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Preface

 
A shift in emphasis can be seen in the approach to structural design. More often
structures are looked at ‘globally’, as whole structural units, rather than a group of
individual elements. The investigation of this global behaviour, also described as
‘holistic’ or ‘whole building’ behaviour has been made possible by new theoretical
achievements and the spectacular advance in computer technology during the last
decades.

The global structural analysis of buildings can be carried out following two routes.
First, sophisticated and complex computer packages based on the finite element method
offer endless facilities and can handle even huge structures with a great number of
elements. Second, analytical methods can also deal with whole structures leading to
simple closed-form solutions, with the additional benefit of providing fast checking
facilities for the computer-based methods.

This book follows the latter route and, after describing and solving the complex
theoretical problems of bracing systems covering many practical cases, intends to
achieve the following three objectives:
 
• To present simple procedures and closed-form formulae which make it possible for

the practising structural engineer to carry out a general structural analysis of the
bracing system of building structures in minutes.

• To show that the main areas of structural design (stability, stress and frequency
analyses) are not independent; indeed they can be linked by the global critical load
ratio which can be used to achieve optimum structural solutions with high
performance and adequate safety.

• To help to understand global behaviour better and to develop structural engineering
common sense through the introduction of the most representative stiffness
characteristics for the stability, stress and frequency analyses.

 





Notations

CAPITAL LETTERS

A cross-sectional area; area of the plan of the building; floor area
Aa area of lower flange
Ab cross-section of beams
Ac cross-section of columns
Ad cross-section of diagonal bars in cross-bracing
Ah cross-section of horizontal bars in cross-bracing
Af area of upper flange; contact area between foundation and soil
Ag area of web
Ai cross-sectional area of the ith bracing element
Aj incremental area
Ao area of closed cross-section defined by the middle line of the walls
Aref reference area for the force coefficient
B plan breadth of the building (in direction y)
C centre of vertical load; centroid
C1, C2, C3, C4 constants of integration
E modulus of elasticity
Eb modulus of elasticity of beams
Ec modulus of elasticity of columns
Ed modulus of elasticity of diagonal bars in cross-bracing
Eh modulus of elasticity of horizontal bars in cross-bracing
F concentrated load (on top floor level); horizontal force
Fcr critical concentrated load
Fcr,X, Fcr,Y critical concentrated load in directions X and Y
Fcr, ϕ critical concentrated load for pure torsional buckling
Fg full-height (global) bending critical concentrated load
Fi vertical load on the ith bracing element/framework; vertical force at xi, yi

Fl local bending critical concentrated load
Fm total horizontal load due to misalignment
Fx, Fy components of the resultant of the horizontal load in directions x and y
Fw global wind force
Fw,x,F w,y wind force in directions x and y
FWj global wind force for height/width>2
G modulus of elasticity in shear
H height of building/frame/coupled shear walls; horizontal force
I second moment of area
Ib second moment of area of beams



Ic second moment of area of columns
Icg fictitious ‘global’ second moment of area of a column of storey height
Ie effective second moment of area
If second moment of area of the foundation
Ig global second moment of area of the columns of the framework; gross (uncracked)

second moment of area
Io polar moment of inertia of the ground plan area with respect to the shear centre of

the bracing system
Ix, Iy second moments of area with respect to centroidal axes x and y
IX, IY second moments of area with respect to principal axes X and Y
Ixp, Iyp second moments of area of the plan of the building with respect to centroidal axes x

and y
Ixy product of inertia with respect to axes x and y
IXY product of inertia with respect to principal axes X and Y
Iω warping (bending torsional) constant
J Saint-Venant torsional constant
K shear stiffness of frameworks; shear critical load; seismic constant
K* shear stiffness/shear critical load of coupled shear walls
Kd shear stiffness representing the effect of the diagonal bars in cross-bracing
K*

 g full height (global) shear stiffness; global shear critical load
full height (global) shear stiffness of coupled shear walls; full height (global) shear
critical load of coupled shear walls

Kh shear stiffness representing the effect of the horizontal bars in cross-bracing
Kl local shear stiffness; local shear critical load
L width of framework; plan length of building (in direction x); width of equivalent

shear wall
Mp bending moments due to load of intensity p
MQ bending moments due to virtual force Q=1
Mt Saint-Venant torsional moment
Mx,i, My,i bending moment in the ith bracing element in planes xz and yz
MZ total torque
Mω warping torsional moment
M* bending moment on the equivalent column
M̄ concentrated moments representing the supporting effect of the beams
MSC Mercalli-Sieberg-Cancani seismic scale
N total applied uniformly distributed load (measured at ground floor level)
Ncombined combined sway-torsional critical load for the monosymmetric case
Ncr critical load for the uniformly distributed load

combined (F+N) critical load
critical load of rigid column on flexible support
critical load which takes into consideration soil-structure interaction

Ncr,X, Ncr,Y critical UDL in directions X and Y
Ncr,ϕ critical UDL for pure torsional buckling
Ng full-height (global) bending critical UDL for frameworks

xiv

N D
cr

N flex
cr

N int
cr



Nl local bending critical UDL for frameworks
N(z) total vertical load at z
O shear centre
Q intensity of uniformly distributed floor load; weight per unit area of top floor;

shear force on floor level
R radius
S, Sx, Sy seismic force

first (statical) moments of area about the neutral axis
Sω sectorial static moment
T natural period; shear force at contraflexure point
Tx,i, Ty,i shear force in the ith bracing element in planes xz and yz
TX, TY first natural period for lateral vibration
UDL uniformly distributed load
V vertical load
VCR critical load for model structure
W bimoment; width of structure
X, Y principal axes
Z1, Z2 auxiliary functions defined by formulae (5.18)
 
SMALL LETTERS
 
a length of wall section
a0, a1, a2 coefficients
b length of wall section; width of perforated wall section
bw width of diagonal strip for infill
c translation; length of wall section; depth of lintel with coupled shear walls; critical

load parameter for different end conditions
cF translation due to F passing through the shear centre
cyF translation in direction y due to F passing through the shear centre
cM translation due to M acting around the shear centre
cyM translation in direction y due to M acting around the shear centre
cALT altitude factor
cd dynamic coefficient
cDIR wind direction factor
ce(ze) exposure coefficient
cf force coefficient
cfj force coefficient for incremental area Aj

ci coefficients in a series
cTEM temporary (seasonal) factor
d length of wall section; length of diagonal with cross-bracing
dz length of elementary section
e perpendicular distance between the line of action of the horizontal load and the

shear centre; distance of upper flange from centroid
e* distance of lower flange from centroid (with bracing cores)

xv

S´x, S´y



f frequency
fc frequency when the effect of the compressive force is taken into account
fcombined combined lateral-torsional frequency for the monosymmetric case
fint natural frequency which takes into account soil-structure interaction
fflex natural frequency of rigid column on flexible support
fd frequency when the effect of damping is taken into account
fX,fY natural frequency of lateral vibration in principal directions X and Y
fϕ

t pure torsional frequency associated with the Saint-Venant stiffness
fϕ

ω pure torsional frequency associated with the warping stiffness
fϕ fundamental frequency of torsional vibration
g global axis; gravity acceleration
h height of storey; length of wall section
h* equivalent height of storey
h̄ height of first storey columns
hi,k length of the kth section of the ith bracing element
i parameter relating to the number of bracing elements (from 0 to n)
ip radius of gyration
k torsion parameter; translational stiffness; parameter relating to the number of

elements in a series; spring constant; stiffness of a framework
kx, ky translational stiffness with respect to axes x and y, respectively
ks modified torsion parameter; modulus of subgrade reaction
l width of bay; distance between shear walls; local axis
l1, l2, l3, l4 ‘torsion arm’ of shear walls; distance between the wall sections of coupled shear

walls; width of bay
li frequency factor
m distributed moments for the stability analysis; length of section of beam for cross-

bracing
mz distributed torque
mz0 uniformly distributed part of torque
m̄ distributed moments for the stress analysis, representing the supporting effect of

the beams
n number of columns/walls/bracing elements; number of storeys
nh number of structural elements on one floor level
p intensity of the uniformly distributed load on the beams
ps intensity of seismic load
q intensity of the uniformly distributed load on the floors; intensity of the uniformly

distributed vertical load; horizontal load
q0 intensity of the uniformly distributed part of the horizontal load
q0x, q0y components of the uniformly distributed part of the horizontal load in directions x

and y
q1 intensity of the variable part of the horizontal load at top
q1x, q1y components of the variable part of the horizontal load in directions x and y
qref reference mean wind velocity pressure
qx, qy components of the horizontal load in directions x and y

xvi



qx,i, qy,i components of the horizontal load in directions x and y on the ith bracing element
q̄x, q̄y auxiliary parameters defined by formula (5.19)
r combination factor; modifier
r1, r2 critical load ratio; frequency ratio (for mode coupling); radius
rf reduction factor for the frequency analysis
rflex reduction factor for flexible support
rs reduction factor for the stability analysis
s width of wall; distance between bays; length of arc (with closed cross-sections)
sflex reduction factor for flexible support
t distance between the shear centre and the centre of the vertical load; wall thickness;

global centroidal axis of the cross-sections of the columns; time
t* thickness of the equivalent wall
ti distance between the axis of the ith column and the global centroidal axis; wall

thickness of the ith bracing element
ti,k wall thickness of the kth section of the ith bracing element
u horizontal displacement of the shear centre in direction x
uB horizontal displacement of corner point B of the building in direction x
uflex top translation of rigid column on flexible support in direction x
ug horizontal displacement of the bracing element at top floor level
ui horizontal displacement of the shear centre of the ith bracing element in direction x
ul accumulative top level horizontal displacement due to the storey level

displacements of the columns
umax maximum horizontal displacement in direction x
v horizontal displacement of the shear centre in direction y
vA horizontal displacement of corner point A of the building in direction y
vflex top translation of rigid column on flexible support in direction y
vi horizontal displacement of the shear centre of the ith bracing element in direction y
vmax maximum horizontal displacement in direction y
vref,0 basic value of the wind velocity given by means of wind maps
x horizontal coordinate axis; horizontal coordinate
x̄ horizontal coordinate axis; coordinate in coordinate system x̄—ȳ
xA coordinate of corner point A of the building in direction x
xc coordinate of the centroid in direction x in the x—y coordinate system of the shear

centre
xi coordinate of the shear centre of the ith bracing element in direction x
xmax location of maximum translation
x̄i, ȳi coordinates of the shear centre of the ith bracing element in the coordinate

system x̄—ȳ
x̄o coordinate of the shear centre in coordinate system x̄—ȳ
y horizontal coordinate axis; horizontal coordinate
ȳ horizontal coordinate axis; coordinate in coordinate system x̄—ȳ
yB coordinate of corner point B of the building in direction y
yc coordinate of the centroid in direction y in the x—y coordinate system of the shear

centre

xvii



yi coordinate of the shear centre of the ith bracing element in direction y
ȳ0 coordinate of the shear centre in coordinate system x̄—ȳ
z vertical coordinate axis; vertical coordinate
zj height of the centre of gravity of incremental area Aj

zmax location of maximum bending moment in the beams of the framework
 
GREEK LETTERS
 
α eigenvalue; critical load parameter for frames on fixed supports; critical load

parameter for pure torsional buckling; angle between axes x and X; auxiliary
parameter

αp eigenvalue; critical load parameter for frames on pinned supports
αs Southwell estimate for eigenvalue α; eigenvalue and critical load parameter for the

sandwich model
β stiffness ratio; damping ratio; dynamic constant for seismic load; stiffness ratio for

soil-structure interaction (stability; frequencies)
βs stiffness ratio for the sandwich model
δ lateral displacement (storey drift)
ε mode coupling parameter for the monosymmetrical case
γ weight per unit volume; angular displacement
η first natural frequency parameter for pure torsional vibration; height/width ratio
ηi, η2, η3 ith, 2nd and 3rd natural frequency parameters for pure torsional vibration
ηq load factor (due to rotation)
ηT shear force factor (due to rotation)
ηT’ shear force factor (due to rotation) for the concentrated force load case
ηM bending moment factor (due to rotation)
ηM’ bending moment factor (due to rotation) for the concentrated force load case
κ mode coupling parameter for the 3-dimensional case
λ stiffness ratio for beams/columns of frameworks
ϕ rotation; angle between the diagonal and horizontal bars in cross-bracing
ϕmax maximum rotation
µ slope of the function of the horizontal load; construction misalignment
v global critical load ratio
ρ mass density per unit volume; shape factor; air density
ρ* mass density per unit area
σz compressive stress
τi shear stress in the ith bracing element

τX, τY eccentricity parameters for the 3-dimensional torsional-flexural buckling
ω sectorial coordinate
ωX, ωY circular frequencies for vibration in principal directions X and Y
ωϕ circular frequency for pure torsional vibration

xviii

shear stress due to unsymmetrical bending
shear stress due to Saint-Venant torsion
shear stress due to warping torsion

τι
b

τι
ω

τι
t



1

Introduction

In applying physical and mathematical models which are based on the global
behaviour of building structures, a unified treatment of the stress, stability and
frequency analyses of bracing systems is presented for carrying out the structural
analysis of buildings. In complementing the conventional ‘element-based’ design
process, closed-form formulae and simple procedures are given for the global
analysis of individual bracing elements and 3-dimensional bracing systems.

1.1 BACKGROUND

The conventional design process is normally based on the ‘local’ structural analysis of
individual elements (columns, beams, floor slabs, walls, etc). This attitude is natural,
since the structural system consists of individual elements. However, theoretical
research, small-scale and large-scale tests and failures (and in some cases the lack of
failures) in structural systems have indicated that complex structures cannot be
considered simply as a collection of individual elements. The response of the structure
is often more than the ‘sum’ of the responses of the individual elements since structural
integrity ensures that the elements work together in a properly designed system and
the structure develops some ‘global’ response through the complex interaction of its
elements.

The ‘local’ or ‘global’ approach to structural design may affect the level of safety
of the structure and can lead to considerable advantages or disadvantages as far as
structural economy is concerned. A structure based on the optimum solution of the
individual elements may not be economic when the system is considered as a whole. It
is an interesting fact from the point of view of structural safety and economy, that
when some elements in the system are supposed to fail when checked individually,
they do not do so because other elements can help out. It is equally important to point
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out that interaction among the structural elements may also result in
unfavourable phenomena.

Well-established and well-publicized methods have been made available for
the analysis of individual structural elements. These methods are relatively simple
and usually do not require much theoretical knowledge. Being suitable for
automation, most of them have been built into computer procedures and are
widely used in design offices.

The area of global structural analysis, however, is not so well developed.
Many reasons have contributed to the relatively slow progress in developing
methods for global design. Because of the complexity of the problem and the
great number of structural elements involved in the analysis, deeper theoretical
background, more sophisticated techniques and computers of great capacity are
needed.

Global analysis, as structural design itself, can be carried out on two levels.
An ‘exact’ analysis—or an analysis called exact—relies on a mathematical model
as exact as possible and uses a static model which takes into account as many
structural elements, material properties, geometrical and stiffness characteristics
as possible. Taking everything into consideration, however, can result in
problems. Even using a powerful computer, the job can be too big to handle.
Because of the complexity of the results, they can be difficult to interpret. The
lengthy and time-consuming procedure of handling all the data can always be a
source for errors. Another disadvantage of this approach may be that the
importance of the key structural elements is sometimes hidden behind the great
number of input and output data.

Simplified procedures relying on carefully chosen approximations represent
the other possibility for the analysis. A good approximate method relies on the
most important structural characteristics and ignores those which have no real
influence on the response of the structure. It is therefore simple, fast and offers
a clear picture of the structural behaviour.

As both the local and the global approaches are important since they complement each
other, both the exact and approximate procedures have their own significance. In the design
process, the main structural characteristics are often established using an approximate
method. Relying on the results of the approximate method, an exact procedure can follow,
which eventually gives the final structural solution. The approximate method can fulfil
another important task. As the theories behind the exact and approximate methods are
often different—the exact methods are normally based on the finite element approach
while the approximate methods are often based on analytical procedures—the results of



General assumptions 3

the approximate analysis can be used as independent checks on the results of
the exact method. When the two sets of result show the same structural
behaviour, it  is a strong indication that the results are correct. This
endorsement is important to the structural designer, since it is sometimes not
easy to detect an error with the exact analysis where thousands of data may
be involved [MacLeod, 1995].  The significance of the independent
verification of the results has widely been recognized and the importance of
avoiding a ‘Computer Aided Disaster ’ has been discussed at different
conferences [Brohn, 1996; Knowles, 1996].

With the widespread use of more slender structural elements and lighter
materials, and with the increasing demand for more economic structures,
design for stability has become more and more important. In recognizing
this tendency, the methods and procedures presented in this book for the
stress, stability and dynamic analyses are linked together through the global
critical load ratio, which is also shown to be a generic performance
indicator.

With the increasing availability of more and more sophisticated and user-
friendly computer procedures, the engineering society seems to be falling
into two groups. Those developing the software packages manage to build
on, and even develop further, their theoretical knowledge acquired at the
university. On the other hand, office pressure to produce more and quickly
forces some of the practising structural designers to concentrate only on
pressing the right key on the keyboard. Some might say that it is not really
important for the designer to understand the theory behind the analysis since
the computer knows everything anyway. The tendency in the last twenty years
indicates that the general knowledge of the young generation regarding basic
structural behaviour is less than satisfactory [Brohn and Cowan, 1977; Brohn,
1992]. The discussion and debate on the advantages and disadvantages of
the use of computers in the design office are still going on [Smart, 1997;
Gardner, 1999].

1.2 GENERAL ASSUMPTIONS

The majority of the formulae and procedures are based on the application of the
equivalent column concept and the summation theorems of civil engineering.
The equivalent column concept is applicable to regular structures when the
geometrical and stiffness characteristics of the bracing system do not vary over
the height of the building. In addition, the following conditions also have to be
fulfilled.



a) The material of the structures is homogeneous, isotropic and obeys Hooke’s
law.

b) The floor slabs are stiff in their plane and flexible perpendicular to their
plane.

c) The structures have no geometrical imperfections, they develop small
deformations and the third-order effect of the axial forces is negligible.

d) The loads are applied statically and maintain their direction (conservative
forces).

e) The location of the shear centre only depends on geometrical characteristics.

When applied, adsditional assumptions concerning the different structures
and types of analysis may be given in the introduction of the corresponding
chapter.

The formulae presented for the stability analysis are applicable to structures
subjected to concentrated top load, distributed load (or concentrated forces) on
floor levels or the two loads together. It is assumed that the frameworks and
coupled shear walls are sway structures and the critical load defines the
bifurcation load.

The formulae given for the dynamic analysis were derived assuming distributed
mass over the floors and concentrated mass on top floor level. The horizontal
load for the stress analysis is assumed to be of trapezoidal distribution.

1.3 THE STRUCTURE OF THE BOOK

The objective of the book and general assumptions are given in Chapter 1.
Chapter 2 briefly describes the 3-dimensional behaviour of the loadbearing
elements and introduces the equivalent column for the bracing system, which
is mostly used later for the analyses. Chapter 3 covers the stability and
frequency analyses of buildings. Closed-form formulae, tables and diagrams
are given for the quick calculation of the basic critical loads and natural
frequencies for the stability and dynamic analyses. The combination of the
basic modes in both the buckling and the frequency analyses is taken into
account in two ways: by a simple interaction formula and by a cubic equation.
Both multistorey and single-storey buildings are covered. The effect of soil-
structure interaction is taken into account approximately by simple summation
formulae. An elementary approach is presented in Chapter 4 for the stress
analysis of buildings braced by parallel shear walls, a system of perpendicular
shear walls, or frameworks, subjected to a uniformly distributed horizontal
load. Worked examples facilitate practical application. The scope of the stress
analysis is extended in Chapter 5 where a comprehensive method is given for
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bracing systems having (Saint-Venant and warping) torsional stiffnesses as well.
Closed-form solutions are derived and diagrams and tables are given for the
load distribution and the stresses and deformations when the building is under
horizontal load of trapezoidal distribution. Simple expressive formulae are
also presented for the maximum values of the stresses and deformations.
Formulae for single-storey buildings are also presented. In addition to sizing
the elements of the bracing system, the technique is potentially useful both at
the concept design stage and for final analysis for checking of structural
adequacy, assessing the suitability of structural layouts, verifying the results
of other methods, evaluating computer packages, facilitating theoretical
research and developing new techniques and procedures.

Based on a series of worked examples, a comprehensive qualitative and
quantitative evaluation is given in Chapter 6, which also shows how the
procedures are used in practice for actual design and for finding optimum
structural arrangement. The global critical load ratio, also identified as a
performance indicator of the bracing system, is introduced in Chapter 7. It is
demonstrated that the global critical load ratio can be used to increase the
efficiency of the bracing system while ensuring adequate level of safety, leading
to more economic construction. Monitoring the value of the global critical load
ratio for different structural layouts offers a simple tool for increasing the global
critical load and the fundamental frequencies and reducing the maximum stresses
and deformations in the bracing system.

To improve the accuracy of the procedures, which are based on mathematical
and physical models, alternative formulae are also derived in Chapter 8 which,
instead of the theoretical values of the stiffnesses, the key elements in the
structural analysis, use stiffness values based on frequencies measured on the
building. These formulae are applicable to the stress and stability analyses of
doubly symmetrical bracing systems.

Chapter 9 deals with the stability analysis of planar structures and presents a
closed form formula for an equivalent wall. The equivalent wall can then be
used in the 3-dimensional analysis. It is shown that all ‘frame-like’ planar
structures can be characterized by four distinct deformations and the
corresponding four stiffnesses. Closed-form formulae are then given for
frameworks on pinned and fixed supports with and without cross bracing, for
coupled shear walls and for infilled frameworks. The efficiency of planar bracing
elements is investigated through two sets of representative one-bay and two-
bay, four to ninety-nine storey high structures.

Chapter 10 presents the results of a series of small-scale tests and a short
summary of a comprehensive accuracy analysis which show that the accuracy of
the procedures is acceptable for practical structural engineering applications. A
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brief evaluation of the procedures is given in Chapter 11 with practical guidelines
for the structural designer.

Cross-sectional characteristics for commonly used bracing elements are
collected in Appendix A. Appendix B introduces the power series method
and shows how a complex eigenvalue problem in stability analysis can be
transformed into a simple problem of finding the smallest root of a
polynomial. In providing a complete set of tables, Appendix C reduces the
task of producing the critical load of combined sway-torsional buckling and
the fundamental frequency of combined lateral-torsional vibration to a single-
step calculation.

References cited in the book are given following the Appendices. Further
reading is helped by a list of additional bibliographical items.

Name and subject indexes conclude the book.
With the exception of Chapter 4, the book does not give the detailed

derivations and proofs of the formulae; these are available in separate
publications cited in the text and listed in the References. Chapter 4, however,
demonstrates how carefully chosen elementary static considerations can lead
to the simple solution of complex problems.
 

6 Introduction



2

Spatial behaviour

2.1 BASIC PRINCIPLES

The primary structural elements of buildings are the vertical and horizontal load
bearing structures. These structures carry the horizontal and vertical loads of
the building. The vertical (dead and live) loads are transmitted to the vertical
load bearing elements (shear walls, frames and columns) by the horizontal load
bearing elements (floor slabs). The horizontal loads (wind, construction
misalignment, and seismic forces) are transmitted by the floor slabs to those
vertical load-bearing elements that are capable of passing them on the foundation.
These dedicated structural elements (shear walls, frames and cores) are called
the bracing elements of the building, whose main task is to provide the building
with adequate lateral stiffness. They represent a system, which will be referred
to as the bracing system of the building.

Of the vertical load-bearing elements, the frameworks are basically responsible for
carrying the vertical loads and the main task of the cores is to provide the necessary
lateral and torsional stiffnesses. The shear walls and coupled shear walls contribute to
both tasks. The floor slabs act as horizontal load bearing elements and are also responsible
for transmitting the applied vertical loads to the vertical load bearing elements and for
distributing the horizontal loads among the vertical load bearing elements. Compared to
the shear walls and cores, the frameworks are more flexible and they are often neglected
when the lateral stiffness of a building is assessed. If, however, the effect of the
frameworks also has to be taken into account for some reason, then, as an
approximation, they can be replaced by fictitious walls. These fictitious walls can
then be included in the analysis which can be carried out in a relatively simple
manner when the bracing system only comprises walls and cores. Several methods
are available for the calculation of the size of the cross-section of the fictitious



walls; one of them is to stipulate that the critical load of the fictitious wall and
that of the framework be identical. A simple procedure is given in section
9.9 where the limitations of the use of fictitious walls are also discussed.

Subjected to external loads, a system of shear walls and cores can develop
three kinds of deformation: sway in the two principal planes of inertia and
rotation around the shear centre. Apart from some special symmetrical
arrangements, the three modes couple resulting in a combined sway-torsional
behaviour. The exact spatial analysis of these structures is rather complicated,
partly because of the interaction between the horizontal and vertical load
bearing systems and among the elements of the horizontal and vertical systems
themselves and partly because of the great number of elements to be involved
in the analysis. By applying the equivalent column approach, however, the
analysis can be simplified and closed-form solutions can be produced for the
stresses and deformations, the load distribution among the structural elements,
the elastic critical loads and the natural frequencies.

2.2 THE EQUIVALENT COLUMN AND ITS CHARACTERISTICS

The 3-dimensional analysis is based on the analysis of the equivalent column.
The equivalent column is obtained by combining the bracing shear walls and
cores of the building to form a single cantilever. Its bending and torsional
stiffnesses represent the whole building. As the equivalent column is situated
concurrent with the shear centre (centre of stiffness) of the bracing elements,
the first step is to locate this global shear centre (O in Fig. 2.1). The position
of the shear centre is found by making use of the basic geometrical and
stiffness characteristics of the bracing elements [Beck and Schäfer, 1969].

The calculation is carried out in the coordinate system x̄   —y ̄ , whose origin
lies in the upper left corner of the plan of the building (Fig. 2.1) and whose
axes are aligned with the sides of the building:

 
 

(2.1)
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In formulae (2.1) and (2.2) Ix,i, Iy,i and Ixy,i represent the moments of inertia and
the product of inertia of the ith element of the bracing system with respect to its
local centroidal coordinate axes which are parallel to axes  x̄   and ȳ. . Coordinates
x̄  i and y ̄ i stand for the location of the shear centre of the individual bracing
elements in the coordinate system  x̄  —ȳ.   The sums of the moments of inertia and
the product of inertia of the bracing elements are also needed in formulae (2.1)
and (2.2):
 

where i=l…n, and n is the number of bracing elements. The sums of the moments
of inertia of the bracing elements are important characteristics of the building in
relation to its global bending. The product of inertia plays an important role in
determining the orientation of the principal axes of the bracing system.

In addition to the above bending characteristics, there are two more
characteristics of the equivalent column, which are associated with torsion: the
Saint-Venant torsional constant and the warping (bending torsional) constant.

(2.2)

Fig. 2.1 Building layout with bracing elements and the equivalent column.

(2.3)
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The Saint-Venant torsional constant is the sum of the Saint-Venant torsional
constants of the bracing elements and is obtained in a similar manner as with the
moments of inertia:

where Ji is the Saint-Venant torsional constant of the ith bracing element.
The warping constant is a weighted sum which is calculated in a coordinate

system whose origin is the global shear centre [Beck, König and Reeh, 1968].
For this purpose, after making use of formulae (2.1) and (2.2), coordinate system
x̄  —ȳ.  is transferred to coordinate system x—y, whose origin coincides with the
global shear centre and whose axes are parallel with axes  x̄   and ȳ.  (Fig. 2.1).
The warping constant of the equivalent column in this coordinate system assumes
the form:

 
where Iω,i is the warping constant and xi and yi are the coordinates of the shear
centre of the ith bracing element in the x—y coordinate system.

The warping (bending torsional) constant of the equivalent column represents
two types of contribution: the first term in formula (2.5) represents the warping
torsion of the bracing elements with regard to their own shear centre and the
second, third and fourth terms stand for the bending torsion of the elements with
regard to the global shear centre of the whole system. This part of contribution
is realized through the bending of the bracing elements (Ix,i, Iy,i, Ixy,i) utilizing
their ‘torsion arm’ (xi, yi) around the global shear centre.

Formulae (2.3), (2.4) and (2.5) reflect the assumption that the floors of the
building are stiff in their own plane and flexible perpendicular to their plane. It
is the out-of-plane flexibility of the floor slabs that leads to the simple sums in
formulae (2.3) and (2.4) and it is their in-plane stiffness that results in the second,
third and fourth terms in formula (2.5).

When the bending and torsional stiffnesses of reinforced concrete bracing
elements are calculated for the establishment of the equivalent column, the effect
of cracking on stiffness may have to be taken into account. The phenomenon is
not discussed here as detailed information is available elsewhere; it is only
mentioned that le=0.8Ig is normally considered an adequate reduction in the value
of the second moment of area, where Ie and Ig are the effective and the gross

(2.4)

(2.5)
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(uncracked) second moments of area. Detailed information and guidelines are
given in [Council, 1978d].

Apart from the above constants of the equivalent column, the radius of gyration
is also needed for the establishment of the equivalent column for the stability
and dynamic analyses. The radius of gyration is determined by the load of the
building and the area over which it is distributed. The load is represented either
by the mass (for the dynamic analysis) or by the vertical load (for the stability
analysis).

In the general case when the building is subjected to a load of arbitrary distribution
on a layout of arbitrary shape, the radius of gyration is calculated from

where q(x,y) is the intensity of the load.
Concentrated forces can also be taken into consideration: when the load

consists of concentrated forces formula (2.6) assumes the form

where F
i
 is the ith concentrated force and x

i
 and y

i
 are its coordinates in the x—y

coordinate system whose origin is in the shear centre.
Formula (2.6) is a general formula. In many practical cases, simpler formulae

can be used for the analysis. Assuming uniformly distributed load over the plan
of the building, for example, the radius of gyration is obtained from
 

(2.6)

(2.7)

(2.8)
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Coordinates xc and yc are the coordinates of the geometrical centre of the plan of
the building in coordinate system x—y whose origin is in the shear centre:
 

When the building has a rectangular plan, the formula for the radius of gyration
simplifies to

where L and B are the plan length and breadth of the building (Fig. 2.1).
Coordinate systems x̄—ȳ and x—y have been used for convenience as they

make the calculation of the basic characteristics straightforward. However, the
stability and dynamic analyses can be carried out in a much simpler way in the
coordinate system whose origin is placed at the global shear centre and whose
horizontal axes coincide with the principal axes.

In many practical cases the product of inertia of the elements of the bracing
system is zero. In such cases, axes x and y are already the principal axes and
the equivalent column is established by the stiffness and geometrical
characteristics defined by formulae (2.1) to (2.5) which, due to Ixy=0, simplify
considerably. [The simplified versions of formulae (2.1), (2.2) and (2.5) are
given in section 5.7.] However, Ixy is not zero, for example, for Z and L shaped
bracing cores and axes x and y are not the principal axes. A transformation of
the coordinate system is needed: coordinate system x—y should be rotated
around the origin (the global shear centre) in such a way that the new axes X
and Y are the principal axes (Fig. 2.2). The angle of principal axis X with axis
x is obtained from the formula

(2.9)

(2.10)

(2.11)
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Principal axis Y is perpendicular to axis X. The change in the coordinate system only
affects the moments of inertia. The moments of inertia in the new coordinate system
are obtained from

and

 
It should be noted that the product of inertia vanishes in the coordinate system whose
axes are the principal axes, i.e. I

XY
=0.

Low-rise and medium-rise buildings are sometimes braced by frameworks or
by a mixture of frameworks and shear walls. The equivalent column approach
can still be used but the frameworks have to be replaced first by fictitious walls.
When such a wall is incorporated into the equivalent column, only its in-plane
bending stiffness has to be calculated and all the other stiffness characteristics
are set to be zero. This procedure is considered more accurate for frameworks
with cross-bracing and for infilled frameworks as they develop predominantly
bending type deformations. However, when moment resistant frameworks on
fixed or pinned supports are replaced by fictitious shear walls, the procedure is
only approximate. The level of approximation depends on to what extent the

(2.12)

(2.13)

(2.14)
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deformation of the framework differs from the bending type deformation of the
fictitious wall. Each case should be treated very carefully as an individual case.
Detailed information is given in section 9.9 regarding the calculation of the size
of the fictitious wall and in section 9.10 where the behaviour and efficiency of
different planar structures are considered.

When the lateral stiffness of the bracing system is evaluated for practical
structural engineering calculations, the contribution of the stiffnesses of the
individual columns is normally neglected, being small compared to that of the
shear walls and cores. This approximation simplifies the calculation and leads
to conservative estimates. However, experimental evidence shows that this
contribution can be significant in certain cases (e.g. when there are many columns
and only few bracing walls, or when the elements of the bracing system are in a
special arrangement) [Zalka and White, 1992 and 1993]. The approximate method
presented below can be used in such cases. The method is based on a simple
formula which converts the ‘local’ stiffness of a column of storey height into a
‘global’ stiffness of a bracing element of building height. This element can then
be simply added to the other ‘ordinary’ bracing elements and can be incorporated
into the equivalent column in the usual manner.

The accumulation of the local sway of a column of storey height h with the
same cross-sectional size (Fig. 2.3/a) over the height of the building results in a
total top translation of

where n is the number of storeys and I
c
 is the second moment of area of the cross-

section of the column. Assuming a horizontal load of trapezoidal distribution, the top
translation of a single bracing element of building height H and of a fictitious second
moment of area I

cg
 (Fig. 2.3/b) is

 

where µ  is a parameter defining the slope of the function of the horizontal load,
according to formula (5.2) in section 5.1 and q

0
 is the intensity of the uniformly

distributed part of the load (Fig. 5.1).

(2.15)

(2.16)
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By combining the right-hand sides of equations (2.15) and (2.16) and making use of
the relationship H=hn, the ‘local’ moment of inertia of a column can be transformed
into a ‘global’ moment of inertia for the global analysis of the building:
 

where I
cg

 is the ‘global’ moment of inertia of the column. The ‘global’ moment of inertia
defined by formula (2.17) can now be used directly for the global analysis. When the
stiffnesses of the equivalent column are assembled, the columns can be considered as
‘ordinary’ bracing elements and their ‘global’ moments of inertia can simply be included
in the summations in formulae (2.1) to (2.5).
 

Formula (2.17) is considered an approximation and can only be used for the global
analysis of the building. The approximation is due to the two assumptions made for
the derivation of the formula, namely, it is assumed that

• the columns of storey height have fixed ends,

(2.17)

Fig. 2.3 Top translation. a) Accumulation of storey-sway over the height, b) translation
of a bracing element of height H.
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• the global deflection of the building resulting from the double-curvature
bending of the columns between the floors assumes a straight line (dashed
line in Fig. 2.3/a).

 
These assumptions seem to represent strict restrictions but it has to be kept in mind
that the effect of the columns on the global stiffnesses is of secondary nature anyway.
The results of tests on small-scale, 10-storey building models given in Chapter 10
indicate that the displacements and rotations obtained by using formula (2.17) are of
acceptable accuracy.

When the geometrical characteristics of the equivalent column are needed,
several sources can be used for the calculation of the Saint-Venant torsional
constant and the moments of inertia of the individual bracing elements [Griffel,
1966; Hrobst and Comrie, 1951; Roark and Young, 1975]. However, the
situation is different when the warping constant and the location of the shear
centre of the cores are needed. Only a limited number of publications deal
with these and they either give a detailed theoretical background for the
calculation with only one or two worked examples or present ready-to-use
formulae for only some special cases [Gjelsvik, 1981; Kollbrunner and Basler,
1969; Murray, 1984; Vlasov, 1940]. Unfortunately, printing errors, which are
difficult to detect in some cases, make their application somewhat risky. It is
possible to develop computer procedures of general validity [Roberts, 1985;
Waldron, 1986] but they are usually not widely available and their accuracy
and reliability are difficult to check. To make the task of producing the bending
and torsional characteristics of the individual bracing cores as simple as
possible, a collection of closed-form formulae for cross-sections widely used
for bracing cores is given in Appendix A. For bracing elements of special cross-
sections where no closed-form solution is available, the excellent computer
procedure PROSEC [1994] can be used, whose accuracy has been established
and proved to be within the range required for structural engineering
calculations [Zalka, 1994a].

2.3 THE SPATIAL BEHAVIOUR OF THE EQUIVALENT COLUMN

Apart from some special cases, building structures develop a combination of the
three basic modes (sway in the principal planes and torsion). The nature of the
behaviour (and the extent of the combination) depend on the relative position of
the shear centre of the bracing system and the centre of the external load—and
for lateral loads, the direction of the load.
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Assuming vertical load and stability analysis, possibilities for the coupling of
modes are shown in Fig. 2.4, where the whole bracing system of the building is
represented by the equivalent column of open, thinwalled cross-section. The
distance between the shear centre of the bracing system (O) and the centre of the
vertical load (C) is marked with t.

When the centre of the vertical load does not lie on either principal axis (Fig. 2.4/a),
sway in the two principal directions X and Y is coupled by pure torsion. The critical
load which belongs to this combined sway-torsional buckling is the global critical
load of the building.
When the centre of vertical load lies on one of the principal axes (x on Fig. 2.4/b),
sway in that principal plane develops independently of the other two modes. Sway in
the perpendicular direction combines with torsion. Both critical loads have to be
calculated, i.e. the independent sway critical load in the principal plane and the
combined sway-torsional critical load in the perpendicular direction, and the smaller
one is the global critical load of the building. The simplest case arises when the shear
centre and the centre of the vertical load coincide (Fig. 2.4/c). Sway in the principal
directions and torsion about the shear centre develop independently. The global critical
load is the smallest one of the independent basic critical loads.

The above principles outlined for the stability analysis can also be applied to the
dynamic analysis and—assuming a horizontal load system of arbitrary direction—
to the stress analysis. Sections 3.1 and 3.2 also deal with the spatial behaviour of the
equivalent column when the 3-dimensional stability and vibrations of the building
are investigated using the governing differential equations. In sections 5.1 to 5.3 the
3-dimensional behaviour of the equivalent column (and the building) under horizontal
load is analysed in detail.

Fig. 2.4 Coupling of basic modes. a) Triple coupling, b) double coupling, c) no
coupling.
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3

Stability and frequency analyses

The governing differential equations of the equivalent column—and of the bracing
system it represents—have been available for some time for the stability and
frequency analyses but exact solutions have only been produced for special cases
and the accuracy of the approximate solutions has not been fully investigated. A
number of approximate procedures are available, however, they are either too
simple and only reliable in some special cases or are still too complicated for
everyday use in design offices. Most investigations have treated the stability
and dynamic problems separately.

Some new theoretical developments and the realization that certain
similarities exist between the systems of governing differential equations of
the stability and dynamic problems and between the solution procedures make
it possible to develop simple, closed-form solutions for the critical loads and
the natural frequencies. The differential equations and their solutions are given
in the following sections. A left-handed coordinate system is used whose origin
is fixed in the shear centre on the ground floor level and whose horizontal
coordinate axes coincide with principal axes X—Y. Vertical coordinate axis z
points upwards and the bracing system is represented by the equivalent column.
The effect of soil-structure interaction is taken into account by simple
summation formulae.

Priority is given to the first eigenvalues. This is justified in practical structural
engineering applications. As for the stability problem, only the smallest critical
load is of practical importance. Regarding dynamic behaviour, it has been shown
that the response of multistorey buildings is made up predominantly of the first
few modes, with the higher modes contributing only a small portion of the total,
except at the top of relatively flexible buildings

The application of the procedures given in this chapter for the stability and
frequency analyses is illustrated in Chapter 6 where a series of worked examples
show how the procedures are used in practice.
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3.1 STABILITY ANALYSIS

The problem of the combined torsional-flexural buckling of a column of thin-
walled cross-section has been solved for concentrated end forces and Timoshenko
presented the solution in the form of simple formulae and a cubic equation
[Timoshenko and Gere, 1961]. Vlasov [1940] derived the system of three
differential equations for the cantilever subjected to uniformly distributed axial
load six decades ago but he did not produce a solution. Based on the power
series method, an approximate solution has been made available [Zalka and
Armer, 1992] which, in using tables and after some interpolation, produces the
critical load. The much simpler exact solution is given in this section.

The stability of the equivalent column (representing the building) is defined
by the system of fourth order, homogeneous differential equations of variable
coefficients

where the following notations are used:

The load of the equivalent column is obtained by distributing the floor load (of the
same magnitude on each floor) over the height of the building, creating the uniformly
distributed vertical load N(z)=q(H—z).

The governing differential equations are accompanied by a set of boundary
conditions. Lateral displacements and rotation are zero at the fixed lower end:
 

(3.1)

(3.2)

(3.3)
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In the boundary conditions, H is the height of the building.

The simultaneous differential equations (3.1) to (3.3) can be used to
demonstrate the spatial behaviour of the equivalent column. The nature of the
behaviour depends on the relative position of the shear centre of the bracing
system and the centroid of the vertical load—as described in section 2.3. Rotation
ϕ appears in all three equations, showing that the resulting deformation is
composed of both sway and torsion, as a rule. Possibilities for the combination
are shown in Fig. 2.4 where the whole bracing system is represented by the
equivalent column of open, thinwalled cross-section.

The solution of the simultaneous differential equations (3.1) to (3.3) in the
normal way would result in the eigenvalue of the problem, i.e. the critical load
of the building. There is, however, a much simpler way of producing the critical
load. It has been proved that the systems of differential equations (3.1) to (3.3)
can be solved in two steps: the basic critical loads which belong to the basic
modes have to be calculated first, then the coupling of the basic modes has to be
considered [Zalka, 1994c].

3.1.1 Doubly symmetrical systems—basic critical loads

The basic critical loads are those which belong to the basic (uncoupled) critical
modes: sway buckling in the principal planes and pure torsional buckling. This
is the case with doubly symmetrical arrangements when the shear centre of the
bracing system and the centre of the vertical load coincide and the three basic
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modes develop independently of one another. The governing differential
equations characterizing the doubly symmetrical case (and the basic modes) are
obtained from equations (3.1), (3.2) and (3.3) which, in the uncoupled case when
xc=yc=0 holds, become independent of each other and simplify to
 

The basic critical loads for buildings subjected to uniformly distributed load on each
floor are given in the following. Based on the well-known classical formula for a
cantilever subjected to uniformly distributed axial load [Timoshenko and Gere, 1961],
the two sway critical loads in the principal directions are:

where parameter rs is a reduction factor.
 

 
Formulae (3.11) only differ from Timoshenko’s formula in factor rs. It is a reduction
factor which allows for the fact that the actual load of the structure consists of

Fig. 3.1 Load diagrams, a) Load on the multistorey building, b) first part of the equivalent
load: uniformly distributed load, c) second part: concentrated force on top.
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concentrated forces on floor levels (Fig. 3.1/a) and is not uniformly distributed
over the height (Fig. 3.1/b) as is assumed for the derivation of the original formula
for buckling. The continuous load is obtained by distributing the concentrated
forces downwards resulting in a more favourable load distribution. This
unconservative manoeuvre leaves a concentrated force on top of the column (Fig.
3.1/c), which is not covered by the classical formula. The effect of this concentrated
force can be accounted for by applying Dunkerley’s [1894] summation theorem.
(The summation theorems and their use in civil engineering are discussed in detail
by Tarnai [1999].)

Dunkerley’s summation theorem applied to two load systems (uniformly
distributed load and concentrated top load) leads to the formula

 
where Fcr is the critical load when the structure is subjected to a top load, Ncr is the
critical load when the structure is subjected to a uniformly distributed load and          is the
total critical load when the two load systems act simultaneously. Figure 3.2 demonstrates
that when the structure is under two load systems, the total critical load is always
smaller than the critical load of either of the two loads.

 

It is advantageous to use the Dunkerley formula in a different form. When the
magnitude of either of the applied loads is fixed, the magnitude of the other load can
be calculated from

 

(3.12)

Fig. 3.2 Graphical interpretation of the Dunkerley formula.

(3.13)
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In this case, the magnitude of the concentrated top load is F=N/2n, where n is the
number of stories (Fig. 3.1/c). After substituting N/2n for F, formula (3.13) can be
rearranged as

from where, in making use of the ratio Ncr/Fcr=3.176 of the classical column formulae,
the value of the total vertical load can be calculated as
 

In this formula which now takes into account the real load on the equivalent column
according to Fig. 3.1/a,

is the reduction factor which is introduced in formulae (3.11) and whose values are
given in Table 3.1. The accuracy of the (conservative) Dunkerley formula is improved
in Table 3.1 by making use of the exact solution for one and two storey structures
under concentrated forces—the values of rs in Table 3.1 for n=1 and n=2 reflect this
modification.

The critical load for pure torsional buckling [solution of eigenvalue problem (3.10)] is
obtained from

 
or, in the special case when the warping stiffness is zero, for example for thin-
walled, closed cross-sections, from
 

N=rsNcr. (3.14)

(3.15)

Table 3.1 Reduction factor rs

(3.16)
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In formula (3.16) the values of critical load parameter α (eigenvalue of pure torsional
buckling) are given in Fig. 3.3 as a function of
 

where
 

is the torsion parameter and rs is the modifier whose values are given in Table 3.1.
The diagram in Fig. 3.3 covers the range 0 ≤ ks ≤ 2 where most practical cases

fall. When the value of ks exceeds 2.0, or greater accuracy is needed, Table 3.2
can be used. When Table 3.2 was compiled, the special solution procedure
(demonstrated in Appendix B) was used which makes it possible to obtain reliable
solutions of good accuracy even for ill-conditioned eigenvalue problems.
 

(3.17)

(3.18)

(3.19)

Fig. 3.3 Critical load parameter α.
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Table 3.2 Critical load parameter α
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The evaluation of the formulae of the basic critical loads (3.11) and (3.16) shows that
the most important characteristics that influence the values of the basic critical loads
are:

• the height of the building,
• the bending stiffnesses of the bracing system,
• the warping stiffness of the bracing system,
• the radius of gyration.

The sway critical loads are in direct proportion to the bending stiffnesses of the
bracing system and in inverse proportion to the square of the height of the building.
In a similar manner, the pure torsional critical load is in direct proportion to the
warping stiffness of the bracing system and in inverse proportion to the square of
the height. The Saint-Venant torsional stiffness affects the value of the critical load
through the critical load parameter α(ks) but its effect is normally small as in most
practical cases ks<1 holds. There is, however, a significant difference between the
sway-and pure torsional critical loads. The value of the pure torsional critical load
also depends on the radius of gyration. The effect of the radius of gyration is best
shown by formula (2.11). According to the formula which assumes uniformly
distributed floor load, the greater the size of the building (and the distance between
the shear centre and the centre of vertical load), the greater the radius of gyration
and consequently the smaller the pure torsional critical load. This is in sharp contrast
to sway buckling where the geometrical characteristics of the layout of the building
do not influence the critical load.

Formula (3.17) shows another interesting fact. When a structure is braced by
a bracing element of zero warping stiffness (e.g. a core of thinwalled, closed
cross-section), the value of the critical load for pure torsional buckling does not
depend on the height of the building nor on the distribution of the load.

3.1.2 Coupling of the basic modes; combined sway-torsional buckling

As the simultaneous differential equations (3.1) to (3.3) show, the basic modes
combine in the general case. The coupling of the basic modes can be taken into
account in two ways: approximately or exactly. If the main aim of the investigation
is to show whether or not the building is in a stable state, then the approximate
method can be used (first). It is very quick and simple, albeit conservative. If it
indicates an unstable building or a building with an insufficient safety margin,
then, as a second step, the exact method may still prove that the building is in a
stable state. (Chapter 7 deals with the necessary level of safety against buckling.)
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(a) An approximate method
The combination of the basic critical loads may be taken into account by using
the Föppl-Papkovich theorem. According to the theorem, if a structure is
characterized by n stiffness parameters, the critical load can be approximated
by combining the n corresponding part critical loads [Tarnai, 1999]. Each part
critical load belongs to a case where all but one stiffness parameters are assumed
to be infinitely great. In applying the theorem to 3-dimensional buckling, the
combined critical load can be obtained from
 

where Ncr,X, Ncr,Y and Ncr,ϕ are the basic critical loads defined by formulae (3.11) and
(3.16). The advantage of formula (3.20) is that it is easy to use and it is always
conservative. However, its use in certain cases can lead to considerably uneconomical
structural solutions, as the error of the formula can be as great as 67%. The more
sophisticated and only slightly more complicated exact solution is given in the next
section.

(b) The exact method
The exact solution of the simultaneous differential equations (3.1) to (3.3)
leads to the determinant

which defines the coupling of the basic modes and which can be used for the calculation
of the critical load of the combined sway-torsional buckling if the basic critical loads
(Ncr,X, Ncr,Y and Ncr,ϕ) are known. The expansion of the determinant results in a cubic
equation in the form
 

N3+a2N2+alN–a0=0,

 
where the coefficients are
 

(3.20)

(3.21)

(3.22)
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characterize the eccentricity of the load. Equation (3.22) can be used to take into
account the coupling of the basic critical loads. Of the three roots of the cubic equation,
the smallest one is the most important one in practical application, being the smallest
critical load of the building.

To speed up the calculation, cubic equation (3.22) has been solved for a great
number of basic critical load ratios

and eccentricity parameters τX and τY, and the resulting mode coupling parameters κ are
given in Tables C1 to C11 in Appendix C as a function of r1, r2, τX and τY. When the mode
coupling parameter is known, the critical load of combined sway-torsional buckling is
obtained from

where Ncr,ϕ is the basic critical load for pure torsional buckling.
The evaluation of cubic equation (3.22) leads to interesting observations.

Cubic equation (3.22) gives three values of critical load for each mode. It can be
easily demonstrated by the evaluation of the equation [Timoshenko and Gere,
1961] that one critical load is always lower than any of the uncoupled critical
loads, in other words the coupling of modes always results in a critical load
which is smaller than the smallest uncoupled critical load. One critical load is
always higher than the three uncoupled critical loads and the third critical load
is intermediate between the uncoupled critical loads Ncr,X and Ncr,Y. Each of the
three critical loads for a given mode corresponds to a particular pattern of
buckling. Figure 3.4 shows the left-hand side of equation (3.22) of N with the
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uncoupled critical loads Ncr,X, Ncr,Y and Ncr,ϕ , and the three coupled critical loads
                        and             which belong to the three patterns of the first mode.
 
 

It is only mentioned here that cubic equation (3.22) can also be used for the stability
analysis of bracing systems developing shear deformation [Hegedüs and Kollár,
1987].

The coupling of the basic modes clearly reduces the value of the critical loads.
The magnitude of the reduction mainly depends on two factors: the relative value
of the uncoupled critical loads compared to one another and the eccentricity of
the bracing system in relation to the centroid of the load of the building. The
nearer the values of the three uncoupled critical loads, the bigger the reduction
compared to the smallest of the three values. Similarly, the greater the distance
between the shear centre and the centroid of the load, the smaller the coupled
critical load.

The importance of taking into account the effect of mode coupling cannot be
overstated: the maximum error made by neglecting the effect of coupling is 141%
overestimation in the value of the smallest critical load.

(c) Special case: monosymmetric arrangements
Cubic equation (3.22) can always be used for taking into account the effect of interaction.
However, the solution of cubic equation (3.22) simplifies in the monosymmetric case
when the centre of the vertical load lies on one of the principal axes (Fig. 2.4/b) and a
very simple formula can be produced for dealing with the interaction. In such cases
sway buckling in the plane of symmetry develops independently and only sway buckling

Fig. 3.4 Relationship between the coupled and uncoupled critical loads.
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perpendicular to the axis of symmetry and pure torsional buckling combine. Assuming
uniformly distributed floor load and that axis X is an axis of symmetry, i.e. that yc = 0
holds, the combined critical load can be expressed by the closed form formula

where the values for the mode coupling parameter ε are given in Fig. 3.5 and, if the
range covered by the figure is not wide enough or if more accurate values are needed,
in Table 3.3, as a function of τX [formula (3.25)] and
 

The basic critical loads Ncr,Y and Ncrϕare defined by formulae (3.11) and (3.16). Table 3.3
covers the range 0 ≤ r2 ≤ 100. When r2>100, r2=100 can be used. The error made by this
approximation is always smaller than 1%. The global critical load for monosymmetrical
bracing systems is the smaller one of the combined critical load and the independent
sway critical load in the plane of symmetry.

Ncombined = εNcr,Y, (3.28)

(3.29)

Fig. 3.5 Mode coupling parameter ε for the monosymmetrical case.
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Table 3.3 Mode coupling parameter e for the monosymmetrical case
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The special case of doubly symmetrical bracing systems (Fig. 2.4/c) is automatically
covered in Table 3.3 by the rows defined by τX = 0.0. Values in Table 3.3 can also be
used to show the effect of neglecting the coupling of the basic modes in the
monosymmetrical case. According to the values, it is always unconservative to neglect
coupling. The maximum error made by neglecting coupling is 100%; when the two
basic critical loads Ncr,Y and Ncr,ϕ are equal and eccentricity is maximum (τX=1.0), coupling
reduces the combined critical load to half of the basic critical load.

3.1.3 Concentrated top load; single-storey buildings

The formulae presented for the global critical loads were derived on the
assumption that the load of the structures was uniformly distributed over the
floors, being the practical case with multistorey buildings. In certain cases,
however, concentrated load on top of the building may need be considered. A
panorama restaurant, a swimming pool or water tanks may represent some extra
load on the top of the building which may not be covered by the uniformly
distributed floor load, considered to be the same at each floor level. Even a
relatively small amount of extra concentrated load on top of the building should
be taken into account as it represents a more dangerous load case than the UDL
case.

The concentrated top load case is also of practical importance when single-
storey buildings are investigated as the majority of the vertical load is on the
(top) floor, which is represented by a concentrated force on top of the
structure.

When the structure is under concentrated top load and the system develops
predominantly bending type deformation, the basic critical loads are as follows.
The sway critical loads in the principal directions are:

and the critical load for pure torsional buckling is given by
 

where H is the height of the building.
When the warping stiffness of the bracing system is zero, the critical
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load of pure torsional buckling is obtained from

The basic critical loads may interact. Once again, the interaction of the basic
critical loads can be taken into account by using the approximate formula (3.20) or
the exact cubic equation (3.22), where Fcr,X, Fcr,Y and Fcr,ϕ are to be substituted for
Ncr,X, Ncr,Y and Ncr,ϕ. The smallest root of the equation is the global critical load Fcr.

When the concentrated top load and the UDL on the floors act simultaneously,
their effect should be combined. Dunkerley’s summation theorem (cf. section
3.1.1) offers a simple formula for the combination of the two load cases:

 
3.1.4 Shear mode situations

Closed-form formulae for the critical load of building structures under uniformly
distributed floor load, developing predominantly bending deformations were
given in the previous sections. This section shows how the theory can be
extended and the formulae given can be used with or without modification for
different special cases.

Bracing systems which (also) develop shear deformation are not discussed in
detail as their practical importance is relatively small. However, simple approximate
solutions are given below for some special cases.

The two typical cases when shear modes have to be considered are as follows.
Shear type deformations are

a) concentrated on one storey level—‘local’ shear (Fig. 3.6/a),
b) ‘distributed’ over the height of the building—‘global’ shear (Fig. 3.6/b).
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(a) Concentrated shear on one storey level—‘local’ shear

Shear walls in multistorey buildings are sometimes omitted on the ground floor
level (or somewhere else) and also the height of the first storey (or some other
storey) may be bigger to provide more space. Such arrangements result in reduced
first storey stiffness and the building may develop ‘local’ shear mode deformations
between the ground floor and the first floor levels (Fig. 3.6/a). It is difficult to
produce the exact critical loads for such irregular situations, but the formulae
 

offer good approximations for the basic critical loads, where h is the storey height at
ground floor level (or at any other level where local shear is considered). As the ‘local’
shear deformation is in fact bending type deformation as far as the bracing elements on
the storey level are concerned, the location of the shear centre can be determined by
using formulae (2.1) and (2.2).

With the basic critical loads (3.33) and (3.34), the analysis is carried out exactly as
described in the previous sections. It has been proved that the interaction of the basic
critical loads can be taken into account by using the cubic equation (3.22) [or the
approximate formula (3.20)], where Fcr,X, Fcr,Y and Fcr,ϕ are to be substituted for Ncr,X, Ncr,Y
and Ncr,ϕ. The smallest root of the equation is the global critical load. This procedure

Fig. 3.6 Shear mode situations, a) Local shear, b) global shear.
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can be applied to any other storey where the stiffness suffers a sudden reduction.
If there are more than one storey with sudden changes in stiffness, each storey
has to be considered and the investigation may have to be carried out several
times.

(b) ‘Distributed’ shear over the height—‘global’ shear
When buildings are braced by moment resistant frameworks, all the storeys
may be involved in a global type shear deformation (Fig. 3.6/b). The analysis
is best carried out by replacing the frameworks by fictitious walls based on
identical critical loads. The torsional critical load is then obtained from formula
(3.16), bearing in mind that the fictitious walls do not have Saint-Venant
torsional stiffness (k=0 and therefore α =7.84). Neither do the fictitious walls
have the product of inertia and their own warping stiffness, i.e. Ixy,i and Iω,i are
zero in formulae (2.3) and (2.5). It has been shown that the cubic equation
(3.22) is also applicable to shear mode situations [Hegedüs and Kollár, 1987]
so, having established the basic critical loads, equation (3.22) is used for the
calculation of the combined critical load.

The sway critical loads of the individual frameworks can be easily
determined using the simple closed-form solutions given in Chapter 9.

(c) Combined shear and bending mode situations
Frameworks are usually much more flexible compared to shear walls and cores
and their contribution to the lateral stiffness of the bracing system is usually
small and is often neglected. In certain cases, however, moment resistant
frameworks and coupled shear walls can alter the predominantly bending
type behaviour of the shear walls and cores, making the overall deformation
a mixture of shear and bending. Such situations may emerge when the number
of frameworks and coupled shear walls is relatively great compared to the
number of shear walls and cores or when their position is such that they play
a key role in resisting the applied loads.

The procedure presented in sections 3.1.1 and 3.1.2 can be applied to such
cases. Making use of the sway critical load of a framework or coupled shear
walls system, each framework or coupled shear wall system is replaced by a
fictitious wall of equivalent thickness—see Chapter 9 for details. The fictitious
walls are then treated like any other ordinary solid shear walls of the bracing
system for the establishment of the equivalent column and the original
procedure can proceed.
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The main approximation in this procedure regards the location of the shear
centre which is different for systems developing bending and systems with shear
type deformations, even if the calculation of the corresponding critical loads
takes account of the different nature of the deformations.

Kollár and Póth [1994] presented a simple method for the stress analysis and
they also gave guidelines for the simple, albeit approximate, determination of the
location of the shear centre.

A closed-form solution has been derived for the stability analysis of buildings
under concentrated top load and developing both bending and shear deformation
[Hegedüs and Kollár, 1987] but further investigation of the treatment of
combined shear and bending mode systems is still needed.

3.1.5 Soil-structure interaction

It was assumed for the derivation of the formulae given for the critical load in
the previous sections that the elements of the bracing system were founded on
a rigid base where no rotations occur. However, buildings are sometimes
constructed on loose soil and compliant soil adds flexibility to the system at
the base and the soil-structure interaction may have a significant effect on the
overall behaviour of the bracing system and should be considered in the
analysis.

Support restraint conditions at the bottom end of the structure may be set
as intermediate between zero restraint and full restraint. If such restraints
against translations or rotations are linearly elastic, they may be idealized as
springs [Key, 1988; Wolf 1985].
 

Fig. 3.7 Soil-structure interaction, a) Flexible column on fixed support, b) stiff column
on flexible support.
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The application of the Föppl-Papkovich theorem to the equivalent column leads to a
simple conservative formula to handle soil-structure interaction. According to the
theorem, the critical load which allows for the effect of soil-structure interaction can be
obtained using two models with the associated part critical loads. It is assumed for the
first model that the flexible equivalent column is based on rigid foundation—the
formulae given earlier in this chapter are in line with this model. Second, it is assumed
that the superstructure is infinitely stiff and is based on flexible foundation. Figure 3.7
shows the two models, assuming sway buckling.

When the two part critical loads (Ncr and Nc r
flex ) are known, the Föppl-Papkovich

theorem can be applied and the critical load which takes into account the effect
of elastic foundation     is calculated from
 

The critical load which is associated with the simple model shown in Fig. 3.7/b is
obtained using static considerations. Moment equilibrium of the column developing
sway buckling is expressed by

where the effect of the flexible support is represented by spring constant kα. Barkan
[1962] investigated the elastic properties of soil and made recommendations for spring
constants for different motions (Table 3.4).

According to his recommendation, the spring constant for the model shown
in Fig. 3.7/b is calculated from
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Values for spring coefficient        for rocking motion—and for other spring coefficients
for other types of motion—should be determined from soil data for accurate design. If
no reliable soil data is available, coefficients            and       can be estimated using the
third column in Table 3.4, where ks is the modulus of subgrade reaction (also called
‘dynamic subgrade reaction’ or ‘coefficient of elastic uniform compression’).
Recommended values of the modulus of subgrade reaction are given in Table 3.5,
using Barkan’s [1962] data.

If reliable soil information is available, the procedures outlined in
[Richart, Woods and Hall, 1970] can be used for determining more accurate
spring constants and coefficients for the analysis of vertical and rocking
motions.

After substituting for the spring constant in the moment equilibrium equation
and taking into consideration that sinα/α=1 holds at α=0, the sway critical load
of the stiff column on flexible support is obtained as
 



Stability analysis 39

In combining this formula and, for example, the formula for sway buckling in direction X
using the Föppl-Papkovich formula (3.35) above, the formula for the critical load which
takes into account the effect of soil-structure interaction in direction X is obtained as

where Ncr,X is the sway critical load in direction X [formula (3.11)] and

is the reduction factor which is responsible for the effect of the flexible
foundation.
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Graphical interpretation of the Föppl-Papkovich formulae is to be seen in Fig. 3.8. The
diagrams clearly show that the interaction always reduces the value of the critical load.
The maximum reduction is 50%; it occurs when the two part critical loads are of the
same value (Fig. 3.8/a). When one of the part critical loads is much smaller than the
other one, the value of the critical load is controlled by the smaller value (Fig. 3.8/b/c).

The situation with torsion is somewhat different. The nature of the interaction
between soil and structure is much more complicated and it would depend on
several factors, e.g. the structure and geometry of the foundation (separate
footings, flat-slab foundation, rigid-box foundation, raft foundation, piled
foundation). Each type should be handled individually. The treatment of torsional
interaction is outside the scope of this book; it is only mentioned here that
equivalent spring constants for horizontal and torsional deformations are given
by Key [1988] for circular and rectangular bases. Wolf’s [1985] monograph offers
a detailed analysis of soil-structure interaction.
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It should be pointed out here that it is very difficult to estimate appropriate soil
parameters. The accuracy of data related to soil is of one order of magnitude less
reliable than that of data on the geometrical and stiffness characteristics of the
superstructure.

3.1.6 Individual beam-columns

(a) Stability of columns of thin-walled cross-section
The formulae given in sections 3.1.1 and 3.1.2 for multistorey buildings can also
be used with some modifications for the stability analysis of beam-columns of
thin-walled cross section. The sway critical load of columns subjected to uniformly
distributed axially load may be calculated from

where h is the height of the column. Values for parameter c are given in Fig. 3.9 for
different end conditions.

The value of pure torsional buckling can be approximated using Southwell’s
summation formula from
 

where ip is the radius of gyration of the cross-section of the column and values of
parameter c are again given in Fig. 3.9. Formula (3.41a) is always conservative.
 

Fig. 3.9 Parameter c for different end conditions.



42 Stability and frequency analyses

Cubic equation (3.22) can be used for taking into account the coupling of the basic
modes. It is interesting to note that cubic equation (3.22) can be considered as a
generalization of equation (5.5) in Eurocode 3, Part 1.3 [1992] for the flexural-torsional
buckling analysis of thin-walled columns subjected to concentrated end forces. The
generalization is twofold. First, while the corresponding equation in Eurocode 3 is only
valid for monosymmetrical cross-sections, cubic equation (3.22) can be used for cross-
sections of any shape with no restriction at all, as far as symmetry is concerned.
Second, apart from the concentrated load case, cubic equation (3.22) is also applicable
to columns subjected to uniformly distributed axial load.

(b) Stability of storey-height columns in multistorey buildings

The storey-height columns of a multistorey building can lose stability in two
ways: they can develop sway buckling (when the joints develop relative
translation) or non-sway buckling. Of the critical loads of the two types, the
smaller one is of practical importance. Clearly, the column must have the
necessary stiffness against non-sway buckling. As for sway buckling,
engineering common sense suggests that if the bracing system is adequate, i.e.
if it has the necessary stiffness against the full-height buckling of the building
(cf. Chapter 7), then it is also ensured that the columns do not develop sway
buckling or, to be more precise, the sway buckling critical load is always greater
than that of the non-sway buckling. Detailed discussion of this phenomenon is
available elsewhere [Kollár and Zalka, 1999] and only the findings are summarized
here.

The aszsumption that the storey-height columns of a building with adequate
bracing system develop non-sway buckling is
 
• conservative when the columns have the same type of joints at both ends, i.e.

fixed joints at both ends, or pinned joints at both ends and
• unconservative when the columns have a fixed lower end and a pinned upper end.

The unconservative error can be eliminated by assuming that in the mixed case (fixed
lower end and pinned upper end) the columns are pinned at both ends.
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3.2 FREQUENCY ANALYSIS

The dynamic problem of beam-columns of thin-walled cross-section has been
investigated by several scientists. Garland [1940] applied the Rayleigh-Ritz
method to cantilever beams and derived a simple approximate solution but
assumed infinitely great stiffness in one of the principal directions. Gere and Lin
[1958] set up the complete system of governing differential equations but only
produced a solution for beam-columns on pinned supports. Their difficulty in
providing a solution for other support systems might have lain with handling
pure torsional vibration. Gere [1954] had earlier published the differential equation
of pure torsional vibration but only presented a solution for the simply supported
case. Several approximate solutions have been recommended for the pure torsional
vibration of cantilevers [Southwell, 1922; Gere, 1954; Kollár, 1979; Goschy, 1981]
but the exact solution has not been produced and the accuracy of the approximate
procedures has not been investigated either. The exact solution to pure torsional
vibrations is presented in this section while the results of a comprehensive
accuracy analysis regarding the approximate solutions mentioned above are
available elsewhere. For lack of the exact solution to pure torsional vibration,
solutions to coupled vibrations [Kollár, 1979; Rosman, 1980 and 1981; Vértes,
1985; Goschy, 1981] could only be approximate.

The procedure presented in this section can also be used for a simplified
dynamic analysis of buildings in seismic zones, where one of the most important
input data is the fundamental frequency of the building [Eurocode 8, 1996; Zalka,
1988].

Assuming uniformly distributed mass, the vibrations of the building are defined
by the simultaneous partial differential equations [Gere and Lin, 1958]:
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The similarity between the governing differential equations of stability [equations
(3.1) to (3.3)] and those of vibrations [equations (3.42) to (3.44)] is remarkable. In view
of this similarity, it is not surprising that the boundary conditions given for the stability
analysis [equations (3.4) to (3.7)] also apply to the frequency analysis.

The frequency analysis can be carried out in a way similar to the stability
analysis. The first step is to produce the basic natural frequencies which belong
to the basic (independent) modes: lateral vibrations in the principal planes and
pure torsional vibrations. Second, the coupling of the basic modes has to be
taken into account.

3.2.1 Doubly symmetrical systems—basic natural frequencies

The differential equations characterizing the basic modes are obtained from the
general equations (3.42), (3.43) and (3.45) by using the substitution xc=yc=0.
After separating the variables and eliminating the time dependent functions—
which are not needed for the determination of the natural frequencies—the general
differential equations simplify to

where u1, v1 and ϕ1 characterize the lateral and torsional motions and ωX, ωY and ωϕ are
the circular frequencies.

Assuming uniformly distributed weight on the floors, the basic natural
frequencies are given as follows. In modifying the classical solution for the
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lateral vibrations of a cantilever under its uniformly distributed weight over the
height [Timoshenko and Young, 1955], the circular frequencies are obtained as

where values for the first three frequencies are given in Table 3.7.
Making use of the relationship

the formulae for the natural frequencies are:

Table 3.7 Factors for the first three lateral frequencies

According to Table 3.7, the first natural frequencies of the equivalent column in the
principal planes are obtained from
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and the first natural periods are
 

The mode shapes for the first three modes are shown in Fig. 3.10. Studies of the elastic
response of multistorey buildings indicate that for most buildings the fundamental
mode contributes about 80%, while the second and third modes about 15% of the total
response [Fintel, 1974].
 

Formulae (3.51) show that the value of the lateral frequencies depends on three factors:
the height, the lateral stiffness and the weight of the building. Of the three factors, the
height of the building is far the most important factor. The value of the frequencies is in
inverse proportion to the square of the height and to the square root of the mass density
and in direct proportion to the square root of the lateral stiffness.

Reduction factor rf in formulae (3.49) to (3.53) allows for the fact that the mass of
the building is concentrated at floor levels and is not uniformly distributed as
assumed for the derivation of the classical formula of a cantilever subjected to its
weight. The phenomenon is similar to the one discussed earlier in section 3.1.1 in
detail. The application of the Dunkerley summation theorem now leads to

where n is the number of storeys. Values for rf are given in Table 3.8, where the values
for n=1 and n=2 have been modified, based on the exact solution, to compensate for
the conservative nature of the Dunkerley formula.

(3.52)

(3.53)

(3.53a)
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The solution of equation (3.48) and its modification by factor rf [Zalka, 1994b] lead to
the natural frequencies of pure torsional vibrations:

where ηi is the frequency parameter.
Values for the first frequency parameter η (the first eigenvalue of the problem)

are given in Fig. 3.11 as a function of torsion parameter k. Values in the range of
0 ≤ k ≤ 2 are given offering a solution for most practical cases. Table 3.9 covers
the much wider range of 0 ≤ k ≤ 1000 making it possible to handle even extreme
cases.

In making use of Fig. 3.11 or Table 3.9, the fundamental frequency is obtained
from

Frequency parameters for the second and third natural frequencies for pure torsional
vibrations are given in Tables 3.10 and 3.11.

The tables are limited to kmax=1000. When the value of parameter k exceeds
1000, the warping stiffness is negligible and formula
 

Fig. 3.11 Frequency parameter η.

(3.54)

(3.55)
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can be used instead of formula (3.54), where i=1, 2 and 3.
The fundamental mode shape is given in Fig. 3.12 as a function of parameter k.

The mode shape is a combination of the two functions: one is associated with
the Saint-Venant torsional stiffness and the other one is associated with the
warping stiffness. With great k values, e.g. for k>>100, the warping stiffness
dominates the response and when k is small, e.g. for k<<1, the mode shape is
determined by the Saint-Venant torsional stiffness.

Formula (3.54) shows that the value of the pure torsional frequencies depends on five
factors: the height, the warping stiffnesses, the mass density of the building, the
radius of gyration of the ground plan of the building and the frequency parameter. As
with the lateral frequencies, the height of the building is the most important factor as
its increase reduces the value of the frequencies quadratically. The value of the
frequencies is in proportion to the square root of the warping stiffness and in inverse
proportion to the mass density of the building. The effect of the Saint-Venant stiffness
enters the equation indirectly, through the frequency parameter. It should be mentioned
here that, according to practical examples, the Saint-Venant torsional stiffness is much
less significant compared to the warping stiffness.
 

(3.56)

Fig. 3.12 Fundamental mode shape for pure torsional vibrations.
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Table 3.9 Frequency parameter η
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Table 3.10 Second natural frequency parameter η2
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Table 3.11 Third natural frequency parameter η3
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Finally, the value of the frequencies is in inverse proportion to the radius of gyration
of the ground plan. Formulae of the warping constant (2.5) and the radius of gyration
(2.6) to (2.11) show that the arrangement of the bracing elements has a great effect on
the torsional response of the building. The torsional performance can be significantly
improved in two ways. Reducing the distance between the shear centre of the bracing
system and the centroid of the mass of the building leads to a bracing system arrangement
which is doubly symmetrical or nearly doubly symmetrical. Investigations show that
multistorey buildings are very sensitive to eccentricity [Jeary, 1981]. Even 10 per cent
eccentricity can ensure that the structure becomes susceptible to torsional vibrations
[Zhang, Xu and Kwok, 1993].

Perhaps equally important is to place the bracing shear walls in such a way
that their ‘torsion arm’ (the perpendicular distance between their planes and the
shear centre of the system) is maximum. Incidentally, this is exactly the case
when efficiency, as far as stability is concerned, is considered. This principle is
shown in Fig. 4.13 where a bracing system comprising four shear walls are
arranged in two ways. Arrangement ‘a’ is not efficient, as it represents practically
zero warping stiffness. On the other hand, arrangement ‘b’ is highly efficient as
the system has significant warping stiffness.

3.2.2 Coupling of the basic modes; combined lateral-torsional
vibrations

The similarity between the governing differential equations of stability and
vibrations and between the structures of the formulae of the basic critical loads
and natural frequencies indicate that the handling of the coupling of basic modes
may also be similar. Indeed, the similarity still exists and simple procedures, very
similar to those presented in section 3.1.2 for taking into account the coupling of
the basic critical modes for the stability analysis, can be used for taking into
account the coupling of basic modes for the frequency analysis.

(a) An approximate method
The combination of the basic frequencies may be taken into account by the
Föppl-Papkovich theorem and the combined lateral-torsional frequencies can be
obtained from
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where f
X
, f

Y
 and fϕ are the basic (uncoupled) frequencies defined by formulae (3.51) and

(3.54). The advantage of formula (3.57) is that it is easy to use and it is always
conservative. However, its use in certain cases can lead to considerably uneconomical
structural solutions as the error of the formula can be as great as 42%. A more accurate
and only slightly more complicated solution is given in the next section.

(b) A more accurate method
The solution of the simultaneous differential equations (3.42) to (3.44) leads to
the determinant

where ω
X
, ω

Y
 and ωϕ are the basic lateral and torsional circular frequencies. After

making use of the relationship f=ω/2π, the expansion of the determinant results in the
cubic equation
 

(f 2) 3 + a2 (f 2) 2 + a1f 2  – a0 = 0,

where the coefficients are

In formulae (3.60) and (3.61) parameters

characterize the eccentricity of the mass and f
X
, f

Y
 and fω are the basic frequencies. Of

the three roots of the cubic equation, the smallest one is the most important in practical

(3.57)

(3.58)

(3.60)

(3.61)

(3.62)

(3.59)
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application being the fundamental frequency of the building—cf. notes on the cubic
equation for stability in section 3.1.2.

The only difference between cubic equations (3.22) and (3.59) is that equation
(3.22) is exact in taking into account the interaction among the basic critical
loads for the stability analysis and equation (3.59) is slightly approximate for
the dynamic analysis. The level of approximation in the dynamic analysis is very
good and is well within practical structural engineering requirements: the error is
below 1% with double coupling [Gere and Lin, 1958] and does not exceed 2% in
the general case when all three basic frequencies are coupled.

The similarity between the buckling and dynamic behaviour can once more be
exploited and the calculation of the fundamental (combined) frequency can be
speeded up by using Tables C1 to C11 in Appendix C. The comparison of formulae
(3.21) to (3.24) and (3.58) to (3.61) demonstrates that any mode coupling parameter
in the tables is in fact a mode coupling parameter for the frequency analysis as
well, if it is obtained as a function of

 
and eccentricity parameters tX and tY defined by formulae (3.62).

Knowing the mode coupling parameter κ, the combined (lateral-torsional)
fundamental frequency is obtained from
 

 where fϕ is the basic frequency for pure torsional vibration.
The evaluation of cubic equation (3.59) leads to observations similar to those

presented in section 3.1.2.b.
As with the case with the coupling of basic critical loads, the coupling of the

basic frequencies clearly reduces the value of the natural frequencies. The
magnitude of the reduction mainly depends on two factors: the relative value of
the uncoupled frequencies compared to one another and the eccentricity of the
bracing system in relation to the centroid of the load (mass of the building). The
nearer the values of the three uncoupled frequencies, the bigger the reduction
compared to the smallest of the three values. Similarly, the greater the distance
between the shear centre and the centroid of the load, the smaller the coupled
frequency. It is very important to take the coupling of the basic modes into

(3.63)

(3.64)
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consideration: the maximum error made by failing to do so may result in an
unconservative error of 55% in the value of the fundamental frequency.

(c) Special case: monosymmetric arrangements

The calculation can be simplified in monosymmetrical cases (Fig. 2.4/b) and the
mode coupling parameters in Fig. 3.5 and in Table 3.3 in section3.1.2.c can be
used for the prompt calculation of the combined frequency.
In the monosymmetrical case lateral vibration in the plane of symmetry develops
independently and only the lateral vibration perpendicular to the axis of symmetry and
pure torsional vibration combine. Assuming uniformly distributed mass and that axis X
is an axis of symmetry, i.e. that yc=0 holds, the combined frequency can be expressed
by the closed form formula

where the values for the mode coupling parameter ε are given in Fig. 3.5 and in Table
3.3, as a function of τX [formula (3.62)] and
 

The basic frequencies fY and fϕ are defined by formulae (3.51) and (3.54). Table 3.3
covers the range 0 ≤ r2  ≤ 100. When r2>100, r2=100 can be used. The error made by this
approximation is always smaller than 1%. The fundamental frequency for
monosymmetrical bracing systems is the smaller one of the combined frequency and
the independent lateral frequency in the plane of symmetry.

3.2.3 Concentrated mass at top level; single-storey buildings

Single-storey buildings represent a special case as most of the mass of the
building is concentrated in the floor slab. The governing differential equations
(3.42) to (3.44) (and also their solution) simplify and the basic natural frequencies
of the equivalent column are readily available using classical formulae presented
for cantilevers [Timoshenko and Young, 1955]. The fundamental frequencies for
lateral vibrations are
 

(3.65)
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where ρ* is the mass density per unit area of the top floor, defined by

The situation is slightly more complicated for pure torsional vibrations as both the
Saint-Venant and the warping torsional stiffnesses have a contribution. When the
warping stiffness is considered the fundamental torsional frequency is

and when the Saint-Venant stiffness is taken into consideration the fundamental
torsional frequency is

 
The equivalent column (i.e. the bracing system) normally has both types of stiffness.
Their simultaneous effects can be taken into account approximately by using the
Southwell theorem. Accordingly, a conservative estimate of the fundamental torsional
frequency is obtained from
 

as:
 

(3.67)

(3.68)

(3.69)

(3.70)
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3.2.4 Soil-structure interaction

The effect of the foundation medium in modifying the response of a structure, in
relation to its behaviour when founded on an essentially rigid base on firm or
moderately firm ground is relatively small [Parmelee, Perelman and Lee, 1969].
This is particularly true for multistorey buildings which are relatively flexible
compared to the supporting medium. For such cases, the assumption that the
structure is rigidly builtin at the bottom is justifiable.

For stiff structures, particularly those resting on relatively soft ground, the
effects of soil-structure interaction can be significant. It cannot be predicted,
however, whether the interaction is beneficial or detrimental to the structural
system as several aspects are involved, including the properties of the structure,
the supporting soil, damping, coupling between substructure and its supporting
soil, etc. It is especially difficult to establish reliable properties of soil. Theoretical
research and the results of full-scale tests indicate that foundation flexibility has
a greater effect on the first frequency than on the second one [Maciag and
Kuzniar, 1993].

Because of its reliability, the following simple formula based on the Föppl-
Papkovich theorem can be used to obtain a conservative estimate of the effect of
the flexible supports on the lateral frequencies of the building. According to the
Föppl-Papkovich theorem, the fundamental frequency of the building can be
calculated from two parts. First, it is assumed that the flexible superstructure
(modelled by the equivalent column) is on a fixed support (Fig. 3.13/a). The
frequency which belongs to this case is
 

Second, it is assumed that the superstructure is totally stiff and is on a flexible support
(Fig. 3.13/b). The fundamental frequency which belongs to this case [Kollár, 1979]
assumes the form
 

 

(3.72)
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Fig. 3.13 Soil-structure interaction, a) Flexible superstructure on fixed support,
b) stiff superstructure on flexible support.
 
Table 3.4 and Table 3.5 in section 3.1.5 offer suitable values for the spring coefficient in
formula (3.74).

The Föppl-Papkovich formula can now be applied to the ‘part’ frequencies:

 
After substituting for f and fflex in formula (3.75) and some rearrangements, the formula
for the fundamental frequency can be obtained as

 
where
 

(3.75)

(3.76)
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is the reduction factor which takes into account the effect of the flexible foundation.
Values for factor rflex are given in Table 3.12 as a function of  β :

where values for rf are given in Table 3.8.

 

Once again, the effect of the rotational interaction between soil and structure also has
to be considered. No simple solution is available for torsional interaction and each
case should be carefully examined after taking into account the type of foundation
which basically affects the nature of the phenomenon.

Ellis [1986] recommends a simple summation formula for taking into account
both the translational and torsional interaction; he also investigates the
significance of soil-structure interaction using measurements on four buildings
and proposes an approximate method of quantifying soil-structure interaction.

Although other simple approximate methods [Ellis, 1984] and sophisticated
computer procedures [Coull and Mukherjee, 1978] are available for the analysis
of structures on flexible supports, it should be pointed out that it is very difficult
to estimate appropriate soil parameters. Accuracy of data related to soil is of one
order of magnitude less reliable than data on geometrical and stiffness
characteristics of the superstructure.

(3.77)

(3.78)
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3.2.5 Supplementary remarks

The procedures presented in the previous sections for the frequency analysis
concentrate on the dominant characteristics of the structure while items whose
influence on the dynamic response is normally small are neglected. Under certain
circumstances, however, some phenomena and characteristics of usually
secondary importance may increase their effect and therefore they may be no
longer negligible. Such cases are discussed briefly in this section.

(a) Compressive forces
In analysing the lateral vibrations of simply supported beams subjected to
concentrated end-forces and cantilevers under their uniformly distributed weight,
Timoshenko [1928] took into account the effect of axial forces. His results showed
that the axial compressive forces reduce the value of the frequencies of natural
vibration by the factor of

where F is the magnitude of the axial load and Fcr is the corresponding critical load.
The reduction factor is considered exact for simply supported beams subjected to
concentrated end-forces and can be used as reasonable approximation for cantilevers
under uniformly distributed axial load.

Timoshenko’s results can be generalized and the same approach can be applied
to the coupled vibrations of thin walled cantilevers of open cross-section. Taking
into account the effects of the uniformly distributed axial forces, the relevant
formulae can be modified. This leads to the following formulae for the first basic
frequencies

which now take into consideration the effect of the axial forces. Critical loads Ncr,X, Ncr,Y
and Ncr,ϕ are the basic critical loads and are obtained from the stability analysis as
described in section 3.1.1.

(3.79)

(3.80)

(3.81)
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(b) Shear deformation
When relatively short bracing elements (compared to the cross-sectional
dimensions) are analysed and higher frequencies are also needed, the effect of
the shear deformations can be of considerable magnitude. The deformations
increase, resulting in a reduction in the frequencies. Various sources offer
excellent treatment of this problem. Detailed mathematical background is given
by Bishop and Price [1977] and Capuani, Savoiva and Laudiero [1992]. Closed
form solutions are presented by Huang [1969], Timoshenko, Young and Weaver
[1974] and Capuani, Savoiva and Laudiero [1992]. According to the
investigations, the shear deformation may have considerable effect on the higher
frequencies but only slightly modifies the fundamental frequency. As the effect
of shear deformation is considered of secondary importance, it can be neglected
when the fundamental frequency is calculated.

(c) Damping
Most frequency analyses including the one presented here ignore the fact that
due to movements of a structure, energy absorption occurs through friction, air
resistance and viscous behaviour resulting in damping. The omission of these
effects leads to overestimated frequencies. The inclusion of damping
characteristics in the governing equations would make the analysis much more
complex. The effect of damping in multistorey buildings is not significant, as a
rule, as the natural frequencies are not highly affected by the degree of damping.
The problem is therefore often sidestepped in structural engineering design by
estimating the damping forces separately. This can be done either theoretically
or using test data [Littler, 1993]. Different forecast models are available for
damping and vibration periods of buildings [Lagomarsino, 1993]. Damping
coefficients are also provided in papers and monographs [Fintel, 1974; Hart and
Vasudevan, 1975; Irwin, 1984; MacLeod, 1990; Goschy, 1990], which then may be
used for estimating the damped frequency. A simple estimation [Fintel, 1974] is
obtained using the formula

which is derived for single-degree-of-freedom systems. In formula (3.82), f is the
frequency when damping is neglected and fd represents the frequency when damping
is taken into account. Coefficient ß is the damping ratio relative to the critical value of
the damping coefficient, i.e. to the value of damping which would just cause an initial
displacement to decay to zero without any oscillation. The value of coefficient ß
ranges from about 0.02 to 0.20 for most civil engineering structures; the effect of
damping is usually well under 10%.

(3.82)
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(d) Approximate methods
The accuracy of some approximate formulae for pure torsional vibrations is
investigated in detail in [Zalka, 1994b]. Many approximate methods have been
published for predicting the fundamental natural frequency of buildings [Ellis,
1980; Goldberg, 1973; Goschy, 1990]. Detailed evaluation of their accuracy is
available [Ellis, 1980; Jeary and Ellis, 1981] and it is not the intention of this
section to do further research in this area.

However, having evaluated a number of numerical examples, it is worth
emphasizing one important point. Most approximate methods are one-parameter
(height of building) or two-parameter (height and width of building) methods
offering a simple formula for the fundamental frequency. They do not take into
consideration the nature of the mode of vibration and ignore the possibility of
mode coupling. The well-known formula

is perhaps the most characteristic example. It produces surprisingly good
approximations for lateral frequencies. However, when torsion (and/or mode coupling!)
plays an important role, the formula may produce totally incorrect results.

The relative success of the one-parameter formulae is due to the fact that they
are based on the height, one of the three most important dynamic characteristics.
The mass and the bending stiffness of the building do not vary much in relative
terms and can be represented fairly well by a single constant, e.g. 46, in formula
(3.83).

The situation is different with torsion. The mass of the building is still easily
predictable and the Saint-Venant torsional stiffness plays a very little role.
However, the effect of the warping stiffness can be significant. Its value depends
on the arrangement of the bracing elements to a great extent. Using the same
size of bracing elements producing the same bending stiffness and the same
mass, the warping stiffness can be increased, or decreased, by orders of
magnitude. (Figure 4.13 in Chapter 4 shows an example for maximizing the warping
stiffness of a bracing system with given bracing elements.)
 

(3.83)
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Stress analysis: an elementary approach

When the bracing system under horizontal load is analysed, the most important and at
the same time the most difficult task is the establishment of the distribution of the load
among the elements of the bracing system. The objective of this chapter is to provide
the structural designer with simple procedures to carry out this task. The closed-form
solutions and guidelines make it possible to determine the load shares on the bracing
elements and to calculate the maximum translations and rotation of the building in a
very simple and efficient manner.

The behaviour of the whole structure is complex and the exact calculation normally
represents a formidable task. In practical structural design, however, the complexity of
the task can be considerably reduced by introducing some carefully chosen simplifying
assumptions while keeping the accuracy of the results within a range acceptable in
practice.

The assumptions used in this chapter in addition to those listed in
Chapter 1 are as follows.
 
• The horizontal load is uniformly distributed over the height of the building.
• The torsional stiffness of the individual bracing elements is small and is therefore

neglected.
 
Both the above assumptions are dropped in the next chapter where a more advanced—
albeit slightly more complicated—method is presented for the analysis.

To help to understand the basic principles governing the 3-dimensional behaviour
of buildings under horizontal loads, the derivations of the design formulae are also
presented. The derivations are based on elementary static considerations and do not
require any special (mathematical) background.

The spatial behaviour of the building is described in section 2.1.



4.1 HORIZONTAL LOAD

Although the magnitude of the horizontal load must always be established according
to the relevant Code of Practice regulations, some simple methods are given here in the
following sections, which can also be used for
 
• comparing the different types of horizontal loads,
• checking the result of more sophisticated calculations.

4.1.1 Wind

Wind is probably the most important horizontal load. Design for wind can be carried
out, in most cases, applying an equivalent static wind pressure on the building acting
normal to the surface. The resulting wind force on the structure may be determined by
means of the global force [Eurocode 1, 1995]. The global force is obtained from

where

and

is the reference mean wind velocity pressure with

The reference wind velocity in formula (4.2) is obtained from
 

 
where

(4.1)

(4.2)
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For vertical cantilevered structures with a slenderness ratio height/width>2 and with
nearly constant cross-section over the height, the global force is calculated from

where

Information regarding specific values and the application of coefficients ce, ze, zj, cd, cf,
cfj, Aref, Aj, ρ, cDIR, cTEM, cALT and vref,0 is given in Part 2.4 in Eurocode 1 [1995].

Although code provisions (and the values of coefficients) may change from time to
time, formula (4.1) shows the basic principle: the value of the global force basically
depends on the size of the reference area and the wind pressure. Additional modifying
effects (exposure, direction, altitude, shape, terrain, etc) are accounted for by using
coefficients. Comprehensive treatment of and guidelines to wind loading of building
structures are given by Cook [1985 and 1990].

4.1.2 Seismic load

Under certain circumstances, Code of Practice regulations in some European countries
and American states allow the use of equivalent static load for seismic analyses. For a
simplified analysis, for example, the global seismic force (the resultant of the equivalent
static load) can be calculated from
 

S=QKβ ,
 
where

(4.5)
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The total dead weight of the building is conveniently calculated by using a spreadsheet
covering all the different types of material used for the construction. Quick results
and—for most conventional buildings—good estimates can be obtained by using an
equivalent floor load for the calculation. For example, an equivalent floor load of q=10
kN/m2 per unit area, which also covers the weight of the vertical structures, normally
represents a conservative estimate.

Values for seismic constant K are given in Table 4.1, according to the Mercalli-
Sieberg-Cancani (MSC) scale, where the seismic zones in the first column should be
obtained using official seismic zone maps.
 
Table 4.1 Values for seismic constant K

The value of dynamic coefficient ß (which is in fact the fundamental frequency of the
building) is calculated from the relationship
 

where T is the natural period of the building. Its values are given in Table 4.2, as a
function of soil characteristics, where n is the number of storeys.

Experience and comparisons to other Code of Practice regulations show that formula
(4.5) results in reliable estimates for the seismic load for the analysis of relatively stiff
buildings [Gergely, 1975]. However, formula (4.5) tends to lead to very conservative

(4.6)

Table 4.2 Values for natural period T
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solutions for flexible bracing systems and therefore more accurate methods may be
needed for the final analysis of flexible systems. Simple methods are given in section
3.2 for calculating the fundamental frequency and the natural period of the building.

Knowing the resultant of the total seismic force, the intensity of the horizontal
seismic load of uniform distribution is obtained from
 

where L is the width of the building in the perpendicular direction and H is the height
of the building.

Formula (4.5) shows the basic principle: the value of an equivalent static load
basically depends of the weight of the building, its fundamental frequency and the
seismic zone it is in. According to different national Code of Practice regulations,
additional effects can be accounted for by introducing more coefficients into the
formula (e.g. foundation flexibility coefficient, damping factor, importance factor, mode
factor, etc).

Several monographs are available for seismic analysis and earthquake resistant
design offering theoretical background, simple approximate and more advanced
methods and practical guidelines [Newmark and Rosenblueth, 1971; Key, 1988; Scarlat,
1996].

4.1.3 Construction misalignment

Additional horizontal forces may arise due to the inappropriate placing of the vertical
load bearing elements. The following procedure offers a simple formula for the resulting
horizontal load.
 

Fig. 4.1 Wall misalignment.



An out-of-plane vertical element in an inclined position (Fig. 4.1) develops the horizontal
force

where V [kN/m] is the vertical load on the element, h [m] is the storey height and µ [m]
is the misalignment.

The value of the total horizontal force due to misalignment depends on the number
of elements on one floor level (nh) and the number of elements above each other, i.e.
the number of storeys (n). The value of the resulting total horizontal load is not
proportional to the number of vertical elements, since misalignment can occur in both
directions and some of the resulting horizontal forces may cancel each other out. This
can be approximately taken into account by introducing the probability factor 0.5(nhn)0.5,
which leads to the formula for the total horizontal force as

This horizontal force represents the uniformly distributed horizontal load pm [kN/m2]:

The vertical load V [kN/m] in the above formula is the average vertical load of the
vertical load bearing elements on a floor level.

4.1.4 Comparisons

The three types of horizontal load are quite different in nature. The magnitude of the
wind load is in direct proportion to the size of the building and, for cross-wall system
buildings, this leads to quite different wind loads in the two directions that are normally
considered for the structural analysis since the wider the building, the greater the wind
load (Fig. 4.2/a). Accidentally, this may go in parallel with a stronger bracing system
since a wider building normally has more bracing elements.

The situation is different with the seismic load. Its magnitude is primarily determined
by which seismic zone the building is in and the value is proportional to the mass of the
building. It follows that the seismic load does not depend on the size of the area of the
facade and it is of similar magnitude in every direction [cf. formula (4.5)] (Fig. 4.2/b).
This fact should be borne in mind in seismic design when in many cases an ‘ordinary’

(4.8)

(4.10)

(4.9)

68 Elementary stress analysis



bracing system (one created for wind resistance) may easily be inadequate in the
direction perpendicular to the cross walls.
 

The comparison of the different types of horizontal load reveals interesting
characteristics. The magnitude of the seismic force on a building in zone 8 by the MSC
scale can be even ten times greater than that of the greater wind force. The two forces
are normally of the same order of magnitude in zones MSC 5 and MSC 6. The magnitude
of the horizontal load due to misalignment is normally smaller than that of the wind
load; assuming a misalignment of µ=0.015 m, it is in the range of 5–40%.

4.2 BUILDINGS BRACED BY PARALLEL WALLS

Bracing low-rise building by using frameworks is normal practice but as the number of
storeys increases, the building may develop deformations of unacceptable magnitude
or it may lead to uneconomic structural solutions. Some or all of the frameworks are
replaced by shear walls, resulting in the widely used cross-wall system for buildings
subjected to wind load. When the system comprises shear walls and frameworks, the
frameworks are often neglected in the structural analysis for horizontal loads as a
conservative approximation. This approximation is justified as their lateral stiffness is
indeed negligible compared to that of the shear walls. The bracing system is represented
by a system of parallel shear walls, which can be investigated in a simple manner. This
is shown in this section where the second moment of area of the walls perpendicular to
their plane as well as their torsional constant are neglected as a conservative
approximation.

Fig. 4.2 Cross-wall system. a) Wind forces, b) seismic forces.
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4.2.1Basic principles

Two basic principles are used for the analysis: the translational stiffness and the shear
centre.

(a) Translational stiffness
Translational stiffness k is defined as the uniformly distributed load of intensity p and
resultant F which, acting on a cantilever of length H and bending stiffness EI, develops
unit translation at the free end.

The top translation of the cantilever with the above characteristics is obtained
using the principle of virtual work in the usual way (Fig. 4.3):

The translational stiffness is obtained when this translation is of unit magnitude:

Using the translational stiffness, the maximum translation of the cantilever is obtained
from

(4.11)

(4.12)

Fig. 4.3  Top translation of cantilever.

(4.13)
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(b) Shear centre
The shear centre is an important geometrical characteristic of the bracing system. By
definition, an external force passing through the shear centre only develops translation
but not rotation.

The shear centre is the centroid of the translational stiffnesses and is also called
centre of stiffness. Its location is calculated using the rules of determining the centroid.
The distance of the shear centre from an arbitrary axis is obtained by dividing the
‘static moment’ of the translational stiffnesses related to the axis with the sum of the
stiffnesses. The x coordinate of shear centre O of the system of parallel walls in the
coordinate system x̄ —ȳ (Fig. 4.4) is obtained from
 

where x̄  i is the distance of the ith wall from axis ȳ, ki is the translational stiffness of the
ith wall defined by formula (4.12) and n is the number of walls.

When all the walls are of the same material and height, the above formula
simplifies to

(4.14)

Fig. 4.4 Shear centre for parallel walls.
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4.2.2 Load distribution

Consider the bracing system of the cross-wall system building whose layout is shown
in Fig. 4.5/a. The resultant of the external horizontal load (F) passes through the
geometrical centre of the layout (C). The floor slabs transmit forces Fi to the shear
walls, which are then balanced by reaction forces —Fi. The objective is to determine
these forces. (For the sake of simplicity, only the external forces are shown in the
figures in this section.)

The shear centre is located first. Knowing the geometrical and stiffness
characteristics of the walls, formula (4.14) yields the coordinate of the shear centre
from axis ȳ. The investigation is then carried out in the new coordinate system x—y
whose origin coincides with the shear centre and whose coordinate axes are parallel
with the sides of the layout. The location of the ith wall in this coordinate system is
defined by coordinate xi and the location of the centroid (where the external load
passes through) by xc.
 

(4.14a)

Fig. 4.5 Building braced by parallel walls. a) Layout, b) displacements.
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The resultant of the lateral load (F) passing through the centroid is replaced by force
F passing through the shear centre and the couple M=Fxc around the shear centre.
Force F passing through the shear centre makes the building translate but not rotate.
All walls translate by cF. Couple M makes the building rotate around the shear centre,
developing translations cM,i of the walls. The translation of the ith wall (Fig. 4.5/b)
therefore is
 

ci=cF+cM,i.
 
Making use of formulae (4.13) and (4.15), the load on the ith wall is given by

Fi=ki(cF+cM,i).
According to Fig. 4.5/b,
 

cM,i.=xitanϕ ,

where ϕ  is the rotation of the building. Combining formulae (4.16) and (4.17) results in
the load on the ith wall as
 

Fi=ki(cF+xitanϕ).

This equation contains three unknowns: Fi, cF and ϕ. The two more equations needed
to solve equation (4.18) are obtained using equilibrium considerations.

The equilibrium of forces in direction y is expressed by

which, after substituting for Fi, assumes the form
 

Rearranging equation (4.20) leads to
 

 

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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The second term on the right-hand side is zero since Σkixi represents the ‘static moment’
of the stiffnesses with respect to the shear centre (i.e. to their centroid). The translation
caused by force F is therefore obtained from equation (4.21) as
 

Moment equilibrium with respect to the shear centre is expressed by

 
which, after substituting formula (4.18) for Fi, assumes the form

 
Rearrangement leads to

The first term on the right-hand side is zero because Σkixi (the ‘static moment’ with
respect to the centroid) is zero. Thus, the rotation of the building is obtained as

Substituting for cF and tan ϕ in equation (4.18) finally results in the load share of the
total horizontal load on the ith wall:
 

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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In the practical case when all the walls are of the same height and material, H and E in
the formula of translational stiffness can be taken out and formula (4.27) simplifies to
 

The first term in formula (4.28) demonstrates that of the total external load (F) each wall
takes a load share proportional to their second moment of area. The second term
shows that, due to the torsional moment of the external load (Fxc), the walls also take
additional load shares. The magnitude of this load share can be significant; its value
depends on, in addition to their second moment of area, the distance of the walls from
the shear centre (xi). This geometrical property is called the ‘torsion arm’ of the wall.
The term         in the denominator of the second term plays an important role
in the torsional behaviour of the bracing system and is called bending torsional constant,
or warping constant:

Formula (4.28) for the load distribution is effectively identical to the one presented by
Pearce and Matthews [1971], Dowrick [1976] and Irwin [1984] for cross-wall systems.

4.2.3 Deformations

When the load shares on the walls are known, the maximum top translation of the walls
is obtained using formula (4.13):

According to Fig. 4.5/b, the maximum translation occurs at one end of the building.
If there is a wall there, then formula (4.30) can be used for the calculation of the
maximum translation of the building. If there is no wall where the maximum translation
occurs, then formula (4.30) cannot be used. In that case, formulae (4.15) and (4.17)
should be combined:
 

(4.28)

(4.29)

(4.30)
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cmax=cF+cM,max=cF+xmaxtanϕ,
 
where xmax is the location of the maximum translation measured from the shear centre.
Substituting for cF and tanϕ in formula (4.31), the formula for the maximum translation
assumes the form:
 

Assuming small angles when the approximation tanϕ ≈ϕ holds and making use of
formulae (4.26) and (4.12) the rotation of the building is calculated from
 

The rotations obtained from the above formulae are given in radian. According to
formula (5.33) in section 5.2.2, their value in degree is ϕ [degree]=57.3ϕ [radian].

4.3 BUILDINGS BRACED BY PERPENDICULAR WALLS

Buildings with a square layout (or with plan width and breadth of similar size) under
wind load and buildings of any layout geometry in seismic zones need bracing elements
in both directions. The spatial stiffness of such systems is maximized when the
perpendicular walls are built together. However, in many practical cases the walls are
not built together (e.g. they are not located near each other), or they are built together
but the vertical joints are not constructed to transfer shear. This type of independent
perpendicular wall system is investigated in this section. The principals and the treatment
are identical to those applied earlier to the system of parallel walls.

4.3.1 Load distribution

The procedure is presented for buildings with perpendicular walls, under horizontal
load Fy in direction y (Fig. 4.6/a). It is assumed that the height and modulus of elasticity
are identical for each wall.

(4.31)

(4.32)

(4.33)
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The first step is to determine the location of the shear centre. This is done by using the
same procedure as in the previous section [which led to formulae (4.14) and (4.14a)]
but because there are walls in both the x and y directions, the calculation is carried out
in both directions resulting in both coordinates of the shear centre:
 

 
In the above formulae IX,i and Iy,i are the second moments of area of the ith wall with
respect to its centroidal axes and n is the number of walls. The origin of the coordinate
system is now transferred to shear centre O.

The external horizontal load (Fy) passing through the geometrical centre (C) is
replaced by Fy acting in and moment M=Fy xc acting around the shear centre. Under
Fy in the shear centre, the building develops a translation in direction y but no
rotation occurs. This translation, identical for each wall, is denoted by cyF. Under
moment M, the building develops rotation ϕ around the shear centre. Because of this
rotation, the walls undergo additional translations. These translations are denoted
by cxM,i and cyM,i in directions x and y. The translation of the ith wall in direction y is
expressed by
 

cy,i=cyF+cyM,i.

The two terms on the right-hand side show the effect of the horizontal force
passing through the shear centre and that of the moment around the shear centre
(Fig. 4.6/b).

In making use of equations (4.13) and (4.35), the load share on the ith wall is
obtained from
 

Fy,i=kx,i(cyF+cyM,i),
 
where
 

(4.34)

(4.35)

(4.36)
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According to the diagram of translations in direction y (Fig. 4.6/b),
 

cyM,i=xitanϕ.

Substituting this formula for cyM,i in equation (4.36) leads to
 

Fy,i=kx,i(cyF+xitanϕ).

There is no external load on the building in direction x, but due to moment M, the walls
develop translations in direction x. These translations are proportional to the distance
of the walls from the shear centre (Fig. 4.6/c):
 

cxM,i=yitanϕ.
 
Making use of formula (4.13), formula (4.39) can be rearranged as

(4.36a)

(4.37)

(4.38)

(4.39)

(4.40)

Fig. 4.6 Building braced by perpendicular walls. a) Layout, b)—c) displacements.
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from which the load on the ith wall in direction x, due to the rotation of the building, is
obtained:
 

Fx,i=ky,iyitanϕ,
 
where

 
The actual values of the load shares cannot be calculated from formulae (4.38) and
(4.41) as they contain the two deformations cyF and ϕ, yet unknown. They can be
determined using equilibrium considerations.

After substituting formula (4.38) for Fy,i, the equilibrium equation of the forces in
direction y
 

assumes the form

or, after rearrangement
 

Because of Σkx,ixi=0, the second term on the right-hand side is zero and therefore the
translation of the building in direction y, due to the external force, is
 

Moment equilibrium of the internal and external forces around the shear centre is
expressed by
 

(4.41)

(4.41a)

(4.42)

(4.43)

(4.44)

(4.45)
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After substituting formulae (4.38) and (4.41) for Fy,i and FX,i and some rearrangement,
equation (4.46) assumes the form

It is now the first term on the right-hand side which is zero and the rotation of the
building is obtained from the equation as

 
Substituting formulae (4.45) and (4.48) of the deformations for cyF and tanϕ in equations
(4.38) and (4.41) gives the loads on the individual walls. Of the total external horizontal
load Fy, the ith wall takes
 

in direction y, and

 
in direction x. The negative sign in formula (4.50) accounts for the fact that a positive
twisting moment develops negative translation in the x direction (as opposed to the
positive translation it develops in the y direction)—cf. Fig. 5.7.

As all the walls are of the same material and height, the above formulae
simplify to

 

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)
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in direction y, and
 

in direction x, where

is the warping constant of the bracing system.
Formulae (4.51) to (4.53) are in line with those presented by Beck and Schäfer [1969],

König and Liphardt [1990] and MacLeod [1990].

4.3.2 Deformations

Formula (4.13) makes it possible to calculate the maximum top translation of any wall if
its load share is known. The maximum translation of the ith wall due to its load share in
direction y is

When the load acts in direction x the translation is
 

If the maximum translation of the building occurs at a location where there is no wall,
the above formulae cannot be used. In such cases the maximum translation can be
calculated using equations (4.35) and (4.37):
 

cy,max=cyF+xmaxtanϕ,
 
where xmax is the location of the maximum translation—a corner of the building. After
substituting formulae (4.45) and (4.48) for cyF and tanϕ and also making use of formulae
(4.36a) and (4.41a), the general formula for the maximum translation is obtained as
 

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)
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According to Fig. 4.6/c, the building under horizontal load in direction y also develops
translations in direction x. If there is no wall at the location of the maximum translation
in direction x (at one side of the building parallel with axis x), then formula (4.39) should
be used, which, after substituting formula (4.48) for tanϕ and making use of formulae
(4.36a) and (4.41a), assumes the form
 

Assuming small rotations when the approximation tanϕ ≈ ϕ holds and making use of
formulae (4.36a) and (4.41a), the rotation of the building is calculated using formula
(4.48):

 
In formulae (4.57) and (4.59) Iω is the warping constant given by formula
(5.53).

4.4 BUILDINGS BRACED BY FRAMEWORKS

Low-rise buildings can be provided with adequate lateral stiffness using frameworks.
In addition to the assumptions listed in the introduction, it is also assumed in this
section that the frameworks of the bracing system have the same geometrical and
stiffness characteristics. Both symmetrical and unsymmetrical arrangements are
considered.

4.4.1 Frameworks in a symmetrical arrangement

Consider the building braced by frameworks of the same stiffness in a symmetrical
arrangement (Fig. 4.7). The resultant of the horizontal load F passes through the

(4.57)

(4.58)

(4.59)
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geometrical centre of the layout which, because of the symmetrical arrangement,
coincides with the shear centre.

 
The floor slabs assumed to be stiff in their plane make the frameworks develop the
same translations and therefore all the frameworks take the same amount of the total
horizontal load

 
where Fi is the load share on the ith framework and n is the number of frameworks. (The
more general formula (4.28) also leads to the above formula, if it is taken into
consideration that each bracing element has the same lateral stiffness and, because of
the concurrent shear centre and centroid, xc is zero.)

4.4.2 Frameworks in an asymmetrical arrangement

A practical case is shown in Fig. 4.8/a. A building of plan width L is braced by parallel
frameworks of identical lateral stiffness and a single wall at the side of the building. It
is assumed that the stiffness of the wall is infinitely great compared to the stiffness of
the frameworks. The system can be modelled by a rigid beam of length L on one fixed
support (the wall) and several flexible supports (the frameworks). The beam effectively
models the floor slabs of the building. Each floor slab moves as a rigid body with a
translation characterized by a triangular diagram.
 

Fig. 4.7 Frameworks in a symmetrical arrangement.

(4.60)
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The translation is zero at the wall (which is assumed to be infinitely stiff compared to
the frameworks) and then increases at the frameworks in proportion to their distance
from the wall (Fig. 4.8/b):
 

ci=xitanϕ,
 
where xi is the distance of the ith framework from the wall.

The ith wall takes the load share

Fi=kci,

 
proportional to its translation, where k represents the lateral stiffness of the frameworks.
Substituting the translation of the ith framework for ci, the load share on the framework
assumes the form
 

Fi=kxitanϕ.
 
In addition to stiffness k, the rotation of the building (ϕ) is also an unknown quantity in
this formula. Its value can be determined by investigating the moment equilibrium of the
internal and external forces with respect to point ‘A’ defining the location of the wall:

Fig. 4.8 Frameworks in an asymmetrical arrangement. a) Layout, b) displacements.

(4.61)

(4.62)

(4.63)

(4.64)
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Substituting formula (4.63) for Fi leads to

from which the angle of rotation is obtained as
 

Knowing the rotation, the load share on the ith framework is obtained using formula (4.63):
 

The load share on the wall is also needed. Its value is obtained using the equilibrium of
the external and internal forces:
 

The load share on the first framework is
 

and when the frameworks are evenly spaced the load share on the subsequent
frameworks is easily calculated from

Fi=iF1,
 
where i=2, 3, ...n. The formula for the load share on the wall is also simplified:

A=F–Fi(1+2+…+n).

It is noted here that the deformations of the building (ci and ϕ) can only be calculated
when the value of the stiffness of the frameworks (k) is known.

(4.65)

(4.66)

(4.67)

(4.70)

(4.71)

(4.68)

(4.69)
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4.5 MAXIMUM BENDING MOMENTS IN THE BRACING ELEMENTS

When the load shares on the bracing elements (walls and frameworks) are known, the
next step is to ensure that there is not too much load on the bracing elements. For this
purpose, the maximum bending moment in the element in question is needed. The
maximum bending moment in a shear wall develops at the bottom and assumes the
value

 
where p is the intensity of the horizontal load.

It is more difficult to find the maximum bending moment in the beams and columns
of multistorey frameworks but the following simple procedure offers a quick way of
doing the calculation.

The framework can be replaced by an equivalent column and, by distributing the
horizontal load and the supporting effect of the beams, a continuum model can be set
up (Fig. 4.9).

The bending moments on the equivalent column are expressed by
 

where

 
is the horizontal load, uniformly distributed over the height,

 
is the supporting effect of the beams, distributed over the height,

 
is the sum of the stiffnesses of the beams, distributed over the height,
 

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)
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The governing differential equation of the equivalent column [Beck, 1956; Csonka,
1965a] assumes the form
 

where

is the sum of the second moments of area of the columns and M is the bending moment
on the column.

The boundary conditions for differential equation (4.77) express that the bending
moment is zero at the top of the equivalent column and the tangent to the column is
vertical at the bottom:

M(0)=0,
 

Fig. 4.9 Framework under horizontal load. a) Framework, b) equivalent column, c) continuum
model, d) moments on the equivalent column.

(4.77)

(4.78)

(4.79a)

(4.79b)
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The solution of equation (4.77) yields
 

which, after differentiating formula (4.73) once, leads to
 

The concentrated bending moments representing the supporting effect of the beams
(Fig. 4.9/b) can now be calculated:

 
and

 
where

 
Bending moments M* on the equivalent column (Fig. 4.9/d) can now be calculated in
the usual manner as the loads on the statically determined cantilever (horizontal forces
F and concentrated supporting moments M̄ ) are now known quantities.

Finally, the moments in the columns and beams of the framework are calculated. The
moments in the ith column of the framework are obtained by distributing the moment
on the equivalent column in proportion to its stiffness to the total stiffness of the
columns:

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)
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The moments in the beams are calculated in the same manner:

 
The above method offers good approximations for medium-rise (4–25 storey high)
frameworks.

It is useful to know the maximum values of the bending moments. The maximum
bending moment on the equivalent column develops at the bottom. Its value can be
obtained by making use of formula (4.73) and (4.81). After carrying out the necessary
integration, a closed-form solution can be produced. In most practical cases, when
αH>5 holds, the solution simplify considerably [Csonka, 1965b] and the formula for
the maximum bending moment on the equivalent column assumes the form:

 
The formula for the maximum bending moments also simplifies:

Again, to obtain the actual moments in the columns and the beams, these moments
should be distributed according to the relevant stiffnesses as shown in formulae (4.85)
and (4.86).
The location of the maximum bending moment in the beams is obtained from

 
When the bending moments on the bracing elements are known, the last step in the
design process is to calculate the stresses and to size the bracing elements. Section
5.5 deals with the calculation of the normal and shear stresses in shear walls and
cores.

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)
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4.6 WORKED EXAMPLES

Three examples show how the formulae can be used in practice.

4.6.1 Example 1: building braced by parallel walls

Determine the load share F1 on wall No. 1, the rotation and the maximum translation of
the 7-storey building shown in Fig. 4.10. The magnitude of the horizontal load is
F=1000kN, the modulus of elasticity is E=23 kN/mm2, the thickness of the walls is
t=0.25 m and the storey height is h=3 m.

(a) Stiffness characteristics
Second moments of area of walls No. 1, 2 and 3:
 

Sum of second moments of area:
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Fig. 4.10 Building for Example 1. a) Layout, b) elevation, c) displacements.



The location of the shear centre is calculated from formula (4.14a):

(b) Load share
The load share on wall No. 1 is calculated using formula (4.28):
 

The denominator of the second term in the formula represents the warping
constant:

 
(c) Maximum translation and rotation
The building develops maximum translation at the left-hand side (Fig. 4.10/c). There is
no bracing wall there so formula (4.32) should be used:
 

The rotation of the building is given by formula (4.33):
 

4.6.2 Example 2: building braced by perpendicular walls

Calculate the load share on walls No. 1 and 5, the rotation and the maximum translation
of the 7-storey building shown in Fig. 4.11. The resultant of the horizontal load is
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Fy=1000 kN, the modulus of elasticity is E=23 kN/mm2, the thickness of the walls is
t=0.25 m and the storey height is h=3 m.

This building only differs from the one shown in Fig. 4.10 in that two bracing walls
in direction x (Nos 4 and 5) are added to the bracing system. This makes it possible to
make an interesting comparison.
 

 
(a) Geometrical and stiffness characteristics
Second moments of area of walls No. 1 and 3:

 
Second moments of area of wall No. 2:

 
Second moments of area of walls No. 4 and 5:
 

Fig. 4.11 Building for Example 2.

92 Elementary stress analysis



Sum of second moments of area:
 

The coordinates of the shear centre are calculated using formulae (4.34):

 
and

 
The warping constant is calculated using formula (4.53):

 
(b) Load share
Loads on walls No. 1 and 5 in the x and y directions are calculated using formulae (4.51)
and (4.52):

 
Fx,1=0,
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(c) Deformations
The building develops maximum translation at the left-hand side. Its value is calculated
from formula (4.57):
 

The rotation of the building is calculated from formula (4.59):
 

4.6.3 Comparison

The comparison of the two numerical examples shows interesting results. Adding the
two walls with negligible stiffness in the direction of the external load to the bracing
system considerably changes the results: the magnitude of force Fy,1, the maximum
translation and the rotation decreased by 10.1%, 14.9% and 28.9%, respectively. This
follows from the fact that torsion plays a very important role in the behaviour of the
bracing system; the longer the distance between the shear centre and the centroid of
the layout, the more important this role is. Although walls No. 4 and 5 have negligible
stiffnesses in the direction of the external load, their contribution to the warping
constant is significant, as demonstrated in the examples above. It also follows that,
because of the rotation of the building, walls No. 4 and 5 also take forces in the x
direction.

4.6.4 Example 3: building braced by frameworks and a single wall

Calculate the load share on the frameworks and the wall of the 7-storey building shown
in Fig. 4.12. The magnitude of the horizontal load is F=1000 kN. The frameworks are
evenly spaced so formulae (4.69) to (4.71) can be used for the calculation.

The load on framework No.l is obtained from formula (4.69):
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where the denominator is calculated as

The load share on the subsequent frameworks is easily calculated from formula
(4.70):
 

F2=2×32.97=65.93 kN,
 

F3=3×32.97=98.90 kN,
 

F4=4×32.97=131.87 kN,
 

F5=5×32.97=164.84 kN,

F6=6×32.97=197.80 kN.
 
The load share on the wall is obtained from formula (4.71):
 

A=1000–32.97(1+2+3+4+5+6)=307.69 kN.
 

Fig. 4.12 Building for Example 3.
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4.7 DISCUSSION

The behaviour of the building under horizontal load is determined by its translations
and rotation. This fact is demonstrated, for example, by the first and second terms on
the right-hand side of formulae (4.28) and (4.51) as well as formulae (4.32) and (4.57).
The derivation of these formulae clearly shows the role that the translations and the
rotation of the building play in determining the performance of the building.

When the external load passes through the shear centre, the building only develops
translations (in the direction of the external load). This is the optimum case, both
statically and economically, when the bracing system has a doubly symmetrical
arrangement. The building develops the smallest translations and the external load is
distributed among the bracing elements according to their stiffnesses.
 

Because of functional restrictions, for example, the optimum (doubly symmetrical)
arrangement cannot be achieved in many practical cases. The geometrical centre—
through which the external load passes—and the shear centre of the bracing system
normally do not coincide and consequently the building also develops rotation. This
rotation results in additional translations and also additional forces on the bracing
elements. As these additional translations and loads are due to the rotation of the building,
the means to reduce these unfavourable effects are also linked to the rotation. The
evaluation of the second term (which is associated with torsion) in equations (4.28),
(4.51), (4.32) and (4.57) indicates two possibilities for improving the performance of the
building: reducing the perpendicular distance of the line of action of the horizontal load
from the shear centre and increasing the value of the warping constant. First, by reducing
the perpendicular distance between the line of action of the horizontal load and the shear
centre, the magnitude of the external torsional moment can be reduced. The optimum
case emerges when the distance is eliminated altogether, i.e. when the system is doubly
symmetrical—see above. Second, the efficiency of the system can be increased by
increasing the magnitude of the warping constant. This is most effectively done by
creating an arrangement of the bracing elements when the perpendicular distance between
the shear centre and the bracing elements (their ‘torsion arm’) is the greatest.

Fig. 4.13 Torsional resistance, a) Small, b) great.
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Figure 4.13 shows simple examples for this approach. The torsional resistance of
the bracing system in Fig. 4.13/a is very small. On the contrary, the torsional resistance
of the bracing system in Fig. 4.13/b is considerably greater although the system consists
of the same four walls. The favourable change is due to the fact that the perpendicular
distances between the walls and the shear centre are increased.

The spatial stiffness of bracing systems comprising perpendicular walls can be
increased by constructing some of the walls together along their vertical edges (Fig.
4.14/a). However, the increase in stiffness can only be realized if the construction is
such that the walls can actually work together, i.e. they can take the shear forces along
the edges. In addition to the second moments of area Ix and Iy and the Saint-Venant
constant Ii, neglected for the analysis is this chapter, such systems also normally have
the product of inertia Ixy.
 
 

The spatial stiffness can be further increased by building more walls together and
using bracing elements of closed or partially closed cross-section, e.g. the elevator
and staircase shaft in the left-hand corner in Fig. 4.14/b. Such elements normally have
significant Saint-Venant stiffness and they also have warping stiffness. The procedure
presented here cannot be applied directly to such systems but similar, albeit more
complex, formulae and design diagrams are presented in the next chapter for a more
advanced analysis. In fact, most of the formulae given in this chapter can be considered
as simplified versions of those general formulae in Chapter 5.

Fig. 4.14 Increasing 3-dimensional stiffness, a) Built-up walls, b) cores.
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5

Stress analysis: an advanced approach

When the building is subjected to a horizontal load of trapezoidal distribution and/or the
bracing elements have (Saint-Venant and warping) torsional stiffnesses, simple static
considerations alone are no longer sufficient to investigate the 3-dimensional behaviour
and the methods given in the previous chapter may not be applicable or would result in
inaccurate solutions. The governing differential equations of the bracing system are
needed to be set up and solved to enable the spatial analysis to be carried out.

In appraising the design of box-frame structures, Pearce and Matthews [1971]
presented a simple approximate method for the load distribution in shear wall
structures. The method was only applicable to cross-wall systems (with no
perpendicular walls) and did not take into account the torsional characteristics of
the individual bracing elements. Dowrick’s method [1976] handled a system of
perpendicular shear walls but ignored the Saint-Venant and warping torsional
characteristics of the individual bracing elements. Irwin [1984] included the warping
stiffness of the bracing cores in the analysis but did not take into account the Saint-
Venant torsional stiffness of the bracing system. All the methods mentioned above
assumed a uniformly distributed horizontal load.

The method to be presented in the following can be considered as an extension of
the above methods, with additional contributions in three areas: a) horizontal load of
trapezoidal distribution is considered, b) exact load and stress distributions are given
on the individual bracing elements, originated from torsion, c) the location of the
maximum of the Saint-Venant torsional moments is given.



5.1 THE EQUIVALENT COLUMN AND ITS LOAD

The building is replaced by the equivalent column for the first part of the analysis. The
stiffness characteristics are calculated using the relevant formulae in section 2.2. The
load on the equivalent column is also needed for the analysis. The building is subjected
to a horizontal load of trapezoidal distribution with the intensity of
 

 
where q0 is the intensity of the uniform part of the load, (q0+q1) is the intensity of the
load at the top of the structure (Fig. 5.1) and H is the height of the building.

The slope of the load function is defined by coefficient µ:
 

A load system of such distribution covering a wide range of distributions between the
uniform and triangular cases can be effectively used for the global static and dynamic
analyses of building structures subjected to horizontal (wind or seismic) load.

The resultant of the horizontal load normally does not pass through the shear
centre of the bracing system of the building. When the bracing system is replaced by
the equivalent column for the analysis, the horizontal load is transferred to the shear
centre axis, where it is decomposed into load components qx and qy parallel to coordinate
axes x and y (Fig. 5.2). (For buildings with a rectangular layout, coordinate axes x and

(5.1)

(5.2)

Fig. 5.1 Horizontal load of trapezoidal distribution.
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y are conveniently set parallel with the sides of the layout.) The external load is defined
by the two load components (qx and qy) and the torsional moment (mz):

and

 
or, using the load components

In formulae (5.5) and (5.6)
 

mz0(z)=eq0=q0xyc+q0yxc

 
is the torsional moment of the uniform part of the load and

are the coordinates of the centroid of the building layout in the coordinate system
whose origin is in the shear centre. In the above formulae

Load components qx and qy are considered positive in the positive x and y directions
and mz is positive in the clockwise direction. The load function defined by formula (5.1)

(5.3)

(5.4)

(5.7)

(5.8)

(5.6)
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represents a uniformly distributed load when µ=0 holds. This special case is dealt with
in section 5.7.

Another load case, concentrated top load, applicable to single storey buildings and to
multistorey building models when the load is only applied on top floor level, can also
be treated in a similar way as the trapezoidal distribution. Closed-form solutions for
this load case are given in section 5.6.

After modelling the building by the equivalent column, the structure can be
conveniently analysed by the continuum method, with the stiffnesses of the structure
being uniformly distributed over the height. The model and the method are simple and
at the same time give a realistic picture of the behaviour of the structure. The resulting
closed-form formulae for the global deformations, load distribution among the bracing
elements, shear forces, bending and torsional moments are accurate enough for
everyday use in design offices.

The governing differential equations defining the unsymmetrical bending and
torsion of the equivalent column assume the following form in the left-handed coordinate
system x-y-z (Fig. 5.2) [Vlasov, 1940]:
 

Fig. 5.2 The equivalent column and its external load.

(5.9)

(5.10)
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where the following notation is used:

The first two equations stand for the unsymmetrical bending of the equivalent
column and have to be treated together, as a rule. In the special case when the
product of inertia of the equivalent column is zero, the second term on the left-
hand side of equations (5.9) and (5.10) vanishes. The two equations uncouple
and they can be treated separately. Directions x and y are the principal directions
in this special case. The third equation characterizes the torsion of the equivalent
column.

Apart from some special cases, building structures develop a combination of lateral
displacements and torsion. The nature of the behaviour (and the extent of the
combination) depend on the relative position of the shear centre of the bracing system
O and the line of action of the horizontal load (which passes through the centroid of
the layout C).

Boundary conditions complete the simultaneous differential equations. Both
equations (5.9) and (5.10) characterize bending equilibrium so the boundary
conditions are of the same nature. The third equation defines torsional equilibrium
and it should be taken into consideration when the corresponding boundary
conditions are established that warping is completely prevented at the built-in
end and can freely develop at the free upper end. The coordinate system is fixed
at the bottom of the cantilever (Fig. 5.2) and the boundary conditions are given
as follows.

The displacements and rotation is zero at the built-in end of the cantilever:
 

u(0)=v(0)=ϕ (0)=0.
 
The slope of the deflection curve is equal to zero and no warping develops at the built-
in end:
 

 (5.11)

(5.12)
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The bending moments and the warping stresses are zero at the free end of the
cantilever:

The shear forces and the total torque also vanish at the free end:
 

5.2 DEFORMATIONS OF THE EQUIVALENT COLUMN

Under horizontal load, the equivalent column normally develops both lateral
displacements and rotation. They can be determined using the governing differential
equations (5.9) to (5.11) and the corresponding boundary conditions (5.12) to (5.15).

5.2.1 Horizontal displacements

In the general case, equations (5.9) and (5.10) of unsymmetrical bending are coupled
and have to be treated together as both contain the horizontal displacements u and v.
After combining the equations, integrating four times and using the relevant boundary
conditions, the horizontal displacements in directions x and y are obtained as:

and
 

where

are auxiliary functions and
 

(5.16)

(5.17)

(5.18)
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are auxiliary load functions.
Figure 5.3 shows the characteristic horizontal displacements for µ=0 (uniformly

distributed load), µ=0.2, µ=0.4, µ=0.6, µ=0.8, µ=1.0 and µ=2.
Maximum displacements develop at the top and are obtained by substituting H for

z in formulae (5.16) to (5.18):
 

and

 

(5.19)

(5.20)

(5.21)

Fig. 5.3 Horizontal displacements of the equivalent column.
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5.2.2 Rotations
The fourth order, linear, inhomogeneous differential equation (5.11) characterizes the
rotation of the equivalent column. Its general solution is obtained in the usual way in
the form

where C1, C2, C3 and C4 are constants of integration and k is the well-known torsion
parameter defined by formula (3.19).

The first four terms in equation (5.22) represent the solution of the homogeneous
part of equation (5.11) and the last term is a particular solution of the corresponding
inhomogeneous equation. Constants of integration C1, C2, C3 and C4 are obtained
using the relevant parts of boundary conditions (5.12) to (5.15):

After substituting for the constants of integration in equation (5.22), the rotation of
the equivalent column is obtained as:

 
This solution clearly demonstrates that no rotation develops when the horizontal load

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
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passes through the shear centre (i.e. when mz=0).

 
Figure 5.4 shows the characteristic rotations for the ranges k<0.1 and k>30 with µ=0
(uniformly distributed load), µ=0.2, µ=0.4, µ=0.6, µ=0.8, µ=1.0 and µ=2

The case k<0.1 represents torsion when the effect of the warping stiffness is
dominant over that of the Saint-Venant stiffness and k>30 shows the torsional
deformations when torsion is dominated by the Saint-Venant torsional stiffness. It is
interesting to note that the nature of the displacement curve (Fig. 5.3) and that of the
rotation curve for small values of k (Fig. 5.4/a) are similar. This follows from the fact
that both phenomena are associated with the bending of the elements of the bracing
system.

Rotation assumes maximum value at the top at z=H:

 
Two special cases are worth considering here: columns with Saint-Venant torsional
stiffness only (and with no warping stiffness) and columns whose Saint-Venant torsional
stiffness is negligibly small compared to their warping stiffness.

The denominator in formula (3.19) of k vanishes when the equivalent column has
no warping stiffness and the formulae derived for the rotations cannot be used. This
situation may emerge when a building is braced by a single column whose warping

Fig. 5.4 Rotations of the equivalent column. a) k<0.1, b) k>30.

(5.28)
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stiffness is zero. Figure 5.5 shows cross-sections with no or negligible warping stiffness.

In such cases, the original differential equation of torsion (5.11) has to be solved again,
but this time with Iω=0. After making use of the relevant part of boundary condition
(5.13), the rotation of the equivalent column emerges as

and the maximum rotation at z=H is calculated from
 

 
When the contribution of the warping stiffness to the overall torsional resistance is
much greater than that of the Saint-Venant torsional stiffness, the latter can be safely
neglected as a conservative approximation [Vlasov, 1940]. In such cases, instead of
formula (5.27), the much simpler formula

can be used where Z1 and Z2 are defined by formulae (5.18). The maximum rotation in
such cases is obtained from
 

Fig. 5.5 Cross-sections with no or negligible warping stiffness.

(5.29)

(5.30)

(5.31)

(5.32)
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The similarity indicated by the comparison of the horizontal displacement curve
(Fig. 5.3) and the rotation curve for k<0.1 (Fig. 5.4/a) now becomes identity: the
corresponding curves and the structures of the corresponding formulae are identical.
This is clearly shown by comparing formulae (5.16) and (5.31) as well as formulae
(5.20) and (5.32).

The rotations obtained from the above formulae are given in radian; they can be more
conveniently used in degrees in practical applications. The conversion is given by
 

5.3 DEFORMATIONS OF THE BUILDING

When the deformations of the building are needed, only the formulae related to the
rotations can be used directly. As for the calculation of the displacements of the
building, one has to remember that formulae (5.16), (5.17) and (5.20), (5.21) give the
displacements of the equivalent column, i.e. the displacements of the shear centre axis
of the building. If the building also develops rotations, then the additional displacements,
due to the rotation around the shear centre, also have to be taken into account. The
horizontal displacements of the corner points of the building are of practical importance
as the building develops the maximum displacement at one of them. In making use of
the deformations of the equivalent column and the size of the layout, these can be
easily calculated. When the location of the shear centre and that of the resultant of the
horizontal load are known, common sense usually shows which corner points of the
building develop the greatest displacement (Fig. 5.6):
 

vbuilding=vA=v+xAtanϕ or  ubuilding=uB=u+yBtanϕ.
 
In the above formula u and v are the displacements of the shear centre (i.e. the
equivalent column), xA and yB are the coordinates of corner points A and B and ϕ
is the rotation. If it is not obvious which corner point develops the maximum
displacement, the calculation has to be repeated for more (maybe for all four)
corner points.

An alternative method is also available for the determination of the maximum
displacements when a bracing element is situated (at the corner point) where the
maximum displacement is expected to develop. The first step in this case is the
determination of the load acting on the bracing element in question by using the
procedure to be given later. Having calculated load shares qx,k and qy,k (assuming that
it is the kth bracing element where the maximum displacement develops), formulae

(5.33)

(5.34)
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(5.20) and (5.21) directly yield the maximum displacements, where the moments of
inertia to be used are those of the kth element.

Maximum displacements are restricted in multistorey building structures in order to
ensure the comfort of the occupants and to avoid damage to structural and non-
structural elements and mechanical systems. In certain cases, it is also advantageous
to limit second-order effects in this way. The commonly accepted range for maximum
horizontal displacements is from 0.0016 to 0.0035 times the height of the building,
depending on the building height and the magnitude of the wind pressure. In accordance
with the recommendation of the Committee on Wind Bracing of the American Society
of Civil Engineers, for example, the bracing system is normally considered adequate if
the conditions
 

are fulfilled, where H is the height of the building [Schueller, 1977].

Fig. 5.6 Maximum displacements at corner points A and B.

(5.35)
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5.4 LOAD DISTRIBUTION AMONG THE BRACING ELEMENTS

The bracing elements can only fulfil their primary task to provide the building with
adequate lateral and torsional stiffnesses if they safely transmit the external horizontal
load to the foundation. The stresses in the bracing elements must not exceed their limit
values. The magnitude of the stresses in the individual bracing elements basically
depends on how much the element in question takes of the total external load. The
establishment of the load distribution is therefore an important part of the design
procedure if the individual bracing elements are to be sized properly.

The equivalent column in the shear centre of the bracing system, subjected to qx, qy

and mz, is only a fictitious column and in reality its load is transmitted to the bracing
elements by the floor slabs by making use of their in-plane stiffness. Due to the rigid-
body translation and rotation of the floor slabs, shear forces are transmitted to each
bracing element. In addition to these shear forces that develop bending in the bracing
elements, the rotation of the floor slabs also develops torsion in the bracing elements.
These two effects are investigated separately in the next two sections.

5.4.1 Shear forces and bending moments

In addition to horizontal displacements u and v, identical to those of the shear centre,
the ith bracing element also develops additional horizontal displacements ϕyi and ϕxi

(Fig. 5.7), due to the rotation around the shear centre of the bracing system.
 

Thus the total horizontal displacements of the ith element in directions x and
y are:
 

Fig. 5.7 Additional horizontal displacement of the ith bracing element.
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vi=v+xiϕ  and  ui=u–yiϕ,
 
where coordinates xi and yi are the coordinates of the shear centre of the ith bracing
element in the coordinate system whose origin is in the shear centre of the bracing
system.

In making use of ui and vi and applying equations (5.9) and (5.10) to the ith bracing
element, and after four differentiations and some rearrangement, the horizontal load
intensities on the ith element are obtained as

where

is the load factor.
 

(5.36)

(5.37)

(5.38)

(5.39)

Fig. 5.8 Load factor ηq: Load on the ith bracing element, due to rotation. a) µ=0,
b) µ =1.
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The first term in formulae (5.37) and (5.38) represents the external load share on the
ith bracing element, due to the bending of the bracing system in directions x and y.
The intensity of this load is of trapezoidal distribution, just like that of the external
load. The second term in the formulae stands for the load share that is due to the
rotation of the bracing system around the shear centre. Its distribution is characterized
by the distribution of load factor ηq, shown in Fig. 5.8, as a function of parameter k,
for k=0, k=1, k=2 and k=5, with µ=0 and µ=1. In the special case of k=0 (no Saint-
Venant stiffness) and µ=0 (uniformly distributed load) formulae (5.37) and (5.38)
simplify and become identical to those given by König and Liphardt [1990] in Beton-
Kalender.

The diagrams in Fig. 5.8 show that as the value of parameter k increases, i.e. as the
effect of the Saint-Venant stiffness becomes greater, the nature of the distribution of
the load on the ith bracing element, due to rotation, changes. The linear distribution
for k<0.1 representing dominant warping stiffness becomes a variable distribution
characterized by a curve for k>0.1 representing more contribution from the Saint-
Venant stiffness. The variation is such that the bracing element is subjected to more
load in the lower region and less in the upper region and the ‘centroid’ of the load
moves downwards over the height.
 
 

Fig. 5.9 Load factor ηqmax for maximum load at bottom, due to rotation.
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In parallel with this downward shift of the centroid of the load, the intensity of the load
increases at ground floor level where it assumes local maximum. The value of this local
maximum is given by

 
Factor ηqmax is shown in Fig. 5.9 as a function of parameter k and µ.

The shear forces in the bracing elements are obtained in the usual way by
integrating the formulae for the external load given by equations (5.37) and (5.38),
taking into consideration the corresponding boundary conditions defined by
formulae (5.15):

where

is the shear force factor representing the effect of rotation around the shear
centre.

The first term in formulae (5.41) and (5.42) stands for shear forces due to the horizontal
displacement of the shear centre axis of the bracing system. As with the standard case
of statically determinate cantilevers, they only depend on the height, the intensity of
the horizontal load and the bending stiffness of the bracing element (and of the whole

(5.40)

(5.41)

(5.42)

(5.43)
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system), and have a linear distribution for µ=0. The second term represents the effect
of the rotation around the shear centre, with hT being the shear force factor characterizing
the distribution of this part of the shear force. When parameter k assumes zero and µ=0
holds, the distribution of the shear forces due to rotation is also linear. As the value of
k—and the effect of the Saint-Venant stiffness—increases, the shape of ηT changes:
the value of the shear forces in the upper region of the column decreases. The shear
force factor representing the distribution of the shear force is shown in Fig. 5.10, as a
function of k and µ.

 
The maximum shear forces develop at the bottom of the bracing elements:

In formulae (5.44) and (5.45)

 

Fig. 5.10 Shear force factor ηT: shear forces on the rth bracing element, due to rotation. a)
µ=0, b) µ=1.

(5.44)

(5.45)
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is the maximum shear force factor whose values are given in Fig. 5.11 and in Table 5.1,
as a function of k and µ.
 

 
The distribution of the shear forces over the height is drastically affected by the value
of parameter k, which is in accordance with the change in the distribution of the load
shown in Fig. 5.8. The maximum value of the shear force is also affected considerably:
the increase in the value of the maximum shear force is 23.3% at k=2.8, compared to the
case k=0 and µ=0.

Figure 5.11 and Table 5.1 show that the value of the maximum shear force factor is
always greater than 1.0 demonstrating that the value of the shear forces, due to rotation,
always exceeds the one obtained in the ‘standard’ case, i.e. when the load distribution
is defined by a straight line. It is in the region 0<k<5 where the deviation from ηT=1.0 is
the greatest: the very region where most practical cases fall.
 

(5.46)

Fig. 5.11 Shear force factor ηTmax for maximum shear force, due to rotation.
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Table 5.1 Maximum shear force factor ηTmax

The bending moments in the bracing elements are obtained by integrating formulae
(5.41) and (5.42) for the shear forces, with taking into consideration the corresponding
boundary conditions defined by formulae (5.14):
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is the bending moment factor representing the effect of rotation around the shear
centre.

The first term in formulae (5.47) and (5.48) stands for bending moments due to the
unsymmetrical bending of the shear centre axis of the bracing system. As with the
standard case of statically determinate cantilevers, they only depend on the height,
the intensity of the horizontal load and the bending stiffness of the bracing element
(and of the whole system), and have a distribution of a third order parabola over the
height.

The second term represents the effect of the rotation around the shear centre, with
ηM being the bending moment factor and characterizing the distribution of this part of
the bending moment. The bending moment factor is shown in Fig. 5.12, as a function of
k and µ. When parameter k assumes zero value, the bending moments due to rotation
have the same distribution as that of the bending moments due to the unsymmetrical
bending of the shear centre axis (i.e. the first term in the formulae). As the value of
parameter k increases, representing the growing effect of the Saint-Venant torsional
stiffness, the value of the bending moments in the bracing element—after a small initial
increase—decreases. This is due to the fact that with the growing value of k the

(5.47)

(5.48)

where

(5.49)
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‘centroid’ of the load on the bracing element shifts downwards (Fig. 5.8) resulting in a
decreasing moment arm.

 
The maximum bending moments develop at the bottom of the bracing
elements:

 
 
 

Fig. 5.12 Bending moment factor ηM: bending moments in the ith bracing element, due to
rotation. a) µ=0, b) µ=1.

(5.50)

where

(5.51)
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is the maximum bending moment factor.

 
 
Values for the maximum bending moment factor are given in Table 5.2 and in Fig. 5.13,
as a function of k and µ.

The value of maximum bending moment factor ηMmax increases in the range 0<k<1.35;
its value is greater than 1.0 up to k=2.346; then its value decreases rapidly. It peaks at
k=1.35 representing a 5.4% increase in the value of the maximum bending moment in
the bracing element, due to rotation around the shear centre, compared to the theoretical
case of k=0 (and µ=0), when the behaviour of the bracing system is not affected by the
Saint-Venant torsional stiffness. When the value of k exceeds 40, then the value of the
maximum bending moment factor drops below 0.10 (with µ=0) and then becomes
practically negligible.
 

(5.52)

Fig. 5.13 Bending moment factor ηMmax for maximum bending moment, due to rotation.
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There seems to be an analogy in the behaviour of an element of the bracing system
subjected to uniformly distributed horizontal load (µ=0)

Table 5.2 Maximum bending moment factor ηMmax
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and a cantilever subjected to uniformly distributed vertical load, both with Saint-
Venant and warping torsional stiffnesses. Certain similarities emerge in the stress
analysis of the former case and the stability analysis of the latter case as the value
of torsion parameter k increases. The torsional buckling analysis of the cantilever
shows that the axis of the cantilever does not develop rotation in the upper regions
but a sudden twist develops near the bottom (Fig. 5.14). In the former case, the
load and the shear force, due to the rotation of the bracing system, tend to decrease
significantly in the upper section of the bracing element, with the ‘centroid’ of the
load shifting downwards. In both cases, ‘activities’ on the column (load, shear
force, rotation) are limited to the bottom section of the column as the value of the
Saint-Venant torsional stiffness increases.
 

The fact that this analogy is only one in a series of analogies makes the situation even
more interesting. The same phenomenon can be observed with cantilevers developing
both bending and shear deformations. Furthermore, as far as bending and shear
deformations are concerned, similar phenomenon develops during the full-height
buckling of frameworks [Zalka and Armer, 1992].

5.4.2 Torsional moments

According to equations (5.5) and (5.11), unless the external load passes through the
shear centre of the bracing system, the equivalent column and the whole building it
represents undergo rotation. The floor slabs make the individual bracing elements
rotate and consequently they develop torsional moments.

The torsional resistance of the bracing system is provided by two sources: the
Saint-Venant torsional stiffness and the warping (bending torsional) stiffness.

Fig. 5.14 Pure torsional buckling of a cantilever with dominant GJ.

Load distribution 121



Consequently, the torsional moments in the individual bracing elements develop
according to their corresponding torsional stiffnesses:

and

where Mt(z) is the Saint-Venant torsional part and Mω(z) is the warping torsional part of
the total torque Mz(z):
 

M z(z)=Mt(z)+Mω(z).
 

 
The equilibrium of an elementary section of the equivalent column (Fig. 5.15) is
expressed by

–Mz+mzdz+(Mz+dMz)=0,
 
 

The Saint-Venant and warping torsional parts of the total torque are now obtained
from equation (5.11) as:

(5.53)

(5.54)

(5.55)

Fig. 5.15 Torsional equilibrium of a differential element.

(5.56)

which leads to

(5.57)
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Mt(z)=GJϕ ́ (z)

and

Mω (z) = – EIω ϕ´´´(z).

 
After differentiating the function of rotation defined by formula (5.27) once and three
times, respectively, and rearranging the resulting expressions, the solutions for the
Saint-Venant and warping torsional moments assume the form:

(5.58)

(5.59)

(5.60)

and

(5.61)
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Fig. 5.16 Typical torsional moment distribution for µ=0 (UDL).



In making use of formulae (5.55), (5.60) and (5.61), the total torque is obtained
from

 
Typical distributions of the torsional moments are shown in Fig. 5.16 and Fig. 5.17, as
a function of k and µ. The warping torsional moment Mω(z) always assumes maximum
at ground floor level:
 

The Saint-Venant torsional moment Mt(z) is zero at ground floor level. The location of
its maximum value over the height depends on the values of parameters k and µ and—
after differentiating function (5.60) once—is obtained as the solution in z of the equation
 

(5.62)

Fig. 5.17 Typical torsional moment distribution for µ=4.

(5.63)

(5.64)
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Table 5.3 Location of the maximum Saint-Venant torsional moment Mt,max
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Figure 5.18 and Table 5.3 give values for z/H defining the location of  Mt,maxas a function
of torsion parameter k and parameter µ which



characterizes the slope of the load function of trapezoidal distribution. It is interesting
to note that the location of the Saint-Venant torsional moment hardly depends on the
slope of the load function.

 
 
5.5 STRESSES IN THE BRACING ELEMENTS

Knowing the shear forces, bending moments, Saint-Venant torsional and warping
torsional moments in the ith bracing element, the last step of the analysis is the
determination of the normal and shear stresses. The calculation is carried out using the
formulae derived for combined unsymmetrical bending and mixed torsion [Kollbrunner
and Basler, 1969; Murray, 1984; Zbirohowski-Koscia, 1967]. A local x—y coordinate
system is used whose origin is in the centroid of the ith bracing element and whose
axes are parallel with the global axes x and y.

Normal stresses are caused by bending moments and the warping torsional
moments:

 

Fig. 5.18 Location of the maximum Saint-Venant torsional moment Mt,max over the
height.

(5.65)

where
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(5.67)

is the bimoment and ω is the sectorial coordinate. The sectorial coordinates represent
triangular areas, multiplied by two, defined by three points: the shear centre of the
cross-section and two points along the middle line of the cross-section defining the
section to which the sectorial coordinate belongs. The sign of the sectorial coordinate
is positive if the advancement along the middle line in creating the area represents an
anticlockwise rotation around the shear centre.

The first two terms in formula (5.65) represent the effect of unsymmetrical bending
and the third term stands for warping torsion. Both unsymmetrical bending and warping
torsion develop maximum normal stresses on ground floor level. Consequently, the
maximum value of the normal stresses is obtained by setting z=0. Formulae (5.50),
(5.51) and (5.63) can be used for the practical calculation.

It should be borne in mind in the structural design of the bracing elements that the
vertical load on the bracing elements also develops normal stresses and formula (5.65)
has to be supplemented by the term

 

where Fi is the vertical load on the ith element, resulting from its own weight and the

share of dead and live vertical load it takes, and Ai is its cross-sectional area.
The shear stresses originate from three sources:

where the first, second and third term on the right-hand side represent shear stresses
caused by unsymmetrical bending, Saint-Venant torsion and warping torsion,
respectively. The shear stresses resulting from unsymmetrical bending are obtained
using Jourawski’s well-known formula [Timoshenko, 1955]
 

(5.68)

(5.69)
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where ti is the wall thickness and    and     are the first (statical) moments of area
with respect to the neutral axis. The area to be considered is the one which is cut off
from the cross-section by a line parallel to the neutral axis, where the shear stress is
needed, i.e. above (or below) the point considered.

Shear stresses develop from the Saint-Venant torsion as well. The formula for the
kth wall element of an open cross-section is

 
where

 
is the Saint-Venant torsional constant of the cross-section and ti,k and hi,k are the wall
thickness and length of the middle lane of the kth wall element of the cross-section of
the ith bracing element.

When the ith element has a closed cross-section, the formula for the shear
stresses is

where s is the arc length, Ao is the area enclosed by the middle line of the wall and t(s)
is the wall thickness at s (Fig. 5.19).

 
 

Finally, warping torsion also develops shear stresses:
 

(5.71)

(5.72)

Fig. 5.19 Closed cross-section.

(5.70)
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is the sectorial statical moment.
Two of the three components of the shear stress,    and    defined by formulae

(5.69) and (5.73), respectively, assume maximum on ground floor level. However, the
situation with      defined by formula (5.70) for open cross-sections and by formula
(5.72) for closed cross-sections is different. The location of the maximum of       varies
over the height as a function of k and µ and can be calculated by using Table 5.3 and
Fig. 5.18. The fact that the different shear stress components develop maximum at
different locations over the height has to be taken into account when the maximum
shear stress is calculated.

Comprehensive theoretical background to the calculation of sectorial properties
is presented in Vlasov’s monograph [1940] and step-by-step instructions for practical
calculations are also available [Kollbrunner and Basler, 1969; Zbirohowski-Koscia,
1967].

5.6 CONCENTRATED FORCE AT TOP LEVEL; SINGLE-STOREY
BUILDINGS

The equations and formulae presented in sections 5.1 to 5.4 are valid for buildings
subjected to a horizontal load of trapezoidal distribution and can be used for the
structural analysis of multistorey buildings. The situation with single-storey
buildings is somewhat different in that the external horizontal load is transmitted
through the facade to the bracing system as a single concentrated force at the
floor level. This load case is therefore of practical importance and is dealt with in
this section.

The formulae for this case may also be useful for investigating model structures
where, because of practical considerations, a single lateral force of eccentricity e on
top of the structure is applied, instead of distributed lateral load over the height.

The design formulae for this load case are obtained from the more general ones in

(5.73)

where
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sections 5.2 to 5.4 by taking into account the fact that the shear force is constant over
the height. The solution of the differential equations

with the boundary conditions

 
in the usual manner leads to the lateral displacements of the equivalent
column:

where Fx and Fy are the components of the concentrated top load F in directions
x and y.

Maximum displacement develops at z=H:
 

The rotations of the equivalent column are obtained from the solution of the governing
differential equation
 

(5.75a)

(5.75b)

(5.77a)

(5.77b)

(5.78a)

(5.78b)
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where
 

Mz=Fe=Fxyc+Fyxc

 
is the torque at the top of the equivalent column. In making use of the boundary
conditions

 
the rotation is obtained as

 
Maximum rotation develops at z=H and, in the general case, is obtained from

 
When the warping stiffness dominates over the Saint-Venant torsional stiffness, the
simpler formulae

and

 
can be used instead of formulae (5.82) and (5.82a).

(5.79)

(5.80)

(5.82)

(5.82a)

(5.82c)

(5.82b)

Single-storey buildings 131



Formulae (5.82), (5.82a), (5.82b) and (5.82c) cannot be used when the warping stiffness
is zero (e.g. for thin-walled closed cross-sections). In such cases, the rotation is
calculated from

 
and the maximum rotation at z=H is

 
Figure 5.20 shows the displacements and rotations of the equivalent column.
The expressions for the shear forces in the ith bracing element are
 

Fig. 5.20 Deformations of the equivalent column. a) Displacements, b) rotations.

(5.82d)

(5.82e)

(5.83a)

(5.83b)
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The notation used in formulae (5.83a) and (5.83b) is
 

Parameter η
T’

 is the shear force factor representing the effect of rotation around
the shear centre. Figure 5.21 shows typical shear force distributions as a
function of k. The maximum shear force, due to rotation, develops at z=0 and
always assumes η

T’max
=η

T’
(0)=1 so the maximum shear forces in the ith bracing

element are
 

 

Fig. 5.21 Shear force factor ηT’: shear forces in the ith bracing element, due to rotation.

(5.84)

(5.85)

(5.86a)

(5.86b)
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The bending moments in the ith bracing element are obtained from formulae (5.83a)
and (5.83b) by integration:
 

where
 

is the bending moment factor representing the effect of rotation around the
shear centre. The bending moment parameter is shown in Fig. 5.22, as a function
of k.

Maximum bending moments develop at the bottom of the bracing elements:
 

Fig. 5.22 Bending moment factor ηM’: bending moments in the ith bracing element,
due to rotation.

(5.87a)

(5.87b)

(5.88)
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where

Values for             are given in Table 5.4 and in Fig. 5.23.
 

The external torque Mz=Fe is balanced by the torsional moments

and

 
 
 

(5.89)

(5.90)

(5.91)

Fig. 5.23 Bending moment factor            :maximum bending moments in
the ith bracing element, due to rotation.

(5.92)

(5.93)
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Typical torsional moment distributions are shown in Fig. 5.24 as a function of k.
The Saint-Venant torsional moment always assumes maximum at z=H:

The maximum of the warping torsional moment is at z=0:

 
 

Table 5.4 Maximum bending moment factor

(5.94)

(5.95)
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Fig. 5.24 Typical torsional moment distributions. a) k=0.5, b) k=1, c) k=5, d) k=20.



5.7 BUILDINGS WITH Ixy=0, SUBJECTED TO UNIFORMLY DISTRIBUTED
HORIZONTAL LOAD

In the special case when the bracing elements have no product of inertia and the
building is subjected to a uniformly distributed horizontal load, the design formulae
given in section 2.2 and earlier in this chapter simplify considerably. The simplified
versions are given in this section.

Formulae (2.1) and (2.2) of the coordinates of the shear centre simplify to

Formula (2.5) of the warping constant also assumes a simpler form:
 

The maximum lateral displacements of the equivalent column are obtained from formulae
(5.20) and (5.21):
 

In the general case, the maximum top rotation is given by formula (5.28):
 

When the warping stiffness dominates over the Saint-Venant torsional stiffness, the
much simpler formula

can be used instead of formula (5.99).
Formulae (5.99) and (5.99a) cannot be used when the warping stiffness is zero

(thin-walled closed cross-sections). In such cases, the maximum rotation is calculated
from
 

(5.96)

(5.97)

(5.98)

(5.99)

(5.99a)
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The maximum shear force factor [formula (5.46)] and the maximum bending moment
factor [formula (5.52)] simplify considerably:

and

 
The maximum shear forces in the bracing elements are obtained from formulae (5.44)
and (5.45):

 
The maximum bending moments are calculated using formulae (5.50) and
(5.51):
 

Formula (5.60) for the Saint-Venant torsional moments simplifies to

and the location of its maximum is obtained using Table 5.3.
The maximum warping torsional moment at z=0 is obtained from formula (5.63):

 

(5.99b)

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)
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Mω,max=Mω(0)=mzH.

5.8 WORKED EXAMPLE: A 6-STOREY BUILDING IN LONDON

To illustrate the use of the method, it is applied to the 6-storey building in Brook Street,
London W1, whose layout is shown in Fig. 5.25. The modulus of elasticity and the
shear modulus are E=2×104 MN/m2 and G=8.33×103 MN/m2, respectively. The total
height of the building is 22.8 m. The maximum deformations and the rotation of the
building as well as the maximum shear forces, bending moments and torsional moments
in the bracing elements are to be determined.
 

The external load is given by a uniformly distributed horizontal load in direction y,
whose intensity, for the sake of simplicity, is assumed 1.0 kN/m2. This leads to the
horizontal load as
 

q0y=33.0 kN/m or  Fy=752.4 kN.
 
Two investigations will be carried out. It is assumed for the first analysis that the
bracing shear walls are not built together and they act independently of each other. For
the second analysis, it is assumed that some of the shear walls are built together in
such a manner that the reinforcement along the vertical joints makes the adjacent walls
work together resulting in 3-dimensional bracing elements (cores).

(5.107)

Fig. 5.25 6-storey building in Brook Street, London W1.
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5.8.1 Model: individual shear walls

The bracing system consists of four shear walls in the y and five shear walls in the x
directions (Fig. 5.26), whose geometrical and stiffness characteristics are summarized
in Table 5.5, where h and t are the width and thickness of the shear walls. The product
of inertia (Ixy,i) and the warping constant (Iω,i) of all the elements are zero.

 
As the equivalent column is situated concurrent with the shear centre, the first step
is to locate the shear centre. Its coordinates are obtained from formulae (5.96) in
section 5.7:

 
When the location of the shear centre is known, the coordinate system is moved to the
shear centre and the warping constant is obtained from formula (5.97):
 

Iω=18.80+4.00=22.80m6.

 

Fig. 5.26 Model: individual shear walls.
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Details of this calculation are shown in Table 5.5, where xi and yi are coordinates of the
shear centres of the bracing shear walls in the coordinate system whose origin coincides
with the shear centre. The value of torsion parameter k is obtained from formula (3.19):
 

The coordinates of the geometrical centre of the plan of the building in the coordinate
system whose origin is in the shear centre are obtained from (2.10) in section 2.2:

 
The torque around the shear centre is obtained from formula (5.6) where µ is zero as the
horizontal load is uniformly distributed:
 

mz(z)=mz0=q0yxc=–33×1.242=–40.987 kNm/m.
 
The auxiliary load parameters are calculated from formulae (5.19):

 
The maximum top translation of the equivalent column is obtained from formula
(5.98):
 

Table 5.5 Geometrical and stiffness characteristics
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The maximum top rotation is calculated from formula (5.99):
 

Formula (5.33) converts radians into degrees:
 

ϕmax=–57.3×2.19×10–3=–0.126°.

The rotation of the building is equal to the rotation of the equivalent column. As for the
maximum horizontal displacements of the building, however, it should be borne in mind
that, due to the rotation around the shear centre, the characteristic (corner) points of
the building develop additional displacements. The maximum horizontal displacement
of the building is obtained using formula (5.34):
 

vbuilding=57.8+17742×2.19×10–3=96.6 mm.
 
 

Table 5.6 Maximum shear forces

142 Advanced stress analysis



The maximum shear forces in the bracing elements are obtained from formulae (5.102)
and (5.103). The shear forces in the first bracing element, for example, are

where

is the maximum shear force factor [formula (5.100)].
Details for all the nine walls are given in Table 5.6.
The maximum bending moments are calculated using formulae (5.104) and (5.105).

The bending moments in the first shear wall are:

 
where—from formula (5.101)—the maximum bending moment factor is
 

Details for all the nine walls are given in Table 5.7.
The above formulae for the shear forces and bending moments consist of two parts.

The first part represents the shear force/bending moment share which is due to the
external load components qx and qy acting at the shear centre of the building, developing
horizontal displacements in directions x and y. The second part represents the shear
force/bending moment share which is due to the external torque mz developing rotation
around the shear centre and, consequently, additional displacements. The two parts
are marked {qx}, {qy} and {mz} in the Tables.
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As a function of k (k=0.999), Table 5.3 gives the location of Mt,max at z=0.772H=17.60m
and, according to formula (5.106), the maximum value is

 
The warping torsional moment assumes maximum at z=0, which is obtained from formula
(5.107) as

Mω ,max=Mω (0)=–40.987×22.8=–934.5 kNm.

5.8.2 Model: built-up shear walls and cores

Assuming that some of the shear walls are built together resulting in Z, T and U
shaped cores, the building is now braced by four bracing elements (Fig. 5.27),
whose geometrical and stiffness characteristics are summarized in Table 5.8. The
maximum deformations and the rotation of the building as well as the maximum
shear forces, bending moments and torsional moments in the bracing elements are
to be determined.

The auxiliary parameters [formulae (5.19)] assume the value

Table 5.7 Maximum bending moments
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The coordinates of the shear centre are obtained from formulae (2.1) and
(2.2):

Table 5.8 Geometrical and stiffness characteristics
 

Fig. 5.27 Model: built-up shear walls and cores.
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The warping constant is calculated using formula (2.5):
 

Iω=3.76+55.32+13.52–2×11.40=49.78 m6.

 
Details of this calculation are shown in Table 5.8. The value of torsion parameter is
obtained from formula (3.19):
 

The coordinates of the geometrical centre of the plan of the building in the coordinate
system whose origin is in the shear centre are obtained from (2.10):
 

The torque around the shear centre is obtained from formula (5.6):
 

mz(z)=mz0=q0y×xc=–33×0.258=8.514 kNm/m.
 
The maximum top translation of the equivalent column is obtained using formulae
(5.19) and (5.21):
 

The maximum top rotation is calculated from formula (5.28):
 

Formula (5.33) converts radians into degrees:
 

ϕ max=–57.3×2.48×10–4 =–0.0142°.
 
The rotation of the building is equal to the rotation of the equivalent column. As for the
maximum translation of the building, however, in addition to the translation of the
shear centre, additional translations due to the rotation of the building have to be
taken into account. The maximum
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horizontal displacement of the building is obtained using formula (5.34):
 

vbuilding=21.4+16758×2.48×10–4=25.6 mm,
 
showing a drastic reduction, compared to the previous case (cf. vbuiiding=96.6 mm on
page 142).
The maximum shear force factor is given by formula (5.46):
 

The maximum shear forces in the bracing elements are obtained from formulae (5.44)
and (5.45). The shear forces in the first bracing element are

 

Details for all the four bracing elements are given in Table 5.9.

 
The maximum bending moments are calculated using formulae (5.50) and (5.51). The
bending moments in the first shear wall are:
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Table 5.9 Maximum shear forces



 
Details relating to all the four walls are given in Table 5.10.
 

As a function of k (k=0.654), Table 5.3 gives the location of Mt,max at z=0.892×H=20.34
m and, according to formula (5.60), the maximum value is
 

The warping torsional moment assumes maximum at z=0, which is obtained from formula
(5.63) as

w here

Table 5.10 Maximum bending moments
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Mw ,max=Mw(0)=–8.51×22.8=–194.0kNm.

5.9 SUPPLEMENTARY REMARKS

Although the formulae presented in this chapter are applicable to bracing systems
consisting of solid shear walls and cores on rigid foundation, developing predominantly
bending deformations, the method can be extended to cover other types of bracing
elements and support conditions as well.

5.9.1 Frameworks and coupled shear walls

When frameworks and/or coupled shear walls are also included among the elements
of the bracing system, then the determination of the stiffnesses of these elements
needed for the establishment of the equivalent column requires special considerations.
They do not have their own warping torsional stiffness and their Saint-Venant torsional
stiffness and product of inertia can safely be neglected. This leaves the lateral
stiffnesses EIx and EIy. As with most planar bracing elements, their stiffness
perpendicular to their plane is small and may be neglected. Their in-plane stiffness
can be easily calculated by using one of the procedures given in Chapter 9. When
the lateral stiffnesses of the frameworks and coupled shear walls have been
determined, they can be replaced by fictitious solid walls of the same stiffnesses and
the spatial analysis, starting with the establishment of the equivalent column, can be
carried out.

The above procedure offers good approximation for X-braced frameworks
and infilled frames, and to some extent for coupled shear walls with relatively
small openings and with stiff wall strips and flexible lintels, as they develop
predominantly bending deformations. The situation is different with sway frames
and with coupled shear walls with flexible wall strips and stiff lintels as they tend
to develop predominantly shear type deformations. Replacing such bracing
elements with fictitious walls can lead to unacceptable approximations, particularly
as far as the location of the shear centre is concerned, and has to be considered
very carefully.
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5.9.2 Bracing systems with shear or a mixture of shear and bending
deformations

When the elements of the bracing system develop significant shear-type deformation,
the formulae given in section 2.2 for the coordinates of the shear centre cannot be
used. The wall strips of a built-up bracing element develop shear deformations
independently from each other. A simple, albeit approximate, procedure and closed
form solutions are presented in [Kollár and Póth, 1994] for the determination of the
location of the shear centre.

The situation is even more complicated when the bracing system has some elements
which develop bending deformations while other elements develop shear deformations
(e.g. sway frames and shear walls). The shear centre of such systems also depend on
the external load and may vary over the height [Stüssi, 1965]. Stafford Smith and
Vézina [1985] developed a 2-dimensional model for the determination of the shear
centre and introduced the notion ‘centre of resistance’. Their method also takes into
consideration the distribution of the external lateral load over the height. The special
case of bracing systems containing parallel plane members subjected to uniformly
distributed load was investigated by Manninger and Kollár [1998]. They showed that
even in this relatively simple case the notion ‘shear centre’ should be replaced by the
notion ‘shear centre curve’ reflecting the fact that the position of the shear centre
changes over the height of the building.

5.9.3 Special cases—scope for simplification

The closed form solutions given in this chapter are already simple enough for quick
checks on maximum stresses and deformations. However, the treatment further simplifies
in some special cases.

When the product of inertia of the equivalent column is zero (either because the
elements have no product of inertia or they have but cancel each other out), most of
the formulae considerably simplify and the amount of calculation involved is
significantly reduced. (The simplified formulae for Ixy=0—and for uniformly distributed
load—are given in section 5.7.) When only a few elements have a product of inertia,
they can be neglected when the number and arrangement of the bracing elements are
considered. However, when the bending and shear stresses are calculated, the products
of inertia of the individual bracing elements should not be neglected as their contribution
can be significant and neglecting them can lead to unacceptable approximations [Kollár
and Póth, 1994].

The contribution of the warping stiffnesses of the individual elements to the global
warping stiffness is usually very small in most practical cases—first term in formula
(2.5)—and it can be neglected when the torsional stiffnesses of the equivalent column
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are determined. However, as with the product of inertia, the warping characteristics
always have to be taken into account when the bending and shear stresses in the
individual bracing elements are calculated.

The formulae also simplify considerably when the contribution of the Saint-
Venant torsional stiffness to the overall torsional resistance is negligible, compared
to that of the warping stiffness. Research into structural elements of thin-walled,
open cross-section shows that neglecting the Saint-Venant torsional stiffness for
cross-sections with k<0.02 does not result in appreciable error [Vlasov, 1940].
Furthermore, the evaluation of values for the shear force factor and for the bending
moment factor given in section 5.4.1 shows that the error committed when the
Saint-Venant torsional stiffness for equivalent columns with k<0.1 is neglected in
the calculation of shear forces and bending moments due to rotation around the
shear centre is smaller than 1%.

5.9.4 Second-order effects

When the formulae for the deformations and stresses were derived, only the effects
of lateral loads were taken into account. However, building structures are always
subjected to vertical loads which develop compression in the vertical load bearing
elements, including the bracing elements. Because of the simultaneous effects of
the lateral and vertical loads, the deformations and stresses increase. This effect
can be taken into consideration in a simple way by applying the magnification
factor

to the deformations and stresses calculated considering the lateral loads only. In
formula (5.108)
 

(5.108)

(5.109)
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is the global critical load ratio with N being the total vertical load and Ncr being the
global critical load of the building. (Chapter 7 deals with the critical load ratio in detail.)
Formula (5.108), derived by Timoshenko and Gere [1961] for the stability analysis of
beam-columns, gives good approximation; the error for v<0.6 is less than 2%.

5.9.5 Soil-structure interaction

The formulae given in this chapter (and in Chapter 4) assume rigid foundations for
the elements of the bracing system. This is not always the case in practice. Typical
examples show that foundation flexibility can have an important effect on the
behaviour of the bracing system. The flexible foundation affects mainly the stresses
at the lower portion of shear walls and cores and, in general, has negligible effect on
the stresses at the upper portion of the structure [Nadjai and Johnson, 1996]. For
practical purposes, foundations built on hard rock or dense sand can be considered
rigid.

Due to the rotation of the foundation, the deformations of the building also increase.
Under a horizontal load of trapezoidal distribution, for example, the top translation of a
column on flexible support (i.e. the equivalent column), due to the rotation of the
foundation, can be determined using simple static considerations.

The moment equilibrium of the column (Fig. 5.28) is expressed by
 
 

Fig. 5.28 Top translation of rigid column on flexible support.

(5.110)
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where

 
is the spring constant and

Values for the spring constant and the spring coefficient are given in Tables 3.4 and 3.5
in section 3.1.5.

Equation (5.110) leads to the translations, due to flexible support, as
 

where µ =q1/q0 is the slope of the variable part of the horizontal load.
The total top translation of the equivalent column is obtained by adding up the

translation calculated assuming a flexible column on a rigid foundation [formulae
(5.20) and (5.21)] and the translation obtained by assuming a rigid column on a
flexible support [formulae (5.112a) and (5.112b)].

The flexibility of the foundation against torsional motions does not normally
have a great effect on the behaviour. However, if the structure of the foundation is
sensitive to torsional motions (e.g. isolated footings under the bracing elements or
rigid box foundation under an eccentric bracing system), this effect may also have to
be taken into account.

Discrete models have also been developed for the analysis of soil-structure
interaction. Both simple models [Kaliszky, 1978] and more complex procedures
[Spyrakos and Beskos, 1986; Nadjai and Johnson, 1996] are available for the 3-
dimensional stress analysis. Different aspects of soil-structure interaction are
discussed in [Council…, 1978c].

(5.111)

(5.112a)

and

(5.112b)
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6

Illustrative example;
Qualitative and quantitative evaluation
 

The application of the method developed for the global structural analysis is illustrated
here by a series of examples. The illustration also makes it possible to show how the
performance of the bracing system can be evaluated and, in the next chapter, to advocate
the introduction of a ‘performance indicator’.

The 8-storey building in the example is braced by four shear walls (Fig. 6.1/a). Three
different arrangements of the same four shear walls are considered (Figs 6.1/b, 6.2 and
6.3) to show how the method can be used for assessing the efficiency of the bracing
system. The critical loads, the fundamental frequencies, the maximum deformations
and the rotation of the building as well as the maximum shear forces, bending moments
and torsional moments in the bracing elements are determined. The second order
effects are not taken into account.

It is assumed for the analysis that
 
• only the shear walls resist the horizontal load and the contribution of the columns

to the lateral stiffness of the bracing system is negligible,
• the shear walls only develop bending deformation.
 
The modulus of elasticity and the shear modulus for the example are E=2×104 MN/m2
and G=8.33×103 MN/m2, respectively. The storey height is 3.0 m and the total height of
the building is 24 m. The weight per unit volume of the building (for the dynamic
analysis) is γ =2.50 kN/m3.

Assuming normal wind pressure of uniform distribution with an intensity of q=28.0
kN/m, making 50° with axis x, the load components for a simplified static analysis are
 

qx= –28.0×cos50°= –18.0 kN/m,
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qy=–28.0×sin50°=–21.45 kN/m,
 
representing a total horizontal load of F =—672 kN, whose components are
 

Fx=432kN and    Fy=–514.8 kN.

 

6.1 CASE 1

In the first arrangement (‘Layout 1’) all four walls are placed in the right-hand side of the
building (Fig. 6.1/b). The second moments of area of the shear walls are given in Fig. 6.1/a.

As the equivalent column is situated concurrent with the shear centre, the first step
is to locate the shear centre. Its coordinates are obtained from formulae (5.96) which
are simplified versions of formulae (2.1) and (2.2) when Ixy=0 holds:

Structural engineering common sense also predicts this result as the centre of stiffness
of the four shear walls in the doubly symmetrical arrangement is at the geometrical
centre of the wall system. The geometrical and stiffness characteristics needed for the

Fig. 6.1 8-storey building for the example, a) Bracing shear wall, b) ‘Layout 1’.
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calculation—after making use of formulae (2.3) and (2.4)—are given in Table 6.1.
When the location of the shear centre is known, the warping constant can be

obtained from formula (5.97):
 

Details of this calculation are shown in Table 6.1 where xi and yi are coordinates of the
shear centres of the bracing shear walls in the coordinate system whose origin coincides
with the shear centre.
 

 
The coordinates of the geometrical centre of the plan of the building in the coordinate
system whose origin is in the shear centre are obtained from formulae (2.10):
 

Formula (2.9) gives the distance between shear centre O and geometrical centre C:

with which the radius of gyration can be determined using formula (2.11):
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6.1.1 Critical load

The critical loads for sway buckling when the building is under uniformly distributed
floor load are calculated from formulae (3.11):
 

where modifier rs (0.834) is obtained from Table 3.1.
Torsion parameter k is obtained from formula (3.19):

 

With the above value of k, parameter ks is obtained from (3.18) as
 

The critical load parameter (eigenvalue of pure torsional buckling) is obtained as a
function of ks, using Table 3.2 in section 3.1:
 

α=8.45.

The critical load for pure torsional buckling can now be calculated from formula (3.16):
 

Interaction among the basic modes may be taken into account by cubic equation (3.22).
(The fact that the system is monosymmetric is ignored in this worked example in order to
demonstrate how the effect of the interaction is calculated in the general case.) The
coefficients needed in the equation are obtained from formulae (3.23), (3.24) and (3.25):
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In taking into account the coupling of the basic modes, the global critical load is
obtained as the smallest root of equation

N3–4462.9N2+535536N–1566467=0

as
 

N1=Ncr=3.0MN.
 
The effect of the interaction of the basic modes could have been predicted offhand in
this simple case. Because of the special arrangement of the bracing system (the shear
centre lies on axis x), interaction only occurs between Ncr,Y=1892 and Ncr,ϕ=124.8. The
global critical load is the minimum of the combining Ncr,Y and Ncr,ϕ and the independent
Ncr,X, which, considering the magnitudes of the basic critical loads in question, is
obviously
 

Ncr=Ncr,X=3.0MN.
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6.1.2 Fundamental frequency

The first natural frequencies for lateral vibrations in the principal directions are
calculated from formulae (3.52):

 
and
 

where the value of modifier rf (0.892) is obtained from Table 3.8.
The first natural frequency for pure torsional vibrations is calculated from
formula (3.55):

 
The value of frequency parameter η (0.577) in the above formula is obtained from Table
3.9 in section 3.2.1 as a function of torsion parameter k.
The coupling of the basic modes can be taken into account using cubic equation (3.59).
(The fact that the calculation can be simplified in this monosymmetrical case is once
again ignored.) Formulae (3.60) and (3.61) yield the coefficients needed for the calculation:



where τx=0.74 and τY=0, already available from the stability analysis, are also used.
The value of the smallest coupled frequency is obtained from

 
(f3)2–3.215(f2)2+0.275f2–0.000592=0

as the smallest root:

f1=f=0.047 Hz.

Knowing the values of the basic frequencies and the fact that the arrangement is
monosymmetrical, the above value could have been obtained without calculation—as
was the case with the stability analysis.

6.1.3 Maximum stresses and deformations

The torque around the shear centre is obtained from formula (5.6) where µ is zero as the
horizontal load is uniformly distributed:
 

mz=qxyc+qyxc=21.45×9=193.05 kNm/m.

As the procedure simplifies considerably for buildings subjected to uniformly distributed
load and with zero product of inertia, the simplified versions of the relevant formulae
given in section 5.7 will be used in the following.

The maximum top translations of the equivalent column are obtained from formulae
(5.98):

The maximum top rotation is calculated from formula (5.99):
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Formula (5.33) converts radians into degrees:
 

ϕmax=57.3×0.00499=0.286°.
 
The rotation of the building is equal to the rotation of the equivalent column. As for the
maximum horizontal displacements of the building, however, it should be borne in mind
that, due to the rotation around the shear centre, the characteristic (corner) points of the
building develop additional displacements. The maximum horizontal displacements of
the building at corner points ‘A’ and ‘B’ (Fig. 6.1/b) are obtained using formulae (5.34):
 

vmax=vA=v+xA tanϕ =–0.005–21×tan(0.286)=0.11 m,

 
umax=uB=u+yBtanϕ =–2.81–7.5×tan(0.286)=–2.84 m.

 
The maximum shear force factor [formula (5.100)] and the maximum bending moment
factor [formula (5.101)] are needed for the calculation of the maximum shear forces and
bending moments in the bracing shear walls:
 

The maximum shear forces in the bracing elements are obtained from formulae (5.102)
and (5.103). The shear forces in the first shear wall are
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and details for the four walls are given in Table 6.2.
 

The maximum bending moments are calculated using formulae (5.104) and (5.105). The
bending moments in the first shear wall are:
 

Details relating to all the four walls are given in Table 6.3.

 The above formulae for the shear forces and bending moments consist of two parts.
The first part represents the shear force/bending moment share which is due to the
external load components qx and qy acting at the shear centre of the building, developing
horizontal displacements in directions x and y. The second part represents the shear
force/bending moment share which is due to the external torque mz developing rotation
around the shear centre and consequently additional displacements. The two parts are
marked {qx}, {qy} and {mz} in the Tables.
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As a function of k (k=0.412), Table 5.3 gives the location of Mt,max at z=0.948H=22.75
m and, according to formula (5.106), the maximum value is
 

The warping torsional moment assumes maximum at z=0, which is obtained from formula (5.107) as
 

Mω ,max=mzH=193.05×24=4633.2 kNm.

The performance of the building is clearly not acceptable. The maximum horizontal
displacement in direction x is 59 times greater than the recommended maximum
displacement of
 

Even in direction y, the maximum displacement is more than twice as big as the
recommended maximum.

As these excessive displacements are mainly caused by the lack of bracing in
direction x, the efficiency of the bracing system is improved for ‘Layout 2’ by turning
around shear walls No. 3 and No. 4 by 90 degrees. They are also moved to the left-hand
side of the building (Fig. 6.2).

6.2 CASE 2

Table 6.4 gives the geometrical and stiffness data for ‘Layout 2’.
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The coordinates of the shear centre are obtained from formulae (5.96):
 

x̄o = 23.965m         and              ȳ  o =7.5m.

When the location of the shear centre is known, the warping constant can be obtained
from formula (5.97):
 

The coordinates of the centroid of the layout in the coordinate system whose origin is
in the shear centre are obtained from formula (2.10):
 

The distance between shear centre O and geometrical centre C is calculated from
formula (2.9):
 

with which—in making use of formula (2.11)—the value of the radius of gyration can
be calculated:

Torsion parameter k is obtained from formula (3.19):
Fig. 6.2 8-storey building for the example: ‘Layout 2’.
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6.2.1 Critical load

The basic critical loads are calculated from formulae (3.11) and (3.16):
 

where the value of critical load parameter α (8.04) is obtained from Table 3.2 in section
3.1 as a function of

 
Because of the monosymmetrical arrangement of the bracing system, the coupling of
the basic modes can be calculated using formula (3.28). The value of the mode coupling
parameter is obtained from Table 3.3 as
 

ε =0.231

as a function of

 

 
The combined critical load is
 

and
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Ncombined=ε Ncr,Y=0.231×947.5=218.8 MN.
 
As the sway critical load in the perpendicular direction is greater than the combined
critical load, the critical load of the building is
 

Ncr=218.8 MN.
 
6.2.2 Fundamental frequency

The first natural frequencies for the basic modes are calculated from formulae (3.52)
and (3.55):
 

 
where the value of modifier rf (0.892) is obtained from Table 3.8. The value of frequency
parameter η in the formula of fϕ (η=0.565) is obtained from Table 3.9 in section 3.2.1 as
a function of torsion parameter k.
The coupling of the basic modes is calculated using formula (3.65). The value of the
mode coupling parameter is obtained from Table 3.3 as
 

ε =0.229
as a function of

and
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The combined frequency is
 

As the lateral frequency in the perpendicular direction is greater than the combined
frequency, the fundamental frequency of the building is
 

f = 0.396 Hz.
 

6.2.3 Maximum stresses and deformations

The torque around the shear centre is obtained from formula (5.6) where µ is zero as the
horizontal load is uniformly distributed:
 

mz=qxyc+qyxc=21.45×11.965=256.65 kNm/m.
 
The maximum top translations of the equivalent column are obtained from formulae (5.98):
 

The maximum top rotation is calculated from formula (5.99):
 

or, in making use of formula (5.33), in degrees:
 

ϕ max=57.3×0.00219=0.126°.
 
This rotation also represents the rotation of the building. The maximum horizontal
displacements of the building are obtained using formulae (5.34):
 

vmax=vA=v+xA tanϕ =–0.011–23.965×tan(0.126)=–0.064 m,
 
 

umax=uB=u+yBtanϕ =–0.009–7.5×tan(0.126)=–0.026 m.
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The maximum shear force factor [formula (5.100)] and the maximum bending moment
factor [formula (5.101)] are needed for the calculation of the maximum shear forces and
bending moments in the bracing shear walls:

The maximum shear forces in the bracing elements are obtained from formulae
(5.102) and (5.103). The values are summarized in Table 6.5. The maximum bending
moments are obtained from formulae (5.104) and (5.105) and are tabulated in
Table 6.6.

As a function of k (k=0.232), Table 5.3 gives the location of Mt,max at z=0.982H=3.57 m
and, according to formula (5.106), the maximum value is
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The warping torsional moment assumes maximum at z=0, which is obtained from formula
(5.107) as:
 

Mω ,max=mzH=256.65×24=6159.6 kNm.
 
The efficiency of the bracing system has improved considerably with ‘Layout 2’ and
the maximum horizontal displacements in directions x and y decreased by 99% and
42%, respectively. The value of the global critical load increased by 7193% and the
smallest coupled frequency by 742%. However, the maximum displacement in direction
y still exceeds the recommended maximum:

 
The efficiency can still be improved by slightly modifying the position of the bracing
walls for ‘Layout 3’.

6.3 CASE 3

‘Layout 3’ in Fig. 6.3 only shows a small change compared to the previous case: the
shear walls are at the same location but shear walls No. 2 and No. 4 are rotated by 90
degrees. Table 6.7 gives the geometrical and stiffness data for the new arrangement.

The coordinates of the shear centre—from formula (5.96)—are
 

x ̄    o=12.0m       and       ȳ    o=7.5m.
 
The warping constant is obtained from formula (5.97):
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The geometrical centre coincides with the shear centre so the coordinates of the
geometrical centre in the coordinate system whose origin is in the shear centre are
 

xc= 0.0 m    and    yc= 0.0 m.
 

 
Fig. 6.3 8-storey building for the example: ‘Layout 3’.
 
The radius of gyration—with t=0—is obtained from formula (2.11):
 

Torsion parameter k is obtained from formula (3.19):
 

170 Illustrative example



6.3.1 Critical load

The basic critical loads are calculated from formulae (3.11) and (3.16):

 
where the value of critical load parameter α (7.90) is obtained from Table 3.2 in section
3.1 as a function of

As the shear centre of the bracing system and the geometrical centre of the plan of the
building coincide, the basic critical loads do not couple and the smallest one is the
global critical load:

Ncr=947.5 MN.

6.3.2 Fundamental frequency

The first natural frequencies for the basic modes are calculated from formulae (3.52)
and (3.55):
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The value of frequency parameter η (η =0.561) in the third formula is obtained from
Table 3.9 in section 3.2.1 as a function of torsion parameter k.

The basic modes do not combine, so the smallest natural frequency of the building is

f=0.827 Hz.
 

6.3.3 Maximum stresses and deformations

Because of xc=yc=0, the value of the external torsional moment is zero:
 

mz=0.
 
The maximum top translations of the equivalent column are obtained from
formulae (5.98):
 

As the external torsional moment is zero, the building does not rotate around the shear
centre. The maximum translations of the building are equal to the maximum translations
of the equivalent column:

umax=uB=u=–0.009 m, vmax=vA=v=–0.011 m.
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As the external torque equals zero, there is no need to calculate the maximum
shear force factor and the maximum bending moment factor. The maximum shear
forces and bending moments in the bracing elements are obtained from formulae
(5.102), (5.103), (5.104) and (5.105) and their values are summarized in Tables 6.8
and 6.9.

The efficiency of the bracing system has further improved compared to ‘Layout
2’. The value of the global critical load increased by 333% and the smallest natural
frequency by 109%. The maximum horizontal displacements in directions x and y
decreased by 65% and 83%, respectively, compared to the previous case. The
maximum displacements in both directions are now smaller than the recommended
maximum values:
 

 
The comparison of the values of the maximum shear forces and bending moments
with those of the previous cases also shows significant improvement: the maximum
values of the shear forces (in walls No. 3 and No. 4 for ‘Layout 1’ and in wall No. 4
for ‘Layout 2’) dropped by about 50–60%. There is also a similar reduction in the
values of the maximum bending moments. These favourable changes are due to
the fact that the elements of the bracing system with ‘Layout 3’ are arranged
optimally: the bending and torsional stiffnesses are maximum and the external
torque is minimum (=zero).
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6.4 EVALUATION

The results of this example and the evaluation of over one hundred bracing systems
show that the structural performance of a building is greatly influenced by the
arrangement of the bracing system [Zalka, 1997]. As the third arrangement (Case 3)
for the example above demonstrated, even a small change in the arrangement can
significantly alter the response of the building to the external load. An optimum (or
near optimum) arrangement can be achieved by following the three guidelines
below.

The first step is to produce a well balanced system with adequate bending
stiffnesses in both directions x and y. When the adequacy of the bending stiffnesses
is judged, the external load should always be considered: the bending stiffness
should be ‘proportional’ to the load in the direction in question.—The system in
‘Layout 1’ has very small bending stiffness in direction x (Iy=0.0133) and by orders
of magnitude greater bending stiffness in direction y (Ix=8.3333), while the external
load in both directions is of the same order of magnitude (qx=18; qy=21.45).
 

 
When the bracing system has the necessary bending stiffness in both directions, the
efficiency of the system can usually be further improved by maximizing its torsional
stiffness, thus reducing the effect of the rotation of the building around the shear
centre. The most effective way of doing this is to increase the warping stiffness of the
system. In the typical case when the bracing system is dominated by shear walls, the
warping stiffness is increased by increasing the ‘torsion arm’ of the shear walls. The
‘torsion arm’ is the perpendicular distance between the plane of the wall and the shear
centre of the bracing system. Figure 6.4/a shows a system having shear walls with zero
torsion arms where the warping torsional stiffness of the system is zero. The shear
walls in Fig. 6.4/b have long torsion arms (l1, 12, l3 and l4): therefore the system has
great warping stiffness.

Fig. 6.4 Increasing the warping stiffness of the system. a) Iω ≈ 0, b) Iω = max.
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Reducing the torsional effect of the external load is also very important. The resultant
of the external horizontal load is usually assumed to pass through the centroid of the
plan of the building and imposes a torque around the shear centre, unless the shear
centre and the centroid coincide. This torque can have a significant and detrimental
effect on the performance of the bracing system. This effect can be considerably
reduced by shortening the distance between the shear centre and the centroid.—
‘Layout 3’ (Fig. 6.3) shows a good example for eliminating the effect of torsion: the
shear centre and the centroid coincide and both the deformations of the building as
well as the shear forces and bending moments in the bracing elements are much smaller
than in the previous cases.

When all the three recommendations above are implemented, the resulting bracing
system is well balanced and provides effective resistance against horizontal
displacements and rotations usually in the form of a symmetrical (or nearly symmetrical)
system.
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Global critical load ratio

A number of publications and guidelines are available for the elastic stability
analysis of the elements of complex systems. The choice is much more limited
when the stability of the whole system is investigated. The practical significance
of the elastic global critical load has been recognized but research in this direction
has concentrated mainly on framed structures [Dulácska and Kollár, 1960; Kollár,
1972; Council…, 1978a and 1978b; Stevens, 1983]. Theoretical research and recent
developments in computer modelling of structures show that it is essential to
understand whole building behaviour as an analysis based on global approach
can lead to safer and more economical structures. Dowrick [1976] drew attention to
the importance of the overall stability of structures but national and international
codes have been slow to incorporate global approaches. Halldorsson and Wang
[1968] suggested that a ‘general safety factor’ should be used for building structures
as its importance is comparable to that of the ‘overturning safety factor’ used in
the design of dams. Chwalla [1959] recommended some forty years ago the
introduction of the factor. The reason for not taking the ‘general safety factor’ on
board was probably the lack of simple and clear methods for the determination of
the global critical load at that time.

National [BS5950, 1990; DIN 18800, 1990; MSZ series, 1986] and European
[Eurocode 1, 1995; Eurocode 2, 1992; Eurocode 3, 1992] codes do not use a consistent
approach to sway instability and do not address torsional instability although the
importance of these phenomena and their direct link with global safety are well
known [Council…, 1978a and 1978b; CEB, 1983; ISE, 1988].

It is shown in this chapter that, based on the global critical load introduced in
Chapter 3, the global critical load ratio can be easily produced and effectively used
for assessing the safety and the performance of the bracing system.



7.1 GLOBAL CRITICAL LOAD RATIO—GLOBAL SAFETY
FACTOR

The simple and expressive procedures presented in Chapter 3 for the determination of
the global critical loads and Dunkerley’s summation theory make it possible to introduce
the elastic global critical load ratio as follows [MacLeod and Zalka, 1996]. The global
critical load ratio is the ratio of the total vertical load (N) and the global critical load (Ncr):
 

 
When the structure is subjected to two load systems, e.g. concentrated top load and
UDL on the floors, then the global critical load ratio assumes the form:
 

 
where F is the total concentrated load on top floor level, Fcr is the corresponding
critical concentrated load, Ncr is the critical load for buildings under uniformly
distributed floor load and
 

N=QLBn (7.3)
 
is the total uniformly distributed vertical load measured on ground floor level. In
formula (7.3), Q is the intensity of the uniformly distributed floor load, L and B are the
plan length and breadth of the building and n is the number of stories.

It is noted here that the reciprocal of the critical load ratio can be considered a
global safety factor [Zalka and Armer, 1992]. Relationship (7.1) is used in this sense in
DIN 18800 [1990]; Kollár [1977] also used this approach although he did not actually
used the term ‘global safety factor’ when he investigated the stability of a building
using different bracing system arrangements.

It follows from the definition of the global critical load ratio that theoretically any
value smaller than one indicates stable equilibrium. However, it is advisable to limit its
value. In accordance with code regulations [BS5950, 1990; DIN 18800, 1990; Eurocode
3, 1992], the recommended limit [MacLeod and Zalka, 1996] is
 

(7.1)

(7.2)
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v ≤ 0.1.
 
If condition (7.4) is satisfied, then the vertical load bearing elements can be considered
as braced (by the bracing system) and neglecting the second-order effects (due to
sway and torsion) may result in a maximum 10% error. This approximation seems to be
acceptable in view of the levels of approximation inherent in many other characteristics
such as load, material qualities, stiffness, etc.—The behaviour and design of storey-
height columns in a braced building is discussed briefly in section 3.1.6.b and in detail
in [Kollár and Zalka, 1999].

If condition (7.4) is not satisfied, then the stability of the building can still be
acceptable but stable equilibrium must be demonstrated by using some more accurate
procedure which takes into account the second-order effects.

According to a widely accepted rule of thumb in the structural design of buildings,
there is an ‘absolute bottom line’, as far as global safety is concerned: the value of the
global safety factor must be at least four. When the global critical load ratio is used,
this translates to
 

vmax ≤ 0.25.
 

7.2 GLOBAL CRITICAL LOAD RATIO—PERFORMANCE
INDICATOR

The most important feature of the global critical load ratio is, in accordance with the
definition, that it represents the ‘level’ of stability of the building. In addition, the
global critical load ratio can be conveniently used to monitor the structural performance
of the bracing system. This will be demonstrated using the data and the results of the
examples presented in Chapter 6.

Two horizontal load cases are considered for the stress analysis: a horizontal load
of 28 kN/m with an angle of 50° with axis x (Table 7.1) as in Chapter 6, and a horizontal
load of 28 kN/m but with an angle of 90° with axis x (Table 7.2). The characteristic
results of the stress analysis are given in the second, third and fourth columns of the
tables. The global critical load ratio is calculated assuming a uniformly distributed
floor load of intensity Q=8.0 kN/m2 (representing a total vertical load of 23.04 MN) for
each of the three layouts. The global critical load ratios are given in the last column in
Tables 7.1 and 7.2. The weight per unit volume of the building is assumed to be γ =2.50
kN/m3 for the frequency analysis.

(7.4)

(7.5)
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With the 8-storey building featured in the example in the previous chapter, the shear
forces, the bending moments, the rotations and particularly the horizontal displacements
could be considered as characteristics of the performance of the bracing system. As
the efficiency of the bracing system was improved by rearranging the elements of the
bracing system, the maximum deformations of the building decreased. A similar tendency
was observed regarding the change in the value of the global critical loads—and the
global critical load ratios which originate from them—and the fundamental frequency
of the building: in parallel with the decrease of the maximum translations, the value of
the global critical loads and the fundamental frequencies increased and the value of
the global critical load ratios decreased (Table 7.1).
 

The question emerges, which characteristic is best used for assessing the performance
of the bracing system: the maximum horizontal displacement, the fundamental frequency
or the global critical ratio? It can be said against the fundamental frequency that it
plays a relatively minor role in structural engineering design: the designer of an ordinary
building rarely carries out a dynamic analysis. The advantage of using the maximum
displacement would be its practical importance: it is very useful to know the
displacements of a building. However, there are two disadvantages here: the maximum
displacement is not a nondimensional quantity and its value also depends on the
direction of the horizontal load. The first disadvantage can easily be eliminated by
introducing the maximum displacement ratio as the ratio of the maximum displacement
to the recommended maximum displacement H/500 (the fourth column in Table 7.1).
However, the second disadvantage is an inherent one and can lead to unfavourable
situations as a fatal weakness of the bracing system may be underestimated. The
building used for the numerical example reveals this shortcoming. If an external load in
direction y is applied, then, although the performance of the bracing system is correctly
characterized by the maximum displacements, the displacements do not reveal the
drastic difference between ‘Layout 1’ and the other two layouts (Table 7.2), which is
obvious when the horizontal load has a 50° angle with axis x (Table 7.1). The fatal
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weakness of the bracing system that it has practically no bending stiffness in direction
x (Layout 1) does not come through as spectacularly as with monitoring the global
critical load ratio.

 
On the other hand, the global critical load ratio is a nondimensional quantity and its
value does not depend on the direction of the load, i.e. it assumes a uniformly
distributed vertical load. The great advantage of the global critical load ratio approach
is that it ‘automatically’ considers the most dangerous circumstances, i.e. it
automatically takes into consideration whether the system tends to develop sway,
torsional or combined sway-torsional deformations. In addition, the global critical
load ratio is very sensitive to changes in the size and/or in the arrangement of the
elements of the bracing system. Its importance is also underlined by the fact that it
has a direct link with the safety of the building. The calculation of the global critical
load ratio is simple: the examples in Chapter 6 show that it can be carried out in
minutes and it can be repeated even faster when the necessary modifications in the
bracing system are made.

It is therefore recommended that, in addition to the conventional element-based
approach, the global critical load ratio approach also be used in the design process
in assessing the performance and ‘health’ of the bracing system. The use of the
global critical load ratio offers the following additional advantages:
 
• Construction costs can be reduced by finding the most effective bracing system

(using the least material).
• Safety levels can be increased if necessary, without increasing construction costs.
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7.3 FURTHER APPLICATIONS

As the magnitude of the vertical load on the building increases in relation to the critical
load, the value of the stresses and deformations which are caused by the horizontal
load increases and the value of the natural frequencies decreases. The critical load
ratio can be used to allow for these second-order effects.

In making use of the magnification factor
 

the accuracy of the formulae given in Chapters 4 and 5 for the stresses and deformations
can be improved. Factor v in formula (7.6) is the global critical load ratio. Values of the
stresses and deformations multiplied by magnification factor (7.6) take into account
the fact that the stresses and deformations of a building under horizontal loads increase
due to the vertical load.

The accuracy of the formulae for the natural frequencies can also be improved in a
similar way. In the dynamic analysis of beam-columns it is shown that the axial
compressive forces reduce the value of the natural frequencies of vibration by a factor
of (1—v)1/2 [Timoshenko and Young, 1955]. In allowing for this effect, the accuracy of
the formulae given in section 3.2 can be improved by incorporating the factor into the
formulae:

 
In formula (7.7), fc is the frequency which includes the effect of the vertical load, f is the
frequency which is calculated by ignoring this effect (using the formulae given in
section 3.2) and v is the relevant critical load ratio. The individual formulae for the basic
natural frequencies are given in section 3.2.5.a.

(7.6)

(7.7)
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Use of frequency measurements
for the global analysis

The application of the equivalent column concept in Chapters 3 and 5 resulted in
simple procedures and closed-form solutions for the global structural analysis. A
weakness of the model used for the analysis is that when the calculation model is
established only the bracing walls, cores and frameworks (the primary structural
elements of the ‘building skeleton’) are taken into account. Although this is a widely
accepted assumption in structural analysis, tests on real buildings show that the
behaviour changes considerably during the construction process and the final
behaviour can be quite different. The effect of the floor slabs on the lateral stiffness
is normally not significant [Ellis and Ji, 1996] but other structural and non-structural
elements can play a more important role. The lateral stiffness of completed buildings
can be much greater than that of the skeleton of the building. Tests on the 8-storey
Cardington Steel Building after completion showed that a bare frame analysis can be
as much as 500% conservative in predicting the lateral stiffness of the building
[Daniels, 1994]. Torsion can be significantly more dangerous than predicted by
some design models.

An efficient way of improving the accuracy of the theoretical procedures is to
incorporate experimental data into the calculation. The aim of this chapter is to present
such a method which takes into account all the contributing structural and non-structural
elements. The experimental data needed for the procedure are the natural frequencies
which are used for establishing the characteristic stiffnesses. The stiffnesses are then
used to create more accurate formulae for the global stress and stability analyses of
the building.

The simple procedure presented in this chapter can be used to calculate the critical
loads and the maximum horizontal displacements and the rotation of buildings with a
doubly symmetrical bracing system.



8.1 STIFFNESSES

The procedure to be presented is based on the characteristic stiffnesses which are
obtained using experimental data. The lateral stiffnesses for multistorey buildings are
obtained from formulae (3.52) by simple rearrangement:
 

The torsional stiffness is obtained in a similar manner by rearranging formula
(3.55):
 

The contribution of the Saint-Venant stiffness to the overall torsional resistance of the
building is accounted for by frequency parameter η in formula (8.2).

When the warping stiffness of the bracing system is zero (e.g. a single bracing core
of closed cross-section), the torsional stiffness is obtained from formula (3.56) where
i=1 is substituted for the fundamental torsional frequency:

(8.1)

(8.2)

(8.2a)
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The stiffnesses for single-storey buildings are obtained from formulae (3.67) and
(3.72) as

When the warping stiffness of the bracing system is zero, the torsional stiffness is
obtained from formula (3.70):
 

8.2 CRITICAL LOADS

In combining the stiffnesses given by formulae (8.1) to (8.4) and the theoretical basic
critical loads presented in section 3.1.1, simple closed-form formulae are obtained for
the basic critical loads which now contain the frequencies measured on the building.

8.2.1 Multistorey buildings under uniformly distributed floor load

In making use of formulae (3.11) and (8.1), the formulae for the basic sway critical loads
are obtained as

where, based on formulae (3.15) and (3.53a) and Tables 3.1 and 3.8

(8.2a)

and

(8.3)

(8.4)

(8.4a)

(8.5)
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is a modifier which takes into account the fact that the load and the mass are concentrated
on floor levels. Values for r are given in Table 8.1.
 

The pure torsional critical load is obtained by combining formulae (3.16) and (8.2):

Critical load parameter α and frequency parameter η are to be found in Figs 3.3 and 3.11
and Tables 3.2 and 3.9 in Chapter 3 as a function of ks and k, respectively. When values
for k (and for ks) are not available, e.g. the size and/or the arrangement of the elements of
the bracing system are not known, or when the effect of warping stiffness EIω is by
orders of magnitude greater than that of the Saint-Venant stiffness GJ (i.e. when k<<1
holds), then the approximation k=0 (and ks=0) can be used. This approximation leads to
 

Formula (8.8) is always conservative and in most practical cases (when k<0.5 holds)
results in a critical load smaller than the exact one by not more than 10%.
Formulae (8.7) and (8.8) cannot be used when the warping stiffness is zero. In such
cases, the combination of formulae (3.17) and (8.2a) yields the critical load of pure
torsional buckling:
 

(8.6)

(8.7)

(8.8)

(8.9)
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8.2.2 Concentrated top load; single-storey buildings

With single-storey buildings when the load is concentrated on top floor level, the
basic sway critical loads are obtained by combining formulae (3.30) and (8.3):

The combination of formulae (3.31) and (8.4) leads to the critical load of pure torsional
buckling as
 

In formulae (8.10) and (8.11) ρ * is the mass density per unit area of the top floor,
defined by formula (3.68).
When the warping stiffness dominates over the Saint-Venant torsional stiffness
(i.e. k → 0), formula (8.11) simplifies to
 

Formulae (8.11) and (8.12) cannot be used in the special case when the warping stiffness
is zero. In such a case, the combination of (formulae (3.31a) and (8.4a) leads to
 

8.3 DEFORMATIONS

By making use of the stiffnesses defined by formulae (8.1) to (8.4), the deformations of
buildings subjected to horizontal load can be easily calculated. When the formulae for
the horizontal displacements are derived, however, an important aspect has to be
borne in mind. The theoretical formulae in Chapter 5 yield the displacements in the
‘arbitrary’ directions x and y (normally parallel with the sides of the building for
rectangular layouts), but the formulae of the lateral stiffnesses defined by formulae
(8.1) and (8.3) are related to principal directions X and Y.

(8.11)

(8.12)

(8.13)

(8.10)
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8.3.1 Multistorey buildings subjected to horizontal load of trapezoidal
distribution

After combining formulae (5.16), (5.17) and (5.19), setting Ixy=0 and substituting formula
(8.1) for the lateral stiffnesses, the horizontal displacements of the equivalent column
in the principal directions are obtained as
 

and

where

The equivalent column develops maximum displacements in the principal directions
at z=0:

 

 

(8.14)

(8.15)

(8.16)

and

(8.17)
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To calculate the rotations of the equivalent column, the Saint-Venant stiffness in
formula (5.27) should first be replaced by the warping stiffness by making use of
formula (3.19). The resulting expression can then be combined with formula (8.2) of the
warping stiffness which contains the fundamental torsional frequency measured on
the building. Some rearrangement then results in the rotation as

Maximum rotation develops at z=0:

The rotation of the equivalent column can be calculated in a much simpler manner
when the torsional resistance of the bracing system is dominated by the warping
stiffness and the effect of the Saint-Venant torsional stiffness is negligible. If this
condition is satisfied, as is the case in most practical structural engineering applications,
then formula (5.31) can be used. After carrying out the necessary modifications of
formula (8.2) of the torsional stiffness (k → 0), and making some rearrangement, the
formula for the rotations of the equivalent column is obtained as

Maximum rotation develops at the top of the equivalent column:
 

 

(8.18)

(8.19)

(8.20)

(8.21)
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Formulae (8.18) to (8.21) cannot be used when the warping stiffness of the equivalent
column is zero. In such cases the rotation can be calculated by combining formulae
(5.29) and (8.4a):

 
Maximum rotation develops at z=0:

8.3.2 Concentrated force at top level; single-storey buildings

The horizontal displacements of the equivalent column under a concentrated force are
given by formulae (5.75a) and (5.75b). After substituting expressions (8.3) for the
lateral stiffnesses, the horizontal displacements are obtained as
 

where

Maximum displacements develop at the top of the equivalent column:
 

 

(8.22)

(8.23)

and

(8.24)

(8.25)

and

(8.26)
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The rotations of the equivalent column are obtained by combining formulae (5.77),
(3.19) and (8.4):
 

 Maximum rotation develops at z=H:

 
The above formulae for the rotations simplify when the Saint-Venant stiffness is
negligibly small. The combination of formulae (5.79a) and (8.4) (with k=0) results in
 
Maximum rotation develops at the top of the equivalent column:

 Formulae (8.29) to (8.31) cannot be used when the warping stiffness of the equivalent

column is zero. In such cases, the rotation is obtained by substituting formula (8.4a)
for GJ in formula (5.79c):

 
Maximum rotation develops at the top of the equivalent column:

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)
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8.3.3 Deformations of the building

The rotation of the building is identical to the rotation of the equivalent column. When
the displacements of the building are calculated, however, in addition to the displacements
of the equivalent column, the additional displacements due to the rotation of the building
also have to be taken into account—as described in section 5.3.
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Equivalent wall for frameworks;
Buckling analysis of planar structures

The structural types covered in this chapter include frameworks on pinned and fixed
supports, with or without cross-bracing, in-filled frameworks, shear walls and coupled
shear walls. The simple procedures and closed-form solutions produced here make it
possible for the structural designer to carry out planar stability checks on multistorey,
multibay structures in minutes. In addition, a simple procedure is given for the
establishment of an equivalent wall for frameworks and coupled shear walls. In using
the equivalent wall, the frameworks and coupled shear walls can be included in the
bracing system, the equivalent column introduced in Chapter 2 can be set up and the
3-dimensional global analyses presented in the previous chapters can be carried out.

9.1 INTRODUCTION

There are basically two ways to produce the critical load of frameworks and coupled
shear walls. Structural designers can rely on commercially available computer programs
based on the ‘exact’ method or they can use approximate methods. Both approaches
have their advantages and disadvantages.

Well-established methods have been developed for the calculation of stresses,
deformations and frequencies in frameworks and coupled shear walls and a number of
computer packages are available for the exact analysis. These computer procedures
are now standard items in design offices. The routine application of these programs
has also proved their reliability and accuracy.

Partly because of the large size of the structures and partly because of the sometimes
ill-conditioned stiffness matrixes, the situation regarding the stability analysis is
somewhat different. The stability analysis of multistorey, multibay frameworks and



coupled shear walls is a formidable task and the larger the structure, the more complicated
the solution becomes. The complexity of the problem and the great number of input
and output data needed for the analysis of large structures often make it difficult to get
a clear picture of the behaviour and to achieve optimum structural solution. The
reliability of some computer programs is also questionable in certain stiffness regions.
Even sophisticated FE procedures may have difficulties in determining the critical
load. The LUSAS ‘User Manual’ [1995] warns that the solution is not without its
problems and convergence problems might emerge in the iterative procedure. Indeed,
the warning was found to be justified when the accuracy analysis of the methods
presented in this chapter was carried out.

Some excellent approximate procedures have been developed. However, they are
either still too complicated for hand calculations or their range of applicability is limited
[Stevens, 1967; Wood, 1974 and 1975; Horne, 1975; Council, 1978a and 1978b; MacLeod
and Marshall, 1983; Lightfoot, McPharlin and Le Messurier, 1979; Wood and Marshall
1983; MacLeod, 1990]. It is a common ‘feature’ of these approximate methods that their
limitations have not been fully investigated and very little information has been
published about their accuracy.

The main objective of this chapter is to produce simple, descriptive, albeit
approximate, closed-form solutions for the stability analysis of frameworks and
coupled shear walls and to introduce an equivalent wall which can be used for the 3-
dimensional global stability analysis. It is also the intention of this chapter to establish
simple models for the stability analysis, which offer a clear picture of the behaviour
and show clearly the effects of the most representative geometrical and stiffness
characteristics.

The formulae and procedure presented here are based on the application of the
continuum method and the summation theorems of civil engineering. By generalizing
Asztalos’ [1972] method and using the continuum model, a simple procedure was
developed and closed-form solutions were given for the approximate stability analysis
of frameworks and coupled shear walls of rectangular network [Zalka and Armer, 1992].
The method was further developed by Kollár [1986] who also demonstrated that
different planer bracing elements could be treated in a unified manner by using a model
that is based on a sandwich column with thin or thick faces. He also indicated that the
accuracy of the continuum model could be further improved. The results of the latest
developments [Zalka, 1998b] with the improved formulae are presented in this chapter.
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9.2 CHARACTERISTIC DEFORMATIONS, STIFFNESSES AND PART
CRITICAL LOADS

A great number of material, geometrical and stiffness characteristics should be
considered when the critical load is calculated. As it is not possible to take
everything into consideration, the question emerges what to include and what to
neglect when the mathematical and physical models of the structure are
established.

All the important characteristics must be taken into consideration; otherwise the
results are not accurate enough. To decide which characteristics are important and
which are not, it is necessary to know their contribution to the resistance of the
structure. It is also important to know the contribution of the different characteristics
if the performance of the structure is to be improved. One way to achieve this is the
establishment of the characteristic deformations and, as deformations and stiffnesses
are in close relationship, the related stiffnesses. A part critical load can then be attached
to each type of stiffness. Finally, using these part critical loads, the overall critical load
of the structure can be easily produced.

The establishment of the continuum model, the derivation of the governing
differential equations and comprehensive numerical analyses show that the deformation
of a framework or a system of coupled shear walls can be superimposed using three
different types of deformation: the full-height bending deformation of the individual
columns/walls (Fig. 9.1/a), the full-height bending deformation of the structure as
whole unit (Fig. 9.1/b) and the shear deformation of the structure (Fig. 9.1/c) [Zalka,
1992]. A characteristic stiffness can be attached to each type of deformation, which
then leads to the corresponding part critical load. The overall critical load is finally
obtained by combining these part critical loads.

The structure can utilize its bending stiffness in two ways. The columns may develop
full-height buckling and the role of the (relatively flexible) beams is restricted to
connecting the columns (Fig. 9.1/a). The structure behaves as if it was a set of columns
and overall buckling is characterized by the buckling of the columns of height H,
having a bending stiffness of
 

where Ec,i and Ic,i are the modulus of elasticity and the second moment of area of the ith
column and n stands for the number of columns. (The full-height bending of the

(9.1)
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individual columns is sometimes called ‘local’ bending as Ic,i is calculated with respect
to the local centroidal axis of the ith column, marked with l in Fig. 9.6/a.)

Assuming fixed support for the columns, the bending critical load which is associated
with the local bending stiffness, is obtained using Timoshenko’s classical formula
[Timoshenko and Gere, 1961] for columns under uniformly distributed vertical load as
 

for structures under uniformly distributed floor load and as
 

for structures under concentrated top load, where H is the height of the structure and
rs is a reduction factor whose role is discussed later on and whose values are given in
Table 3.1 in section 3.1.1.

The effect of the full-height bending buckling of the individual columns on the
overall critical load is normally not significant. However, this effect does contribute to
the overall behaviour and in certain cases, for example when frameworks have relatively
stiff columns or when coupled shear walls have wide walls and relatively weak lintels,
the contribution can be considerable.
 

 
A structure may develop full-height bending in a different manner. The bending
deformation of the framework may be characterized by the bending of the framework as
a whole structural unit when the columns act as longitudinal fibres (in tension and

(9.2)

(9.3)

Fig. 9.1 Characteristic deformations. a) Full-height bending of the individual columns,
b) full-height bending of the framework as a whole, c) shear deformation.
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compression) and the role of the (relatively stiff) beams is to transfer shear so as to
make the columns work together in this fashion (Fig. 9.1/b). The bending stiffness
associated with this bending deformation is defined by
 

The term ‘global’ bending is also used to describe the full-height bending of the
framework as a whole unit as Ig, the ‘global’ second moment of area of the cross-
sections of the columns, is calculated with respect to their ‘global’ centroidal axis
(marked with g in Fig. 9.6/a):
 

In the above formulae, ti is the distance of the ith column from the centroid of the
cross-sections and Ac,i is the cross-sectional area of the ith column.
The bending critical load which is associated with the full-height bending of the
structure as a whole unit is obtained from
 

for structures under uniformly distributed floor load and from
 

for structures under concentrated top load. Due to the nature of the full-height bending
of the whole framework when the columns act as longitudinal fibres of a solid column,
the type of the supports of the columns—fixed or pinned—is not important; the only
task of the supports is to prevent vertical movements. It follows that formulae (9.6) and
(9.7) are equally valid for frameworks on fixed and also on pinned supports.
Reduction factor rs in formulae (9.2) and (9.6) allows for the fact that the actual load of
the structure consists of concentrated forces on floor levels and is not uniformly
distributed over the height as is assumed for the derivation of the original formulae for

(9.4)

(9.5)

(9.6)

(9.7)
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buckling. The continuous load is obtained by distributing the concentrated forces
downwards (cf. Figs 3.1 and 9.4) resulting in a more favourable load distribution. The effect
of this unconservative manoeuvre can be accounted for by applying Dunkerley’s summation
theorem (cf. section 3.1.1) which leads to the introduction of the reduction factor
 

This phenomenon is similar to the one discussed in section 3.1.1 and values for the
reduction factor rs are given there, in Table 3.1, as a function of the number of
storeys n.

The full-height bending of the whole structure normally plays an important
role in the behaviour and it has a significant effect on the value of the overall
critical load.

The shear stiffness which, by definition, also represents the shear critical load, is
linked to the shear deformation of the structure. The shear deformation is characterized
by lateral sway which is mainly resisted by the stiffening effect of the beams (Fig. 9.1/
c; Fig. 9.2/a). The shear deformation and shear stiffness are associated by two
phenomena: full-height sway (due to the stiffening effect of the beams over the height
of the framework) and storey-height sway (because the stiffening effect is only
concentrated on storey levels). Consequently, the corresponding shear critical load
originates from two sources and its value is obtained in two steps.

First, in assuming that the stiffening effect of the beams is continuously
distributed over the height and there is no additional sway between the beams
(Fig. 9.2/b), the part critical load which is associated with this full-height shear
deformation is obtained as
 

where Eb,i, Ib,i and li are the modulus of elasticity, the second moment of area and the
length of the ith beam and h is the storey height.

Second, in assuming that the structure only develops sway between the storey
levels, a storey-height section of the structure is investigated. Assuming frameworks
on fixed supports, each storey behaves in the same way (Fig. 9.2/c) and the part critical
load which characterizes this storey-height shear deformation is obtained as
 

(9.8)

(9.9)
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According to the Föppl-Papkovich theorem [Tarnai, 1999], the two part critical loads
can be combined and the shear critical load of the structure is obtained as
 

Formula (9.11) is of general validity. In the special case when all the columns, beams
and bays are identical, respectively, i.e. with li=l, Ic,i=Ic, Ib,i=Ib and Eb,i=Ec,i=Ec,i formula
(9.11) assumes the form
 

For single-bay frameworks (n=2), formula (9.11a) simplifies to

(9.10)

Fig. 9.2 Shear deformations. a) Total shear deformation, b) full-height (continuous)
shear, c) storey-height shear.

(9–11)

(9.11a)

where

(9.11b)
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It is important to note that the value of the shear critical load does not depend on the
distribution of the vertical load, and neither on the height of the structure. The type of
support of the structure may only indirectly affect the value of the shear stiffness
(through the storey-height shear stiffness).
It is noted here that the terms ‘global’ shear stiffness and ‘local’ shear stiffness are
also used for the full-height and storey-height shear stiffnesses as the associated
shear deformations affect the whole structure and the storey-height part of the whole
structure, respectively.
Theoretical investigations [Hegedüs and Kollár, 1987] and accuracy analyses [Zalka
and Armer, 1992] show that the three types of deformation do not always influence the
value of the critical load by the same ‘weight’ and cannot even develop at the same
time in certain stiffness regions. This can be taken into account by using combination
factor r which is defined as the ratio of the storey-height shear stiffness to the sum of
the storey-height and full-height shear stiffnesses:

Using the part critical loads associated with the full-height bending of the individual
columns, the full-height bending of the framework as a whole and the shear deformation
and some modifiers, it is possible to produce simple closed-form solutions for the
critical load of regular frameworks and coupled shear walls on different types of support,
with different structural arrangements and under different vertical loads. These formulae
are presented in the following sections.

9.3 FRAMEWORKS ON FIXED SUPPORTS

During buckling, frameworks on fixed supports normally develop a deformation which
is the combination of the three characteristic types of deformation (Fig. 9.3).

Three simple methods will be shown for the analysis in the following sections.
They represent three totally different approaches but they have one thing in common:
each method is based on the use of the three part critical loads Nl, Ng and K and the

(9.11c)

(9.12)
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critical load is obtained by the combination of the part critical loads. The methods are
described in detail in this section in relation to frameworks on fixed supports, and then
in the following sections they will be applied to frameworks on pinned supports,
frameworks with cross-bracing, infilled frameworks and coupled shear walls.
 

9.3.1 The application of summation theorems

Once the part critical loads are available, for example for frameworks under uniformly

distributed load, the repeated application of the Föppl-Papkovich theorem and the

Southwell theorem [Tarnai, 1999] results in a very simple formula for the critical load. In

considering the full-height bending of the structure as a whole unit and its shear

deformation, it is first assumed that the structure is stiffened against full-height bending

as a whole, then against developing shear deformation. The reciprocal summation of the

corresponding critical loads leads to the critical load of a framework with both full-height

bending and shear stiffnesses. However, the individual columns of the framework may

also develop full-height bending. The effect of this phenomenon can be taken into

account by applying the Southwell theorem: the critical load which belongs to the full-

Fig. 9.3 Frameworks on fixed supports.
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height buckling of the individual columns (Nl) and the combined critical load of the full-

height buckling as a whole (Ng) and shear critical load (K) have to be added up:

To make formula (9.13) more easily comparable to other formulae to be introduced later,
it is rearranged to

 
This formula can also be used for the calculation of the critical load of frameworks
under concentrated top load: Fl and Fg have to be substituted for Nl and Ng.

9.3.2 The continuum model

Although the continuum model was originally developed for the stress analysis of
proportional frameworks [Csonka, 1956; 1965a; 1965b] (cf. section 4.5), it has been
shown that its application to the stability analysis of regular frameworks results in
reliable elastic critical loads [Kollár, 1986; Zalka, 1998b].

The continuum model is obtained by cutting the beams at the contraflexure points
and then combining the individual columns of the framework to form an equivalent
column. The stiffening effect of the beams is taken into account by applying
concentrated bending moments to the columns at floor levels, which are then
uniformly distributed, leading to the shear stiffness of the model. In a similar manner,
the uniformly distributed load on the beams is first replaced by concentrated forces
at floor levels, then these forces are uniformly distributed over the height of the
column (Fig. 9.4).

The equilibrium of an elementary section of the equivalent column leads to the
governing differential equation
 

(9.13)

(9.13a)

(9.14)
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where N(z)=qz is the vertical load of the structure at z and q is the intensity of the
uniformly distributed vertical load. Reduction factor rs is given by formula (9.8) and in
Table 3.1. The relationship between the intensity of the uniformly distributed load on
the beams (p) and the intensity of the uniformly distributed vertical load (q) is
 

where L is the total width of the framework and n is the number of storeys.

The governing differential equation is accompanied by the boundary conditions

in the coordinate system whose origin is fixed to the top of the equivalent column
(Fig. 9.4/e).

(9.15)

Fig. 9.4 Origination of the continuum model for frameworks on fixed supports.
a) Framework, b) replacement of beam-load, c) distribution of load over the
height, d) cutting through the beams, e) equivalent column.
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The model directly takes into consideration the full-height bending of the individual
columns and the shear deformation of the framework while the full-height bending of
the structure as a whole is incorporated into the model and into the formulae afterwards.
The solution of the eigenvalue problem defined by equation (9.14) leads to
 

where Nl, Ng, K and r are the part critical loads and the combination factor, as introduced
in section 9.2 and defined by formulae (9.2), (9.6), (9.11) and (9.12).
 

The critical load parameter α (the eigenvalue of the problem) in formula (9.17) is given
in Fig. 9.5 and in Table 9.1 as a function of stiffness parameter
 

The solution of eigenvalue problem (9.14) is demonstrated in Appendix B in
detail.

(9.17)

(9.18)
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The solution is obtained in a similar—but much simpler—way when the framework is
subjected to concentrated load at the top of the structure:
 

 
where K, Fl and Fg are the shear critical load, the full-height bending buckling load of
the individual columns and the full-height bending buckling load of the structure as a
whole, respectively, and r is the combination factor, given in section 9.2.

9.3.3 The sandwich model

The sandwich model [Plantema, 1961; Allen, 1969] offers a different approach to the
problem. The faces of the sandwich column represent the columns of the framework
(with its ‘local’ and ‘global’ bending stiffnesses) and the connecting media represents
the beams (with their shear stiffness) (Fig. 9.6/a/b).

According to this approach, the framework is analysed using an equivalent sandwich
column with either thick or thin faces. The model with thin faces will be used here. This
model takes into consideration the ‘global’ bending and shear stiffnesses but neglects
the ‘local’ bending stiffness of the framework. This approximation is in line with
frameworks on pinned supports as, because of the pinned supports, the individual

Fig. 9.5 Critical load parameters α and αp for fixed and pinned frameworks.

(9.19)
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columns of the framework cannot ‘utilize’ their own bending stiffness. As a rule, the
approximation is also justified with frameworks on fixed supports as the bending
stiffness of the individual columns is normally insignificant compared to the ‘global’
bending stiffness in structural engineering practice and therefore can be ignored as a
conservative approximation. However, if for some reason it is necessary to take into
consideration the ‘local’ bending stiffness of the columns or/and if the distribution of
the load is different from the uniformly distributed case, a more sophisticated (and
more complicated) method can be used which was developed by Hegedüs and Kollár
[1984] for the buckling analysis of sandwich columns with thick faces subjected to
axial load of arbitrary distribution.

The governing differential equation of the problem is obtained by considering the
equilibrium of an elementary section of the sandwich column (Fig. 9.6/c/d) which is
characterized by the ‘global’ bending stiffness and the shear stiffness of the system
[Zalka and Armer, 1992]:
 

 
In the governing differential equation q represents the intensity of the uniformly
distributed vertical load, EcIg is the ‘global’ bending stiffness of the columns, rs is the
modifier as defined by formula (9.8) and given in Table 3.1 and K is the shear stiffness
of the system.

Fig. 9.6 Origination and analysis of the sandwich model. a) Frame, b) sandwich,
c) buckled shape, d) elementary section.

(9.20)
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The governing differential equation is supplemented by the boundary
conditions

 
which express that the lateral translation equals zero at the top of the column, the
tangent to the equivalent column at the bottom of the column is parallel to axis z, the
bending moments vanish at the top of the column and the shear forces are also zero at
the top of the column, in the coordinate system whose origin is fixed at the top of the
equivalent column (Fig. 9.6/c).
 

The eigenvalue problem defined by the governing differential equation (9.20) and
boundary conditions (9.21a) to (9.21d) is unique, inasmuch as the eigenvalue appears
both in the differential equation and in the boundary conditions. As a rule, problems of

Fig. 9.7 Critical load parameter αs.
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this kind are difficult to handle and the situation is made worse by the fact that in
certain stiffness regions the eigenvalues are calculated from ill-conditioned matrixes.
Accidentally, this is also the case with some of the eigenvalues originating from the
continuum model (and from discrete models).
 

The generalized power series procedure (demonstrated in Appendix B), however, also
used for the analysis of the continuum model, can easily handle eigenvalues in the
boundary conditions. The flexibility of the procedure also makes it possible to deal
with convergence problems in a relatively simple and effective way. The procedure can
be manually controlled and closely monitored. When the convergence process becomes
slow or/and unstable in a certain stiffness region, the characteristics of the iteration
procedure can be adjusted and the accuracy and reliability of the procedure improved.
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This may slow the procedure, but once an ill-conditioned stiffness region is covered in
such a manner, the results can be tabulated and made available for future use.

The solution of eigenvalue problem (9.20) using the technique outlined above
leads to a very simple formula and the critical load of frameworks subjected to a
uniformly distributed floor load is obtained from
 

Ncr=αsK,
 
where K is the shear stiffness defined by formula (9.11). Critical load parameter as is
given in Fig. 9.7 and in Table 9.2 as a function of stiffness ratio ßS, defined by
 

where Ng is the part critical load characterizing the bending buckling of the framework
as a whole, as defined by formula (9.6).

When the framework is subjected to concentrated forces at the top of the structure,
the sandwich model leads to
 

 
In this formula Fg is the part critical load characterizing the bending buckling of the
framework as a whole, as given by formula (9.7).

9.3.4 Design formulae

The importance of the elastic critical load in design practice has been recognized and
means by which elastic instability are considered have been presented [Stevens, 1983].
As any investigation dealing with instability in practice needs the elastic critical load
(among other characteristics), simple formulae based on the models introduced above
are given in this section for design application.

Theoretical and accuracy analyses show that both the continuum and the sandwich
models can be used for practical structural design. For frameworks subjected to
uniformly distributed load on the beams, each method has stiffness regions where its
accuracy is better than that of the other method. As both the continuum and sandwich
models approach the same problem from a different direction, it seems to be sensible to

(9.22)

(9.24)

(9.23)
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combine the two relevant formulae. Indeed, a detailed accuracy analysis [Zalka, 1998b]
shows that by combining the two formulae the error range can be narrowed, resulting
in more accurate critical loads. The combination is carried out in two steps.

First, formula (9.22) is supplemented by the term rNl. This step, based on
Southwell’s summation theorem, makes it possible to take into consideration
approximately the ‘local’ bending deformations of the columns in the sandwich
model. Second, the modified formula is combined with formula (9.17) resulting in
the formula
 

for the calculation of the critical load.
Critical load parameters α and αs are given in Table 9.1 and Table 9.2 as a function of

β and βS, defined by formulae (9.18) and (9.23), respectively. The part critical loads Nl

and K are given by formulae (9.2) and (9.11). Combination factor r is calculated using
formula (9.12).

As for concentrate forces on top floor level, the continuum solution is slightly more
accurate than the sandwich solution and therefore the continuum formula
 

is advocated for the calculation of the critical load.
Theoretically, the structure is in stable equilibrium if the value of the critical load is

greater than the total vertical load, i.e. if, for uniformly distributed load on the beams,
the inequality
 

holds, where N is the total vertical load measured at ground floor level.
It is sometimes necessary to consider the simultaneous effect of the two load

systems: concentrated load on top of the structure and uniformly distributed load on
floor levels. Dunkerley’s reciprocal theorem can be applied in such cases and formula
(9.27) can be extended:

(9.25)

(9.26)

(9.27)
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To achieve adequate safety in practice, however, it is necessary for the critical load to
exceed the total vertical load by a certain margin. The required level of safety in
practice is discussed in detail in [Stevens, 1967; MacLeod and Zalka, 1996] and it is
only mentioned here that if the criterion
 

is fulfilled, then the structure is stable enough with the necessary lateral stiffness to be
considered as a bracing element in a building.

9.4 FRAMEWORKS ON PINNED SUPPORTS

There are cases when fixed supports on ground floor level cannot be constructed or
the rigid connection between the superstructure and the substructure is not favourable
for some reason. In such cases, frameworks on pinned supports are used, with or
without ground floor beams (Fig. 9.8).
 

(9.27a)

(9.28)

Fig. 9.8 Frameworks on pinned supports. a) Without ground floor beams, b) with
ground floor beams.
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Both the continuum model and the sandwich model introduced in section 9.3 for
frameworks on fixed supports can be used for the analysis. When the continuum
model is used, differential equation (9.14) still holds but with the boundary
conditions

 
The solution of the eigenvalue problem results in critical load parameter αp, whose
values are given in Fig. 9.5 and in Table 9.3, as a function of stiffness ratio β:
 

(9.30)
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9.4.1 Frameworks without ground floor beams

The behaviour of pinned frameworks without ground floor beams (Fig. 9.8/a) is
somewhat different from that of fixed frameworks. First, the individual columns cannot
develop full-height buckling because, due to the pinned supports, they are not stable
in themselves. Second, because of the pinned supports and the lack of ground floor
beams, these structures are more sensitive to storey-height shear at ground floor level
as the columns of the first storey region tend to develop sway buckling. If these
differences are taken into account when the part critical loads are established, the
procedure presented for frameworks on fixed supports can be applied and similar
formulae can be created for the critical load.

When the storey-height shear deformation was investigated with frameworks on
fixed supports, it turned out that any storey could be the object of the investigation as
each storey behaved in the same way (Fig. 9.2/c). The situation with frameworks on
pinned supports is different as the first storey section is the most vulnerable to storey-
height shear (Fig. 9.9). Due to the pinned lower support on the ground floor level, the
critical load which characterizes storey-height shear is defined by

Fig. 9.9 Storey-height shear deformation of frameworks on pinned supports without
ground floor beams.
 
The formula for the critical load associated with full-height shear [formula (9.9)] is
unchanged and the shear critical load is computed combining formulae (9.9) and
(9.31) as
 

(9.31)
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When the framework is under UDL on floor levels (Fig. 9.8/a), the formula for the
critical load is obtained in a way similar to that of frameworks on fixed supports and the
combination of the continuum solution and the sandwich solution leads to
 

where K, Nl and r are defined by formulae (9.31a), (9.2) and (9.12), respectively. Critical
load parameters αp and αs are given in Tables 9.3 and 9.2 as a function of stiffness
ratios β and βs, defined by formulae (9.18) and (9.23).

Both the continuum model and the sandwich model lead to the same formula for the
critical loads of frameworks subjected to concentrated load on top of the structure:
 

9.4.2 Frameworks with ground floor beams

When the framework is subjected to UDL on the beams (Fig. 9.8/b), the procedure
described in section 9.3.4 is applied and the critical load is obtained as a combination
of the results which belong to the two models. To this end, the term
 

rNl (1–r),
 
which approximately takes into consideration the stiffening effect of the ground floor
beams, is added to the sandwich solution. The combination of the two formulae then
results in the critical load for the uniformly distributed load as
 

(9.31a)

(9.32)

(9.33)

 (9.34)

(9.35)

Frameworks on pinned supports 213



where K, Nl and r are defined by formulae (9.11), (9.2) and (9.12), respectively. Critical
load parameters αp and αS are given in Tables 9.3 and 9.3 as a function of stiffness
ratios β and βS, defined by formulae (9.18) and (9.23).

It should be borne in mind when the full-height bending critical loads Nl and Ng are
calculated that with frameworks with ground floor beams the uniformly distributed
axial load on the equivalent column does not represent an approximation and therefore
there is no need to reduce the part critical loads, i.e. rs=1.0 should be used in formulae
(9.2) and (9.6).

For frameworks under concentrated top load, both the continuum model and the
sandwich model result in the same formula for the critical load:
 

In formula (9.36) Fg is the full-height bending critical load defined by
formula (9.7).

9.5 FRAMEWORKS WITH GROUND FLOOR COLUMNS OF
DIFFERENT HEIGHT

It is a practical case that the height of the columns on ground floor level is different
from those above the first floor level. In most cases, they are higher than the ones on
the other storey levels (Fig. 9.10/a/b/c) and therefore they create a more unfavourable
situation, as far as stability is concerned.
 

(9.36)

Fig. 9.10 Frameworks with ground floor columns of different height.
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Such frameworks are non-regular but their behaviour only differs from the
corresponding regular ones in storey-height shear buckling. Because of the ‘softer’
first storey region, local failure would occur through the buckling of the ground floor
columns. It follows that the formulae given for the critical load can still be used if the
formula for the storey-height shear critical load is modified. In assuming frameworks
with higher columns on ground floor level, the storey-height shear critical load
should be computed from

 

h*=2h̄
 

for the framework in Fig. 9.10/a and with
 

h*=h̄
 

for the frameworks in Figs 9.10/b and 9.10/c. In the above formulae h̄ marks the height
of the first storey columns.

The critical load is then obtained by applying the corresponding formulae given for
the critical load in the previous sections.

It should be borne in mind that, because of the higher first storey columns,
an approximation is made on the nature of the applied load, which may result
in a slightly overestimated critical load for frameworks with higher first storey
columns. This unconservative effect can be approximately compensated for
by using a reduction factor rs which belongs to a framework one storey lower
than the actual one.

This case underlines again the warning that one should be very cautious with the
application of the continuum method to non-regular structures [Hegedu?s, 1987].
Both the nature and the extent of the deviation from the regular case should be carefully
examined. Even after establishing the differences, the structural engineer may have to
face a situation when neither the magnitude nor the sign of the error is known and the
reliability of the method may be questionable.

with

(9.37)

(9.38)

(9.39)
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9.6 ANALYSIS OF COUPLED SHEAR WALLS BY THE FRAME
MODEL

Coupled shear walls can be regarded as special frameworks where walls (instead of
columns) are connected with beams or lintels (Fig. 9.11). However, there are two basic
differences between coupled shear walls and frameworks.

1) The two end-sections of the beams connecting the walls cannot develop bending
because the walls, whose stiffness is practically infinitely great, do not let them. The
centroidal axes of these sections are characterized by straight lines (Fig. 9.11/b). (This
is also the case with frameworks but because of the relatively short sections in the
case of frameworks, this effect is negligible and is normally not taken into account.)

2) As a rule, the depth of the cross-section of the beams is relatively great and the
beams are relatively short and therefore their shear deformation should be taken into
account.
 

Bearing in mind the above differences, the equations and formulae derived for the
stability analysis of frameworks can be used for the stability analysis of coupled shear
walls if certain modifications are made. Both differences only affect the full-height

Fig. 9.11 Coupled shear walls. a) Typical arrangement, b) deformation of a beam with
stiff end-sections.
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shear stiffness and the necessary modifications can be built into formula (9.9), which
then assumes the form:
 

where

With the modified full-height shear critical load, the formula for the modified shear
critical load is obtained as with frameworks:

where Kl is the storey-height shear critical load:

The formulae derived for the critical loads of frameworks on fixed supports can now be
used. When the coupled shear walls are subjected to UDL on the floor levels, the
critical load is obtained from

Combination factor r in formula (9.43) is now given by

where    is the modified full-height shear critical load [formula (9.40)].

(9.40)

(9.41)

(9.42)

(9.43)

(9.44)
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The part critical load Nl characterizing the full-height buckling of the individual walls in
formula (9.43) is defined by formula (9.2).
Parameter α is given in Fig. 9.5 and in Table 9.1 as a function of stiffness ratio β:
 

Values for parameter as are given in Table 9.2 and in Fig. 9.7 as a function of stiffness
ratio
 

When the coupled shear walls are subjected to concentrated load on the top floor
level, the critical load is obtained from
 

The full-height bending part critical loads (Fl) and (Fg) in formula (9.46) are defined by
formulae (9.3) and (9.7), respectively.

It is noted here that slightly different terminology is used in design practice for
frameworks and for coupled shear walls. The distance between the axes of the columns
(li) is normally used with frameworks; on the other hand, the distance between the wall
sections (li) is used in the case of coupled shear walls. In spite of the similarity
between the two cases, this is why both sets of formulae are given, using the
corresponding terminology.

9.7 FRAMEWORKS WITH CROSS-BRACING

Frameworks with cross-bracing have a long history in civil engineering practice in
different areas: offshore structures, transmission towers, building frames, roofs,
grandstands, etc. Laced and other types of built-up columns, mainly used in steel
structures, represent another area of application. When frameworks with cross-
bracing are used in multistorey industrial and commercial building structures, their
main task usually is to provide the structure with sufficient stiffness to resist
lateral loads. Cross-bracing systems in structural engineering are becoming popular
because of their economic use of material and the speed of construction.

(9.45)

(9.45a)

(9.46)
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In parallel with their widespread use for providing multistorey buildings with
adequate lateral stiffness, considerable attention has been paid to developing
methods for the structural analysis of cross-bracing systems. As the stress
analysis can be performed using conventional procedures and commercially
available computer packages, new research has centred on the stability analysis
[DeWolf and Pelliccione, 1979; Wang and Boresi, 1992; Vafai, Estekanchi and
Mofid, 1995]. Two characteristic ways of instability have been identified: the
storey-height buckling of members in compression and the full-height buckling
of the whole structure. Experimental results have been documented and
theoretical solutions have been given for evaluating the effective length of
compression braces, used for storey-height buckling analysis [Stoman, 1988 and
1989; Thevendran and Wang, 1993]. However, although most frameworks with
cross-bracing become unstable through full-height buckling, only few papers
have been devoted to the full-height buckling analysis and they have only dealt
with concentrated end forces [Gjelsvik, 1990 and 1991], which is mainly of
theoretical interest.

The aim of this section is to present simple closed-form solutions for the full-
height buckling analysis of multistorey, multibay frameworks under both
concentrated top load and UDL on floor levels.

The behaviour of frameworks with cross-bracing is similar to those without
cross-bracing, inasmuch as it can be characterized by the same basic types of
deformation (and the corresponding stiffnesses). It follows that the procedures
introduced for sway frameworks of rectangular network in the previous sections
can be used with some modifications. The deformation of frameworks with cross-
bracing is normally dominated by the full-height bending of the structure as a
whole, which is modified by shear deformation. As the effect of the full-height
bending deformation of the individual columns is insignificant in practical cases,
the sandwich model with thin faces will be applied for the analysis. The sandwich
approach results in a very simple solution with good accuracy.

The full-height bending behaviour of frameworks as a whole with and without
cross-bracing is the same and therefore formulae (9.6) and (9.7) for the full-
height bending critical load can be readily used. It is the shear deformation and
the shear stiffness (and the corresponding shear critical load) which are
different due to the cross-bracing, and these characteristics will be determined
in the next section.
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9.7.1 Shear stiffness and shear critical load

The shear stiffness characterizing the shear deformation of the framework represents
the effect of the beams and the cross-bracing and its value depends on their geometrical
arrangement and stiffness characteristics. Values of the shear stiffness can be obtained
by analysing the shear deformation of a typical one-storey section of the structure.

Based on the analysis of a one-storey section of a one-bay framework (Fig. 9.12),
the angular displacement is given by
 

 

 
 

Combining formulae (9.47) and (9.48), the shear stiffness can be obtained
from

 
Knowing the lateral displacement of different types of cross-bracing, the shear stiffness
can be determined using formula (9.49).

(9.47)

or by

where

(9.48)

Fig. 9.12 Shear deformation of a one-storey section.

(9.49)
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The lateral displacement of the single cross-bracing shown in Fig. 9.13/a, for example,
consists of two parts [Timoshenko and Gere, 1961]. Due to the lengthening of the
diagonal bar, a lateral displacement of
 

develops, where

The corresponding shear stiffness is obtained by using formula (9.49):
 

 
The shortening of the horizontal bar results in a lateral displacement of
 

where

Formula (9.49) gives the corresponding shear stiffness as

The two part stiffnesses can be combined by using the Föppl-Papkovich summation
theorem [Tarnai, 1999], resulting in the exact value of the shear stiffness:
 

(9.50)

(9.51)

(9.52)

(9.53)

(9.54)
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With double cross-bracing (Fig. 9.13/b), one diagonal is in tension and the other is in
compression while the horizontal bar does not take part in the transmission of the
shear force. The system is equivalent to the one which has no horizontal bar (Fig. 9.13/
c) and the lateral displacement is given as
 

Formula (9.49) yields the shear stiffness as
 

The situation is similar when there is only one set of continuous diagonals with no
horizontal bars (Fig. 9.13/d) and the shear stiffness is obtained from
 

Similar formulae can be derived for other cross-bracing arrangements with known
storey drift. Simple formulae for the storey drift of cross-bracings with different
geometrical arrangements have been presented, for example, by Stafford Smith and

(9.55)

(9.56)

(9.57)

Fig. 9.13 Different types of cross-bracing. a) Single, b)—c) double, d) continuous,
e)—f) K-bracing, g) knee-bracing.
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Coull [1991]. Based on the storey drift, the shear stiffness for the K-bracing system
shown in Fig. 9.13/e can be expressed as

The situation with the cross-bracing in Fig. 9.13/f is somewhat different as the bending
of the horizontal bar also affects the shear stiffness:

where Ih is the second moment of area of the horizontal bar.
Finally, the shear stiffness of the knee-braced frame in Fig. 9.13/g is

obtained from
 

The above formulae for the shear stiffness assume one-bay frameworks. For
multibay frameworks, the shear stiffness is obtained by adding up the shear
stiffnesses of each bay:

where n is the number of columns and Ki refers to the shear stiffness of the ith bay.
By definition, the shear stiffness of the framework also represents the shear

critical load of the structure. As with frameworks without cross-bracing, the formulae
for the shear critical load show that the value of the shear critical load does not
depend on the distribution of the vertical load nor on the height and type of the
support of the structure.

(9.58)

(9.59)

(9.60)

(9.61)
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9.7.2 Critical loads

Once the shear critical load is known, the critical load for frameworks with cross-
bracing can be calculated using either the continuum model or the sandwich model.
According to the results of a detailed accuracy analysis, the formulae resulting from
the application of the sandwich model are of sufficient accuracy and they are also very
simple.

When the framework is subjected to uniformly distributed load on floor levels, the
critical load is obtained from
 

Ncr=αsK,

where K represents the shear critical load, as given in section 9.7.1 for different types
of cross-bracing. Values for critical load parameter αs are given in Fig. 9.7 and in Table
9.2 as a function of stiffness ratio
 

 
The full-height bending critical load Ng is to be calculated using formula (9.6).

When the structure is subjected to concentrated load on top, the formula for the
critical load is
 

 
where Fg is the full-height bending critical load defined by formula (9.7).

It should be borne in mind that the procedure presented in this section yields the
full-height critical load of the framework and the possibility of the storey-height buckling
of a compression member should also be considered in the analysis.

Although it is difficult to determine which structure develops storey-height and
which full-height buckling, based on the investigation of hundreds of structures, a
simple criterion has been established which can be used to indicate the nature of
buckling.

The investigation showed that, assuming geometrical and stiffness characteristics
normally used in practice, the ‘slender’ frameworks (i.e. those much higher than wider)
tended to develop full-height buckling. All structures that fulfilled the criterion

(9.62)

(9.62a)

(9.63)
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developed full-height buckling. In formula (9.64), H and W are the total height and
width of the framework, respectively.

As the height/width or ‘global slenderness’ ratio of the framework decreases, the
structure is more susceptible to storey-height buckling. Indeed, most structures with
η < 4 became unstable because one element in compression (normally on the ground
floor level) failed.

Criterion (9.64) is met by the majority of framed structures in practice as the general
height/width ratio for plane frame structures seems to be in the range of 5 to 9 [Schueller,
1977]. It should be noted that criterion (9.64) was established empirically using data of
an accuracy analysis where the structures had a bay/storey-height ratio of 1 and
therefore can only be used as an indicator.

9.7.3 Structures with global regularity

The above formulae for the critical loads of frameworks with cross-bracing assume
regular structures whose geometrical and stiffness characteristics are identical at each
floor level. However, numerical investigations have shown that regularity can be
interpreted in a broader sense.
 

(9.64)

Fig. 9.14 24-storey frameworks with ‘global’ regularity.
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Strictly speaking, none of the 24-storey structures in Fig. 9.14 is regular. Still, the
approximate formulae give satisfactory results for the critical loads: the deviation from
the ‘exact’ critical loads is less than 7% for frameworks on pinned and fixed supports,
subjected to concentrated top load or uniformly distributed load on the floors. This
follows from the fact that these bracing types have ‘global’ regularity, i.e. they are
regular in 3-storey units.

Worked examples and a detailed accuracy analysis regarding frameworks with cross-
bracing are available in [Zalka, 1998a and 1999].

9.8 INFILLED FRAMEWORKS

As pointed out in Chapter 8, the lateral and torsional stiffnesses of real buildings can
be far greater than those predicted by theoretical models. The reason behind this
discrepancy may be that most theoretical models rely on a skeleton of the building,
involving the primary load bearing elements, and neglect the effects of the secondary
structural elements. The most important contributors in this area are frameworks filled
with masonry walls.

The theory of the behaviour of infilled frameworks is well documented and a number
of publications are available dealing with different structural aspects [Polyakov, 1956;
Mainstone and Weeks, 1972; Stafford Smith and Coull, 1991; Madan et al., 1997]. The
objective of this section is to introduce a simple procedure for the calculation of the
critical load of infilled frameworks.
 

Research shows that when an infilled framework is subjected to external loads, the
most important contribution of the masonry structure in a storey-high panel can be
represented by a diagonal strip (Fig. 9.15/b) in compression. This section can be

Fig. 9.15 Model for in-filled frameworks. a) Two-bay in-filled frame, b) equivalent
diagonal ‘bars’ in compression, c) size of diagonal bar, d) model for the analysis.
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modelled by a diagonal ‘bar’ whose cross-sectional area is
 

Ad=tbw,
 
where the width of the diagonal strip (Fig. 9.15/c) can be approximated by
 

bw=0.15d,
 
where

This leads to a framework with single bracing as a possible model for the analysis (Fig.
15/d). Frameworks with different types of cross-bracing are investigated in section 9.7
and the procedure presented there can be readily applied to infilled frameworks.

Accordingly, the critical load of infilled frameworks can be calculated
from
 

Ncr=αsK,
 

where K is the shear critical load:
 

In formula (9.68)

(9.65)

(9.66)

(9.67)

(9.68)
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The modulus of elasticity of the diagonal bar (Ed) refers to the material of the masonry
structure; for masonry, its value normally varies between 1000 N/mm2 and 4000 N/mm2.

Values for critical load parameter αs are given in Fig. 9.7 and in Table 9.2 as a
function of stiffness ratio

In formula (9.69)

 
is the full-height bending critical load, where

9.9 EQUIVALENT WALL FOR 3-DIMENSIONAL ANALYSIS

The stability, frequency and global stress analyses of bracing systems consisting of
bracing cores, shear walls and frameworks/coupled shear walls can be considerably
simplified, if the frameworks/coupled shear walls are replaced by equivalent solid
walls. The cores and (real and equivalent) walls can be combined to form a single
cantilever whose 3-dimensional analysis leads to the simple closed-form solutions
presented in Chapters 3 and 5.

The replacement of the frames/coupled shear walls by equivalent walls can be
based on making the critical load of the framework/coupled shear walls equal to that
of the equivalent wall. In making use of the critical load of a framework/coupled
shear walls (Ncr)—and assuming UDL on the floor levels—the thickness of the
equivalent wall (t*) can be derived from
 

 
which leads to
 

(9.69)

(9.70)

(9.71)
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where

When an equivalent wall is incorporated into the bracing system of shear walls and
cores developing predominantly bending type deformation, the accuracy and reliability
of the 3-dimensional analysis basically depends on how well the equivalent wall ‘fits
in’ the bracing system, as far as deformations are concerned, i.e. to what extent the
characteristic deformation of the equivalent wall conforms to the deformation of the
bracing system.

As far as the overall deformation of a bracing system consisting of shear walls and
cores and frameworks and coupled shear walls is concerned, the bracing system falls
into two categories. Consequently, two possibilities should be considered.

1) The characteristic deformation of the equivalent wall (representing a framework
or coupled shear walls) is of bending type. In this case, conformity is ensured as
both the shear walls and cores and the equivalent wall develop bending-type
deformation.—The 3-dimensional analysis can be safely used as there is no interaction
among the members of the bracing system which would change the basic 3-
dimensional behaviour (based on sway in bending and torsion in warping as well as
their combination) assumed for the derivation of the governing differential equations
of the 3-dimensional analysis.

2) The characteristic deformation of the equivalent wall is of shear type. In this
case, the bracing system develops a combination of bending and shear type
deformation.—The 3-dimensional analysis results in approximate solutions. The degree
of approximation depends on to what extent the overall deformation of the bracing
system defers from bending type deformation.

When a decision is made which of the above categories a bracing system belongs
to, it is important to know what type of deformation the elements of the system develop.
The following guidelines (and the comparative analysis given in section 9.10) help to

(9.72)
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categorize the bracing elements.
 
• Bracing elements which normally develop predominantly bending type deformation

are:  shear walls, cores, coupled shear walls with relatively slender lintels, frameworks
with cross-bracing (with H/W>4), frameworks on fixed supports (with H/W>4),
infilled frameworks (with H/W>4).

• Bracing elements which tend to develop predominantly shear type deformation
are:  frameworks on pinned supports, coupled shear walls with relatively strong
lintels, wide frameworks (with H/W<4).

 
As the most effective bracing elements are shear walls, cores and frameworks with
cross-bracing, most bracing systems fall in Category 1 and fulfil the basic conditions
for the 3-dimensional analysis.

When shear walls and cores are supplemented by frameworks developing shear
deformations (Category 2), the contribution of the frameworks is normally very small
compared to that of the shear walls and cores. Because of their relatively small
contribution, they can either be ignored in the analysis (as a conservative
approximation) or if they are incorporated into the bracing system as equivalent walls,
they do not normally alter the bending type deformation of the shear walls and cores
significantly and consequently the level of accuracy of the analysis is only slightly
reduced.

In certain cases all (or most of) the elements of the bracing system develop shear
deformation. The 3-dimensional analysis can still be applied but the following
considerations have to be taken into account. The analysis can be safely used only
for doubly symmetrical cases when the basic buckling modes do not couple. The
results for unsymmetrical cases are only approximate and have to be treated with
caution.

9.10 SHEAR WALLS

Of all the possible bracing elements, shear walls represent the simplest problem, as far
as the calculation of the critical load is concerned. When the load is a concentrated
force at top floor level, the formula for the critical load is
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and when the shear wall is subjected to uniformly distributed normal load at every
floor level, the critical load is obtained from
 

where

In Fig. 9.16, t and L mark the thickness and the width of the shear wall.

 
 

9.11 SYMMETRICAL CROSS-WALL SYSTEM BUILDINGS

A set of parallel shear walls, coupled shear walls and frameworks represents a typical
building system. In the symmetrical case when the centre of the bracing system of a
building and that of the applied vertical load coincide, which is often the case with
cross-wall system buildings, stability failure may occur in three different ways. The
system can develop sway buckling in both principal planes and pure torsional

(9.73)

(9.74)

Fig. 9.16 Shear wall.
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buckling. Sway buckling is investigated in this section and torsional buckling is
covered in section 3.1. Figure 9.17 shows the layout of such a cross-wall system
building, where
 

Southwell’s summation theorem makes it possible to determine the critical load of
symmetric cross-wall systems in a very simple manner. The floor slabs make the bracing
elements (frameworks, shear walls and coupled shear walls) develop sway buckling
together and, according to Southwell’s summation theorem, the sum of the critical
loads of the bracing elements is a lower bound to the critical load of the whole system.
Formulae
 

and
 

give the total critical load of cross-wall system buildings subjected to concentrated
forces at top floor level and uniformly distributed load at floor levels. Parameter m in
formulae (9.75) and (9.76) is the number of the frameworks/shear walls/coupled shear
walls bracing the building and Fcr,j and Ncr,j are the critical loads of the individual
elements. Simple formulae for their computation are given in sections 9.3 to 9.8.

Fig. 9.17 Cross-wall system building.

(9.75)

(9.76)
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The building shown in Fig. 9.17 may not be stable in direction x. Stability in this
direction should also be ensured. This can be done by perpendicular (coupled) shear
walls, frameworks or by cores. In the first case, and if the system is symmetrical, a
stability analysis similar to the one just presented, can be carried out. In the general
case, when the system is not symmetrical, combined sway-torsional buckling has to be
investigated, as described in section 3.1. Even if the system is doubly symmetrical, the
possibility of pure torsional buckling has to be considered. This investigation can also
be carried out according to the procedure presented in section 3.1.

9.12 PLANAR BRACING ELEMENTS: A COMPARISON

Different structural elements (shear walls, coupled shear walls, frameworks with single
or double bracing, in-filled frames, frameworks on fixed supports, framework on pinned
supports with or without ground floor beams) can be used for bracing purposes with
different efficiency. The best way to compare them, as far as their efficiency is concerned,
is to compare their critical loads.
 

This section presents the results of such an exercise involving two sets of structures.
The one-bay and two-bay structures have the same overall size (total height and
width), respectively. The total height of the structures in both groups varies from 4
storeys to 99 storeys. The storey height is 3 m. The modulus of elasticity is 3×104 N/
mm2 for the reinforced concrete shear walls and the columns and beams of the
frameworks, 3×103 N/mm2 for the masonry in the infilled frames and 2×105 N/mm2 for the
steel cross-bracing. The reinforced concrete elements and the masonry in the infilled
framework have a thickness of 0.3 m. The cross-section of the cross-bracing in all

Fig. 9.18 One-bay (3.5 m wide) structures for comparison. a) Shear wall, b) coupled
shear walls, c) framework with double bracing, d) framework with single bracing,
 e) in-filled frame, f) framework on fixed supports, g) framework on pinned supports
with ground floor beam, h) framework on pinned supports without ground floor beam.
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cases is 0.25×0.015=0.00375 m2.
The total width (external size) of the structures in the one-bay group (Fig. 9.18) is 3.5

m. The width of the wall sections in the coupled shear walls is 1.2 m, the depth and
length of the beams are 1.0 m and 1.1m, respectively. The depths of the columns and
the beams of the frameworks are 0.5 m and 0.3 m, respectively.

The total width of the structures in the two-bay group (Fig. 9.19) is 6.3 m. The width
of the wall sections in the coupled shear walls is 1.0 m, the depth and length of the
beams are 1.5 m and 1.65 m, respectively. The depths of the columns and the beams of
the frameworks are 0.3 m and 0.5 m, respectively.
 

The results of the analysis (the critical loads in MN, calculated using the formulae
given in this chapter for structures subjected to uniformly distributed vertical
load) are given in Tables 9.4 and 9.5, where the abbreviations used in the first
column are:
 

Fig. 9.19 Two-bay (6.3 m wide) structures for comparison. a) Shear wall, b) coupled
shear walls, c) framework with double bracing, d) framework with single bracing,
e) in-filled frame, f) framework on fixed supports, g) framework on pinned supports
with ground floor beams, h) framework on pinned supports without ground floor
beams.
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The thick line in the tables separates shear and bending type behaviour. The structures
on the left-hand side of the thick separator develop predominantly shear and those on
the right-hand side predominantly bending type deformation.
 

It is the low-rise—medium-rise region where the performance of the different types of
structure really differs. A shear wall developing bending deformation has by orders of
magnitude greater critical load and is by orders of magnitude more effective a bracing
element than a framework of the same height and width developing shear deformation.
As the height—and the height/width ratio—of the structures increase, the difference
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in performance becomes smaller and smaller. Eventually all structures develop bending
deformation and although a shear wall always remains the most effective bracing
structure, its advantage over the frameworks is significantly reduced while the
performance of the different types of framework—regardless of the type—is practically
identical.

9.13 SUPPLEMENTARY REMARKS

The results of detailed accuracy analyses involving hundreds of frameworks and
coupled shear walls demonstrate that the accuracy of methods is acceptable for
checking the stability of practical structural engineering structures [Zalka, 1998a and
1998b]. A short summary of the result of the accuracy analyses is given in this section.

The approximate formulae tend to result in conservative critical loads. The most
accurate critical loads were obtained for frameworks with cross-bracing, which are also
the most effective and economic structures favoured for bracing purposes. The error
range was between–2% and 8% (for the maximum unconservative and conservative
critical load).

Good, conservative approximations were obtained for the critical loads of frameworks
on fixed supports. The error of most critical loads was between 0% and 10% and the
maximum error was 19%.

The method for coupled shear walls resulted in acceptable estimates for the critical
loads which were normally up to 15% greater than those obtained from the finite
element analysis. The error range widened to–6% and 23% (for the maximum
unconservative and conservative critical load) in some cases.

The least accurate critical loads were obtained for frameworks on pinned supports.
The error of the approximate formulae was between 0% and 20% in most practical
cases. In some cases, however, the error range widened to–3% and 39% (for the
maximum unconservative and conservative critical load). As frameworks on pinned
supports are rarely used for bracing purposes, critical loads of this level of accuracy
still offer good indication as to the overall suitability of the framework in a multistorey
building.

It has to be noted that the lateral and torsional stiffness of building structures are
normally provided by shear walls and cores and the contribution of the frameworks is
small compared to that of the shear walls and cores and therefore the accuracy of their
critical loads is of secondary importance.
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The finite element methods which are considered ‘exact’ occasionally produce
unreliable results. In some cases, some FE results indicated greater critical loads for
higher frameworks than for lower frameworks, when all the other characteristics of the
frameworks were the same. In other cases, unconservative errors in the region of 150–
250% were experienced. However, it should be mentioned that the stiffness
characteristics in such cases assumed extreme values. The problems were probably
caused by the ill-conditioned stiffness matrix. These cases underline the importance of
having alternative procedures available to check suspicious looking results.

It is worth mentioning that some well-publicized commercially available FE
procedures had difficulties with the stability analysis in certain stiffness regions when
the system was too large. Incorrect load factors were obtained for different 12-storey
shear walls with two rows of opening. The situation is made more difficult (and more
dangerous) by the fact that with complex structures like coupled shear walls it is
sometimes difficult even to realize that the results are not reliable, especially, when the
results are only ‘slightly’ incorrect. With the 12-storey structures investigated, the
incorrect buckling shape was a warning sign. However, when the buckling shape looks
reasonable, it is very difficult indeed to find out that the critical load may not be
correct. This also shows how important it is to know the characteristic types of
deformation and the buckled shape to be expected from the structure.

The results obtained by using the methods given in this chapter also have to be
carefully evaluated, especially when the method is applied to non-regular structures.
Both the nature and the extent of the deviation from the regular case should be carefully
examined. Even after establishing the differences, the structural designer may have to
face a situation when neither the magnitude nor the sign of the error is known.

Finally, it is mentioned here that detailed stability analysis of frameworks is given
by Appeltauer and Kollár [1999] and the theoretical background to the application of
the sandwich theory to the stability analysis of building structures (including
frameworks) is given by Hegedu?s and Kollár [1999)].
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10
 

Test results and accuracy analysis
 

To demonstrate the accuracy of the methods developed for the stress, stability and
frequency analyses—and to learn more about 3-dimensional behaviour—a series of
tests on small-scale models of 10-storey buildings (Fig. 10.1) was carried out at the
Building Research Establishment*. It was also the aim of the tests to examine the effect
of storey-high columns on the global lateral and torsional stiffness of multistorey
structures.

Comparisons were also made with the results of similar approximate methods. This
chapter gives a short summary of the results of the tests and the comparisons. The
details of the tests are available in separate publications [Zalka and White, 1992 and
1993]. The accuracy of planar procedures is discussed in section 9.11.

10.1 DESCRIPTION OF THE MODELS

The floor slabs of the models were made of fibre boards. The vertical load bearing
elements were represented by 96 copolymer columns at each storey, arranged in a
rectangular network with a space of 200 mm in both directions. A relatively great
number of columns was chosen to make their contribution to the lateral and torsional
stiffnesses of the model noticeable. The size of the layout was 2200 mm in direction x
and 1400 mm in direction y. Each storey height was 150mm and the total height of the
model was 1500 mm. The lateral and torsional stiffnesses were provided by a combination
of U-shaped and L-shaped perspex cores and shear walls.

A circular bending test involving 50 specimens was carried out to establish the
modulus of elasticity of the cores and shear walls. The modulus of elasticity was found
to be E=3150 N/mm2. The shear modulus assumed the value G=1312.5 N/mm2.

Two bracing system arrangements were constructed to enable the analysis of planar
(Model ‘M1’) and torsional (Model ‘M2’) behaviour.
 
* Figures 10.1, 10.2, 10.9, 10.10 and 10.13 are reproduced by permission of BRE.



Fig. 10.1 Ten-storey building model.

Fig. 10.2 Columns of storey height. a) Fixed, b) pinned.
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Both arrangements were constructed using fixed (Fig. 10.2/a) and ‘pinned’ (Fig.
10.2/b) columns. It should be pointed out that the columns described as ‘pinned’
did not represent columns with perfect pinned ends. Due to limitations in
manufacturing the joints, there was some friction between the end sections of the
columns and the rubber ‘O’ ring housed in the floor adapters. This friction prevented
the end of the columns from developing totally free rotation and caused some
increase in stiffness.

The models were first subjected to concentrated horizontal loading at different
locations. The load was applied by using a simple pulley mechanism attached to the
top floor of the model (Fig. 10.1). Load increments of approximately 5 N were chosen.
Instruments were mounted onto a rigid dexion reference framework which spanned
two sides over the full height of the model. The lateral displacements of the model were
measured in directions x and y (parallel with the sides of the models). When the
experimental values were compared to the theoretical values, the formulae given in
section 5.6 for concentrated top loading were used.

After the horizontal loading exercise, the models were tested for stability and finally
their dynamic performance was investigated.

The models with both bracing system arrangements and with both sets of columns
were subjected to a series of loads but only the most characteristic cases are reported
here. The following notation is used in the text and in the figures:
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10.2 HORIZONTAL LOAD ON MODEL ‘M1’

Model ‘M1’ was nearly symmetrical, as far as the stiffnesses were concerned (Fig.
10.3); the shear centre of the bracing system and the geometrical centre of the plan of
the building nearly coincided.

The model was first subjected to a series of concentrated horizontal forces at
top floor level and the location of the shear centre was established. The theoretical
formulae (2.1) and (2.2) in Chapter 2 gave very good predictions for the location of
the shear centre. The distance between the theoretical and measured shear centres
was 80 mm (6% related to the width of the model) with the model with pinned
columns (OPt and OPm), and 40 mm (3%) with the model with fixed columns (OFt and
OFm in Fig. 10.3).
 

It is interesting to note that the location of the shear centre hardly changed when the
pinned columns were replaced by fixed columns. This follows from the fact that the
bracing system (without the columns) had a shear centre which situated very near the
centroid and the columns in their doubly symmetrical arrangement did not change the
situation.
 

Fig. 10.3 Bracing system arrangement for model ‘M1’.
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The models were then subjected to concentrated horizontal forces at different corners.
Figure 10.4 shows the results of the theoretical and experimental values of the
translations on top floor level in directions x and y, under concentrated force Fy. The
measurements show good agreement with the theoretical values for the model with
fixed columns (Fm—Ft).

The situation was similar when the model was subjected to a horizontal force in
direction x (Fig. 10.5).
 

For the model with pinned columns, the measurements show consistently smaller
translations than the theoretical values. As mentioned in section 10.1, the reason for
this deviation is attributed to the fact that the rotation of the pinned joints was restricted

Fig. 10.4 Translations of model ‘M1’ under horizontal force Fy. a) Translations ey,
b) translations ex.

Fig. 10.5 Translations of model ‘M1’ under horizontal force Fx. a) Translations ex,
b) translations ey.

242 Test results



by some friction due to manufacturing limitations. This phenomenon with the same
tendency was observed with all the models with pinned columns.

10.3 HORIZONTAL LOAD ON MODEL ‘M2’

With the second arrangement (‘M2’ in Fig. 10.6), the distribution of the stiffnesses of
the bracing system was unsymmetrical and the centroid and the shear centre were
well apart. When the model was constructed using pinned columns, the shear centre
situated near the U-core. The distance between the theoretical and measured shear
centres (OPt and OPm) was 150 mm (7% related to the corresponding width of the
model).

Due to the ‘stabilizing’ effect of the fixed columns, i.e. a doubly symmetrical system
of columns was added to the unsymmetrical system of bracing elements, the shear
centre moved closer to the centroid of the layout but the model still remained fairly
unsymmetrical which was the requirement regarding this arrangement.

 
Again, the theoretical predictions for the location of the shear centre were very good;
the difference between the experimental and theoretical values (OFm and OFt) was only
65 mm (4%). Once again, the greater, but still acceptable, difference with the pinned
model can be attributed to the friction in the ‘pinned’ joints. Following the loading
sequence, aimed at the determination of the location of the shear centre, the models

Fig. 10.6 Bracing system arrangement for model ‘M2’.
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were subjected to horizontal forces at the corner points in both direction x and direction
y. The horizontal translations were measured at several locations over the height of the
model in direction y and in direction x.

 
Figures 10.7 and 10.8 show the theoretical and experimental values of top level
translations. Because of the unsymmetrical nature of the bracing system, the rotation
around the shear centre played a greater role in developing translations, compared to
Model ‘M1’ presented in the previous section.

The results were similar to those obtained for model ‘M1’ as far as accuracy
was concerned: good agreement between the measurements (Fm) and the
theoretical values (Ft) for the fixed model and, due to the friction in the ‘pinned’
joints, slightly overestimated theoretical values (Pt) for the model with pinned
columns.

Fig. 10.7 Translations of model ‘M2’ under horizontal force Fy. a) Translations ey,
b) translations ex.

Fig. 10.8 Translations of model ‘M2’ under horizontal force Fx. a) Translations ex,
b) translations ey.
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10.4 COMPARATIVE ANALYSIS OF THE FORMULAE FOR
HORIZONTAL LOAD

All known approximate methods developed for the stress analysis of bracing systems
developing unsymmetrical bending and torsion use one or two or all three of the
following assumptions. They either assume uniformly distributed horizontal load
and/or neglect the effect of the Saint-Venant torsional stiffness on the load share on
the individual bracing elements and/or neglect the product of inertia of the bracing
system. As the method presented in Chapter 5 does not use any of these assumptions
and therefore can be considered as the generalization of such simpler methods, the
analysis of some special cases offers excellent opportunities for comparison. Some
of these special cases are: uniformly distributed horizontal load (µ=0); the case when
the effect of the Saint-Venant stiffness is neglected, i.e. when ηT=1.0 and ηM=1.0
hold; and the case when Iry=0 holds (zero product of inertia).

Two more special cases can be considered for comparison. When the external
load passes through the shear centre and the bracing system only develops
unsymmetrical bending, the formulae presented in the thesis simplify and become
identical to Tarnai’s [1996] formulae given in matrix form for unsymmetrical bending.
Another special case, when the bracing system under uniformly distributed horizontal
load (µ=0) only develops mixed torsion, leads to Vlasov’s formula [1940] for the
rotation of beam-columns under uniformly distributed torque.

Szmodits [1975], using a technique similar to the one applied here, but assuming
µ=0, ηT=1.0 and ηM=1.0 as mentioned above, and Kollár and Póth [1994], relying on
static considerations, derived closed-form solutions for the uniformly distributed
load case. Both sources were also used for the numerical analysis. The relevant
formulae showed good agreement.

The formulae for load distribution were also checked and found in line with those
presented by Beck and Schäfer [1969], König and Liphardt [1990] and MacLeod
[1990], assuming µ=0, Iω,i=0 and Ixy,i=0.

Worked examples [Stiller, 1965; Beck and Schäfer, 1969; Rosman, 1967] were also
used for comparing the load share on the bracing elements under concentrated top
load and uniformly distributed horizontal load. The deviation of the results was less
than 5%.
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10.5 DYNAMIC TESTS

Dynamic tests were also carried out on the models. Only a summary of the results is
given here; the detailed description of the tests and the results are available in separate
publications [Boughton, 1994; Zalka, 1994b].

The formulae and tables presented in section 3.2 gave
 

f=0.79 Hz
 
for the fundamental frequency of Model ‘M2’ with pinned columns.

A series of tests was carried out using a small vibrator on top of the model (Fig.
10.9). The vibrator was linked to a computer which monitored the behaviour and
evaluated the measurements. The fundamental frequency of the model with pinned
columns was measured to be

f=0.78 Hz
 
which is 1% smaller than the theoretical value.

When the pinned columns were replaced by fixed ones, the formulae in section 3.2
predicted
 

f=1.96 Hz
 
for the fundamental frequency. According to the experimental measurements, the
fundamental frequency was
 

f=1.61 Hz

which was 18% smaller than the theoretical value.
Lateral vibrations were coupled with pure torsional vibrations in both cases. When

the behaviour of the model with fixed columns was investigated, the effect of the
columns on the global stiffness of the model was taken into account using approximate
formula (2.17) derived in section 2.2.

The effect of the compressive forces on the frequencies was neglected in the
theoretical analysis.
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Fig. 10.9 Dynamic tests: model ‘M2’ and the vibrator.
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10.6 STABILITY TESTS

Theoretical research into the stability of structures has resulted in new design methods
and a considerable amount of information but the calibration and verification of the
methods have been progressing in a much slower pace. Due to the formidable task,
even when tests are carried out, they concentrate on individual structural elements
[Croll and Walker, 1972; Barbero and Tomblin, 1993] or they use a small-scale part of a
complex structure (a framework/coupled shear walls) [Szittner, 1979] as opposed to the
whole structure. To fill this gap, a series of tests was carried out on the small-scale
models shown in the previous sections. A summary of the results is given below;
details of the tests are available in a research report [Zalka and White, 1992].

The models were subjected to two types of vertical load. In all cases they had to
carry their own weight, which was a uniformly distributed load on each floor with an
intensity of q=0.08 kN/m2. In addition to this dead weight, the models were subjected
to a vertical load on the top level. This load was placed on the top floor in increments
and was distributed across the whole floor area by a small steel frame and two wooden
slabs (Fig. 10.10). The term critical concentrated load in this section refers to this
load.

Characteristic deformations were measured during the loading process and the
load-deflection and load-rotation diagrams were produced. Based on the diagrams,
the Southwell Plot [Croll and Walker, 1972] was then produced, with deformations
along the vertical axis and the deformation-load ratio along the horizontal axis. The
critical load of the structure was finally established as the slope of the linearized
relationship (Fig. 10.12). The simultaneous presence of the uniformly distributed
dead weight and the concentrated top load was taken into account by the Dunkerley
summation theorem.
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Fig. 10.10 Stability tests: loading and failure mode.
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10.6.1 Model ‘M1’

The procedure presented in section 3.1 yielded
 

Vcr=3.13kN
 
for the critical concentrated load of Model ‘M1’ with pinned columns.

Both the theoretical investigations and the behaviour of the model during the tests
showed that the buckling mode of this arrangement was that of sway buckling in plane
yz. Accordingly, the translations in direction y on top floor level were used for the
Southwell Plot. The vertical concentrated top load was increased in ten increments
from 0.2 kN to 1.5 kN. The Southwell Plot resulted in the value of the critical concentrated
load as
 

Vcr=3.03 kN.

The model proved to be much stronger when the pinned columns were replaced by
fixed ones but the characteristic buckling mode did not change: the model developed
sway buckling in plane yz, which was practically not coupled with the other two basic
modes. In this case, the vertical concentrated load was increased to 2.5 kN. The
theoretical prediction and the Southwell Plot—which showed some uncertainty in
evaluation—put the value of the critical concentrated load in the region of 13 kN—14
kN. This corresponds to a fourfold increase in the value of the critical load—and in the
value of the lateral stiffness of the model—compared to the corresponding values with
the model with pinned columns. Figure 10.11 shows the buckled shapes where PC
refers to the model with pinned and FC to the model with fixed columns.

Fig. 10.11 Buckled shape of model ‘M1’.
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10.6.2 Model ‘M2’

In accordance with the theoretical predictions, this model was very sensitive to torsion.
This was also reflected in the value of the critical concentrated load which, using the
procedure presented in section 3.1, was obtained as
 

Vcr=1.32kN
 
for the model with pinned columns. This value was much smaller than the critical
concentrated load of Model ‘M1’.

The tests demonstrated that the characteristic deformation was rotation around the
shear centre, which was slightly coupled with sway in direction y. The value of the
vertical load distributed on the top floor level was increased in nine increments from
0.2 kN to 1.3 kN. The translations of the corner points of the models were monitored
and the measurements were also used to produce the rotations of the model (Fig.
10.12/a). Based on the rotations and the ratio of the rotations to the vertical load, the
Southwell Plot was produced (Fig. 10.12/b). The critical concentrated load was obtained
as the slope of the experimental line:

Vcr=2.69kN.
 
The failure mode of the model was torsional buckling as shown in Fig. 10.10.

Two reasons may explain the significant difference between the theoretical and
experimental results. As a stabilizing factor, the friction in the joints of the pinned
columns played a greater role in contributing to the resistance of the model when the
model developed torsion. This friction not only increased the lateral and torsional
stiffnesses (and the corresponding critical loads) but also changed the location of
the shear centre in such a way that the distance between the shear centre and the
geometrical centre became shorter. This phenomenon reduced the effect of torsion
which also led to a greater global critical load. The evaluation of the loading procedure
later revealed that with increasing rotations the top floor slab developed warping
and slightly detached itself from the load distributing wooden slab. In this way, the
load which was assumed to be uniformly distributed over the top floor lost its
uniform nature and some load concentration occurred near the shear centre. This
also increased the critical load.
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When the pinned columns were replaced by fixed ones, the behaviour of the model
was similar but, due to the ‘healthy’ contribution of the columns (greater stiffness and
less eccentric load), the value of the critical load increased significantly. It was not
possible to load this model up to failure, but the test results, the Southwell Plot and the
theoretical investigations indicated that the critical concentrated load of the model
was 12.9 kN. This represented a 2.0-fold and a 1.6-fold increase in the lateral stiffnesses
in directions y and x, respectively, a 1.8-fold increase in the torsional stiffness and a
5.3-fold increase in the warping stiffness. Because of the more favourable mode
coupling, due to the reduced eccentricity, the global critical load increased 6.2-fold,
compared to the pinned case.

10.6.3 Deformation of the bracing elements

Both models ‘M1’ and ‘M2’ with both pinned and fixed columns behaved as the
theoretical formulae predicted. The nature of the behaviour was not affected by the
end conditions of the columns: The system with fixed columns and with pinned
columns developed the same type of deformations. The nearly symmetrical system
‘M1’ developed lateral buckling in direction y (Fig. 10.11). Model ‘M2’ with pinned
columns was loaded up to failure. The characteristic mode was torsion (Fig. 10.10).
The structure lost stability when the two L-shaped cores marked with ‘1’ and ‘2’ in
Fig. 10.6 broke between the ground floor and the first floor levels. These two bracing
elements were the furthest from the shear centre and were subjected to the greatest
deformations. The U-shaped core near the shear centre (marked with ‘5’ in Fig. 10.6)
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Fig. 10.12 Stability of model ‘M2’. a) Load-rotation relationship, b) Southwell Plot.



developed considerable warping deformation at the bottom of the model (Fig. 10.13).
The warping spread to the next two storeys then died away. The two shear walls
marked with ‘3’ and ‘4’ in Fig. 10.6 developed slight warping in the first and second
storey region. After dismantling the model, these shear walls fully recovered from
the deformations.

Fig. 10.13 Deformation of U-core.
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11

Evaluation; design guidelines

The techniques and methods presented in the book make it possible to carry out the
global stress, stability and frequency (seismic) analyses of the bracing system of
building structures. They are potentially useful both at the concept design stage and
for final analysis. They can be used for
 
• checking of structural adequacy,
• assessing the suitability of structural layouts,
• verifying the results of other methods,
• evaluating computer packages,
• facilitating theoretical research,
• developing new techniques and procedures.
 
In addition to global analysis, the closed-form formulae and design diagrams can
also be used for the sizing of the elements of the bracing system and for the structural
design of individual beam-columns. The formulae presented for the stability analysis
are directly applicable to the analysis of columns with thin-walled cross-sections,
subjected to unsymmetrical bending and torsion (cf. section 3.1.6). The formulae derived
for the stress and frequency analyses need some modifications before they can be
applied to individual elements.

The techniques are simple and facilitate ‘on the back of the envelope’ calculations;
the results are reliable, albeit approximate.

Based on the qualitative and quantitative analyses of the methods, the objective of
this chapter is to group the most important information together by types of behaviour
and to provide the structural engineer with design guidelines.



11.1 SPATIAL BEHAVIOUR

The single most important conclusion is that torsion plays a crucial role in 3-dimensional
structural behaviour and by reducing torsion the overall performance and the
effectiveness of the bracing system can be greatly improved. Both the nature (Saint-
Venant or warping) and the extent of torsion are important. This is equally true when
the effects of horizontal loading are analysed (when the deformation of the building
and the stresses in the bracing elements are calculated) and also when the effects of
the vertical load are considered (when the main objectives of the analysis are to
determine the global critical load and the fundamental frequency).

The stability and the dynamic behaviour are characterized by very similar phenomena
and it is not surprising that very similar guidelines have to be followed in the design
procedure. These guidelines can also be applied to the stress analysis with taking into
account the different nature of the load.

11.2 STABILITY ANALYSIS

Global stability and the value of the sway-torsional critical load basically
depend on
 
• the values of the basic critical loads which belong to the basic (sway and pure

torsional) modes and
• the coupling of the basic modes.
 
The sway critical loads are controlled by very simple relationships: their value is in
direct proportion to the bending stiffness of the bracing system and in inverse
proportion to the square of the height of the building. The situation with the pure
torsional critical load is somewhat different. Its value is in direct proportion to the
warping stiffness of the bracing system and in inverse proportion to the height of
the building. (The effect of the Saint-Venant torsional stiffness is normally small.)
However, in addition to these relationships, the torsional critical load also depends
on horizontal geometrical characteristics of the building. The greater the size of the
building and the greater the distance between the shear centre and the centre of the
vertical load, the smaller the critical load. The latter characteristic also affects the
coupling of the basic modes: the greater the distance between the shear centre and
the centre of the vertical load, the more ‘dangerous’ the coupling is. Coupling always
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reduces the value of the critical load: the reduction can be as much as 141%. In
summarizing, the most important characteristics controlling the behaviour of the
bracing system for stability are
 
• the lateral stiffnesses characterized by the second moments of area IX

• the torsional stiffness, whose value is normally dominated by warping constant Iω ,
• the distance between the shear centre of the bracing system and the centre of the

vertical load. (The centre of the vertical load coincides with the geometrical centre
of the plan of the building for uniformly distributed load.)

 
The most effective ways to increase the value of the global critical load (and
consequently to improve the performance of the bracing system for stability) are
 
• to increase the lateral stiffnesses (preferably in a balanced way in both principal

directions),
• to increase the value of the warping constant. This can be most efficiently achieved

by placing the bracing elements as far from the shear centre as possible in such a
way that the perpendicular distance between the plane in which the bending stiffness
of the element acts and the shear centre is maximum,

• to reduce the distance between the shear centre of the bracing system and the
centre of the vertical load (the geometrical centre of the plan of the building for
uniformly distributed load), optimally to zero.

 

11.3 FREQUENCY ANALYSIS

The value of the fundamental frequency basically depends on
 
• the values of the basic natural frequencies which belong to the basic (lateral and

pure torsional) modes and
• the coupling of the basic modes.
 
The value of the frequencies for all three basic types of vibration (lateral and pure
torsional) vibrations is in inverse proportion to the square root of the weight of the
structure.

In addition to weight, lateral vibrations are defined by the lateral stiffnesses and the
height of the building. The value of the lateral frequencies increases proportionally to
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the square root of the lateral stiffness and decreases in inverse proportion to the
square of the height.

The value of the pure torsional (uncoupled) frequency is in proportion to the root
of the warping stiffness of the bracing system and in inverse proportion to the
square of the height of the building. The effect of the Saint-Venant torsional stiffness
is normally small. The value of the pure torsional frequency is also influenced by
horizontal characteristics of the building. Its value decreases as the size of the
ground plan and the eccentricity of the mass of the building (the distance between
the shear centre and the centre of the mass) increase. The coupling of the basic
mode always reduces the value of the fundamental frequency. The extent of coupling
depends on the ‘eccentricity’ of the mass: the more eccentric the mass, the greater
the coupling of the basic modes.

The most important characteristics controlling the natural frequencies of the bracing
system are

• the lateral stiffnesses characterized by the second moments of area IX and IY,
• the torsional stiffness, whose value is normally dominated by warping constant Iω ,
• the distance between the shear centre of the bracing system and the centre of the

mass of the building. (The centre of the mass coincides with the geometrical centre
of the plan of the building for uniformly distributed mass),

• the weight of the building.

The most effective ways to increase the value of the fundamental frequency (and
consequently to improve the dynamic performance of the bracing system) are
 
• to increase the lateral stiffnesses stiffnesses (preferably in a balanced way in both

principal directions),
• to increase the value of the warping constant. This can be most efficiently achieved

by placing the bracing elements as far from the shear centre as possible in such a
way that the perpendicular distance between the plane in which the bending stiffness
of the element acts and the shear centre is maximum,

• to reduce the distance between the shear centre of the bracing system and the
centre of the mass (the geometrical centre of the plan of the building for uniformly
distributed mass), optimally to zero,

• to reduce the weight of the building.
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11.4 STRESSES AND DEFORMATIONS

The guidelines given above for achieving optimum stability and dynamic performance
can also be used in the stress analysis: by increasing the overall performance of the
bracing system the global deformations of the building and the maximum stresses in
the bracing elements can be reduced.

The evaluation of the equations and formulae leads to the following observations.
The most important characteristics of the behaviour of the bracing system are
 
• the lateral stiffnesses characterized by the second moments of area Ix and Iy,
• the torsional stiffness (normally dominated by warping constant Iω ),
• the eccentricity of the load, i.e. the perpendicular distance between the shear centre

of the bracing system and the line of action of the external load.
 
The most effective ways to reduce the global deformations and to improve the
performance of the bracing system under horizontal load are
 
• to increase the lateral stiffnesses (preferably in a balanced way when Ix and Iy are

proportional to the external load in the relevant direction),
• to increase the value of the warping constant (Iω ). This can be most efficiently

achieved by placing the bracing elements as far from the shear centre as possible in
such a way that the perpendicular distance between the plane in which the bending
stiffness of the element acts and the shear centre is maximum,

• to reduce the eccentricity of the load, i.e. to reduce the distance between the shear
centre of the bracing system and the geometrical centre of the plan of the building
(through which the external load passes).

When designing for torsion, the following points should be considered.

• In addition to the bending and torsional stiffnesses, the load share on the bracing
elements, due to torsion, also depends on the ratio of the Saint-Venant torsional stiffness
and the warping stiffness of the bracing system. This ratio can be best characterized
using the nondimensional torsion parameter k.
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• In the range 0<k<∞, the value of the maximum shear force in the bracing
elements, due to torsion, is always greater than the value which belongs to
k=0 (the case when the Saint-Venant stiffness is zero or is neglected). The
maximum difference is 23% at k=2.8. It follows that the assumption k=0 (openly
or tacitly made by most analytical methods) always represents an
unconservative approximation.

• For dominant Saint-Venant stiffness (GJ), due to the rotation of the bracing
system under horizontal load, the elements of the bracing system only develop
shear forces near their support and the value of the bending moments decreases
with increasing GJ.

• With increasing the value of k (from zero), the value of the maximum bending
moments in the bracing elements, due to torsion, is first greater then smaller than
the value which belongs to k=0. The maximum increase is 5.4% at k=1.35, then the
value of the maximum bending moment tends to zero. Consequently, the assumption
k=0 represents a slightly unconservative approximation in the region 0<k<2.35,
then the approximation is increasingly conservative for 2.35<k<∞.

 
It is interesting to note that with increasing Saint-Venant stiffness, ‘activities’ (load,
shear force, rotation) over the height of the bracing elements tend to limit to the
vicinity of the bottom. This shows striking similarities to the planar buckling of
cantilevers developing bending and shear deformations as well as to the torsional
buckling of cantilevers.

11.5 STRUCTURAL PERFORMANCE OF THE BRACING SYSTEM

The performance of the bracing system is best monitored by using the global critical
load ratio (the ratio of the applied vertical load and the global critical load). The critical
load ratio is a sensitive indicator which can be calculated in minutes.

The global critical load ratio—by definition—is in a direct relationship with the
(global) safety of the structure: it indicates the ‘level’ of safety. In addition, the
comparison of different global critical load ratios belonging to different bracing system
arrangements also gives useful information regarding the change in the value of the
fundamental frequency and the maximum global deformations of the building. Thus
monitoring the most important characteristics of the bracing system, an optimum
structural layout can be achieved in a fast and simple manner, simultaneously leading
to maximum safety and economy.
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The single most important conclusion is that torsion plays a crucial role in structural
behaviour and by reducing torsion the overall performance and the level of global
safety can be greatly improved.

It is interesting to note that the application of the same guidelines (cf. sections 11.2,
11.3 and 11.4) leads to optimum performance regarding stability, global deformations,
stresses and dynamic behaviour.

11.6 STABILITY OF PLANAR STRUCTURES

The analysis of the planar structures considered for the investigation in Chapter 9
(frameworks on fixed and pinned support and with or without single or double cross
bracing, infilled frames, shear walls and coupled shear walls) shows that they all can be
characterized by four types of deformation: full-height ‘local’ bending of the individual
columns, full-height ‘global’ bending of the framework as a whole, full-height
(continuous) shear deformation and storey-height shear deformation (Figs 9.1 and
9.2). These deformations can be characterized by the corresponding stiffnesses. The
critical load of these structures is obtained by combining the part critical loads which
are associated with the four types of deformations. It is therefore important to analyse
the buckled shape. The form of the buckled shape depends on a number of
characteristics and also varies as the height of the structure increases.

11.6.1 Low-rise to medium-rise (4–25-storey) structures

The global shear stiffness of the framework, which is basically determined by the
bending stiffness of the beams, normally has a major contribution to the overall stability
of the framework.

With frameworks on fixed supports and frameworks on pinned supports with ground
floor beams, subjected to concentrated forces on top of the columns, the buckled
shape is normally dominated by the global bending stiffness, the effect of the shear
stiffness is important and the local bending stiffness is negligible (Fig. 11.1).

When frameworks on fixed supports and frameworks on pinned supports with
ground floor beams are subjected to UDL on the beams, the effect of the shear stiffness
is dominant (Fig. 11.2).
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When the frameworks have pinned supports which are not connected with beams,
buckling failure develops through the horizontal sway of the ground floor columns in
most cases (Fig. 11.3).
 

This, from the point of view of the framework as a whole, is considered to be local shear
deformation. This local shear deformation is closely associated with the lateral stiffness
of the ground floor columns, which basically determines the critical load of the
framework.

Frameworks with (single or double) cross-bracing on fixed or pinned supports,
under both concentrated top load and UDL on the beams, develop predominantly full-
height bending deformation (as shown in Fig. 11.4 where the double curvature bending

Fig. 11.1 Frameworks under concentrated top load.

Fig. 11.2 Frameworks under UDL on the beams.
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of the bars between the nodes is not shown). The nature of the support (fixed of
pinned) does not effect the behaviour (and the value of the critical load).

 

The critical load—and the safety of a framework—can be increased as follows. First,
the role of the four types of deformation and the contribution of the corresponding
stiffnesses to the overall critical load (dominant/important/negligible) have to be
established. Then, after identifying the key type of deformation and the main weakness
of the system, the corresponding stiffness has to be increased which leads to a greater
overall critical load. The critical load can be recalculated in minutes with the new
stiffnesses.

 

Fig. 11.3 Frameworks on pinned supports without ground floor beams.

Fig. 11.4 Frameworks with single cross-bracing.
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With coupled shear walls, of the four characteristic deformations, global bending and
global shear deformations—and the corresponding stiffnesses/part critical loads—
play an important role. Local bending deformation—and the corresponding stiffness/
part critical load—normally have a minor effect on the overall critical load. (This
contribution, however, can become significant with coupled shear walls with relatively
wide walls.) The effect of local shear deformation, i.e. sway between the floor levels is
normally negligible.

11.6.2 Tall (over 25-storey) structures

As the height of the frameworks and coupled shear walls increases, the effect of the
full-height ‘global’ bending deformation of the structure becomes more and more
important. Sooner or later the buckled shape of every planer structure is dominated by
the full-height ‘global’ bending deformation. This point is illustrated in section 9.10
where the behaviour of 4 to 99 storey structures is investigated. According to Table 9.4
in section 9.10, each of the one-bay structures develops predominantly full-height
‘global’ bending deformation over the height of 24 storeys.

11.6.3 Structural performance of planar bracing elements

It goes without saying that solid shear walls represent the most effective type of
bracing. Apart from some very rare occasions, they develop full-height bending
deformation.

At the other end of the scale are frameworks on fixed and pinned supports,
particularly on pinned supports without ground floor beams. Their buckled shape is
normally dominated by local shear type deformation and the ‘contribution’ of the
shear deformation reduces the critical load significantly for low and medium-rise
frameworks. The performance of frameworks improves dramatically when the bays are
‘filled in’, by either (single or double) cross-bracing or by masonry panels.

It is interesting to note that the nature of the support structure (fixed/pinned)
hardly influences the performance of infilled frameworks and frameworks with cross
bracing as they normally develop full-height bending deformation.

Coupled shear walls represent a transition between frameworks and solid shear
walls and their effectiveness largely depends on the relative stiffnesses of the wall-
sections and connecting beams.
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Figures 11.5 and 11.6 shows the critical loads of the one-bay and two-bay
structures that were investigated in section 9.10. Details are given in Tables 9.4
and 9.5. The evaluation of the data in the tables and the figure leads to the
following observations.

The structures can be divided into two categories. The structures in the first category
are best described as structures with ‘wall-like’ behaviour. Shear walls, couples shear
walls, frameworks with cross-bracing and infilled frameworks belong to this group.
The structures here develop basically bending type deformation and they are fairly
effective as bracing elements in a bracing system.

The behaviour of the structures in the second category can be characterized as
‘frame-like’ behaviour. Frameworks on fixed and on pinned supports, with or without
ground floor beams, are in this group. They develop predominantly shear type
deformation—until they reach a certain height—and their critical loads are much smaller
than those of the ‘wall-like’ structures of the same height and width.

The difference between the two groups becomes smaller as the height of the
structures increases. The behaviour of the structures in the ‘frame-like’ group is less
and less dominated by shear type deformation and eventually all structures in the
second group develop predominantly bending type deformation.

Fig. 11.5 One-bay bracing elements.
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The values of the critical loads show that, especially for low-rise and medium-
rise structures, there are huge differences between the structures in the two
categories. The structures in the ‘wall-like’ category are much more efficient as
bracing elements.
 

Fig. 11.6 Two-bay bracing elements.
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Appendix A
 

Cross-sectional characteristics for
bracing elements
 
The geometrical and stiffness characteristics needed for the stress, stability and
frequency analyses are given below for a collection of common bracing elements.

I-SECTION

 
Fig. A1 I-section.

 

 

or

if the wall thickness is taken into account.



Fig. A2 TT-section.

TT-SECTION

 
 

A=Af+2Ag+2Aa,
 
where
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where
 

T-SECTION
 

Fig. A3 T-section.
 
 

A=Af+Ag+Aa,
where
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L-SECTION

 
 

Fig. A4 L-section.
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or

Fig. A5 Sign convention for the product of inertia. a) Positive, b) negative.
 
The sign of the product of inertia Ixy depends on the relative position of the section in
relation to the coordinate axes. The sign convention is given in Fig. A5.
 

if the wall thickness is taken into account.
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I1. 2=Ixcos2 α+Iy sin2 α 
_ 
+Ixy sin2a.

 

A=Af+2Ag+Aa,
where

where
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where

+-SECTION

Fig. A7 +-section.
 

A=t1b+t2(h–t1),
 
where
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or
 

Iω ≈ 0, if the wall thickness is not taken into account.
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Z-SECTION

Fig. A8 Z-section.
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CIRCULAR SECTIONS
 
Solid circular section

 

Fig. A9 Solid circular section.

Tube

Fig. A10 Tube.
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Open circular section

Fig. A11 Open circular section.

PERFORATED CORE

The formulae given for  above can be applied to perforated cores. In using
a uniform continuous medium, an equivalent thickness can be introduced for the wall
section with the openings [Steinle and Hahn, 1988]. Parameters t* and      in the
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formulae below stand for the equivalent thickness when the medium replaces the
whole wall section of width b and the section of lintels of width w, respectively.

where

furthermore

Fig. A12 Perforated core. a) Cross-section and elevation of perforated core, b) cross-section
with full-width equivalent medium, c) cross-section with equivalent medium of width w.
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Appendix B

The generalized power series method for
eigenvalue problems

The solution of most of the problems discussed in this book is straightforward and
details of the solution are not given. However, some of the stability problems are
difficult to solve and even when a solution is found, there may be numerical difficulties
due to the ill-conditioned eigenvalue problem. The power series method, generalized
for such problems, is presented here and, as an example, is applied to produce the
solution of the governing differential equation of the stability problem of frameworks
on fixed supports. Other eigenvalue problems, including those of frameworks on pinned
supports [equations (9.14) and (9.29)], sandwich columns with thin faces [equations
(9.20) and (9.21)] and the pure torsional buckling of cantilevers [equations (3.10) and
(3.4) to (3.7)] can be solved in a very similar manner. Further details and the application
to 3-dimensional problems are available elsewhere [Zalka, 1992 and 1993].

The governing differential equation of the continuum model of frameworks on fixed
supports is given in section 9.3.2 as

 
where

(B1)



The origin of the coordinate system is fixed at the top of the equivalent column (Fig.
9.4/e) and the boundary conditions for frameworks on fixed supports are given in this
coordinate system as follows.

The lateral translation is zero at the top of the column:
 

y(0)=0.
 
The tangent to the equivalent column at the bottom of the column is parallel to axis z:
 

y´(H)=0.
 
No bending moment develops at the top of the column:
 

y´´(0)=0.
 
The sum of the shear forces at the bottom of the column assumes zero value:
 

y´´´(H)=0.

The order of differential equation (B1) can be reduced by one. After integrating the
differential equation once, making use of boundary condition (B2d) and introducing
the non-dimensional quantities
 

and

the equation can be rewritten as

Boundary conditions (B2a), (B2b) and (B2c) complement the above differential equation.
The solution is found in the power series

(B2a)

(B2b)

(B2c)

(B2d)

(B3)

(B4)

(B5)
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where ck denotes coefficients yet unknown. The derivatives of the solution
function are

After substituting the derivatives into differential equation (B5), the equation
 

is obtained. This equation can only hold if the sum of the coefficients of each power of
z equals zero. This condition, for z2 for example, leads to
 

or, in general form, to
 

 

(B6)

(B7a)

(B7b)

(B7c)

(B8)

(B9)

(B10)
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Rearranging equation (B10) results in a recursion formula for the unknown coefficients
for k ≥ 3:

 
The initial values needed for the calculation are obtained from boundary conditions
(B2a) and (B2c), after making use of the power series and its derivatives, as
 

c0=0,

C
2=0.

 
Boundary condition (B2b), yet unused, leads to the equation
 

Polynomial f(β,α) only vanishes when the eigenvalues of the problem (α1, α2,…αn), i.e.
the critical loads, are substituted for α (Fig. B1). It follows that the smallest root of
polynomial f(β,α) yields the first eigenvalue of the problem, which is of practical
importance, being the smallest critical load of the structure.
 

The original eigenvalue problem (B1) has been transformed into a simple problem of
finding the smallest root of a polynomial; this is a much simpler task than the original
problem, as finding the smallest root of a polynomial is a routine exercise. The procedure
can be easily monitored and when problems related to slow convergence due to ill-

(B11)

(B12a)

(B12b)

(B13)

Fig. B1 Polynomial with eigenvalues αs, α1, α2, α3.
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conditioned stiffness parameters emerge, the parameters governing the solution can
be adjusted to achieve reliable results. Once a specific stiffness region is covered, the
eigenvalues can be tabulated for future use.

It should be noted here that coefficient c1 appears in each term of ck, and
consequently in each term of equation (B13), so that its value does not affect the value
of the eigenvalue. For this reason, any suitable value for c1, for example c1=1, can be
used for the actual calculation of the eigenvalue. Similarly, powers of H appear both in
the formula of ck (in the denominator) and in the formula of f(β,α) (in the numerator) in
the same manner, so that the value of H does not affect the eigenvalue either. Again, a
suitable value, e.g. H=1 can be used for the calculation of the eigenvalue.

The determination of the smallest root is made easier as the shape of the polynomial
is known: due to the physical nature of the problem—only structures with non-negative
geometrical and stiffness characteristics are dealt with—the polynomial assumes a
positive value at α=0 (Fig. B1). It is also helpful that a lower bound is known to the
smallest eigenvalue: Southwell’s summation theorem results in a conservative estimate
of the exact eigenvalue. The Southwell solution
 

aS=1+β
 
can conveniently be used as a starting value in the iteration process for the solution of
equation (B13) (Fig. B1).

After solving equation (B13) representing the original eigenvalue problem (B1) for
different stiffness ratios β and making use of formula (B3), the eigenvalues of the
continuum model are obtained. These values are tabulated in Table 9.1 in section 9.3.2.

The procedure outlined above can be applied to any type of eigenvalue problem—
it was used to solve all of the stability problems in Chapters 3 and 9. It can also be used
for solving eigenvalue problems which have the eigenvalue in the boundary conditions,
e.g. as is the case with the sandwich model in section 9.3.3. Furthermore, the procedure
can even be applied to 3-dimensional eigenvalue problems.

(B14)
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Table C1 Mode coupling parameter Κ forτX=0.0
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Mode coupling parameter κ
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Table C1 Continued. Mode coupling parameterκ  for τ X = 0.0
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Table C2 Mode coupling parameterκ  for τ X = 0.1
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Table C2 Continued. Mode coupling parameter κ for τ X = 0.1
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Table C2 Continued. Mode coupling parameter κ  for τ X = 0.1
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Table C3 Mode coupling parameter κ for τ X = 0.2
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Table C3 Continued. Mode coupling parameter κ  for τ X = 0.2



290 Appendix C

Table C3 Continued. Mode coupling parameter κ for τ X = 0.2
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Table C4 Mode coupling parameter κ for τ X = 0.3
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Table C4 Continued. Mode coupling parameter κ for τ X = 0.3
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Table C4 Continued. Mode coupling parameter κ for τ X = 0.3
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Table C5 Mode coupling parameter κ for τ X = 0.4
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Table C5 Continued. Mode coupling parameter κ for τ X = 0.4
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Table C5 Continued. Mode coupling parameter κ for τ X = 0.4
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Table C6 Mode coupling parameter κ for τ X = 0.5
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Table C6 Continued. Mode coupling parameter  κ for τX = 0.5
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Table C6 Continued. Mode coupling parameter κ  for τX = 0.5
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Table C7 Mode coupling parameter κ  for τX = 0.6
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Table C7 Continued. Mode coupling parameter κ for τ X = 0.6
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Table C7 Continued. Mode coupling parameter κ for τ X = 0.6
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Table C8 Mode coupling parameter κ for τ X = 0.7
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Table C8 Continued. Mode coupling parameter κ  for τX = 0.7
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Table C8 Continued. Mode coupling parameter κ  for τX = 0.7
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Table C9 Mode coupling parameter κ  for τ X = 0.8
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Table C9 Continued. Mode coupling parameter κ  for τX = 0.8
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Table C9 Continued. Mode coupling parameter κ for τ X = 0.8
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Table C10 Mode coupling parameter κ  for τX = 0.9
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Table C10 Continued. Mode coupling parameter κ  for τX = 0.9
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Table C10 Continued. Mode coupling parameter κ  for τX = 0.9
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Table C11 Mode coupling parameter κ for τ X = 1.0
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Table C11 Continued. Mode coupling parameter κ for τ X = 1.0
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Table C11 Continued. Mode coupling parameter κ for τ X =1.0
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