adding it the content of a
base register). The full word length is 51 bits, 48 bits of
operand, instructions, etc., together wi th a 3-bi t tag field
which specifies the kind of information contained within the
word. As examples, a word accessed by an operand call may be
an operand (in which case it is simply stacked), a data
descriptor (in which case the word addressed by the descriptor
is stacked), or a program descriptor (in which case the
program branches to a subroutine). Operators also use the tag
field and treat words according to their tagged nature, so
that there is only one ADD operator, for example, which takes
any combination of single and double precision, integer or
floating-point operands, and produces the appropriate result.
Some operators require particular word types as operands,
however, for which hardware checks are carried out, and an
interrupt generated in case of error.

The designers of both the System/360 and the PDP-l0 gave
serious consideration to the use of a stacking machine, but

Instructions and Addresses 17

both rejected it on a number of grounds. The IBM team argued,
for example, that the performance advantage of a push-down
stack derived principally from the presence of several fast
registers, rather than the way in which they were used or
specified. Furthermore , they claimed that the proportion of
occasions on which the top-of-stack location contained the
item actually needed next was only about one half in general
use, so that operations such as TOP and SWAP would be needed
to copy submerged data to the active position and assist in
clearing out-of-date submerged data. As a resul t, the static
code requirements would be comparable with that obtained from
a system with a small set of addressable registers.

The DEC team were concerned about high cost and possible
poor performance in executing the operating system, LISP and
FORTRAN. Burroughs' commitment to the essentially
Algol-orientated stacking architecture was largely an act of
faith, baseo on a belief held in several quarters in the early
1960s, that FORTRAN would disappear. It did not, has not, and
probably will not for many years to come. It has been a
constant source of difficul ty for computer designers, and on
Burroughs machines most FORTRAN programs execute more slowly
than corresponding Algol-like programs.

2.5 THE HU5 INSTRUCTION SET

During the design of the MU5 processor the prime target was
fast, efficient processing of high-level language programs in
an interactive environment. This requirement led to the need
for an instruction set which satisfied the following conditions

(1) Generation of efficient code by compilers must be easy

(2) Programs must be compact

(3) The instruction set must allow a pipeline organisation
of the processor leading to a fast execution rate

(4) Information on the nature of operands should be
available to allow optimal buffering of operands.

Algol and FORTRAN were taken as being typical of two major
classes of programming languages, distinguished by the use of
recursive routines (or procedures) and dynamic storage
allocation in the former, and non-recursive routines and
compile time storage allocation in the latter, but having the
following features in common

(a) Each routine has local working space consisting of
named variables of integer (fixed-point) and real

18 The Architecture of High Performance Computers

(floating-point) types, and structured data sets
(arrays, for example) which are also named

(b) A routine may refer to non-Iocal names ei ther of an
enclosing routine or in a workspace common to all
routines

(c) Statements involve an arbitrary number of operands
which may be real names, array elements, function
calls or constants.

In order to reconcile item (c) with conditions (1) and (4),
i t was decided that there would be an address form
corresponding to each of the different operand forms. However,
it was feIt that to have more than one such operand
specification per instruction would conflict with conditions
(2) and (3) (although subsequent simulation experiments
(section 2.6) have shown that this is not necessarily true),
and the use of addressable fast registers was also rejected.
There were two arguments against registers. The first was the
desire to simplify the software by eliminating the need for
optimising compilers. The second was the desire to avoid the
need to dump and restore register values during procedure
entry and exh and process changes. The alternative
arrangement proposed for MU5 was a small associatively
addressed Name Store, as described briefly in section 1.3, and
which will be considered in more detail in Chapter 3.

The choice of instruction format was therefore limited to
zero or one-address. A zero-address system was rejected on two
main grounds. Firstly, the hand-coded library procedures which
would be used for input/output handling, mathematical
functions, etc., almost all required more code in zero-address
than in one-address instructions. This was because the main
calculation, the address calculations and control counting
tended to interfere wi th each other on the stack. Secondly,
execution of statements such as

A := B + C

would actually run more slowly on a stacking machine with the
proposed hardware organisation for MU5. This statement would
be coded in one-address and zero-address instructions as
follows

ACC = B
ACC + C

ACC => A

STACK B
STACK C
ADD
STORE A

Instructions and Addresses 19

I f the operand s , A, B and C, come from main store, then
operand accessing would dominate the execution times of these
sequences, and both would be approximately the same. However,
using the Name Store, the access times to these operands and
to the stack would be the same, and the zero-address sequence
would involve six stack accesses (the ADD involves two reads
and a write) in addition to the operand accesses.

The instruction format eventually chosen for MU5 represents
a merger of single address and stacking machine concepts. All
the arithmetic and logical operations involve the use of an
accumulator and an operand specified in the instruction, but
there is a variant of the load order (*=) which causes the
accumulator to be stacked before being re-loaded. In addition,
there is an address form (STACK) which unstacks the last
stacked quantity. Thus the expression

RESULT := (A + B) * ((C + D)/(E + F))

would compile into

ACC = A
ACC + B
ACC *= C
ACC + D
ACC *= E
ACC + F
ACC I: STACK
ACC * STACK
ACC => RESULT

The function 'I:' is 'REVERSE DIVIDE'; if the operand to the
left of an operator is stacked, it subsequently appears as the
right hand side of a machine function (as the dividend in this
case). Thus, for the non-commuta ti ve operations ' - , and 'I',
the reverse operations '-:' and 'I:' have to be provided. In
pure stacking machines (such as Burroughs), all subtractions
and divisions are implicitly reverse operations.

The instruction set is summarised in figure 2.7. There are
two basic formats, one for computational functions and one for
organisational functions (control transfers, base register
manipulations, etc.). They are distinguished by the 'type of
function' bits and use four and six bits respectively to
specify the function. The remaining nine or seven bits specify
the 'primary' operand. The 'k' field indicates the kind of
operand, and determines how the 'n' field is interpreted.
Where the k field indicates the Extended Operand
Specification, the instruction is extended by an additional 16
bits in the case of a name, or by 16, 32, or 64 bits in the

(3
)

(4
)

(3
)

(6
)

t
I

f
I k

J
n

J

co
m

p
u

ta
ti

o
n

a
Il

S
to

re
-t

JS
to

r:
 F

un
ct

io
ns

e

.g
.

lo
ad

,
st

or
e,

 a
d

d
,

m
u

lt
,

C
O

M
P

,
M

o
ve

T
yp

e
 O

f
F

un
ct

io
n

K
in

d
O

f
O

pe
ra

nd

B

-
6

-b
it

Li
te

ra
l

(n
)

S
to

re
-T

o
-S

to
re

In

te
rn

al
 R

eg
is

te
r

A
C

C
 F

ix
ed

 P
oi

nt

3
2

-b
it

V
ar

ia
bl

e
(n

am
e

n)

,-
-.

A

C
C

 L
og

ic
al

6

4
-b

it
V

ar
ia

bl
e

(n
am

e
n)

A
C

C
 D

ec
im

al

O
at

a
S

tr
u

ct
u

re
 (

na
m

e
n)

(u

n
m

o
d

ifi
e

d
 A

cc
es

s)

A
C

C
 F

lo
at

in
g

P
oi

nt

O
at

a
S

tr
u

ct
u

re
 (

na
m

e
n)

-
O

rg
an

is
at

io
na

l
(m

od
ifi

ed
 A

cc
es

s)

E
xt

en
de

d
O

pe
ra

nd
 S

pe
c
~

O
rg

an
is

at
io

na
l

F
un

ct
io

ns

e
.g

.
co

n
tr

a
l

tr
an

sf
er

s,

6
-b

it
La

te
ra

l
(n

)

ba
se

 m
a

n
ip

u
la

tio
n

&

 b
oo

le
an

 o
rd

er
s

E
xt

en
de

d
O

pe
ra

nd
 S

pe
c
~

t
~

I
t
I

f
H

 nl

(3
)

(6
)

(1
)

(6
)

F
ig

u
re

 2
.7

 T
he

M

U5

In
st

ru
c
ti

o
n

 S
et

16
-b

it
S

ig
n

e
d

/U
n

si
g

n
e

d

3
2

-b
it

S
ig

n
e

d
/U

n
si

g
n

e
d

64
-b

it t
K

in
d

O
f

O
pe

ra
nd

Li
te

ra
l

3
2

-b
it

V
ar

ia
bl

e

6
4

-b
it

V
ar

ia
bl

e

O
at

a
S

tr
u

ct
u

re

(U
n

m
o

d
ifi

e
d

 A
cc

es
s)

O
at

a
S

tr
u

ct
u

re

(M
o

d
ifi

e
d

 A
cc

es
s)

P
riv

ile
ge

d
O

pe
ra

nd

1
6

-b
it

na
m

e

+

B
as

e

N
B

X
N

B

S
F

0

- >-

N
 o ~
 g !?;

(.
) ::r

.....

('
I'

(1

)
(.

)
('

I'

~

"S

(1
) o 1-
1)

::t
:

(]
q

::r

"C

(1

)

"S
 6 ~ ~ (.

)
(1

)

('
1

~ 't:
I
~

('
I'

(1

)

"S

CD

Instructions and Addresses 21

case of a literal.

The formal segmentation of the virtual address space, and
the unique identification of store words belonging to
different processes are achieved by splitting the address into
three separate fields (thus producing 3-dimensional
addressing), a 4-bit Process Number, a 14-bit Segment Number,
and a 16-bit address defining a 32-bit word within a segment.
Scalar variables are normally held in a single segment of a
process at addresses formed by adding the 6 or 16-bit name in
the instruction to the content of the Name Base register (NB).
The name segment number and the process number (both held in
special registers in the processol") are concatenated with
these addresses to form the rull virtual addresses required
for store accessing. The value held in NB is unique to the
name space associated with each procedure, and is altered at
each procedure change. Access to names of other procedures and
to common variables is made using the Extra Name Base (XNB) ,
while using zero as base allows absolute addressing into the
Name Segment (to access the Name Base values of different
procedures, for example). The Stack Front register (SF) points
to the area immediately beyond the name space of the current
procedure, so that stacked variables are contained within the
same address space as the names. SF is automatically
incremented or decremented during the execution of a stacking
function or a STACK operand access respectively.

Access to array elements is achieved through adescriptor
mechanism. When a data structure element is specified by the k
field, the corresponding primary operand is a 64-bit
descriptor. This descriptor is sent to a D-unit wi thin the
processol", together with the content of the B register if the
k field specifies modification. The D-unit interprets the
descriptor and makes a 'secondary' store access for the
element. It is this detachment of secondary addresses from
instructions, and the use of names within instructions, which
allow the rull 30-bit" virtual address space available to a
process to be referenced by 16-bit instructions.

There are two main types of descriptor

String descriptor: Ts Length Origin

Vector descriptor: Bound Origin

8 24 32

String descriptors describe strings of bytes. The length field
gives the number of bytes and the origin the byte address of
the first byte. Strings are normally used in conjunction with

22 The Architecture of High Performance Computers

string processing orders (which may be two-address operations
involving the use of two descriptors). These orders provide
facilities for the manipulation of data records in languages
such as Cobol, PL/l and Algol 68 (move, compare, logically
combine, etc.).

The size of element in a vector is specified within the
type bits (Tv) and may be between 1 and 64 bits. If the
operand access is modified, the modifier must be greater than
or equal to zero and less than the bound. This check is
carried out automatically by hardware with virtually no time
penal ty, and removes the need for the costly software bound
check which is often required, particularly during program
development. The descriptor accessing mechanism will be
discussed in more detail in Chapter 7 in relation to vector
processing techniques.

2.6 COMPARIRG INSTRUCTION FORMATS

Comparisons of instruction formats
rat her short sequences of hand-coded
the numbers of instructions required
statements. The expression

are normally based on
instructions which show
to obey various program

x := (a * b) + (c * d)

for example, could be coded in zero, one, two and
three-address instructions (assuming all addresses are store
addresses), as follows

Q

LOAD a
LOAD b

*
LOAD c
LOAD d

*
+
=> x

1-

LOAD a
* b
=> TEMP
LOAD c
* d
+ TEMP
=> x

.G. .1

TEMP = a TEMP = a * b
TEMP * b x = c * d
x = c x = x + TEMP
x * d
x + TEMP

Clearly the number of instructions to be obeyed decreases with
increasing numbers of addresses in the instruction format, but
if we assume that all function codes are 8 bits long and all
addresses 16 bits long, then for this example the code space
requirements are 18, 21, 25 and 21 bytes respectively for the
zero, one, two and three-address instruction versions .
Comparisons such as these tend to be misleading, however,
(especially when operands may, or may have to be in registers
rather than store locations) and they do not give an accurate

Instructions and Addresses 23

indication of the performance to be expected when complete
programs are considered. A realistic comparison requires
programs to be run on systems which have different numbers of
addresses in their instruction formats, but are otherwise
similar. Such machines do not exist in practice, but the ISPS
architectural research facility developed at Carnegie-Mellon
Uni versity [15] allows measurements to be made during the
(simulated) running of programs on software models of
different computer archi tectures, and hence allows for proper
comparisons to be made.

ISPS is an implementation as a computer language of the ISP
(Instruction Set Processor) notation, originally proposed by
Bell and Newell [16] for documentation purposes . The process
of using the ISPS facility involves writing a description in
the ISPS language of the actions of each instruction, and the
registers and store locations on which they operate. This
description forms the input to the ISPS compiler, which runs
on a PDP-l0 computer and produces a PDP-l0 program which is a
simulator for the archi tecture under investigation. Programs
and data can be loaded into the memory of this model, and the
programs can then be executed. During execution the simulator
keeps count of the number of bytes of information transferred
in and out of the registers and store of the model, and the
number of times labelled statements and procedures in the
original description are executed. Various measurements can be
derived from these counts, in particular the number of
instructions obeyed by the model during the simulated
execution of a program , and the number of instruction bytes
transferred from memory (the dynamic code requirement).

This system has been used to evaluate both a two-address
and a three-address version of the MU5 instruction set
(designated MU5/2 and MU5/3 and having minimum instruction
sizes of 24 and 32 bits respectively) against the one-address
version [17] . Standard test programs were used i.n the
evaluation, the Wichmann synthetic Algol scientific benchmark
[18] and the Computer Family Architecture (CFA) test programs
developed at Carnegie-Mellon [19]. The results of these
experiments are summarised in figures 2.8 and 2.9.

Ratio to MU5

MU5 MU5/2 MU5/3 MU5/2 MU5/3

Code Space (in bytes) 1914 2013 1804 1.05 0.94
Instructions Executed 9633 7121 4934 0.74 0.51
Bytes Executed 21282 22220 20592 1.04 0.97

Figure 2.8 Results for CFA Programs

24 The Architecture of High Performance Computers

The static code space requirements for the CFA programs run
on MU5/2 and MU5/3 were not found to be significantly
different from those for MU5, whereas the numbers of
instructions executed were. The two-address version required
roughly three-quarters as many instructions to be obeyed as
the one-address version, and the three-address version only
half as many. However, the two-address and three-address
instructions are each proportionately longer than the
one-address instructions, and counts of the numbers of
instruction bytes executed showed that MU5/2 required 1.04
times as many bytes as MU5 and MU5/3 0.97 times as many.
Clearly, neither of these figures differs significantly from
the one-address figures, al though the differences which do
exist are in close agreement with the static code requirements.

Ratio to MU5

MU5 MU5/2 MU5/3 MU5/2 MU5/3

Code Space (in bytes) 1411 1671 1720 1. 18 1.22
Instructions Executed 107662 90527 75183 0.84 0.70
Bytes Executed 338854 386900 392082 1. 14 1. 16

Figure 2.9 Results for Wichmann Benchmark

For,the Wichmann benchmark the code space requirements were
found to be higher for both MU5/2 and MU5/3 with ratios of
1. 18 and 1.22 respecti vely, and the numbers of instruction
bytes executed were also found to be relatively higher than
fo!' the CFA programs , being 1. 14 times higher for MU5/2 and
1 . 16 times higher for MU5/3. The numbers of obeyed
instructions for the two and three-address versions again
showed significant decreases relative to the one-address
version, although these were less dramatic than for the CFA
programs, with ratios of 0.84 and 0.70 respectively. The
Wichmann benchmark contains many relatively long program
statements with typically four arithmetic operators and an
assignment operator (which can be coded more efficiently in
one-address instructions than in two or three-address
instructions) whereas the CFA programs are more typical of
programs generally and contain a much higher proportion of
short statements.

For both sets of measurements it is clear that the static
and dynamic code requirements are approximately the same for
all three systems, while the numbers of instructions obeyed
show decreases as the number of addresses in the instruction
format increases. In terms of overall system performance,
however, these differences could only be translated into
significant improvements if the instruction and operand

Instructions and Addresses 25

ac.:-essing rates could be improved correspondingly, since we
can assume that the arithmetic speeds would be the same in
e~ch case. Thus the instruction byte accessing rate would need
to be around 1.5 times higher for the two-address system and
nearly twice as high for the three-address system.
Furthermore, one three-address instruction clearly requires
three operands , and there would be a significant engineering
problem in providing three operands at a rate sufficient to
maintain the same instruction execution rate as that of a
one-address system. Gi yen the same instruction and operand
accessing rates, all three systems would have very similar
performances, and we would be back where we started, with the
intuitive feelings of the designer deciding the ultimate
choice.

3 Storage Hierarchies

Storage hierarchies have existed for as long as stored program
computers themselves. The Ferranti Mark 1 installed at
Manchester Uni versi ty in February 1951 had a main store made
up of eight Williams Tubes each containing 32 40-bit words and
a drum backing store having a capacity of 3.75K words.
Initially users were required to organise their own store
transfers between a selected drum track and a selected pair of
Williams Tubes, but the Mark 1 Autocode system introduced in
1954 carried out these tasks automatically on behalf of users
and so made the two levels of storage appear to them as a
one-Ievel store. This arrangement was possible because the
Mark 1 was a single user machine, and its performance was
acceptable because the time required to transfer one drum
track was roughly the same as the time for a programmed
floating-point addition. Later developments in both
architecture and technology led to the need for more
sophisticated systems and in this chapter we shall consider
the virtual memory and paging systems used in Atlas, the Cache
stores used in some models in the IBM System/360 and
System/370 ranges, and the MU5 storage hierarchy. Before
dealing wi th these systems, however, we shall introduce the
technique of store interleaving, used to obtain increased
performance in these and many other computer systems.

3.1 STORE INTERLEAVING

Until parallel arithmetic hardware units were introduced in
the late 1950s, the speed of random access storage devices was
not a limiting factor on processor performance. The time for a
floating-point addition in Mercury, for example, was 180 US,
while the co re store cycle time was 10 US. In Atlas, on the
other hand, the time for a floating-point addition was 1.6 US,
while the co re store cycle time was 2 uso Thus, in the absence
of some special technique, the time required to access both an
instruction and its operand would have amounted to 4 us,
leaving the floating-point unit idle for much of its time.
Part of the solution to this problem was to overlap arithmetic
and store accessing operations for successive instructions, a
development which we shall consider in more detail in Chapter
4. In addition, however, the co re store was made up of a

Storage Bierarchies 27

number of independent stacks, each with its own access
circuits, so that provided successive accesses were to
different stacks, one access would be able to proceed
immediately after another without being held up for a complete
store cycle. Bad it been possible to ensure that instructions
and operands always occupied different stacks, then given the
appropriate degree of overlap, instructions could have been
executed at a rate of one per core cycle. Even in the absence
of this possibility, however, benefit could still be gained
from the independent access facilities of the stacks. The
addressing of words in the four stacks of the 16K word version
of Atlas installed at Manchester Uni versi ty was arranged in
the fOllowing manner

STACK 0 STACK 1

00000 00001
00002 00003

08190 08191

~IAQK Z ~IAQK :3

08192 08193
08194 08195

16382 16383

Since instructions more often than not follow in sequence,
and since successive instructions occupied adjacent stacks in
this arrangement, instructions could be accessed in pairs in
Atlas, so that two instructions were accessed (and
subsequently buffe red) in one core cycle. Assuming a
relatively small program occupying stacks 0 and. 1, then the
two operands required could come from any of the stacks,
giving different limitations on performance. In a sequence of
instructions in which the two operands accessed by each pair
of instructions were all in either stack 0 or stack 1, for
example, then the minimum time for the execution of the pair
would be 6 ~s (2 ~s for the instruction pair access plus 2 ~s
for each operand); for a sequence in which alternate operands
were in stacks 0 and 1, the minimum execution time would be 4
~s, and for a sequence in which alternate operands were in
stacks 2 and 3, the minimum execution time would be 2 ~s (with
the instruction pair and operand accesses fully overlapped).
Assuming a random distribution of operands , however, we must
consider all possibilities, as in the following table, and
take an average to get an indication of the expected
performance.

28 The Architecture of High Performance Computers

OPERAND PAIR DISTRIBUTION EXECUTION TIME

0 0 6
0 1 4
0 2 4
0 3 4

0 4
1 6
2 4

1 3 4
2 0 4
2 1 4
2 2 4
2 3 2
3 0 4
3 1 4
3 2 2
3 3 4

The total of the execution times for these sixteen
possibilities is 64 IlS, corresponding to an average of 4 IlS
for the execution of a pair of instructions or 2 IlS per
instruction. For sequences of computational instructions this
figure was in fact achieved in Atlas. The overall average
instruction time was higher, but this was due to the effects
of control transfer instructions, as we shall see in Chapter
5, and not to store clashes. Thus, by having a store made up
of four independent stacks with two-way interleaving of
addresses, the execution time of computational instructions
was improved by a factor of two.

In Atlas the single floating-point arithmetic unit was used
not only for addition and subtraction, but also for the longer
operations of multiplication and division (which took 4.9 IlS
and between 10.7 and 29.8 IlS respectively), and the average
rate at which this uni t could execute arithmetic operations
was weIl matched to the average store accessing rate. In the
CDC 6600, on the other hand, the use of multiple functional
units meant that instructions could be issued at the much
higher maximum rate of one every 100 ns. The cycle time of
main storage modules (or 'banks' in CDC terminology) exceeded
the basic processor clock period by a factor of 10, however,
and since the 24 computational registers offered a relatively
small amount of buffering, a much higher level of store
interleaving was required to sustain the instruction execution
rate. This same ratio of processor clock period to store cycle
occurs in the CDC 7600 (27.5 ns and 275 ns respectively) and
in order to minimise the effects of store clashes on overall
performance, the 60-bit word main stores of both these
machines are 32-way interleaved.

Storage Hierarchies 29

Because of the factor of 10 difference between the
processor clock and store cycle time, however, a maximum of 10
storage banks can be in operation at one time, and even this
situation only arises during block copy operations between the
Small Core Memory (SCM) and Large Core Memory (LCM) in the
7600 and between Central Storage and the Extended Core Storage
in the 6600. In random addressing of the 7600 SCM for
instructions, program data and input-output channel data, an
average of four SCM banks in operation at one time is more
normal. This means that there is a high probability that any
one request will be to a free storage bank, and will be
serviced immediately, and so much of the benefit of this
storage arrangement comes not so much from interleaving per
se, but from the fact that the store is made up of a large
number of relatively small independent modules. The
interleaving of these modules becomes important when many
successive accesses are to sequential addresses, during
instruction accessing, for example, and more importantly,
during the processing of long vectors. Thus interleaving has
been extended to even higher levels in the CDC CYBER 200
Series of vector proces·sors. The 32-bit word storage banks of
the CYBER 205, for example, are 256-way interleaved, and
evidence for the necessi ty for such a high level of
interleaving comes from the fact that reducing this
interleaving to 128-way can cause a reduction in performance
of nearly 40 per cent for some types of operation.

3.2 TBE ATLAS PAGIRG SYSTEM

In early computer systems peripheral transfers took place
under direct program control using input/output instructions
which normally required several milliseconds for their
completion. By the time the Atlas computer was developed,
however, the disparity between processor and peripheral speeds
had become so grea t (of the order of 1000: 1) tha t it was
essential that peripherals be opera ted on a time division
basis, with each peripheral interrupting the norm~l main
program when it required attention. Since the interrupt
routines controlling these peripherals were required to be
resident in store concurrently with the main user program, and
since the system was extended to allow several user programs
to co-ex ist in store, it was no longer feasible ei ther to
optimise programmed transfers of information between the core
and drum stores (so as to eliminate the drum access time of 6
ms) or even to allow users to program transfers within a
shared physical store when they had no knowledge of other
users' requirements. Consideration of these problems led to
the idea of providing users with a virtual memory and to the
development of a paging system to map virtual addresses on to
the real physical storage devices. Thus the integration of the

30 The Architecture of High Performance Computers

Atlas core-drum combination into an apparently one-level store
was a function of the machine itself, rather than a software
facility, as on Mark 1 and Mercury.

3.2.1 Real and Virtual Addresses

In a virtual addressing system the programmer is allowed to
use all available store addresses, but these virtual addresses
do not refer directly to real store addresses, and each user
programm er can assume that he or she is the sole user. In the
hardware the virtual address space is considered to be split
up into aseries of contiguous pages of some convenient size
(512 words in Atlas), which may be represented as follows

PAGE

WORD

I 0 I
T i
o 512

I 2 3 I 4
i i i
1024 1536 2048

5 6 I 7 I 8 I .

Not all virtual pages contain information, since virtual
addressing allows users to locate their code and data in areas
which they find convenient, and which need not be contiguous.
Thus the co re and drum in Atlas might have contained, at some
stage in the execution of a particular user program, the
following virtual pages

CORE BLOCK
VIRTUAL PAGE

DRUM BLOCK
VIRTUAL PAGE

o
1

32
12

1
4

33
13

2
7

34
3

3
**

35
9

4
40

36
2

5
o

37
6

38
5

39
41

where ** indicates an empty co re block. If the program called
for a virtual address in page 7, for e!Cample, the hardware
would have been required to translate this into arequest to a
real address in block 2 of the core store. This required the
existence of a page table relating virtual and real addresses,
as follows

Virtual
o
1
2
3
4
5
6

.B..W..
5
o

36
34

1
38
37

Storage Hierarchies 31

3.2.2 Page Address Registers

In developing the hardware to implement the translation
between virtual and real addresses, the designers of Atlas
made the following observations

(1) Every virtual address generated within the processor has
to be translated into areal address by a table look-up,
and this involves an extra contribution to the store
access time.

(2) If the number of virtual pages is large, the table is
large and therefore slow to access.

(3) The demanded virtual addresses must be in the core store
most of the time if the system is to operate
efficientlYi a page on the drum must be moved into core
before the processor can access individual words within
it. Thus a small table containing only the entries
corresponding to pages in core can be looked at
initially, and the full table accessed only when the
small table does not contain the required page address.

Interrupt

~t~
• L......:'--"-

I
I

32
I
I

,L----.-_~-v

Real Address

Block Une

Figure 3.1 The Atlas Page Address Registers

The system of Page Address Registers used to implement this
table is shown in figure 3.1. To locate a page, the 11 PAGE
digits of the required address were presented to an
associative store containing one register for each of the 32
blocks of co re store. These registers were implemented in such
a way that acheck for equivalence between the presented PAGE
bits and the contents of each register took place in parallel,

32 The Architecture of High Performance Computers

thereby minimising the address translation overhead.

If an equivalence occurred between the required page and a
page address stored in one of the associative registers, that
register indicated a '1' while the others indicated '0'. Thus
for virtual page 7 in our example, line 2 would have contained
the value 7 and given equivalence when an address in page 7
was requested. The 32 outputs from the associative registers
were encoded into a 5-bit binary number and concatenated with
the 9 LINE digits from the required virtual address to produce
the real address to be sent to the core store.

If no equivalence occurred, the required page was not in
the, core store, and the program could not continue until it
was. A page fault interrupt was therefore genera ted and the
assistance of the operating system (known as the Supervisor in
Atlas) invoked. The Supervisor accessed the full page table in
order to locate the required page, initiated the necessary
transfer from the drum into an empty core block, and set up
the corresponding Page Address Register. It also initiated the
transfer of an existing page from the core back to the drum in
order to maintain an empty core block in readiness for the
next page fault.

The choice of page to transfer out of core was made by a
'learning program' which attempted to optimise these transfers
such that pages currently in use were not chosen for
rejection. The operation of this program was assisted by the
provision of a 'use' digit in each page register, which was
set every time the corresponding page was accessed. All 32
digits were read and reset at regular intervals (normally
every 1024 instructions), and their values added to a set of
running totals maintained and used by the learning program.
This program was the first example of a page rejection
algorithm. Page rejection algorithms now form an important
part of most operating systems and will not be considered
further here. The interested reader is recommended to
reference [20], for example.

Each of the Page Address Registers in Atlas also contained
another digit, the 'lock-out' digit, which prevented user
programs from accessing a page even though it was
core-resident. This served two purposes. Firstly, it prevented
programs from accessing pages to which drum, magnetic tape or
peripheral transfers were taking place; wi th the lock-out
digit set, access to that page was only permitted if the
address had been generated by the drum or tape systems, or as
a result of a peripheral transfer. Secondly, it prevented
interference between programs co-existing in the core store;
whenever the Supervisor caused a change from one program to

Storage Hierarchies 33

another, i t protected the pages belonging to the suspended
program by setting their lock-out digits. In the next
Manchester University computer (MU5), this inter-program
protection is extended by the inclusion of a 4-bit process
number in each paging register. The current process number is
held in a register wi thin the processor and updated by the
operating system at a process change. The contents of this
register are concatenated with each address generated by the
processor, so tha t addresses can only produce equi valence in
those paging registers that contain the appropriate process
number.

The Atlas virtual memory/paging system, and the concept of
dynamic address translation which it introduced, has had a
profound influence on the design of many other computer
systems, among which are the DEC PDP-10, the IBM System/370
series and the CDC STAR-100. The full implications of virtual
memory and its attendant advantages and disadvantages are
still subjects of controversy. An excellent survey of the
issues involved can be found in reference [21].

3.3 IBM CACHE STORES

3.3.1 The Systea/360 Model 85 Cache

A different form of storage hierarchy from that used in Atlas
involves cache storage, first introduced into the IBM
System/360 series with the Model 85 [22]. Here all
program-generated addresses are real addresses referring to
main (core) store locations, and the semiconductor cache
store, which is invisible to the programmer, is used to hold
the contents of those portions of main storage currently in
use by the program. Thus it is provided solely as a means of
improving performance, rat her than as a means of solving the
problems involved in multi-programming, and may be thought of
as areal address paging system.

The cache mechanism operates by dividing both cache and
main storage into logical sectors , each consisting of 1024
contiguous bytes starting on 1 Kbyte boundaries. During
operation, cache sectors are assigned to main storage sectors
in current use, and a sector address register associated with
each cache sector contains the 14-bit address of the main
storage sec tor to which it is assigned (figure 3.2). Since the
number of cache sectors (16-32, depending on the
configuration) is smaller than the number of main storage
sec tors (512-4096, depending on the configuration), most main
storage sectors do not have a cache sector assigned to them.
However, the localised nature of store accessing exhibited by
most programs means that most processor accesses are handled

34 The Architecture of High Performance Computers

by the cache (which operates at the 80 ns processor rate)
rather than by main storage (which has a 1.04 ~s cycle time).

Address To
Main Storage

Sector
Address
Registers

Sector

Address From Processor

Block From
Main Storage

Cache
Data
Store

16 Bytes to Processor

Figure 3.2 IBM System/360 Model 85 Cache Organisation

Each sector within the cache is made up of 16 blocks of 64
bytes and each block is marked with a 'validity' bit. Whenever
a cache sector is re-assigned to a different main storage
sec tor , all its validity bits are re-set, and the block
containing the required store word in the new sec tor is
accessed from main storage. The validity bit for this block is
then set and the sec tor address register updated. Further
blocks are accessed and their validity bits set as required.

The sector address registers constitute an associative
store. Whenever an address is genera ted which requires an
operand to be fetched from store, the sec tor bits within the
address are presented for association. If a match occurs a
4-bit tag is produced indicating the cache sec tor address, and
this is used in conjunction with the block bits to select the
appropriate validity bit for examination. If a match occurs in
the sec tor field, and the validity bit is set, the appropriate
16-byte word is read out in the next machine cycle and
returned to the processor. Throughput is maintained at one
access per cycle by overlapping association and reading for
successive instructions.

If a match occurs in the sec tor field, but the validity bit
is not set, the required block is read from main storage.
Reading one 64-byte block involves one access to each of the
four interleaved storage modules making up the main store,
since each is 16 bytes wide. The delay experienced by the

Storage Hierarchies 35

processor as a result of these main storage accesses is
minimised by always accessing the required 16-byte word first
inthe cycle of four, and by sending this word directly to the
processor at the same time ·as loading it into the cache.

If a match does not occur, then a cache sec tor must be
re-assigned to the main storage sec tor containing the failing
address. A mechanism is therefore required to select a cache
sector for re-assignment. The problem is similar to that
involved in page rejection algorithms, except that in order to
maintain performance, the algorithm must be implemented in
hardware. The Model 85 cache implements a 'least recently
used' algorithm by maintaining an activity list with an entry
for each cache sector. Whenever a sector is referenced it is
moved to the top of the list by having its entry in the
activity list set to the maximum value, while all intervening
entries are decremented by one. The sec tor wi th the lowest
activity list value is the one chosen for re-assignment.

Re-assignment does not involve copying back to main storage
values in the cache updated by the action of 'write-to-store'
orders. Whenever such an order is executed, both the value in
the cache and that in main storage are updated, a technique
known as 'store-through'. Furthermore, if the word being
updated is not held in the cache, the cache is not affected at
all, since no sec tor re-assignment or block fetching takes
place under these circumstances. While the store-through
technique has the advantage of not requiring any copying back
of cache values at a sec tor re-assignment, it also has the
disadvantage of limiting the execution rate of a sequence of
write orders to that imposed by the main storage cycle time.

Simulation studies of the Model 85 cache showed that the
average performance of the cache/main storage hierarchy over
19 different programs corresponded to 81 per cent of a
hypothetical system in which all accesses found their data in
the cache. The average probability of an access finding its
data in the cache for these programs (the hit rate) was 96.8
per cent. There do not appear to have been any subsequent
measurements on real Model 85 systems to confirm or deny these
predictions, but certainly a different arrangement was
introduced in the System/360 Model 195 [23] and carried
through into the System/370 Models 165 and 168. The average
hit rate in the Model 195 cache was shown to be 99.6 per cent
over a range of 17 job segments covering a wide variety of
processing activities.

3.3.2 The Syste./370 Model 165 Cache

The Model 85 cache is charaterised by having a relatively

36 The Architecture of High Performance Computers

small number of fairly large contiguous units of buffer store.
While this can per form weIl in a single program environment,
it is unlikely to do so in a multi-access multi-programming
environment where rapid switching between a number of store
co-resident programs is essential. What is needed in these
circumstances is a relati vely large number of (necessarily)
small contiguous uni ts of buffer store. Smaller versions of
the Model 165, for example, have 8-Kbyte cache stores
consisting of 256 blocks each of 32 bytes. Accessing these
blocks through a 256-word 19-bit associative store is not
practicable in an 80 ns processor cycle, however, so cache and
main storage are logically divided into 64 columns (figure
3.3).

Block
BK Buffer Store-256 32-Byte Blocks

;r-------r-I ~b~" ~II ~
Column 0 63

Block
Address Array-256 Block Address Registers

0 13-bit Address

~ 2

3

Column 0 63

Main Storage -512 Blocks per Column
Blockr-___ ---. ____ -.-,

t- !I B
:~~~I --+--[--+---tD ~

Column 0 63

Figure 3.3 IBM System/370 Model 165 Store Arrangement

Each column in the cache store contains 4 blocks and each
column in main storage 512 blocks (in a 1-Mbyte version of the
model). The block address registers constitute an address
array made up of 64 columns, each containing four 13-bit

Storage Hierarchies 37

entries. Thus of the 19 bits of an incoming address used to
access a block, the 6 low order bits are used to select a
column, and the 13 high order bits are presented for
association in the selected column of the address array. This
arrangement is referred to as set associative mappingj two
adjacent blocks from main storage contained wi thin the cache
will be referenced by identical entries in adjacent columns of
the address array.

A validity bit associated with each block indicates whether
or not an address giving a match on association refers to
valid data j if not the required data is accessed from main
storage. Apart from the factor of two difference in store
widths, data paths and block sizes, the arrangements for
transferring data between the cache and main storage are
identical in the 370 Model 165 to those in the 360 Model 85.
The cache replacement algorithm is also the same, except that
in the 370 Model 165 areplacement array is requirsd,
containing aseparate activity list for each of the 64
columns.

3.4 TUE HU5 NAHE STORE

A qui te different approach to high-speed buffering was taken
in the design of the MU5 computer. As we saw in section 1.3,
the use of fast programmable registers in MU5 was rejected in
favour of a small associatively addressed buffer store
containing only named scalar variables and forming part of a
one-level store with the Local Store of the processor [24, 8].
Simulation studies of this 'Name Store' indicated that a
hit-rate of around 99 per cent would be obtained with 32 words
of store, a number which it was technologically and
economically feasible to construct and operate at a 50 ns
rate, and which could be conveniently fitted on to two of the
platters used in the construction of MU5.

Thus the address and value fields of the Name Store (figure
3.4) each occupy one of these platters, and form two adjacent
stages of the Primary Operand Unit (PROP) pipeline, through
which instructions move in aseries of beats (section 4.1). At
each beat a virtual address genera ted in the previous two
stages of the pipeline is copied into the Interrogate Register
(IN), and concatenated with the contents of the Process Number
register (PN), for presentation to the address field of the
Name Store. A full virtual address in MU5 consists of a 4-bit
Process Number, a 14-bit Segment Number and 16 bits which
identify a 32-bit word within a segment. Addresses presented
to the Name Store do not contain the Segment Number, however,
since it was assumed at the design stage that the Name Segment
would always be zero, and only 15 of the word address bits are

38 The Architecture of High Performance Computers

used, referring to 64-bit operands. Where necessary, a 32-bit
operand is selected from within a 64-bit word in a later stage
of the pipeline.

V
A

irtual
ddress
---.~

~

'P
r!i

I
N

-

-

N
Q

-

~

~klr L
P

'-- '--

Address Lr-.
Field U

~ ~
to SAG

~

• - -

• BW= -- B
W

• Multiple

'--

.--
P
L ... Value

R Field

'--

t
from SAG or OBS

-
V
Q

'--

Figure 3.4 The MU5 PROP Name Store

3.4.1 Normal Operation

-

V r--F

-

to SAG

.--
V
A

...-

'--

to
next

PROP
Stage

to
next

PROP
Stage

If the presented virtual address gives a match in the
associative store, and the corresponding Line Used digit
(equi valent to the 'validity bit' in an IBM cache store) is
set to 1, then an equivalence has occurred, and on the next
pipeline beat a digit is set in the PROP Line Register, PLR.
The digit in PLR then selects a register in the Value Field,
and the 64-bit word is read out and copied into the Value
Field Register (VF) by the next beat. At the same time, checks
are made to determine whether

(1) an equivalence occurred

(2) a 'B Write Equivalence' occurred

(3) multiple equivalence occurred

The check for equi valence simply requires an OR operation
on the digits in PLR. If no digit is set, however, this
indicates non-equivalence, and the Name Store is updated by
transferring a new word into it and discarding an old one. It
would clearly be inefficient to enter software to organise

Storage Hierarchies 39

this one-word transfer, so the transfer is controlled directly
by hardware. A 'B Write Equivalence' occurs if the line giving
equivalence is the target line of an outstanding 'B => name'
order, and this causes a pipeline hold-up (section 4. 1 .2)
until the operand value has been returned from the B-unit
(figure 3.5) and written into the Name Store. A multiple
equi valence occurs if a hardware malfunction in the
associative field causes more than one line to give
equivalence. In this case an interrupt is generated.

- Data Paths -B - unit A - unit

--- Address Paths

f
I nstruction f- Primary Operand Unit

Buffer I Name Store Unit 1-'
: I r-i-l-"- Secondary

I - - - - Opei1uldÜiiit- - -------,
I I I I
I I I Descriptor -- Operand

Descriptor I
I I I r- Operand r-+-I I I Addressing Buffer Processing

I Unit System I I I I '. Unit I
I I

I • t I I
+ L---------i~ ---------~

I L_.- Store Access Control Unit
Local

I Current Page Registers I Store

-r--"
I ,

TofF rom Exchange

Figure 3.5 The MU5 Processor

When a Name Store entry is replaced the hardware must take
into account the effect of store orders. To maintain the speed
advantage of the Name Store, store orders only update the
value of an operand in a Name Store, rather than operating on
the store-through principle used in IBM cache stores. The Name
Store contains values which would be held in registers in IBM
machines, and it would clearly be inappropriate for these to
be written back to the main store each time they were altered.
Thus the old word may have to be copied back to the Local
Store before it is overwritten. The decision concerning which
line to replace requires the use of areplacement algorithm,
and the effects of various replacement algorithms were studied
by simulation before the Name Store was buil t. These varied
from a simple cyclic replacement algorithm, requ~r~ng a
minimum of additional hardware for its implementation, to a

40 The Architecture of High Performance Computers

multiple-use digit algorithm requiring, for a 32-line store,
32 5-digit counters. Very little difference in performance was
found among these different algorithms, and the simple cyclic
one was therefore chosen.

The actions which take place when a non-equivalence is
detected also depend upon whether the instruetion is an
Aecumulator (ACC) order destined for the A-unit and whether
the required operand is already in an additional Name Store
situated close to the A-unit. In order to improve the
accessing of vector elements in MU5 (section 7.1), the
Secondary Operand Unit (SEOP) incorporates an Operand
Buffering System (OBS) in addition to the two parts of the
D-unit (the Descriptor Addressing Unit and Descriptor Operand
Processing Unit in figure 3.5). As a result there are some ten
pipeline stages between the end of PROP and the A-unit through
which all instruetions destined for the A-uni t must pass (in
order to maintain the correct program sequence). Thus if a
name held in the PROP Name Store were to be used to accumulate
a total ealeulated by ACC orders in a small program loop, the
order reading the total from the Name Store would have to be
held up until the value calculated by the previous pass
through the loop had been returned. The solution to this
problem was the provision of 24 lines of Name Store in OBS.

The OBS Name Store is meant to keep names used by ACC
functions and the PROP Name Store to keep those used by
non-ACC functions. Thus for a non-ACC order the normal
situation is for equivalence to occur in the PROP Name Store,
while for an ACC order the normal situation is for a
non-equi valence to oceur in the PROP Name Store and
equivalence to occur in the OBS Name Store. However, the same
name might be aeeessed by both kinds of orders, and the
hardware must guard against the possibility that a name is in
the 'wrong' Name Store.

3.4.2 Ron-equivalence Actions

When a PROP Name Store non-equivalenee oeeurs a
'non-equivalence' digit is set in the function register
associated with VF. This causes the normal control signals
decoded for the instruction in the next pipeline stage to be
overridden. As a result, a special order is sent through the
pipeline to OBS carrying the non-equivalenee address
(including the Name Segment number). OBS accesses its Name
Store, and if it finds equivalence, it returns the 64-bit
store word to PROP. If it does not find equivalence, it makes
an access via the Store Access Control Unit (SAC) to the MU5
Local Store on behalf of PROP, so that the 64-bit store word
will be returned direct to PROP from the Local Store.

Storage Hierarchies 41

In PROP the occurrence of a Name Store non-equi valence
causes the initiation of the next pipeline beat to be held up
until the appropriate actions have been completed (figure
3.6). The first actions are the preparation of a line in the
Name Store to recei ve the new address and store word and the
copying of the new address, currently held in register VA,
into the Interrogate Register (IN). The Name Store line to be
replaced is indicated by the Line Pointer Register (LP), which
contains one bit corresponding to each line in the Name Store
and has, at any time, only one digit set to a 1. Thus LP is
simply copied into register PLR in order to select the line
for replacement. Two possible conditions are checked, however,
and if necessary dealt wi th, before the line is ready to be
overwritten with the new address and value. The first is that
the selected line may be the target line of an outstanding 'B
=> name' order (section 4.1.2). If it is, LP is moved on to
select the next line. This is done by first copying the
content of PLR back into LP, and then copying LP into PLR. The
outputs from PLR are routed back to the Line Pointer with a 1
digit shift, thus implementing the simple cyclic replacement
algorithm. The second condition is that the contents of the
selected line may have been altered by the action' of a store
order. This is checked using the appropriate digit in the Line
Altered register. If it has, the virtual address and value are
re:-.d out, and a wri te request is made to SAC. The selected
line is then ready for overwriting.

The next action which occurs depends on whether the store
word is returned from SAC or OBS, or on whether a CPR (Current
Page Register) non-equivalence occurs, in which case no store
word is returned, but the interrupt sequence is entered
instead. If the store word comes from SAC, then when it
arrives the address and value are written into the Name Store,
the content of PLR is copied back into the Line Pointer in
preparation for the next n~n-equivalence, and the
corresponding bits in LU and LA are set to 1 and 0
respectively.

Although the actions needed to update the Name Store are
complete at this point, the contents of the PROP Line Register
and Interrogate Register no longer correspond to the orders in
the pipeline, and must be restored. PLR is restored first by
copying the address in register VQ into IN, and after a delay
to allow for association, PLR is re-strobed. (Preserving a
previous copy of PLR for use at this time would not be
satisfactory, since it might be the line newly overwritten.)
The address in register NQ is then copied into IN, and the
actions are complete. These complications could have been
avoided if a longer PROP pipeline beat time had been adopted
in the design. '

42 The Architecture of High Performance Computers

Copy LP-PLR, VA-IN

Yes

Copy LA & LP--PLR

Operand from

SAC Available ,......-------l----"'T'"1

Figure 3.6 The Name Store Non-equivalence Routine

In the oase where OBS indioates that the required store
word is in its Name Store, then if all 64 bits are to be
overwritten by a store order, the store word is not actually
returned to PROP. In this case OBS simply deletes its copy and
PROP assumes it to have arrived immediately, thereby reducing
the non-equivalence delay time. In cases where the operand is
not deleted from the OBS Name Store, then the only further
action required in PROP 1s the restoration of PLR and IN
before the routine is complete. (The clearing of a line
earl1er in the routine only copies 1ts content back to the
Local Store and sets it 'unaltered', so the Name Store is not
d1sturbed.) If the operand has been deleted from OBS and
returned to PROP, the act10ns are as for an operand from SAC.

Storage Hierarchies 43

3._.3 lotioDS for lCC Orders

Al though the normal si tua tion for an ACC order using a named
operand is for non-equivalence to occur in the PROP Name Store
and equi valence to occur in the OBS Name Store, equi valence
may be found in the PROP Name Store on some occasions. For
example, a 32-bit variable required for an ACC order might be
contained in the same 64-bit store word as a 32-bit variable
already in use by B orders. Unless the ACC order finding
equivalence is a store order, the operand is read out as for a
non-ACC order and carried through to OBS in the same way as a
literal operand, so that no access is made to the OBS Name
Store. If the ACC order finding equivalence is a store order,
however, (ACC Write Equivalence) then action is taken to
delete the word from the PROP Name Store.

The actions for an ACC Write Equivalence are initiated in a
similar way to those for a non-equivalence for a non-ACC
order. These actions are similar to those involved in
preparing a line for a non-equi valence and in restoring the
pipeline at the end. The appropriate address and value are
read out of the Name Store and sent to SAC, and the
appropriate digits in the LU and LA digits are then set to
zero, in order to mark the line empty. When the order reaches
OBS its operand will not, of course, be found in the OBS Name
Store, and the normal OBS non-equi valence actions will be
initiated.

The management of the Name Stores of MU5 is clearly complex by
comparison with the cache approach. This complication was
thought to be acceptable because it was expected to give rise
to a high 'hit-rate' and a high rate of instruction execution
between 'misses'. Measurements of Name Store performance were
made for a set of 95 programs containing both Fortran and
Algol jObs ranging in complexity from simple student exercises
to large scientific programs. For most programs it was found
tha't 80 per cent (.:tS per cent) of operand accesses were to
named variables, that no more than 120 names were used in any
one program, and that in all programs 95 per cent of name
accesses were to fewer than 35 per cent of the names used.
These figures confirmed the Atlas results which inspired the
idea of using a Name Store, but the figures for hit-rates were
not as good as had been anticipated. Thus al though 96.1 per
cent of name accesses found their operands in one or other
Name Store, only 86 per cent of name accesses found their
operands in the correct Name Store.

The comparatively high and largely unforeseen amount of

44 The Architecture of High Performance Computers

interaction between the two Name Stores was found to be due to
the procedure calling mechanism used in MU5. Parameters are
normally passed on by stacking into the PROP Name Store, but
in many cases may subsequently be used with ACC orders.
Conversely, it ispossible for a particular word required to
be in the OBS Name Store in one procedure to be required to be
in the PROP Name Store in a subsequent procedure. It is by no
means clear what is the best solution to this problem.

3.5 DATA TRARSFERS IR THE MU5 STORAGE HIERARCHI

Operand accesses which cannot be satisfied by the buffer
stores wi thin the MU5 processor cause requests to the Store
Access Control Unit (SAC). SAC contains 32 Current Page
Registers (CPRs) which translate the presented virtual address
into areal address to be sent to the Local Store. Current
Page Registers differ from Page Address Registers as used in
Atlas, for example (section 3.2), in that they do not provide
full cover of the addressable real store, and do not,
therefore, correspond one for one wi th the pages in real
store. Thus whereas in Atlas areal address was obtained by
encoding the 32 Page Address Register outputs into a 5-bit
binary number, this cannot be done with CPRs. Instead there is
areal address register corresponding to each virtual address
register, and areal address is obtained from the CPRs in
exactly the same way as an operand is obtained from the Name
Store. Unlike the Name Store, however, software action is
invoked in the event of a CPR non-equi valence (frequently
referred to as a page fault). Either a block of data must be
moved into the Local Store and a CPR set up to address it, or
a CPR may simply be set up to address an existing Local Store
page.

The MU5 'one-Ievel' store extends over two further levels
of real store, a 2.5 llS cycle-time Mass (core) Store and a
Fixed-head Disc Store. Pages are brought into the Local Store
from ei ther the Mass Store or the Fixed-head Disc Store, but
are rejected first to Mass and later to the Fixed-head Disc.
The tone-level' store contains all the working space and files
needed by current terminal users and active background jobs.
Most of the files, however, are stored on large capacity discs
attached to aseparate PDP-11/10 minicomputer.

3.5.1 The Exchange

In order to provide a completely general and flexible
interconnection scheme, allowing for data transfers 'between
all these various stores and processors, an 'Exchange' was
developed as part of the MU5 project [25, 8]. Logically it is
a multiple-width OR gate opera ted as a packet switching system

Storage Hierarchies 45

at the star point of the interconnections . Thi's configuration
involves only a very short COlomon path for transfers between
the various units, allowing a much higher data rate than would
be possible with a distributed highway or 'bus' system. Thus
transfers can occur at a rate of one every 100 ns, and each
can involve a 64-bit data word together with address and
control bits.

r - --- -------...,
I I

I I
Fixed-head

I Disc Store
I
I
I
I
I PDP - 11/10
I
I
I
I
I M U5 Processor
I
I
I
I
I
I
I Local Store
I
I
I
I 1905E Processor I
I and Store

I
I
I
I Mass Store
I I
I I ____________ --1

Figure 3.7 The MU5 Exchange System

Each unit attached to the Exchange (figure 3.7) provides a
set of parallel inputs to the OR gate and each is connected,
via its own buffer register, to the output of this OR gate.
The Exchange operates by time sharing the OR gate between the
units. Thus the transfer of a block of words from the
Fixed-head Disc Unit to the MU5 Local Store, for example,
involves a succession of 64-bit word transfers from the Disc,
as 'Sending , Uni t, to the Local Store as 'Recei ving , Uni t,
with the OR gate connecting these units for the duration of
each word transfer rather than for the whole duration of the
block transfer. Other transfers can therefore be accommodated
during this period , so that the 1905E computer, for example,

46 The Architecture of High Performance Computers

can make read requests to the Mass Store. !wo transfers are
required for a read request, one in which, in this case, the
1905E as Sending Unit sends the address and appropriate
control information through the Exchange to the Mass Store as
Receiving Unit, and a subsequent 'data available' request from
the Mass Store as Sending Unit to the 1905E as Receiving Unit
in order to return the da ta read out from the specified
location in the Mass Store.

The requests from different Sending Units arrive at the
Exchange completely asynchronously, and much of the control
logic within the Exchange is concerned with scheduling
transfers through the OR gate on a priority basis (section
3.5.3). A substantial proportion of these transfers are paging
transfers between the Local and Mass Stores. Sir:ce these are
both passive units, the transfers are organised by a Block
Transfer Unit (BTU). The BTU is activated by the MU5
processor, which sends to one of its four channels the
starting address for the transfer in each store, together with
the block size and astart command. The processor is then free
to continue computation, while the BTU generates the necessary
requests, via the Exchange, to the Mass and Local Stores to
carry out the transfers. At the end of the block transfer the
BTU activates a processor interrupt.

The width of the data path through the Exchange OR gate is
8 bytes (plus one parity bit per byte) corresponding to the
width ofthe data paths within the MU5 processor, and also
exceeding the minimum width necessary for some of the units to
be able to communicate at all. The Fixed-head Disc, for
example, has an effective data rate of 0.5 ~s/byte, while the
storage modules constituting the Mass Store have a cycle time
of 2.5 ~s, and both these devices and the data path between
them must therefore be capable of dealing with at least 5
bytes per transfer for communication to be possible.

The address path contains 27 bits (including 3 byte-parity
bi ts and one bit which distinguishes user· and system
addresses). The control field contains some information which
is copied directly through the OR gate from the Sending Unit
to the Receiving Unit, some information which is copied
through the OR gate and is also used by the Exchange control
logic, and· some information (the Unit Number) which is
transmogrified by the control logic before being sent to the
Receiving Unit. In aU, 14 control digits pass between units
via the Exchange, making the total wid th of the OR gate 113
bits, and some additional control signals pass between the
EXChange control logic and each of the units. The Strobe
Outwards (SO) signal (figure 3.8), for example, is sent from a
Sending Unit to the Exchange to initiate a transfer, and timed

Storage Hierarchies 47

to arrive as so on as the data, address and control information
in the Sending Unit output buffer have become valid at the
Exchange (allowing for cable length, etc.). This output buffer
is required because, at the time SO is sent, either the
Receiving Unit may not be free, or a higher priority transfer
may be in progress, and the Sending Uni t therefore has no
means of knowing when the transfer will actually occur.

Unlt
etc.

A
d
d

o

Sending Unit

__ --·ORG ... ·---_
x 113

From
Other
Units

TIII
ele.

Ta
Other
Buffen

A
~
d

Figure 3.8 Exchange Control and Data Paths

The timing control logic of the Exchange itself is governed
by a !ree running oscillator, so that the Exchange operates
synchronously, at a rate of one transfer per 100 ns. Each
transfer requires two 100 ns periods or 'slots' for its
completion, one for the actual transfer through the Exchange
OR gate, and a previous one in which the Exchange control
logic determines which of the incoming requests to service.
Within the Exchange these two activities are overlapped for
successive transfers. When arequest has been selected for
servicing in one time slot, the information from the Sending
Unit is gated 'into the OR gate in the next time slot by the
appropriate decoded output from the Select Unit Register (SU
in figure. 3.8) . The output signals from the OR gate then
propagate to the input buffers of all the Units but only the
buffer corresponding to the Receiving Unit of the current
transfer is strobed, at the end of the slot. AStrobe Inwards
pulse (SI) is then sent to the appropriate Receiving Unit,
thereby completing the transfer as far as the Exchange is
concerned. The Recei ving Unit, on receipt of SI, deals wi th
the data in its buffer at its own convenience and then returns
a signal to the Exchange indicating that its buffer is free to

48 The Architecture of High Performance Computers

be overwritten by a further Exchange transfer.

3.5.2 The Exchange Priority System

In any time-shared communication system to which a
multiplicity of source units is connected there has to be some
mechanism for establishing the order in which simul taneous
requests are serviced. In the case of the MU5 Exchange the
units can be classified into four categories, Peripheral
Processing Units (PPUs), Central Processing Units (CPUs),
Stores (Mass and Local), and the Block Transfer Unit. PPUs
have highest priority since they are generally concerned with
organising transfers which invol ve crisis time devices. CPUs
normally maintain an intense traffic to and from their own
local stores, via dedicated highways, and only make occasional
requests to stores via the Exchange. Apart from PPU transfers,
most of the store transfers are paging transfers between the
Mass and Local Stores organised by the Block Transfer Unit.
Since this Unit can control up to four block transfers
simultaneously, it can easily saturate the Mass Store, and
although CPUs have a crisis time extending to infinity, it
would be unreasonable to hold up their requests for the
duration of a block transfer. Thus CPUs have the second
highest priority and the Block Transfer Unit has the lowest.

Exchange prior i ties are assigned in inverse proportion to
the Unit Number of the port to which a device is attached, so
that the Fixed-head Disc, for example, attached as Unit 0, has
highest priority. The priority of arequest is normally
determined by the priority of the Sending Unit, but in the
case of a 'data available' request occurring in response to a
read request from a crisis time PPU, the priori ty of the
request is determined by that of the Receiving Unit. All
transfers to or from the Fixed-head Disc, for example, are
organised by the Disc's own block transfer unit, and must all
have top priority. Failure to transfer arequest to or from
the Disc within its 4 l..IS crisis time would cause the whole
block transfer to have to be aborted and re-started.

4 Pipelines

In any computer the execution of a single instruction requires
various activities to be performed, such as instruction
accessing, instruction interpretation, operand accessing and
arithmetic. If separate hardware units carry out these
activities their operations can be overlapped to give an
increased rate of completion of instructions. This technique,
first introduced in computers such as Atlas and Stretch, has
become known as 'pipeline concurrency'. In a pipeline computer
several partially completed instructions are in progress
concurrently, and although the time to complete any one
instruction is still limited by the sum of the times for the
various acti vi ties, the rate at which instructions progress
through the pipeline is only limited by the time for an
individual activity. In Atlas and Stretch the number of
concurrent operations was of the order of four. In more recent
designs the pipeline concurrency principle has been extended
to several tens of instructions and used in both arithmetic
and instruction processing uni ts. In this chapter we shall
consider the design of the MU5 Primary Operand Uni t as an
example of the latter and the Texas Instruments Advanced
Scientific Computer (TI ASC) as an example of the former. In
addition we shall consider some techniques used in the IBM
System/360 Model 195 to overcome problems which arise in
pipeline designs.

4.1 THE HU5 PRIHARY OPERAND UNIT PIPELINE

We saw in sections 1.3 and 3.4 how processor performance
considerations led to the adoption of a pipeline structure for
the MU5 Primary Operand Unit (PROP). PROP is concerned with
accessing the operand specified directly by an instruction
(the primary operand) and routing the instruction, together
with its primary operand, to the appropriate following unit
for execution or further processing. If the primary operand is
a named variable or literal, for example, the instruction is
ready for execution at the end of PROP, whereas an instruction
involving a data structure must be sent to the Secondary
Operand Unit (SEOP) where the accompanying descriptor,
accessed as a primary operand by PROP, is used to specify the
secondary access for the data structure element.

50 The Architecture of High Performance Computers

Figure 4.1 shows the basic hardware required in the Primary
Operand Unit to implement the primary operand accessing
facilities of the instruction set described in section 2.5 and
the various stages of operation involved in processing a
typical instruction. Instructions are recei ved from an
Instruction Buffer Unit (IBU) into registers DF (function) and
DN (name). The first action is the decoding of the instruction
to select the content of the appropriate base register (NB,
XNB or SF) and the name part of the instruction. For access to
a 32-bit variable, the name is shifted down one place relative
to the base and the least significant digit is used later to
select the appropriate half of the 64-bit word obtained from
the Name Store.

X
N
B

Initial
Decode

Add Name
to Base

Associate
Address

Read
Value

Assemble
Operand

----------------~.~

,---"",-""'-1 Adder

N
B

S
F

Shift

r---------------' 1
I I T
I I
I I
I I

I
1

I

Value
f'ield

I Name Store I L _____________ ...J

Figure 4.1 The Basic Components of the Primary Operand Unit

In the second stage the name and base are added together to
form the address of a 64-bit word. This address is
concatenated with the 4-bit Process Number (PN) and presented
to the Associative Field of the Name Store in the third stage.
If the address is found, access is made in the fourth stage to
the 64-bit word in the Name Store Value Field. (If the
required address is not in the associative store, the
non-equi valence actions described in section 3.4.2 must be
initiated.) The fifth stage of processing is the assembly of
the operand. A 32-bit integer, for example, may be taken from

Pipelines 51

either half of the 64-bit store word, but must always appear
at the least significant end of the data highway when
presented to a succeeding unit. Registers FN and HI form the
input to the highway which links PROP to other units in the
processor (figure 3.5) and register HO is connected to one of
the outputs of this highway in order to receive operands
resulting from store orders.

The pipelining of the fi ve stages in PROP is achieved by
staticising the information obtained at the end of each stage
in a buffer register (figure 4.2). An important aspect of the
design of a pipeline is the timing of the strobes to the
buffer registers, because some outputs from a stage (the
function bits, for example) will der i ve directly from its
inputs. With edge-triggered or master/slave flip-flops the
various registers could be strobed simultaneously, but in the
D-type flip-flops used in MU5 the information on the D input
is copied through to the output as long as the clock is held
low and a different technique must therefore be used. Thus the
result obtained at the end of any one stage is only copied
into its buffer register when the result of the following
stage has itself been staticised. The strobes used to copy
information into the buffer registers are therefore staggered,
as shown in figure 4.3.

r- r- - - r- r-

~D~ Decode _F~ Decode _F~ Decode _F .. Decode ~F .. Decode I- F -F 0 1 1 2 2 3 3 4 4 5
'-- '-- '- r- f- r-

s-ü
5 5 5_
3 4 5

-
r~

r- '- '-

.. D CL r--::- L - -N

t5hift

1 2 3 5hift
'-- - '- ..-4r- HI-

v

~D- - F

j ' P ~
N Virtual '-

Control C '-r- Name/ Address -~ Value
I., Field BI- Base r- Field r- Adder 0 r-5 Adder N

X
r- r- - '-

N V H:-
B N 5 "'-- 5 U 0

B F 6

I 1" 'r 'r '- '- L-

Figure 4.2 The Complete Primary Operand Unit

52 The Architecture of High Performance Computers

The shaded portions of figure 4.3 show the progress of one
instruction through the PROP pipeline. It is first copied into
DF and DN (function and name respecti vely) and the Decode 0
logic carries out the decoding of the instruction necessary to
control the first stage. The decoding logic of figure 4. 1 is
spread out in the pipelined version into separate decoders for
each stage. In many cases, however, the r.dcessary decoding
cannot be carried out in sufficient time to control the action
of a gi yen stage. In these cases it is carried out in the
previous stage, and the various control signals appear as
additional function digits, along with the original function,
as inputs to the stage requiring them.

Stage 0 ~Decode-.-

~~~ 

Stage 1 -Add-

Stage 2 r---.., 
J U 

.... Associate -.-

.----~A..J 

Stage 3 -Read-

10 ns 
Stage 4 -- Assemble --

Stage 5 __ 40 ns 
-- Highway--

U'---W----,U Ur---.~4'Lr--

... 1 ncrement ..... 
Contra I Control 

jr---... U u u u ~--

Time~ 

Figure 4.3 The Basic PROP Timing Diagram 

The next pipeline strobe is timed to arrive no earlier than 
when the outputs of the first stage have settled and are ready 
to be strobed into the registers Fl (function), NM (name) and 
BS (base). The addition of name and base now takes place and 
when the next pipeline strobe arrives, the result is copied 
into IN, the Interrogate Register. The output of IN is 
concatenated with PN, the Process Number, to form the input to 
the associative field of the Name Store. The result of the 
association is then copied into the PROP Line Register (PLR), 
the output of which accesses the line in the Value Field 
containing the required operand. The Value Field output is 



Pipelines 53 

copied into the Value Field register (VF), and thence, after 
assembly, into the Highway Input register (HI). 

Once an instruction has reached HI, PROP must wait until it 
has been accepted by another uni t before taking any further 
action. When it has been aeeepted the Control Register is 
updated for that instruetion and all other instruetions in the 
pipeline move along one stage. Instruetions therefore proeeed 
through PROP in series of 'beats', the rate at whieh these 
beats oeeur being determined by the maximum operating rate of 
PROP and the aeeeptanee rates of the suceeeding units. The 
generation of a beat is initiated by the setting of a 'data 
gone' flip-flop (figure 4.4) whieh when any other neeessary 
eonditions at the end of the PROP pipeline have been 
satisfied, allows a 20 ns pulse to propagate through the 
pipeline delay ehain. The pulses from the ehain drive 10 ns 
pulse-forming modules at eaeh stage, and the delays in the 
ehain are adjusted to produee a 10 ns stagger between stages. 
The progress of one pulse through the pipeline is shown 
heavily drawn in figure 4.3. 

Strobe 2 Strobe 3 Strobe 4 Strobe 5 

e. e. e. 

" " " -6 -6 -6 
"0 "0 "0 
:r: :r: :r: 
N M .... 
cu cu cu 
C> C> C> 

~ ~ ~ ., 
cn cn cn Lng-

cu ' 
C>~ 
'" 0 eIl:r: 

WAIT Register 

Figure 4.4 The Pipeline Delay Chain 

Some problems arise as a result of the physical dimensions 
of the Proeessor and the layout of the platters within it. 
Thus it is not feasible to locate all registers pertaining to 
one stage in close proximity either to eaeh other or to the 
timing eontrol logie. As a resul t, all the registers of one 
stage eannot be strobed simul taneously, sinee 'far' strobes 



54 The Architecture of High Performance Computers 

would have to be sent out in advance of 'near' strobes by up 
to 20 ns. Alternatively, all 'far' registers could be strobed 
late (the strobes and data must all travel the same distance) 
but some control signals must travel back from the far 
registers to the ne ar registers, and the double delay would 
slow the pipeline down. The problem is overcome in practice by 
deriving far strobes from the earliest level of fan-out in 
each section of the delay chain, and by designing for only 
three levels of logic in paths which involve data travelling 
from ne ar to far registers. Thus the 50 ns wi thin each stage 
is typically made up as follows 

Input Buffer Settling Time 
Operation Within Stage 
Inter-platter Cable Delays 
Output Buffer Strobe 

TOTAL 

4.1.1 Synchronous and Asynchronous Timing 

5 ns 
30 ns 

5 ns 
.1Q. ns 

50 ns 

PROP is an example of a synchronous pipeline in which the 
operation time of each stage is the same and the time 
relationship between the buffer register strobes is fixed. 
However, it is asynchronously connected to other units in the 
processor, and a 'hand shake' system between PROP and the 
B-unit, for example, determines when the next PROP beat is to 
be generated once aB-order has entered the PROP output 
registers. Figure 4.5 shows the hardware used to implement a 
typical hand shake system between two uni ts and a schematic 
timing diagram of its operation. Information is passed from 
one unit to another when the sending unit has the data 
available and when the receiving unit is not busy. For a given 
rate of operation, the cable length L cannot exceed a certain 
maximum. Assuming a delay of 5 ns per circuit and a co-axial 
cable delay of 1.8 ns per foot, for example, the maximum 
distance between units for a 50 ns operating rate is 
approximately 8 feet. This might seem long, but in a large 
system such as MU5 cable lengths between units can easily be 
of this order, and the cable length between PROP and the 
B-unit is in fact almost twice this figure. A double hand shake 
loop which relies on the presence of an input buffer in the 
B-unit is therefore used to link these two units. 

In MU5 all interactions between the separate functional 
units are asynchronous. This type of operation allows 
information transfers to take place as and when required and 
offers greater speed than a completely synchronous system 
(where transfers only take place at fixed times), particularly 
when the units concerned are not heavily used or where the 



Pipelines 55 

different operations carried out within a particular unit take 
significantly different times (add, multiply and divide, for 
example, in the floating-point unit). Where a number of 
communicating pipeline stages are heavily used, however, the 
time penalty incurred by the hand shake becomes a dominant 
factor, and a synchronous system such as that used in PROP may 
be preferred. In many high performance systems (the CRAY-1 for 
example) the central processor is completely synchronous. 

----------, r-----------
Strobe : 

Output Buffeq 
I 

1..-------
I 
I 
I 
I A 

I Strobe i Input Buffer 

-t 
Lft---------' 

I 
I 
I 

BI Ready 
..... --+- to Ready I Dei 

to ---!==~S:en~d~in:gtl------------rI;R:ec:ei:vi:ng~-~ Receive 

~~d _______ ~~~_J L~!! _________ _ 

A ~---------------------~ 

B 
_-====-=1.8 L nS===~L..Jr--________________ _ 

- -10 ns 
C ----------~-------------

D 
_____ ....:!:===::1.8 L ns • -------- -"",..",,--

Figure 4.5 An AsynChronous Handshake System 

Asynchronous systems can also give rise to additional 
problems, particularly when a unit can accept requests from a 
number of sources. In MU5 this problem occurs, for example, at 
the input to the Store Access Control (SAC). Here three 
different functional units may request a store cycle at any 
time, and in the event of a clash, SAC must decide which 
request to accept. Each incoming request pulse is staticised 
on a flip-flop, and the outputs of these three flip-flops 
drive a combinational priority logic circuit. The outputs from 
this circuit, only one of which can be a 1, form the inputs to 
a set of decision flip-flops. These flip-flops are strobed 
when SAC is free to accept a request ~ sufficient time has 
elapsed for the priority circuit to have settled after receipt 
of the first request. 

Because a second request may occur a short time after the 
first request, however, 1t is possible for the inputs to the 
decision flip-flOps to change state just before the end of the 
strobe, leaving the outputs somewhere between a 0 and a 1 
level. Under these conditions the time taken for the flip-flop 



56 The Architecture of High Performance Computers 

outputs to reach proper logic levels may be long compared with 
the normal propagation delay, and it is possible for 
subsequent circuits to operate inconsistently. Sufficient time 
must therefore be allowed for the decision flip-flops to 
settle to a constant level, or failure of the control circuits 
may oocur [26]. For ECL flip-flops with a propagation delay of 
2.2 ns, over 30 ns set tling time must be allowed in order to 
maintain this failure rate at 1 per month. In MU5 a tunnel 
diode flip-flop with adecision time of the order of 100 ps is 
used in critical circuits giving an MTBF of 136 years for a 
settling time of 3 ns. 

4.1.2 Variations Among Instruction Types 

In describing the operation of the PROP pipeline, it was 
assumed that each stage of the pipeline contained one 16-bit 
order. However, circumstances arise which prevent full 
utilisation of each stage. For example, the order code allows 
for multi-length orders and some orders require multiple 
accesses (those invol ving the stack mechanism, for example). 
These can normally be dealt with by a purely logical control 
mechanism which does not affect the main pipeline timing, but 
may involve the creation of gaps (unused stages) in the 
pipeline. These gaps, or 'dummy orders', are distinguished by 
means of an additional function digit which, when set, 
inhibits the actions of each stage, including the Control 
Register updating. 

The stacking mechanism is used for storing and retrieving 
partial resul ts and for procedure links and parameters. For 
example, during the evaluation of expressions such as 

a = b*c + d*e 

partial results are stacked by the use of the '*=' (stack and 
load) function. They are later unstacked by use of the operand 
form STACK (section 2.5). Stacked operands are therefore 
contained in the MU5 Processor storage system in exactly the 
same way as names, their addresses being generated relative to 
the Stack Front register (SF), which points to the most 
recently stacked operand wi thin the Name Segment. Thus SF is 
advanced by both the '*=' function and functions concerned 
with procedure entry (STACK and STACK LINK), and all these 
functions require two operand accesses to be made. Hence they 
are divided into two phases. 

For the STACK function, for example, an access is first 
made for the specified operand followed by an access to the 
stack, while for the '*=' order the first access is to the 
stack, in order to store the content of the specified 



Pipelines 57 

register, and the second is for the operand. For the stack 
writes the name/base adder is used to create the address SF+2 
and at the same time SF is updated to this new value. The two 
phases of these orders are distinguished by extra digits 
carried through the pipeline with the function. These digits 
override the normal operand accessing mechanisms when access 
to the stack is required and also prevent the incrementing of 
the Control Register when the first phase reaches HI. 

The implementation of this stack mechanism within a 
pipeline gives rise to additional problems in relation to 
control transfer orders. An order implicitly changing SF does 
so while there are still several orders ahead of it, but not 
past the Control Point (the point in the pipeline at which the 
Control Register is updated), and therefore not yet completed. 
Any one of these orders could be a control transfer order 
requiring that the partially processed orders behind it in the 
pipeline be abandoned (section 4.1. 3). Should this situation 
occur, the SF Register may contain an incorrect value. The 
correct SF value could be maintained by preventing overlap in 
such situations, but this would cause serious degradation of 
the performance of the pipeline. The alternative solution 
adopted is to allow the SF register to change as and when 
required and to carry along the pipeline wi th the order the 
new value of SF created by it (registers S3, S4 and S5 in 
figure 4.2). When the Control Register is updated for the 
order, the value in S5 is copied into S6. Therefore when a 
control transfer occurs, the val ue in s6 is correct and is 
used to restore SF. 

In a non-pipelined computer this situation would not arise 
since each instruction would be completed, and all register 
values would have been updated, before the next instruction 
could begin. A particular consequence of this is that an order 
which writes the contents of a programmable register to store 
in a non-pipelined computer can proceed wi thout delay, since 
the register contents are guaranteed to be correct and 
available at the start of the order. This is not generally 
true in a pipelined machine where operand accesses are made 
several pipeline stages ahead of the programmable register 
into which the results of the operations involving those 
operands will be loaded. For example, in MU5 the Name Store is 
several stages ahead of the B-unit, so that when a store order 
of the type 'B => name' accesses the Name Store there can be 
several orders ahead of it in the pipeline which have 
themselves not yet reached the B-unit and operated on the B 
register content. Thus the B register value cannot be made 
available immediately, and in the absence of any additional 
technique, the 'B => name' order would have to wait at the 
Name Store stage of the pipeline until the B register content 



58 The Architecture of High Performance Computers 

could be guaranteed to be correct and available. This would 
involve a delay equi valent to at least four pipeline stages, 
and because these orders constitute 5-10 per cent 01' all 
orders, special action is taken to avoid this hold-up. (Store 
orders invol ving registers wi thin PROP (NB =>, etc.) or SEOP 
(DR =>, etc.) occur much less frequently and no special action 
is taken for them. 'ACC => name' orders are dealt with 
separately, but in a similar manner to 'B => name' orders, in 
the Secondary Operand Unit pipeline.) 

Whenever a 'B => name' order enters Stage 4 of the PROP 
pipeline, the content of the PROP Line Register (PLR in figure 
4.2) is preserved, for later use, in an additional register 
BW, and the order proceeds normally through the pipeline 
wi thout causing a hold-up and wi thout impeding orders 
following, except as described below. Execution of a '=>' 
order in the B-unit invol ves sending the result to the HO 
register in PROP. When it arrives the PROP pipeline is held up 
before the next beat is generated, and the information held in 
register BW is used to select the appropriate line in the 
Value Field of the Name Store so that the value in HO can be 
written into it. The additional information needed to select 
one half of the line for over-writing i8 held in the F2 
Function Register, together with a 'B => outstanding' digit 
which indicates that the BW Register is in use. When the 
action of writing into the store has been completed, the 'B => 
outstanding' digit is re-set and the pipeline is re-started. 

While the 'B => outstanding' digit is set, two pipeline 
hold-ups can occur, one at Stage 2 and one at Stage 4. These 
hold-ups are typical of a number which can arise in the 
pipeline because some necessary information (such as the B 
register value for the 'B => name' order) is not immediately 
available. Apart from hold-ups which arise from the fifth 
stage, they cannot be detected in time for the next beat of 
the pipeline to be inhibited and therefore operate 
independently of the beat generating logic, by simply 
preventing subsequent beats from propagating back beyond the 
stage from which they arise (figure 4.4), and by causing dummy 
orders to be propagated forwards. The hold-up at Stage 2 
occurs if a second 'B => name' instruction enters that stage, 
while the 'B => outstanding' digit is set, because the BW 
register can only deal with one outstanding order at a time. 
This hold-up prevents subsequent beats from propagating back 
beyond the input registers to Stage 3 (F3 etc.) and causes 
dummy orders to be copied into Stage 3. The hold-up at Stage 4 
occurs if an instruction tries to access the same line in the 
Name Store as that indicated by BW. This is an example of the 
, read after write' problem found in almost all instruction 
processing pipelines [27] and is a further consequence of the 



Pipelines 59 

fact that the B register value is not available for writing 
into store when the 'B => name' order reaches the Name Store. 
The hold-up prevents subsequent beats from propagating back 
beyond the input registers to Stage 5 (F5, etc.) and causes 
dummy orders to be copied into Stage 5. Both these hold-ups 
are automatically released when the 'B => outstanding' digit 
is re-set, or if the contents of the pipeline are discarded by 
the action of a control transfer before the 'B =>, order has 
left the end of PROP. If a control transfer occurs after a 'B 
=>, order has left the end of PROP, then the store updating 
action must still be carried out since the Control Register 
will have been incremented for this order. 

Hold-ups arising from the fifth stage are normally those 
involving complex actions within PROP and possibly 
interactions with another unit (as in the case of a Name Store 
non-equivalence, for example), and which require the pipeline 
to be stopped. The need for one of these hold-ups is indicated 
by the setting of one or more bits in a 'WAIT' Register as the 
instruction is copied into F5 (figure 4.4). On completion of 
the highway transfer the 'data-gone' flip-flop is set as 
usual, but the next beat is prevented from being released by 
the presence of the digit in the WAIT Register. Instead, a 
hardware routine is entered appropriate to the most 
significant digit in the WAIT Register. When the routine is 
completed the corresponding WAlT digit is re-set and either 
the beat is released or another hardware routine is entered 
appropriate to the next most significant digit in the WAIT 
Register. A typical WAIT routine is that used for base 
register manipulation. This manipulation is carried out using 
the same adder as that used for address calculations (figure 
4.2). If the order is of the type 'NB +', then the base forms 
one input to the adder, via the same route as that used for 
address calculations, and the operand forms the other input, 
in place of the name. The adder output is routed back to the 
inputs of all the base registers and when the addition is 
complete the appropriate one.is updated. These orders must be 
completed before a succeeding instruction can be allowed into 
register DF, since it may use the content of NB to form an 
address. In these cases the decoding logic in Stage 0 of PROP 
sets a 'no-overlap' digit which prevents further instructions 
from being copied into DF until the base manipulation order 
has been executed. 

4.1.3 Control Transfers 

In computers with a fixed instruction length the Control 
Register (or Program Counter) needs only to be incremented by 
1 at the completion of each instruction and a simple counter 
may be used for this purpose. In computers such as MU5, 



60 The Architecture of High Performance Computers 

however, where the instruction length is variable, a full 
adder is required to accommodate the correspondingly variable 
increment. In a simple implementation this adder would be 
shared with other operations, but in a high performance system 
aseparate dedicated adder is required. This same adder can 
therefore be used to execute control transfer instructions. 
Thus for a relative control transfer in MU5 the Control Adder 
in PROP (figure 4.2) is used to add the operand to the current 
value in the Control Register (CO), while for absolute 
transfers the operand passes through the adder with the 
Control Register input to the adder held at zero. 

Control transfers (or branch instructions) are a major 
problem in pipelined instruction processors, since if the 
branch is taken all the instructions pre-fetched and partially 
executed in the pipeline must normally be discarded. This can 
not only cause serious delays in instruction execution, but 
also requires that the designer ensure that no irrecoverable 
action is taken during the partial execution of instructions 
ahead of the Control Point. We have already seen an example of 
the latter in the implementation of the stacking mechanism in 
PROP. Various techniques have been used in high performance 
computers to overcome the delay problems caused by control 
transfers and we shall examine these in detail in Chapter 5. 
We note here, however, that the MU5 Instruction Buffer Unit 
incorporates a prediction mechanism which, following the first 
execution of a particular control transfer, attempts to supply 
the correct sequence of instructions to the pipeline behind 
subsequent occurrences of that control transfer, so that if 
the branch is taken, there is no delay in continuing 
instruction execution. This system offers a performance 
advantage, because unconditional transfers always branch and a 
high proportion of conditional control transfers are loop 
closing instructions which branch more often than not. 

When a control transfer instruction reaches the end of PROP 
an 'out-of-sequence' digit accompanying the following 
instruction is examined. If set this digit indicates that the 
instruction is the start of apredicted 'jump-to' sequence, 
and if the control transfer is unconditional or conditional 
and the condition is met, instruction execution can proceed as 
so on as the Control Register has been updated. This also 
happens if the out-of-sequence digit is not set and the 
condition for a conditional transfer is not met. If the 
out-of-sequence digit is not set following an unconditional 
transfer or a conditional transfer for which the condition is 
met, however, or if the out-of-sequence digit is set and the 
condition for a condi tional transfer is not met, then all 
instructions in the pipeline before the Control Point (those 
in PROP and in the Instruction Buffer Unit) must be discarded, 



Pipelines 61 

by the setting of their dummy order bits, and a long delay is 
incurred while the new jump-to sequence of instructions is 
fetched. 

4.1.4 Performance Measurements 

The overall performance of a pipelined instruction processing 
unit is affected by the relative frequencies of occurrence of 
different instruction types and the additional delays which 
they incur. Measurements of these frequencies have been made 
for MU5 [28] using a hardware performance monitor, for a 
number of benchmark programs and the resul ts are shown in 
columns three and five of table 4.1 for program execution and 
compilation respectively. Column two gives the time required 
in excess of the 50 ns beat time for the execution of each 
type of order, and columns four and six give the net 
additional contribution of each type of order to the execution 
time of the average order. 

Table 4.1 PROP Performance 

Execution Compilation 

Type Excess Frequency Net Time Frequency Net Time 
of Time (%) Added (% ) Added 

Order (ns) (ns) (ns) 

Multi-length 50 56 27.9 45.7 22.8 

B Store 100 6.2 6.2 9.1 9.1 

Base 
Manipulation 450 5.1 23.0 8.4 37.8 

Predicted 
Control 
Transfer 100 8.7 8.7 8.0 8.0 

Unpredicted 
Control 
Transfer 1350 4.5 60.7 10.5 141.8 

Name Store 
NEQ 1180 3.5 41. 3 11. 9 140.4 

Total net time added .l.6..7.J!. ~ 

Average instruction time .z..tLß.. ~ 



62 The Architecture of High Performance Computers 

For both execution and compilation the longest delays are 
due to unpredicted control transfers and Name Store 
non-equivalences. The significant difference in performance 
between these two type of activity is due largely to the 
data-dependent nature of the compilation process which 
involves many alternative processing sequences. Name Store 
delays are largely a consequence of the organisation of the 
storage hierarchy (section 3.4), whereas the delays caused by 
control transfers, B-store orders and base manipulation orders 
are directly attributable to the difficulties inherent in 
processing sequentially dependent instructions in a pipeline, 
and those due to multi-length orders are consequences of the 
particular organisation chosen for the IBU-PROP interface. In 
each case, however, improvements could be made which would 
reduce these delays. Many of the decisions taken during the 
design of MU5 were based, inevitably, on inadequate 
information about instruction usage, and in a commercial 
environment changes almost certainly would have been made to 
subsequent models in the light of experience gained from what 
was essentially a prototype design. 

4.2 ARITHMETIC PIPELINES - TUE TI ASC 

Al though instruction and operand accessing are highly 
pipelined in MU5, no attempt is made to pipeline the 
activities of the main floating-point arithmetic unit. 
Floating-point addition, for example, consists of four 
distinct operations (exponent subtraction, mantissa shifting, 
mantissa addition, normalisation) which can be pipelined in a 
very straightforward manner. In a one-address system such as 
MU5, however, no benefit would be gained from this 
arrangement, since one of the input operands to an addition is 
the content of the Accumulator, and this cannot be used as an 
input to any operation until the previous operation has been 
completely finished. For successful operation of a pipelined 
arithmetic unit each instruction must reference at least two 
and preferably three operands, and even when this requirement 
is satisfied the possibility of dependencies between 
successi ve instructions requires complex control mechanisms 
and may cause hold-ups in instruction execution. Examples of 
these control techniques are the data forwarding arrangement 
use in the IBM System/360 Model 91 (section 4.3) and the 
Scoreboard used in the CDC 6600. The ideal arrangement is for 
one instruction to cause two independent operand streams to be 
combined in the arithmetic unit to form a third independent 
result stream. This is achieved in vector processing systems 
such as the CDC Cyber 200 Series (section 7.2), the CRAY-1 
(section 6.3) and the Texas Instruments Advanced Scientific 
Computer (TI ASC). 



Pipelines 63 

Texas Instruments has traditionally been a supplier of 
instrumentation to the oil industry, and it was this 
industry' s need for a powerful seismic processing capability 
that led to the development from 1966 onwards of the Advanced 
Scientific Computer [29]. A significant feature of this type 
of processing is the frequent use of triple-nested indexing 
loops, and an important characteristic of the ASC is the 
provision of three levels of indexing within a single vector 
instruction. 

Memory 
Control 

Unit 

Inter -
leaved 

Memory 
Modules 

I, \' 
I \' 

1 I ' ~----------~/~~--T\-" 

~----------,-~I \ 
1 I \ 

, , , , , 

Figure 4.6 TI ASC Central Processor Structure 

The basic structure of the central processor of the ASC is 
shown in figure 4.6. The Memory Control Uni t allows two-way 
traffic between eight 256-bit wide processor ports and eight 
interleaved memory modules (plus an optional memory 
extension), with each processor port having full access to the 
24-bit address space. The central processor design is such 
that one, two, three or four pipelined arithmetic units (AU) 
can be provided. Each AU is linked to the Memory Control Unit 
through its own Memory Buffer Unit (MBU), the primary function 
of the latter being to supply, from memory, a continuous 
stream of operands to the arithmetic unit, and to return to 
memory a continuous stream of ari thmetic resul ts • Addresses 
for sustaining this continuity are computed in the MBU using 
parameters supplied through the Vector Parameter File at the 
start of a vector instruction, and double buffering (in units 
of eight 32-bit words) is provided for each of the operand 
streams. The Vector Parameter File contains a starting address 
field for each of the three vectors involved in a typical 
vector instruction, a vector length, inner and outer loop 
counts, and increments to be added to each of the three 
starting addresses at the completion of each inner and outer 



64 The Architec~ure of High Performance Computers 

loop. Information i8 supplied to the Vector Parameter File by 
the Instruction Processing Unit (IPU), which is mainly 
concerned with initiating operations in the MBU-AU vector 
processing pipelines, but also acts as a conventional scalar 
processor dealing with instruction fetching and decoding, 
address generation, control transfers, etc. 

The arithmetic units are 64-bit parallel fixed and 
floating-point units split into two halves of 32 bits each. 
Double length operations are carried out using both 32-bit 
halves in parallel, while single length operations use on1y 
the most significant half of an AU. The ASC differs from the 
CDC Cyber 200 Series in this respect, since the 64-bit 
arithmetic units in the latter split into two identical 32-bit 
units which can work in parallel. Numbers are represented in 
the ASC in IBM format. Thus fixed-point numbers are 
represented as 2' s complement integers, while floating-point 
numbers are represented in sign and magnitude form with a base 
16 (hexadecimal) exponent represented by an excess 64 binary 
number, as shown in figure 4.7. 

(32-bit) 1,1 7 24 

t t \ 
Sign Biassed Fractional 

~ 
Exponent Mantissa 

+ 
* 

(64-bit) I, I 7 56 

Figure 4.7 ASC Floating-point Formats 

Each AU is made up of eight distinct sections, each of 
which performs aseparate arithmetic or logica1 operation 
( figure 4.8). Each section can be connected to any other 
section to allow the correct sequence of operations to be 
executed for a particular instruction, with the appropriate 
configuration being established at the start of each vector 
instruction. In any given configuration the various sections 
form a pipeline into which a new pair of operands can, in 
principle, be entered at each 60 ns clock, and after a 
start-up time, corresponding to as many clock periods as there 
are sections in use, result operands emerge at a rate of one 
per clock period. At the end of a vector instruction there is 
a similar run-down time between the entry of the last operand 
pair and the emergence of the corresponding result. 

Floating-point addition, for example, requires the use of 



Pipelines 65 

the Receiver Register, Exponent Subtract, Align, Add, 
Normalise and Output sections, connected as shown by the solid 
line in figure 4.8. Pairs of operands from the MBU are first 
copied into the Receiver Register, the cable delays between 
the MBU and AU effecti vely forming a complete stage in the 
overall pipeline arrangement. The Exponent Subtract section 
then performs a 7-bit subtraction to determine the difference 
between the exponents of the two floating-point operands , or 
in the case of equal exponents uses logic to determine which 
of the fractional mantissae is larger (this logic is also used 
by those instructions which test for greater than, less than 
or equal to, in order to avoid duplication of hardware). 

Floating-point 
Add 

I 

Receiver Register l 
Exponent Subtract I 
Align I 
Multiply I 
Add l 
Normalise I 
Accumulate I 
Output I 

t 

Fixed-point 
Multiply 

r -- --, 
I I 
l __ - -

I 

I 
r----I 
I 

I I L ____ 

I 

I 
f - ---
I I I 
l _____ 

I 
_...I 

- , 
I 

I 
I 

_-1 

-l 
I 
I 
I 
I 
I 
I 

_.J 

-, 
t 

Figure 4.8 Ase Arithmetic Pipeline 

The exponent difference is used in the Align section to 
shift right the mantissa of the operand with the smaller 
exponent. In one cycle any shift which is a multiple of four 
can be carried out, which is all that is required for 
floating-point numbers represented in base 16. (Fixed-point 



66 The Architecture of High Performance Computers 

right shifts require two cycles, one shifting by the largest 
multiple of four in the shift value, and a second in which the 
result of the first is re-entered and shifted by the residue 
of 0, 1, 2 or 3.) 

Having been correctly aligned, the fractional parts of the 
two floating-point numbers are added in the Add section, and 
the result is passed on to the Normalise section. This section 
closely resembles the Align section in that floating-point 
operations only require one cycle, while the fixed-point left 
shifts which it also carries out require two. The major 
difference between these two sections is that Align receives 
information concerning the length of shift required in 
floating-point operations, while the Normalise section has to 
compute the shift length by determining which four-bit group 
contains the most significant digit. It also contains an adder 
to update the exponent value when a normalisation shift 
occurs. The results of all arithmetic operations pass through 
the Output section before being returned to the Memory Buffer 
Unit. The partitioning of the arithmetic unit into these 
various sections is primarily intended to give high throughput 
of floating-point addition and subtraction. Each section is 
capable of operating on double length operands so that vector 
double length instructions can proceed at the clock rate. 
Double length multiplication, and all divides (which are 
performed by an iterative technique) proceed more slowly. 

The dashed line in figure 4.8 shows the interconnection 
used for fixed-point multiplication. The Multiply section can 
perform a 32 by 32-bit multiplication in one clock period, so 
that the results of both fixed-point and single-length 
floating-point multiplication are available after one pass 
through the multiplier. Because a carry-save addi tion 
technique is used, the output of the Multiply section consists 
of a 64-bit pseudo-sum and a 64-bit pseudo-carry. These must 
be added in the Add unit to produce the true result. 
Double-length multiplication requires three separate 32 by 
32-bit multiplications to be performed and these can therefore 
proceed at a rate of only one every three clocks. After 
passing through the Add section the three separate results are 
added together in their proper bit positions in the Accumulate 
section. 

The Accumulate section is similar to the Add section and is 
used in all instructions which require a running total to be 
maintained. An important example of this type of instruction 
is the Vector Dot Product, which is used repeatedly, for 
example, in matrix multiplication. Pairs of operands are 
mul tiplied together in this instruction and a single scalar 
resul t, equal to the sum of the products of the pairs, is 



Pipelines 67 

produced. Because the running total is maintained in the 
arithmetic unit, the read-after-write problems which occur in 
scalar implementations of this operation are avoided in the 
ASC. In MU5, for example, the sequence of instructions 
required to produce, on the stack, the vector dot (or 
, scalar') product of two vectors defined by descriptors VEC 1 
and VEC2, each of length LIMIT, is 

B = 0 
ACC = 0 

L1: ACC *= VEC 1[B] 
ACC * VEC2[B] 

B CINC LIMIT 
ACC + STACK 

IF /=, -> L1 

where [B] implies modification of the descriptor Origin by the 
content of the index register B, and the function '*=' is 
processed in two stages, the first stacking the content of the 
specified register (the floating-point accumulator in this 
case) and the second re-loading it with the specified operand 
(the Bth element of VEC 1 in this ca se ). Thus there are only 
two Accumulator instructions between the instruction which 
writes a new value from the Accumulator into the top-of-stack 
location held in the Name Store (section 3.4.1) and the 
instruction (ACC + STACK) which reads it out again. In the MU5 
pipeline the Name Store is several stages earlier than the 
Accumulator, and a similar mechanism to that used for B write 
orders (section 4. 1. 2) is used to prevent ACC write orders 
from creating an immediate hold-up. The hardware must guard 
against an operand being read out before it has been updated 
by an outstanding wri te order, however, and in so doing i t 
does cause a hold-up in the passage of instructions through 
the pipeline. Exactly the same read-after-write problem occurs 
in pipelined, multi-address register machines such as the 
high-performance models in the IBM System/360 series; in the 
case of Models 91 and 195, however, a 'data forwarding' 
mechanism was developed in order to avoid this hold-up. 

4.3 THE IBM SYSTEM/360 MODEL 91 COMMON DATA BUS 

The System/360 Model 91 was developed in the mid 1960s with 
the primary aim of providing the highest performance 
capability that advanced design philosophy and System/360 
circuit technology extensions could achieve within a balanced 
development schedule [30]. Performance was taken to mean 
general computer availability and high-speed execution of 
general problem programs, and a factor of between one and two 
orders of magnitude over the earlier 7090 was achieved, 
depending on the nature of the problem. Only a small number of 



68 The Architecture of High Performance Computers 

Model 91s was actually produced, but most of its architectural 
features were carried over into the commercially more 
successful Model 195. 

One of the problems facing the designers of high-speed 
computer systems is the difficulty of achieving the fastest 
possible execution times for a particular technology in 
uni versal execution uni ts . Circui try designed to carry out 
both multiplication and addition, for example, will do neither 
as fast as two units each limited to one kind of operation. 
Thus not only did the Model 91 contain separate fixed-point 
and floating-point execution areas (figure 4.9), but the 
floating-point area contained separate add and multiply/divide 
units capable of concurrent operation. Both units were 
pipelined j the add uni t as a two-stage pipeline capable of 
starting a new operation in each 60 ns clock cycle, and the 
multiply/divide unit capable of starting a second operation 
three cycles after the start of a previous multiply or twelve 
cycles after a previous divide. 

Fixed-Point 
Execution 

Unit 

Floating-Point 
Execution 

Unit 

Figure 4.9 IBM System/360 Model 91 Central Processor 

Independence of fixed-point and floating-point operations 
is guaranteed in all System/360 machines by the separation in 
the instruction format of the two sets of general accumulator 
registers (section 2.2). Within the floating-point unit, 
however, the hardware must preserve essential instruction 
sequence dependencies while allowing the greatest possible 
overlap of independent operations. This same problem arises in 
a number of machine designs, particularly the CDC 6600, with 
which we shall deal in some detail in Chapter 6. The control 
mechanism used to solve this problem in the Model 91 shows 
some similarities to the technique used in the CDC 6600, 



Pipelines 69 

although the organisation of the data paths is quite 
different. 

The organisation of the Model 91 floating-point unH [31] 
is shown in figure 4.10. Instructions are prepared for this 
unit by the Instruction Unit pipeline and entered in sequence, 
at a maximum rate of one per clock cycle, into the 
Floating-point Operand Stack (FLOS). Instructions are taken 
from the FLOS in the same sequence, decoded, and routed to the 
appropriate execution unH. The Instruction UnH maps both 
storage-to-register and register-to-register instructions into 
a pseudo-register-to-register format, in which the equivalent 
of the R1 field (figure 2.3) always refers to one of the four 
Floating-point Registers (FLR), while R2 can be a 
Floating-point Register, a Floating-point Buffer (into which 
operands are received from store), or a Store Data Buffer 
(from which operands are written to store). In the first two 
cases R2 defines the source of an operand; in the last case it 
defines a sink. 

The most significant feature of this floating-point system 
is the Common Data Bus (CDB). The CDB is fed by all unHs 
which can alter a register, and itself feeds the 
floating-point registers, the store data buffers and all units 
which can have a register as an input operand. The latter 
connections allow data produced as the result of any operation 
to be forwarded directly to the next execution unH wHhout 
first going through a floating-point register, thus reducing 
the effective pipeline length for read-after-wrHe 
dependencies, as found, for example, in the scalar product 
loop. The running total in this loop would not actually appear 
in a floating-point register in the Model 91 until the last 
execution of the loop. 

The operation of the CDB is controlled by the use of tags. 
A tag is a 4-bit number genera ted by the CDB control logic to 
iqentify separately each of the eleven sources which can feed 
the CDB. Thus there are six floating-point buffers, three 
parallel 'reservation stations' (containing input buffer 
registers) associated with the adder, and two parallel 
reservation stations associated wHh the multiplier/divider. 
Tag registers are associated with each of the four 
floating-point registers, with the source and sink input 
registers of each of the five reservation stations, and with 
each of the three store data buffers. There is also a busy bit 
associated with each of the floating-point registers. This bit 
is set whenever the FLOS issues an instruction designating the 
corresponding register as a sink, and is re-set when a result 
is returned to the register. 



t t 
T

ag
 

S
in

k 

T
ag

 
S

in
k 

T
ag

 
S

in
k 

~
 S

to
ra

g
e

 B
us

 
In

st
ru

ct
io

n
 U

n
it 

• 
+

 
6 

F
lo

at
in

g 

F
lo

at
in

g 
P

o
in

t 
5 

P
oi

nt
 

I 
B

u
ff

e
rs

 I
F

L
B

) 
4 

O
pe

ra
nd

 
8 

C
o

n
tr

o
l 

3 
S

ta
ck

 F
LO

S
 

B
us

y 
F

lo
at

in
g 

P
o

in
t 

4 

B
its

 
T

ag
s 

2 
R

eg
is

te
rs

 I
 F

LR
) 

2 

1 
0 

~ 
1 

~
 

I 
D

ec
od

er
 

S
to

re
 

1 

I 
C

o
n

tr
o

l 
T

ag
s 

D
at

a 
B

u
ff

e
rs

 2
 

I 1 
IS

D
B

I 
3 

+
 

FL
B

 B
us

 

I 
~
 

, 
S

to
ra

g
e

 B
us

 
I 

I 
FL

R
 B

us
 

I 
-y

 
1 

T
 

• 
• 

.-
T

ag
 

S
o

u
rc

e
 

C
T

R
L 

C
D

B
 

T
ag

 
S

in
k 

1 
T

ag
 1

 So
ur

ce
 

C
T

R
L

l 

T
ag

 
S

o
u

rc
e

 
C

T
R

L 

~
 
~
 T

ag
 

S
in

k 
I T

ag
 
I S

ou
rc

e 
C

T
R

L 
I 

T
ag

 
S

o
u

rc
e

 
C

T
R

L 

~u
lt

iP
IY

/D
iV

~ 
A

d
d

e
r 

/ 
R

es
er

va
tio

n 
S

ta
tio

n
s 

I R
es

ul
t 

I 
R

es
ul

t 
1 

t 
C

o
m

m
o

n
 D

at
a 

B
us

 I
C

D
B

) 
t 

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

F
ig

u
re

 
4

.1
0

 
T

he
 

IB
M

 
S

ys
te

m
/3

60
 M

od
el

 
91

 
F

lo
a
ti

n
g

-p
o

in
t 

U
n

it
 

-
'I

 
o t-

,l
 

;Y
 

CD
 

:x>
 

'"3
 

(
)
 

;Y
 

1-
" 

cT
 

CD
 

(
)
 

cT
 

C
 

'"3
 

CD
 o H
) ::r
: 

1-
" 

(J
q ;Y

 

"'C
l 

CD
 

'"3
 d '"3
 

S § (
)
 

CD
 

("
) o S '0
 

C
 

cT
 

CD
 

'"3
 

(J
J 



Pipelines 71 

Whenever the FLOS decodes an instruction it checks the busy 
bit of each of the specified floating-point registers. If the 
bit is zero, the content of the register is sent to the 
selected reservation station via the Floating-point Register 
(FLR) Bus. On issuing the instruction the FLOS sets the busy 
bi t of the designated sink register, and enters into its tag 
register the tag number of the selected execution unit. If the 
FLOS finds a busy bit set, however, it does not transmit the 
register contents to the selected reservation station, but 
instead transmits the current value of the corresponding tag 
register, and enters into that tag register the appropriate 
new tag number. Thus the tag register of a busy floating-point 
register identifies the last unit (in proper program sequence) 
which will produce a result destined for that register. 

Whenever a result appears on the CDB, the tag corresponding 
to its source is broadcast to all destinations. Each active 
reservation station (selected but awaiting a register operand) 
compares its sink andsource tags with the CDB tag. If a match 
occurs (a sink is also a source in the System/360 two-address 
instruction format), the reservation station takes the data 
from the CDB. In a similar manner, the CDB tag is compared 
with the content of the tag register associated with each busy 
floating-point register. All busy registers with tags matching 
that on the CDB are set to the value on the CDB and their busy 
bits are re-set. 

Issuing an instruction in this system only requires that a 
reservation station be available for whichever execution unit 
is required. If a source register is awaiting the result of a 
previously issued, but as yet uncompleted instruction, or if a 
floating-point buffer register is awaiting an operand from 
store, the tag associated with that register is transmitted 
instead to the reservation station, which then waits for that 
tag to appear at its input. Thus it is the reservation 
stations which do the waiting for operands , rather than the 
execution circuitry, which is free to be engaged by whichever 
reservation station fills first. Execution of an instruction 
starts when a reservation station has received both operands. 
It may receive one or both operands from either the CDB or FLR 
bus in the case of a register-to-register instruction, while 
in the ca se of storage-to-register instructions the source 
operand is transmitted by the FLB bus. Both the FLR and FLB 
busses could have been incorporated, in principle, into the 
CDB, but in practice this would have caused a reduction in 
performance due to conflicts over the common facility. The use 
of the CDB and the associated tagging mechanism has been shown 
to reduce the execution times of the inner loops of programs 
used to solve partial differential equations, for example, by 
about one-third. 



5 Instruction Bujfering 

In dealing with operand accessing in earlier chapters we 
considered various techniques used to overcome the disparity 
between processing speed and main store accessing rate. This 
problem also impinges on instruction accessing, since for 
efficient operation instructions must also be supplied to the 
processor at a rate matching its execution rate. In the case 
of instruction accessing, however, the problem is ameliorated 
by the fact that most instructions are obeyed sequentially and 
the main store word size is normally such that one word 
fetched from main store can contain several instructions. 
Furthermore, with an interleaved store, successive accesses 
for sequential instructions reference each stack in turn and 
are not held up by cycle time effects. Thus store requests can 
be made in advance of the corresponding instruction being 
required and the replies buffered until they are needed for 
execution. This pre-fetching technique is used in almost all 
high performance pipelined processors. A significant 
proportion of instructions cause control transfers, however, 
and each such transfer requires arequest to be made to the 
store for a new sequence of instructions. Thus although the 
accessing rate for instructions can normally be matched 
satisfactorily to the processing rate, the access time for the 
first instruction of a new sequence can result in a long delay 
to the processor. Techniques for overcoming this problem rely 
on the fact that the cause of many control transfers is a 
branch back from the end to the start of a loop of 
instructions, and ~ catching buffers are incorporated into 
a number of processors. In this chapter we shall consider the 
instruction accessing and buffering techniques used in the IBM 
System/360 Model 195, the CDC 6600 and 7600, MU5 and the 
CRAY-1. 

5.1 TBE IBM SYSTEM/360 MODEL 195 IISTRUCTIOI PROCESSOR 

The organisation of the System/360 Model 195 Central Processor 
is very similar to that of the Model 91 (figure 4.9) and, as 
in the case of the Common Data Bus discussed at the end of 
Chapter 4 I the instruct10n buffe ring technique used in the 
Instruction Processor of the Model 195 derives directly from 
that used in the Model 91 [32]. The Model 195 Instruction 



Instruction Buffers 73 

Processor is concerned with fetching and buffering 
instructions from storage, fetching the operands which those 
instructions specify, issuing instructions to the appropriate 
execution units, handling interrupts, and executing all 
branching (control transfer) , status switching and 
input/output instructions. 

Instructions fetched from store are buffered in an 
eight-doubleword (64-bit) Instruction Stack (figure 5.1). The 
instruction fetching mechanism is controlled by three 
registers, the Instruction Register (IR) which addresses the 
instruction currently being decoded, the Upper Bound Register 
(UB) which points to the most recent doubleword brought into 
the stack, and the Lower Bound Register (LB) which points to 
the earliest doubleword in the stack. During normal operation 
the stack contains the current instruction doubleword, some 
doublewords ahead of the current instruction and a copy of 
some instructions which have already been issued. 

1 
Temporary Buffer 1 

Temporary Buffer 2 

I - --64bits- .• 
~ 

~ 

~ Instruction 

~ Stack 

~ 

---
Decoder 

I 
.--
---

From Processor 
Storage 

LB 
I 
I 

_..I 

IR 

I ____ .J 

.... --
To Execution 

Units 

UB 

Figure 5.1 The IBM System/360 Model 195 Instruction Buffer 

5.1.1 Sequential Instruction Fetehing 

Pre-fetching of instructions is controlled by the UB register. 
When instruction fetching is initiated fOllowing an interrupt, 
for example, the Instruction Stack is declared empty and the 



74 The Architecture of High Performance Computers 

main storage address of the first instruction doubleword is 
loaded into UB and LB. The instruction fetching mechanism 
associated with UB then accesses this doubleword and loads it 
into the location in the Instruction Stack addressed by the 
three least significant doubleword address bits in UB. 
Initially this location is also addressed by IR, which selects 
each instruction in sequence for decoding and processing. 
After an instruction has been decoded and passed to the next 
stage in the processor pipeline, IR is incremented by the 
number of half-words in that instruction and the next 
instruction selected. 

Once the first instruction access has been sent to store, 
the instruction fetching mechanism increments UB and continues 
to make sequential store accesses until prevented from doing 
so either because the address in UB is seven doublewords 
higher than that in IR (and any further accesses would cause 
instructions not yet decoded to be overwri t ten), or because 
the Instruction Processor has detected a condition giving rise 
to a change in the instruction sequence (a branch instruction 
or an interrupt, for example). 

During normal operation the instruction fetching mechanism 
continually attempts to increment UB and fetch instruction 
doublewords from store, while the instruction decoding 
mechanism continually increments IR as instructions are 
decoded and passed along the processor pipeline. Once IR has 
been incremented beyond the address in LB, instructions in the 
first doubleword fetched into the stack can be overwritten 
with new information. Provided IR remains ahead of LB, then 
when incrementing UB would cause its three least significant 
doubleword address bits to match the corresponding bits in LB, 
both these registers are incremented together. Thus at each 
instruction access the oldest doubleword in the stack is 
replaced by the latest doubleword fetched from store. 

Use of this pre-fetching mechanism allows a continuous 
sequence of instructions to be supplied to the proces30r at a 
rate approaching one per machine clock cycle, and thus roughly 
matching the instruction execution rate. (Al though the 
processor pipeline was designed to execute instructions at a 
rate of one per clock cycle, instruction dependencies, storage 
conflicts and the frequency of operations requlrlng 
multi-cycle execution combine to reduce the average rate to 
about half this figure.) When a new sequence of instructions 
is required as a result of the branch being taken in a branch 
instruction, however, the start-up delay is of the order of 
six clock cycles, and in the absence of some additional 
technique the average performance of the processor would be 
seriously degraded. Conditional branches cause even further 



Instruction Buffers 75 

problems since the branch decision depends on the outcome of a 
previous1y issued, but not necessarily comp1eted arithmetic 
instruction, and an additional de1ay may be incurred in 
awaiting this outcome. This problem is discussed further in 
section 5.5. In the Model 195 two techniques are used to 
ame1iorate the problems caused by branches, one invo1ving the 
establishment of a 'Conditiona1 Mode' of -operation, and the 
other a 'Loop Mode' . 

5.1.2 Conditional Mode 

Conditiona1 branch instructions interrogate a 2-bit Condition 
Code at their point of execution in order to determine whether 
or not the branch is to be taken. The Condition Code is set by 
a variety of instructions, but on1y the last of these issued 
before a conditiona1 branch must be allowed to affect its 
outcome. This is accomp1ished by tagging at decode time each 
instruction which will set the Condition Code. At the same 
time a signal is forwarded through the pipeline to remove the 
tags from any previous1y issued but uncomp1eted instructions. 
On1y a tagged instruction may set the Condition Code, at which 
point its tag is removed, and a conditiona1 branch instruction 
can on1y execute when there are no outstanding tags in the 
processor. 

Since in general the Condition Code will not be valid when 
a conditiona1 branch is decoded, the hardware a1ways assumes 
this to be the case and estab1ishes Conditiona1 Mode. In 
Conditiona1 Mode further sequentia1 instruction accesses are 
inhibited, but rather than hold up further activity entire1y, 
processing of the remaining instructions in the Instruction 
Stack proceeds as far as possib1e (until a further branch is 
decoded or the pipeline becomes full, for examp1e), with the 
instructions being marked as 'condi tiona1 ' • Condi tiona1 
instructions are decoded, their operand fetches are initiated, 
and they are forwarded to the relevant execution units in the 
normal way. The conditiona1 tag inhibits the execution units 
from actua11y comp1eting them, however, and once the first 
such instruction reaches the point of execution, further 
processing is held up unti1 the Condition Code is set and the 
branching action determined. If the branch is not taken, the 
conditiona1 tags are re-set and the pipeline is re-started 
without further de1ay. 

If the branch is taken, the conditiona1 instructions must 
be abandoned and a fresh start made with a new sequence. The 
de1ay incurred in refilling the pipeline from the decoder 
onwards is unavoidab1e, but the de1ay in accessing the first 
instruction at the target address of the new sequence is 
minimised in the Model 195 because the hardware assumes at the 



76 The Architecture of High Performance Computers 

start of Conditional Mode that either outcome is equally 
likely and fetches the first two instruction doublewords at 
the branch target address immediately. These two doublewords 
are loaded into the two Temporary Buffers shown in figure 5.', 
in order that the Instruction Stack remain unaffected if the 
branch is not taken. Clearly these instruction fetches will 
have been made unnecessarily on many occasions, and since 
instruction accesses have priority over operand accesses on 
the store address path, some performance degradation can occur 
due to interference with operand accesses for the conditional 
instructions. This disadvantage is more than offset, however, 
by the advantage gained, when the branch does occur, of the 
access time for the target instructions having been overlapped 
with the wait for the Condition Code. In the case of an 
unconditional branch to an instruction not in the Instruction 
Stack, there is, of course, no need to wait for the Condition 
Code to become valid. As in the conditional case, the target 
instruction sequence is requested immediately, but unless the 
execution unit pipelines are also held up (as a result of 
di vide operations, for example) the six clock cycle start-up 
delay inevitably causes a gap to occur in the instruction 
processing sequence. 

The primary purpose of the whole conditional philosophy was 
the circumvention of storage delays, and in retrospect the 
designers felt that the complications of the system, which 
involves numerous interlocks throughout the processor, would 
become increasingly difficult to justify as storage access 
times decrease. 

5.1.3 Loop Mode 

Without the use of branch target instruction pre-fetching in 
Conditional Mode, the time lost when the branch is taken would 
be roughly equal to the sum of the time spent waiting for the 
Condition Code to be set and the storage access time. With 
pre-fetching the time lost becomes equal to only the greater 
of these two, but even so, where the branch is closing a short 
loop of instructions, this loss can severely limit overall 
processor performance. Thus for short loops a different 
philosophy is adopted whereby the entire loop is contained 
within the Instruction Stack and storage accesses are avoided 
altogether until the program exits from the loop. Clearly, the 
longer the 100p, the smaller the proportion of time lost as a 
result of the branch, and the choice of eight doublewords as 
the capacity of the stack represents a compromise between 
hardware cost and performance in Loop Mode. 

Loop Mode is entered whenever a branch backwards is taken 
to a target address within eight doublewords of the current 



Instruction Buffers 77 

instruction. The Instruction Stack is immediately 
re-initialised to contain the appropriate eight doublewords, 
after which instruction fetching ceases and the address path 
to store is fully available for operand fetching throughout 
execution of the loop. Loop Mode is controlled by two 
additional registers, one containing the loop target address 
(SLT) and the other the value of IR corresponding to the loop 
closing instruction (SLCIR). Once in Loop Mode the address of 
any branch instruction being decoded is compared with that in 
SLCIR, and if it is the same the branch is made immediately to 
the target address held in the other. Thus the role of 
Conditional Mode is reversed, since it is assumed that the 
branch will be taken, and instructions are therefore decoded 
from the target path rather than the straight through path. 
Furthermore , no fetches are made to the Temporary Buffers in 
Loop Mode. 

Loop Mode is normally turned off because an exit is taken 
from the loop. This can happen in a variety of ways. If the 
branch closing the loop is not taken, for example, IR will run 
off the end of the instructions held in the stack and require 
a store access. Al terna ti vely some other branch within the 
loop may be taken to a target outside the stack, or the 
address in SLCIR may be invalidated. This can happen if the 
base or index register specified in the instruction which 
caused SLCIR to be set up is altered. Arecord of which of 
these registers is invol ved is kept wi th SLCIR and acheck 
made against this record if any instruction in the loop alters 
a fixed-point register. 

5.2 IRSTRUCTIOR BQFFERIRG IR CDC COMPUTERS 

5.2.1 Tbe CDC 6600 Instruction Stack 

The organisation of the CDC 6600 Central Processor [7] was 
discussed in section 2. 1 in connection wi th the 6600 
instruction set. We noted that instructions are fetched from 
Central Storage and placed in an Instruction Stack before 
being decoded and issued to the appropriate functional unit 
und er control of the Scoreboard. The Instruction Stack itself 
consists of eight 60-bit registers (10-17 in figure 5.2) which 
operate as a push-up stack and which can contain instruction 
loops. Programs are ini tiated in the 6600 by an ' Exchange 
Jumpt in which the contents of all addressable registers in 
the central processor are interchanged with the contents of a 
designated store area. Following such an ExchangeJump the new 
contents of the program address register are used to access 
the first instruction word. This word is received from Central 
Storage into an Input Register "and then loaded into the bot tom 
register of the Instruction Stack. 



78 The Architecture of High Performance Computers 

Instruction words are made up of four 15-bit 'parcels' and 
as the first instruction word enters the bot tom register of 
the stack (10), the first two parcels within the word 
( starting from the left) are transferred into aseries of 
instruction registers within the Score board control logic 
(section 6.1). At the same time a further instruction fetch is 
initiated. Two parcels are taken to allow for long format 
OO-bit) instructions. If the first parcel is a short format 
(15-bit) instruction, the second parcel is ignored and in the 
next processor minor cycle the second and third parcels are 
taken from 10. When a long instruction is encountered an extra 
minor cycle is spent skipping over the second half, so that 
dealing wi th one complete instruction word never takes less 
than four 100 ns minor cycles. This matches the rate at which 
instructions move into the stack. Whenever a new instruction 
fetch is initiated, the contents of the stack ripple upwards 
one register every half minor cycle, with the topmost location 
(17) being overwritten first. At the end of four minor cycles 
the contents of 10 are moved up and 10 is then ready to 
receive a new instruction from the Input Register. 

r----- -.. 
r- -- ---

D I L 
t 

17 

16 

15 

14 

13 

12 

11 

10 

t t t 
I 

Input Register 

f 
From Central Storage 

t 

• To 
Scoreboard 

Figure 5.2 The CDC 6600 Instruction Stack 

In practice the rate at which instructions could be 
accessed from Central Storage turned out to be longer than 
anticipated at the design stage, which meant that a new 
instruction word would not actually be available until after a 
total of eight minor cycles. Since the rate at which 
instructions are issued to the functional uni ts cannot orten 
be maintained at one per minor cycle, however, the overall 
effect of this delay on performance is not quite so bad as 
might be imagined, and when executing loops which can be 



Instruction Buffers 79 

contained wi thin the stack, no Central Storage accesses for 
instructions are required at all. 

Information about the contents of the stack is contained in 
two registers, the Depth (D), which measures the number of 
valid instruction words in the stack, and the Locator (L), 
which specifies the location in the stack of the instruction 
word currently in use. During execution of a loop held 
entirely in the stack the instructions remain in fixed 
locations and the program address register can point to any 
one of the stack registers within a distance D from the 
bot tom. D is re-set to zero whenever a branch out of the stack 
is taken, and is incremented by one for every new instruction 
word brought in. When the stack is full, D remains equal to 
seven. 

Instructions 
in Loop 

Entry to Loop 
I 

I 

{­
-) 
{-

• Exit from Loop 

n 
times 

Figure 5.3 A Non-contiguous Instruction Loop 

When a conditional branch is decoded a test for 'jump 
within stack' is made. This involves subtracting the current 
program address from the branch address. If the absolute value 
of the result is less than seven words, and if the values in D 
and L indicate that the branch is to a location within the 
stack, no further store accesses are made for instruction 
words until instruction parcels are again taken from 10. Thus 
a branch may jump forwards or backwards within the stack and 
loops may be held ';',1 the stack in various forms. 



80 The Architecture of High Performance Computers 

A very similar Instruction Stack was used in the STAR-100 
computer, CDC's first commercially produced vector processor. 
The STAR-lOO had a much longer instruction format than the 
6600 so that its Instruction Stack was larger, being made up 
of sixteen 128-bit registers, but it used essentially the same 
control mechanisms. The main drawback of both the 6600 system 
and that used in the IBM System/360 Model 195 is that where 
the total number of instructions being obeyed in a loop will 
fit into the stack, but the code is actually made up of a 
number of non-contiguous segments (as in figure 5.3, for 
example), the loop may not be caught in the stack. With 
machine code programming this situation can normally be 
avoided, but it is a common occurrence in compiler genera ted 
code and the increasing emphasis on high-level language 
programming has caused processor designers to seek alternative 
solutions. The CDC 7600 and CYBER 205, for example 
(successors, respectively, to the 6600 and STAR-100), both use 
associatively addressed buffers, with the CYBER 205 
Instruction Stack again being correspondingly larger. Further 
discussion of the CYBER 205 will be left until Chapter 7. 

5.2.2 Tbe eDe 7600 Instruction Stack 

The CDC 7600 [33] was designed to be machine code upward 
compatible with the 6600, but to provide a substantial 
increase in performance. The ways in which this was achieved 
will be discussed in more detail in section 6.2. For now we 
will note that the organisation of the 7600 central processor 
is very similar to that of the 6600. It contains nine parallel 
functional units, a scratch pad of eight X registers, eight A 
registers and eight B registers, and an Instruction Stack. The 
7600 Instruction Word Stack is made up of twelve 60-bit 
registers, however, compared with the eight used in the 6600, 
and each register also has its own 18-bit associative address 
register in an Instruction Address Stack (figure 5.4). 

The Instruction Stack is filled two words ahead of the 
instruction currently being executed, thus giving a greater 
degree of pre-fetching than was possible in the 6600, and 
hence overcoming the storage access delay for sequential 
instructions. Furthermore, instructions are obeyed from a 
Current Instruction Word register, rat her than from the bottom 
stack register, and a complete 60-bit word is transferred from 
the Instruction Stack into this register whenever the word 
address changes in the program address counter. This transfer 
can be made from any of the twelve registers in the 
Instruction Word Stack, allowing a considerable degree of 
flexibility in pre-fetching and loop catching. Whenever a new 
word is required in the Current Instruction Word register the 
address in the program address counter is compared wi th the 



Instruction Buffers 81 

entries in the Instruction Address Stack, and if a coincidence 
occurs for any of these entries, the content of the 
corresponding register in the Instruction Word Stack is 
transferred into the Current Instruction Word register. 

Instruction 
Address 

Stack 

Program 
Address 
Counter 

60 bits 

Instruction Word Stack 

Instruction Issue 

Figure 5.4 The CDC 7600 Instruction Stack 

When obeying sequential code the required word will 
normally be in one of the bottom two registers. When a branch 
instruction is executed and the branch taken, the required 
word may already be in one of the top ten registers, obviating 
the need for a store access, and giving improved performance. 
If the required word is not in the stack, the first two words 
at the target address are immediately requested from store and 
instruction execution continues when the first of these is 
received. Whenever an instruction word is received from store 
all the entries in the Instruction Word Stack and the 
Instruction Address Stack are simultaneously moved up one 
position, with the new address and instruction word being 
entered at the bottom of the stack and the oldest entry being 
lost. Entries in the stack are only invalidated by the 
execution of a subroutine call or Exchange Jump, and not by 
normal branch instructions, so that a program may branch back 
and forth between short sequences of non-contiguous code held 
in the stack. 

Although this stack is larger than that of the 6600, it is 
still relatively small, and considerable effort is frequently 
required to reduce the amount of code in program loops in 
order that they may fit into it. A quite different scheme from 
any of those considered so far is required if loops of 
unrestricted size are to be accommodated. Such a scheme is to 
be found in the MU5 computer. 



82 The Architecture of High Performance Computers 

5.3 TBE MU5 IRSTRUCTIOR BUFFER URIT 

The need for sequential instruction pre-fetching, and the 
disrupti ve effects of control transfers, become increasingly 
apparent as the degree of pipelining is increased. In the MU5 
computer the Primary Operand Unit (section 4.1) has a maximum 
execution rate of one 16-bit instruction per 50 ns, while the 
plated-wire Local Store has a 260 ns cycle-time and is 
four-way interleaved. The Local Store can therefore supply 
successive 128-bit words at 65 ns intervals and so there is no 
problem in supplying sequential instructions at the required 
rate. Because the access time is much longer than 65 ns, 
however, instruction requests have to be sent out well in 
advance of their being required by the Primary Operand Uni t , 
and buffered in an Instruction Buffer Unit. This lnstruction 
Buffer Unit (figure 5.5) contains three 128-bit buffer 
registers which constitute its Data Flow section. The Data 
Flow control logic unpacks instructions from the first buffer 
and assembles them in the second and third buffers ready for 
PROP to take them as required. The necessary store requests 
are made by the Store Request System, which issues store 
addresses formed by a counter at a rate matched to that at 
which instructions are taken from the Data Flow by PROP. 

Jump 
Trace 

Store 
Request 
System 

= 
Check 

Addresses to SAC 128-bit Words from SAC 

Control Address 

Instruction Parcels 
to Prop 

Figure 5.5 The MU5 Instruction Buffer Unit 



Instruction Buffers 83 

This system operates satisfactorily until a control 
transfer occurs as a result of either an unconditional control 
transfer instruction, or a conditional control transfer 
instruction for which the condition is met. Then all the 
pre-fetched instructions must be abandoned, and the correct 
new instruction cannot be sent to PROP until the store has 
been accessed, using the new control address, and the 
instruction has passed through the Data Flow. As a result the 
total time between the execution of the control transfer and 
the first instruction of a new sequence is 950 ns. 

Measurements made during the execution of a number of 
benchmark programs run on MU5 have shown that control 
transfers constitute around 13 per cent of obeyed instl'uctions 
[28]. Thus without some attempt being made to overcome the 
effects of these control transfers, the average instruction 
execution time would be 

50 • 87/100 + 950 • 13/100 = 158.5 ns 

which represents a reduction by a factor of over three from 
the peak execution rate. 

A system was initially considered which had buffer 
registers containing the first few instructions at the 
destination or 'jump-to' addresses of recently obeyed control 
transfers. Access to these instructions was to have been via 
an associative search on their addresses. The pre-fetching 
mechanism would proceed normally until a control transfer 
occurred, and the destination address would then be presented 
to the associative store. If a match was found, the 
instructions in the corresponding buffer register would be 
read out and sent to the Primary Operand Unit (PROP). If no 
match was found, one of the set of associative and buffer 
registers would be updated when the instructions had been 
obtained from store. 

Simulation studies of this technique showed that only eight 
lines of store would be needed to trap 80 per cent of jump 
instructions and that increasing the number of lines to 
sixteen would only produce an extra 1 per cent improvement. 
The problem in implementing this scheme was the width of the 
buffer store. In order to allow the pre-fetching mechanism to 
catch up after a control transfer, each line of the buffer 
would need to hold up to 950 ns worth of instructions. At 50 
ns per 16-bit instruction the number of bits needed in each 
line would have amounted to over 300. 

In order to retain the advantage obtained by using an 
associatively addressed store, without incurring the cost of 



84 The Architecture of High Performance Computers 

buffe ring large amounts of data, the system actually used in 
the MU5 Instruction Buffer Unit (IBU) involves an eight-line 
associati vely addressed 'Jump Trace' store which at tempts to 
predict the outcome of an impending control transfer. Whenever 
a new instruction address is generated by the IBU it is 
presented to the associative 'jump-from' address store before 
being sent to the Local Store via the Store Access Control 
Unit (SAC). If an equivalence is found, this address is 
replaced by the corresponding 'jump-to' address, so that 
pre-fetching of the new sequence takes place instead. When the 
control transfer instruction which gave equivalence in the 
trace is sent to PROP, it is accompanied by a bit indicating 
that the instructions following it are 'out of sequence'. This 
bit is used in PROP to determine the action after execution of 
the control transfer. If the following instructions have been 
correctly predicted, execution of instructions continues 
uninterrupted. If the instructions are not out of sequence, 
but should have been, arequest is made to SAC for the 
instructions at the 'jump-to' address, and at the same time a 
line in the Jump Trace is loaded with the 'jump-from' and 
'jump-to' addresses. Thus when the 'jump-from' address 
re-occurs wi thin the IBU, the instructions at the 'jump-to' 
address are automatically pre-fetched. 

Simulation studies of this system indicated that about 75 
per cent of control transfers could be trapped using an 
eight-line store, and that, as before, increasing the number 
of lines in the store did not significantly improve the 
performance. The apparent drop in performance as compared with 
the first system considered occurs because the prediction 
mechanism sometimes predicts a transfer which does not occur. 
No attempt is made to correct the Jump Trace when apredicted 
branch does not occur, however, since the drop in performance 
is more than offset by the fact that the prediction mechanism 
allows useful overlapping of instructions to continue in PROP 
when the prediction is correct. 

5.3.1 Sequential Instruction Fetcbing 

The Store Request System (figure 5.5) is responsible for 
initiating requests for 128-bit words from SAC at the required 
intervals. Two different types of request may occur according 
to circumstances, ordinary requests and priori ty requests. 
Priority requests are made whenever PROP signals a 
discontinuity in the instruction stream, that is, when the 
instructions following the one currently being executed must 
be replaced by a different sequence. Following such an event, 
the instruction address received from PROP is loaded into both 
the Advanced Control Register, AC, and the Store Request 
Register, SR, and a priority request is made to SAC. AC is 



Instruetion Buffers 85 

then ineremented at 40 ns intervals (it operates at a slightly 
faster rate than PROP) and whenever a earry aeross the 128-bit 
word address boundary oeeurs, the new address is eopied into 
SR and an ordinary request is made to SAC. In addition, eaeh 
new address generated in AC is eheeked against the eontents of 
the assoeiati ve jump-from field of the Jump Traee. Ir an 
equi valenee oeeurs the eorresponding jump-to address is read 
out and used instead. The Store Request System then eontinues 
to make ordinary requests starting from this new address. 

Ordinary requests normally eontinue to be made until an 
instrJ,letion sequenee diseontinui ty arises. This happens when 
an interrupt oeeurs, for example, or when the IBU has sent an 
ineorreet sequenee of instruetions to PROP. This ean oeeur 
either beeause an unpredieted eontrol transfer instruetion 
eauses a jump, or beeause apredieted eontrol transfer does 
not eause a jump. In either of these eases the priority 
meehanism is re-invoked when the address of the required 
instruetion is sent from PROP. In the ease of an interrupt two 
fixed (hard-wired) instruetions are read from within the IBU. 
The first of these preserves essential linking information in 
store and the seeond eauses a eontrol transfer to the start of 
the appropriate interrupt routine. This again invokes the IBU 
priority meehanism. 

The operation of the Store Request System ean also be 
temporarily halted as a result of interloeks ineorporated into 
the IBU to ensure that no loss of information oeeurs as a 
result of asynehronous operation. These interloeks simply 
eause time delays before the next ordinary request ean be 
sent. For example, the rate of issuing of requests from the 
IBU to SAC is normally geared to the maximum rate at whieh 
PROP ean proeess instruetions. When PROP exeeutes an 
instruetion whieh requires a long interval of time for its 
eompletion, however, a hold-up oeeurs and this hold-up 
propagates baek through PROP to the IBU Data Flow buffers. 
Sinee the IBU is obliged to aeeept data from SAC as so on as it 
beeomes available, suffieient spaee must be maintained in 
these buffers to reeeive it. In order to meet this eondition 
and to be able to maintain the maximum throughput rate, IBU 
ordinary requests may be held up within SAC until the IBU ean 
guarantee to aeeept the requested instruetions. 

5.3.2 Tbe Jump Trace 

Although the Jump Traee is in prineiple a fairly 
straightforward system, a number of faetors eomplieated its 
implementation. For example, al though most eontrol transfers 
use a literal operand (whieh is invariant in a maehine like 
MU5 whieh uses 'pure proeedure' eode) , some do not, and in 



86 The Architecture of High Performance Computers 

these cases the jump-to address will vary on some subsequent 
executions of the instruction. No at tempt is made in MU5 to 
take advantage of cases where this variation occurs 
infrequently, however, since the designers felt that the extra 
hardware complication needed to check the correctness of the 
predicted jump-to address would not be cost-effecti ve. 
lnstead, the problem of variable jump-to addresses is avoided 
by only loading the Jump Trace for those control transfers 
which use a literal operand. 

A further problem arises from the variable instruction 
length. The Control Register always addresses the first parcel 
of a multi-length instruction, but clearly jump-from addresses 
must always correspond to the last. This address must 
therefore be computed specially, since it is not otherwise 
required. However, the value in the Control Register after the 
execution of a conditional control transfer will either be the 
address of the first parcel of the next instruction in 
sequence (the jump-from address + 1), or some quite different 
address (the jump-to address). The first alternat i ve can be 
generated immediately, since it requires no operand, whereas 
the second must await the arrival of the operand and the 
result of the condition. The Control Adder associated with the 
Control Register in PROP can therefore perform two cycles with 
no loss of performance, and when an unpredicted control 
transfer using a literal operand occurs, both values are sent 
to the lBU. The first is loaded into register AC (figure 5.5) 
and then decremented by the address counter before being used 
to load a line in the jump-from field. The second is loaded 
into AC and thence into the jump-to field and also into SR to 
be sent to SAC as a priority request. The line used in the 
Jump Trace is selected by a Fill Pointer according to a cyclic 
replacement algorithm and as each line is overwritten a 'use' 
digit associated with it is set. These use digits are normally 
only re-set, and the Trace thereby cleared, at a process 
change. 

The technological problems which occurred during the 
implementation of the Jump Trace were mainly concerned with 
timing. All instruction addresses are presented to the 
jump-from field as they are generated by the Advance Control 
Register (AC), and the association proceeds in parallel with 
the operation of the counter. This allows the 40 ns address 
generation rate to be sustained. However, if an equivalence is 
found, the next address is not that generated by the counter 
but that read out of the jump-to field. This action requires 
an additional 40 ns. To sustain an average 40 ns rate, 
advantage is taken of the fact that the addresses generated in 
AC are sequential, and association is performed simultaneously 
on two addresses differing only in their least significant 



Instruction Buffers 87 

digit. Thus the associati ve field is actually 30 bits wide 
with the 31 st bit of the full virtual instruction address 
being held in aseparate non-associative flip-flop. This bit 
is then used to determine whether or not an equivalence is 
genuine. When a genuine equi valence does occur, the 
corresponding jump-to address is read out and copied into AC 
and into SR. 

5.4 THE CRAY-1 INSTRUCTION BUFFERS 

The need for instruction pre-fetching and loop catching 
techniques arises from the impracticability of having a large 
high-speed random access store close to the central processor, 
and all the instruction buffering techniques with which we 
have dealt so far have been aimed at circumventing this 
problem. With the advent of MSI and LSI storage technologies, 
however, different hardware organisations have been made 
possible. An example of this can be seen in the instruction 
buffering mechanism used in the CRAY-1 [34], a machine with 
which we shall deal in more detail in Chapter 6. 

I I I I -
I I I I 

I I I I 
Bank 0 0 1 2 3 - -- - -- - -- -- -

4 5 6 7 -- -- - - -- - - --
10 11 12 13 

--- - -- - -- - -
14 15 16 17 
- - - - - - - - -
20 21 22 23 
- - - - - - - - -
24 25 26 27 

--- --- - -- - - -
30 31 32 33 

- -- - - - - ---
34 35 36 37 

- -- - - - - --
40 41 42 43 -- - - - - -- - - -
44 45 46 47 

-- - --- - - - - - -
50 51 52 53 - -- --- -- - - - - -
54 55 56 57 

--- --- - - - -- - - -
60 61 62 63 .. Buffer 3 

- -- -- - - -- - - - -
64 65 66 67 .. Bu ffer 2 -- - - -- --- - -- -r-
70 71 72 73 • Buffer -- - - - -- --- -
74 75 76 77 • Buffer 0 

Figure 5.6 CRAY-1 Instruction Buffers 

The overall structure and instruction set of the CRAY-1 are 
largely derived from the CDC 6600 and 7600, with instructions 



88 The Architecture of High Performance Computers 

being executed by a set of parallel functional uni ts . The 
processor obtains all its instructions directly from a set of 
instruction buffers, however, and does not send a stream of 
instruction requests to the main store. These buffers are 
organised as shown in figure 5.6. Each of the four buffers 
holds 64 consecuti ve 16-bi t instruction parcels, and if an 
instruction request cannot be satisfied from within these 
buffers, a full 64-parcel block of instructions is transferred 
from main store into one of them. 

The CRAY-1 uses a 22-bit instruction address and the first 
instruction parcel in a buffer always has an address starting 
on a 64-parcel address boundary. Any one buffer is therefore 
defined by the 16 most significant bits of a parcel address, 
and for each buffer there is a 16-bit starting address 
register containing this value. At each clock cycle the high 
order bits of the program address counter are compared with 
the contents of these registers, and if a match occurs the 
required instruction parcel is selected from within the 
appropriate buffer either immediately, if the buffer concerned 
is the same as the one which supplied the previous parcel, or 
after a two clock period delay if a change of buffers is 
involved. 

If no match occurs, instructions must be loaded into one of 
the instruction buffers before execution can continue. A 
two-bit counter is used to determine which buffer is to be 
loaded; this counter is incremented by one whenever a load 
operation occurs, thus implementing a cyclic replacement 
algorithm. The 64-bit main store in the CRAY-1 is an 8-way or 
16-way interleaved bipolar semiconductor store having a 50 ns 
cycle time. During a block transfer all other store requests 
are inhibited, and sequential accesses can be made at a rate 
of one per 12.5 ns clock period. In the case of transfers to 
an instruction buffer, four storage banks can be accessed in 
parallel, giving access to 16 instruction parcels in one cycle 
and allowing all 16 banks in a 16-bank configuration to be 
accessed in four clock periods. Since the cycle time is also 
equal to four clock per iods , the first four banks are then 
ready to accept a further request, and a complete block 
transfer to an instruction buffer occupies four cycles of each 
bank. The total time required to access the first group of 
instruction parcels is nevertheless quite long, and a 14 clock 
per iod delay is incurred whenever a buffer has to be loaded. 
This delay is constant regardless of the position of the first 
parcel required from the buffer, since a technique is employed 
similar to that in the IBM System/360 Model 85 cache, whereby 
the first group of 16 parcels delivered to the buffers is 
always the one required immediately by the processor. 
Subsequent groups arrive at a rate of 16 parcels per clock 



Instruction Buffers 89 

period and fill the buffer circularly. 

When a branch is taken the new value in the program address 
counter is compared with the contents of the buffer starting 
address registers in exactly the same way as it is following 
execution of instructions in sequence. If a match occurs the 
required instruction is selected from the appropriate buffer, 
and if not a block transfer is initiated. Non-contiguous 
segments of code within a loop, or even separate subroutines 
may be held concurrently in separate buffers. The buffer 
contents are only invalidated, by having their starting 
addresses set to all ones, when an Exchange Jump occurs. 

5.5 POSITION OF TOE CONTROL POIKT 

In any computer executing instructions in a sequential manner, 
there is a register (called variously the Program Counter, 
Instruction Address Register, or Control Register) that 
contains the address of the instruction currently being 
executed. In a pipelined processor this Control Register 
points to an instruction at one particular stage of the 
pipeline, the Control Point. All instructions before the 
Control Point are being decoded, having their operands 
fetched, and so on, in such a way that they can be abandoned 
at any time, without causing any irreversible change to the 
state of the machine. Those after the Control Point have had 
the Control Register incremented past their address, and so 
must be guaranteed to complete their execution, even in the 
the event of an interrupt. 

Depending on the position of the Control Point, the 
pipeline can be described as 'early control', with the Control 
Point at an early stage in the pipeline (often the first), or 
'late control', with the Control Point several stages further 
on. The position of the Control Point depends on a number of 
factors including the instruction set, hardware organisation, 
and the nature of program addresses (real or virtual, for 
example). Thus the parallelism of the functional units in 
machines like the CDC 6600 indicates an early Control POint, 
while the pre-processing required for an MU5 virtual address 
is easier to per form wi th a late control pipeline. Wi thin 
these guidelines, there is a degree of flexibility in the 
position of the Control Point, and designers have to take 
other factors into consideration. 

The effects of control transfers are particularly 
important. Control transfers can be di ... ided into condit1onal 
control transfers, where the branch only occurs if some 
condition within the processor is satisfied, and unconditional 
control transfers, which always branch. Clearly, a conditional 



90 The Architecture of High Performance Computers 

control transfer instruction may be successful or 
unsuccessful, depending on the state of the condition when it 
is executed, and the relative proportions of successful 
conditional, unsuccessful conditional, and unconditional 
control transfers are important to the performance of the 
instruction fetching strategy used in the processor. 

Control transfer instructions are normally executed at the 
Control Point stage in the pipeline. Since control transfers 
are often followed down the pipeline by wrong sequences. of 
instructions, the delay incurred when these instructions have 
to be discarded increases in proportion to the number of 
stages in the pipeline between the main store and the Control 
Point. A late control pipeline would therefore seem to imply 
long delays for control transfer instructions. However, a 
closer examination reveals a more complicated situation. 

The decoding of any instruction in the pipeline normally 
takes place before the final execution of some preceding 
instructions. This produces an information gap, or 'Gulf of 
Ignorance', between instructions entering the pipeline and 
those completing execution. This particularly affects 
conditional control transfers, since their execution depends 
on a value or condition determined by some previous 
instruction, or, in the ca se of machines like the CDC 6600, by 
the control transfer instruction itself. If this value is 
calculated by an instruction within the Gulf of Ignorance, 
then the control transfer is 'unresolvable' and cannot proceed 
until the required instruction completes execution. 
'Resolvable' control transfers are those which are 
unconditional or which depend on the outcome of a long-passed 
instruction, outside the Gulf of Ignorance. 

Thus the proportion of control transfers that are 
resolvable is very important, as aresolvable control transfer 
can be obeyed as so on as it is decoded. Unresolvable control 
transfers must normally be held at the Control Point until the 
required condition or resul t has been evaluated, usually at, 
or near, the end of the pipeline in one of the ari thmetic 
uni ts , and a gap will occur in the flow of instructions 
through the pipeline. The length of this gap is determined by 
the number of pipeline stages- between the Control Point and 
the later stage where the arithmetic is performed. (It is this 
gap which the Conditional Mode of the IBM System/360 Model 195 
is designed to overcome, in cases where the outcome of the 
conditional transfer has been correctly predicted. When it has 
not the Instruction Address Register at the Control Point has 
to be wound back to take account of the instructions issued 
but not actually obeyed.) 



Instruction Buffers 91 

Once the condition has been resolved, the control transfer 
can be obeyed. Unless the appropriate sequence is already 
following the control transfer down the pipeline, however, a 
further delay will be incurred while the new sequence of 
instructions is requested from store (01" the instruction 
buffer). This delay will be equal to the instruction· access 
time plus the time to pass through the pipeline from the store 
to the Control Point. Thus, for a conditional control transfer 
followed by the wrong sequence of instructions, the delay 
subsequently incurred depends on the numbers of pipeline 
stages both between the main store and the Control Point and 
between the Control Point and the ari thmetic uni t, that is, 
the total pipeline length. However, if the correct instruction 
sequence following the conditional control transfer has been 
supplied to the pipeline, then this delay is only proportional 
to the number of stages in the pipeline beyond the Control 
Point. 

On at least some occasions conditional control transfer 
instructions will be followed by the correct sequence (when 
they are unsuccessful in a simple system), and in these cases 
the pipeline delays are reduced if the Control Point is as 
late as possible in the pipeline. In the absence of any 
special techniques for supplying correct instructions after 
unconditional transfers, however, the pipeline delays for 
unconditional transfers are reduced by placing the Control 
Point as early in the pipeline as possible. Clearly, the 
relative proportions of these instructions are important. 
Measurements made using the MU5 hardware performance monitor 
produced the results shown in figure 5.7 for the proportions 
of different types of control transfer instruction obeyed 
during compilation and execution of 10 Algol and 15 FORTRAN 
benchmark programs [36]. 

During Algol execution 14.0 per cent of all instructions 
obeyed are control transfers, made up of 6.0 per cent 
successful conditional, 2.4 per cent unsuccessful conditional 
and 5.6 per cent unconditional transfers. For FORTRAN 
execution 12.5 per cent of all instructions are control 
transfers, made up of 4.5 per cent successful conditional, 2.8 
per cent unsuccessful conditional, and 5.2 per cent 
unconditional transfers. During both Algol and FORTRAN 
compilation the proportions of control transfers are higher, 
and the success rates of the conditional transfers are lower. 
Both of these differences arise from the nature of the tasks. 
The execution figures include large numbers of loops of 
numerical calculations ended by successful conditional control 
transfers, while the data-dependent nature of the compilation 
task involves many unsuccessful tests for particular values of 
the input data. 



92 The Architecture of High Performance Computers 

20% 

15% 

10% 

5% 

0% 

11) 
Successful 
Conditional 

r==I Algol 
g Compilation 

12) 
Unsuccessful 
Conditional 

llIill Algol 
Execution 

13) 
Unconditional 

~ Fortran 
Compilation 

14) 
Total 

Fortran 
Execution 

Figure 5.7 Percentages of Control Transfers 

The relative numbers of predictable and unpredictable 
control transfers are also important in MU5, since only 
predictable control transfers (those which use a literal 
operand) cause a Jump Trace entry to be made following their 
first successful execution. The results in column 1 of figure 
5.8 show that the per centage of these predictable control 
transfers (including conditional and unconditional) is fairly 
constant at over 85 per cent for all the types of program 
considered. 

100% 

80% 

60% 

40% 

20% 

0% 

11) 

% Transfers 
Predictable 

12) 
% Predictables 

Predicted 

r:::=::=:::t Algol 
I::::::l Compilation 

13) 
With 

Jump Trace 

Agol 
Execution 

14) 
Without 

Jump Trace 

f\\'\1 Fortran 
~ Compilation 

% Transfers Followed By Correct Sequence 

Figure 5.8 Control Transfer Prediction Rates 

15) 
With 

Decoder 

Fortran 
Execution 



Instruction Buffers 93 

Column 2 of figure 5.8 shows the proportion of predictable 
transfers that are correctly predicted by the Jump Trace. The 
figures for execution are much bet ter than for compilation, 
and again the nature of the tasks accounts for this 
difference. During execution, the Jump Trace appears to offer 
less advantage for FORTRAN than Algol programs , even though 
many of the benchmarks actually correspond to the same task 
carried out in each language. When the per centages of control 
transfers followed by correct sequences of instructions are 
considered, however, as in column 3, the lower success rate of 
conditional transfers in FORTRAN compensates for this effect. 
The figures in column 3 may be compared with those in column 
4, which shows the per centages of control transfers what 
would be followed by correct sequences in the absence of the 
Jump Trace. 

An alternative system that might seem to produce useful 
improvements in the numbers of correct sequences is one that 
decodes and executes predictable unconditional control 
transfers at an earlier stage in the pipeline than the Control 
Point. Such a scheme is used in the more powerful machines in 
the ICL 2900 series of computers. Using MU5 figures for the 
numbers of unsuccessful conditional control transfers and the 
predictable unconditional transfers, the per centages of 
control transfers followed by correct sequences using the 
decoder scheme alone, would be as shown in column 5 of figure 
5.8. The effects for compilation are remarkably similar to 
those obtained using the Jump Trace, though clearly for 
execution this scheme ~s less at tracti ve. Furthermore , large 
gaps will occur in the pipeline unless the decoding and 
execution of an unconditional control transfer occurs 
sUfficiently far in advance of the Control Point for the new 
sequence to be accessed from store and supplied to the 
pipeline before the preceding instructions have all been 
processed. 

A furt her set of measurements taken from MU5 concerns 
resolvability. Conditional control transfers in MU5 depend on 
the outcome of a previously executed COMPARE order, the result 
of which is held in a separate Test Register, and measurements 
of the numbers of conditional control transfers separated by a 
given number of instructions from the preceding COMPARE order 
were used to determine the per centages of conditional control 
transfers that would be resolvable for a given pipeline length 
(figure 5.9). Clearly, for a pipeline separation of more than 
one stage between the Control Point and the arithmetic unit 
carrying out the comparison, most condi tional control 
transfers are unresolvable, even though the MU5 compiler 
writers attempted to separate comparison and control transfer 
orders wherever possible in the compiled code. If all 



94 The Architecture of High Performance Computers 

conditional control transfers are assumed to be unresolvable 
in MU5, their proportion of the total number of control 
transfers amounts to very close to 60 per cent for each type 
of program considered. This figure agrees very closely with 
that obtained by Flynn from measurements taken from an IBM 
System/360 machine [35]. Here the overall proportion of 
control transfers is higher than for MU5 at 9 per cent 
resolvable and 16.5 per cent unresolvable (27.5 per cent in 
all), but the proportion of control transfers which are 
unresolvable is also 60 per cent. 

2 

100% 

80% 

60% 

40% 

20% 

0% 

EI Algol 
t:::::l Compilation 

Pipeline Length 

3 4 5 

[[]] Algol 
Execution 

l0J Fortran 
I.::J Compilation 

6 

Pil Fortran 
~ Execution 

Figure 5.9 Percentages of Resolvable Control Transfers 

The performance of pipelined processors is critically 
dependent on the effects of control transfers, as we saw in 
section 5.3, for example. What is important is the total 
length of the pipeline and simply designing for greater 
overlap within a processor will not necessarily improve 
performance. For a given pipeline length, however, performance 
can be improved by placing the Control Point as late as 
possible in the pipeline and supplying the pipeline with the 
correct sequence of instructions after control transfers as 
frequently as possible. This necessarily invol ves the 
prediction of the outcome of a control transfer, and this must 
normally be made as early as possible in order to overcome 
store access delays. A system such as the MU5 Jump Trace, 
which bases its prediction on the addresses used to pre-fetch 
instructions, seems to offer the best chance of success in 
this situation. 



6 Parallel Functional Units 

In Chapter 4 we saw an example of the use of parallel 
functional uni ts in the IBM System/360 Model 91. In this 
machine the parallelism was introduced as a means of enhancing 
the performance of a processor at the top end of a range of 
general purpose computers. In _the case of the CDC 6600, 
performance was the principal criterion of the design, and as 
we saw in Chapter 2, the use of parallel functional units with 
an instruction set capable of exploiting this parallelism was 
a key feature. In this chapter we shall consider the design of 
the CDC 6600 central processor, with particular emphasis on 
the Scoreboard, the mechanism used to control the operation of 
these functional units. We shall then go on to consider some 
of the design modifications introduced in the CDC 7600, the 
successor to the 6600, and then see how limitations inherent 
in the 6600/7600 architecture led to the CRAY-1 design. We 
shall consider the design of this machine in some detail. 

6.1 TBE CDC 6600 CERTRAL PROCESSOR 

The overall design of the CDC 6600 central processor was 
introduced in section 2. 1, and is show again in figure 6. 1. 
Instructions are taken in sequence from the Instruction Stack 
and issued by the Score board to the appropriate execution 
unit. Each unit takes its input operands from among the 24 
scratch-pad registers (eight 60-bit X (operand) registers, 
eight 18-bit A (address) registers, and eight 18-bit B (index) 
registers) and returns i ts result to one of these registers. 
The maximum rate of issue is one instruction per minor clock 
cycle (100 ns), while the units take typically 300 or 400 ns 
to complete their operations. Thus while the units can in 
principle all operate simultaneously, simultaneous operation 
of three or four units is more typical in practice. The 
issuing of instructions is not straight forward since 
instruction dependencies can require that some instructions be 
held up until the completion of other, previously issued, 
instructions. In order to maximise the amount of concurrent 
processing, the Scoreboard is designed to issue each 
instruction as early as possible, within the limits set by 
these dependencies, so as to allow the following instruction 
to be issued, hopefully to a different unit. Dependency 



96 The Architecture of High Performance Computers 

conflicts are resolved by the Score board through control 
signals which link it to each unit and by the use of 
information buffe red about the registers in respect of each 
unit, and about the units in respect of each register. Before 
discussing the details of this system, however, we shall 
consider the characteristics of the units themselves. 

Pe ripheral Peripheral 
Add - Processors Multiply annels Ch 

Multiply 

Divide 

Scratch 
Fixed Add 

Central 
Storage - Pad - Increment 

Registers 
Increment 

Booleen 

Shift 

Branch 

Instruction t 
Stack -1. Scoreboard 

Figure 6.1 CDC 6600 Central Processor Organisation 

6.1.1 Functional Units in the CDC 6600 

Boolean Unit 

The Boolean Unit performs logic operations of the type 

Xi = Xj & Xk 

Xi = Xj v Xk 

It operates on each pair of input digits in parallel and 
returns its result to the designated result register in 300ns. 

Fixed Add Unit 

The Fixed Add Unit performs the operations 

Xi = Xj + Xk 

Xi = Xj - Xk 

It treats the input operands as l' s complement numbers and 
uses a 60-bit parallel adder which allows it to return its 



Parallel Functional Units 91 

result to the designated result register in 300 ns. It is also 
used as a partner to the Branch Unit when the latter is 
executing a conditional branch instruction which depends on a 
value in an X register. 

Shirt Unit 

The Shift Unit performs a variety of operations. The shifter 
itself is organised as a 6 logic level network capable of 
performing left circular and right arithmetic shifts to any 
position in 300 ns. It executes the operations Pack and 
Unpack, which respecti vely couple and separate the exponent 
and mantissa of a floating-point number using registers Xi, 
Bj, and Xk, and Mask, which forms astring of ones for use by 
the Boolean Unit in AND operations used for masking. The Shift 
Unit also executes the Normalise operation which takes 400 ns. 
In most computers the results of floating-point operations are 
automatically normalised, but this increases the time required 
for these operations. Normalisation is treated as an optional 
extra in the 6600, for which the user only pays the time 
penalty when the facility is used. 

Floating Add Unit 

The Floating Add Unit also uses 1's complement representation 
for the 48-bit mantissae of floating-point numbers, but uses 
an 11-bit biassed binary exponent (an exponent value of 0 is 
represented as 10000000000). The mantissae are assumed, 
unusually, to be integers rather than fractions. This has the 
advantage of allowing fixed-point integers to be converted to 
floating-point numbers by simply ORing in the exponent bias. 
Thus the floating-point number format is as shown in figure 
6.2. 

Biased Exponent Binary Point 

~ ~ 
~11~1--1~1--~---------~------------~1 

t f 
Sign 1's Complement Mantissa 

Figure 6.2 CDC 6600 Floating-point Format 

Floating-point addition and subtraction can be carried out 
in 400 ns and the result may be a rounded or unrounded single­
length result, or the upper or lower half of a double-length 
result. 



98 The Architecture of High Performance Computers 

Floating Multiply Onit 

The 6600 boasts two identical Floating Multiply Units, each 
capable of producing a rounded or unrounded single-length or 
the upper or lower half of a double-length floating-point 
result in 1000 ns. This unit is a very interesting example of 
a high performance ari thmetic unit, combining as it does the 
techniques of carry-save addition, multiplier pairs and split 
multiplier operation. However, we shall not be considering the 
details of arithmetic unit design in this book; the interested 
reader is referred to Thornton [7] for details of the 6600 
arithmetic units, or to Gosling [37] for the design of 
arithmetic units generally. 

Floating Divide Onit 

Floating-point division is the longest arithmetic operation in 
the 6600, as it is in most computers, and requires 2900 ns to 
return a result to the designated result register. 

Increment Onit 

Each of the two Increment Units performs fixed-point addition 
or subtraction on 18-bit numbers in 300 ns. These units are 
used for indexing and for the loading of A registers (thereby 
causing transfers of operands between the corresponding X 
registers and Central Storage) in operations such as 

Ai = Aj + K 
Ai = Aj - Bk 

Bi = Aj + K 
Bi = Aj - Bk 

Either of these units may also be used as a partner to the 
Branch Unit when the latter is executing a conditional branch 
instruction which depends on a value in aBregister. 

Brancb Onit 

The result register of the Branch Unit is the Program Address 
register, which is overwritten by an unconditional branch or a 
conditional branch for which the condition is met. 
Determination of the condition is carried out by a partner 
unit, an Increment Unit in the case of a B value being 
involved or the Fixed Add Unit in the case of an X value. The 
Branch Unit itself performs the 'jump within stack' test 
(section 5.2.1) to determine whether or not the target 
instruction of a branch is in the Instruction Stack. Branch 
instructions take 800 or goo ns to complete if the target 
instruction is in the Instruction Stack, and 1400 or 1500 ns 
if not. They also hold up the issuing of further instructions 
until they have completed. 



Parallel Functional Units 99 

6.1.2 Instruction Dependencies 

Dependency conflicts between successive instructions in the 
6600 are classified by Thornton [7] into three types, first 
order, second order and third order. The Score board resol ves 
these conflicts using the control signals which link it to 
each uni t. The Score board can send an Issue, Go Read and Go 
Store signal to each unit separately, and can receive from 
each uni t aRequest Release signal (figure 6.3). The Issue 
signal enters information into the unit identifying the source 
of its input operands and the mode in which it is required to 
operate, while Go Read causes the operands themselves to be 
copied into the unit. When a unit completes its operation it 
sends aRequest Release signal to the Scoreboard, which 
responds wi th Go Store, a signal which allows the resul t of 
the operation to be copied out of the unit's Temporary 
Register and into the appropriate result register. 

XBA 
Registers 

Control 

Temporary 
Register 

Control Signals 
To/trom scoreboard 

-Issue 

-Go Read 

-Go Store 

L __ J--- Request Release 

Figure 6.3 Control Schematic for a 6600 Functional Unit 

First Order Conflicts 

A first order conflict occurs whenever an instruction which is 
about to be issued requires the use of an arithmetic unit or a 
result register which is al ready in use or has been reserved 
by a previously issued, but as yet uncompleted instruction. 
Each instruction in the following pair, for example, requires 
the use of the Floating Add Unit 

X6 = X1 + X2 
X5 = X3 + X4 

while in the next example each instruction requires X6 as its 
result register 



100 The Architecture of High Performance Computers 

X6 = X1 • X2 
X6 = X4 + X5 

Although this latter example is unlikely to arise in normal 
programming practice, it must nevertheless give the correct 
result. Without proper interlocks the add operation would 
complete first and the result in X6 would then be overwritten 
by that of the multiplication. 

Both these conflicts are resolved by holding up the Issue 
signal for the second instruction until the first has 
completed. Issuing an instruction involves a sequence of four 
separate actions. Firstly the functional unit required by the 
instruction is reserved by the setting of its 'busy flag', and 
the operating mode, der i ved from the m field of the 
instruction, is entered into it. No sub se quent instruction can 
be sent to this unit until its busy flag has been re-set at 
the completion of the instruction which reserved it. Secondly 
register designators Fi, Fj and Fk, derived from the i, j and 
k fields of the instruction, are copied into the functional 
unit in order to identify the operand and result registers 
which it will use. Thirdly the Score board copies into the 
current unit two numbers, Qj and Qk, taken from the identifier 
registers associated with these operand registers, and finally 
the identifier register associated with the result register is 
loaded with the unit number of the current unit. Thus a 
subsequent instruction which requires the content of this 
resul t register as an input operand will recei ve this uni t 
number as a Q number, and a subsequent instruction which also 
requires this register as a result register will not be issued 
until the identifier has been cleared. The importance of Q 
numbers becomes clear when second order conflicts are 
considered. 

Second Order Conflicts 

A second order conflict occurs whenever an instruction which 
is about to be issued requires the result of a previously 
issued but as yet uncompleted instruction. An example of such 
a conflict is the following 

X6 = X1 + X2 
X7 = X5 I x6 

Here the second instruction can be issued, but must not be 
allowed to start until the result of the first instruction has 
been entered into x6. This is achieved by holding up the Go 
Read signal. The first action within a functional unit at the 
start of any operation is the simultaneous copying into the 



Parallel Funetional Units 101 

unit of the two input operands, and this ean only oeeur when 
Go Read is set. Go Read is the logieal AND of the Read Flags 
assoeiated with eaeh of the two input operands. 

Enter During 
Issue of 1st 
Instruction 

Enter During 
Issue of 2nd 
Instruction 

Floating Add 
'Release' at end of 

1st Instruction 

Unit Number I'Floating Add') 

Set Divide k read Flag 

Figure 6.4 Seeond Order Confliet Event Sequenee 

The sequence of events for the example above is shown in 
figure 6.4. The unit number of the Floating Add Unit is 
entered into the identifier register of X6 when the first 
instruetion is issued. When the second instruction is issued 
this uni t number is copied from the x6 identifier register 
into the Qk register in the Divide Unit. When the Floating Add 
Unit eompletes its operation it sends its Request Release 
signal to the Seoreboard, and on reee~v~ng a Go Store 
response, sends a Release signal to all the other functional 
units. Beeause the Di vide Uni t has the unit number of the 
Floating Add Unit set in its Qk register, it detects this 
Release signal and sets the k operand Read Flag. Assuming that 
the Qj register eontains zero (indieating that there was no 
outstanding result destined for X5 at the time when the divide 
instruetion was issued), the Read Flag for the j operand would 
have been set immediately, and the divide operation therefore 
starts as soon as the Read Flag for the k operand is set. 

Third Order Conflicts 

A third order eonfliet oeeurs when an instruetion whieh has 
just eompleted its operation wishes to store its resul t in a 
register which is wai ting to supply an input operand for a 



102 The Architecture of High Performance Computers 

previously issued, but as yet unstarted instruction. Such a 
conflict occurs in the fOllowing sequence 

X3 = X1 / X2 
X5 = X4 • X3 
x4 = xo + x6 

The third order conflict here is on register X4, and arises 
because of the second order conflict on X3. The second 
instruction can be issued immediately after the first, but is 
held up for its Go Read signal because X3 cannot be read until 
the Divide Unit completes its operation. The third instruction 
can likewise be issued immediately after the second, and since 
there are no resul t reservations on its input operands , the 
Floating Add Unit also receives Go Read immediately and starts 
its operation. The floating-point add operation completes in 
very much less time than division, however, and the Floating 
Add Unit is therefore ready to store its result in X4 be fore 
the Multiply Unit has read the current value in X4. Thus the 
Floating Add Unit sends its Request Release signal to the 
Scoreboard, but the Scoreboard holds up the Go Store response 
until after the multiplication has started. 

This inter lock is achieved through use of the Read Flags. 
When the multiplication instruction is issued there are no 
reservations on X4, and its Read Flag is set immediately. This 
Read Flag remains set until the X3 Read Flag is set at the end 
of the division operation, after which the multiplication is 
started and both Read Flags are re-set. Thus the fact that the 
value in a particular register is required as an input operand 
by a previously issued, but as yet unstarted, instruction is 
indicated by the presence of a Read Flag for that register. 
Conversely, if there are no Read Flags set for a particular 
register, that register can be described as 'All Clear' and a 
Go Store can be returned to a uni t which is ready to send a 
result to it. The All Clear signal is produced by decoding the 
F j and Fk operand designators for each unH and ANDing the 
decoder outputs wi th the corresponding Read Flag signal to 
produce an indication of whether or not the unH has a Read 
Flag set for a given register. For each register the signals 
from all the units are then combined to produce the All Clear 
signal indicating whether or not there are any Read Flags set 
for it. The Go Store signal for a particular unit is formed by 
decoding its Fi (result register) designator and combining 
together the results of AND operations between these decoded 
Fi signals and the corresponding All Clear signals for the 
registers. 

In the example above the Fi designator for the Floating Add 
Unit identifies register X4, and until the multiplication 



Parallel Functional Units 103 

starts the Multiply Unit has a Read Flag set for X4, 
inhibiting the X4 All Clear signal. When the multiplication 
starts, this Read Flag is re-set, the x4 All Clear signal 
becomes true, and the Floating Add Unit receives Go Store. It 
then sends its result and Fi value along a data highway to the 
XBA registers where the Fi value is decoded to control entry 
of the result into the appropriate register, and the clearing 
of the result reservation in the corresponding identifier 
register. 

6.1.3 Data Highways 

The instruction times quoted in section 6.1. 1 refer to the 
time between the issuing of an instruction and the 
availability of its result in a register. Included in these 
figures is the time required to transfer operands to a unit at 
the start of an operation and the time to transfer the result 
back to the appropriate X, B or A register at the end. These 
times add up to 100ns typically, so that the 'highway' time 
amounts to as much as one-third of the total time required to 
execute short operations. Furthermore , because the Go Read 
signal may be held up for a particular instruction, the 
transfer of operands into the unit does not necessarily take 
place concurrently with the issuing of an instruction to that 
unit, and may be required to occur concurrently with the 
transfer of operands for a subsequent instruction issued to a 
different unit. Thus in order to maintain the maximum benefit 
of functional unit parallelism, a multiplicity of highways is 
required between the XBA registers and the functional units. 

Figure 6.5 shows the data highways used in the 6600 Central 
Processor. The functional units are grouped together according 
to physical layout and performance criteria and each group is 
served by a separate highway. The two Increment Units, for 
example, can cause a traffic of one operand on a highway every 
two minor cycles, on average, while the two Multiply Units and 
the Divide Unit can together cause an average traffic of 
approximately one operand on a highway every four minor 
cycles, as can the Boolean Unit. Thus the requirements of the 
Multiply, Divide and Boolean Units taken together roughly 
match those of the Increment Units. A dual 18-bit highway is 
therefore used to supply operands to the Increment Units, 
while two dual 60-bit highways are used to supply each of the 
other two groups of units, and a single 60-bit highway is used 
to return operand values from the XBA registers to Central 
Storage. 

The XBA registers are supplied wi th operands from Central 
Storage via a single 60-bit highway, and can recei ve resul ts 
from the Multiply group of units via a 60-bit highway, from 



104 The Architecture of High Performance Computers 

the Increment Units via an 18-bit highway, and from the Add 
group of units via a dual 18-bit plus 60-bit highway. These 
latter highways would be used in an Unpack instruction, for 
example, where the mantissa of a floating-point number is 
returned to an X register, and the exponent to aBregister. 

XBA Registers 

Fixed Add 

Floating Add 

Shift 

Boolean 

Divide 

Multiply 

Multiply 

Figure 6.5 Data Highways in the CDC 6600 

The highways form a considerable part of the processor 
hardware and represent a significant cost penalty to be offset 
against the performance advantage obtained from the functional 
unit parallelism. The Scoreboard control logic also represents 
a cost penalty, but the amount of hardware which it involves 
is rat her less than that in an average functional unit. 

6.2 THE CDC 7600 CERTRAL PROCESSOR 

As we observed in Chapter 5· when discussing instruction 
buffering techniques, the CDC 7600 was designed to be machine 
code upward compatible with the 6600, but to provide a 
substantial increase in performance. This increase was 
achieved principally by a reduction of the minor cycle clock 
period from 100 ns to 27.5 ns (made possible by advances in 
technology), together with a corresponding reduction of the 
major cycle clock period from 1000 ns to 275 ns, and by 
architectural changes such as the modifications to the 



Parallel Functional Units 105 

Instruction Stack which we have already encountered, and the 
segmentation, or pipelining, of the functional units. 

The overall design of the 7600 (figure 6.6) is in many ways 
similar to that of the 6600. Instructions are fetched from the 
Small Core Memory (SCM) and placed in the 12-word Instruction 
Stack before being copied into the Current Instruction Word 
(CIW) register for decoding and issue to one of the nine 
functional units. The control logic associated with the CIW 
register (section 6.2.2) serves the same purpose as the 
Scoreboard in the 6600, but is somewhat less complex. On early 
models of the 7600 the SCM consisted of either 32K or 64K 
words of 275 ns cycle-time core store made up from 16 or 32 
independent 2K word banks. On current models the SCM consists 
of either 64K or 128K words of semiconductor memory made up 
from 32 or 64 independent 4K word banks. Although quite 
different internally these memories appear virtually identical 
to the rest of the system and because of the interleaving both 
can transfer sequentially addressed data at a rate of one word 
every 27.5 ns. 

Add 

Multiply 
Large 

Divide 
Core ~ 

Memory Fixed Add 

Increment 

"---- Scratch Boolean 
Pad 

Registers Shift 

Small Normalise 
Core 

Memory Pop. Count 

~ 
Instruction 

Stack 

P eripheral 
Peripheral i 

hannels 
Processors 

Current Instruction Word 
C 

Figure 6.6 CDC 7600 Central Processor Organisation 

All instruction accesses and most operand accesses are made 
to the SCM, and the SCM also communicates with the Large Core 
Memory (LCM) and with external devices through the Peripheral 
Processors. The LCM serves as a first level of backing store 
for the SCM, with blocks of code and data being exchanged 
between these two, when required, und er direct program 
control. The LCM consists of 256K or 512K 60-bit words in four 



106 The Architecture of High Performance Computers 

or eight banks of 1760 ns, word-organised (2D) core store. 
Each bank operates independently and is eight words widej once 
an access has been made to a particular bank the data read out 
remains available in an output buffer until a subsequent 
access is made to the same bank. In an eight-bank model this 
arrangement allows words to be accessed at a rate of 64 per 
LCM cycle. This time (1760 ns) is equal to 64 minor cycle 
clock periods , and block copy operations between the LCM and 
the SCM (in which LCM banks are accessed sequentially) can 
therefore proceed at the SCM maximum transfer rate of one word 
per minor cycle. 

6.2.1 Functional Units in the CDC 7600 

Most of the functional units in the CDC 7600 per form identical 
functions to those in the 6600. The pipelining of 7600 units 
obviates the need for the duplication of units found in the 
6600, however, and control transfers are dealt wi th by the 
control logic associated with the CIW register rather than in 
aseparate Branch uni t. Two extra uni ts are included, since 
the normalise operation is carried out in aseparate unit from 
the shift operations, and a separate Population uni t is used 
to carry out the population count function. In the 6600 this 
function was implemented within the Divide Unit. 

Boolean, Fixed Add, Shirt and Increment Units 

The Boolean, Fixed Add, Shift and Increment Units in the 7600 
carry out similar operations. to those in the equivalent units 
in the 6600, but each is pipelined into two stages. Input 
operands are copied into one of these units at the start of 
one minor cycle clock period , and a second pair of operands 
may be copied in at the start of the next minor cycle. At the 
end of this second minor cycle the result of the first 
operation is copied into the designated result register. 

Floating Add Unit 

The Floating Add Unit operates as a four-stage pipeline, but 
in comparison with the TI-ASC arithmetic pipeline the 
partitioning is expedient rat her than elegant. Thus whereas 
the TI-ASC pipeline consists of a number of functionally 
distinguishable sections, the pipeline stages in the 7600 
Floating Add Unit each contain as much logic as can be 
accommodated, in terms of logic gate delays, within one clock 
period . The mantissa shifting logic and the mantissa adder, 
for example, are each split between successive pipeline 
stages. It is interesting to note that although a new 
floating-point addition can be started at each minor cycle 
clock period , the time for any one addition occupies four 



Parallel Functional Units 107 

minor cycles, just as in the 6600. 

Floating Multiply Unit 

In the 6600 Multiply Unit the mantissa multiplier was split 
into two parts, each of which carried out a 24-bit by 48-bit 
multiplication. The results of these two parallel operations 
were then combined to form a 96-bit product. The 7600 Multiply 
Unit contains the equivalent of only one of these half 
multipliers, and this is used twice in a two-pass mode of 
operation. In the first pass the lower 24 bits of Xj are 
multiplied by all 48 bits of Xk to form a partial product. 
This result is then shifted right 24 places and fed back into 
the multiplier to be combined wi th the resul t of mul tiplying 
the upper 24 bits of Xj by all 48 bits of Xk in the second 
pass. Thus although the Multiply Unit is pipelined in a 
similar fashion to the other functional units in the 7600, and 
clocked at every minor cycle clock period, a new 
multiplica tion can only be star ted in every al terna te clock 
per iod . The total time for any one mul tiplication is 5 minor 
cycles, representing a factor of two improvement over the 6600 
Multiply Units, each of which took 10 minor cycles to complete 
a multiplication. 

Divide Unit 

Floating-point division is executed by a repeated subtract and 
test algorithm which cannot be pipelined. This operation 
therefore has a very much longer execution time than any other 
operation, amounting to 20 minor cycles. A second division 
can, however, be started 18 minor cycles after the start of a 
previous division. 

Normalise Unit 

Normalisation is carried out in aseparate functional unit in 
the 7600, rather than within the Shift Unit as in the 6600. 
This is because normalisation requires a three-stage pipeline, 
while shifting and mask generation can be carried out in a 
two-stage pipeline. 

Population Unit 

The population count function counts the number of ones in the 
operand taken from Xk and returns this number as a result to 
Xi. In the 6600 this operation was carried out by hardware 
contained within the Divide Unit, but since it only requires 
two clock periods for its execution, a separate Population 
Count Unit, implemented as a two-stage pipeline, is used for 
this purpose in the 7600. 



108 The Architecture of High Performance Computers 

6.2.2 Instruction Issue 

The introduction of pipelining into the functional units in 
the 7600 had important consequences for the instruction 
issuing mechanism. Thus whereas the Score board in the 6600 
issued instructions as soon as possible, and used the Go Read 
and Go Store interlocks to maintain proper sequential 
dependencies, the hold-ups which these interlocks caused could 
not be tolerated in the functional unit pipelines of the 7600. 
An instruction is therefore issued from the CIW register in 
the 7600 only when the conditions in the functional units and 
operating registers are such that the instruction may be 
carried through to completion without conflicting with a 
previously issued, but as yet uncompleted instruction. This 
condition occurs when the two signals 'Registers Free' and 
'Enable Issue' are both in the TRUE state. 

Reservation 
Registers 

(i) 

AU Other 
Functions 

(i) 

(i) 

(i) 

(i) 

Divide 

Multiply 

Floating Add 

Normalise 

X Registers 

Results from Functional Units 

Figure 6.7 X Register Access Control Logic in the 7600 

Associated with each of the X, Band A registers is a 
register busy flag. A busy flag is set to reserve a specific 
register when an instruction which will deliver a result to 



Parallel Functional Units 109 

that register is issued from the CIW register; the flag is 
re-set when the result appears and is copied into the 
register. Whenever an instruction in the CIW register is about 
to be issued, its operand and result register designators are 
used to select the busy flags associated with these registers. 
The states of these selected busy flags are then combined to 
form the Registers Free signal. This signal is only TRUE 
(allowing the instruction to issue) when there are no busy 
flags S2t for the selected registers; if a busy flag is set 
the issuing of the instruction is held up until the flag has 
been re-set. This mechanism prevents an instruction from 
reading or overwriting any register which is due to be updated 
by a previously issued, but as yet uncompleted, and possibly 
slower instruction. 

The Enable Issue signal indicates that the states of the 
functional units, register destination paths and storage 
access path are such as to allow the current instruction in 
the CIW register to go to completion. The Multiply Unit, for 
example, cannot accept a new instruction until two minor 
cycles after a previous instruction, and the Divide Unit until 
after 18 cycles. The major problem to be overcome, however, is 
the occurrence of conflicts on the entry of results into the X 
registers, which can only accept one result per clock period. 
If all the functional units took the same time to produce 
their resul ts this problem would not arise, of course, and 
does not arise in the case of the A registers, which only 
receive results from the Increment Unit. The X registers can 
receive results from any unit, however. Five of the units 
produce their results in two elock periods, one in three, one 
in four, one in five and one in 20 elock periods. 

The entry of operands into the X registers is eontrolled by 
the X Register Access Control Logie, whieh contains four 4-bit 
Reservation Registers (figure 6.7). The normal situation is 
for a functional unit to produee a result two cloek periods 
after recei ving an instruetion, and for its 3-bit i (resul t 
register) designator to be sent directly to the Seleetion 
Logic for use at the appropriate time. In the ease of a 
normalise instruetion, however, three eloek periods are 
required, and instead of its i designator being sent directly 
to the Seleetion Logie, it is eopied into Reservation Register 
1, together with a fourth, 'valid' bit which indicates its 
presence. This eauses the necessary extra elock period delay 
to be inserted into the path of the i designator en route to 
the Selection Logic. For a floating-point addition the i 
designator is entered into Reservation Register 2, and for 
multiplieation it is entered into Reservation Register 3. For 
division the i designator is held in the Divide Unit until the 
16th cycle in the divide sequenee, at which point it is 



110 The Architecture of High Performance Computers 

entered into Reservation Register 4. At each minor cycle clock 
period information is copied through the Reservation Register 
chain towards the Selection Logic, with the input to any one 
of these registers being taken either from the previous 
register in the chain or from the CIW register when a new i 
designator is to be entered into it. 

The Enable Issue logic uses the information held in the 
Reservation Registers to ensure mutual exclusivity of the two 
sources of information available to each Reservation Register. 
If a floating-point addition is issued in one clock per iod , 
for example, and the next instruction in sequence is a 
normalise instruction, then in the next clock period the 
presence in Reservation Register 1 of the valid floating-point 
add i designator inhibits the Enable Issue signal for the the 
normalise instruction and prevents its being issued until one 
clock period later. If it were not held up, it would produce a 
result in the same clock period as the floating-point add, and 
would also require entry into Reservation Register 1 for its i 
designator while that register contained the designator for 
the floating-point add. In the same way, a two-clock period 
instruction is prevented from issuing in the minor cycle 
immediately following the issue of the normalise instruction. 

6.3 PERFORMAIfCE 

Since the real work of the computer is carried out on 
floating-point numbers, with the fixed-point numbers being 
involved mainly in 'house-keeping' operations, it has become 
fashionable to gauge performance in terms of the rate of 
execution of floating-point operations, normally measured in 
millions of such operations per second (MFLOPS). In order to 
compare the architectures of the 6600 and 7600, however, it is 
more convenient to consider the number of floating-point 
operations which each can execute in one clock per iod 
(FLOPS/CLOCK). In the case of the 6600, floating-point 
addition/subtraction requires 4 clock periods, multiplication 
10 and division 29. (Division may be ignored in this 
comparison; it always takes a long time, and computer 
designers have usually assumed that users will have the good 
sense to avoid using it as much as possible.) Thus, neglecting 
division, and allowing for the fact that there are two 
multiply units, the 6600 can per form 9 floating-point 
operations (5 additions and 4 multiplications) in 20 clock 
periods (corresponding to 0.45 FLOPS/CLOCK or 4.5 MFLOPS), 
with all three of the corresponding functional units being 
fully occupied. Since the Scoreboard is capable of issuing up 
to 20 instructions in this time, the right mix of instructions 
would allow this rate to be achieved. This rate also 
corresponds to the sum of the maximum rates of execution of 



Parallel Functional Units 111 

long sequences of additions (0.25 FLOPS/CLOCK) and 
multiplications (0.2 FLOPS/CLOCK) occurring separately. 

Maintaining these rates requires the availability of the 
appropriate operands in the X registers, of course. Where 
these have first to be fetched from store, additional delays 
are incurred. However, the separation of the operand accessing 
and function execution facilities in the instruction set 
allows the possibility, at least, of programs (or compilers) 
organising appropriate pre-fetching of operands. 

In - the 7600 an individual floating-point addition or 
subtraction still takes 4 clock periods , as in the 6600, but 
because of the pipelining the maximum execution ~ for these 
operations is 1 per clock period (1 FLOP/CLOCK). Individual 
floating-point multiplications take 5 clock periods, but as we 
have seen, the multiply unit is also pipelined and can per form 
mul tiplications at the rate of 1 every 2 clock periods (0.5 
FLOPS/CLOCK) . 

The sum of these two rates produces a total maximum 
execution rate of 1.5 FLOPS/CLOCK. This rate cannot be 
aChieved, however, since instructions can only be issued, and 
results entered into the X registers, at a rate of 1 per clock 
per iod at most. Thus the maximum floating-point execution rate 
is 1 FLOP /CLOCK, equi valent to 36.4 MFLOPS and made up, for 
example, of a sequence of additions (in which case the add 
unit is fully occupied and the multiply unit idle) or a 
sequence of alternate multiplications and additions (in which 
case the mul tiply uni t is fully occupied and the add uni t 50 
per cent occupied). Even sustaining this rate for any length 
of time is virtually impossible, of course, since it does not 
allow for the execution of other instructions such as operand 
accesses and control transfers. However, being able to sustain 
the maximum rates for addition and/or multiplication for any 
period of time gives a performance bonus over the 6600 
additional to the improvement in clock rate, and CDC claim 
that the overall performance of the 7600 is 15 million 
instructions per second. 

The first CDC 7600 was delivered in 1969. By the mid 1970s 
technological advances offered the possibility of increasing 
the clock rate by a factor of about two, but in seeking to 
provide an increase in performance over that of the 7600 
comparable with that which the 7600 had offered over the 6600, 
the designers (principally Seymour Cray) were faced with the 
problem of overcoming the instruction issuing bottleneck in 
the 7600 design. The solution was found in vector processing, 
and the architecture which resulted appeared commercially as 
the CRAY-1. 



112 The Architecture of High Performance Computers 

6.4 TBE CRAI-l 

The problem of executing floating-point operations at a rate 
in excess of 1 per clock is overcome in the CRAY-1 processor 
[34] by the use of vector orders, which cause streams of up to 
64 data elements to be processed as a result of one 
instruction issue. Vectors are contained in a set of eight V 
registers, each capable of holding 64 elements (each of 64 
bits), and a typical vector instruction causes sets of 
operands to be taken from two V registers and the resul ts to 
be returned to a third. In the following instruction sequence 

VO <- V1 + V2 
V3 <- V4 * V5 

the second instruction uses different registers and a 
different functional unit from the first and can be issued one 
clock period after the first instruction. Subsequent to the 
pipeline start-up delays in the functional units (each of 
which can carry out operations at a rate of one per clock 
period) , a floating-point result will appear from both the 
adder and the multiplier in each successive clock period. Thus 
if performance is again estimated in terms only of 
floating-point addition and multiplication, the maximum 
floating-point execution rate is 2 FLOPS/CLOCK. Furthermore , 
around 60 other instructions can be issued before these units 
require further instructions to keep them busy. Wi th a clock 
period of 12.5 ns, 2 FLOPS/CLOCK corresponds to 160 MFLOPS. 

The other serious bottleneck in the CDC 7600 architecture 
is the entry of resul ts into the X registers, which is also 
limited to one per clock period. In the CRAY-1 each vector 
register has its own input multiplexer circuitry for selecting 
results from among the seven functional units which can 
produce vector results and, correspondingly, each vector 
functional unit has its own input multiplexers for selecting 
vector register operands . Without these circuits the CRAY-1 
would also be limited to 1 FLOP/CLOCK. 

The overall design of the CRAY-1 processor is shown in 
figure 6.8. In addition to the eight 64-element V registers, 
there are eight 64-bit S (scalar) registers and eight 24-bit A 
(address) registers (corresponding to the X and A registers in 
the CDC 6600 and 7600), together with 64 B registers (each of 
24 bits) and 64 T registers (each of 64 bits). The Band T 
registers are used in a different way from any of the 
registers in the 6600 and 7600, however, in that they act as 
buffer stores for A and S register values, respecti vely. The 
functional units take their input operands from the A, Sand V 
registers only, and only return results to these registers. 



Parallel Functional Units 113 

The A registers are used primarily as address and index 
registers for seal ar and vector memory references, but are 
also used for loop eontrol, input-output operations and to 
provide values for shift counts. An A register can be loaded 
ei ther from a B register or direct from memory, while the B 
register contents ean be transferred to or from memory in 
block eopy operations which proceed at a rate of one per clock 
period. The S registers contain sealar operands, which may be 
used in scalar operations in the same way that X register 
values are used in the 6600 and 7600, but an S register in the 
CRAY-1 may also supply a scalar value required for a vector 
operation. S register values may be transferred to or from 
memory or the T registers, the latter allowing intermediate 
results of complex computations to be held in fast buffers 
rather than main memory. T register values can be transferred 
to or from memory in the same way as B register values. 

Vector 

Pop. Count 

V Registers ~ .... Shift 

Logical 

Add 

Floating- Point 

..... Reciprocal - T Registers Multiply 

r+ Add 

~ S Registers ~ 
Scalar 

Memory Pop. Count 

Shift 

Logical 

Add 

I+- B Registers 
Address 

-:r A Registers 
Multiply 

Add 

- Instruction 
Buffers 

Figure 6.8 CRAY-1 Proeessor Organisation 



114 The Architecture of High Performance Computers 

The instruction format used in the CRAY-1 (figure 6.9) is 
very similar to that used in the CDC 6600 and 7600, except 
that the major function field (g) contains four bits rat her 
than three, and instructions are therefore 16 or 32 bits long 
rat her than 15 or 30. The extra function bit allows vector as 
weIl as scalar operations to be specified, and a typical 
vector instruction takes the form 

Vi <- Vj + Vk 

implying that successive elements of Vk are to be added to 
successive elements of Vj, and the results returned as 
successive elements of Vi. Instructions which cause the 
transfer of an operand between A and B or Sand T register use 
the combined j and k fields to specify the B or T register, 
and the j and k fields are also combined to produce shift 
counts in shift instructions. 

9 h j k 

1413131 3131 16-bit 

9 h j k m 32-bit 

16 

Figure 6.9 CRAY-1 Instruction Format 

Instructions which use immediate (literal) operands use the 
32-bit format- and combine the j, k and m fields to produce a 
22-bit literal value. Memory referencing instructions 
similarly combine the j, k and m fields to produce a 22-bit 
memory address, and also use the h field to specify an A 
register for indexing. (The memory itself is an 8-way or 
16-way interleaved 50 ns cycle-time semiconductor store 
containing 0.5M, 1M, 2M or 4M words according to the 
configuration.) Branch instructions combine the i, j, k and m 
fields to produce a 24-bit memory address field, allowing any 
16-bit instruction parcel within a 64-bit word to be 
specified. 

In addition to the operating and buffer registers, the 
CRAY-1 processor also contains several additional registers 
which support the control of program execution. These include 
the program counter, datum and limit addressing registers, 
interrupt registers, a Vector Mask register (VM) and a Vector 
Length register (VL). The VM register contains 64 bits, one 
per element position in the vector registers. In merge 
operations each bit in VM is used to select the corresponding 
element of one or other source vector for copying into the 



Parallel Functional Units 115 

destination vector, while in test operations bits in VM are 
set according to whether· or not corresponding elements in a 
source vector satisfy the chosen condition. The VL register 
contains a number in the range 0-64 and determines how many 
vector elements take part in an operation. In the case of an 
operation on a 150-element vector, for example, the hardware 
would be required to treat this as two successive 64-element 
operations (with VL = 64) followed by a 22-element operation 
(with VL = 22). 

6.4.1 Funetional Units in tbe CRAY-1 

The thirteen functional units in the CRAY-1 can be classified 
into four groups according to the kind of operations they 
per form and the operating registers to which they are 
connected. These groups are address, scalar, vector and 
floating-point. Each unit is pipelined into single clock 
per iod segments, so that each can start an operation on a new 
pair of input operands in each successive clock period. 

Address Units 

The Address Add and Address Multiply Units perform 24-bit 2's 
complement integer arithmetic on operands obtained from the A 
registers and both return their results to an A register. The 
Address Add Unit (which performs both addition and 
subtraction) is the equivalent of the Increment Unit in the 
CDC 7600, and is similarly pipelined into two stages. The 
Address Multiply Unit is pipelined into six stages and 
produces as its result the least significant 24 bits of the 
integer product of two 24-bit operands. Address multiplication 
is frequently used in the handling of multi-dimensional 
arrays, and whereas the number format used in the CDC 7600 
allowed integer multiplication to be carried out quite 
straightforwardly in the floating-point multiply unit, the use 
of a sign and magnitude, fractional mantissa in the CRAY-1 
makes the use of this option much less desirable. Furthermore, 
the floating-point multiply unit in the CRAY-1 is frequently 
reserved for long periods by vector operations, and aseparate 
address multiplier is therefore essential for performance 
reasons. 

Seal ar Units 

The Scalar Add, Scalar Shift and Scalar Logical Units per form 
operations on 64-bit operands taken from S registers and each 
delivers a 64-bit result to an S register. The Scalar Add Unit 
performs 2' s complement integer addition and subtraction and 
is pipelined into three stages. The Scalar Shift Unit performs 
single and double-length shifts on one or two S register 



116 The Architecture of High Performance Computers 

operands , the former requiring two clock periods and the 
latter three. The Scalar Logical Unit is the equivalent of the 
Boolean Unit in the CDC 6600 and 7600, but it produces its 
results in one clock period rather than the two required in 
the 7600. 

The fourth unit in this group is the Population & Leading 
Zero Count Unit which takes a 64-bit operand from an S 
register and returns a 7-bit result, equal to the number of 
ones in the operand or the number of zeros preceding the most 
significant 1 in the operand, to an A register. The first of 
these operations requires four clock periods for its 
execution, and the second three. 

Vector Units 

The Vector Add, Vector Shift and Vector Logical Units take 
operands from two V registers and return their results to a V 
register. Successive operand pairs are transmitted to a vector 
unit in successive clock periods, and after a start-up delay 
equal to the pipeline length of the unit, results are also 
copied back to the result register in successive clock 
periods • The Vector Add Unit performs 64-bit 2' s complement 
integer addition and subtraction and is pipelined into three 
stages. The Vector Shift Uni t is a four-stage pipeline which 
performs single-length shirts on individual elements of a V 
register or double-length shifts on consecuti ve pairs of V 
register elements. The Vector Logical Unit performs operations 
similar to those in the Scalar Logical Unit, but acts on 
operands taken from V registers rat her than S registers, and 
is implemented as a two-stage pipeline. There is also a Vector 
Population Unit which operates on vectors in a manner similar 
to that in which the Scalar Population Unit operates on 
scalars. 

None of the address, scalar or vector ari thmetic uni ts 
detects overflows; CRAY-1 users are supposed to know what they 
are doing and to write error-free programs . Floating-point 
out-of-range errors are detected, however, in the 
Floating-point Units. 

Floating-point Units 

The Floating-point Add, Floating-point Multiply and Reciprocal 
Approximation Units perform floating-point arithmetic for both 
scalar and vector operations. For scalar instructions the 
operands are obtained from S registers and the result returned 
to an S register, while for vector instructions the operands 
are obtained from a pair of V registers or a V register and an 
S register, and results returned to a V register. When 



Parallel Functional Units 117 

executing vector instructions successive operand pairs are 
transmitted to a unit in successive clock periods, and results 
are similarly obtained. 

Biased Exponent Mantissa 

+ + 
111 

15 I 48 

t t 
Sign Binary Point 

Figure 6.10 CRAY-1 Floating-point Format 

The Floating-point Add Unit performs addition or 
subtraction of 64-bit operands in floating-point format 
(figure 6.10) and always produces normalised results. This is 
adeparture from the 6600 and 7600 tradition where 
normalisation was an 'optional extra' which had to be paid for 
in extra instructions. The consequence is a longer pipeline in 
the CRAY-1 Floating-point Add Unit , involving six stages 
rat her than the four used in the 7600. 

The Floating-point Multiply Unit is pipelined into single 
clock period segments, like all other functional units in the 
CRAY-1 I and in contrast to the CDC 7600 Multiply Unit I which 
has a two clock period segment time. The CRAY-1 Multiply Unit 
uses a multiply pyramid to produce the mantissa product, and 
requires seven clock periods to produce any one result, rat her 
than the five required in the 7600. 

The CRAY-1 Floating-point Multiply Unit also participates 
in division. The standard 'subtract and test' algorithm used 
in most machines to implement division cannot easily be 
pipelined I and a Newton-Raphson iteration algorithm is 
therefore used in the CRAY-1 , similar to that used in the IBM 
System/360 Model 91 and in MU5. In the CRAY-1, however, 
division is not implemented directlYI but instead an 
approximation of the reciprocal of the divisor is formed in 
the Reciprocal Approximation Unit, and aseparate instruction 
must be used to mul tiply the resul t by the dividend in the 
Floating-point Multiply Unit. Furthermore , the Reciprocal 
Approximation Unit produces a result accurate to only 30 bits 
(in a 14-stage pipeline), and in order to produce a result 
accurate to 47 bits (which is still one bit short of the full 
mantissa) I an additional iteration must be performed, again 
using the Floating-point Multiply Unit in aseparate 
instruction. Thus a scalar quotient is normally computed in 29 
clock periods, and forming an n-element vector quotient 



118 The Architecture of High Performance Computers 

requires approximately 3n clock periods. 

6.4.2 Instruction Issue 

As we saw in section 5.4, all instructions in the CRAY-1 are 
accessed from within the instruction buffersj if an 
instruction request cannot be satisfied by any of the four 
buffers, a 64-parcel block of instructions is transferred from 
memory into one of them. A new instruction is accessed 
whenever the P register (program counter) is updated. For 
sequential instructions this occurs as an instruction parcel 
enters the Next Instruction Parcel register (NIP in figure 
6. 11 ). From NIP the instruction parcel is copied into the 
Current Instruction Parcel register (CIP), where it waits to 
be issued. In the case of a 32-bit instruction the second 
parcel is contained in the Lower Instruction Parcel register 
(LIP) which is loaded in parallel with NIP. 

As in the case of the CDC 7600, an instruction is only 
issued when the conditions in the functional units and 
operating registers are such that the instruction can be 
carried through to completion without conflicting with any 
previously issued, but as yet uncompleted instructions. Thus 
al though any number of the V registers can, in principle, 
accept results in a single clock period, the A and S registers 
are similar to the X registers in the 7600 j only one A 
register and one S register can accept a resul t in any one 
clock period. Issue of an instruction is therefore delayed if 
i t would cause a resul t to arri ve at ei ther of these sets of 
registers at the same time as a result from a previously 
issued instruction. 

3 

2 

1 

0 NIP CIP I 

G I 
I 

LlP -, I 
I I 
I • , 

- Instruction 

'--
Issue 

Instruction 
Buffers 

Figure 6.11 Instruction Issue Registers in the CRAY-1 

The CRAY-1 also uses a reservation mechanism similar to 



Parallel Funetional Units 119 

that in the CDC 7600. When an instruetion is issued whieh will 
deliver a new result to an A, S or V register, a reservation 
is set for that register whieh prevents the issuing of any 
subsequent instruetion requiring the use of that register 
until the result has been delivered. In the case of a V 
register the reservation is for the whole register, rather 
than individual elements, and furthermore , during the 
exeeution of a veetor operation, reservat ions are plaeed on 
the operand V registers as weIl as on the resul t register. 
These reservations do not apply to an S register taking part 
in a veetor operation, however, or to the VL register. The 
values in VL and a specified S register are eopied into the 
unit earrying out the operation as the instruction is issued, 
and the registers themselves are then immediately free to 
partieipate in subsequent instruetions. 

The need to reserve the operand V registers arises from the 
nature of the integrated eireuits used in the eonstruetion of 
the V registers. These each eontain 16 x 4 bits, representing 
4 data bits in each of 16 vector register elements, and only 
one set of 4 bits can be aeeessed in any one elock period. If 
two veetor instruetions using the same operand V registers 
were in progress at the same time, they would require aeeess 
to two different elements simultaneously. The same argument 
applies to the result register; it is impossible to read one 
element from within a veetor register while a new value is 
being written into another element. The only exeeption to this 
rule oeeurs when an element value which is being delivered to 
a veetor register ean, in the same cloek period , be routed 
back into another funetional unit as an input operand. This 
arrangement allows 'ehaining' of vector operations, and thus 
allows mueh more effeetive use to be made of the parallel 
funetional units than was possible in the CDC 6600 or 7600. 

6.4.3 Cbaining 

Chaining starts when a match oceurs between one of the V 
register operand designators of an instruetion awaiting issue 
in CIP, and the V register result designator of a previously 
issued instruetion whieh has not yet returned its first result 
element. When this element beeomes available for delivery to 
the result register, the instruction in CIP is issued 
(provided there are no other hold-ups) and the result element 
is forwarded with this instruction to the appropriate 
funetional unit. Sueeessi ve elements follow until the whole 
veetor has been both written into its result register and 
forwarded to the second funetional uni t. The resul ts of this 
seeond veetor operation may themselves be ehained into a third 
operation, and so on, as shown in the example in figure 6.12. 



120 The Architecture of High Performance Computers 

Figure 6.12 shows a schematic representation of the 
execution of the instruction sequence 

va <- Memory 
'.11 <- va * S 1 
'.13 <- V1 + V2 

The first instruction causes 64 operands from adesignated 
area in memory to be read out and copied in sequence into the 
64 element positions in va. Store requests are pipelined in 
such a way that the store appears to the processor as a pseudo 
functional uni t. Thus after a start-up delay of seven clock 
periods , the first element of the vector from store becomes 
available for delivery to VO, and successive elements follow 
in successive clock periods. 

V2 

VO~Memory V3+ VI+V2 

Figure 6.12 Chained Vector Operations in CRAY-1 

In the clock period following the issue of the first 
instruction, the second instruction in the sequence is copied 
into CIP, but the reservation on VO prevents it from being 
issued immediately. This reservation is lifted, however, 
allowing the instruction to issue, during the clock per iod in 
which the first vector element arrives from store ready for 
delivery to VO. This clock period is known as 'chain slot 
time'. Chaining allows the vector elements being copied into 
VO to flow directly from the memory read pipeline into the 
Floating-point Multiply Unit pipeline, where each element is 
lDultiplied by the value taken from S 1 at the start of the 



Parallel Functiona1 Units 121 

operation, to produce the vector V1. 

The third instruction in the sequence becomes ready for 
issue in the c10ck period fo110wing issue of the second 
instruction, and it too is held up by a reservation on one of 
its input operands, this time V1. When the first element of V1 
appears from the Floating-point Mu1tip1y Unit, the reservation 
on V1 is 1ifted, a110wing this third instruction to issue. Now 
the elements emanating from the Floating-point Mu1tip1y Unit 
can f10w direct1y into the Floating-point Add Unit pipeline as 
well as into the result register V1. Thus the memory read 
pipeline, and the Floating-point Multip1y and Floating-point 
Add Unit pipelines are all chained together to produce the 
elements of V3, and the need for all pipelines to have the 
same segment time now becomes very apparentj pipelines such as 
those in the eDe 7600, which have different segment times, 
cou1d not be chained together in this way. 

An alternative representation of the sequence of events 
i11ustrated by figure 6.12 is shown in the timing diagrams of 
figure 6.13. Figure 6.13(a) shows in detail the activities 
invo1ved in producing the first element of V3. The memory read 
instruction issues in c10ck per iod 0 and the first memory word 
arrives at VO in c10ck period 8. In c10ck period 9 (chain slot 
time, marked *) this element is transmitted to the 
Floating-point Multip1y Unit (together with the va1ue in Sl 
for this first element). In c10ck period 17 the first result 
element from the Multip1y Unit is transmitted to V1, and in 
c10ck period 18 (chain slot time) this element is transmitted 
to the Floating-point Add Unit, together with. the first 
element if V2. In c10ck period 25 the first resu1t element of 
the composite operation (V3 = VO*S 1 + V2) becomes availab1e 
and is transmitted from the Floating-point Add Unit to V3. 
Figure 6.13(b) shows how successive elements of V3 are 
produced, each one staggered one c10ck period behind the one 
preceding it. 

6.4.4 Perforaance 

Vector processing is on1y of any va1ue first1y if users' 
numerica1 problems invo1ve vectors to a sufficient extent, in 
terms of both number and 1ength, and second1y if these vectors 
can be identified during the process of mapping the numerica1 
problem on to the hardware. For CRAY-1 users the mapping 
problem is 1arge1y carried out by the FORTRAN compiler, which 
'vectorises' DO loops and sp1its long vectors into 64-e1ement 
segments. CRAY Research Inc. have produced resu1ts of 
performance studies [38] which show that the vector 
subroutines in their FORTRAN 1ibrary of mathematica1 functions 
outperform repetitive use of the equiva1ent sca1ar subroutines 



C
lo

ck
 

P
er

io
d 

1 0
 11

 Iz
I3

14
15

16
17

18
 i 91

10 
111

 1
12

\13
11

41
15

11
61

1+
81

19
IZ0

 IZ
11

22
IZ3

1Z
41

Z5
1 

In
st

ru
ct

io
n 

M
e

m
o

ry
 R

ea
d 

M
u

ltl
p

h
ca

tlo
n

 
A

d
d

it
io

n
 

T
ra

ns
it 

01
 R

es
ul

t 
Me~

~~ ~
fead 

] 
~
,
 ::::

=
=

=
=

:
;
+

 J--
-[-\

 
. +

. 
1-'-

-r-
, 

+
 

'-f E
le

m
en

t 
to

 V
3 

T
ra

ns
it 

01
 M

e
m

o
ry

 
T

ra
ns

it 
01

 E
le

m
en

t 
T

ra
nS

it 
01

 E
le

m
en

ts
 

W
a

rd
 t

o
 V

O
 

o
f 

VO
 t

o
 M

u
lt

ip
ly

 U
n

it 
01

 V
I 

an
d 

V
Z 

to
 

(a
l 

A
d

d
 U

n
it 

T
ra

ns
it 

01
 R

es
ul

t 
E

le
m

en
t 

to
 V

I 

I 0
 11

 IZ
I 3

14
15

16
17

18
19

11
0 

111
 
11

Z1
13

11
41

15
11

61
17

11
81

19
1Z

0 I
Z1

12
2IZ

3IZ
4IZ

5IZ
6IZ

7IZ
81

--
--

-
-
-
-
-
V

3
0 

-
-
-
-
-
V

3
,
 

-
-
-
-
-
V

3
2 

-
-
-
-
-
V

3
3 

-
-V

3
4 

C
lo

ck
 

P
er

io
d 

(b
i 

-
-

V
3

5 

F
ig

u
re

 
6

.1
3

 T
im

in
g 

D
ia

gr
am

s 
fo

r 
C

ha
in

ed
 

V
ec

to
r 

O
p

er
at

io
n

s 
in

 
CR

A
Y

-1
 

N
 

N
 

1-
-,3

 
~
 

CD
 

:r>
 

'"3
 

o ~
 

f-
'. 

rI
' 

CD
 

o rI
' 

C
 

'"3
 

CD
 o .....
, 

::x:
: 

f-
'. 

()
q

 
~
 

"U
 

CD
 

'"3
 d '"3
 

S III
 ::s o CD
 

(
')

 
o S '0

 
C

 
rI

' 
CD

 
'"3

 
U

l 



Parallel Functional Units 123 

for vectors having as few as only two elements. These results 
are reproduced in figure 6.14, in which the cost, in clock 
periods per result, is plot ted against vector length. For 
scalar subroutines the cost per result remains constant, since 
the subroutine must be called each time. For vector 
subroutines the cost per result drops very rapidly as the 
vector length increases from one and approaches a lower limit 
equal to about one seventh of the scalar cost. 

Cost (Clock Periods/Resultl 

340 

320 

300 

280 

260 
240 

220 

200 

180 

160]~E======================nat.I09 cos 
140 sqrt 

120 
HH~----------------------------~---------------exp 

I 100 

80 

60 
40 

10 20 30 

Scalar 

Vector 

\ 

40 50 60 64 
Vector Length 

Figure 6.14 Comparison of Vector and Scalar Performance 

A second set of resul ts, shown in figure 6. 15, relates to 
matrix mul tiplication. This invol ves repeated scalar product 
operations, and as we saw in Chapter 4, this operation lends 
itself particularly weil to vector processing. In the CRAY-1 a 
vector loop is used to multiply together up to 64 pairs of 
vector elements to form the same number of sub-products. These 
sub-products must then be added together in what is 
essentially a scalar loop to form the scalar product. However, 
by executing a vector add instruction in which one of the 



124 The Architecture of High Performance Computers 

operand registers is the result register of the 
multiplication, and the other is identical with the result 
register of the addition itself, a recursive effect is 
achieved in which 64 sub-products can be reduced to 8 in an 
operation chained with the multiplication. This recursive 
effect occurs because the element selection pointer of the 
result/operand vector does not move on from the first element 
until receipt of the first result. The value contained in this 
first element (initially set to zero) is therefore sent 
repeatedly until the first result element (with a value equal 
to the first multiplication result) is received in the eighth 
clock per iod of the operation. In the ninth clock period the 
value of this first multiplication result is returned as an 
operand to the Floating-point Add Unit to be added to the 
ninth multiplication result, with subsequent elements 
following on similarly. The result of this addition is then 
returned as an operand in the 17th clock period to be added to 
the 17th result, and so on, until at the end of the add 
operation elements 56 to 63 of the result vector from the 
Floating-point Add Unit contain eight partially summed 
sub-product results of the multiplication. 

MFLOPS 

140 

130 

20 40 60 80 100 120 140 160 180 200 220 240 

Matrix dimension 

Figure 6.15 Matrix Multiplication Performance 



Parallel Functional Units 125 

In figure 6.15 the execution rate in MFLOPS is plot ted 
against increasing matrix dimension for matrix multiplication 
operations on square matrices. Matrix sizes which are 
multiples of 64 give the best results, as would be expected, 
and execution rates of up to 140 MFLOPS are clearly shown to 
be possible. This is a best ca se example, of course, and 
execution rates such as this cannot be sustained over a more 
typical mix of user programs. Average rates in the range 20-50 
MFLOPS have been reported by Hockney [39]. 

Matrix multiplication identifies another feature of vector 
processing. Vectors in user programs are themselves frequently 
elements of larger data structures. Thus when accessing a 
vector from store into a vector register in the CRAY-1, the 
user (or more usually the compiler) specifies a starting 
location and an increment. Since the increment can be 
non-unary, arrays, for example, can be accessed by row, by 
column or by diagonal. While this scheme offers complete 
flexibility, it leaves the entire management of all forms of 
data structure to the software. Vector processing is not 
really offered as a facility in the CRAY-1j it is a means for 
improving raw performance. Vector (and data structure) 
facilities are to be found, however, in machines such as the 
TI ASC (as we saw in Chapter 4), and in machines such as MU5 
and its commercial derivatives at the top end of the ICL 2900 
range, and in the CDC STAR-100 and its successors in the CYBER 
200 Series. Chapter 7 will be concerned wi th these vector 
processing facilities. 



7 Vector Processes 

The need to provide facilities for processing sequences of 
vector elements was recognised in the very early days of 
digital computer design. The von Neumann concept, for example, 
included the notion of allowing instructions to be treated as 
data, which meant that the address part of an instruction 
accessing a vector element could be incremented during the 
execution of a program loop and thus produce the effect of 
processing a vector. In practice, however, this technique 
allows so much scope for program error that even the very 
first stored program computer (the Manchester Mark 1) used 
B-lines instead, and this latter technique has been used 
almost universally ever since. Thus virtually any digital 
computer can be used to process vectors. The differences 
between machines lie in the addressing facilities which they 
provide to support accesses to data structures, and whether or 
not they include instructions which implicitly process a 
sequence of vector elements. Computers with this latter 
facili ty have been described by Flynn [40] as Single 
Instruction Multiple Data (SIMD) arrangements, in contrast 
with the Single Instruction Single Data (SISD) arrangement of 
conventional computers. We have already met two examples of 
SIMD machines in the TI ASC and the CRAY-l and in this chapter 
we shall be considering the CDC STAR-l00 and CYBER 205 
computers. First, however, we shall consider the SISD vector 
addressing facilities found in MU5 (and by implication 
machines at the top of the ICL 2900 Series), and also the SIMD 
string processing orders in MU5. 

7.1 VECTOR FACILITIES IN HU5 

As we have seen in earlier chapters, the MU5 instruction set 
enables information on the nature of operands to be 
transmitted to the hardware to allow optimal operand 
buffering. In particular this allows scalar variables, of 
which only a small number are in frequent use at any one time, 
to be buffered separately from array elements, which are 
generally selected sequentially from a large group. 
Furthermore, hardware assistance is provided for accessing 
elements of arrays and other data structures, particularly 
wi th regard to bound checking. This is achieved through the 



Vector Processing 127 

use of descriptors; an access to a data structure element 
invol ves a primary access to the data structure name (the 
result of which is the descriptor of that data structure), 
followed by a secondary access involving the descriptor and 
possibly a modifier. As we saw in section 2.5, descriptors are 
of two main types 

Vector Descriptors 

String Descriptors 

Tv 
8 

Ts 
8 

BOUND 
24 

LENGTH 
24 

ORIGIN 
32 

ORIGIN 
32 

Vector elements may be of size 1, 4, 8, 16, 32 or 64 as 
defined by bits within the type field (Tv), whereas string 
elements are constrained to be of size 8 bits, and all are 
close-packed in store. A typical access to a vector element 
would involve the f'ollowing instructions 

B = i 
ACC = X[B] 

The first of these instructions loads the variable i into 
the B register for use by the second instruction as a 
modifier. This instruction loads the named variable X into a 
descriptor register (DR) for interpretation. The hardware 
associated with this register first forms the address of the 
element, by scaling the modifier according to the element size 
and adding the resul t to the origin address contained wi thin 
the descriptor. It also checks that the modifier is greater 
than or equal to zero, and less than the bound; if not an 
interrupt is generated . This check incurs virtually no time 
penalty and removes the need for the costly software bound 
check which is often required on more conventional machines, 
particularly during program development. The address is then 
used to access the store, and the required vector element is 
selected from within the corresponding store word, right 
justified, and zero-filled for presentation to the designated 
arithmetic unit. This mechanism is equally applicable to 
dynamic arrays whose starting address and bounds are known 
only at run time, as in Algol-like languages, or to arrays 
where this information is available at load time, as in 
FORTRAN. 

Operations on whole vectors are organised by program Ioops 
such as that in the example already given in section 4.2, 
which forms the scalar product of two vectors X and Y each of 
length LIMIT 



128 The Architecture of High Performance Computers 

B = 0 
ACC = 0 

L 1: ACC *= X[B] 
ACC * Y[B] 
B CINC LIMIT 
ACC + STACK 
IF 1=, -> L1 

.. Stack ACC and load with element of X 
Multiply by element of Y 

.. Compare B against LIMIT and increment B 

.. Add Stack content to ACC 

.. Continue round loop until B = LIMIT 

The arguments for processing vectors in this way, rather 
than by specific vector orders, are that in MU5 the hardware 
can distinguish control and address calculation instructions 
from those operating on the vector elements, and can execute 
the former at the peak rate of the Primary Operand Unit 
pipeline (section 4.1), while the latter are queued in the 
Secondary Operand Unit pipeline awaiting operand fetches 
(figure 7.1). Furthermore, the compilers are only required to 
generate conventional code in a straight forward way wi thout 
using intricate algorithms to decompile back to vector 
operations. There are, however, other features of vector 
processing which would make vector orders attractive in an 
MU5-like machine. The scalar product loop is a particular 
example; as we saw in section 4.2, the running total in MU5 
has to be maintained either in the top-of-stack location (as 
in the coding given above), or in some named variable 
loca tion . In either case this requires tha t a new val ue be 
written into a buffer store (the Name Store) each time the 
loop is obeyed, and then read out again by the next ACC order 
but one. In the absence of complex data forwarding techniques 
such as those used in the IBM System/360 Model 91, this 
situation creates problems in a pipeline environment. A vector 
processing mechanism such as that in the TI ASC, which takes 
pairs of operands, multiplies them together and adds the 
resul t to a running total held wi thin the ari thmetic unit 
offers obvious performance advantages. 

By contrast, operations on strings in MU5 are carried out 
by string processing (store-to-store) orders which provide 
facilities for the manipulation of data records in languages 
such as COBOL, PL/1 and Algol 68 [41], and which operate on 
complete strings of byte elements defined by String 
Descriptors. We shall deal with these in some detail in 
section 7.2. Before doing so, however, we shall first ex amine 
the hardware used in the MU5 Secondary Operand Unit, and some 
of the more complex descriptor mechanisms which it implements. 

7.1.1 The MU5 Secondary Instruction Pipeline 

The MU5 Secondary Instruction Pipeline (figure 7.1) is mainly 
concerned with accessing and processing the data structure 
elements specified as secondary operands by means of 



Vector Processing 129 

descriptors. It consists of three major sections, the D-unit, 
the Operand Buffer Sys tem and the A-unit (con taining the ACC 
register). The D-unit is itself made up of two units, the 
Descriptor Addressing Unit (Dr) and the Descriptor Operand 
Processing Unit (Dop). The D-unit and the Operand Buffer 
System together constitute the Secondary Operand Unit (SEOP) 
of the processor (c.f. figure 3.5). 

Modifier 
Input 

,..-- -- ---- --- --------- --- - -- - -----, 

Descriptor 
Addressing 
Unit 

Operand 
Buffer 
System 

Descriptor 
Operand 
Processing 
Unit 

I 
I 
I 
I 
I 

--t-
I 
I 
I 

Secondary Operand Unit I L ______________________________ ~ 

Descriptor 
Input' 

A-unit 

Figure 7.1 The MU5 Secondary Instruction Pipeline 

Instructions enter the Secondary Operand Unit from the 
Primary Operand Unit (PROP). For an instruction specifying an 
array element as its operand, the descriptor supplied by PROP 
is loaded into the DR Register, and Dr proceeds to generate 
the required address using the content of the B-Register as a 
modifier. This address is then sent to OBS which, like the 
Name Store in PROP, is invisible to the programmer and exists 
simply to improve the instruction execution rate. OBS makes 
the necessary store request and sends the required 64-bit word 
to Dop, which contains masking and shifting circuitry to 
select the array element from the appropriate position in the 
word. Dop is controlled by a combination of a control field 
generated by Dr (at the same time as the address) and the 
original function code, which accompanies the instruction as 
i t passes through the pipeline. Instructions leaving Dop are 
normally sent direct to the A-unit, but may also be sent to 
PROP, the B-uni t or to Dr. In the case of the store-to-store 
functions, the operand processing takes place in Dop. 

7.1.2 Descriptor Processing Hardware 

The basic tasks of the D-uni t are compara ti vely simple. They 
involve the formation of the address of an array element, by 



130 The Architecture of High Performance Computers 

the addition of the modifier to the origin address contained 
wi thin the descriptor, and the subsequent selection of that 
element from within the corresponding store word. These tasks 
are complicated, however, by a number of factors, such as the 
existence of different descriptor types and different operand 
sizes, the possibility of an operand straddling across two 
store words, and the need for bound checking. In addition, the 
two 64-bit descriptor registers, DR and XDR, can be 
manipulated in whole or in part by various functions. Also the 
origin and length fields of one or both of these registers 
must be incremented and decremented, respectively, during each 
cycle of the execution of the store-to-store orders (section 
7.2.1). For both this task and the bound checking operation, 
i t would clearly be desirable to use a subtractor, separate 
from the adder used ei ther to increment the origin or to add 
the modifier and origin, since the appropriate additions and 
subtractions could then proceed in parallel. However, the MU5 
SEOP actually uses one adder to carry out these tasks 
sequentially, since this arrangement involves less hardware. 

Operand from PROP 
Operand Name Address 
from Dop from PROP 

00 

Figure 7.2 The MU5 Descriptor Addressing Unit 

The two descriptor registers each consist of a top and 
bottom half (DRT and DRB, XDRT and XDRB). DR is the main 
descriptor register, used for array accesses and the 
destination address in store-to-store orders. DRB contains the 
origin and DRT the type and bound or length fields. XDR is 
similarly divided and is used to hold the source address 



Vector Processing 131 

required by some of the store-to-store orders. DR and XDR are 
normally loaded from PROP, but may in some circumstances be 
loaded from Dop. 

The 32-bit modifier is held in register MO, which is loaded 
from the B-unit during an array access or from PROP during the 
execution of functions which manipulate DR or XDR. The true 
output of MO is connected to one side of the 32-bit adder via 
a shift network, and the complementary output directly to the 
other side. The modifier normally refers to the position of an 
element within an array, regardless of its size, and must 
therefore be shifted relati ve to the origin, which al ways 
refers to a byte address. The complementary output is used in 
the bound checking operation, where the subtraction of the 
modifier !rom the bound (equal to the number of elements in 
the array) is performed by adding the complement of the 
modifier to the bound and forcing a carry into the least 
significant digit position of the adder. Following the 
formation of the address, the output of the adder is passed on 
to OBS, via the OBS Address buffer (OA). This address may also 
be used internally for the updating action of the 
store-to-store orders and for array accesses which invol ve 
elements straddling store-word boundaries. 

ToOBS 

To Highway 

From From 
OBS Highway 

r-------------~ 

3-Level Shifter 

GR 

ToA-unit 
and Dr 

Store-to-Store 
Processing 

Figure 7.3 The MU5 Descriptor Operand Processing Unit 

Register DN is a 64-bit temporary buffer used for holding 
primary operands (names, literals or internal register values) 
associated with those ACC functions which do not require a 
secondary operand access. These functions pass through the 
Secondary Instruction Pipeline en route to the A-unit in order 



132 The Architecture of High Performance Computers 

that the correct program sequence be preserved, but must not 
disturb the contents of the descriptor registers in Dr. The 
contents of the descriptor registers themselves also pass 
through the primary operand route to OBS (via the OBS Operand 
Buffer, 00) when required for orders such as 'DR =>'. A route 
through Dr is also required for addresses of names used with 
ACC func tions and held in the OBS Name Store (sec ti on 3. 4) . 
This is provided via register NA, which is loaded from PROP 
and can be gated as an input to the Dr address adder. Register 
DOD is concerned with D-unit interrupts. 

Orders leaving Dr are forwarded to OBS, which obtains the 
store word containing the operand and sends it to Dop. Control 
information generated by Dr during the address formation is 
buffered with the function in OBS, and is supplied to Dop with 
the store word. Using this information, Dop selects the 
required array element from within the store word, and in the 
case of a load order, routes it to the least significant end 
of its output highway. In the case of a store order, Dop 
updates the appropriate part of the store word and returns the 
updated version to OBS. 

__ -----Store Word from OBS ------

l 
(a) FR 

(b) GR 

Ta Execution Unit 

Figure 7.4 Dop Actions for a Load Order 

Dop consists of two sections (figure 7.3), one wi th a 
64-bit data path used for operands associated with 
computational orders, and one with an 8-bit data path used for 
operands associated with the store-to-store orders. The main 
input register (FR) has masking facilities which permit the 
selection of left or right hand masks to any bit position over 
the full 64-bit width, while the shift mechanism allows any 
circular shift from 0 to 63 bits in single bit increments. 
This is achieved by three levels of logic, the first allowing 
shifts of 0, 16, 32 or 48 bits, the second shifts of 0, 4, 8, 
or 12 bits and the third shifts of 0, 1, 2 or 3 bits. The 
output of the shifter is copied into the main output register 



Vector Processing 133 

(GR) if the order is destined for the A-unit or the Dr unit, 
or gated on to the processor Highway if the order is destined 
for PROP or the B-unit. The route from GR back into FR is used 
during the execution of store orders. 

Figure 7.4 illustrates the actions taken for a load order 
requiring a 16-bit operand. The store word containing the 
operand is loaded into FR (a), and the shifter routes the 
required 16-bit operand to the least significant end of the 
input to GR. At the same time, the most significant 48 bits of 
the input to GR are set to zero by inhibiting the appropriate 
section of the data path in the third level of the shifter 
(b). GR is strobed when sufficient time has elapsed for the 
shifter outputs to settle, following the receipt of a store 
word in FR, and when the previous order in GR has been 
accepted by another unit. 

Operand fram Executian Unit 

l 
(a) FR 

(b) GR 

(c) FR 

-----Stare Ward fram OBS ------<.~ 

~ 
. r-MaSk-j 

(d)_ 

l 
Updated Stare Ward ta OBS 

Figure 7.5 Dop Actions for a Store Order 

The actions for a store order are more complex. The order 
first passes through Dop as if it were a load order, en route 
to the appropriate execution uni t, and is only processed by 
Dop when the execution unit indicates that the required 
operand is available. The operand is received from the 



134 The Architecture of High Performance Computers 

processor Highway (figure 7.3) and is copied into the least 
significant end of register FR (figure 7.5(a)). It is then 
shifted to its eventual alignment in the store word, copied 
into GR (b) and copied back from GR into FR (c). The store 
word of which it is to form part is then sent again from OBS 
and selectively copied into FR around the operand, using the 
masking facility (d). The updated version of the store word is 
then returned from FR back to OBS. 

7.1.3 Complex Descriptor Hechanisms 

The MU5 instruction set has provision for a number of 
descriptor mechanisms more complex than those described so 
far. Thus one of the special descriptor types (Indirect) may 
be used to describe a structure containing other descriptors. 
Hence 

B = i 
DR = X[B] 
B = j 

ACC = D[j] Use the current descriptor in DR 

could be used to access an element X[i,j] of a two dimensional 
array using an addressing vector technique. This mechanism has 
the disadvantage in MU5 of requiring adescriptor to be 
accessed through the Secondary Operand Unit and returned to 
the front of it before the element access can beg in . This 
destroys the overlap in the secondary pipeline and for simple 
languages an alternative technique involving the use of the 
multiplication facilities in the B-unit has the advantage that 
the subscript calculations take place independently of 
operations queued in the secondary pipeline and can be 
substantially overlapped with them. The previous sequence 
becomes 

B = i 
B * n 
B + j 

ACC = X[B] 

with abound check on the overall limits of the array, rather 
than on each dimension. For languages where the lower bound of 
arrays is 1, a load and decrement Border is provided. A 
further , more elaborate, dope vector mechanism is convenient 
for arrays with dynamic lower bounds or for slices of arrays. 
For each dimension the dope vector contains three 32-bit 
elements, a lower bound which is subtracted from the 
subscript, an upper bound against which the subscript is 
checked, and a stride by which it is multiplied. The SUBl and 
SUB2 instructions implement this facility, so X[i,j] becomes 



B = i 
SUB1 X1 
B = j 
SUB2 
B = DO 
ACC = X[B] 

Vector Processing 135 

.. process first subscript, using dope vector X1 

.. process next subscript 

.. move composite subscript to B (DO = Origin 
field of DR) 

From a performance point of view these orders are worse than 
the Indirect descriptor mechanism, since several of the 
actions implied by SUB 1 and SUB2 require accesses to 
quantities which are to be returned to the front of the 
secondary pipeline. Some quite different structure from that 
of MU5 would be needed to obtain good performance using these 
orders. 

7.1.4 Tbe Operand Burrer System 

The need for an Operand Buffer System (OBS) in the MU5 
Processor arises from the disparity between the data rate and 
access time of the Local Store. In principle the MU5 Local 
Store can supply 128-bit words at intervals of 65 ns, but the 
time gap between the generation of a secondary operand 
address, and the receipt of the corresponding store word, is 
over 600 ns. When MU5 was designed' it was expected that 
floating-point addition and subtraction would take only around 
100 ns, and so the store access time was unacceptably high. 
The difference between the access patterns for named variables 
(of which a small group is generally used repeatedly) and data 
structure elements (which are generally selected sequentially 
from among a large group) precluded the use of a system 
corresponding directly to the Name Store for secondary 
operands. Instead a first-in/first-out 'Function Queue' is 
used; as each address is genera ted by Dr, the corresponding 
function, together with control information, is entered into 
the Queue. A function leaves. the Queue when the word 
containing its operand is received from store. Since the store 
accessing system is itself a form of pipeline, the effecti ve 
access time is reduced by a factor corresponding to the number 
of positions in the Queue. 

In a synchronous system, no extra operand buffering would 
be required, but because the MU5 Processor operates 
asynchronously, it is essential that as many buffers as Queue 
posi tions be available to recei ve the returning store words. 
Thus the Operand Buffer System contains eight 128-bit bUffers, 
for which the corresponding virtual addresses are held· in an 
associati ve store. Fetching a 128-bit store word whenever an 
operand is accessed, and retaining each of these words in 
associatively addressed buffers means that many operands are 
automatically pre-fetched, and the corresponding store 



136 The Architecture of High Performance Computers 

requests avoided. 

An additional problem arises as a result of page fault 
interrupts; a significant fraction of the access time for 
secondary operands is taken up with generating a virtual 
address and obtaining either areal address or a page fault 
interrupt. When such an interrupt arises, the Control Register 
at the end of the Primary Operand Unit will have been 
incremented on beyond the address of the corresponding 
instruction and that instruction will therefore have become 
irrecoverable as far as the program is concerned . Thus in 
order to be able to preserve this and subsequent instructions 
and re-execute them after the interrupt has been serviced, the 
Queue is designed to contain all functions for which store 
requests are outstanding. In the event of a page faul t, the 
Page Registers can then be manipulated by the Operating System 
using orders which bypass the Queue or, if a process change is 
required, the whole of the Queue and its associated buffer 
registers can be preserved (for subsequent restoration) in the 
store, thereby unblocking the Queue and allowing other 
processes to be run. 

7.2 STRIIG OPERATIOlS 11 MU5 

The orders provided in MU5 for the string processing functions 
which occur in languages such as COBOL and PL/1 may be divided 
into two groups, string-to-string and byte-to-string. The 
string-to-string orders operate on two fields, or strings, 
each described by adescriptor. The descriptor of the 
destination string is held in the DR register while that for 
the source string is held in XDR. As the operation of the 
instruction proceeds, the descriptors in DR and XDR move along 
the strings. No visible register is used by the strings 
themsel ves • The operand of the order is an 8-bit mask, tha t 
determines which bits within each byte are to be operated on, 
together with an 8-bit filler and in some cases four 
'function' digits used as described below. Provision is made 
in the hardware for these orders to be interrupted (section 
7.2.3). Examples of the orders are 

BMVE Use the filler byte as source and copy to all bytes 
of the destination string. 

BMVB Copy the filler byte to the first byte of the 
destination string. 

SMVB Move one byte from the source to the destination 
string, or use the filler byte if the source is 
exhausted. 



Vector Processing 137 

SMVF Move the whole source string to the destination 
string followed by filler bytes if the source is 
shorter than the destination. 

SCMP Compare the source and destination strings byte by 
byte ending when inequality is found, or the 
destination string is exhausted. 

SLGC Logically combine the source and destination strings 
into the destination. The form of combination 
(logical OR, for example) is selected by the 
'function' bits in the operand. 

An example of the use of these orders is in the 
implementation of the MOVE verb in COBOL. Suppose that two 
fields C and D are specified 

02 
02 

C 
D 

PIC 
PIC 

X(7) 
X(7) 

In MU5 descriptors would be created at compile time for C and 
D, each describing a 7-byte field starting at the required 
byte address. The COBOL sentence 

MOVE C TO D 

would then become in MU5 instructions 

XDR = C 
DR = D 
SMVF 

If D is specified as 

02 

set source descriptor for C 
set destination descriptor for D 
move the field described by XDR to that 
described by DR 

D PIC X(9) 

then the final two bytes of D must be spaces. The filler 
option of SMVF allows this to be carried out automatically. 
The sequence becomes 

XDR = C 
DR = D 
SMVF 'space' 

If the source field is too long, then the SMVF order 
terminates when the destination field is full, and an optional 
interrupt enables this condition to be monitored if required. 

An extension of the above technique to vector operations of 



138 The Architecture of High Performance Computers 

a mathematical form would be fairly straightforward. For 
example, a vector add of the form 

would become 

F: = F + E 

DR = F 
XDR = E 
VECTOR ADD 

However, as we have already seen, operations of this type are 
programmed out into loops in MU5. Thus the idea of including 
vector orders in the MU5 instruction set was dropped in favour 
of a pipeline approach whieh would lead to execution rates for 
such loops approaching the peak rate at which the store could 
deliver the veetor operands. 

7.2.1 Operation of tbe Store-to-Store Orders 

The store-to-store orders are controlled by logie in the Dr 
unit which, by incrementing the orlgln field(s) of the 
descriptor(s) at each access, generates the appropriate series 
of addresses, and by decrementing the length field( s), until 
zero is reached, determines the point at whieh to terminate 
the order. The descriptors themsel ves are loaded into DR and 
XDR by preceding orders, while the filler /mask, which is the 
operand assoeiated wi th the actual store-to-store order, is 
automatieally transferred to Dop by a preliminary aceess 
during the execution of the store-to-store order itself. A 
'Dop bit' aeeompanying this access indicates its special 
nature and causes the operand to be loaded into the 
filler/mask register within the store-to-store processing 
logic in Dop (figure 7.3). This logic allows source bytes to 
be copied to the destination, souree and destination bytes to 
be logically combined or compared, and so on, in accordance 
with the requirements of the various store-to-store orders. 

During the execution of these orders, the main data path is 
used to extraet bytes from the source and destination store 
words, and to return them to the destination store words as 
appropriate. Thus, for the SMVB and SMVF orders, for example, 
Dop performs 'load' operations to extract bytes from the 
source string, and for the SMVB, SMVF, BMVB and BMVE orders, 
performs 'store' operations to return bytes to the 
destination. For the logic orders, SLGC and BLGC, bytes are 
also extracted from the destination string before being 
logically manipulated and returned to the destination string. 
For the comparison orders, only 'load' operations are required 
since the destination string is not updated. 



Veetor Proeessing 139 

The sequence of operations in a store-to-store order is 
best illustrated by reference to the patterns of bytes in the 
strings as the order proeeeds. Figure 7.6(a) shows the pattern 
of bytes in the destination string at the start of a BMVE 
order. The origin of the deseriptor initially points to the 
first byte of the string, and the length is set to the total 
number of bytes L. At the end of the first eycle, the position 
is as shown in (b). The (masked) filler has been moved into 
the first byte, but the origin and length are unehanged; the 
only route to the OBS address highway is through the Dr adder, 
and sinee the first address to be sent must be that contained 
in the descriptor origin, the updated value is not available 
for loading into the descriptor. For the seeond and subsequent 
cycles, the address sent to OBS is the origin plus 1. The 
origin is then updated with this new value, and finally the 
length field is deeremented by 1. The string patterns are as 
shown in (e) and (d). 

(a) Pattern at Start .... 1 ...... 1_.1.--'----'-__ ~ ~ ~ ~ ~= = ~ ~ ~ ~ ~ = = ====== 
Origin • .. Length = L 

End of Ist Cycle "'~'f'"'--'---'----L.- = ~ ~ ~ = = = = = = = = == _1IJ 
Origi;r- Length = L 

~.~----------~----------------~. 

(b) 

(c) End of 2nd Cycle ""-="T""---'----'-- = ==~~~ == = = = = = = -m 
Origin~ Length = L-l 

• • 
(d) EndofLthCYCle~-==~~~~_~-_=====~ 

~ 
Length = 1 

(e) EndofLastCYCle~~~~=~~_-___ -_-_~== __ 
Origin • 
Length = 0 

Figure 7.6 String Patterns in a Byte-string Order 

The end of the move sequence is reaehed when the length 
beeomes equal to 1. This indieates that the last byte has been 
filled, as shown in (d). Sinee the deseriptor must point after 
the end of the string when the order terminates, however, an 
extra eyele is needed (without a store aecess) to inerement 
the origin by 1 and deerement the length by 1. The final 
string pattern is shown in (e) and figure 7.7 shows the event 
sequences in the various cyeles. 

The event sequenee for a 'normal' eycle of a string-string 
order is shown in figure 7.8. The source byte address is 



140 The Architecture of High Performance Computers 

generated first and sent to OBS, and then the source origin is 
updated. The destination byte is then accessed in the same way 
and the destination origin is updated. Finally, the two length 
fields are decremented by 1. The order is normally terminated 
when the destination length reaches zero, or when equality is 
found in SCMP. If the source length reaches zero before the 
destination length, the action taken depends on the order 
involved. SLGC is terminated immediately, and an interrupt is 
generated, whereas SMVF and SCMP are converted to the 
corresponding byte orders. This is illustrated in the complete 
event sequences for SMVF (figure 7.9). 

Ist Cycle ~ Start 

2nd - Lth Cycles ~ Start 
I Access Destination Byte 
T I Update Origin 

T I Update Length 

T ~ End 

Last Cycle ~ Start 

I Update Origin 
t I Update Length 

t ~ End 

Figure 7.7 Event Sequence in Byte-string Order Cycles 

~ Start 

I Access Sou rce Byte 

t I Update Source Origin 

t I Access Destination Byte 

t I Update Destination Origin 

t I Update Source Length 

, ~ U,"". o~::,;oo C.o,," 

Figure 7.8 Event Sequence in a String-string Normal Cycle 

In the first cycle, the origin fields are sent out directly 
as addresses and the two descriptors are left unchanged at the 



Vector Processing 141 

end of the cycle. 'Normal' cycles are then executed until the 
source string runs out. For subsequent cycles only the 
destination address is generated, and the function code 
associated with these accesses is changed to BMVE, so that the 
rest of the destination string is filled with the filler byte 
held in Dop. The first of the BMVE cycles is also a 'last' 
cycle for the source descriptor, in which the origin and 
length fields are updated so that the descriptor finally 
points after the end of the string and has zero length. 

Ist 2nd 
Cycle CycJe 

~ 
I I 

Transfer Operand I I 
I I 

SLth (SL +1)th (SL +2)th 
CycJe CycJe CycJe 

I 
I 
I 
I 

I 
I 
I 
I 

DLth Last 
CycJe Cycle 

~ ~ l~ ~ i~ Access Byte 

I 
~ ~ :~ l~ 

I 
I I 

~ ~ i ~ ~ ~ ~ ~ 
I 

~ ~ Update Origin I 

r--- J i---' I I 
I I 

~ ~: ~ ~ ~ ~ r I ~ ~ Update Length I I 
I I 

I I I 
I ! I 

Figure 7.9 Complete Event Sequence for a String-string Order 

7.2.2 Special Store Management Problems 

Since the addresses generated by the store-to-store orders are 
virtual addresses, the execution of a store-to-store order 
will generally involve the crossing of one or more page 
boundaries, and hence require access to a page of data not 
currently available. A system which attempted to overcome this 
problem by ensuring the availability of all the necessary 
pages of data before the start of the order would involve 
different hardware constraints on the length of strings which 
could be handled in different implementations of the 
instruction set, and was therefore not considered. The 
al ternati ve approach adopted in MU5 is to allow the 
store-to-store orders to be interruptable, so that only parts 
of each string need be resident in the Local Store at any one 
time. Thus Dr samples the interrupt signal at the start of 
each cycle, and when an interrupt occurs it converts the new 
cycle to a 'last' cycle in order to terminate the order 
normally with the origin(s) pointing to the byte(s) 
immediately following those for which requests have already 
been sent to OBS. Requests trapped in the OBS Queue as a 
resul t of the interrupt are dealt wi th as for any page fault 
interrupt (section 7.1.4) and are automatically re-issued 
after the interrupt has been serviced. When an interrupted 



142 The Architecture of High Performance Computers 

store-to-store order is re-started, the first cycle generates 
the address(es) of the next byte(s) in sequence. Thus it is 
possible to interrupt execution of a store-to-store order at a 
partially completed stage and re-start it from the same point 
when a new page of data has been made available. 

7.3 TBB CDC STAR-100 

In chapter 6 we followed the development of the CDC 6600 
design as it evolved first into the 1600 and then into the 
CRAY-1. In 1965, however, CDC started aseparate line of 
development in response to a requirement of the Lawrence 
Livermore Laboratory for a vector processor capable of 
executing 100 MFLOPS. The machine which resulted was the 
STAR-100 [42]. A great deal of controversy raged about this 
machine in its early years, and many of the essential design 
issues and performance goals have been obscured. An 
interesting analysis of these issues was made by Lincoln [43] 
in a paper presented at the AFIPS National Computer Conference 
in 1918. Despite the many difficulties which arose in the 
course of the STAR-100 programme, CDC remained convinced that 
the underlying architectural concepts of the STAR-100 were 
sound, and went on to produce a second version, the STAR-100A, 
which appeared commercially as the CYBER 203, and a completely 
re-engineered version, the STAR-100C, which is now produced 
commercially as the CYBER 205. In this section we shall 
consider the design philosophy of the original STAR-1 00, and 
deal in more detail with the instruction set and operation of 
the current version, the CYBER 205, in section 1.4. 

The fundamental premise on which the STAR-100 project was 
based was the provision of as much immediate access storage as 
was possible within engineering constraints. In the mid-1960s 
this meant using ferrite core technologYi semiconductor 
storage technology, while holding out a great deal of promise, 
was not sufficiently mature for its use in large quantities to 
be a realistic venture. The limitations on the amount of 
storage which could be provided using cores were physical 
space requirements, the physical interconnection problem, and 
overall reliability. These limitations led to a maximum memory 
size of one million 64-bit words using the 2D core memory 
developed for use as Extended Core Storage in the CDC 6600. 
These stores had a 280 ns access time and a 1280 ns cycle 
time. (The limitations on store size have not gone away with 
the improvements in storage density and access time provided 
by semiconductor technology, because logic densities and 
processing speeds have also improved and have led to higher 
user expectations; transmission delays still account for 
roughly the same percentage of the total system delay in the 
CYBER 205 as they did in the original STAR-100.) 



Vector Processing 143 

Coupled wi th the provision of large amounts of storage in 
the STAR-l00 was a high bandwidth for the transfer of data 
between the store and the central processing unit. Because the 
access time to an individual store word was relatively long, 
however, it was clear from the outset that it would only be 
possible to use this bandwidth effectively if operand 
pre-fetching could be used in the same way as instruction 
pre-fetching is used in conventional machines. Instruction 
pre-fetching relies on the sequential nature of instruction 
execution; operand pre-fetching is similarly only effective if 
the processor can generate long sequences of addresses, a 
situation which arises quite naturally in vector processing. 
Thus the STAR-l00 project was naturally geared to the 
prov~s~on of computing power for highly vectorisable problems, 
and vectors with up to 65,536 elements may be processed by a 
single vector instruction. 

Memory Banks - Floating-Point - - Pipe 1 

- ~ 
Stream 

Unit - Store 
Access Floating-Point - Control - Pipe 2 

Unit - t - String - Unit 

l 
1/0 Channels 

Figure 7.10 STAR-l00 Processor Organisation 

Memory bandwidth is obtained in the STAR-lOO by a 
combination of eight-way interleaving of memory banks with 
wide store words (512 bits accessed per store cycle) and the 
pipelined transmission of each of these t superwords t to the 
processor in four sequential groups of 128 bits. In order to 
handle this data rate in the processor, however, the designers 
were faced with choices ranging, in the extreme, between using 
a multiplicity of 6600-like arithmetic units and a single 
pipelined arithmetic unit capable of executing 32-bit 
operations at a rate of one every 10 ns. In practice the 
solution chosen for the STAR-l00 uses two pipelined arithmetic 
units as shown in figure 7.10, each of which can act as a 
single 64-bit or a twin 32-bit unit. Floating-point Pipe 1 



144 The Architecture of High Performance Computers 

performs floating-point operations such as add, subtract, 
mUltiply and compare, and also fixed-point address operations. 
Floating-point Pipe 2 is similar, except that it includes a 
divide unit and a multi-purpose unit which is used for special 
operations such as square root. For operations such as 
floating-point addition the two pipes act in parallel and can 
therefore accept the fu11 128 bits available from store in 
each clock period. For 32-bit operations this leads to an 
execution rate of four operations per 40 ns clock per iod , 
equivalent to 100 MFLOPS. 

The store is made up of eight sections, each containing 
four banks of 16K 64-bit words. 512 bits are read out from a 
bank in one store cycle, and the outputs of the four banks in 
any one section are multiplexed at 40 ns intervals on to a 
128-bit data trunk. The data trunks from each section are then 
multiplexed together in the Store Access Control Unit which 
provides a stream of operand store words to the processor. The 
outputs from the Store Access Control Unit cannot be fed 
directly into the arithmetic units, however, since in practice 
vectors cannot necessarily be expected to start on 512-bit 
word boundaries and the two operands making up a pair of 
source operands are normally taken from separate superwords. 
Thus the Stream Unit contains input shift networks which align 
the input operands correctly and a 'front-end pre-count' 
mechanism which discards any unwanted elements from the first 
superword received at the start of a vector order. (The 
parallels between operand accessing in the STAR-100 and 
techniques used elsewhere in instruction accessing can also be 
seen in this mechanism. A similar system is used in the MU5 
Instruction Buffer Unit to allow control transfers to jump to 
any 16-bit parcel within a 128-bit store word.) 

The Stream Unit must also align the result vector 
correctly, using an output shift network, and at the start and 
end of a result vector must ensure that only the appropriate 
parts of the store word are overwritten. This problem also 
occurs in exactly the same way in MU5 and is dealt with by the 
Descriptor Operand Processing Unit (section 7. 1.2) which has 
facilities for updating store words down to the bit level. In 
the STAR-100 such facilities exist in the String Unit, but for 
arithmetic operations the smallest unit is a 32-bit word, and 
selective updating of the 512-bit superword in a given memory 
bank is carried out, on a 32-bit word basis, at the store 
interface. Thus the Stream Unit sends a four-bit 'write 
enable' control field with each 128-bit result, as illustrated 
in figure 7.11 which shows the effect for eight 32-bit results 
positioned arbitrarily within a 512-bit superword. 

Any read or write operation on a core store involves a 



Vector Processing 145 

read-write cycle and in the STAR-100 a word read out from a 
complete memory bank is held in ?- 512-bit holding register 
before being written back. The write enables control the 
updating of the contents of this register by the results sent 
from the processor, giving the effect of a read-modify-write 
operation on the selected superword in the memory bank. Once 
the use of these write enables had been established as part of 
the design of the STAR-1 00, the concept of a control vector 
was an obvious extension. Control vectors became an important 
fea ture of the STAR-100 design and are used extensi vely , not 
only to define write enables, but also to control vector 
restructuring operations such as MASK, COMPRESS, and MERGE, 
which derive directly from the programming language APL. 
(Iverson's book on APL [44J, which describes these operations 
and the notion of a control vector, was a significant 
influence on the STAR-100 archi tects.) These operations will 
be discussed in more detail in section 7.4; there is still 
another problem to be discussed in connection with the writing 
of results back to store. 

EJ 

Write 
B 

Enables 

~ 

~ 

Memory Bank 

From Stream Unit 

Data 
Trunk 

Holding 
Register 

Figure 7.11 Result Operand Alignment in a STAR-100 Superword 

The STAR-100 uses a virtual memory organisation based on 
that used in the Atlas computer, and in executing a long 



146 The Architecture of High Performance Computers 

vector operation inevitably encounters page faults in exactly 
the same way as the store-to-store orders in MU5. The solution 
to this problem is relatively simple in the MU5 ca se because 
destination addresses are genera ted before any action is taken 
to produce the corresponding results (section 7.2.2). Updating 
of the store words takes place wi thin the processor on a 
byte-by-byte basis, so that whole words are fetched from store 
before any new values can be written into them. In the 
STAR-100 vector orders are normally three-address, and 
destination addresses are only genera ted after the resul ts 
have been produced. Thus in order to achieve the full vector 
rate, while still responding to page, fault interrupts, a 
one-page look ahead is required on the output stream to ensure 
that operands progressing through the long processor pipeline 
can be returned to store before the instruction is 
interrupted. 

7.4 TBE CDC CIBER 205 

The STAR-100 was criticised on a number of grounds by users 
who wished to apply it to more general computing problems than 
those for which it was designed. The grounds for criticism 
were mainly the long vector start up time and poor performance 
on scalar arithmetic, both of which were inevitable 
consequences of the design. These problems are largely 
overcome in the CYBER 205 by the use of a very much faster (80 
ns access time) semiconductor memory and by the inclusion of a 
high performance scalar unit. The overall performance of the 
CYBER 205 is further enhanced by its implementation in 
specially developed ECL LSI Uncommitted Logic Array 
technology, allowing a reduction of the clock period from the 
40 ns used in the STAR-100 to 20 ns. 

Figure 7.12 shows the overall design of the CYBER 205 
computer system [45], the major components of which are the 
central processing unit (containing the vector processor, 
scalar processor and eight or 16 1/0 ports), the central 
memory, and the maintenance control unit (linked to a standard 
1/0 port via a system channel adaptor). A basic system has one 
million words of central memory, expandable to two or four 
million words (and with a capability to expand to eight 
million words as memory technology progresses), with each 
million words being connected to the memory interface via a 
512-bit data highway. Within the vector processor there can be 
one, two or four floating-point pipelines. 

lnstruction execution is controlled by a 
independent high-speed microcode memories, each 
256, 512 or 1024 words of microcode with between 

number of 
containing 

48 and 120 
bits per word. During instruction execution each memory 



Veetor Proeessing 147 

operates as a read-only memory, having been loaded at start-up 
time by the maintenanee eontrol unit. 

The seal ar proeessor reeeives instruetions from eentral 
memory, deeodes them, and (aeeording to type) either exeeutes 
them itself or sends them to the veetor proeessor. A typieal 
veetor instruetion has the format shown in figure 7.13(a), and 
eauses the two souree veetors defined by A and B to be 
eombined and eopied to a result veetor defined by C. Eaeh 
address field within the instruetion is an eight-bit 
designator referring to one of 256 64-bit loeations within a 
Register File in the sealar proeessor. 

Central Processing 
Unit 

Central Vector -Memory Processor 

1 I Pipeline I Million I--
Words 

I 
I 
,----, 
I Pipeline I 

I 
L ____ .J 

r---- ..... I 
I I I .... -- --, 
I 1 I 

Memory ~---- -~ I Pipeline I 
I Million ... - .. I 

I... ____ ..J 

I Words I Interface 
I 

I I I ,- ---, L _____ J 
I I Pipeline I 
I 

L ____ .J 

r----., I (Options) L. ______ 

I 2 I 
I Million !--. I Words I I Scalar '------' ~ Processor 

(Options) 
~ 

8 1/0 
Maintenance System f-Control r--- Channel Ports 

Unit Adaptor 

I I 

I 8 1/0 I 
I Ports I 
I I 
I (Option) I L ______ ..1 

Figure 7.12 The CYBER 205 Computer System 

Whenever the sealar proeessor issues an instruetion to the 
veetor proeessor it also sends, via two 64-bit highways, the 
contents of the required Register File loeations. This 



148 The Architecture of High Performance Computers 

information is then used by the vector processor to generate 
the appropriate sequences of addresses required to access the 
individual elements of the source, control and result vectors. 
The address of the first element of the source vector defined 
by A, for example, is formed by adding the offset obtained 
from the register defined by X to the 48-bit origin address 
obtained from the register defined by A. Sub se quent addresses 
are formed by incrementing the first address, and the number 
of elements accessed is determined by the value in the 16-bit 
length field contained in the same register as the origin. 

o 
(a) I F I G X I 

F- (Vector) Function 
G - Sub-function 

A Y 

A-1st Source Origin/length 
X-Offset for A 
B-2nd Source Origin/length 
Y - Offset for B 
C-Result Origin/length 
z- Result Contral Vector Origin 
C + 1 (implied) - Offset for C and Z 

o 31 

(b) I F I R I S I T I 
F- (Scalar) Function 
R-1st Source Operand 
S-2nd Source Operand 
T - Result Operand 

63 

B Z I C I 
I I 
IC+11 L __ .. 

Figure 7.13 Typical CYBER 205 Instruction Formats 

7.4.1 !he Scalar Processor 

The design of the CYBER 205 scalar processor (figure 7.14) is 
largely derived from that of the CDC 7600. The Instruction 
Stack is filled from central memory (under control of the 
Branch/Pre-fetch Unit) two superwords ahead of the instruction 
currently being executed, and can contain up to eight 
associatively addressed superwords. Instructions are taken 
from the Stack by the Instruction Issue uni t, which decodes 
each instruction in turn and sends it to the appropriate 
functional unit for execution. Vector and string instructions 
are sent to the vector processor (section 7.4.3) while scalar 
instructions are sent to one of five arithmetic subunits 
within the Scalar Floating-point Unit. The Add/Subtract, 
Multiply, Logical and Single Cycle Units are all pipelined and 
can accept a new pair of input operands at every clock cycle. 
Scalar instructions are of the form show in figure 7. 13 (b) • 



Veetor Proeessing 149 

Operands are taken !rom loeations in the Register File defined 
by Rand S, and the resul t is returned to a loea tion in the 
Register File defined by T. Transfers between the Register 
File and eentral memory are eontrolled by instruetions 
exeeuted in the Load/Store Unit. In these instruetions Rand S 
typieally speeify an indexed eentral memory address and T the 
loeation of the operand in the Register File. 

To Vector Processor 

Scalar 
Floating-Point 

t I 0 - Unit 

Pre-fetch/ Instruction 
Branch - Instruction r------ Issue 

Unit Stack Unit 

~ MUltiply 

j 4 
Unit 

~ 

Priority f-i Logical 
Unit Unit 

f----, 

Single 
Cycle 
Unit 

Central 
Memory 

Associative Load/Store Register Oivide/ 
"4- .... Sq. Rt./ Unit Unit File 

Convert 
Unit 

~ 

--... ~ Oata or Address Vector Processor 

---t.~ Control 

Figure 7.14 The CYBER 205 Seal ar Proeessor 

The Add/Subtraet and Multiply Units eaeh take fi ve eloek 
periods to produee a result and return it to the input of 
another unit. The Logieal Unit takes three, and the Single 
Cyele Unit, whieh is used, for example, to load a literal 
operand into a Register File location, takes one. The 
Di vide/Square Root/Convert Unit is not pipelined and takes 



150 The Architecture of High Performance Computers 

between 21 and 54 clock periods to produce its result, 
depending on the function. These times are all 'shortstop , 
times. Shortstopping is a technique which allows a resul t 
required as a source operand by a succeeding instruction to be 
returned directly to the input of an arithmetic unit. This is 
the scalar equivalent of chaining in the CRAY-1, and although 
similar in some respects to data forwarding in the IBM 
System/360 Model 91, it is different in that a shortstopped 
result in the CYBER 205 is sent as an input operand to an 
arithmetic unit at the same time as being written into the 
Register File. In the Model 91 a result is not written into a 
register at all if it is forwarded. 

Shortstopping is controlled by the Instruction Issue Unit, 
which is implemented as a three-stage pipeline and issues one 
instruction per clock per iod unless held up by an instruction 
dependency. These dependencies are similar to those found in 
the 7600 (section 6.2.2). Thus an instruction may not issue if 
it specifies as its result operand or as one of its source 
operands a location in the Register File which is awaiting the 
result of some other previously issued but as yet uncompleted 
instruction. Source operand conflicts are resolved in the 
CYBER 205 by the use of 16 Resul t Address Registers, which 
hold the Register File addresses of the resul t operands of 
uncompleted instructions. Before an instruction is issued its 
source operand addresses are checked, simultaneously, against 
all 16 Result Address Registers, and if a match is found with 
a valid address, issuing of the instruction is held up until 
the conflict is resolved. 

Shortstopping allows these conflicts to be resolved more 
quickly in the CYBER 205 than in the 7600, since the shortstop 
route allows a resul t to be returned as a source operand 
before it has been written into the Register F.ile. Only one 
shortstopped result can appear in any one clock period, since 
as in the case of the 7600, only one resul t can be wri tten 
into the Register File in any one clock period . (The Register 
File can, however, deliver two source operands in one clock 
per iod , as weIl as receiving one result.) Thus the issuing of 
an instruction must be delayed if its result would arrive at 
the Register File at the same time as the result from a 
previously issued, but slower, instruction. This type of 
conflict, and result operand conflicts, are resolved by means 
of a result position timing chain, similar in principle to the 
X Register Access Control Logic in the 7600 (section 6.2.2). 
Before an instruction is issued its result operand address is 
checked against result addresses in the timing chain, and if a 
match is found, or if the required Register File access 
reservation register is occupied, issuing of the instruction 
1s held up until the conflict is resolved. 



Vector Processing 151 

Vector and scalar operations can be executed in parallel, 
provided there are no Register File reference conflicts, and 
provided that no central memory references are required by 
scalar instructions during the execution of a previously 
issued vector instruction. When the Instruction Issue Unit 
decodes a vector instruction, and the vector processor is not 
busy, it supplies the vector processor with the function and 
with the contents of all the Register File locations specified 
in the instruction. The Instruction Issue Uni t reserves any 
Register File locations which the vector instruction may 
update during the course of its operation, and once the vector 
processor has star ted execution of the vector instruction, the 
Instruction Issue Unit is free to issue subsequent (scalar) 
instructions. 

1.4.2 Virtual Address Translation 

As in the case of the STAR-100, the CYBER 205 uses a virtual 
addressing scheme derived from that used on Atlas. Thus 
addresses genera ted by the scalar and vector processors are 
normally logical (virtual) addresses which must be translated 
into absolute (real) storage addresses before being sent to 
central memory. This translation is effected by the 
Associative Unit (figure 7.14) which contains 16 associative 
address registers. In the Atlas scheme (section 3.2) each 
associative page register bore a one-to-one correspondence 
with a real page in the core store. The CYBER 205 Associative 
Unit is more closely related to the MU5 Store Access Control 
Unit (section 3.5), however, in that the number of associative 
registers is considerably smaller than the number of pages in 
real store, and the associative registers are therefore 
current page registers containing the most recently used 
virtual pages. The remainder of the page address translation 
table (the 'space table') is held in fixed locations in 
central memory in the CYBER 205 and is searched sequentially 
under microprogram control if a particular page address is not 
found in the associative registers (the 'page table'). 

Entries in the page table registers (AROO - 15) are held as 
an ordered list of most recent use. Whenever a virtual address 
is presented for aSl3ociation and a match occurs, the content 
of the register containing the matching address is moved to 
the top of the list (register AROO) and the contents of all 
those above the matching register move down one position. If 
no match is found, the content of AR15 is copied into a buffer 
register and the contents of registers AROO - 14 move down one 
position leaving a null entry in AROO. The contents of all the 
associative registers are then copied into central memory and 
the contents of the space table are examined in sequence using 
the associati ve facilities of the page table registers. Thus 



152 The Architecture of High Performance Computers 

the first entry in the space table is read and its location in 
central memory replaced by the previous content of AR15, held 
in the buffer register. After this first word has been 
examined it is itself copied into the buHer register. Ir no 
match occurs this cycle of events is repeated, with the second 
space table entry being read and replaced in central memory by 
the first word (now held in the buffer register), and so on. 
When a match occurs the page table registers are re-loaded 
from central memory and the content of the mate hing address, 
held in the buffer register, is copied in to AROO. Thus the 
ordering of entries in the page table also extends into the 
space table. 

Since different programs running on the CYBER 205 require 
differing numbers of pages, a mechanism is required to prevent 
the hardware searching invalid page or space table entries. An 
'end-of-table' marker is used for this purpose. If this marker 
is found in a page table register when there is a page faul t , 
an interrupt is generated immediately and the space table is 
not searched. Ir the end-of-table marker is in the space 
table, however, then it will only be read, and an interrupt 
genera ted , after all valid entries in the space table have 
been examined. 

The real addresses generated by the Associati ve Unit are 
passed to the Priority Unit (figure 7.14), which co-ordinates 
central memory requests from different sources . In the event 
of two requests arriving simultaneously, the one with higher 
priority is serviced first and the other is delayed. 1/0 
requests, for example, have the highest priori ty and are 
always accepted immediately. Requests may also be delayed 
because of bank busy conflicts in central memory. In the case 
of vector requests being delayed, the inertia of the address 
generation pipeline is such that a Re-try Unit is required to 
buffer unsatisfied requests. When the Re-try Unit is 
activated, address generation in the vector processor is 
halted, but as many as three additional requests may arrive 
before the flow ceases, and the Re-try Uni t therefore has 
buffering capacity for four requests. During the fourth clock 
per iod after activation the Re-try Unit re-transmits the 
buffered requests to the Priority Unit and, if the initial 
request is accepted, releases the address generation hold-up 
in the vector processor. The first new request then arrives at 
the Priority Unit just after the last buffered request is 
transmitted from the Re-try Unit. 

7.4.3 The Vector Processor 

Figure 7. 15 shows the overall structure of the CYBER 205 
vector processor. The Vector Control Unit receives vector 



Vector Processing 153 

functions sent from the scalar processor, together with the 
appropriate Register File contents , and controls the setting 
up and execution of each instruction within the vector 
processor. During the execution of a typical vector 
instruction, addresses are genera ted by the Stream Addressing 
Pipeline and sent via the Associative Unit in the scalar 
processor to central memory. The corresponding store words 
accessed from central memory are recei ved by the Input Stream 
Unit which aligns the various input operand streams correctly 
for transmission to the Floating-point Pipeline or String 
Unit. Results from the Floating-point Pipeline or String Unit 
flow into the Output Stream Unit, and thence back to central 
memory. The Stream Units act in a similar way to the Stream 
UnH in the STAR-lOO (section 7.3), not only in aligning the 
input streams correctly, but also in organising proper 
starting and finishing points for vectors which are not 
aligned on 512-bit store word boundaries. 

Data 
From 

Control 
Memory 

Scalar 
Processor Vector Stream 

Control r-- Addressing 

Vector Unit r--. Pipeline 

Functions 

l 
To ali 

Vector Units 

-..... - Floating-Point -Input Pipeline - Stream 
Unit Output 

Stream 
Unit 

l String -Unit 

.. Control 

Data/ Addresses 

Figure 7.15 The CYBER 205 Vector Processor 

r---. 

f--' 

f--

Addresses 

Data 
To 

Central 
Memory 

Most vector instructions process da ta using two data input 
streams, one control vector input stream and one data output 
stream. These streams are specified by the origin addresses, 



154 The Architecture of High Performance Computers 

field lengths and off-sets or indices selected from locations 
in the Register File by the instruction bcfore it leaves the 
scalar processor, and sent to the Vector Control Unit when the 
instruction is issued. During the setting up of a vector 
instruction within the vector processor, off-set values are 
added to the corresponding origin addresses and subtracted 
from the field lengths before being sent to the Stream 
Addressing Unit. For each data stream the Stream Addressing 
Unit generates sequential store addresses (normally to 512-bit 
words) by incrementing the origin address until the field 
length, which is decremented correspondingly, reaches zero. 

The generation of addresses for each input and output 
stream is treated as an independent operation within the 
Stream Addressing Unit. This allows each operation to be 
stopped and started independently, and allows the Stream 
Addressing Unit to avoid bank busy conflicts in central 
memory. Since the banks have an 80 ns cycle time, arequest to 
any one bank causes a four clock-period busy condition, and a 
subsequent request to the same bank is not allowed to proceed 
until a further three clock periods have elapsed. In addition 
the priority of requests must be taken into account; wi thin 
the vector processor input operand requests have highest 
priority, vector write requests have second priority, string 
write requests third and control vector read requests fourth. 
Arequest of low priority must therefore be checked against 
higher priority requests to the same bank up to three clock 
periods ahead and up to three clock per iods behind the clock 
per iod in which it will itself access central memory. A timing 
chain mechanism similar to that used to control entry of 
results into the Register File (section 7.4.1) is used for 
this purpose. 

The Stream Addressing Unit also controls the flow of data 
through the Input and Output Stream Units. The Input Stream 
Unit contains a buffer for each input stream large enough to 
hold all data requested but not used. Associa ted wi th each 
buffer is a counter in the Stream Addressing Unit which is 
incremented each time a 128-bit word is requested from central 
memory, and decremented each time a 128-bit word is removed 
from the buffer for use. If a counter indicates that the 
corresponding buffer is full, then further requests for that 
input stream are held up. For the Output Stream Unit a counter 
in the Stream Addressing Unit is incremented each time a 
result is entered into the output buffer, and decremented each 
time a write request is sent to central memory. 

A vector order terminates once all the input da ta has 
passed through the Input Stream Unit. For each of the two data 
input streams a field length register in the Input Stream Unit 



Vector Processing 155 

is loaded at start-up time. These registers are decremented 
whenever data is sent to a functional unit and, when they 
reach zero, an ' empty' signal is sent to the Vector Control 
Unit. Processing of the next instruction can then begin, even 
before the last few operands of the current instruction have 
been processed and the results written back to central memory. 
If an interrupt occurs before an instruction terminates (as a 
result of a page fault, for example) the current values of 
operand addresses and field lengths are preserved in central 
memory. Once the interrupt has been serviced, these values are 
copied back into the vector processor, and the interrupted 
instruction is re-started. 

7.4.4 Tbe Vector Floating-point Pipeline 

The vector Floating-point Pipeline provides logical and 
ari thmetic operand processing for all vector instructions. It 
is made up of five pipelined operand processing units, a Data 
Interchange and associated control logic (figure 7.16). The 
typical CYBER 205 system has a two-pipeline configuration in 
which two 64-bit or four 32-bit operands presented on each of 
the A and B inputs can be processed simultaneously. Except in 
the case of divide and square root operations, these pipelines 
can accept a new pair of inputs in every clock period . A 
one-pipeline configuration processes the two halves of the 
128-bit words supplied to it sequentially and therefore runs 
at half the speed of the two-pipeline version. The 
four-pipeline version is essentially two two-pip.eline 
processors, giving a total da ta path width of 256 bits. 
Floating-point numbers us·e a binary exponent and have the 
formats shown in figure 7.17, where all exponents and 
mantissae are represented by 2's complement integers. 

In anormal two-pipeline configuration the Add Unit 
receives operands from the Data Interchange over two 128-bit 
data highways and returns results to the Data Interchange over 
a single 128-bit highway. In a straightforward add or subtract 
operation successi ve elements of vector Bare added to or 
subtracted from successive elements of vector A, and the 
results written to successive elements of vector C. Feedback 
paths within the Add Unit allow other types of add operation 
to be implemented, however, so that a single result element C 
may be obtained by summing all the elements of vector A, for 
example, or a vector C may be produced by repeated addition of 
a scalar element B to the initial value of scalar element A. 

The Multiply Unit is similarly connected to the Data 
Interchange by two 128-bit input operand highways, and one 
128-bit result highway. In a typical multiply operation 
successi ve elements of vector Aare mul tiplied by successi ve 



156 The Architecture of High Performance Computers 

elements of vector B and the results written to successive 
elements of vector C. An internal feedback path allows a 
single resul t to be formed by mul tiplying together all the 
elements of vector A, and the Multiply Unit also contains the 
logic for divide and square root operations. 

A Operand Result 

(128 bits) (128 bits) 

Add Unit J 
B Operand 

(128 bits) 

Multiply Unit I---" 

Oata 
Interchange 

~ 

Shitt Unit I---" 
--'" 

Logical Unit f--" 

Oelay Unit f--" 

4 + 
Control 

Figure 7.16 The CYBER 205 Vector Floating-point Pipeline 

The Shift Unit has one 128-bit data input highway (A) and 
one 14-bit input highway (B) which supplies a 7-bit shift 
count for each half of the pipeline. Each 64-bit element of 
vector A is shifted left or right according to the most 



Vector Processing 157 

significant bit of the corresponding 7-bit -element of vector 
B, with the number of bit position shifts being determined by 
the six least significant bits of B. 

Exponent Mantissa 

t 
(64-bit) 16 48 

t 
Exponent Sign ~ Mantissa Sign 

t ~ ~ Binary Point 

(32-bit) I 8 I 24 I 

t t 
Exponent Mantissa 

Figure 7.17 CYBER 205 Floating-point Formats 

The Logical Unit carries out bit-by-bit logical operations 
between pairs of A and B elements supplied via 128-bit input 
highways and returns its results to the Data Interchange via a 
128-bit result highway. It also carries out pack and unpack 
operations on floating-point numbers (similar to those 
implemented in the CDC 6600 and 7600) and a masked compare 
instruction for which a third input is required, containing 
the 128-bit mask. This instruction searches elements of vector 
A in sequence for a bit-by-bit match with the single element 
Bibi t posi tions for which the bit in the mask is zero are 
assumed to match. As each word is examined, the Register File 
location containing the index of A is updated, so that, if a 
match is found, the index provides a means of locating the 
position of the matching element. If no match is found the 
index is left pointing to the end of the vector. When the 
instruction terminates a condition code is set to indicate the 
result. 

For simple vector instructions the Data Interchange is 
configured to connect the input and output highways to the 
appropriate processing unit. The 'Select Link' instruction, 
however, causes the Data Interchange to be configured such 
that the succeeding two instructions in the code sequence 
become chained together. In this case the output of the unit 
used by the first instruction of the pair is routed to the 
input of the unit used by the second. Ooly two vector streams 
may be used in total, but this does allow commonly occurring 
triadic operations such as 



158 The Architecture of High Performance Computers 

Vector C = Vector A * Constant - Vector B 

to be implemented in this manner. Not only does this allow the 
Multiply and Add Units to operate in parallel, but it also 
avoids the need to write the intermediate result vector into 
central memory and then read it out again. 

Chaining of this sort occurs automatically during the 
execution of vector macro instructions such as the scalar 
product instruction, for example, in which pairs of input 
operands are multiplied together in the Multiply Unit and 
their results then summed in the Add Unit. This summation also 
invol ves the use of the Delay Uni t, which contains a 16-word 
temporary buffer store. Successi ve 128-bit words sent to the 
Delay Unit are written into successive locations selected on a 
cyclic basis by a wri te counter. These same words are then 
read out again, and returned to the Data Interchange , und er 
the control of a read counter. The delay function is 
implemented by offsetting the read and write counters by the 
required number of clock cycles of delay. 

In the summation of resul ts from the Mul tiply Unit in the 
scalar product operation (and similarly in the summation of 
all the elements of a single vector), the addition is 
performed by feeding values into input A of the Add Unit, and 
routing the output of the Add Unit back into input B. This 
produces a recursive effect similar to that found in the 
CRAY-1 (section 6.4.4). Because of the delay through the Add 
Unit pipeline, the zeroth input value, having passed through 
the Add Uni t, is returned to input B in time to be added to 
the eighth value, the first in time to be added to the ninth, 
and so on. After a further pass through the Add Uni t the sum 
of the zeroth and eighth values is ready to be added to the 
sixteenth value, and so on, until the input stream is 
ex haus ted and eight partial sums are left circulating in the 
Add Uni t. Adding these partial sums together invol ves the use 
of the Delay Unit. The first four partial sums are delayed by 
four clock periods so that they become aligned with the last 
four at the input to the Add Unit. The four results obtained 
from this operation are then further added in pairs using a 
two-clock per iod delay, and a final add involving a single 
clock period delay produces the desired resul t ready to be 
written into the Register File. 

7.4.5 Spar se Vector Operations 

One of the distinctive features of the CYBER 205 architecture 
is the provision in hardware of facilities for handling spar se 
vectors. In many computational problems vectors with large 
numbers of zero or near-zero elements occur, and the ability 



Vector Processing 159 

to store and process these vectors in spar se form allows 
considerable savings to be made in both storage space and 
processing time. The key to the handling of sparsity in the 
CYBER 205 is the control or 'order' vector which, as we saw in 
section 7.3, was introduced in the STAR-100 to overcome the 
problem of wri ting data to only part of a word in store. Thus 
a spar se vector is made up of two parts, a data vector and an 
order vector. The order vector contains one bit for each 
element of the full vector indicating whether or not a 
(non-zero) value exists for that element. The data vector is a 
sequence of 32-bit or 64-bit floating-point numbers 
constituting the non-zero values. 

Ac 

Al 

A2 

A3 

A4 

A5 

Ac 

A7 

AB 

Ac 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

AB 

Initial Vector A 

• 
(Near Zero) 

(Near Zero) 

(Near Zero) 

(Near Zero) 

+ 
Initial Vector A 

(a) 

Compare 

(b) 

Compress 
per Z 

r---------------, 

o 

o .. Generated 
Order Vector 

Z 

o 

o 

Ac 

A2 

A3 

A5 

A7 

Generated 
Data Vector C 

t 

Generated 
Sparse Vector C 

Figure 7.18 Formation of a Sparse Vector 



160The Architecture of High Performance Computers 

Figure 7.18 shows how a spar se vector might typically be 
formed. A COMPARE instruction is first used in which each 
element of the initial vector A is compared against the 
1imiting smal1 va1ue be10w which elements are to be treated as 
zero. For each element be10w this limit a zero is generated in 
the resu1t contro1 vector Z, whi1e for each element above the 
limit a one is generated in Z. A COMPRESS instruction is then 
used in which the order vector Z genera ted by the COMPARE 
instruction is used to determine whether or not va1ues in the 
initial vector Aare to be copied into the data vector C. On1y 
values for which the corresponding bit in the order vector is 
a one are copied to vector C, and these are written into 
sequentia1 store 10cations. Thus there is no 10nger any direct 
correspondence between the position of an element in the 
vector and its position in store relative to the vector 
origin, and in sparse vector operations the order vector must 
be used to identify the positiona1 significance of each 
element in the da ta vector. These order vectors are specified 
in sparse vector instructions by the X, Y and Z fie1ds. For 
the source vectors this invo1ves interpreting the contents of 
the 10cations in the Register File specified by the X and Y 
designators (figure 7. 13 (a» as origin + fie1d 1ength pairs 
rather than as offsets. 

When two spar se vectors are combined in arithmetic 
operations, their order vectors are used to a1ign 
corresponding elements correct1y and to determine the outcome 
of the operation. When two spar se vectors are combined by 
mu1 tip1ication or division, for examp1e, a resu1 t element is 
normal1y produced, and a one written into the resu1 torder 
vector, on1y when corresponding elements in the input vector 
are both non-zero, as indicated by the presence of a one in 
each of the source order vectors. When two sparse vectors are 
added or subtracted, a resu1 t element is normal1y produced 
when there is a non-zero element in corresponding positions in 
either source vector. 

The actua1 10gical combination of source order bit pairs 
used to produce the bit to be written into the result order 
vector, and hence to determine whether or not a va1ue is to be 
written into the resu1t da ta vector, is determined by bits in 
the sub-function fie1d of the instruction (G in figure 
7.13(a». For mu1tip1ication or division the AND operation is 
normal1y used, whi1e for addition or subtraction the OR 
operation is normal. However, the OR operation may be 
specified for the former, the AND operation for the 1atter, 
and Exc1usive OR or Imp1ication for either. In a 
multiplication instruction where Exc1usive OR is specified, 
for examp1e, a non-zero element in one source vector is 
imp1icit1y mu1tip1ied by 1 when no corresponding non-zero 



Vector Processing 161 

element exists in the other source vector, and no result is 
produced if ne~ther or both source elements exist. 

7.4.6 lndexed List Operations 

The memory of the CYBER 205 is organised such that within each 
one million-word unit there are 16 interleaved 32-bit stacks 
allowing eight sequentially addressed 64-bit words (512 bits) 
to be accessed in parallel. Each stack is divided into eight 
independent banks, each holding 16K words. A new bank read 
access can be initiated in every clock per iod , provided it is 
to a bank which is not already busy, and the banks can share a 
single stack data path since this path is only required during 
the last clock period of the four clock-period bank cycle. One 
of the criticisms levelled at the CYBER 205 is that vectors 
may only be accessed on the basis of a unit increment between 
successive elements, so that matrices stored by row, for 
example, cannot easily be accessed by column. The high memory 
bandwidth of the CYBER 205 is only obtainable because many 
adjacent elements can be read out in parallel in each memory 
cycle, however, and to allow different accessing patterns in 
standard vector orders would severely degrade performance. 
Provision of increments different from unity would also 
require changes to the instruction format, and alternative 
general mechanisms for the re-ordering of operands are 
provided instead. These mechanisms are invoked by lndexed List 
Operations which allow for the gathering or scattering of 
periodic or random data within a data structure. 

During execution of a scatter operation (Transmit List -> 
Indexed C), for example, two source vectors (A and B) are 
normally read from memory and a result vector CC) is written 
to memory. Source vector A is a list of indices referring to 
posi tions in the resul t vector, while source vector B is the 
sequential list of 32-bit or 64-bit operands to be written. 
During each cycle of operation, the index taken from vector A 
is shifted appropriately and added to the result vector origin 
to form a memory address. This address is then sent to memory, 
accompanied by appropriate write control bits and the 
corresponding operand taken from vector B. The index list may 
be formed either by geometrical considerations or by data 
dependent considerations. Sparse vectors with a population 
density of the order of O. 1 per cent, for example, can be 
deal t wi th more efficiently by this mechanism than by the 
order vector technique described in section 7.4.5, which is 
suitable for population densities in the range 1 - 10 per 
cent. 

In a gather operation (Transmit Indexed List -> C), source 
vector A is again a list of indices, but these indices refer 



162 The Architecture of High Performance Computers 

to positions in souree vector Brather than the result vector. 
Addresses formed by adding each index from vector A in turn to 
the origin of vector Bare used to access operands from vector 
B, and these operands are then written to sequential result 
vector locations. 

A number of variations on the general form of the gather 
and scatter operations may be invoked by appropriate settings 
of bits in the G field of the instruction (figure 7.13(a». In 
particular, one option allows source veetor A to be replaced 
by a fixed increment (a) taken from the Register File location 
specified by A. In this case source vector addresses in a 
gather operation are of the form b, b+a, b+2a, b+3a, etc. 
(where b is the origin address of B), allowing access by 
column to a matrix stored by row, for example. An alternative 
variation allows groups of sequential B operands to be 
selected for each element of vector A. 

As with ordinary vector operations (section 7.4.3), the 
Stream Units must avoid bank busy conflicts in memory during 
the execution of gather and scatter operations. Arequest to 
any one bank caUses a four-clock busy condition, and a 
subsequent request to the same bank is not allowed to proceed 
until a further three clock periods have elapsed. In scat ter 
operations these conflicts can oceur on the write accesses, 
while in gather operations they can occur on read accesses to 
source vector B. These conflicts might be expected to affect 
performance quite severely in the ca se of non-sequential 
accesses. In practice, however, the number of memory banks 
provided is so large that, except when a specific sequence is 
presented in which each address has the same value modulo 64, 
few are found to be busy. 

7.4.7 Performance 

In the typical two-pipeline CYBER 205 system two 64-bit 
operands can be transferred into the Floating-point Pipeline 
on each of its two input highways, and two 64-bit results 
transferred out, in one 20 ns clock per iod • This corresponds 
to an execution rate for 64-bit floating-point numbers of 100 
MFLOPS, or 200 MFLOPS for 32-bit numbers. For linked triadic 
operations, or during the execution of the seal ar product 
operation, this rate is doubled to 200 MFLOPS for 64-bit 
numbers or 400 MFLOPS for 32-bit numbers. The memory bandwidth 
required to support this execution rate is six 64-bit words 
per 20 ns interval , or 300 Mwords/s. Since the data highway 
between each one million words of central memory and the 
memory interface is 512 bits wide, and a read or write 
transfer can occur every 20 ns, memory bandwid th is actually 
400 Mwords/s, and a one million word memory configuration can 



Vector Processing 163 

therefore support a two-pipeline system without difficulty. 
For the four-pipeline system at least two million words of 
central memory are required, with each one million words being 
connected to the memory interface via its own data highway. In 
this case the maximum execution rate is 800 MFLOPS for 32-bit 
linked triadic or scalar product operations. 

Where accessing patterns involving non-unary increments are 
required, performance is reduced because the vector arithmetic 
instruction must be preceded by a gather instruction or 
succeeded by a sc at ter instruction. These instructions 
themselves run at less than the full arithmetic rate and have 
been measured to proceed at an average rate of 40 million 
operations per second • This performance is an average of many 
operations running at a rate of 50 million per second with 
occasional periods of 12.5 million per second. 

Perhaps a more serious criticism of the CYBER 205 from the 
point of view of performance on general problems is the long 
vector start-up time. Thus whereas an execution rate of 100 
MFLOPS for 64-bit numbers can in principle be obtained with a 
two-pipeline configuration, this can only be achieved in 
practice when very long vectors are used. As the length of the 
vectors being used becomes shorter, the start-up time has a 
progressi vely more serious effect, and Hockney [38] has used 
the vector length at which performance is halved as a measure 
of vector efficiency. For the CYBER 205 the nominal start-up 
time is 1 ps, and for a nominal result rate of 100 MFLOPS this 
length is clearly 100. For the CRAY-1 Hockney quotes values in 
the range 10 - 20, though even lower values are possible. 
However, the CYBER 205 was intended to be used for problems 
involving long vectors, and as we observed in section 7.4.3, 
part of the start-up time can be eliminatedfor successive 
vector operations since the processing of one instruction can 
often begin before the last few elements of the previous 
instruction have been fully processed. Any attempt at a 
generalised comparison between the CYBER 205 and the CRAY-1 is 
largely irrelevant since the performance of each is critically 
dependent on the problem being solved and the way it is mapped 
on to the hardware. Both machines represent significant 
improvements over previously available commel"cial 
supercomputers , and there appears to be room in the 
marketplace for both. 

1.5 FUTURE DEYELOPHERTS 

Almost any attempt to predict future developments in the world 
of computers is doomed to failure, since some technological 
developments which appear promising fail to materialise, while 
others per form beyond all reasonable expectations. What is 



164 The Architecture of High Performance Computers 

clear is that in the past architectural techniques pioneered 
on large machines have eventually found their way into small 
machines, and there is no sign that this trend i8 abating as 
microprocessors become more complex and more sophisticated. 
The manufacturers of high performance systems constantly 
strive to produce better products, and for students of 
computer archi tecture the design of the latest supercomputer 
will always be important. 



R eferen ces 

1. G. M. Amdahl, G. A. Blaauw and F. P. Brooks, 
'Architecture of the IBM System/360', laM Journal Q( R ~ 
~, 8 (1964) 87-101. 

2. H. S. Stone, Introduction ~ Computer Architecture, 
(Science Research Associates, Chicago, 1975). 

3. S. H. Lavington, History Q( Manchester Computers, (NCC, 
1975) . 

4. T. Kilburn, D. B. G. Edwards, M. J. Lanigan and F. H. 
Sumner, 'One-Ievel Storage System', lBE. ~. EC-11 
(1962) 223-234. 

5. W. Buchholz, ed., 
(McGraw-Hill, 1962). 

Planning Ä Computer System, 

6. E. 1. Organick, ~ Multics System, (MIT Press, 
Cambridge, Mass., 1972). 

7. J. E. Thornton, Design Q( Ä Computer: ~ Control ~ 
6600, (Scott Foresman & Co., 1970). 

8. D. Morris and R. N. Ibbett, 1b&~ Computer System, (The 
Macmillan Press, 1979). 

9. 'IBM System/360 Principles 
A22-6821-0, IBM Corporation. 

of Operation' , Form 

10. R. P. Case and A. Padegs, 'Architecture of the IBM 
System/370' , COmmunications Q(~~, 21 (1978) 73-96. 

11. C. G. Bell and W. D. Strecker, 'Computer Structures: What 
we have learned from the PDP-11', ~. ~ Annual 
Symposium ~ Computer Architecture, (1976) 1-14. 

12. C. G. Bell, A. Kotek, T. N. Hastings and R. Hill, 'The 
Evolution of the DECsystem 10', Communications Q( JtM. 
~, 21 (1978) 44-62. 



166 The Architecture of High Performance Computers 

13. J. K. Buckle, ~ ~ ~ Series, (The Macmillan Press, 
1978) • 

14. E. I. Organick, Comouter System Organisation - ~ 
B5700/B6700 Series, (Academic Press, 1973). 

15. M. R. Barbacci, D. Siewiorek, R. Gordon, R. Howbrigg and 
S. Zuckerman , 'An Architectural Research Facility - ISP 
Descriptions, Simulation, Data Collection' , ~ .tiQ.Q. 
~. ~., 46 (1977) 161-173. 

16. C. G. Bell and A. Newell, Computer Structures: Readings 
~ Examples, (McGraw-Hill, 1971). 

17. J. Djordjevic, R. N. Ibbett and F. H. Sumner, 'Evaluation 
of Some Proposed Name-space Architectures Using ISPS', 
.w.~., 127E (1980) 120-125. 

18. H. J. Curnow and B. A. Wichmann, 'A Synthetic Benchmark', 
Computer Journal, 19 (1976) 43-49. 

19. s. H. Fuller, W. E. Burr, P. Shaman and D. A. Lamb, 
'Evaluation of Computer Architectures via Test Programs', 
.Ail.M .tiQ.Q.~. ~., 46 (1977) 147 -160 • 

20. A. M. Lister, Fundamentals .2!. Operating Systems, (The 
Macmillan Press, Second Edition 1979). 

21. P. J. Denning, 'Virtual Memory', Computing Suryeys, 2, 
(1970) 153-189. 

22. J. S. Liptay, 'Structural Aspects of the System/360 Model 
85 - The Cache', lßH Systems Journal, 7 (1968) 15-21. 

23. J. O. Murphy and R. M. Wade, 'The IBM 360/195', 
Datamation, (April 1970) 72-79. 

24. R. N; Ibbett and M. A. Husband, 'The MU5 Name Store', 
Computer Journal, 20 (1977) 227-231. 

25. S. H. Lavington, G. Thomas and D. B. G. Edwards, 'The MU5 
Multicomputer Communication System', ~. lEü., C-26 
(1977) 19-28. 

26. D. J. Kinniment and J. V. Woods, 'Synchronisation and 
Arbitration Circuits in Digital Systems', ~. ~, 123 
(1976) 961-966. 

27. C. V. Ramamoorthy and H. I. Li, 'Pipeline Architecture', 
Computing Suryeys, 9 (1977) 61-102. 



References 167 

28. N. A. Yannacopoulos, R. N. Ibbett and R. W. HOlgate, 
'Performance Measurements of the MU5 Primary Instruction 
Pipeline', in Information Processing ll. (North Holland, 
Amsterdam, 1977). 

29. W. J. Watson, 'The TI ASC - A Highly Modular and Flexible 
Super Computer Architecture',~ ~,QQn!. ~., 41 
(1972) 221-228. 

30. M. J. Flynn and P. R. Low, 'The IBM System/360 Model 91: 
Some Remarks on System Development', laM Journal ~ a~ 
.Il, 11 (1971) 2-7. 

31. R. M. Tomasulo, 'An Efficient Algorithm for Exploiting 
Multiple Arithmetic Units', laM Journal ~ a ~.Il, 11 
(1971) 25-33. 

32. D. W. Anderson, F. J. Sparacio and R. M. Tomasulo, 'The 
IBM System/360 Model 91: Machine Philosophy and 
Instruction Handling', laM Journal ~ a ~.Il, 11 (1971) 
8-24. 

33. 'Control Data 7600 / CYBER 70 Model 76 Computer Systems -
Hardware Reference Manual' (Control Data Corporation, St. 
Paul, Minnesota, 1977). 

34. R. M. Russell, 'The CRAY-1 Computer 
COmmunications ~~ j&M, 21 (1978) 63-72. 

System' , 

35. M. J. Flynn, 'Trends and 
Organisation' , in Information 
Holland, Amsterdam, 1974). 

Problems in Computer 
Processing 1! (North 

36. R. W. HOlgate and R. N. Ibbett, 'An Analysis of 
. Instruction Fetching Strategies in Pipelined Computers', 
~. ~, C-29 (1980) 325-329. 

37. J. B.· Gosling, Design.S2!. Arithmetic .lln.1.ll ~ Digital 
Computers, (The Macmillan Press, 1980). 

38. P. M. Johnson, 'An Introduction to Vector Processing', 
Computer Design (Feb. 1978) 89-97. 

39. R. W. Hockney and C. R. Jesshope, Parallel Computers, 
(Adam Hilger, Bristol, 1981). 

40. M. J. Flynn, 'Some Computer Organisations and their 
Effectiveness' , ~. ~, C-21 (1972) 948-960. 



168 The Architecture of High Performance Computers 

41. P. C. Capon, R. N. Ibbett and C. R. C. B. Parker, 'The 
Implementation of Record Processing in MU5' , lEE 
Conference Proceedings No. 121 (London, 1974). 

42. R. G. Hintz and D. P. Tate. 'Control Data STAR-l00 
Processor Design', COMPCON '72 Digest (1972) 1-4. 

43. N. Lincoln, 'A Safari Through the Control Data STAR-100 
with Gun and Camera' , ~, National Computer Conference 
(1978). 

44. K. E. Iverson, A Programming Language, (Wiley, New York, 
1962) • 

45. 'Control Data CYBER 200 Model 205 Computer System -
Hardware Reference Manual', (Control Data Corporation, 
St. Paul, Minnesota, 1981). 



Index 

Addition 4, 65, 96, 106 
APL 145 
Asynchronous timing 54 
Atlas 2, 13, 26 29 

B-lines 1, 13 
Block transfer unit 46 
B-store 13 
Burroughs B5500 16 

Cache store 33 
CDC 6600 2, 7, 28, 77, 95 
CDC 7600 7, 28, 80, 104 
CFA programs 23 
Chaining 119 
Common data bus 67 
Concurrency 3 95 
Control point 60 89 
Control transfers 59, 75 79, 83, 89, 98 
Control vector 145 
CRAY-1 87, 112, 161 
Current page registers 44, 151 
CYBER 205 29, 80, 146 

DEC PDP-10 12, 23, 33 
Descriptor 21, 127 
Division 98, 107, 117, 149 
Dope vectors 134 

ECL 3, 56, 146 
ECLIPSE 15 
Extracodes 14 
Extra Name Base 

Fixed-head disc 
Floating-point 
Floating-point 
Function queue 

21 

46 
arithmetic 26, 62, 68, 97, 106, 116 
formats 64, 97, 117, 157 

135 

Gather operations 161 



Index 

IBM System/360 10, 33, 67, 72 
IBM System/370 12, 35 
ICL 2900 12, 126 
Indexed list operations 161 
Instruction dependencies 99, 108, 150 
Instruction hold-ups 58 
Instruction pre-fetching 72, 80, 84 
Interleaving 26 
ISPS 23 

Jump trace 85, 92 

Loop catching 72, 76, 79, 80, 85 

Mark 
Mercury 1, 26 
MU5 3, 17, 37, 49, 82, 126 
MU5/2 23 
MU5/3 23 
MU5 Exchange 44 
MU5 Instruction Buffer Unit 50, 60, 82 
MULTICS 2, 14 
Multiplication 66, 98, 107, 117, 149, 155 

Name Base 21 
Name Store 5, 18, 37, 50 

One-address systems 12, 22 
One-level store 14, 30, 44 
Operand Buffer System 40, 129, 135 

Page address registers 31 
Paging 14, 29, 136, 145, 155 
PDP-11 15, 44 
Performance 43, 61, 91, 110, 121, 161 
Peripheral processors 10 
Pipeline 6, 49 
Pipeline delay chain 53 
Platters 3, 37 
Population count 107, 11p 
Primary Operand Unit 37, 49 

Read-after-write 58, 67 
Read flags 101 
Real address 14, 30, 51 
Register file 147 
Reverse operations 19 
Reverse Polish 16 

Scalar product loop 67, 123, 127, 158 

171 



172 The Architecture of High Performance Computers 

Scatter operations 161 
Score board 9, 95, 99 
Scratch pad 9, 96, 105 
Secondary Operand Unit 40, 128 
Segmentation 14, 21, 37 
Shortstopping 149 
Sparse vectors 158 
Stack Front 21, 56 
Stacking machine 16, 18 
STAR-100 33, 80, 142 
Store-to-store orders 158 
Stretch 2 
String operations 136 
Synchronous timing 54 

Texas Instruments ASC 62 
Three-address systems 7, 22 
Triadic operations 157 
Two-address systems 10, 22 

Vector processing 62, 112, 126, 142, 152 
Vector Parameter File 63 
Virtual address 12, 14, 30, 51, 145, 151 
V-store 15 

Wichmann benchmark 23 

X register access control 108, 150 

Z8000 15 
Zero-address systems 51, 22 




