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Renoir a m' a dit: Quand j' ai arrange un 
bouquet pour Ie peintre je m' arrete sur 

la cote que je n' avais pas prevu. 

(Renoir told me: When I have arranged a 
bouquet for the purpose of painting it, I 
always turn it to the side I did not plan) 

Henri Matisse, Jazz 

Once in awhile you get shone the light 
in the strangest of places if you look at 

it right. 

The Greatful Dead, Scarlet Begonias 



Preface 

The last decade has seen an explosion in our understanding 
of how bacterial pathogens trick, cajole, usurp and parasitize 
their various hosts. This renaissance is due to the convergence 
of molecular and cellular techniques with the power of 
microbial genetics. The purpose of this volume is to introduce 
recent advances in understanding selected systems chosen 
from both plant and animal hosts of bacterial pathogens. This 
somewhat nonobvious choice of topics was spurred by the 
recent findings, detailed by several conributors to this volume, 
of common systems used to secrete virulence factors from 
pathogens of both plants and animals. These serendipitous 
findings underscored the importance of basic research 
approaches to parallel problems in biology. More importantly, 
they brought together investigators who may not have 
otherwise become conversant with each other's experimental 
systems. I, for one, find the kinds of synergism reflected in a 
volume of this sort to be one of the most pleasant aspects of 
science and hope that the reader, whether a newcomer to 
the field or an expert, can find a new slant to old problems in 
the reviews contained h,E:lre. It was, however, necessary to 
limit volume length, and this has forced the exclusion of a 
number of fascinating bacterial pathosystems. The ones 
chosen for inclusion are meant to reflect a range of pathogen 
life strategies, and authors were encouraged to speculate 
where appropriate on how we might discover more common 
strategies of bacterial pathogenesis involving plants and 
animals. The hope, of course, is that by understanding both 
the commonalities and idiosyncracies of various pathogenesis 
modes, we may come to better understand host responses 
and resistance mechanisms. 

J. DANGL 
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Large numbers of microorganisms flourish on leaves, despite the fact that leaf 
surfaces are subject to rapid and drastic fluctuations in temperature, radiation and 
humidity. The bacteria that are found on aerial leaf surfaces are distinct from 
bacteria in other habitats (JENSEN 1971; STOUT 1960a,b), including the nearby soil, 
suggesting that they have particular adaptations allowing them to exploit 
epiphytic environments. Few studies have tested whether bacteria that are not 
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2 G.A. Beattie and S.E. Lindow 

typically found on leaf surfaces can exploit the leaf surface habitat as well as those 
that are commonly found there. In one such study, O'BRIEN and LINDOW (1989) 
found that while strains of Salmonella, Escherichia, and Aeromonas species could 
achieve large population sizes on leaves kept continuously wet under controlled 
conditions, their populations decreased dramatically upon drying of the leaf 
surface. In contrast, common epiphytic bacterial species such as Pseudomonas 
syringae maintained large population sizes on dry leaf surfaces. Although such 
differences in epiphytic behavior can be demonstrated, the traits that contribute 
to the unique success of epiphytes in the phyllosphere are poorly understood. 

In natural environments, epiphytic bacteria can grow very rapidly and indi­
vidual species can establish large population sizes, often greater than 107 cells per 
gram of leaf. Although many epiphytes can affect plant health under suitable 
conditions, such as by inciting disease or frost injury, many have no known 
influence under any conditions. It has long been recognized that phytopathogenic 
bacteria can develop large populations in the absence of disease (reviewed in 
HENIS and BASHAN 1986; HIRANO and UPPER 1983). The fact that large epiphytic 
populations contribute to an increased probability of disease incidence has only 
recently been demonstrated (reviewed in HIRANO and UPPER 1983, 1990). The 
existence of such a relationship indicates that knowledge of the factors 
contributing to the successful establishment and maintainance of large epiphytic 
populations may be critical to both epidemiological predictions and strategies for 
disease and frost injury control. 

For the purposes of this review, epiphytic fitness is defined as the ability of 
bacteria to grow and/or survive on leaves exposed to a given environmental 
regime. Fitness is therefore context-dependent, since it will depend on the 
environment in which it is being assessed. Thus, we will primarily discuss traits 
which may individually influence the behavior of bacteria on leaves in a particular 
environmental context, and only briefly consider fitness in a broader context, in 
which changes in the environment may require changes in the expression of 
distinct traits. We therefore will be focusing on traits that affect relatively short­
term behavior rather than persistence ir:an evolutionary time frame. Although the 
epiphytic fitness traits discussed are related to the unique features of the leaf 
surface habitat, these traits may not confer a specific ability to survive only on leaf 
surfaces. For example, while motility may be advantageous to epiphytic bacteria 
in their acquisition of protected sites and resources, this trait could also be 
advantageous when the bacteria are in water or soil. 

The most common approach to link bacterial traits with epiphytic fitness has 
been guesswork. In this approach, specific traits are predicted to affect epiphytic 
fitness, then correlations are drawn between the presence of this trait and 
specific epiphytic behavior. Often, such correlations are made after examining 
unrelated strains. Rigorous testing, however, requires comparisons of isogenic 
strains, which are identical in all traits except the one being tested. Such isogenic 
strains could be constructed either by gene inactivation or by transferring the 
genes conferring the phenotype of interest into a recipient strain, then comparing 
the behavior of the constructed strain to its parental strain. Unfortunately, such 
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rigorous tests have not yet been performed on many phenotypes hypothesized to 
be involved in epiphytic fitness. It should be remembered that anyone gene or 
phenotype is unlikely to be sufficient to confer fitness to an epiphytic bacterium 
in a given situation, but rather it may be one of several necessary contributors to 
fitness. In such a case, inactivation of the trait in a strain may reduce fitness 
significantly, but its transfer to another strain not normally possessing this trait 
would not necessarily provide a significant increase in fitness. 

2 Colonization Ability 

2.1 Motility and Chemotaxis 

While several studies have demonstrated an important role of motility in the 
invasion of plants by phytopathogenic bacteria (BAYOT and RIES 1986; HATIERMANN 

and RIES 1989; PANOPOULOS and SCHROTH 1974; RAYMUNDO and RIES 1981), its role as 
an epiphytic fitness determinant has been evaluated only recently. If cells multiply 
or survive at particular sites on the surface of the leaf, then the ability to move to 
such sites would be an important factor in bacterial growth and survival. To test 
this concept, HAEFELE and LINDOW (1987) evaluated the behavior of nonmotile 
(Mor) mutants of P. syringae on leaves incubated under various moisture 
regimes. More Mot+ cells than -Mor cells moved to distal parts of the leaf or to 
different leaves of plants exposed to moist conditions. Consequently, at the 
population level, motility should increase the potential for colonization by 
increasing access to potentially colonizable sites. This was confirmed when the 
strains were inoculated singly onto leaves; the population sizes of the Mot+ strain 
became significantly larger than those of the Mor strain after an extended 
incubation under moist conditions (> 5 days). After coinoculation of the two 
strains, the Moe strain grew at the expense of the Mor strain, achieving a higher 
population size after 2 days of incubatii)n. Motility may therefore confer an 
advantage in the competition for sites. 

HAEFELE and LINDOW (1987) also demonstrated that motility allows bacteria to 
attain sites that may be protected from environmental stresses. After large 
populations of the Mot+ and the Mor strains had developed under moist 
conditions, the Mor strain experienced a larger and faster decrease in its 
population size than the parental strain when the plants were transferred to dry 
conditions. Furthermore, after growth of Mot+ and Mor strains on leaf surfaces 
under moist conditions, a higher fraction of Mor than Mot+ cells were killed by 
subsequent UV irradiation of leaves, although they exhibited identical sensitivities 
to UV irradiation in vitro. KENNEDY and ERCOLANI (1978) demonstrated a similar 
phenomenon with a Mor mutant of P. syringae pv. g/ycinea. Active acquisition of 
"protected" sites is the most likely reason that Mot+ cells survived better than 
Mor cells on plant surfaces. At these sites, the cells are able to avoid exposure to 
environmental stresses such as desiccation and UV radiation. 
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The fact that motile and nonmotile bacteria exhibit substantially different 
behavior indicates that motility can occur on leaf surfaces. However, the role of 
chemotaxis rather than motility per se remains unclear. Chemotaxis toward plant 
extracts has been demonstrated in vitro (CHET et al. 1973; CUPPELS 1988; KLOPMEYER 
and RIES 1987), but few studies have examined it in planta (MULREAN and SCHROTH 
1979). Bacteria appear to occupy distinct sites on leaf surfaces (DE CLEENE 1989; 
LEBEN 1965; LEBENetal. 1970; MEwand VERA CRUZ 1986; MEW et al. 1984; Roosand 
HATTINGH 1983; SCHNEIDER and GROGAN 1977). It would seem advantageous to a 
bacterium to move toward these sites in a directed rather than a random manner. 
However, the existence of nutrient source sites forming gradients, or of chemical 
signals that facilitate bacterial movement to sites favoring bacterial survival, is 
unknown. Alternatively, the ability to move in a nondirected fashion may enable 
bacteria to explore a larger fraction of the leaf surface, thereby increasing their 
chance of encountering sites where survival might be facilitated. 

2.2 Adhesion 

Once a bacterium reaches a site favorable for growth or survival, the ability to 
resist removal may be a selective advantage. The strength of the selective 
pressure depends on the strength of the removal pressure. It is clear that rain, 
wind, and temperature-driven convection currents can remove bacteria from leaf 
surfaces in a plant canopy (BuTTERWORTH and MCCARTNEY 1991; LINDEMANN and 
UPPER 1985), indicating that some selective pressure exists. However, due to the 
large variability in the environmental conditions within a plant canopy, and even on 
a single leaf (BURRAGE 1971, 1976), it is not clear what proportion of epiphytic 
bacterial cells in a plant canopy is subject to such pressures. Bacteria have two 
general mechanisms to maintain close proximity to a surface: association and 
adhesion. Association involves localization, via motility or chemotaxis, and possi­
bly weak, reversible, nonspecific attachment, mainly via electrical charges. 
Adhesion is a stable, irreversible attacl::ment mediated by specific attachment 
structures, such as fimbriae, cellulose fibrils or extracellular polysaccharides 
(EPS). It has been hypothesized that bacteria employ specific adhesins in 
environments where there are strong physical shear forces, such as on mucosal 
surfaces in the small intestine, but rely simply on association with surfaces where 
there are few shear forces, such as on the skin (ARP 1988). Due to the improb­
ability of continually strong shear forces on most leaf surfaces, bacterial adhe­
rence probably does not offer a strong selective advantage, especially if the 
bacteria can multiply at a rate fast enough to compensate for the removal that 
does occur, or can occupy sites which offer some protection from the existing 
removal forces. 

Bacteria have been demonstrated to attach to specific surface sites. Micro­
scopic examinations showed that P. syringae pv. phaseolicola cells adhered 
preferentially to the stomata of bean leaves whereas P. syringae pv. syringae 
cells were found uniformly distributed over the bean leaf surface (NURMIAHO-
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LASSILA et al. 1991; ROMANTSCHUK 1992). Also. Xanthomonas campestris pv. 
hyacinthi cells. as well as fimbriae from those cells. attached preferentially to the 
stomata of hyacinths (VAN DOORN et al. 1991). Thus. adhesion may playa role in 
localizing epiphytic bacteria to specific sites on the leaf surface. which may be 
important for meeting specific growth or survival requirements or for invasion by 
particular phytopathogens. 

Many epiphytic bacteria are able to adhere to plant surfaces in in vitro assays 
and in fact elaborate structures that permit attachment. Pili and/or fimbriae have 
been identified on at least some strains of both P. syringae and X. campestris 
(ROMANTSCHUK 1992; STEMMER and SEQUEIRA 1987; and VAN DOORN et al. 1991). 
Nonpiliated mutants of various P. syringae pathovars were greatly reduced in 
their adherence to leaf surfaces. and super-piliated strains attached more 
efficiently in in vitro assays (MILLS et al. 1991; NURMIAHO-LASSILA et al. 1991; 
ROMANTSCHUK and BAMFORD 1986). While these results demonstrate that pili can 
mediate adhesion to leaf surfaces. the role of pili in epiphytic fitness has not been 
tested. In addition to pili and/or fimbriae. most epiphytic bacteria can produce 
EPS. which can function in attaching bacterial cells to surfaces. However. 
evaluation of EPS-mediated adhesion in epiphytic fitness is extremely difficult 
due to the multiple functions EPS may have in epiphytic growth and survival. 

3 Extracellular Polysaccharide Production 

There is considerable evidence that many epiphytic bacteria are surrounded by a 
layer of EPS while on leaf surfaces. Scanning electron micrographs reveal strands 
of amorphous material that emanate from and between bacterial cells on leaves 
(DICKINSON 1986; HATTINGH et al. 1986; TIMMER et al. 1987). These strands probably 
represent the dehydrated remnants of a more complete matrix which originally 
surrounded the cell. This matrix is presumably composed of one or more types of 
EPS molecules. Plant pathogenic bacteria produce a range of EPS types in culture. 
most commonly levan and various alginates (FETT et al. 1986; GROSS and RUDOLPH 
1987; GROSS et al. 1992)' but appear to produce a distinct range in planta (OSMAN 
et al. 1986). EPS may not only anchor cells to the leaf surface (TAKAHASHI and DOKE 
1984). prevent cells from desiccation (WILSON et al. 1965), and protect cells from 
damage by UV radiation (LEACH et al. 1957), but may also modify the physical and 
chemical environment around the cell to one more favorable for bacterial growth 
or survival. The matrix hypothesized to exist on leaf surfaces may have many 
analogies to that of biofilms in which many aquatic micro-organisms are found. 
Biofilms have ion-exchange capabilities which can concentrate nutrients from 
dilute sources in the vicinity of the cell (COSTERTON et al. 1987). The biofilm can also 
provide protection from predators and shield cells from the action of lytic 
enzymes. antibiotics. and other inhibitory compounds (ANWAR et al. 1989; 
CALDWELL and LAWRENCE 1986). The production of such a matrix by epiphytic 
bacteria could be highly advantageous for the cell. 
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Studies on the involvement of EPS production in epiphytic fitness have 
provided equivocal results. In one study, LINDOW et al. (1993) identified P. syringae 
transposon mutants that were altered in EPS production in culture and were 
reduced in epiphytic fitness. In a second study, Haefele and Lindow (unpublished) 
identified P. syringae chemical mutants that were EPS-deficient in culture but 
were identical to the parental strain in their epiphytic growth and survival. 
Interpreting the results of these experiments can be complicated for several 
reasons. First, pleiotropic alterations commonly occur with alterations in EPS 
production (BRUMBLEY and DENNY 1990; DE CREcy-LAGARD et al. 1990; TANG et al. 
1991). For example, of nine EPS-altered epiphytic fitness mutants identified by 
LINDOW et al. (1993), five expressed pleiotropic alterations. Additional alterations 
were not identified in the remaining four, but the possibility exists that they were 
altered in unexamined phenotypes. Second, strains that are EPS-deficient in 
culture may produce EPS on plants. Previous studies have identified mutants that 
were EPS-deficient on rich media but produced EPS in planta (COPLIN and COOK 
1990). Third, bacterial mutants can produce not only altered amounts of EPS, but 
also altered types. It is plausible that various types of EPS molecules play distinct 
roles in the phyllosphere. Such qualitative changes have rarely been evaluated in 
culture, much less in planta. Due to the complex nature of EPS and the regulation 
of its production in bacteria, we have much to learn before we can determine the 
role of EPS production in the growth or survival of epiphytes. 

4 Stress Tolerance 

4.1 Osmotolerance 

If solutes are abundant in the free water on a leaf surface, they could become 
sufficiently concentrated upon drying to stress the resident bacteria. An exten­
sive list of organic and inorganic substances have been identified in leaf leachates 
(TUKEY 1970); however, useful quantitative data of their concentrations on leaf 
surfaces are not available. Skowlund and Lindow (unpublished) produced 
transposon mutants of a P. syringae strain that were reduced in their osmo­
tolerance in culture. The mutants grew similarly to the parental strain both in 
media with low osmolarities and on moist leaves. When colonized plants were 
transferred to dry conditions, in about half of the experiments the mutants expe­
rienced similar population decreases to the parental strain, and in the other half 
they experienced larger population decreases. These results suggest that os­
motic conditions on leaf surfaces may be highly variable. In another study, LINDOW 
et al. (1993) identified 14 transposon mutants of P. syringae that were reduced in 
their osmotolerance in culture and in their ability to survive on dry leaves. 
Although seven of these mutants carried additional phenotypic alterations, the 
behavior of the remaining seven suggests that osmotolerance can contribute to 
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bacterial sUNival on dry leaves. Lastly, a locus was identified in P. syringae that 
can function in the production of periplasmic glucans (LOUBENS et al. 1992; 
MUKHOPADHYAY et al. 1988), which are compounds that have been shown to confer 
osmotolerance. Inactivation of this locus resulted in a reduced ability to grow in 
planta (MiLLS et al. 1985). Thus, several studies indicate that osmotolerance can 
contribute to epiphytic growth and sUNival. However, the fact that preexposure of 
cells to a high osmolarity medium did not increase epiphytic fitness (WILSON and 
LINDOW 1993) suggests that induction of osmotolerance on leaves may require 
more complex signals than simply high osmoticum. 

4.2 Matric Stress Tolerance 

Osmotic stress is only one component of the total water stress that a bacterium 
may encounter on a leaf surface. The total leaf water potential is a quantitative 
term reflecting water availability. It is a sum of the osmotic potential, which is due 
to the interaction of water with the available solutes (molecules that can 
penetrate a membrane), and the matric potential, which is due to the interaction 
of water with the leaf surface (or molecules that cannot penetrate a membrane) 
(SOROKER 1990). Matric potential has been studied primarily in soils, where it is 
strongly influenced by the soil texture and structure (GRIFFIN 1981). Similarly, the 
leaf matric potential is probably strongly related to the texture and structure of 
the leaf surface. Some studies have demonstrated that the stress imposed by a 
low matric potential has a stronger influence on a bacterial cell than an equivalent 
osmotic potential (McANENEY et al. 1982; RATIRAY et al. 1992). For example, in 
cultures grown at various water potentials, Escherichia coli cells sUNived to 
almost -40 bars under salt stress, but were nonrecoverable at -8 bars under 
matric stress (McANENEY et al. 1982). The mechanisms of water stress tolerance 
may explain this phenomenon. Bacteria tend to survive osmotic stress by a 
combination of accumulating solutes, via., an influx through the membrane, and 
synthesizing compatible solutes, such· as glutamate, trehalose, or glucan 
(reviewed in CSONKA and HANSON 1991). Bacteria can sUNive matric stress only by 
synthesizing solutes or EPS (ROBERSON and FIRESTONE 1992; SOROKER 1990); 
therefore, survival requires a greater input of energy. Functionally, matric stress 
can be imposed in culture by adding a compound that cannot be transported 
through the bacterial membrane, such as a large polymer like polyethylene glycol 
(PEG) (McANENENY et al. 1982). Beattie and Lindow (unpublished) identified a 
transposon mutant of P. syringae that was reduced in its tolerance of matric 
stress, as determined by its reduced growth in the presence of PEG, and was 
reduced in its ability to survive on leaves under low relative humidity. These 
results demonstrate that differences in matric stress tolerance can be identified 
in epiphytic bacteria, and that matric stress tolerance may be epiphytically advan­
tageous. However, this mutant was also reduced in its osmotolerance, as 
determined by its reduced growth in the presence of high salt concentrations. 
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This pleiotropy suggests that the mechanistic basis of matric stress tolerance 
may be explicitly tied to that of osmotolerance, thus complicating the identi­
fication of the quantitative contribution of each to epiphytic fitness. 

The ability to survive on dry leaves probably is one of the defining charac­
teristics of epiphytic versus saprophytic bacteria, since strains of P. syringae, 
Aeromonas, Escherichia, and Salmonella all grew equally well on wet leaves, but 
P. syringae survived significantly better on dry leaves (O'BRIEN and LINDOW 1989). 
Although the production of highly hygroscopic polysaccharides may help prevent 
desiccation, the primary survival strategy of epiphytes is probably localization in 
crevices that retain water when the leaf surface dries. There is some evidence 
supporting this hypothesis. First, surface populations of P. syringae, i.e., those in 
leaf sonicates, comprised a much larger proportion of the total bacterial popu­
lation in dry leaves than in wet leaves, indicating a poorer survival rate in sites 
allowing bacterial release by sonication than in sites preventing it (O'BRIEN and 
LINDOW 1989). Secondly, populations of two pathovars of X. campestris in leaf 
washings were found to decrease over time on field-grown tomato plants, while 
populations in leaf homogenates remained constant or increased (TIMMER et al. 
1987). 

4.3 Tolerance to UV and Visible Radiation 

The phylloplane is exposed to substantially higher amounts of electromagnetic 
radiation than most other microbial habitats. Solar rays reaching the earth's 
surface include UV, visible, and infrared radiation. Wavelengths in the far-UV 
range « 300 nm) are known to be among the most lethal to bacteria, primarily due 
to their damaging effects on DNA; however, very little far-UV radiation actually 
reaches the earth's surface. Thus, tolerance to radiation in the near-UV range 
(300-400 nm) is likely to be of greater importance to epiphytic bacteria. The 
mechanisms by which near-UV wavelengths kill cells are not known, but are 
known not to be via a direct effect on ce~ular DNA. Laboratory studies examining 
factors that may contribute to UV tolerance in epiphytic bacteria almost uni­
versally assay using far-UV radiation (usually 254 nm). At this assay wavelength, 
the recA gene has been found to contribute to UV tolerance. The recA gene, 
which is involved in the repair of DNA damage, has been cloned from a number 
of epiphytic bacteria including P. syringae (HICKMAN et al. 1987). The elimination of 
the recA function in such strains decreased their tolerance to UV radiation in 
culture by several orders of magnitude (WILLIS et al. 1988). Similarly, elimination of 
the production of a siderophore, a compound known to function as a UV 
chromophore (TORRES et al. 1986), decreased the tolerance of a P. syringae strain 
to UV radiation in culture (LOPER and LINDOW 1987). On bean leaves, both the 
siderophore-deficient mutant and its parental were equally sensitive to UV 
radiation; however, the role of the siderophore in UV tolerance remains unclear 
since no evidence was found for siderophore production by the parental strain on 
leaves. Lastly, UV absorption by crude exudate from X. campestris pv. phaseoli 
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cultures indicates that it could provide protection against UV radiation (LEACH et al. 
1957), but direct evidence for a role for EPS in UV tolerance has not been 
demonstrated. 

Visible light can also be lethal to bacteria, usually by reacting with a photo­
sensitizing compound (any organic molecule able to absorb light of wavelengths 
of 320-900 nm) to generate highly reactive oxygen derivatives. An effective 
mechanism of tolerance in bacteria is the production of protective compounds, 
the most significant of which are carotenoids and other pigments. These com­
pounds function by neutralizing the reactive oxygen derivatives. Several studies 
have found that a majority of the bacteria isolated from leaf surfaces produce 
pigments in culture (AUSTIN and GOODFELLOW 1978; STOUT 1960a,b). When genes 
encoding pigment production were transferred from the epiphyte Erwinia herbi­
cola into E. coli, the constructed strain showed an increased tolerance to near-UV 
radiation in culture (TUVESON et al. 1988). Melanin has been proposed to offer 
protection from UV and visible light in fungi (DICKINSON 1986). The production of 
melanoid-type pigments in some epiphytic bacteria (BASU 1974) leaves open the 
possibility that it serves a similar role in bacteria. 

If bacteria are commonly located in crevices on the leaf surface, as is 
observed by scanning electron microscopy (BLAKEMAN 1985; DE CLEENE 1989; Roos 
and HATTINGH 1983). then they may survive UV and visible radiation by simply 
avoiding it. BARNES (1965) demonstrated that exposure of a colonized soybean leaf 
surface to UV radiation resulted in an initial decrease in the recoverable bacteria in 
leaf homogenates, as expected, since the bacteria were sensitive to UV 
irradiation in culture. However, after 15 min, continued exposure to UV radiation 
had no further effect on the recoverable population. It was hypothesized that the 
surviving cells (approximately 104 bacteria per 12 mm leaf disk) were those in the 
intercellular spaces and other sites not exposed to the incident UV radiation. 
SZTEJNBERG and BLAKEMAN (1973) observed a similar phenomenon on beetroot 
plants. 

4.4 Production of Protective Enzymes 

The probable abundance of toxic oxygen derivatives and plant-derived anti­
microbial substances (BLAKEMAN and ATKINSON 1981) must make the phylloplane a 
relatively hazardous environment for bacteria. Consequently, epiphytic bacteria 
must have many methods of self-protection. For example, almost all species of 
bacteria that are good epiphytes, including all Xanthomonas and Erwinia spp. and 
all P. syringae pathovars, are oxidase-negative. Cytochrome oxidase has been 
hypothesized to be highly detrimental to epiphytic bacteria due to its involvement 
in the conversion of plant-produced phenols to bactericidal or bacteriostatic 
quinones (MOUSTAFA and WHITTENBURY 1970). The absence of oxidase therefore 
may be a strong requirement for epiphytic survival. Catalase may also be 
important in the phyllosphere, primarily for detoxifying the high amounts of 
hydrogen peroxide on plant surfaces. All aerobic bacteria produce catalase; 



10 G.A. Beattie and S.E. Lindow 

however, they differ in their induction, activity, and number of catalase isozymes 
(KATSUWON and ANDERSON 1992; MOUSTAFA and WHITTENBURY 1970). While catalase 
activity has not been examined in the phyllosphere, ANDERSON et al. (1992) 
demonstrated that catalase activity increased and catalase isozymes were 
differentially expressed in Pseudomonas putida upon contact with root surfaces. 
The presence of a high number of antimicrobial substances, especially phenolic 
compounds, in leaf exudates (BLAKEMAN and ATKINSON 1981) could make the 
possession of detoxification enzymes epiphytically advantageous; however, 
such enzymes have not been identified. 

5 Competition for Resources 

Bacteria of different species often occur together in mixtures on leaves. If these 
species occupy the same microsites, then the survival of anyone depends on its 
ability to successfully compete for shared resources, and/or its ability to coexist, 
by utilizing resources distinct from the others. A wide array of compounds have 
been found in leaf exudates, including a large number of amino acids, 
polysaccharides and organic acids (MORGAN and TUKEY 1964; WEIBULL et al. 1990). 
Thus, a broad nutrient utilization profile, which is common in epiphytic bacteria 
(MORRIS and ROUSE 1985), should increase the potential for an organism to survive 
in the presence of others. Furthermore, the sole ability to utilize an abundant 
resource should be highly advantageous to an organism, as long as other 
resources are not limiting. For example, similar to studies that have been done in 
the rhizosphere (SAVKA and FARRAND 1993), Wilson and Lindow (unpublished) have 
found that the ability of a strain to utilize mannopine allowed this strain to 
establish much larger populations than a non-mannopine catabolizing strain on 
mannopine-producing plants. Also, a P. putida strain that was able to catabolize 
salicylate achieved larger populations than a non-salicylate catabolizing strain on 
leaves in the presence of exogenously:applied salicylate (Wilson and Lindow, 
unpublished). These results demonstrate that a unique ability to utilize the 
nutrients that are available can be epiphytically advantageous. 

Competition for a shared resource also occurs among epiphytes. Studies 
using bacterial agents to control plant disease or frost injury have demonstrated 
that colonization by one bacterial strain can exclude subsequent colonization by 
another (e.g., LINDOW et al. 1983; THOMSON et al. 1976). The strength of the 
competition between two strains may depend on the degree of overlap in the 
resource needs of the strains (LINDOW 1985a, 1987; Wilson and Lindow 1991, 
unpublished) and on the availability of those resources. Thus, a strain may have a 
competitive advantage if it is able to grow at a faster rate or at lower nutrient 
concentrations than its competitors, or if it has a superior ability to acquire 
nutrients, such as an ability to actively acquire iron by producing siderophores. 
Unfortunately, the contribution of these various traits to the ability of an organism 
to compete for resources in the phyllosphere has not been directly examined. 
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5.1 Siderophores 

Microorganisms require Fe3+ for growth (NEILANDS and LEONG 1986). While iron is 
abundant in nature, only low amounts of ionic Fe3+ are thought to be available to 
microorganisms, due to the propensity of iron to form insoluble oxidation 
products under normal environmental conditions (LINDSAY and SCHWAB 1982; 
RAYMOND and CARRANO 1979). Siderophores are low molecular weight compounds 
with high affinity for iron that are excreted by microorganisms. When their 
production is coupled with a specific uptake system, siderophores allow microbial 
acquisition of iron in environments where the free element is in low 
concentrations (NEILANDS 1981). The concentration of iron in the microhabitats 
exploited by bacteria on leaves is unknown; therefore, it is unclear whether 
siderophores are a necessary fitness factor for acquisition of iron, and if so, 
whether their production confers a competitive advantage over non-siderophore 
producing strains. 

LOPER and LINDOW (1987) conducted a study to determine whether 
siderophores were required for the colonization of leaf surfaces. Chemical 
mutants of a P. syringae strain were identified that lacked the ability to produce 
a siderophore under iron-limiting conditions in culture. The siderophore-deficient 
mutants grew to similar population sizes and produced as many bacterial brown 
spot lesions as the parental strain on bean plants under greenhouse conditions. 
Furthermore, four siderophore-deficient mutants survived as well or better than 
their respective parental strainswhen inoculated onto bean plants under field con­
ditions. Although these results suggest that siderophores were not a necessary 
fitness factor under these growth conditions, it was not known whether the 
parental strain actually produced the siderophore under these conditions. In more 
recent studies, LOPER and LINDOW (1994) observed that a gene required for 
siderophore production was transcribed at a low level on leaves, suggesting that 
at least under some conditions iron may be sufficiently limited in leaf surface 
microsites to induce siderophore production. Whether siderophore production 
contributes to fitness under such conditiGns is still unknown. 

5.2 Antibiotic Production 

If microbes must compete for limiting resources on leaf surfaces, production of a 
biocide such as an antibiotic could improve their competitive ability. Many 
bacteria, including the common epiphytes Erwinia and Pseudomonas spp., 
produce antibiotics or bacteriocins in culture (JENSEN 1971; VIDAVER et al. 1972). 
However, little is known about the production of such compounds in nature. 
BLAKEMAN (1991) reasoned that antibiotic production is probably not important in 
the interactions among microorganisms on leaves due to insufficient nutrient 
levels to support significant antibiotic production. Lack of evidence for a role of 
antibiosis in bacterial antagonism on leaf surfaces supports Blakeman's 
statement. LINDOW (1988) isolated mutants deficient in antibiotic production of 25 
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epiphytic strains known to be highly antagonistic toward a particular P. syringae 
strain on leaves. When they were inoculated prior to the P. syringae strain, the 
antibiotic-deficient mutants and their parental strains were similar in their ability to 
inhibit P. syringae growth on plants in the greenhouse. The mutants also reached 
population sizes similar to their parental strains in the presence of other com­
peting bacteria. Thus, while antibiosis has been demonstrated to be a contributing 
factor to the competitiveness of several bacterial biocontrol agents on roots 
(reviewed in FRAVEL 1988), its contribution to the competitive advantage of a 
producing strain over a non producing strain on leaves has not yet been 
demonstrated. 

6 Ice Nucleation Activity 

Some pathogenic and nonpathogenic bacteria can cause ice formation (LINDOW 
1983, 1986; LINDOW et al. 1978; MAKI and WILLOUGHBY 1978; MAKI et al. 1974). Ice 
formation in sensitive plants can cause injury (LINDOW 1983; LINDOW et al. 1982) 
and may facilitate the entry of phytopathogenic bacteria into plants. SOLE and 
SEEMOLLER (1987) have therefore suggested that ice nucleation is a temperature­
conditional virulence factor. Whereas maintaining the ability to produce ice nuclei 
must have a metabolic and genetic cost, the production of ice nuclei has not been 
found to confer any measurable benefit to the cells. LINDEMANN and SUSLOW (1987) 
showed that Ice- mutants of P. syringae and Pseudomonas fluorescens were 
equally competitive with their Ice+ parental strains on plant surfaces. Similarly, 
Ice- mutants of P. syringae grew and survived like the parental strain on all plant 
species tested under moist and dry conditions in the greenhouse (LINDOW 1985a). 
Lastly, Ice- mutants were similar to their parental strains in their ability to survive 
repeated freezing and thawing cycles both in an aqueous environment and on 
leaves (LINDOW 1985b). Therefore, even on plants subjected to freezing 
conditions, ice nucleation activity has not been demonstrated to influence 
epiphytic behavior. 

7 Plant Hormone Production 

Many plant-associated bacteria can produce plant growth hormones (e.g., 
ERNSTSEN et al. 1987; FEn et al. 1987; LOPER and SCHROTH 1986). Gall-forming plant 
pathogens, including P. syringaepv. savastanoi, E. herbicolapv. gypsophilae, and 
Agrobacterium tumefaciens, can produce both auxins and cytokinins and thus 
cause hyperplasia (MANULIS et al. 1991; ROBERTO and KOSUGE 1987; THOMASHOW et 
al. 1984; WEILER and SCHRODER 1987). While such galls might provide refuges for 
the survival of these pathogens, it is unclear whether non-gall-forming bacteria 
actually produce plant growth hormones in nature, and if so, what ecological 
benefit they derive from their production. Exogenous auxins can induce plant-cell-
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wall loosening and membrane leakiness (LEOPOLD and KRIEDEMANN 1975). Thus, 
perhaps auxin production benefits bacteria by improving their habitat via an 
increase in the rate of plant leaching or induction of local anatomical changes 
conducive for growth or survival. 

Efforts focused on elucidating the role of plant growth hormone production in 
epiphytic behavior have focused on 3-indoleacetic acid (1M). Several studies 
indicate that 1M production may contribute to the epiphytic survival of P. syringae 
pv. savastanoi (SILVERSTONE et al. 1993; VARVARO and SURICO 1984). Recently, E. 
herbicola strains have been identified that produce higher quantities of 1M in 
culture than do gall-forming pathogens (CLARK and LINDOW 1989) and achieve large 
population sizes when inoculated onto pear trees (Lindow, unpublished). 
Chemical mutants of one such E. herbicola strain were found that produced 
reduced amounts of IAA in culture. These mutants achieved smaller population 
sizes than the parental strain on pear trees under field conditions (Lindow, 
unpublished), suggesting that 1M production may help condition epiphytic 
fitness in this strain. 

8 Pathogenicity 

The contribution of intercellulargrowth to epiphytic fitness is unclear, especially 
since the dynamics between internal (e.g., substomatal cavities and intercellular 
spaces) and external bacterial populations are so poorly understood. To 
complicate the issue, epiphytic bacteria are frequently functionally defined as 
those that can be removed from above ground plant parts by washing (HIRANO and 
UPPER 1983)' and the representation of populations from internal sites in these 
washings is not known. Numerous studies suggest that surface application of 
pathogens results in internal colonization (e.g., CAFATI and SAETTLER 1980; Roos 
and HATTINGH 1983; STADT and SAETTLEh 1981), proving that there is active 
exchange, at least in the inward direction, between the two populations. If there 
is outward exchange to any extent, then phenotypes that contribute to high 
intercellular populations would directly contribute to higher surface popUlations, 
and thus to the epiphytic fitness. For this reason, several bacterial characteristics 
whose primary influence is on internal population sizes will be discussed here. 

Although many of the bacteria that are isolated from leaf surfaces are 
phytopathogenic, pathogenicity itself is not a requirement for epiphytic growth. 
Epiphytes have been identified that were not pathogenic on any plant examined. 
For example, P. syringae strains Cit7 and TLP2, which were isolated from healthy 
citrus and potato leaves, respectively, were capable of establishing and main­
taining large epiphytic populations but did not produce symptoms on any of 75 
plant species tested (LINDOW 1985b; LINDOW and PANOPOULOS 1988). Also, 
numerous studies have demonstrated that epiphytic plant pathogens are capable 
of growth on nonhost plant species (e.g., ERCOLANI et al. 1974; O'BRIEN and LINDOW 
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1989). And lastly, since 1959 when CROSSE (1959) reported finding high 
populations of P. syringae pv. morsprunorum on healthy cherry leaves, it has been 
demonstrated and accepted that most pathogens are able to grow well on hosts 
without producing diseases symptoms (e.g., LEBEN et al. 1968b; TIMMER et al. 
1987). 

Pathogenicity may not be required for, but it may contribute to, epiphytic 
fitness, since the existence of a pathogenic host relationship correlates well with 
the ability of a pathogen to attain large epiphytic population sizes. Almost without 
exception (RIDE et al. 1978). pathogens have been found to grow to larger 
populations on susceptible than on resistant varieties of the host plant species 
(CAFATI and SAETILER 1980; MCGUIRE et al. 1991; MEW and KENNEDY 1971; STADT and 
SAETILER 1981). Unfortunately, this correlation does not distinguish between the 
possibility that bacterial expression of pathogenicity is causal to abundant 
epiphytic growth, or that a susceptible host provides an environment that is more 
conducive to bacterial multiplication than that of a resistant host. Symptom 
expression, per se, probably does not contribute significantly to an increase in 
population size, at least in the laboratory, since the largest population increases 
after inoculation usually occur before symptoms are visible (KLEMENT et al. 1964; 
LEBEN et al. 1968a; OLIVEIRA et al. 1991; STADT and SAETILER 1981; WYMAN and 
VAN ETIEN 1982). 

An evaluation of the epiphytic behavior of pathogenic-deficient mutants 
(Path-) mutants should indicate whether or not bacterial pathogenicity contributes 
to epiphytic fitness. Pathogenicity is a complex process and probably requires, 
and is influenced by, a large number of bacterial traits. Thus, it should not be 
surprising that most Path- mutants of epiphytic bacterial pathogens are pleio­
tropic, making the identification of causal relationships difficult. For example, 
lemA mutants of P. syringae pv. syringae, agent of bacterial brown spot in beans, 
were deficient not only in the ability to form lesions, but also in their production of 
a phytotoxin and a protease in vitro (WILLIS et al. 1990). While lemA mutants grew 
like the parental strain on bean plants under moist conditions in the greenhouse 
(WILLIS et al. 1990), they grew to 10- to 1:00-fold smaller population sizes on bean 
plants under field conditions (HIRANO et al. 1992). Unfortunately, the pleiotropic 
effects of lemA inactivation make it difficult to identify the specific contribution 
of pathogenicity to epiphytic fitness under field conditions in these mutants. 
Other Path- P. syringae pv. syringae mutants have been identified which are 
similarly able to grow like the parental strain on wet leaves but exhibit reduced 
population sizes on dry leaves (YESSAD et al. 1992). Although it is possible that 
Path- mutants are compromised specifically in their ability to tolerate environ­
mental stresses, there is a more likely explanation for their apparent inability to 
maintain large populations on leaves subjected to environmental stresses. If the 
requirements for bacterial growth are different in internal versus external sites, 
the Path- mutants may have a reduced ability to grow in the internal sites, which 
may offer protection from the environmental stresses imposed under field 
conditions, but may be unaltered in their ability to grow in exposed sites, where 
the majority of growth may occur on wet leaves. 
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The interactions between bacterial pathogens and their plant hosts fall into 
two categories: compatible, in which disease develops, and incompatible, in 
which no disease develops. The incompatible interaction is often correlated with 
the induction of a hypersensitive reaction (HR), characterized by a rapid local 
necrosis after introduction of high numbers of bacteria (> 106 cells/ml) into leaf 
tissue. The majority of characterized Path- mutants of epiphytic bacteria are also 
unable to induce an HR when infiltrated into incompatible plants. These hrp 
mutants (for hypersensitive reaction and pathogenicity; see chapters by Bonas 
and Collmer and Bauer, this volume) are almost uniformly reduced in their ability 
to grow in compatible plants (BERTONI and MiLLS 1987; HUANG et al. 1991; KAMOUN 
and KADO 1990b; LINDGREN et al. 1986; RAHME et al. 1991; SOMLYAI et al. 1986). 
Studies by ATKINSON and BAKER (1987) provide an elegant mechanistic explanation 
for this reduced growth. They showed that the presence of a pathogen in a 
compatible plant is associated with a K+ efflux/W influx exchange across the plant 
plasma membrane. Mutants unable to induce this exchange were reduced in 
their ability to multiply in host tissue, and the strength of the exchange response 
induced by various mutants correlated well with their rate of growth. Further work 
provided evidence for a model in which bacteria trigger an imbalance in the plant 
plasma membrane W gradient, disrupting the normal active uptake of nutrients 
from the intercellularfluid. The resulting nutrient accumulation promotes bacterial 
multiplication, causing higher K+/W exchange rates, further destruction of the W 
gradient, and further nutrient accumulation. Thus, pathogenicity may confer an 
enhanced ability to multiply - in the intercellular spaces of host tissues 
by influencing the pH and nutritional status of the intercellular fluid. Although a 
K+/W exchange also occurs in incompatible interactions, differences in the rate 
and degree of exchange may account for quantitative differences in bacterial 
growth in incompatible versus compatible hosts (ATKINSON and BAKER 1987). The 
role of hrp genes in epiphytic fitness has not been examined. 

8.1 Avirulence Genes 

Avirulence (avr) genes confer an incompatible interaction between plant patho­
gens and plants having corresponding resistance genes (see chapter by 
J. L. Dangl, this volume). Since bacterial growth within the intercellular spaces of 
incompatible leaf tissue is extremely limited (generally less than 100-fold 
population increase in a 48 h period), the effect of introducing an avrgene into a 
pathogen should be to reduce its growth in the intercellular spaces of a plant 
carrying the corresponding resistance gene. This has been observed with avr 
genes from a variety of phytopathogenic bacteria (DEBENER et al. 1991; DONG et al. 
1991; PARKER et al. 1993; RONALD et al. 1992; WANNER et al. 1993; WHALEN et al. 
1991). Similarly, inactivation of an avrgene has been found to result in increased 
growth of the pathogen (CARNEY and DENNY 1990). Thus in general, avrgenes are 
detrimental to intercellular multiplication in hosts carrying the corresponding 
resistance gene. At least one avirulence gene, however, contributes to growth in 
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susceptible hosts. KEARNEY and STASKAWICZ (1990) found that loss of avrBs2 from 
X. campestris pv. vesicatoria resulted in reduced intercellular growth in suscep­
tible plants. These results clearly illustrate the dependence of fitness on environ­
mental context: while the avrBs2 gene was detrimental to bacterial growth in one 
plant cultivar, it was a major contributor to growth in another. The effect of avr 
genes specifically on epiphytic fitness has not been addressed. 

8.2 Phytotoxin Production 

While phytotoxins produced by plant pathogenic bacteria have been investigated 
primarily for their role in pathogenicity, there is increasing ecological interest in 
their contribution to the pathogenic life-style of the bacteria (MITCHELL 1991). The 
majority of characterized toxins produced by epiphytic bacteria are produced by 
pathovars of P. syringae, although toxins from Erwinia amylovora and X. cam­
pestris pathovars have been reported (MITCHELL 1991). Non-toxigenic mutants of 
several P. syringae pathovars have provided good evidence that toxin production 
can affect in planta populations. For example, both coronatine- and tabtoxin­
deficient mutants initially grew like the wild-type strains in leaves, but after 3 or 4 
days their populations decreased while the wild-type populations remained 
constant or continued increasing (BENDER et al. 1987; TURNER and TAHA 1984). 
These results suggest that production of particular toxins is not important for 
establishing large populations, but may be important for maintaining them. 
Although syringomycin has-been proposed to benefit intercellular bacterial 
growth by inducing a K+/W exchange similar to that involved in HR (GROSS 1991), 
most syringomycin-deficient mutants, as well as phaseolotoxin-deficient 
mutants, grew like their parental strains in planta for 3-5 days after inoculation 
(PATIL et al. 1974; Xu and GROSS 1988); however, the population dynamics in the 
subsequent week were not examined. 

The fact that most pathovars of P. syringae have genes to produce one or 
more phytotoxins suggests that the epiphytic environment may exert a selective 
pressure for toxigenic strains. Severa1 toxins, including phaseolotoxin, syrin­
gotoxin and syringomycin, have antibacterial and/or antifungal activities in vitro 
(reviewed in MITCHELL 1991). Therefore, they may contribute to the compe­
titiveness against other phylloplane micro-organisms. Unfortunately, these anti­
microbial activities have not been demonstrated on plant surfaces. 

9 Model of Coordinate Regulation 

Bacteria may respond to changes in their environment by coordinately altering a 
range of phenotypes. For example, if a cell arrives on a leaf, via airborne 
deposition or migration from another plant part, and encounters a site hospitable 
for growth, it probably requires a different set of attributes for colonization of that 
site than it required for survival during transit. The behavior of a bacterium during 
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the various phases of its life probably depends on differential expression of 
distinct, but overlapping, sets of phenotypes during each phase. LEBEN (1981) 
described several phases in the life of pathogenic bactera. I n the resident phase, 
cells multiply on the surfaces of apparently healthy plants. In the pathogenic 
phase, they induce disease symptoms in their host. with or without multi­
plication. Cells can survive for years in the survival phase, exhibiting a very low 
metabolic rate and an increased resistance to inhibitors relative to actively 
dividing cells. They probably enter this state slowly. For example, the plant 
material surrounding a cell in an aging lesion may dry slowly and slowly embed 
the cell; the cell may then remain in this matrix until the next season. The concept 
that 'differential expression of a range of phenotypes governs the transition 
between phases has been explored primarily for the transition between the 
resident and pathogenic phases. Phenotypes that are required specifically for the 
pathogenic phase have been termed "pathogenicity factors." It seems quite 
possible that similar blocks of traits could dictate bacterial behavior during the 
survival and resident phases as well. 

Much to the chagrin of those who prefer straightforward causal relationships, 
numerous studies on mutants of phytopathogenic bacteria have discovered 
pleiotropic mutations. So many, in fact. that pleiotropy may be more the norm 
than the exception. These findings may be the key to identifying coordinately 
regulated blocks of bacterial traits. Based on these studies, we have composed a 
model describing both the range of phenotypes that may be expressed during 
two distinct phases of the life of an epiphyte and the molecular mechanisms that 
may direct the phase transitions (Fig. 1). Although we define the survival phase as 
described above, we define the multiplication phase as that phase in which the 
cells are actively dividing. The multiplication phase thus includes the resident 
phase, but may also include the pathogenic phase. 

Regulator ~ ~ ~==ductiOn 
t + BPS production 

t + Extracellular enzyme 
Environmental signal production 

r---S-UR-VIV--AL-P-HA-S-E--" ==:(e:;g:. P:1an:::;t :fa:::ct;:or::~== . MULTIPLiCATION PHASB" 
. .. .. . . .. .. .. .. .. . . . . .. .. . .. .. .. . .. . Stress signal 

M 'Ii (eg. low nutrient availability) 
otity+ • 

Chemotaxis + ~ • 
Pigment production + Regulator 
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Fig. 1. Model of coordinately regulated phenotypes Involved In two distinct phases of the life cycle of 
epiphytic bacteria. EPS, extracellular polysaccharides 
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The association of particular phenotypes with each phase is based on 
observations of simultaneously altered phenotypes in several pleiotropic mutants 
of phytopathogenic bacteria. For example, KAMOUN and KADO (1990a) identified 
spontaneous variants of strains of five X. campestris pathovars that were EPS­
deficient and chemotactic on laboratory media as compared to the parental 
strains that produced EPS and were nonchemotactic. Assuming that actively 
growing cells on laboratory media are in the multiplication phase, then their 
results suggest that expression of these two phenotypes was coordinately 
regulated, and that chemotaxis was not expressed and EPS production did occur 
in cells that were in the multiplication phase. To derive the model shown in 
Fig. 1, similar logic was applied to pleiotropic mutants, both spontaneous and 
constructed, of both epiphytic and nonepiphytic plant pathogens (BRUMBLEY and 
DENNY 1990; DE CRECy-LAGARD et al. 1990; LIAO et al. 1993; MORALES et al. 1985; TANG 
et al. 1990, 1991; THORPE and SALMOND 1993). bearing in mind that all of the 
mentioned phenotypes were not examined for each mutant. In afmost every 
case, reduced EPS production was associated with reduced secretion of extra­
cellular enzymes, such as amylase, endoglucanase, polygacturonate lyase and 
protease in X. campestris pv. campestris (TANG et al. 1991). and pectate lyase and 
protease in Pseudomonas viridiflava (LIAO et al. 1993). Also, reduced EPS and 
exoenzyme production was associated with increased pigment (DE CRECy-LAGARD 
et al. 1990) or IAA (MORALES et al. 1985) production and increased motility 
(BRUMBLEY and DENNY 1990). The model that emerges from these mutants is that, 
in the survival phase, bacteria express phenotypes that may increase their 
resistance to harsh environmental conditions, such as pigment production for 
protection from light damage, and phenotypes for locating a more favorable 
environment, such as motility and chemotaxis. Although EPS has been proposed 
to increase desiccation tolerance and thus would seem beneficial in the survival 
phase, de novo production is likely prohibitively carbon- and energy-intensive for 
a cell operating at its minimum metabolic rate, but this does not exclude a role for 
preexisting capsular EPS. In the multiplication phase, de novo production of EPS 
may be critical for attachment of cells totheir newfound site and/or concentrating 
the available nutrients to promote multiplication. The extracellular enzymes may 
function in degrading available plant debris, or perhaps in degrading the plant cell 
wall at locations where they can avoid or penetrate the cutinous layer. 

The transition from survival to multiplication phase probably occurs in re­
sponse to a different signal than transition in the opposite direction, and that 
signal is probably transduced through a distinct pathway. For example, a signal 
indicating that a cell has arrived at a favorable environment for growth, such as a 
diffusible plant factor, may trigger a switch to the multiplication phase. Two 
possible components of such a signal transduction pathway in phytopathogenic 
bacteria have been identified. The rpf (regulation of pathogenicity factors) region 
in X. campestris pv. campestris, which has homology in other X. campestris 
pathovars, positively regulates the production of EPS and four extracellular 
enzymes, with some indication that the regulation occurs at the transcriptional 
level (TANG et al. 1991; see chapter by Dow and Daniels, this volume). Second, the 
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phcA (phenotype conversion) region in Pseudomonas solanacearum, which has 
homology in diverse P. solanacearum strains, not only positively regulates the 
production of EPS and endoglucanase, but also negatively regulates motility 
(BRUMBLEY and DENNY 1990). The transition from multiplication to survival phase is 
likely triggered by conditions that are no longer favorable for growth, such as low 
nutrient availability sensed via starvation. Evidence for such a signal rests in the 
fact that when actively growing laboratory cultures, which are likely in the 
multiplication phase, are incubated for extensive periods without any nutrient 
addition, spontaneous variants arise. These variants display many of the 
phenotypes of cells in the survival phase (KAMOUN and KADO 1990a; MORALES et al. 
1985). Furthermore, reversion was detected only in planta (KAMOUN and KADO 
1990a), supporting the hypothesis that a plant signal may be involved in the 
transition from survival to multiplication phase. Possible components of a signal 
transduction pathway involved in the multiplication to survival phase transition 
have also been identified. X. campestris pv. campestris contains a region that 
negatively regulates the production of EPS and extracellular enzymes (TANG et al. 
1990), and two P. solanacearum strains each contain a region that negatively 
regulates EPS production and either positively (HUANG and SEQUEIRA 1990) or 
negatively regulates polygalacturonase production (NEGISHI et al. 1993). The 
survival and growth of an epiphytic bacterium probably depends not only on its 
ability to express distinct phenotypes during various phases of its life cycle, but 
also on its ability to make transitions at appropriate times to the various phases. 

10 Identification of Novel Fitness Traits 

The previous sections identified methods by which traits hypothesized to be 
involved in epiphytic fitness could be evaluated. However, novel or unanticipated 
traits may condition survival or growth of bacteria on leaves. Rather than testing 
genes that confer known phenotypes for their contribution to epiphytic fitness, it 
is possible to identify genes directly contributing to epiphytic fitness and use 
them to identify potentially novel epiphytic fitness traits. A similar approach was 
used to identify previously undetected genes that confer virulence in phyto­
pathogenic bacteria (LINDGREN et al. 1986). In contrast to evaluating the virulence 
of individual mutants based on the qualitative presence or absence of disease, 
evaluating the epiphytic fitness of individual mutants requires estimating the 
population size of each mutant on plant surfaces. For example, it would be 
necessary to measure the population size of about 5000 mutants of a typical 
epiphyte such as P. syringae to ensure that there is an 80% chance that a given 
gene (out of the 3000 genes contained in such a strain) is inactivated in such a 
collection. The logistical constraints of ascertaining the population size of such a 
large number of mutants on plants have prevented this approach from being used 
until recently. 
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A novel approach has been developed which permits the rapid estimation of 
the population size of ice nucleation active bacteria on leaf surfaces. HIRANO et al. 
(1985) used an analysis of the distribution of freezing temperatures of a collection 
of leaves to estimate the frequency of leaves that had large populations of Ice+ 
bacteria. Since ice nucleation activity at warm freezing temperatures (> _3° C) 
occurs very rarely in a population of cells of an Ice+ bacterial strain, only a leaf with 
a large population size of Ice+ bacteria has a high probability of freezing at such a 
warm temperature. LINDOW (1986) showed that there was a direct relationship 
between the logarithm of the epiphytic population size of Ice+ bacteria and the 
average nucleation temperature of a collection of leaves. After 5300 mutants of 
an Ice+ P. syringae strain were individually inoculated onto bean plants and the 
plants were subjected to alternating wet and dry conditions, the epiphytic 
population of each mutant was rapidly estimated based on the freezing tem­
perature of the colonized leaves (LINDOW 1993; LINDOW et al. 1993). In this manner, 
82 epiphytic fitness mutants were identified. While 50% of the mutants were 
altered in phenotypes that could be measured in culture, 50% of the mutants 
were not altered in any in vitro phenotype examined. This study indicates that 
many interesting traits which have large individual effects on the epiphytic fitness 
of bacteria remain to be discovered. It also indicates that it may be very difficult to 
guess which phenotypes are important in epiphytic fitness. 

11 Conclusions and Future Directions 

We are only beginning to identify bacterial characteristics that influence the 
growth or survival of individual cells on leaf surfaces. Unfortunately, identification 
itself is only a beginning to understanding exactly how these characteristics 
influence epiphytic behavior under various environmental conditions. This knowl­
edge, coupled with the extensive studies on the dynamics of epiphytic popu­
lations (reviewed in HiRANO and UPPER 1983, 1990), may be critical for predicting 
foliar population responses to changing environmental conditions and designing 
rational disease control strategies. 

In this review, we have discussed many traits that could be involved in 
epiphytic fitness, and have attempted both to evaluate the evidence for a role of 
each trait in bacterial growth or survival on leaves and to explore the potential 
mechanistic basis for its involvement. Unfortunately, many studies of these traits 
have been largely descriptive. The recent advance of molecular genetic 
techniques has made more rigorous testing possible. For example, comparisons 
of mutants with their isogenic parental strains have demonstrated a role for 
motility and osmotolerance, as well as a lack of a role for ice nucleation activity, 
in survival under particular environmental conditions. Even with these 
techniques, however, identification of individual epiphytic fitness determinants 
may be hampered by several obstacles. First, alterations in individual traits may 
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result in changes too small to be detected with current methodology; thus, better 
methods for accurately measuring bacterial growth and survival in planta are 
needed. Second, since epiphytic fitness is dependent on environmental context, 
subtle variations in the epiphytic environment may increase the variability in the 
observed behavior and obscure detection of true changes in epiphytic fitness. 
Last. the fact that inactivation of a single gene frequently results in alterations in 
more than one phenotype greatly complicates the establishment of clear, causal 
relationships. Pleiotropy may occur at the transcriptional level, e.g., a regulatory 
gene influencing the transcription of other genes, or at the phenotypic level. e.g., 
a cell surface alteration influencing motility and extrusion of exocellular enzymes 
and EPS. If a regulatory gene is involved, then the contribution of each regulated 
gene should be evaluated individually. 

One of the biggest challenges ahead is evaluating exactly how particular 
traits contribute to epiphytic fitness. Molecular genetic techniques are likely to be 
of invaluable use for such studies. For example, the expression of genes in 
bacterial cells on a leaf surface can be evaluated using reporter genes. In planta 
induction of general epiphytic fitness traits was illustrated by the fact that 
bacterial cells that were harvested from leaf surfaces survived better than cells 
harvested directly from laboratory culture after inoculation onto leaf surfaces 
(WILSON and LINDOW 1993). Understanding the exact conditions that influence the 
expression of a gene should indicate when its encoded trait is important for cell 
growth or survival and thus provide insight into the mechanistic contribution of 
that trait to fitness. Due to the rapid and extreme changes that frequently occur on 
the leaf surface, it is important to consider the possibility that bacteria 
coordinately regulate a range of phenotypes in response to these changes. 
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1 Introduction 

Xanthomonas campestris pathovar campestris (hereafter Xc. campestris) , the 
causal agent of black rot of crucifers, is a phytopathogenic bacterium of great 
economic importance (WILLIAMS 1980; ONSANDO 1992; SCHAAD and ALVAREZ 1993). 
Molecular genetic methods have now allowed a number of genes encoding 
pathogenicity determinants of Xc. campestris and related pathovars to be 
identified. In this chapter we will briefly review some of these and discuss our 
current understanding of the regulation of pathogenicity in this bacterium. 

Two major strategies have been widely employed to isolate pathogenicity 
genes. In "black box" methods, populations of mutagenised bacteria are 
screened for individuals showing loss of symptoms, usually in simplified plant 
assays. Identification of DNA fragments complementing these nonpathogenic 
mutants or of flanking regions (if the mutants are transposon-tagged) allows 
isolation of the gene(s). The second approach is to test the role of suspected 
pathogenicity determinants by cloning and specific mutation of the cognate 
genes, followed by planttests. A third strategy has been to isolate plant-inducible 
genes through use of a promoter probe plasmid (OSBOURN et al. 1987). The 
rationale here is that a proportion of such genes are likely to be involved in 

The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK 



30 J.M. Dow and M.J. Daniels 

pathogenesis. This can be tested by specific mutagenesis of the genes and 
subsequent plant assays. 

The choice of plant material for inoculation, the method of inoculation and 
levels of bacteria used undoubtedly influence the outcome of these pathogenicity 
tests in that different aspects of the disease process are probably being tested 
(SHAW and KADO 1988; DANIELS and LEACH 1993). In natural infections, Xc. 
campestris enters the plant principally through the hydathodes at the leaf margin, 
although secondary entry sites can develop in wounds or roots (COOK et al. 1952). 
This allows the bacteria to gain access to the vascular system of the plant. Here 
the bacteria are usually confined to the xylem (BRETSCHNEIDER et al. 1989). except 
in the later phases of the disease in which severe tissue degradation takes place. 
The characteristic symptoms of the disease in the field consist of V-shaped 
chlorotic lesions spreading from the leaf margins within which are blackened leaf 
veins. Diseased tissue eventually becomes brown and parched. Pathogenicity 
assays in which bacteria are introduced into the mature leaf through cut vein 
endings or by inoculation into the leaf petiole mimic the natural infection 
pathways and disease symptoms more closely than assays employing seedlings 
or inoculations into the leaf lamina (SHAW and KADO 1988; Dow et al. 1990). 
However, Xc. campestris is capable of substantial growth in the mesophyll tissue 
of crucifers and this is an experimentally easier system in which to study bacterial 
growth and concomitant plant defence responses (COLLINGE et al. 1987; CONRADS­
STRAUCH et al. 1990). Assays in which seeds are soaked in bacterial suspensions 
before sowing may mimic another aspect of the disease cycle as contaminated 
seed is believed to be a major source of infection (SCHAAD and ALVAREZ 1993). In our 
laboratory, for mass screening we have mainly used assays in which seedlings 
are stab-inoculated with mutant bacteria. A major class of pathogenicity mutants 
we have identified using this assay are pleiotropically defective in the production 
of extracellular enzymes (see below). This may suggest that seedling tests 
indicate tissue degradation capacity, corresponding to a late phase of the natural 
disease; it is likely that, using only this assay, genes involved in more subtle 
effects would be missed. 

In addition to symptom production and bacterial growth, more detailed 
studies of host responses, in particular defence-related gene expression, is 
certainly warranted. Recent work in our laboratory on the induction of ~-1 ,3-
glucanase gene transcription in response to a number of defined pathogenicity 
mutants of Xc. campestris has reflected the undoubted complexity of host­
bacterial interactions. Certainly no simple relationship between bacterial 
growth, symptom production and triggering of defence-related gene expres­
sion exists. 

Below we review the pathogenicity determinants so far revealed with the 
exception of hrp genes and protein export genes which are covered in other 
chapters of this volume (by BONAS and COLLMER and BAUER). In the second part of 
the review we discuss regulatory genes involved in pathogenicity and the 
complex of interconnected regulatory circuits in Xc. campestris. 
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2 Production of Extracellular Enzymes 

In common with many plant pathogens x.c. campestris produces a range of 
enzyme activities capable of degrading plant tissue. These include 
endoglucanase (cellulase), protease, polygalacturonate lyase, amylase and lipase 
(reviewed by DANIELS et al. 1988). These enzymes are good candidates for 
pathogenicity determinants in black rot pathogenesis in which degradation of the 
plant tissue is evident in the later phases of the disease. As with other plant 
pathogens, multiple enzyme activities have been observed for protease and 
polygalacturonate lyase (Dow et al. 1987,1990). All of these enzymes are 
exported from x.c. campestris by a signal sequence-dependent mechanism 
encoded by a cluster of at least 12 genes, some of which have been characterised 
(DUMS et al. 1991; Hu et al. 1992). Closely related protein export systems are 
found in a wide range of gram-negative organisms (reviewed by PUGSLEY et al. 
1990; SALMOND and REEVES 1993). Mutations within the x.c. campestris gene 
cluster cause retention of the enzymes within the bacteria and give a 
nonpathogenic phenotype on plants associated with reduced symptom 
expression (Dow et al. 1987; Hu et al. 1992). This provides strong circumstantial 
evidence for a role for extracellular enzymes in disease. However, export­
defective mutants do grow at similar rates to the wild-type when low numbers of 
bacteria are introduced into the leaf lamina, which is consonant with a role for the 
enzymes only in the later phases of the disease process. 

The genes for several individual enzymes (endoglucanase, one isoform of 
polygalacturonate lyase, a serine protease and lipase) have been cloned and the 
effects of specific mutations in these genes on pathogenicity has been assessed 
(GOUGH et al. 1988; Dow et al. 1989; TANG et al. 1987 and unpublished results). 
None of these mutations alone causes a change in bacterial growth or symptom 
expression in a wide range of pathogenicity tests. Although a protease-deficient 
strain was shown to have severely attenuqted disease symptoms in some plant 
tests (Dow et al. 1990), subsequent examination of other protease-deficient 
mutants failed to confirm a role for protease in the early phases of the disease 
process. It is likely that the original observations were due to secondary 
mutations involving extracellular polysaccharide production (see below) or to a 
pleiotropic effect of the mutation. The role of other enzymes, particularly the 
major isoform of polygalacturonate lyase which may contribute greatly to tissue 
disintegration, remains to be tested. However it is possible that several enzymes 
contribute synergistically to pathogenicity, or that other unidentified exported 
proteins (e.g. proteins induced only in planta) are responsible. Work on other 
pathovars of X. campestris has suggested no role for polygalacturonate lyase or 
protease in pathovars vesicatoria and glycines. respectively (BEAULIEU et al. 1991; 
HWANG etal. 1992). The diseases caused by these bacteria (leaf spot of pepper and 
tomato and pustule formation on soybean) do not however involve generalised 
destruction of the plant tissue. 
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3 Extracellular Polysaccharides 

In common with many plant pathogens, Xanthomonas campestris produces 
extracellular polysaccharide (EPS), specifically the acidic polymer xanthan. 
Interest in xanthan as an industrial product is considerable and clusters of genes 
involved in xanthan biosynthesis have been isolated and characterised (reviewed 
by SUTHERLAND 1993). However there has been relatively little work reported on the 
role of xanthan in pathogenesis. Immunogold electron microscopy with xanthan­
specific antibodies have clearly shown that xanthan encapsulates Xc. vesicatoria 
cells in both compatible and incompatible interactions with pepper within a few 
hours of inoculation (BROWN et al. 1993). Genetic evidence for a role for xanthan 
has been provided the work of BARRERE et al. (1986) and RAMIREZ et al. (1988). 
Although EPS mutants of Xc. campestris were indistinguishable from the wild 
type in symptom production on turnip seedlings, when the bacteria were 
introduced into the veins of mature plants through cuts at the leaf margins, 
considerable reduction in symptoms were seen. The growth of EPS mutants after 
inoculation into turnip and Arabidopsis leaves at low initial densities was also 
severely reduced compared to the wild type. Overall these results suggest a role 
for xanthan, particularly in the early phases of the disease process. 

4 hrpX 

Kado, Kamoun and coworkers have identified a plant-inducible gene in Xc. 
campestris, hrpXc, which is required for pathogenesis on crucifers and for a 
hypersensitive response on non-host plants (KAMOUN and KADO 1990; KAMOUN et al. 
1992; KAMDAR et al. 1993). The hrpXc gene is not part of the hrp cluster of Xc. 
campestris, which is discussed elsewhere in this volume (BONAS). Homologous 
genes which are functionally equivalerrt to hrpXc are present in Xc. armoraciae 
and Xo. oryzae and probably in other pathovars of X campestris but not in other 
genera of plant pathogenic bacteria (KAMDAR et al. 1993). hrpX mutants of Xc. 
campestris, Xc. armoraciae and Xo. oryzae can be complemented by heterol­
ogous hrpX genes. In Xc. campestris, mutation of the hrpX gene causes the 
normally compatible bacteria to trigger a necrotic reaction in the vascular tissue 
which has been termed a vascular hypersensitive response (KAMOUN et al. 1992). 
Growth in the mesophyll tissue is also impaired. These observations have 
suggested that the role of the hrpX gene product is to circumvent host recognition 
or to suppress host defence responses in the early phases of disease. Sequence 
analysis of the gene suggests that the gene product might be a substrate for 
myristoyl transferase, an enzyme found in plants but not in prokaryotes (KAMDAR 
et al. 1993). This raises an intriguing possibility that the plant enzyme modifies 
the bacterial cell surface during pathogenesis, a hypothesis which further work on 
the biochemistry of the HrpX protein both in planta and in vitro could address. 
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5 Avirulence Genes 

Although avirulence genes have been defined in the context of resistance 
responses in plants to incompatible pathogens, it is clear that, in a least some 
cases, these gene products contribute to pathogen fitness in the compatible 
reaction (see chapter by J.L. Dangl, this volume). Sequences related to avrBs2, 
the avirulence gene complementary to the resistance gene Bs2 in pepper, have 
been found in all races of X c. vesicatoria (both tomato and pepper pathogens) and 
in a number of other pathovars of Xanthomonas campestris, including pv. 
campestris, that do not cause disease on peppers (KEARNEY and STASKAWICZ 1990). 
Mutation of this gene in Xc. vesicatoria causes a reduction of virulence on 
susceptible pepper lines as shown by decreased bacterial growth. Complemen­
tation with plasmid-borne avrBs2 restored growth to near wild-type levels. 
Mutation of the avrBs2 gene of Xc. alfalfae was also shown to reduce the 
virulence of this pathogen to a susceptible alfalfa line (KEARNEY and STASKAWICZ 
1990). The contribution to pathogenicity of the homologous gene in Xc. 
campestris has yet to be tested. In the converse fashion, a pathogenicity gene 
from X citri has been shown to render Xc. phaseoli avirulent to bean (its normal 
host) and to confer cultivar-specific avirulence to cotton on Xc. malvacearum 
(SWARUP et al. 1992). Howeverthis gene, pthA, did not have a homologue in either 
of the two strains of Xc. campestris tested. A number of avirulence genes may 
indeed encode products which act as pathogenicity factors in particular inter­
actions. However this need not always be the case. A gene from Xc. raphanithat 
renders Xc. campestris avirulent to most accessions of Arabidopsis thaliana has 
a homologue in Xc. campestris (PARKER et al. 1993). Mutation of this homologous 
gene has no effect on growth of Xc. campestris or symptom expression in both 
Arabidopsis and Brassica (C.E. Barber and M.J. Daniels, unpublished). 

6 Additional Pathogenicity Genes 

A number of other pathogenicity genes of pathovars of Xanthomonas campestris 
have been identified by mutagenesis and the genes characterised. OSBOURN et al. 
(1990a) have described a gene in Xc. campestris in which mutation causes a loss 
of pathogenicity although extracellular enzymes and EPS remain at wild-type 
levels. Numbers of recoverable mutant bacteria drop by about tenfold within 24 h 
of introduction into the plant and then increase to a plateau level which is less than 
that attained by the wild type. This suggests that the gene, which is expressed in 
rich nutrient medium as well as in planta, is required in the early phases of 
establishment of the disease. The mutant bacteria trigger an earlier accumulation 
of transcript of ~-1 ,3-glucanase, a defence-related gene in Brassica (M.-A. 
Newman and J.M. Dow, unpublished). These results may suggest that the 
bacterial gene is involved in suppression of the host defence responses or in 
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avoidance of triggering of those responses, as suggested for hrpX (see above). 
Howeverthe mutants still show the wild-type phenotype on incompatible pepper 
lines, and there is no sequence homology to the hrpX gene, to the hrp cluster of 
Xc. campestris or to any other gene in the database. 

Genes involved in the pathogenicity of Xc. glycines on soybean have been 
characterised by HWANG et al. (1992) by complementation of nonpathogenic 
mutant that did not grow in susceptible soybean cotyledons followed by sub­
cloning and transposon mutagenesis of the complementing clone. A 10 kb DNA 
fragment restored pathogenicity to the mutant; sequences in this DNA fragment 
were conserved among a number of X campestris pathovars including pathovar 
campestris. Three regions were involved in restoring pathogenicity. The 
sequence of two of these showed the presence of two potential open reading 
frames. Although the cellular functions of the two encoded proteins are not 
known, both contain hydrophobic domains and one has amino acid sequence 
similarity to the ysubunit of oxaloacetate decarboxylase. This enzyme is involved 
in sodium ion transport in Klebsiella pneumoniae. It is tempting to speculate that 
these products have a role in the adjustment of the bacteria to the changed ionic 
environment of the plant where levels of W, K+, Na+, Ca2+ and Mg2+ may differ 
drastically from those found in nutrient medium. 

Xc. armoraciae is a mesophyllic pathogen of crucifers and causes a necrotic 
response in the vascular system with no subsequent invasion. A 5.3 kb DNA 
fragment from Xc. campestris when introduced into Xc. armoraciae alters the 
symptom expression in mature plants and seedlings such that symptoms typical 
of Xc. campestrisare seen (ROBERTS and GABRIEL 1992). This observation provides 
preliminary evidence that the DNA fragment carries a potential systemic 
movement factor required for vascular proliferation. It will be interesting to see 
the result of mutation of the gene{s} carried on the 5.3 kb fragment on the growth 
and spread of Xc. campestris both in the vascular system and in mesophyllic 
tissue. Differences in the expression pattern of conserved protease genes 
between Xc. armoraciae and Xc. campestris are also found {Dow et aI., 1993}. 
However manipulation of the pattern of~rotease production of Xc. armoraciae to 
that resembling Xc. campestris by introduction of cloned protease genes did not 
allow Xc. armoraciaeto invade the vascular system, suggesting no relationship of 
the pattern of protease production to the mode of pathogenesis. 

7 Regulatory Genes 

We noted above that a large proportion of Xc. campestris mutants isolated by 
screening for altered symptoms following stab inoculation of bacteria into 
seedlings showed pleiotropic defects in extracellular enzyme production. The 
mutations lie either in secretion genes or in regulatory genes. One of the first Xc. 
campestris mutants to be studied failed to produce protease, polygalacturonate 
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lyase, endoglucanase and amylase, and gave low levels of EPS (xanthan). 
Production of all these factors, and pathogenicity, were restored by a cosmid, 
plJ3020, containing cloned wild-type DNA (DANIELS et al. 1984; TANG et al. 1991). 
Analysis of the cloned DNA by transposon mutagenesis, subcloning and se­
quencing indicated the presence of at least eight genes, rpfA-H, mutation in any 
of which caused a reduction to less than 10% of wild-type levels of enzymes 
and xanthan. The organisation of these genes is shown in Fig. 1. 

Sequence data are available for rpfF. C, H, G, and 0; rpfA, B, and E have not 
yet been characterised in detail. Between rpfG and rpfD lie two genes which are 
equivalent to lysU and prfB of Escherichia coli. These genes encode a Iysyl tRNA 
synthetase and peptide release factor, respectively. Mutations in these genes in 
Xc. campestris have little discernible effect on pathogenicity, and it is not known 
whether their location within a cluster of pathogenicity-related genes has any 
significance. lysU and prfB are linked in E. coli. 

Comparison of the sequences of rpf F, rpfH and rpfD with databases give no 
clues as to the function of the gene products. However rpfC and rpfG encode 
members of a two-component, histidine protein kinase-response regulator sys­
tem (TANG et al. 1991, and unpublished data). RpfG is a typical response regulator 
protein, although no DNA-binding motifs are apparent in the peptide sequence. 
RpfC belongs to a small subclass of histidine protein kinases (class ITR in the 
nomenclature of PARKINSON and KOFOID 1992). In addition to transmembrane 
domains and a conserved sensor domain, the protein also contains a region 
characteristic of the receiver domain of response regulators (RpfG also has such 
a feature). The function of the duplicated receiver domain in the RpfC/RpfG pair, 
as with other similar pairs in class ITR, is not understood. A similar gene encoding 
a protein of this class, lemA. is required for pathogenicity of Pseudomonas 
syringae pv. syringae, regulating the production of toxin and protease (RICH et al. 
1992). 

Two component regulatory systems usually function to modulate gene 
expression in response to external stimuli, The nature of the signal in the case of 
RpfC/G is unknown. Attempts to address the question directly by studying the 
biochemical basis of regulation, protein phosphorylation, have met with little 
success. 

Recent experiments have given some information about the function of the 
rpfF gene. Protease and cellulase production by an rpfF mutant were restored by 
growth on plates in proximity to rpfP strains, suggesting that phenotypic correc­
tion by cross-feeding by a diffusible substance was occurring (Fig. 2). It has been 
shown that a low molecular weight metabolite can be extracted from Xc. 
campestris culture supernatant fluids which increases by a factor of ten enzyme 
production by the rpfF mutant. It is likely that the diffusible substance belongs to 
the class of "autoinducers" which are now being found to be produced by 
numerous bacteria. These compounds are N-acylhomoserine lactone derivatives 
and were first discovered as regulators of luminescence in marine vibrios. 
Examples have recently been found in the plant pathogens Agrobacterium and 
Erwinia (PIPER et al. 1993; ZHANG et al. 1993; PIRHONEN et al. 1993; JONES et al. 1993). 
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Fig. 1. Organisation of positive regulatory gene cluster of Xanthomonas campestris pathovar 
campestris. Boxes indicate regions which have been sequenced. Arrows indicate direction of 
transcription 

The regulatory effects of the autoinducers are only exerted at concentrations 
found in dense bacterial cultures. Hence autoinducers may be viewed as 
regulators responding to high density, or .. quorum sensors" (FUQUA et al. 1994). 
Much more research will be needed to provide a full understanding of the role of 
autoinducers in the disease process. For pathogens such as Erwinia and 
Xanthomonas one possibility is that when the bacteria are at a low density in plant 
tissues they can obtain adequate nutrients from the solutes in the extracellular 
fluids. However high concentrations of bacteria would quickly exhaust these 
resources and further growth and maintenance would be dependent on nutrients 
released by enzymatic degradation of plant cell components. 

Synthesis of extracellular enzymes and xanthan in x.c. campestris is also 
subject to coordinate negative regulation (TANG et al. 1990). Mutations in a gene 
designated rpfN give oveFproduction of the enzymes and xanthan, and, 
conversely overexpression of rpfN causes coordinate repression. rpfN encodes a 
protein of 46 KDa and is required for binding of a protein to sequences upstream 
of the promoter of the protease and endoglucanase structural genes. It is not 
known whether the RpfN protein itself binds to the DNA (S.D. SOBY, B. HAN and 
M.J. DANIELS, in preparation). 

x.c. campestris contains a gene (clp) encoding a DNA-binding protein similar 
to the catabolite activation protein (CAP) of E. coli (DE CRECy-LAGARD et al. 1990). 
CAP is a .. broad spectrum" regulator ota large number of genes, and mutants are 
unable to use certain carbon sources for growth. A clp mutant of x.c. campestris, 
in contrast, was unaffected in its ability to utilise all carbon sources tested 
(unpublished data) and was not responsive to cyclic nucleotides. Xanthan produc­
tion was reduced in the clp mutant, and the residual polysaccharide had different 
viscosity properties and altered acetyl and pyruvyl content compared with the 
product of wild-type bacteria. Endoglucanase and polygalacturonate lyase activ­
ities were reduced, amylase was unchanged, but protease was overproduced by 
the clp mutant. The ability to cause disease in turnip, measured by several 
inoculation techniques, was also reduced (DE CRECy-LAGARD et al. 1990). 

Two-component regulatory proteins such as RpfC and RpfG have conserved 
amino acid sequence domains. OSBOURN et al. (1990b) designed oligonucleotides 
which would encode the conserved regions in x.c. campestris and used these as 
hybridisation probes to isolate further regulatory genes of this class. Mutation of 
one of the new regulator genes reduced xanthan synthesis, but did not affect 
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Fig. 2. Cellulase production by an rpfF mutant is 
enchanced by a diffusible factor from an rpfF+ 
strain. Nutrient agar plates containing carboxy­
methyl cellulose were inoculated with a 
cellulase-deficient rpfF+ strain (horizontal streak) 
and an rpfF mutant (vertical streak). Cellulase 
activity, revealed as clear zones after staining 
with Congo red, was enhanced in that part of the 
rpfF mutant colony nearest to the rpfF+ colony 

extracellular enzyme levels. There was no discernible effect on pathogenicity, 
presumably because the residual xanthan was adequate for pathogenesis. 

There are indications that the above list of regulatory genes effecting en­
zymes and xanthan is incomplete. Other X campestris and X oryzae pathovars 
are known to possess DNA sequences which hybridise with the rpfA-H region of 
Xc. campestris. SAWCZYC et al. (1989) showed that pathogenicity could be 
restored to a Xc. campestris rpfmutant by either of two cloned DNA fragments 
from Xc. translucens (a cereal pathogen). One of the two fragments hybridised 
with the Xc. campestris rpf cluster, but the other did not. However the latter did 
hybridise with total DNA of Xc. campestris, suggesting that a true homologue 
exists. This putative additional regulatory gene has not yet been studied. 

To summarise, extracellular enzymes and polysaccharide, a subset of 
pathogenicity factors of Xc. campestris, are subject to coordinate regulation of 
synthesis by several independent sets of regulatory genes. In addition, individual 
enzymes may be induced or repressed by substrate or product-related effectors . 
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Other pathogenicity genes such as hrp genes do not seem to be regulated by rpf 
and clp genes, and, conversely, mutations in hrp genes do not affect enzyme and 
xanthan synthesis (ARLAT et al. 1991). With the exception of hrp mutants, all Xc. 
campestris "pathogenicity" mutants provoke a normal hypersensitive response 
on non-host plants such as tobacco and pepper. 

8 Conclusion 

Genetic studies with X campestris pathovars have shown that, as with other 
genera of pathogens, many genes are required for, or contribute to, pathogenicity. 
Although in many cases the nature of the gene product is known, in no case can 
we be certain how the gene product interacts with plants to play its part in the 
overall process of pathogenesis. 

A subset of Xc. campestris pathogenicity factors consists of extracellular 
enzymes and polysaccharide. These are particularly useful because their 
synthesis and regulation are easily studied at the level of genes and proteins. 
From these studies, as we have indicated above, it has become clear that the 
production of the factors is regulated in a complex manner, with overlapping 
coordinate systems as well as individual regulation loops. Since the existence of 
regulatory systems implies the need to adapt to changes encountered during the 
life of the bacteria, it is worthwhile considering the black rot disease cycle from 
this point of view. Outbreaks of disease usually originate from contaminated 
seed. The bacteria must survive in dry seed coats for long periods of time. Once 
the seeds germinate the bacteria colonise the surfaces of growing plants, and 
under favourable conditions enter hydathodes via guttation fluid. Colonisation of 
the xylem follows and finally the plant tissue becomes necrotic. Little is known 
about the chemical environment on leaf surfaces. It is certain that it will change 
in response to changing weather, for e~ample rain will wash leached substances 
from leaf surfaces, and as dew evaporates, solute concentrations in the surface 
water film will increase. Some partial analyses of the composition of guttation 
fluid and xylem sap have been reported, and while it is difficult to generalise from 
disparate data, it is likely that the bacteria will experience large changes in the 
composition of their "growth medium" as they move from the leaf surface 
through the hydathode into the xylem. Once tissue degradation sets in during 
the later stages of the disease, the bacterial environment will change rapidly. If 
the regulatory systems operate to enable the bacteria to make the best of the 
prevailing "growth medium" it will be instructive to determine what 
environmental triggers are detected by the several systems. Another set of 
pathogenicity genes in the major hrp cluster are also subject to environmental 
regulation. Early experiments suggested that hrp gene expression in Xc. 
campestris is induced by nutrients such as sucrose (ARLAT et al. 1991). However 
more recent experiments suggest that starvation is the principal factor 
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stimulating expression (SA Liddle and M.J. Daniels, unpublished data). The hrp 
genes do not appear to interact with the rpf regulon. 

Further studies of gene regulation in x.c. campestris will not only increase 
our understanding of pathogenesis to plants but also contribute to the growing 
body of information on microbial physiology. 
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Extracellular proteins are primary weapons in the parasitic attack of bacteria on 
eukaryotic hosts. Virulence proteins released through accessory secretion path­
ways enable bacteria to acquire nutrients, invade host tissues, and defeat host 
defenses. Because of their general importance, these proteins and their secretion 
pathways provide efficient starting points in the molecular exploration of bacterial 
pathogenesis; and virulence protein traffic represents a common denominator in 
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the study of bacterial pathogens of plants and animals. This is particularly true 
with gram-negative pathogens, which use broadly conserved components forthe 
specific secretion of virulence proteins, and in some cases use remarkably similar 
modes of parasitic attack and virulence protein deployment. Consequently, 
researchers exploring pathogens of one eukaryotic kingdom now are looking with 
increasing interest at work on pathogens of the other kingdom. 

This review will focus on two plant pathogenic, gram-negative bacteria that 
parasitize plants in strikingly different ways. Erwinia chrysanthemi attacks a wide 
range of plant species, causes extensive host tissue necrosis and maceration, 
and secretes a battery of tissue-disintegrating pectic enzymes. Pseudomonas 
syringae, in contrast, encompasses a collection of host-specific strains that 
generally do not macerate host tissues, cause only delayed necrosis in their 
hosts, and secrete few if any pectic enzymes. E. chrysanthemi is typical of 
necrotrophic parasites that can kill host tissues with molecular brutality and feed 
off the dead cells (THROWER 1966). P. syringae is typical of biotrophic parasites that 
obtain their nutrients more deviously from living host cells. E. chrysanthemi and 
P. syringae thus represent two extremes in the plant pathogenicity of gram­
negative bacteria in the genera Erwinia, Pseudomonas, and Xanthomonas. Mem­
bers of these genera are responsible for the majority of bacterial diseases of 
plants, and determinants shared between E. chrysanthemi and P. syringae are 
likely to be generally important in bacterial plant pathogenicity. 

Much research on the molecular basis for pathogenicity in these bacteria has 
focused on two signature ptrenomena: maceration and the hypersensitive re­
sponse (HR). Susceptibility to maceration by pectic enzymes is a common feature 
of most of the hosts of E. chrysanthemi. Key questions are: what is the role of 
individual enzymes and their mode of deployment in this process? What 
additional factors are required to be pathogenic? What enables E. chrysanthemito 
have such a wide host range? The HR, by contrast,is a defense-associated, rapid, 
local necrosis that is typically elicited when a biotrophic pathogen, such as P. 
syringae, invades the leaves of an incompatible (e.g., resistant) plant. A funda­
mental enigma of the HR is that the bacterial ability to elicit it in an incompatible 
plant is related to the ability to be pathogenic in a compatible host plant. Key 
questions here are: What triggers the HR? How is this related to pathogenicity 
and the determination of host range? 

In the following sections, we will describe the pathogenic nature of E. 
chrysanthemi and P. syringae and then focus on the relationship between pectic 
enzyme production and maceration, the discovery of a class of protein elicitors of 
the HR, and the pathways by which all of these proteins are secreted. In the 
concluding sections, we will consider new questions raised by recent discoveries 
and then compare the modes and roles of virulence protein trafficking in plant and 
animal pathogens. 
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2 Contrasting Pathogens and Plant Interactions 

2.1 Erw;n;a chrysanthemi: Wide Host Range and Soft Rots 

The soft rot erwinias, E. chrysanthemi and E. carotovora, attack the parenchy­
matous tissues (which are comprised primarily of living cells without secondary 
wall thickening) of a wide range of plants. The bacteria are distributed worldwide, 
with E. chrysanthemi, which has a higher optimum temperature for growth, being 
found primarily in the tropics or in temperate region greenhouses (PEROMBELON and 
KELMAN 1980). The soft rot erwinias are widespread in surface water (COTHER et al. 
1992; COTHER and GILBERT 1990; HARRISON et al. 1987; MCCARTER-ZORNER et al. 
1984); they are competitive saprophytes in the rhizosphere (STANGHELLINI 1982); 
and they can aggressively utilize pectate as a carbon source (BURR and SCHROTH 
1977; MENELEY and STANGHELLINI 1976). Pectic enzyme production and sensitivity to 
desiccation appear to be major factors in the biology of these bacteria. 

The soft rot erwinias are particularly devastating as opportunistic pathogens 
that cause rots in storage organs and fleshy plant tissues that are physiologically 
compromised by bruising, excess water, or high temperature (PEROMBELON 1982). 
They also can be true pathogens causing systemic infections, vascular disorders, 
foliar necroses, and latent infections in many growing plants. Several taxonomic 
subgroups have been identified within E. chrysanthemi, and some strains 
display a degree of host specificity (BOCCARA et al. 1991; DICKEY 1979, 1981; 
JANSE and RUISSEN 1988). However, the current taxonomic subgroups 
do not consistently correspond to hosts of origin, and a given strain of 
E. chrysanthemi is generally capable of attacking many plants. E. chrysanthemi 
and E. carotovora are particularly pernicious pests in vegetatively propagated 
ornamentals because they systemically invade production plants to form latent 
infections that later become active (often with dramatic effect) when conditions 
favor the disease. 

2.2 Pseudomonas syr;ngae: Narrow Host Range 
and Leaf Spots 

Strains of P. syringaetypically cause watersoaked lesions surrounded by chlorotic 
halos in the leaves and fruits of a limited range of hosts. The halos are caused by 
a variety of low molecular weight toxins which are not host-specific and generally 
are not essential to pathogenicity, but which can contribute significantly to 
virulence (GROSS 1991; WILLIS et al. 1991 a). P. syringae strains are classified into 
pathovars primarily according to their host range (PALLERONI 1984). Thus, P. 
syringae pv. pisi is a pathogen of peas, and P. syringae pv. tomato is a pathogen 
of tomato. But the pathovar system has many exceptions. For example, some 
strains of P. syringae pv. tomato are also pathogenic on Arabidopsis thaliana, and 
P. syringae pv. syringae contains some strains that cause brown spot of bean, 
whereas others cause, variously, leaf spots (or cankers) of stone fruit, lilac, or 
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even tomato seedlings (HIRANO and UPPER 1990; JONES et al. 1981; WHALEN et al. 
1991; CHENG et al. 1989). Also, strains within some pathovars can be classified into 
races on the basis of their limited host range among various cultivars of a given 
crop species, a phenomenon that has been explored most extensively with P. 
syringae pv. g/ycinea and its host, soybean (KEEN 1990), and will be discussed in 
Sect. 4.3. 

There is no evidence that P. syringae is prevalent in surface water like E. 
chrysanthemi. In contrast, many P. syringae strains are good epiphytes, they 
multiply and persist on the aerial surfaces of plants, and they can attack healthy 
plants. HiRANO and UPPER (1990) have emphasized the importance of epiphytic 
fitness in the biology of P. syringae, and the accompanying chapter by Beattie and 
Lindow addresses this attribute. Finally, it is important to note that, during 
pathogenesis, both E. chrysanthemi and P. syringae colonize the apoplast, which 
is comprised of the intercellular spaces and water-conducting xylem and there­
fore are excluded by plant cell walls from the living protoplasts of the host. 

3 Maceration and Pectic Enzymes 

3.1 The Extracellular Pectic Enzyme Complex 
of Erwinia chrysanthemi 

E. chrysanthemi and E. carotovora are highly pectolytic bacteria, and their pectic 
enzymes have been implicated in plant tissue maceration since JONES (1909) 
observed that cell-free culture fluids of E. carotovora possessed both macerating 
and pectolytic activity. Subsequent research with isolated plant cell wail-de­
grading enzymes culminated in the finding that the activity of a single, purified 
pectic enzyme was sufficient for botri the maceration and cell killing that is 
diagnostic of the disease (BASHAM and BATEMAN 1975a,b), as discussed further in 
Sect. 3.2. Since then, the role of pectic enzymes in soft rot pathogenesis has 
been extensively explored genetically, and other reviews provide a compre­
hensive background for this work (COLLMER and KEEN 1986; KOTOUJANSKY 1987; 
ROBERT-BAUDOUY 1991). In the following sections, we will introduce the E. 
chrysanthemi pectic enzyme arsenal in its simplest form and then enlarge the 
picture to include recent insights into the relationship between enzyme deploy­
ment and pathogenesis. 

E. chrysanthemi produces diverse pectic enzymes. As summarized in 
Table 1, these enzymes attack the a-1 A-glycosidic linkages in pectate (polygalac­
turonate or galacturonan) using different reaction mechanisms and action pat­
terns. The pectate lyase isozymes (discussed individually in Sect. 3.4) cleave 
internal glycosidic linkages in pectate by ~-elimination, have a high pH optimum 
(ca. 8.5) and a requirement for divalent cations, can attack insoluble polymers in 
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Table 1. Erwinia chrysanthemi EC16 enzymes inducible by pectate and involved in the depoly­
merization or deesterification of pectic polymers and oligomers 

Enzymes Genes' Reaction Substrate and Direct role in 
mechanism products maceration 

Pectate lyase pelABCE J3-Elimination of Pectate to Yes. depending 
(isozymes PeIA-E) intemal glycosidic various on isozyme 

bonds oligomers 

Exo-poly-a-D- pehX Hydrolysis of Pectate to No 
galacturonosidase penultimate dimers 

glycosidic bond 

Oligogalacturonide ogl J3-Elimination Oligomers to No 
lyase monomers 

Pectin pem Hydrolysis of Pectin No 
methylesterase methylester (polymethoxy-

galacturonide) 
to pectate 

• The gene designations are based on the reaction mechanism: pel (pectic enzyme lyase); 
peh (pectic enzyme hydrolase); pem (pectic enzyme methylesterase). 

plant cell walls, and generate a 4,5-unsaturated bond in the nonreducing product 
(COLLMER and KEEN 1986). Exo-poly-a.-D-galacturonosidase has a lower pH opti­
mum (6.5), hydrolyzes the penultimate glycosidic bond at the nonreducing end of 
the pectic polymer, releases digalacturonate (or 4,5-unsaturated digalacturonate 
from unsaturated substrate). and appears to work in concert with pectate lyase in 
degrading insoluble pectic polymers to assimilable dimers (COLLMER et al. 1982). 
Pectate lyase, exo-poly-a.-D-galacturonosidase and pectin methylesterase are 
extracellular, whereas oligogalacturonide lyase is cytoplasmic (HE et al. 1993b). 
The latter enzyme cleaves the unsaturated dimerto two monomers of 4-deoxy-L­
threo-5-hexosulose uronate, or the saturated dimer to monomeric galacturonate 
and 4-deoxy-L-threo-5-hexosulose urona~e (MORAN et al. 1968). Subsequent 
catabolism of 4-deoxy-L-threo-5-hexosulose uronate leads to the formation of 2,5-
diketo-3-deoxygluconate and 2-keto-3-deoxygluconate, inducers of further pectic 
enzyme synthesis (discussed in Sect. 3.5), and eventually to pyruvate and 3-
phosphoglyceraldehyde. 

E. chrysanthemi produces several other extracellular degradative enzymes, 
including two cellulase isozymes (BOYER et al. 1984; GUISEPPI et al. 1991). four 
protease isozymes (DAHLER et al. 1990; GHIGO and WANDERSMAN 1992; WANDERSMAN 
et al. 1987), xylanase (BRAUN and RODRIGUES 1993). phospholipase (KEEN et al. 
1992). and plant-inducible isozymes of pectate lyase (BEAULIEU et al. 1993; KELEMU 
and COLLMER 1993; COLLMER et al. 1991). Genetic evidence does not support a 
major role for protease or phospholipase in virulence (DAHLER et al. 1990; KEEN 
et al. 1992). Xylanase may be important in diseases involving grami­
naceous hosts, in which xylans are more prevalent than pectic polymers in plant 
cell walls, but the role of xylanase has not been tested genetically (BRAUN and 
RODRIGUES 1993). 
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E. carotovora produces a somewhat different set of pectic enzymes, 
although it causes diseases that are often indistinguishable from those caused by 
E. chrysanthemi. For example, E. carotovora produces several pectate lyase 
isozymes but none with an acidic pi like the E. chrysanthemi PelA (and it has no 
pelADEhomologsl, and E. carotovora produces endo-cleaving polygalacturonase 
rather than exo-poly-a-D-galacturonosidase (HINTON et al. 1989a, 1990; RIED and 
COLLMER 1986; SAARI LAHTI et al. 1990). 

Pectin lyase, which preferentially cleaves pectin, also is produced by many 
strains of E. chrysanthemi and E. carotovora (TSUYUMU and CHATTERJEE 1984). 
Intriguingly, the enzyme is induced by DNA-damaging agents rather than pectic 
compounds, and this induction is dependent on RecA and an activator designated 
Rdg (McEvoy et al. 1992; ZINK et al. 1985). The complexity of this arsenal leads us 
to question in the following sections the evidence for the pathogenic role of these 
enzymes, as determined by physiological effects, mutant phenotypes, and 
patterns of regulation. 

3.2 Pectic Enzymes and Plant Tissue Damage 

Most of the er)do-cleaving pectic enzymes secreted by the soft rot erwinias can 
macerate and kill parenchymatous plant tissues (COLLMER and KEEN 1986). The 
effect is rather dramatic in organs like the potato tuber, which can be liquified by 
either bacteria or isolated enzymes. No other plant cell wall depolymerases 
secreted by the soft rot erwinias have this destructive effect, apparently because 
a-1 A-galacturonosyl linkages in the matrix of the primary cell wall and middle 
lamella of dicots are unique in being essential for structure but vulnerable to 
enzymatic attack (McNEIL et al. 1984). Maceration is attributed to disruption of the 
middle lamella, which is the intercellular cement that holds plant cells in a tissue. 
The simplest explanation for the killing effect is osmotic fragility of the protoplast 
resulting from structural failure of the wall (BASHAM and BATEMAN 1975a,b; STEPHENS 
and WOOD 1975). However, the sensitivity of turgid (but not plasmolyzed) 
protoplasts to some cell wall fragments raises the possibility of alternative 
mechanisms (YAMAZAKI et al. 1983). 

Further support for the involvement of E. chrysanthemi pectate Iyases in 
damaging susceptible plant cell walls was obtained by immunocytochemically 
monitoring the distribution of the enzyme and the disorganization of pectate in 
Saintpaulia ionantha leaves infected with E. chrysanthemi (TEMSAH et al. 1991). 
The enzyme was prevalent in the walls of spongy parenchyma cells, which were 
the cell type most susceptible to degradation during pathogenesis, and the 
presence of the enzyme, first in the middle lamella and then in an irregular 
distribution pattern in the cell wall, corresponded with the loss of substrate, as 
determined with a monoclonal antibody specific for homogalacturonans. 
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3.3 Pectic Enzymes and Plant Defense Elicitation 

=:ertain products of pectolytic digestion are biologically active as elicitors of 
::lefense reactions. These are members of the growing class of "oligosaccha­
-ins," which are biologically active oligosaccharides produced by partial de­
Jradation of plant cell wall polymers (ALBERSHEIM et al. 1983). 

Oligogalacturonides released by Erwinia pectic enzymes that have between 
10 and 15 galacturonosyl residues and are without methylesterification (which 
3xcludes the products of the damage-inducible pectin lyase) elicit the synthesis of 
Jhytoalexins (low molecular weight, antimicrobial compounds) and chitinase 
:representative of a class of "pathogenesis-related" defense proteins) (ALDINGTON 
3t al. 1991; BROEKAERT and PEUMANS 1988; DAVIS et al. 1984; HAHN et al. 1988). The 
nitial response to these oligogalacturonides is rapid, as indicated by 
Tleasurements of membrane depolarization and increased cytosolic free calcium 
::oncentration (MESSIAEN et al. 1993; THAIN et al. 1990). It is not certain whether 
::lefense-eliciting oligouronides are actually generated and active during patho­
Jenesis. 

It is also important to note that oligogalacturonides do not elicit the HR. In 
'act, tobacco leaves pretreated with low levels of an E. chiysanthemi pectate 
yase isozyme or oligogalacturonide products of the enzyme do not undergo the 
-1 R when challenged with a strain of P. syringaethat would normally produce this 
-esponse, and they are resistant!o P. syringae pv. tabaci, which normally causes 
Nild fire of tobacco (BAKER et al. 1986, 1990). Similarly, pretreatment of tobacco 
3eedlings with E. carotovora pectic enzymes induces protection against chal­
enge inoculation with the bacterium (PALVA et al. 1993). Thus, the Erwinia pectic 
3nzymes or their oligogalacturonide products can induce resistance in tobacco 
3gainst diverse bacterial pathogens. 

The active resistance of plants against potential pathogens is associated with 
the de novo synthesis of a variety of putative defense proteins, including 
Jhenylalanine ammonia lyase and other e[1zymes in the phenylpropanoid path­
Nay (which produces precursors for the biosynthesis of phytoalexins and lignin), 
the pathogenesis-related proteins (which are targeted to the apoplast or the 
vacuole and include lytic antifungal enzymes like chitinase and ~-glucanase), 
Jeroxidase (involved in lignin biosynthesis), and hydroxyproline-rich glycoproteins 
:which strengthen the primary cell wall) (LAMB et al. 1989). Many of these proteins 
Jr their encoding mRNAs have been shown to increase after treatment of plant 
Tlaterials with E. carotovora pectic enzymes (presumably acting through their 
Jligogalacturonide products) (DAVIS and AUSUBEL 1989; PALVA et al. 1993), and this 
-esponse can be diminished by particular combinations of enzymes that should 
Jrevent the accumulation of larger oligogalacturonides possessing elicitor activity 
:YANG et al. 1992). 

The biochemical basis for resistance to the soft rot erwinias, particularly E. 
carotovora, has been studied most in potato tubers, which are highly susceptible 
to bacterial soft rot under certain conditions (LYON 1989). This dependency on 
:mvironmental conditions that impair the host is a hallmark of soft rot patho-
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genesis, and wet, hypoxic conditions are particularly important in tuber rot (DE 
BOER and KELMAN 1978). One explanation for this is that hypoxic stress, which 
naturally occurs when tuber surfaces are covered with a film of water (BURTON and 
WIGGINTON 1970)' impairs wound healing and active defenses. Wounds enable 
these bacteria to breach the periderm and enter the underlying, susceptible 
parenchymatous tissues, but healed wounds are resistant to bacterial penetration 
(PEROMBELON and KELMAN 1980). Hypoxic stress inhibits multiple aspects of the 
wound response in potato tubers, including the synthesis of phenylalanine 
ammonia lyase and hydroxyproline-rich glycoproteins and the oxidative cross­
linking of suberin and lignin constituents (BUTLER et al. 1990; RUMEAU et al. 1990; 
VAYDA et al. 1992; VAYDA and SCHAEFFER 1988). Another explanation for the 
dependence of tuber rot on hypoxic conditions is that anaerobically incubated 
whole tubers are far more susceptible to maceration by isolated E. carotovora 
pectic enzymes (MAHER and KELMAN 1983). The diverse physiological effects of 
pectic enzymes suggest that some enzymes may be particularly adapted for 
pathogenesis and that deployment of the enzyme complex is carefully regulated. 

3.4 Pectic Enzyme Deficient Mutants and 
Erwinia chrysanthemi Virulence 

Our knowledge of the genetics of pectic enzyme production, its relationship to 
virulence, and the relative -importance of individual enzymes in the soft rot 
erwinias is most complete with E. chrysanthemi strains EC16 and 3937. Figure 1 
depicts the pi profiles of the pectate-inducible, extracellular pectic enzymes of 
strain EC16 and the arrangement of the encoding genes. All of the pectic enzyme 
genes have independent promoters despite the fact that pelB-pele and pelA­
pelE-pem are contained in two (widely separated) clusters (TAMAKI et al. 1988). 
EC16 differs from 3937 and most strains of E. chrysanthemiin not producing PelD 
because of a natural deletion (TAMAKI et al. 1988). PelB and PelC have 84% amino 
acid identify, PelAand PelE share 62% 'identity, and the strain B374 PelD and PelE 
share 79% identity (TAMAKI et al. 1988; VAN GIJSEGEM 1989). All of these genes in 
EC16 and 3937 have been cloned, sequenced, and mutated by marker-exchange 
mutagenesis. The EC16 mutants have been assayed primarily for their ability to 
macerate whole potato tubers and the 3937 mutants for their ability to syste­
mically invade and rot axenically grown Saintpaulia plants. 

Mutations in E. chrysanthemi EC16 have revealed that PelE is the most 
important isozyme in potato tuber maceration: a ~pelE mutant has half of the 
potato tuber maceration capacity of the wild type (PAYNE et al. 1987). The potential 
importance of PelE in virulence has been tested further by subcloning the gene 
under control of the triple lac UV5 promoters in pi N K-1, which permits E. coli 
transformants to produce (and leak) high levels of PelE (KEEN and TAMAKI 1986). 
The pe/P E. coli strain macerates more aggressively than does wild-type E. 
chrysanthemi when injected into whole potato tubers (PAYNE et al. 1987) and is 
reported to produce typical blackleg (stem rot) symptoms in potato plants (TSROR 
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Fig. 1. Diagram of isoelectric focusing (lEF) profiles of the Erwinia chrysanthemi EC16 pectate lyase 
(Pel) isozymes and exo-poly-a-D-galacturonosidase (PehX), the pel and pehX genes, and relevant 
mutations. The Erwinia pectic enzymes are routinely resolved and detected by activity-staining 
ultrathin layer IEF gels; clear zones in the background of stained polymer in substrate overlays indicate 
the location of focused enzymes (BERTHEAU et al. 1984; RIED and COLLMER 1985). Unmarked deletions, 
indicated by the unshaded regions, were constructed in the strain EC16 pel genes to produce mutant 
CUCPB5006, which was then used for directed mutagenesis of additional pectic enzyme genes, such 
as the pehX::TnphoA mutation in CUCPB5009. (From HE and COLLMER 1990) 

et al. 1991). These results indicate the PelE is sufficient to confer the maceration 
phenotype to another enterobacterium. Thus, despite the suggestion of DE 
LORENZO et al. (1991), that the high pH optimum of bacterial pectate Iyases is 
inconsistent with a role in initiating maceration, there seems little doubt that the 
E. chrysanthemi PelE is capable of this when delivered by a living bacterium. 
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The observation that E. chrysanthemi EC16 mutants with deletions in individ­
ual pel genes are only partially reduced in maceration ability spurred the 
development of a marker exchange-eviction mutagenesis technique and the 
construction of E. chrysanthemi mutants with multiple pel mutations (COLLMER et 
al. 1988; RIED and COLLMER 1987, 1988). Surprisingly, mutant UM 1 005, which has 
deletions in peIABCE, retains significant ability to macerate potato tuber tissue 
(RIED and COLLMER 1988). The E. chrysanthemi EC16 pehX and pelX (encoding 
exopolygalacturonate lyase) genes have also been cloned, characterized, 
and mutated, revealing their products to contribute to the utilization of pectate 
but not to maceration virulence (BROOKS et al. 1990; HE and COLLMER 1990). E. 
chrysanthemi CUCPB5012 (~[peIB pe/C]::28bp, ~[peIA pelE] , ~[peIXJ Mbp, 
pehX::T nphoA) was subsequently constructed and found to produce a second set 
of Pel isozymes in planta and when grown in the presence of plant extracts 
(KELEMU and COLLMER 1993; COLLMER et al. 1991). Culture fluids of CUCBP5012 
containing these plant-inducible Pel isozymes are able to macerate 
chrysanthemum leaves, but the role of the isozymes in the residual maceration 
ability of the mutant has not been tested genetically. 

Many important insights into the role of individual pectic enzymes have been 
gained by analysis of the pathogenic behavior of mutants of E. chrysanthemi3937 
in axenically grown Saintpaulia plantlets. When one leaf is inoculated with strain 
3937, most plantlets succumb to systemic invasion and maceration, but some 
show only maceration of the inoculated leaf, and a few produce just local necrosis 
or no symptoms (BOccARA-et al. 1988). Pathogenic behavior in this assay, 
particularly the capacity for systemic invasion, is substantially altered in 
E. chrysanthemi 3937 strains carrying mutations in certain pel genes (BOCCARA 
et al. 1988), pem (BOCCARA and CHATAIN 1989), or multiple pel genes (BEAULIEU 
et al. 1993), as summarized in Fig. 2. 

In interpreting these results, it is also important to consider the differing 
action patterns and effects on plant tissues of isolated Pel isozymes. Experiments 
with strain EC16 Pel isozymes produced by E. coli transformants have shown 
that the relative ability of an isozyme tdcause maceration is correlated with its cell 
killing activity, and both activities increase with the pi of the isozyme (BARRAS et al. 
1987). Thus, PelE is highly destructive, while PelA has little effect. The isozymes 
also degrade pectate to limit-products in different patterns, although the effect of 
this on pathogenesis is unclear since none of the isozymes appears to 
accumulate larger oligomers with elicitor activity (PRESTON et al. 1992):Thus, with 
the exception of PelA, the contribution of E. chrysanthemi 3937 Pel isozymes to 
Saintpaulia systemic invasiveness is roughly correlated with the ability of the 
corresponding EC16 Pel isozymes to damage plant tissues (Fig. 2). 

Our lack of understanding of the enzymological basis for the differing actions 
of the Pel isozymes in pathogenesis is epitomized by the puzzling failure of PelA 
to macerate potato tuber tissue. It is possible that its low pi causes it to be 
repelled by the negative charges in the plant cell wall, but the merely intermediate 
maceration activity of a PeIE-PeIA hybrid with a pi higher than the expected pH of 
intercellular fluids argues against this (T AMAKI et al. 1988). More knowledge about 
the enzymology of the Pel isozymes on the diverse and complex pectic polymers 
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Fig. 2A,B. The relative contributions of Erwinia chrysanthemi pectate lyase isozymes to virulence and 
tissue damage. A The relative effect of pel and pem mutations on the ability of strain 3937 to cause 
systemic disease in Saintpaulia. B The r~lative permeability changes in potato tuber tissue following 
incubation with the indicated strain EC16 isozymes for 1 h. (From BEAULIEU et al. 1993; BOCCARA et al. 
1988; BARRAS et al. 1987) 

in plant tissues is needed (FRY 1988). For example, we do not know if PelA is 
inactive in tissues that it does not damage, or if instead it preferentially cleaves 
linkages that have little structural role. Similarly, we do not know what its 
substrates are in the systemic invasion route. In general, the action of the Pel 
isozymes on native substrates in the plan~ cell wall and middle lamella demand 
further exploration. 

The production of multiple Pel isozymes is a conserved feature of E. chrysan­
themi strains from diverse origins (BERTHEAU et al. 1984; RIED and COLLMER 1986; 
VAN GIJSEGEM 1986). In a telling experiment, BEAULIEU et al. (1993) have obtained 
evidence that Pel isozyme multiplicity contributes to the wide host range of the 
bacterium. E. chrysanthemi 3937 mutants with various pel mutations were 
analyzed for their virulence in Saintpaulia plantlets, pea seedlings, potato tubers, 
and witloof chicory leaves. Many mutations have significantly different effects in 
different hosts. For example, a pelE mutation decreases virulence in Saintpaulia 
but increases it in potato and chicory, while a pelBC mutation does not signi­
ficantly affect virulence in Saintpaulia but decreases virulence in chicory. 
Although a pelABCDE mutant is significantly reduced in virulence in all plants 
tested, the level of residual virulence varies substantially. Several new Pel 
isozymes were detected in extracts from plants infected with the mutant, and 
these isozymes also appear to differ in their importance in different hosts. 
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In summary, E. chrysanthemi strains EC16 and 3937 produce multiple 
pectate lyase isozymes (including isozymes additional to PeIA-E), each isozyme 
can enhance (or diminish) virulence quantitatively, and its contribution varies 
among hosts. All of this suggests complex regulation of enzyme synthesis. 

3.5 Pectic Enzyme Regulation in Erwinia chrysanthemi and 
Erwinia carotovora 

Pectic enzyme production in E. chrysanthemi and E. carotovora is inducible by 
pectate and increases dramatically in late log phase (CHATIERJEE et al. 1979; 
COLLMER and BATEMAN 1982; HUGOUVIEUX-COTIE-PATIAT et al. 1986; ZUCKER and 
HANKIN 1970; ZUCKER et al. 1972). The actual inducer during growth of E. chrysan­
themi on pectate is an intermediate in the ketodeoxyuronate pathway: ogl 
mutants are no longer inducible by pectate or digalacturonates, but pectic 
enzyme synthesis in ogl mutants and wild-type E. chrysanthemi can be induced 
by exogenous 2,5-diketo-3-deoxygluconate, 2-keto-3-deoxygluconate (KDG) 
and KDG analogs (CHATIERJEE et al. 1985b; COLLMER and BATEMAN 1981; NAssER 
etal. 1991). 

The focus of recent research in E. chrysanthemi has been on the physio­
logical and genetic factors underlying the induction of individual pel and pem 
genes, particularly in strain 3937, which has been rigorously studied by Robert­
Baudouy and colleagues. The pelABCOE genes, pem, and all of the genes 
controlling the intracellular catabolism of 4,5-unsaturated digalacturonate are 
negatively controlled by the KdgR protein, which in the absence of inducer is 
expected to interact with conserved KdgR box sequences in the promoter regions 
of these genes (CONDEMINE 1987; NAssER et al. 1992; REVERCHON et al. 1989, 1991). 
Although kdgR mutants produce pectate lyase at a higher level than wild type in 
the absence of inducer, they still respord to pectate with additional pectate lyase 
synthesis, indicating the existence of other regulators. Additional loci affecting pel 
expression in trans have been identified but not yet characterized (BoccARA and 
CHATAIN 1989; HUGOUVIEUX-COTIE-PATIAT and ROBERT-BAUDOUY 1989, 1992). 

Several other factors affect the expression of the E. chrysanthemi pel genes. 
Pectate lyase production in E. chrysanthemi is subject to cAMP-mediated cata­
bolite repression and self-catabolite repression by 4,5-unsaturated digalactu­
ronate (CHATIERJEE et al. 1979; COLLMER and BATEMAN 1981)' and CAP binding sites 
are discernible in the regulatory regions of pel genes (GOLD et al. 1992; REVERCHON 
etal. 1989; VAN GIJSEGEM 1989). Expression of the pel genes is reduced by nitrogen 
starvation and high culture temperatures, and it is stimulated by anaerobiosis, iron 
limitation, and high osmolarity (HuGOUVIEUX-COTIE-PATIAT et al. 1992; SAUVAGE et al. 
1991). The effects of some of these factors are relatively minor and differ among 
the pel genes. For example, high osmolarity stimulates pelE but represses pelO. 
However, the end of log phase growth strongly stimulates the expression of 
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all of the E. chrysanthemi 3937 pel genes in culture (HUGOUVIEUX-COTIE-PATIAT 
et al. 1992). 

Expression of the E. chrysanthemi 3937 pel genes is also stimulated by a low 
molecular weight, thermostable, organic compound in carrot extracts but only in 
the presence of known pectic inducers (BOURSON et al. 1993). The E. chrysan­
themi 3937 pel and pem genes also have been shown to be expressed during 
infection of potato tubers, with the pelA, pelB, pele, and pem genes being 
moderately expressed and the pelD and pelE genes being strongly expressed 
(LOJKOWSKA et al. 1993). The relative expression of some of the pel genes appears 
to depend on the tissue. For example, pelE and pem are expressed at higher 
levels in growing plants than in tubers. Thus, another factor contributing to the 
wide host range of E. chrysanthemi may be the adaptive regulation of the 
different pectic enzyme genes. 

Work on pectic enzyme regulation in E. carotovora has focused on the global 
regulation of plant cell wall-degrading enzymes because of the prevalence of 
pleiotropic regulatory mutations effecting virulence and extracellular enzyme 
production (BERAHA and GARBER 1971; HINTON et al. 1989b; MURATA et al. 1991; 
PIRHONEN et al. 1991). The phenotype of these mutants has been designated Aep 
(activation of extracellular protein production) (MURATA et al. 1991), Exp (exo­
enzyme production) (PIRHONEN et al. 1991), or Rex (regulation of exoproteins) 
(JONES et al. 1993). For example, aep mutants are deficient in production of 
pectate lyase, polygalacturonast;l, cellulase, and protease. Extracellular enzyme 
production and virulence in aep mutants of E. carotovora subsp. carotovora 71 can 
be restored by the cloned aepA gene, which encodes a predicted 51 kDa protein 
with a signal peptide, several hydrophobic domains, and no homology with 
known prokaryotic regulatory proteins (Llu et al. 1993; MURATA et al. 1991). 

Investigation of exp mutants in strain SCC3193 and rex mutants in strain 
SCRI193 have revealed that extracellular enzyme production in these bacteria is 
controlled by N-(3-oxohexanoyl) homoserine lactone (HSl), a diffusible auto­
inducer that also is used by Vibrio fische[i to activate lux expression and bio­
luminescence in a cell density-dependent manner (FUQUA et al. 1993; JONES et al. 
1993; PIRHONEN et al. 1993). The E. carotovora SCC3193 expl gene encodes a 
functional analog of the V. fischeri luxl gene, whose product directs the bio­
synthesis of autoinducer (PIRHONEN et al. 1993). An expl mutant is deficient in 
virulence and extracellular enzyme production unless exogenous HSL is added. 
Similarly, some rex mutants in strain SCRI193 are dependent on autoinducerfor 
virulence and extracellular enzyme production (JONES et al. 1993). Significantly, an 
explmutant fails to produce high levels of polygalacturonase as cultures reach the 
end of log phase, thus indicating that autoinducer is at least one factor controlling 
growth phase-dependent extracellular enzyme production (PIRHONEN et al. 1993). 
Although density-dependent regulation of extracellular enzyme production has 
not been proven, it appears likely that autoinducer functions as a quorum sensor 
(FUQUA et al. 1993), which permits enzyme production during infection only when 
the pathogen is numerous enough to wage a successful attack (JONES et al. 1993; 
PIRHONEN et al. 1993). 



56 A. Coli mer and D.W. Bauer 

It is not known how similar the pectic enzyme regulatory systems of E. 
carotovora and E. chrysanthemi are. A KdgR-like repressor has not been reported 
in E. carotovora and autoinducer-dependent pectic enzyme induction has not 
been reported for E. chrysanthemi, although E. chrysanthemi EC16 does produce 
autoinducer (A. K. Chatterjee, personal communication). In light of the ecological 
and pathological similarities between these two species, any fundamental 
differences in regulation of their extracellular enzymes would be surprising. 

4 The Hypersensitive Response and Harpins 

4.1 Pseudomonas syringae and Plant Hypersensitivity 

The HR of higher plants is characterized by the rapid, localized death of plant cells 
at the site of pathogen invasion. It occurs during incompatible interactions, which 
typically involve a biotrophic, host-specific pathogen that causes disease only in 
another plant, and it is associated with resistance against many fungi, viruses, and 
bacteria (KIRALY 1980; KLEMENT 1982). The ability of bacteria to elicit the HR was 
discovered more than 30 years ago, when Klement infiltrated the intercellular 
spaces of tobacco leaves with different concentrations of three related bacteria: 
P. syringae pv. syringae, P. syringae pv. tabaci, and P. fluorescens (KLEMENT 1963; 
KLEMENT et al. 1964). The results are summarized in Table 2. 

It is important to note that low levels of inoculum are sufficient for P. syringae 
pv. tabacito initiate pathogenesis, but high levels (> 5 x 106 cells/ml) are required 
for P. syringae pv. syringae to cause the macroscopic collapse that Klement 
observed as the HR. We now know that an incompatible pathogen at lower 

Table 2. Interactions of three related pseudo monads with tobacco leaf tissue 

Bacterium Relationship Bacterial Plant response Final outcome 
with plant population 

P. syringae pv. Incompatible Rises briefly, then Rapid « 24 h) HR (resistance) 
syringae pathogen declines when collapse of 

HR develops infiltrated area 
only 

P. syringae pv. Compatible Prolonged Slow (days) Pathogenesis 
tabaci pathogen: increase to very necrosis, (disease 

"wild fire" high level spreading lesion symptoms) 
of tobacco 

P. fluorescens Nonpathogen No increase None apparent Null 

HR. hypersensitive response. From KLEMENT (1963) and KLEMENT et al. (1964). 
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concentrations causes the HR only in scattered, individual plant cells, with one 
bacterium eliciting the death of one plant cell (KLEMENT 1982; TURNER and NOVACKY 
1974). The macroscopic HR that is demonstrable in the laboratory is therefore a 
manifestation of a cellular hypersensitivity that can operate under natural 
conditions. The HR can be elicited in nonhosts or resistant hosts by most plant 
pathogenic bacteria, including Erwinia amy/ovora (which causes fire blight of 
rosaceous plants), P. so/anacearum (which causes wilts in many solanaceous 
plants), and Xanthomonas campestris (whose many pathovars cause host speci­
fic diseases similar to those caused by P. syringae). Also, as will be discussed in 
the next section, E. chrysanthemi can be shown to cause the HR. 

It is important to emphasize that the HR is not elicited by nonpathogen 
species like P. fluorescens. This implies an underlying relationship between the 
ability to be a plant pathogen and to elicit the HR. Indeed, KLEMENT (1982) has 
cogently argued that there are fundamental similarities in the development of the 
HR and the development of disease. In both cases there is a period of bacterial 
multiplication that ends with plant cell electrolyte leakage and collapse. A simple 
interpretation of the difference between the two interactions is that, in the 
compatible interaction, plant cells are less sensitive to the parasitic growth of the 
pathogen on their surface. Consequently, plant cell death is delayed until a large 
bacterial population has developed, spread to surrounding cells, and produced 
toxins, extracellular polysaccharides, phytohormones and/or other potential 
virulence factors (COPLIN 1989; EL-BANOBY and RUDOLPH 1979; FEn and DUNN 1989; 
GROSS 1991; WILLIS et al. 1991 a)~ By contrast, the HR develops rapidly, and the 
incompatible pathogen is unable to proceed beyond its initial interaction with a 
few plant cells, presumably because of the production of phytoalexins and other 
defense molecules associated with the HR (LAMB et al. 1989; LONG et al. 1985; 
PIERCE and ESSENBERG 1987). Defense gene expression occurs in both interactions 
but is generally lower or delayed in the compatible interaction (DONG et al. 1991; 
LAMB et al. 1989; WILLIS et al. 1991 b). 

The search for early physiological pro~esses occurring in plants inoculated 
with incompatible P. syringae stains has revealed several responses, including a 
burst of active °2, membrane lipid peroxidation, Ca2+ influx, and a K+/Wexchange 
(ATKINSON and BAKER 1989; ATKINSON et al. 1985, 1990; CROFT et al. 1990; KEPPLER 
and BAKER 1989; KEPPLER et al. 1989; KEPPLER and NOVACKY 1986; NOVACKY 1991). 
The effects of inhibiting Ca2+ influx with lanthanum and other channel blockers, 
ATPase activity with vanadate, and protein synthesis with blasticidin S suggest 
that these processes are essential for the HR triggered by incompatible P. 
syringae strains and that hypersensitivity is an active response of the plant 
(ATKINSON and BAKER 1989; ATKINSON et al. 1990; HOLLIDAY et al. 1981). These 
processes also occur at a slower rate in compatible interactions, and ATKINSON and 
BAKER (1987a,b) have proposed that the alkalinization of the apoplast resulting 
from the K+/W exchange causes leakage of sucrose and other nutrients that 
permit bacterial growth (discussed further in Sect. 6). 



58 A. Ccllmer and D.W. Bauer 

4.2 hrp Genes and Harpins 

The ability of P. syringae strains to elicit the HR or cause disease is controlled by 
hrp (hypersensitive response and pathogenesis) genes, and typical Hrp- mutants 
have the null phenotype of a non pathogen in plants (LINDGREN et al. 1986; NIEPOLD 
et al. 1985; WILLIS et al. 1991 b). The hrp genes of phytopathogenic bacteria are 
discussed in detail in the chapter by Bonas, and here we will review only briefly a 
few salient points before turning to our discussion of the extracellular protein 
products of these genes. First. hrp genes occur in clusters and are widely 
conserved among plant pathogens in the genera Pseudomonas, Xanthomonas, 
and Erwinia (i.e., gram-negative phytopathogens capable of causing necrosis in 
plants) (ARLAT et al. 1991; FENSELAU et al. 1992; GOUGH at al. 1992; LABY and BEER 
1992; LINDGREN et al. 1988). Second, two cloned hrp clusters enable non­
pathogens, like P. fluorescens or E. coli, to elicit the HR (but not cause disease) in 
tobacco and other plants. These functional hrp clusters are carried on cosmids 
pHIR11 from P. syringae pv. syringae61 and pCPP430 from E. amy/ovora Ea321 
(BEER et al. 1991; HUANG et al. 1988). Third, the pleiotropic phenotype of typical P. 
syringae hrp mutants suggests that the hrp genes are involved in the production 
of factors necessary for the bacterium to initiate a parasitic interaction with the 
plant (HUANG et al. 1991). Fourth, P. syringae hrp genes are expressed only in 
nutrient poor conditions typical of plant intercellular fluids (HUYNH et al. 1989; 
RAHME et al. 1992; XIAO et al. 1992; YUCEL et al. 1989). Fifth, DNA sequence 
analyses have suggested possible functions for some of the P. syringae hrp 
products as positive regulators of gene expression (GRIMM and PANOPOULOS 1989; 
MILLER et al. 1993) or components of a protein secretion pathway (discussed 
further in Sect. 5.3). In summary, these observations suggest that following 
inoculation, necrogenic, gram-negative phytopathogens begin to secrete a pro­
tein that elicits the HR in nonhosts and is required for pathogenesis in hosts. 

The first such protein was discovered by WEI et al. (1992) following the 
observation that HR elicitor activity was present in cell-free extracts of E. coli 
DH5a(pCPP430), which carries the highly expressed hrp cluster of E. amy/ovora 
Ea321. The elicitor protein was designated harpin (and will be referred to here as 
harpinEJ HarpinEa is a glycine-rich, hydrophilic, heat-stable protein with an 
apparent molecular mass of 44 kDa. Purified harpinEa can elicit an H R-like necrosis 
when infiltrated into the leaves of tobacco, tomato, Arabidopsis thaliana, and 
several other plants. Mutations in the harpinEa-encoding hrpN gene abolish the 
ability of E. amy/ovora to elicit the HR in tobacco or cause disease in highly 
susceptible immature pear fruit. Southern hybridization analysis suggests that 
homologs of the hrpN gene are present in other pathogenic Erwinia spp. but 
lacking in Pseudomonas and Xanthomonas spp. (BEER et al. 1993). 

The P. syringae pv. syringae 61 harpin gene subsequently was identified 
when E. coli transformants expressing random subclones of the pHIR11 hrp 
genes were lysed in planta, revealing those expressing the hrpZ gene to elicit the 
HR (HE et al. 1993a). hrpZ encodes a 34.7 kDa protein, harpinpss' which is dissimilar 
in overall amino acid sequence to harpinEa but similar in several properties: it is 
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glycine-rich, cysteine-lacking, hydrophilic, heat stable, and elicits the H R in the 
same plants that are senstive to harpinEa • Harpinpss is not produced in rich culture 
media, and deletion derivatives reveal that the COOH-terminal half of the protein 
is sufficient for elicitor activity. As will be discussed in Sect. 5.3, harpinpss is 
secreted to the bacterial milieu. 

The E. chrysanthemi hrpN gene was cloned by probing a genomic DNA library 
with the E. amylovora hrpN gene (BAUER et al. 1994b; WEI et al. 1992), and 
a homolog has been identified also in E. carotovora EC71 (A. K. Chatterjee, 
personal communication). HarpinEch is a hydrophilic, glycine-rich protein with a 
molecular mass of 34.3 kDa. A comparison of the amino acid sequence of 
harpinEch with that of harpinEa reveals that the two proteins are highly similar in 
their COOH-terminal halves. Little sequence similarity is found with harpinpss. 
However, it is intriguing that all three of these harpins possess a stretch of 
22 amino acids near the center of the protein in which 11 amino acids are 
conserved. This region is not necessary for elicitor activity, but may be involved 
in secretion. 

The production of a harpin by E. chrysanthemi demands some comment, 
since the ability of soft rot erwinias to cause the HR has been considered 
uncertain because of the broad host range of these bacteria and their production 
of plant cell-killing pectic enzymes (KLEMENT 1982). E. chrysanthemi mutant 
CUCPB5006, which causes little pectolytic damage to tobacco leaves because of 
directed mutations in genes encoding the major pectate lyase isozymes, can be 
seen to elicit a typical HR (BAUER 8t al. 1994a). The ability of CUCPB5006 to elicit 
the HR is abolished by marker-exchanged transposon insertions in hrpN and 
restored by complementation with a hrpN subclone (BAUER et al. 1994b). 
Furthermore, marker exchange of the hrpN mutation into wild-type E. 
chrysanthemi EC16 results in a substantial reduction in virulence in the witloof 
chicory maceration assay developed by BEAULIEU and VAN GIJSEGEM (1992; BAUER et 
al. 1994b). Thus, harpin contributes to the virulence of E. chrysanthemi, but it is 
not required for pathogenicity. 

The biochemical activity of harpins is: puzzling. It seems unlikely (but not 
impossible) that harpinpss ' for example, is an enzyme because of its heat stability 
and tolerance of a major deletion. In this regard, it is also noteworthy that harpinpss 
shows no pectic enzyme activity, since such an activity could account for 
its cell killing (HE et al. 1993a). Indeed, pectic enzymes previously have been 
suggested to be elicitors of the HR, but these reports have not been supported 
by subsequent genetic analyses (ALLEN et al. 1991; AZAO and MOO 1984; GARONER 
and MOO 1976; HUANG et al. 1989). Therefore, the plant apparently responds 
to elicitor information residing in the harpin structure itself rather than to 
damage or products resulting from enzymatic activity, as is the case with 
pectic enzymes. 

Another noteworthy difference between harpins and pectic enzymes is that 
the necrosis resulting from harpin treatment is an active "suicide" response of 
plant cells. Thus, the HR elicited in tobacco by harpinpss and harpinEa is blocked by 
lanthanum chloride (a calcium channel blocker), sodium vanadate (an ATPase and 
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phosphatase inhibitor), a,-amanitin (a transcription inhibitor), and cycloheximide (a 
translation inhibitor) (HE et al. 1993a, 1994). The necrosis caused by pectic 
enzymes, by contrast, cannot be prevented by metabolic inhibitors such as 
lanthanum chloride (D. W. Bauer, unpublished results). 

Interestingly, hrp mutants still trigger generalized defense responses (e.g., 
phenylpropanoid pathway gene expression) even though they fail to elicit the H R, 
indicating that these two defense-associated processes are not coupled (JAKOBEK 
and LINDGREN 1993). Indeed, phenylpropanoid pathway gene expression is trig­
gered at least weakly by saprophytic bacteria, although the physiological 
significance of this response is uncertain (JAKoBEK and LINDGREN 1993; MEIER and 
SLUSARENKO 1993). The availability of harpins should facilitate exploration of the 
plant signal transduction pathway controlling hypersensitivity and the relationship 
of this response to other plant defenses. 

4.3 Harpins, Avr Proteins and the Puzzle 
of Host Range Determination 

The involvement of harpins in determining the narrow host range of P. syringae 
strains or the broad host range of E. chrysanthemi strains is unclear. Limited data 
indicate that sensitivity to the harpins of E. amylovora and P. syringae varies 
among plants without any obvious correlation to host range (HE et al. 1993a; WEI 
et al. 1992). However, such_comparisons may not be meaningful because plants 
appear to be more sensitive to harpin delivered by living Hrp+ bacteria than to 
exogenously applied harpin. Experiments in which the coding sequences for the 
harpins of different pathovars are switched will definitively test whether infor­
mation controlling host range in P. syringae resides in harpin structure. 

If harpins are functionally equivalent among P. syringae pathovars, then 
compatibility may result from a carefully regulated deployment of harpin that 
avoids triggering the HR or from the production of suppressors of the HR and 
accompanying defense responses, as has been suggested for P. syringae pv. 
phaseolicola on bean (GNANAMANICKAN and PATIL 1977; JAKOBEK et al. 1993). In E. 
chrysanthem,: rapidly produced pectic enzymes may kill plant cells before their 
defenses can be mobilized. Furthermore, the necrotrophic interaction of E. 
chrysanthemi with susceptible tissues during maceration argues against the 
development of a .. compatibility" with the host that can be spoiled by the HR. 
This issue will be discussed in Sect. 6. 

In contrast to harpins, there is another class of P. syringae proteins whose 
only known biological effect involves host range. These proteins are encoded by 
the avr genes, and they control the host range of races within certain pathovars 
for certain cultivars of the host species (see chapter by DANGL, this volume). 
Various aspects of avr-mediated plant-pathogen recognition have been reviewed 
recently (DANGL 1992; GABRIEL and ROLFE 1990; KEEN 1990; LONG and STASKAWICZ 
1993), and we will discuss here only a few main points that are pertinent to 
harpins. The avr genes are so named because their presence in a strain confers 
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avirulence (Le., incompatibility) if the host cultivar carries a corresponding resis­
tance gene. The first avr gene was cloned from P. syringae pv. glycinea on the 
basis of its ability to render a normally compatible race incompatible on differential 
cultivars of the host soybean (STASKAWICZ et al. 1984). Such gene-for-gene 
interactions also control race-cultivar specificity in many important fungal 
diseases (FLOR 1971). The simplest molecular explanation for this phenomenon is 
that the interaction of an avr "elicitor" protein with a corresponding resistance 
gene "receptor" protein triggers defense responses (KEEN 1990). 

Incompatibility mediated by gene-for-gene interactions involving P. syringae 
strains is marked by the HR. However, typical avr proteins do not elicit the HR, 
they are hydrophilic proteins that appear not to be secreted (and therefore are 
unlikely to be accessible to postulated plant receptors); and their phenotype is 
revealed only in Hrp+ pathogenic strains (KEEN 1990). A further puzzle is that the 
first plant resistance gene that confers avr-mediated resistance to be cloned, the 
tomato Pta gene, encodes a putative cytoplasmic serine/threonine kinase with 
no apparent transmembrane receptor domain (MARTIN et al. 1993). 

One Avr protein, AvrD from P. syringae pv. tomato, directs the synthesis of 
homologous ylactones when expressed in various bacteria, including E. coli; and 
syringolides 1 and 2 elicit necrosis in soybean cultivars carrying the Rpg4 
resistance locus (KEEN et al. 1990; MIDLAND et al. 1993). There is no evidence that 
any of the other P. syringae Avr proteins are enzymes, and one bacterial Avr 
protein, AvrBs3 from X. campe~tris pv. vesicatoria (and its homologs in other 
xanthomonads), appears very unlikely to function as an enzyme because its 
activity is specified by 17.5 nearly identical, direct repeats of a 34 amino acid 
sequence (BONAS et al. 1989; HERBERS et al. 1992). 

The biochemical puzzles of harpin and Avr protein activity may be inter­
related. A key to this interrelationship may reside in the dependency of Avr 
phenotypes on Hrp+ backgrounds. Although P. syringae avrgenes are dependent 
on hrp regulatory genes for expression (HUYNH et al. 1989; INNES et al. 1993; SHEN 
and KEEN 1993)' there is likely an additional: reason for this Hrp dependency. For 
example, P. syringae pv. glycinea race 0 hrp mutants carrying an avr[)+ plasmid 
fail to elicit an HR on soybean cultivars carrying Rpg4, even though they still 
produce AvrD-elicitor activity in culture (KEEN et al. 1990). Perhaps Avr action is 
dependent on an initial parasitic interaction that is harpin-dependent. Perhaps 
harpins and Avr proteins act synergistically to elicit the H R in resistant cultivars of 
the host. Or perhaps typical, bacterial Avr proteins are dependent on the Hrp 
secretion pathway, an explanation that is attractive but not supported by available 
experimental data (BROWN et al. 1993; FENSELAU et al. 1992). 
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5 Virulence Protein Secretion Pathways 

5.1 Alternative Routes 

To interact with their targets in the host, the extracellular virulence proteins of 
gram-negative bacteria must first be translocated across the inner and outer 
membranes that envelop the cell. Several conserved secretion pathways are 
used forthis purpose. Some bacteria, such as laboratory strains of E. coli, possess 
none of these pathways, whereas others, like E. chrysanthemi, use at least three 
of them. These pathways are categorized in reference to the Sec pathway that is 
used for the translocation of periplasmic and outer membrane proteins across the 
inner membrane of all gram-negative bacteria. The hallmark of proteins travelling 
the Sec pathway is an NH2-terminal signal peptide that is removed upon trans­
location to the periplasm (RANDALL and HARDY 1989). 

The type I pathway (as classified by SALMOND and REEVES 1993) bypasses the 
Sec pathway. Proteins using this pathway lack an NH2-terminal signal peptide and 
accumulate in the cytoplasm of secretion-deficient cells. E. chrysanthemi 
secretes multiple isozymes of protease by this pathway, which is comprised of 
the prtD, prtE, and prtF products (DELEPELAIRE and WANDERSMAN 1989, 1991; 
WANDERSMAN 1989). This pathway is used by several animal pathogens, including 
Pseudomonas aeruginosa and hemolytic strains of E. coli, to secrete alkaline 
protease and hemolysin, respectively (Guzzo et al. 1991; HOLLAND et al. 1990). 

The type II pathway is an extension of the Sec pathway and is also known as 
the Sec-dependent pathway orthe main terminal branch of the general secretion 
pathway (PUGSLEY 1993). Proteins travelling this pathway carry NH2-terminal signal 
peptides. Following Sec-mediated translocation across the inner membrane and 
removal of the signal peptide, these proteins are translocated across the outer 
membrane by a set of accessory secretion proteins. The E. chrysanthemi out 
genes encode a type II pathway that iS~Jsed forthe secretion of most of the pectic 
enzymes and cellulase (discussed below). This pathway has been studied most 
extensively in Klebsiella oxytoca, which uses it to secrete pullulanase, and in P. 
aeruginosa, which uses it to secrete exotoxin A. elastase, and other proteins, as 
reviewed by PUGSLEY (1993) and LORY (1992). It appears to be the primary pathway 
by which gram-negative bacteria secrete degradative enzymes. 

The type III pathway also bypasses the Sec pathway but is distinct from the 
type I pathway in that internal targeting sequences characteristic of type I 
exoproteins are absent (MiCHIELS and CORNELIS 1991; MiCHIELS et al. 1990), and the 
pathway is formed by a different and more elaborate set of envelope proteins 
(MiCHIELS et al. 1991). The type III pathway is used by Yersinia spp., Salmonella 
typhimurium, and Shigella flexneri to secrete a variety of virulence proteins, and 
a related pathway appears to be used by plant pathogens to secrete harpins and 
possibly other proteins involved in pathogenesis (see reviews by VAN GIJSEGEM et 
al. 1993 and SALMOND and REEVES 1993). 
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All three of these pathways permit true secretion of proteins without cell lysis 
or release of periplasmic or cytoplasmic marker proteins. It is curious that E. 
chrysanthemi and E. carotovora may also release pectin lyase by a fourth, colicin­
like route, involving partial cell lysis: the RecA-dependent induction of pectin lyase 
synthesis in E. carotovora is accompanied by cell lysis; the sequence of PnlA 
reveals no NH2-terminal signal peptide; and the protein is produced by Erwinia 
without removal of any NH2-terminal sequences (CHATTERJEE et al. 1991; ZINK et al. 
1985). Although type I, II, or III pathway mutants have not been tested for any 
deficiency in pectin lyase secretion, it appears that this represents a fourth route 
to the cell exterior for soft rot Erwinia virulence proteins. 

Protein secretion by gram-negative bacteria has been recently treated in 
reviews that are topical (SALMOND and REEVES 1993), comprehensive (PUGSLEY 
1993), or focused on plant pathogens (HE et al. 1993b). The remainder of this 
section will address recent results with type II and III, pathways that are 
particularly relevant to the secretion of pectic enzymes and harpins. 

5.2 The Out Pathway and Pectic Enzymes 

Our mutants of E. chrysanthemi and E. carotovora are readily isolated. The 
synthesis of pectate lyase and several other plant cell wall-degrading enzymes is 
unaffected in these mutants, but the enzymes accumulate in the periplasm and 
the mutants are virtually nonpathogenic (ANDRO et al. 1984; CHATTERJEE et al. 
1985a; MURATA et al. 1990). Our mutants are the only mutants yet demonstrated 
to have this strong effect on virulence in both E. chrysanthemi and E. carotovora. 
The out genes of E. chrysanthemi and E. carotovora are clustered in the genome 
and are homologous with each other and with accessory secretion genes in a 
growing list of gram-negative bacteria (HE et al. 1991 a; LINDEBERG and COLLMER 
1992; MURATA et al. 1990; REEVES et al. 1993). The out genes of E. chrysanthemi 
EC16 are unique among all of these bacteria in that they can function in 
recombinant E. coli cells to permit the secre\ion of several E. chrysanthemi pectic 
enzymes (HE et al. 1991 a). 

The prototypical type II secretion pathway is used by K. oxytoca to secrete 
pullulanase (PUGSLEY 1993). The pul secretion gene cluster also functions in E. coli, 
but in this case to secrete a single protein, the K. oxytoca pullulanase (D' ENFERT et 
al. 1987). Fourteen proteins are required for this process (PUGSLEY 1993), These 
are the products of the pulC-O operon and the puIS gene. The E. carotovora 
outC-O operon is colinear with pulC-O (REEVES et al. 1993). In E. chrysanthemi, 
the outC-M genes are arranged in an operon that is colinear with puIC-M, but a 
pulN homolog is missing, and outO is transcribed independently (LINDEBERG and 
COLLMER 1992). As with K. oxytoca, E. chrysanthemi has an outS homolog 
upstream of oUtC(CONDEMINE et al. 1992). out Tis an additional gene between outS 
and outC that is required for secretion (CONDEMINE et al. 1992). 

The Out pathway translocates exoproteins from the periplasm to the external 
milieu. This process is rapid in E. chrysanthemi: pulse chase experiments indicate 
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that pectate lyase isozyme PelE is secreted to the milieu within 2 min of 
translocation across the inner membrane and periplasmic removal of the signal 
peptide (HE et al. 1991 b). A secNs E. coli mutant carrying the functional cluster of 
E. chrysanthemi out genes on pCPP2006 was used to show that PelE secretion 
is Sec-dependent (HE et al. 1991 b). Experiments with the pullulanase secretion 
system in K. oxytoca provide further evidence that exoprotein secretion by this 
pathway is a two-step process in which mature, folded proteins can be recruited 
from the periplasm for secretion (PUGSLEY 1992; PUGSLEY et al. 1991). 

The location of many of the Pul secretion proteins has been determined, and 
surprisingly, most of them are associated with the inner membrane (PUGSLEY 
1993). The biochemical function of only one of these secretion proteins is known. 
As first discovered with the homologous PilD gene in P. aeruginosa (NUNN and 
LORY 1991), pula is a type IV prepilin signal peptidase (PUGSLEY and DuPUY 1992). 
A function for some of the other secretion proteins can be postulated. PulE is a 
cytoplasmic protein whose sequence suggests ATPase activity (POSSOT et al. 
1992). PuIG, PuIH, Pull, and PulJ, which possess type IV prepilin signal peptides, 
may form a pilus-like assembly structure between the inner and outer mem­
branes. PulD is the only integral outer membrane protein in the complex and 
shows similarity to outer membrane proteins involved in diverse macromolecular 
secretion processes in gram-negative bacteria (D'ENFERT et al. 1989). 

A 'paramount puzzle with the type II pathway is the basis for its selectivity: 
only a small subset of the cell's proteins are secreted. This implies the existence 
of secretion signals in exoproteins and a "gate-keeper" in the pathway that 
recognizes these signals. However, no secretion signals have been found by 
sequence comparisons, deletion experiments, or by fusions with periplasmic 
markers (PUGSLEY 1993). The available results suggest that a substantial portion of 
the NH2-terminal of exoproteins is required and also sufficient for translocation of 
periplasmic marker proteins (HAMOOD et al. 1989; KORNACKER and PUGSLEY 1990). 

The Erwinia Out systems are experimentally attractive for exploring this 
aspect of secretion because the Out pathways are closely related but species­
specific and the tertiary structure of the E. chrysanthemi PelC is known (YODER et 
al. 1993). Thus, the E. chrysanthemi Out pathway does not secrete the cellulase 
or pectic enzymes of E. carotovora(HEetal. 1991a; Pyetal. 1991), despite the fact 
that some E. chrysanthemi and E. carotovora pectate lyase isozymes are quite 
similar (HINTON et al. 1989a). Deletion and insertion derivatives of the E. chrysan­
themi cellulase isozyme EGZ (PY et al. 1993) and chimeras between the E. 
chrysanthemi PelC and the E. carotovora 71 Pel1 (whose sequence is 70% 
identical to PeIC; A.K. Chatterjee, personal communication) fail to be secreted 
(M.L. Lindeberg, unpublished), which suggests that tertiary structure is vital for 
secretion. In summary, the type II pathway is essential for the virulence of 
pathogens like P. aeruginosa and E. chrysanthemi, and a better understanding of 
how this important pathway functions is likely to come from continued explo­
ration of its operation in both animal and plant pathogens. 
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5.3 The Hrp Pathway and Harpins 

The potential importance of protein secretion in the hrp-dependent phenotypes of 
plant pathogenic bacteria was first indicated by the discovery of harpinEa and the 
observation that some hrp proteins possessed sequence similarities to compo­
nents of the type III pathway in invasive enterobacterial pathogens (FENSELAU et al. 
1992; GOUGH et al. 1992; HUANG et al. 1992; VAN GIJSEGEM et al. 1993; WEI et al. 
1992). Because hrp homologies and implied functions are being treated in the 
accompanying chapter by Bonas, we will discuss here only the recent evidence 
for the role of hrp proteins in the secretion of harpins in Erwinia spp. and P. 
syringae. 

As is characteristic of all proteins secreted by the type III pathway (SALMOND 
and REEVES 1993), harpinEa, harpinpss' and harpinEch lack NH2-terminal signal 
peptides (BAUER et al. 1994b; HE et al. 1993a; WEI et al. 1992). When P. syringae 
pv. syringae 61 is grown in a minimal medium in which the hrp genes are 
expressed, at least half of the harpinpss is in the medium (HE et al. 1993a). Harpinpss 

is the major protein in the medium under these conditions, and its secretion is 
dependent on HrpH (HE et al. 1993a), an envelope protein with similarity to 
Yersinia enterocolitica YscC and other outer membrane proteins (e.g., the 
K. oxytoca type II pathway component PulC discussed above) that are involved 
with protein secretion (HUANG et al. 1992). There is indirect evidence that 
E. chrysanthemi secretes harpin by this pathway. Southern hybridization has 
shown that E. chrysanthemiECT6 carries homologs of other hrpgenes in addition 
to hrpN (LABY and BEER 1992), and transposon insertions in some of these genes 
indicate that they are involved in harpinEch export (BAUER et al. 1994a). An 
important question is whether other proteins are travelling the Hrp pathway in the 
interactions of P. syringae and E. chrysanthemiwith their hosts. 

6 Extracellular Virulence Proteins of Plant Pathogenic 
Bacteria: New Perspectives and More Questions 

Recent discoveries involving extracellular virulence proteins have altered our 
concepts of how the soft rot erwinias and P. syringae cause their signature plant 
effects, maceration and the HR. The production of autoinducer permits E. 
carotovora to behave socially in its pectolytic attack on plants, and the secretion 
of a harpin enables P. syringae to elicit the HR in tobacco (HE et al. 1993a; JONES 
et al. 1993; PIRHONEN et al. 1993). Each finding provides answers to some old 
questions but raises many new ones. 

A social attack would explain why the soft rot erwinias do not (in contrast to 
P. syringae) cause numerous, scattered lesions on their hosts. Rather, soft rots 
typically develop from one or a few foci unless the plant is systemically infected. 
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It also provides an explanation for the original observations of JONES (1909) on the 
manner in which lesions in carrot infected with E. carotovora develop: "The cells 
rapidly lose all coherence and always show a sharply defined line of demarkation, 
indicating that the softening occurs quickly and completely after it begins." And, 
in turn, this would provide an explanation for how the bacteria can use success­
fully in pathogenesis a class of enzymes that can elicit plant defenses (as 
discussed in Sect. 3.3 and 3.5). 

The discovery of autoinducer-dependent extracellular enzyme production in 
E. carotovora raises new questions about the operation of this system in patho­
genesis. How are the various aep, exp, or rex genes integrated into the regulatory 
circuitry that controls the complex patterns of enzyme production? Is auto­
inducer-monitored cell density the limiting factor in high level expression of 
degradative enzymes by the soft rot erwinias in planta, or is autoinducer produc­
tion prerequisite for bacterial responsiveness to other controlling stimuli (starva­
tion, plant signals, etc.)? Finally, how do the soft rot erwinias attain the high cell 
densities in planta that are postulated to precede full induction of the pectic 
enzymes? We postulate that the answer to the last question resides in harpins, 
which act in prelude to pectolytic attack. 

Our working model is that harpins are involved in establishing the initial 
parasitic interaction of many gram-negative plant pathogens by raising the pH of 
apoplastic fluids and fostering bacterial nutrient acquisition. A higher apoplastic 
pH would favor bacterial multiplication, and it would enhance the activity of the 
soft rot erwinia pectate lyase isozymes. This postulated role of harpins is 
supported by several observations: (1) HarpinEa causes alkalinization of the 
medium of suspension-cultured tobacco cells (WEI et al. 1992). (2) As discussed 
in Sect. 4.1, apoplast alkalinization and the release of sucrose to the apoplast are 
correlated with bacterial Hrp activity. Furthermore, raising the pH of intercellular 
fluids in bean leaves can restore the ability of a P. syringae pv. syringae 61 hrp 
mutant to multiply (ATKINSON and BAKER 1987b), (3) hrp gene expression is 
nutritionally regulated (discussed in Sect. 4.2 and in the accompanying chapter by 
Bonas). (4), early experiments indicatethat the growth of a saprophytic bacterium 
like P. fluorescens can be stimulated by coinoculation with P. syringae, sug­
gesting that the pathogen alters the apoplastic environment to support bacterial 
growth (YOUNG 1974). Finally, it is noteworthy that E. chrysanthemi produces a 
catechol siderophore to acquire iron (expected to be a limiting nutrient in the 
apoplast), and siderophore production is essential for the ability of E. chrysan­
themi3937 to systemically invade Saintpaulia plants (ENARD et al. 1988; NEEMA et 
al. 1993; PERSMARK et al. 1989, 1992). Thus, there is a precedence in this organism 
for pathogenesis being dependent on nutrient acquisition. 

Although the preceding observations argue forthe importance of adaptations 
involving nutrient acquisition in bacterial plant pathogenesis, there are contrary 
perspectives. Evidence of nutrient availability in intercellular fluids and leachates 
and the potential relationship of this to pathogenesis has been presented in 
previous reviews (HANCOCK and HUISMAN 1981; TUKEY 1970; Beattie and Lindow, 
this volume). Furthermore, intercellular fluids obtained from leaves by vacuum 
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infiltration and subsequent centrifugation have been observed to support the 
growth of various bacteria (e.g., KLEMENT 1965; NEEMA et al. 1993). However, a 
bacterium in contact with a thin film of cell wall-associated apoplastic fluid, whose 
composition is under dynamic control of the plant cell beneath it (GRIGNON and 
SENTENAC 1991), is likely to be in a rather different environment than a bacterium 
in a flask containing fluids recovered from many thousands of cells. 

Finally, in considering the function of harpins in pathogenesis, it is important 
to note that the isolated harpins of E. amy/ovora and P. syringae have yet to be 
shown to have any effect on their respective hosts. Furthermore, P. 
fluorescens{pH I R 11), although able to elicitthe H R in tobacco, does not appear to 
multiply in planta (although early, transient multiplication may have been missed), 
and it does not become pathogenic (HUANG et al. 1988). Thus, the available data 
with P. syringae pv. syringae 61 indicate that harpinpss is sufficient for elicitation of 
the HR, but apparently many factors are required for successful pathogenesis. A 
logical place to look for additional factors is in other exoproteins, particularly any 
trafficking the Hrp pathway. 

7 Extracellular Virulence Proteins of Plant and Animal 
Pathogens: Apparent Similarities in Deployment but 
Potential Differences -in Function 

Animal pathogenic bacteria also have diverse attack strategies, extra-cellular 
protein arsenals, and patterns of virulence protein deployment; in some cases, 
these patterns can be aligned with those of counterpart plant pathogens. For 
example, the opportunistic animal pathogen P. aeruginosa is more similar to the 
plant pathogen E. chrysanthemi in its production of extracellular virulence pro­
teins than it is to its fellow gram-negative animal pathogen Y. pestis (or its fellow 
fluorescent pseudomonad P. syringae). . 

A key component in the arsenals of E. chrysanthemi and P. aeruginosa are 
enzymes (pectate Iyases and proteases) that are produced by many saprophytic 
bacteria but are adapted by these organisms for pathogenesis (JONES et al. 1993; 
PASSADOR et al. 1993 and references therein). Both bacteria are capable of two 
modes in their attack on eukaryotic hosts. The first is marked by latent or chronic 
infection, the second by large bacterial populations, massive production of extra­
cellular degradative enzymes, and destruction of host tissues (IGLEWSKI 1989). The 
second mode typically develops in compromised hosts, and in P. aeruginosa 
and E. carotovora (and likely E. chrysanthemt) it may also be dependent on a 
pathogenic quorum of bacteria, as sensed by autoinducer levels (JONES et al. 1993; 
PASSADOR et al. 1993; PIRHONEN et al. 1993). Thus, as an activated mob, these 
bacteria may vandalize weakened host defenses. 

In contrast, P. syringae and Y. pestis appear to attack their hosts by "stealth 
and interdiction" of defense communication lines (8USKA et al. 1993). The 
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interdiction of defense signaling is the function of at least three of the Y. pestis 
Yop proteins (STRALEY et al. 1993). Although it appears that parasitic stealth is 
prerequisite for compatibility and successful pathogenesis by P. syringae, any 
interdiction of defense signaling (and the signaling itself) awaits elucidation. In 
contrast to the opportunistic pathogens above, P. syringae and Y. pestis can 
attack healthy hosts and there are no known quorum requirements for virulence 
protein deployment. Instead, they seem to sense the environment of target 
niches in the host, as indicated by factors like nitrogen starvation for P. syringae 
and low Ca2+ and high temperature (37°C) for Y. pestis (STRALEY et al. 1993). It is 
also intriguing that in both animal and plant pathogens, proteins associated with 
stealth and interdiction travel the type III pathway, whereas proteins associated 
with the mob attack travel the type II pathway. 

Despite these similarities in life-style and virulence protein deployment, 
there may be fundamental differences in the primary functions of extracellular 
proteins in animal and plant pathogens because of the differing body plans and 
defense systems of their hosts. Pathogens finding suitable niches in animal hosts 
may have access to organic nutrients, but they are exposed to a variety of 
circulating defenses against foreign organisms (FALKOW et al. 1992). Conse­
quently, a primary function of virulence proteins must be protection against host 
defenses. In contrast, plant pathogens in the intercellular spaces of their hosts 
find themselves in an environment that is weaker in defenses but possibly 
poorer in nutrients (as discussed in the previous section). Consequently, a 
primary need of plant pathogens is more likely to be release of nutrients to the 
apoplast rather than protection from active host defenses. 

As observed in the classic experiments of Klement and coworkers (sum­
marized in Table 2), nonpathogenic bacteria introduced into the intercellular 
spaces of plants are not rapidly destroyed; they just fail to mUltiply. In contrast, 
incompatible pathogens, which do multiply briefly, elicit the HR. Thus, strong 
defense responses like the HR are not triggered by the simple presence of a 
microorganism. Rather, it is molecules and activities unique to parasites that elicit 
effective defense. Whereas higher animals have the capacity to recognize 
virtually any bacterium as a foreign target for destruction, the active defenses of 
plants are informed more specifically by the pathogens themselves. Thus, a 
postulated role for harpins in the initial parasitic growth of necrogenic, gram­
negative plant pathogens is consistent with their efficacy in eliciting the HR, and 
the involvement of avrgenes in defense recognition suggests that their products 
also may serve a role (perhaps subtle) in parasitism. Similarly, the activity of pectic 
enzyme products in eliciting other defense responses is consistent with the 
expected role of the enzymes in bacterial nutrition. 

KELMAN (1979) noted that "Plants have evolved in a virtual microbial jungle 
surrounded by free-living bacteria with the potential to embrace parasitism. It is 
remarkable, therefore, that so very few phytopathogenic bacterial species have 
evolved." We still do not know why saprophytes fail in plants; nor do we know 
the range of adaptations that enables pathogens to convert the apoplast into a 
suitable niche for colonization. Further understanding of virulence protein 
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trafficking should yield insights into the unique needs of bacteria that parasitize 
plants. 
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1 Introduction 

In nature plants are resistant to the majoritY of pathogens, and many bacteria live 
in close contact with the plant without causing any harm (see chapter by BEATTIE 

and LINDOW in this volume). Among the 1600 different species known in the 
bacterial kingdom only a small number (about 80) are plant pathogenic and in 
most cases highly specialized with respect to the plant that can be attacked. Only 
a few of these species are gram-positive, e.g., Clavibacterssp. and Streptomyces 
ssp. In this review I focus on subspecies of the gram-negative genera Erwinia, 
Pseudomonas, and Xanthomonas, which comprise the major bacterial plant 
pathogens. 

To be a successful pathogen the invading bacterium has to overcome the 
plant's defense. During evolution plant pathogenic bacteria have acquired multi­
ple functions that enable them to colonize and multiply in living plant tissue. In 
nature, bacteria enter the plantthrough natural openings (stomata, hydathodes) or 
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wounds. The bacterial armory contains a number of weapons that contribute to 
pathogenicity. Obvious examples include degradative extracellular enzymes such 
as pectinases, cellulases, and proteases. When the corresponding genes are 
mutated, bacterial ability to invade plant tissues is more or less affected depend­
ing on the pathogen, i.e., these functions contribute to and modulate develop­
ment and severity of infection to different extents (see chapters by Dow and 
Daniels, and Coli mer and Bauer in this volume). 

In addition, phytopathogenic bacteria possess a large number of genes 
needed for basic pathogenicity. These genes have been operationally defined as 
hrp (hypersensitive reaction and pathogenicity; LINDGREN et al. 1986) based on 
their mutant phenotype. hrp genes are not only essential for pathogenicity on a 
plant, i.e., the ability to cause disease in a compatible interaction, but also for the 
incompatible interaction with resistant host varieties or with plants that are not 
normally a host for the particular pathogen (so called non-host). The incompatible 
interaction is often associated with the induction of a hypersensitive reaction (HR) 
in the plant. In contrast to the use of the term hypersensitivity in the animal field, 
in plants the HR is a rapid defense response involving localized plant cell death, 
production of phenolics and antimicrobial agents, e.g., phytoalexins, at the site of 
infection (KLEMENT 1982; LINDSAY et al. 1993). The H R results in prevention of 
pathogen multiplication and spread and thus in prevention of disease develop­
ment. Under natural infection conditions the HR is microscopically small and can 
be induced by just one bacterial cell. Only when bacteria are introduced into plant 
tissue at high cell densities-in the laboratory (about 107 colony forming units or 
more/mil is the HR macroscopically visible as confluent necrosis and can be 
clearly distinguished from typical disease symptoms. It is important to note 
that saprophytic or nonpathogenic bacteria such as Escherichia coli or Pseudo­
monas fluorescens do not induce the H R and are unable to multiply in plant tissue. 

2 Isolation of hrp Genes and General Features 

hrp genes have been isolated from all major gram-negative plant pathogenic 
bacteria except Agrobacterium. There are excellent reviews that describe the 
early work or focus more on one particular pathogen (WILLIS et al. 1991; BOUCHER 
et al. 1992). The majority of hrp genes have been identified by complementation 
of loss-of-function mutants. Mutants obtained by random chemical (e.g., N­
methyl-N'-nitro-N-nitrosoguanidine) or transposon mutagenesis of a pathogenic 
wild-type strain were inoculated into the host plant and screened for loss of both 
the ability to cause disease in susceptible plants and to induce the H R in resistant 
host or non-host plants (often tobacco!. The second criterion for the isolation of 
genes specific for the plant interaction was to ensure that the mutants would still 
grow in minimal medium. This way mutants affected in genes for basic 
housekeeping functions were eliminated. A third characteristic of all hrp mutants 
is that they are unable to grow in the plant. 
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The hrp genes were originally described for the bean pathogen Pseudo­
monas syringae pv. phaseo/ico/a. LINDGREN and coworkers (1986) isolated Tn5-
induced mutants of P.s. pv. phaseo/ico/a that had lost both the ability to induce 
halo-blight disease on bean and the HR in tobacco. Complementation with 
cosmid clones from a genomic library of the wild-type strain resulted in isolation 
of a cluster of hrp genes localized in a 20 kb DNA region. This was the first 
indication that both the ability to cause disease and to induce the H R are mediated 
by common steps in a "pathway". 

Since then hrp gene clusters have been cloned from a number of different 
bacteria. Examples include Pseudomonas so/anacearum (BOUCHER et al. 1987; 
Fig. 1 B), the Xanthomonas campestris pathovars campestris and vitians (ARLATet 
al. 1991), trans/ucens (WANEY et al. 1991), and vesicatoria (BONAS et al. 1991; 
Fig.1 A), Erwinia amy/ovora (STEINBERGER and BEER 1988; BARNY et al. 1990; WALTERS 
et al. 1990; BAUER and BEER 1991), and several other pathovars of P. syringae 
(e.g., HUANG etal. 1988; LINDGREN etal. 1988; Fig. 1 C). In addition, genes with DNA 
homology, and in some cases functional homology, have been isolated from 
other species, e.g., the so-called wts genes from E. stewartii (COPLIN et al. 1992; 
LABY and BEER 1992), and a region containing pathogenicity genes from Xc. pv. 
g/ycinesthat complement hrp mutants of Xc. pv. vesicatoria (HWANG et al. 1992; 
Bonas, unpublished results). Interestingly, nonpathogenic xanthomonads that 
were originally isolated from diseased plants as opportunists together with 
pathogenic bacteria do not cootain hrp-related DNA sequences (STALL and 
MINSAVAGE 1990; BONAS et al. 1991). In Agrobacterium tumefaciens or in strains of 
Rhizobium ssp. there seem to be no hrp gene equivalents present (BONAS et al. 
1991; LABY and BEER 1992). This conclusion is based on DNA hybridization 
experiments and, of course, does not exclude the presence of genes with 
functional homology to hrp genes in these species. 

In all of the cases mentioned above, the hrp genes are organized in clusters 
of 22-40 kb, and I will restrict most of this chapter to these large hrp clusters. In 
addition, several smaller hrp loci have bee~ described that are not linked to the 
large cluster present in the same bacterium. These include a region in P. 
so/anacearum (HUANG et al. 1990), the hrpX locus that is conserved in X 
campestris pathovars campestris (KAMOUN and KADO 1990; KAMOUN et al. 1992) and 
oryzae (KAMDAR et al. 1993), and the hrpM locus in P.s. pv. syringae (NIEPOLD et al. 
1985; MUKHOPADHYAY et al. 1988). hrpM is functionally conserved in pathovar 
phaseolico/a (FELLAY et al. 1991). Besides being nonpathogenic and unable to 
induce the H R in tobacco, P. syringae hrpM mutuants are also affected in mucus 
production. The hrpM locus encodes two putative proteins which are similar and 
have been shown to be functionally homologous to the products of the E. coli 
mdoGH operon (LOUBENS et al. 1993). The mdoGH genes are required for 
periplasmic membrane-derived oligosaccharide synthesis in E. co/i. The hrpQ 
and hrpTgenes from P.s. pv. phaseo/ico/a (MILLER et al. 1993) will be discussed 
later in this chapter. 
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3 Structural Organization and Relatedness of hrp Clusters 

Genetic studies using transposon-induced insertion mutants in the respective 
bacterial wild-type strains revealed that the hrp clusters contain at least six to 
eight complementation groups (Fig. 1). Some hrpgene clusters have clearly been 
shown to be localized in the chromosome, e.g., in P.s. pv. phaseo/ico/a (RAHME et 
al. 1991) and in Xc. pv. vesicatoria (BONAS et al. 1991), whereas in P. so/ana­
cearum, the hrp cluster is on a mega plasmid (BOUCHER et al. 1987). 

Striking similarities have recently been found between the hrp genes of 
pathogens belonging to different genera. The first indication of homologies came 
from Southern hybridization studies. DNA homology was observed among dif­
ferent strains of the same pathovar, as well as between pathovars or strains 
within a species, and in some cases also between species. However, the degree 
of conservation varies. DNA homology is high within pathovars of a given 
subspecies, e.g., in P. syringae (LINDGREN et al. 1988; HUANG et al. 1991) and in X 
campestris (BaNAs et al. 1991). The latter studies were recently extended by peR 
using primers based on hrpsequences from Xc. pv. vesicatoria (LEITE et al. 1994). 
Furthermore, at least some regions of the hrp clusters appear to be conserved on 
the DNA level between P. so/anacearum and pathovars of X. campestris, P. 
syringae, and also to E. amy/ovora (BOUCHER et al. 1987; ARLAT et al. 1991; GOUGH 
et al. 1992; LABY and BEER 1992). In addition, cross-complementation within a 
subspecies indicated a high degree of functional conservation of hrp genes (e.g., 
LINDGREN et al. 1988; ARLAT et al. 1991; BONAS et al. 1991; LABY and BEER 1992). Due 
to sequence data it is now becoming more and more apparent that several hrp 
genes are conserved in all major gram-negative plant pathogenic bacteria (see 
below). Whether there are hrpgenes that are clearly pathovar-specific can only be 
answered when complete sequence information becomes available for several 
hrp clusters. 

4 Function of hrp Genes in Xanthomonas campestris pv. 
vesicatoria and Other Plant Pathogenic Bacteria 

DNA sequence analysis of the hrp genes has revealed some important clues to 
their possible biochemical functions. One of the first genes sequenced was a 
regulatory gene, hrpS, from P.s. pv. phaseo/ico/a (GRIMM and PANOPOULOS 1989). 
This gene as well as hrp8, a regulatory gene from P. so/anacearum (GENIN et al. 
1992). will be discussed below in the context of gene regulation. 

Since hrp genes are environmentally regulated (see below), it was believed 
for a while that they would be encoding "alternative" proteins required for 
adaptation of the bacterium to the plant as the preferred environment. The 
recently discovered sequence similarities between several putative Hrp proteins 
and known proteins from other bacteria, however, led to a very different hypo­
thesis, namely, involvement of Hrp proteins in protein secretion. We have 
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sequenced the entire hrp cluster of Xc. pv. vesicatoria. Since most hrp se­
quences from this and other bacteria are not yet published, I will summarize our 
results and refer to the other phytopathogenic bacteria as I go along. Based on 
genetic analyses and the open reading frames (ORFs) with a high coding prob­
abilitywe predict 21 hrpgenes in the 25 kb hrpcluster of Xc. pv. vesicatoria. Their 
transcriptional organization is depicted in Fig.1 A. The loci hrpA and hrp8 are 
transcribed from right to left; the other four loci are transcribed from left to right 
(SCHULTE and BONAS 1992a). According to the locus (hrpA-hrpA we have num­
bered the ORFs consecutively. The hrpA locus appears to contain just one hrp 
gene, hrpA 1. The hrp8 operon contains eight ORFs, called hrp81-hrp88, etc. A 
region of about 4 kb between hrpE and hrpF does not seem to be involved in the 
interaction with the plant because insertions in this region do not lead to a change 
in phenotype (BONAS et al. 1991). 

What are the characteristics of the Hrp proteins? It should be noted that, 
except for three proteins, expression of the other 18 has yet to be demonstrated 
in Xc. pv. vesicatoria. A number of putative Hrp proteins are most likely asso­
ciated with or localized in the bacterial membrane. For example, the HrpC2 
protein sequence contains eight transmembrane domains but lacks a signal 
sequence, suggesting an inner membrane localization (FENSELAU et al. 1992). Both 
HrpA 1 and HrpB3 contain an NH2-terminal signal sequence and one (HrpA 1) or 
two (HrpB3) transmembrane domains, suggesting that a part of these proteins 
might be targeted to the outer membrane. The signal sequence of HrpB3 
resembles signal peptidase II sequences which are typical of lipoproteins 
(FENSELAU et al. 1992). Experiments using radioactively labeled palmitate are 
underway to test whether HrpB3 is a lipoprotein. Recently, both HrpB3 and 
HrpA 1 were shown to be localized in the X. c. pv. vesicatoria membrane fraction 
using polyclonal antibodies (S. Fenselau, C. Marie, and U. Bonas, manuscript in 
preparation). The HrpB6 protein is a putative ATPase with highly conserved 
nucleotide and magnesium binding domains. It is more similar to protein traffic 
ATPases than to proton pump ATPases, and the lack of membrane spanning 
domains suggests a cytoplasmic location (FENSELAU et al. 1992). 

Searches of the database revealed sequence relatedness of more than half of 
the Xc. pv. vesicatoria Hrp proteins with putative proteins in other bacteria, 
including different plant pathogens. High DNA sequence identity (more than 
90%) was found to a 2.7 kb fragment carrying pathogenicity genes from Xc. pv. 
glycines (HWANG etal. 1992). The authors predicted two ORFs, whereas in Xc. pv. 
vesicatoria, this region contains three ORFs corresponding to the hrpC3, hrpO 1 
and hrp02 genes. Complementation studies indicated that part of the hrp region 
is colinear in the two pathovars of Xanthomonas (unpublished). 

The deduced amino acid sequences of hrp genes published from 
P. solanacearum (GOUGH et al. 1992, 1993; GENIN et al. 1992) show significant 
similarity to Xc. pv. vesicatoria proteins (Table 1; Fig.1). One exception is the 
hrp8 regulatory gene from P. solanacearum which is not present in the 25 kb hrp 
region or in the flanking region of the Xc. pv. vesicatoria hrp cluster as determi­
ned by DNA sequence analysis and hybridization studies (T. Horns and U. Banas, 
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unpublished). Furthermore, several of the proteins mentioned are conserved in 
other species (Fig.1), however, the degree of sequence similarity varies greatly 
(Table 1). The HrpA 1 protein from Xc. pv. vesicatoria is 48% and 29% identical to 
proteins from P. solanacearum (HrpA; GOUGH et al. 1992) and P.s. pv. syringae 
(HrpH; HUANG et al. 1992), respectively. HrpC2 from Xc. pv. vesicatoria is even 
more conserved, being 66% idential to the corresponding HrpO protein of P. 
solanacearum (GOUGH et al. 1993), whereas the hrplgenes from E. amylovora (WEI 
and BEER 1994) and from P.s. pv. syringae (HUANG et al. 1993) both show 62% 
similarity to hrpC2 from Xc. pv. vesicatoria. P.s. pv. syringae also contains a 
hrp83 related gene, called hrpY, and a hrpD2 related gene, hrpW(H.-C. Huang, 
personal communication). Thus, the high degree of DNA sequence conservation 
that was reported earlier (see above) is also seen on the protein level. It appears 
that hrp genes in Xc. pv. vesicatoria are more closely related to P. solanacearum 
than to P. syringae and to Erwinia. As more and more homologous hrp genes are 
found in other bacteria nomenclature might become confusing. However, as long 
as the genes have not been shown to be functionally homologous, we will 
continue to use these names. 

Besides genes that are conserved among the major phytopathogenic bacte­
ria some genes are absent in the hrp region of more distantly related species. For 
example, there are no known homo logs of the harpin genes hrpN (WEI et al. 
1992a), and hrpZ (HE et al. 1993) (see below), and of hrpJ from P.s. pv. syringae 
(HUANG et al. 1993) in the Xc. pv. vesicatoria hrp cluster (unpublished; see Fig. 1). 

Similarities of 50%-60% were found recently between HrpA 1 and HrpB3 
from Xc. pv. vesicatoriaand two putative Nol proteins of Rhizobium frediithat are 
encoded by a cultivar specificity region. NolT and NolW mutants have a wider 
host range in nodulation of soybean (MEINHARDT et al. 1993). In addition, the 
authors mention that release of proteins is affected. 

Last but not least, Table 1 summarizes the significant sequence similarities 
which hqve been found to proteins from animal bacterial pathogens. A number of 
putative Hrp proteins are related to proteins in animal pathogens such as 
Salmonella, Shigella, and Yersinia ssp. SInce the first similarities found were to 
the Ysc, Vir, and Lcr proteins from Yersinia ssp, this group of organisms became 
a "role model" for plant pathologists (FENSELAU et al. 1992; GOUGH et al. 1992; 
HUANG et aI.1992). In Yersinia, these proteins are essential for the secretion of 
virulence factors, called Yops (Yersinia outer protein; MICHIELS et al. 1990, 1991). 
Since they are described in detail in the chapter by G.R. Cornelis, I will mention 
only a few important features. The Yops are hydrophilic proteins that lack a typical 
NH2-terminal signal peptide, and are secreted by using an entirely different 
pathway from that previously described for protein secretion. The genes involved 
in secretion are clustered on a 70 kb virulence plasmid. In case of a mutation, e.g., 
in Yscj, the Yops accumulate in the cytoplasm (MICHIELS et al. 1991). Although 
their direct role in transport has yet to be demonstrated, it is believed that the Ysc 
and Lcr proteins mentioned in Table 1 are parts of a special transport apparatus 
for Yop secretion. Similarly, Shigella flexneri secretes virulence factors, called Ipa 
(invasion plasmid antigens), that are distinct from Yops but share the general 
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Fig. 2. Hypothetical model of cell signaling between gram-negative bacteria and plants indicating the 
proposed function of Hrp proteins as an apparatus for protein secretion. The model has been modified 
after FENSELAU et al. (1992). Hrp proteins may form a tunnel that enables the export of molecules such 
as virulence factors or avirluence factors leading to either a hypersensitive response (HR) or disease. 
These factors could be encoded by hrp genes or genes unlinked to the large cluster. Both types of genes 
have been found to encode elicitors of the H R (see text). The secretion of virulence proteins is 
hypothetical 

features mentioned above (HALE 1991; and see chapter by PARSOT, this volume). 
Although S. typhimurium appears to possess a secretion system similar to that 
in Shigella, secreted invasion antigens have not yet been identified (GROISMAN and 
OCHMAN 1993; see chapter by FINLAY). As unpublished reports indicate that more 
and more genes in the animal pathogens are conserved, the data shown in Table 
1 will soon be out of date. Proteins from other bacteria, e.g., E. coli, Bacillus, 
Caulobacter and from the mop region in E. carotovora (MULHOLLAND et al. 1993)' 
have also been found to be similar to Hrp proteins (Table 1). Most of these are 
important for the assembly of the flagella, motility, or chemotaxis, again pointing, 
in my opinion, to a specialized secretion system rather than an involvement of hrp 
genes in chemotaxis. 

These observations led us and others to propose a hrp-dependent secretion 
system in plant pathogenic bacteria (FENSELAU et al. 1992; GOUGH et al. 1992; VAN 
GIJSEGEM et al. 1993). A model is shown in Fig. 2 and raises certain questions, 
e.g., if secretion occurs, what is being secreted by plant pathogenic bacteria? So 
far, a few proteins have been identified as elicitors of the HR but there is no 
evidence for secretion of virulence factors (see below). 



hrp Genes of Phytopathogenic Bacteria 89 

5 hrp-dependent Secretion of 
Hypersensitive Response-Inducing Proteins 

5.1 Harpin from Erwinia amylovora 

An important feature of the isolated hrp clusters from both E. amylovora and P.s. 
pv. syringae is the ability of E. coli or Pseudomonas fluorescens transformants 
containing the cloned genes to induce the HR on tobacco (HUANG et al. 1988; BEER 
et al. 1991; see below). This has prompted to search forthe HR-inducing activity 
within the respective gene clusters. 

The first bacterial HR-inducing protein identified, designated harpin, is a cell 
envelope-associated protein encoded by the hrpN gene of E. am ylovora, a 
pathogen of pear and apple (WEI et al. 1992a). This harpinEa is a glycine-rich and 
heat-stable protein that induces the H R in the non-host, tobacco. The hrpN gene 
is localized within the respective hrp cluster and thus has a dual role in also being 
required for pathogenicity on the normal host plant. Its function in pathogenicity, 
however, is unknown. BEER et al. (1993) mentioned in a preliminary report that the 
hrpN gene seems to be conserved among Erwinia ssp. but that there is no DNA 
homology between hrpN and sequences in the other plant pathogenic bacteria. 
Although data described below suggest that the harpinEa protein might be 
secreted via the Hrp secretory apparatus, there is no published information 
available that demonstrates this~ 

5.2 Harpin from Pseudomonas syringae pv. syringae 

Using an elegant approach He and coworkers recently have identified harpinpss' 
which is encoded by the hrpZ gene in the bean pathogen P.s. pv. syringae (HE et 
al. 1993; see Fig. 1 C and chapter by Coli mer and Bauer). Lysates of E. coli clones 
containing an expression library, made using the cloned P.s. pv. syringae hrp 
cluster, were directly screened for HR-inducing activity on tobacco leaves. Two 
proteins were identified, one of which was an NH2-terminal deletion of harpinpss 
with even higher activity than the full size protein. Whether or not processing 
occurs in natural infection is not clear. Interestingly, two short direct repeats in 
the COOH-terminus of harpinpss are essential for elicitor activity. Although the two 
harpins harpinEa and harpinpss differ in their primary sequence, they have several 
features in common, e.g., a stretch of 22 amino acid that is similar in both proteins 
(HE et al. 1993). Harpinpss is also glycine-rich and heat-stable. As with harpinEa of 
E. amylovora, the function of harpinpss in pathogenicity is unknown. Its product is 
secreted by P.s. pv. syringae in a HrpH-dependent way; HrpH is highly related to 
proteins involved in secretion in other plant and animal pathogens (HUANG et al. 
1992; see Table 1). 
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5.3 PopA from Pseudomonas solanacearum 

An HR-inducing protein has been identified and characterized from P. solana­
cearum culture supernatants, called Pop (Pseudomonas out protein; ARLAT et al. 
1994). PopA1 and two shorter derivatives, PopA2 and PopA3, induce the HR in 
tobacco and in certain, but not all, Petunia lines. Like the harpins, the Pop 
proteins are also heat-stable and glycine-rich, however, the sequence is entirely 
different. In contrast to the harpins, the popA gene is not a hrp gene but is 
located outside of the large hrp cluster. Interestingly, expression of popA is hrp8-
dependent, i.e., the gene is part of the hrp regulon. Mutations in popA do not 
affect the HR on tobacco or pathogenicity on tomato suggesting that more than 
one HR-inducing factor is produced. ARLAT et al. (1994) convincingly showed that 
secretion of PopA is dependent on other hrp genes, such as hrpA, hrpN, and hrpO 
(Fig. 1 B). If a bacterial strain virulent towards Petunia is found it will be interesting 
to see if PopA acts as an avirulence protein in Petunia as has been suggested by 
the authors. 

These exciting findings prove that certain Hrp proteins of P.s. pv. syringae 
and P. solanacearum playa role in transport of HR elicitors (Fig. 2). They also 
stimulate more questions. It needs to be shown that harpins and PopA are in fact 
secreted when the bacteria interact with the plant (the hrp genes were induced in 
vitro). Are harpins conserved among pathovars of P. syringae? How many 
elicitors of the non-host HR in tobacco can be found? Is the mechanism of 
recognition in tobacco identis;al with the Erwinia and P.s. pv. syringae harpins and 
the P. solanacearum Pops? 

6 Regulation of Expression of hrp Genes 

Expression of hrp genes is controlled by environmental conditions and has been 
studied on the RNA level as well as using transcriptional fusions to reporter genes 
such as the E. coli genes encoding /3-gafactosidase or [3-glucuronidase.ln general, 
expression of hrp loci is not detectable when the bacteria are grown in complex 
culture media. However, after growth of the bacteria in the plant, hrp genes are 
expressed. Attempts to mimic the conditions that the different bacterial species 
encounter in the plant tissue resulted in the finding that growth in minimal media 
without any plant-derived factor was sufficient to induce hrp genes. This has led 
to the speculation that the bacteria have to experience some kind of starvation 
conditions forfull expression of hrpgenes. One of the first indications for hrpgene 
expression in vitro, and clearly a breakthrough, was a report on the hrp-dependent 
expression of an avirulence gene from the soybean pathogen P.s. pv. glycinea 
(HUYNH et al. 1989). 

Since the composition of minimal media differs depending on the bacterium 
studied, the most important findings will be summarized for representative 
pathogens. Parameters like carbon source, concentration of organic nitrogen and 
phosphate, osmolarity, and pH have been found to be important. High con-
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centration of organic nitrogen generally appears to suppress hrp gene activation. 
Only two regulatory genes have been studied so far (see below). Interestingly, 
they both belong to different families of regulatory proteins. 

6.1 Pseudomonas syringae 

Expression of all seven hrp loci in the large cluster of P.s. pv. phaseolicola is 
suppressed in complex medium but induced in the plant. Induction occurs in the 
susceptible host plant as well as in the non-host, tobacco, suggesting that there 
is no plant species-specific molecule involved in control of host range (RAHME et 
al. 1992). Five complementation groups, hrpAB, hrpC, hrpD, hrpE and hrpF, can 
also be induced in M9 minimal medium containing sucrose as a carbon source, 
however, induction is affected by pH, osmolarity, and carbon source, and never 
reaches the levels obtained in the plant (RAHME et al. 1992). A similar observation 
was made earlier for the avirulence gene avrB in P.s. pv. glycinea. Induction 
occurred in a minimal medium containing fructose, mannitol, or sucrose. 
Expression of avrB is dependent on hrp genes homologous to hrpRS and hrpL 
from P.s. pv. phaseolicola and was suppressed by TCA cycle intermediates such 
as citrate and succinate (HUYNH et al. 1989). hrp gene expression in P.s. pv. 
syringae occurs in the same medium as described by HUYNH et al. (1989); (HUANG 
et al. 1991; XIAO et al. 1992). The ~uthors showed hrp gene induction in the non­
host plant, tobacco, but no data for the host plant. The P.s. pv. phaseolicola loci 
hrpL and hrpRS are only expressed to a very low level in M9 minimal medium and 
are induced at least 1 OOO-foid when the bacteria are inoculated into the plant. This 
led to the conclusion that, at least for expression of hrpL and hrpRS, specific 
plant factors might be necessary (RAHME et al. 1992). 

6.2 Regulatory Genes hrpRS and (poN of 
Pseudomonas syringae pv. pliaseo/ico/a 

The results on environmental factors inducing or suppressing hrp gene 
expression suggested that specific regulatory genes are involved in the control of 
hrp promoter activities. At least two loci are involved in positive regulation of the 
other hrp loci of P.s. pv. phaseolicola hrp cluster (FELLAY et al. 1991). While there 
is no information published for hrpL, hrpRS has been sequenced. It contains two 
genes whose predicted protein products are 60% identical to each other (GRIMM 
and PANOPOULOS 1989; MILLER et al. 1993). The Hrp$ protein is similar to members 
of the NtrC family of regulatory proteins in gram-negative bacteria. Most NtrC­
like regulatory proteins are members of two-component systems, with a sensor 
protein that in turn activates a response element by phosphorylation of a site in 
the conserved NH2-terminal domain (ALBRIGHT et al. 1989). The putative sensor 
component operating in hrp gene regulation has not been identified. It is 
postulated that Hrp$ is the activating protein, however, direct biochemical data 
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have not been presented. The lack of a typical NH2-terminal domain in HrpS could 
indicate that a different mechanism may be involved in HrpS activation. 
Apparently, hrpS-related sequences are alsopresent in other bacteria, e.g., in P.s. 
pv. syringae (HEU and HUTCHESON 1993) and in Erwinia amy/ovora (BEER et al. 1993). 
E. stewartii contains a transcriptional regulator, WtsA, with 52% identity to HrpS 
of P.s. pv. phaseo/ico/a. The hrpS clone, however, was unable to functionally 
complement a wtsA mutant (FREDERICK et al. 1993). 

The structure of the hrpRS locus and the finding of -24/-12 consensus 
sequences upstream of hrpRS indicated a possible role in transcriptional acti­
vation for transcription factor sigma 54, encoded by rpoN (GRIMM and PANOPOULOS 
1989). In a preliminary report, FELLEY et al. (1991) demonstrated that hrp gene 
expression in P.s. pv. phaseo/ico/a is indeed dependent on rpoN. A rpoNmutant 
of P.s. pv. phaseo/ico/a is a glutamine auxotroph and nonpathogenic. Whether 
rpoN is generally involved in regulation of hrp gene expression is not clear. In 
x.c. pv. vesicatoria, rpoN is clearly not involved in hrp gene expression 
and pathogenicity (1. Horns and U. Bonas, manuscript in preparation). 

Recently, MILLER et al. (1993) have reported the identification of two new loci, 
hrpO and hrpT, from P. s. pv. phaseo/ico/a that affect activation of hrpRS in trans. 
However, since hrpRS is strongly induced in plants while both hrpO and hrp Tare 
constitutively expressed, there must be more factors involved in hrp gene 
regulation. Strains carrying mutations in either hrpO or hrpT are amino acid 
auxothrophs (methionine and tryptophan). hrpOand hrpTare probably involved in 
methionine and tryptophan- biosynthesis, respectively (MILLER et al. 1993). As 
stated above, such mutants would normally have been eliminated from the hrp 
mutant analysis. 

6.3 Conserved Sequence Boxes in Pseudomonas syringae 

A conserved sequence, the so-called harp box (TG(A/C)AANC, FELLAyet al. 1991)' 
upstream of four hrp loci in P. s. pv. pJ:iaseo/ico/a, was suggested to be involved 
in positive regulation of expression: Similar motifs were described for the 
promoter regions of several P. syringae avirulence genes, the expression of 
which is dependent on hrpRS and on rpoN (HUYNH et al. 1989; SALMERON and 
STASKAWICZ 1993; INNES et al. 1993; SHEN and KEEN 1993). These studies led to a 
revised 'harp' box sequence (GGAACCNA). Its significance in protein binding has 
not been shown but avrD promoter constructs lacking the harp box are no longer 
inducible (SHEN and KEEN 1993). A harp box-related motif was also found upstream 
of transcription unit 3 in P. so/anacearum (GOUGH et al. 1993). 

There is no harp box sequence in Xanthomonas hrp gene promoters. Another 
sequence motif that occurs in the promoter region of hrp loci in X. c. pv. 
vesicatoria was recently identified. This "PI P" (plant-inducible promoter) box 
has the sequence TICGC-N15-TICGC and occurs upstream of the -35 
consensus sequence in four out of six hrp promoters (S. Fenselau and U. Bonas, 
unpublished). Experiments are underway to test whether this is a protein 
binding motif. 
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6.4 Xanthomonas campestris 

Expression of hrp genes in X. c. pv. campestris was determined after growth in 
vitro and found to be induced in a minimal medium with sucrose and/or fructose 
as carbon source. No expression occurred in complex media or with high 
concentrations of organic nitrogen (ARLAT et al. 1991). In X. c. pv. vesicatoria, 
expression of the six hrp loci is induced in the plant but cannot be efficiently 
induced in the synthetic media tested so far. However, culture filtrates of sterile 
tomato cell suspension cultures (called TCM) induced expression of the six hrp 
loci in X. c. pv. vesicatoria whereas the basal Murashige-Skoog culture medium 
did not. The inducing factor(s) could only partially be purified from TCM and was 
found to be smaller than 1000 dalton, heat-stable, organic, and hydrophilic 
(SCHULTE and BONAS 1992a). De novo transcription of all hrp loci occurs rapidly 
within 1 h after transfer of the bacteria into TCM (S. Fenselau and U. Bonas, 
unpublished). A minimal medium was designed which would not suppress hrp 
gene induction. This medium, called XVM 1, induces the hrpF locus (Fig. 1 A) to 
high levels and differs from the other media described above, in particular by its 
low concentration in phosphate. Both sucrose and methionine are needed for 
efficient induction. It is not known whether a plant factor is necessary for 
activation of the other hrp loci, or if the XVM1 medium still lacks components or 
contains them in suppressing amounts (SCHULTE and BONAS 1992b). 

6.5 Erwinia and Pseudomonas solanacearum 

The hrp genes of Erwinia amylovora are rapidly induced in the non-host, tobacco, 
and more slowly in the host, pear. Several loci were induced in minimal medium 
with mannitol as a carbon source. Induction was suppressed by high concen­
trations of nitrogen and by glucose and was slightly temperature dependent (WEI 
et al. 1992b). 

In P. solanacearum, the hrp cluster wt.s also induced in host and in non-host 
plants, as well as in minimal medium. The best carbon sources for induction of 
four of the six transcription units were pyruvate and glutamate while, as in other 
bacteria, casamino acids suppressed induction (ARLAT et al. 1992). The two 
rightmost hrptranscription units (5 and 6; Fig. 1 B) are constitutively expressed but 
can be induced under certain conditions (GENIN et al. 1992). 

The only other gene reported to regulate hrp gene expression is hrp8 from P. 
solanacearum. The gene is part of the hrp cluster and appears to be a member of 
the AraC family of positive regulatory proteins. Interestingly, hrp8 is related to virF 
of Yersinia (CORNELIS et al. 1989; GENIN et al. 1992). The hrp8 gene positively 
regulates four of the six hrp loci, as well as the popA locus, located outside of the 
hrp cluster which encodes a protein secreted in a Hrp-dependent way (see above; 
ARLATet al. 1994). Whether the HrpB protein binds directly to hrppromoters is not 
yet known. 

At this time one can only speculate whether the regulatory systems for hrp 
gene expression employed by P. solanacearum and P. syringae are really different 
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or whether there is a global regulatory network thus allowing the fine tuning of 
gene expression in response to environmental cues. In conclusion, most hrp loci 
from different bacteria are inducible in a particular minimal medium. At this time 
it cannot be ruled out that stimulation of hrp gene expression involves specific 
plant factors as was described for the virulence genes of Agrobacterium (WINANS 
1992). Since the composition of the nutrients available to the pathogen in the 
plant is not known one can only speculate that the conditions described above 
reflect the situation in the plant. It is noteworthy that the in vitro culture will only 
mimic the dynamic nutritional situation that bacteria experience in their inter­
action with a plant for a short time. In mammalian bacterial pathogens, the 
expression of genes involved in virulence is also regulated in response to 
environmental cues rather than to specific host molecules. This subject has been 
reviewed recently (MEKALANOS 1992 and in accompanying chapters), and I will only 
mention some important factors. In Yersinia, the virand /crgenes are regulated by 
low calcium (low calcium response genes; STRALEY et al. 1993) and by 
temperature (CORNELIS et al. 1989; see chapter by CORNELlS). A calcium effect has 
not been described for any plant bacterium. In our laboratory no effect of calcium 
on hrpF gene expression in XVM1 was observed (Schulte and U. Bonas, 
unpublished). Expression of invA of S. typhimurium of the mxi and ipa genes of 
Shigella is affected by osmolarity and the later genes also by temperature (GALAN 
and CURTISS 1990; HALE 1991). 
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1 Action at the II Pathogenic CUSpl1 

The previous chapters have discussed how phytopathogenic bacteria can sense 
and respond to conditions present in a variety of microenvironments: soil, water, 
plant cell surfaces, and intracellular spaces. The switch from epiphyte to patho­
gen is apparently accompanied by fundafnental reprogramming of gene activity 
and attendant function, as evidenced by induction of hrp genes and subsequent 
production of various virulence and pathogenicity factors, some of which are host­
specific, some not. This reprogramming switch between epiphytic and patho­
genic growth strategies, "the pathogenic cusp" (DANGL 1994), is the point at 
which not only the potential pathogen but also the host first sense and respond to 
each other. A successful plant defense response should be based on surveillance 
and interdiction before the pathogen has a chance to establish production of the 
armory of factors which determine successful colonization of that host. It is 
incumbent on each potential plant host, then, to evolve mechanisms to recognize 
some factor, preferably one produced at this pathogenic cusp, and to base 
resistance strategies on early recognition. Thus, an evolutionary tug-of-war is 
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begun: plants evolve to "recognize" a particular isolate of a particular pathogen; 
variants arise in the pathogen population which are no longer recognized; variants 
arise in the host population which recognize the new pathogen variant, and the 
familiar game is afoot. This scenario has apparently given rise to systems of plant­
pathogen interactions explained genetically by the now well established" gene­
for-gene" hypothesis (reviewed in CRUTE 1985; DANGL 1992; ELLINGBOE 1981; FLOR 
1971; GABRIEL and ROLFE 1990; KEEN 1990; KEEN and STASKAWICZ 1988). During plant­
microbe interactions of this sort, the products, either direct or indirect, of 
pathogen avirulence (avrl genes trigger a successful host resistance reaction 
through the action of the product of a particular host resistance (R) gene. These 
interactions are thus allele-specific: each partner is defined only by the 
simultaneous presence of the other. The complexity of resistance loci defined 
genetically is astounding and the paucity of knowledge regarding their structure 
and function is beginning to be resolved, as evidenced by the recent cloning of the 
first plant resistance gene of this class (MARTIN et al. 1993). In contrast, a plethora 
of avirulence genes from pseudomonads and xanthomonads have been cloned, 
as discussed in the remainder of this review. 

As detailed below, bacterial avr genes obviously restrict the number of 
colonizable plant genotypes within a particular host species. As well, nearly all avr 
genes negatively effect bacterial host range on plant species beyond their 
nominal host (that from which they were isolated). Since they have a negative 
effect on pathogen fitness on hosts capable of recognizing their activity, why do 
avr genes persist in bacteria1 populations? What is the mechanism of avr gene 
action? They must serve a positive function at some stage in the bacterial life 
strategy, but clear roles as virulence or pathogenicity factors have been ascribed 
to only a miniority of avr genes. Are they required during epiphytic growth? Are 
they structural triggers of plant resistance, or are they enzymes whose products 
elicit plant resistance responses? How do they stimulate plant resistance 
responses, and is that stimulation related to the primary role of the avr gene 
product, or is it a serendipitous function? Although our current answers to these 
questions are sketchy at best, I wilrattempt to highlight some key findings 
bearing on them. 

2 Avirulence Genes as Determinants of Host Range 
Both Within and Across Species 

Avirulence genes have been largely defined via their ability to functionally convert 
a previously virulent bacterial strain to avirulence on a particular genotype (culti­
var) of the test plant used in the assay. They are typically identified and cloned by 
gain of function assays: A conjugative cosmid library is constructed from a 
bacterial strain proposed to carry a particular avrgene (defined via interaction with 
a particular host cultivar proposed to carry the corresponding resistance gene); 
single cosmid clones are conjugated into a strain which is, in contrast, virulent on 
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the same test cultivar; transconjugants are tested for the ability to trigger a 
resistance reaction on the test cultivar (STASKAWICZ et al. 1984). It is a key tenet of 
the gene-for-gene hypothesis that the conversion of the recipient strain's 
phenotype from virulent to avirulent is plant genotype-dependent: an avr gene 
should not effect virulence on other cultivars which lack the corresponding 
resistance gene. Thus, avr genes are defined only in the context of a particular 
host plant for the virulent recipient bacteria, and in a manner potentially 
independent of their primary role in the bacteria. Over 30 avr genes have been 
identified in this manner (Tables 1,2). Other than the two examples discussed in 
detail below, the deduced amino acid sequences of avrgenes give no clue as to 
either their function or to how they trigger resistance on appropriate plant 
cultivars. Most encode proteins of between 20-1 OOK Mr that are hydrophilic, have 
no obvious transmembrane or signal sequence (with one potential exception, see 
PARKER et al. 1993). and are not detected as secreted products in media. 

Avirulence genes not only limit bacterial host range within a host plant 
species; rather, many are also genetically dominant determinants limiting the 
host range of phytopathogenic bacteria on multiple plant species (Tables1, 2). 
This was first demonstrated in two sets of seminal experiments (KOBAYASHI et al. 
1989; WHALEN et al. 1988). In the first, WHALEN et al. (1988) identified the avrRxv 
gene from Xanthomonas campestris pv. vesicatoria, a tomato pathogen, that 
rendered otherwise virulent pathogens of bean, soybean, cowpea, alfalfa, corn 
cotton, and tomato avirulent on these plant species. The implication is that each 
of these species contains one or more "novel" R gene specificities recognizing 
this avrfunction. Segregation analysis in bean and tomato, in fact, support this 
notion (WHALEN et al. 1988, 1993). In the other series of key experiments, three 
genes, avrD, avrE, and a second allele of the previously identified avrA gene 
(STASKAWICZ et al. 1984, 1987), were cloned from a Pseudomonas syringae pv. 
tomato isolate via their avirulence in a soybean pathogen (KOBAYASHI et al. 1989). 
At least avrD, and probably avrE as well, define novel resistance specificities in 
soybean (KEEN and BUZZELL 1991; LORANG ar)d KEEN 1994). Subsequent analyses in 
other bacterial pathovar-plant species combinations strengthen the idea that avr 
gene activity can playa major role in restricting the host range of phytopathogenic 
bacteria (DANGL et al. 1992; DEBENER et al. 1991; INNES et al. 1993a,b; JENNER et al. 
1991; RITTER and DANGL 1994; VIVIAN et al. 1989; WHALEN et al. 1991). These 
fascinating results suggest that what has been traditionally called "non-host" 
resistance may be simply the additive effects of many, simultaneously acting, 
gene-for-gene interactions. This is of potential practical importance, since 
definition of resistance specificities in model plant species, like Arabidopsis and 
tomato, may reflect the existence of molecular homologs useful in crop species 
(reviewed by DANGL 1993a,b). This idea has led to the identification of avrgenes 
not in the traditional way of screening plant genotypes within a pathogen host 
species, but instead by specifically searching for host range restricting genes 
(WOOD et al. 1994; YUCEL and KEEN 1994b). It is important to note that this finding 
is not limited to bacterial pathogenes, as has been clearly demonstrated by 
analyses in two fungal pathosystems (TOSA 1989; VALENT et al. 1990). It has also 
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been demonstrated that nod factors can also function as dominant determinants 
of Rhizobium host range (e.g., FAUCHER et al. 1989; see chapter by McKHANN and 
HIRSCH, this volume). As HEATH (1991) has discussed, this principle might help to 
explain the evolution of race-specific resistance within a species, and how those 
systems can result in race-specific recognition of a particular avr gene by nominal 
non-host plant species. 

3 Virulence Functions of Avirulence Genes 

If avr genes serve only negative function (restricting host range), why do they 
persist in bacterial populations? Positive functions in virulence have been de­
scribed for only a handful of avrgenes. This is typically accomplished via marker­
exchange mutagenesis of the avr gene and subsequent analysis of effects on 
pathogen fitness in vitro and on both previously resistant and susceptible hosts. 
If there is a loss of fitness on some or all previously susceptible hosts, and no gain 
of virulence on previously resistant cultivars, the avr gene product is also a 
virulence factor. Alternatively, there is one example of identification of a virulence 
factor in a gain-of-function assay via conjugation of cosmids from a virulent strain 
into an attenuated pathogen (the pthA gene of Xanthomonas citri, see below; 
SWARUP et al. 1991, 1992). 

In light of the previous discussion of avrgenes as host range determinants, 
one could also predict that a particular avr gene might encode a determinant of 
virulence on plants within the strain's normal host range (host-specific virulence); 
or it might encode a function generally required by each strain carrying it on any 
potential host. The only example of the latter is the avrBs2 gene from X 
campestris pv. vesicatoria (KEARNEY and STASKAWICZ 1990; MlNISAVAGE et al. 1990). 
This gene is probably required for normal bacterial growth, as it is present in every 
isolate of Xc. pv. vesicatoria (over 500 analyzed), and several isolates of other X 
campetris pathovars (KEARNEY and STASKAWICZ 1990). Both a spontaneous mutant 
of avrBs2 in a Xc. pv. vesicatoria strain (tomato pathogen) and a marker-exchange 
mutant of this gene in a Xc. pv. alalfaegrew poorly on susceptible hosts. As well, 
this fitness reduction was overcome by conjugation of the cloned avrBs2 gene 
into each mutant (KEARNEY and STASKAWICZ 1990). 

Although not directly relevant to an understanding of avrgene function, it is 
important to note that the corresponding resistance gene in pepper, Bs2, has 
never been" overcome." Lack of mutation at avrBs2, which would be uncovered 
in the field as a loss of recognition by the corresponding Bs2 R gene and 
subsequent disease outbreaks, supports the notion that avrBs2 is indispensible 
for bacterial fitness. This is in contrast to the Bs1 gene in pepper, which is 
rendered irrelevant by frequent insertion of a transposon into the corresponding 
avrBs 1 gene, leading to virulence of such strains on Bs 1 containing pepper 
cultivars (KEARNEY et al. 1988; RONALD and STASKAWICZ 1988; SWANSON et al. 1988). 
Thus, the avrBs 1 gene is apparently dispensible in strains which carry it. 
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A few examples also exist of genes first identified via avrfunction which in 
addition also serve as host-specific virulence factors quantitatively affecting 
pathogen fitness (Tables 1,2). The examples are the avrE gene from P. syringae 
pv. tomato (LORANG and KEEN 1994; LORANG et al. 1994) and the avrRpm 1 gene from 
P.s. pv. maculicola (RITTER and DANGL 1994), as well as the pthA gene from X. citri 
(SWARUP et al. 1991, 1992) and the highly related avrb6 gene from x.c. pv. 
malvacearum (DE FEYTER et al. 1993). 

The avrE gene (Table 1) was recently identified in P.s. pv. tomato, and it is 
noteworthy that this activity is encoded by two tightly linked transcripts. The 
particular strain from which avrEwas cloned is also the strain used previously by 
KEEN and coworkers to isolate avrA and avrD (KOBAYASHI et al. 1989, 1990), and also 
contains a functional allele of the avrPto gene, originally cloned from another P.s. 
pv. tomato strain (RONALD et al. 1992). Each ofthese avrgenes is known to interact 
with a soybean R gene (KEEN and BUZZELL 1991). Thus, LORANG et al. (1994) 
undertook to mutagenize all four of these genes, singly and in combination, in 
this strain and to ask if the resulting bacteria were still pathogenic on tomato. As 
well, they assayed the interaction of these mutants with soybean. They found 
that mutations in avrE lowered the ability of low doses (104 cfu/ml initial titer) of 
bacteria to grow and cause disease symptoms on tomato. This reduction in 
virulence was overcome with higher inoculum (5 x 107 cfu/ml; well above 
anything that would be encountered under field conditions!). The cloned avrE 
gene transconjugated into the avrE deletion mutant strain restored full virulence. 
A similar, but very slight, effect was reported for avrA. These data argue strongly 
that avrE function is required to establish infection in tomato, but that it is not 
necessary for symptom production if large numbers of bacteria are inoculated 
into tomato tissue. Moreover, this virulence function is apparently strain­
dependent, since mutation of a functional avrE allele in another P.s. pv. tomato 
strain had no effect on in planta bacterial growth on tomato (LORANG and KEEN 

1994; LORANG et al. 1994). It is also worth mention that single mutation of anyone 
of the four avr genes did not result in loss of recognition by soybean. Yet 
construction of a triple mutant lacking:avrA. avrD, and avrE gave rise to a strain 
incapable of either growth on a single soybean cultivar or triggering a resistance 
reaction on that same cultivar. This is consistent with the hypothesis that parallel 
action of multiple gene-for-gene interactions (in this case three) is responsible for 
at least some non-host resistance reactions in plants. Importantly, however, the 
P.s. pv. tomato strain mutated in these three host range determinants is still 
incapable of growth on the non-host soybean, showing that the absence of host­
specific virulence functions also limits host range. 

A similar role in virulence has been ascribed to the avrRpm 1 gene from P.s. 
pv. maculicola on Arabidopsis (RITTER and DANGL 1994). We showed that a marker­
exchange mutant in avrRpm 1 was no longer virulent on any of three susceptible 
Arabidopsis accessions, and was also incapable of triggering a hypersensitive 
reaction on resistant accessions. As with avrE, the requirement for avrRpm 1 
function in virulence seems to be during establishment of infection, as high titer 
inoculation results in disease symptoms and in planta bacterial growth on 
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susceptible hosts. Since avrRpm 1 is present in only a few of over 20 tested 
isolates of P.s. pv. maculicola (DANGL et al. 1992), and since several of the isolates 
lacking it are pathogenic on Arabidopsis (DANGL et al. 1992; DEBENER et al. 1991), it 
is apparent that combinations of virulence factors, some probably redundant, can 
operate in a strain on a particular host. This point is reinforced by two findings: 
first, as discussed above, deletion of avrEin one strain affects that strain's fitness, 
but a similar deletion in a second strain has no effect on virulence; second, 
mutation of the avrRpm 1 allele avrPpi2 in P.s. pv. pisi has no effect on virulence 
(A. Vivian, personal communication). Since many avr genes are plasmid borne 
(Tables 1, 2), it is not surprising that combinations of avr functions (and any 
attendant fitness or virulence functions) are mixed and matched in the bacterial 
population. If one assumes a positive role for most or all avrgenes at some point 
in the infection process, and if additive or redundant mechanisms govern 
virulence, then it is also not surprising that some avr genes are apparenlty 
dispensible, or not broadly dispersed. 

Two members of the fascinating avrBs3family (Table 2; discussed in detail 
below) have been shown to also act as virulence factors. The pthA gene from X 
citriwas, in fact, first identified functionally via its ability to enhance the virulence 
of a weakly pathogenic X citremulo strain on its nominal host. grapefruit (SWARUP 
et al. 1991, 1992). When pthA is mutated in X citri, the resultant strain loses 
pathogenicity completely on grapefruit. The pthA gene also encodes cultivar­
specific avirulence when conjl!gated in Xc. pv. malvacearum and tested on 
cotton. Thus, pthA encodes a function that acts as an avirulence gene in Xc. pv. 
malvacearum, a virulence factor in X citrumelo, and a required pathogenicity 
factor in X citri. Another member of the highly related avrBs3 family, the avrb6 
gene from x.c. pv. malvacearum, acts as a host-specific patho-genicity factor in 
that it confers the ability to cause disease symptoms (water soaking) on cotton 
onto strains normally incapable of doing so, and it is required for maximal 
symptom formation (DE FEYTER et al. 1993). Oddly, its presence does not render 
growth capability on the recipient strain t~sted. 

The fact that most avr genes seem to have no role in pathogenicity or 
virulence suggests, among other possibilities, that our infection assay systems 
might bypass the stage in the normal plant-microbe interaction at which these 
gene products are required. For example, one could imagine that the avr gene 
products encode functions required at the switch point between epiphytic 
bacterial growth on the plant surface and intercellular growth as a pathogen. This 
stage of the interaction is often not assayed during hand or vacuum infiltration 
experiments. New assay systems for epiphytic fitness, as described in the 
chapter by Beattie and Lindow, will potentially help to establish when and how avr 
genes exert a positive influence in the infection process. 
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4 Regulation and Organization of Avirulence Genes 

Consistent with the idea that avrgenes do have an as yet nebulously understood 
role in virulence, nearly all are transcriptionally induced in environments represen­
tative of plant intercellular spaces. Two points are germane to discussions of avr 
gene regulation: First, to date, delivery of all avr functions is dependent on 
structural integrity of the hrp secretory apparatus (see chapters by BONAS, and by 
COLLMER and BAUER, this volume). This supports the idea that avr-dependent 
elicitors of plant response are produced and that they reach the intercellular space 
via secretion through the hrp pathway. Second, it appears that the hrp transcrip­
tional regulators hrpS and hrpL are required for transcription of many, if not all, P. 
syringae avrgenes (HUYNH et al. 1989; INNES et al. 1993a; SALMERON and STASKAWICZ 
1993; SHEN and KEEN 1993). These analyses have been carried out in P. syringae 
systems, and our understanding of avr gene transcription in X. campestris is 
confounded by the fact that no hrp gene has been identified with the structural 
features of a transcriptional activator, and by the finding that avrBs3 is transcribed 
in a hrp-independent manner (KNOOP et al. 1991). 

A shift from rich to minimal media induces transcription of a number of avr 
genes from various P. syringae pathovars. The level of induction is variable, but 
hovers around 30- to 1 DO-fold for several genes. Induction is maximal in minimal 
media containing sugars such as fructose and sucrose, or sugar alcohols such as 
mannitol. A further boost in transcriptional activity, again around 30- to 1 DO-fold, 
has been observed in planta for avrB, avrPto, avrD, and avrRpm1 (HUYNH et al. 
1989; INNES et al. 1993a; SALMERON and STASKAWICZ 1993; SHEN and KEEN 1993). 
RITTER and DANGL (1994), however, showed that only minimal media, without any 
sugar source may be sufficient to induce transcription of avRpm1, but that 
maximal transcriptional activation requires a sugar such as fructose or sucrose. In 
all cases, avrtranscriptional activity is maximal within the first 5 h after infiltration 
into leaves. As well, there is no differential avrexpression resistant compared to 
susceptible plant cultivars. It is noteworthy that these examples are from 
experiments in soybean, tomato, and Arabidopsis, suggesting that the inter­
cellular milieu of plant leaves, rich in sucrose and with a pH of around 5.5, is 
generally inductive for P. syringae avr gene transcription. It is also important to 
note that this pH, as well as osmotic conditions, the relative absence of nitrogen 
sources, and the presence of certain sulfur compounds, is critical to activate hrp 
gene transcription (see chapter by BONAS, this volume). Thus, whether the hrpS 
and hrpL requirements for avr promoter activity are physically direct or indirect, 
and whether there may be additional modes of regulation for some avr genes, 
establishment of bacterial growth in leaf intercellular spaces clearly includes early 
activation of avr gene activity. 

Sequence comparisons and promoter analysis have defined two cis-acting 
DNA sequences in avrgenes from P. syringae (INNES et al. 1993a; SHEN and KEEN 
1993). The so-called "harp box", first noted upstream of hrpgenes by FELLAYetal. 
(1991) (see chapter by BONAS, this volume), has been recently expanded 



The Enigmatic Avirulence Genes of Phytopathogenic Bacteria 109 

(consensus 5'T/G-G-G-A-A-C-C-N(15-16)C-C-A-C) and shown to be essential for 
avrDtranscription via block mutation analyses (SHEN and KEEN 1993). Interestingly, 
these authors also identified a consensus 0'54 binding site in the avrD promoter (no 
other avr gene has been shown to contain this site). Although no evidence for 
direct DNA-binding activity for hrpS on avr genes promoters exists yet, it should 
be remembered that hrpS is a member of the 0'54 requiring ntrC family of 
transcriptional activators. Consistent with a role for a cr54-like factor for at least 
avrD transcription, SHEN and KEEN (1993) also showed that avrD expression is 
abolished in an ntrA mutant of P.s. pv. phaseo/ico/a. Whether this strategy of 
transcriptional activation is generally applicable for avr genes from P. syringae 
awaits further clarification of the function of the HrpL protein, the regulatory and 
structural relationship between hrpS and hrpL and demonstration of a direct role 
for either of these proteins on avrgene promoters. 

A consistent, though still partially speculative, model regarding 
early regulatory events at the pathogenic cusp thus begins to emerge. Environ­
mentally mediated induction of hrp genes upon migration of bacteria into inter­
cellular spaces in turn leads to activation of a regulon of virulence functions, 
among them the genes identified through their aviru/ence activity. One could 
imagine isolation of genes in this regulon through use of DNA probes for the harp 
box, or via transposon mutagenesis searches for hrp5-dependent transcription 
units and subsequent sequencing. Under the assumption that such functions are 
hrp-linked, the latter approach has already led to the identification of three hrp­
linked transcription units, one encoding avrE (LORANG and KEEN 1994). 

Is there a pattern to the physical locations of avrgenes that is informative for 
their role during infection? Tables 1 and 2 show that many are plasmid encoded, 
and now there are examples that are hrp-linked on the chromosome. The 
importance of plasmids carrying virulence factors and other determinants of 
pathogen fitness is a recurrent theme throughout bacterial pathogenesis and has 
been demonstrated repeatedly for plant pathogens (for example BOUCHER et al. 
1988; KEARNEY et al. 1988; SWANSON et al. 1988; BAVAGE 1991). It is very intriguing 
that the avrBs3family of genes are borne on a self-transmissible plasmid and that 
some are flanked by insertion sequences (BONAS et al. 1989, 1993; DE FEYTER et al. 
1993; HOPKINS et al. 1993). As well, in x.c. pv. ma/vacearum, several copies 
of avrBs3-like sequences are tightly linked, suggesting that local transposition 
and/or recombination can give rise to new family members, encoding potentially 
new avr functions (DE FEYTER and GABRIEL 1991; see also below). For other avr 
genes, no correlation exists between plasmid or chromosomal location and, for 
example, a demonstrated role in virulence. The variety of plasmid-associated avr 
genes and the conserved regulatory mechanisms of avr genes independent of 
location suggest that their dispersal is probably important in some component of 
bacterial fitness. 

The interplay between various plasmid-borne functions and avirulence func­
tions has recently been highlighted by the findings of Vivian and colleagues 
(MOULTON et al. 1993). They showed that transfer of RP4 or IncP1 replicons to 
either of two P.s. pV. pisi strains resulted in alterations in the structure of resident 
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plasm ids which were clearly associated with changes in interactions with pea 
plants. Most strikingly, these experiments suggest that the acquisition of an 
identical novel avrgene activity on pea in variants of both strains was dependent 
on loss of a plasmid-borne suppressor of that avr activity. Suppressors of avr 
function have also been demonstrated in several fungal pathogens. These genes 
would provide a mechanism by which the normal role of an avr gene might be 
retained by the microorganism, but the serendipitous recognition of that function 
by the plant cell masked. 

5 Modes of Avirulence Gene Action 

We remain, sadly, very naive regarding not only the mechanism(s) by which avr 
genes function positively in plant-microbe interactions, but also concerning the 
way in which they trigger plant resistance responses. The "elicitor-receptor 
model" (GABRIEL and ROLFE 1990; KEEN 1982) suggested that the avrgene product 
would interact with the R gene product to trigger resistance. As discussed below, 
elegant work in two avrgene systems suggests that this is partially correct. The 
first example for which a clear consensus emerged, the avrD gene from P.s. pv. 
tomato, necessitated a slight modification of the simplest elicitor-receptor model 
to allow that an "indirect" product of an avr gene could trigger resistance. The 
second example, less clear, but fascinating specifically because of its 
fundamental difference to al/rD, is the gene family of structural homologs related 
tothe avrBs3genefrom x.c. pv. vesicatoria. As detailed below, it may be that the 
different members of this family interact directly with the plant cell, although in 
an as yet mysterious manner. 

5.1 The avrD Elicitor 

As alluded to above, the avrD gene was isolated from P.s. pv. tomato via 
conjugation of cosmids into an isolate of P.s. pv. glycinea which was virulent on 
several soybean cultivars (KOBAYASHI et al. 1989). Subsequently, KEEN and BUZZELL 
(1991) showed that the avrD gene function defined a new resistance soybean R 
gene specificity, Rpg4. Interestingly, overexpression of avrD in Escherichia coli 
leads to accumulation of low molecular weight compounds in the culture 
supernate which is sufficient to trigger a hypersensitive response specifically on 
soybean cultivars carrying Rpg4 (KEEN et al. 1990). Moreover, response to this 
"elicitor" compound cosegregates with resistance to P.s. pv. glycinea strains 
carrying the avrDgene (KEEN and BUZZELL 1991). Recently, two nearly identical acyl 
glycoside structures for the avrD elicitor have been proposed, and they have been 
dubbed syringolides 1 and 2 because of their structural similarity to molecules 
from Streptomyces species known to be inducers of sporulation and antibiotic 
production (MIDLAND et al. 1993; SMITH et aI1993). Thus, the avrD gene probably 
encodes an enzyme, and a product of its enzymatic activity is the avrD elicitor. 
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Several alleles of avrD have been cloned and sequenced in an effort to 
understand how its structure determines production of the avrD elicitor (KOBAYASHI 

et al. 1990a,b; YUCEL and KEEN 1994b). These experiments were motivated by the 
isolation of a highly homologous allele of avrDfrom P.s. pv. g/ycinea (86% amino 
acid identity) that does not function as an avr gene (KOBAYASHI et al. 1990b). 
Chimeric avrD proteins were constructed from an active allele cloned from P.s. 
pv. tomato and the inactive allele from P.s. pv. g/ycinea, and components of avrD 
protein stability were localized to the carboxyl portion of the protein. 

Three further alleles have recently been characterized (Table 1; YUCEL and 
KEEN 1994b). Two come from one strain of P.s. pv. /achyrmans, and the third from 
P.s. pv. phaseo/ico/a. All avrD alleles are plasmid-borne, and the alleles from P.s. 
pv. /achyrmans reside on two different plasmids. The deduced amino acid 
sequences of all five alleles allowed YUCEL et al. (1994a) to propose two homology 
groups. The two alleles from P.s. pv. /achyrmans are in different groups, 
suggesting relatively recent independent acquisition by this strain of the plasmids 
carrying them. As well, the avr-inactive allele is present in a homology group with 
two different, active alleles. Five amino acid substitutions are all that separate 
avr-inactive from the avr-active alleles within this homology group, and YUCEL and 
KEEN (1994a) recently showed that three of these residues are required for avrD 
function via site-directed mutagenesis. Another contextual motif of six amino 
acids, differing between homology groups, may influence avrD activity in 
combination with those absolutely required for activity. Finally, YUCEL et al. 
(1994b) have shown that alleles from the two homology groups produce 
idiosyncratic syringolides when expressed in E. coli. Within one homology group, 
avr-active and avr-inactive alleles produce the same HPLC profile of syringolide­
like compounds. Two points emerge from this analysis: first, relatively low protein 
stability and consequent low production of avrD elicitor probably explain the 
inactivity of the P. s. pv. g/ycinea avrD allele, as originally suggested by KOBAYASHI 

et al. (1990b). Note that this lowered activity may not impinge on the normal role 
of avrD in P.s. pv. g/ycinea. Second, sliQht structural variations are probably 
allowed in the avrD elicitor with respectto recognition by the soybean Rpg4gene. 
Alternatively, closely linked R gene specificites at Rpg4 may be responsible 
for recognition of structural variants of the avrD elicitor. At a minimum, these 
recent analyses establish that the avrDgene probably functions as an enzyme and 
that different alleles of this enzyme discriminate between fatty acid derivatives 
differing by two carbon atoms (YuCEL et al. 1994b). The parallels here to fatty acid 
chain decoration of nod factor backbone structures as one determinant of 
Rhizobium host range are striking. 

5.2 The Structural Conundrum of the avrBs3 Gene Family 

If the probable role of the avrD gene product in triggering plant resistance 
reactions is enzymatic and indirect, the avrBs3 family represents an example of 
an avr gene product whose structural features are suggestive of a direct inter-
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action with the plant. The paradigmatic member of this family was cloned from 
Xc. pV. vesicatoria and shown to encode a bizarre structure of 17 repeats of 34 
amino acid residues each 030NAS et al. 1989). Each of the repeat units contains a 
two amino acid "variable region," and the number of naturally occurring repeat 
units can vary (from 14 to 23 in the Xc. pv. malvacearum clones, DE FEYTER et al. 
1993). Homologous sequences are found in many additional X. campestris 
pathovars and in X. oryzae (BONAS et al. 1989; DE FEYTER et al. 1993; HOPKINS et al. 
1993). A family of six avr genes from X. c. pv. malvacearum, at least three avr 
genes from X o. pv. oryzae, and an additional avrgene from Xc. pv. vesicatoria 
are all highly related to avrBs3 (BONAS et al. 1993; CANTEROS et al. 1992; DE FEYTER 
and GABRIEL 1991; DE FEYTER et al. 1993; HOPKINS et al. 1993). It is not known if all 
avrBs3 homologs have avirulence activity, since not all have been cloned and 
tested. Note, however, that at least two members of this family have been shown 
to encode virulence functions on susceptible hosts (discussed above; see Table 2). 

The most bemusing aspect of this gene family was uncovered by HERBERS et 
al. (1992), who demonstrated that the specificity of plant recognition of avrBs3 
can be changed by altering the number of repeat units. They showed that deletion 
of different numbers of repeats could, in fact, give rise to avr genes now 
interacting with the" recessive allele" of the Bs3 resistance gene in pepper! They 
also created deletion derivatives capable of triggering a plant resistance reaction 
on another host, tomato. The overall number of repeats does not seem to define 
the particular avr specificity, and it seems that the "variable region" sequences 
are combinatorially responsible for the new specificities (at least two complete 
repeats are necessary for any activity of avrBs3l. The avrBs3 gene therefore may 
encode a product which interacts directly with the plant, although other models 
are possible. Recent comparison of the avrBs3-2 (or avrA allele, active on tomato, 
with avrBs3 derivatives that are also active on tomato did not allow deduction of 
pepper- or tomato-specific structural motifs (BONAS et al. 1993). In contrast to 
avrBs3, which apparently requires non-repeat unit sequences at both amino and 
carboxy termini, a series of carboxy truncations of the avrBs3-2 allele containing 
more than two complete repeat ul1;ts retains function. Cellular fractionation 
studies show that 20%-30% of the protein is membrane-associated, the rest 
being soluble (KNOOP et al. 1991). Recent in situ localization of AvrBs3 protein 
suggested localization in the bacterial cytoplasm, adding to the whimsical ques­
tion of how this most interesting structure imparts specific recognition to the 
plant cell (BROWN et al. 1993). An interesting point with respect to this gene, when 
considering a model of direct interaction with the plant cell, is that its expression, 
unlike all other avr genes analyzed to date, is independent of hrp gene function 
(KNOOP et al. 1991; see also above). 

6 Other Genes Influencing Host Range 

The experimental regime for identification of bacterial avr genes obviously 
identifies a subset of potential host range determinants since it is based on gain-
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of-function, namely, dominant triggering of plant resistance response. Yet any 
gene whose action is required for virulence on a particular host genotype will be 
identified as a host range determinant when it is mutated, and identified in loss­
of-virulence assays. In a broader sense, both regulatory genes, required to sense 
a particular plant environment and initiate a response cascade, and the effector 
genes thus activated, also constitute host range determinants. Their absence 
clearly limits the niches available to bacteria relying on them. Examples of this 
class are discussed in chapters by Dow and Daniels, and by Coli mer and Bauer in 
this volume, but several recent examples deserve reiteration in the context just 
described. 

One regulatory gene which also is a required host range determinant is the 
lemA gene from P. s. pv. syringae (HRABAK and WILLIS 1992; WILLIS et al. 1990). 
This gene is required for symptom formation on bean plant, but is dispensible for 
in planta bacterial growth. As WILLIS et al. (1990) pointed out, however, definition 
of these virulence functions is very dependent on assay conditions. They 
concluded that isolation of the lemA mutant, which was accomplished by 
inoculating bean pods and screening for symptomless mutants, would have been 
very difficult using leaf assays, as this mutant does trigger dose-dependent 
necrosis on leaves. The lemA gene encodes a "fused" two-component 
regulatory molecule, molecular homo logs of which are present in several P. 
syringae pathovars (HRABAK and WILLIS 1992). Marker-exchange mutagenesis 
demonstrated that lemA is required for lesion formation on bean by several 
classes of P. s. pv. syringae, but similar mutation of lemA in P. s. pv. phaseolicola 
did not diminish lesion formation on bean (RICH et al. 1992). Thus, absence of 
lemA limits P. syringae pv. syringae host range. It is not known what triggers 
lemA function, but it, in turn, regulates production of toxin and proteases in both 
P. s. pv. syringae and P. s. pv. coronafaciens (BARTA et al. 1992; HRABAK and WILLIS 
1993). However, toxin minus and protease minus mutants generated via marker­
exchange mutagenesis in a lemA wild-type background were still fully pathogenic 
on bean. This result suggests that although toxin and protease regulation are 
targets for lemA regulation, they are not the downstream targets of lemA 
required for pathogenesis of P. s. pv. syringae on bean (HRABAK and WILLIS 1993). 
This consistent with the notion that environmental sensors feed into multiple 
effector pathways designed to allow the bacterium maximum flexibility during 
the early phases of pathogenesis. 

A clear role in host range limitation was also recently demonstrated for the 
hrmA gene of P. s. pv. syringae (HEU and HUTCHESON 1993). This locus was 
identified as a modifier of hrp action, as insertions in hrmA led to an attenuated 
hypersensitive response (HR) on tobacco but retained pathogenicity on bean 
(HUANG et al. 1991). The hrmA gene encodes a protein of unknown function and is 
regulated in an avrgene-like manner: induced in sucrose-containing media and in 
planta, and transcriptionally dependent on hrpS. Interestingly, when conjugated 
into a P. s. pv. glycinea strain, hrmA rendered this strain avirulent on a battery of 
otherwise susceptible soybean cultivars. Clearly, hrmA negatively influences 
host range in P. s. pv. glycinea, and is potentially an avrgene on soybean. Thus, 
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it is analogous to those avr genes listed in Table 1 which operate, so far, as 
genotype-independent, host range restricting elements (see also CARNEY and 
DENNY 1990). 

Structural features of the bacterial surface can also effect host range. A 
recent example is the opsX locus of X. campestris pv. citrumelo (KINGSLEY et al. 
1993). This gene encodes an enzyme involved in lippolysaccharide (LPS) 
synthesis, and mutations in opsX pleiotropically effect not only LPS, but also 
extracellular polysaccharide profiles. OpsXmutants are not pathogenic on citrus, 
but retain pathogenicity on bean. The authors postulate that opsX functions to 
protect bacteria from defense compounds present in citrus, but not in bean. 

7 Flexible Adaptation for Opportunistic Infection 

Essentially all phytopathogenic bacteria are opportunists in the sense that they 
switch easily from epiphytic to pathogenic modes of survival when circumstance 
dictates. Isolation and analysis of avr genes, defined by their interactions with 
plant resistance genes, have allowed us to scratch at the surface of what will 
undoubtedly be a complex system whereby phytopathogenic bacteria sense and 
respond to the environmental conditions on and inside the plant surface. Detailed 
appraisal of avr gene function, both in the sense of how it is beneficial to the 
bacterium and in that it triggers highly specific disease resistance in plants, must 
address the following questions. What is the normal role of these genes in the life 
cycle of phytopathogenic bacteria? How do avr genes confer a selective 
advantage to bacteria which potentially suffer narrowing of host range because of 
their action? How are they recognized by the plant to trigger a resistance 
response? How is avr gene function intertwined with, or mediated via, hrp 
function? And finally, what is the molecular nature of the interacting partners 
which leads to disease resistance in the plant? Answers to these questions will 
no doubt be strengthened by recent advances in molecular understanding of 
bacterial development and interactions with mammalian hosts. 
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1 Introduction 

Agrobacterium tumefaciens is a gram-negative soil bacterium that causes crown 
gall tumors on a broad spectrum of dicotyledonous plants (for reviews see: BINNS 
and THOMASHOW 1988; WINANS 1992; ZAMBRYSKI 1992). This pathogenic response 
results from the activities of a large tumor-inducing (Ti) plasmid that resides in 
many but not all agrobacteria found in the rhizosphere. The infection and 
transformation process is a complex series of interactions between host and 
pathogen that ultimately leads to the transfer of DNA (the T-DNA) from the Ti 
plasmid into the plant cell where it is integrated into the nuclear genome. 
Expression of this T-DNA results in the production of two classes of protein 
products: (1) enzymes that synthesize plant hormones capable of stimulating 
continuous cell division in the transformed cells and (2) enzymes that synthesize 

Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-
6018, USA 



120 A.N. Binns and V.R. Howitz 

unique amino acid:sugar acid conjugates, termed opines, that are not meta­
bolizable by the host cell but are metabolized by the inciting bacterium, providing 
it with a dedicated nitrogen and carbon source. 

The DNA transfer process requires the activities of Agrobacterium chromo­
somal and Ti plasmid genes referred to as "chromosomal virulence" (chv) and 
"virulence" (vir) genes, respectively. Briefly, the bacteria sense an appropriate 
infection site, generally a wound, through the activities of chvE, virA, and virG and 
activate transcription of the vir genes. Products of the virC and virO operons 
release a single-stranded piece of DNA (T-strand) from the T-DNA region of Ti 
plasmid. The T-strand is capped at its 5' end by VirD2 and coated by the single­
stranded DNA binding protein, VirE2, resulting in the formation of the T-complex, 
which is hypothesized to be the transferred intermediate. Independent of virgene 
activation and T-DNA processing, the agrobacteria bind to the walls of plant cells 
at the wound site. Once attachment and T-DNA processing have occurred, the T­
complex moves out of the bacterium and into the plant cell in a process that is still 
not understood. The VirB proteins, most of which are membrane localized and 
required for virulence, are hypothesized to form a membrane-spanning pore 
through which the T-complex moves (see chapter by R. Ruppuoli this volume). 
However, the putative pore and its relationship to the plant cell are undescribed. 

This review concerns the mechanisms whereby the host and pathogen 
interact so as to initiate and execute the process of DNA transfer. Several 
questions will be addressed. First, what plant-derived cues are being recognized 
by the bacterium, and why IS the plant producing such cues? Second, how does 
the bacterium sense the plant-derived cues? Third, once the signals are 
perceived, how are they transduced into biochemical events that lead to vir gene 
transcription? Fourth, what physical cell:cell interactions are necessary for DNA 
transfer? 

2 Signal Production-What's the Plant Doing and Why? 

In general, crown gall tumors develop at wound sites on plants only if the site is 
infected by Agrobacterium soon after wounding. In a series of classic 
experiments BRAUN and colleagues found that if agrobacteria were added to 
Kalanchoe daigremontiana or Catharansus (Vinca) rose us 7 days after wounding, 
tumors would not develop (for an interesting early review see BRAUN and STONIER 
1958). Further, they took advantage of the fact that elevated temperature disrupts 
the transformation process (but not tumor growth after transformation) to show 
that the bacteria were maximally efficient in tumorigenesis during the period of 
48-96 h after wounding (BRAUN 1947, 1952; BRAUN and MANDLE 1948). More recent 
experiments utilizing cocultivation procedures in which the bacteria can 
be eliminated by antibiotic treatment confirms that maximal competence of 
plant cells for transformation occurs 60-96 h after wounding (KUDIRKA et al. 1986; 
BINNS 1991). 
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What processes are occurring at the wound site that make it competent and 
how does the bacteria recognize and exploit this potential information? At a 
structural level, it is clear that wounded tissues in most dicots heal their wounds 
through a combination of cell divisions at the wound site and cell wall 
strengthening (KAHL 1982). A significant proportion of cells near the wound site 
are activated and undergo from one to a few rounds of mitosis before returning to 
the quiescent state. In all cases examined to date the period of maximal 
competence for transformation correlates with the period of maximal wound cell 
division (BRAUN 1952; LIPE1Z 1966; KUDIRKA et al. 1986; BINNS 1991). Interestingly, 
most monocots, which are poorly if at all transformed by Agrobacterium, do not 
exhibit wound cell divisions (KAHL 1982). 

The most obvious biochemical activities at the wound site are related to 
wound cell division and/or strengthening of the cell walls near the wound site. 
Induction of the phenylpropanoid pathway is a general feature of the wound 
response (KAHL 1982) and is necessary for the production of phenolics involved in 
cell wall strengthening. For example, ferulic acid dimers are necessary to cross­
link pectic and hemicellulosic polymers together (FRY 1983; TAN et al. 1992), and 
lignin, derived from the peroxidase catalyzed free radical polymerization of 
phenolic alcohols such as coniferyl and syringyl alcohol, is critical in wall 
strengthening (LEWIS and YAMAMOTO 1990). In addition to these polymerized 
molecules, large quantities of soluble phenolics are also present at the wound 
site. Some of these have antimi9robial activities (LAMB et al. 1989), while others, 
particularly coniferyl alcohol derivatives, have been implicated in cell division 
control (TEUTONICO et al. 1991; LEE et al. 1981). Ultimately, the wound site heals, 
with cell division and various biochemical activities being shut down. 

3 Signal Recognition: How Does the Bacterium Sense 
That Competent Plant Cells Are Around? 

3.1 vir Gene Induction is Controlled by a Two-Component 
Regulatory System 

Clearly, the wound site undergoes a complex series of wound healing and 
defense activities that A. tumefaciens must overcome if it is to successfully 
transform a plant cell. One remarkable feature of this bacterium is that it uses 
these plant defense responses as both chemoattractants and as activators of the 
transformation process. The best characterized aspect of signal recognition in the 
Agrobacteriu~plant cell interaction is the activation of the vir genes by wound 
exudate. As described above, the vir genes encode proteins involved in the 
processing and export of the T-complex into the plant cell. In order to both identify 
potential vir genes and characterize the control of their transcription, STACHEL and 
co-workers (1985a,b; STACHEL and ZAMBRYSKI 1986) constructed a transposon, 
Tn3HoHol, that carried a promoterless lacZwhich required translational fusion for 
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enzyme activity. Insertion into a vir gene thus inactivated the gene and could also 
produce translational fusions with ~-galactosidase activity useful as a reporter of 
promoter activity. Results of these experiments demonstrated that most of the 
vir-lacZfusions were inactive unless exposed to plant-derived phenolics, such as 
acetosyringone (AS), that are associated with the wound response (STACHEL et al. 
1985b). While the phenolics are critical signals necessary to activate the vir 
genes, subsequent investigations have demonstrated that hexoses and acidic pH 
are also necessary for maximal induction. For example, phenolic induction of vir 
gene expression is not observed, at least in wild-type bacteria, unless the pH is 
acidic (e.g., 5.5) (STACHEL et al. 1986). Furthermore, the sensitivity of the phenolic 
recognition system is increased by nearly two log orders when hexoses such as 
glucose or arabinose are present in the induction medium (CANGELOSI et al. 1990; 
SHIMODA et al. 1990). 

The genetic basis of signal transduction controlling vir gene expression has 
been extensively studied. virA and virG are necessary for induction of the other vir 
genes, and, while these two genes are constitutively transcribed, they are also 
auto-inducible in response to phenolics (STACHEL and ZAMBRYSKI 1986; WINANS et al. 
1988). Both sequence and biochemical analysis of the virAivirG system indicated 
it is homologous to the family of "two-component" regulatory systems used in a 
variety of different signal transduction pathways by both eubacteria and 
archebacteria (STOCK et al. 1990; PARKINSON 1993). As with most two-component 
systems, the working model is that the plant signals cause the membrane bound 
"sensor" (VirA) to transfer a phosphate group from itself to the" activator" (VirG), 
which in turn activates transcription of the vir genes (Fig. 1 A). Additionally, genetic 
evidence indicated that one of the chromosomal virulence genes (chv8 is 
required for maximal phenolic sensitivity for vir induction, particularly in the 
presence of hexoses, and encodes a protein homologous to sugar binding 
proteins found in other systems (CANGELOSI et al. 1990; HUANG et al. 1990.). 

3.2 Phenolic Perception 

The putative phenolic sensor, VirA, has an approximate molecular weight of 92 
kDa with two membrane-spanning domains (MELCHERS et al. 1989b; WINANS et al. 
1989). This divides the molecule into three discrete sections; a short, cytoplasmic 
NH2-terminal, a 20 kDa periplasmic domain, and a 68 kDa COOH-terminal, also 
located in the cytoplasm (Fig. 1 A). One fundamental question is: what proteins 
interact with the signals (sugars, phenolics and pH) to provide information that 
results in phosphate transfer from VirA to VirG? Analysis of other two-component 
systems indicates the complexity of this issue: the actual ligand binding in these 
different cases has been documented in only a few instances. Ligands can bind 
directly to the sensor component orto other proteins which then interact with the 
sensor, resulting in stimulation. For example, FixL is the sensor in a two­
component system that recognizes O2 and, at low O2 tension, activates 
transcription ofthe nitrogen fixation (nif) genes in Rhizobium melilotithrough the 
activator FixJ. FixL is a membrane-bound hemoprotein that can directly bind O2 



A
 

in
ne

r 
m

em
br

an
e NH

2
-

G
 .... 

tr
an

sc
rip

tio
n 

vi
r 

pr
om

ot
er

 

B
 

1
M

 1
 

P
e

ri
 p

la
s
m

ic
 D

o
m

a
in

 
1

M
2

 
L

in
k

e
r 

D
o

m
a

in
 

K
in

a
s

e
 D

o
m

ai
n

 
R

e
c

ei
ve

r 
D

o
m

a
in

 
N

f'Q
-

' 
_ 

_
2

2
 2

2
?

 2
2

 2
2

 2
2

?
 

i
.
 

""
' ..

...
...

 ,t
C

O
O

H
 

H
is

 4
7

4
 

F
ig

. 
lA

.B
. 

A
 T

he
 p

ro
te

in
s 

V
irA

, 
C

hv
E

 a
nd

 V
irG

 a
nd

 t
h

e
ir

 i
nt

er
ac

tio
ns

 i
n 

re
sp

on
se

 t
o 

su
ga

rs
 a

nd
 p

he
no

lic
s 

su
ch

 a
s 

ac
et

os
yr

in
go

ne
, 

S
ee

 t
e

xt
, 

B
 T

he
 V

irA
 p

ro
te

in
. 

de
lin

ea
tin

g 
its

 d
om

ai
ns

 a
s 

su
gg

es
te

d 
in

 C
H

AN
G

 a
nd

 W
IN

AN
S 

(1
99

2)
 

-I
 

:::
T 

<D
 

G
) 

<D
 

:J
 

~
 

n'
 

0>
 

:J
 

C>
- o :::
T 

<D
 3 ('
j'
 

~
 

O
J 

0>
 '" (ii' S,
 

:0
 

<D
 8 co
 

:J
 

;:+
' 

6
' 

:J
 

3
' 

M
 :::
T 

<D
 ;if
 o @"
 ~ ~' N

 
W

 



124 A.N. Binns and V.R. Howitz 

(LoIS et al. 1993a,b). Recent studies have shown that FixL/FixJ mediated 
transcription in response to anaerobic conditions can be demonstrated in vitro 
(AGRON et al. 1993). In contrast, many other ligands appear to bind to receptor 
proteins other than the sensor, and the interaction of the receptor with the sensor 
can be direct or indirect. A classic example of indirect signaling is the chemotaxis 
system in Escherichia coli. In this case the sensor kinase (CheA) is actually a 
soluble, cytoplasmic protein that is fed information from membrane-bound 
methyl accepting proteins (MCPs, e.g., Tar). These proteins can either bind the 
ligand directly (aspartate) or interact with other receptor proteins (sugar binding 
proteins) in order to acquire information about signal concentration (PARKINSON 
1993). Another well characterized two-component regulatory system in E. coli 
controls phosphatase expression. PhoR is a sensor kinase that responds to the 
inorganic phosphate (Pi) concentration, controlling alkaline phosphatase expres­
sion through the activator PhoB (WANNER 1993). The topology of PhoR is quite 
similar to that of VirA, having two transmembrane domains, a periplasmic domain 
and a large cytoplasmic domain. Pi recognition and binding is not mediated 
directly by PhoR. Rather, Pi recognition requires the activity of pstl which 
encodes a periplasmic protein involved in Pi transport. This protein interacts with 
other membrane-bound proteins, including PhoU, which ultimately interacts with 
a cytoplasmic portion of PhoR (WANNER 1993). 

The examples described above indicate the flexibility of the two-component 
regulatory system: signal recognition by the sensor can be either direct or through 
a series of protein-protein interactions. One strategy to characterize the parts of 
VirA necessary for phenolic recognition has been to mutagenize the coding 
sequence either by deleting large portions of the protein or constructing point 
mutations in particular domains. Most of the mutations that, to date, have been 
shown to affect phenolic recognition are mutations that actually affect the sugar 
enhancement effect (see below). CHANG and WINANS (1992), however, did 
demonstrate that the minimal VirA molecule necessary to respond to the 
phenolics does not include either of the membrane-spanning domains or the 
periplasmic domain. These results indicated that the "linker" domain of Vir A (Fig. 
1 B) may be critical to phenolic recognition. This result is reminiscent of PhoB (see 
above) which requires its cytoplasmic domain just inside the cytoplasmic 
membrane to interact with other proteins involved in phosphate recognition 
(WANNER 1993). 

Another method used to test the hypothesis that VirA may be the phenolic 
binding protein has been to reconstruct the VirANirG signal control system in 
heterologous hosts. For example, moving the Ti plasmid into the closely related 
genus, Rhizobium, results in strains that are virulent and will induce the vir genes 
in response to the phenolics (HoOYKAAS et al. 1977; VAN VEEN 1988). These results 
indicate that virtually all of the chromosomal virulence genes of Agrobacterium 
have homologues in Rhizobium. This has been proven in the case of certain genes 
necessary for bacterial attachment to plant cells (CANGELOSI et al. 1987). It is likely 
that genes involved in signal perception are also conserved. The fact that the 
virulence of Rhizobium strains carrying Ti plasm ids is similar to wild-type Agro-
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bacterium suggests that they carry a functional equivalent to chvE. When the 
VirANirG system is moved to more distantly related bacteria, e.g., E. coli, 
phenolics will not induce transcription from vir promoters (Winans, personal 
communcation). This lack of response may, however, be due to problems other 
than a lack of phenolic perception. For example, a constitutively active VirG (see 
below) will not activate transcription from a vir promoter in E. coli (HAN et al. 1992). 
This suggests the interactions of the transcriptional machinery with activated 
VirG at the vir promoter may be lacking. 

Finally, early genetic studies showed that virA of limited host range (LHR) 
strains of Agrobacterium was responsible for their inability to transform many 
host plants that were susceptible to wide host range (WHR) strains (YANOFSKY et 
al. 1985). One reason for this was the apparent inability of the LHR VirA to 
recognize certain phenolics (LEROUX et al. 1987). Later studies, however, demon­
strated that the LHR strains were capable of responding to high doses of the 
same phenolics as the WHR strains (TURK et al. 1991). The molecular basis of the 
poor response is due to the fact that the LHR virA did not exhibit auto-induction in 
response to phenolics as was observed in case of the WHR virA. When the WHR 
virA promoter was used to express the LHR virA coding sequence the resultant 
chimeric gene elicited the WHR phenotype (TURK et al. 1993a). Thus, there is no 
convincing genetic evidence which shows that VirA is the phenolic receptor. 

An alternative approach to understanding phenolic recognition has been 
through chemical analysis of the phenolic specificity of the system. An extremely 
broad range of active phenolics, in terms of structure, has been noted by several 
laboratories (SPENCER and TOWERS 1988; MELCHERS et al. 1989a; DUBAN et al. 1993). 
This wide specificity is unusual for most ligand-receptor interactions. The 
relationship between structure and vir inducing activity has been analyzed in 
detail by LYNN and coworkers, who tested a model suggesting that certain 
structural features were necessary for phenol binding (DUBAN et al. 1993). The 
results of these studies indicated that, in addition to such structural features, the 
most active phenolics were those having the greatest hydrolytic reactivity. A 
model was presented suggesting that the ability of the phenolic to transfer a 
proton to the receptor is crucial (HESS et al. 1991; DUBAN et al. 1993) (Fig. 2). This 
model predicts that a proton is transferred from one region of the receptor to the 
oxygen para to the phenolic hydroxyl group and that ionization of the resonance­
conjugated phenolic hydroxyl group causes proton transfer to a basic component 
of the receptor. The protonation of this residue is predicted to result in confor­
mation changes in the receptor which then affects the downstream signaling 
activities (see below). 

The proton transfer model was examined by HESS et al. (1991), who tested for 
the appearance of a strong nucleophilic residue (e.g., the carboxylate that 
had donated the proton to the phenolic) by preparing and testing 
a,-bromoacetosyringone (ASBr). Such a,-haloketones had been used earlier to 
characterize acid-mediated enzymatic activities. They formed covalent bonds 
with the carboxylate residue at the active site the enzyme, irreversibly inhibiting 
its activity (HARTMAN 1971). Similarly, ASBr was shown to be an irreversible 
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Fig. 2. The proton transfer model of 
-conformational change phenolic activation at the phenolic 
-activity binding protein 

inhibitor of the vir induction process, but not of other inducible enzyme activities 
or of growth (HESS et al. 1991). An analog of ASBr, 5-iodo a-bromo acetovanillone 
(lAVBr), was subsequently shown to be an irreversible inhibitor of vir induction 
and could be prepared to high specific activity for use as an affinity label. 
Unexpectedly, the results of such studies indicated that VirA did not incorporate 
radiolabel in vivo or in vitro, even when VirA was overexpressed in Agrobacterium 
(LEE et al. 1992). Rather, two low molecular weight proteins, p10 and p21, were 
labeled by IAVBr. These proteins were found in the soluble fraction prepared from 
agrobacteria either with or without the Ti plasmid. 

The affinity labeling results suggest that proteins other than VirA may be the 
phenolic receptor in the vir induction system. One problem with this possibility is 
that searches for genes that are required for phenolic-dependent vir gene 
expression have yielded only virA. virG and chvE. Certainly it is possible that the 
genes encoding the putative phenol binding proteins have not been mutagenized: 
genes required for virulence continue to be discovered, e.g. chvl, chvG (CHARLES 
and NESTER 1993; MANTIS and WINANS 1993) (see below). However, the fact that LEE 
et al. (1992) observed two candidate phenolic binding proteins raises the 
possibility that there is more than one phenolic receptor. Finally, it is possible that 
the hypothetical phenolic binding protein has not been identified by genetic 
means because it encodes an essential function. 
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3.3 Sugar Perception 

As described above, phenolic compounds alone are insufficient for maximal 
induction of the vir genes in Agrobacterium. Various hexoses that are known to be 
involved in plant cell wall synthesis (and, hence, wound repair) can enhance 
sensitivity to the phenolics by at least two log orders in terms of concentration 
(SHIMODA et al. 1990). ChvE, a 31 kDa, chromosomally encoded, periplasmic 
protein, has been shown to be responsible for this sugar effect (CANGELOSI et al. 
1990a; HUANG et al. 1990a). Since it is strongly homologous to E. coli periplasmic 
ribose binding and galactose binding proteins and almost identical to a periplas­
mic galactose/glucose binding protein from A. radiobacter, ChvE is likely to be the 
sugar perceiving element in this control system. CANGELOSI et al. (1990a) showed 
that in the presence of low levels of AS. many sugars enhanced virgene induction 
by wild-type strains of A. tumefaciens, whereas those strains with mutated chvE 
did not induce at these AS concentrations. 

The periplasmic domain of VirA mediates two types of responses related to 
the sugar effect: phenolic sensitivity and maximal levels of induction. Sequence 
analysis indicated that the VirA periplasmic domain contains a region homo­
logous to the sugar transporter protein binding domains of the transmembrane 
protein, Trg, that is involved in E. coli sugar chemotaxis (CANGELOSI et al. 1990). The 
enhancement of phenolic sensitivity by sugars was eliminated when a mutated 
form of VirA. missing the periplasmic domain, was used (CANGELOSI 
et al. 1990a; SHIMODA et al. 1990; LEE et al. 1992). These results indicate that 
ChvE interacts with this domain of VirA to impart the sugar enhancement of 
vir induction. Interestingly, in the absence of sugar, these mutants were: (1) 
more sensitive to phenolics than wild type and (2) had significantly higher levels 
of maximal vir induction than wild type (CANGELOSI et al. 1990a; LEE et al. 1992; 
MACHIDA et al. 1993; BINNS et al. 1993). Thus, these changes in the VirA molecule 
seem to lock the protein in a conformation responsive to AS activation in the 
absence of inducing sugars. TURK et al. (1993b) have also seen this effect when 
the peri plasmic domain of VirA is replaced with the periplasmic domain of the E. 
coli chemoreceptor, Tar. 

MACHIDA et al. (1993) continued this line of investigation by comparing a series 
of point and deletion mutations in the perplasmic domain of VirA. Several point 
mutations resulted in forms of VirA that were insensitive to sugar. For example, 
the single changes of Glu-21 0 to Valor Gly-211 to Asp were enough to make VirA 
unresponsive to glucose. Point mutations closer to the second periplasmic 
domain, Gln-229 to Leu or Glu-235 to Val still allowed VirA to be sugar responsive. 
Work in this laboratory demonstrated the importance of the Glu-255, a residue 
conserved in the virA gene from four different Ti plasm ids (BINNS et al. 1993; 
Banta et al. 1994). When this glutamate was mutated to either glutamine 
or leucine all sugar enhancement was abolished. In contrast, the mutation 
Glu-255 to Asp resulted in a wild-type phenotype suggesting that the acidic nature 
of the residue at this position is critical for activity. This glutamate residue 
lies outside the predicted site for ChvE interaction and thus may be necessary 
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for conformational shifts in VirA after it interacts with ChvE. Two further 
points can be made about the sugar insensitive point mutants. First, 
contrasting with the large peri plasmic deletions, in the absence of inducing sugar 
these point mutations have a phenolic sensitivity near that of the wild type. 
Second, in the absence of inducing sugar they induce maximal levels of vir gene 
expression that are significantly higher than wild type (MACHIDA et al. 1993; BINNS 
et al. 1993). These results suggest that in the absence of sugar some there is 
negative regulation of VirA and this is observed only in forms of VirA that are 
responsive to sugar. Certainly this warrants further investigation. Finally, MACH IDA 
et al. (1993) provided strong evidence for the direct interaction of VirA and ChvE 
by selecting for point mutations in chvE that suppressed the effect of the point 
mutations in the periplasmic domain of VirA. These suppressor mutations 
restored sugar enhancement of AS induction in strains carrying the Glu-21 0 to Val 
point mutation in VirA. 

3.4 pH Perception 

A pH of 5.5 .or below is necessary for maximal vir induction in response to 
phenolics (STACHEL et al. 1986). Given that wounding and active growth at the 
wound site would each be expected to acidify the extracellular environment (KAHL 
1982; WINANS 1992), the ability of the bacterium to utilize this as a signal is not 
surprising. Both VirG and VirA are involved in regulation of virinduction system by 
pH. First, pH has a specific effect on virG expression. P2, one of two promoters 
for virG, was originally thought to allow its constitutive expression. Work by 
WINANS and colleagues (WINANS 1990; MANTIS and WINANS 1992) showed that this 
promoter is primarily induced by acidic growth conditions. Since strains 
expressing virGfrom a constitutive promoter still exhibit low pH dependence for 
vir induction, it is unlikely that the pH effect on virG expression is the sole 
mechanism by which pH exerts its effect. There is evidence for a direct effect of 
pH on the VirG molecule. Three groups (HAN et al. 1992; PAZOUR et al. 1992; JIN et 
al. 1993) have reported that a VirG point mutation, Asn54 to Asp, results in 
constitutive activation of vir gene expression in the presence or absence of VirA. 
Interestingly, vir gene expression in strains carrying this mutant form of VirG is 
greatly enhanced at low pH. The mechanism by which external pH affects the 
cytoplasmic VirG protein is unknown. 

VirA also plays a role in the pH effect. TURK et al. (1991) demonstrated that 
strains with virA genes from different Ti plasm ids (octopine, nopaline, agropine, 
leucinopinel, exhibited varying pH optima and these were dependent on the 
source of VirA. For example, when the virA gene from an octopine type Ti plasmid 
was moved into a strain carrying a virA deficient nopaline type Ti plasmid, the pH 
optimum was that originally seen in the octopine type Ti plasmid. Substitution of 
the periplasmic domain of VirA with the periplasmic domain of the E. coli 
chemosensory protein Tar resulted in partial desensitization to pH (MELCHERS et al. 
1989b). This data indicates that some, but not all, of the pH effect is generated in 
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the periplasmic domain. However, a recent report from CHANG and WINANS (1992) 
demonstrated that the entire periplasmic domain of VirA plus both trans­
membrane regions could be deleted without changing the pH effect on vir gene 
expression. Perhaps the Tar portion of the chimeric VirA-Tar hybrid described 
above is capable of providing an effect on VirA that is normally dependent on pH. 

3.5 Other Influences on vir Gene Expression 

In addition to the signals described above, there are several other factors that 
appear to influence vir gene expression. Mutation in the chromosomal ros gene 
results in constitutive expression of virC and virD, whereas other vir genes are 
unaffected (CLOSE et al. 1985, 1987; COOLEY et al. 1991). These experiments 
suggest that the rosgene product represses transcription from promoter regions 
of virC and virD that would otherwise be active, even in the absence of phenolic 
inducer. The relationship of this control to virulence is not known, except that ros 
mutants are, in fact, virulent. Several molecules other than AS appear to have 
positive effects on phenolic mediated virtranscription. For example, the opines, 
produced by the transformed plant cells, can facilitate vir induction, though the 
mechanism of this enhancement is not known (VELUTHAMBI et al. 1989). 

An intriguing example of the complexity involved in vir expression is derived 
from the observation that low phosphate can stimulate virG transcription even in 
the absence of inducing phenolic (WINANS et al. 1988; WINANS 1990). Given thatthe 
phoR/phoB two-component regulatory system is critical in sensing phosphate 
status in E. coli (WANNER 1993) and that the PhoB protein can bind to a portion of 
the virG promoter (AOYAMA et al. 1991), MANTIS and WINANS (1993) searched for 
Agrobacterium phosphate regulatory genes. They screened an A. tumefaciens 
cosmid library for a clone that would restore alkaline phosphatase activity in an E. 
coli strain carrying a phoB mutation. An A. tumefaciens chromosomal gene, chvl, 
was identified in this screen and shown to have 35% homology to phoB of E. coli. 
A. tumefaciens strains carrying a chvl mutation were avirulent, but, surprisingly, 
still exhibited low phosphate induction of virG. These strains exhibited reduced 
AS induction of vir gene expression and were susceptible to severe growth 
inhibition by wound sap. The sensor of this two component system, chvG, was 
independently isolated through an entirely different strategy (CHARLES and NESTER 
1993). This study showed that chvG and chvl were both required for virulence, 
and mutations in either of them caused reduced vir gene expression and 
severely constrained growth characteristics. Neither the genes regulated by the 
ChvG/Chvl system nor the inducing signals have been identified. Nevertheless, 
these experiments demonstrate the complexity of the vir induction process and 
the fact that genes affecting it continue to be discovered. 
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4 vir Gene Transcription Activation 

Once the various vir-inducing signals are perceived, it is necessary to transduce 
that information in a fashion that will activate vir gene transcription. Here the 
activities of the cytoplasmic domain of VirA and VirG are critical. The COOH­
terminal cytoplasmic domain of VirA can be divided into three regions: the linker 
domain, which is next to the second transmembrane domain; the kinase domain; 
and the receiver domain (Fig. 1 B) (CHANG and WINANS 1992). The linker domain, as 
described above, appears to be either directly or indirectly involved in phenolic 
recognition. Similar to all sensor proteins of the two-component signal trans­
duction family, VirA has been found to have an autophosphorylation activity. 
When provided with ATP, purified VirA readily phosphorylates itself in vitro at a 
histidine residue conserved in sensor proteins (HUANG et al. 1990b; JIN et al. 
1990b; PARKINSON 1993). The phosphate on this histidine, His-474, can then be 
transferred to a conserved aspartate in VirG, thereby activating it (JIN et al. 1990a). 

Sequence analysis has shown that the COOH-terminal "receiver" domain of 
VirA is highly homologous to the region of the NH2-terminal domain of VirG that is 
phosphorylated. This feature is not unique to VirA. Other receiver domains have 
been found among the sensor proteins in the two-component signal transduction 
protein family (ARICO et al. 1989; MCCLEARY and ZUSMAN 1990; STOUT and GOTTESMAN 
1990; HRABAK and WILLIS 1992). ENDOH and OKA (1993) overproduced and purified 
two mutants forms of VirA in E. coli: one contained the kinase domain only and 
the other contained the kiJ:lase and receiver domains. Both purified proteins, 
when incubated with [y32P)ATP, became phosphorylated, showing that the 
kinase domain, alone, can autophosphorylate, and this in vitro activity is not 
affected by the receiver domain. A possible function of the VirA receiver domain, 
based on its homology to VirG, is that it acts as a competitive inhibitor of the 
phosphorylation of VirG by the kinase domain of VirA. Induction of VirA with AS 
would then act by disrupting the receiver domain's interaction with the kinase 
domain. Removal of the receiver domain of VirA may accomplish the same effect. 
CHANG and WINANS (1992) showed that by deleting the receiver domain they 
produced a mutant VirA whose activity was high and AS-independent, if con­
ditions were optimized for induction (pH 5.5, 5 mM glucose). However, ENDOH 
and OKA (1993) reported a similar experiment that gave different results. Their 
VirA molecule, without its receiver domain, was unable to induce vir gene 
expression at all. Before we can understand and interpret this result it is 
imperative to know that this version of VirA was, in fact, stable and present in 
the bacteria. 

Point mutations at four different sites in VirA have been found to cause vir 
gene expression in the absence of AS (PAZOUR et al. 1991; ANKENBAUER et al. 1991). 
The mutations were located in the first transmembrane domain, the kinase active 
site, the putative nucleotide binding site and the COOH-terminal receiver domain. 
In the case of the receiver domain, a mutation might result in a loss of inhibition 
of VirA phosphorylation activity similar to that proposed for the deletion of COOH­
terminal domain (CHANG and WINANS 1992). This might also be true of the 
mutations in the kinase domain and the putative nucleotide binding site. 
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However, phosphate can be transferred in vitro from VirA to VirG when the 
receiver domain of VirA is present (JIN et al. 1990a; ENDOH and OKA 1993), leaving 
the role of the receiver domain still unresolved. The point mutations in the first 
transmembrane domain could result in a conformational change that mimics the 
conformation of wild-type VirA when it is induced with AS. 

Before transcriptional activation can occur, VirG must first be phos­
phorylated by VirA (JIN et al. 1990a). As discussed above, VirA transfers a 
phosphate from His-474, in its kinase domain, to Asp-52 in the NH2-terminal 
receiver domain of VirGo Asp-52 is conserved in all regulators in the protein family 
of two-component regulatory system and acts as the phosphate acceptor in ali 
systems thus far studied (STOCK et al. 1990). If this aspartate is changed t6 
asparagine through mutagenesis, VirG no longer becomes phosphorylated and 
loses its ability to activate vir gene transcription (JIN et al. 1990a). The NH2-

terminal region of VirG is homologous to CheY, one of the best characterized 
regulators. The crystal structure of CheY has been determined and it shows 
that this conserved aspartate is involved in a series of hydrogen bonds or salt 
bridges with other residues. Phosphorylation disrupts this network causing 
conformational changes. Mutations that disrupt these interactions would be 
expected to affect VirG's activity. This is seen in the creation of VirA-independent 
constitutive mutations of VirGo A single change of either Asn-54 to Asp or lIe-1 06 
to Leu is enough to cause this effect (HAN et al. 1992; PAZOUR et al. 1992; JIN et al. 
1993). These mutations might C!ct by forcing the VirG molecule into the same 
active conformation caused by the phosphorylation of Asp-52. 

Activated VirG is thought to initiate vir gene transcription as a result of 
sequence specific interactions with the vir gene promoters. It binds to a cis-acting 
regulatory sequence (TNCAATIGAAAPy) called the vir box which is found in the 
5'-noncoding region of vir genes (DAS et al. 1986; POWELL et al. 1989; JIN et al. 
1990c). The COOH-terminal domain of the 26 kDa VirG protein specifically binds 
to this sequence (JIN et al. 1990c). Of interest to the present discussion is that 
non phosphorylated forms of VirG can bind to the vir box (JIN et al. 1990c; PAZOUR 
and DAS 1990), but non phosphorylated VirG, even when overexpressed in 
Agrobacterium, does not activate vir gene expression to high levels (PAZOUR and 
DAS 1990). This suggests that only phosphorylated VirG can interact and activate 
other components of the transcriptional machinery. 

5 Systems Necessary for Physical Interaction 
Between Plant and Bacterial Cells 

5.1 Chemotaxis 

The abilities to sense and then move toward a wound site are properties that 
vastly increase the chance of Agrobacterium to physically associate with 
competent plant cells. Agrobacterium has peritrichous flagella and is capable of 
swimming towards a variety of substances, including sugars and phenolics (PARKE 
et al. 1987; ASHBY et al. 1988; LOAKE et al. 1988; CANGELOSI et al. 1990a), both of 
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which are indicative of a wound site. Mutants lacking motility or chemotactic 
capabilities inoculated into the soil were unable to colonize and transform pea 
plants, though they were capable of transforming the plant if supplied directly to 
the wound (HAWES and SMITH 1989). There is evidence that chemotaxis towards 
sugars occurs in Ti plasmid less strains (LOAKE et al 1988) and may be at least 
partially mediated through the ChvE protein already discussed in terms of its role 
in vir gene expression (CANGELOSI et al. 1990a; PALMER and SHAW 1992). The ChvE 
homologs in E. coli are sugar receptors involved in chemotaxis as well as sugar 
uptake. CANGELOSI et al. (1990a) showed that strains which carried Tn5 
mutagenized chvEwere deficient in chemotaxis toward D-galactose, D-glucose, 
L-arabinsose, D-fucose, and D-xylose, when compared to wild type. The ability to 
move toward other sugars remained intact. It is not known whether ChvE 
mediates it chemotactic effects through the VirANirG or other systems, 
analogous the MCP-CheA-CheY system of E. coli. 

SHAW and colleagues (ASHBY et al. 1988; SHAW et al. 1988; PALMER and SHAW 
1992) showed that strains cured of their Ti plasmid, but carrying virA, virG, virB, 
and virC, showed a chemotactic response to AS at concentrations that do not 
induce virulence. Interestingly, these experiments were carried out at a pH (7.0) 
at which vir gene expression cannot be induced. If either virA or virG were not 
present, no chemotaxis towards AS was observed. In addition, if the residues 
which become phosphorylated during virulence induction, His-474 on VirA and 
Asp-52 in VirG, were mutated to Gin and Asn, respectively, the chemotactic 
response was lost. Taken together, these observations imply that low levels of 
AS are sufficient to cause phosphorylation of VirA and VirG, that the process 
mediated has a different pH dependency than that of vir gene induction, and that 
phosphorylation is necessary for this response to occur. One case has been 
published suggesting that chemotaxis towards some phenolics is 
chromosomally encoded (PARKE et al. 1987), but these investigators noted no 
movement towards AS. While experimental protocols and bacterial strains varied 
slightly, the reasons for the apparent discrepancies are not clear. 

5.2 Attachment of Bacteria to the Plant Cell 

Once the bacteria reach the wound site, the next physical step necessary for 
transformation is the attachment of the bacteria to the plant cell. Mutant bacteria 
unable to bind to plant cells are avirulent (DOUGLAS et al. 1982, 1985; CANGELOSI et 
al. 1987; MATIHYSSE 1987; THOMASHOW et al. 1987). The products of three A. 
tumefaciens chromosomal loci, chvA, chvB, and exoC (pscA) involved in the 
synthesis and transport of ~-1 ,2- glucans are required for attachment (ZORREGUIETA 
et al. 1988; CANGELOSI et al. 1989; UTIARO et al. 1990). Mutations at these loci also 
drastically reduce virulence, though occasional tumors do develop. Interestingly, 
functional equivalents of chvA and chvB exist in R. meliloti: the Rhizobium 
versions of these genes complement mutations in Agrobacterium (CANGELOSI et 
al. 1987). While the production and export of f3-1,2-glucan is necessary for 
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attachment of A. tumefaciens to plant cells, its role in the attachment process is 
unclear. One known role of periplasmic /3-1,2-glucan is osmotic protection, 
suggesting that loss of the glucan might indirectly affect virulence by reducing the 
activity of cell surface virulence proteins under suboptimal osmotic conditions 
(CANGELOSI et al. 1990b). This seems unlikely since these chvmutants continue to 
exhibit the avirulent phenotype under high osmolarity conditions in either leaf 
explant or protoplast cocultivation transformation assays (CANGELOSI et al. 1990b; 
BINNS 1991). 

Since the chv mutants do bind, albeit inefficiently, to plant cells, one 
possibility is that the /3-1,2-glucan in the peri plasm helps other proteins (or 
polysaccharides) involved in attachment find or interact with the plant attachment 
site. Several other attachment deficient mutants (att) have been identified by 
MATHYSSE (1987). The mutations identified to date map to a single 12 kilobase 
chromosomal EcoRlfragment distinct from the chvA, chvB and exoC genes. The 
attmutants exhibit greatly reduced attachment and are avirulent on carrot cells. In 
contrast to the chvA and chvB mutants the membrane protein profiles of the att 
mutants differs from wild-type cells only in the loss of only a few distinct 
membrane proteins (MATHYSSE 1987). The role these proteins have in bacterial 
attachment to plant cells is unknown. 

Several studies have shown that attachment of bacteria to plant cells is 
saturable (NEFF and BINNS 1985; GURLITZ et al. 1987) suggesting that specific plant 
cell wall components are involv~d. The attachment process occurs in two steps: 
a reversible interaction between bacterium and plant cell is followed by an 
irreversible attachment. After the second phase is complete, bacteria cannot be 
easily washed off the plant cell (NEFF and BINNS 1985). Bacteria also often 
aggregate to each other at and around the attachment site. The plant components 
involved in these processes are not known, although cellulose microfibrils from 
the bacteria appear to be important (MATTHYSSE 1987). In certain cases, treatment 
of bacteria with various plant cell wall fractions will inhibit their ability to attach, 
resulting in an inability to transform the plant cells (NEFF and BINNS 1985; NEFF et al. 
1987). Recently, evidence has been presented indicating that vitronectin-like 
protein in the plant cell wall may play an important role in attachment. Treatment 
of bacteria with vitronectin blocks their ability to attach and transform, and 
treatment of plant cells with antivitronectin renders them incapable of attaching 
bacteria (WAGNER and MATTHYSSE 1992). The bacterial components with which 
vitronectin may interact and the role vitronectin plays in the attachment process 
are unknown. 

One of the problems confronted by agrobacteria is that the extracellular 
environment of the wound site is expected to result in vir induction whether or 
not the bacteria are attached to the plant cells. This results in the production of 
both the T complex and the membrane bound components of what is proposed 
to be the T complex transport apparatus. Yet several workers have not been able 
to detect any T complexes, or components thereof, in vitro in induction media (J. 
Ward; E. Dale; P. Christie, personal communications). These results suggest that 
as yet undescribed signals, possibly generated at the attachment site, are critical 
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for the initiation of transport or for the construction of competent transport 
complexes at the attachment site. 

6 Concluding Remarks 

The signaling activities necessary for Agrobacterium to initiate and complete the 
DNA transfer process are complex and only partially understood. While much of 
the signaling necessary to initiate the expression of the virgenes revolves around 
conserved two-component regulatory systems, the mechanism of signal 
recognition and transduction are vibrant areas of inquiry. The recent studies 
concerning signal perception indicate that the concept of a two-component 
regulatory scheme may be confining. Rather, it appears that these represent 
ancient and conserved components in a regulatory scheme that can be integrated 
through a series of other proteins into a system that recognizes and responds to 
the environmental stiumuli in question. Analysis of the physical interaction of 
bacterium with the plant cells and the signaling activities generated by bacterial 
attachment to the plant cell are less advanced, yet represent a critical aspect of 
the pathogenic interaction that is under discussion. Clearly, the combination of 
chemical, biochemical and molecular genetic approaches will playa critical role in 
unraveling these issues. 
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1 Overview 

Nodule development begins when the first cell division of a mitotically quiescent 
cortical cell is induced by Rhizobium (sensu lata) in the root of its host plant. This 
cell division brings about a change in cortical cell fate; the derivatives of these cell 
divisions form a new organ, the nodule. Prior to the initial anticlinal cell division in 
the root cortex, numerous interactions between the host and symbiont have 
already taken place, including the chemotaxis of rhizobia to the legume root, the 
induction of rhizobia I nod genes by plant-derived flavonoids, the production of 
Nod factor-a substituted lipo-oligosaccharide-root hair deformation, and 
shepherd's crook formation (the formation of a 3600 curl). The latter two 
responses are the first visible signs of the interaction. The bacteria enter the 
curled root hair, presumably by degrading the plant cell wall (CALLAHAM and TORREY 
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1981; see also DART 1977), and evoke the formation of an infection thread, in 
which the bacteria are contained. The infection thread, formed from an 
invagination of the plant membrane and the deposition of cell wall material, 
extends into the root cells toward the nodule primordium. The nodule primordium 
originates from cortical cell divisions that take place in advance of the extending 
infection thread (NEWCOMB etal. 1979). Eventually, bacteria, which have multiplied 
within the matrix of the infection thread, are released from its end, and become 
enclosed within a host-derived membrane, designated the peribacteroid 
membrane. The bacteria, enclosed within this membrane, differentiate into novel 
forms, bacteroids capable of nitrogen fixation. They remain surrounded by host 
cell membrane until either the plant or bacteroid cells senesce. In response to the 
interaction with rhizobia, the plant expresses nodule-specific proteins (nodulins; 
LEGOCKI and VERMA 1980)' which have been classed as early (those involved in 
nodule morphogenesis) and late (those involved in nodule maintenance and 
function) (GOVERS et al. 1987). Rhizobium infection and nodule development 
(Fig. 1) have been recently reviewed by BREWIN (1991), KIJNE (1992), and HIRSCH 

(1992). 
The interaction of rhizobia and the host during nodule development and the 

similarity of some of the host responses have given rise to the idea that 
Rhizobium evolved from a parasitic or pathogenic microorganism (see reviews by 

SHEPHERD'S 
CROOK 

FORMATION 

ATTACHMENT 

INFECTION THREAD 
PENETRATION 

MATURE NODULE 

NODULE 
PRIMORDIUM 
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invasion zone 

Fig. 1. The major stages of alfalfa nodule development illustrated for convenience at the same level in 
the root. Note that the stele, here shown as tetrarch, is normally triarch 
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VANCE 1983; DJORDJEVIC et al. 1987; LONG and STASKAWICZ 1993). During the initial 
stages of the interaction, when they are invading the plant and before nitrogen 
fixation takes place, rhizobia colonize their hosts, but in a restricted manner. This 
colonization is considered to be similarto the ancestral condition in which bacteria 
lived saprophytically and nonspecifically on plant exudates or remains (LONG and 
STASKAWICZ 1993). However, other manifestations of the interaction are 
reminiscent of a pathological interaction. These include the infection thread, 
which resembles the appositional wall structures formed during penetration by 
fungal pathogens (see references in VANCE 1983), and the induction of the early 
nodulins, many of which are proline-rich proteins (FRANSSEN et al. 1987; SCHERES et 
al. 1990; LbBLER and HIRSCH 1993), along with the enzymes of the phenylpropanoid 
biosynthetic pathway. Furthermore, when the symbiosis fails, as when infection 
threads abort in effective associations or when ineffective (non-nitrogen-fixing) 
nodules are formed, a "hypersensitive response," a term normally applied to 
plant-pathogen interactions, has been said to occur (DJORDJEVIC et al. 1988; VASSE 
et al. 1993). 

The closest relative of Rhizobium and Bradyrhizobium is the plant pathogen 
Agrobacterium, suggesting that rhizobia have similar characteristics. However, 
Agrobacterium is a unique pathogen. Although crown gall and hairy root 
syndromes are classified as diseases (see LONG and STASKAWICZ 1993). 
agrobacteria, unlike typical plant bacterial pathogens, do not cause extensive 
host necrosis. Like their symbiotic cousins, A. tumefaciens and A. rhizogenes 
elicit cell divisions that result -in hyperplasias. And, in contrast to other plant 
diseases, neither the tumors nor the hairy roots are inhabited by agrobacteria. The 
Agrobacterium-induced hyperplasias are transformed. A segment of bacterial 
DNA, the T-DNA, is transferred to the host cell nucleus where it resides. The 
details of the plant-Agrobacterium interaction can be found in reviews by WINANS 
1992; ZAMBRYSKI 1992; LONG and STASKAWICZ 1993; and the chapter by BINNS and 
HOWITZ in this volume. 

A lJlajor difficulty with the hypothesis that Rhizobium is a highly sophisticated 
pathogen is that it assumes that modern-day plant pathogens serve as the 
ancestral paradigm. Instead, prokaryotic plant pathogens today represent highly 
derived groups that are evolutionarily distinct from the Rhizobiaceae (Fig. 2). We 
believe that the plant-pathogen interaction is an unsatisfactory model for 
describing the Rhizobium-legume association even though ineffective rhizobia 
provoke a host response that superficially resembles encounters with an 
incompatible pathogen. As we shall see, many of the host responses are 
consistent with the occurrence of a nonspecific biotic interaction or with abiotic 
stresses such as wounding or senescence. 

Before we review the evidence for and against Rhizobium' sability to provoke 
a response resembling that elicited by a plant pathogen, we will define the gene­
for-gene recognition system and what is meant by the term hypersensitive 
response. We will then apply these concepts to the symbiotic association, 
focusing on two major points in nodule development (1) the initial stages (the first 
5 days); and (2) the mature nodule (2-3 weeks postinoculation). We will 
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SAPROPHYTIC 
BACTERIA 

Fig. 2. Evolutionary relation­
ships of modern day plant­
interacting bacteria and their 
presumed saprophytic an­
cestor 

concentrate, for the sake of convenience, on the association between fast­
growing rhizobia (Rhizobium sensu stricto) and legumes that form indeterminate 
nodules; however, we w ill bring in examples of determinate nodules where 
appropriate. We will pay particular attention to the role of the phenylpropanoid 
biosynthetic pathway in nodulation because its products are typically involved in 
host defense. Finally, we will suggest some other ways of visualizing the 
Rhizobium-legume tete-a-tete. 

2 The Hypersensitive Response 

The conceptual framework for plant-pathogen interactions rests on the 
pioneering work of FLOR (1955) on race-specific resistance to fungal pathogens 
and the presentation of evidence for the gene-for-gene hypothesis. This concept 
can be applied to viral, bacterial, and fungal pathogens. In brief, in an incompatible 
interaction, if a host has a single dominant resistance (R) gene and the pathogen 
has a s ingle dominant avirulence (A or avr) gene, the pathogen is recognized by 
the host and elicits a defense reaction, part of which is characterized by the hyper­
sensitive response (HR), a localized, relatively rapid (less than 24 h) death of host 
cells at the point of infection (KLEM ENT 1982) . Potential product(s) of Rare 
currently being investigated; most are assumed to be receptors for or part of the 



Does Rhizobium Avoid the Host Response? 143 

signal elicitors encoded by transduction chain avirulence genes (see review by 
KEEN 1992). In a compatible reaction, if the susceptible host lacks an R gene or if 
the pathogen lacks an avirulence gene, the virulent pathogen is not recognized by 
the host and causes a disease. 

The H R is thought to be an important part of disease resistance; its outcome 
is the formation of water-soaked lesions that undergo necrosis. Changes in 
respiration and membrane permeability reSUlting in electrolyte leakage occur 
within hours after infection (or within minutes after addition of elicitor) (KLEMENT 
1982; LAMB et al. 1989). The water-soaked lesions become lignified, impeding the 
progression of the pathogen into plant tissues. Phytoalexins, low molecular 
weight antimicrobial compounds, are also produced in the infected tissue. These 
latter responses are often called defense responses and involve induction of 
mRNAs for enzymes of the phenylpropanoid biosynthetic pathway. Polymers 
with structural roles such as callose and hydroxyproline-rich glycoproteins 
(HRGPs) as well as enzymes like peroxidases for increasing the cross-linking of 
cell walls and PR (pathogenesis-related) proteins such as glucanses and 
chitinases that damage the pathogen are also produced (see reviews by BOWLES 
1990; KEEN 1992). The responses of the host to elicitors, incompatible, and 
compatible bacteria as well as the approximate timing of appearance of the 
various host reactions are illustrated in Fig. 3. 

Bacterial genes involved in the hypersensitive reaction and pathogenicity (hrp 
genes) control the ability of pathogens to elicit an HR on non-host and resistant 
cultivars, as well as to generate disease symptoms on susceptible cultivars (see 
chapters by COLLMER and BAUER, and BONAS in this volume and reviews by WILLIS 
et al. 1991; LONG and STASKAWICZ 1993). Mutations in hrp genes result in bacteria 
that can no longer induce these host responses (LINDGREN et al. 1986, 1988). 
Recently, JAKOBEK and LINDGREN (1993) reported that the H R can be separated from 
defense gene transcription. Using a Hrp- mutant of Pseudomonas syringae pv. 
tabaci, these investigators found that transcripts for enzymes of the 
phenylpropanoid biosynthetic pathway, phenylalanine ammonia lyase (PAL), 
chalcone synthase (CHS), and chalcone isomerase (CHI), as well as transcripts for 
chitinase, accumulated in infiltrated bean leaves even though an H R did not occur. 
The timing of transcript accumulation was similar to that seen with a wild-type 
strain in which the HR took place. Furthermore, inoculation with various 
bacteria-Escherichia coli (nonpathogenic bacteria, like E. coli, do not elicit an 
HR), P. f/uorescens, heat-killed P. syringae pv. tabaci, and P. syringae pv. tabaci 
that had been treated with protein synthesis inhibitors-led to accumulation of 
defense transcripts and phytoalexin production without the ensuing HR. 
Treatment with water or P. syringae pv. phaseolicola, a compatible pathogen, did 
not lead to transcript accumulation (JAKOBEK and LINDGREN 1993). These results 
suggest that defense transcripts are induced nonspecifically, while the HR 
involves a different specific mechanism. Moreover, these findings imply a strict 
definition for the HR: the HR is limited to the host responses brought about by 
infection with incompatible pathogens that have either avirulence or hrp genes 
(JAKOBEK and LINDGREN 1993). 
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Fig. 3. Timetable of a plant's response to elicitor (italics). incompatible (lower case). and compatible 
(capital letters) pathogens, including viruses, bacteria, and fungi (left). Timetable of the response of the 
host legume to Nod factor (italics). ineffective (lower case). and effective (capital letters) rhizobia (right). 
HRGP, hydroxyproline-rich glycoproteins; PAL, phenylalanine ammonia lyase; CHS, chalcone synthase; 
CHI, chalcone isomerase; PR, pathogenesis-related; PvPr, Phaseolus vulgaris pathogenesis-related. 
References for the hypersensitive response are: BRADLEY et al. 1992; CRAMER et al. 1985; EDWARDS et 
al. 1985; HEDRICK et al. 1988; JAKOBEK and liNDGREN 1993; KOMBRINK et al. 1988; LEGRAND et al. 1987; 
Low and HEINSTEIN 1986; RYDER et al. 1984; SHARMA et al. 1992; SHOWALTER et al. 1985; TEMPLETON and 
LAMB 1988; and WALTER et al. 1990. For the Rhizobium-legume symbiosis, the references are: 
DJORDJEVIC et al. 1988; EHRHARDT et al. 1992; ESTABROOK and SENGUPTA-GOPALAN 1991; Fang, Asad, and 
Hirsch, unpublished results; McKhann, Fang Paiva, Dixon, and Hirsch, submitted; PICHON et al. 1992; 
RECOURT et al. 1992a; SCHERES et al. 1990, and YANG et al. 1993. 
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3 The Initial Stages of the Symbiotic Interaction­
Bacterial Point of View 

3.1 Rhizobial nod Genes 

The relative ease of performing genetic studies on rhizobia has led to a much 
greater understanding of the bacterial genes involved in nodulation compared to 
the plant genes. Early events in nodulation are mediated by the nodulation (nod) 
genes. These are categorized as "common nod genes" (for example, nodABC 
genes, which can be complemented by genes of heterologous rhizobia) and host­
specific nod genes (for example, nodEFGH genes in R. meliloti, which cannot be 
complemented by genes of heterologous rhizobia) (DOWNIE and JOHNSTON 1986). In 
fast-growing Rhizobium species, the nod genes are present on plasm ids called 
symbiotic plasm ids (pSym), and in slow-growing Bradyrhizobium species, the 
nod genes are on the chromosome. 

Analysis of how the products of the nod genes mediate nodulation events 
has focused on studying the phenotypes of rhizobia I mutants blocked at different 
steps in nodule development (see review by LONG 1989). The nod genes were 
initially identified by mutations that eliminated nodulation. Other mutations were 
subsequently identified that either delayed nodulation or changed the host range 
of the bacterium. Nodulation genes are present in all rhizobial species and are 
clustered in several operons that share common promoter features, including a 
consensus sequence called the" nod box." 

The nodD gene regulates the other known nod genes via NodD binding to the 
nod boxes in the promoters of the nod gene operons. Some rhizobial species 
have a single nodD gene, for example, R. leguminosarum bv. tritolii and R. 
leguminosarum bv. viciae (DJORDJEVIC et al. 1985; DOWNIE et al. 1985), whereas 
others have more than one nodD and may have a complex regulatory circuit for 
controlling nod gene expression (MULLIGAN and LONG 1989). R. meliloti, with three 
nodD genes, nodD 1, nodD2, and nodD3 (GOTIFERT et al. 1986; HONMA and AUSUBEL 
1987), as well as the nodD homolog syrM (MULLIGAN and LONG 1989), has been 
thoroughly studied. Each copy of nodD appears to be regulated independently 
(HONMA et al. 1990; MULLIGAN and LONG 1989). NodD1 activates nodABC in the 
presence of crude seed exudates, plant washes, or the flavonoid luteolin (see 
review by ROLFE 1988). The major NodD2-activating compounds have been 
identified as the betaines, trigonelline and stachydrine (PHILLIPS et al. 1993). These 
NodDs are hypothesized to regulate transcription by undergoing a conformational 
change brought about by the inducers (SCHLAMAN et al. 1992). By contrast NodD3 
is unaffected by inducers and causes a basal level of nodABC gene expression. 
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3.2 Nod Factor Triggers the Host's Response-Is It an Elicitor? 

Early studies on the nodulation genes supposed that the nod gene products were 
themselves involved in initiating the symbiosis. Now, it has been shown that 
most of the known nod genes contribute to the synthesis of a complex signal 
molecule, a lipo-oligosaccharide known generically as Nod factor (LEROUGE et al. 
1990; ROCHE et al. 1991 a,b; SPAINK et al. 1991; SCHULZE et al. 1992; SANJUAN et al. 
1992; PRICE et al. 1992; MARTINEZ et al. 1993; MERGAERT et al. 1993). Each rhizobial 
species synthesizes a family of related molecules, based on a (glucosamine)n 
backbone with a fatty acid side chain on one end and various substitutions on the 
reducing end. The major R. meliloti Nod factor, called NodRm-IV(S), is a sulfated 
13-1 A-tetraglucosamine with three amino groups acetylated and one acylated with 
a C'6 bi-unsaturated fatty acid (LEROUGE et al. 1990). Some investigators have 
noted the resemblance of the glucosamine backbone to chitin elicitors produced 
by fungal pathogens (EHRHARDT et al. 1992; NIEHAUS et al. 1993). However, fungal 
elicitors are nonspecific and can often induce an HR on a large number of hosts, 
whereas Nod factor is extremely host-specific, affecting only the legume that the 
particular Rhizobium species nodulates. Therefore, Nod factor is not an elicitor in 
the same sense as the elicitors derived from plant pathogens. 

4 The Initial States of the Symbiotic Interaction­
Plant Point of View 

4.1 Is There an R Gene in the Legume Host? 

If Rhizobium evolved from a pathogen, one might expect to find a system 
analogous to the gene-for-gene interaction in the legume-Rhizobium symbiosis. 
The resemblance of Nod factor to chitin elicitors has already been noted, so it 
seems reasonable to assume that there is a receptor or other plant gene product 
that interacts with the Nod factor. Genetic analysis indicates that a potential R 
gene is dominant. The Nod- genotype in legumes results from a recessive 
mutation. Some 25-30 loci may be involved in producing a Nod+ pea plant (see 
review by PHILLIPS and TEUBER 1992), making it difficult to predict the identity of the 
gene product of each locus. However, only one mutant gene could produce a 
Nod- phenotype. 

There are several examples of what appears to be a gene-for-gene interaction 
in the Rhizobium-legume symbiosis. Trifolium subterraneum (subclover) cv. 
Woogenellup is not nodulated by several R. leguminosarum bv, trifolii strains, 
including TA 1, which effectively nodulates other T. subterraneum cultivars. 
Mutations in the nodMNXoperon on pSym or in the gene csn-l, located on the 
chromosome, restore nodulation on T. subterraneum cv. Woogenellup to T A 1, 
indicating that these genes function as negatively acting host-range determinants 
(LEWiS-HENDERSON and DJORDJEVIC 1991 a). In contrast, nodT from strain ANU843 is 
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a positively acting determinant, enabling TA1 to nodulate T. subterraneum cv. 
Woogenel/up. A single recessive host gene, termed rwtl, confers the inability to 
be nodulated by TA 1 (LEWiS-HENDERSON and DJORDJEVIC 1991 b). 

In soybean, single dominant genes, the Rj2-4 genes, are involved in limiting 
nodulation by specific rhizobial strains (see review by TRIPLETT and SADOWSKY 
1992). A single gene has also been found in plant introduction (PI) genotypes of 
soybean that specifically exclude nodulation by certain competitive members of 
B. japonicum serocluster 123 (KEYSER and CREGAN 1987). On the bacterial side, 
nolA has been identified as a gene, the product of which enables members of 
serocluster 123 to nodulate the PI genotypes (SADOWSKY et al. 1991). Thus, gene­
specific nodulation (GSN) in soybean parallels the gene-for-gene recognition 
system in that dominant genes are present in both the plant and the restricted 
bradyrhizobia. However, defense transcripts did not accumulate after infection of 
Rj4 soybeans by USDA 61, the restricted strain (STOKKERMANS et al. 1992). 
Moreover, bradyrhizobial strains that nodulate Rj4 soybeans have a different 
profile of Nod factors than the restricted strains (STOKKER MANS et al. 1992). 

One of the best known examples of the gene-for-gene interaction in 
symbiosis is the R. leguminosarum bv. viciae TOM-Pisum sativum cv. 
Afghanistan interaction (LIE 1971). Afghanistan pea is not nodulated by European 
strains or R. leguminosarum bv. viciae that lack the nodX gene found in strain 
TOM (DAVIS et al. 1988). FIRMAN et al. (1993) have shown that NodX is an O-acetyl 
transferase responsible for the production (along with other nod operon gene 
products) of a novel nodulation factor-NodRlv-V (Ac, Ac C18:4). The inability to 
nodulate on the plant side is conditioned by a gene sym2. Peas with the sym2 
allele can no longer be nodulated by western R. leguminosarum bv. viciae strains 
unless they contain nodX. The TOM-Afghanistan pea symbiosis, like the others 
described above, is suggestive of a gene-for-gene recognition system and implies 
that the novel Nod factor produced by TOM is recognized by a sym2-encoded 
receptor. However, as FIRMAN et al. (1993) have pointed out, the genetic data do 
not fit this model because sym2 is recessive, meaning that there has been a loss 
of gene function rather than a modification of a potential receptor for strain TO M' s 
Nod factor. 

In summary, the gene-for-gene recognition system in plant-pathogen 
interactions is not the same as the symbiotic recognition system. Although 
dominant genes are involved, nod for the rhizobia and an unknown UR" for the 
plant, the outcome upon recognition is nodule formation and not failure to 
nodulate. Thus, as RECOURT et al. (1992a) have observed, the nod genes can be 
thought of as being involved in a compatible reaction and represent virulence 
genes. This differs from the plant-pathogen interaction, in which elicitors, which 
trigger an H R-an incompatible reaction-are encoded by avirulence genes. Also, 
although recognition of the symbiont involves recognition of Nod factor, a "com­
patible" and highly host-specific elicitor, it is likely that other cell surface 
molecules are recognized by the plant as well (see below). 
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4.2 Host Responses from Zero to Twenty-Four Hours 

One of the earliest responses to Nod factor is the initial depolarization of root hair 
cell membranes (EHRHARDT et al. 1992). Addition of 10-7 M Nod factor results in a 
rise in proton efflux from the root hair cell within 5 min (Cox et al. 1993). These 
early changes in membrane dynamics in response to Nod factor are in some ways 
similar to an HR. However, as stated earlier, in contrast to elicitor, Nod factor, 
which generates the change in the host's membrane potential, results from an 
effective or "compatible" reaction (RECOURT et al. 1992a). 

Other early responses to Nod factor and Rhizobium inoculation include the 
expression of the early nodulin genes, particularly ENOD12 (PICHON et al. 1992; 
VIJN et al. 1993; Fang, Asad, and Hirsch, unpublished results) and ENOD40 (VIJN et 
al. 1993; Fang, Asad, and Hirsch, unpublished results). Even though the ENOD 
genes are induced within 3-6 h after addition of rhizobia or Nod factor, their 
expression is not correlated with the "pathogenic" nature of Rhizobium: ENOD 
gene expression does not increase following inoculation with ineffective rhizobia. 
Moreover, not only do wild-type and mutant bacteria elicit the expression of 
ENOD12 and ENOD40, but cytokinin does also (Fang, Asad, and Hirsch, 
unpublished results), suggesting that these early nodulins are related primarily to 
nodule development and secondarily to the interaction with rhizobia. 

Induction of mRNAs for the enzymes of the phenylpropanoid biosynthetic 
pathway is, by contrast, correlated with the presence of bacteria. Using gene­
specific probes and sensitive RNAse protection assays, we found that transcripts 
for two members of the large CHS gene family in alfalfa increased in abundance 
within 6 h after inoculating alfalfa roots with wild-type R. meliloti compared to 
uninoculated plants (McKhann, Fang, Paiva, Dixon, and Hirsch, submitted). A 
similar increase was seen for CHI transcripts, but unlike CHS, CHI is encoded by 
only one or two genes in alfalfa (McKHANN and HIRSCH, 1994). REcoURTetal. (1992a) 
found that CHS is expressed at higher levels in vetch roots 12 h after inoculation, 
with a peak at 24 h, using wild-type R. leguminosarum bv. viciae, and LAWSON et 
al. (1994), using PCR to analyze total CHS gene expression in clover, detected 
elevated levels of transcripts within 6 h after inoculation with R. leguminosarum 
bv. trifolii. 

In contrast to RECOURT et al. (1992a), we found that the 6 h symbiotically 
enhanced CHS peak also appeared following inoculation with rhizobia that are 
defective in nodulation. Exo- R. meliloti mutants as well as heat-killed wild-type 
rhizobia induced the accumulation of CHS transcripts over the uninoculated 
controls (McKhann, Fang, Paiva, Dixon, and Hirsch, submitted). The induction of 
CHS gene expression by mutant and heat-killed rhizobia is reminiscent of the 
experiments of JAKOBEK and LINDGREN (1993) and suggests that the initial 6 h burst 
in CHS gene expression is a nonspecific plant response. 

Another approach to determine whether Rhizobium elicits" defense" trans­
cripts is to infiltrate leaves with rhizobia as is typically done for a plant pathogen. 
This experiment resulted in the observation that very little cell necrosis occurred 
(McKhann, unpublished results; R. Esnault, personal communication). In addition, 
no fundamental difference was detected between rhizobia or nonpathogenic 
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bacteria in the levels of defense transcripts accumulated in response to infiltration 
(R. Esnault, personal communication). The kinetics of transcript accumulation in 
response to rhizobia and nonpathogenic bacteria also differed significantly from 
the kinetics exhibited in response to incompatible bacteria (ESNAULT et al. 1993), 
further indicating that the plant responds to rhizobia and nonpathogenic bacteria 
in the same, nonspecific way. 

Early changes in peroxidase gene expression and activity also take place after 
inoculation. Northern blot analysis with a gene-specific probe showed that mRNA 
levels of a specific peroxidase from Medicago truncatula increased within 3 h, 
with maximal expression at 4 h, after inoculation with R. meliloti (K. 
Vandenbosch, personal communication). Total peroxidase activity was also found 
to increase in clover root hairs 6 h after inoculation. However, SALZWEDEL and 
DAZZO (1993) observed a greater increase following inoculation with the 
heterologous R. leguminosarum bv. viciae than with the homologous R. 
leguminosarum bv. trifolii. I n the latter interaction, the onset of peroxidase activity 
was delayed. Also, in the heterologous relationship, staining for peroxidase was 
localized over the entire deformed root hair, especially the tip, whereas in the 
homologous combination, staining was found only where the infection thread 
was initiated, even 5 days after inoculation. Similarly, total peroxidase staining 
increased significantly in subclover root hairs inoculated with strain TA 1, whereas 
strain ANU843 caused a little staining at the point of entry (M. de Boer and M.J. 
Djordjevic, personal communication). 

Although no difference was -found between restricted and nonrestricted B. 
japonicum strains in the level of CHS transcript accumulation in Rj4 soybean, 
STOKKERMANS et al. (1992) observed that there was an increase over the controls 
6 h after inoculation. Using a sensitive radioimmunoassay, SCHMIDT et al. (1992) 
found that inoculation of soybean with a wild-type strain of B. japonicum caused 
an increase of up to 50-fold in glyceollin I, a soybean phytoalexin, in root exudates 
as compared to root exudates of un inoculated seedlings. Maximum levels were 
reached within 10 h after inoculation. A lower level of glyceollin I was observed in 
root hairs at the same period. However, the levels detected in root exudates were 
much lower than those observed in pathogen-inoculated root exudates, leading 
the authors to suggest that wild-type B. japonicum suppresses the host's 
reaction (see below). Glyceollin I accumulation was also seen in response to the 
addition of supernatant, a suspension of autoclaved cells, or the supernatant of 
broken cells of B. japonicum. Cell extracts of R. meliloti and R. fredii induced 
glyceollin I accumulation in treated seedlings to relatively high levels after 20 h of 
incubation, but R. leguminosarum cell extracts did not. No correlation was found 
between glyceollin I accumulation and ability to nodulate soybean. SCHMIDT et al. 
(1992) also found that inhibition of flavonoid synthesis using an inhibitor of PAL, 
(R)-(1 amino-2-phenylethyl) phosphonic acid, during the first 20 h of the 
interaction led to a decrease in nodule number, contrary to what would be 
predicted if the glyceollin I accumulation were related to a defense response. 

In summary, some of the earliest responses of the plant to rhizobial 
inoculation mimic a plant-pathogen interaction in that defense-related genes are 
transcribed. However, the accumulation of defense transcripts soon after 
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Rhizobium inoculation appears to be a nonspecific response. The earliest (6 h) 
induction of the genes for the enzymes of the phenylpropanoid biosynthetic 
pathway is elicited by either live or dead rhizobia, and the slightly later (10-20 h) 
increase in glyceollin I production is also induced by autoclaved or broken bacterial 
cells. In any case, defense transcripts accumulate to low levels compared to 
inoculation with an incompatible pathogen. We propose that the earliest 
expression of genes for enzymes of the phenylpropanoid biosynthetic pathway 
occurs as a nonspecific response similar to what JAKOBEK and LINDGREN (1993) 
reported for Hrp- mutants of P. syringae. Furthermore, we propose that the 
response to rhizobia is not related to defense. A similar conclusion has already 
been reached by RECOURT et al. (1992a). However, the situation for peroxidase is 
still equivocal. Heterologous rhizobia or ineffective strains appear to elicit more 
peroxidase activity than homologous wild-type strains. However, as is the case in 
CHS gene expression, inoculation with the homologous strain results in an early 
« 6 h) elicitation of specific peroxidase gene expression. 

4.3 Forty-Eight Hours to Five Days: The Ini Response 

In addition to the flavonoids that activate the expression of rhizobial nod genes, 
there is evidence that a positive feedback occurs so that inoculation of legumes 
with Rhizobium leads to increased flavonoid excretion from the root. This is 
termed the Ini-increase in nod gene inducing activity-response, which was 
originally observed in the root exudate of Vicia sativa subsp. nigra after inoculation 
with R. leguminosarum bv. viciae, but not in response to inoculation with 
heterologous rhizobial strains (VAN BRUSSEL et al. 1990). The Ini response has also 
been reported to occur in reponse to rhizobial Nod factor (RECOURT et al. 1992a). In 
some cases, flavonoids other than the nod gene-inducing flavonoids are also 
produced as part of the Ini response. These are thought to result from de novo 
synthesis because inoculation with R. leguminosarum bv. viciae leads to 1.5- to 
2.0-fold increases in PAL activity, CHS mRNA level, and eriodictyol methyltrans­
ferase activity (RECOURT et al. 1992a,b). 

An Ini response also appears in alfalfa after inoculation with wild-type R. 
meli/oti(DAKoRA et al. 1993; McKhann, Fang, Paiva, Dixon and Hirsch, submitted). 
DAKORA et al. (1993) identified formononetin 7-0-(6"-O-malonyl-glycoside) (FGM) 
as well as aglycone and glycoside forms of the alfalfa phytoalexin medicarpin in 
root exudates from inoculated alfalfa. These compounds were not found in 
uninoculated alfalfa root exudates. However, alfalfa root exudate from plants 
inoculated with a heterologous Rhizobium strain, R. /eguminosarum bv. phaseo/i, 
also showed that an Ini response had occurred, although at lower levels 
than when exudates from R. me/i/oti-inoculated plants were examined (65% vs 
200% increase in nod gene inducing activity; DAKoRA et al. 1993). Correlated with 
the Ini response is an increase in CHS and CH I gene expression that occurs at the 
same time as the release of flavonoids, 2-4 days after inoculation (McKhann, 
Fang, Paiva, Dixon, and Hirsch, submitted). Using in situ hybridization, we 



Does Rhizobium Avoid the Host Response? 151 

observed that CHS transcripts accumulated in epidermal and root hairs cells of 
spot-inoculated roots (McKhann, Fang, Paiva, Dixon and Hirsch, submitted). 
Moreover, we found that alfalfa roots inoculated with exe-mutants produced both 
medicarpin and FGM, which were not secreted into the exudate. 

In soybean, there is conflicting evidence for an increase in flavonoids or for 
differences in gene expression following inoculation with B. japonicum. GRAHAM 
(1991) studied the nod gene-inducing activity of root exudates from uninoculated 
roots and found that conjugates of the nod gene inducers daidzein and genistein 
were selectively excreted from roots as well as from seeds in a continuous, 
saturable process. CHO and HARPER (1991) found similar levels of isoflavonoids in 
root extracts from uninoculated wild-type, hypernodulating, and non-nodulating 
soybean seedlings. This is consistent with the results of MATTHEWS et al. (1989), 
who found that there was no difference in nod gene-inducing flavonoids among 
root exudates obtained from 3-day-old uninoculated wild-type, non-nodulating, or 
supernodulating plants. SUTHERLAND et al. (1990) demonstrated that root extracts 
from uninoculated 12-day-old seedlings of non-nodulating, supernodulating, or 
wild-type plants had nod gene-inducing activity that was similar to the activity of 
extracts from inoculated wild-type plants. In contrast, CHO and HARPER (1991) 
found increased concentrations of isoflavonoids, some of which were Ini 
flavonoids, 9-12 days after inoculation in root extracts of hypernodulating 
soybean mutants compared to the wild-type soybean. Moreover, the non­
nodulating cultivar, when inoculated, was shown to contain more flavonoids than 
the wild-type control (CHO and HARPER 1991). These differences in results may be 
related to the fact that two cultivars-Bragg vs Williamtr-were studied. In any 
case, rhizobial inoculation provokes the production of flavonoids in roots that form 
determinate nodules, but the flavonoids do not appear to be excreted into the root 
exudate. Also, they are produced later during development of determinate 
nodules than of indeterminate nodules. 

WINGENDER et al. (1989) examined CHS expression in soybean and found that 
B. japonicum inoculation did not cause a change in CHS transcript levels up to 10 
h after inoculation. Inoculation with Agrobacterium tumefaciens, however, 
induced CHS expression in soybean roots and cell cultures within 2 h. Elevated 
levels of CHS transcripts were observed 16 and 28 days postinoculation in both 
uninoculated and inoculated roots. CHS expression was not enhanced in the roots 
exclusive of nodules until 19-30 days after inoculation and in nodules 19-23 days 
after inoculation. In contrast, ESTABROOK and SENGUPTA-GOPALAN (1991) examined 
gene expression leading to flavonoid biosynthesis in soybean roots using specific 
probes for PAL and CHS and found evidence for enhanced expression of specific 
gene family members of PAL and CHS at 4 days and 1-2 days, respectively, in 
response to B. japonicum inoculation. This effect was enhanced in a 
supernodulating mutant of soybean. 

In summary, these results indicate that in indeterminate nodules the increase 
in defense-related transcripts is related to the Ini response. Newflavonoids do not 
appear to be secreted into the medium by inoculated soybean seedlings, but are 
detected in root extracts. I n addition, the plant responds to inoculation by turning 
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on genes, and in the two cases studied, a specific subset of genes, for enzymes 
of the phenylpropanoid pathway, suggesting that this is a normal response of 
alfalfa and soybean to rhizobial inoculation. Although phytoalexins are detected in 
the exudate, the levels are significantly below those present after pathogen 
infection. These results imply that a defense response does not occur during 
this stage of the symbiosis, at least in response to inoculation with wild-type 
rhizobia. Not enough studies have been done to generate conclusions about the 
consequences of inoculating with mutant or heterologous rhizobia. 

5 What Happens When Nodulation Fails? 

Infection threads are not visible within root hairs until more than 12 h after 
inoculation. Moreover, because not all infections associated with cortical cell 
divisions develop into mature nodules, regulation must occur at some step prior 
to nodule primordium formation. Examination of the number of infection threads 
associated with cell division in alfalfa indicate that only a small percentage of 
infections are successful (WOOD and NEWCOMB 1989). In soybean, the number of 
infections is also much greater than the number of nodules eventually formed. 
Development was found to be arrested priorto the formation of nodule primordia. 
Furthermore, a large proportion of potential primordia had localized regions of 
cortical cell division, but lacked infection threads and were designated 
"pseudoinfections" (CALVEI1T et al. 1984). The mechanism for this control is 
unknown, but a defense-type response may be involved. 

VASSE et al. (1993) reported the presence of a hypersensitive reaction in alfalfa 
in unsuccessful infection events-those which do not lead to nodule formation. 
Between 1 and 2 weeks after ir,oculation with wild-type R. me/i/oti, certain 
cortical cells become pigmented, turning light yellow to black. Approximately 
90% of the pigmented cells were found to contain the end of an infection thread. 
These investigators hypothesized that the host plant may restrict development 
of some infection threads by undergoing a hypersensitive-like reaction. 
Immunolocalization of plant defense proteins, including PAL and CHS, showed 
that these proteins were localized in the necrotic and adjacent cortical cells. 
Moreover, the infection threads that terminated in a pigmented cell were lined by 
wall appositions. The bacteria within these threads underwent necrosis, further 
suggesting that an HR had occurred. 

In ineffective associations, the expression patterns of genes involved in 
flavonoid biosynthesis as well as the products of the pathway have also been 
investigated. Elevation of CHS transcript levels during ineffective interactions has 
been used to support the hypothesis that inoculation with certain mutant 
Rhizobium strains leads to a defense-related response or even an HR. ESTABROOK 
and SENGUPTA-GOPALAN (1991) showed in soybean that specific PAL and CHS gene 
family members are induced during the symbiotic interaction. They also deter­
mined that inoculation with a Fix- mutant of B. japonicum led to an increase in 
transcripts of PAL and CHS gene family members different from those induced by 
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wild-type B. japonicum. However, induction began 12 days postinoculation, at a 
point when nodules are already developed. Moreover, it was not determined 
whether the transcripts of PAL and CHS expressed during this ineffective 
association eventually led to phytoalexin production in the nodules. 

An early response to inoculation with mutant rhizobia was observed in siratro 
(Macroptilium atropurpureum) (DJORDJEVIC et al. 1988). Here, a mutant strain, with 
pleiotropic effects (it overproduces polysaccharide, is an adenine auxotroph, and 
is Nod- on siratro), of the broad-host-range Rhizobium NGR 234 induced the rapid 
(within 20 h) accumulation of osmiophilic droplets at potential sites of infection. 
By 48 h, the droplets were observed in the epidermal cells near the site of 
infection; eventually these cells died. These authors stated that this reaction was 
similar to an HR, but it is not known which of the many defects of this Rhizobium 
strain are responsible for the elicitation of the defense symptoms. 

WERNER et al. (1985) were among the first to report that phytoalexin synthesis 
could occur in response to an ineffective strain of B. japonicum. Ineffective 
soybean nodules contained ten-fold higher levels of glyceollin I than did control 
root tissue or nodules elicited by wild-type B. japonicum. The ineffective nodules 
were distinguished by premature peribacteroid membrane breakdown. The level 
of glyceollin I in these mature nodules was similar to that in roots of soybean 24 
h after inoculation with the pathogen Phytophthora megasperma f. sp. glycinea. 
Another Fix- mutant and two Fix+ strains did not lead to glyceollin I accumulation, 
leading the authors to conclud~ that an intact peri bacteroid membrane was 
necessary for preventing the host plant defense response. A nifA mutant was 
also found to lead to glyceollin I accumulation (PARNISKE et al. 1991). Nodules 
induced by nifA mutants at first develop normally, but early senescence, 
complete loss of cellular compartmentalization, and death of cells at the infection 
site take place, leading the authors to suggest that an HR had occurred. A so­
called HR was also observed in the interaction between Glycine soja and B. 
japonicum (PARNISKE et al. 1990). In this interaction, there is an enhanced 
accumulation of glyceollin I in the 30-day-old nodules. 

An increase in CHS transcript levels was observed in alfalfa nodules by 
GROSSKOPF et al. (1993) in response to the Fix- mutant AK1540 of R. meliloti. Using 
a CHS probe from soybean, these researchers examined CHS gene expression in 
several different nodule types by in situ hybridization and northern analysis. Roots 
and nodules induced by wild-type R. meliloti or the Fix- strain TF178 showed 
similar, but low levels, of CHS. In contrast, AK1540-induced nodules had 
increased levels of CHS, but only when the nodules were devoid of bacteria. 
When nodules were partially invaded, CHS transcript levels also dropped. The 
transcripts were located primarily in the outermost cells of the empty nodules and 
were present at maximum level at 18 days postinoculation. Five times more 
phenolic compounds were present in the empty nodules than in nodules induced 
by wild-type R. meliloti; however, the phytoalexin medicarpin was not detected. 

We examined CHS and CHI expression in alfalfa and determined that 
transcript levels are elevated in nodules induced by a broad spectrum of defined 
Fix- mutants of R. meliloti, including those defective in exopolysaccharide 
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synthesis (exoB) and nitrogenase regulation (nitA) (McKhann, Paiva, Dixon and 
Hirsch, unpublished). We also examined the effects of inoculation with A. 
tumetaciens transconjugants carrying either one or both R. meliloti symbiotic 
plasm ids (FINAN et al. 1986; HiRSCH et al. 1992) and found that CHS transcript 
accumulation was also increased in these nodules. Associated with the elevated 
transcript levels is an increase in the level of FGM. Also, low levels of medicarpin 
and medicarpin glycosides were detected in these ineffective nodules (McKhann, 
Paiva, Dixon and Hirsch, unpublished). 

Nevertheless, CHS gene expression was not elevated in "spontaneous" 
nodules-the Nar+ (nodulation in the absence of Rhizobium) phenotype (TRUCHET 
et al. 1989; CAETANO-ANOLLES et al. 1992), nor in NPA-induced nodule-like struc­
tures (HIRSCH et al. 1989). CHS transcript levels were comparable to wild-type R. 
meliloti-induced nodules, indicating that the increase in CHS mRNA accumulation 
is not correlated with the ineffective state of the nodule. We believe that the 
induction of CHS mRNAs in the bacterial-induced nodules is related in part to 
nodule senescence, which occurs prematurely in these nodules and also to the 
fact that these nodules are at least partially infected. Evidence for the importance 
of senescence in flavonoid accumulation is provided by the study of VANCE (1978), 
who examined 60-65-day-old wild-type R. meliloti-induced alfalfa nodules. 
Nodule tissue was found to contain 120% more total phenolics than root tissue 
and 70% greater PAL activity. But what makes senescence in the presence 
of Rhizobium different from senescence that occurs in the nodules of plants 
with the Nar+ phenotype orin the NPA-induced structures? why does infection, 
even partial infection, lead to the accumulation of defense-related transcripts? 

Under normal conditions, rhizobia are retained outside the plant cell 
cytoplasm by being either encapsulated within an infection thread or surrounded 
by peribacteroid membrane. An Clnalogy to nodules and Rhizobium exists in 
humans through our relationship with E. coli and other commensal microbes that 
live extracellularly in our guts. These organisms normally remain in their 
respective places in the body and do not harm their host unless the host becomes 
immuno-compromised (like AIDS sufferers) or dies. When this happens, the 
microorganisms are released from confinement and rapidly overrun their host's 
barriers to cytoplasmic invasion. This model can be applied to the Rhizobium­
legume interaction, with the caveat that only the nodule dies and not the entire 
host. Maintaining rhizobia in a nodule is an energetically expensive undertaking 
for the plant. This can be seen in ineffective nodules that accumulate massive 
quantities of starch. If nodulation fails, the rhizobia become a liability. Nodule 
senescence takes place, and probably at the same time, defense-related 
transcript accumulate. Eventually, both nodule and rhizobial cells die. The trigger 
for the plant's defense-related response may be increased ethylene production. 
Ethylene is known to induce PAL, 4-coumarate CoA ligase, and CHS gene 
expression (ECKER and DAVIS 1987). In any case, the later stages of an ineffective 
symbiosis can be considered as most similar to a host defense response. It is at 
this stage in the process that rhizobia may be recognized as intruders. However, 
such possibilities do not explain the fact that not all Rhizobium mutants elicit a 
defense-type response (WERNER et al. 1985; GROSSKOPF et al. 1993). 
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In summary, infection thread abortions in effective symbioses and 
ineffective associations appear to share features of a plant's response to 
incompatible bacteria in that defense-related transcripts are elevated and 
phytoalexins accumulate. However, the timing of the failed symbiotic interaction 
is significantly different from that in response to an incompatible pathogen (Fig. 
3). Furthermore, based on the definition established earlier in this review, the 
failed interaction cannot be properly called an HR. Although one could argue that 
the difference between the plant's response to plant pathogens vs rhizobia is 
merely due to differences in timing, we think this is unlikely. Effective rhizobia 
provoke a number of host reactions early in the nodule development pathway in 
contrast to compatible plant pathogens which do not elicit any response from a 
susceptible host until more than 120 h after infection (Fig. 3). These interactions 
suggest that the plant continually communicates with its symbiont. However, 
this does not preclude the idea that wild-type rhizobia are intruders and have 
evolved mechanisms to avoid recognition by the host. 

6 Do Effective Rhizobia Suppress or Evade the 
Host Responses as Nodules Develop? 

In many host-pathogen interactiGns, defense gene transcription and phytoalexin 
accumulation occur in both compatible and incompatible interactions, but with 
altered timing: phytoalexin accumulation is delayed in the compatible interaction 
compared to the incompatible interaction (BELL et al. 1986; BONHOFF et al. 1986; 
EBEL 1986). Some evidence suggests that differences in the timing of phytoalexin 
synthesis are the result of suppression of defense gene activation by pathogen­
produced suppressors. For fungi, these suppressors have been identified as low 
molecular weight glycopeptides (YAMADA et al. 1989), glucans (DOKE et al. 1980), 
or glycoproteins (KESSMANN and BARZ 1986; ZIEGLER and PONTZEN 1982). The lack of 
induction of PAL, CHS, and CH I (up to 120 h) in bean after infiltration with P. 
syringae pv. phaseo/ieo/a, the compatible pathogen, also appears to be due to an 
active suppression mechanism by the bacteria (JAKOBEK et al. 1993). This 
suppression requires active metabolism, but so far the identify of the suppressor 
is unknown. 

As we have seen so far, wild-type and mutant Rhizobium inoculation elicits 
an early (6 h) burst in CHS expression. Some 2-5 days after inoculation, the Ini 
response takes place and with it, another increase in CHS gene expression. 
Neither of these host responses can be classified as a defense reaction. 
Moreover, once mature nodules develop, effective nodules accumulate very low 
levels of defense-related transcripts compared to ineffective nodules. Are the 
host's responses suppressed? 

Exopolysaccharide (EPS I) has been proposed to act as a suppressor of the 
plant defense responses (NIEHAUS et al. 1993). Exo- mutants of R. meli/oti induce 
the formation of bacteria-free nodules in which infection threads abort in the 
peripheral cells (FINAN et al. 1985). NIEHAUS et al. (1993) have shown that these 
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nodules accumulate phenolic compounds and that the host cell walls are thick 
and encrusted with autofluorescent material as well as callose. After prolonged 
incubation, however, some normal, nitrogen-fixing nodule lobes formed from the 
bacteria-free nodule, but the rhizobia maintained their Exo- genotype (NIEHAUS et 
al. 1993). It is not known, however, how the plant's defense responses were 
suppressed in these nodule lobes. Interestingly, addition of low molecular weight 
oligosaccharides of EPS to R. melilotexoA mutants restored their ability to induce 
normal, nitrogen-fixing nodules (BADISTI et al. 1992). This suggests that some 
component of EPS may function as a suppressor. 

An important question is how the distinction between "friend or foe" vs "no 
recognition" is made in plant-microbe interactions. If there is a suppressor 
produced by wild-type Rhizobium, what is it? If no suppressors are produced and 
yet Rhizobium avoids the host response, is it because recognition is delayed? If 
so, are there determinants, as postulated by DAZZO and HUBBELL (1975), on the 
rhizobial surface that are similar either in structure or confirmation to the plant cell 
surface? If they are either lipopolysaccharide (LPS) or EPS, then some explanation 
is required as to why neither seems to be universally required for complete 
nodule development. LPS is essential for normal invasion of Bradyrhizobium into 
hosts that form determinate nodules, whereas EPS is required for proper 
Rhizobium invasion of hosts that form indeterminate nodules (see references in 
HIRSCH 1992). However, perhaps a part of LPS or EPS serves as a signal. Some cell 
surface component or released molecule must be involved in triggering the 
earliest, 6-10 h, nonspecific-host responses because both living and dead rhizobia 
are able to induce them. Alternatively, enclosure by the infection thread and later 
the peri bacteroid membrane may protect the rhizobia from being recognized by 
the host (SMITH 1979). 

7 Conclusions 

Although there have been proposals that the Rhizobium-legume symbiosis 
represents a modified pathogenic interaction (VANCE 1983; DJORDJEVIC et al. 1987), 
as we have pointed out, there are some major conceptual differences between 
the symbiotic and plant-pathogen interactions. The induction of defense 
transcripts and the accumulation of phytoalexins during the Rhizobium-legume 
symbiosis has been highlighted as evidence to consider Rhizobium as a 
controlled pathogen. We believe that the earliest increases in PAL, CHS, and CHI 
transcripts (those coincident with an H R) that occur after inoculation with rhizobia 
result from a general, nonspecific plant response, which could be brought about 
by wounding, various abiotic stresses, or the presence of ethylene. In contrast, 
the Ini response appears to be specifically related to effective rhizobia and the 
correct Nod factor. However, more studies using mutant or heterologous rhizobia 
at this stage in the interaction are required. Following infection by wild-type 
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rhizobia, phytoalexin production by the plant's nodules is low, indicating that a 
classic host defense response does not occur. However, the increases in CHS 
and CHI transcripts and phytoalexin production observed in ineffective nodules 
are more likely to be defense-related. Thus, we propose that the plant's earliest 
responses to Rhizobium should not be thought of as a defense reaction, but rather 
as part of the host's generalized program of response to mechanical stress or to 
nonspecific microbial interactions. Moreover, the term HR should not be applied 
to the Rhizobiunrlegume symbiosis and should be restricted to the responses 
elicited by incompatible plant pathogens. The later stages of an ineffective 
relationship may be considered in the broad sense as a host defense reaction. 

A reader could argue that these are just "words, words, words" (SHAKESPEARE, 
Hamlet II: 2), but words set the framework for ideas. By concentrating on the 
similarities between rhizobia and plant pathogens and attempting to fit symbiosis 
into an inappropriate model, our focus has veered away from the fact that 
Rhizobium invades the plant root, induces cell divisions so that 
a new organ is formed, and then takes up residence within host cells where the 
bacterial cells remain until they or the nodule senesces. So far, the mechanistic 
details of how Rhizobium invades the plant cell remain elusive. Nod factor is 
probably not the sole Rhizobium molecule required for the invasion process, but 
yet few clues exist as to how many molecules are necessary and what they are. 
Is the rhizobial surface cloaked in molecules that mimic plant cell wall 
components? Do EPS and LPS perform these roles or is there some other surface 
component(s) required? In addition, how does Rhizobium manipulate the host to 
form an infection thread? Do the bacterial (or plant) cells actually produce 
hydrolytic enzymes to degrade the cell wall in order to enter the root hair cell? Or 
does Rhizobium subvert the host cell wall synthesizing machinery and 
cytoskeleton to invade much like a Yersinia cell invades a mammalian cell (see 
chapters by Cornel is and by Parsot, this volume; BUSKA et al. 1993)? Do rhizobia 
bind to integrin-like proteins or other plasma membrane proteins like mammalian 
bacterial pathogens to initiate invasion? These questions get at the foundation of 
the interaction between microbe and host, and so far we have too few answers. 
To understand root hair invasion by rhizobia, we should reconsider the plant­
pathogen paradigm for the Rhizobiunrlegume symbiosis and replace it with a 
new model, perhaps looking to the mammalian cell pathogens, as reviewed in 
this volume, for inspiration. 
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"Salmonellae are among the most resourceful and successful of human 
pathogens, and as such have long beguiled microbiologists, epidemiologists, and 
clinicians" (RUBIN et al. 1977). And they continue to do so! However, we have 
begun to gain insight into some of the mechanisms used by these pathogens to 
cause disease. These mechanisms reveal that the bacterium must possess 
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several traits which are needed for each stage of the infection, allowing the 
salmonellae to establish an intimate relationship with the host. As a result, 
whenever Salmonella pathogenesis is being studied, the contribution of the host 
also needs to be considered. Thus, throughout this review emphasis will be 
placed on both the bacterial components and host contributions to these in­
teractions. Work in this field has revealed several unexpected findings about 
bacterial and host cell mechanisms that are applicable to other systems. Much of 
the basic bacterial machinery is conserved between many plant and animal 
pathogens. However, despite this enthusiasm, it has also reinforced how little we 
really know about these interactions and the bacterial and host processes 
involved. 

2 Pathology and Clinical Manifestations 
of Salmonella Infections 

A brief introductory overview of the pathology and clinical manifestations of 
Salmonella infections is presented here, since this knowledge is essential in 
understanding the basic mechanisms of pathogenicity used by Salmonella 
species. This subject is reviewed in detail elsewhere (RUBIN et al. 1977; GOLDBERG 
and RUBIN 1988). 

2.1 Pathology 

Given that there are a wide variety of serotypes of Salmonella, it is not surprising 
that there are also several syndromes caused by salmonellae in humans. How­
ever, as a rule, particular clinical manifestations are usually associated with 
particular Salmonella species. Nearly all Salmonella infections occur from oral 
ingestion of bacteria. A sufficient dose is required to overcome host degenses 
such as gastric acidity, normal flora, and peristaltic movements. The infectious 
dose in humans ranges from approximately 106 to 109 organisms for most 
serotypes, including S. typhi. This dose is significantly decreased if the stomach 
acidity is buffered or the transit time through the stomach is decreased, indicating 
that these organisms are sensitive to the low pH found in the stomach. 
Salmonella species do not appear to colonize the stomach, but instead move to 
the lumen of the small intestine. 

The bacteria multiply in the lumen of the small intestine, in apparent compe­
tition with the normal flora. Salmonella penetrate the mucosa at the distal ileum 
of the small intestine and the proximal large bowel. It is thought that the bacteria 
penetrate through specialized ileal epithelial cells called M cells which are found 
overlaying Peyer's patches. The mechanism and site of Salmonella invasion are 
discussed in detail later. The organisms rapidly penetrate the intestinal mucosa 
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and reach the mesenteric lymph follicles where they mUltiply. Most infections do 
not proceed beyond the local lymph nodes. However, more invasive strains such 
as S. typhi and S. choleraesuis spread to deeper tissue over a period of a few days. 
They infect the thoracic lymph, thereby spreading into the circulatory system. 
This bacteremic phase leads to infection of the liver, spleen, gall bladder, and bile. 
Infected bile can cause a secondary intestinal infection approximately 2 weeks 
after the initial ingestion, especially with S. typhi. They may also infect other 
distant sites such as bone and other tissues. 

There is marked hyperplasia and hypertrophy of the reticuloendothelial 
system, indicating an active involvement of the phagocytic cells in this system. 
The intestinal lymphoid tissues, liver, and spleen all become enlarged. Salmo­
nellae are actively phagocytosed by host cells, including macrophages and 
polymorphonuclear leukocytes, which presumably leads to the prominent en­
largement of the reticuloendothelial system. There is ileal inflammation which 
may cause intestinal bleeding and perforation later in the infection, especially with 
S. typhi. 

2.2 Clinical Manifestations 

2.2.1 Gastroenteritis 

There are four main clinical synaromes caused by Salmonella species. Although 
each species can cause anyone of the four manifestations, particular species 
usually cause a given syndrome. Gastroenteritis is usually caused by S. enteritidis 
and most of its subspecies such as S. typhimurium. Gastroenteritis (food poison­
ing) is usually a non-life threatening disease characterized by nausea and vomiting 
8-48 h after bacterial ingestion. Diarrhea, abdominal pain, and often fever follow 
later in the infection. Immunocompromised individuals often have a more severe 
and longer course of diarrhea. 

2.2.2 Enteric Fever 

Although any serotype of Salmonella can cause enteric fever, this disease is 
usually caused by S. typhi or S. paratyphi. Enteric fever is characterized by 
prolonged fever, sustained bacteria in the bloodstream (bacteremia), activation of 
the reticuloendothelial system, and mUltiple organ dysfunction. The incubation 
period for this disease is longer than that for gastroenteritis (usually 1-2 weeks), 
and the disease lasts longer. 

2.2.3 Bacteremia 

Once Salmonella have penetrated the intestinal barrier, they can enter the 
bloodstream, resulting in a sustained bacteremia which can then affect many 
body sites. S. choleraesuis is the most common Salmonella species which 
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causes bacteremia. Blood infections with this species often occur without any 
apparent intestinal manifestations. 

2.2.4 Carrier State 

The fourth symptom caused by Salmonella species is the chronic carrier state. 
Salmonella can persist in stool samples (106-109 organisms/gram) for periods 
exceeding a year. The carrier state may occur after a symptomatic disease, or it 
may establish without any symptoms. It usually occurs after ingestion of a small 
innoculum of bacteria. The site of bacterial multiplication and persistence is 
usually the bile duct, although other chronic sites have been described. 

3 Salmonella in the Stomach 

The low pH of the stomach plays a critical role in determining the outcome of a 
Salmonella infection. As mentioned above, if the pH of the stomach is increased 
(due to achlorhydria, antacid buffering, or gastric resection), a much lower dose of 
Salmonella can cause an infection. If the transit time through the stomach is 
decreased (as is often seen with waterborne outbreaks), again the infectious 
dose is lowered. Given this critical role of acidic pH, one would suppose that the 
bacteria should possess mechanisms to enhance its survival at low pH. 

Both S. typhimurium and E. coli encode an adaptive acid tolerance response 
(ATR) that enables the organisms to survive at a decreased pH after exposure to 
low pH (FOSTER 1991). Despite the effectiveness of this system for enhancing 
survival in vitro, the role of the ATR in virulence remains questionable. For 
example, S. typhimurium carrying mutations in atp, which encodes an ATPase 
needed for the ATR, are avirulent in the mouse typhoid model (GARCIA DEL PORTILLO 
et al. 1993). However, if the stomach is buffered with bicarbonate, the atp 
mutants still remain avirulent when delivered orally, suggesting that stomach pH 
is not the major reason for the attenuation. Fur is an Fe2+-binding regulatory 
protein which also regulates many proteins involved in the ATR. Mutants in fur 
were attenuated orally, yet were completely virulent by the intraperitoneal route. 
Addition of bicarbonate prior to oral infection of the fur mutant caused a 1 log 
decrease in its LD5o ' Collectively, this work indicates that separate ATR genes 
may have different roles in S. typhimurium virulence. 

It is possible that Salmonella does not possess special genes that are needed 
for survival in the stomach and instead rely on small numbers of organisms from 
a large dose to survive and proceed to the intestine. Alternatively, they may have 
some genes that enhance survival in the stomach slightly. Whatever the case, 
Salmonella species are unlike Shigella and enteroinvasive E. coli as these bacteria 
appear to be able to withstand the low pH of the stomach and a very small 
infectious dose is needed. 
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4 Salmonella-Induced Diarrhea 

The mechanisms whereby Salmonella species cause diarrhea are poorly 
understood. It is generally believed that salmonellae must interact with the 
intestinal mucosa and trigger an influx of polymorphonuclear leukocytes (WALLIS 
et al. 1986). In neutropenic animals, or in infections with bacterial strains which do 
not trigger this influx, fluid secretion does not occur (WALLIS et al. 1989). This 
infiltration then presumably triggers the production of prostaglandins, since 
indomethacin, an inhibitor of prostaglandin synthesis, blocks fluid secretion 
(GIANNELLA et al. 1975). Prostaglandin synthesis then leads to activation of 
adenylate cyclase and increase in fluid secretion (GIANNELLA et al. 1975). Bacterial 
invasion is not correlated with diarrhea, since there are invasive strains which do 
not trigger fluid secretion (GIANNELLA et al. 1975), and invasion precedes fluid 
secretion by several hours (WALLIS et al. 1986). 

The bacterial factors responsible for diarrhea also remain poorly charac­
terized. It has been established that S. typhimurium encodes a cholera-like 
enterotoxin. (PRASAD et al. 1990; CHOPRA et al. 1991). When cloned into E. coli this 
enterotoxin exhibits enterotoxin-like activity (PRASAD et al. 1992). However, the 
role of this toxin in Salmonella diarrhea remains to be established. S. typhimurium 
also produces an outer membrane protein that inhibits host protein synthesis and 
cytotoxic activity (REITMEYER et al. 1986). Additionally, given the inflammatory 
nature of diarrhea, bacterial lipopolysaccharide (endotoxin) may contribute to 
diarrhea. It has been demonstrated that Salmonella can disrupt tight junctions 
(FINLAY et al. 1988). It is possible that such disruptions in the gut could contribute 
to ionic imbalance and diarrhea. Finally, as discussed below, S. typhimurium may 
trigger the production of arachadonic acid and other prostaglandins as it invades 
epithelial cells (PACE et al. 1993), Although extremely speculative, it is possible 
that these inflammatory mediators may contribute to fluid secretion. 

5 Salmonella Interactions with Nonphagocytic Cells 

5.1 The Intestinal Barrier 

The intestinal barrier is a relatively impermeable barrier comprised mainly of 
epithelial cells tightly linked to each other by tight junctions. There are several 
types of epithelial cells exposed to the lumen of the intestine, including columnar 
epithelial cells, goblet secreting cells, and M cells. Salmonella species appear to 
have the capacity to penetrate this barrier, although the precise portal of entry into 
their host is not certain. There is mounting evidence that M cells within Peyer's 
patches are probably the site that are preferentially invaded by Salmonella 
species, although the model system that is used appears to influence this 
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conclusion. For example, in a classic descriptive study, TAKEUCHI (1967) found that 
S. typhimurium uniformly penetrated the intestinal epithelium, including both 
columnar epithelial cells and M cells of the guinea pig. However, KOHBATA et al. 
(1986) found that S. typhi preferentially invaded and destroyed M cells in mouse 
ligated ileal loops. POPISCHIL et al. (1990) found that S. typhimurium did not have 
any predilection for intestinal epithelial type in infected swine, yet S. choleraesuis 
was located preferentially in ileal M cells within Peyer's patches. Collectively this 
data would suggest that although Salmonella species have the capacity to invade 
any intestinal epithelial type, larger numbers enter through M cells within Peyer's 
patches. The contribution to disease of each of these sites remains to be 
determined. The differences in the intestinal invasion sites between Salmonella 
species and host types may contribute to the observed host specificity of 
different salmonellae. 

More recently, polarized epithelial monolayers have been used to examine S. 
typhimurium and S. choleraesuis interactions with epithelial cells as a model for 
intestinal penetration (FINLAY et al. 1988; FINLAY and FALKOW 1990). These cell lines 
(of canine kidney and human intestinal origin) form well developed microvilli and 
tight junctions, have defined apical and basolateral domains, and mimic a 
columnar epithelial cell barrier. When salmonellae are added to the apical (top) 
surface of these cells, they cause morphological alterations identical to that 
observed with infected intact intestinal epithelium (described below). The 
bacteria also invade these cells and penetrate through the monolayers. The 
bacteria depolarize these barriers by disrupting tight junctions and subsequently 
cause significant cytotoxic effects on these epithelial cells. Thus these systems 
provide a defined in vitro system to study Salmonella penetration of columnar 
epithelial cells. Unfortunately, at present there are no M cell lines to further 
examine bacterial interactions with this cell type. 

5.2 Invasion 

5.2.1 Morphological Description 

In 1967, TAKEUCHI described a detailed morphological description of S. 
typhimurium interacting with and invading guinea pig ileal intestinal epithelial 
cells. This description is representative of Salmonella interactions with most 
nonphagocytic cells and has been documented by other workers (for examples 
see POPIEL and TURNBULL 1985; KOHBATA et al. 1986; FINLAY and FALKOW 1990; 
FRANCIS et al. 1992). Prior to initial bacterial contact with the intestinal epithelium, 
the brush border remains intact. However, when the bacterium comes close to 
the epithelial surface (less than 350 A). microvilli in the immediate vicinity begin 
to degenerate through elongation, swelling, and budding. There are often long 
fibrous structures linking the organism with the apical surface, although the 
organism always retains space between the bacterial and host surfaces. As this 
process progresses, the apical cytoplasm close to the organism begins to bleb 
and swell, distorting outwards. As the cytoplasm is distorted, the organism is 
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internalized within a membrane bound vesicle. often surrounded by the 
cytoplasmic extrusion (Fig . 1). Accompanying this extrusion is a marked increase 
of localized endocytic activity. resulting in internalization of many vesicular 
structures. For unknown reasons. bacteria preferentially infect certain cells of the 
monolayer. It is common to see several bacteria following another organism into 
one cell. yet the neighboring cells (and even distant areas of the same cell) remain 
unaffected. TAKEUCHI also reported organisms passing through tight junctions 
between cells. apparently resealing after bacterial entry. Initially. each invading 
organism is internalized within an individual vacuole. a lthough at later times these 
vacuoles may fuse. Although several regulatory factors are involved in Salmonella 

Fig. 1. Transmission electron micrograph of Salmonella typhimurium entering polarized Caco-2 human 
intestinal epithelial cells. Note the microvilli distortions and that the bacteria are localized within 
membrane-bound inclusions. Bar, 1 ~m 
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invasion (see below), once the bacteria are committed to invade, the entire 
invasion process occurs within minutes (FRANCIS et al. 1992). 

5.2.2 Bacterial Factors Involved in Invasion 

Several invasiveness loci have been identified in various Salmonella species by 
several groups. Unfortunately, of those characterized, nearly all loci are involved 
in regulation of invasion, secretion of products to the bacterial surface, or motility. 
A large region of S. typhiDNA has been cloned into E. coli and shown to facilitate 
a low level of invasiveness by this normally noninvasive bacterium (ELSINGHORST et 
al. 1989). However, homologous sequences from S. typhimurium are unable to 
confer invasiveness to E. coli, and this locus remains uncharacterized. Tn5 muta­
genesis of S. typhi resulted in the identification of four nonmotile mutants which 
are unable to invade cultured epithelial cells (Llu et al. 1988). Mutations resulting 
in defects in lipopolysaccharide (LPS) decrease S. typhi and S. choleraesuis 
invasiveness (MROCZENSKI-WILDEY et al. 1989; FINLAY et al. 1988), but not S. 
typhimurium. TnphoA mutagenesis of S. choleraesuis led to the identification of 
six classes of mutants with decreased invasiveness that are unable to penetrate 
polarized epithelial monolayers (FINLAY et al. 1988) although no motility mutants 
were detected. Two of the four invasiveness mutants which did not affect LPS 
structure were avirulent in mice, while the othertwo remained virulent. TnphoA 
mutagenesis of S. enteritidi~ resulted in the identification of six classes of 
noninvasive mutants which had different invasion phenotypes with different cell 
lines (STONE et al. 1992). Similarly, TnphoA mutagenesis of S. abortusovis 
identified several mutants that were defective for adherence, but had varying 
degrees of virulence (RUBINO et al. 1993). One Tn 10 mutant in S. typhimurium has 
been identified that has reduced adherence and invasiveness in both cultured 
epithelial (Caco-2) and cultured macrophage (J77 4) cells (GAHRING et al. 1990). 
Four classes of mutants in S. typhimurium were identified that had decreased 
invasion levels, although three classes were still virulent in mice (BETIS and FINLAY 
1992). Several other nonmotile noninvasive mutants were also identified in that 
study. It has been suggested that S. typhimurium invasion is affected by the 
direction of flagellar rotation and the physical orientation of flagella around the 
bacteria (JONES et al. 1992) and the requirement of motility in invasion can be 
bypassed by centrifuging bacteria onto the monolayer (FINLAY and FALKOW 1989). 

There is currently only one well characterized invasion locus from Salmonella. 
This region (inv) has been cloned and characterized from S. typhimurium (GALAN 
and CURTISS 1989) and maps at approximately 59 minutes on the chromosome. 
Lesions in these genes result in a slight decrease in virulence when the bacteria 
are delivered orally, but not when they are administered intraperitoneally. There 
appear to be several genes in this locus that are required for adherence and/or 
invasion. Initially, three sequential genes, invA-C, were identified that were 
involved in invasion (GALAN and CURTISS 1989), and invA has been further 
characterized (GALAN et al. 1992). Immediately upstream of invA is invE, another 



Molecular and Cellular Mechanisms of Salmonella Pathogenesis 171 

invasion locus that is required for triggering the uptake of S. typhimurium into 
epithelial cells (GINOCCHIO et al. 1992), and two other loci, invF and invG (ALTMEYER 
et al. 1993). Upstream of invF, and transcribed in the opposite direction, is invH, 
a locus that is involved in adherence and is strongly conserved between 
Salmonella species (ALTMEYER et al. 1993). However, this locus is not needed for 
virulence, since it was originally identified as a virulent class 6 TnphoA mutant in 
S. choleraesuis (FINLAY et al. 1988). It was subsequently also disrupted in three 
noninvasive TnphoA mutants of S. enteritidis (class I) (STONE et al. 1992). 

The number of genes needed for Salmonella invasion is large. However, 
recent results indicate that the bacterial products needed for invasion are similar 
to virulence factors in other pathogens, thereby suggesting roles for some of 
these products. The first indication of such homology came from invA. This gene 
encodes a predicted protein that shared homology with LcrD from Yersinia, MxiA 
from Shigella flexneri, and other proteins (GALAN et al. 1992; VAN GIJSEGEM et al. 
1993). LcrD is a membrane-bound calcium regulator involved in Yersinia 
pathogenesis, while MxiA is involved in secreting Shigella invasion antigens to 
the bacterial surface (see chapters by Cornelius and Parsot in this volume). 
Furthermore, it has recently been shown that several plant pathogens have 
similar secretory systems, including HrpO from Pseudomonas solanacearum and 
HrpC2 from Xanthomonas campestris pv. vesicatoria (VAN GIJSEGEM et al. 1993; 
related chapter in the volume). A recent paper by GROISMAN and OCHMAN (1993) has 
extended this homology for most of the inv locus of S. typhimurium. They 
sequenced the region downstream of invB and found at least nine predicted open 
reading frames. Furthermore, these genes share significant homology to the S. 
flexneri spa genes which, like mxiA, are needed for secretion of Shigella invasion 
antigens to the bacterial surface (Table 1). They also found that at least one of the 
Shigella genes (spa24) could complement noninvasive mutants containing 
mutations in the homologous gene of S. typhimurium (spaP). Collectively, these 
results suggest that the complex machinery needed to transport virulence 
proteins to bacterial surfaces is conserved in Yersinia, Shigella, and Salmonella, 
and is also conserved in flagella export machinery and in various plant pathogens. 
However, the actual antigens that are transported and the regulatory 
mechanisms that control these systems vary. These results help reconcile the 
numerous invasion genes that are found in Salmonella. Unfortunately, they also 
imply that the actual Salmonella invasins that are being exported by this 
machinery remain to be discovered. 

S. typhimurium invasiveness is regulated by several factors, including 
anaerobic growth, growth state, and calcium concentration (ERNST et al. 1990; 
SCHIEMANN and SHOPE 1991; LEE and FALKOW 1990; NIESEL and PETERSON 1987). The 
invlocus in S. typhimurium is regulated by changes in DNA supercoiling affected 
by osmolarity (GALAN and CURTISS, 1990). Additionally, a "hyperinvasive" locus has 
been identified, and mutations in this locus appear to uncouple invasion from its 
traditional regulators, yielding constitutive invadors (LEE et al. 1992). This locus 
(hih maps to 59.5 minutes, which is very near the inv region. I nterestingly, unlike 
Shigella and Yersinia, Salmonella invasion is not regulated by temperature. 
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Table 1. Examples of homologous loci between pathogenic bacteria' 

Yersinia Shigella flexneri Salmonella Pseudomonas 
enterocolitica typhimurium solanacearum 

YscL HrpF 

YscJ MxiJ Hrpl 

YscC MxiD HrpH 

VirF HrpB 

LcrE MxiC InvE 

LcrD MxiA InvA HrpO 
Spa15 InvB 

Orf6 Spa47 InvC/SpaL HrpE 
SpaM SpaM 
Spa32 SpaN 
Spa33 SpaO HrpO 
Spa24b SpaPb HrpT 

, For details see text, GROISMAN and OCHMAN (1993), and VAN GIJSEGEM et al. 
(1993). 
b Spa24 from S. flexneri can complement a SpaP- S. typhimurium mutant for invasion 
(GROISMAN and OCHMAN 1993). 

5.2.3 Host Factors Involved in Invasion 

Uptake of Salmonella into epithelial cells requires host cell metabolism and 
energy (KIHLSTROM and NILSSON 1977). This observation suggests that Salmonella 
uptake into non-phagocytic cells is an active process, and, given the 
morphological alterations that occur, that the bacteria is capable of transmitting a 
localized signal at the host cell surface which mediates bacterial uptake. Several 
lines of evidence suggest that such a process occurs. 

It is becoming increasingly clear that host actin containing micro-filaments 
are required for Salmonella uptake. Treatment of cultured cells with 
cytochalasins, which disrupt actin filaments, blocks Salmonella uptake in several 
systems (for example, KIHLSTROM and NILSSON 1977; FINLAY and FALKOW 1988), 
although inhibitors of microtubules do not affect bacterial invasion. Additionally, it 
has been shown that S. typhimuriumtriggers rearrangement of polymerized actin 
and other micro-filament related proteins including a-actinin, tropomyosin, talin, 
and ezrin (FINLAY et al. 1991). This rearrangement consists of loose "strings" of 
actin filaments accumulating in the vicinity of the invading organism. This 
rearrangement is also closely correlated with invasion, and, once the bacterium is 
internalized, the cytoskeleton returns to its normal distribution (FINLAY et al. 1991). 
This rearrangement again suggests signals are being transmitted through the 
host membrane to mediate cyto-skeletal rearrangement. 

As with most invasive enterics, there appear to be several signals that are 
transduced in the host cell that are involved in Salmonella uptake (reviewed in 
ROSENSHINE and FINLAY 1993; BLiSKA et al. 1993). Given the marked cytoskeletal 
rearrangement triggered by S. typhimurium and the role intracellular Ca2+ plays in 
cytoskeletal rearrangements, it was not unexpected to find that S. typhimurium 
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triggers a Ca2+ flux in cultured epithelial cells (GINOCCHIO et al. 1992). Mutations in 
invE (which encodes a putative secretory machinery product) were unable to 
trigger the intracellular Ca2+ flux or actin rearrangement, although they could be 
rescued in trans by adding the parental strain. Additionally, chelators of intra­
cellular Ca2+, but not extracellular Ca2+, block S. typhimurium entry into cultured 
epithelial cells (RUSCHKOWSKI et al. 1992). Release of intracellular Ca2+ is often 
mediated by fluxes in the inositol phosphate IP3, and it has been shown that S. 
typhimurium also triggers fluxes in inositol phosphates, and this closely 
correlates with invasion (RUSCHKOWSKI et al. 1992). 

Further information about the signal(s) used by S. typhimurium to enter 
cultured cells came from work by GALAN et al. (1992) that described the activation 
of the epidermal growth factor receptor (EGFR) by invading S. typhimurium in 
Henle-407 cells. These workers showed that S. typhimurium triggered tyrosine 
phosphorylation of the EGFR, and invA mutants (another putative secretory 
machinery product) were unable to induce such activation. Addition of EGF to 
cells increased the invasiveness of the invA mutation. These workers then 
extended theirfindings and proposed a complex sequence of events that mediate 
S. typhimurium invasion (PACE et al. 1993). This sequence order was: activation of 
the EGFR; EGFR activates MAP kinase; MAP kinase activates phospholipase A2 
(PLA2); PLA2 generates arachidonic acid; arachidonic acid is converted into 
leukotriene LTD4 by 5-lipoxygenase; LTD4 opens Ca2+ channels; and influx of 
extracellular Ca2+ causes membrane ruffling, cytoskeletal rearrangements, and 
bacterial uptake. 

This model has several appealing features. EGFR activation is known to 
trigger membrane events similar to those seen with S. typhimurium. It also 
causes Ca2+ fluxes and several other signals. However, despite the appeal of this 
pathway, there are several unexplained and contradictory results that have arisen. 
For example, this pathway does not invoke any role for intracellular Ca2+, nor is 
there any involvement of phospholipase C, which presumably generates the 
inositol phosphates seen during S. typhimurium invasion (RUSCHKOWSKI et al. 
1992). Additionally, cells which are lacking the EGFR are still invaded efficiently 
(GALAN et al. 1992). and cells treated with potent inhibitors of the EGFR tyrosine 
kinase do not affect S. typhimurium invasion (ROSENSHINE et al. 1992), although 
they block EGF mediated signal transduction. Furthermore, another study of 
EGFR activation by S. typhimurium indicated that the EGFR was not activated by 
S. typhimurium in Henle-407 cells, or other cells expressing various amounts of 
EGFR, although receptor activation was observed with EGF (I. Rosenshine et aI., 
unpublished observations). Further supporting evidence that the EGFR does not 
participate in S. typhimurium invasion comes from two recent studies. The first 
demonstrated that inhibition of rac and rho, two host proteins that are essential in 
EGF mediated cytoskeletal ruffling, are not involved in S. typhimurium mediated 
ruffling (JONES et al. 1993). These workers also found that complete down­
regulation of the EGFR had no effect on S. typhimurium invasion. In another 
study, this group found that Salmonella promoted ruffling and bacterial uptake via 
an EGF-independent mechanism, and S. typhimurium could trigger ruffling in cell 
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lines that do not possess the EGFR (FRANCIS et al. 1993). They concluded that S. 
typhimurium invades via an EGFR-independent pathway. 

The role of the bacteria in invasion is also controversial. It has been reported 
that addition of bacterial protein or RNA synthesis inhibitors blocks Salmonella 
adherence and invasion (FINLAY and FALKOW et al. 1989). However, if bacteria are 
grown under appropraite inducing conditions, it has been suggested that S. 
typhimurium can invade cells in the presence of chloramphenicol (LEE and FALKOW 
1990). Prolonged inhibition of bacterial protein synthesis inhibits S. typhimurium 
invasion, indicating that the bacterial products may be rapidly turned over 
(MACBETH and LEE 1993). However, addition of chloramphenicol after bacterial 
invasion has commenced blocks further bacterial invasion, suggesting that 
invasion may indeed be an active process. It has been reported that invading 
Shigella must be metabolically active to enter cultured epithelial cells (HALE and 
BOVENTRE 1979). Given the conservation of invasion secretion machinery between 
Salmonella and Shigella species (see above). one can speculate that energy may 
be required for these invasion/secretion systems to function for both these 
pathogens, despite differences in invasins and receptors. 

5.3 The Intracellular Environment 

Nonphagocytic cells such as epithelial cells are inefficient at killing intracellular 
bacteria. However, since Safinonella spends at least some time within such cells 
as it penetrates the intestinal mucosa, it is worth examining some of the features 
of this environment, and how this impacts intracellular Salmonella. A discussion 
of Salmonella inside phagocytic cells occurs later in this review. 

There is general agreement that Salmonella species reside within a 
membrane-bound vacuole within both phagocytic and nonphagocytic cells. 
However, the targeting of this vacuole has only recently been examined. We have 
examined the targeting of S. typhimurium within cultured epithelial cells and 
found that the vacuole containing S. typhimurium contains the lysosomal markers 
lysosomal glycoprotein (Igp) and lysosomal acid phosphatase (Garcia del Protillo 
et al. 1993, unpublished). It also contains MHC class I heavy chain and /32 
microglobulin. However, it does not contain any mannose-6-phosphate receptor 
which is necessary for transport of certain lysosomal enzymes to Iysosomes. 
Fluid phase markers such as lucifer yellow and the lysosomal marker rhodamine 
ovalbumin rarely colocalize with intracellular S. typhimurium (Garcia del Portillo 
and Finlay, unpublished). Collectively these data suggest that S. typhimurium 
enters into a vacuole which contains cell surface molecules with low 
internalization rates and bypasses the late endosomal pathway, proceeding 
directly to lysosomal fusion. 

There have been no bacterial factors identified that are needed for enhanced 
survival within epithelial cells, although this is not surprising, since even 
laboratory strains of E. coli are capable of surviving within this environment (LEUNG 
et al. 1992). However, some attempts have been made to further characterize the 
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intracellular environment by using bacterial reporter genes (GARCIA DEL PORTILLO 
et al. 1992). Measurement of l3-galactosidase activity of various lacZfusions using 
a fluorescent substrate led to the conclusion that the concentrations of free Fe2+ 
and Mg2+ in the vacuole of epithelial cells are low, that the vacuole has a mild 
acidic pH, and that lysine and oxygen are present within the intracellular 
environment. This work demonstrates the utility of using bacterial gene fusions to 
measure genes that are expressed intracellularly. Improvement of reporter 
systems (such as by using chemiluminescence) will enhance this technique. 

5.4 Intracellular Replication 

Salmonella species have the capacity to multiply within vacuoles in 
nonphagocytic cells after an initial lag of approximately 4 h (FINLAY and FALKOW 
1988; GAHRING et al. 1990; YOKOYAMA et al. 1987). This lag period would indicate 
that some process must occur prior to bacterial replication, and specific bacterial 
genes may be required for replication in this unique niche, since nonvirulent E. coli 
does not replicate within epithelial cells. The intracellular replication process is not 
dependent on vacuole acidification, since endosome acidification inhibitors have 
no effect on intracellular replication (FINLAY and FALKOW 1988). 

Several mutants in Salmonella have been identified which are unable to 
replicate intracellularly. One mutant of S. choleraesuis survived within 
macrophages yet was unable -to grow in epithelial cells, although vacuoles 
containing this mutant fused (FINLAY et al. 1991). This mutant was not an 
auxotroph and was completely avirulent when administered orally or 
intravenously to mice. Unfortunately, the transposon used to generate this 
mutant was not linked to this phenotype and the locus involved remains 
uncharacterized. Additional nonreplicating mutants in S. typhimurium were 
obtained by treating epithelial monolayers infected with pools of transposon 
mutants with a I3-lactam, cefotaxime (LEUNG and FINLAY 1991). This treatment 
identified 13 mutants, ten of which were auxotrophic (purine, pyrimidine, purine/ 
methionine, and valine/isoleucine). The auxotrophic mutants could be 
complemented by adding the appropriate nutrients to the tissue culture media. 
The three prototrophic mutants were highly attenuated for virulence in mice, yet 
persisted within livers and spleens for at least. 3 weeks. Collectively, the 
identification of these three mutants and the S. choleraesuis mutant suggests 
that there are genes that are needed for intracellular replication and these are 
essential for virulence. 

A possible function for these genes has recently been reported (GARCIA DEL 
PORTILLO et al. 1993). As mentioned above, S. typhimurium \s localized within 
vacuoles that contain lysosomal glycoproteins. However, 4-6 h after invasion, 
intracellular Salmonella induce the formation of stable filamentous structures that 
contain Igps that are connected to the vacuoles containing bacteria (Fig. 2) (GARCIA 
DEL PORTILLO et al. 1993). The kinetics of formation of these Igp-rich structures 
paralleled closely the kinetics of intracellular replication. Filament formation 
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Fig. 2. Fluorescent micrograph of filamentous structures in HeLa epithelial cells infected with 
Salmonella typhimurium . Cells were infected for 6 h, then fixed and labelled with antibodies to a 
lysosomal glycoprotein (Igp). Bacteria within Igp-rich vacuoles are marked by solid arrows, and open 
arrows mark blebs often associated with the filamentous structures. Bar, 1 0 ~m 

requires viable intracellular bacteria and is blocked by endosome acidification 
inhibitors or microtubule disrupting agents. These unique structures are never 
present in uninfected cells, nor those infected with Yersinia species, although all 
Salmonella species tested trigger their formation. All four of the prototrophic 
avirulent Salmonella mutants (three from S. typhimurium and one from S. 
choleraesuisl that are unable to multiply inside cells are also completely defective 
for triggering formation of these filamentous structures. Thus it appears that 
Salmonella have specific loci which are responsible for triggering filament 
formation, and these same loci are needed for intracellular replication . The role of 
these filaments in intracellular replication has yet to be defined. 
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6 Salmonella Interactions with Phagocytic Cells 

6.1 The Intracellular Environment 

Salmonellae are rapidly taken up by macrophages underlying the intestinal 
mucosa, presumably following penetration of the intestinal epithelial barrier. 
Bacterial invasins appear to significantly enhance uptake into phagocytic cells 
such as macrophages, since noninvasive S. typhimurium mutants have 
decreased levels of invasion into cultured macrophages (GAHRING et al. 1990; 
Bms and FINLAY 1992). Whether entering via an invasin mediated pathway or a 
classical phagocytic pathway affects the intracellular targeting of the organism 
remains to be determined. Once inside macrophages, salmonellae remain within 
membrane-bound vacuoles, similar to non-phagocytic cells. It also remains to be 
determined if Salmonella trigger extensive membrane ruffling and cytoplasmic 
extrusion in macrophages. 

Several investigators have begun to characterize the intracellular targeting 
and environment of S. typhimurium inside macrophages. A previous report 
indicated that S. typhimurium resides within phagosomes that have fused with 
Iysosomes (CARROL et al. 1979). Other workers recently concluded that S. 
typhimurium inhibited phagosome-lysosome fusion within several types of 
mouse derived macrophages (BUCHMEIER and HEFFRON 1991; ISHIBASHI and ARIA 
1990). It was also suggested that viable intracellular bacteria are needed for this 
inhibition (BUCHMEIER and HEFFRON 1991). It has been reported that phagosomes 
containing S. typhimurium are acidified slowly, and it takes 4-5 h before the pH 
drops below 5.0 (ALPUCHE et al. 1992). In contrast, vacuoles containing killed 
organisms were rapidly acidified (pH < 4.5 within 1 h). This data would suggest 
that viable organisms are either needed for inhibition of acidification, or are 
needed to invade via a bacterial mediated pathway which delivers the organism to 
an intracellular location which is acidified slower than a phagocytic pathway. It 
was also found that fluid phase markers fused with internalized bacteria, which is 
different for that seen with epithelial cells. ALPUCHE et al. (1992) concluded that S. 
typhimurium resides within a fused lysosome, yet is capable of blocking 
endosome acidification. It is also possible that the organisms reside within an 
intracellular environment which contains some of the lysosomal markers, yet this 
environment is not a "classical" phagolysosome. 

Although there is conflicting data, it appears that Salmonella, especially S. 
typhimurium, does not actively grow within most macrophages (CARROL et al. 
1979; BUCHMEIER and HEFFRON 1989). Mutant strains that are unable to grow within 
epithelial cells are unaffected within macrophages (LEUNG and FINLAY 1991). 
However, it has recently been proposed that two populations of S. typhimurium 
exist within macrophages: one which is static, and the other which is rapidly 
growing (ABSHIRE and NEIDHARDT 1993). The existence of these two pools may 
perhaps explain the conflicting data regarding lysosome fusion and intracellular 
growth within phagocytic cells. 
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6.2 Bacterial Factors 

The past few years have seen the identification of several bacterial factors that 
enhance S. typhimurium survival within macrophages. In a classic study of 
microbial pathogenesis, FIELDS et al. (1986) screened transposon mutants in S. 
typhimuriumfor survival in macrophages. They found numerous mutants that had 
decreased capacity to survive within macrophages, and these mutants were 
avirulent in the mouse model, suggesting that the capacity to survive within 
macrophages is essential for S. typhimurium virulence. Further characterization 
of these loci has led to the identification of several factors that enhance 
intracellular survival in macrophages. These survival factors are macrophage-spe­
cific, since these mutants survive equally well within non-phagocytic cells 
(GAHRING et al. 1990). 

The best characterized of these loci is the PhoP/PhoQ system. This is a two 
component regulatory system that activates at least five bacterial products (pag) 
and represses others (prg) (reviewed in MILLER 1991). One ofthe phenotypes that 
PhoP/PhoQ regulates is the capacity to survive bacterial cationic peptides which 
are thought to be involved in killing intracellular bacteria (FIELDS et al. 1989; MILLER 
et al. 1989), although resistance to such antimicrobial peptides appears to have a 
broader role in S. typhimurium pathogenesis (GROISMAN et al. 1992). It has recently 
been demonstrated directly (by measuring ~alactosidase fusions) that the 
PhoP/PhoQ system is induced by low pH within macrophages, and inhibition of 
endosome acidification blocks activation of the PhoP/PhoQ system. One of the 
PhoP/PhoQ activated genes, pagC, encodes a protein which is homologous to a 
Yersinia enteroeolitiea invasin, Ail, and appears to enhance resistance to 
complement, although it does not directly mediate invasion or resistance to 
cationic peptides (MILLER et al. 1992; PULKKINEN and MILLER 1991). 

Other bacterial products may also contribute to intracellular survival within 
phagocytic cells. For example, a 59 kDa outer membrane from S. typhimurium 
has been reported to provide protection from oxidative killing within 
polymorphonuclear leukocytes (STINAVAGE et al. 1990). Additionally, mutations in 
reeA and reeBC in S. typhimurium are avirulent, and are sensitive to the oxidative 
burst of macrophages, indicating that the ability to repair DNA damage is 
essential for survival within macrophages and virulence (BUCHMEIER et al. 1993). 
Recently a Tn5mutant of S. typhimurium has been described that lacks the ability 
to block phagosome-lysosome fusion (ISHIBASHI et al. 1992). Interestingly, 
although this mutant was susceptible to intracellular killing, it was still virulent in 
mice. 

6.3 The Virulence Plasmid 

It has been well established that species of Salmonella other than S. typhi contain 
a plasmid that is essential for virulence (reviewed by GULIG et al. 1993). Further 
work by many investigators has shown that a region of the plasmid encoding five 
genes (spvA-O and spvR) is sufficient to restore virulence to plasmid less 
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Salmonella strains (see GULIG et al. 1993 for details). However, the virulence 
functions of these genes remains undefined: currently it is thought that these 
genes enhance growth within the host, probably within host cells (GULIG and 
DOYLE 1993). although no in vitro assay has been developed that measures the 
function of these genes. 

The regulation of the spv genes has been characterized and provides clues 
about their function. SpvR is a regulator of the other four spv genes and is 
regulated by growth phase and starvation conditions (GULIG et al. 1993), with 
maximal expression occurring during stationary phase. FANG et al. (1992) have 
demonstrated that the alternate 0" factor KatF regulates the spv operon. KatF 
regulates many genes that are induced during starvation and the stationary phase 
of bacterial growth. They also showed that KatF mutants of S. typhimurium are 
avirulent in mice. Regulation by these factors has led to the suggestion that the 
spv genes are be needed for survival within phagocytic cells. Recent evidence 
indicates that these genes are expressed inside macrophages (J. Fierer et aI., 
submitted). Thus it seems that these genes may be needed for some mechanism 
which enhances intracellular survival in some host cell which is related to 
Salmonella virulence. 

7 Is Salmonella an Intracellular Pathogen? 

Most sources consider Salmonella species to be facultative intracellular 
pathogens. This assumption is based on two concepts: (1) the induction of cell 
mediated immunity and (2) microscopic observation of bacteria "surviving" 
within phagocytic cells. However, Hsu (1989) has presented an analysis of the 
information leading to this assumption, and, in the murine model of 
salmonellosis, it was concluded that S. typhimurium should not be considered an 
intracellular pathogen. Although the role of cell mediated immunity in 
salmonellosis is beyond the scope of this review, there is increasing evidence to 
suggest that salmonellae must spend at least some of their life within host cells 
during an infection. 

Perhaps the most persuasive argument in favor of Salmonella being 
classified as a facultative intracellular pathogen comes from the phenotypes of 
specific Salmonella mutants. For example, as discussed above, mutants in both 
S. choleraesuis and S. typhimurium that are unable to replicate within epithelial 
cells are completely avirulent in the mouse model. Other evidence comes from 
the generation of mutants in S. typhimurium that are defective for survival within 
macrophages (see above). Again, all of these mutants are avirulent, suggesting 
that the capacity to survive within macrophages is critical for S. typhimurium 
virulence. There is also a report that S. typhimurium resides within an intracellular 
"safe site" in the liver and spleen, protected from antibiotics that are unable to 
penetrate host cells (DUNLAP et al. 1991), again suggesting that S. typhimurium 
survives within phagocytic cells. 
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A collective overview describing Salmonella (at least S. typhimurium) could 
be as follows: (a) it has the capacity to replicate within nonphagocytic cells such 
as epithelial cells; (b) it has the capacity to survive (but not replicate) within 
phagocytic cells such as macrophages, and (c) it is doubtful that it has the 
capacity to survive within polymorphonuclear leukocytes. If the definition of a 
facultative intracellular pathogen includes replication within macrophages, S. 
typhimurium does not fit that description. However, if a more liberal definition 
which only specifies that a facultative intracellular pathogen must pass through 
(i.e., survive) inside a host cell is used, there is ample evidence to suggest that 
salmonellae belong to such a classification. It is this author's opinion that the 
more liberal definition be used. 

8 Regulation of Salmonella Virulence Factors 

When one considers the pathogenesis of salmonellae, it is immediately apparent 
that, during the course of infection, the organism will pass through many different 
environments, including the stomach, intestinal lumen, inside epithelial cells, 
inside macrophages, inside polymorphonuclear leukocytes, and perhaps even 
free in the blood. One of the fundamental tenants emerging in microbial 
pathogenesis is the strict regulation of bacterial virulence factors such that they 
are expressed only in certain defined environments (reviewed by MEKALANOS 
1992). This theme is exemplified clearly by S. typhimurium. 

The profile of proteins produced by S. typhimurium within macrophages is, 
not surprisingly, quite different than that of extracellular bacteria. For example, 
BUCHMEIER and HEFFRON (1990) found that at least 30 proteins are induced when S. 
typhimurium infects macrophage, including the heat shock proteins GroEL and 
DnaK. A similar analysis by another group saw the intracellular expression of at 
least 40 bacterial proteins induced and approximately 100 repressed when 
compared to extracellular bacteria (ABSHIRE and NEIDHARDT 1993). Although they 
did not see the above heat shock proteins being induced, they found some 
overlap with other proteins associated with various environmental stresses. 
However, the macrophage induced response in S. typhimurium was not a 
collective sum of individual stress response proteins. There is a significant 
amount of information regarding regulation of various extracellular stresses on S. 
typhimurium, including various starvation conditions, anaerobiosis, heat shock, 
and acid shock (for example, see SPECTOR et al. 1986). However, application of this 
knowledge to the stresses encountered in the host is just beginning. For 
example, as discussed earlier, the role of the ATR in virulence is complex. 

Differential regulation of specific Salmonella virulence factors is critical for 
pathogenesis. Continuing with the example of S. typhimurium inside 
macrophages, as discussed above, the PhoP/PhoQ system is a regulatory 
mechanism that appears specific for bacterial survival inside macrophages. 
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However, if this system is uncoupled by making a constitutive mutation in phoP, 
the virulence of S. typhimurium is attenuated (MILLER and MEKALANOS 1990). This 
work emphasizes the strict control of virulence factors needed as the bacterium 
moves between environments 

Another example of such regulation can be found with S. typhimurium 
invasion. As discussed above, invasion is regulated by many environmental 
parameters including growth phase, osmotic levels, and oxygen levels. A similar 
theme is found with KatF regulation of the virulence plasmid genes (see above). 
The capacity of Salmonella to sense a specific environment and convey this 
information leading to expression of certain virulence factors is the hallmark of a 
successful pathogen. 

Recent progress has been made in measuring S. typhimurium gene 
transcription inside a host cell by measuring reporter gene fusions. The utility of 
this technique was demonstrated by determining a few environmental 
parameters of the S. typhimurium containing vacuole in epithelial cells (GARCIA DEL 
PORTILLO et al. 1992) and by measuring PhoP expression inside macrophages 
(ALPUCHE ARANDA et al. 1992). Although these studies used lacZ fusions, other 
workers have begun to use lux fusions such that light production can be 
measured (FRANCIS and GALLAGHER 1993). The advantage of this system is that the 
host cells do not need to be disrupted, and measurements can be obtained with 
the same sample over a prolonged time. Applications such as these will further 
enhance our knowledge of the parameters that affect regulation inside host cells. 

An alternate approach has recently been taken to identify S. typhimurium 
genes that are expressed within a host but that are not expressed when grown in 
vitro (MAHAN et al. 1993). This powerful and elegant technique relies upon the 
mouse to provide selective pressure to enrich for cloned promoters that are 
induced inside a mouse, thereby enhancing recovery from the mouse. These 
workers showed that defects in all of these induced genes are attenuated for 
virulence, again emphasizing the necessity for regulation of virulence factors. 

9 Concluding Remarks 

Salmonella pathogenesis is complex. Although many bacterial virulence factors 
have been identified for several stages of infection, most of these factors have yet 
to be characterized. The recognition that regulation plays a key role in virulence 
and the development of several new techniques to study genes induced inside 
host cells and the host will facilitate this work greatly. As is painfully obvious, 
nearly all of the basic work on Salmonella pathogenesis has been done on S. 
typhimurium, presumably because there is a well developed animal model and 
the molecular genetic tools are available. However, key insights can be made by 
studying other Salmonella species. Fundamental questions such as what 



182 B.B. Finlay 

determines host specificity and what factors determine which disease await 
investigation. Molecular pathogenic studies with S. typhi are surprisingly few for 
such a major pathogen. As exemplified throughout this book, conservation of 
basic mechanisms between pathogens and how they interact with their host 
provides many clues for future lines of investigation. The future is bright indeed 
for the study of Salmonella pathogenesis! 
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1 Introduction 

Listeria monocytogenes was first characterized in 1926 following an outbreak of 
listeriosis in laboratory animals (MURRAY et al. 1926). However, it was not until the 
1980s that an unambiguous link was established between the human disease 
and the consumption of Listeria-contaminated foodstuffs (SCHLECH et al. 1983). 
Immunosuppressed individuals, pregnant women, foetuses and neonates are 
most susceptible to Listeria infection. Human listeriosis is characterized by a high 
mortality rate, with clinical features including meningitis or meningo-encephalitis, 
septicemia, abortion, and perinatal infections (GRAY and KILLINGER 1966). If 
diagnosed early, listeriosis can be successfully treated by the administration of 
high doses of antibiotics, most frequently ampicillin or penicillin, either alone or in 
combination with aminoglycosides. 

L. monocytogenes is a gram-positive, non-spare-forming, facultative 
intracellular bacterium. It is the best characterized of the six species of the genus 
Listeria, which is closely related to the genera Brochothrixand Bacillus (COLLINS et 

Unite des Interactions Bacteria-Cellules, CNRS URA 1300, Institut Pasteur, 28 rue du Dr Roux, 75724 
Paris Cedex 15, France. 
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al. 1991). These six species are considered to represent two closely related, but 
distinct, lines of descent, with L. monocytogenes, L. ivanovii, L. innocua, L. 
seeligeri, and L. welshimeriforming one grouping and L. grayithe other (COLLINS 
et al. 1991; JONES 1992). Only L. monocytogenes and L. ivanovii are pathogenic. 
However, unlike L. monocytogenes, L. ivanovii is exclusively an animal pathogen, 
accounting for approximately 10% of listerial infections in animals, and is not 
associated with human disease (COOPER and DENNIS 1978). 

Following the pioneering work of Mackaness in the early 1960s (MACKANESS 
1962), murine infection by L. monocytogenes has been used as a model to study 
T cell-mediated immunity (reviewed by KAUFMANN 1993). Resistance to L. 
monocytogenes infection is independent of humoral defense mechanisms as 
the passive transfer of immune serum fails to protect the host against listerial 
infection. Recovery from a primary Listeria infection, resistance to reinfection, 
and protective immunity are mediated by anti-Listeria-specific T cells. The 
activation, clonal expansion and mobilization of anti-Listeria-specific T cells (CD8 
and CD4) is due to the ability of L. monocytogenes to survive and replicate in 
resident macrophages (KAUFMANN 1993). Survival in phagocytic cells is considered 
to be a major virulence determinant of L. monocytogenes pathogenesis and a 
prerequisite to successful infection by this pathogen. Recently, the ability to 
reproduce certain aspects of the human disease in the mouse model of infection 
after inoculation by a variety of routes (including conjunctival, nasal, respiratory, 
gastrointestinal, intravenous and intra-peritoneal) has facilitated the molecular 
genetic analysis of L. mOflocytogenes virulence determinants (COSSART and 
MENGAUD 1989). 

Recent outbreaks of listeriosis following the ingestion of Listeria­
contaminated foodstuffs have emphasized the importance of the oral route in 
natural infections and a number of studies have sought to identify the site of entry 
of L. monocytogenes into the host organism following oral or intragastric 
inoculation. MACDONALD and CARTER (1980) have suggested that L. mono­
cytogenes specifically penetrates the specialized epithelial cells (M cells) 
overlying the Peyer's patches. They observed that L. monocytogenes could be 
cultured from the Peyer's patch-containing intestinal mucosa of mice infected by 
the intragastric route, but not from intestinal mucosa from which Peyer's patches 
had been removed (MACDoNALD and CARTER 1980; MARCO et al. 1992). The 
penetration of L. monocytogenes into intestinal epithelial cells in vivo was 
observed by electron microscopy (RACZ et al. 1970, 1972, 1973). Thus, entry into 
the host may occur via different cell types including epithelial cells and the M cells 
covering the Peyer's patches. Indeed, in vitro studies have shown that L. mono­
cytogenes can penetrate and multiply within various epithelial and fibroblast-like 
cells (see COSSART and MENGAUD 1989). 

Following translocation across the intestinal barrier, bacteria can be observed 
in phagocytic cells present in the underlying lamina propria (RACZ et al. 1972, 
1973). In murine infections the bacteria spread via the bloodstream, with 
considerable accumulation occurring in the liver and in the spleen. In the liver the 
bacteria are rapidly phagocytosed by resident macrophages and most of the 
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inoculum is destroyed during the first 6 h. Thereafter, the survivors grow 
logarithmically, reaching a maximum 2-3 days after infection. In mice, the 
hepatocyte is the major site of intracellular bacterial multiplication (CONLAN and 
NORTH 1991; ROSEN et al. 1989). These infected cells appear to be the target of 
neutrophils in the early stages of infection and later of mononuclear phagocytes, 
both cell types expressing complement receptor type 3 (CR3). This early killing in 
the liver serves to reduce infection to a level which may be resolved by 
subsequently acquired resistance mechanisms (CONLAN and NORTH 1991, 1993; 
reviewed by PORTNOY 1992). Depending on the immune response of the host, the 
bacteria will either be eliminated, or they will undergo further hematogenous 
dissemination to the brain (or placenta). Macrophages appear to be very 
heterogeneous with regard to listericidal activity. In listericidal macrophages, CR3 
acts as the major receptor of Listeria by binding to serum complement 
component C3 deposited on the bacterial surface. In macrophages unable to kill 
Listeria, receptors other than CR3 seem to mediate most phagocytosis (DREVETS 
and CAMPBELL 1991; DREVETS et al. 1992). 

Detailed analysis of Listeria-infected cell cultures has revealed a complex 
series of host-pathogen interactions culminating in the direct dissemination of L. 
monocytogenes from one infected cell to another (GAILLARD et al. 1987; MOUNIER 
et al. 1990; TILNEY and PORTNOY 1989; TILNEY and TILNEY 1993 and references 
therein). Host cell infection (Fig. 1 and summarized in Fig. 2) begins with the 
internalization of the bacteria eit~er by phagocytosis, in the case of macrophages, 
or by induced phagocytosis, in the case of nonphagocytic cells. The bacteria are 
rapidly incorporated into a membrane-bound vacuole which they lyse after about 
30 min. In the cytoplasm, the bacteria mUltiply with a doubling time of 
approximately 1 h (GAILLARD et al. 1987) and become associated with actin 
filaments. After about 2 h, these filaments are rearranged into tails which mediate 
bacterial movement through the cytoplasm to the cell periphery. This movement 
is rapid, reaching speeds of about 1 J.1m/s (DABIRI et al. 1990)' and is independent 
of known cellular motor molecules like myosin II. Measurements of the rate of 
actin tail formation suggest that the force for propulsion is provided by the actin 
polymerization itself (SANGER et al. 1992; THERIOT et al. 1992). When moving 
bacteria contact the plasma membrane they induce the formation of pseudopod­
like protrusions of the membrane. Contact between these protrusions and 
neighboring cells results in the internalization of the bacteria-containing 
protrusion. In the newly infected cell the bacterium is surrounded by two plasma 
membranes which must be lysed to initiate a new cycle of multiplication and 
movement. Thus, once Listeria has entered the cytoplasm it can disseminate 
directly from cell to cell circumventing such host defenses as circulating antibody 
and complement. This ability to disseminate in tissues by cell-to-cell spreading 
provides an explanation for the early observation that antibody (although induced 
and abundant) is not protective (MACKANESS 1962) and that anti-Listeria immunity 
is T cell-mediated (reviewed by KAUFMANN 1993). 

Since the first two early reviews on this subject (CHAKRABORTY and GOEBEL 
1988; COSSART and MENGAUD 1989), considerable progress has been made in the 
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Fig. 1A-H. For caption see p. 192 
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Fig. 2. The infectious process. The genes required at each step of the process are indicated. (Adapted 
from TILNEY and PORTNOY 1989) 

identification and characterization of the bacterial factors required at each stage of 
the infectious process (Fig. 2). Recently, a common nomenclature for the 
identified L. monocytogenes virulence genes has been adopted by the various 
groups working in the field (PORTNOY et al. 1992b). The purpose of this review is to 
summarize the molecular genetic analysis of these bacterial virulence factors . 
(See also COSSART 1994 and COSSAf1T and KOCKS 1994). 

2 Host Cell Infection 

2.1 Entry 

Epithelial cell invasion is a key virulence mechanism of many bacterial pathogens 
and has been extensively studied in gram-negative bacilli, including members 
of the genera Shigella, Salmonella, and Yersinia. The genetic determinants 

Fig. lA-H. Thin sections of macrophage-like J774 cells at 0.5-5.5 h of infection with Listeria 
monocytogenes strain L028. A Intracellular bacterium surrounded by a vacuolar membrane after uptake 
by the host cell . B, C Cross- and longitudinal sections through dividing bacteria which are covered by 
host-cell derived actin filaments (electron-dense filamentous material on the bacterial surface!. D 
Moving bacterium with an actin" comet" tail. E. F Bacteria incorporated into cell surface protrusions that 
are invading neighboring cells. G Protrusion with a bacterium in the cytoplasm of the new host cell. The 
bacterium is completely surrounded by two cytoplasmic membranes. H Lysis of the two plasma 
membranes in the cytoplasm of the new host cell. (Electron micrographs were obtained in collaboration 
with Pierre Gounon and Helene Ohayon, Station Centrale de Microscopie Electronique, Institut Pasteur) 
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promoting bacterial penetration vary considerably among these pathogens and 
have been reviewed recently (BUSKA et al. 1993; FALKOW et al. 1992; SANSONEITI 
1992; see chapters by PAR SOT, FINLAY, and CORNEUS, this volume). As suggested by 
the electron microscopic studies of RACZ et al. (1970, 1972, 1973) invasion of 
epithelial cells by L. monocytogenes may constitute an important early step in 
infection. To date, two surface proteins, internalin and p60, have been implicated 
in the induced internalization of L. monocytogenes by nonprofessional 
phagocytic cells. 

Entry into epithelial cells is mediated by internalin, a surface protein of 
approximately 90 kDa, encoded by the gene in/A (GAILLARD et al. 1991). Internalin 
was identified by screening a lil?rary of Tn 1545 mutants of L. monocytogenesfor 
loss of invasiveness into the intestinal epithelial cell line Caco-2. Three such 
mutants were obtained. These mutants were unable to adhere to Caco-2 cells 
and were defective for entry in a variety of epithelial cell lines. In all mutants the 
transposon had inserted into a region upstream from two open reading frames, 
in/A and in/B. Transcription of these two genes was abolished in the noninvasive 
mutants. in/A encodes an 800 amino acid protein whose characteristic features 
include a signal sequence (recently recognized after the detection of a 
sequencing error, see DRAMSI et al. 1993b), two regions of repeats (one of which 
is rich in leucine residues), and a COOH-terminal hydrophobic region (Fig. 3) 
which may be a membrane anchor. The first region of repeats (region A, see Fig. 
3) is made up of 15 highly conserved successive repeats of a string of 22 amino 
acids which display a periodicity of hydrophobic residues and have the consensus 
sequence 1-NQISDITPL .. LTNL .. L.L..-22 (where dots represent any amino acids). 
The second region of repeats (region B, Fig. 3) is formed by three successive 
repeats, the first two of 70 amino acids each and the third of 49 amino acids. In the 
region common to the three repeats, the same amino acid is found in 27 out of 49 
positions. Region B contains no periodicity of nonpolar residues and is dissimilar 
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Fig. 3. Structural organization of the inlAB locus. Transcription of the locus proceeds from left to right. 
The transcriptional termination signals (T1, T2) are indicated as is the position of the Tn 1545 insertion in 
the promoter region of the operon. The major structural features of the proteins intemalin and InlB are as 
described in the legend 
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to region A. The putative membrane anchor is preceded by the hexapeptide 
LPTIGD, considered to be a signature of gram-positive surface proteins (FISCHETII 
et al. 1990). When inlA is expressed in L. innocua it confers invasiveness on this 
otherwise noninvasive, nonpathogenic Listeria species. Thus, in the genetic 
background of a closely related Listeria species, internalin expression is sufficient 
to promote the entry into epithelial cells. Recent results indicate that internalin 
can be released into the culture supernatant (DRAMSI et al. 1993b). Maximal 
invasivity is obtained with exponential cultures, corresponding to the growth 
phase during which the cell-wall associated form of internalin is most strongly 
expressed. This finding suggests that the cell-wall associated form of internalin 
plays a crucial role in invasion, but cannot rule out an involvement of the released 
form. InIB, located downstream from and cotranscribed with inlA, encodes a 630 
amino acid protein which is structurally analogous to internalin, except for the 
absence of a hydrophobic COOH-terminal region. The inlB gene product contains 
eight leucine-rich regions with homology to those of internalin. InlB seems to 
play no role in epithelial cell invasion (Dramsi and Cossart, unpublished). 

Low stringency Southern blot analysis demonstrated that several other DNA 
sequences with homology to inlA are present on the chromosome of L. 
monocytogenes and all Listeria species (GAILLARD et al. 1991). Five other genes 
with homology to inlA (in addition to inlB) have been cloned and sequenced (S.D., 
P.D., and P.C., unpublished results). The role of this multigene family is currently 
under investigation with the hypothesis that the inl repertoire may encode surface 
proteins with different cellu1ar tropisms. Interestingly, internalin and the proteins 
of the internalin family are structurally analogous to a number of repeat proteins 
from gram-positive bacteria (including the F and M proteins of Streptococcus 
pyogenes and the fibronectin-binding proteins of Staphylococcus aureus) which 
are involved in cell contact or cell recognition (DRAMSI et al. 1993a; WESTERLUND and 
KORHONEN 1993). 

p60, a major extracellular protein, has been suggested to playa role in the 
invasion process. Spontaneously occurring mutants of L. monocytogenes which 
produce greatly reduced levels of p60 display a rough colony morphology and 
reduced adherence and invasiveness into certain cell types (KUHN and GOEBEL 
1989). Such mutants form long chains in which the bacteria are separated by 
double septa. The gene coding for p60, iap, has been cloned. It encodes a protein 
of 484 amino acids with a signal sequence but contains no further hydrophobic 
sequences which might serve as membrane spanning domains (BUBERT 1992; 
KOHLER et al. 1990, 1991). About 75% of the protein is found in the culture super­
nantant and the remaining 25% is associated with the cell wall (RUHLAND et al. 
1993). p60 has bacteriolytic activity and, on the basis of amino acid sequence 
homologies, is thought to possess a murein hydrolase activity required for a late 
step in cell division (WUENSCHER et al. 1993). p60 is an essential protein and 
deletions of iap are lethal. It remains to be shown whether p60 plays a direct role 
in adhesion and invasion, or whether the effect of its reduced expression on 
adherence and invasion can be explained by the altered morphology of the p60 
defective mutants. 
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Among invasive bacteria, the invasin of Yersinia pseudotuberculosis is the 
only protein demonstrated to mediate (by itself) entry of bacteria into mammalian 
cells (FALKOW et al. 1992). In the case of Salmonella and Shigella, the entry process 
is clearly multifactoral (FALKOW et al. 1992; SANSONETTI 1992). Internalin is the first 
invasion factor identified in gram-positive bacteria. It remains to be established 
whether internalin can mediate entry by itself or whether it forms complexes 
with other bacterial components such as the inlB gene product or the proteins 
encoded by the genes of the internalin superfamily. 

2.2 Escape from the Vacuole and Intracellular Multiplication 

Subsequent to internalization, L. monocytogenes escapes from host vacuoles 
and enters the cytoplasm, where rapid growth ensues. Convergent studies have 
shown that listeriolysin 0 (LLO), the first identified virulence factor of L. 
monocytogenes, plays a crucial role in this step (for review see COSSART and 
MENGAUD 1989). This 58.6 kDa secreted protein is a member of a family of pore­
forming thiol-activated cytolysins, of which streptolysin 0 is the prototype (SMYTH 
and DUNCAN 1978). These hemolysins share immunological cross-reactivity and 
are irreversibly inactivated by cholesterol, their putative membrane receptor. 
Their lytic activity in vitro involves two steps: a temperature-independent binding 
of the toxin to the membrane fgllowed by an oligomerization process leading to 
pore formation and membrane lysis. 

The role of LLO in lysis of the phagosomal membrane was established by 
genetic analysis of non hemolytic mutants. In these mutants, insertion of various 
transposons into the LLO structural gene (hly) resulted in production of inactive 
truncated proteins (COSSART et al. 1989; GAILLARD et al. 1986; KUHN et al. 1988; 
PORTNOY et al. 1988). The hly gene was shown to be a monocistronic unit that, 
when introduced into such LLO defective strains, restored the wild-type 
phenotype (COSSART et al. 1989; MENGAUD et al. 1989). Electron microscopic 
studies revealed that the mutants were not affected in their capacity to enter 
human intestinal epithelial cells (Caco-2 cells) but remained within the 
phagosomal vacuole, could not gain access to the cytoplasm and were thus 
unable to grow intracellularly (GAILLARD et al. 1987). In all cases, virulence of the 
mutants was strongly affected with an increase in the LD50 of about five orders of 
magnitude. In the cases in which revertants were obtained, recovery of the 
hemolytic phenotype correlated with the recovery of virulence. 

Further evidence for the role of LLO in the lysis of the phagosomal membrane 
was obtained from an experiment in which hlywas cloned into the noninvasive 
soil bacterium Bacillus subtilis and expressed under the control of an IPTG­
inducible promoter (BIELECKI et al. 1990). In the presence of IPTG, this strain 
exhibited hemolytic activity and, following internalization by a macrophage-like 
cell line, lysed the phagosomal membrane and grew rapidly and extensively in the 
host cell cytoplasm. In the absence of IPTG the bacteria stayed trapped in the host 
vacuoles where they could survive for several hours but could not replicate. 
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All thiol-activated cytolysins contain a unique cysteine residue in the COOH­
terminal part of the proteins (with the exception of that produced by L. ivanovii, 
ivanolysin, which contains a second cysteine residue; HAAS et al. 1992). This 
unique cysteine is contained within an undecapeptide ECTG LAWEWWR which is 
conserved in all thiol-activated cytolysins sequenced so far, except for a single 
amino acid change in seeligerolysin (an LLO-like cytolysin produced by L. 
seeligeri; HAAS et al. 1992). Mutational analysis studies showed that conservation 
of the undecapeptide is important for hemolytic activity, although surprisingly, it 
is not the cysteine residue but the surrounding tryptophane residues that seem 
to be required for activity (MICHEL et al. 1990). The study of isogenic mutants 
affected in single amino acid positions in LLO established a direct correlation 
between hemolytic activity and virulence. However, there seems to be no 
correlation between the hemolytic activity of various L. monocytogenes strains 
and their virulence (KATHARIOU et al. 1988). 

LLO and the related toxin produced by L. ivanovii are the only examples of 
thiol-activated toxins produced by intracellular bacteria. In addition, unlike other 
thiol-activated hemolysins, LLO has an acidic pH optimum and is relatively 
inactive at neutral pHs (GEOFFROY et al. 1987). These properties led to the 
suggestion that the low pH optimum of LLO represented a Listeria-specific 
adaptation to maximize cytolysin activity within acidified phagolysosomes. 
However, the I PTG-regulated expression of perfringolysin 0 in B. subtilis allowed 
this organism to escape from the host cell vacuole and to replicate intracellularly 
(PORTNOY et al. 1992c). Such Dacteria were observed to cause greater damage to 
the host cells than B. subtilis expressing LLO. This may suggest that the low 
activity of LLO at neutral pH may provide a mechanism whereby the host cell is 
protected fom the potentially deleterious effects of this protein in the cytoplasm. 

Nonhemolytic mutants of L. monocytogenes are still able to grow (although 
to a lesser extent) inside the human epithelial cell line Henle 407 and the human 
fibroblast cell line WS1 (PORTNOY et al. 1988). These results suggest that factors 
other than LLO may be involved in escape from the phagosomal compartment. L. 
monocytogenes produce a phosphatidylinositol-specific phosphoplipase C (PI­
PLC; (GOLDFINE and KNOB 1992; LEIMEISTER-WACHTER et al. 1991; MENGAUD et al. 
1991a). This enzyme is a 36.3 kDa secreted protein encoded by the pIcA gene 
and homologous with the B. cereus, B. thuringiensis, and eukaryotic PI-PLCs. It is 
a type II PI-PLC as it is a soluble enzyme that hydrolyses phosphatidylinositol (PI) 
and glycosyl phosphatidylinositol (GPI) moieties, by which many eukaryotic 
membrane proteins are anchored to the membrane, but it is unable to hydrolyse 
PI-4-phosphate (PIP) or PI-4,5-bisphosphate (PIP2) (GOLDFINE and KNOB 1992). 

The role of PI-PLC in phagosomal membrane lysis and virulence could not be 
clearly defined by analyzing transposon insertion mutants as insertions into pIcA 
had a polar effect on the downstream regulatory gene prfA (MENGAUD et al. 
1991 a,b). Recently, an in-frame deletion mutant in the pIcA gene was con­
structed (CAMILLI et al. 1993). This mutant was only slightly affected in virulence on 
the basis of its LDso in mice, but the absence of PI-PLC clearly correlated with 
decreased efficiency of host vacuole lysis in primary cultures of murine 
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macrophages (but not in the macrophage-like cell line J774; CAMILLI et al. 1993). 
The PI-PLC displays a relatively broad pH optimum, ranging from pH 5.5 to pH 7 
depending on the assay conditions (GOLDFINE and KNOB 1992). It is possible that 
the PI-PLC acts in concert with LLO within the acidified phagosome to mediate 
lysis of the vacuolar membrane: the PI-PLC, by hydrolysing PI and GPI-anchored 
proteins present in the extracytoplasmic leaflet of the phagosomal membrane, 
may facilitate access to, and lysis of, the membrane by LLO. 

Two other genera of bacterial pathogens, Rickettsiae and Shigellae, follow 
the same general pathway as Listeria through the host cell, i.e., escape from the 
phagosome and intracellular multiplication in the cytoplasm. In both cases a 
hemolytic activity has been associated with the ability to gain access to the host 
cytoplasm. It has been proposed that a phospholipase A of rickettsial origin is 
responsible for entry of Rickettsiae into the cytoplasm (SILVERMAN et al. 1992; 
WINKLER 1990). In the case of Shigella the protein IpaB plays a key role, both in 
triggering cytoskeletal rearrangements to induce phagocytosis and in the lysis of 
the phagosomal vacuole (HIGH et al. 1992). This protein exhibits contact hemolytic 
activity but has no sequence homology with any of the known hemolysins. In 
common with LLO, its hemolytic activity is higher at low pH (5.5) than at neutral 
pH. It has been hypothesized that IpaB would undergo a conformational change 
in the phagolysosome which would allow full expression ofthe hemolytic activity. 

L. monocytogenes mutants which are incapable of phagolysosomallysis do 
not replicate intracellularly, suggesting that the phagolysosomal milieu is 
inherently nonpermissive for- Listeria growth. In contrast, several lines of 
evidence suggest that the cytoplasm of eukaryotic cells readily supports bacterial 
multiplication. In a recent study, MARQUIS et al. (1993) demonstrated that a variety 
of auxotrophic mutants of L. monocytogenes replicate in the cytoplasm of J774 

.. macrophages and Henle 407 human epithelial cells. For most of these mutants, 
the doubling times of the auxotrophic strains were similar to that of the wild-type 
strain, although there was some variation depending on the cell line used, with 
the Henle 407 cells being more restrictive for auxotrophic growth than the J774 
macrophage-like cells. In the case of S. flexneri, purine and aromatic amino acid 
auxotrophies do not affect the ability of the bacteria to grow intracellularly or to 
spread from cell to cell (FORMAL et al. 1971; LINDBERG et al. 1988). In addition, 
following phagolysosomal lysis, B. subtilis expressing LLO (BIELECKI et al. 1990) 
and E. coli harboring the Shigella virulence plasmid (SANSONETII et al. 1986) grow 
and multiply intracellularly, suggesting that survival in the eukaryotic cytoplasm 
does not require the expression of genes or functions specific to intracellular 
bacteria. 

To identify L. monocytogenes genes induced by the intracellular 
environment, a library of Tn917-lac transposon fusion mutants was screened 
for fusions which were preferentially expressed during intracellular growth. 
Five such genes were identified, displaying up to 100-fold higher expression of 
~-galactosidase during growth in J774 macrophages than during growth in rich 
laboratory broth (BHI; KLARSFELD et aI., in press). Four of these genes encode 
proteins involved in purine (purH and purD) and pyrimidine biosynthesis (pyrE), 
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and in the transport of arginine acids via an ABC-type system (HIGGINS 1992) 
which we have called Arp for ABC arginine permease. The isolation of these 
genes suggests that nutrients such as nucieotides, although not limiting for 
intracellular bacterial growth (see below!. are at sufficiently low concentrations to 
induce bacterial genes which are repressed in laboratory media. In addition, a 
transcriptional/acZfusion to the pIcA promoter (CDI5; MENGAUD et al. 1991 b) was 
found to be preferentially expressed during intracellular growth. The PurH, PyrE 
and Arp mutants were tested in the mouse model (following intravenous 
injection) and were shown to be less affected in virulence than CD15. Only the 
Arp mutant was affected in its LD50 (a two-fold increase relative to wild-type). 
Nonetheless at 48 hours postinfection, Arp and PurH, but not PyrE mutants, 
displayed 1 0-20-fold reduced bacterial loads in the liver with respect to wild type 
bacteria. Although the inactivation of the pur and pyr genes results in purine or 
pyrimidine auxotrophy, respectively, all mutants grow intracellularly reinforcing 
the view that the eukaryotic cytoplasm is permissive for bacterial growth. 

2.3 Intracellular Movement and Cell-to-Cell Spread 

Cell-to-cell spreading by L. monocytogenes is a complex biological process. It 
requires the induction and regulation of fundamental host cell-derived functions 
like actin assembly coupled to intracellular movement, association with the 
plasma membrane, formation of pseudopod-like protrusions, recognition and 
phagocytosis of these protrusions by the neighboring cell, and breakdown of 
the two membranes that surround the invading bacteria after uptake by the new 
host cell (MOUNIER et al. 1990; TILNEY and PORTNOY 1989). The ability of L. 
monocytogenes to spread within host tissues by direct cell-to-cell spreading 
constitutes an essential pathogenicity determinant. It is reflected by the 
pathogen's ability to form plaques, i.e., zones of destroyed cells on fibroblast 
monolayers that are covered by a bactericidal overlay to prevent extracellular 
multiplication (HAVELL 1986). L. monocytogenes mutants which are unable to 
form plaques display strongly attenuated virulence in mice, although these 
mutants are still able to invade cells, to multiply in the cytoplasm, and even to 
replicate transiently in spleen and liver of infected mice (GOOSSENS and MiLON 
1992; KocKs et al. 1992; DOMANN et al. 1992; KUHN et al. 1990). To date, three 
genes, mpl, actA and plc8, have been implicated in cell-to-cell spreading. These 
genes are part of the lecithinase operon which is located downstream from hlyon 
the chromosome and includes, downstream of plc8, three small open reading 
frames of unknown function (VAZQUEZ-BoLAND et al. 1992; see Fig. 4). 

Lecithinase production is, like LLO secretion, a characteristic phenotype of L. 
monocytogenes (Fuzi and PILLIS 1962). To understand the role of lecithinase in the 
pathogenesis of Listeria, transposon-induced, lecithinase-negative mutants were 
analyzed. One such mutant was strongly affected in virulence and defective in 
plaque formation due to the inability to polymerize actin (KocKs et al. 1992). The 
transposon insertion in this mutant mapped to actA, the second gene of the 
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Fig.4. The coordinate regulation of virulence gene expression by PrfA in Listeria mono-cytogenes. The 
principle features of this model are described in the text. (Adapted from DRAMS! et al. 1993b) 

lecithinase operon. Plasmid insertion mutagenesis in the downstream genes 
showed that the insertion in actA was solely responsible for the lack of actin 
assembly (KOCKS et al. 1992) and that the lecithinase-negative phenotype of the 
actA mutant was due to a polar effect of transposon insertion on transcription of 
plcB. Actin polymerization by L. monocytogenes is thus dependent on the 
expression of the actA gene (DOMANN et al. 1992; KOCKS et al. 1992). The 
lecithinase encoded by plcB also plays a role in cell-to-cell spread (see below). 

actA encodes a surface protein with an apparent molecular weight of 90 kDa 
which migrates aberrantly on SDS-PAGE gels. The protein is thought to be 
anchored in the bacterial membrane by its COOH-terminal end, since insertion 
mutations in the coding region lead to secretion of nonfunctional truncated 
molecules that are not associated with the cell wall (DOMANN et al. 1992; KOCKS et 
al. 1992). At least two thirds of the protein molecule protrudes from the cell wall 
with the potential to interact with components of the cytoskeleton (KOCKS et al. 
1993). In addition to the membrane-bound form, some ActA can be detected in 
the culture medium (DOMANN et al. 1992; NIEBUHR et al. 1993). 

Sequence data bank searches have not revealed striking similarities with 
known proteins, but weak similarity could be detected to the actin-binding protein 
caldesmon (20% identity in the NH2-terminal 243 amino acids) and to human 
microtubule-associated protein 4 (20% identity in 196 amino acids; for references 
see KOCKS et al. 1992, 1993). However, the sequence similarity to caldesmon was 
in the spacer region, separating the known actin and tropomyosin-binding 
domain. The NH2-terminal domain of ActA contains a motif (64-LKEKAE-70) 
similar to the presumptive actin binding site of caldesmon (498-LKEKQQ-503) and 
to hexapeptide LKEAET which can induce actin polymerization in vitro 
(VANCOMPERNOLLE et al. 1992). A short motif present twice in the ActA protein (237-
PPPTDEEELRLAL-250 and 272-283) is similar to a region in mouse elongation 
factor 1 a (237-PPRPTDKPLRLPl). This similarity may be of interest as 
Dictyostelium ABP-50, a protein that cross-links actin filaments, has recently 
been identified as elongation factor 1 a. In addition, ActA shares short regions of 
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similarity with the cytoskeleton protein vinculin. One such region is motif 394-
DRLADLRDRGTG-405 similar to residues 333-344 of chicken vinculin 
(DOLADLRARGOG). The central part of the ActA contains several proline- and 
glutamic acid-rich repeats which share similarity to a region of vinculin which is 
rich in proline, aspartic and glutamic acid. The ActA repeat motif harbors several 
consensus phosphorylation sites for a cellular protein kinase, casein kinase II. 

The mechanism by which ActA mediates actin assembly is not known (see 
review by COSSART and KOCKS 1994). In order to generate forward propulsion, one 
would expect that actin filament formation should be initiated on the bacterial 
body in an asymmetric way. ActA is indeed asymmetrically expressed during cell 
division, resulting-after division-in absence from one end (the newly formed 
end) and abundance towards the other (older) end (KOCKS et al. 1993). In the 
cytoplasm of infected cells, the protein localizes precisely to the site of actin 
filament formation on the bacterial surface (KOCKS et a!. 1993). It cannot be 
detected in the actin tails (KOCKS et a!. 1993; NIEBUHR et a!. 1993). This localization 
pattern suggests that ActA somehow triggers the actin polymerization process, 
either by directly interacting with actin or indirectly by inducing actin 
polymerization through a cellular nucleator (THERIOT and MITCHISON 1992; THERloTet 
a!. 1994). The activity of ActA may be modulated by phosphorylation, since in the 
cytoplasm ActA gets phosphorylated by an as yet unidentified host cell-derived 
kinase (BRUNDAGE et a!. 1993). In addition to ActA, comet tail formation and 
movement may require further bacterial factors. Evidence for the latter possibility 
comes from the phenotype af a nonmotile mutant that is severely affected in its 
capacity to form comet tails, but still induces actin polymerization and becomes 
surrounded by actin filaments (KUHN et a!. 1990). In this mutant, both the level of 
expression and the distribution of ActA are indistinguishable from wild type (C.K, 
P.C. unpublished data). 

The third gene of the lecithinase operon, plcB, encodes the L. monoc­
ytogenes lecithinase (PC-PLC; VAZQUEZ-BOLAND et a!. 1992). Lecithinase is a 
secreted PLC with a pH optimum between 5.5 and 8. This enzyme catalyzes the 
hydrolysis of a broad spectrum of phospholipids. It is active on 
phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, to a lesser 
extent on sphingomyelin and very weakly on phosphatidylinositol (GEOFFROY et a!. 
1991; GOLDFINE et a!. 1993). Through the analysis of a plcB insertion mutant, 
evidence has been obtained that this lecithinase contributes to the breakdown of 
the two plasma membranes that surround L. monocytogenes after cell-to-cell 
spread (VAZQUEZ-BoLAND et a!. 1992). On fibroblast monolayers plcB mutants form 
significantly smaller plaques than wild-type bacteria, and in an electron 
microscopic study such mutants were found to accumulate in two membrane 
vacuoles in the cytoplasm of the new host cell. The broad spectrum specificity of 
the purified L. monocytogenes PC-PLC is consistent with a role in lysis of the two 
leaflets of the plasma membrane, which are known to display phospholipid 
asymmetry. However, that such mutants remain capable of making plaques 
suggests that lecithinase is not the only factor involved in the escape from this 
compartment and it remains possible that LLO may also playa role. 
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Lecithinase is secreted in an inactive form that can be detected as a 33 kDa 
doublet band on western blots (GEOFFROY et al. 1991; NIEBUHR et al. 1993). Genetic 
evidence indicates that the predicted mpl gene product, a 57-kDa polypeptide 
with a signal sequence and propeptide sharing homologies with 
metalloproteases from other bacterial pathogens (DoMANN et al. 1991; MENGAUD et 
al. 1991 a), cleaves the PC-PLC proenzyme in L. monocytogenes broth cultures, 
resulting in the mature, active 29 kDa form of the phospholipase (NIEBUHR et al. 
1993; POYART et al. 1993; RAVENEAU et al. 1992). It is not clear whether cleavage 
occurs at the bacterial surface or in solution. The mpl product has been detected 
in L. monocytogenes culture supernatants as a 60 kDa polypeptide, 
corresponding to an immature, presumably inactive, proform of the enzyme. In 
only one strain (NCTC 7973) could the mature form of the protein and protease 
activity be detected (DoMANN et al. 1991). 

The analysis of the roles that mpl, actA and plcB play in virulence has been 
hampered by their genetic organization in an operon. Transcription in this operon 
is complex and is initiated from two promoters (CHAKRABORTY et al. 1992; DOMANN 
et al. 1991; LEI MEISTER-WAcHTER et al. 1992; MENGAUD et al. 1989, 1991 c; Vp.;zOUEZ­
BOLAND et al. 1992). One promoter is situated in front of mpl, giving rise to either 
a long polycistronic transcript spanning all genes of the operon or to a small 
transcript covering only the mpl gene. A second promoter lies in front of actA; the 
transcripts from this promoter are less well characterized. Insertion mutations 
into mpl exert a partial polar effect on the transcription of actA and plcB (MENGAUD 
et al. 1991 c; POYART et al. 1993; RAVENEAU et al. 1992), and insertion mutations into 
actA eliminate plcB expression (KOCKS et al. 1992; see above). Therefore, precise 
assignment of the roles of these genes in virulence requires the construction of 
in-frame deletions of individual genes, creating mutants in which transcription of 
the other genes of the operon is not affected. Thus far, only an actA in-frame 
deletion mutant has been constructed. Its LD50 in mice is more than three orders 
of magnitude increased when compared to wild type (BRUNDAGE et al. 1993). 

Shigellae and the spotted fever group (SFG) Rickettsiae also use actin 
polymerization and direct cell-to-cell spreading to within infected tissues 
(BERNARDINI et al. 1989; HEINZEN et al. 1993; TEYSSEIRE et al. 1992). Although the 
three parasites cause different clinical syndromes (L. monocytogenes: 
meningoencephalitis and abortions; Shigella: dysentry; SFG Rickettsia: spotted 
fever), they probably use similar strategies to exploit the various host cell 
functions involved. While a molecular genetic analysis of the mechanism of 
Rickettsiae pathogenesis has not been performed, two of the genes directly 
involved in cell-to-cell spreading have been isolated in Shigella. icsA (also called 
virG; LETT et al. 1989) is a 120 kDa outer membrane protein which is exposed on 
the Shigella surface (GOLDBERG et al. 1993). It is partially released owing to COOH­
terminal cleavage giving rise to a 95 kDa form. In contrast to ActA, the protein can 
be detected in the bacterially induced actin tails. A weak ATPase activity has been 
demonstrated for IcsA, but the significance of these findings for the actin 
assembly process is not known. IcsA harbors a phosphorylation site for cAMP­
dependent protein kinase which down-regulates the plaque-forming capacity of 
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S. flexneri. It has been proposed that phosphorylation of IcsA by this host cell 
kinase represents a defense mechanism of the host cell (o'HAuTEvILLE and 
SANSONETTI 1992). icsB (ALLAOUI et al. 1992) is a protein of 54 kDa whose molecular 
activities are unknown. It is necessary for efficient escape from two membrane 
vacuoles after spreading. IcsA and IcsS have no sequence similarities to the 
Listeria proteins ActA and PC-PLC and it is not clear whether they are functionally 
equivalent. 

3 Regulation of Virulence Factors 

As detailed above, the successful penetration of, survival within, and 
dissemination throughout the host requires the elaboration of a variety of Listeria 
proteins. The coordinate regulation of these virulence determinants was first 
hypothesized following the identification of conserved palindromic sequences in 
the hly promoter and in the promoter regions of the flanking virulence-related 
operons (MENGAUO et al. 1989). In addition, several mutations with pleiotropic 
effects on virulence gene expression were isolated (KATHARIOU et al. 1990; 
MENGAUO et al. 1991 b; SUN et al. 1990). Subsequently, molecular genetic analysis 
of the type strain SLCC-53, which is non hemolytic and avirulent, demonstrated 
that the strain contained an intact, but transcriptionally silent, hlygene (LEIMEISTER­
WACHTER et al. 1990). The defect in hlyexpression in this strain coincided with the 
presence of a small deletion-located immediately downstream of the pIcA gene 
(GORMLEY et al. 1989; LEIMEISTER-WAcHTER et al. 1989). Cloning and sequence 
analysis of the corresponding DNA from wild-type strains resulted in the 
identification of an open reading frame, designated prfA, which encodes a protein 
of 27 kDa (LEIMEISTER-WAcHTER et al. 1990; MENGAUO et al. 1991 b). Introduction of 
the cloned prfA gene into strain SLCC53 restored hemolysin production by this 
strain, thus providing the first direct evidence that prfA regulates hlyexpression in 
L. monocytogenes. Subsequently, detailed complementation analysis and the 
study of transposon or insertion mutants demonstrated that prfA is a pleiotropic 
regulator of virulence gene expression (Fig. 4) and activates transcription from the 
hly, pIcA, actA, and mpl promoters (CHAKRABORTY et al. 1992; MENGAUO et al. 
1991 b). Most recently, prfA has been shown to be required for expression of the 
invasion-associated, inlAB locus (DRAMsl et al. 1993b). 

Until recently, the deduced amino acid sequence of the protein encoded by 
prfA was believed to display little overall homology to other prokaryotic regulatory 
proteins (LEIMEISTER-WAcHTER et al. 1990; MENGAUO et al. 1991 b). However, recent 
data bank searches (R. EBRIGHT, personal communication) have shown that PrfA 
exhibits similarity throughout its length to the Escherichia coli cAMP receptor 
protein, CAP (20% identical residues; 39% similar residues; AlBA et al. 1982; 
COSSART and GICQUEL-SANZEY 1982) and to CAP-related proteins from the gram 
positive bacterium Lactobacillus casei, FLP (26% identical residues; 44% similar 
residues; IRVINE and GUEST 1993) and the cyanobacterium Synechococcus, NtcA 
(20% identical residues; 35% similar residues; VEGA-PALAS et al. 1992). If this 
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-35 -10 

ATAACATAAGTTAA TTCTTTTTTTTGGAAAAATAGTTATTATTATTTA-397bp-GTG 
*--, *~ ----
~AAA~ TGCCTCAACATAAAAGTCACTT~AGGAATA-24bp-TTG 

TTAACATTTGTTAA CGACGATAAAGGGACAGCAGGACTAGAATAAAGCTAT-130bp-ATG 
~ ~ ---
~AAA~~ AGAATATCTGACTGTTTATCCA~ATAAGCA-150bp-ATG 

~AAA~~ AGAAAAATTAATTCTCCAAGTGATATTCTTAAAAT-148bp-GTG 

PrfA-binding site 

P2inlA 

PplcA 

P2hly 
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PactA 

Fig. 5. Comparison of the 14 bp palindromes present in the -35 regions of the prfA-regulated virulence 
genes. The transcriptional start points (bold letters) and the -10 regions (underlinedJ of the various 
promoters are shown. Nucleotide substitutions with respect to the hly palindrome are indicated. 
(Adapted from DRAMSI et al. 1993b) 

similarity is functionally significant, then PrfA would be predicted to have a helix­
turn-helix motif at amino acid 171-191 (with a possible 1 amino acid insertion in 
the turn) or from 173-191 (with a possible 1 amino acid deletion in the turn). 
Recently, FREITAG et al. (1993) have used gel retardation analysis with purified PrfA 
to demonstrate that PrfA is a site-specific DNA-binding protein. The PrfA protein 
specifically retarded the mobility of DNA fragments containing the 14 bp 
palindromic sequence located between the divergent hly and pIcA promoters. 
Significantly, PrfA-dependent activation of hly transcription in B. subtilis is 
abolished by point mutations i.f""l this palindrome (FREITAG et al. 1992). Similar 
sequences of dyad symmetry are found in the -35 regions of the mpl (MENGAUD et 
al. 1989), actA (VAZQUEZ-BoLAND et al. 1992)' and the internalin locus promoters 
(DRAMSI et al. 1993b) (Fig. 5), suggesting that PrfA activates gene expression by 
binding these target sequences and interacting directly with RNA polymerase. 
The actA and mpl palindromes each contain a single base change relative to the 
hly sequence while that preceding the inlA promoter contains two base 
differences relative to the hly palindrome (Fig. 5). These observations and 
evidence that the activation of actA, inlA and mpl expression by PrfA in B. subtilis 
is less efficient than that observed for hly and picA (SHEEHAN and COSSART, 
unpublished) suggests that a hierarchy of palindrome binding affinities by PrfA 
does exists. Such a system could facilitate the temporal activation of virulence 
genes, with high affinity promoters being activated at low PrfA concentrations, 
whereas low affinity promoters would require relatively higher levels of PrfA 
(FREITAG et al. 1992; MENGAUD et al. 1989). 

Transcription of prfA is not constitutive and there are two maxima of prfA 
transcription during the growth cycle in vitro; these peaks coincide with increased 
LLO expression in the culture supernatant (MENGAUD et al. 1991 b). The first occurs 
in early exponential phase when prfA is cotranscribed with picA as part of a 2.2 kb 
transcript. Production of this bicistronic transcript requires transcription through a 
putative rho-independent terminator-like structure at the 3' end of the pIcA gene. 
The second peak of prfA transcription occurs at the end of exponential growth 
when the major prfA-specific transcript is 1 kb and originates from a promoter 
region located immediately 5' to the prfA gene. Both transcripts appear to be 
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required to ensure sufficient PrfA production for wild-type plaque formation in 
monolayers of L2 cells (CAMILLI et al. 1993). As prfA stimulates transcription of 
pIcA, prfA activates its own synthesis, at least in early exponential phase. During 
the stationary phase of growth, transcription of prfA and other genes of the prfA 
regulon decreases suggesting that PrfA may also play a role in negatively 
regulating its own synthesis (MENGAUD et al. 1991 b). 

Recent studies have confirmed a role for PrfA in the repression of 
transcription initiation at the prfA structural gene promoters. Transcripts initiated 
from the prfA-specific promoters prfAp1 and prfAp2 were more abundant in a 
prfA mutant strain than in the isogenic wild-type strain 10403S (FREITAG et al. 
1993). The palindrome which may serve as a recognition sequence for PrfA 
binding is not present in the prfA-specific promoter region. Thus, repression of 
transcription initiation at these promoters may result from the direct interaction of 
the PrfA protein with other sites in or near the promoter, or through the activation 
of a repressor by PrfA. It is worth noting here that there appears to be a degree of 
strain-dependent variability in the number and positioning of the prfA promoters 
which lie in the 273 bp intergenic region between the pIcA and the prfA structural 
genes. Strain L028 contains two prfA-specific promoters, P1 and P2, located at 
positions -113 bp and -143 bp, respectively, from the AUG initiation codon of prfA 
(MENGAUD et al. 1991 b). In strain 10403S, two promoters prfAp1 and prfAp2 are 
found at -113 bp and -30 bp, respectively, while strain EGD appears to contain 
only the promoter at -113 bp (FREITAG et al. 1993; LEI MEISTER-WAcHTER et al. 1992). 

Virulence determinants of many pathogenic bacteria are subject to 
environmental modulation and evidence suggests that similar strategies are 
employed by Listeria to optimize gene expression within the host. The transition 
from ambient temperature to that of the human body induces pleiotropic 
alterations in gene expression in a variety of pathogens including Escherichia coli, 
Bordetella pertussis, Shigella and Yersinia species, and Vibrio cholera (reviewed 
by MEKALANOS 1992). In L. monocytogenes optimum virulence gene expression 
occurs at 37°C (LEIMEISTER-WAcHTER et al. 1992). Northern blot analysis has 
demonstrated that this thermoregulation is effected at the level of transcription 
with fewer transcripts corresponding to the virulence-related genes hly, pIcA, 
mpl, and inlA occurring at temperatures below 37°C. Interestingly, transcription of 
the smaller prfA-specific mRNA appears to be unaffected by the growth 
temperature, suggesting that PrfA may act in concert with other regulatory 
proteins (that are themselves thermoregulated) or that PrfA may require 
posttranscriptional modification for activity (LEIMEISTER-WAcHTER et al. 1992). 

Recently, PARK and KROLL (1993) have described a negative effector molecule 
of virulence gene expression in L. monocytogenes. Using transcriptional fusions 
between the hlyand pIcA promoters and the luxAB reporter genes, the authors 
observed that the expression of luciferase by these fusions was specifically 
repressed by the plant-derived disaccharide cellobiose. This molecule is 
considered to be present in significant quantities in the soil and decaying 
vegetation that constitute the primary habitats of L. monocytogenes. Cellobiose 
may thus act to repress virulence gene expression in the saprophytic 



Molecular and Genetic Determinants of the Listeria monocytogenes Infectious Process 205 

environment. Although the low, residual level expression of hlyand pIcA in prfA 
mutants was not greatly affected by cellobiose, it is not yet clear if this molecule 
exerts its effect via the prfA regulatory system. Interestingly, like the effect of 
temperature described above, regulation of hly and pIcA transcription in the 
presence of cellobiose is not coupled to the levels of monocistronic prfA mRNA 
(KLARSFELD et al. 1994). 

Stress conditions such as heat shock and nutrient stress result in the 
preferential synthesis of prfA-regulated proteins in vitro. LLO and at least four 
other prfA-dependent proteins (which may include ActA and PI-PLC) are 
preferentially synthesized when bacteria are grown at 48°C (heat shock 
conditions; SOKOLOVIC and GOEBEL 1989; SOKOLOVIC et al. 1990, 1993). Moreover, at 
least 12 proteins are specifically labeled by [35S] methionine in wild-type, but not 
PrfA-defective, strains, when bacteria were incubated in a medium (MEM) 
containing low concentrations of essential amino acids and iron and which did not 
support bacterial growth (SOKOLOVIC et al. 1993). Included among these stress­
induced proteins are a number of previously characterized prfA-regulated proteins 
(ActA, LLO, Mpl, PI-PLC, and PC-PLC) and their proteolytically processed 
derivatives. The five remaining stress-induced, PrfA-regulated, proteins represent 
novel surface-associated products whose role in virulence, if any, remains to be 
determined. Similar experiments revealed the presence of a 64 kDa surface­
located protein, the expression of which is repressed by PrfA, suggesting that 
PrfA, in common with many other bacterial regulators, may act both as an 
activator and as a repressor of target gene expression. 

While the prfA regulation of virulence gene expression occurs primarily at the 
level of transcript initiation, there is evidence that other regulatory controls exist 
to modulate expression of prfA-dependent genes. Gene regulation by transcrip­
tional antitermination has been documented in other gram-positive organisms 
including B. subtilis (see review by KLIER et al. 1992 and references therein). In L. 
monocytogenes, transcriptional antitermination has been suggested to occur at 
the putative terminater located in the intergenic region between the pIcA and prfA 
genes, resulting in the production of the bicistronic mRNA during the early stages 
of growth (MENGAUD et al. 1991 b) and in the intergenic region between the inlA and 
inlB genes (DRAMSI et al. 1993b). It remains to be determined if the same 
mechanism of antitermination operates in both operons. 

4 Other Potential Virulence Determinants 

In addition to those described above, a number of other Listeria genes have been 
identified which may contribute to the infectious process. These include genes 
encoding a superoxide dismutase (BREHM et al. 1992), a protein homologous to 
the cholera toxin of Vibrio cholerae (GARCIA DEL PORTILLO et al. 1992; VICENTE et al. 
1989) and the L. monocytogenesflagellin protein (DONS et al. 1992). Furthermore, 
regulatory genes which may contribute to the virulence of L. monocytogenes 
have been identified (WREN et al. 1992). 
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Oxidizing agents such as the superoxide radical and hydrogen peroxide 
exhibit potent antimicrobial activity and the ability to counteract these products 
may contribute to the intracellular survival of L. monocytogenes. The L. 
monocytogenes superoxide dismutase-encoding gene, Imsod, has recently been 
cloned and sequenced (BREHM et al. 1992). Superoxide dismutase (SOD) converts 
superoxide radicals to hydrogen peroxide as the first step in the elimination of 
these toxic metabolites from the cell. While a role for SOD in the pathogenicity of 
faculative intracellular bacteria such as Nocardia asteroides (BEAMAN and BEAMAN 
1990) and Shigella flexneri (FRANZON et al. 1990) has been proposed, the role of the 
Listeria SOD in intracellular survival has yet to be demonstrated. Similarly, 
catalase production by L. monocytogenes has been suggested as a virulence 
factor which contributes to bacterial defense against the products of oxidative 
metabolism. However, transposon-induced, catalase-deficient mutants of L. 
monocytogenes were not affected in virulence when tested in mouse models of 
infection (LEBLOND-FRANCILLARD et al. 1989). 

Recently, a fragment of a L. monocytogenes gene with homology to the ctxA 
gene of the gram-negative pathogen Vibrio cholerae has been cloned and 
sequenced (GARCIA DEL PORTILLO et al. 1992; VICENTE et al. 1989). The V. cholerae 
ctxAB operon encodes the A and B subunits of the ADP-ribosylating enzyme 
cholera toxin, which is largely responsible for the diarrheal syndrome associated 
with V. cholerae colonization of the intestinal mucosa. The role of the L. 
monocytogenes ctxAB homologue in virulence is currently unknown. It should be 
noted that sequences hybrictizing to a ctxAB probe are present in all, including 
nonpathogenic, Listeria species (Gouin and Cossart, unpublished). 

A relationship between bacterial motility and virulence has been reported for 
several pathogens including Helicobacter pylori, Salmonella typhi and Vibrio 
cholerae (EATON et al. 1992; Llu et aL 1988; RICHARDSON 1991). In all cases, loss of 
motility correlated with decreased virulence in in vitro or in vivo models of 
infection. Strains of L. monocytogenes grown at low temperatures (20°-25°C) 
possess flagella and are motile. In contrast, Listeria grown at 37°C are only poorly 
flagellated and non-motile. The flagellin-encoding flaA gene has recently been 
cloned and sequenced and the NH2-and COOH-terminal regions of flagellin show 
considerable homology to other flagellin proteins (DONS et al. 1992). In northern 
blot experiments the flaA-specific mRNA was undetectable at 37°C, suggesting 
that the thermoregulation of flagellin production occurs at the level of 
transcription. Southern blot analysis with a flaA-specific probe has demonstrated 
that flaA homologues are present in all Listeria species (DONS et al. 1992). The 
availability of the cloned flaA gene should allow the construction of isogenic flaA­
defective strains and the analysis of the role of flagellar expression and motility on 
Listeria virulence. 

A wide variety of bacterial adaptive responses, including the coordinate 
regulation of virulence determinants in pathogenic microorganisms, are mediated 
by the well characterized, two component, signal transduction systems (for 
reviews see PARKINSON 1993; STOCK et al. 1989, 1990). These systems contain two 
classes of well conserved proteins; a sensor (generally a histidine protein kinase), 
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which is involved in environmental signal detection, and a response regulator, 
frequently a cytoplasmic transcriptional regulator. All response regulators contain 
a conserved domain of approximately 100 amino acids which extends from the 
NH2-terminal. Degenerate oligonucleotide primers which hybridize to this conser­
ved region have been used to amplify by PCR L. monocytogenes DNA fragments 
with sequence homology to response regulator proteins (WREN et al. 1992). 

5 Genetic Map of Listeria monocytogenes 

Until recently, most genes identified in L. monocytogenes encode proteins 
involved in the pathogenesis of this organism. The majority of these are clustered 
at a single 10 kb locus containing the h/y gene and the flanking p/cA-prfA and 
lecithinase operons. As transducing phages are not available in Listeria, pulse 
field gel electrophoresis was used to establish the current physical and genetic 
map of L. monocytogenes (Fig. 6; MICHEL and COSSART 1992). Included on this map 
are a numberof recently identified listerial genes including cheR, {43% identity to 

recA 

L. monocytogenes 
strain L028 

3150 kb 

hly locus 
gyr 
lmaAB 
inlAB 

Fig. 6. Physical and genetic map of the Listeria monocytogenes chromosome. The outer intervals 
correspond to Not! fragments, the intermediate to Sse8387 I fragments, and the inner indicates the 
location of the single Sfl1 site. The intervals where genes have been located are indicated by arcs outside 
the circular map. The arrow indicates the precise location of the hly locus. 
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the B. subtilis chemotaxis methyltransferase); motA and motB, (45% identity to 
B. subtilis flagellar motor proteins) (Eric Michel. Sally Galsworthy, Jerome 
Mengaud, Pascale Cossart, manuscript in preparation); flaA, (encoding the 
L. monocytogenes flagellin protein; DONS et al. 1992), h11, (homology to bacterial 
histone-like protein-encoding genes; M. Sanchez-Campillo, J. M. Gomez, and 
J.C. Perez-Diaz, personal communication), and purH, (de novo purine biosyn­
thesis; KLARSFELD et aI.1994). The location ofthe L. monocytogenescatalase gene, 
kat has been determined by hydridization using sequences derived from the 
cloned L. seeligeri kat gene (HAAS et al. 1991). 

6 Genetic Analysis of Other Listeria Species 

Of the other members of the genus Listeria, only L. ivanovii is considered to be 
pathogenic but, unlike L. monocytogenes, it is a pathogen of animals and is not 
associated with human disease (COOPER and DENNIS 1978). L. ivanovii infects a 
variety of domestic animals causing abortion, neonatal sepsis, and enteritis. 
Recent results obtained in in vitro tissue culture models of infection suggest that 
L. ivanovii follows the same general pathway of entry, phagolysosomal lysis, 
intracellular multiplication and cell-to-cell spreading as L. monocytogenes. L. 
ivanovii can induce its uptake by epithelial cells and fibroblasts (GAILLARD et al. 
1987; KARUNASAGAR et al. 1993; KUHN et al. 1988). Entry into the host cell is followed 
by lysis of the phagolysoseme. L. ivanovii produces a thiol-activated cytolysin, 
ivanolysin OLO), which is closely related to LLO and which, by analogy with LLO, 
may be required for phagolysosomal lysis (LEIMEISTER-WACHTER and CHAKRABORTY 
1989; HAAS et al. 1992). Once in the cytoplasm, L. ivanovii becomes associated 
with host cell actin filaments which are reorganized to form comet tails similar to 
those observed with L. monocytogenes (KARUNASAGAR et al. 1993). The ability of L. 
ivanovii to induce actin polymerization suggests the existence of an ActA 
homologue in this species, but several early attempts to detect sequences 
similar to actA in L. ivanovii have been unsuccessful (KARUNASAGAR et al. 1993; 
VAZQUEZ-BOLAND et al. 1992). However, using different probes, Southern blot 
analysis under low stringency conditions has now demonstrated that the 
virulence locus of hly, plcA-prfA and the lecithinase operon, including the gene 
actA, is present in the three hemolytic species of Listeria, L. monocytogenes, L. 
ivanovii, and L. seeligeri (see Fig. 7; GOUIN et al. 1994). In contrast, genes with 
putative "housekeeping" functions such as Idh and prs (Fig. 7), which encode 
proteins with homology to lactate dehydrogenase, and to bacterial and eukaryotic 
phosphoribosyl-pyrophosphate synthetases, respectively, and which flank the 
virulence locus, are found in all Listeria species. The chromosomal arrangement 
of pIcA, prfA and the ivanolysin gene is highly reminiscent of the arrangement of 
the corresponding genes in L. monocytogenes (GOEBEL et al. 1994). 

Interestingly, although electron microscopic observations suggest that L. 
ivanoviiis capable of cell-to-cell spreading, it does not cause plaques in fibroblast 
monolayers (KARUNASAGAR et al. 1993). While the mechanism of cytotoxity in 
Listeria species is not yet known, KARUNASAGAR et al. (1993) have suggested that 
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L. ivanovii lacks a cytolytic activity which leads to the destruction of host cells by 
L. monocytogenes and that this lack of cytotoxicity may account for lower degree 
of virulence of L. ivanovii compared to L. monocytogenes. 

L. seeligeri, a nonpathogenic Listeria species, displays a weak hemolytic 
activity on blood agar plates (GEOFFROY et al. 1989). These bacteria are very weakly 
invasive for epithelial cells and rarely escape from the phagosome (GAILLARD et al. 
1987). It is possible that this species lacks some virulence loci required for 
L. monocytogenes and L. ivanovii virulence or, more likely, that some of the 
genes hybridizing to the known virulence cluster, although present, may be not 
functional or not sufficiently well expressed to confer virulence (GOUIN et al. 1994). 

7 Concluding Remarks 

Considerable advances in our understanding of the infection of host tissues by L. 
monocytogenes have occurred during the past decade. These have been made 
possible by the development of techniques that allow L. monocytogenes to be 
genetically manipulated and by the availability of in vitro and in vivo models of 
infection. Beginning with the identification of hly as an essential virulence 
determinant, many genes required for successful penetration, multiplication and 
dissemination of this pathogen within host tissues have been described. 
However, these genes are unlikely to represent the entire spectrum of L. 
monocytogenes requirements for intracellular parasitism. For example, it is to be 
expected that genes other than inlA are required for entry. In addition, bacterial 
factors inducing the efficient phagocytosis of bacteria-containing protrusions by 
neighboring cells during cell-to-cell spreading remain to be identified. While it is 
becoming clear that intracellular Listeria do not express many specialized 
metabolic functions for survival and multiplication in the host cell cytoplasm, 
evidence suggests that these bacteria have evolved sophisticated strategies to 
exploit components of the host cell cytoskeleton. Bacterially induced 
phagocytosis and intracellular actin-based motility provide elegant examples of 
this type of host pathogen interaction. Future research will undoubtedly focus on 
the identification of the host cell receptor for internalin, on bacterially induced 
signaling events and on the nature of the eukaryotic proteins recruited by Listeria 
for actin tail formation and movement. The recent development of an in vitro 
system for Listeria motility based on Xenopus oocyte extracts promises to make 
Listeria an exciting tool for the investigation of actin-based motility phenomena in 
general (THERIOT and MITCHISON 1992; THERIOT et al. 1994). 

Finally, although similarities can be observed between the behavior of the 
gram-negative pathogen S. f1exneri and L. monocytogenes in tissue culture 
models of infection (i.e., cytoplasmic multiplication, actin-based movement, and 
direct cell-to-cell spread), the clinical features of shigellosis and listeriosis are 
quite different. This disparity between host cell infection at the cellular level and 
the clinical manifestations of the resultant disease emphasize the need to 
complement the in vitro analysis of bacterial pathogenesis with relevant in vivo 
studies. 
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Notes added in proof 

Since this review was written a number of papers have been published with relevance to intracellular 
movement and the regulation of virulence factors. 

PISTOR et al. (1994) have demonstrated that the expression of ActA in eukaryotic cells (in the 
absence of other bacterial factors) is sufficient to induce actin nucleation. SOUTHWICK and PURICH (1994) 
have shown that microinjection of a synthetic peptide analogous to one of ActA's oligoproline repeats 
into Listeria-infected cells blocks the formation of actin-filament tails and arrests bacterial movement. 
Injection of this peptide also resulted in host cell membrane retraction. 

BOHNE et al. (1994) have shown that ActA. PC-PLC and LLO are the major PdPs synthesized when 
L. monocytogenes is shifted from BHI to MEM. The preferential synthesis of PdPs in MEM requires de 
novo transcription. FREITAG and PORTNOY (1994) have demonstrated that the two prfA promoters which 
occur in the intergenic region between picA and prfA are functionally redundant in vivo. Finally, !.AMPIDIS 
et al. (1994 in press) have cloned sequenced the prfA homologue from L. ivanovii. They have 
independently identified the homology between the Listeria PrfA proteins and the Crp-Fnr family of 
transcriptional regulators. 
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A century ago, Shiga isolated the etiologic agent of bacillary dysentery (SHIGA 
1898). The genus Shigella is now divided into four species, S. boydii, S. 
dysenteriae, S. flexneri, and S. sonnei. Shigellosis, whose clinical signs range 
from mild diarrhea to severe dysentery with blood, mucus, and pus in the stool, 
remains endemic throughout the world. Epidemiological studies indicate that 
Shigella is transmitted by the fecal-oral route and sometimes by contaminated 
food (WHARTON et al. 1990). Shigella are highly infectious organisms for humans, 
since only a few hundred bacteria administered orally caused disease in 50% of 
volunteers (DUPONT et al. 1989). 

Shigellosis is caused by penetration of invasive bacteria into the intestinal 
mucosa of the colon, where degeneration of the epithelium and a strong 
inflammatory reaction indicate the sites of Shigella infection (LABREe et al. 1964). 
Most of our knowledge on the pathogenesis of the disease is derived from 
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studies using experimentally infected monkeys (TAKEUCHY et al. 1968). Injection of 
bacteria into rabbit ligated ileal loops, which elicits fluid accumulation and 
mucosal destruction (GOTS et al. 1974), and infection of the corneal epithelium of 
guinea pigs, which provokes keratoconjunctivitis (SERENY 1957), are sometimes 
used to assess Shigella virulence. 

Since Shigella can invade epithelial and nonepithelial cells in vitro (GERBER and 
WATKINS 1961; LABREC et al. 1964), the invasive process has been mainly studied 
on cultured cell lines. In vitro, this process consists of the integration of two steps, 
entry and intercellular dissemination, and eventually leads to a cytopathic effect 
that can be visualized by the formation of plaques on a confluent cell monolayer 
(OAKS et al. 1985). The cellular biology and genetics of entry and intercellular 
dissemination (reviewed by HALE 1991 and by SANSONETTI 1991) have been 
performed mainly using S. flexneri, but most conclusions derived from these 
studies apply to the other Shigella species as well as to enteroinvasive 
Escherichia coli (EIEC) strains that cause a dysentery-like syndrome similar to 
shigellosis (DUPONT et al. 1971). 

The various aspects of Shigella pathogenicity were the focus of an issue of 
this series (SANSONETTI 1992). 

2 Cellular Biology of Entry and Intercellular 
Dissemination 

Following adhesion to the cell, a step that is quite elusive in the case of Shigella, 
the bacteria are internalized by epithelial cells in a process similar to phagocytosis, 
in that actin polymerization and myosin accumulation at the site of entry are 
required (HALE et al. 1979; CLERC and SANSONETTI 1987). Infection of polarized cells, 
which were differentiated from the human colonic epithelial cell line Caco-2, 
indicated that S. flexneri enters through the basolateral pole rather than the apical 
pole of epithelial cells (MOUNIER et al. 1992). 

Within a few minutes after entry, Shigella lyses the membrane of the 
phagocytic vacuole and gains access to the cytoplasm of the cell where it 
multiplies with a generation time of about 40 min (SANSONETTI et al. 1986). Protein 
synthesis of the infected cell is rapidly blocked (HALE and FORMAL 1981). Invasion 
by S. flexneriof a murine macrophage cell line, J774, resulted in rapid killing of the 
host cell (SANSONETTI and MOUNIER 1987). Wild-type Shigella induced apoptosis, 
i.e., programmed cell death, in infected macrophages (ZYCHLINSKY et al. 1992). 

While extracellular Shigella are nonmotile organisms, intracellular bacteria 
move to occupy the entire cytoplasm of the infected cell and to spread from cell 
to cell. Two apparently independent movements have been described in different 
cell lines. In chicken embryo fibroblasts, which have a highly organized cyto­
skeleton, intracellular bacteria interact with and progress along stress fibers, a 
movement that was designated Olm (for organelle-like movement) (VASSELON et 
al. 1991). A movement of the bacteria along the actin filament ring of the peri-junc­
tional area has also been observed in infected Caco-2 cells (VASSELON et al. 1992). 
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The initial observation that Shigella moves into the cytoplasm of infected 
cells came from phase contrast microcinematography studies; the movement of 
the bacteria was random and sometimes led to the formation of structures 
protruding from the cell surface and containing bacteria at their tip (OGAWA et al. 
1968). This intracellular movement can be reversibly inhibited by treatment with 
cytochalasin D which prevents polymerization of monomeric actin (G-actin) into 
filaments (PAL et al. 1989; BERNARDINI et al. 1989). The use of N-{7-nitrobenz-2-oxa­
l,3-diazol-4-yl) phallacidin, which specifically binds to polymerized actin (F-actinl, 
showed labeling of intracellular bacteria and trails of F-actin at one pole of the 
bacteria, confirming the involvement of actin in the movement of bacteria 
(BERNARDINI et al. 1989). 

Electron microscopy studies have allowed a detailed ultrastructural analysis 
of these protrusions, which have a diameter of about 0.5 11m and a length up to 20 
11m (KADURUGAMUWA et al. 1991; PREVOST et al. 1992; SANSONETTI et al. 1993). 
Bacteria in these protrusions are located at the top of tightly packed actin 
filaments which, in some instances, appeared to form a cylinder. Pictures 
showing a protrusion extending from one cell and penetrating into the adjacent 
cell indicated that these protrusions can allow passage of Shigella from cell to cell 
without release of the bacteria into the extracellular medium. Genetic studies 
(see below) confirmed the importance of this movement, designated Ics (for 
intra- and intercellular spread), in the dissemination of bacteria from the primary 
infected cell to the adjacent cells. A movement based on actin polymerization and 
bundling of actin filaments at one pole of the bacteria has similarly been described 
for Listeria monocytogenes, an invasive bacteria that, like Shigella, is able to lyse 
the membrane of the phagocytic vacuole (TILNEY and PORTNOY 1989, 1990; 
MOUNIER et al. 1990; see the review by Sheehan et al. on L. monocytogenes in 
this volume). 

In addition to actin, several cellular proteins, such as vinculin and plastin, but 
not myosin, are associated with the polymerized structure that trails behind the 
intracellular bacteria (KADURUGAMUWA et al. 1991; PREVOST et al. 1992). Using a cell 
line which does not produce cell adhesion molecules and transfectants 
expressing either L-CAM or N-cadherin, SANSONETII et al. (1994) have shown that 
cell adhesion molecules are required for cell-to-cell spread of Shigella. Cadherin 
was important for both the structural organization of the protrusion and the 
internalization of a protrusion by an adjacent cell. Moreover, L-CAM, (X-actin in, 
vinculin, and (X- and ~-catenins were found to be associated with the protrusions 
that initiated at the intermediate junctions. 

3 Plasmid Genes Involved in Entry 

Evidence for an essential role of plasmid determinants in invasion came from the 
observation that a large plasmid of about 200 kb was present in all invasive 
isolates of Shigella and EIEC strains and that deletions within or loss of this 
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plasmid resulted in avirulence (SANSONETII et al. 1981, 1982; HARRIS et al. 1982). 
Hybridization studies indicated a high degree of relatedness between the large 
plasm ids carried by Shigella and EIEC strains (SANSONETII et al. 1983a). Moreover, 
mobilization of the large plasmid from S. flexneri to E. coli K 12 gave rise to a 
recombinant strain that was able to invade HeLa cells (SANSONETII et al. 1983b). 

The use of minicell-producing strains of S. flexneri, S. sonnei, and EI EC led to 
the characterization of 15-20 proteins encoded by the virulence plasmid (HALE et 
al. 1983). Seven proteins common to S. flexneri and enteroinvasive E. coli 0143 
were identified by two-dimensional gel electrophoresis and designated a-g (HALE 
et al. 1985). Four of these polypeptides, a (78 kDa), b (62 kDa), c (43 kDa), and d 
(39 kDa), were found to be the predominant antigens recognized by the sera from 
humans convalescing from shigellosis, as well as by those of monkeys 
experimentally infected with S. flexneri (HALE et al. 1985; OAKS et al. 1986). The 
generic term Ipa (for invasion plasmid antigen) was subsequently used to 
designate these proteins and the corresponding genes (BUYSSE et al. 1987). 

Two strategies, cloning into a cosmid and transposon mutagenesis, were 
used to identify genes responsible for the invasive phenotype. A library of 
cosmids containing 45 kb DNA fragments of the pWR 100 plasmid from S. flexneri 
5 was introduced into a Shigella strain lacking the virulence plasmid and the 
recombinant strains were then screened for their ability to enter HeLa cells. The 
inserts present in the cosmids that conferred entry contained a common region of 
about 37 kb and allowed the expression of the IpaA, IpaB, IpaC, and IpaD antigens 
(MAURELLI et al. 1985). A similar strategy was used to isolate the invasion region of 
the S. sonnei virulence plasmid (KATO et al. 1989). Using a different approach, 
SASAKAWA et al. (1986) isolated over 300 independent Tn5 insertions in 
pMYSH6000, the virulence plasmid of S. flexneri 2a, and screened the mutants 
for their ability to invade LLC-MK2 cells. This led to the identification of a 30 kb 
fragment, the integrity of which was required for invasion. The restriction map of 
this fragment was very similar to that of the entry region characterized in S. 
flexneri5 and in S. sonnei. Since then, the combined effort of several laboratories 
has resulted in the elucidation of the complete nucleotide sequence of the 30.5 kb 
region that is necessary and apparently sufficient for entry of S. flexneri into 
epithelial cells in vitro (ADLER et al. 1989; ALLAOUI et al. 1992a, b, 1993a, b, and 
unpublished data; ANDREWS and MAURELLI 1992; BAUDRY et al. 1988; BUYSSE et al. 
1990; SASAKAWA et al. 1989, 1993; VENKATESAN et al. 1988, 1992; VENKATESAN and 
BUYSSE 1991). As shown in Fig. 1, this fragment contains 33 genes clustered in 
two regions which are transcribed in opposite orientation. 

3.1 The mxi and spa Secretion Genes 

The initial characterization of the proteins expressed by the virulence plasmid 
indicated that several of them, including the IpaA, IpaB, IpaC, and IpaD antigens, 
were associated with the outer membrane ofthe bacterium (HALE et al. 1983). The 
reactivity of monoclonal antibodies directed against IpaB and IpaC with whole 
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Fig. 1. The Shigella flexneri invasion region 

bacteria in an ELISA confirmed that these proteins were exposed on the surface 
of virulent shigellae (MILLS et al. 1988; HROMOCKYJ and MAURELLI 1989). Secretion 
of IpaS and IpaC into the culture medium was demonstrated by ANDREWS et al. 
(1991), and analysis of concentrated culture supernatant fluids by SDS-PAGE and 
Coomassie blue staining indicated that wild-type S. flexneri secretes about ten 
polypeptides into the growth medium (ALLAOUI et al. 1992b). In addition to IpaS 
and IpaC, the two other Ipa antigens, IpaA and IpaD, have been detected in the 
culture medium of S. flexneri (MENARD et al. 1993 and unpublished data). 

Characterization of the phenotype of noninvasive mutants, obtained after 
transposon mutagenesis or constructed by allelic replacement. led to the 
identification of a locus that contaIns many genes whose products are involved in 
the surface presentation and secretion of the Ipa antigens (ANDREWS et al. 1991; 
ALLAOUI et al. 1992b, 1993a, and unpublished data; VENKATESAN et al. 1992; 
SASAKAWA et al. 1993). These genes were designated mxi (for membrane 
excretion of invasion plasmid antigens) and spa (for surface presentation of Ipa 
antigens). All the mxi and spa noninvasive mutants are probably defective in both 
surface presentation and secretion of the four Ipa antigens as well as at least four 
other proteins (ALLAOUI et al. 1992b). Since the IpaS, IpaC and IpaD proteins are 
necessary for entry (see below), the noninvasive phenotype of the mxi and spa 
mutants is most likely a consequence of their inability to secrete these antigens. 

The entire region containing the mxi and spa genes is designated the mxi-spa 
secretion locus. This locus contains 24 genes which are organized in two 
operons, one extending from ipgDto spa15and the other from spa47to ORF10 
(ANDREWS et al. 1991; TOBE et a1.1991; ALLAOUI et al. 1993a; SASAKAWA et al. 1993). 
Complementation studies and construction of nonpolar mutants have indicated 
that a few genes located in these operons, such as ipgD (ipgfor invasion plasmid 
gene), ipgF, spa 15, and ORF10, were neither involved in secretion of the Ipa 
proteins nor in invasion of HeLa cells (ALLAOUI et al. 1993a; SASAKAWA et al. 1993). 

Preliminary studies and sequence analysis have indicated the location of 
some of the Mxi and Spa proteins. For example, the NH2-terminal sequences of 
IpgF, MxiD, MxiJ, and MxiM exhibit features characteristic of a signal sequence. 
MxiJ and MxiM were shown to be lipoproteins and proposed to be anchored in 
the outer membrane by their NH2-terminallipid moiety (ALLAOUI et al. 1992b).The 
COOH-terminal moiety of MxiD, which has significant sequence similarities with 
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the COOH-terminal domain of the Klebsiella oxytoca PulD protein (D'ENFERT et al. 
1989) and of protein IV of filamentous bacteriophages (PETERS et al. 1985; LUITEN 
et al. 1985), may be involved in the targeting of MxiD to the outer membrane 
(ALLAOUI et al. 1993b). MxiA has been detected in the inner membrane (ANDREWS 
et al. 1991) and sequence analysis suggests that this protein contains two 
domains, a NH2-terminal domain composed of six transmembrane spanning 
segments and a COOH-terminal domain located in the cytoplasm (ANDREWS and 
MAURELLI 1992). Similarly, the presence of internal, hydrophobic segments in 
Spa9, Spa15, Spa24, Spa29, and Spa40 suggests that these proteins might also 
be located in the inner membrane (VENKATESAN et al. 1992; SASAKAWA et al. 1993). 

Sequence comparisons have revealed extensive similarties between some 
Mxi and Spa proteins and Yersinia proteins involved in the secretion of the Yop 
proteins. For example, MxiD, MxiJ, and MxiH are homologuous to YscC, YscJ, 
and YscF, respectively, three proteins encoded by the virC operon of Yersinia 
enterocolotica (MICHIELS et al. 1991). As indicated in Table 1, several Spa proteins 
also have homologues encoded by the Yersiniavirulence plasmid (H. Wolf-Watz, 
personal communication). Representatives of the Shigella Mxi and Spa proteins 
are also present in Salmonella typhimurium where they are required for invasion 
(GALAN et al. 1992; GROISMAN and OCHMAN 1993), in plant pathogens such as 
Erwinia carotovora (MULHOLLAND et al. 1993), Xanthomonas campestris (FENSELAU 
et al. 1992; HWANG et al. 1992), and Pseudomonas solanacearum (ARLAT et al. 
1992; GOUGH et al. 1992, 1993) where they are involved in pathogenicity, and in E. 
coli and Bacillus subtilis wnere they are involved in flagellar assembly (MALAKOOTI 
et al. 1989; ALBERTINI et al. 1991; VOGLER et al. 1991; BISCHOFF and ORDAL 1992; 
BISCHOFF et al. 1992; CARPENTER and ORDAL 1993). The phenotype of the Shigella 
mxi and spa mutants, as well as that of the Yersinia ysc mutants, suggests that 
these proteins form a secretion apparatus for the Shigella Ipa and Yersinia Yop 
proteins, whose NH2-terminal amino acid sequences do not exhibit the features 
characteristic of a signal sequence and which do not appear to be processed 
during secretion. 

3.2 The ipaB, ipae, and ipaD Entry Genes 

The genes encoding the IpaA, IpaB, IpaC, and IpaD antigens are clustered in a 
locus that comprises eight genes in the order icsB, ipgA, ipgB, ipgC, ipaB, ipaC, 
ipaO, and ipaA (Fig. 1). The transcriptional organization of this locus was analyzed 
by northern blotting and S1 nuclease protection experiments, cloning into a 
promoter probe vector, and by studies of the effect of polar insertions on the 
expression of downstream genes (BAUDRY et al. 1987; VENKATESAN et al. 1988; 
SASAKAWA et al. 1989; ALLAOUI et al. 1992a). In addition to the icsB promoter, a 
promoter necessary for the full expression of the ipa genes was identified 
upstream from ipgB, and internal, weaker promoters have been detected 
upstream from ipgA and ipaO. 
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The role of these genes in entry was first investigated using transposon 
insertion mutants constructed either on the large virulence plasmid or on cosmids 
that conferred entry (MAURELLI et al. 1985; SASAKAWA et al. 1986; BAUDRY et al. 1987; 
WATANABE et al. 1990). Transposon insertions in ipgA, ipg8, ipgC, ipa8, ipaC, and 
ipaO, but not in ipaA, abolished invasion of epithelial cells. Complementation 
analysis using various recombinant plasm ids indicated that ipa8, ipaC, and ipaO, 
but not the upstream ipg genes, were involved in virulence, as evaluated by the 
formation of plaques on a cell monolayer (SASAKAWA et al. 1989). Recently, each of 
the ipa8, ipaC, and ipaO genes carried by the large virulence plasmid of S. flexneri 
5 was inactivated by allelic replacement with a gene mutagenized in vitro by 
insertion of a nonpolar cassette (HIGH et al. 1992; MENARD et al. 1993). The ipa8, 
ipaC, and ipaO mutants were each unable to enter into Hela cells, a phenotype 
that could be complemented by recombinant plasm ids carrying only a wild-type 
copy of the mutated gene. Although the three mutants were not impaired in 
adhesion to the cells, they were unable to induce actin polymerization at the site 
of attachment of the bacteria to the cellular membrane. 

Shortly after entry into the cell, Shigella lyses the membrane of the 
phagocytic vacuole and gains access to the cytoplasm of the cell. This 
membranolytic activity is reflected by the contact hemolytic activity expressed by 
invasive Shigella (SANSONETII et al. 1986). The ipa8, ipaC, and ipaO mutants were 
non hemolytic, suggesting that the three Ipa proteins were also involved in the 
escape from the phagosome (HIGH et al. 1992; MENARD et al. 1993). The role of 
each of the IpaB, IpaC, ana IpaD proteins in the lysis of the membrane of the 
phagocytic vacuole has been confirmed using a macrophage cell line which 
allows internalization of noninvasive bacteria; the ipa mutants remained trapped 
in the phagosome and were not cytotoxic (zYCHLINSKY et al. 1994). 

Since the ipa mutants were defective in invasion but not in secretion of the 
remaining Ipa proteins, which differentiated them from the mxi and spa mutants, 
the IpaB, IpaC, and IpaD proteins appear to be potential effectors of Shigella entry 
into epithelial cells (MENARD et al. 1993). The similar phonotype of the ipa mutants 
suggests that IpaB, IpaC, and IpaD might act together in induction of 
phagocytosis as well as in escape from the phagosome. An association of IpaB 
and IpaC has indeed been detected in the culture supernatant of wild-type S. 
flexneri (R. Menard et aI., in preparation). However, the mechanism of action of 
the Ipa proteins in these processes remains to be elucided. 

3.3 The virB and virF Regulator Genes 

The invasive phenotype of Shigella is regulated by the temperature of growth; 
strains which are invasive when grown at 3JDC become noninvasive when grown 
at 30°C (MAURELLI et al. 1984). The temperature-regulated expression of the ipa, 
mxi, and spa operons is under the control of a regulatory cascade that involves 
two transcriptional activators, VirB and VirF, which are encoded by the large 
plasmid, and the product of a chromosomal gene, designated virR (see below). 
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Transposon insertions in a gene located immediately downstream from the 
ipa operon (Fig. 1) led to a noninvasive phenotype (MAURELLI et a!. 1985; SASAKAWA 
et a!. 1988). This gene, which was designed virB in S. flexneri 2a (ADLER et a!. 
1989). ipaR in S. flexneri5 (BUYSSE et a!. 1990), and invEin S. sonnei(WATANABE et 
a!. 1990), encodes a 36 kDa protein homologous to ParB of plasmid P1 and SopB 
of plasmid F, two DNA-binding proteins involved in plasmid partioning. The virB 
(ipaR, invE) mutants, which did not produce the Ipa antigens, were altered in the 
transcription of the ipa, mxi, and spa operons. Overproduction of VirB from 
recombinant plasm ids led to an increased transcription of the invasion operons 
even at 30°C (WATANABE et a!. 1990; TOBE et a!. 1991). The VirB binding site(s) on 
the promoters of the ipa, mxi, and spa operons have not yet been identified. 
Expression of the virB gene is itself positively regulated by VirF. 

The virF gene is located about 40 kb away from the invasion region of the 
virulence plasmid pMYSH6000 of S. flexneri 2a (SAKAI et a!. 1986a,b). Sequence 
analysis indicates that the 30 kDa VirF protein belongs to the AraC family of 
transcriptional activators. Transposon insertions in virF abolished transcription of 
the virB gene, which resulted in the lack of expression of the invasion genes (SAKAI 
et a!. 1988; ADLER et a!. 1989; TOBE et a!. 1991). Deletion analysis indicated that 
activation of the virB promoter by VirF requires a DNA segment extending 110 bp 
upstream from the virB transcription start site (TOBE et a!. 1993). The virF gene is 
expressed at 30°C, in contrast to virB which is transcribed only at 37°C. At 30°C, 
overexpression of virFfrom recombinant plasm ids did not enhance transcription 
of virB (TOBE et a!. 1991); this is likely to be due to the binding of the 
chromosomally encoded VirR protein (see below) on the virB promoter at 30°C 
(TOBE et a!. 1993). 

4 Plasmid Genes Involved in Intercellular Dissemination 

Once they have reached the cytoplasm of the infected cell, i.e., after entry and 
escape from the phagosome, wild-type shigellae are able to move and to occupy 
the entire cytoplasm of the cell. Moreover, bacteria induce the formation of long 
protrusions which consist of cellular membrane extensions that are filled with 
actin filaments and contain a dividing bacterium or two bacteria at their tip. These 
protrusions are involved in the dissemination of bacteria from cell to cell without 
release into the extracellular medium, a phenotype that is reflected in vitro by the 
formation of plaques on a confluent cell monolayer (the plaque assay) (OAKS et a!. 
1985) and in vivo by the induction of a keratoconjunctivitis in guinea pigs (the 
Sereny test) (SERENY 1957). 

4.1 The icsA (virG) and virK Genes 

Transposon insertions in the virG gene, which is located 40 kb away from the 
invasion region on the virulence plasmid pMYSH6000 of S. flexneri 2a, did not 
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reduce the rate of invasion of cultured cells but abolished the ability of Shigella to 
spread from cell to cell (MAKINO et al. 1986; LETT et al. 1989). A similar gene, 
designated icsA has been characterized on the virulence plasmid pWR100 of S. 
flexneri 5; the icsA mutant, which was unable to induce the formation of 
protrusions, did not elicit the polymerization of actin filaments at the poles of the 
bacteria which is seen with the wild-type strain (BERNARDINI et al. 1989). For the 
sake of clarity, this gene will be hereafter referred to only as icsA. 

The icsA gene, whose expression is regulated by VirF (SAKAI et al. 1988; ADLER 
et al. 1989), encodes a 130 kDa protein which was first detected in the bacterial 
outer membrane (LETT et al. 1989; BERNARDINI et al. 1989; D'HAUTEVILLE and 
SANSONETTI 1992). Recently, it has been shown that about 50% of IcsA was 
released into the culture medium as a 95 kDa molecular species (GOLDEBERG et al. 
1993). Sequencing the NH2-terminal extremity of the 95 kDa secreted protein 
indicated that the protein is cleaved after residue Ala-52, downstream from a 
region that has the characteristics of a signal sequence. The difference in size 
between the 95 kDa secreted protein and the 130 kDa gene product indicates that 
a second cleavage should occur in the eOOH-terminal portion of the 130-kDa 
precursor. A polypeptide of 37 kDa, corresponding to the eOOH-terminal part of 
IcsA, has indeed been detected by western analysis of Shigella whole cell 
extracts (NAKATA et al. 1992, 1993). 

Since IcsA is secreted by mxi and spa mutants (ALLAOUI et al. 1992b, 1993b; 
VENKATESAN et al. 1992) and by an E. coli strain carrying a recombinant plasmid 
expressing the icsA gene (G-OLDBERG et al. 1993), secretion of IcsA is independent 
of the Mxi secretion apparatus and may not require determinants carried by the 
virulence plasmid. Cleavage of the eOOH-terminal portion of the precursor prior 
to the release of the mature protein into the culture medium is reminiscent of the 
secretion mechanism of Nesseria gonorrhoeaeand Haemophilus influenzae IgA 1 
proteases. The eOOH-terminal domain of the IgA 1 protease is responsible forthe 
translocation of the 160 kDa periplasmic precursor across the outer membrane 
and autoproteolytic cleavage allows the release of the 100 kDa mature protein 
(POHLNER et al. 1987; GRuNDyet al. 1987). The role of the eOOH-terminal moiety of 
IcsA in the translocation of a periplasmic intermediate and the nature of the 
protein involved in the cleavage remain to be determined. A possible function of 
the eOOH-terminal part of IscA in targeting to the outer membrane is supported 
by sequence similarities detected between this region of IcsA and the eOOH­
terminal part of AIDA-I, the adhesin involved in the diffuse adherence phenotype 
of diarrhoeagenic E. coli (BENZ and SCHMIDT 1992). AIDA-I is synthetized as a 
132 kDa precursor whose eOOH-terminal portion is cleaved to give rise to a 
100 kDa mature protein. Whether mature AIDA-I is secreted is not known, but, in 
contrast to the mature form of IcsA which is released in the culture medium, 
at least a significant amount of the processed form of AIDA-I remains in 
the outer membrane. 

Mutations in the virK gene, which is also located on the virulence plasmid, 
decreased the amount of the cell-associated 130 kDa IcsA protein, but not that of 
the 37 kDa eOOH-terminal fragment (NAKATA et al. 1992). Like the icsA mutants, 
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the virK mutants were unable to spread from cell to cell, probably as a 
consequence of their reduced ability to induce actin polymerization (NAKATA et al. 
1992). The same phenotype has been recently described for Shigella strains 
harboring a recombinant plasmid expressing the E. coli surface protease OmpT 
(NAKATA et al. 1993). As in the case of the virK mutants, the Shigella strains 
carrying the E. coli omp T gene had a decreased amount of the cell-associated 130 
kDa IcsA protein, but not of the 37 kDa eOOH-terminal fragment. However, since 
the amount of mature IcsA in the culture supernatant of the virK mutants, or in the 
culture supernatant of the Shigella strains expressing the E. coli Omp T protease, 
has not been determined, surface-exposed IcsA could be either degraded or more 
efficiently processed and released in these strains. The latter hypothesis is 
supported by the observation that IcsA expressed from a recombinant plasmid in 
E. coli was not present in the outermembrane but released into the culture 
medium as a 95 kDa species (GOLDBERG et al. 1993). 

In bacteria grown in vitro, surface-bound IcsA is located at the distal poles of 
dividing bacteria (GOLDBERG et al. 1993). This unipolar distribution was also 
observed in intracellular bacteria after infection of HeLa cells (GOLDBERG et al. 
1993) and correlates wih the unipolar reorganization of F-actin seen at the surface 
of dividing bacteria (PREVOST et al. 1992). Moreover, labeling with an anti-lcsA 
antiserum indicated that IcsA was also present in the actin tail that trails the 
bacteria in the cytoplasm and in the protrusions extending from the cell surface 
(GOLDBERG et al. 1993). This indicates that both the surface-bound and the 
secreted form of IcsA interact with elements within the tail, possibly F-actin or 
some actin-associated protein(s). Association of IcsA with actin or with an actin­
bundling protein was hypothesized from the phenotype of the icsA mutants 
which were unable to elicit accumulation of polymerized actin on the bacterial 
surface (BERNARDINI et al. 1989). The L. monocytogenes ActA protein, which, like 
the S. flexneri IcsA protein, is involved in the actin-based movement of 
intracellular bacteria (KOCKS et al. 1992), has also been located at one pole of the 
bacteria (KOCKS et al. 1993). Despite the polarized localization of both IcsA and 
ActA and the similar phenotype of the S. flexneri icsA and L. monocytogenes actA 
mutants, there is no sequence similarity between the icsA and actA gene 
products. The purified 130 kDa IcsA precursor bound and hydrolyzed ATP, which 
suggests that ATP hydrolysis might be involved in bacterial movement (GOLDBERG 
et al. 1993). 

4.2 The iesS Gene 

Once the protrusion extending from an infected cell is engulfed by an adjacent 
cell, the bacteria within this protrusion are surrounded by two cellular 
membranes, that of the protrusion itself and that of the cell into which the 
protrusion enters. Lysis of these two membranes allows the bacteria to access 
the cytoplasm of the newly infected cell, thereby completing the process of 
intercellular dissemination. Inactivation of the icsB gene, which is located in the 



228 C. Parsot 

invasion region of the virulence plasmid (Fig.1), gave rise to as. flexneri strain that 
did not spread from cell to cell although, in contrast to the icsA and virK mutants 
described above, it was still able to induce actin polymerization and the formation 
of protrusions (ALLAOUI et al. 1992a). The icsB mutant remained trapped in 
vacuoles surrounded by two membranes. That the icsB mutant was able to lyse 
the membrane of the phagocytic vacuole during the entry process indicated that 
different membranolytic activities are required fo escape from the phagosome 
and from the protrusion. A phenotype similar to that of the icsB mutant has been 
described for a L. monocytogenes strain in which the plcB gene, encoding a 
lecithinase, had been inactivated (VASQUEZ-BoLAND et al. 1992). However, no 
lecithinase activity has been detected in S. flexneri and there is no sequence 
similarity between the S. flexneri icsB and the L. monocytogenes plcB gene 
products. 

5 Other Plasmid Genes 

The sizes of the Shigella virulence plasm ids range from 180 to 230 kb (SANSONETII 
et al. 1981, 1982; HARRIS et al. 1982; SASAKAWA et al. 1986)' of which" only" 40 kb 
or so have been implicated in either invasion (the ipa, mxi, and spa genes, virB and 
virF) or intercellular dissemination (icsA, icsB, and virKJ. Although there is 
considerable variations between the restriction patterns of the plasm ids 
extracted from different SfJigella species, hybridization studies have shown a 
high degree of relatedness between these plasm ids (SANSONETII et al. 1983a). 
This, as well as the conservation of the size of the virulence plasm ids, suggest 
that other regions of the plasmid might playa role in virulence, even though they 
have not yet been identified as sLich by the tests that have been used in the 
laboratory. For example, with the exception of the virF regulatory gene, no 
determinant required to induce a positive Sereny test in the mouse model was 
detected on a 90 kb fragment of the virulence plasmid pMYSH6000 of S. flexneri 
2a (SASAKAWA et al. 1986). In addition, 142 mutants carrying a transposon insertion 
in any of ten different SaIl fragments of pMYSH600 did not show any defect in 
invasion or in the Sereny test (SASAKAWA et al. 1986). 

The specific inactivation of such genes as ipaA (SASAKAWA et al. 1989; MENARD 
et al. 1993) and ipgD (ALLAOUI et al. 1993a), which are likely to be relevant to 
virulence in as much as these genes are present in the invasion region (Fig. 1) and 
the encoded proteins are secreted by the Mxi-Spa secretion apparatus, did not 
result in an inability to invade HeLa cells or induce keratoconjunctivitis. This 
suggests that these tests might not be sensitive enough to explore the full 
spectrum of Shigella pathogenicity, which is not unexpected since shigellosis is 
restricted to human beings and primates. 

Inactivation of ipgF, which is also located in the invasion region (Fig. 1), did 
not affect the invasion rate (ALLAOUI et al. 1993a); the ipgF gene product, a 
presumably periplasmic protein, is homologous to a protein encoded by a gene 
located within the leader region of the F, R 1 and R 100 conjugative plasm ids. The 
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leader region is the first portion of these plasm ids to enter recipient bacteria 
during conjugation but is not itself essential for conjugative transfer (LOH et al. 
1989). Likewise, the products of spa 15 and ORF10, two genes of the mxi-spa 
secretion locus (see Fig. 1), are not required for invasion (SASAKAWA et al. 1993). 

The ipaH gene was first identified by screening a library of Agt11 recombinant 
phages using a polyclonal serum raised against a protein fraction enriched for the 
virulence plasmid-encoded proteins (BUYSSE et al. 1987). An ipaH probe 
hybridized to five different Hindi II fragments on the DNA of pWR 100, suggesting 
that multiple copies of this gene are present on the virulence plasmid of S. flexneri 
5 (HARTMAN et al. 1990). Moreover, multiple copies of ipaH have also been 
detected on the chromosome (VENKATESAN et al. 1989). Sequencing four of the five 
plasmid-borne ipaH copies revealed a puzzling arrangement of variable and 
constant regions (HARTMAN et al. 1990; VENKATESAN et al. 1991 a). Two adjacent 
copies, designated, ipaH7.8and ipaH4.5, are located between the invasion region 
and icsA and should encode 532 and 574 amino acid polypeptides, respectively. 
These polypeptides have indeed been detected by immurlOblot analysis. The two 
other copies, ipaH1.4 and ipaH2.5, have not yet been mapped on the virulence 
plasmid and appear to correspond to truncated genes which might not be 
expressed. Analysis of the sequence deduced from ipaH7.8 and ipaH4. 5 revealed 
the presence of six and eight repeated regions, respectively; each of these 
repeats consists of the 20 residue long motif L-X-X-L-P-X-L-P-X-X-L-X-X-L-X-I/ V/A­
X-X-N-X (where X represents a_ny amino acid residue) (VENKATESAN et al. 1991 a). 
This motif, designated LPX, is very similar to the consensus sequence derived 
from the nine repeats detected in the sequence of the YopM protein from Y. 
pestis (LEUNG and STRALEY 1989). YopM was shown to inhibit thrombin-induced 
platelet aggregation and to be involved in the virulence of Y. pestis in a mouse 
model (LEUNG et al. 1990). Whether IpaH is secreted and its role on the virulence 
of Shigella have not yet been determined. 

6 Chromosomal Genes Involved in Virulence 

As indicated by the invasive phenotype of E. coli transconjugants which have 
received the virulence plasmid of S. flexneri, there is no Shigella chromosomal 
gene required for invasion that does not have its counterpart in E. coli (SANSONETII 
et al. 1983b). However, the full spectrum of Shigella virulence in animal models 
was not expressed by the E. colitransconjugants, in that they failed to elicit fluid 
accumulation in rabbit ileal loops and provoke keratoconjunctivitis in guinea pigs. 
Conjugal transfer of chromosomal material between E. coli and Shigella and, later 
on, construction or transduction of defined mutations as well as characterization 
of transposon-induced mutants have allowed the identification of chromosomal 
genes which are involved in virulence. 
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6.1 Modulation of Gene Expression and Protein Stability 

The virR gene was identified following transposon mutagenesis of a S. flexneri 
strain carrying a transcriptional mxi-Iac fusion (MAURELLI and SANSONETII 1988). 
Since the invasion genes are expressed at 37°C but not at 30°C (MAURELLI et al. 
1984), the parental strain could grow on lactose only at 37"C. A mutant carrying a 
Tn 10 insertion in a gene that was designated virR was selected for a Lac+ 
phenotype at 30°C. Transduction of the virR::Tn 10 mutation to wild-type Shigella 
resulted in a strain that was invasive at both 30°C and 37°C, confirming that the 
virR gene was involved in the temperature-regulated expression of the invasion 
phenotype. The virR mutation was shown to be allelic to the osmZ drd)( bglY. 
and pilG mutations identified in E. coli (DORMAN et al. 1990; GORANSSON et al. 1990; 
HULTON et al. 1990; MAY et al. 1990). The corresponding wild-type gene encodes 
the histone-like protein H1 (H-NS) which may induce local change in DNA 
supercoiling, thereby modulating gene expression (HULTON et al. 1990). This 
protein was recently shown to bind the virB promoter and repress its activity at 
30°C (TOBE et al. 1993). 

In E. coli, the envZ and ompR genes encode a two-component regulatory 
system that controls the transcription of the ompF and ompC genes in response 
to change in osmolarity of the growth medium (COMEAU et al. 1985). Modulation of 
Shigella invasion gene expression by osmolarity was investigated using a mxi-Iac 
transcriptional fusion (BERNARDINI et al. 1990). Expression of this fusion was 
enhanced three- to fourfold in high osmolarity conditions and reduced in envZand 
MompR-envZJ mutants. Transduction of these mutations to wild-type Shigella 
gave rise to mutants that were less invasive than the wild-type strain and unable 
to form plaques on confluent HeLa cell monolayers (BERNARDINI et al. 1990). The 
respective role of the OmpC and OmpF porins in entry was then investigated after 
transduction of ompC and ompF mutations from E. coli to S. flexneri (BERNARDINI 
et al. 1993). Whereas the resulting S. flexneri ompF mutant behaved like the 
wild-type strain, the ompC mutant showed a reduced rate of invasion and was 
unable to spread from cell to cell. Moreover, the l1(envZ-ompR) mutant was 
restored to virulence by complementation with a plasmid expressing the E. coli 
Om pC protein. Whether the phenotype of the ompC mutant is due to the lack of 
direct interaction between Om pC and some cellular structure(s). or to an indirect 
effect on the conformation or stability of other bacterial outer membrane 
protein(s), because of the absence of OmpC, remains to be determined. 

The kcpA locus was originally defined following replacement of the Shigella 
purE region by the homologous region from E. coli. The resultant hybrid was 
unable to provoke keratoconjunctivitis (FORMAL et al. 1971). spread from cell to 
cell, and showed a decreased production of IcsA (PAL et al. 1989). It has been 
recently shown that the kcpA locus corresponds to the omp T gene carried by 
a remnant lambdoid phage that is present in E. coli but not in Shigella (NAKATA 
et al. 1993). Expression of the OmpT outer membrane protease resulted in the 
degradation (or perhaps the release, as discussed above) of IcsA. which probably 
accounts for the intercellular spreading defect of Shigella strains carrying the 
E. coli kcpA locus. 
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A transposon insertion in the vacB gene (for virulence associated 
::hromosomal gene), which is located downstream from purA resulted in a 
tenfold decrease in invasion and an inability to spread from cell to cell (TOBE et al. 
1992). These two phenotypes can be correlated with the decreased amounts of 
IcsA and IpaB detected in the vacB mutants. Since the transcription of the ipa and 
icsA genes was not affected in this mutant, VacB might act at a 
::losttranscriptional level, such as on the stability of these and perhaps other 
::lroteins. 

0.2 Bacterial Metabolism 

The respective contributions to virulence of superoxide dismutase and catalase 
3ctivities, both of which may protect bacteria from oxygen toxicity, were 
3xamined after transduction into S. flexneri of sodB and katF-katG mutations 
::onstructed in E. coli (FRANZON et al. 1990). The sodB and, to a lesser extent, the 
katFG mutants were more sensitive than the wild-type strain to killing by 
::lhagocytes. The katFG mutant was still able to elicit a positive Sereny test and, 
ilVhen tested in the rabbit ligated ileal loop mode, caused damage to intestinal villi 
similar to that induced by the wild-type strain. In contrast, the sodB mutant was 
legative in the Sereny test and produced little detectable damage in ligated loops, 
ilVhich indicates that the superoxide dismutase activity encoded by sodB may play 
3 critical role in pathogenesis. -

S. flexneri utilizes a hydroxamate siderophore, aerobactin, forthe transport of 
ron. Synthesis of aerobactin and of its outer membrane receptor are specified by 
the iucABCO and·the iutA genes, respectively (LAWLOR and PAYNE 1984; GRIFFITHS 
3t al. 1985). The role of aerobactin in the virulence of S. flexneri was studied in 
~ransposon-induced mutants (LAWLOR et al. 1987; NASSIF et al. 1987). The mutants 
jid not show any alteration in their ability to invade HeLa cells, grow 
ntracellularly, or kill infected cells, indicating that sufficient amounts of iron were 
Jresent in the cytoplasm of infected cells to sustain bacterial growth in the 
3bsence of siderophore production. However, an inoculum-dependent effect was 
)bserved with the iuc mutant in the Sereny test and in the rabbit ligated ileal loop 
nodel, in that 10- to 100-fold more mutant bacteria were required to cause 
31terations which were qualitatively similar to those caused by the wild-type 
strain. This suggested that aerobactin was important for growth wihin tissues 
·ather than in the intracellular compartment. 

The S. flexneri loci involved in the biosynthesis of lipopolysaccharide (LPS) 
3re alleles of the E. coli rfband rfa loci which participate in the synthesis of the LPS 
)asal core and group somatic antigen, respectively (FORMAL et al. 1970; SANSONETII 
3t al. 1983b; OKADA et al. 1991 a; for a review see SCHNAITMAN and KLENA 1993). In 
~ontrast to S. flexneri, S. dvsenteriae and S. sonnei require some plasmid genes 
:or LPS biosynthesis (SANSONETTI et al. 1981; WATANABE and TIMMls 1984; WATANABE 
3t al. 1984). Rough S. flexneri strains are still invasive but do not spread to 
3djacent cells and are negative in the Sereny test (SANSONETTI et al. 1983b; 
JKAMURA et al. 1983; OKADA et al. 1991 b). How changes in the LPS affect the 
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behavior of bacteria in the cytoplasm of infected cells remains to be elucidated. 
The effect may be indirect, since, in E. coli, changes in the LPS core modify the 
conformaion of outer membrane proteins, including the OmpF and OmpC porins 
(REID et al. 1990). Modifications of the Shigella LPS might thus affect the 
conformation, stability, or localization of IcsA (or of OmpC, see above), thereby 
accounting for the inability of the Shigella rough mutants to spread from cell to 
cell. 

To identify chromosomal genes involved in virulence, each clone of a bank of 
over 9000 Tn5-induced mutants of S. flexneri 2a was screened for their ability to 
induce the formation of plaques on a cell monolayer (OKADA et al. 1991 b). Among 
the mutants thus identified, 50 had a Tn5 insertion in the chromosome and most 
of them were affected in the structure of the core or of the LPS side chains, which 
confirmed the importance of the integrity of the LPS for intercellular spread. 
Determination of the site of insertion of Tn5 in the other mutants allowed the 
identification of seven loci required for virulence; these loci were subsequently 
located on a Notl physical map of the Shigella chromosome (OKADA et al. 1991 a). 
Although the nature of the genes, designated vac (for virulence associated 
chromosomal gene), which have been inactivated in these mutants remains to be 
elucidated, one mutant, which showed reduced intracellular survival, was found 
to be a thymine auxotroph (OKADA et al. 1991 b). Similarly, thyA and aroD mutants 
were shown to be negative in the Sereny test (AHMED et al. 1990; LINDBERG et al. 
1988). 

6.3 Production of Shiga Toxin 

In contrast to the other Shigella species, S. dysenteriae expresses a potent 
cytotoxin, Shiga toxin, that cleaves the 28s rRNA of eukaryotic cells (ENDO et al. 
1988). The two subunits of this toxin are encoded by the stxA and stxB genes 
which are almost identical to the genes specifying the Shiga-like toxin of E. coli 
(KOZLOV et al. 1988; STOCKBINE et al. 1988). To evaluate the contribution of Shiga 
toxin in pathogenesis, a S. dysenteriae Tox- strain was constructed by allelic 
replacement with a stx locus which had been inactivated by insertion of 
a selectable fragment into the stxA gene (FONTAINE et al. 1988). The Tox-strain did 
not show any reduction in the rate of intracellular growth or in the killing of the 
infected cells, and no significant differences were observed between the 
wild-type and the Tox- strains in the Sereny test or after infection of rabbit ligated 
ileal loops. Moreover, following intragastric inoculation of macaque monkeys, 
both strains induced diarhea with pus and mucus in the stools. However, the 
presence of blood in the stools was detected only in animals infected by the 
toxigenic strain. The nature of the histopathological alterations, such as 
destruction of capillary vessels within the connective tissue of the colonic 
mucosa observed with the wild-type strain but not with the isogenic Tox- strain, 
suggests that Shiga toxin influences the severity of bacillary dysentery by 
inducing colonic vascular damage. 
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7 Conclusion 

In vitro, infection of an epithelial cell monolayer by Shigella is a multistep process 
involving; (1) adhesion of the bacteria to the cell surface, (2) entry by induced 
phagocytosis, (3) escape from the phagosome, which completes the process of 
entry, (4) intracellular multiplication, (5) polymerization of actin filaments and 
reorganization of these filaments at one pole of the dividing bacteria to generate 
a movement leading to the formation of protrusions, and (6) lysis of the two 
cellular membranes surrounding the bacteria once the protrusions have entered 
into adjacent cells, thus completing the process of intercellular dissemination. A 
systematic genetic analysis has already shown that most of these steps can be 
dissociated. 

The protein(s) involved in adhesion have not yet been identified, but they are 
probably encoded by the virulence plasmid, since a S. flexneri mutant that had 
lost the virulence plasmid was tenfold less adherent to HeLa cells than the wild­
type strain (PAL and HALE 1989). The mxi and spa mutants are not invasive, a 
phenotype that can be correlated with their inability to secrete the Ipa and a few 
other proteins. The Ipa proteins do not have a signal sequence and do not appear 
to be processed during secretion. Although several Mxi proteins have a 
characteristic signal sequence, secretion of the Ipa proteins can be considered as 
sec-independent. In contrast, the NH2-terminal portion of IcsA is cleaved, 
presumably during export to the periplasm. Recent studies indicate that, like the 
Yop proteins of Yersinia (MICHIELS and CORNELIS 1991), the determinant(s) required 
for secretion of IpaB and IpaC are located in the NH2-terminal extremity of these 
proteins (R. Menard et aI., in preparation). Elucidation of the function of each of 
the proteins encoded by the mxi-spa locus is a challenge for future research and 
will certainly have implications beyond the field of Shigella pathogenesis, since 
several of these proteins have homologues in other animal and plant pathogens. 
The striking conservation of the genetic organization of the Shigella and 
Salmonella spa loci (GROISMAN and OCHMAN 1993) suggests that these regions 
were derived from a common ancestor, although their G+C content is quite 
dissimilar, 35% G+C for the mxi-spa genes of Shigella vs 47% G+C for the 
in v-spa genes of Salmonella. 

The IpaB, IpaC, and IpaD proteins now appear as prime candidates for having 
an effector role in the entry process. The ipa8, ipaC, and ipaO mutants are unable 
to induce entry into HeLa cells and, when internalized by macrophages, escape 
from the phagosome. That these two activities, along with the contact hemolytic 
activity, have not yet been genetically dissociated may indicate that they have the 
same molecular basis. It is conceivable that insertion of bacterial proteins, such as 
some of the Ipa proteins, into the cellular membrane might be involved first in the 
induction of phagocytosis and then in the disruption of the phagosome, as these 
proteins accumulate in the membrane of the phagocytic vacuole. 

The Ipa proteins have been detected on the surface of the bacteria and in the 
culture supernatant, but the bulk of these antigens is located in the cytoplasm of 
bacteria grown in vitro (ANDREWS et al. 1991). Although the Mxi-Spa secretion 
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apparatus is required for invasion, a direct role in entry of the fraction of the 
Ipa present in the culture supernatant has not yet been determined; these 
secreted proteins may represent some leakage of the Mxi-Spa secretion 
apparatus which appears to be poorly active in bacteria grown in vitro. It is 
tempting to speculate that the activity of the Mxi-Spa secretion apparatus might 
be turned on upon contact of the bacteria with the cell surface, thereby allowing 
the delivery of the Ipa proteins directly onto their target, the cellular membrane or 
a membrane receptor. 

The G-C content of the invasion region (30% G+C) is very different from that 
of the Shigella chromosome (50% G+C), which suggests that this region came 
from another genus. Accordingly, the involvment of chromosomal genes (virR, 
ompR/envZ) in the modulation of invasion gene expression probably reflects the 
adaptation to regulatory networks responsive to environmental changes that 
already existed when the invasion genes were acquired by Shigella. From the 
similarity between the Shigella and E. coli chromosomes (BRENNER et al. 1973; 
OKADA et al. 1991 a), the invasive phenotype of E. coli strains that have artificially 
acquired the Shigella virulence plasmid, and the natural occurence of EIEC strains 
whose virulence plasm ids are related to those of Shigella, E. coli appears as a 
likely origin for Shigella. One may caricature a Shigella strain as a smooth E. coli 
that has received the invasion plasmid and lost tlie omp T gene. 

A striking feature of Shigella, which is shared with L. monocytogenes, is its 
ability to use some of the cytoskeletal components, and especially to reorganize 
actin, to move intracellularly and disseminate from cell to cell. The unipolar 
localization of IcsA, which correlates with the reorganization of F-actin filaments 
at one pole of the dividing bacteria during the onset of the bacterial movement, 
and the detection of IcsA within the tail of actin that trails behind bacteria in the 
protrusions strongly suggest that there is a direct interaction between IcsA and 
some cellular protein(s). The recent demonstration that cellular adhesion 
molecules are required in the cell-to-cell dissemination process, not only for the 
proper structure of the protrusions but also for the internalization of the 
protrusions by the adjacent cells, suggests that the protrusions might be actively 
endocytosed during intercellular spread (SANSONETII et al. 1994). The nature of 
bacterial components that may be involved in this other type of induced 
phagocytosis remains to be determined. 

To what extent do the data obtained on the mechanism of invasion of 
cultured cells apply to the "real life" situation, i.e., the pathogenesis of 
shigellosis? For obvious reasons, the effect of each mutation that has been 
shown to alter virulence in vitro cannot be evaluated in volunteers or even in 
monkeys. Noninvasive mutants appear avirulent in animal models such as the 
Sereny test or the rabbit ligeated ileal loop model. Moreover, a S. f1exneri 2a 
strain, whose virulence plasmid had suffered deletions eliminating both the 
invasion region and icsA (VENKATESAN et al. 1991 b), was found to be safe in large 
vaccine trials (MEITERT et al. 1984). The invasive phenotype and the ability to 
escape from the phagosome are correlated with the ability of Shigella to induce 
apoptosis in infected macrophages (ZYCHLINSKY et al. 1992, 1994), a mechanism 
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that may be responsible for the death of inflammatory cells in the colonic mucosa 
observed during shigellosis. The importance of the ability to spread from cell to 
cell is illustrated by the very important decrease in virulence of icsA mutants 
administered by intragastric inoculation in macaque monkeys. In addition, the 
combination of an icsA mutation with either an iucor an A(envZ-ompR) mutation 
led to strains that no longer produced diarrhea or dysentery symptoms (SANSONETII 
and ARONDEL 1989; SANSONETII et al. 1991). It thus appears that factors which have 
been identified in the laboratory as important for either invasion, intercellular 
dissemination, bacterial metabolism, or Shiga toxin production in the case of S. 
dysenteriae, have a key role in the pathogenicity of Shigella. 

An intriguing observation of the in vitro studies was that Shigella binds and 
enters into the enterocyte-like Caco-2 cells by the basolateral rather than the 
apical pole of the cell (MOUNIER et al. 1992). The definition of the site of entry of 
Shigella is of importance, considering that mucosal destruction and presumably 
invasion occur only in the colon. Using the rabbit intestinal loop model, WASSEF 
et al. (1989) have shown that both invasive and noninvasive Shigella were 
phagocytosed by M cells over lymphoid follicles of Peyer's patches. The invasive 
strain appeared to escape from the phagocytic vacuole and replicate 
intracellularly. The M cell may thus serve as a preferential site of entry for Shigella, 
from which the bacteria could either disseminate to the adjacent enterocytes by 
expressing the Ics phenotype or, following transcytosis through or lysis of the M 
cells, invade the enterocytes by their baselateral pole. This scheme is supported 
by the observation that the small nodular abscesses, which were induced by the 
icsA mutant in macaque monkeys, were located over lymphoid follicles 
(SANSONETII et al. 1991). Since the icsA is unable to spread from cell to cell, the 
sites of the tiny ulcerations should correspond to the sites of entry into the 
epithelium. Transmigration of polymorphonuclear leukocytes across the 
epithelium has recently been proposed as another means by which Shigella could 
gain access to the basolateral pole of enterocytes (PERDROMO et al. 1994). 
S. flexneri was shown to induce migration of polymorphonuclear leukocytes 
through a confluent monolayer of T-84 cells, a migration that appeared to be 
necessary for the bacteria to enter into the monolayer and invade the T 84 cells. 
That complex interactions between bacteria and two different cell populations 
can be reconstituted (or mimicked) in vitro opens new perspectives for the 
dissection of the Shigella infectious process. 
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1 Introduction 

Among the many species of the Yersinia genus, only Y. pestis, Y. 
pseudotuberculosis and Y. enterocolitica are adapted to multiply at the expense 
of a host that is still alive. Y. pestis, the agent of plague, and Y. pseudotuberculosis 
are essentially rodent pathogens. Y. enterocolitica is a common human pathogen 
which causes gastrointestinal syndromes of varying severities, ranging from mild 
self-limited diarrhea to mesenteric adenitis evoking an appendicitis. Systemic 
involvement is unusual with Y. enterocolitica but reactive arthritis and erythema 
nodosum are common complications (COVER and ABER 1989). In Europe, pork is a 
current source of Y. enterocolitica contamination (TAUXE et al. 1987). 
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Although all three yersiniae infect their host via different routes and cause 
diseases of very different severity, they share a common tropism for lymphoid 
tissue and a remarkable ability to resist the nonspecific immune response of the 
host. Their main strategy seems to consist of: (1) avoiding lysis by complement; 
(2) avoiding phagocytosis by polymorphonuclear leukocytes and macrophages; 
and (3) forming extracellular microcolonies in the infected tissues (LIAN et al. 1987; 
HANSKI et al. 1989, 1991; SIMONET et al. 1990). The three yersiniae have common 
basic virulence functions. For the sake of clarity, we will essentially deal with Y. 
enterocolitica and the differences with the other species will be mentioned 
throughout. This review will focus essentially on the pathogenicity functions 
which are the hallmark of yersiniae, and specifically the Yop proteins. It will pay 
special attention to the yersiniae secretion system, the archetype of a new 
pathway encountered so far only in pathogenic bacteria. Due to space limitations, 
many contributions could not be paid the tribute they deserved. A short review 
focusing on regulation was published recently by STRALEY et al. (1993). For a 
complete overview of yersiniae, the reader should refer to broader reviews such 
as BUTLER 1983; BRUBAKER 1991; CORNELIS 1992. 

2 The Chromosome-Encoded Virulence 
Functions of Yersinia enterocolitica 

2.1 The Enterotoxin Yst 

The chromosome of Y. enterocolitica, but not of Y. pseudotuberculosis and Y. 
pestis, encodes a heat-stable enterotoxin, Yst, detectable in broth culture 
supernatant by the infant mouse test (PAl and MORS 1978). It is a 30-amino acid 
peptide (TAKAO et al. 1984; ROBINS-BROWNE et al. 1979) which resembles both the 
heat-stable enterotoxin STa (also called STI) of Escherichia coli and guanylin, an 
endogenous activator of intestinal guanylate cyclase (Fig. 1) (CURRIE et al. 1992). 
The enterotoxin Yst is synthesized as a 71 amino acid polypeptide (DELOR et al. 
1990). The COOH-terminal30 amino acids correspond to the toxin extracted from 
culture supernatants, the NHz-terminal 18 amino acids have the properties of a 
signal sequence and the central 22 residues are removed during or after the 
secretion process. This organization in three domains (Pre, Pro and mature Yst) 
also resembles that of guanylin and STa but Yst is larger than these two peptides. 
In view of the close resemblance between Yst and STa and the association with 
pathogenic serotypes, it is tempting to speculate that the production of Yst is 
responsible for the diarrheal manifestation associated with yersiniosis. A study 
conducted with isogenic Yst+ and Yst- strains in the young rabbit concluded 
that, at least in this model, Yst was indeed responsible for the diarrhea (DELOR 
and CORNELIS 1992). 
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Fig. 1. The enterotoxins Yst and STl compared to guanylin 

2.2 The Myf Fibrillae 
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When grown at 37°C in acidic conditions, Y. enterocolitica synthesizes a fibrillar 
structure known as Myf and resembling the CS3 pili of human enterotoxigenic. E. 
coli (lRIARTE et al. 1993). As for the enterotoxin Yst, the presence of Myf is 
restricted to the pathogenic serotYpes of Y. enterocolitica (lRIARTE et al. 1993). The 
assembly of Myf requires the classical components of the pili assembly systems, 
namely a peri plasmic chaperone called MyfB and a channel-forming outer 
membrane protein called MyfC (lRIARTE et al. 1993). The counterpart of the myf 
operon in the Y. pestis and Y. pseudotuberculosis chromosomes (lRIARTE et al. 
1993; LINDLER and TALL 1993) encodes a structure known since the mid-1950s as 
pH6 antigen (pH6 Ag). The degree of identity between the major subunit MyfA 
and pH6 Ag is only 44%, which is significantly lower than that observed for the 
proteins encoded by the pW plasmid described below. This suggests that Myf 
and pH6 could have diverged during evolution to serve different functions related 
to the different invasion routes of Y. pestis and Y. enterocolitica. Y. pestis 
expresses pH6 Ag after 10 h survival in cultured RAW264.7 macrophages but, 
surprisingly, this capacity does not contribute to the survival of bacteria within the 
macrophage (LINDLER and TALL 1993). pH6 Ag does nevertheless contribute to the 
virulence of Y. pestis intravenously inoculated to mice (LINDLER et al. 1990). In Y. 
enterocolitica, we hypothesize that Myf could fulfill the role of a colonization 
factor for the human or porcine intestine, reinforcing the action of Yst, but this 
remains totally speculative (lRIARTE et al. 1993). Both Myf and Yst are produced 
during the stationary phase (lRIARTE and CORNELlS, in preparation; A. MIKULSKIS and 
G. R. CORNELIS 1994). This observation.could be taken as an argument in favor of 
a joint function, but the definite answer can only be given by adhesion 
experiments, presently being carried out. 



246 G.R. Carne lis 

2.3 The Internalins Inv and Ail 

The chromosome of enteropathogenic Y. enterocolitica encodes two 
independent pathways for attachment to, and entry into, cultured mammalian 
cells (MILLER and FALKOW 1988; ISBERG 1990). The signal transduction events 
occurring during these steps have been recently reviewed by BLiSKA et al. (1993). 
In vivo, the internalin Inv appears to playa vital role in promoting entry into 
intestinal tissue during the initial stage of infection (PEPE and MILLER 1993). An 
histopathological analysis of the infected mouse ileum suggests that the crossing 
probably occurs through the phagocytic M cells that overlay the Peyer's patches 
lining the gastrointestinal tract (GRUTZKAU et al. 1990). Surprisingly, the concomi­
tant loss of both Inv and YadA (see below) by Y. pseudotuberculosis results in a 
severe increase (and not decrease) of virulence. Consistent with this observation, 
Y. pestis makes neither Inv nor YadA (ROSQVIST et al. 1988). 

2.4 Iron Acquisition 

As for any invasive pathogen, the degree of pathogenicity of yersiniae depends on 
its capacity to acquire iron to sustain growth. It is not yet clear whether yersiniae 
secrete siderophores but it is well established that they possess iron-inducible 
receptors for several iron chelators such as hemin and various exogenous 
siderophores. For recent reviews, see PERRY (1993) and BAUMLER et al. (1993). 

3 The Panoply of Virulence Functions 
Encoded by the pYV Plasmid 

3.1 Calcium Dependency 

In vitro, virulent yersiniae restrict their growth after two generations when they 
are shifted from 28°C to 3JOC in the absence of millimolar concentrations of Ca2+ 

ions. Growth can be reinitiated if the cultures are returned to 26°C or if Ca2+ is 
added to the medium. This growth restriction phenomenon, called Ca2+ depen­
dency, is associated with the massive production of a set of about ten proteins 
called Yops. Although it is quite obvious that massive production of a given set of 
proteins must divert the metabolic potential from other biosynthetic pathways, 
we still do not know whether Ca2+ dependency involves a specific repression of 
growth. 

The physiopathological significance of regulation by Ca2+ is far from clear. 
BRUBAKER (1983) suggested a correlation between Ca2+ dependency and the 
known, distinct levels of Ca2+ in the mammalian intracellular (micromolar range) 
and extracellular (about 2.5 mM) fluids. According to this suggestion, the Yops 
would essentially be produced in the intracellular environment. Although 
appealing, this hypothesis is contradicted by the accumulating evidence that 
yersiniae spread and multiply essentially outside cells (LIAN et al. 1987; HANSKI 
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et al. 1989, 1991; SIMONET et al. 1990). There is thus a paradox: in vivo, yersiniae 
proliferate in conditions which are supposed to be nonpermissive for Yops 
production, but, yet, they do produce Yops (see below). 

3.2 The Yops 

The Yops are identified by a letter which is identical for the homologous proteins 
in the three species. YopB, YopD, YopE, YopH, YopM, YopN, YopO and LcrV have 
been described in the three species. YopO is also described as YpkA (CORNELIS et 
al. 1987; GALYOV et al. 1993) and YopN is sometimes described as LcrE. YopP, 
YopO and YopR have only been described in Y. enterocolitica so far while YopJ, 
YopK and YopL have only been described in Y. pestis (STRALEY 1988; STRALEY and 
CiBULL 1989). It is not yet known whether these two groups of designations cover 
the same proteins. 

The Yops were initially described as outer membrane proteins (PORTNOY et al. 
1981; STRALEY and BRUBAKER 1981; BOLIN et al. 1985) but this status has been 
revised and they are now considered as secreted proteins (HEESEMANN et al. 1984, 
1986; MiCHIELS et al. 1990). Some of the Yops (LcrV, YopM, 0, R) are soluble in the 
culture supernatant but others (YopH, E, 0, B, D, P, N) have a propensity to 
aggregate as visible filaments in the culture (MiCHIELS et al. 1990). Their detection 
in the membrane fraction presumably results either from copurification of 
aggregated Yops with the membranes orfrom the adsorption of secreted Yops to 
the cell surface (MiCHIELS et al. 1990). The name YOP, introduced by H. Wolf-Watz 
(BOLIN et al. 1985) for Yersinia outer membrane protein, could thus be questioned. 
However, it is so popular and widely used that it was decided to keep it but to 
write it Yop(s) rather than YOPs to indicate that it is not a set of initials. 

The Yops are highly conserved in the genus Yersinia but no homology exists 
between different Yops in a single species (FORSBERG and WOLF-WATZ 1988; BOLIN 
and WOLF-WATZ 1988; MiCHIELS and CORNELIS 1988; MICHIELS et al. 1990). One of the 
Yops, LcrV, is the V antigen (38 kDa) already described in the mid-1950s as a 
diffusible antigen differentiating virulent from nonvirulent strains of Y. pestis 
(BURROWS and BACON 1956). 

Patient-s ~uffering an infection (MARTINEZ 1983) or mice artificially infected 
with Y. enterocolitica grown at low temperature (SORY and CORNELIS 1988) develop 
antibodies against the Yops, which clearly demonstrates that they are 
synthesized in vivo in the course of infection. The V antigen is protective in both 
active and passive immunization (LAWTON et al. 1963; UNE and BRUBAKER 1984). 
Mutants unable to express one orthe other of the Yops have been constructed in 
the three species and most of them are less virulent than the parental strain 
(FORSBERG and WOLF-WATZ 1988; SORY and CORNELIS 1988; BOLIN and WOLF-WATZ 
1988; MULDER et al. 1989; STRALEY and CiBULL 1989; LEUNG et al. 1990; GALYOV 
1993). Hence, the Yops constitute major antihost components of the pYV 
plasmid. Whether they are produced inside or outside the phagocyte remains a 
matter of debate. Although we tend now to consider yersiniae as extracellular 
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pathogens, it has been shown that the phagolysosomal environment of human 
macrophages allows expression of the yop genes (POLLACK et al. 1986). 

The functions of individual Yops are now emerging. YopE is cytotoxic for 
cultured HeLa cells (ROSOVIST et al. 1990a). Interestingly, it is only active if it is 
produced by bacteria adhering at the cell surface or if it has been internalized by 
microinjection (ROSOVIST et al. 1990b). YopH contributes to the ability of the 
bacteria to resist phagocytosis by peritoneal macrophages (ROSOVIST et al. 1988). 
It is a protein tyrosin phosphatase (PTPase; EC 3.1.3.48) (GUAN and DIXON 1990) 
acting on multiple substrates in the cytoplasm of macrophages, which suggests 
that it interacts with macrophage regulation (BUSKA et al. 1991). Surprisingly, the 
COOH-terminal 262 amino acid domain of YopH is homologous to the catalytic 
domain of eukaryotic protein tyrosine phosphatases, which raises the appealing 
hypothesis that the yopH gene could be of eukaryotic origin. Another Yop, YopO, 
turned out to be a protein kinase with extensive homology to eukaryotic serine­
threonine protein kinases (GALYOV et al. 1993). Because of this activity, it was 
renamed YpkA by Wolf-Watz and colleagues. YopM is a 41 kDa protein sharing 
significant similarity with the domain of the a-chain of human platelet membrane 
glycoprotein Ib (aGP1 b) which binds thrombin and the von Willebrand factor 
(LEUNG and STRALEY 1989). As expected from the sequence similarity, YopM binds 
thrombin, inhibits platelet aggregation (REISNER and STRALEY 1992) and hence may 
prevent platelet-mediated host defense events such as the onset of the 
inflammatory response. No cytotoxic or enzymatic activity has been reported so 
farforYopB and YopD, twoother majorYops. Interestingly, ROSOVlsTet al. (1990b) 
observed that a mutant affected in YopD loses its cytotoxicity in spite of the fact 
that it still produces YopE. These authors concluded that YopD could act as an 
internalization factor for YopE. In accordance with the suggestion of ROSOVIST et 
aI., YopD and YopB seem to have a transmembrane domain (HAKANSSON et al. 
1993), which is not true for YopE (MiCHIELS et al. 1990). YopH (MiCHIELS and 
CORNEUS 1988). YopM (LEUNG and STRALEY 1989) and LcrV (BERGMAN et al. 1991). 

3.3 VadA and VlpA 

Protein YadA, formerly called P1 or YopA (SKURNIK and WOLF-WATZ 1989), is a 
major outer membrane protein thought to form a fibrillar matrix on the surface of 
Y. enterocolitica and Y. pseudotuberculosis (KAPPERUD et al. 1987). when they are 
cultivated at 37"C. YadA is a polymer of 200-240 kDa formed by the association 
of approximately 50-kDa subunits addressed via the classical sec export pathway 
(SKURNIK and WOLF-WATZ 1989). The name YadA was given for Yersinia adhesin, 
because its presence makes the bacteria adherent to epithelial cells (HEESEMANN 
and GRUTER 1987). YadA is also responsible for a marked autoagglutination 
(SKURNIK et al. 1984) and for binding to both collagen fibers (EMODY et al. 1989; 
SCHULZE-Koops et al. 1992) and fibronectin (TERTII et al. 1992; SCHULZE-Koops 
et al. 1992). Although these properties tend to suggest that YadA could be a 
colonization factor, some observations indicate that, at least in Y. enterocolitica, 
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YadA plays a major role in the defense against the nonspecific immune response. 
Indeed, the presence of YadA reduces the deposition of C3b at the bacterial 
surface of Y. enterocolitica by binding of factor H which leads to a rapid 
catabolism of C3b (TERTTI et al. 1987; PILZ et al. 1992; CHINA et al. 1993). This has 
two consequences: first, it inhibits the formation of the complement membrane 
attack complex, which inhibits killing and, second, it prevents opsonization, which 
severely reduces phagocytosis and killing by polymorphonuclear leukocytes (B. 
CHINA et al. 1994). 

YlpA is a 29-kDa lipoprotein expressed by Y. enterocolitica and Y. 
pseudotuberculosis at 37°C, in absence of Ca2+ (CHINA et al. 1990). It is related to 
the TraT proteins encoded by the E. coli sex factor F, by various resistance 
plasm ids and by the virulence plasmid of Salmonella typhimurium. Although 
several TraT proteins have been shown to be involved in resistance to the 
bactericidal activity of human serum (for revue see SUKUPOLVI and O'CONNOR 1990), 
we could not gain any evidence for such a role in Y. enterocolitica. So far, the only 
element that pleads for a role in pathogenesis is of a genetic order: the expression 
of ylpA is regulated like that of the yadA and yop genes (see below). 

4 Organization of the pYV Plasmid 

The pYV plasmid is a 70-kb plasmid maintained at about seven copies per cell by 
a RepFIiA replicon (VANOOTEGHEM and CORNELIS 1990) and stabilized by a partition 
system resembling that of bacteriophage P1 (J.-C. Vanooteghem and G.R. 
Cornel is, in preparation). The genetic maps of the pYV plasm ids encountered in 
the three species are very similar except for.21 quadrant containing at least yopE 
and yadA, which has been rearranged during evolution (BlOT and CORNELIS 1988; 
FORSBERG et al. 1987; FORSBERG and WOLF-WATZ 1988). Figure 2A gives the map of 
pYVe227, the archetype of pYV plasmids found in Y. enterocolitica strains 
of serotype 0:9. 

Genes yadA, ylpA and several yop genes, namely yopE, yopH, yopQ and 
yopM are scattered around pYV. Genes yopO (ypkA) and yopPform an operon 
located near the origin of replication. The genes encoding the V antigen, yopB 
and yopD, also form an operon (MULDER et al.·1989). The locus encoding the V 
antigen is flanked by two small genes encoding a 13 kDa protein (LcrG) (SKRZYPEK 
and STRALEY 1993) and a 18 kDa protein (LcrH) (PERRY et al. 1986). The operon thus 
consists of IcrGVHyopB,D (PRICE et al. 1989; PLANO et al. 1991; BERGMAN 
et al. 1991). 

Mutations in any of the yopE,H,Q,M,O,P,ylpA and yadA genes simply result 
in the loss of the corresponding protein without alteration of the general 
phenotype: the mutant remains Ca2+-dependent and produces all the proteins 
save the one(s) encoded by the mutated gene or operon. By contrast, the 
insertion mutants in IcrGVHyopBD are unable to grow at 3JOC (thermosensitive 
phenotype) (MULDER et al. 1989). In spite of this, they nevertheless secrete the 
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other Yops at 3rC, in the absence of Ca2+. The mechanism underlying this 
phenotype is not yet understood. 

A contiguous 20-kb region of the pYV plasmid, called the Ca2+ dependence 
region, is required forthe production of all the Yops. Insertion mutagenesis in this 
region defined a series of pleiotropic loci called vir (because they condition the 
virulence) in the Y enterocolitica W22703 system and Icr(because they condition 
the low calcium response) in Y. pseudotuberculosis and Y. pestis. Some of these 
loci have been characterized but the information is not yet complete. These loci 
are virA (lcrAl, virB, (lcrB) , virC (lcrQ, virF (/crA, and virG (Goguen et al. 1984; 
Yother and Goguen 1985; Yother et al. 1986; CORNELIS et al. 1986, 1987b, 1989; 
unpublished data). 

The locus virA contains the genes IcrEand the operon IcrDR. Mutants in IcrE 
are Ca2+-blind, in the sense that they can secrete Yops even in the presence of 
Ca2+. YOTHER and GOGUEN (1985) concluded that this gene encodes a diffusible 
element of the Ca2+ regulation pathway. Surprisingly, the product of IcrEturned 
out to be YopN (VIITANEN et al. 1990; FORSBERG et al. 1991) but YopN could never be 
shown to bind Ca2+. IcrD encodes a 77-kDa inner membrane protein and the 
neighboring gene, IcrR, encodes a 16-kDa acidic protein which is thought to act as 
a regulator (BARVE and STRALEY 1990; PLANO et al. 1991; PLANO and STRALEY 1993). 
Locus virB has not been completely characterized yet. The first gene in this locus 
encodes YscN (S. WOESTYN et al. 1994). Locus virC contains 13 genes called 
yscA-M, arranged as a single large operon (MICHIELS et al. 1991). 

Gene virF encodes a 30-kDa transcriptional activator which controls the 
expression of the yop genes (CORNELIS et al. 1987, 1989), of ylpA (CHINA et al. 
1990), of yadA (MARTINEZ 1989; MiCHIELS et al. 1991) and also of the virC operon 
(LAMBERT et al. 1992). The yop, ylpA, yadA and virC genes thus constitute what we 
call the yop regulon. The protein VirF belongs to the AraC family of regulators 
(CORNELIS et al. 1989). This now very large family includes regulators of 
degradative pathways in E. coli and Pseudomonas putida as well as regulators 
involved in the control of virulence of Shigella, Yersinia, enterotoxinogenic E. coli 
and the phytopathogen Pseudomonas solanacearum (GENIN et al. 1992). VirF acts 
as a DNA binding protein. DNase I footprinting experiments on the yopH gene 
identified a protected region spanning 31 bp immediately upstream of the RNA 
polymerase binding site. This VirF binding sequence is located in an AT-rich region 
and only comprises an imperfect 8 bp inverted repeat (LAMBERT et al. 1992; 
P. WATTIAU et al. 1994). 

5 The Yop Secretion Mechanism 

5.1 The Secretion Signal 

The secretion of Yops by yersiniae does not involve cleavage of a classical NH2-

terminal signal sequence (FORSBERG and WOLF-WATZ 1988; MiCHIELS et al. 1990; 
REISNER and STRALEY 1992). The addressing signal is nevertheless localized in the 
NH2-terminal domain of the Yops: the 48 NH2-terminal residues of YopH, the 76 
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NH2-terminal residues of YopQ and the 98 NH2-terminal residues of YopE contain 
all the information required for export (MICHIELS and CORNELIS 1991). Quite 
surprisingly, there is no similarity between the exportation domains of these 
proteins with respect to amino acid sequence, hydrophobicity profile, distribution 
of charged residues or prediction of secondary structure, which suggests that the 
secretion signal is essentially conformational (MICHIELS and CORNELIS 1991). 

5.2 Secretion of Hybrid Proteins 

The Yop secretion system exports very efficiently hybrid proteins formed by 
fusing the NH2-terminal domain of YopE orYopH and various prokaryotic proteins. 
Hybrid proteins consisting of 48 or more residues of YopH and either the ~­
subunit of cholera toxin (CT-B) or the a-peptide of l3-galactosidase are efficiently 
secreted, even when they are encoded by a multicopy plasmid (SORY et al. 1990; 
MICHIELS and CORNELIS 1991). The system can also secrete hybrid proteins 
containing the entire PhoA enzyme. In this case however, the minimal NH2-

terminal domain of YopH required for export depends on the amount of protein to 
treat: it consists of only 48 amino acids if the hybrid is encoded by a low copy 
plasmid but it becomes 65 amino acids if the hybrid is encoded by a multicopy 
plasmid. The efficiency of the system is thus higher if the addressing domain is a 
little longer than the mini':llal 48 amino acids (MICHIELS and CORNELIS 1991). 
Engineered Y. enterocolitica strains can also secrete chimeric eukaryotic 
proteins: SORY et al. (1992) showed the massive secretion of a hybrid protein 
made of 168 amino acids of YopE and 313 amino acids of the repetitive antigen 
CRA from Trypanosoma cruzi. 

5.3 The Secretion Machinery 

Secretion of proteins outside the bacterial cell is rather unusual for gram-negative 
bacteria. There are, however, protein secretion pathways (for a recent short 
review, see SALMOND and REEVES 1993). Type I is exemplified by the hemolysin 
HlyA secreted by uropathogenic strains of E. coli. The proteins targeted through 
this pathway have no classical NH2-terminal signal sequence, show sec­
independent translocation to the external medium and require essential COOH­
terminal sequences. The Type II pathway, exemplified by the pullulanase of 
Klebsiella, is considered as the general secretion pathway (GSP) found in most 
gram-negative bacteria except E. coli and some closely related species (PUGSLEY 
1991). The first step in this pathway is thought to be identical to sec-dependent 
export to the periplasm in E. coli. It thus requires the cleavage of an NH2-terminal 
sequence signal. 

The Yop export pathway is clearly different from both type I and type II 
pathways. It thus appears as the archetype of a new system, which was called 
type III by SALMOND and REEVES (1993). The Yoptransport system is encoded by the 



Table 1. Some homo logs in the type III secretion pathway 

Yersinia Shigella Salmonella Pseudomonas 
salanacearum 

LcrD' MxiN InvA" HrpO'0 
YscC2 MxiD5 InvG14 HrpA'° 
YscJ2 MxiJ4 Hrpl'o 
YscF2 MxiH4 
YSCL2 HrpF12 
YSCN '3 Spa47" HrpE12 
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Xanthomonas 
campestris 
pv. vesicatoria 

HrpC29 
HrpA19 
HrpB39 

HrpB69 

Bacillus 
subtilis 
(flagellum) 

FlhA" 

FW 

References: 1, PLANO et al. 1991; 2, MICHIELS et al. 1991; 3, ANDREWS and MAURELLI; 
4, ALLAOUI etal. 1992; 5, ALLAOUI et al. 1993; 6, GALAN etal. 1992; 7, ALBERTINI etal. 1991; 8, CARPENTER 
and ORDAL 1993; 9, FENSELAU et al. 1992; 10, GOUGH et al. 1992; 11, VENKATESSAN 
et al. 1992; 12, Van Gijseghem et aI., unpublished; 13, Woestyn et aI., unpublished; 14, KANIGA and 
GALAN 1993. 

vir (ler) region of the pYV plasmid. The identification of the individual genes 
involved in this process turned out to be uneasy because none of the many pYV 
mutants that have been constructed accumulates large amounts of intracellular 
Yops. This probably results from a feedback inhibition of Yops synthesis when 
export is compromised. The distinction between regulatory genes and genes 
involved in secretion could be based on two criteria. First, using sensitive 
immunodetection methods, one_could find small amounts of the Yops in some vir 
mutants but not in the typical regulatory virF mutants (MICHIELS et al. 1991). 
Second, we reasoned that mutations in the Yop secretion pathway should 
prevent the export of Yops but not of YadA since YadA possesses the structure of 
a protein exported via the classical sec pathway. The virC and the virA mutants 
fulfilled these two criteria: they transcribe the yop genes, produce small amounts 
of intracellular Yops, but do not secrete them and they express YadA at the 
bacterial surface. Hence we concluded that the virC and virA loci encode at least 
some of the components of the Yops secretion machinery (MICHIELS et al. 1991). 
The 8.5 kb virC locus constitutes a single large operon composed of 13 genes 
called yseA to yseM (for Yop secretion) (MICHIELS et al. 1991). Open reading 
frames (ORFs) yseBto yseK are all contiguous with four cases of overlap between 
a stop codon and the start of the next gene (MICHIELS et al. 1991). The putative 
yseC gene product has a signal sequence and it shares significant homology with 
outer membrane proteins known to be involved in the secretion of pullulanase by 
Klebsiella pneumoniae (PuID) (D'ENFERTet al. 1989) or in the release of filamentous 
bacteriophages (gene IV product) (BRISSETTE and RUSSEL 1990). This similarity is an 
indication that the virC operon could indeed be involved in secretion but it is also 
a source of confusion between the type II and type III systems. YscJ is a 27 kDa 
lipoprotein that we initially described as YlpB (CHINA et al. 1990). The putative 
products of yseB, E, F, G and I are proteins of less than 16 kDa and with no 
particular addressing signal. In order to prove the existence of these elements and 
to investigate their role in secretion, we engineered a battery of nonpolar 
mutants. Their analysis demonstrated unambiguously that, at least YscC, YscF, 
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Yscl, YscJ and YscK are required for the traffic of the Yops while YscH seems to 
be dispensible (A. Allaoui and G.R. Cornel is, in preparation). A previous 
complementation analysis of polar mutants in virC already demonstrated that 
YscD and YscL are also required to secrete the Yops (MiCHIELS et al. 1991). In 
conclusion, most of the 13 genes of the virC operon are indeed involved in 
secretion of the Yops. It is presumably not the case of yscM, the last gene of the 
operon. It encodes a 12.4 kDa protein having a significant similarity to YopH, the 
product of the neighboring gene. The domain of similarity spans residues 52-130 
of YopH, a domain located between the secretion recognition domain (residues 
1-48) and the tyrosine phosphatase domain (residues 206-468) (MICHIELS et al. 
1991). From their studies in Y. pseudotuberculosis, RIMPILJiINEN et al. (1992) 
concluded that, LcrQ, the homolog of YscM, is a regulator. 

The group of H. Wolf-Watz called IcrKthe region corresponding to the distal 
part of the virCoperon (ROSOVIST et al. 1990a; RIMPILAiNEN et al. 1992). It consists of 
lerP, 0, Ka, Kb, Kc and Q, corresponding the yscH, I, J, K Land M, respectively. 
The yscBCDEF genes of Y. pestis have been analyzed by HADDIX and STRALEY 
(1992). 

Interestingly, homologs of the yscJ, yscF and yscC genes have been 
discovered in other animal pathogens such as Shigella flexneri (ANDREWS and 
MAURELLI 1992; ALLAOUI et al. 1992, 1993; VENKATESSAN et al. 1992) and S. 
typhimurium (GALAN et al. 1992) but also in plant pathogens such as Xanthomonas 
campestris pv. vesicatoria (FENSELAU et al. 1992), P. solanacearum (GOUGH et al. 
1992) and Pseudomonas syringae pv. syringae (X lAO et al. 1992). According to 
sequence analysis, none of the 13 gene products of the virC operon encodes an 
ATP-binding protein which could act as the energizer of the system. 

The virB locus is also devoted to Yop secretion. It consists of eight genes 
which will be called yscN to yscU, in the three species, according to a proposal 
made by H. Wolf-Watz (University of Umea, Sweden). Interestingly, YscN, the 
product of the first gene could act as an energizer of the system (WOESTYN et al. 
1994). It is a 48-kDa protein containing a putative ATPase domain consisting of the 
two nucleotide binding motifs A and B identified by WALKER et al. (1982). YscN 
shares significant homology to the ~ subunit of the FoFl proton translocase of 
E. coli and to Flil of S. typhimurium (VOGLER et al. 1991) and Bacillus subtilis 
(ALBERTINI et al. 1991), an ATP-binding protein presumably involved in the 
flagellum specific export pathway. The deletion of the Walker box A by site­
directed mutagenesis completely abolishes Yop secretion, which indicates first 
that this protein is indeed involved in the secretion pathway and, second, that the 
integrity of the ATPase domain is required for this action (WOESTYN et al. 1994). 
The second gene of locus virB, yscO, encodes a basic 19-kDa protein (S. Woestyn 
et aI., unpublished observations). Genes yscO, yscR and yscS, only described in 
Y. pestis so far, are also involved in Yop secretion. YscR is a 24-kDa inner 
membrane protein containing four transmembrane domains (FIELDS et al. 1994). 
The last gene of the locus, yscU, characterized in Y. enterocolitica encodes a 40-
kDa protein containing four transmembrane segments anchoring a large cyto­
plasmic carboxyl-terminal domain to the inner membrane (ALLAOUI et al. 1994). 
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The entire IcrB (virB) region has also been sequenced in Y. pseudotuberculosis (H. 
Wolf-Watz, personal communication). Taking into account these elements, it 
appears that the virB (lcrB) locus of Y. enterocolitica, Y. pestis and Y. 
pseudotuberculosis is the counterpart of the spa locus from S. flexneri and S. 
typhimurium: genes yscN, 0, P, Q, R, S T. U are the counterparts of spa47, 13, 
32, 33, 24, 9,29, 40from S. flexneri (VENKATESAN et al. 1991; SASAKAWA et al. 1993) 
and spa L, M, N, 0, P, Q, R, Sfrom S. typhimurium (GROISMAN and OCHMAN 1993), 
respectively. The degree of conservation varies between 20% and 50% for each 
individual gene but every gene is positioned in all three genera at the same 
relative position. In addition, YscU and YscN are the homologs of HrpN and 
HrpE from P. solanacearum (GOUGH et al. 1993; Van Gyseghem, personal 
communication). 

Apart from the ysc genes, the Yop secretion pathway also involves IcrD, a 
gene of the virA locus which encodes another inner membrane protein (PLANO and 
STRALEY, 1993). As it is the case of some Ysc homologs, homologs of LcrD are 
involved in flagellar biogenesis in Caulobacter crescentus (SANDERS et al. 1992), in 
Campylobacter jejuni (MILLER et al. 1993), in S. typhimurium (VOGLER et al. 1991) 
and in B. subtilis (CARPENTER and ORDAL 1993). 

If one accepts that virC probably contains ten genes involved in Yop 
secretion, this pathway thus requires at least 19 genes excluding the syc genes 
encoding the individual chaperones (see below). Many of these 19 genes have 
counterparts in export systems_ from other bacterial pathogens and in flagellum 
assembly systems. These homologies suggest that the Yersinia Yop secretion 
pathway is a representative of a new secretion pathway, sometimes referred to 
as type III, and essentially devoted to pathogenesis in plants and in animals. It 
probably derives from the secretion system involved in the export of the flagellum 
components. This new pathway, which is the subject of a microreview by VAN 
GIJSEGHEM et al. (1993), will be treated in several other chapters of this volume. 

5.4 The Yop-Specific Chaperones 

One of the peculiarities of the Yop secretion system is that it makes use of 
cytoplasmic chaperones that are specific for individual Yops (WATTIAU and 
CORNELIS 1993). We called these chaperones "Syc, " for specific Yop chaperone, 
followed by the code letter of the corresponding Yop. If a sycgene is mutated, the 
corresponding Yop is no longer exported butthe secretion of the otherYops is not 
affected. The genes encoding chaperones sycE and sycH are localized next to the 
corresponding yop genes, namely, yopE and yopH. We hypothesize that the role 
of these chaperones is to lead the nascent Yop proteins to the translocon. The Syc 
proteins would thus be the counterparts of SecB in the sec-dependent pathway. 
The major difference is that the Syc proteins are specific for some Yops (WATTIAU 
and CORNELIS 1993) while SecB is multivalent. SycE, the chaperone of YopE, is a 
14.7 kDa protein with a very acidic (4.4) isoelectric point. It probably exists as a 
dimer in the cytoplasm (WATTIAU and CORNELIS 1993). SycH is 16 kDa protein that 
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also has an acidic isoelectric point (P. Wattiau et al. 1994). The chaperone serving 
YopB and YopD is LcrH, an acidic 18-kDa protein previously described as a 
regulator. We propose to rename it SyeD (P. Wattiau et al. 1994). 

6 Genetic Regulation 

6.1 Two Regulatory Circuits 

We have seen in the previous sections that growth restriction and Yops secretion 
only occur at 37°C and in the absence of Ca2+ ions. By contrast, the production of 
YadA is thermodependent but independent of the Ca2+ concentration. Hence, 
temperature and Ca2+ influence two different regulatory networks. The first one, 
responding to temperature, regulates all the pYV encoded virulence functions 
while the second one, responding to Ca2+, only regulates the production of the 
Yops and YlpA. None of these two regulatory networks is perfectly understood so 
far but it is quite clear that they are independent from each other. 

Transcription of the vop genes and the vir (ler) genes, including virF, is 
strongly thermodependent (CORNELIS et al. 1986, 1987b, 1989; FORSBERG and 
WOLF-WATZ 1988; GOGUEN et al. 1984; MULDER et al. 1989; HOE et al. 1992; STRALEY 
and BOWMER 1986; YOTHER- et al. 1986). Transcription of a cloned virF is 
thermodependent in a Y. enteroeolitiea strain cured of p YV (CORNELIS et al. 1989). 
which indicates that virF is itself thermoregulated by a chromosomal gene. 

6.2 The Modulator YmoA 

In order to identify the chromosomal regulator, we mutagenized a Y. 
enteroeolitiea strain which carries laeZfused to vopH. Two chromosomal mutants 
transcribed vopH, vopE and vadA strongly at 28°C but nevertheless did not 
secrete the Yops at low temperature (CORNELIS et al. 1991). Transcription of the 
regulatory gene virF itself was increased at 28°C, which may account for the 
increased transcription of the genes of the regulon. Although the elements of the 
vop regulon were overexpressed at low temperature in the mutants, there was 
still an increase of transcription upon transfer to 3rC. Hence, the thermal 
response was not abolished in these two mutants but rather" modulated." The 
phenotype was thus not that of a classical repressor minus mutant. In both 
mutants, the transposon was inserted in the same gene that we called vmoA, for 
Yersinia modulator. The VmoA gene encodes a 8064-dalton protein extremely rich 
in positively and negatively charged residues. Although there is no sequence 
similarity between YmoA and HU, IHF or H-NS (H1). it is very likely that YmoA is 
a histone-like protein (CORNELIS et al. 1991). 
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All the properties of the ymoA mutants are strikingly reminiscent of the osmZ 
mutants of E. coli and the virR mutants of Shigella flexneri, both lacking H-NS 
(HIGGINS et al. 1988; DORMAN et al. 1990; GbRANSSON et al. 1990). YmoA is, however, 
not the Yersinia counterpart of H-NS from E. coli or Shigella. Nevertheless, the 
hns mutants, but not the wild-type of E. coli, express virF in a thermodependent 
manner (G.R. Cornelis, unpublished observation). Thus, H-NS and YmoA may 
recognize the same structures or sequences. 

An homolog of YmoA was recently discovered in E. coli, as regulator of 
hemolysin production (NIETO et al. 1991). The gene encoding this regulator, called 
hha, can complement the ymoA mutations of Y. enterocolitica provided it is 
expressed at an adequate level (A. MiKULSKIS and G.R. CORNELIS 1994). YmoA and 
Hha are thus the first representatives of a new class of histone-like proteins 
regulating the expression of topologically sensitive promoters. Hha can therefore 
be listed along with H-NS, IHF, FIS, HU and LRP. It is striking that the search for 
a thermoregulator in Yersinia, like in Shigella and in uropathogenic E. coli, 
converged on histone-like proteins. 

6.3 Control by Temperature 

The fact that virFis thermoregulated can explain why the Yops are only produced 
at 37°C. However, it does not demonstrate that temperature is only involved in 
the regulation of virF. Indeed, when virFis transcribed at low temperature from a 
tac promoter, the yop and yadA genes are only poorly transcribed and no Yops are 
produced (LAMBERT et al. 1992). By contrast, at 37°C, the response to I PTG mimics 
the normal response to thermal induction (LAMBERT et al. 1992). VirF is thus not the 
only key to the thermal control of Yops production. 

This poor transcription of the yop regulon at 25°C in the presence of VirF could 
be due to an inadequate conformation of the promoter (LAMBERT et al. 1992). 
Indeed, in ymoA mutants, the yopH promoter is active at 37°C in the absence of 
VirF and it is extremely active at 25°C in the presence of VirF (LAMBERT et al. 1992). 
This indicates that chromatin structure can be involved in transcription activation 
of the yop genes. Hence, we suggest that, in vivo, the promoters of the yop 
regulon are more susceptible to VirF activation at 3]oC. Thus, chromatin structure 
can influence transcription from yop promoters in addition to the effect on 
transcription of virF itself. 

We hypothesize that, somehow, temperature modifies the structure of 
chromatin, making the promoters more accessible to VirF. We have, however, no 
information on the nature of the DNA structure change occurring during the 
temperature shift. One can only speculate that some histone-like protein, 
possibly YmoA. is involved in this change. This observation is just another one 
pointing to the role of chromatin structure in transcription regulation. This 
phenomenon, which seems now to be classical in the regulation of bacterial 
virulence functions, is reviewed and discussed in detail by HIGGINS et al. (1990) and 
by DORMAN and NI BHRIAIN (1993). 
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6.4 Control by Calcium 

While temperature controls nearly all the virulence functions, the presence of 
Ca 2+ regulates the production of the Yops. This second form of regulation appears 
to be very complex and, in spite of many efforts, it is far from being understood, 
yet. Transcription of the yap and vir genes is reduced in the presence of Ca2+ ions 
(CORNELIS et al. 1987b; LEUNG et al. 1990; FORSBERG and WOLF-WATZ 1988; BOLIN et 
al. 1988; PRICE et al. 1989; MULDER et al. 1989). The IcrGVHyapBD operon is 
involved in this regulation but the mechanism is not known yet (PRICE and STRALEY 
1989; BERGMAN et al. 1991). Some models confer a negative regulatory role to 
LcrH in response to the presence of Ca2+ (PRICE and STRALEY 1989; BERGMAN et al. 
1991) but we rather view LcrH as the YopB and YopD chaperone (see here 
before). According to FORSBERG et al. (1991), YopN could be the Ca2+ sensor. 
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1 Introduction 

Cholera is a disease which has been known for many centuries and is readily 
identified by description in even in the most ancient of writings. Typically, it has 
been associated with the Indian subcontinent, but has been able to cross the 
globe. Since the beginning of the nineteenth century, seven pandemics have 
spread in waves, facilitated by increased mobility of the human population. The 
etiological agent Vibrio choferae was first described by Pacini in 1854 and 
subsequently rediscovered in 1883 by Koch, who demonstrated the causal 
relationship with the disease. (An excellent treatise on the history of cholera has 
recently been published; BARUA 1992.) 

Up until very recently (CHOLERA WORKING GROUP 1993) cholera has been 
associated with Vibrio choferae of the 01 serotype, which exists as two separate 
biotypes, E1 Tor and classical, that can be differentiated on the basis of a number 
of phenotypic and biochemical characteristics. However, the newly described 
0139 strains also have most of the properties associated with seventh pandemic 
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E1 Tor strains, except for lipopolysaccharide structure (U.H. Stroeher and P.A. 
Manning, manuscript in preparation), and thus will not be considered separately 
in this article. 

1.1 The Vibrio cholerae Life Cycle 

If cholerae is a water-borne pathogen, propagated via the fecal-oral route, that 
appears to have developed a complex set of traits which act at different phases of 
a life cycle to ensure its continuance in the natural habitat, transmission to and 
multiplication in the human host and release into the aquatic environment where 
it can persist for long period before reinfecting. Although vibrios can be usually 
isolated from rivers and water supplies in endemic areas, the actual numbers 
detected are often a significant underestimate of the level of contamination 
because of their ability to enter the viable but nonculturable state. This form 
resembles a state of suspended animation. The bacteria cannot be reactivated by 
simple addition of laboratory nutrient media, but require in vivo environmental 
signals in order to begin replicating. Presumably this reflects the complex set of 
stimuli which are associated with activating the expression of genes contained 
within the various virulence regulons (see below), as well as those required for 
basic cellular syntheses. The various apparent phases of the If cholerae life cycle 
can be summarized as follows: 

1. Organisms enter host via ingestion of contaminated food or water. 
2. The cholera bacteria sense the host environment and modify their gene 

expression accordingly. 
3. Various colonization enhancers including adhesins and hydrolytic enzymes 

are produced. 
4. Further modification of gene expression leads to colonization of the intestinal 

epithelium and release of toxins. 
5. The bacteria sense the changing environment mediated by the effects of the 

toxins and bacterial multiplication. 
6. The organisms sense that it is an appropriate time to detach and leave the 

host. and/or there is selection of variants due to the development of an 
immune response. 

7. The bacteria further modify their gene expression to facilitate persistence in 
the natural environment. 

Although this model is somewhat speculative there is reasonable 
circumstantial evidence for most of the stages. Indeed it is clear that V. cholerae 
has mUltiple genetic factors which can operate and that many are coordinately 
regulated either at the level of gene expression or secretion. 

Since the numerous gene products that play important roles in the If 
cholerae life cycle are not constitutively expressed, the organism must be able to 
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sense the changes in the environment. Thus, upon entering the host, the bacte­
rium must be able to detect the alterations, for example in oxygen tension, pH, 
osmolarity, viscosity, temperature and nutrient status, so that those factors 
appropriate to this stage and location are elucidated. The factors which would 
appear to be most relevant to the disease process are extracellular/secreted pro­
teins and those associated with the bacterial cell surface (MANNING 1987,1992). 

2 Extracellular/Secreted Proteins 

V. cholerae produces a plethora of secreted proteins some of which are best 
classified as toxins. Others are primarily hydrolytic enzymes which can influence 
the colonization process and which also have the potential to provide a source of 
basic nutrients. 

2.1 Colonization Modifiers 

The hydrolytic enzymes secreted by V. cholerae include DNases, proteases, 
chitinase and neuraminidase. 

Two DNases have been identified (FOCARETA and MANNING 1987, 1991) and 
although mutants lacking both do not appear to be significantly attenuated in the 
infant mouse cholera model, one can still imagine a role for them. The mucus coat 
on the epithelium is rich in DNA presumably due to the high turnover of epithelial 
cells (FERENCZ et al. 1980). This would contribute to the viscosity and reduce the 
ability of bacteria to penetrate this natural defense system. However, the pro­
duction of the DNases could provide a ready means of not only facilitating 
passage, but in doing so, also provide additional nutrients in the form of the 
products of DNA hydrolysis. 

Multiple proteases have been inferred from mutant isolation studies 
(SCHNEIDER and PARKER 1978). One of these, the soluble hemagglutinin protease 
(Hap), is a particularly interesting molecule. It has been shown to have mucinase 
activity, to be able to cleave fibronectin, and it has been suggested to be involved 
in the proteolytic activation of cholera toxin (FINKELSTEIN et al. 1983; BOOTH et al. 
1984). It is closely related to the elastase of Pseudomonas aeruginosa and has the 
enzymatic activities mentioned above (HASE and FINKELSTEIN 1991). Studies of a 
hap mutant in animal models have suggested it has a further function (FINKELSTEIN 
et al. 1992). Pretreatment of cultured epithelial cells with Hap prevents 
adherence, and hap mutants, although unaffected in virulence, show reduced 
shedding. Thus, besides facilitating mucus breakdown Hap also acts as a 
detachase, breaking down receptors for a number of adhesins and so aiding 
release of bacteria into the environment. 

The potent neuraminidase (NanH) would seem to have a role during the main 
part of the infection. Cholera toxin recognizes ganglioside GM1 as its receptor; 
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however, GM1 is not the most abundant glycolipid in the membrane. Instead 
other polysialogangliosides predominate. NanH converts these molecules to 
GM1 by removing the additional sialic acid residues, resulting in an increased 
receptor density for cholera toxin (GALEN et al. 1992). This could be readily shown 
to lead to increased cholera toxin binding in vitro but a similar effect in vivo would 
be difficult to demonstrate. 

Chitinase production presumably has relevance to the aquatic envi­
ronmental phase. V. cholerae is commonly found in association with chitinous 
particles (TAMPLIN et al. 1990) and the secretion of a chitinase may facilitate 
attachment and nutrient acquisition. 

2.2 Toxins 

Cholera toxin (CT) is one of the best studied bacterial toxins, genetically, 
structurally and in its mode of action. CT is composed of two subunits, A and B, 
encoded by separate genes encoded within the ctxA,B operon (see below; 
MEKALANOS et al. 1983). There are five B subunits per A and they form a pentameric 
ring into which the A subunit is inserted (HOLMGREN et al. 1991). In the mature toxin 
the A subunit is proteolytically nicked to A, and A2, which are held together via a 
single disulfide bond. The B subunit provides the receptor recognition and the A 
subunit has the toxic activity; both are required for CT function . Little is known 
regarding internalization of -the A subunit; however, it must pass through the 
cytosol of the enterocyte to the basement membrane, where its target, the 
adenylate cyclase, is located. The A, fragment ADP-ribo-sylates the Ns (Gs) 
component of the adenylate cyclase leading to an increase in formation of cyclic 
AMP. This is associated with CI- and HCO-3 secretion and inhibition of NaCI 
absorption, and accompanied by changes in water movement resulting in fluid 
secretion in diarrhea . 

The CT genes, ctxA,B, are part of a virulence gene cluster flanked by repeated 
DNA sequences designated RS1 (Fig. 1; PEARSON et al. 1993). There are four other 
genes encoded within this cluster: zot, ace, cep and orfU (see below; FASANO et al. 
1991; PEARSON et al. 1993; TRUCKSIS et al. 1993). This whole unit is able to undergo 
amplification by means of a site-specific recombination system encoded within 

direclion 01 transcription 

~----~~~I--~I~I--~~----~> 
RSl cep OT/U ace zot etzA,S RSl 

core region 

Fig. 1. Genetic organization of the virulence cassette flanked by RS 1 elements. The genes contained 
within the core region are: cep, core encoded pilin; orfU, unknown open reading frame; ace, accessory 
cholera enterotoxin; zot, zonula occiudens toxin; and ctxA.B, cholera toxin A and B subunits 
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RS 1, and as a consequence several tandemly duplicated copies of this cluster can 
be generated. This has been observed after in vivo passage in animal models and 
the organization of this region in different isolates is also suggestive of such an 
amplification (MEKALANOS 1983). This provides a potent means of amplifying the 
products of these virulence determinants and especially in enhancing 
toxigenicity. 

Zot (zonula occludens toxin) was identified as the result of a search for a 
toxin responsible for the residual diarrhea found with CT-deleted strains (FASANO 
et al. 1991). It appears to alter the structure of the epithelial tight junctions (zonula 
occludens) which leads to an increase in conductance in Ussing chamber 
experiments. This would result in an increase in intestinal permeability. Ace 
(accessory cholera enterotoxin) is the third toxin within the RS1-linked virulence 
gene cluster (TRUCKSIS et al. 1993). It has been shown to be enterotoxic in ligated 
rabbit ileal loops and would consequently be expected to be diarrheagenic. 

Production of a soluble hemolysin, designated HlyA, for sheep red blood cells 
is a characteristic used to differentiate E1 Torfrom classical strains. However, the 
hemolytic status of E1 Tor strains now seems to be quite variable making it less 
reliable as a biotyping character. HlyA has been shown to have both cytotoxic/ 
enterotoxic and cytolytic activities (HONDA and FINKELSTEIN 1979; ALM et al. 1988, 
1991). The structural gene has been cloned and the protein has been shown to 
undergo several cleavages suggestive of a pre-pro-protein (ALM et al. 1988; 
YAMAMOTO et al. 1990). Interestingly, classical strains appear to have a common 
defect in hlyA, an 11 bp deletion, which results in production of a truncated 
non hemolytic form (ALM et al. 1988; RADER and MURPHY 1988; ALM and MANNING 
1990a) predicted to contain enterotoxic activity (ALM et al. 1991). 

HlyA induces pathological changes in the infant mouse gut and would appear 
to be expressed at a different stage of the infection than CT (ALM et al. 1991). Its 
function during an infection may be to provide iron since it is in part under control 
of Fur (see below); however, it is also directly controlled by the HlyU protein 
(WILLIAMS and MANNING 1991; WILLIAMS et al. 1993). Lysis of enterocytes also 
releases other nutrients which can be readily accessed due to the variety of 
secreted enzymes which V. cholerae possesses. 

2.3 Protein Secretion/Export 

Considerable interest has emerged in protein secretion in recent years and there 
appear to be a series of common underlying mechanisms (see PUGSLEY 1993 for 
review). Some years ago a mutant, V. cholerae strain M14, defective in CT 
secretion was isolated (HOLMES et al. 1975). Recently, it has been possible to 
identify the affected gene and to demonstrate that there are further linked genes 
also associated with protein secretion (SANDKVIST et al. 1993; OVER BYE et al. 1993). 
These genes, designated eps genes, are homologous to those associated with 
protein secretion found in a variety of gram-negative bacteria including Klebsiella 
oxytoca (PUGSLEY and REYSS 1990), Erwinia chrysanthemi (LINDBERG and COLLMER 
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1992) and Pseudomonas aeruginosa (BALLY et al. 1992). These genes are not only 
required for secretion of CT, but also for protease and chitinase (OVERBYE et al. 
1993), and one wonders whether they are also required for all of the other 
secreted proteins as well, given the pleiotropic effects of some classes of 
protease-defective mutants (SCHNEIDER and PARKER 1978). 

Homology has been found between genes for protein secretion and type 4 
fimbrial assembly with a number of organisms (see PUGSLEY 1993). This also holds 
true for V eholerae. Several of the genes necessary for biosynthesis of toxin 
coregulated pilus show homology (see below; Fig. 4; OGIERMAN et al. 1993a; 
KAUFMAN et al. 1993). Thus, the presumed ATP-binding component of these 
systems is present in both the tep gene cluster (tepT; OGIERMAN et al. 1993a) and 
in the eps gene cluster (epsE; SANDKVIST et al. 1993). It will be interesting to see 
whether a third homologue exists for the more typical type 4 fimbrial system that 
is also present in V. eholerae (see below; EHARA et al. 1991; A. Fallarino and PA 
Manning, unpublished data). 

3 Surface Components 

Due to the critical nature of the colonization process in the establishment of a 
cholera infection, the components of the cell envelope have been suggested as 
prime targets for vaccine development (MANNING 1987,1992). Besides containing 
a variety of specific proteins, the outer membrane also contains lipopoly­
saccharide (LPS) and is associated with anchoring a number of surface structures. 

3.1 Outer Membrane Proteins 

The outer membrane of the cell envelope of V. eholerae is similarto that of other 
gram-negative enteric pathogens in terms of the types of proteins that are 
present. This includes several porin-like proteins and an OmpA-like protein 
(MANNING et al. 1982; ALM et al. 1986). Although many of the outer membrane 
proteins of V eholerae are clearly immunogenic in both humans and animals 
(MANNING and HAYNES 1984; SEARS et al. 1984; KABIR 1986), their significance in 
pathogenesis is ill-defined. 

OmpV is a major immunogenic protein (MANNING and HAYNES 1984), and 
antibodies have been readily detected in many convalescent sera by western blot 
analysis (PA Manning, unpublished data). However, a mutant with a TnphoA 
insertion in the structural gene could compete equally well with the wild type in 
vivo, indicating that OmpV does not have a role in colonization (TAYLOR et al. 1987). 
The structural gene, ompV, has been cloned, the nucleotide sequence 
determined, and the location of the antigenic epitopes with the protein defined 
(STEVENSON et al. 1985; POHLNER et al. 1986a,b). ompVis very poorly expressed in 
E. coli, apparently due to a novel translational control mechanism (POHLNER et al. 
1988). 
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The gene ompW, encoding a 22 kDa outer membrane protein, has also been 
cloned and sequenced, and its expression analyzed in a number of hosts (MANNING 
et al. 1985; JALAJAKUMARI and MANNING 1990). Although a minor protein in V. 
cholerae, it is very immunogenic and expressed at much higher levels in 
heterologous hosts. No evidence exists for a role in pathogenesis. 

Two proteins, OmpU and OmpT, have been also identified that are inversely 
regulated by the ToxR,S,T regulon (see below); however, no role in pathogenesis 
has been established (Taylor et al. 1987). 

3.2 Flagellum and Chemotaxis 

Motility, and the associated phenomenon of chemotaxis, is an important virulence 
property for V. cholerae (GUENTZEL and BERRY 1975; FRETER et al. 1981). The 
bacterium has a single polar flagellum which is sheathed in what appears to be an 
extension of the outer membrane lipid bilayer, in that it contains LPS (FUERST and 
PERRY 1988) and specific proteins (HRANITSKY et al. 1980). Nonmotile mutants are 
less virulent than their corresponding motile parents, although both are still 
capable of inducing diarrhea and can adhere to intestinal epithelium (GUENTZEL and 
BERRY 1975; AnRIDGE and ROWLEY 1983). It has also been suggested that a 
component of the flagellum is important for virulence. 

Studies on the regulation of virulence determinants (see below) indicate that 
the cell is able to sense various molecules which are critical for expressing these 
factors. Thus, it is highly likely that there will be a close relationship between the 
chemotactic response to some of these molecules and gene regulation. The 
presence of a flagellum is of course essential for this response. 

It is interesting to speculate about the role of the hly8 gene product, which 
was originally thought to be involved in secretion of the E1 Tor hemolysin HlyA 
(MANNING et al. 1984; ALM and MANNING 1990b). It is now clear that HlyB is highly 
homologous to the family of chemotactic transducers which are involved in 
signaling the flagellar motor in response to particular environmental stimuli. HlyB 
is up-regulated, along with HlyA, by HlyU (WILLIAMS and MANNING 1991), 
suggesting that an understanding of the associated chemotactic stimuli may help 
define the requirements for HlyA expression. The high degree of conservation of 
motifs within the chemotactic transducers of E. coli, Salmonella and hly8 
suggests that other transducers in V. cholerae could be readily identified and 
facilitate elucidation of the stimuli that can moderate chemotaxis in conjunction 
with both pathogenesis and envioronmental interactions. 

3.3 Lipopolysaccharide and Serotype Switching­
A Host Avoidance Mechanism? 

Lipopolysaccharide is the most abundant molecule on the cell surface of gram­
negative bacteria and functions as a protective barrier against both hydrophobic 
molecules and detergents such as bile salts. It is the 0 antigen of the LPS which 
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provides the basis for serotypic differences. LPS of V cholerae 01 is highly 
immunogenic and is clearly a protective antigen (NEOH and R~WLEY 1972; MANNING 
et al. 1986). Strains of both biotypes can be further subdivided into three 
serotypes, depending on the structure of the O-antigens of the LPS, designated 
Inaba, Ogawa and Hikojima. The three serotypes share a common antigenic 
determinant referred to as the A antigen. In addition, there are two specific 
antigens, Band C, which are expressed to varying degrees on the different 
serotypes: Inaba strains express only C, while Ogawa strains express both Band 
C, although C is present in a much reduced amount compared to Inaba (see 
MANNING et al. 1994 for discussion). The serotype of V. cholerae 01 strains is not 
fixed, but can undergo a conversion or switching between the Inaba and Ogawa 
serotypes. This conversion is nonreciprocal and occurs at a frequency of 
approximately 10-5 for the Ogawa to Inaba conversion but significantly lower for 
the converse. Serotype conversion has been demonstrated in vitro as a result of 
exposure of the organism to antisera. The isolation of Inaba strains from Ogawa 
cells grown in the presence of anti-Ogawa serum has been reported but the 
converse experiment of growing Inaba cells in anti-Inaba serum only gave rise to 
rough strains. Thus, it appeared that only the serotype conversion from Ogawa to 
Inaba could be detected. Initially, in vivo reports of serotype conversions were 
dismissed as multiple infections of patients or patients being reinfected with 
another serotype but in 1967 GANGAROSA et al. reported Ogawa to Inaba switching. 
Isolation of Inaba organisms was followed by a relapse, suggesting that the 
organism had multiplied in the intestine and that a change in serotype may have 
enabled the host immune response to be evaded. In 1966 (SHEEHY et al. 1966). in 
a laboratory which used exclusively Inaba organisms, a worker acquired an 
infection and after 3 days began to secrete Ogawa organisms. Thus, it may be 
easier to detect Inaba to Ogawa serotype convertants in humans in whom the V 
cholerae multiply to large numbers and presumably a selection against the 
original serotype can occur via the immune response. 

Studies using germ-free mice have confirmed the ability of V cholerae to 
undergo serotype conversion (SACK and MILLER 1969) and demonstrate the 
change not only from Inaba to Ogawa and vice versa but also from smooth to 
rough strains lacking 0 antigen and then back to smooth strains usually of the 
same original serotype. Thus, it appears as though V. cholerae can change 
serotype and also the presence or absence of 0 antigen. In addition, mouse 
experiments and use of immunosuppressive drugs indicate that serotype 
convertants are selected for by the specific antibodies. 

Data to support the notion that serotype conversion is important to the 
persistence of the disease come from observations of recent epidemics. In Latin 
America in 1991 a cholera epidemic began for the first time this century. 
Extensive biochemical analyses and rRNA RFLP analysis has shown that the 
epidemic strain, an El Tor Inaba is unique to Latin America (D.N. Cameron, T. 
Popovic, I.K. Wachsmuth, P.I. Fields, personal communication; SALAZAR-LINDO et 
al. 1991). However, Ogawa isolates that were identical to the epidemic strain in 
all other respects began to appear in about the seventh month of the epidemic 
suggesting that the epidemic strain had undergone a serotype conversion. 
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Sequence analysis and the construction of defined mutants have shown that 
Ogawa strains can be converted to Inaba by any change which leads to a 
defective RfbT protein, whereas an Inaba can only switch to Ogawa ifthe specific 
rfbTmutation in that strain is precisely reverted (Fig. 2). This has occurred in the 
Latin American Inaba strains that gave rise to the Ogawa form during the cholera 
epidemic in 1991 (Cameron et aI., cited in MANNING et al. 1994). 

More recently, a previously unidentified serotype, 0139, also referred to as V. 
cholerae synonym Bengal, has arisen and is causing a dramatic epidemic in India 
and Bangladesh (CHOLERA WORKING GROUP 1993). A variety of analyses suggests 
that these strains are indistinguishable from seventh pandemic E1 Tor isolates 
except for their serotype (Cameron et aI., personal communication). Indeed it 
would appear that the strains have a deletion within the rfb region and have 
acquired an enzyme which permits the LPS core to be modified so that it is 
immunologically novel (U.H. STROEHER and P.A. MANNING, manuscript in 
preparation). Part of the genetic changes which have occurred appear to be 
associated with rfbO,R,S which shows a high degree of homology to Rhs 
elements associated with chromosomal rearrangements in E. coli (Fig. 2; ZHAO et 
al. 1993). 

Interestingly, the ability to construct isogenic strains differing only in serotype 
has enabled the demonstration that, at least in animal models, there is no 
difference in naive animals in their virulence (STROEHER et al. 1992). Thus, the 
facility to change serotype as a consequence of immune pressure by the host has 
a decided advantage to the Bacterium without compromising its pathogenic 
potential. 
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3.4 Hemagglutinins, Grappling Hooks and Anchors 

Several different hemagglutinins (HAs) have been shown to be expressed by \I. 
cholerae and, by analogy with other systems (e.g., enterotoxigenic E. colt), these 
factors may also be the adhesins involved in colonization. These molecules differ 
in the specificity of erythrocytes which are agglutinated, the phase of growth and 
temperature at which they are expressed, their sensitivity to sugars and the 
requirement for divalent cations, and expression, at least in vitro, may be biotype­
dependent (HANNE and FINKELSTEIN 1982). Thus, the major cell-associated HA of E1 
Tor strains is the chicken erythrocyte HA which is sensitive to D-mannose and D­
fructose and is also used in biotyping. The classical HA is L-fucose sensitive. 
These and other HAs have been shown to correspond to fimbriae/pili and will be 
discussed below. However, other HAs are poorly defined. 

The gene for a mannose-fucose resistant cell-associated HA (MFRHA) has 
been cloned, the nucleotide sequence determined and a specific mutant 
constructed (FRANZON and MANNING 1986; FRANZON et al. 1993). There are 
conflicting data as to which of two ORFs corresponds to the MFRHA (FRANZON and 
MANNING 1986; VAN DONG EN and DEGRAAF 1986). This is complicated by the fact that 
neither of the two open reading frames (ORF's) encoded within the mrhA,B 
operon look like typical surface-associated proteins (A. Barker and PA Manning, 
unpublished data). Mutants defective in this locus show an at least 100-fold 
higher LD50 in the infant mouse model than in the corresponding parent strain 
(FRANZON et al. 1993). Such ml:ltants also show a marked defect in their ability to 
compete in vivo with the parent strains. 

The region of the bacterial chromosome where mrhA, B is located is unusual 
(Fig. 3). Part of this region has been sequenced and pulsed field electrophoresis 
and Southern hybridization have provided further details (FRANZON et al. 1993; 
BARKER et al. 1994). Within about 100-200 kb there are more than 40 copies of a 
124 bp repeated sequence which flanks the individual genes in a direct orientation 
within the sequenced region. The function of the repeat is unknown but TAKEDA et 
al. (1991) identified an isolate in which it was found flanking the ST-toxin gene not 
normally present in \I. cholerae 01. Perhaps this region of the chromosome 
represents a pathogenicity island? 

FINN et al. (1987) isolated a mutant, SB001, derived from JBK70, a CT deleted 
derivative of the E1 Tor strain N16961; the mutant was shown to be deficient in 
a cell-associated HA of \I. cholerae. This mutant was dramatically reduced in its 
colonization ability, but could still induce an immune response. The introduction of 
this mutation also abolished the fluid accumulation and deaths seen in rabbits 
with JBK70, making it potentially more useful as an attenuated cholera vaccine 
candidate. In contrast to these data, TEPPEMA et al. (1987) demonstrated that a 
strain lacking mannose-resistant hemagglutinating activity in vitro could still 
associate with the small intestinal surface. 

The exact nature of the above HAs is unknown, however, several fimbriae/pili 
types, perhaps best pictured as specific grappling hooks or anchors, have been 
identified. The analogy to a grappling hook or anchor seems most apt in that these 
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structures are effectively dangling from the cell to grasp the appropriate surface 
in order to hold the bacterium in-place. Thus, they reduce the likelihood that the 
bacteria will be swept away from the surfaces to which they are seeking to 
adhere and colonize. 

Early studies disagreed as to the existence of pili/fimbriae on V. eho!erae 
strains but HALL and colleagues (1988) have clearly identified the existence of 
several types. TAYLOR et al. (1987) first provided convincing data on a colonization 
pilus which they designated TCP (toxin-coregulated pilus) because it was under 
the same genetic control as CT (see below). Studies in the infant mouse cholera 
model have shown that TCP is a critical virulence determinant in classical strains 
and that passive antibodies are protective (SHARMA et al. 1989; SUN et al. 1990). 
TCP could also be shown to be essential for colonization of the human gut 
(HERRINGTON et al. 1988), although its status as a protective antigen is questionable 
given the poor immune responses compared to other antigens (HALL et al. 1991). 
The significance ofTCPto the E1 Tor biotype is even more obscure. E1 Tor strains 
have been demonstrated to produce TcpA (JONSON et al. 1991 a; Voss and AnRIDGE 
1993), the major structural subunit, but assembled TCP have only recently been 
identified (AnRIDGE et al. 1993). Mutants in tepA are dramatically attenuated for 
both biotypes. 

The entire gene cluster encoding TCP biosynthesis has been cloned and 
sequenced and the genes and their products are highly conserved between the 
biotypes with a few notable exceptions (Fig. 4; FAAsT et al. 1989; OGIERMAN and 
MANNING 1992a,b; OGIERMAN et al. 1993, 1994). The tepA gene and the regulatory 
regions between tep! and tepP, and tepH and tepA show marked differences 
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between the biotypes but rigid conservation within the biotypes (OGIERMAN 
et al. 1994; J.R. IREDELL and PA MANNING, manuscript in preparation). These 
differences result in variation in expression and epitope differences in TcpA 
(JONSON et al. 1991 a; OGIERMAN et al. 1994; Voss and ATTRIDGE 1994; ATTRIDGE et al. 
1993). 

As noted above some_of the Tcp proteins show homology to proteins 
associated with type 4 pilus biogenesis and protein secretion; however, based on 
databse searches, most of the proteins appear to be unique, suggesting a novel 
assembly mechanism. Although TCP has a number of features in common with 
type 4 fimbriae, another fimbria I subunit has been described which has an NH2-

terminal almost identical to that of typical type 4 pilins (EHARA et al. 1991). This 
structure probably corresponds to the MSHA characterized by JONSON and 
colleagues (1991 b). Mutants in this structure are not yet available to assess the 
role of the man nose sensitive haemagglutinin (MSHA) in colonization. Mutants 
affecting an accessory colonization factor (ACF) encoded by a series of acfgenes 
under the control of the ToxR, S, T regulon show decreased colonization in animal 
models (PETERSON and MEKALANOS 1988). ACF is thought to represent a minor pilus 
type. 

4 Coordinate Regulation of Virulence Determinants 

Studies emanating from the laboratory of John Mekalanos have been 
instrumental in demonstrating the presence in V. cholerae of a regulon of 
virulence determinants under the control of the ToxR,S,T system (see 01 RITA 
1992 for review). This regulon controls production of CT. TCP, ACF, OmpT, OmpU 
and possibly other molecules. It is clearly the most significant of virulence gene 
regulatory systems in V cholerae and can, both positively and negatively, affect 
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gene expression. This system is referred to as a cascade because of the 
complexity of regulatory events which lead to gene expression by ToxR activation 
(or repression) or subsequent ToxT activation. ToxR is a cytoplasmic membrane­
anchored regulatory protein which is activated as a result of environmental 
stimulation through ToxS (MILLER et al. 1987; 01 RITA and MEKALANOS 1991). It also 
appears to activate ToxT which is a member of the AraC family of transcriptional 
regulators (OGIERMAN and MANNING 1992a; HIGGINS et al. 1992). Only ctxA,B appears 
to be direcly activated by ToxR whereas the other genes of the ToxR,S,T regulon 
require ToxT. Although a binding site for ToxR has been identified based on 
studies with the ctxA,B operon (MEKALANOS et al. 1983), the heptameric binding 
site TTTTGAT has not been identified in association with other ToxR regulated 
genes. 

Iron, in conjuction with the Fur protein, controls the expression of a set of 
genes which include potential virulence deteminants (GOLDBERG et al. 1990, 
1991). Growth under iron-limiting conditions leads to the increased expression of 
several outer membrane proteins, hemolysin and the iron siderophore 
vibriobactin (STOEBNER and PAYNE 1988; SIGEL and PAYNE 1982; SCIORTINO and 
FINKELSTEIN 1983). However, in the case of at least some of these genes, iron 
availability is not the sole determining factor. IrgB has been identified as a 
transcriptional activator of IrgA and functions in conjuction with Fur (GOLDBERG et 
al. 1991). Hemolysin production is also activated by a small regulatory protein, 
HlyU, which is related to a family of helix-turn-helix DNA binding proteins often 
associated with heavy metal resistance (WILLIAMS and MANNING 1991; WILLIAMS et 
al. 1993). Mutants in hlyU are attenuated to a greater degree than hlyA mutants 
and also show a small but reproducible defect in their ability to compete in vivo 
with isogenic hlyU strains, suggesting an additional defect in a colonization factor. 
A 28 kDa protein found in culture supernatants is up-regulated by HlyU (WILLIAMS 
et al. 1993), and, interestingly, there are two copies of this gene present in V. 
cholerae (S.G. WILLIAMS, L. VARCOE, PA MANNING, manuscript in preparation). 

Both toxR and hlyU mutants are attenuated, showing a marked increase in 
LD50 in animal models (TAYLOR et al. 1987; WILLIAMS et al. 1993) and suggesting 
that both sets of determinants are required for full virulence potential. This 
reinforces the notion of a defind sequence of events during pathogenesis which 
are activated as a result of those preceding and that a block in this sequence will 
lead to attenuation. Furthermore, these regulons may be subject to an even more 
global control system such as DNA supercoiling (see chapter by HIGGINS). 

5 Conclusions 

Vibrio cholerae 01 represents a challenging adversary for those interested in 
studying the molecuar requiremens for pathogenesis because of the highly 
diverse array of factors and networks that it possesss. This is a dramatic contrast 
to enterotoxigenic Escherichia coli (ETEC), one of the most ubiquitous diarrheal 
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pathogens, which expresses basically an adhesin, usually referred to as a 
colonization factor antigen (CFA) and one or both of two toxins, the CT related L T 
(heat labile toxin) and ST (heat stable toxin). By comparison, ETEC are very simple 
pathogens lacking the barrage of colonization facilitators and are not even capable 
of efficiently secreting their toxins. 
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1 Introduction 

N. gonorrhoeae and N. meningitidis, the causative agents of gonorrhoea and 
meningitis, were discovered in 1879 and 1887 by Albert Neisser (gonococci) and 
Anton Weichselbaum (meningococci), respectively, although the disease 
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Fig. 1. Critical events of a localized neisserial infection. The bacteria first attach to epithelial cells via 
their pili and may then transcytotically pass to subepithelial tissues. Professional phagocytes represent 
important targets for the intracellular accomodation of the bacteria within phagosomal vacuoles. 
Extracellular bacteria use sialic acid-containing capsules to resist humoral host defenses. Only rarely the 
bacteria disseminate into the blood stream and other host organs. For further details. see text 

gonorrhoea had been recognized since antiquity. The Neisseriae are gram­
negative bacteria usually diplococcal in shape. They include a wide variety of 
commensal species and two pathogenic species. Meningococci and gonococci, 
as well as some of their commensal relatives, only infect humans as their natural 
host. They represent typical mucosal colonizers. While localized infections with 
N. meningitidis (e.g., of the nasopharynx) of normal human individuals occur 
frequently and are usually asymptomatic, reminiscent of the mucosal coloniza­
tion by commensal Neisseria species, under rare, as yet undefined, conditions 
pathogenic Neisseria disseminate to cause life-threatening or other severe 
diseases including meningitis, bacteremia, pelvic inflammatory disease (PID) and 
septic arthritis. 

Localized neisserial infections involve a series of receptor-mediated 
interactions between the bacteria and the primary target cells (Fig. 1). The 
formation of pili is a prerequisite for attachment to the epithelial cell surface. The 
surface-attached bacteria often penetrate the epithelial cells and-whilst 
contained in a vacuole-may transcytose towards subepithelial tissues. The 
pathogenic Neisseriae strongly interact with phagocytic cells, such as neutrophils 
and macrophages, which seem to provide them with an intracellular habitat. 

Neisserial pathogenesis is characterized by a strong inflammatory response 
to the infection rather than by the action of distinct bacterial toxins. Clearly, the 
neisserial infection is a multifactorial process. With regard to their putative 
virulence attributes meningococci and gonococci are similarly equipped, with 
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perhaps one major difference, namely, the lack of a polysaccharide capsule in 
gonococci. Therefore, most of the topics discussed in this review are relevant to 
both species, despite the different disease spectra caused by the two pathogens. 

2 Evolutionary Context and Horizontal Exchange 
Between Neisseria spp. 

2.1 Evidence of Horizontal Exchange 

A series of recent studies emphasizes the significance of horizontal genetic 
exchange in the evolution and epidemiology of Neisseria species. It appears that 
a continuous horizontal flow of genetic material affects the chromosomal 
composition not only of the pathogenic Neisseria species, but also of many 
commensal species. In fact, there exists ample circumstantial evidence for 
horizontal exchange of genes between commensal and pathogenic Neisseria 
species, between meningococci and gonococci, and within a distinct Neisseria 
species, generating mosaic genes (HALTER et al. 1989; MANNING et al. 1991; 
FEAVERS et al. 1992; SPRATT et al. 1992; ZHOU and SPRATT 1992). It is difficult to 
give precise estimates of the frequencies with which such horizontal exchanges 
occur in nature, however, in a few cases it is plausible that such events may have 
happened in recent years (ACHTMAN 1994). Conceivably, horizontal genetic 
exchange can be envisioned as a longterm adaptive mechanism suitable for 
responding to gross environmental changes and for securing the genetic 
flexibility of Neisseria species as a collective group of seemingly independent but 
truly interconnected traits. Consistent with the fact that the Neisseria species 
evolved from, and still rely on, a common pool of genes, we propose regarding 
these organisms as a collective, rather than entirely distinct, species. 

2.2 Clonal Networks 

How does this concept of a species collective fit with the clonality of Neisseria 
species as is particularly evident in the case of N. meningitidis (WANG et al. 1992; 
ACHTMAN 1994)7 This issue has recently been addressed by MAYNARD SMITH and 
colleagues (1993), who proposed, based on gene linkage disequilibrium 
measurements, a significant difference in the clonal structures of N. meningitidis 
vs other clonal species, such as Salmonella and Escherichia coli. The authors 
define several types of population structures, an entirely clonal structure, the 
epidemic structure and, at the other extreme, the panmictic structure with no 
evidence of linkage disequilibrium. These population structures are the result of 
two competing genetic processes, i.e., the genetic drift (mutagenesis) occurring 
within the scope of a species, and horizontal exchange (recombination) 
affecting this species extrinsically. Salmonella is little influenced by horizontal 
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Fig. 2. Simplified representation of the clonal network structure formed by the Neisseria species. 
Cross-points in the plain indicate recombination events involving two bacteria of the same strain, of the 
same species, or of the whole population. Bacteria well adapted owing to horizontal exchange 
(recombination) and/or genetic drift (mutation) lead to clonal expansion (cones). Both pathogenic (light 
cones) and nonpathogenic clones (shaded cones) may occur. Shaded areas of the network plain 
represent pathogens 

exchange and thus appears as a clonal population. Contrastingly, N. gonorrhoeae 
constitutes a panmictic population in which horizontal exchange is overwhelming 
(O'ROURKE and STEVENS 1994):-N. meningitidis occupies an intermediate position in 
which occasional clonal outgrowths occur in an otherwise panmictic context. 

The latter population structure could be termed a "clonal network" (Fig. 2) 
comprising both sexual and clonal elements. Interestingly, such a clonal network 
structure is evident at several levels of the genus Neisseria as a whole. Likewise 
the species N. gonorrhoeae can be regarded as a "large epidemic clone" of the 
genus Neisseria, still connected with the remainder of the network by horizontal 
exchange (HOBBS et al. 1994). Conversely, on a short scale, following up the 
infection route of individual N. gonorrhoeae strains among sexual contacts, a 
similar clonal network structure is generated under the influence of genetic 
variation (a rapid and specialized form of mutagenesis discussed below) and 
horizontal exchange, for example, in individuals infected with multiple strains. 
Thus, a clonal network is evident at several levels, i.e., strains, epidemic clones, 
and species. The fine-structure of a clonal network is influenced by several 
parameters; (1) the sexual activity between species, epidemic clones and strains, 
(2) their spatial relationship and (3) the selective advantage of novel recom­
binants. According to this theory, N. gonorrhoeae, despite being part of the 
Neisseria clonal network, developed and functioned as an "independent" 
Neisseria species because it was unaffected by dramatic sexual exchange with 
the rest of the genus, owing to its ecological isolation (VAzQUEZ et al. 1993). The 
theory also explains why, despite active horizontal exchange among the Neisseria 
species, some gena-types, including that for the polysaccharide capsule and IgA 
protease, are restricted to distinct Neisseria species (FROSCH et al. 1989; FAclus 
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and MEYER 1993) while the distribution of many other putative virulence 
determinants is not species-restricted, not even to the pathogenic Neisseriae 
(AHO et al. 1987). 

2.3 Genome Plasticity 

The striking contrast between the strict clonality of Salmonella and E. coli and the 
clonal network structure of Neisseria appears to be reflected by distinct 
differences in the chromosomal organization of the genes of these species. The 
E. coli chromosome exhibits a considerable degree of organization concerning, 
for example, the linkage of related genes, the presence of operons and the 
transcriptional orientation of genes. Such a high degree of genomic organization 
is not seen in the gonococcus. By contrast, the recent construction of physical 
maps of the gonococcus (BIHLMAIER et al. 1991; DEMPSEY et al. 1991; DEMPSEY and 
CANNON 1994) revealed that many functionally related genes are distributed over 
the genome. Examples are the structural and accessory pilgenes (e.g., pilS, pilE, 
pilC7,2, pilD, pitn (BIHLMAIER et al. 1991; DEMPSEY and CANNON 1994), which are not 
genetically linked, quite unlike other type 4 pilus systems (OGIERMAN et al. 1993). 
Similarly, the opa genes, 11 copies of which exist in the N. gonorrhoeae genome, 
are spread over the whole genome. The same is true for other gene families such 
as pilC, pilE/S and laa. Also, transcriptional coupling of genes (i.e., operons) is 
rarely found in Neisseria, although a few exceptions exist, including the tightly 
organized cps capsular gene cluster of the meningococcus (FROSCH et al. 1989). 
Very often genes normally organized in operons in other species are found at 
separate loci in the gonococcus, e.g., carA/carB (Rudel and Meyer, unpublised 
results) and the galloci (ROBERTSON et al. 1993; JENNINGS et al. 1993; HAMMERSCHMIDT 
et al. 1994). Furthermore, many neighboring genes in N. gonorrhoeae are 
transcribed in opposite directions; thus, a g~neral transcriptional orientation with 
regard to the location of the chromosomal origin of replication is not evident. 
Another remarkable phenomenon of Neisseria is the occurrence of multiple gene 
copies (gene families) which usually contain significantly diverse sequences. 
Whether the distinct chromosomal organization of Neisseria species is causally 
related to other unique features of these micro-organisms, including the natural 
transformation competence, intrastrain variability (discussed below) and the 
above-mentioned population structures, is not well understood. Above all, it is 
unknown whether the genetic plasticity found in Neisseria species is related to 
the life style of these organisms, characterized by an extremely narrow host 
range and the ability to cause persistent infections, or whether it simply reflects 
the fact that these bacteria are young in evolutionary terms and still at the 
beginning of a long-term adaptative process with regard to their host. 
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3 Natural Competence for Transformation 

The ability of Neisseria spp to undergo DNA transformation under natural 
conditions was recognized some 30 years ago (CATLIN and CUNNINGHAM 1961; 
SPARLING 1966). Until today no natural process other than transformation has been 
reported that could account for the horLzontal exchange of chromosomal genes in 
Neisseria. Bacteriophages, and in particular transducing phages, have not been 
identified and, although many conjugative plasm ids exist, conjugative (Hfr-like) 
mobilization of chromosomal determinants is not known to occur under natural 
conditions. Thus, the only known mechanism that could account forthe obseNed 
horizontal exchange among Neisseria is transformation. 

Horizontal exchange of chromosomal markers via transformation is readily 
observed by cocultivation of different Neisseria strains in vitro (FROSCH and MEYER 
1992; ZHANG et al. 1992). In a typical experiment the efficiency of transfer between 
two gonococcal strains after 1 h of cocultivation was in the order of 10-5 per cell 
and genetic locus. The process is completely inhibited by the presence of DNase 
in the culture medium indicating that, despite the apparent viability of the cultured 
cells, there is a substantial release of DNase-accessible DNA into the medium. 
How the DNA is released into the medium has not been studied in detail; 
however, the spontaneous autolysis observed for the gonococcus may be One 
explanation (HEBELER and YOUNG 1975). 

Natural transformation _competence differs markedly from the artificial 
transformation used for the cloning of genes, e.g., in E. coli. In Neisseria the 
transforming DNA is taken up as a linear molecule and requires the RecA function 
and homologous sequences in the resident DNA of the recipient cell in order to 
allow recircularization of a plasmid or incorporation of the DNA into the 
chromosome (BISWAS et al. 1986; KOOMEY et al. 1987). The DNA homology 
requirement is probably the most effective mechanism of protection against 
bacterial transformation with unrelated DNA. Whether there is any role for the 
abundant DNA restriction and methylation systems of Neisseria species (SULLIVAN 
and SAUNDERS 1989; GUNN et al. 1992; GUNN and STEIN 1993) on transformation is 
currently not well understood. In addition to these restrictions, the Neisseria 
species recognize a specific DNA sequence, 8 bp in length, that seNes as a signal 
for the efficient uptake of DNA (GOODMAN and SCOCCA 1988). Usually, the uptake 
signal is part of a transcriptional terminator where it constitutes the palindromic 
stem region; thus, a typical neisserial terminator consists of two inverted uptake 
signals. Whether the uptake signal only seNes for DNA recognition or whether it 
also represents a site for DNA linearization and/or a signal for the direction of DNA 
transport is currently not known. 

A panel of chemical mutants have been generated which led to the dissection 
of the gonococcal transformation into: (1) uptake and conversion of the 
transforming DNA into a DNase-resistant state and (2) the subsequent processes 
(BISWAS et al. 1989). One such DNA uptake deficient mutant (dudJ) has been 
further characterized biochemically (DORWARD and GARON 1989). Early studies 
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suggested a role for gonococcal pili (which belong to the type IV or N-methyl-Phe 
class of pili) in transformation competence (GIBBS et al. 1989; Facius and Meyer, 
unpublished results). This interesting observation has recently been specified in 
that pi lin (PilE), the major pilus subunit, rather than intact pilus, is required for DNA 
uptake (GIBBS et al. 1989; Facius and Meyer, unpublished results). One intriguing 
aspect is that gonococci can spontaneously shut down PilE synthesis in vitro by 
irreversible deletion of the expressed gene copy (pilE). This not only results in 
an absolute transformation defect but also implies a role of these terminally 
differentiated gonnococcal variants in the infection process (see below). 

In addition to PilE, the minor pilus-associated protein, PilC (JONSSON et al. 
1991), is required for DNA uptake (Facius and Meyer, unpublished results). The 
involvement of pilus-associated factors in neisserial transformation competence 
is not unexpected since DNA import (for example in Bacillus) and type IV pilus 
assembly obviously share common structural elements (HOBBS and MATTICK 
1993). That competence gene products are often involved in other essential 
cellular processes may explain why respective defects are often pleiotropic. An 
example of a nonessential competence determinant is comA, identified in N. 
gonorrhoeae and other competent Neisseria species. ComA appears to be a 
typical inner membrane protein and is involved in a transformation step 
subsequent to the initial DNA uptake (Facius and Meyer 1993). Its distribution 
among neisserial species suggests that the transformation mechanism is similar 
in different Neisseria species. Future studies on the natural transformation will 
hopefully shed more light on the significance of this interesting process for the 
evolution and the pathogenic properties of the Neisseria species. 

4 Strategies for Rapid Microenvironmental Adaptation 

4.1 Genetic Variation vs Gene Regulation 

Microbial populations not only need to adapt to the gross long-term 
environmental changes encountered during co-evolution with the host but, in 
addition, encounter frequent usually recurrent microenvironmental changes, for 
example, during the course of an infection. In order to respond to such recurrent 
changes, microorganisms maintain retrievable genetic programs. There are two 
principle types of adaptive programs used by microorganisms (Fig. 3): (1) Genetic 
variation concerns spontaneous changes in the DNA which are inherited to the 
progeny and are often reversible. These changes, although temporally random, 
take place at spatially distinct loci and ultimately lead to the synthesis of altered 
gene products. As a consequence, genetic variation generates heterogeneous 
populations of a distinct microbial strain, such that a fraction of this population is 
likely to show an improved microenvironmental adaptation. (2) By contrast, the 
second microbial adaptation strategy, gene regulation, influences the bacterial 
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population as a whole. In response to a certain environmental stimulus, such as 
temperature, osmolarity, or specific substances, the bacteria alter the expression 
of responsive genes in a coordinated fashion. 

Obviously both strategies have specific advantages for microorganisms: 
While genetic variation better protects minor parts of the population against a 
large variety of unpredictable changes, gene regulation effects a well-determined 
adaptive process for the benefit of the whole population. However, genetic 
variation and gene regulation are not exclusive and are often interconnected. 
Likewise, the frequency and the direction of a switch may be influenced by 
environmental effectors, and conversely, a phase-variable regulator protein may 
control the expression of genes (ROBERTSON and MEYER 1992). 

Although Neisseria represents a paradigm of genetic vadability, gene 
regulation processes seem to play equally important roles in these bacteria. 
Likewise, stress responsive systems sensitive to heat shock and/or other stress 
conditions, such as nutrient starvation and iron limitation, have been identified 
(see Sect. 6). The genetics of some of these systems, including the regulation of 
pilin synthesis, is currently being studied (TAHA et al. 1988, 1992; FYFE et al. 1993). 
Furthermore, recent investigations suggest the possibility of global regulatory 
changes, such as DNA superhelicity, in the regulation of certain gonococcal 
genes and the modulation of their virulence properties (R.F. Rest, personal 
communication; Heuer, Kahrs and Meyer, unpublished results). 
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Fig. 3. Two principle genetic mechanisms, genetic variation and gene regulation, used for the 
environmental adaptation by microorganisms. See text for details 
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4.2 Gene Families and Mechanisms of 
Genetic Variation in Neisseria 

An interesting feature of some (but not all) variable surface proteins in Neisseria 
is that they are represented in the genome by gene families rather than individual 
genes. This applies to at least three variable surface proteins which have essential 
functions in the infection process, i.e., the PilE, PilC and Opa proteins (ROBERTSON 
and MEYER 1992). while other variable factors, such as the meningococcal Opc 
(OLYHOEK et al. 1991) and class I proteins (BARLOW et al. 1989), are encoded by 
single copy genes. Two principle mechanisms by which these proteins vary their 
structures can be distinguished based on whether or not the variation process 
requires a functional RecA protein (KOOMEY et al. 1987; ROBERTSON and MEYER 
1992). 

The best known example of RecA-dependent variation represents the major 
pilus subunit, PilE or pilin, which operates by intragenic recombination: In the 
bacterial genome multiple gene copies exist most of which are unexpressed, 
incomplete (silent/cryptic) gene copies (pi/S), while only one or two of these 
represent the expressed gene copies (pi/E). The pilS copies constitute the variant 
sequence repertoire which is used for recombination with pi/Eto generate variant 
pilin molecules. In N. gonorrhoeae MS11 this repertoire is large enough to 
produce potentially _107 variant pilin proteins (SWANSON et al. 1987a; HAAS et al. 
1992). Owing tothis remarkable variability, the bacterial pili can effectively escape 
the human immune response, -since the variability of antibodies and T cell 
receptors of the immune system, which uses a similar variation mechanism, is 
within the same order of magnitude. Recent studies have provided evidence that 
recombination of pi/ genes can occur by at least four pathways, i.e., recipro­
cal, nonreciprocal (gene conversion-like), transformation-mediated recombi­
nation and deletion of duplicated gene copies (HAAS and MEYER 1986; MANNING et 
al. 1991; SWANSON et al. 1986; SEIFERTet al. 1988; GIBBS et al. 1989; HILL et al. 1990; 
ZHANG et al. 1992; FACIUS and MEYER 1993). 

In contrast to the pilE genes, the genes encoding Opa and PilC proteins 
represent complete, rather than incomplete, variant genes (STERN et al. 1986; 
JONSSON et al. 1991; Rudel and Meyer, unpublished results) which undergo 
frequent phase transitions (on/off switches) but rarely recombine with each other 
(CONNELL et al. 1988; BHAT et al. 1991). These switches occur via a RecA­
independent DNA slippage mechanism involving homo- or heteropolymeric 
repeated nucleotide sequences within the coding sequences of the genes 
(CONNELL et al. 1988; ROBERTSON and MEYER 1992); variation of the number of the 
repeating units alters the reading frame and consequently affects the translation 
into functional gene products. In case of the opa genes, the repeating unit is a 
pentameric (CTCTT) sequence whereas the pile genes are controlled by a run of 
C residues; both "coding repeats" (CR) are located in the secretory signal 
peptide-encoding part of the genes. Another method of controlling the expression 
of a gene via a repetitive sequence is realized in the meningococcal ope gene, 
where a variable homopolymer of C residues is positioned upstream of the -1 0 of 
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the ope promoter (SARKARI, et al. 1994) thus giving rise to altered transcriptional 
activities. Lipopolysaccharide (LPS) is also a variable surface structure of 
pathogenic Neisseriae. Little is known about the genetic basis of neisserial LPS 
variation, except that the process is RecA-independent. Whether it involves 
repetitive sequences as in the case of Opa proteins and the structurally related 
LPS of Haemophilus influenzae (WEISER et al. 1989) is not known. 

5 Functional Relevance of Genetic Variation 

5.1 The Neisserial Pili 

The pili, fine, hair-like organelles protruding from the bacterial cell surface, 
probably represent the most variable structures produced by the pathogenic 
Neisseria spp. They are an absolute requirement for the initiation of an infection 
(KELLOGG et al. 1968) in that they confer the attachment of the bacteria to epithelial 
cells (MCGEE et al. 1981; STEPHENS and MCGEE 1981). The binding of pili appears to 
be specific for human cells and the pili therefore represent a major determinant of 
the neisserial species tropism. Owing to their exposed location they are also 
strong targets for an antibody response that could interfere with receptor 
recognition. However, efforts in generating a pilus-based vaccine have thus far 
failed due to the enormous variability of the pili, and in particular the pilin (JOHNSON 
et al. 1991). It therefore remains a crucial question of how the pili deceive the 
immune system while fulfilling their function as adhesins. This problem certainly 
has important practical and theoretical implications not necessarily restricted to 
the Neisseria model. 

What are the components of pili involved in receptor recognition? Early 
studies suggested a direct role for pilin (PilE), the major subunit, in adherence to 
various cellular substrates (SCHOOLNIK et al. 1984; VIRJI and HECKELS 1984; ROTHBARD 
et al. 1985). While this possibility still exists, recent studies provide evidence for 
different adherence properties of the pili. At least three distinct adherence 
specificities, one for epithelial cells, one for erythrocytes and one allowing 
intergonococcal adherence, can be distinguished, either genetically or otherwise 
(RUDEL et al. 1992). This does not exclude the association of pili with yet other 
adherence properties, e.g., for endothelial, phagocytic and sperm cells. Further­
more, N. meningitidis can produce two different classes of major subunits (class 
I and class II pilins, VIRJI et al. 1989) which may effect the adherence properties 
(VIRJI et al. 1992a). Interestingly, the adherence to epithelial cells and the 
interbacterial interaction are influenced by the variation of pilin while pilus­
dependent hemagglutination is not (LAMBDEN et al. 1980; RUDEL et al. 1992; NASSIF 
et al. 1993). Pilin can be modified by phosphorylation and/or glycosylation 
(ROBERTSON et al. 1977; SCHOOLNIK et al. 1985; VIRJI et al. 1993b), and it has recently 
been shown that the variant-dependent glycosylation of gonococcal pilin can 
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influence receptor recognition (VIRJI et al. 1993b). However, the observed effect 
of pilin variation on adherence may be indirect and does not preclude a role for 
potential minor subunits in adherence. 

Recent studies in fact suggest an association of minor protein components 
with the gonococcal pilus (MUIR et al. 1988; PARGE et al. 1990). One of these 
components, the PilC protein, has been characterized genetically and implicated 
in the biogenesis of pili (JONSSON et al. 1991) and transformation competence 
(Facius and Meyer, unpublished results). Nonetheless, pili can be assembled in 
the absence of either of the two known PilC1 and PilC2 proteins (RUDEL et al. 
1992), probably by utilizing an alternative PilC-like assembly factor (Rudel and 
Meyer, unpublished results). Such pili still hemagglutinate but lack the potential to 
adhere to epithelial cells (RUDEL et al. 1992) indicating a role for PilC in epithelial 
cell adherence. We recently succeeded in the purification of a gonococcal PilC 
protein to homogeneity from a PilE-negative strain, and in raising specific anti­
bodies (Rudel, Scheuerpflug, Meyer, submitted). Experiments carried out with 
these reagents firmly indicate that PilC proteins represent epithelial cell-specific 
pilus-associated adhesins. Furthermore, the purified PilC protein effectively 
competes with the binding to epithelial cells of both gonococci and meningococci 
producing different PilC and PilE proteins. This led us to the intriguing conclusion 
that the pili of pathogenic Neisseria species, irrespective of their structural 
variability, recognize the same, or a closely related, group of receptor(s). 

5.2 Cell Tropisms of Opaque (Opa) Proteins 

The Opa proteins (previously referred to as class V proteins of the meningococcus 
and P.II proteins of the gonococcus) are major constituents of the outer mem­
branes of mainly pathogenic Neisseria spp. Computer predictions suggest a ~­
pleated sheet structure for Opa proteins, typical of many outer membrane 
proteins, whereby three variable loop regions and a fourth conserved loop are 
oriented towards the bacterial surface (MEYER et al. 1986; BARRITI et al. 1987; BHAT 
et al. 1991). The number of variant opa genes present in gonococci (-11) is 
considerably higher than that in meningococci (3-4) and N. lactamica (-2). 
Interestingly, independent N. gonorrhoeae isolates rarely possess opa genes 
of identical sequence (HAAS et al. 1992), indicating that the repertoire of variant 
opa genes within the gonococcal population is substantially larger than that of 
a single strain. 

The role of Opa proteins in various adherence functions, such as inter­
bacterial adhesion and interaction with human epithelial and phagocytic cells (KING 
and SWANSON 1978; LAMBDEN et al. 1979; VIRJI and HECKELS 1986; FISHER and REST 
1988; MAKINO et al. 1991; BELLAND et al. 1992; VIRJI et al. 1993a), has long been 
recognized. Recent work suggests that Opa proteins not only cause bacterial 
adherence but also trigger important cellular functions. Invasion of N. 
gonorrhoeae into human epithelial cells was shown to depend on the production 
of one distinct variant Opa protein produced by this strain (MAKINO et al. 1991; 
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WEEL et al. 1991a). Using a reverse genetics approach, the remaining Opa 
proteins of the same strain were subsequently shown to confer binding to human 
polymorphonuclear cells (PMNs) but not to epithelial cells (KUPSCH et al. 1993). 
Consistently, chemoluminescense of PMNs was only induced if certain Opa 
proteins were expressed (BELLAND et al. 1992). Yet a different set of Opa proteins, 
including the one that reacts with epithelial cells, triggers uptake and 
chemoluminescense in human peripheral blood monocytes (PBMs). Inter­
estingly, for all Opa proteins of strain MS11 at least one binding specificity is 
observed, indicating that each variant gene encodes a functional protein. The 
specific properties of Opa proteins are maintained if the genes are cloned and 
expressed in a different neisserial host (KUPSCH et al. 1993). A similar pattern of 
functional variation is seen for other Neisseria strains, some of which have also 
been assessed with regard to the interaction with endothelial cells (Aubel and 
Meyer, unpublished results). In the much smaller Opa protein repertoire of 
meningococci Opa proteins required for epithelial cell invasion (VIRJI et al. 1993a) 
and PMN stimulation (Heuer and Meyer, unpublished results) have been 
identified. This species often carries a copy of the phase variable ope gene whose 
product, although structurally unrelated, has a function similar to the epithelial 
cell-specific Opa proteins (VIRJI et al. 1992b). It is thus evident that the variable 
Opa and Opc adhesins represent important cell tropism determinants of N. gonor­
rhoeae and N. meningitidis and that the variability of these proteins allows 
multiple cellular interactions. 

5.3 Immune Escape vs Structural Adaptation 

It is useful to distinguish between two principal functions of genetic variation, i.e., 
an escape function and an adaptive function, examples of which seem to be given 
by the pi! and the opa systems, respectively (Fig. 4). A typical escape mechanism 
is antigenic variation: This term describes the competition between two variable 
systems operating with similar mechanisms, i.e., the host immune system and a 
bacterial population. The main interest on the bacterial side, in this case, is to 
avoid molecular interaction, e.g., with an antibody. The opposite applies for the 
adaptive variation model: Here any structural' change must lead to a productive 
molecular fit; a trial-and-error mechanism would cause unnecessary bacterial 
extinction. We will briefly discuss to what extent the genetic systems underlying 
pili and Opa variation conform to this model. 

The extreme variability of the major pili subunit (PilE) classifies it as an escape 
factor. The mechanism used for its variation, i.e., more or less random intragenic 
recombination, provides little chance that novel recombinants will conform to a 
specific molecular fit. The question therefore arises of how functional integrity is 
maintained? At least two conserved functions of the pili can be identified, i.e., one 
for pili polymerization and-as our recent results suggest-one for the inter­
action with a conserved receptor. The polymerization function is non problematic 
because it involves the conserved hydrophobic regions of PilE which are neither 
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Fig. 4. Escape and adaptive function of genetic variation. The variation of the neisserial pili with their 
major subunit. PilE. represents an example of immune escape; despite the extreme variability of the pili 
the interaction with the host cell receptor via Pile is functionally conserved. Variation of the Opa outer 
membrane proteins primarily serves as an adaptative process for the interaction of Neisseria with a 
variety of different host cell receptors 

surface-exposed nor immunosusceptible. The dilemma, however, is how to 
accomodate a conserved receptor binding function within the highly variable 
context of the pili? To solve the problem, the bacteria probably make use of a 
minor, pilus-associated adhesin, PiIC, which is far less variable . In conclusion 
therefore, PilE variation primarily serves to protect pili from interacting with 
immunoglobulins but probably is inadequate to modulate the receptor specificity. 

For adaptive variation, the model underlying the genetic mechanism ought 
to avoid mutation and recombination which could lead to nonproductive 
phenotypes, and rather to utilize a selected set of preexisting genes. This 
situation is found in the opa gene system which exhibits limited phenotypic 
variability: Recombination, bearing the risk of generating nonproductive hybrids, 
is a rare event among the opa genes (STERN et al. 1986; CONNELL et al. 1988) and 
all native opa genes encode functional Opa proteins capable of recognizing 
distinct cellular receptors (KUPSCH et al. 1993). In contrast, in vitro engineered 
hybrid opa genes often encode nonfunctional Opas. Hence, it is evident that the 
mechanism of Opa variation favors productive interaction with target cells but its 
overall variability is probably too small to support an efficient immune escape 
reaction. 

If this applies, why is it so essential for the pili rather than for the Opa proteins 
to vary antigenically? Why is it that many other surface proteins of Neisseria, such 
as the major outer membrane protein P.I. (JUDD 1989). do not undergo intrastrain 
variation at all? This question leads us to yet another neisserial variation system, 
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i.e. the variable lipopolysacharide (LPS). In contrast to the highly exposed pili, 
the neisserial membrane-associated proteins seem to be efficiently protected 
against host immunity through a variable carbohydrate mantle produced by the 
bacteria. 

5.4 Withstanding the Extracellular Environment: 
Function of Lipopolysaccharide Variation 
and of the Capsule 

The Neisseria species produce a short type of LPS which lacks any repetitive 0-
side chains. Nonetheless LPS preparations from in vitro cultured bacteria reveal 
multiple size classes indicating a structural heterogeneity of the neisserial LPS 
(SCHNEIDER et al. 1988). Antibodies can be raised against distinct LPS species 
which can be used to demonstrate sectored colonies on plates, and molecular 
mimicry with host cell glycolipids (MANDRELL and APICELLA 1993). Several lines of 
evidence suggest that LPS variation also occurs in vivo. In meningococcal 
carriers, the majority (70%) of bacteria isolated from the nasopharynx are 
unencapsulated and preferentially express a short LPS species (BROOME 1986), 
whereas in the diseased state, 97% of the blood and CSF isolates are 
encapsulated and of the long LPS species (JONES et al. 1992). Likewise, 
experimental gonococcal infection in human volunteers indicates that bacteria 
isolated early in the infection have a short LPS, whereas after development of 
inflammatory response a different bacterial phenotype with a long LPS species 
predominates (SCHNEIDER et al. 1991). 

A major difference among the variant LPS molecules is the presence of 
additional carbohydrate residues in the longer LPS forms that can be externally 
modified by a membrane-associated bacterial sialyltransferase using host­
derived or endogenous CM P-NANA as sialyl donor (SMITH 1991; MANDRELL and 
APICELLA 1993; VAN PUTTEN 1993). Given the presence of CMP-NANA, LPS variation 
thus determines whether or not the LPS is sialylated. The functional relevance of 
the LPS phase transitions has recently been elucidated (VAN PUTTEN 1993) and 
appears to lie in the expression of variable amounts of sialic acid incorporated in 
the different forms of LPS. A low sialylation phenotype, as found early in the 
infection (SCHNEIDER et al. 1991), enables entry of the bacteria into mucosal cells, 
but makes them susceptible to bactericidal activity. In contrast, highly sialylated 
bacteria are incapable of entering epithelial cells but are resistant to phagocytosis 
and killing by antibodies and complement, allowing persistence of infection. Thus 
depending on the degree of sialylation the bacteria are either adapted to the 
extracellular environment and are capable of resisting humoral immune 
mechanisms, or they become sensitive to bactericidal activities but then readily 
enter the intracellular milieu via Opa-mediated cellular interactions. 

The function of highly sialylated LPS has many similarities with that of 
polysialic capsules produced by N. meningitidis and many commensal Neisseria 
species (FROSCH et al. 1989), in that they protect extracellular bacteria against both 
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specific and nonspecific host responses . Although phase variation of capsule 
expression has been observed, this structure appears to be primarily regulated by 
environmental factors (BRENER et al. 1981). Loss of capsule expression favors an 
Opa and Opc-mediated interaction of N. meningitidis with target cells and thus 
seems to be a prerequisite for the cellular invasion (VIRJI et al. 1993a). Therefore, 
recent advances made in the analysis of capsular (cps) gene organization and 
function (FROSCH et al. 1989) are important for our understanding of the conditions 
favoring invasive meningococcal infections. 

6 Examples of Regulatory Responses in Neisseria 

6.1 Iron Acquisition and Virulence 

Iron is an essential nutrient for most bacteria, and since in vivo the free iron 
concentration is extremely low, microorganisms have developed sophisticated 
iron acquisition mechanisms. In recent years considerable progress has been 
made in unravelling the major high affinity iron acquisition mechanism of the 
pathogenic Neisseria (for review, see VAN PUTIEN 1990). In contrast to many 
microorganisms, but apparently characteristic for most nonenteric mucosal 
pathogens, gonococci and meningococci do not produce siderophores but 
acquire iron directly from the irorb-binding proteins transferrin (Tf), lactoferrin (Lf), 
and heme. At this time, several components of the Tf-iron acquisition system 
have been identified, and they seem to be conserved among the pathogenic 
Neisseriae (Fig. 5). In response to low intracellullar iron concentrations, a specific 
human transferrin receptor is expressed at the cell surface. This receptor, which 
does not resemble its eukaryotic homologue, appears to consist of a complex of 
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Fig. 5. Hypothetical model of the 
neisserial transferrin-iron acquisi­
t ion system. For detailed explan­
ation, see text 
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two transferrin binding proteins (Tbps), a relatively conserved Tbp1 
(approximately 100 kDa) and an antigenically and size variable Tbp2 (68-86 kDa, 
depending on the strain). Tbp1 is homologous to the TonB-outer membrane 
protein receptors of E. coli (CORNELISSEN et al. 1992), and binds Tf when expressed 
in E. coli (CORNELISSEN et al. 1993; PALMER et al. 1993). Tbp2, which is most likely a 
lipoprotein (LEGRAIN et al. 1993)' is also required for Tf-mediated iron uptake, but its 
Tf binding activity appears to depend on the presence of Tbp1 (IRWIN et al. 1993). 
After binding, the iron is removed from the Tf-receptor complex, via an as yet 
unidentified functional TonB equivalent, and transferred to a periplasmic transport 
protein, named Fbp, which both genetically and functionally belongs to the family 
of periplasmic binding proteins (BERISH et al. 1992; CHEN et al. 1993). From here the 
iron is transported across the cytoplasmic membrane possibly via an inner 
membrane permease (CHEN et al. 1993) and either directly assimilated or stored, 
perhaps in the form of ferritin-like molecules. In analogy to other systems (BRAUN 
1985), the activity of the neisserial iron acquisition system appears to be 
regulated by iron, which, by acting as a corepressor, controls the binding of the 
neisserial Fur protein (BERISH et al. 1993) to the operator sites in the vicinity of the 
promoters of the iron-regulated genes, thus influencing their transcription. 
Putative Fur-iron complex binding domains precede the neisserial Tbp2 gene 
(tbpB), which is arranged in tandem in the genome with the Tbp1 gene (tbpA) 
(LEGRAIN et al. 1993)' the Fbp gene (fbp) (BERISH et al. 1990), and the putative iron­
regulated cytotoxin encoding genes frpA and frpC (THOMPSON et al. 1993a, b; see 
beloW). 

Besides being essential for bacterial growth, iron availability also influences 
the expression of bacterial virulence determinants such as capsule, pili and 
putative cytotoxins. This apparent coupling of nutrient availability and bacterial 
virulence, certainly not unique to the pathogenic Neisseria species (LI1WIN and 
CALDERWOOD 1993), is a clear example of the cross-talk between the bacterium 
and its ecosystem, which ultimately determines the bacterial phenotype. The 
importance of iron in this respect is particularly illustrated by the up to 1200-fold 
greater virulence in mice of iron-deprived, low pH grown meningococci than their 
non-iron-deprived counterparts (BRENER et al. 1981). One bacterial determinant 
that has been associated with the highly virulent phenotype is the probably 
reduced growth rate-related increase in capsule thickness (MASSON et al. 1982), 
but other factors, including the recently identified iron-regulated putative 
cytotoxins FrpA and FrpC (THOMPSON et al. 1993a,b), may be of relevance as well. 
FrpA (128 kDa) and FrpC (198 kDa), which are rarely produced by the gonococcus, 
are proteins released into the extracellular environment and belong to the RTX 
cytotoxin family (WELCH 1991). 

6.2 Aerobic vs Anaerobic Growth 

Another environmental factor influencing the bacterial phenotype is oxygen. 
Neisseria can grow in the absence of oxygen with nitrite as a terminal electron 
acceptor (KNAPP and CLARK 1984) and this results in the expression of several 
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additional proteins and the repression of others (KEEVIL et al. 1986; CLARK et al. 
1987). The major anaerobically induced protein is a surface-exposed 54 kDa 
lipoprotein Pan-1 (HOEHN and CLARK 1992a). This broadly conserved but 
antigenically heterogeneous antigen, which is predominantly expressed in 
gonococci (HOEHN and CLARK 1990)' is possibly glycosylated (HOEHN and CLARK 
1991), which is rather unusual for a bacterial membrane protein. The 
corresponding gene (aniA) has some sequence homology to the gonococcal 
lipoproteins Lip (H.8) and Laz (CANNON 1989) and seems to be under the tight 
transcriptional control of two overlapping promoters, including a putative gearbox 
promoter (HOEHN and CLARK 1992b). This type of promotor has been associated 
with stationary phase regulation (ALDEA et al. 1989). In other systems, anaerobic 
growth expression requires DNA gyrase activity and has been associated with 
increased DNA supercoiling (YAMAMOTO and DRoFFNER 1985; HIGGINS et al. 1990)' 
but this has not been investigated for the pathogenic Neisseriae. The function of 
Pan-lor of the other oxygen-regulated proteins in bacterial persistence is 
presently not known. 

Coisolation of gonococci and obligate anaerobic microorganisms from the 
site of infection (FONTAINE et al. 1982) and the generation of antibodies against the 
anaerobically induced proteins in the sera of patients with neisserial disease 
(CLARK et al. 1988) suggest that neisserial anaerobiosis does occur in vivo. 
Whether the anaerobic phenotype has pathogenic relevance beyond persistence 
in the low oxygen environment is presently unknown. However, anaerobic 
growth appears to influence the- LPS phenotype (TsAI et al. 1983; FRANGIPANE and 
REST 1992) and to enhance the activity of the membrane-bound sialyltransferase, 
resulting in high level serum resistance (FRANGIPANE and REST 1993). 

6.3 Stress-Associated Proteins 

The necessity of bacteria to continuously adapt their phenotype in response to 
unfavorable environmental conditions encountered during infection can certainly 
include the response to stress. In addition to the distinct nutrient-regulated 
expression of antigens, the pathogenic Neisseriae display a uniform stress 
response, i.e., irrespective of the nature of the environmental stimulus (PANNEKOEK 
et al. 1992a). Until today, a number of stress (or heat-shock) proteins have been 
identified (KUMPEL and CLARK 1989; KEEVIL et al. 1989; WOODS et al. 1990; PANNEKOEK 
et al. 1992a; ARAKARE et al. 1993) and particular attention has been given to a 63 
kDa determinant. This most abundant neisserial stress protein is both genetically 
and antigenically broadly conserved among the Neisseria spp. and has 
considerable homology to the Hsp60 heat shock protein family (PANNEKOEK et al. 
1992a,b; PANNEKOEK, DANKERT and VAN PUTIEN, submitted). Analyses of patients sera 
indicate that the antigen is expressed and immunogenic in vivo, eliciting either a 
broadly cross-reactive or a Neisseria-specific antibody response (DE HORMAECHE et 
al. 1990; PANNEKOEK et al. 1993). An antigenically related surface-exposed protein 
of similar size has been demonstrated to possess lectin binding activity (PERROLET 
and GUINET 1986; BENKIRANE et al. 1992). The pathogenic relevance of the neisserial 
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stress response has not been demonstrated in vivo. However, the possibility 
exists that the expression of a broadly conserved immunodominant antigen such 
as neisserial Hsp60 in vivo may cause an aberrant immune response. In analogy 
to the chlamydial Hsp60 (MORRISON et al. 1992), the gonococcal homologue has 
been postulated to contribute to Hsp60-related immunopathology associated 
with PID (Pannekoek, Dankert and van Putten, submitted). 

7 IgA Protease: A Unique Extracellular Factor 

A common feature of pathogenic Neisseriae is the production and secretion of 
an antigenically diverse family of endoproteinases specifically affecting 
immunoglobulin A 1 (lgA 1) of their human hosts (PLAUT et al. 1975). Like the 
closely related enzymes produced by Haemophilus influenzae these IgA 
proteases belong to the class of serine proteases (BACHOVCHIN et al. 1990). 
Although the proteases have been studied intensively during the last decade, 
direct evidence for an important role in bacterial pathogenesis is missing (COOPER 
et al. 1984). Undoubtedly, IgA 1 cleavage represents one function (KILIAN et al. 
1988), however, the relevance of this activity to the infection process remains 
obscure and additional functions should be considered. 

7.1 Gene Structure and Secretion Pathway 

Unlike the pilus and Opa proteins, IgA proteases are encoded by single copies of 
iga genes. Horizontal exchange of iga sequences resulted in numerous 
serologically distinct IgA proteases in N. gonorrhoeae and N. meningitidis (HALTER 
et al. 1989; LOMHOLT et al. 1992; MORELLI et al. 1994). Despite this sequence 
variability the key features of the iga genes and gene products are conseNed 
(HALTER et al. 1989). The primary translation products are organized as polyprotein 
precursors (Iga) of approximately 170 kDa molecular mass (POHLNER et al. 1987). 
They consist of five distinct protein domains: an NH 2-terminal leader peptide 
followed by the IgA protease (lgaP), the Igay, Igaa and Iga~ domains. According to 
their function, the Iga domains can be grouped into regions involved in the 
extracellular secretion of the precursor and regions presumably active in the 
pathogen host interactions. Intrinsic secretion functions for bacterial inner and 
outer membrane transport reside in the typical NH2-terminal leader sequence 
and the COOH-terminallga~ domain, respectively (POHLNER et al. 1987; KLAUSER et 
al. 1990). During transport these two Iga domains are clipped off the Iga protein 
and remain associated with the bacteria while the three centrallga domains are 
released into the supernatant as a single preprotein (lgaPyu) (Fig. 6). Ultimately, the 
soluble IgaPyu preprotein is cleaved resulting in a stepwise maturation of three 
distinct products, the IgA protease, a small y-peptide and the a-protein. 
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The unique secretion process of IgA protease represents one of the currently 
best understood examples of extracellular protein export in gram-negative 
bacteria (for review see KLAUSER et al. 1993b). Two interesting features of the Iga~ 
domain responsible for protease translocation across the outer membrane are its 
function in other gram-negative bacterial host systems, such as E. coli, and its 
suitability for export of heterologous proteins. The core region of the Iga~ trans­
locator presumably assumes a ~-barrel-type pore in the outer membrane through 
which the adjacent polypeptide chain is extruded (KLAUSER et al. 1993a,b). In 
contrast to other export systems, proteins to be translocated via Iga~ are required 
to be in an unfolded state, a feature which renders the Iga~ function suitable for 
generalized protein export (KLAUSER et al. 1990, 1992). Recent work suggests that 
the system can be successfully used to present functional antibody Fv fragments 
on the E. coli cell surface (KRAMER et aI., submitted). 

7.2 Function of IgA Protease and Associated a-Proteins 

The studies on the secretion and maturation of extracellular IgA protease have 
provided valuable information regarding the proteolytic specificity of this enzyme 
(POHLNER et al. 1987). Both uncoupling of the Igapyu unit from the outer membrane­
associated Iga~ domain (Fig. 6) and two subsequent processing steps in the 
supernatant represent autocatalytic cleavage steps. Comparison of the amino 
acid sequences flanking the autoproteolytic cleavage sites and the hinge region of 
IgA 1 revealed a consensus sequence motif which is necessary and also sufficient 
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Fig. 6. Extracellular maturation of IgA protease and associated proteins. The export of the Iga 
polyprotein to the bacterial cell surface is known in much detail (for review see KLAUSER et al. 1993b). 
The exported Iga"", polyprotein, initially anchored in the outer membrane (OM) via the Iga~ translocator, 
is released by autoproteolytic cleavage into the supernatant. Subsequent concentration-dependent 
autoproteolysis results in three separate proteins, IgA protease, a-protein and y-peptide. Amphipathic a­
helices within Iga" cause dimerization of both Igap.,u and a-protein. The a-protein also carries 
determinants for cellular uptake and signals for nuclear migration 
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for IgA protease cleavage (POHLNER et al. 1992). Thus, IgA protease from N. 
gonorrhoeae MS11 cleaves in the central peptide bond in the sequence Yaa-Pro­
Xaa-Pro, where Yaa predominantly stands for the amino acid Pro and Xaa for the 
amino acids Thr, Ser or Ala. Data bank searches for proteins containing such 
cleavage sequences identified a variety of potential targets in human proteins 
besides IgA 1. One example is the CD8 protein of human T cells which is cleaved 
efficiently when a recombinant CD8 fusion protein is given as substrate (POHLNER 
et al. 1992). Cleavage of native, cell-associated CD8 was not observed, indicating 
that higher order structures and modifications may influence the accessibility of 
a target sequence. 

The possibility that other host cell factors might be affected by IgA protease 
is intriguing with regard to the potential of a-proteins to enter human cells 
(Pohlner, Langenberg, Walk and Meyer, submitted). Several allelic forms of a­
proteins exist amongst the pathogenic Neisseria species. In N. gonorrhoeaetwo 
alleles, a l (12 kDa) and a2 (24 kDa) have been described (HALTER et al. 1989) and 
additional alleles have been identified in N. meningitidis. The a-proteins have an 
extremely positive charge (pi> 10). Characteristic of a-proteins are predicted a­
helical regions with an array of hydrophobic residues at one side of the helix. 
These amphipathic helices explain the observed dimerization of a-proteins and 
Iga precursors in solution (Fig. 6). The second important characteristic of a­
proteins are sequences exhibiting structure and function of nuclear location 
signals (NLSs) required for the transport of proteins into the eukaryotic nuclei. 
Consistent with this we were recently able to demonstrate that purified a­
proteins are capable of entering human epithelial cells and that they infiltrate the 
nucleus (Pohlner, Langenberg, Walk and Meyer, submitted). Since a-proteins are 
transiently attached to IgA protease (i.e., in the form of IgaPju) this result raises the 
possibility that the protease may function inside human cells. N. meningitidis, 
which is endemic among humans, produces particularly large amounts of 
extracellular iga gene products. The implications this has for healthy, locally 
colonized individuals requires further investigation. 

8 Infection from a Cell Biology Point of View 

8.1 Infection Models 

The fact that Neisseriae are exclusively human pathogens implies that most if not 
all studies on the bacteria-host cell interaction have to be carried out using artificial 
infection systems, with all of their limitations. Important aspects of pathogenesis 
such as the bacterial microenvironment. the generation of an inflammatory 
response, and the immune response cannot be properly addressed, and 
information on these topics has to come from specimens collected from patients. 
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Also the ability to test mutants for their virulence, or attenuated strains, or distinct 
antigens as candidate vaccines is limited due to the lack of an animal model. The 
most common approach used in vitro for functional analysis of neisserial 
virulence determinants is infection of cultured cells. In many cell lines some form 
of attachment of Neisseria takes place, and this has resulted in the dissection of 
adhesin functions including the PilC and Opa proteins described above. In 
addition, cultured cells have a variable ability to ingest attached microorganisms, 
an event called cellular invasion, to illustrate the active participation of the bacteria 
in the induction of the internalization process. 

In several aspects, however, established cell lines are too degenerate to be 
representative of the natural infection. This seems particularly warranted for the 
pilus-mediated adherence process and the intracellular fate of the bacteria. In 
most cell lines pili are not required for adherence, which contrasts with the natural 
situation (KELLOGG et al. 1968) and observations with organ culture models (MCGEE 
et al. 1981; STEPHENS and MCGEE 1981; TJIA et al. 1988)' and bacterial entry into 
transformed cells seems to be a dead end (WARD et al. 1975; WEEL et al. 1991 a,b). 
The transformed cells probably lack the appropriate differentiation status and/or 
the architecture of the natural tissue to allow, for instance, transcytosis of the 
bacteria to deeper cell layers. In studying such a process, primary cultures or 
organ cultures of human cornea, nasopharyngeal tissue, fallopian tubes, or other 
target tissues of infection appear to be more appropriate (MCGEE et al. 1981; 
TJIA et al. 1988; STEPHENS 1989). A recent development which combines the 
advantages of cell lines and organ cultures is the use of tissue spheroids, small 
vesicles of cultured cells which appear to possess the original tissue architecture 
(BOXBERGER et al. 1993). 

For certain aspects of the neisserial infection, animal experiments have been 
useful. In mice and infant rats, virulence of meningococci and the protective 
effect of antibodies can be evaluated (BRENER et al. 1981; SALIT and To MALTY 1986; 
SAUKKONEN 1988; NURMINEN et al. 1992). Mice seem to be susceptible to 
gonococcal colonization (KITA et al. 1981, 1991; TAYLOR-ROBINSON et al. 1990). 
Particularly valuable is the analysis of bacteria grown in subcutaneous chambers 
implanted in animals (VEALE et al. 1975; ARKO 1974, 1989). This approach has 
resulted in the identification of putative virulence determinants associated with 
intracellular survival of Neisseria gonorrhoeae in polymorphonuclear granu­
locytes (PARSONS et al. 1985) and in the sialylation of LPS (SMITH 1991) and has 
unequivocally demonstrated the importance of a functional iron acquisition 
system for in vivo persistence of the bacteria (GENCO et al. 1991). 

The most valuable, although limited, approach to understanding the 
complexity of pathogenesis of mucosal infections in humans involves studies 
with human volunteers willing to undergo inoculation with gonococci. These 
experiments, which are still in progress, promise to give new insights into the 
biological significance of phase variation (SWANSON et al. 1987a, 1988; SCHNEIDER 
et al. 1991). Perhaps an equally valid but more feasible strategy for studying 
neisserial infections will utilize complex animal systems, for example, immun­
ocompromised animals (e.g., SCID mice) carrying human tissue transplants or 
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transgenic animals that express human receptor molecules essential for an 
infection. This latter approach, however, first requires identification of the 
relevant receptors. 

8.2 Mucosal Cell Receptors 

Despite extensive research, the exact nature of the pilus receptor(s) on host cell 
surfaces has not been identified as yet. Since pilus-dependent adherence of 
neisserial strains seems to be restricted to human cells and some avian species, 
this receptor resembles a crucial species-specific determinant. It is hoped that 
the recent identification of PilC as a pilus adhesin (Rudel, Scheuerpflug and 
Meyer, unpublished results) and of other pilus-associated proteins and adherence 
functions (SCHOOLNIK et al. 1984; ROTHBARD et al. 1985; MUIR et al. 1988; PARGE et al. 
1990; RUDEL et al. 1992; NASSIF et al. 1993) will facilitate the search for the 
corresponding structure(s). 

In many in vitro cell culture systems, pili are not required for bacterial 
adherence which can be conferred by members of the Opa protein family 
(LAMBDEN et al. 1979; MAKINO et al. 1991; VIRJI et al. 1993a). The Opa protein-host 
cell interaction seems to be a two step event, a weak and reversible attachment 
conferred by most of the Opa proteins and a tight probably receptor-specific 
interaction (BESSEN and GOT~CHLICH 1986; MAKINO et al. 1991). This latter form, 
which appears to be a prerequisite for entry into host cells, is particularly evident 
with distinct gonococcal Opa proteins and with Opc (WEEL et al. 1991 a; MAKINO et 
al. 1991; VIRJI et al. 1992b, 1993a), both highly basic proteins (BHAT et al. 1991; 
OLYHOEK et al. 1991). In earlier reports Opa protein was suggested to bind an 
oligosaccharide moiety of the LPS which mimics host cell glycolipids (BLAKE 
1985). Further analysis of host cell determinants of Opa protein binding revealed 
that purified Opa protein bound to a variety of different proteins and glycoproteins, 
but no distinct receptor molecule(s) were demonstrated (BESSEN and GOTSCHLICH 
1987). Recently, a host cell binding site for members of the Opa protein family has 
been identified (van Putten and Paul, unpublished results). This putative receptor, 
which appears to be present in all epithelial cell lines, particularly recognizes the 
gonococcal Opa protein associated with tight adherence and cellular entry, but 
hardly binds to other members of the Opa protein family. Purified receptor and 
receptor analogues, but not other basic proteins, totally block Opa protein 
mediated bacterial adherence to eukaryotic cells in vitro, and cell lines defective 
in receptor expression are only sparsely colonized by bacteria, suggesting that the 
missing structure is an essential component in the adherence process. 

In a reverse approach, screening of known host cell components for their 
capacity to bind bacteria, several lacto- and ganglio-series glycolipids have been 
implicated as adhesion receptors for N. gonorrhoeae. High avidity binding occur­
red with gangliotriosylceramide (asialoGm2:GaINAc(~1-4)Gal(~1-4)Glc(~1-1 )Cer) 
and gangliotetraosylceramide (asialo-Gm1 :Gal(~ 1-3)GaINAc(~ 1-4)Gal(~ 1-4)G Ic. 
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(~1-1) Cer), and less avid binding with lactosyl-ceramide (Gal(~ 1-4)Glc(~ 1-1 )Cer), 
lacto-N-triaosylceramide(GlcNAc-3Gal (~1-4)Glc(~ 1-1 )Cer), lacto-N-neotetra­
osylceramide (paragloboside: Gal(~1-4)GlcNAc(~ 1-3)Gal(~ 1-4)Glc(~ 1-1 )Cer), 
and isoglobotriaosylceramide (Gal(a1-3)Gal(~1-4)Glc(~1-1 )Cer) (STROMBERG et al. 
1988; DEAL and KRIVAN 1990). For one of these putative receptors (asialo-Gm1 ), the 
corresponding bacterial ligand has been identified as a 36 kDa lipoprotein, for 
which at least two gene copies are present on the bacterial genome (PURACHURI 
et al. 1990; Maier and Meyer, unpublished results). This protein is different from 
the sialic acid-specific 27 kDa sialo-adhesin, Sia-1, present in the commensal 
Neisseria flava. This putative adhesin recognizes the structure NeuAc 
(a2-3)Gal(~ 1-4)Glc on erythrocytes (NYBERG et al. 1990). The function of glycolipid 
binding in neisserial pathogenesis has not been investigated. 

8.3 Bacteria-Directed Ingestion of Neisseriae 
by Mucosal Cells 

The initial attachment of Neisseria to mucosal cells may be followed by ingestion 
of attached organisms when the appropriate phenotype is present. 
Morphologically, this process involves an elongation of the microvilli and, in order 
to encompass the bacteria, the formation of zones of intimate contact between 
the bacterial and the host cell membranes, along with engulfment of the bacteria 
via a zipper-like mechanism (WATT and WARD 1980; TJIA et al. 1988; WEEL and VAN 
PUTTEN 1988; WEEL et al. 1991 a,b; STEPHENS 1989). As for most other pathogens, 
the molecular basis of these events is a current topic in Neisseria research. 
Experiments using inhibitors of different endocytic pathways and confocal 
microscopy of stained actin filaments and actin binding proteins suggest that the 
Opa/Opc protein-associated internalization event involves an actin filament 
process without a function for receptor-mediated endocytosis (SHAW and FALKOW 
1988; MAKINO et al. 1991; Grassme and van Putten, unpublished results). The 
factor initiating the bacteria-directed endocytosis is unclear. Expression of the 
appropriate Opa protein in E. coli results in a very low level of internalization 
compared to the parent gonococcus (maximal 2 vs 30-50 bacteria per cell, 
respectively) (SIMON and REST 1992; MAKINO et al. 1991; VAN PUTTEN 1993), 
suggesting that additional, possibly newly synthesized, factors are required to 
create the invasive phenotype (CHEN et al. 1991; KUPSCH et al. 1993; Kahrs and 
Meyer, unpublished results). It has been speculated that the insertion of the major 
neisserial ion channel protein I (P.I) is a critical determinant for entry (BLAKE 1985; 
WEEL and VAN PUTTEN 1991; WEEL et al. 1991 b). Insertion of purified P.I into PMN or 
PBM cells interferes with cell signaling, inducing a transient membrane 
hyperpolarization, inhibition of phosphatidylcholine-phospholipase C activity and 
failure of the NADPH oxidase function (HAINES et al. 1988, 1991; Lorenzen and 
Meyer, unpublished results). Immunomorphological evidence supports binding 
to, or insertion of, the protein into the host cell membrane at the sites of bacterial 
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entry during infection (WEEL and VAN PUTIEN 1991; WEEL et al. 1991 b). Complete 
internalization of the bacteria requires phosphorylation of host proteins at tyrosine 
residues (Grassme and van Putten, unpublished results), but whether Opa 
protein, P.I., and/or other bacterial factors trigger this even is unclear. In all cases, 
it should be emphasized that these observations may be unique to the infection 
system and bacterial strain used, and may not represent uniform mechanisms or 
reflect the in vivo situation. Analyses of infected specimens obtained at the 
symptomatic stage of gonococcal disease suggest that gonococcal entry into 
mucosal cells may be a rare event (WARD and WATI 1972; EVANS 1977), though this 
may differ depending on the strain and the stage of the infection. 

8.4 Intracellular Processing and Passage 
Across the Mucosal Barrier 

During natural infection the epithelial barrier is often damaged and bacteria are 
found in the subepithelial tissue. How the pathogenic Neisseria trans locate 
across the epithelial barrier is still unclear. In most types of cultured cells, 
ingested gonococci reside at first in endosomes and appear to survive for at least 
several hours (CHEN et al. 1991; WEEL et al. 1991 a,b). Then, however, 
phagolysosomal fusion occurs and the bacteria are degraded (WEEL and VAN 
PUTIEN 1991; WEEL et al. 1991 a,b). Occassionally, cytoplasmic localization of the 
bacteria has been reported-(SHAW and FALKOW 1988), suggesting that some 
bacteria may have the potential to escape from the vacuole. These data suggest 
that either the choice of the infection system and/or the bacterial phenotype may 
determine the outcome of the experiment. In fallopian tube tissue, but not in 
nasopharyngeal tissue organ cultures, internalized Neisseria spp. appear to be 
released in the subepithelial tissue by exocytosis or by lysis of the infected cells 
(WARD et al. 1974; MCGEE et al. 1981; STEPHENS 1989). In un polarized cell lines, 
exocytosis of ingested bacteria is difficult to measure because it is almost 
impossible to eliminate all extracellular bacteria from the assay system, and thus 
to inhibit continued bacterial ingestion (VAN PUTIEN 1991). 

An obvious alternative way of gaining access to the subepithelial tissue is by 
disruption of the integrity of the mucosa by toxic factors, the elicited inflammatory 
response, and/or coinfection with other micro-organisms. Infection of human 
corneas in vitro results in a continuous shedding of infected epithelial cells, thus 
reducing the thickness of the epithelial layer (TJIA et al. 1988). In human fallopian 
tubes, LPS and peptidoglycan fragments released from the bacteria inhibit ciliary 
activity and cause a sloughing of noninfected ciliated epithelial cells, thus 
disrupting the architecture of the surface epithelium (for review see STEPHENS 
1989). This effect, which seems to vary with the phenotype of the causative strain 
(DEKKER et al. 1990), is probably the result of stimulated tumor necrosis factor 
(TNF) production (MCGEE et al. 1992). A similar but not LPS-mediated toxic effect 
occurs in nasopharyngeal tissue challenged with meningococci (STEPHENS et al. 
1986). In both tissue types, the mucosal damage facilitates transcellular passage 
of the bacteria (WARD et al. 1974; STEPHENS and FARLEY 1991). 
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8.5 Professional Phagocytes 

Neisserial colonization of the human mucosa may give rise to an inflammatory 
response with recruitment and activation of professional phagocytes and 
activation of the host immune defense. Morphological data suggest that. in 
natural infection, the pathogenic Neisseria may reside inside phagocytes (WARD 
et al. 1972; DEVOE et al. 1973; SWANSON and ZELIGS 1974), but prolonged 
intracellular survival has been difficult to establish in vitro (SWANSON et al. 1975; for 
review see SHAFER and REST 1989). Dissection of the immunoresistant phenotype 
indicates that the bacteria possess a variety of anti phagocytic properties (see 
above) as well as a large repertoire of mechanisms that potentially allows them 
to be facultative intracellular microorganisms. An important step in Neisseria 
phagocyte interaction appears to be the distinct Opa protein-associated contact 
with the cells which results in induction of a respiratory burst and which may be 
followed by ingestion of the bacteria (KING and SWANSON 1978; REST et al. 1982; 
VIRJI and HECKELS 1986; FISHER and REST 1988; BELLAND et al. 1992). This nonopsonic 
interaction, which at least in part can be mimicked by synthetic peptides derived 
from the Opa protein HV2 region (NAIDS et al. 1991), is enhanced by fmlp, PMA or 
the calcium ionophore A23187 in combination with cytochalasin D, and inhibited 
by pertussis toxin, and calmodulin inhibitors (FARRELL and REST 1990)' and probably 
involves a 19 kDa (glyco)protein that is part of the secondary granule membrane 
and thus up-regulated at the cell surface in activated phagocytes (FARRELL et al. 
1991). The stimulation of the neutrophil oxidative metabolism does not lead to the 
release of detectable amounts of oxygen intermediates into the surrounding 
milieu which may contribute to extracellular persistence of the bacteria (NAIDS and 
REST 1991). Though most of these studies were performed with gonococci, it is 
anticipated that similar findings will be made with meningococci. 

Once ingested, the bacteria probably reside in phagosomes and are exposed 
to the extremely hostile environment of oxidative and nonoxidative killing 
mechanisms, unless phagolysosomal fusion is inhibited, as may occur by the 
insertion of the bacterial ion channel in the vesicle membrane (WEEL et al. 1991 b; 
WEEL and VAN PunEN 1991). The bacteria may counter the oxidative killing by 
increased oxygen consumption (KRIEGER et al. 1980; COHEN and COONEY 1984; 
BRITIGAN et al. 1988), the production of high levels of catalase (ARCHIBALD and 
DUONG 1986; JOHNSON et al. 1993), and/or by switching to anaerobic growth using 
nitrite as a source of energy (for review see HAsSEn and COHEN 1989). In addition, 
expression of a long LPS type and intracellular bacteriostasis may promote 
resistance to nonoxidative antimicrobial agents either by preventing the binding 
of cathepsin or antimicrobial cationic proteins to the bacterial penicillin binding 
protein or inhibiting their detrimental effect. which requires active cell wall 
'synthesis (DALY et al. 1982; CASEY et al. 1985; ROCK and REST 1988; SHAFER 1988; 
SHAFER et al. 1990). In this way, the nongrowing bacteria may survive for 
prolonged periods awaiting cytotoxic lysis or exocytotic release from the cells 
perhaps as clumps of mUltiplying bacteria enclosed in host cell remnants. These 
so-called infectious units have been proposed to play an important role in the 
persistence and transfer of neisserial infection (NOVOTNY et al. 1977). Whether the 
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recently identified FK506-inhibitable peptidyl-prolyl cis-trans-isomerase in 
meningococci (SAMPSON and GOTSCHLICH 1992; McALLISTER and STEPHENS 1993), 
which has homology to the Legionella mip protein supposedly involved in 
initiation of intracellular infection (HACKER and FISCHER 1993). contributes to 
intraphagocytic survival remains to be established. 

9 Conclusions and Outlook 

In addition to providing the fundament forthe development of vaccines and novel 
drugs in order to prevent disease, bacterial pathogenesis models serve as a 
platform for studying the complexity of interactions between microbial 
populations and higher organisms. The strength, and to the same extent a 
weakness, of the Neisseria model is the narrow host range of the included 
species. While this precludes the use of a natural animal infection model it 
minimizes the multitude of interactions a microbe can possibly encounter during 
infection and therefore may help us to specify the evolutionary forces governing 
microbial behavior (and that of their genes). Thus far the biological meaning of 
many genetic processes remains obscure, an example being the irreversible loss 
of essential infection determinants, such as pilE (SEGAL et al. 1985) and similar 
examples in other systems, -which seems to disarm the pathogens and drive 
them into a dead end. Understanding the evolutionary basis of such processes is 
crucial if we are to explain the pathogenesis which presently is best described as 
an accidental case (see FALKOW 1990). In this field, the genus Neisseria offers a 
wide scenario for the comparison, on multiple levels, of pathogenic and non­
pathogenic species interconnected by the flow of genetic material. 

Apart from evolutionary considerations, the Neisseria model represents a 
paradigm of escape and adaptive functions and significantly contributes to the 
current adventure of unravelling the biochemical processes of cellular cross-talk. 
Despite the experimental obstacle of genetic variability and the lack of an animal 
model, neisserial adhesins playing critical roles in target cell interaction have been 
successfully defined and other signaling factors have been identified, such as P.I 
porin, which inserts into target cell membranes, and the Iga polyproteins, which 
are capable of entering the nuclei of human cells. As in other systems, 
cytoskeletal reorganization and phosphorylation of host cell proteins upon 
neisserial entry into epithelial cells can be demonstrated and the intracellular 
processing of bacteria contained in professional phagocytes is being studied. 
Research along these lines will not only extend our knowledge in terms of 
isolated pathogen host cell interactions but undoubtedly lead to a better 
understanding of the interplay between Neisseria and the immune system: 
Key questions relate to the modulation of antigen presentation and cytokine 
production and, finally, to the mechanism of the inflammatory response 
associated with neisserial infections. 
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1 The Genus Bordetella 

The genus Bordetella contains four pathogens of the upper respiratory tract. 
Bordetella pertussis and B. parapertussis colonize exclusively humans, causing 
whooping cough and a mild pertussis-like disease, respectively; B. bronchiseptica 
can be isolated from most mammalian species, causes kennel cough in dogs and 
atrophic rhinitis in pigs and is only rarely isolated from humans; B. avium causes 
turkey coryza and many other diseases in birds. The closest relatives of the genus 
Bordetella are Alcaligenes and Pseudomonas species, bacteria that are 
widespread in the environment (MULLER and HILDEBRANDT 1993; DE LEY et al. 1986) 
(Fig. 1). This suggests that the ancestors of Bordetella species were bacteria 
living in the external environment that evolved to infect homeothermic animals. 
During evolution, the first to diverge was B. aviumwhich is the most distant in the 
evolutionary scale; then from the mainstream line of B. bronchiseptica, a single 
clone became specialized to infect exclusively humans and gave rise to B. 
parapertussis and B. pertussis (Fig. 1) (ARICO and RAPPUOLI 1987; ARICO et al. 1987; 
GROSS et al. 1989a; MUSSER et al. 1986). The latter two species are still a very 
homogeneous clonal population, while B. bronchiseptica and B. avium are 
heterogeneous populations of many subclones. 

IRIS, Immunobiological Research Institute Siena, Via Fiorentina 1, 53100 Siena, Italy 



320 R. Rappuoli 
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Fig. 1. The evolutionary tree of the genus Bordetella. The ancestor of the genus was likely to be a 
bacterium related to Alcaligenes and Pseudomonas species, living in the external environment, that 
initially acquired the ability to infect homeothermic animals. It then became so specialized for the 
second environment that today Bordetella species are isolated only from animals. During evolution, the 
four species further differentiated to adapt to their respective hosts: birds for B. avium, mammals for B. 
bronchiseptica, and humans for B. pertussis and B. parapertussis. The first species to diverge was B. 
avium. B. parapertussisand B. pertussis are homogeneous species and all isolates are of clonal origin. 
B. aviumand B. bronchisepticaare heterogeneous species made up of different subclones 

Today, the four species are so specialized that they can be isolated 
exclusively from their animal hosts; however, some properties still reflect their 
origin . For instance, the synthesis of virulence-associated factors is regulated by 
temperature (LACEY 1960), a system that very likely serves to distinguish the 
external environment, with a temperature of 20°-25°C, from the animal host at 
37°C. The environmental origin of B. bronchiseptica is also suggested by its ability 
to survive for long periods in soil and in lake water (PORTER et al. 1991)' and the 
presence of flagella (AKERLEY and MILLER 1993), a structure that is common to 
most pathogens that inhabit the external environment such as Escherichia colt: 
Salmonel/a, Pseudomonas, Campylobacter jejuni and Vibrio cholerae. 

2 Virulence Factors: Structure, Export 
and Pathogenesis 

Bordetella species colonize the upper respiratory tract of their hosts, using 
adhesins specif ic for ciliated cells of the respiratory epithelium and for alveolar 
macrophages. Although the four species may use mostly the same molecules for 
adhesion and host intoxication, most information derives from studies on B. 
pertussis and little is known about the subtle differences that may be responsible 
for differential pathogenesis . The following section is focused mostly on the 
factors that are believed to playa major role in B. pertussis virulence. 
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B. pertussis is peculiar among bacterial pathogens because it contains a 
redundancy of virulence factors: multiple adhesins and toxins are present and 
they all seem to play some role in pathogenesis. The other peculiarity of B. 
pertussis is the unusual arrangement of the virulence factors. The bacterium has 
been very creative and has found original ways to utilize molecules known to have 
a different function in other bacteria. The best examples of this are the 
combination of adenylate cyclase and hemolysin into a single virulence factor and 
the use of a peptidoglycan fragment as a toxin specific for ciliated cells. Finally, B. 
pertussis is unique because it utilizes at least three of the four different pathways 
used by gram-negative bacteria to export molecules to the bacterial surface or to 
the extracellular space. Again, even with regard to export, known systems are 
utilized in an unusual way: for instance, pertussis toxin is exported by a system 
that previously was believed to export only single-stranded DNA, and filamentous 
hemagglutinin is exported by a mechanism commonly used to export 
hemolysins. Below, the B. pertussis virulence factors are described: the 
homologies with other systems are highlighted mostly through the figures. The 
chromosomal location of the genes described has been mapped (STIBITZ and 
GARLETIS 1992) and is reported in Fig. 2. 

2.1 Filamentous Hemagglutinin 

Filamentous hemagglutinin (FHA), a major adhesin of B. pertussis, is a protein of 
220 kDa that can be purified in large amounts from the culture supernatant. The 
protein is encoded by the largest prokaryotic gene so far described (fhaB, 10774 
base pairs) (RELMAN et al. 1989; DOMENIGHINI et al. 1990), and is synthesized as a 
large precursor of 367 kDa (ARICO et a:. 1993). The 'genomic location of the Fha 
genes and their arrangement are reported in Figs, 2 and 3, respectively, The 
precursor protein is likely to be exported to the periplasm by a sec-dependent 
pathway and then further delivered to the bacterial surface with the help of a 
transporter protein (FhaC), encoded by a gene downstream from the fhaB gene 
(WILLEMS et al. 1994; LOCHT et al. 1993). The mechanism used for the surface 
exposure of FHA is similar to that of the Sh1A and HpmA hemolysins of Serratia 
marcescens and Proteus mirabilis, respectively (UPHOFF and Welch 1990; SCHIEBEL 
et al. 1989; POOLE et al. 1988; ONDRACZEK et al. 1992). In this system, final secretion 
is mediated by Sh1 Band HpmB, two proteins homologous to FhaC, which 
recognize and post-translationally modify an NH2-terminal sequence on the target 
proteins that is present also in FHA (DElISSE-GATHOYE et al. 1990). Once on the cell 
surface, the full-length FHA molecule remains anchored to the bacterium through 
the COOH-terminal and binds eukaryotic cells by multiple domains located in the 
NH2-terminal portion (ARICO et al. 1993). These include a domain that recognizes 
galactose-containing glycoconjugates on ciliated cells and macrophages 
(TuoMANEN et al. 1988), an Arg-Gly-Asp domain that promotes adhesion to the 
macrophage integrin C3, and possibly other integrins on different cells (RELMAN 
et al. 1990; ARICO et al. 1993), and a heparin-binding region (MENOZZI et al. 1991). 
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Fig. 2. Genomic map of 
Bordetella pertussis showing 
the position of the known 
genes. A, Band C are the loci 
that are shown in detail in Figs. 
3-5. (Adapted from STIBllZ and 
GARLETIS 1992) 

Fig. 3a-d. Structure of the chromosomal region A of Fig. 2. a This region contains the bvgA and bvgS 
regulatory genes; the fhaB gene that codes for FHA and the fhaC gene required for FHA export; and the 
genes fimA-fimD required for assembly and export of the fimbrial subunits. b-d FHA. Fim and Bvg 
proteins, respectively. The structural proteins are indicated as empty arrows or boxes, while the proteins 
involved in export and assembly of the structural proteins are shown in black. Below each protein the 
most significant protein homologies are reported to indicate how related these systems are to those of 
other bacterial or eukaryotic systems. 

b FHA is exported by a system homologous to that of the Serratia marcescens hemolysin. The protein 
is exported to the peri plasm by a signal peptide-dependent pathway and then further transported to the 
medium by the FhaC . protein which is homologous to the Serratia protein ShIB. FhaC and ShlB 
recognize a target sequence present at the NH2-terminal of FHA and ShlA. This is indicated by the 
shaded area (SCHIEBEL et al. 1989; SCHONHERR et al. 1993). 

c The Bordetella fimbrial system is mostly homologous to the mrk fimbrial system of Klebsiella 
pneumoniae (ALLEN et al. 1991) and generally related to all other fimbrial systems, of which the 
prototype is the pap system of uropathogenic E. coli (JONES et al. 1992; HULTGREN et aI.1993). The pilus 
assembly machinery is composed of two proteins FimB and FimC (indicated in blacK). By analogy with 
the pap system, it is believed that FimB binds the pilus major subunit (encoded by fim2, fim3, and fimX), 
preventing its periplasmic aggregation, and chaperones it to the FimC protein. This protein is the 
membrane anchor for the assembly of the pilus (JONES et al. 1992). 

d BvgA and BvgS are highly homologous across the entire sequence to the E. coli evg system (UTSUMI 
et al. 1992) and contain regions of homology (indicated by the shaded area) to all other bacterial proteins 
of the two component system of which we show as examples only VirG, VirA, EnvZ and OmpR (GROSS 
et al. 1989b). The homologous region of the eukaryotic homologues of the two component system are 
also reported. (OTA and VARSHAVSKY 1993; CHANG et al. 1993) 
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Remarkably, most binding activities of FHA mimic eukaryotic mechanisms of cell 
adhesion (RELMAN et al. 1989). and in some cases it has been proposed that 
antibodies to FHA may interfere with leukocyte binding (TUOMANEN et al. 1993). 

Finally, the NH2-terminal 220 kDa region contain ing the eukaryotic cell 
binding domains is cleaved and released from the bacterium, possibly in order to 
achieve two goals: (1) to facilitate spreading, by releasing the bacterium from the 
bound cells and allowing it to move to other cells, tissues or organisms; (2) to coat 
the surrounding tissues with a sticky protein that would saturate the receptors, 
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compete for specific bacterial binding and facilitate subsequent nonspecific 
bacterial adhesion (TUOMANEN and WEISS 1985; TUOMANEN et al. 1985). The 
presence of FHA is also required for intracellular uptake of B. pertussis by HeLa 
cells and macrophages, a condition that has been proposed to play a role in 
disease (SAUKKONEN et al. 1991). The key role of FHA in bacterial adhesion has 
suggested that this protein should be one of the key components in new, acellular 
vaccines directed against whooping cough. 

2.2 Pertactin 

Pertactin is an outer membrane protein of B. pertussis that was originally named 
P69 or 69K protein to indicate the apparent molecular weight determined by SDS­
PAGE. Cloning of the gene (CHARLES et al. 1989; MARCINAK et al. 1993) showed that 
this protein derives from a precursor of 93 kDa that is exported to the periplasm 
by a sec-dependent pathway and is rapidly processed to generate an NH2-

terminal protein of 60.5 kDa (pertactin), that migrates with an apparent molecular 
mass of 69 kDa in SDS gels and a COOH-terminal protein of 33 kDa (MAKoFF et al. 
1990). B. parapertussis and B. bronchiseptica produce proteins homologous to 
pertactin which have a slightly different migration in SDS gels, named P70 and 
P68, respectively (LI et al. 1991, 1992). The role of pertactin in B. pertussis 
virulence is controversial. In vitro studies have shown that eukaryotic cells can 
adhere to purified pertactin_ and that, as in the case of FHA, an Arg-Gly­
Asp-containing domain mediates this adhesion (LEININGER et al. 1991, 1992). 
However, in vivo the role of pertactin in bacterial adhesion has not been clearly 
demonstrated, and mutants lacking pertactin are not defective in adhesion 
(ROBERTS et al. 1991). Recently, it has been shown that pertactin mutants have a 
suboptimal FHA-mediated adhesion, suggesting that pertactin may help FHA in 
reaching the conformation that is competent for cell binding (ARICO et al. 1993). 
The ability of P68 to protect piglets from B. bronchiseptica infection (KOBISCH and 
NOVOTNy'1990), the high immunogenicity of pertactin, and its ability to induce 
protection in mice challenged by aerosol with virulent B. pertussis (SHAHIN et al. 
1990) have suggested that this protein should be included in acellular vaccines 
against pertussis (NOVOTNY et al. 1991). 

2.3 Fimbriae 

Fimbriae or pili are filamentous structures of high molecular weight. They are 
composed of identical subunits of approximately 20 kDa, radiate from the surface 
of bacteria and are usually involved in bacterial adhesion. B. pertussis contains 
three fimbrial subunit genes (fim2, fim3 and fimX) that are non contiguous in the 
chromosome (LIVEY et al. 1987; PEDRONI et al. 1988; CUZZONI et al. 1990; Mool et al. 
1990 and Fig. 2). fim2 and fim3 are expressed and assembled into fimbrial 
subunits, while fimX is silent in B. pertussis but is expressed in B. bronchiseptica. 
In B. pertussis, as in all gram-negative bacteria, secretion of fimbrial subunits 
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from the periplasm and assembly of the fimbrial structure require several 
accessory proteins, usually encoded by sequences that are clustered with the 
fimbrial structural genes (PUGSLEY 1993). In B. pertussis the accessory genes 
required for fimbrial assembly and export (fimB and time) are homologous to the 
corresponding proteins in other gram-negative bacteria. However, these genes 
are located far away from the structural genes and map downstream from the 
thaB gene, in a cluster containing also a gene coding for the adhesin moiety of the 
pilus (timD) and an incomplete fimbrial structural gene (timA) (WILLEMS et al. 1992, 
1993; LOCHT et al. 1993 and Figs. 2, 3c). Given the redundancy of adhesins present 
in B. pertussis, the role of fimbriae in adhesion has never been clearly defined; 
nevertheless, it has been clearly established that serotype 2 and 3 fimbriae induce 
B. pertussis agglutinating antibodies (MiNG LI et al. 1988). In addition to the global 
bvg regulatory system, the fimbriae have an additional system that regulates their 
transcription using deletion and insertion of cytosine residues in the fim­
promoter region (WILLEMS et al. 1990). 

2.4 Pertussis Toxin 

Pertussis toxin (PT), a protein of 105 kDa with multiple toxic properties, is 
produced only by B. pertussis. PT is a major virulence factor (WEISS et al. 1984; 
MONACK et al. 1989), involved both in bacterial adhesion and host intoxication 
(TUOMANEN and WEISS 1985), anc! may be responsible for the unique features of 
whooping cough, a disease caused only by B. pertussis (PIDMAN 1979, 1984). As 
with other bacterial toxins, PT can be divided into an enzymatically active part that 
is responsible for the toxicity (A protomerl. and a nontoxic moiety (B oligomer) 
that binds to receptors on the surface of target eukaryotic cells and facilitates the 
translocation of the toxic A subunit across the eukaryotic cell membrane (RAPPUOLI 
and PIZZA 1991). The A protomer constitutes the Sl subunit, an enzyme of 26.2 
kDa which is associated with the B moiety, an oligomer composed of four 
noncovalently-linked subunits, S2, S3, S4 and S5 of 21.9, 21.8, 12 and 11.7 kDa, 
respectively, that are present in a 1:1 :2:1 ratio (TAMURA et al. 1982). The biological 
activities of PT reside both in the A and the B subunit. However, the toxicity of PT 
is exclusively associated with the enzymatic activity of the Sl subunit. The B 
oligomer binds to receptors on eukaryotic cells, using lectin domains located in 
the S2 and S3 subunits that share some homology with eukaryotic selections 
(SAUKKONEN et al. 1992). Upon binding, PT can agglutinate red blood cells, deliver 
signals that stimulate the proliferation of T cells, or cause calcium release. These 
activities of PT require very high concentration of toxin (0.5-1 Ilg/ml) and are 
unlikely to have a physiological role (SOMMERMEYER and RESCH 1990; NENCIONI et al. 
1991). The toxic properties of PT are associated with the enzymatic activity of the 
Sl subunit which, as in the case of diphtheria, cholera and pseudomonas toxins, 
has an ADP-ribosylating activity and transfers ADP-ribose groups to G proteins of 
eukaryotic cells (KATADA and UI 1982; RAPPuoLi and PIZZA 1991). The G proteins that 
are modified by PT are involved in signal transduction and are responsible for the 
communication of cells and tissues with the external environment. Once the G 
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Fig. 4. Structure of the chromosomal region C of Fig. 2, encoding the pertussis toxin locus (ptx) and the 
locus involved in pertussis toxin secretion (8. p. ptl). The structural proteins are indicated as empty 
arrows, while the proteins involved in export and assembly of the structural proteins are shown in black. 
The operon required forthe transport of PT from the periplasm to the medium (ptJ) is highly homologous 
to the virB operon of Agrobacterium tumefaciens (A. t. virB), which is involved in transport of single­
stranded DNA. The homology with the nopaline pTiC58 virB region is shown (KULDAU et al. 1990). The 
figure shows that the PT operon may have evolved simply by inserting into an operon encoding the DNA 
transport system 

proteins are modified by PT, they lose the ability to receive signals from surface 
receptors and this causes a generalized toxicity that has different consequences 
in different tissues. The amount of PT required for these activities is extremely 
low: the toxic activity in vitro is detected with 1 pg/ml (HEWLETI et al. 1983), while 
in vivo 5 ng of PT per mouse cause toxic effects that last longer than 3 months. 

The genes coding for the five subunits of PT are clustered in an operon 
(NICOSIA et al. 1986; LOCHT and KEITH 1986) in the arrangement shown in Fig. 4. A 
similar arrangement is present also in B. parapertussis and B. bronchiseptica; 
however, in these organisms the PT operon is not transcribed (GROSS and 
RAPPUOLI 1988; ARICO and RAPPUOLI 1987). Each of the five polypeptides is 
independently exported by a sec-dependent pathway to the periplasm where the 
five subunits assemble into the holotoxin. Following assembly, the holotoxin is 
exported across the outer membrane into the external environment. Efficient 
assembly and secretion requires the Sl subunit, nevertheless, in its absence, the 
B oligomer can still be assembled and exported, although at low efficiency (PIZZA 
et al. 1990). Export of the assembled toxin across the outer membrane requires 
the products of the ptl operon. This is located downstream from the PT operon 
and contains eight genes that are homologous to the transport system used by 
Agrobacterium tumefaciens to transfer single-stranded DNA to plant cells 
(COVACCI and RAPPUOLI 1993; WEISS et al. 1993) (Fig. 4). The critical role of PT in 
virulence and its ability to induce protective immunity have made PT the major 
component of all acellular vaccines developed against pertussis. In order to be 
included in vaccines, PT is detoxified by chemical agents, a treatment which, 
however, reduces the immunogenicity of the protein. Recently, a strain of 
B. pertussis has been engineered by site-directed mutagenesis so that it encodes 
a mutant PT protein that is nontoxic but fully immunogenic (PIZZA et al. 1989). 
This molecule has already been extensively tested in clinical trials and is the 
most promising candidate for future vaccines (RAPPUOLI et al. 1992b; PODDA et al. 
1992, 1993). A vaccine based on this molecule has been already approved for 
use in infants in Italy. 
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2.5 Adenylate Cyclase-Hemolysin 

The adenylate cyclase-hemolysin is a bifunctional protein endowed with both 
adenylate cyclase and hemolytic activity, and is a major virulence factor of 
B. pertussis. Mutants lacking this protein are unable to initiate infection (KHELEF et 
a1.1992) and are avirulent in the mouse model (WEISS et al. 1984). The protein is 
synthesized as a large precursor of 1706 amino acids that can be functionally 
divided into the enzymatically active ad~nylate cyclase (residues 1-400), and the 
hemolysin portion (residues 401-1706) (GLASER et al. 1988a). The whole protein is 
post-translationally modified and secreted directly to the medium by a dedicated 
export apparatus that is similar in structure and function to that of the E. coli a­
hemolysin (MAcKMAN et al. 1987; PUGSLEY 1993; SHYAMALA et al. 1992). 
Downstream from the adenylate cyclase structural gene (cyaA). there are three 
genes, cyaB, cyaC and cyaE, that are involved in a sec-independent secretion of 
the protein to the medium (GLASER et al. 1988b) (Fig. 5). Upstream from the cyaA 
gene, another gene, cyaC, is necessary for activation of the hemolytic activity of 
the protein, possibly by a post-translational acylation mechanism (BARRY et al. 
1991). This modification is necessary for interaction of hemolysin with 
mammalian cell membranes (lSSARTEL et al. 1991). Following binding to eukaryotic 
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Fig. 5. Structure of the chromosomal region B of Fig. 2, encoding the adenylate cyclase-hemolysin 
system. The structural proteins are indicated as empty arrows, while the proteins involved in export and 
assembly of the structural proteins are shown in black. The structural gene cyaA is followed by the 
genes cyaB, cyaD and cyaE, required for export, and is preceded by cyaC, which is involved in 
hemolYSin activation. These genes code for proteins that are homologous to the corresponding proteins 
of the E. coli hemolysin system (hlylthat are shown below. In E. coli, the talC gene is not clustered with 
the hemolysin genes. The CyaB and HlyB proteins have a membrane spanning domain and a 
cytoplasmic translocation ATPase homologous to a large superfamily of membrane proteins, which are 
involved in the transport of a variety of substances across the membrane of bacterial and eukaryotic 
cells, including the Mdr multidrug resistance transporter (P-glycoprotein) and TAP proteins (BLIGHT and 
HOLLAND 1990; WANDERSMAN 1992) 
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cells, the COOH-terminal region with hemolytic activity is inserted into the 
membrane, triggering an increase in Ca2+ concentration which apparently facili­
tates translocation of the whole molecule across the cell membrane. Once in the 
cytosol, the NH2-terminal portion of 43 kDa is proteolytically cleaved, releasing 
the adenylate cyclase which causes unregulated synthesis of cAMP (ROGEL and 
HANSKI 1992; HEWLETT et al. 1991). This enzyme is unique because it is extremely 
sensitive to activation by eukaryotic calmodulin. 

The double toxic activity of the adenylate cyclase-hemolysin and its absolute 
requirement for B. pertussis virulence suggests that this molecule could be a 
good vaccine candidate for immunization against pertussis. This has been 
confirmed by the observation that this is the only antigen, in addition to PT, that is 
able to protect mice from intracerebral challenge with virulent bacteria (GUISO et 
al. 1989, 1991). However, so far, the unavailability of large quantities of this 
protein has limited the development of such vaccines. 

2.6 Tracheal Cytotoxin 

Tracheal cytotoxin (TCT), a disaccharide-tetrapeptide of 921 daltons, is a fragment 
of the bacterial cell-wall peptidoglycan with a well defined structure: N-acetyglu­
cosaminyl-1 ,6,-anhydro-N-acetylmyramylalanyl-y glutamyldiaminopimelylalanine 
(COOKSON et al. 1989). TCT is released into the medium during the logarithmic 
phase of growth by severaL bacteria, including Neisseria gonorrhoeae. It is 
identical in structure to the endogenous, neurologically active slow-wave sleep­
promoting factor FSw and is specifically toxic for ciliated cells (GOLDMAN et al. 
1990). During B. pertussis infection, TCT causes severe local damage of the 
ciliated cells lining the large airways, and this may be a primary cause of cough 
during pertussis. During N. gonorrhoae infection, TCT is responsible for the 
destruction of the ciliated cells of the human fallopian tube epithelium. The 
toxicity of TCT seems to be due to its ability to induce interleukin-1 (HEISS et al. 
1993), which in turn induces nitric oxide, a substance known to have either 
cytostatic or cytotoxic effects on a variety of cells (HEISS et al. 1994). The high 
energy required for the continuous movement of the cilia could explain the 
exquisite susceptibiliy of ciliated cells to nitric oxide, a substance that targets a 
number of enzymes involved in ATP synthesis. 

2.7 Dermonecrotic Toxin 

Dermonecrotic toxin is a potent toxin that is produced by all forms of Bordetella 
species and is often called heat-labile toxin, to indicate that the toxic activity can 
be inactivated by heating at 56°C. The protein is a single polypeptide of 140 kDa, 
which when injected intradermally into suckling mice or guinea pigs induces 
blood vessel contraction and hemorrhagic skin necrosis. Although the molecule 
has been purified (ZHANG and SEKURA 1991). little is known about the structure and 
mechanism of action of this molecule. 
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3 Global Regulation of Virulence 
and Reversible Differentiation 

Bordetella species sense environmental signals and modify gene expression in 
order to optimize their interaction with the environment. This process involves a 
well defined and temporally controlled program of gene expression that 
generates bacteria with totally different phenotypic properties. It is reminiscent of 
the differentiation process of higher organisms, although in this case the process 
is reversible (RAPPUOLI et al. 1992a). Thus, for example, bacteria grown at 25°C are 
non-hemolytic, avirulent and have a different colony morphology from those 
grown at 37°C, which are hemolytic, fully virulent and can be agglutinated by 
specific antisera that do not recognize the bacteria grown at 25°C. The different 
phenotypic properties of bacteria grown at different temperatures are 
schematically shown in Fig. 6, which summarizes also the molecular events that 
cause the phenotypic changes. Bordetella species grown at 25°C express a 
number of genes, named vir-repressed genes (vrgl. which are likely to be 
necessary for survival in a low temperature environment outside of the animal 
host (BEADlE et al. 1992; FINN el at. 1991). The flagellin gene of B. bronchiseptica 
is the best example of this class of genes (AKERLEY and MILLER 1993). Following 
temperature transition to 37°C, the vrgs are rapidly repressed and several genes 
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Fig.6. Transcriptional response of Bordetella pertuss;sto a temperature variation from 25°C to 37°C and 
vice versa. Top the vir-repressed genes (vrgs) are expressed at 25°C, The vir-activated genes (vags) are 
expressed at 37"C. Following a temperature shift from 25°C to 3;7"C, the vags are tumed on in two steps. 
During the first step the genes coding for molecules involved in adhesion (FHA and fimbriae) are 
activated and the transcription of the bvg locus is also increased (earlv vags). This causes an increase 
of the intracellular concentration of the BvgA regulatory protein. The second step initiates when the 
amount of BvgA reaches a value that is approximately 20 times higher than the basal level at 25°C and 
consists of the activation of the genes coding for pertussis toxin, adenylate cyclase, pertactin, etc. (late 
vags). Bottom the bacteria grown at 25°C or 37°C are phenotypically different and well adapted to grow 
in different environments. This is the result of a well defined program of gene expression that resembles 
the differentiation of higher organisms 
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required for virulence in the homeothermic animal host, named vir-activated 
genes (vag), are turned on in two steps (SCARLATO et al. 1991). The first step occurs 
immediately after the temperature shift and involves activation of genes coding 
for proteins required for bacterial adhesion, such as fimbriae and FHA (early vags). 
The second step of gene activation, which starts 2 h after temperature shift and 
reaches maximal levels at 6-8 h, involves the transcriptional activation of the late 
vag genes, including those coding for PT, adenylate cyclase and pertactin (Fig. 6). 

The global regulation of vrg and vag is mediated by a single regulatory locus, 
bvg (WEISS et al. 1983; GROSS et al. 1989a). In addition to low temperature, bvg is 
responsible for the shut off of vag transcription in the presence of nicotinic acid or 
MgS04, although other salts may also influence expression of the bvg regulon 
(LACEY 1960; MELTON and WEISS 1993). As discussed in the introduction to the 
genus Bordetella, it is likely that the bvg system evolved to differentiate the 
external environment, with a temperature of 20°-25°C, from the animal host at 
37°C. However, the nature of the physiological stimulus that regulates the 
synthesis of the virulence factors is still controversial; for instance. it has been 
proposed that the bvg system may shut off virulence gene expression during the 
intracellular stage of B. pertussis (MASURE 1992). The bvg locus maps next to the 
FHA gene (STIBITZ and GARLETTS 1992; Fig. 2) and encodes for BvgA and BvgS. two 
polypeptides of 23 and 135 kDa, respectively, that are homologous to a family of 
bacterial and eukaryotic proteins which regulate gene expression by using "two 
components." This is schematically shown in Fig. 3d (ARICO et al. 1989; STIBITZ and 
YANG 1991). The first COmpOf'lent (see Fig. 7 for details) is a receptor (BvgS) that 
senses the external environment with the NH2-terminal portion. Following a 
positive stimUlUS, the receptor dimerizes and translocates the message across 
the membrane. through a membrane spanning domain, to the cytoplasmic 
portion of the receptor which is endowed with kinase activity. This portion of the 
two component system is the most conserved in all bacterial homologues and 
has been recently shown to be conserved also in eukaryotic signal transducing 
systems (Fig. 3d and KOSHLAND 1993; OTA and VARSHAVSKY 1993; CHANG et al. 1993). 
For instance, ETR1, a system homologous to bvg, has been shown to be 
responsible for sensing ethylene in Arabidopsis and to regulate the expression of 
a number of genes involved in fruit ripening and flower senescence (CHANG et al. 
1993). The second component of the system is a DNA binding transcriptional 
activator (BvgA), the activity of which is regulated by BvgS through 
phosphorylation (MILLER et al. 1989; GROSS et al. 1989a). The intracellular amount 
of BvgA is quite low when bacteria are grown at 25°C. or in the presence of 
MgS04 ; however, it increases over 60-fold when the negative stimulus is 
removed (SCARLATO et al. 1991; MASHAKO et al. 1992). One of the questions that is 
not yet solved is the mechanism by which the bvg system differentially regulates 
the early and late vags. BvgA has been shown to bind upstream from the FHA and 
bvg genes and activate transcription from the FHA and bvg promoters. 
Nevertheless, under the same conditions, BvgA is not able to bind the DNA 
regions upstream from the PT or adenylate cyclase genes (RoY et al. 1989), which 
are necessary for promoter activity (GROSS and RAPPUOLI 1988). Similarly. when 
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Fig. 7. The key players in regulation of virulence genes in B. pertussis. The external signals are sensed 
by BvgSwhich dimerizes and activates BvgA, possibly by phosphorylation. causing transcription of the 
vag genes and repression of the vrg genes. BvgA is known to bind upstream from the FHA and bvg 
promoters. but binding upstream from the pertussis toxin and adenylate cyclase promoters has not 
been demonstrated. The mechanism by which BvgA activates or represses transcription is not known. 
Some of the possible hypotheses are: (1) BvgA binds DNA and directly helps the RNA polymerase to 
make an open complex. (2) It interacts with other factors that in turn interact with and activate the RNA 
polymerase. (3) It specifically derepresses promoters that are not available for transcription because 
they are covered by DNA binding proteins. Other players in the transcriptional activation. shown in the 
figure. are DNA binding proteins and the a.. ~ and a subunits of the RNA polymerase 

cloned in E. coli the bvg system is able to transactivate and regulate efficiently the 
FHA gene but not the PT gene (MILLER et al. 1989). Recently, it has been shown 
that the PT gene can also be transactivated in E. coli by the bvg system; however, 
this activation is exquisitely sensitive to DNA topology and supercoiling, and 
generally it does not work when the PT promoter is cloned in small plasm ids 
(SCARLATO et al. 1993). Presently, two theories have been proposed to explain the 
differential regulation of early and late vags by the bvg system: one theory 
suggests that, upon activation of bvg, transcription of an unknown transactivator 
specific for the late genes is initiated; the other theory does not require an 
additional factor but suggests that the late genes have a lower affinity for BvgA, 
and that they are activated only when the intracellular concentration of BvgA is 20 
times or more above the basal level (SCARLATO et al. 1991; RAPPUOLI et al. 1992a). 
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The bvg system controls two well known phenomena of Bordetella: phase 
variation and antigenic modulation. Modulation is the classical name indicating 
that Bordetella "modulates" the expression of the virulence factors and 
consequently the immunogenicity, virulence, vaccine potency, etc., in response 
to temperature, MgS04 or nicotinic acid (LACEY 1960); phase change occurs when 
a frameshift mutation or a deletion within the bvgS gene cause a permanent loss 
of the ability to produce virulence factors (STIBITZ et al. 1989; ARICO et al. 1991). 

From the evolutionary point of view it is interesting that a system highly 
homologous to bvg, but with an unknown function (evg), has been described in E. 
coli. When this system is hyperexpressed in an EnvZ mutant, it regulates the 
expression of OmpC in response to temperature, MgS04 and nicotinic acid 
(UTSUMI et al. 1992). 
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