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Preface

Parallel processing is widely seen and accepted as the only approach that can
make available the computing resources that are necessary to solve large-scale
computing models. Because of advances in technology and industry, there is
an increased need to solve more complex physical models, with finer resolution,
more particles, more dimensions, and for larger timescales. Generally, simple
models will no longer suffice.

Several different application areas are presented in this book, along with
their solutions on (generally parallel) advanced architecture computers. Often
the applications have been lost in the volumes of literature about advanced
architectures, parallel algorithms, hot chips, and integrated circuit technology.
The new computer technology presented here, however, affords solutions to
"what it is all about." Applications drive the sale of machines and make
the end users' organizations more competitive and productive. Stated simply,
applications are the raison d'etre of parallel processing.

At this juncture, making effective use of parallel processing is a nontrivial
task. This is especially true when we consider genuine applications codes. As
you read the chapters you will implicitly, and in some cases explicitly, sense the
amount of human effort that goes into devising, developing, and implementing
a parallelized application code.

This book grew from a regular column, "Applications on Advanced
Architecture Computers," that appeared in SI AM News. This is the set of
articles that appeared beginning with the column's inception in March 1990
until the "cut-off" date for putting together this book—June 1995. The focus
of the column was to present applications that have been successfully treated on
advanced architecture computers. Our working definition of what constitutes
an advanced architecture has been, and remains, quite liberal. It includes
everything that is even slightly more exotic than the simple SISD (single-
instruction single-data stream) class. In some cases we have had articles about
general algorithmic issues, which are algorithms that are commonly used in
building parallel codes for solving applications.

The column that is the breeding ground for the material in this book has
continued for nearly six years. In the high-performance computing arena this

xv



xvi Preface

is two to three epochs. The Connection Machine, the most cited machine
in the articles, is no longer with us. Several of the later articles have used
workstations as the basis for the computing "engine." This may well be a
mild confirmation of the trend that a number of computer industry watchers
believe is the future limit point—clusters of workstations or servers as the
parallel architecture. The fact that applications continue to be developed and
implemented on these advanced types of architectures, as the architectures
themselves evolve, is an indication of the importance placed on the worth of
the applications.

The 30 articles in the column cover a broad spectrum. While trying
to identify the few tidbits that might serve as a theme, I admit to being
bewildered. Some of the computers used most often in the past articles are no
longer in use. Some of the languages used to code the applications are now
rarely used. What is consistent is the diversity of areas to which advanced
computing has been, and will continue to be, applied.

There is significant overlap in applications. Four articles deal with
molecular dynamics, four articles deal with what we can fairly call optimization
or mathematical programming, three articles deal with financial or economic
applications, two articles deal with geometry, and five articles are solely focused
on partial differential equations. Given this roll call, it is hard to say that any
one area has dominance over any other.

There have been several notable events since the column's inception.
Michael Mascagni's article was really the inaugural article. Craig Douglas
was our first repeat author; both of his contributions appear in this book.
David Beazley and Peter Lomdahl offered the first two-part article. Eduardo
D'Azevedo, Charles Romine, and David Walker offered another exciting first
for the column, the initial appearance of a new research result: an article
describing the first billion-atom molecular dynamics simulation to ever appear
in print.

By agreement of the contributing authors all proceeds from this book
are donated to the SI AM Student Travel Fund (see SI AM News, Vol. 28,
No. 4, April 1995). It is my hope that the book sells well so that many
more students will have the opportunity to attend SIAM conferences that they
might otherwise not be able to attend.

I found it nearly impossible to find a content- or topic-based way to order
the chapters. Since many chapters have more than one author a simple strict
alphabetization seemed inappropriate. So, in an attempt to induce some
fairness about the order of the chapters, I used the following algorithm. I
took the lowercase ASCII values of the letters of the chapter's authors' last
names, summed them, and normalized them by the number of characters. An
ascending numerical sort of these values determined the order of appearance
in the book. Perhaps it is not optimal, but it eliminates any personal bias or
interpretation. The editorial preface for each chapter indicates the date of its
appearance in SIAM News.



Preface xvii

During the preparation of this book we learned of the untimely and sad
news of Jan Almlof's death in January 1996. As a tribute to Jan I chose to
violate the chapter ordering just described. To honor Jan and his work his
chapter appears first in this book.

There are a great many acknowledgments that I need to offer, exactly 50,
to each contributing author. Having never been an editor of a regular column
before this experience I can't offer comparisons. I can, however, offer absolute
testament that these 50 people have been a distinct pleasure to work with; each
was cooperative and helpful. My job has been easier because of their efforts,
and this book would not exist without them.

The genesis for this column, with proportionate thanks, goes to Ed Block,
former managing director of SI AM. He started the whole thing by making the
suggestion that a column focused on the union of mathematics and computing
would be a welcome addition to SI AM News. A five-year retrospective that I
wrote on the column is included as an appendix to this book.

The editorial staff at SIAM has been most helpful and thorough in getting
this book completed, notably Jean Anderson and Susan Ciambrano.

During the course of the column's tenure, which continues to this day, the
editor of SIAM News, Gail Corbett, has been the quiet, "behind the scenes"
force. Gail has taken every article and added that special treatment to make
it more readable. She approached each article as a naive reader would, and
each has prospered from her efforts.

This book was produced with I^TgX, version 3.1. All of the figures are in
PostScript.

Finally, any responsibility for errors in this book rests with me.

Greg Astfalk
Richardson, TX
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Chapter 1

Massively Parallel Algorithms for Electronic
Structure Calculations in Quantum Chemistry

Andrew L. Sargent
Jan Almlof

Martin W. Feyereisen

Editorial preface

The authors develop the underlying mathematics of the self-consistent
field (SCF) method for electronic structure calculations. They focus on
the parallelization of the formation of the so-called Fock matrix, then
develop a method to solve the entire problem, formation and solution, on
a heterogeneous system. In this approach each machine is used for that
portion of the algorithm for which it is best suited. Finally, a modification
is offered that permits large-scale electronic structure calculations while
using a relatively small amount of memory.

This article originally appeared in SI AM News, Vol. 26, No. 1, January
1993. It was updated during the summer/fall of 1995.

One of the most significant challenges facing contemporary computational
chemists involves the restructuring of application software to allow full
utilization of current computer hardware. Considering the wide variety of
available computer architectures and the ephemeral nature of the cutting-edge
technology on which they are based, this is not a one-time task but rather an
ongoing development project.

Massively parallel processing, the latest trend for the supercomputing
community, is universally hailed as the vehicle by which grand challenge, i.e.,
teraflops, computing will be achieved in the future. However, the concept
of parallel computing is not well defined, and there are many different ways
in which calculations can be carried out in parallel. Key decisions to be
made in this context include the number of processors to be utilized, the
accessibility of memory (shared versus local), and the granularity of the parallel
algorithm. Another important issue is the extent to which load balancing is
pursued, a problem that is considerably more difficult in a multiuser, time-
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shared environment than with dedicated hardware.
Our ab initio computational chemistry code [3] is being continuously

updated to keep abreast of parallel technology. The code has been modified to
run on clusters of workstations [12]; one or several loosely coupled, dissimilar
supercomputers [10]; and massively parallel hardware [7]. In this article,
we review our recent work in adapting electronic structure codes to parallel
processing and report benchmark results for a variety of parallel architectures.
We also discuss new ways to address certain bottlenecks encountered in several
of the parallel approaches.

1.1. Calculating Electronic Structure

In virtually all calculations of molecular electronic structure, one-electron
wavefunctions 0i(r) are expanded in a basis set:

The basis functions XP(T) are chosen to be atomic orbitals, i.e., previously
computed and tabulated one-electron wavefunctions for the atoms constituting
the molecule. The probability distribution corresponding to a wavefunction
0(r) is given by its square amplitude |0(r)| and the total electron density in a
molecule p(r] is therefore obtained as an expansion in products of these basis
functions:

where (*) denotes a complex conjugate. The coefficients Dpq are elements of a
density matrix D and are obviously related to the expansion coefficients C^,
the exact relation depending on details of the electronic structure model, which
is not our concern here. The electrostatic interaction between electrons is given
by the six-dimensional integral

For the purpose of the present discussion, the only significant observation we
need to make is that the evaluation of the energy involves two-electron integrals
of the form

the number of which scales as the fourth power of the number of basis functions
TV. The quantum mechanical description of the system is obtained by solving
the generalized matrix eigenvalue equation
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In this expression, F, the Fock matrix, is a matrix representation of the effective
one-electron Hamiltonian operator in the basis set (x(r)}, C is the matrix of
expansion coefficients in (1.1), S is a metric matrix defined as

and € is a diagonal matrix. These matrices are all TV x TV square matrices, TV
being the length of the basis set expansion in (1.1). Equation (1.5), known as
the Roothaan equation [13], is nonlinear because the Fock matrix F depends
on the density matrix D introduced in (1.2) (and therefore indirectly on C)
through the relations

Because of this nonlinearity, the Roothaan equation must be solved iteratively.
The traditional ab initio Hartree-Fock approach involves two general steps.

In the first step, the integrals Ipqrs8 in (1.4) are evaluated and written to disk.
In the second step, these integrals are read back and combined with density
matrix elements to form the Fock matrix F, and the Roothaan equation is
solved for the new set of expansion coefficients, from which a new density
matrix is constructed. The second step is repeated until the change in the
density matrix between successive iterations is below a given threshold.

Evaluation of a large number of complicated two-electron integrals Ipqrs

to high accuracy is undoubtedly a gargantuan challenge. Nevertheless, as
advances in CPU technology have outpaced improvements in I/O and storage
capacity for decades, storage of integrals has replaced integral evaluation as the
true bottleneck in these calculations. With the TV4 dependence, even modest-
sized calculations (N « 200 basis functions) require disk storage space on the
order of gigabytes. Furthermore, the I/O subsystem is severely taxed as these
integrals are read from disk at every iteration.

More than a decade ago, we suggested an alternative approach, in which
the integrals are recalculated in each iteration as needed [1, 2, 4, 5]. While
often more CPU-demanding than the traditional approach, this direct Hartree-
Fock (or direct SCF) method allowed much larger calculations than previously
possible. With the storage problem effectively eliminated through the direct
approach, CPU power is again the bottleneck, and our focus returns to
more efficient methods for evaluation of large numbers of integrals as parallel
processing technology provides the tool for extending accurate quantum
chemical calculations to new classes of molecules.
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4 Applications on Advanced Architecture Computers

1.2. Parallel Hartree-Fock Calculations
More than 95% of the CPU time in a typical direct SCF application is spent
constructing the Fock matrix, and any improvement must necessarily focus on
that part of the algorithm. It is obvious that the evaluation of the integrals
constitutes a very large number of independent tasks. In fact, applications
utilizing multiple processors to distribute the work involved in calculating the
two-electron integrals predate the early parallel processing machines [6].

Clementi linked several single-processor machines in a loosely coupled array
of processors (LCAP) to achieve parallel processing [6]. Several machines,
designated as "slaves," were used to calculate a subset of the two-electron
integrals, and one machine, the "master," administered these tasks, collected
and further processed the integrals, and solved the Roothaan equations. The
main bottleneck of this and other early parallel Hartree-Fock approaches was
in the communication overhead, due to the large number of integrals that had
to be moved from the slaves to the master. However, this problem can now
be circumvented by the direct techniques, in which not only the evaluation
of the integrals but also their further processing can be seen as independent
tasks. Accordingly, the direct SCF method should constitute a very promising
candidate for parallel implementations.

In parallel approaches to direct Hartree-Fock calculations, an integral is
never moved from the node on which it is evaluated. Instead, batches of
integrals are assigned to various nodes for evaluation and further processing.
In addition to evaluating the integrals, the node combines them with the
appropriate elements of the density matrix and adds these contributions to
its private copy of the Fock matrix. Short coded messages from the master
instructing the node to evaluate and process a batch of integrals, and requests
from the nodes for new instructions constitute the only information transferred
during the iteration. At the end of each iteration, the partial Fock matrices
from each node are added, combined with matrix elements of the one-electron
operators, and finally diagonalized to yield the expansion coefficients from
which a new density matrix is formed. The communication load on the system
with this approach is on the order of N2 (N being the number of basis functions,
typically 102 to 103), whereas the computational work is on the order of A7"4.

The parallel implementations of our direct Hartree-Fock procedure have
involved a variety of parallel architectures, e.g., a 16-processor Cray C90,
a 512-processor Intel Delta, a 544-processor Connection Machine-5 (CM-5),
various clusters of IBM RS/6000 and Silicon Graphics workstations, as well as
arbitrary combinations of the above platforms. Four molecules, ranging in size
from small to moderate, were used to obtain benchmarks for the calculations
on these machines. The results, shown in Table 1.1, include the times required
to build the Fock matrix F (ti) and to solve the Roothaan equation once F
and S are available (£2).

The Cray C90 is the top performer. Its impressive per-processor through-
put is due largely to its vector hardware, of which our code makes explicit

2
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TABLE 1.1
DISCO timings for one Hartree-Fock iteration on four benchmark molecules

(common names: fullerene, imidazole, diquinone, and polycarbonate, respectively) with
molecular formulas: C^2, C^N^H^, C<2.<iH\§Q'4, andCnHisOs. All times are wallclock
seconds with the calculations run in dedicated mode. The basis sets and the resulting
total number of basis functions (shown in parentheses) are 3-21G(288), (7CDZ(235),
STO-3G(140), and6-31G(314).

use. The performance of the Intel Delta exceeded that of the CM-5, partly
due to the fact that the latter machine was not fully equipped with vector-
processing units during the period of our tests. The distributed processing on
the RS/6000 workstations yields impressive results and per-processor perfor-
mance far superior to that of either the Delta or the CM-5.

Evaluating and processing the integrals associated with a unique set of four
atoms can be viewed as a "task," which can be performed independently of
all other tasks. The number of tasks for benchmarks 1-4 are 23,474, 1035,
111,391 and 274,911, respectively. Very good estimates of these numbers can
be obtained with the formula

where n is the number of atoms; the factor of 8 in the denominator is due to
the equivalence among integrals under permutations of the indices

(assuming real basis functions), and G is a symmetry index that accounts for
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the fact that integrals with different indices are often related because of the
symmetry of the molecule.

The speedups for the Intel Delta and CM-5 machines are far from linear
for all calculations except the largest, benchmark 4. Two factors have a
strong influence on the speedup curve. One is the number of tasks issued,
and the other is the variation in the sizes of individual tasks. With efficient
algorithms for integral evaluation, the sizes of the tasks (i.e., the number of
operations required to evaluate a batch of integrals) can fluctuate by several
orders of magnitude, and it is seldom practical to estimate these sizes before
the tasks are actually performed. Effectively, this prohibits the effective use
of schemes based on a static load-balancing strategy, and even in dynamically
load-balanced schemes, it is essential to have a very large number of tasks
to compensate for this imbalance. On the other hand, the communication
overhead associated with an approach that is too fine-grained will eventually
become the bottleneck, at which point it will be beneficial to redefine the task
size to include several batches of integrals.

If a large discrepancy exists in the relative sizes of the tasks, particularly
among the tasks issued late in the calculation, then some processors will be
idle while the longer tasks are completed. For runs using 256 nodes on the
CM-5, these time delays were 33 seconds for benchmark 2 and less than 1
second for the remaining benchmarks. These results indicate that our code is
well load balanced for moderate and large calculations. However, the nonlinear
speedups for benchmarks 1 and 3, which have small and relatively simple basis
sets, indicate that communication is the bottleneck and that better results
would be obtained with fewer but larger tasks.

It is a relatively straightforward procedure to optimize the makeup of the
tasks for a calculation, given the architecture and the number of processors on
which it will run.

1.3. Heterogeneous Distributed Computing

On a conventional supercomputer the t% times are highly insignificant, as
expected: the power dependence of any component of t^ is at most JV3,
compared with the TV4 time requirement for t\.

This is not the case for several of the parallel architectures studied here,
especially for modest-sized calculations. The t^ times are particularly large
for the calculations on the CM-5, where the parallel linear algebra libraries,
which operate in the data parallel mode, cannot easily be incorporated into
a code that uses a message-passing mode, which, unfortunately, is the only
reasonable way to evaluate the integrals. While awaiting the development of
system software that would enable users to link these two modes in the same
program, an alternative approach was investigated. Because the Grays perform
superbly on the t-2 part while the CM-5 evaluates and processes integrals very
efficiently, we have combined the different machines to utilize the strengths of
each.
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FIG. 1.1. Schematic representation of the heterogeneous distributed computing
approach.

Figure 1.1 illustrates the components of such an "eclectic" approach.
The Sun front end to the CM-5 is connected to the Cray-2 via a tcp/ip
network, through which the two machines communicate and transfer data using
standard UNIX sockets. The Cray-2, with superior single-processor power,
does everything except build the Fock matrix. As an additional benefit, the
CM-5 executes a much smaller program, and significant amounts of memory
are also saved in data handling.

The approach is simple; only three components need to be passed across
the network. The first, the nuclear coordinate and basis set information,
is passed only once from the Cray-2 to the Sun at the beginning of the
calculation. The second, the density matrix, is passed from the Cray to the
Sun at the beginning of each SCF iteration. Finally, after the partial Fock
matrices on the nodes have been reduced to one and returned to the Sun, it is
shipped to the Cray-2. There it is combined with other matrix elements whose
evaluation is totally insignificant on the Cray, and (1.5) is solved. Because
the binary representations of numbers differ between the Cray-2 and the Sun,
intermachine conversion of data is necessary; efficient system routines are used
to perform the conversion on the Cray-2.

Since both the density and the Fock matrices are symmetric, triangular
arrays can be used throughout the calculation to save memory. Utilizing full
triangularity, this code, running on a CM-5 configuration of 16 megabytes
of memory per node, can accommodate calculations with up to 1200 basis
functions; each of the triangular matrices requires 5.8 megabytes, and 3 to 4
megabytes should be reserved for the executable and the arrays required by the
integral algorithm. If the calculation was performed entirely on the CM-5, the

7
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required storage of the other NxN matrices in the parallel processing approach
would reduce the functional limit to approximately 450 basis functions.

This "eclectic" approach was implemented to perform calculations on
benchmarks 2 and 4, using 256 nodes on the CM-5. Timings for these
calculations are shown in the last column of Table 1.1. As expected, the
ti times, which are measured on the CM-5, remain the same, whereas
the t<2 times become insignificant. It is essentially impossible to obtain
reproducible numbers for the communication times without exclusive (i.e.,
dedicated) access to the Cray-2, the CM-5, and the tcp/ip network. This
is not a realistic situation for production calculations, but it is of interest
that the communication speed measured in the environment used for these
calculations (the Supercomputer Institute/Supercomputer Center/Army High-
Performance Computing Research Center at the University of Minnesota) is
typically several hundred megabytes/second even during peak hours. This
translates into fractions of a second per iteration for calculations with about
1000 basis functions, which typically spend several minutes per iteration in
building the Fock matrix. The communication time is therefore a small
(negligible) fraction of £2, because they both scale in approximately the same
way with the number of basis functions.

The benchmark calculations presented in Table 1.1 correspond to relatively
small systems, where the sizes range from 140 to 314 basis functions. Such
calculations are routinely performed on conventional nonparallel computers.
Since the ultimate goal of parallel processing technology in quantum chemistry
is to facilitate the computational analysis of new classes of molecules, the
litmus test that determines the success of new parallel algorithms should be
the extent to which they achieve this goal. To this end, we reference recent
production calculations on cluster models for lithium intercalated graphite [9]
in which calculations incorporating over 100 atoms and 1000 basis functions
were performed on the dual architecture CM-5/Cray-2 hardware platform.
The largest of these calculations, a 145-atom 1053 basis function calculation
on a lithium intercalated bis-circumcoronene complex with D^h point group
symmetry, required approximately 370 seconds to complete the t\ (Fock matrix
build) portion of the SCF iteration on the 512-node partition of the CM-5,
while the 1% (linear algebra) portion required approximately 70 seconds on the
Cray-2.

The replication of the full (or triangular) density and Fock matrices on
each node rapidly depletes the amount of fast access memory available on
that node. For example, in the 1053 basis function calculation cited above,
nearly 18 megabytes of memory is required for the storage of both matrices.
Even when the symmetry of these matrices is exploited, nine megabytes of
memory is required for matrix storage in the canonical form. Considering
that the nodes in most distributed-memory parallel environments have only
32 megabytes of memory, the storage of the private copies of these matrices
inherently limits the size of the calculations to approximately 1400 or 2000
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basis functions for the square and canonical matrices, respectively. In the
absence of dedicated access to parallel processing hardware, the functional
limits on the size of the calculations is much smaller for the simple reason that
calculations that request a substantial portion of a precious system resource
(such as nodal memory) incur a penalty in the form of lower job priority
and reduced job turnaround. For a large-scale parallel SCF algorithm to be
practical in a multiuser environment, the bottleneck in nodal memory must be
alleviated through additional algorithmic modifications. Such modifications
are described below.

1.4. Small-Memory Parallel SCF

As previously outlined in equation (1.8), during the direct computation of the
SCF energy, a given integral makes six contributions to the Fock matrix, two
of which describe Coulombic interactions and four of which describe exchange
interactions. Notice that during this stage of the Fock matrix construction,
only small subsets of the full N x N density and Fock matrices are addressed.
Specifically, for the Coulomb contributions, only the elements in the rows
corresponding to basis functions p and r are addressed, while for the exchange
contributions, only those elements in the rows corresponding to functions p and
q are addressed. For all processors, the distribution and storage of only these
rows or "strips" of the density matrix, followed by the evaluation of the relevant
two-electron integrals and concomitant construction of the corresponding rows
of the Fock matrix, drastically reduces nodal memory demands.

If two passes are made through the integral algorithm to separately
construct Coulomb and exchange contributions to the Fock matrix, global
broadcast operations may be used outside of the two innermost loops in the
four-index looping scheme to distribute the rows of the density matrix, as
illustrated in Figure 1.2. Furthermore, the separate evaluation of Coulomb
and exchange contributions allows for the use of one-center density expansions
or fragment multipoles in constructing the Coulomb part, as well as enhanced
density-based prescreening of the integrals in the exchange part, both of which
can result in an overall decrease in SCF time compared with that of the
traditional one-pass approach [11].

The generalized outline for the small-memory parallel strip algorithm in
Figure 1.2 is easily adapted to different levels of granularity. For calculations
with a large number of atoms and modest basis sets, the best load-balancing
scheme is achieved at the level of granularity where the looping described
in Figure 1.2 is over atom labels rather than basis functions. Instead of
distributing individual rows of the density matrix, multiple rows, or strips,
which correspond to the basis functions centered on atoms p and r (for the
Coulomb part) or atoms p and q (for the exchange part), are distributed,
and the corresponding strips of the Fock matrix are constructed. Aside
from the additional pass through the integral algorithm, the total number
of computational tasks remains the same as that in the traditional parallel
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loop
loop

broadcast rows: land to all processors

loop q < r
loop s < r
evaluate (pqlrs) and process: 1 [distribute
fl(q) = fl(q)+4 d2(s)(pqlrs) across
f2(s) = £2(s)+4 dl(q)(pqlrs) J [processors

end loop s
end loop q
return £1 and £2 to master;
F(r,*) = F(r,«)+£2(*) 1
F(p,*) - P(p.*)+£!(•) jonjnaater

end loop r
end loop p

*#Exchange contributions:

loop
loop

broadcast rows: jand to all processors

loop
loop
evaluate (pqlrs) and process:
£l(r) = £l(r)-d2(s)(pqlrs) [distribute
£l(s) = fl(s)-d2(r)(pqlrs) > across
£2(r) = £2(r)-dl(s)(pqlrs) [processors
£2(s) = £2(s)-dl(r)(pqlrA0  

end loop s
end loop r
return £1 and £2 to master;
F<q,«) = F(q,*)+£2<*) 1
F(p.*) = F(p,*)+fl(*) I

end loop q
end loop p

FIG. 1.2. Pseudocode outline of the small-memory parallel strip algorithm for
the construction of the Coulomb and exchange contributions to the Fock matrix.

approach (1.4), while the communication scales as TV3 rather than N2 but is
split over smaller parcels. Interprocessor communication is facilitated by the
parallel virtual machine (PVM) message-passing software [8] that utilizes a
standard Ethernet network and UNIX UDP socket connectivity.

To illustrate the scalability of the new parallel algorithm, the results from
benchmark calculations on two small complexes are reported in Table 1.2.
Despite the increased communication overhead compared with the traditional
parallel approach, the new algorithm scales nearly as well as the traditional
algorithm: the parallel strip calculations with five slave processors ran between
4.4 and 4.0 times faster than the calculations using a single slave processor,
whereas the traditional parallel algorithm experienced a 4.5-fold speed increase.

on master

33Coulomb contributions:
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Since the current version of the algorithm exploits only the simplest form
of enhanced density-based integral prescreening, we would expect that the
timings for the traditional parallel approach, which evaluates the Coulomb and
exchange contributions to the Fock matrix in a single integral pass, would be
roughly half of that for the new algorithm. The results presented in Table 1.2
confirm this expectation.

TABLE 1.2
Benchmark calculations for one complete SCF iteration for two small molecular

complexes in a nondedicated parallel environment of one to five SGI Indigo f!50 MHz)
workstation computers. One complex is the benzene dimer with a CCDZ basis set (14Q
basis functions) in the D-2H molecular point group symmetry. The other is the same
planar diquinone complex as benchmark 3 from Table 1.1 but with a CCDZ basis set
minus the polarization functions (^254 basis functions) in C^v symmetry. Timings
reflect elapsed wallclock time and are reported in seconds.

Complex
no. slaves

Benzene dimer
1 Slave

2 Slaves
5 Slaves

Diquinone
1 Slave

2 Slaves
5 Slaves

Traditional parallel
algorithm

1148
-
-

10405
-

2321

Parallel strip
algorithm

2377
1315
537

19096
9768
4726

Speedup
factor

1.0
1.8
4.4

1.0
2.0
4.0

To illustrate the applicability of the new parallel algorithm to new classes of
chemical compounds, the results of calculations for a relatively low-symmetry
graphite intercalation compound in two different basis sets are reported in
Table 1.3. These results highlight the difference in the memory requirements
for the traditional parallel versus the new small-memory algorithms. Nearly
53 megabytes of memory are required for the storage of the square density and
Fock matrices alone in the calculation with 1815 basis functions. In contrast,
only 1.3 megabytes of memory are required for the storage of the strips of the
density and Fock matrices residing on a node at any given time. The new
algorithm's total nodal memory requirement, which includes space for integral
batches, data, and all scratch space, is only 2.4 megabytes for the 1815 basis
function calculation.

A separate calculation was performed that was identical to the run with
1053 basis functions but that used another SGI workstation as the master
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process, rather than the Cray C90. The serial portion of the code required an
additional 40 minutes to execute over that used by the Cray C90, emphasizing
the utility of the heterogeneous distributed approach to parallel processing.

TABLE 1.3
Time and memory requirements for parallel strip calculations on a lithium-

intercalated bis-circumcoronene complex (145 atoms) with a 3-21G basis set (1053
basis functions) and a 3-21(7* basis set (1815 basis functions). The calculations were
performed in C^v symmetry. The parallel environment consisted of 16 SGI Challenge
("150 MHz) slave processors attached to a Cray C90 master process. Memory usage is
listed in megabytes; times are listed in seconds.

Number of
basis

functions
1053
1815

Memory used
by full

D and F matrices
17.8
52.7

Memory used
by D and F

strips
0.8
1.3

Total memory
used by strip

code
1.8
2.4

Wallclock time
for one SCF

iteration
650
3550

1.5. Conclusions
We have shown that it is not only possible, but also practical, to use massively
parallel hardware for the very complex computational tasks that occur in
electronic structure calculations. Very encouraging speedups and scalability
are achieved on different architectures. However, small fractions of the code
remain serial, which, given the feeble front-end capacity available on, for
example, the CM-5, constitutes a severe bottleneck. The most promising
results are therefore obtained with a dual, heterogeneous architecture, where
these small, serial parts of the calculation are performed on a conventional
supercomputer.

In addition, a large-scale, small-memory algorithm for the parallel compu-
tation of SCF energies has been presented. The defining characteristic of this
method is that only a small subset of the full N x N density and Fock matrices
is addressed by a given task on a node. The amount of memory allocated
by the nodes for the processing of a batch of integrals is therefore drastically
reduced. Considering that the nodal memory in most parallel environments is
small, the parallel strip algorithm opens up a whole new class of complexes to
computational analysis using inexpensive hardware.
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Chapter 2

Massively Parallel Lattice QCD Calculations

Clive F. Baillie

Editorial preface

Quantum chromodynamics (QCD) is, at realistic and meaningful problem
sizes, a daunting computational task. This article describes the applica-
tion of hybrid Monte Carlo to lattice QCD calculations. Implementations
on both the CM-2 and the CM-5 are described and specific programming
features of the CM-2 and CM-5 that were required to achieve over 6 Gflop
and 40 Gflops, respectively, are discussed. This clearly illustrates the al-
gorithmic and coding efforts that are a necessary part of wringing the
best performance from large-scale parallel computers.

This article originally appeared in SI AM News, Vol. 24, No. 3, May 1991.
It was updated during the summer/fall of 1995.

Quantum chromodynamics (QCD) is the best available theory of the strong
nuclear force. To explain to nonspecialists what QCD calculations are, we
describe exactly what state-of-the-art QCD calculations involve and thereby
show why they consume so much supercomputer and parallel computer time.
In fact, these calculations are becoming too big for traditional supercomputers
like the Cray Y-MP so one has to use either commercial parallel machines
or home-grown special-purpose machines. Here, we focus on the former
and discuss in detail implementations on the Thinking Machine Corporation
(TMC) Connection Machines 2 and 5 (CM-2 and CM-5). More information
on the latter approach can be found in [1, 2].

There are four forces found in nature: strong, weak, electromagnetic, and
gravitational. In the everyday world we all experience the gravitational force,
and we see and hear pictures and sounds brought to us via electromagnetic
radiation. On the other hand, the strong and weak forces operate only within
the nucleus of the atom and are therefore less familiar. The weak force is
responsible for things like beta-decay, which is part of the process of fusion
going on inside the sun. The strong force keeps matter together; it is what binds
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the most elementary particles of matter—quarks—into the basic constituents
of the world, including protons, neutrons, pions, etc.

Quarks come in three different varieties, denoted "red," "green," and
"blue" for no particular reason other than they had to be called something
(these quark "colors" have nothing to do with color in the "real" world, i.e., the
world outside the nucleus). All particles have antiparticles and so antiquarks
can be "antired," "antigreen," or "antiblue." Thus the theory describing the
interaction of these quarks and antiquarks is called quantum chromodynamics
(the quantum dynamics of "color"). It predicts that quarks bind together
in only two possible configurations. In the first, the "qqq" configuration,
three quarks, one of each color, bind together to form particles like protons
and neutrons (or, equivalently, three antiquarks comprise antiprotons and
antineutrons). In the second, the "qq" configuration, a quark of one color
and an antiquark of the corresponding anticolor join to make particles like
pions. In other words, the strongly interacting particles found in nature are
colorless composites of quarks.

One of the most important predictions of QCD is that quarks cannot exist
outside nuclear matter; they are confined within the proton or pion. This
prediction has not been made analytically; it has instead been demonstrated
numerically using a computer. This is because the QCD theory can only be
solved analytically in the high-energy limit; at the lower energies experienced
by quarks inside protons the theory cannot be solved in this way and so we
turn to computer simulations in order to obtain a numerical solution.

2.1. QCD
In order to explain the computer simulations of QCD, we shall have to look at
the theory in a bit more detail. QCD is a four-dimensional (three space and
one time) quantum field theory containing two basic fields and a symmetry:
the quark field representing the "colored" quarks and the so-called gluon field
representing fields which mediate the color force between quarks. Unlike the
analogous field that mediates electromagnetic radiation—the photon—gluons
also experience the force they mediate; i.e., they have color. This makes
the theory very nonlinear and is the basic reason why it cannot be solved
analytically (except at high energy where the nonlinearity is small enough to
be considered as a perturbation). The symmetry in the theory is a local gauge
symmetry, and since the gluon fields obey this symmetry they are called gauge
fields. Gauge symmetry means that one can change the phases of all the fields
leaving the theory unchanged; local refers to the fact that these phase changes
can be different at each point in space. Gauge symmetries are very important
in field theories: by insisting that the basic fields obey the gauge symmetry one
can derive the dynamical equations governing the interaction of these fields.

As the quarks have three colors, the gauge fields mediating the force
between them are 3x3 matrices. In fact they are 3x3 complex SU(3} matrices;
SU means that the matrices are unitary with unit determinant (i.e., special
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unitary). These matrices describe how the colors of two quarks change when
they interact; for example, a red quark may change into a green quark emitting
a red antigreen gluon, which on encountering a green quark will turn it red.
We could at this point write down the continuum equations for QCD, but since
in order to simulate the theory on a computer we will have to discretize these
equations anyway we shall skip this unnecessary detail.

Field theories can be formulated in various ways; here we use Feynman's
path integral formulation as it lends itself most easily to discretization. Any
theory involving fields 0 interacting according to an action (i.e., energy) S has
a path integral representation

This function, known in statistical mechanics as the partition function,
describes the field theory completely. It represents the sum of all possible
states and from it one can calculate any physical quantity (i.e., observable) O
as the following expectation value:

In words, this equation says that the total observable is the sum of all the
partial observables from each state of the system. For example, a typical
observable would be a product of fields O = 0(x)0(y), which says how the
fluctuations in the field are correlated, and in turn tells us something about
the particles that can propagate from point x to point y. The appropriate
correlation functions give us, for example, the masses of the various particles
in the theory. Thus to evaluate almost any quantity in field theories like QCD
one must simply evaluate the corresponding path integral. Unfortunately, in
the continuum, the integrals are over a space of infinite dimension.

2.2. Lattice QCD

Hence we study QCD numerically by discretizing space and time into a lattice
of points. Then the functional integral is simply defined as the product of the
integrals over the fields at every site of the lattice (f>(n):

Restricting space and time to a finite box, we end up with a finite (but large)
number of ordinary integrals. This is "lattice QCD," something we might
imagine simulating directly on a computer. However, the high dimensionality
of these integrals renders conventional mesh techniques impractical. For
example, consider a 104 site lattice (which nowadays would be considered small
for QCD). If we take the simplest possible field theory in which the fields only
have two states (the Ising spin model), the partition function becomes an
ordinary sum. But this sum has an enormous number of terms: 210000. Even if
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we could add one term in the time it takes light to pass by a proton and continue
adding for the age of the universe, we would not make perceptible progress in
evaluating it! Fortunately, the presence of the exponential e~s means that
the integrand is sharply peaked in one region of configuration space. Hence
we resort to a statistical treatment and use Monte Carlo-type algorithms to
sample the important parts of the integration region.

Monte Carlo algorithms typically begin with some initial configuration of
fields and then make pseudorandom changes on the fields such that the ultimate
probability P of generating a particular field configuration 0 is proportional
to the Boltzmann factor

where S(<p) is the action associated with the given configuration. There are
several ways to implement such a scheme, but for many theories the simple
Metropolis algorithm is effective. In this algorithm a new configuration <//
is generated by updating a single variable in the old configuration 0 and
calculating the change in energy (action)

If A.9 < 0, the change is accepted. If AS1 > 0 the change is accepted with
probability exp(— A5). In practice this is done by generating a pseudorandom
number r in the interval [0, 1] with uniform probability distribution and
accepting the change if r < exp(— AS"). This is guaranteed to generate the
correct (Boltzmann) distribution of configurations, provided "detailed balance"
is satisfied. This condition means that the probability of proposing the change
(p — > (f)' is the same as that of proposing the reverse process 4>' — •> </>. In practice
this is true if we never simultaneously update two fields which interact directly
via the action.

Whichever method one chooses to generate field configurations, one
updates the fields for some equilibration time of E steps and then calculates
the expectation value of O in (2.2) from the next T configurations as

The statistical error in Monte Carlo behaves as 1/V^/V, where AT is the
number of effectively independent configurations. N = T"/2r, where T is
the autocorrelation time. This autocorrelation time can easily be large, and
most of the computer time is then spent in generating statistically independent
configurations.

Now we can write down the basic discretized equations for lattice QCD.
On the computer the four-dimensional space-time continuum is replaced by a
four-dimensional hypercubic periodic lattice of size N = NsxNsxNsxNt with
lattice spacing a. The quarks sit on the sites and the gluons live on the links

Nt



FlG. 2.1. Illustration of plaquette calculation.

of the lattice. Nsa and A^a are the spatial and the temporal extents of the
lattice, respectively. The action for the purely gluonic part of QCD is

where

is the product of link matrices around an elementary square or plaquette on
the lattice; see Figure 2.1. (3 = 6/<?2, where g is the coupling between the
gauge fields. The action for the quarks is

where M is a large sparse matrix the size of the lattice squared. In particular,
we use the Wilson quark representation, in which M is given by

where K — l/2m, with m being the quark mass, 7^ are the Dirac gamma
matrices, and one can choose r = I . For state-of-the-art simulations the lattice
size N = 324, and with i/j having four spin and three color complex components,
M is a (24 x 1048576) x (24 x 1048576) matrix. Unfortunately, quarks are
fermionic particles, which means that the quark fields -0 are anticommuting
Grassmann numbers. This means that for two quark fields ^ and ̂ , the
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anticommutator { ,̂ ipj} = ipiijij + iftjipi = 0. Therefore the order in which the
quark fields are combined is important and as there is no simple representation
of this on the computer these quark fields cannot be dealt with numerically.
Fortunately, there is an analytical trick whereby the quark action can be
rewritten in terms of pseudofermion fields </>, which are normal numbers,

Thus the path integral we want to evaluate numerically is

Note that the lattice is a mathematical construct used to solve the theory —
at the end of the day, the lattice spacing a must be taken to zero to get
back to the continuum limit. The lattice spacing itself does not show up
explicitly in the partition function Z above. Instead the lattice spacing is
an implicit function of the parameter (3 = 6/#2, which plays the role of an
inverse temperature. To take the continuum limit a — > 0 of lattice QCD,
one tunes g — » 0 or {3 — > oo. Typical values used in simulations range from
(3 = 5.4 to ft = 6.0. This corresponds to a w .1 Fermi = 10~16 meter. Thus
at typical values of (3 a lattice with Ns = 32 will correspond to a physical
box about 3 Fermi on an edge, which is thought to be large enough to hold
one proton without crushing it too much in the finite volume. However, the
spacing a = .1 Fermi is not fine enough to be close to the continuum limit.
One can estimate that we still need to shrink the lattice spacing by something
like a factor of 4, leading to an increase of a factor 44 in the number of points
in the lattice in order to keep the box the same physical volume.

The biggest stumbling block preventing a large increase in the number of
lattice points is the presence of the matrix inverse (M^M)"1 in the partition
function. There have been many proposals for dealing with this problem.
The first algorithms tried to compute the change in the inverse when a single
gauge link matrix was updated. This obviously scales as the square of the
volume of the lattice and is therefore prohibitively expensive. Today, the
preferred approach is the so-called hybrid Monte Carlo algorithm. The basic
idea is to invent some dynamics for the variables in the system in order to
evolve the whole system forward in (simulation) time and then do a Metropolis
accept/reject for the entire trajectory on the basis of the total energy change.
In this case the dynamics is provided by molecular dynamics (MD) evolution
of the fields. The first great advantage is that the whole system is updated
at one fell swoop, and the algorithm scales with the volume of the lattice.
(In practice, it is actually a livttle worse, JV5/4.) The Hamiltonian for the MD
evolution is
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where Pj)/x are momenta conjugate to the gauge link matrices Ui^. The P{^
come from the "invented dynamics" and are also included in the partition
function; therefore, (2.12) becomes

The P and U fields are leapfrogged through MD time with some finite
step size, which introduces numerical errors. However, a global Metropolis
accept/reject step at the end of the trajectory corrects for this and makes
the algorithm exact; this is the second great advantage of the hybrid Monte
Carlo algorithm. At each step of the MD evolution, ^(M^M)"1^ has to be
recalculated—this is the most time-consuming part of the QCD calculation.
vIn practice, we rewrite x = (M^M}~l(f) as (M^M)x = 0, a linear system of
equations, and use conjugate gradient or one of its cousins (since M is sparse)
to solve for x-

Before turning to actual implementations of such a QCD calculation on
the TMC Connection Machines, we want to comment upon the amount of
computer time required for a realistic simulation. In order to get close to
the continuum limit one can estimate that a lattice of size about 1284 will be
required. On computers with a performance of a few Gflops, it is possible to
do simulations on 164 lattices in about a year, i.e., a total of roughly, say, 3
Gflops-years. In going to 1284 there is a factor of 4000 increase in lattice volume
so the hybrid Monte Carlo algorithm will require a factor of 40005/4 ~ 32000
more computer time. Therefore we estimate that a realistic simulation of QCD
on a 1284 lattice will take about 100 Tflops-years (Tflops — teraflops = 1000
Gflops). This seems like rather a lot of computer time but bearing in mind that
supercomputer and parallel computer power has increased at an exponential
rate of a factor of 10 every two years since the early 1980s [2], we should have
100 Tflops around the end of the century!

2.3. Implementation on the CM-2

The hybrid Monte Carlo QCD code was originally implemented on the Cray
Y-MP. In 1989 it was re-engineered for the CM-2 and ran on this machine for
several years until 1993, when the code was ported to the new CM-5 where
it has been running to this day. We describe the original development for
the CM-2 in detail to give a flavor of what is involved in using state-of-the-
art massively parallel processors. For completeness we also include a brief
summary of the similar work done to port the code to the CM-5.

The TMC CM-2 is often described as a distributed-memory, single-
instruction multiple-data (SIMD) massively parallel processor comprising up
to 65,536 (64K) processors. However, these processors are simple bit-serial
processors, which are not used in doing floating point calculations. Instead,
the floating-point units (FPUs) are used for applications such as QCD, and
so it is more useful to think of the CM-2 as an 11-dimensional hypercube
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of 2048 FPUs (known as "sprint nodes"). The original assembly language
of the machine, Paris, embodies a computational model, which is essentially
independent of the specific nature of the hardware, but its implementation on
the CM-2 leans very much toward the view of the machine as consisting of the
bit-serial processors (known as the "fieldwise" view of the machine) instead of
consisting of the FPUs (known as the "slicewise" view of the machine). Since all
the originally provided high-level languages—*LISP, C*, CM Fortran—compile
into Paris, any code written in these languages is subject to the implementation
inefficiencies inherent in Paris. The main inefficiency is due to the fact that
since groups of 32 processors share a 32-bit Weitek floating-point chip, there is
a transposer chip that changes 32 bits stored bit-serially within 32 processors
into 32 32-bit words for the Weitek, and vice versa. This means that all
Paris operations using the FPU must be done in chunks of 32 words. Because
the internal architecture of the Weitek chips used in the CM-2 includes only
32 registers, there is no room for storing intermediate results in the Weitek.
Therefore, operations such as a complex multiply, which could employ internal
registers to store the intermediate results, are forced into storing and reloading
these in memory. Moreover, an overhead of 32 cycles is added to every load
and store, since that is the time required to fill the transposer. The net effect
on performance is that Paris peaks at around two Gflops on the whole machine
for any code sequence that compiles into a series of simple multiplications and
addition/subtractions.

The solution to these problems is found in going to the "slicewise" model
of the machine. In this model, one uses the transposers to convert data
into the form required by the FPU once and for all and thereafter bypasses
the transposers when loading to or storing from the FPU (using the bypass
register). After conversion, a memory address references all 32 bits of a floating
point word corresponding to a one-bit serial processor, with words belonging
to consecutive processors arranged consecutively in memory. One is now free
to program the FPU in the most efficient manner. For example, the complex
matrix multiply—which is the basis for all QCD simulations—is done for each
processor in turn, thereby making full use of the internal Weitek registers
and the memory bandwidth. The price one pays for this freedom is that
one must write virtually all the slicewise code one will need. TMC provides
an assembly language-level programming system called CMIS (Connection
Machine Instruction Set), which allows one to construct completely pipelined
code for the FPU with a minimum of fuss.

When the hybrid Monte Carlo QCD code was initially re-engineered for
the CM-2, only Paris was available, and the most efficient language (in terms
of how well the compiler compiled it into Paris) was *LISP. Therefore, the
initial implementation was approximately 6000 lines of *LISP [3]. The *LISP
variables defined include four 3 x 3 complex 577(3) matrices at each site to
represent the gluons (four because the lattice is four dimensional). The quark
variables require one 3 x 4 complex matrix per site. During the calculation

.
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several other 3 x 3 , 3 x 4 , and 3 x 2 complex matrices are required to hold
intermediate data such as the MD momenta P^. The net result is that on a
CM-2 with 256 Kbit memory chips, we are limited to a virtual processor (VP)
ratio of four. Nevertheless, this ratio is high enough to give good efficiency: 97-
99% CM utilization for most of the functions in the code. The basic, most time-
consuming operation in the code is the matrix-vector product MX or M^(Mx),
which is performed by a routine called DSLASH. By inspection of (2.10) we see
that M connects only nearest-neighbor lattice sites. Therefore, communication
of quark matrices is done with the "news" system on the CM-2 (rather than the
more general, but slower, "router" mechanism). With the Wilson parameter
r — I we can use the characteristics of the Dirac gamma matrices to project
the 3x4 quark matrices down to 3 x 2, do the communications and calculations
required, and expand back up to 3 x 4. This reduces the communication time
by a factor of 2 and the calculation time by 40%. Hence, apart from news,
the other main routines that DSLASH uses are M32, which does complex matrix
multiplies of 3 x 3 times 3 x 2 matrices; PROJECT to project 3 x 4 matrices
to 3 x 2; and EXPAND to expand 3 x 2 matrices to 3 x 4. The original code
was benchmarked on a 64K CM-2 with Sun 4/260 front end at VP ratio of
4 to obtain the performances shown in column 2 of Table 2.1. We see that
the matrix multiply routine M32 runs at close to the peak *LISP rate of two
Gflops, but when we add in communication as well as projects and expands we
get a sustained performance of about one Gflop (as most of the time is spent
in DSLASH).

TABLE 2.1
Performances in Gflops for various routines in the three versions of the code.

Function
M32

PROJECT

EXPAND
DSLASH

*LISP
1.9
1.7
1.2
0.9

CMIS
10.2
1.7
1.2
1.6

Multiwire
10.2
3.1
4.4
6.0

As soon as CMIS became available the low-level functions were rewritten
to take advantage of it and a dramatic increase in the performance of M32 was
obtained: 10.2 Gflops [4]. However the sustained rate only increases to 1.6
Gflops (third column of Table 2.1). To determine why this is so, the various
components of DSLASH were timed to find out where most of the time was being
spent (columns 2 and 3 of Table 2.2). We see immediately that the reason for
the poor overall speedup is that despite the calculation time being more than
halved, the communication time remains the same (there is actually a slight
decrease in going to CMIS that results from a more favorable arrangement of
the slicewise data in memory). Furthermore, for the CMIS version the time
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spent in communication is greater than that spent in calculation. Therefore,
the last thing to do in order to get the maximum performance out of the CM-2
for QCD is to speed up the communication code. In turns out that this is
possible to do using the "multiwire-news" software. (For a detailed discussion
of this see [5].)

TABLE 2.2
Time in seconds spent in communication and calculation.

Component
Communication

Calculation
Total

*LISP
4.5
8.7

13.2

CMIS
3.9
3.3
7.2

Multiwire
0.4
1.6
2.0

We recall that the QCD code employs a four-dimensional lattice of points
and the matrix inversion algorithm involves only nearest-neighbor communica-
tion. This communication consists of sends forward then backward for each of
the four dimensions. Restructuring the code allows the communication to pro-
ceed in both directions in all four directions concurrently. This multiwire-news
version of the code does the communication part of DSLASH 9.3 times faster
than the CMIS version (column 4 of Table 2.2). There is one other optimiza-
tion we can do with the multiwire-news part of the code and that is to merge
it with the expands and projects so that there are no intermediate stores to
memory. This results in a factor of 2 speedup in the calculation part over the
CMIS version (column 4 of Table 2.2). Hence overall the final multiwire-news
version of the QCD code achieves a sustained rate of six Gflops (column 4 of
Table 2.1).

This figure of six Gflops is rather interesting because it is roughly the
actual performance (rather than peak performance which is 16 Gflops) of the
fastest special purpose 256-node parallel computer built especially for QCD
simulations by Norman Christ at Columbia University. Therefore, in the 1990s
it is possible to achieve as good a performance for QCD on commercial parallel
computers as on specially built machines, which was not the case in the last
decade [1]. Of course, in order to do that one has to devote many person-
months to low-level programming. In both approaches the performances
obtained are about 30 times that from one processor of a traditional Cray
Y-MP supercomputer.

2.4. Implementation on the CM-5

TMC's follow-on machine to the CM-2 was called the CM-5 and became
available in 1992. It is a multiple-instruction multiple-data (MIMD) machine
but is usually programmed in a SIMD fashion using TMC's parallel Fortran
called CM Fortran. Each node in the CM-5 consists of a Sun SPARC processor
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plus four custom designed floating point accelerator chips, giving a peak
speed of 128 Mflops. The nodes are interconnected by a "fat-tree" network,
which is the major bottleneck in the CM-5, yielding a realistic communication
bandwidth of only 10 Mbyte/s (other massively parallel processors are typically
10 times faster).

The hybrid Monte Carlo QCD code was rewritten as 50,000 lines of
CM Fortran for the CM-5 in 1993. Then the computationally intensive
routines were converted to an assembly language called CDPEAC for optimal
performance (this is analogous to the use of CMIS for the CM-2). Initially the
CDPEAC code was more than four times faster than the CM Fortran code,
but with subsequent improvements in the Fortran compiler this was reduced to
a factor of 2. The CDPEAC computational intensive routines (essentially M32)
achieve up to 100 Mflops/node, but with communications the overall sustained
performance of the code is around 40 Mflops/node. As the code is typically
run on 1024 nodes this is a total of over 40 Gflops. Due to memory constraints
the CM-2 could only run 164 lattices; the CM-5 can do 324.

2.5. Conclusions

We have implemented a QCD code on the TMC CM-2 and CM-5 that uses
a state-of-the-art algorithm—the hybrid Monte Carlo algorithm—on some of
the largest lattices simulated so far: 164 and 324. This code, written in *LISP
and CMIS for the CM-2, and rewritten in CM Fortran and CDPEAC for the
CM-5, has been running on several Connection Machines in production mode
since early 1989. Most of the results from the CM-2, using 164 lattices at (3
values of 5.4, 5.5, and 5.6 with various values of the quark mass, appear in [6].
Some results from the CM-5, using 324 lattices at (3 = 6.0, are reported in [7].
The performance on the CM-2 was initially about one Gflop, then later six
Gflops, and on the CM-5 over 40 Gflops.
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Chapter 3

Parallel Weiner Integral Methods for Elliptic BVPs:
A Tale of Two Architectures

Michael Mascagni

Editorial preface

The use of probabilistic methods as a solution technique for elliptic
boundary values problems (BVPs) is not new, but the availability of
parallel computers offers a new perspective on this approach. This chapter
illustrates the large difference in the structure of algorithms for the MIMD
and SIMD architectures and how probabilistic methods are applied to
random walk algorithms for each machine class. The conceptual view is
that of a "forward" walk on a MIMD architecture and a "backward" walk
on a SIMD architecture.

This article originally appeared in SIAM News, Vol. 23, No. 4, July 1990.
It was updated during the summer/fall of 1995.

One of the most intriguing aspects of linear elliptic boundary value
problems (BVPs) is their relationship to probability. The discovery of this
relationship dates back to the beginnings of rigorous measure theory, or more
specifically to the time when measure theorists began considering how to
place measures on spaces of continuous functions. The measures placed on
these infinite-dimensional spaces are first defined for simple sets of continuous
functions with the help of the fundamental solution of certain linear parabolic
partial differential equations (PDEs). Once these simple "cylinder sets" of
continuous functions can be measured, it is rather easy to extend the measure
to the entire space of continuous functions with standard techniques from
measure theory. As a consequence of this construction, certain integrals
with respect to these measures (which can be thought of as mathematical
expectations with the measure thought of as a probability density) are solutions
to particular linear parabolic and elliptic problems.

A curiosity of looking at a space of continuous functions with this measure
is that almost all (full measure) of the continuous functions are nowhere
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differentiable.1 Because of this fact, continuous functions with this measure
(called Wiener measure) are almost all extremely jagged and monstrously
wiggly. Thus it is straightforward to associate these spaces of continuous
functions under Wiener measure with spaces of continuous Brownian motion
paths. This makes sense when one recalls that diffusion can be thought of
as the macroscopic manifestation of microscopic Brownian motion, and that
parabolic PDEs (like the diffusion equation) play a fundamental role in the
construction of these Wiener measures. It turns out that this probabilistic
theory for representing the solutions of linear elliptic and parabolic PDEs has
many applications in analysis [2, 4] and, as we will see below, in numerical
computation [1, 3].

As a simple example of the application of these ideas to computation let
us consider the Dirichlet BVP for the Laplace equation:

The probabilistic representation of (3.1), often called the Wiener integral
representation, is denoted by

The interpretation of (3.2) is that the solution of (3.1) at an interior point
x is the expectation of the boundary value at the first hitting location of the
sample path (3(-) started from x. The Markov time TQ^ is the time at which a
sample path first encounters the boundary and is called the mean first passage
time. This quantity is defined for the sample path /?(•) by TQ& = inf^^ t.

An alternate interpretation of (3.2) is as a probabilistic version of the
traditional Green function representation of the solution to (3.1). This is
because (3.2) is an integral of the boundary values against a boundary mass
£>(#,?/), the probability of a sample path starting at x and first encountering
the boundary at y. It is an elementary fact that p(x, y] so defined is the Green
function of (2.1) in [1]. If we think in terms of Brownian motion, which is
intimately related to the Laplacian, then (3.2) states that the solution to (3.1)
is the expected value of the first hitting boundary value of a Brownian motion
started at x.

It is rather easy to see that the Wiener integral in (3.2) solves the Dirichlet
problem for the Laplace equation. A function is a solution to (3.1) if (i) it has
the mean value property and (ii) it has the correct boundary values. In two
dimensions a function has the mean value property if its value at the center
of a circle is the average of the function on the circle. Pick a point x in the
interior of £1 and, using x as the center, draw a circle (call it C) totally within
fi. Equation (3.2) states that u(x) is the expected boundary value at the point
of first passage. By continuity, any path that started at x will encounter C

1 Recall the fuss created by Weierstrass's construction of a single continuous, nowhere differential
function by Fourier series.
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before hitting the boundary. Thus u(x) is the expected first passage boundary
value of paths started on C conditional on where the path that started at x
first hit C. Since Brownian motion is isotropic, a Brownian path started at x
will first encounter any point on C with equal probability. Thus u(x] is the
average of the first passage boundary values from walks started on C (which
are the values of u(x] on C by (3.2)) and so u(x) has the mean value property.
In addition, if the boundary is smooth, we can see that u(x) takes on the
appropriate boundary values by letting x approach the boundary while using
the above argument.

This functional integration approach can be used to solve discretizations
of these continuous problems by utilizing random walks in place of Brownian
motion. Through this formalism, and extensions of the probability to different
elliptic PDEs and different BVPs, a large class of Monte Carlo methods
for these problems emerge. Implementation of these random walk-based
Monte Carlo methods on multiple-instruction multiple-data (MIMD) and
single-instruction multiple-data (SIMD) machines will be considered in the
subsequent section. It will be shown how different implementations lead to
different algorithms, which in turn lead to different practical and analytic
considerations.

3.1. Architecture and Implementation

Given that we wish to implement algorithms related to these probabilistic
ideas on a parallel computer, it is incumbent on us to consider what aspects of
these algorithms we wish to exploit in a parallel implementation. In random
walk-based algorithms there are two natural ways to use parallelism based on
certain replicated aspects of random walks. Since the discrete versions of these
algorithms are all based on collecting statistics from random walks over some
grid, it is natural to associate processing elements for a parallel implementation
with either the walkers or the places they walk, i.e., the grid points.

In some sense, the mapping of groups of walkers onto parallel processors is
the most natural parallel decomposition and is readily mapped onto a MIMD
machine. The second mapping, that of grid points to processors, maps very
naturally onto massively parallel SIMD computers. Below we discuss how the
choice of one mapping over another influences the details of the algorithm
and the performance aspects of the implementations. To make our discussion
more concrete, let us think about MIMD implementations on either a shared-
memory MIMD machine (like the Cray C90) or a distributed-memory machine
like the IBM SP2. For the massively parallel SIMD implementation let us keep
the rather old Thinking Machines CM-2 or the current MasPar MP-2 in mind.

The choice of mapping groups of random walkers onto parallel processors
naturally leads us to the following algorithm for the evaluation of first passage
time statistics like those required in (3.2). Each processor starts with random
walkers with different starting locations on the grid. During each iteration all
the walkers take a random step on the grid. Those that encounter the boundary
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are removed and their starting locations are scored with the boundary value of
the first passage location, and new walkers are started somewhere on the grid
to replace them. It is obvious that this algorithm faithfully implements the
collection of statistics implied in (3.2) in an "embarrassingly" parallel fashion.
In fact, this algorithm is such that it may be implemented asynchronously on
independent processors until it becomes necessary to gather the statistics from
each independent processor into centralized memory locations. It also makes
little difference if we implement this algorithm on a shared- or distributed-
memory machine (or a loosely coupled group of workstations) since there is no
interprocessor communication until the statistics are centrally collected.

This idea of exploiting the parallel nature of independent statistical
sampling arising from certain Monte Carlo calculations is an old one, and quite
easy to implement in the case of the Dirichlet BVP for the Laplace equation.
The nature of this algorithm also makes the choice of a stopping criterion rather
simple. Since we are statistically sampling the solution to a problem that has
a well-behaved underlying stochastic process, the computational error, which
is only due to the statistical sampling error, should have law-of-large-number
behavior. Thus if we have p processors, each of which samples the solution at
every grid point, and we desire an overall variance in the sampling error of size
e2, then we may run the p independent processes until all of them achieve at
least an e2p sampling variance. Then when we accumulate the p independent
samples from the processors, we will be left with an overall variance of no
greater than (e2p)/p, by the addition of variance. Finally, we consider the
cost of generating each sample. Since our algorithm advances walkers from
the interior until they hit the boundary, we average one sample every TQ^ (the
average length of a walk) iterations per walker. We will refer to this algorithm
as the MIMD or "forward" random walk algorithm.

In contrast, the choice of mapping grid points onto the processor of a
massively parallel SIMD machine, such as the CM-2 or MP-2, leads to a
different set of considerations. In fact, the algorithm described above is an
extremely poor choice on a SIMD machine. This is due to the fact that the CM-
2 and MP-2 are physically an array of processors, each with local memory, upon
which two types of interprocessor communication are implemented. General
interprocessor communication is implemented via the "router," which is a
large multiple slower than comparable communication over nearest-neighbor
connections. This later is called "NEWS" communication. Thus the task
of communicating the boundary value at the first hitting location back to
the walker's starting point, which will generally require the router, seriously
degrades the above forward random walk algorithm's performance. Because
of this difference between NEWS and router performance, it is worthwhile
to consider a variation on the above algorithm, which abolishes the need for
router-based communication.

If we assume that the grid points in our calculation are such that
they can be embedded into a regular cf-dimensional grid, then all nearest-
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neighbor communication on this grid can be implemented via the fast NEWS
communication on a CM-2. If d — 2, this is also true on an MP-2. A simple
variation of the forward random walk algorithm allows us to get by with only
nearest-neighbor communication. If, when generating the random walks from
the starting interior points to the boundary, we save the path taken through the
grid, this path can be retraced to bring the boundary values into the interior via
only nearest-neighbor communication. In reality, this improves the situation
very little, as random walks generate extremely suboptimal routes from the
boundary to given interior points. It is, however, the case that while retracing
walks from a given boundary point, every grid point along the retraced path
may be considered as the starting point of a new forward random walk that
first encountered the boundary at the given boundary location. In fact, it can
be proven that scoring the boundary value at each point in the retraced path
is probabilistically equivalent to the forward random walk algorithm discussed
above [3]. In addition, retracing has the advantage that we obtain one sample
per walker per step. Finally, it should be obvious that the notion of retracing
is superfluous, as it is more efficient to start our walkers at the boundary.

Thus by trying to avoid an extremely inefficient aspect of a particular
parallel computer's design, we have been led to a variation on our original
algorithm. This "backward" random walk algorithm is an improvement over
the original forward random walk algorithm in two obvious ways: (1) it requires
only nearest-neighbor communication on the computational grid, and (2) it
generates samples at the rate of one per walker per iteration instead of one
per walker per complete random walk (O(rg^)). A not so obvious difference
is based on the fact that on a SIMD machine, the MIMD rationale for the
design of a stopping rule is not at all applicable. When we consider a more
reasonable stopping rule for a SIMD implementation we will encounter yet
another advantage of the backward over the forward random walk algorithm.

In a SIMD implementation, it makes much more sense with the backward
random walk algorithm to start off a large cohort of walkers from the boundary
with their boundary values, and then after some number of iterations terminate
all of the walking and compute the statistics. This stopping rule makes more
sense than waiting for an acceptable level of variance at each grid point, as
was suggested for the MIMD implementation. This is because in the backward
algorithm we are specifying the end not the beginning of random walks, and so
starting new walkers will not necessarily reduce the sampling error at specified
interior grid points. Since it is more natural in the SIMD case to consider
the termination of all the walks uniformly and accumulate statistics at that
point, one must be able to calculate the effect this has on the evaluation of the
Wiener integral in (3.2). This effect is precisely due to the fact that by placing
a limit on the number of iterations in the backward random walk algorithm,
we are sampling the random walk expected value in (3.2) over only a portion
of the entire space of random walks possible on our grid. We are evaluating
(3.2) over only the space of random walks up to a given length equal to the
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number of iterations before termination. Fortunately, this truncated expected
value can be explicitly computed. Surprisingly it is a nonlinear object.

It has been shown that this expected value over the space of random walks
up to a given length can be computed as the quotient of two Jacobi method
solutions of related discrete Dirichlet BVPs for the Laplace equation [3]. In
the simple case of the discrete Laplacian on the two-dimensional square with
a uniform grid, this statistic has an expected value that is the quotient of the
Jacobi solution of the BVP with the given boundary values over the Jacobi
solution with unit boundary values. Since unit boundary values asymptotically
yield the constant unit function solution, the asymptotic behavior is that of the
ordinary Jacobi method. However, for small iteration numbers, this quotient
gives remarkably good empirical convergence results as demonstrated in the
comparative figure below (Figure 3.1).

As Figure 3.1 shows, the backward random walk algorithm has initial
convergence behavior comparable to the method of successive overrelaxation
(SOR) with optimal relaxation parameter.

FIG. 3.1. Empirical comparison of the Jacobi method, red-black Gauss-Seidel
method, optimal red-black SOR method, the backward random walk method, and the
nonlinear quotient method (which is the expected value of the backward method). For
the random walk method, iteration number refers to maximal length of random walks.
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3.2. Concluding Comments

It is well known that these Monte Carlo methods are far inferior to many
deterministic methods for these types of problems. However, in very high
dimensions variants of these Monte Carlo methods are often used to solve
problems in quantum mechanics. In addition, the Monte Carlo methods
often serve to motivate the design and analysis of deterministic analogues,
which may offer some unique advantages over more conventional algorithms.
Another property of these Monte Carlo algorithms that may prove useful in
real computations is the fact that with them one may sample the solution at
as few as one grid point.

We have seen a rather simple example of how implementing a given
mathematical formulation for a particular problem on different types of
parallel computers not only leads to different implementations but also to
different questions of the numerical analysis. The MIMD forward random walk
implementation of these Wiener integral representations naturally motivates
a stopping rule based on a sampling error tolerance. The SIMD backward
implementation makes this type of stopping rule awkward and leads to the idea
of numerically evaluating Wiener integrals over certain natural truncations of
the space of all random walks. The analysis of these SIMD inspired truncations
leads to a nonlinear iterative method that is based on Jacobi iterations (and
hence can be implemented in parallel without grid point coloration) and gives
initial behavior similar to optimal red-black SOR, without having to choose
a relaxation parameter. Thus we have an object lesson on how parallel
architectures can influence not only the design but the analysis of numerical
algorithms.
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Chapter 4

A Parallel Genetic Algorithm Applied to the
Mapping Problem

El-Ghazali Talbi
Pierre Bessiere

Editorial preface

The graph partitioning problem has a number of possible applications. In
this chapter the mapping problem—mapping processes to processors in a
parallel architecture—is approached as a graph partitioning problem. The
solution method is via a parallel genetic algorithm (GA), which naturally
raises the interesting question: Can you use the mapping problem solution
to solve, in parallel, the mapping problem?

This article originally appeared in SI AM News, Vol. 24, No. 4, July 1991.
It was updated during the summer/fall of 1995.

The computing power of parallel processors makes their use appropriate
and attractive for a variety of applications. We illustrate the application of
an algorithm that, although more compute intensive relative to other similar
algorithms, is well suited to a specific problem we are interested in solving.
What makes this particularly interesting is that the problem to be solved
relates to the efficient partitioning of processes on a parallel processor.

The problem we address consists of placing communicating processes on
the processors of a distributed-memory parallel machine. This is referred to
as the mapping problem. Indeed, to execute an application on a parallel
machine, the mere translation step from a high-level language to binary code
used for sequential computers is not sufficient. The code and data have to
be split into loadable code objects (processes) and these objects have to be
placed on the network of processors. There can exist an optimal placement of
the processes. Most existing programming environments for parallel machines
(Transputer development system, iPSC/2, CM-2) do not propose any solution
to this problem. The burden is on the programmer, with the result that,
in the worst case, a program's design may not be independent of hardware
configuration.

35



36 Applications on Advanced Architecture Computers

A parallel program can be modeled by a graph, where the vertices
represent the processes and the vertices' weights represent known, or estimated,
computation costs of these processes. The edges represent communication
links required between processes and the edges' weights estimate the relative
amount of communication necessary along those links. A parallel architecture
can also be modeled by an undirected, connected graph, where the vertices
represent processors and the edges represent communication links between
processors. When the number of processes exceeds the number of available
processors, as is usually the case in massively parallel programming, the
mapping problem encompasses the contraction problem, which is equivalent
to the graph partitioning problem. This is illustrated in Figure 4.1.

FlG. 4.1. Mapping a parallel program on a parallel architecture.

Given a graph, the "graph partitioning problem" searches for a partition
of the graph's nodes that optimizes a given cost function. In addition to the
mapping problem we discuss, there are numerous practical applications of this
pvroblem. Consider, for instance,

the design of very large scale integration (VLSI) circuits, where, given a
set of components and a set of modules, one wants to place the compo-
nents in order to minimize the number of connections between modules,
yet preserve some balance concerning the number of components on each
module;
routing in distributed systems, where the considered problem is to
subdivide the computer network into smaller clusters so that the control
overhead for routing is minimized;
image segmentation in the field of computer vision, where segmented
images are represented as graphs in which each vertex represents a
segment and each weighted edge between two vertices represents a
topological relationship between two segments of the image;
virtual memory paging systems, where one wants to distribute the
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different objects on memory pages in order to minimize the number of
references between objects stored on different pages.

The graph partitioning problem is NP-complete. Consequently, heuristic
methods are used to deal with it. Heuristics may find solutions that only
approximate the optimum, but they do so in a reasonable amount of time.
The many different approaches that have been proposed for this problem may
be divided in two main classes: on one hand, the general purpose optimization
algorithms independent of the given application and, on the other hand, the
heuristic approaches especially designed for a specific problem. As we want to
avoid the intrinsic disadvantage of the algorithms of this second class (their
limited applicability due to the problem dependence) our concern in this paper
is only for the first class of algorithms.

Two widely used general purpose optimization techniques are the hill-
climbing algorithm and simulated annealing. The hill-climbing algorithm is
certain to find the global minimum only in convex spaces. Otherwise, it is
generally a local rather than a global minimum that is found. Simulated
annealing offers a way to overcome this major drawback of hill climbing but
at the price of longer computation time. A more serious drawback is the
sequential nature of the simulated annealing algorithm. Its parallelization is
extremely difficult.

Other distributed optimization techniques matrix-vector intrinsically par-
allel may also be considered. Some of them are closely related to neural
network-based algorithms. Other specific examples are the genetic algorithms
(GAs), which are considered in this paper. These are stochastic search tech-
niques introduced by Holland twenty years ago [2].

GAs are inspired by the biological evolution of species. Development of
massively parallel architectures made them very popular in the last few years.
GAs have recently been applied to combinatorial optimization problems in
various fields, such as the traveling salesman problem, the optimization of
connections and connectivity of neural networks and classification systems.
GAs are theoretically and empirically proven to provide a robust search in
complex spaces, but they take an extremely long time to execute. We therefore
propose a GA, implemented on a parallel processor, to reduce the execution
time.

4.1. The Graph Partitioning Problem

Given

— an undirected graph G — (V, E)\
— an application fJi from V into Z+, such that £l\(vi) = w^ is the weight

of vertex Vi\
— an application 1^2 from E into Z+, such that ^(e^) = w^j is the weight

of edge ej\ and
— a set of numerical constraints $ = {</>i, </>2, • • • , 0m} on these weights,
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the graph partitioning problem has to find a partition II of V (II = TTI, 7T2,
. . . , ?rn) satisfying the constraints $.

Most applications (VLSI design, image segmentation) correspond to the
following set of constraints, $1, with the weights of all nodes set to 1:

— for each subset TT^ of V belonging to the partition $, the number of nodes
in Ki is equal to a given value BI\

the total cost of the edges going from to -KJ should be minimum

The graph partitioning problem under constraints $1 has been proven to
be NP-complete [1]. For our application, the mapping of parallel programs
on parallel architectures, we have to consider the following set of constraints,
$2: minimize the sum of communication costs between processors (total cost
of the edges going from TTJ to TTJ) and the variance of the loads of the different
processors (variance of cost of vertices belonging to a given TTJ):

With K = 0 the set of constraints $2 reduces to 4>i. This proves
that the mapping problem under constraints $2 is NP-complete. K is
the weight of the contribution of the communication cost relative to the
computational load balance across the system. Choosing a suitable value for
K depends on knowledge of the characteristics of the parallel architecture
involved in the mapping problem. Very small values of K would suggest a
uniprocessor solution, and very large values of K would reduce the problem to
one of multiprocessor scheduling without communication costs. The parallel
architecture used was a network of transputers and K = 2 has been estimated
by experiment.

WITH

WITH

MKIN
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4.2. The GA Solution to the Mapping Problem

GAs compose a very interesting family of optimization algorithms. Their basic
principle is quite simple. Given a search space S of size MN, and an alphabet
of M symbols, then any point of this space may be represented by a string of
N of these M symbols. The strings are analogous to chromosomes in biological
systems. In natural systems, chromosomes combine to form the total genetic
prescription for the construction of some organism.

In a phase of the process called "reproduction," some genetic operators
are used to generate new points of E from existing points. During this phase,
some points of S are replaced, keeping the size of the population fixed. We
will inevitably have a competition for survival of the chromosomes in the next
generation. The fundamental principle of the GA is "the fitter a string, the
most probable its reproduction." We can assume that we start from some
given initial population and that there exists a fitness function F from £
into IR that associates a real value to any point in S. Then in mathematical
terms the fundamental principle of the GA means that the probability P of
reproduction is increasing as F increases:

Thus, over many generations, the average fitness of the population increases.
The standard GA, in a pseudolanguage, is shown in Figure 4.2.

Generate a population of random strings.
While number-of-generations <= max-number-of-generations

Do
Evaluation - assign a fitness value to each string.
Selection - make a list of pairs of strings likely

to mate, with fitter strings listed
more frequently.

Reproduction - apply genetic operators to the selected
pairs. New strings produced constitute
the new population.

FIG. 4.2. A standard genetic algorithm.

The most common genetic operators used during reproduction are crossover
and mutation. Both of these operators are derived by analogy from the
biological process of evolution. Given two strings, crossover involves cutting
both strings at the same randomly selected point and exchanging the two
portions. Mutation is simply a random state exchange for a single bit in the
string. Two parameters need to be defined: Pc and Pm. They represent,
respectively, the probability of application of the crossover and mutations
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operators. Other genetic operators may be found in the literature. For
instance, there is the inversion operator and many variants of the crossover
operator designed for specific problem domains.

To apply the GA to the mapping problem, the following formalism is used.
Let us suppose that we have a graph of TV processes to place on a parallel
architecture of M processors. A symbol (for instance an integer between 0 and
M — 1) is assigned to each processor. A given mapping is represented by an
N string of those symbols, where symbol p in position q means that process
q of the graph is in the subset p. We use the usual version of crossover, but
mutation is a random trial of one of the M possible symbols.

Standard GAs with large populations suffer from lack of efficiency (long
execution times). Two approaches to parallel GAs have been considered so far:
the standard parallel approach and the decomposition approach. In the first
approach, the evaluation and the reproduction are done in parallel. However,
the selection is still done sequentially, because parallel selection would require
a fully connected graph of strings, as any two strings in the population may
be mated. The decomposition approach consists of dividing the population
into equally sized subpopulations. Each processor runs the GA on its own
subpopulation, periodically selecting good strings to send to its neighbors
and periodically receiving copies of its neighbors' good strings to replace bad
ones in its own subpopulation. The processor neighborhood, the frequency of
exchange, and the number of strings exchanged are adjustable parameters.

The standard parallel model is not flexible in the sense that the commu-
nication overhead grows in proportion to the square of the population's size.
Therefore, this approach is not well suited to distributed-memory architectures,
where the cost of communication has a significant impact on the performance
of parallel programs. In the decomposition model, the inherent parallelism
is not fully exploited since the treatment of subpopulations may be further
decomposed. This approach should be considered only when the number of
available processors is less than the required size of the population.

For implementation on massively parallel architectures with numerous
processors, we chose a fine-grained model, where the population is mapped on
a connected processor graph such as a grid, with one string per processor. We
have a bijection between the string set and the processor set. The selection is
done locally in a neighborhood of each string. The choice of the neighborhood
is an adjustable parameter. To avoid the overhead and complexity of general
routing algorithms in parallel distributed machines a good choice is to restrict
the neighborhood to only directly connected strings (i.e., processors). It is
important to notice that these modifications to the standard model do not
cause a degradation in the search efficiency of the standard GA.

4.3. Super-node Implementation

The Supernode is a loosely coupled, highly parallel machine based on the
Inmos T800 Transputer. One of its most important characteristics is its ability
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to dynamically reconfigure the network topology by using a programmable
VLSI switch device. This architecture offers a range of 16 to 1024 processors,
delivering from 24 to 1500 Mflops of peak performance. To achieve these
performance levels, a hierarchical structure has been adopted [3]. The
programming environment used in our experiments is Parallel C 3L. The
dynamic configurator of the physical network, developed in our laboratory,
has been used to obtain the desired topology of the architecture.

We assume that each string in the population resides on a processor,
and communication is carried out via message-passing. Figure 4.3 shows
the pseudo-Occam description of the process executed by each processor.
The Occam language provides a very interesting framework for the parallel
or sequential execution of processes. The parallel construct PAR combines
a number of processes that are performed concurrently. Values are passed
between concurrent processes by communication on channels using input
and output. Each channel provides unbuffered unidirectional point-to-point
communication between two concurrent processes.

SEQ
Generate (local-string)
Evaluate (local-string)
While number-of-generations <= max-number-of-generations

SEQ
— communication phase —
PAR i=0 FOR number-of-neighbors

PAR
neighbor-in[i] ? neighbor-string[i]
neighbor-out[i] ! local-string

— computation phase —

PAR i=0 FOR number-of-neighbors
Reproduction (local-string, neighbor-string[i])

Replacement

FIG. 4.3. Pseudo-Occam program executed on each Supernode.

Each reproduction produces two offsprings. Our strategy is to randomly
choose one of the offsprings. The replacement phase consists of replacing the
current local string with the best local offspring produced in the reproduction
phase. The population is placed on the processors. The processors are
configured such that the topology of the machine is a torus. Given the four links
of the transputer, each string will have four neighbors. No routing is needed in
the processor network because only directly connected processors (i.e., nearest
neighbors) need to exchange information. We do not attempt to find the
best solution globally because the communication involved in determining this



42 Applications on Advanced Architecture Computers

solution would be considerable. Instead we pick up the best solution via a "spy
process" placed on the "root processor." The root processor is the processor
that connects the network to the host computer (e.g., a PC for PC-hosted
systems or the 68000 or SPARC processor for Sun workstation systems).

4.4. Performance Evaluation

A performance evaluation of the algorithm has been performed. Speedups
were studied to determine the quality of a given solution when the parallel GA
was run on different size tori and with populations of different sizes (the two
being equal given that there is one string per processor). Figure 4.4 shows
the influence of the number of processors, and population size, on the time
needed to reach a solution scoring 8. The specific mapping problem studied
was a pipeline of 32 processes to be mapped on a pipeline of 8 processors.
For this problem the optimal solution scores 7. The execution cost and the
communication cost between processes are set to 1.

FIG. 4.4. Execution times on different sizes of parallel architectures.

We have a "superlinear" speedup of the parallel GA, in the sense that
when multiplying the number of processors by p the execution time is divided
by kp (k > 1). Premature convergence may occur for a population that is too
small, and the desired solution will never be reached. A comparative study of
our approach with hill-climbing algorithms and simulated annealing has been
done on different benchmarks [4]. The experimental measures show that our
algorithm gives better results concerning both the quality of the solution and
the time needed to reach it.
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4.5. Conclusions and Future Directions

A massively parallel GA was used to solve the mapping problem, resulting in a
super linear speedup. An important characteristic of GAs is that they may be
used to solve a great variety of combinatorial optimization problems. We are
using them to solve such optimization problems in the field of robot control,
computer vision, and neural networks.

We are also studying an important improvement of the algorithm, which
includes the dynamic variation of its parameters and particularly the mutation
probability. The crossover operator becomes less effective over time as the
strings in the population become more similar. One way to avoid the premature
convergence and to sustain genetic diversity is by using adaptive mutation.
During the first generations, when there is ample diversity in the population,
mutation must occur at very low rates. However, as diversity decreases in the
population, the mutation rate must increase.

More theoretical work is planned: a cellular automata-based model will be
used to study the influence of the algorithm's parameters on its convergence.
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Chapter 5

Supercomputers in Seismology: Determining 3-D
Earth Structure

Robert J. Geller

Editorial preface

A comprehensive understanding of the internal structure of the earth
would be useful in a number of contexts. One such application is in the
study of earthquakes. This chapter addresses the use of seismographic
data to solve the inverse problem of determining the earth's structure,
based on how the seismic waves have propagated through the interior.
The direct solution method, developed by the author and his colleagues
with the use of classic supercomputers, allows for more detailed results
than were previously possible.

This article originally appeared in SIAM News, Vol. 24, No. 5, September
1991. It was updated during the summer/fall of 1995.

Supercomputers are transforming the way seismologists analyze seismo-
grams to determine the global-scale three-dimensional (3-D) structure of the
earth's interior. Seismograms are recordings of the ground motion caused by
earthquakes. Traditionally seismologists used only a few selected data from
each seismogram, such as the arrival time of the initial elastic waves, and
"threw away" the rest of the data. However, supercomputers are now making
it possible to extract all of the information that is contained in the recorded
seismograms.

5.1. Introduction

Plate tectonics is the basic theory that explains the large-scale geological
features of the earth's surface. The earth's surface is divided into a small
number of rigid tectonic plates whose motion is the visible part of a thermal
convection cycle in the earth's interior. The transport of heat energy from the
earth's interior to the earth's surface drives this convection cycle.

Seismology is the study of how elastic waves propagate through the earth
and of the earthquakes that generate them. There are two types of elastic
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waves: P-waves (longitudinally polarized compressional waves) and S-waves
(transversely polarized shear waves). The former propagate in both solids and
fluids, but the latter do not propagate in fluid regions, such as in the earth's
oceans or outer core (a region deep in the earth's interior). P-waves are always
faster than S-waves. Letting a denote the velocity of P-waves and (3 denote
the velocity of S-waves, we seek to determine the 3-D distribution o;(r, 0,0)
and /3(r, #,</>), where (r, 0,0) are spherical polar coordinates.

Based primarily on analyses of seismological data, it is known that the
earth's interior is divided into several major regions: the crust, the upper
mantle, the lower mantle, the outer core, and the inner core. The elastic wave
velocities tend to increase with depth within each of these layers, due to the
effect of increasing pressure. Lateral heterogeneity of the elastic wave velocities,
which is primarily due to lateral temperature variations, is on the order of
several percent of the spherically averaged velocities. Higher temperature
regions, which correspond to rising material in the convection cycle, have slower
than average elastic wave velocities; the opposite is true of regions with lower
than average temperatures. Three-dimensional images of the distribution of
elastic wave velocities in the earth's interior can thus provide important, albeit
indirect, information on the convection process.

5.2. Seismic Data Analysis
Seismograms are recorded by sensitive instruments called seismographs. By
analyzing seismograms, seismologists obtain information on the source of the
earthquake and the structure of the earth. Data from newly deployed broad-
band, high dynamic range, seismographs have provided the impetus for the
development of the new methods presented in this paper.

The most basic seismological datum for a given earthquake is the arrival
time of the first elastic energy—the initial P-wave—at each observatory. If
P-wave arrival times from at least four observatories are available, the location
of the earthquake and its origin time can be determined, provided that the
P-wave velocity distribution in the earth is known. In practice a kind of
bootstrapping procedure is required. A provisional P-wave velocity model is
assumed, earthquake locations are determined, and the velocity model is then
refined. Although 3-D earth structure can be studied by analyzing arrival time
data, we concentrate on waveform analysis techniques in this paper.

5.3. Surface waves
As P-waves and S-waves propagate away from the earthquake source, some
of their energy is trapped in the form of surface waves whose amplitudes
decay roughly exponentially with depth. The depth to which significant energy
penetrates is roughly proportional to the horizontal wavelength of the surface
waves. The waves that are not trapped, and continue to propagate through
the earth's deep interior in the form of P-waves or S-waves, are called body
waves.
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There are two distinct types of surface waves. If we construct a vertical
plane that contains both the source and the receiver, Love waves involve only
horizontal motion perpendicular to the plane, whereas Rayleigh waves involve
only ground motion (both horizontal and vertical) in the vertical plane. Love
and Rayleigh waves exhibit dispersion—their phase velocity is a function of
their period. With some exceptions, the phase velocity tends to increase with
increasing period, as the surface waves travel through progressively deeper
regions of the earth. The forward problem of computing the Rayleigh and
Love wave dispersion CR(UJ) and CL(U;), where a; is the frequency, can be easily
solved if a(r), /3(r), and the density p(r) are known. However, the inverse
problem of determining a(r), /?(r), and p(r) from CR(UJ) and CL(U)) would
be underdetermined even if there were no measurement errors. Auxiliary
constraints can be imposed to obtain a well-posed problem, but subjective
decisions are required.

Surface wave phase velocity data do not have sufficient resolving power
to warrant inverting for P-wave velocities or density. However, if we could
measure the Rayleigh and Love wave phase velocities as a function of frequency
at every point on the earth's surface, CR(#, 0, u] and CL($, 0, a;), respectively, we
could invert for the 3-D S-wave velocity distribution (3(r, 0,0). Such research
has been extensively carried out, but there are several major problems.

The quantity actually measured by surface wave studies is the phase
difference between a surface wave of a given frequency and the same surface
wave after it has made one complete revolution around the earth. The actual
phase velocities can be expressed in terms of a spherical harmonic expansion.
When we try to recover the coefficients for this expansion we find that all
information on odd-order heterogeneity is lost, and that information on even-
order heterogeneities is low-pass filtered. Furthermore, the great circle analyses
are based on treating the lateral heterogeneity as though it were infinitesimal.
Unfortunately, only fundamental mode surface wave phase velocities, which
afford the poorest depth resolution, can be easily and reliably measured.

5.4. Free Oscillations

For a laterally homogeneous earth the surface-dependent (0- and 0-dependent)
part of the eigenfunctions of the modes of free oscillation is given by spherical
harmonic functions Y^m, but the eigenfrequencies of the modes depend only
on the angular order i and not on the azimuthal order m. The modes
of a spherically symmetric model are thus degenerate—all 21+1 modes
that constitute the multiplet with angular order i have exactly the same
eigenfrequency. Lateral heterogeneity removes this degeneracy and splits the
multiplet of 2^ + 1 degenerate modes into 2^ + 1 singlets, each having a unique
natural frequency.

An obvious strategy for studying the earth's lateral heterogeneity is the
"spectroscopic" approach—measuring each of the split eigenfrequencies, and
then inverting them for 3-D earth structure. However, this approach fails
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for several reasons, the most important of which is related to anelastic
attenuation of elastic waves, i.e., friction. Seismic waves in the earth decay
as exp(—<j£/(2Q)); the quality factor Q is not a constant, but, in general, is
on the order of several hundred. Since the broadening of the spectral peaks
due to anelastic attenuation is almost always much wider than the separation
between neighboring split modes, measuring the frequencies of the individual
split modes is essentially impossible.

5.5. Waveform Inversion for 3-D Earth Structure

In order to extract all possible information on 3-D earth structure from
recorded seismograms it is necessary to analyze the seismic waveforms them-
selves, rather than intermediate parameters such as surface wave phase veloc-
ities. By doing so, we gain two major advantages: we can avoid inaccuracies
due to approximations that treat the entire laterally heterogeneous part of
the structure as an "infinitesimal" perturbation, and we can fully use all the
information contained in the recorded seismograms in our analysis.

Let us consider the quantities that must be calculated in order to determine
3-D earth structure by directly inverting recorded seismograms. First, we
require the ability to compute the theoretical waveforms, which seismologists
call synthetic seismograms. Second, we must be able to compute the change in
the synthetic seismograms due to any given infinitesimal change in the earth
model, i.e., the partial derivatives of the synthetic seismograms. Finally, we
must formulate a systematic inversion procedure to find the earth model whose
synthetic seismograms best fit the observed data.

The first successful application of waveform inversion was the landmark
work of Woodhouse and Dziewonski [9], who inverted waveform data from
surface waves to determine the 3-D variation of elastic wave velocities to depths
of about 650 km. Like great circle phase velocity studies, the method used by
these authors also assumed that all of the energy traveled around the great
circle containing the source and the receiver. However, because they computed
separate synthetic seismograms for the major and minor arcs of the great circle,
they were able to resolve odd-order lateral heterogeneity to some extent.

The starting model used by Woodhouse and Dziewonski was laterally
homogeneous. Considering the S-wave velocity as an example, the laterally
homogeneous starting model, which depends only on the depth r and not on
0 or 0, can be expressed as /3(°)(r,0,0) = (3^(r). The laterally heterogeneous
(3-D) perturbation to the laterally homogeneous (1-D) initial model, which
is determined by inverting the observed waveforms, is <S/3(r, #,</>). The final
model is the sum of the initial model and the perturbation determined by the
inversion

Almost all work on waveform inversion expands the unknowns in spherical
harmonics and truncates the expansion at low order. We represent 8/3(r, 9,4>)
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as follows:

where Y^f(0,0) are spherical harmonics. A spherical harmonic of angular
order s corresponds (approximately) to features with a horizontal wavelength
2?ra/(s 4- 1/2), where a = 6371 km is the radius of the earth. Woodhouse and
Dziewonski use SMAX = 8; their model thus includes laterally heterogeneous
structure with wavelengths of 5000 km and longer. SB^r) in (5.2) must be
replaced by a discrete representation to obtain a well-posed problem. Two
popular choices are to divide the earth into layers, and treat <§0*(r) as a
v

Figure 5.1 shows a laterally heterogeneous model (PUMO: Preliminary
Upper Mantle model 0) of S-wave velocity obtained by this author and his
colleagues [7] using the techniques explained below.2 As only surface wave
data were used, we could obtain accurate information only on S-wave velocities
in the upper 600 km or so. Some of the geological implications of this model
are discussed in [6]. Perhaps the most important conclusion is that the lateral
heterogeneity of S-wave velocities in the depth range around 400 km can be
quantitatively accounted for by the deep roots of continents (which have high
velocities), mid-ocean spreading ridges (which have low velocities), and the
presence of subducting slabs. Some authors had previously asserted that there
had to be additional large-scale features with no surface manifestation in this
depth range, but we showed this was unnecessary.

In order to further improve our knowledge of laterally heterogeneous earth
structure several steps are needed. First, body waves, as well as surface waves,
should be included in the waveform dataset. This in turn requires that our
techniques be extended to permit efficient and accurate calculations of body
waves and their partial derivatives with respect to the parameters of the 3-D
earth structure model. Our efforts in this area are briefly summarized in the
final section. Second, the correction for extremely shallow crustal structure
(analogous to "static corrections" in seismic prospecting for petroleum) must
be improved. Third, the volume of data must be increased greatly as compared
with the dataset that was used to obtain the model in Figure 5.1.

5.6. Iterative Linearized Inversion

Synthetic seismograms are computed by solving a linear partial differential
equation (PDE), but the change in the synthetic seismograms is a nonlinear
functional of the perturbation to the earth model. Because of this nonlinearity,
the change in the synthetic seismograms for a finite change in the earth model
will not be equal to that predicted by linear extrapolation using the partial

2A color version of this figure is available from the SIAM WWW server at http://www.siam.org/
books/astfalk/.

onstant within each layer, or to expand &B (r) in terms of splines.

http://www.siam.org/books/astfalk/
http://www.siam.org/books/astfalk/
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FIG. 5.1. Lateral heterogeneity of S-wave velocity as a percentage of the
spherically averaged S-velocity at depths of 200 km (top) and 400 km (bottom) as
determined in [7]. Darker areas show high velocity regions and lighter areas show low
velocity regions. The models shown in this figure include angular orders 1 < s < 8
and azimuthal orders —s<t<s. Thus, roughly speaking, the model includes lateral
heterogeneity with spatial wavelengths greater than 5000 km. The vertical resolution
is roughly 100 km, so that the upper figure, for example, can be regarded as a spatial
average of lateral heterogeneity at depths from 150 km to 250 km.

derivatives. This error becomes worse as the perturbation to the starting model
increases.

Woodhouse and Dziewonski [9] and many later workers used a spherically
symmetric starting model and treated the entire laterally heterogeneous part
of the earth model as an "infinitesimal" perturbation. The 3-D earth models
obtained by such a linearized inversion will be inaccurate, perhaps seriously
so.

If we start with a spherically symmetric model, we obtain a 3-D model
from the linearized inversion, as shown by (5.1). Previous workers stopped
at this point, but we can use this 3-D model as the starting model for the
next iteration of an inversion and iterate until convergence is obtained. Since
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the model perturbations will become progressively smaller, the errors due to
nonlinearity will decrease at each successive iteration.

We illustrate iterative linearized inversion using the S-wave velocity as an
example. The unknowns are still the coefficients 6Bl(r] defined in (5.2), but
the starting model is now laterally heterogeneous:

The 3-D perturbation to the earth model determined by the inversion (5.2)
is added to the 3-D starting model (5.3) to obtain the new model:

vThe new model defined in (5.4) becomes the starting model for the next
iteration; we iterate until convergence is obtained.

Previous workers thought that the above iterative linearized inversion
required an impractically large volume of computations. Here is what
Woodhouse and Dziewonski said in 1984.

"The [inverse] problem requires the calculation of not only synthetic
seismograms but also their partial derivatives ---- In this study
we use. . . 2000 records. . . and we construct models in terms of 324
parameters. A naive calculation would lead to the conclusion
that more than 600,000 [partial derivatives] must be calculated.
Even for a spherically symmetric model this would be a formidable
undertaking, but for an aspherical model it is totally unfeasible.
In addition, since the inverse problem is non-linear, the procedure
must be reiterated a number of times."

5.7. The Direct Solution Method

The calculations described above as "totally unfeasible" have now, as the result
of two new algorithms developed by our group at Tokyo University [3, 4],
combined with the use of supercomputers, become routine. It thus has become
possible to carry out iterative linearized inversion for laterally heterogeneous
earth structure. We expect that this algorithm will rapidly be adopted as a
standard method in seismology. We used these new algorithms to invert for
the 3-D earth structure shown in Figure 5.1.

Our new algorithm, the direct solution method, is based on solving the
"weak form" (Galerkin form) of the elastic equation of motion. It can thus be
considered a generalization of the finite-element method or variational method.

Several previous workers calculated synthetic seismograms for a 3-D
starting model following a two-step approach. They first calculated the
modes of free oscillation of the 3-D model, and then calculated the synthetic
seismograms by summing these modes. In contrast, we directly solve for the
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synthetic seismograms of the laterally heterogeneous model and their partial
derivatives, without the unnecessary intermediate step of computing the modes
of the 3-D model. This approach has a number of advantages, and no obvious
disadvantages.

Our actual work uses spherical polar coordinates, but we simplify the
following explanation by using cartesian coordinates x = (x,y,z).. The i =
x, y, or z components of the vector trial functions are denoted by <^m (x). The
superscript (m) denotes the mth trial function m = 1, . . . , M. We compute the
synthetic seismograms and their partial derivatives in the frequency (Fourier
transform) domain, where u is the Fourier transform variable.

We expand the displacement in terms of the trial functions:

where the expansion coefficients Dm are the unknowns. Equation (5.5) gives
the displacement everywhere in the earth, i.e., for all values of x. Thus we
only have to solve for the expansion coefficients Dm once for each earthquake.
We are using the surface wave portion of the seismogram as the data in our
present research. Therefore, we use the fundamental mode and the first several
overtones, which correspond to surface waves, as trial functions.

The following system of linear equations is derived by substituting (5.5)
into the elastic equation of motion:

where / is the force that generates a particular earthquake. In actual practice
the observed data must be inverted to determine both the 3-D earth model
and the vector / for each earthquake.

The elastic moduli A(r, 0, 0) and ^t(r, 0, 0) are defined in terms of the P-
wave velocity a, the S-wave velocity /?, and the density p.

The elastic tensor Cijki(r, 0, <p) is defined in terms of A and //:

where the <S's are Kronecker deltas.
The elements of the matrices If and T are defined as follows, where

summation over repeated dummy subscripts is implied, * denotes complex
conjugation, the subscript i, j denotes spatial differentiation of the i-component
with respect to the j -coordinate, and the volume integral is evaluated over the
whole earth:

.S
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H and T are both diagonally dominant, but this is not necessarily true for
(H-u2T).

A perturbation to the elastic wave velocities causes perturbations in the
elastic moduli and density, which in turn perturb the matrix elements. The
perturbation to the expansion coefficients of the trial functions 6D is found by
solving the perturbed (5.6):

If the perturbation is infinitesimal, we can drop all terms higher than first
order in (5.12) and use (5.6) to eliminate zero-order terms. We obtain the key
equation for computing the partial derivatives of the expansion coefficients:

For each earthquake, we only have to solve (5.6) once, but for each
earthquake we have to solve (5.13) once for each model perturbation. The
latter is therefore the time-consuming part of the calculation. We substitute
(5.13) into (5.5) to obtain the partial derivatives of the synthetic seismograms:

Note that x is the location of the observatory at which the seismograms are
recorded.

The above was contained in our 1991 SIAM News article, but we sub-
sequently realized that by rearranging the above equations we could further
reduce the computational requirements [3]. Let us define the vector y to be
the vector of the values of the trial functions at the observatory:

Now we can use (5.13) and (5.15) to rewrite (5.13) as

where the superscript T denotes the transverse, and the superscript —1 denotes
the inverse of the matrix. We never actually have to compute the inverse of
the matrix. We instead compute z by solving the following equation:

.
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Thus we have to solve (5.6) once for each earthquake, and (5.17) once for
each receiver. The number of times that (5.16) has to be evaluated is given
by the product of the number of sources, receivers, and model parameters.
However, the model parametrization is chosen so that the matrix (SH — u^GT]
is highly sparse. The right-hand side of (5.16) can therefore be evaluated
efficiently.

When our partial derivatives are expressed in the form of (5.16) it is possible
to show an extremely close connection between our approach and an approach
proposed by Tarantola [8]. Space does not permit a detailed discussion; see
reference [3] for details.

5.8. Recent and Future Research

One of the most important future topics is applying our methods to inversion
of the body wave portion of the seismogram, as well as the surface waves.
The key step is the calculation of the synthetic seismograms and their partial
derivatives, which must be both computationally efficient and accurate. Some
workers have used approaches in which the earth is approximated by a series of
flat layers, but this leads to errors that are difficult to estimate. We therefore
solve the exact problem in spherical coordinates. We recently presented results
for calculations in a 1-D (spherically symmetric) model, using an approach that
can easily be generalized to the laterally heterogeneous problem [1, 2].

The work described in previous sections of this paper used the vertically
dependent part of the degenerate modes of the laterally homogeneous model
as trial functions, but in our work on body waves we initially used linear
spline functions. This choice, however, led to relatively large errors due to grid
dispersion. We recently succeeded in deriving modified numerical operators
that greatly reduce the error of the solutions (by a factor of 25-50) without
increasing the CPU time [5]. The key to our derivation was to use (5.13)
to make formal estimates of the errors of the numerical solution using an
eigenfunction expansion. We then deliberately modified the error of the matrix
operators (without changing their bandwidth) to minimize the error of the
numerical solutions. We have extended this approach to the 3-D problem and
are now preparing a paper on this work. We also have used this approach
to derive optimally accurate time domain finite-difference operators for purely
local bases in the time domain.

Iterative linearized waveform inversion for 3-D earth structure is becoming
an increasingly important research topic. The direct solution method makes
the necessary computations practical on a routine basis. We are optimistic
that the direct solution method will become an essential tool of seismologists,
playing much the same role as seismic tomography in the 1970s and 1980s.
We are also optimistic that the direct solution method can be applied to
analyses of shorter wavelength seismic waves recorded by regional or local
seismic networks.
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Chapter 6

Advanced Architectures: Current and Future

Greg Astfalk

Editorial preface

The author describes where high-performance computing (HPC) is today
as an adjunct to much of the architecture-related material in the chapters
in this book. This discussion leads into the projection(s) of technologies
that will dictate future computer performance and architectures. The
important issues of memory organization and memory latency are covered
in the context of current and future machines. Some discussion of
programming models and languages is also offered, with some closure
on the prospects for automatically generated parallelism.

The original article, to which this one bears no resemblance, appeared in
SIAM News, Vol. 23, No. 2, March 1990.

High-performance computing (HPC) has always been ill defined. In the
past we might have been tempted to define HPC as the computations being
done on the classic supercomputers of the day. This is clearly not the case
today. With the increase in computational power available on the desktop, or
perhaps at deskside, the notion of what constitutes HPC has changed.

In this paper we look at the current state of HPC from both a hardware
and a software perspective. We have a bias toward hardware since it is our
expectation that the HPC user who desires, or requires, good performance must
be cognizant of the hardware. This is, in itself, a distinct change from the past.
The software that an individual uses is relatively static compared with the
changes that have occurred with the hardware. Additionally, software is more
of a "religious" and personal issue than is the hardware. We go "on the record"
here as stating that software is more important to the user's productivity than
the hardware. It is only in this article that we show this hardware bias.

With the rapid rate of change in HPC, it is almost impossible to look
too far into the future with any accuracy. In spite of this we attempt in the
following sections to describe the setting for HPC users a few years from now,
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weaving in past trends to bring us to the current state and then projecting
forward from there. We attempt to bias our perspective and comments toward
the industrial user rather than the user in a research laboratory or academic
setting.

6.1. Processor Type
The processor provides the computing power for HPC calculations, so it is
logical that we discuss it first. We assert that the most common computing
engine for doing HPC is now, and will continue to be, the RISC processor. A
gut reaction might be that it is "supercomputers" that have this honor. Yet
if we consider all the computations done on workstations and servers and, to
some extent, parallel processors, the number of cycles exceeds those of the
classic supercomputers. Three main factors are pushing the RISC processor to
be the dominant force that it is now. Only one is technological; the other two,
as discussed in the following paragraphs, are economic.

The rapid rate of change in HPC forces computer vendors to provide newer
and faster processors on about a two to three-year cycle. It would be very
difficult for a small computer vendor to design its own full custom processor
every two or three years due to limited resources (human and financial).
Additionally, the absolute level of performance of today's processors dictates
that sophisticated designs be used. This is an expensive proposition, and the
obvious way to avoid it is to use a processor that someone else has designed
and built.

To quantify this by way of two examples (with no malice meant toward
anyone) let's consider Cray Computer Corp. and Hewlett-Packard Company.
Cray Computer was working to build a full custom processor that, with a clock
cycle of approximately one nanosecond, was leading edge. The development
effort cost approximately 200 million dollars. Simple economics dictate that
development money spent must be recovered in sales of the developed product.
Because of the specialized nature of the Cray Computer processor and its
attendant high price tag, however, the number of customers is quite limited
and the revenue generated has not been sufficient to fund the development.
Even worse, this processor development cycle must be repeated every two or
three years.

Hewlett-Packard, on the other hand, designs a product that sells for a
price that is widely affordable. To substantiate this we simply need to look
at the number of Hewlett-Packard workstations and servers that are sold each
year. Hewlett-Packard is still faced with the two- to three-year development
cycle, but the volume of sales gives the company a healthier business plan.
Still open is the question of whether the computations that were formerly the
province of the supercomputer can be performed on a desktop engine, such as
Hewlett-Packard's. We address this central issue throughout this paper.

Let's assume that, to a first approximation, the computing power of a
processor is proportional to its clock cycle (i.e., reciprocal of frequency).
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FIG. 6.1. Historical behavior of the processor cycle time for three distinct classes
of computers.

Figure 6.1 shows the progress of the clock cycle for three different classes of
processors. Four things are evident from this figure. First, the power of the
individual processors in the supercomputer class has not changed significantly
in 19 years. The Cray-1 of 1976 had a cycle time of 12.5 nanoseconds, and
the soon-to-be-released Cray T90 has a cycle time of 2.2 nanoseconds. This
is "only"3 a factor of 6 in 19 years. Second, in the same period, performance
increases have been more substantial for RISC processors than for other classes
of machines. Third, the cycle times of processors are approaching a limit of
close to one nanosecond. The ability of the computer industry to provide
increases in single-processor performance by factors of 2 to 3 every one to
two years is ending. Fourth, the delta between the cycle times of the RISC
processor and the classic supercomputer has been reduced to nearly zero.

As of 1995, it is true that for some codes the high-end RISC processor
outperforms the high-end classic supercomputer. In the late 1970s, using a
supercomputer was the only way to achieve good performance. The faster
cycle times made even nonvector code substantially faster when run on
supercomputers. This is no longer necessarily true given the narrowing of
the gap between supercomputers and RISC processors. This is not to say that
classic supercomputers are bad, only that their overall dominance on high-end
computing is being eroded by RISC processors.

An industrial perspective of the RISC processor offers another compelling
reason for the dominance and future usage—third-party software packages.

3We don't mean any offense to Cray Research, Inc. Pushing the technology at that level of
performance is a very demanding challenge.
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Because the availability of this software is so important, especially to industrial
users, we defer a detailed discussion of it to a later section.

FlG. 6.2. Projected future trends for several key metrics in semiconductor
technology.

In Figure 6.2 a number of trends in the semiconductor industry are shown.
The data come from the Semiconductor Industry Association, an organization
that tracks the entire industry. Its data ought to be the best available and at
least should be quite accurate. The curve for processor frequency shows that we
can expect that by the year 2005 (less than 10 years from now) the frequency
will be 600 MHz. We can make an assumption that the chip will deliver
approximately two to four floating-point operations per Hz. The result will be
a 2+-Gflop chip in 10 years or less, which means that a single-chip processor
will have more than twice the peak performance of a single processor in today's
most powerful supercomputer. When the cost differences are factored in, it is
a very impressive and compelling point in favor of the RISC processor.

No magic technology is going to change the rate of single-processor
performance growth. It is possible, however, that for an end-user's application,
performance gains which are greater than the historical rate of single-processor
performance increase can be realized through parallelism.

6.2. Parallel Computing

End users need to enlarge their problem sizes for better accuracy, to model
more complex physics, to perform increased numbers of simulations for
parametric analysis, and the list goes on. Some observers have indicated that
the demand for computing power is growing "exponentially." We prefer not
to attempt to quantify the growth rate but rather to appeal to the universal
impression that the rate is increasing dramatically. From the previous section,
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we understand that the performance gain from single processors will be limited
relative to the demands for computing power. It suffices to say that the demand
for computing power far exceeds what can be offered via single processors. This
logically leads to the notion of parallel processing.

Conceptually, parallel processing is so simple and appealing that it is hard
to be convinced that it isn't a trivial solution to the problem of meeting the
increased demand for computing resources. Parallel processing simply involves
dividing the problem into several pieces and giving each piece to an individual
processor to work on concurrently with other processors. In the limit we
could reduce the execution time by a factor of 1/p, where p is the number of
processors we apply to the problem. The simplicity ends there. It is beyond the
scope of this paper to cover all the details and intricacies of parallel processing,
which would require a tome of epic proportions. What we hope to convey in
this section is an overall sense of parallelism and the architectures of parallel
machines.

The onus is always on the users to actually "map" their codes and algo-
rithms onto parallel machines. As we discuss later, this can be accomplished
at a variety of levels. What is invariant is that the code designer must give
thought to the layout of data, the programming model, the synchronization of
the processors, and many other issues. Getting parallel performance is unlike
getting sequential performance.

In practice, the application of parallel processing is generally difficult.
The primary issues in parallel processing are the partitioning of the problem
into "separate" pieces, the required communication between the concurrently
executing processes, and the balancing of the load on all the processors involved
in the computation. We have found that in a majority of cases the first
two issues are the more problematic. Despite the message of the preceding
paragraphs, there are indications that parallel processing, in some form, will
eventually mature into the common methodology for high-end computing.

In the recent past it seemed that in the absence of a large number of
processors, the parallel machine was uninteresting. Experience with really large
systems has been generally unfavorable. Some applications, after significant
efforts by knowledgeable people, do yield very impressive results on O(103)
processors, but this is definitely the exception rather than the rule. With
the increased power of the individual processors and the inherent difficulty of
dealing with a large number of processors, the pendulum is swinging in favor
of systems that have 32-128 processors. In this regime the machines can be
made useful on a larger spectrum of applications with less human effort.

There has been recent acceptance of the notion that the use of low processor
count nodes— symmetric multiprocessors (SMP)—is an attractive approach to
building large parallel machines. SMP nodes are a viable product for a broader
market and thus allow computer vendors and independent software companies
to leverage the economies of scale of the larger volume of sales. We say more
about this in a subsequent section.
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A final point we want to bring to light in this section is that the parallel
computer architecture of choice is the MIMD (multiple-instruction multiple-
data) class. A MIMD machine has multiple processors, each of which can
concurrently execute a different set of instructions on a different set of
data. Today, most MIMD machines use a commodity RISC processor as the
fundamental engine. The actual synchronization of the algorithms executing
on the asynchronous processors in a MIMD machine is the province of the
programming language; it is done explicitly by the user in the coding or, in
the case of automatically generated parallel code, by the compiler.

The machines in the other major class of parallel machines, the SIMD
(single-instruction multiple-data) class, have proven to be less useful than those
in the MIMD class. At this time there is only a single manufacturer of SIMD
machines. In contrast, there are approximately 10 vendors of MIMD machines.
However, it is true that for certain algorithms SIMD is the most appropriate
architecture. Virtually no third-party software exists for SIMD machines, and
this is quite detrimental to their acceptance and proliferation.

6.3. Memory Organization

Within the realm of parallel architectures in the MIMD classification, we
can make a further division based on the memory architecture, or organi-
zation. The two most prevalent memory organizations are shared-memory and
distributed-memory. Each has strengths and weaknesses. The type of memory
organization has a profound effect on the usability, especially the programming,
of the system.

In the shared-memory case, the multiple, individual processors in the
"system" have equal access to a single pool of physical memory. Stated another
way, all the virtual address spaces for all the processors lie within a single
physical address space, i.e., memory. The interconnection of the processors to
the memory is generally a bus or a crossbar. The important distinction is that
all the physical memory is shared by the processors. The latency to memory, if
second-order effects are neglected, is generally uniform for all processors. This
type of machine is also described as having a uniform memory access (UMA)
characteristic.

The shared-memory architecture offers the user a familiar and easy-to-
program environment in which compiler-generated automatic parallelism can
also be achieved. Unfortunately, the shared-memory architecture does not
permit scaling the system to a large number of processors. Of the two most
common interconnections of the processors and the memory, the bus presents a
potential bottleneck in that all the processors must share this single resource.
It is problematic to build a bus that has sufficient bandwidth to support a
"large" number of today's high-performance processors. The crossbar avoids
the bottleneck of a bus, but the complexity of the crossbar scales as O(n2)
(where n is the number of ports, usually one port per processor, in the
crossbar).
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The structure of distributed-memory is obvious. Each processor has its
own physical memory. Therefore, no processor can directly address the
memory of another processor. The address space for any process executing
on a given processor is confined to the physical memory associated with
that processor. If data are to be exchanged between processors, an explicit
transaction, commonly referred to as a message, must take place between the
processors. In contrast to shared-memory machines' uniform memory access
(UMA), distributed-memory machines have a very large difference in latency
between accessing the processor's local memory and passing a message to send
data to or receive data from another processor's local memory.

A distributed-memory machine has the advantage of scalability. Individual
processors are connected by some path, or paths, over which the processors
communicate to exchange data. The connection scheme between the processors
constitutes the "topology" of the system. Some of the more common topologies
are the ring, the mesh, and the torus. All messages are passed over the
interconnection from the sending processor to the receiving processor. Often
the message will need to pass through other nodes en route to its final
destination node. On any contemporary distributed-memory machine, the
processors on intervening nodes are not involved in passing the message along.
The generalization, of course, is that the size of the machine can be increased
by adding additional processors to the topology.

The drawback of distributed-memory machines is the message-passing,
which is generally accepted as a tedious and error-prone programming method.
This isn't a global condemnation; as a parallel programming methodology,
message-passing is widely used and accepted. Because it is so topical, a
subsequent section is devoted to message-passing alone.

6.4. Distributed—shared-memory

As a continuation of the previous section, we point out that there is yet another
variant of memory organization—distributed shared-memory (DSM)—that,
while not (yet) commonplace, is considered by some to be the memory
organization of choice for the future. In the case of DSM the memory is
physically distributed among the nodes, or processors, within the machine,
much as in a distributed-memory machine. However, all the memory is
globally addressable by any processor. If we view the physical addresses
as an ordered doublet of node number and memory offset within the node,
then the description of virtual address spaces for the shared-memory machine
applies here. DSM is a true hybrid of shared-memory and distributed-memory;
from a user perspective, a DSM machine is logically the same to program as
a shared-memory machine. DSM architectures also permit message-passing
programming, if desired. It may therefore be fair to view DSM architectures as
a proper superset of the shared-memory and distributed-memory architectures.

An important distinction between DSM and shared-memory is that the
memory latency for a DSM machine is not uniform as in the case of a true
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shared-memory machine. Access is faster to local memory than to remote
memory. The difference is much smaller than for a distributed-memory
machine. The memory of a DSM machine is generally classified as being
NUMA, which stands for nonuniform memory access. We are more specific
about the respective latencies of all three memory organizations in the next
section.

Why is this notion of shared-memory versus distributed-memory so im-
portant? Of the entire community of users whose work could benefit from
large-scale machines, a majority will find that writing new code, or modifying
existing code, to utilize the message-passing required for distributed-memory
machines is too difficult and time consuming. For this reason, and for the abil-
ity to efficiently deal with the massive amounts of existing code, the shared-
memory or DSM approach is much more viable.

The number of address bits of current and future RISC chips will easily
allow all the memory, even on a DSM machine, to be directly addressed. This
should be taken to mean that the address bits can be used to address the nodes
of the machine as well as the offset in the memory in each node. Of course this
means that additional logic must be designed and built to enable the global
addressing.

There is one additional issue associated with the DSM architecture—cache
coherency. With a shared address space and multiple cache-based processors,
it is crucial that the memory be cache coherent. This simply means that each
processor knows about the current value of data contained in the caches of other
processors. It is our assertion that a DSM architecture without cache coherence
is ultimately programmed in a fashion that is reminiscent of message-passing.

Their ease of programming and low remote memory latency lend support
to the notion that DSM machines are the trend of the future. To close this
discussion, we note that future machines will have physically distributed-
memory, and they will probably support global addressing (DSM). When
programming these machines it will still be essential for top performance to
pay attention to remote memory latency.

6.5. Memory Latency

While substantial progress has been made in processor speeds, as shown in
Figure 6.1, the same is not true for memory speeds. The memory of most
computers is composed of DRAM chips. In Figure 6.3a we show the increase
in bit-per-chip density of DRAMs over roughly the past decade. Many people
view memory chip density as the barometer of the integrated circuit industry
(we won't debate whether this is correct or not). The figure shows amazing
progress—a factor of 1000 increase in DRAM density in 13 years. The increases
in memory chip density are projected to continue unabated for the foreseeable
future (see Figure 6.2).

Of greater concern to the end user of the computer is the speed of the
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DRAMs used in the computer's memory.4 It is the access time of the memory
chips that controls the latency and bandwidth for providing the data to the
processor. In Figure 6.3b we show, for the same period as in Figure 6.3a, the
decrease in access time for DRAM. Here we see a decrease of only a factor of 4 in
the same 13-year period. Compared with the advances in processor frequencies,
DRAM access times are lagging. This has widened the gap between the
processor's demands on the memory and the memory's ability to meet them.5

FIG. 6.3. DRAM density and access time as a function of chronological time.

A distinct and important hierarchy exists in the memory of contemporary
machines. If it weren't for this hierarchy, the performance of RISC machines
would be severely compromised. However, by not paying attention to
the hierarchy, performance can be severely compromised. Table 6.1 is
an approximate representation of the latency of the memory hierarchy in
contemporary RISC-based machines. At each subsequent level of the hierarchy,
the latency is larger and the amount of data that the level can contain is
increased. The result of the technological improvements in processor and
memory speeds is that the "distance" (here distance is taken to mean the
number of processor clock cycles) from processor to memory is getting larger.
Couple this with the rising prominence of parallel processing and we find a
deepening of the memory hierarchy that users need to deal with in coding
and algorithm design. Obviously, the goal is to make the most efficient use of
the fastest possible level of the hierarchy that the algorithm and data set will
permit.

One simplistic way to view the impact of this hierarchy is to consider
how many instructions (potentially useful arithmetic operations) can be
performed while accessing the various levels of the hierarchy. Latency-hiding

4 Admittedly this is not completely correct since low latency memories can be built from DRAMs;
however, continue reading.

5There are methods to construct high bandwidth memory subsystems, but these are in the province
of the supercomputer and the cost leads us to the same economic argument that was asserted in the
earlier section that discussed the types of processors.
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TABLE 6.1
Approximate memory latency of the memory hierarchy in contemporary comput-

ers. Not all computers contain all levels of the hierarchy shown.

Level Clocks
register 1
primary (LI) cache 2-3
secondary (L2) cache 6-12
tertiary (L3) cache 14-20
local memory 15-90
remote shared-memory O(102)
message-passing

techniques, an example of which is prefetching of data from memory, are
useful in mitigating, or at least reducing, the negative effect of the latency
on performance.

As a specific example of the effect of this memory hierarchy on performance,
let's consider only the interaction of local memory and the primary cache.
In Figure 6.4 we show the performance of a code that is executing an LU
factorization of a dense unsymmetric matrix. In the case of the matrix-matrix
formulation, the algorithm is making better use of the cache than in the case
of the other two formulations. However, this still is not enough. In order to
avoid (or at the least forestall) the drop-off in performance, we need to go
even further and "block" the algorithm to make optimal use of the cache (i.e.,
memory hierarchy). By doing so, we increase the problem size at the point at
which the severe drop in performance occurs.

The memory latency and hierarchy are issues that will not be quickly
remedied by some new technology. Since these problems are going to stay
with us, we need to address their presence and design algorithms and code to
make the most effective use of existing architectures. Naturally, the deeper
the memory hierarchy or, stated another way, the larger the latencies, the
greater the algorithmic and coding effort required to achieve good performance.
The hierarchy in memory latency is one of the reasons that the performance-
sensitive user needs to be cognizant of the architecture on which the algorithm
and code are executing.

6.6. Languages

The choice of language isn't that much more complicated for a parallel
processor than for a sequential processor. Notice that this applies only to
the choice of language—programming in that language to achieve good parallel
performance is another discussion. Unfortunately, we have insufficient space to
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FIG. 6.4. The behavior of three variants of LU factorization on a RISC processor
as the problem (i.e., matrix) size is increased. Each of the formulations has the same
computational complexity; they only differ in how they treat the memory hierarchy.

do justice to this topic. We try, however, to make a few of the most important
points about languages and expand on the future direction in programming
language(s) in this section.

The most prevalent programming languages in use in HPC today are
Fortran-77 and C. In parallel programming, message-passing, combined with
Fortran or C, is the greatest common denominator. Message-passing has some
strong points and some distinct disadvantages, both of which we discuss in a
later section.

Fortran-90 is the current standard for Fortran. As of this writing, the
general lack of availability of compilers has limited the use of Fortran-90. Many
of today's Fortran-77 compilers support a subset of the features of the Fortran-
90 definition. Fortunately, this subset is what most users want from the
Fortran-90 language. Naturally, this reduces the need to have a full-featured
Fortran-90 compiler. Another frequent and publicly stated complaint against
Fortran-90 is that it is much more complex than its predecessor, Fortran-77.
For these reasons, Fortran-90 is not a major presence in HPC.

There are two possible emerging languages within the HPC community.
One, C++, is being used more and more frequently. The other, high-
performance Fortran (HPF), has not yet made a practical "grand entrance,"
although there exists a tremendous body of literature related to it.

An increasing number of new software projects is being done in C++. Most
often a hybrid language approach is used. In these instances C++ is used for all
the high-level operations, such as pre- and postprocessing, data manipulation,
and others tasks of this type. Fortran or C is called from C++ to do the
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computationally intensive operations. It is seldom efficient to use C++ for the
computationally intensive kernels of application codes. The features of C++,
such as encapsulation, result in a large amount of address taking, which is
inefficient. Also, C++ compilers have not yet matured to the same degree as
Fortran or C. We expect to see a continued increase in usage and importance
of C++ in the future of HPC.

Similar in spirit, although definitely not in programming semantics, to
message-passing, HPF offers the possibility of a truly portable programming
language for parallel machines. The portability could exist across different
machines and, perhaps, machine types. At issue are the acceptance of HPF
by the user community and the development of robust compilers that produce
efficient code. As of the writing of this paper, HPF compilers are generally
not "ready for prime time," and only one vendor has a native HPF compiler.
Translators exist for converting HPF into Fortran or C with message-passing.
Compiler availability must occur before there will be widespread usage of
HPF. Yet we could argue that serious efforts to develop compilers won't be
undertaken until HPF is widely used, which is a Catch-22. A question of
timing is whether HPF can establish itself in competition with the increasingly
dominant message-passing and C++ over time. A final point is that HPF
has a number of shortcomings, such as a lack of process management and
capabilities for irregular problems, and a strong bias toward SIMD or data-
parallel programming. HPF-2 (or is that HPF-II?) will supposedly address
these points, but the open question is, again, "Is this enough, and will it be
done soon enough?"

In addition to the languages mentioned in this section, there are a
large number of what we'll call "few-user languages." These are generally
modifications of either C or Fortran that offer some useful new constructs
for parallel programming. While the implementations might be very well
done and the features useful, these languages stand little chance of becoming
widely used. Other than the few users who are in general proximity, either
geographically or professionally, to the developers, the language does not
propagate widely or quickly. These languages do serve a useful purpose as test-
beds for new features that may eventually find their way into the mainstream
big-three languages. They serve the purpose of pushing and developing parallel
programming technology. Direct current usefulness to industry is minimal.

6.7. Message-Passing Programming
We stated earlier that message-passing is a tedious programming style. While
we believe this to be a generally correct statement, there are many advocates
of message-passing. Message-passing has also been used in many application
codes that get impressive parallel performance and scale to large numbers of
processors. These may seem like contradictory statements, but they really
aren't.
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Several people have been quoted as saying that message-passing is the
"assembly language" of parallel processors. This is stretching the point a bit
too far, but it remains true that for most users message-passing is difficult
to master. It is also easy to get wrong, and when coupled with the lack
of effective tools for debugging and profiling, this drawback makes for less
productive programming than its shared-memory counterpart. Retrofitting an
existing code to message-passing can be quite time consuming.

To its credit, message-passing offers at least two distinct advantages. First,
it is the most portable parallel programming model that exists today. Message-
passing is firmly established in the community, and it is well understood.
Second, message-passing code, if it runs well at all, has forced the user to
"do the right thing" with regard to data decomposition.

Message-passing programming has benefited from two efforts that have
produced "standard" message-passing libraries. PVM (Parallel Virtual Ma-
chine) is the first, and still the most popular, message-passing library. It offers
the user a syntax and library that enable the code to run on almost any exist-
ing computer. The strong points of PVM are that it supports heterogeneous
collections of machines and allows explicit task management.

An alternative message-passing library, MPI (Message-Passing Interface),
is also growing in popularity. MPI is considered a higher performance message-
passing library than PVM. Additionally, MPI has more features than PVM,
but it neither currently allows for heterogeneous processors nor has explicit
task management.

Both libraries are freely available from various repositories on the Internet.
Computer vendors generally offer a version of either, or both, of these libraries
on their equipment. The vendors' versions are often highly tuned to give
the end user the best possible performance, i.e., lower latency and higher
bandwidth. We hope that vendors won't take this too far and modify the
syntax, thereby destroying the raison d'etre for using the libraries in the first
place—portability.

As time passes we believe that neither PVM nor MPI will put the other
out of business. We do expect the feature sets of both libraries to coincide to
a larger degree than they currently do. Pragmatically, it is generally true that
an application code written with one or the other of these two libraries can be
translated relatively painlessly into the other.6

What message-passing doesn't offer is an effective way to deal with all the
existing code that is needed for the software "infrastructure." The subject
of legacy code(s) is not easily addressed by any current approach in parallel
programming. Unfortunately, this is an important problem that awaits a
solution that does not involve rewriting or re-architecting all the existing
software for use on distributed-memory machines.

6 Naturally this assumes that you have used only those features that are contained in the
intersection of the two libraries.
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6.8. Coarse-Grained Parallelism
The term "grain size" refers to the size of an independent set of calculations
within a parallel algorithm. For example, if the two threads within a two-way
parallel application can perform 100 operations before they need to interact in
some fashion (either exchange data or synchronize), this would be considered
a fine-grained application. While no specific numbers of operations make up
fine-, medium-, and coarse-grained parallelism, intuition should be the guide.
To be a bit more specific, fine grained might be taken to mean that the
computation time is only slightly larger than the overhead required to invoke
the parallelism. Medium-grained might be some multiple of the overhead, say
0(10). Coarse grained would naturally be that much larger again.

It is well established and should be an accepted axiom to those working
in parallel processing that the coarser (i.e., larger) the parallel grain size,
the better. It is the "getting" of this coarse-grained parallelism that is the
difficult issue. The contemporary compilers of today, whether for Fortran or C,
cannot automatically find coarse-grained parallelism. The scope of automatic
parallelization is, with few exceptions, constrained to the loop level.

In Figure 6.5a we show the granularity, i.e., CPU time, for each loop in a
suite of 127 real application codes. There are nearly 21,000 data points showing
the average CPU time per occurrence of each loop. The per-occurrence CPU
time is not the time per iteration of the loop. The data include loops that
contain I/O and procedure calls, so a great many of them cannot be parallelized
automatically or manually.

The approach to automatic parallelization of loops would be "strip-
mining." Strip-mining takes the iteration space of the loop and divides it
among the processors, thereby giving each processor a subset of the induction
variable's values. This imposes two constraints on the efficiency of this
approach. First, it takes the initial, sequential granularity of the loop (as
shown in Figure 6.5a) and reduces it by a factor of p, where p is the number of
processors involved in the strip-mining. Second, there will be an implicit, and
required, synchronization after the loop. Synchronizations impose overhead.

In Figure 6.5b we show the subset of the loops that are in fact amenable to
automatic parallelism, as found by a contemporary auto-parallelizing compiler.
The issues are apparent: virtually none of the very time consuming loops is
automatically parallelizable, and of those loops that are parallelizable the loop
span is quite short. The short loop span will possibly be too fine grained
after strip-mining to be profitably parallelized. From the example illustrated
by the data in Figure 6.5, it is clear that automatic parallelism via loop-
based parallelism is not likely to be a big win in achieving coarse-grained
parallelism. The inadequacy of the automatic approach leads us to perform
the parallelization manually. Most users do not have the time or knowledge to
accomplish this, however. There are no really bright spots on the immediate
horizon in this area.

It is a simple concept to prove that the most efficient parallelism is the
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FIG. 6.5. (a) The processor time used in all 21,000 of the loops in 127 real
applications versus the loop span, (b) The same data for only those loops that can be
automatically parallelized by a contemporary production parallelizing compiler.

least amount of and the coarsest-grained parallelism. One of the primary
goals of a parallel algorithm is to achieve coarse granularity and minimal
communication. At this point, coarse-grained parallelism is achievable by
human intervention only in either the algorithm design or in the alteration
of an existing sequential code. For parallel processing to flourish and become
a mainstream HPC vehicle, there needs to be a way to achieve coarse-grained
parallelism for legacy code and solution-oriented users.

6.9. Hierarchical Parallelism

We previously developed the projection that the "nodes" of HPC machines
will be multiprocessor based. Architectures of this type offer the possibility of
what we call hierarchical parallelism. Hierarchical parallelism simply means
that we concurrently have multiple levels of parallel execution. Consider a
loop nest. It may be possible to execute the inner loop in parallel across the
processors within a multiprocessor node. Iterations of the outer loop might
then be strip-mined across the nodes of a multinode machine. Obviously, this
is an attractive possibility, since it can lead to substantial reductions in time
to solution.

As a more practical example, one that we have dealt with repeatedly in our
work, consider a finite-element code. Typically, some form of mesh partitioning
is applied to produce a number of parallel tasks that are assigned to the
individual processors within the system. These subdomains, each a subset of
the original complete mesh, are fairly coarse grained since we will need to solve
for all the interior unknowns within each subdomain. Each of these subdomain
problems looks almost exactly like the complete finite-element codes that we
have parallelized on classic supercomputers. This parallelization was restricted
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to fine-grained parallelism within the solver (either direct or iterative). So we
assign the subdomains to nodes and then parallelize the solver itself across the
processors within the node. We have used message-passing as the programming
method for the coarse-grained subdomain problem. Within each subdomain
problem on a node, we use the compiler-generated loop-based parallelism across
the individual processors.

Hierarchical parallelism has been used to advantage for several real
application codes. We can go even further with this notion. With a hierarchical
architecture and the above example, we could use fine-grained parallelism
within the node, medium-grained across nodes with DSM, and, finally, coarse
grained across SMP clusters with message-passing.

6.10. Third-Party Software

While it may be ignored by some people, and by the press that popularizes
parallel processing, the fact remains that third-party software is a crucial issue
for the success of any parallel system. Third-party software is also commonly
referred to as ISV (independent software vendor) code. It must be understood
that a majority of the machine cycles used on the union of all HPC machines
are spent within third-party codes. This may seem incorrect, but you need
only to realize the relative numbers of machines sold and used in universities
and research institutes versus the number in Fortune-1000 companies. In the
latter case, third-party codes consume most of the cycles used. It is a common
experience that a supercomputer is purchased largely to run a small number
of ISV codes. Industry tends to treat large problems that consume significant
amounts of the capability of high-end computers.

Let's do a thought experiment to develop what we'll call the ISV "Catch-
22." ISVs are businesses that are obligated to make a profit from developing
and selling their application software. Almost always, the code that ISVs
develop is large and complex and requires a significant porting and quality-
assurance procedure. This requires significant resources on the part of the
ISV. Before a port and subsequent quality-assurance testing are undertaken
for a new machine, there must be a business case that indicates a reasonable
expectation of a return on the investment. This is simple economics. Now
assume the ISV sees this new HPC machine as a niche architecture that,
with its relatively complicated architecture and programming, will require
a significant porting effort. The first questions asked are, How many such
machines are there in existence? How many will be sold? Who will they be
sold to? If the projected number of sales is not enough to justify the porting
expense, then the port won't be done. Of course, for a new architecture there
is seldom a clear business case that shows a large number of sales.

So here we are; special-purpose HPC machines often don't get ISV codes
ported to them, and large numbers of machines can't be sold within this market
segment without the ISV software—a distinct Catch-22!

The ISVs focus on the high-end deskside machines since they are so



Advanced Architectures: Current and Future 73

prevalent and competent in application areas. Additionally, the large number
of systems sold offers the ISVs the opportunity to sell large numbers of licenses.
Almost every important ISV code exists on every major workstation.

Simple induction leads us to the notion that a new machine should either be
a simple architecture or be compatible with the deskside systems. This allows
a leveraging of the ISV porting and support for the deskside architecture to
be projected onto the new architecture, which lends support to the notion
developed earlier of the parallel machines of the future being clustered SMPs.

With tongue in cheek, we could say that the parallel machine with the
largest number of ISV codes ported to it will be the most successful. There is
more than anecdotal evidence to support this conjecture.

6.11. Epilogue

It is probably a good idea to wrap up this paper with a concise list of our
projections. We are mindful that extrapolation is not a good technique in
numerical analysis, and projections in the HPC arena are equally unstable.
However, we believe that there is no magic bullet that is going to change the
historical trends in any substantial way. This gives us some confidence that
the projections won't be completely wrong.

We offer the following snapshot of HPC for the next four years:

• SMP nodes with 128 or fewer processors in a MIMD architectu
• l-t~Gflop commodity RISC process
• large physical memory, 0(10) Gbyte, within each no
• hardware-based DSM within the node and possibly across a small num
of clustered nodes;
• memory latency that is reduced from current levels but is still la
enough to be a factor in performance;
• low-degree interconnect such as ring, mesh, or tor
• inadequate I/O bandwid
• Fortran-77, C, and C++ as the dominant languag
• increased usage of message-passing, both PVM and MPI, for cod
parallel algorithms;
• nearly automatic fine-grained parallelis

Clearly, the only definitive proof of the correctness of these assertions will be
time. We obviously face an interesting four years in HPC.
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Chapter 7

Large-Scale Molecular Dynamics on MPPs: Part I

David M. Beazley
Peter S. Lomdahl

Editorial preface

This chapter is the first of two by the same authors on the subject
of "large-scale" (several hundred million atoms) molecular dynamics
(MD). The use of large-scale MD enables us to approach the notion of
macroscopic material properties from a molecular basis. The authors
develop the multicell algorithm to enable the decomposition for parallel
processing. In this chapter they also use explicit message-passing in a code
that is quite portable between the Cray T3D and the Thinking Machine
CM-5.

This article originally appeared in SIAM News, Vol. 28, No. 2, February
1995. It was updated during the summer/fall of 1995.

How does a piece of metal break? How do cracks propagate? How do
impurities and grain boundaries affect the strength properties of a material?
These are a few of the many interesting questions that arise in many areas of
materials science and engineering research.

Because of the rapidly increasing capabilities of high-performance super-
computers, computer simulation is playing a greater role than ever before in
investigations of many of these questions. For several decades, molecular dy-
namics (MD) simulations have been used to study material properties [1]. The
idea behind an MD simulation is very simple: a large collection of atoms is rep-
resented (in a crystal lattice, for example), and Newton's equations of motion,
F = ma, are solved directly. While conceptually simple, this task presents a
formidable computing problem. If the atoms interact according to a pair poten-
tial (e.g., gravity, Coulomb, Van der Waals), the direct solution of this general
TV-body problem will require the calculation of nearly N(N — l)/2 forces. To
complicate matters, the atoms in many materials simulations may interact
via more complicated embedded-atom or many-body potentials. Since direct

75
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methods quickly overwhelm the computing capabilities of even the fastest su-
percomputers, many schemes have been developed to solve both long- and
short-range problems.

Despite the development of clever algorithms for reducing the complexity
of MD simulations, until recently most simulations have been limited to a few
hundred thousand atoms and a relatively small number of timesteps. To apply
the method to realistic simulations of material properties in three dimensions,
however, may require the inclusion of tens of millions to billions of atoms.
Even a billion-atom MD simulation, if it could be performed, would be a
"small" simulation, considering that a speck of dust can contain more than
a billion atoms. A single timestep in most MD simulations could be on the
order of ten femtoseconds, yet for a realistic experiment it may be desirable to
follow a simulation for several microseconds. It should also be noted that the
goal of large-scale MD simulations is to provide a means for studying material
properties on a macroscopic level, and the classical approximations used would
be inappropriate for studying such things as the basic electronic structure of
a material. In many cases the "atoms" in an MD simulation may actually be
large molecules or grains.

With the availability of massively parallel supercomputers, researchers
have shown considerable interest in the development of fast parallel MD
algorithms [2, 6, 7]. As a result of their work, simulation sizes have jumped to
more than 100 million atoms and the time required to perform a simulation
has been significantly reduced r5, 6]. In this two-part article, we describe our
efforts at Los Alamos National Laboratory to develop a fast code for performing
large-scale MD simulations (more than 100 million atoms) on two massively
parallel supercomputers, a Connection Machine 5 (CM-5) and a Cray T3D. In
Part I we discuss the molecular dynamics problem in general. Part II (which
also appears in this book) will present some of the programming difficulties
we have encountered in seeking high performance on state-of-the-art massively
parallel supercomputers.

7.1. Short-Range MD
In many materials simulations, it is possible to assume that the atoms interact
only with other nearby atoms (as a result of screening effects that mask out
the long-range forces). In this case, we say that the atoms have "short-range"
interactions. A cut-off distance rc is specified, and any two atoms separated
by more than this distance do not interact. The short-range MD problem has
two critical aspects: (1) development of a scheme for determining which atoms
interact with each other and (2) implementation of an efficient method for
calculating the forces between those atoms.

Researchers have approached the short-range MD problem in two main
ways. One approach, called the Verlet list method, searches the space around
each atom and constructs a list of all of nearby atoms found [I]. When forces
are calculated, each atom simply checks its list to find out which set of atoms
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FIG. 7.1. Short-range molecular dynamics.

contributes to its total force. Since the list-building process is extremely
expensive, the search space is usually given a radius slightly larger than the
cutoff rc so that the lists can be used again for several timesteps.

The second popular approach to the short-range MD problem is based on
a cell method. Space is subdivided into a large collection of cubical cells [2, 4],
and each atom, according to its coordinates, is assigned to a particular cell.
Calculation of the total force on each atom includes the forces from other atoms
in the same cell and from all the atoms in neighboring cells. Cell methods allow
larger simulation sizes because no neighbor lists have to be stored; more work
must be performed, however, because the search for neighbors is done in the
cubical region around each atom rather than in the spherical region used by
the neighbor-list method. Since our primary interest has been large simulation
sizes, our approach is based on a cell method, as described later in this article.
More information about high-performance list methods can be found in [6] and
PI-

7.2. The Multicell Algorithm

Although in this article we highlight the main features of our algorithm in two
dimensions, it also extends naturally to three dimensions. The algorithm is
described in detail in [2].

The algorithm begins by dividing space into large regions that are assigned
to the different processing nodes available. Each node further subdivides its
region into small cells, each with dimensions slightly larger than the cut-off
distance rc, as shown in Figure 7.1. An atom is placed in the proper node and
subcell according to its coordinates. This structure organizes the atoms in a
way that makes it easy to calculate forces. Since each cell is slightly larger
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than the cut-off distance rc, only the atoms in the same cell or in the nearest
neighboring cells will contribute to the total force on an atom.

To calculate the forces on the atoms in each cell, we introduce the idea
of an "interaction path." The path is shown in two dimensions in Figure 7.2
and in three dimensions in Figure 7.3. The path serves two purposes. First,
it specifies the order in which neighboring cells are processed in the force
calculation. At each step, forces between the atoms in the starting cell and
those in the neighboring cell are calculated. By Newton's third law, forces are
accumulated by both cells; this cuts the number of force calculations in half
and allows us to consider only half of a cell's neighboring cells (forces from a
cell's lower neighbors will be calculated when those cells follow the path).

When all of a cell's neighbors reside on the same processor, the path simply
specifies the order in which forces are calculated between those cells. When
neighboring cells reside on different processing nodes, however, the path serves
to coordinate the message-passing between nodes. When the path crosses a
processor boundary, atom coordinates and accumulated forces are sent to the
first neighboring processor on the path. This processor calculates the forces
between the atoms whose coordinates it has received and the atoms in its
own cells. The processor then passes the atom coordinates and accumulated
forces to the next processor on the path. Eventually, the atom coordinates,
along with all the forces that have been calculated, are sent back to the
original processor. The carrying of both positions and forces along the path
is an important aspect of the algorithm. For corner cells, the path may pass
through as many as six different processing nodes in three dimensions, each of
which requires atom positions and each of which contributes to the total force
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calculations before this information is returned to the original processor. This
process of calculating forces proceeds serially on each node. The nodes run
asynchronously except for boundary cells, where all the nodes participate in
synchronous "send and receive"-type message-passing operations.

Once all the forces have been calculated, a second-order explicit finite-
difference scheme is used to integrate the equations of motion. The atoms are
then moved to new positions, and the data structures are updated to reflect
the new positions. This is done by checking all the atom coordinates and,
if necessary, moving atoms to new cells. Originally we used asynchronous
message-passing to send particles to new processors, but this scheme proved to
be undesirable under normal operating conditions. We have since switched to
a new synchronous communication scheme based on a six-way data exchange
described in [6] and [7].

FIG. 7.3. A three-dimensional interaction path.

7.3. Implementation

The algorithm has been implemented in the code SPaSM (scalable parallel
short-range molecular dynamics), which is written almost entirely in ANSI
C and uses explicit message-passing for communications. For increased
portability, SPaSM uses a custom message-passing library that we have
developed. This library is implemented in whatever native message-passing
environment is available.

We have used the CMMD message-passing library on the CM-5, and we
have two versions that use PVM and the Cray shared-memory library on the
TD3. Recently, we have run the SPaSM code on a Fujitsu VPP-500 using the
p4 message-passing library. In addition, we have been able to port the code
to single processor Sun, HP, IBM, and SGI workstations (in this case we only
emulate message-passing). While workstations are limited in performance, we
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have found that this is an excellent way to develop and debug new code. It is
important to emphasize that by writing our own message-passing library, the
same source code can be used on all of the above machines.

The code allows the use of a variety of short-range potentials. A typical
short-range potential is given by the truncated Lennard-Jones 6-12 potential:

Because the potential quickly drops to zero, we truncate it at a distance
equal to rc. No atoms will interact beyond this point. While the Lennard-
Jones potential is one of the most common short-range potentials for many
MD studies, our code allows any short-range pair potential to be used through
a table lookup and linear interpolation scheme. It is also possible to use more
complicated potentials, such as the embedded-atom potentials that are useful
for simulating metals.

7.4. Timing and Scaling Properties

Good scaling properties are a principal goal for developers of parallel machines
and algorithms. Algorithms should scale well in two ways. First, algorithms
should have good scaling properties as the problem size is increased (an
O(nlogn) solution will be better than an O(n2} solution). Second, these
algorithms should scale well as the number of processors is increased. That is,
a simulation run on eight processors will ideally run twice as fast on a machine
with 16 processors. This latter goal is often the more difficult to achieve: as
the number of processors is increased, it becomes more and more difficult to
manage communications traffic between processors.

TABLE 7.1
Time for one timestep in seconds on the CM-5. Cutoff: rmax = 2.5o~.

Particles
1024000
2048000
4096000
bv8192000
16384000
32768000
65536000
131072000

32 64
8.90 4.51

- 8.96
-
-
-
-
-
-

Processors
128 256
2.32
4.44
8.79
16.83

-
-
-
-

1.26
2.46
4.81
8.81
16.95

-
-
-

512
0.72
1.36
2.67
4.80
8.74
16.90

-
-

1024
0.44
0.74
1.36
2.47
4.49
8.54
16.55
34.26

The scaling properties of SPaSM are summarized for a variety of problem
sizes on the CM-5 in Table 7.1. The table shows the time required for a

:
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single timestep for a variety of simulation sizes; we see that time scales nearly
linearly as the problem size is increased and as the number of processors is
increased. This is shown graphically in Figure 7.4. Figure 7.4a shows nearly
linear scaling as the problem size is increased from 1 million to 131 million
atoms. Figure 7.4b shows the scaling properties as more processors are added.
Again, we see a nearly linear relationship (doubling the number of processors
roughly cuts the time per timestep in half). We get similar scaling properties
on the T3D, but the timings are approximately 0.36 of that on the CM-5 (the
code runs approximately 180% faster). More detailed performance results can
be found in [5].

FIG. 7.4. Time per timestep versus problem size and number of processors.

7.5. Results and Applications

In tests, SPaSM has performed 3-D simulations with as many as 600 million
atoms on the CM-5. For real simulations, we have been using SPaSM to
perform large-scale fracture experiments in three dimensions with over 100
million atoms. While work along these lines is in progress, Figure 7.5 shows a
snapshot of a test 3-D fracture experiment with 38 million (1000 x 2000 x 19)
atoms in which a thin plate is pulled apart after a defect has been introduced.

7.6. The Need for Speed

The 38 million-atom fracture experiment exposes a fundamental problem of
large MD simulations. The entire simulation, although it ran for only 6500
timesteps, required more than 50 hours of CPU time on a 512-processor
CM-5. Because CPU time on large parallel machines is a scarce resource,
code performance becomes a critical issue—achieving the highest performance
possible is not only desirable but absolutely necessary if realistic large-scale
simulations are to be performed.

In the second and concluding part of this article, we will discuss some of
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FIG. 7.5. Fracture experiment with 38 million atoms.

the performance tactics and pitfalls we have used on the CM-5 and T3D.
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Chapter 8

Large-Scale Molecular Dynamics on MPPs: Part II

David M. Beazley
Peter S. Lomdahl

Editorial preface

This chapter looks at parallel processing from the bottom up. Specifically,
the focus is on how to get the best possible performance from the
individual processors in a parallel architecture. Although the CM-5 and
the T3D are the machines targeted in this chapter, the issues are generic
enough to apply to a broader range of machines. The conclusion is that
in order to get the best possible performance, the code writers need to be
aware of architectural and processor issues, some which are quite subtle.
This attention to detail results not only in small gains but also in very
large performance improvements.

This article originally appeared in SIAM News, Vol. 28, No. 3, March
1995. It was updated during the summer/fall of 1995.

With the development of sufficiently powerful supercomputers, molecular
dynamics (MD) has become a useful tool for studying the dynamical properties
of materials. In the first part of this article [1], we discussed the short-
range MD algorithm we developed at Los Alamos National Laboratory for
performing large-scale MD simulations with more than 100 million atoms. In
this concluding part of the article, we explore some of the computational
obstacles to high performance levels on state-of-the-art massively parallel
machines.

Why is high-level performance necessary? Consider the computing require-
ments for a 100 million-atom MD simulation. Each atom is represented by a
position, velocity, accumulated force, and type; storage of these data in double
precision will require a minimum of 7.6 Gbytes of memory. For each step of
the simulation, all the forces from each atom's neighbors (an average of 30 per
atom) must be calculated; each force calculation will require approximately 30
floating-point operations, for a total of 90 billion floating-point operations per
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timestep. Since a simulation may be run for tens to hundreds of thousands of
timesteps, the need for speed becomes clear.

8.1. Performance in the Real World

In a perfect world, an applications programmer would be able to write code
in an abstract high-level language without worrying about the underlying
machine architecture. Unfortunately, this cannot be done with current parallel,
or even serial, machines. The complexity of modern parallel computers makes
an understanding of the machine architecture critical: code performance can
be severely affected by such factors as coding methodology, data layout, and
choice of programming languages. Moreover, it is never as easy to achieve
high performance levels as computer vendors would like you to believe! More
often than not, it is much more difficult with real codes than with highly
publicized benchmarks, such as LINPACK. Since our work has focused on
massively parallel supercomputers, the CM-5 and the Cray T3D, we begin
with a general overview of these two machines.

8.2. The CM-5 and T3D

The CM-5 consists of a large collection of processing nodes connected by two
communications networks (data and control) arranged in a fat-tree topology.
Each node consists of a 33-MHz SPARC microprocessor, 32 Mbytes of memory,
and four vector units (VUs) capable of a combined speed of 128 Mflops (32
Mflops each). On the more recently introduced CM-5E, each node consists of
a 40-MHz SuperSPARC microprocessor and 128 Mbytes of memory, and VU
performance is upgraded to a peak of 160 Mflops. Figure 8.1 shows the layout
of each CM-5 processing node.

The T3D also consists of a large collection of processing nodes, but in
this case they are connected by a network in a 3-D torus topology. Each
node consists of a 150-MHz DEC Alpha microprocessor that has 64 Mbytes of
memory and is capable of 150 Mflops. Unlike the CM-5, the T3D does not have
special-purpose vector processors for fast floating-point performance. Instead,
it relies on the significantly faster clock rate of the Alpha microprocessors.

On both machines, the nodes operate independently, but they can com-
municate with each other using message-passing. We have used the message-
passing programming model to implement our algorithm. Each node runs an
independent copy of the same program and works on a small piece of the larger
problem being solved. When communication is necessary, the nodes explicitly
send "messages" to each other through the network. Periodically, the nodes
may synchronize and perform global operations, such as I/O. Message-passing
is supported on the CM-5 by the CMMD message-passing library and on the
T3D by PVM and Cray's shared-memory library.
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FIG. 8.1. A CM-5 processing node.

8.3. Writing Parallel Code

The complexity of modern massively parallel machines has led to considerable
discussion in the parallel processing community of such issues as performance,
code portability, and the need for new tools and programming paradigms that
will allow better use of the parallel programming environment. While efforts to
develop these new tools are well intentioned, it is our view that, with the field
being in a time of rapid transition, tools often become available only several
years after a machine is introduced; program performance is often sacrificed to
"portability" or to an effort to keep Fortran on life support for a few more years.
Ironically, it seems that many efforts to develop portable parallel programming
languages have exactly the opposite result—a "portable" language on one
machine may not be supported at all on another machine. As applications
programmers, we don't have time to wait for software developers to sort out
the mess and decide on, and then develop, the latest and greatest tool to
make parallel programming easy. We have written our code in ANSI C with
explicit message-passing, which provides us with a great deal of programming
flexibility: ANSI C is highly portable, and virtually all massively parallel
machines now support some form of message-passing. In addition, we have
made every attempt to write code according to the POSIX.l standard. This
has allowed us to easily port the code to a wide range of workstations and
parallel machines.
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8.4. Why Message-Passing?

Since MD is an inherently unstructured problem, data-parallel languages
(such as CM Fortran, C*, and HPF) are not well suited to our problem
(although data-parallel MD codes have been developed for the CM-2 [5, 8]).
Our algorithm maps cleanly onto the message-passing programming model,
which gives us explicit control over our data layout and communications. We
organize the data into packets; this results in fast computation and minimizes
communication between processors, which accounts for only approximately 5-
20% of the overall processing time in a typical simulation [3]. Since almost all
parallel machines support message-passing, our code is portable in the sense
that moving to another machine will require changes in the message-passing
function calls but not in the general algorithm.

8.5. Performance on the CM-5

The architecture of the CM-5 is oriented primarily toward high-level perfor-
mance with the data-parallel languages CM Fortran and C*, which were avail-
able on its predecessor—the CM-2. These languages make use of the perfor-
mance of the VUs at a compiler level (which is usually hidden from the user).
Unfortunately, codes written in ANSI C do not use the VUs, and maximum
performance is thus limited to approximately 5 Mflops/node.7 To make use
of the power of the VUs, the C programmer must use CDPEAC, a set of C
macros for programming in the VU assembler language DPEAC. To complicate
matters further, the VUs operate in SIMD mode with a complicated memory-
management scheme developed for the data-parallel programming model. As
a result, the C programmer is given the sometimes daunting task of not only
vectorizing a calculation but doing so in SIMD mode with special data layouts.

We decided to write our force calculation entirely in CDPEAC [3]. Because
the programming of VUs is beyond the scope of this article, the development of
our code is described here only very briefly. To solve data layout problems and
improve memory bandwidth to the VUs, we implemented a memory-caching
and memory-management scheme that doubled our VU performance. As a
result, the code sustains calculation rates of 25-50 Mflops per node and runs
approximately five times faster than the original C code that did not use the
VUs. Furthermore, floating-point performance is better than that seen in most
data-parallel applications. In November 1993 our MD code, SPaSM, was one
of the winners of the IEEE Gordon Bell Prize; the code sustained a rate of
50 Gflops on the 1024-processor CM-5 at Los Alamos [6]. It is interesting
that performance problems on the CM-5 are not limited to codes written in
C; the overall winner in the 1993 Gordon Bell competition was a CM Fortran
code that also used CDPEAC assembler kernels to achieve high performance
levels [7].

While many people cringe at the thought of writing assembler code, we

7On the CM-5E the C performance is increased to a maximum of 40 Mflops/node.
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improved the performance of our code substantially by doing so. Fortunately,
it was possible to isolate all the assembler coding into a single code module.
As a result, we were able to preserve most of the portability of ANSI C while
improving performance by a factor of five. The benefits became clear when we
were able to port the code to the T3D in only a few days (most of the time
was spent changing the message-passing library to PVM). In fact, with the
use of a small number of compiler directives, the code now compiles without
modification on both the CM-5 and the T3D.

8.6. Performance on the T3D

 One of the difficulties associated with programming the CM-5 is maki
efficient use of the vector units. This task is so difficult that the VU code
performs nearly four times as many calculations as the original C code (because
of the difficulty of coding an unstructured calculation efficiently in SIMD
mode). The T3D has no VUs, which makes programming conceptually easier,
but the performance problems are no less complicated.

One of the biggest performance problems on modern machines can be at-
tributed to the use of superscalar RISC processors, such as Sun's SuperSPARC,
IBM's RS/6000, IBM/Motorola's Power PC, Hewlett-Packard's Precision Ar-
chitecture, and the DEC Alpha used in the T3D. These processors offer the
potential for extremely good performance, but it is the compiler writers and
programmers who are responsible for attaining this performance. Virtually all
RISC microprocessors rely heavily on pipelining, which allows overlapping ex-
ecution of several instructions (each will be at a different stage of completion).
More advanced superscalar RISC microprocessors can actually begin to exe-
cute more than one instruction (typically from two to six) simultaneously. For
example, the SuperSPARC can begin to execute a floating-point operation, an
integer operation, and a memory operation all in the same clock cycle.

Unfortunately, making the most of this instruction-level parallelism re-
quires careful arrangement of the instructions by either the compiler or the
programmer. For example, a compiler that tries to interleave floating-point
and memory instructions will generate faster code than a compiler that gen-
erates a series of memory instructions followed by a sequence of floating-point
operations. A poorly arranged sequence of instructions can cause huge per-
formance penalties by stalling the pipeline or failing to make effective use
of the multiple-instruction-issue capability of superscalar processors. Further
performance bottlenecks arise from the rapidly increasing performance gap
between memory systems and microprocessors. Virtually all RISC micropro-
cessors utilize caches and clever schemes for improving memory bandwidth,
but all these efforts can be defeated by poorly written code. While a full dis-
cussion of RISC architectures is not possible here, it is important for program-
mers to realize that improper instruction scheduling and excessive memory ac-
cesses can substantially reduce performance. These are the kinds of problems
that face applications programmers (and compiler writers) on machines such
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as the T3D.
The two code fragments shown in Figure 8.2, which are extracted from the

force calculation in two short-range MD codes [2, 4], illustrate the problem.
Each code fragment calculates r2, the square of the distance between two
atoms. If this distance is less than the cutoff r2, a force is calculated; otherwise,
the force is set to zero.

Code 1.

dx = x2 - xl;
dy = y2 - yl;
dz = z2 - zl;
r2 = dx*dx + dy*dx
if (r2 < cutoff2)

dz*dz;

/* Calculate forces */

Code 2.

dx = x2 - xl;
r2 = dx * dx;
if (r2 < cutoff2) {

dy = y2 - yl;
r2 += dy*dy;
if (r2 < cutoff2) {

dz = z2 - zl;
r2 += dz*dz;
if (r2 < cutoff2)

/* Calculate forces */

FIG. 8.2. Two code fragments extracted from the force calculation of two separate
MD codes.

In Code 1 r2 is calculated only after the values of dx, dy, and dz have
all been calculated. In Code 2 r2 is calculated in stages, with the value
checked at each stage to see whether it is greater than the cutoff; if it is, the
calculation is aborted. On a test problem, Code 2 performed approximately
13% fewer floating-point operations and 20% fewer memory operations than
Code 1. Yet Code 2 runs 16% slower on the T3D, 26% slower on the CM-5E,
and approximately 25% slower on a wide range of RISC workstations.

This phenomenon is a direct result of the difficulty of programming
modern RISC processors effectively. RISC processors are most efficient when
instructions are overlapped as much as possible, which works best on sequential
code with a minimal number of data dependencies. In Code 2, the extra
compare instructions cause the processor to stall: several clock cycles may
be required to complete the calculation of r2, and the processor is unable
to determine the proper outcome of the conditional until the value of r2

is known. In Code 1, more work must be done to calculate r2, but the
additional instructions can easily be overlapped and executed in parallel. Thus,
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the processor will perform more work, but it will also avoid stalling. In
the case of the T3D, the number of stall cycles created by Code 2 causes
such a performance penalty that even with the 20% saving in floating-point
operations, there is a 16% increase in the overall execution time (all of which
is spent stalling the processor).

8.7. Performance Strategies

Before porting our code to the T3D, we looked into the question of how well
our C code utilizes the SPARC processor on the CM-5. When we analyzed
the assembler output created by the compiler, we found that we spent more
than 65% of the time stalling the processor while waiting for results or
memory accesses. We then experimented with various tactics for improving
code performance, among them restructuring code to reduce memory accesses,
using registers more effectively, inlining short subroutines by hand, and paying
careful attention to potential stall situations. In fact, we made all of these
modifications to the C code (none to the assembler code), and they produced
a huge performance improvement. Code performance on the CM-5 improved
by 120%, and we achieved nearly 80% of the peak floating-point performance
of the SPARC (5.1 Mflops/node peak). On the CM-5E, code performance
improved by 92%, and we obtained the remarkable result that the C code
without VUs ran slightly faster than the code with VUs (the difficulty of
programming VUs cannot be overstated). On the T3D these modifications
resulted in a 132% speedup. Using additional optimizations, we were able to
increase this to a 170% speedup. Despite this substantial speedup, our T3D
code only achieves between 30-45 Mflops/node, or about 20-30% of the peak
performance rate for the DEC Alpha.

While we have encountered many programming difficulties, we have found
that most of the performance strategies work on a wide variety of RISC
architectures. We have performed tests on a wide range of architectures and
have measured speedups of 189% on the HP-PA7100, 155% on the IBM RIOS-
2, and a staggering 285% on the MIPS R8000. Performance will surely improve
as optimizing compilers mature, but no optimizing compiler will be able to
make every code run fast. For this reason, we feel that an understanding of
machine architecture is a very effective tool that allows us to work with the
compiler to develop the fastest code possible.

8.8. Conclusions

Massively parallel machines hold a great deal of promise for large-scale
molecular dynamics simulations, and future advances in computer architecture
may soon allow billion-atom MD simulations. The complexity of modern
microprocessors and parallel architectures has made an understanding of
computer architecture an extremely important part of our research. Oftentimes
efficient programming tools and languages are unavailable or unable to deliver
the highest possible performance levels on a machine. In our experience with

.
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the T3D and CM-5E, we have found that substantial gains can be made by
simply being a little more careful with our C coding and by remaining aware of
how microprocessors and compilers interact. Certainly, such tactics will help
greatly on next-generation machines as hardware complexity increases.
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Chapter 9

Symbolic and Parallel Computation in Celestial
Mechanics

Liam M. Healy

Editorial preface

One aspect of celestial mechanics is the computation of the long-term
orbits of celestial bodies. This type of computation is complicted
by the interaction of the many bodies that need to be considered
to derive accurate long-term behavior. For reasons explained in this
chapter, it is necessary to do this symbolically rather than "numerically."
Symbolic computations performed on a LISP machine are described. The
visualization of the solution is accomplished on a massively parallel SIMD
machine.

This article originally appeared in SIAM News, Vol. 23, No. 5, Septem-
ber 1990. It was updated during the summer/fall of 1995.

The recent availability of advanced architecture computers has revolution-
ized the approach to the study of long-term behavior in celestial mechanics and
allowed us to see things not understood previously. Although celestial mechan-
ics is one of the oldest fields of research in the physical sciences, computers have
been the stimulus for a reawakening of the field. The principle computational
environments we use for these investigations are the LISP machine for object-
oriented symbolic processing and the Connection Machine for mapping out the
phase space in color. The LISP machine, while not a novel architecture in the
sense of parallelism (being a serial machine) nor even particularly new (LISP
machines date back to the mid-1970s), is not, for scientists, a conventional
platform for working problems. The Connection Machine, a data-parallel ar-
chitecture computer, is able to quickly map out the level curves of the integral
in a one-degree-of-freedom system.

9.1. Understanding Long-Term Behavior
If there were only two point masses in an otherwise empty universe, their
relative motion would be simple: as Kepler knew, the bodies would trace out
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ellipses about their mutual center of mass, with that center of mass at one
focus. In the real universe, of course, there are many bodies. Moreover, each
body, such as the earth, has a nonuniform distribution of mass. Both of these
facts affect the motion of orbiting bodies: for example, a satellite orbiting the
earth, while approximately tracing out a Keplerian ellipse, is in fact slightly
perturbed by the nonuniform distribution of mass in the earth and, if the orbit
is high enough, by the mass of the moon.

Many of these systems are still not fully understood. Among the open
problems, in addition to the artificial satellite problem, are the restricted
three-body (earth-moon-sun) and planetary problems. The reasons for wanting
to know the long-term behavior of these systems are manifold. Increasingly,
engineers and mission planners want to find a stable orbit, one where the
ellipse remains fixed, to reduce the need for on-board fuel and constant orbit
monitoring and correction. In addition, some orbits have become so popular
that precise knowledge of long-term behavior is mandatory to avoid potential
collisions. In the lunar theory, there is a need to predict the precise position of
the moon for laser ranging studies. Initially, to gain insight into the dynamics,
we explore where the equilibria are, what their stability is, and where the
bifurcations occur. Further along in the study, it is useful to have more
quantitative understanding, so that, e.g., satellites may be launched or the
moon's position may be precisely determined.

Consider the zonal problem of the earth-orbiting satellite theory. In this
case, we describe the earth's gravitational potential as a Keplerian term plus
Legendre polynomial perturbations in the latitude, so the Hamiltonian is

where B is the latitude, sinJE? = sin 0^/1 — JV2/62, the Jn are constants that
describe the earth's mass distribution, a is the earth's radius, and // is the
Keplerian constant. The phase space coordinates r, 0, v are, respectively, the
distance from the center of the earth to the satellite, the angle in the plane of
the orbit between the equatorial plane and the radius vector to the satellite,
and the right ascension of the ascending node (the angle to the intersection of
the orbital and equatorial planes). Their conjugate momenta are designated by
the capital letters R, 0, and N. This is a good model for satellites in low-earth
orbit, as the satellite will not be high enough to be significantly influenced by
the moon, and because of the nature of the orbit, the effects of the longitudinal
variation in the earth's mass distribution will average out.

In the context of Hamiltonian systems, the normal form method, presented
by Poincare (and later by von Zeipel) as one of his methodes nouvelles, is a
common means of extracting the long-term behavior. The effect of the normali-
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zation is to give, from the original problem of the dynamics of, say, the satellite,
the dynamics of the Keplerian ellipse: that is, the motion of the satellite on
the ellipse is discarded, leaving us with the much slower motion of the ellipse.
One obtains a canonical transformation from the original set of variables to
a new set by creating a generating function of mixed old and new variables,
such that the Hamiltonian in the new variables does not have the fast-phase
behavior. Because of the implicit nature of the solution, however, it is hard
to obtain the explicit averaging transformation and, thus, to find the correct
generator and, once obtained, to solve for the actual transformation.

The Lie methods of Hori and Deprit for normalizing Hamiltonians,
developed in the 1960s, have the same ultimate goal as Poincare's, but
overcome its drawbacks: with the generating function explicitly in terms of
one set of variables, the effect of the transformation on an arbitrary function
is easy to determine; moreover, the solution is easy to express as a recursive
algorithmic procedure for a symbolic algebra processor on a computer.

In the normalized problem, we prefer to work with Delaunay coordinates
t, the mean anomaly (2?r times the area swept out by the radius vector as a
fraction of the total area of the ellipse), #, the argument of perigee (angle from
the node to the point of closest approach), and h, the right ascension of the
ascending node v — /i, with their conjugate momenta L, G (the total angular
momentum) and H (the polar component of the angular momentum). These
variables have the advantage that all fast-phase behavior is contained in one
variable (£) rather than spread through two variables (r, 0). In the Kepler
(unperturbed) problem, the Hamiltonian is a function only of L; in the full
perturbed problem it is a function of all variables but fo, and in the normalized
problem, it is a function of all but i and h. H is an integral in all cases, and
L is an integral also in the normalized system.

Thus, we have extended a symmetry (in £) of the unperturbed problem
to the perturbed problem. All the long-term dynamics is now in one degree
of freedom, g and G; together with the integrals H and L, we may describe
the dynamics of the ellipse: the sine of the inclination of the orbital plane is
s = sin/ = y/1 — H2/G2, the eccentricity of the ellipse is e = y/1 — G2/L2,
and g itself gives the orientation of the ellipse in its plane.

The normalized Hamiltonian has one degree of freedom, yet the phase space
is not a plane. Because g is an angular variable we must identify the points
g = 0 and g = 2yr for all (7, thus making phase space a cylinder. Further,
for circular orbits (G — L] perigee has no meaning, and for equatorial orbits
(G = H} the ascending node has no meaning, so we identify all values of g to
one point at each of these two values of G; therefore, topologically, we have a
sphere. We may choose to view the radius of the sphere to be dependent on
the integral H, the longitude to be g, and the latitude to be related to G.
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9.2. Symbolic Computation
The difficulty of normalizing a real system is the size and scope of the
problem. There could be tens of thousands or even hundreds of thousands
of terms, depending on how complex the physics and to what order we carry
normalization. One complication is the implicit dependence of some variables
on others; for example, r depends on i implicitly through a transcendental
equation, Kepler's equation. Another is the rather mundane task of algebraic
simplification: Given multiple ways of writing an expression, which do we
choose and why?

All this leads one to symbolic algebra manipulation on the computer. Com-
mercial general-purpose packages provide a multitude of mathematical capa-
bilities for all manner of complicated expressions. Ironically, they are poorly
equipped to efficiently process huge expressions that belong to a restricted class
of algebraic formulas, the Poisson series, that characterize these problems. In
response to this, many people have developed specialized processors, dating
back to the 1960s. Today, we use the code MAO (mechanized algebraic oper-
ations) of Miller and Deprit written in an object-oriented style of LISP for a
Symbolics LISP machine.

MAO allows us to structure the problem in an algebra, either polynomial
or Fourier (Poisson), built over a domain of coefficients that is itself an algebra,
and so on, all the way down to a domain of numbers, e.g., the rationals
(Figure 9.1). With this hierarchy and the object-oriented philosophy, we are
able to isolate algebraic operations to a particular algebra. In addition to
thinking through the problem algebraically and structuring it appropriately for
the computer, there are different mathematical strategies that can significantly
reduce the computational load. The canonical transformation involved in the
normalization may be broken into two or more transformations, which we
consider as successive simplifications. Although it seems more complicated,
the total number of terms computed can be greatly reduced, thereby removing
much of the burden on the computer.

As an example of the end result of a normalization, the so-called main
problem ( J-z perturbation only) of the satellite theory yields, to second order,
with T? - G/L, (3 = I/ (I + 77), and p = G2 / JJL:

as the final Hamiltonian in units of ̂ 2/L2. Note that there is no dependence
on t. This result, assuming knowledge of the methods, is not very difficult to
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FIG. 9.1. Hierarchy of algebras with a sample expression. The Fourier algebra
in g has coefficients that are polynomials in e and (3, which in turn has coefficients
that are polynomials in s2, which finally has rational coefficients.

compute by hand. However, at higher orders, or with other zonal coefficients
Jn, the task would be formidable.

For numerical evaluation, we convert the expressions from MAO to LISP or
code for the Connection Machine using a simple pattern matcher, itself written
in LISP, that also does constant folding for efficient numerical evaluation. For
publication, expressions in MAO may be inserted as lATjrjX directly into an
editor buffer on the Symbolics via a built-in function, thereby eliminating the
possibility of transcription error.

Our task is not complete when the normal form for the original Hamiltonian
has been obtained: we still don't know the behavior qualitatively. By looking
at the equations of motion, we may to lowest order extract the equilibria
equations analytically. For example, we can solve the equations of motion
(G = dH/dg — 0 and g = —dH/dG = 0) for the Hamiltonian above to first
order. In that case, we find the so-called critical inclination: if s2 = 4/5
(/ « 63.435°), regardless of the value of (7, there will be an equilibrium.
At higher order, the degeneracy in G is broken. For a range of values of
the parameter H near the bifurcation of the critical inclination equilibria,
we can solve the second-order equilibria equations with an analytic Newton-
Raphson method implemented in a general-purpose symbolic manipulation
package such as Macsyma or Mathematica. As we decrease H, or at higher
order, the analytic solutions become impractical because of the complexity of
the expressions, and we must resort to numerical solutions to find the equilibria.
The stability may be determined analytically for small equations, but we will
again need numerical methods as they grow more complicated. Ultimately,
though, we would like to know not just the stability, but to have a snapshot
of the flows in some region of phase space.
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9.3. Painting the Reduced Phase Space and Parallel Computation

One obvious way to find out what is happening is to do a numerical integration.
While this is certainly a useful tool, it has a couple of problems. The first is
speed: integration can take quite a long time, especially on a serial machine.
Second, and perhaps more important, one must have an understanding of the
answer in order to pick the right initial conditions. But an understanding is
precisely what we are trying to obtain. How will we discover equilibria that
are unknown to us initially?

Luckily, there is a solution. Recall that our system has one degree of
freedom after the normalization; the variables are g and G. Because we have
an integral, the Hamiltonian, the system is integrable. In such a case, we
may exploit the fact that the flows are the level curves of the Hamiltonian. We
need only identify bands of constant energy to find the flows; by evaluating the
Hamiltonian at many different points and mapping the values into a color, we
will see these bands. The mapping, however, is not straightforward, as we need
to take special measures to insure that even subtle variations in the value of
Hamiltonian show up where there might be an equilibrium. Therefore, we use a
nonlinear mapping of values into colors; details are given in [4]. Furthermore,
we would like to show adjacent orbits—particularly in the neighborhood of
an equilibrium—with high contrast. Therefore, we repeat bands of color.
Figure 9.2 shows the picture for the critical inclination; however, viewing the
picture in color improves visibility.8 More detail and other dynamical features
are discussed in [1]. Figure 9.2 is a view looking at the north pole of the
spherical phase space, so that the center represents circular orbits and the
angle around the center is the argument of perigee. At the center is a stable
equilibrium; around it are the four critical inclination equilibria apparent at
second order, two (g = 0,?r) and two unstable (g = 7T/2,37r/2). As additional
orders are computed or parameters such as H are changed, the picture can
change radically.

One advantage of this method is that while it does involve a substantial
amount of numerical computation in the form of a function evaluation, it is the
same function being evaluated over and over again, with different arguments
depending on the position in phase space. It is thus a ripe candidate for the
"data-parallel" model of computation pioneered by the Connection Machine
and most recently embodied in the Fortran-90/High-Performance Fortran
language. The nearly linear speedup of such an "embarrassingly parallel"
problem encourages easy exploration by playing with parameters to see how
the dynamics changes, or to make a movie by having a single parameter stepped
through a range of values and see where bifurcations occur and how equilibria
move. By seeing the quick snapshot of phase space, we can respond by trying
new and potentially interesting values of the parameters, or other equations,

8A color version of this figure is available from the SIAM WWW server at http://www.siam.org/
books/astfalk/.

http://www.siam.org/books/astfalk/
http://www.siam.org/books/astfalk/
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FIG. 9.2. A view of the northern hemisphere of the reduced phase space
for the main problem (J% only) in satellite theory. The central point represents a
circular satellite orbit, with increasing distance from the center representing increasing
eccentricity of the orbit and decreasing inclination. The angle around the central point
is the argument of perigee.

or we can go back to our other tools to investigate more thoroughly.
Parallel computation can also bring great benefit to the practical problem

of following orbits of many satellites or processing of large numbers of satellite
observations. These operations mean using the same algorithm on many pieces
of data, which is precisely the data-parallel computational model. Much work
has been done along these lines; for example, one may use parallelism to detect
close approaches of satellites and thus assess potential collision hazards [5].
Therefore, many aspects of satellite orbit dynamics lend themselves to parallel
computation.

9.4. Conclusion

The availability of powerful computers with novel architectures and software
environments has revolutionized research about perturbed Keplerian systems.
By rethinking problems to match the new capability, and by applying a variety
of techniques, we may gain insight and improve our understanding of these
systems. New software allows us to deal with the problem at an abstract
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level, to think about and see the mathematics in a way more like that to
which humans are accustomed and less like that traditionally demanded by
computers.

Already, the tools have combined to provide substantial progress in the
main problem in the theory of the artificial satellite and other problems
involving perturbed Keplerian systems. Even outside the realm of celestial
mechanics these techniques have applicability. In atomic physics, the Stark-
Zeeman problem, that of combined electric and magnetic fields, may be better
understood to high orders. In many areas of the physical sciences, people have
shied away from tackling these problems principally because of the complexity
of the algebra. Perhaps this will now change.

Advancing the understanding of the dynamical systems and advancing
the tools go hand in hand [2]. Given the obvious benefit of using the
Connection Machine for the numerical computation necessary for the graphics,
we naturally wonder if similar benefits could be derived in computer algebra.
Already, steps have been taken to advance work in this area [3]. Meanwhile,
improvements in the graphical techniques are contemplated to expand the
amount of information in a picture, to increase accessibility of the graphics
at remote sites, and to better locate bifurcations and equilibria.
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Chapter 10

Parallel Methods for Systems of Ordinary Differential
Equations

Kevin Burrage

Editorial preface

Partial differential equations are often the central focus for high-
performance computing. However, ordinary differential equations (ODEs)
also occupy an important role in scientific calculations. This chapter sur-
veys a number of approaches using parallelism to solve ODEs. The author
also illustrates implementation methods for single-instruction multiple-
data (SIMD) architectures as well as multiple-instruct ion multiple-data
(MIMD) architectures. This chapter is an excellent starting point for
those people who need to understand the issues involved in solving ODEs
in parallel.

This article originally appeared in SI AM News, Vol. 26, No. 5, August
1993. It was updated during the summer/fall of 1995.

Considerable attention has been devoted recently to the development of
efficient parallel algorithms for the numerical solution of initial value ordinary
differential equations (ODEs) of the form

An example that gives an idea of the magnitude of some of the problems
involved is the modeling of long-range transport of air pollutants in the
atmosphere [23]. A relatively simple model generates a system of 267,264
ODEs; to study seasonal variations in the pollutants, the system must be solved
over a long timescale. Clearly, such problems cannot be solved in reasonable
time without some exploitation of concurrency.

In attempts to solve (10.1), three types of parallelism have been identified:

(i) parallelism across the method,

(ii) parallelism across the system (space),

(iii) parallelism across time.

101
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It is highly likely that efficient parallel algorithms will take elements from
all three of these categories, so that such algorithms will lie in a three-
dimensional space (Figure 10.1).

FlG. 10.1. The parallelism space.

In this article two algorithms are introduced, and numerical results are
given to indicate the efficiency of these approaches. One of the algorithms is
based on parallelism across the method and is suitable for implementation on
a single-instruction multiple-data (SIMD) architecture—the MasPar for the
work described here. The other algorithm is based on parallelism across the
system and is suitable for implementation on a multiple-instruction multiple-
data (MIMD) architecture—in this case the Intel Paragon.

10.1. Parallelism Across the Method

One way to exploit parallelism across the method is to perform several
function evaluations concurrently on different processors. This is possible with
multistage methods, such as Runge-Kutta. In general, there is little advantage
in the direct approach, although extrapolation techniques, with the work evenly
balanced across the processors, are well suited for parallel implementation when
the problem is large or function evaluations are costly [5]. However, indirect
methods, such as prediction-correction techniques, can prove efficient in a
parallel setting.

10.1.1. Prediction—Correction Techniques. A popular technique for
exploiting parallelism across the method [18] is based on the concept of a block
method, in which a block of values is predicted concurrently by some explicit
method from a set of previously computed values, which are then corrected a
number of times by an implicit method with a fixed-point approach.
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An example of this approach is the block method in which an explicit Euler
predictor is used to update a set of k values concurrently at equidistant points
tn+i, . . . , tn+k] the values are then corrected twice by a trapezoidal corrector.
This method can be computed in three steps:

Although this method is very simple, it is illustrative of a much more
(n) (n)general technique in which a block of k values, with components y\ , . . . , y^. ,

are computed concurrently from step to step based on an Hermite predictor,

In general, however, such methods can have the disadvantages of poor
stability and/or large error coefficients unless a large number of corrections
are performed [4]. As a simple rule, each time a correction of the form (10.4)
is performed, the order of the method increases by one until the order of
the corrector is reached [2]. Further corrections do not increase the order
of the method but do smooth out successively higher and higher truncation
coefficients in the local error expansion. For large block sizes, however,
the extrapolation error in the predictor can be very large, and it can take
many corrections before acceptable accuracy is guaranteed. Nevertheless, the
efficiency of this approach can be dramatically improved by the use of splitting
techniques (which can be interpreted as a preconditioning) applied directly to
the underlying corrector in (10.4).

This approach gives rise to a general iteration scheme of the form

then (10.5) gives the standard prediction-correction approach, which is just
fixed-point iteration, while if

where Jn is the Jacobian of the problem evaluated at some point yn, then
(10.5) represents a modified Newton approach.

R
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The Mjt)7l can be chosen intermediate to the choices in (10.6) and
(10.7) in an attempt to obtain both good convergence properties and cheap
implementation in a parallel environment.

If, by definition,

then a linearization of the problem gives

Another way of viewing this is to apply the underlying corrector in (10.4)
to the linear problem

which gives

Thus, the choice of MK,NkjH in (10.6) and (10.7) represents a preconditioning
of the matrix P, which will make possible an acceleration of (10.5). If the
eigenvalue structure of the underlying problem (10.1) is known (as is often the
case, for example, with problems arising from the solution of parabolic partial
differential equations by the method of lines) , then polynomial preconditioning
is a well-known procedure for accelerating the convergence. For example,

If the eigenvalues of Jn are real and lie in the interval [— q, 0], q > 0,
the rate of convergence over p iterations can be maximized by minimizing
/°((rifc=i Rp-k,n)l^p)i where p(H) denotes the spectral radius of H.

Analysis with Chebyshev polynomials [4] shows that the spectral radii of
the amplification matrices, as functions of z = hq, are minimized with

Here v = det(7 + zL^), which in the case of the trapezoidal rule is 1 + z/2.
The advantage of this approach is that the implementation properties

are similar to those of explicit methods, while the stability properties are
similar to those of A-stable implicit methods. The computational savings
arise from the fact that the corrections can be calculated from simple matrix-
vector operations. No solutions of linear systems, which can be difficult to

N
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program efficiently in a parallel environment, are required. This approach
is particularly appropriate for SIMD computers, such as the MasPar, and
has been programmed on a 4K-processor MasPar MP-1 at the University of
Queensland.

10.1.2. The MasPar. An array computer is a large collection of processing
elements (PEs) arranged in a mesh topology or some close derivative. Typi-
cally, the PEs operate in a synchronized fashion, with all the PEs performing
the same instruction in lockstep but on different data.

Since many modeling problems in, for example, fluid mechanics, stress
analysis, and spatial modeling can be approximated by a spatially discretized
mesh, there is a natural processor topology that allows automatic paralleliza-
tion through the use of Fortran-90 constructs. These constructs are, in partic-
ular, the BLAS routines (see below).

vFIG. 10.2. The computational space and network topology.

The MasPar MP-1 at Queensland consists of a front-end UNIX worksta-
tion, which performs the serial part of the computation, and a back-end data
parallel unit (DPU). The DPU consists of an array control unit (ACU) and an
array of PEs; see Figure 10.2. The ACU handles all the program code for the
scalar variables. The processing element consists of a 4-bit processor with 64
Kbytes of memory; sustainable performance is about 50 Kflops per PE.

Communication is via the XNET, which is a lockstep interprocessor
communication protocol, through the eight nearest neighbors. Alternatively, a
global router allows for arbitrary processor-to-processor communication via a
three-stage switch router.

The preconditioning approach described in the previous section has been
coded in MPFortran, which is based on the new Fortran-90 standard. Because
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the only operations required are BL AS- type operations, full advantage is taken
of the parallelization by the Fortran compiler, which automatically partitions
arrays and vectors on the DPU. Comments and numerical results for this
implementation are given later in this article.

10.2. Parallelism Across the System

Perhaps the simplest way to exploit parallelism across the system is through
the concept of Picard iteration and, more generally, iteration in the function
space. Picard's method for obtaining global approximations to the solution of
(10.1) is based on the solution of a sequence of functional iterations of the form

In this case the problem can be split into m independent quadrature
problems at each iteration level, an approach that appears to be appropriate for
obtaining massive parallelism. Unfortunately, the convergence of the iterates

to y ( t ) is very slow. For example, for the standard linear test problem

it can be shown that the iterates yW (t) satisfy the following global error bound:

so that there is no convergence until k > X T. Thus, one way to improve the
convergence is by the technique of windowing, in which the region of integration
is split into a series of windows, with the iterative process then taking place
on each window.

The first extensive study of more general functional iteration schemes,
which were given the name "waveform relaxation," was done by the electrical
engineering group at the University of California, Berkeley in the early
1980s [16, 22]. With this technique, standard iteration schemes for the solution
of linear systems can be applied directly to the differential system to create a
sequence of differential systems, each of which can be solved by some discrete
method, that converge to the solution of (10.1). Thus, Jacobi and Gauss-Seidel
waveforms are described, respectively, as

It is easy to prove results analogous to (10.16) for the nonlinear case, but
again the implication is that convergence can be very slow. Nevertheless, for



Applications on Advanced Architecture Computers 107

certain classes of problems, such as the integrated circuit design problems
studied by the Berkeley group, waveform relaxation techniques can work very
well indeed. This is because the physicality of the model suggests how the
components can be grouped in tightly coupled subsystems, with the coupling
occurring only over very short time intervals.

In general, however, difficulties arise both in choosing the components to
be grouped and in reordering the equations that are crucial to the efficiency of
waveform relaxation (see [11] and [13]). It was observed that convergence of the
iterations can be slow in the case of strong coupling between subsystems. Gear
and Juang [13] have examined the rate of increase of the order of accuracy of
the iterates, and a speed of convergence can be defined in terms of the average
number of additional terms in the power series expansion that are correct in
each iteration. In the case of waveform Jacobi the accuracy increase is one,
while for waveform Newton the accuracy increase doubles per iteration. For
waveform Gauss Seidel the increase is greater than one and depends on the
ordering of the system components and the cycles in the directed dependency
graph of the differential system (see also [4]).

Recently, multigrid acceleration techniques have been applied directly
to linear problems arising from the solution of linear parabolic differential
equations by the method of lines. It has been shown [17] that these multigrid
techniques can dramatically accelerate the convergence behavior of such
iteration schemes. This work has been extended in [21] to nonlinear problems.

A preconditioning approach is also used for accelerating the convergence of
the waveform process. This process is completely analogous to those techniques
used in the static case for linear systems of equations of the form Qy — b. Thus
Burrage et al. [8, 9] have considered the acceleration of the waveform process
by preconditioning on the left or right. In the case of right preconditioning
this consists of transforming the original equation by an appropriate time-
dependent transformation that will accelerate the waveform convergence of
the transformed problem.

Multigrid acceleration or preconditioning will not be used for the numerical
work presented here, but we will consider the use of overlapping the subsystems
so that some components can appear in two neighboring blocks. This is a
generalization of the work by O'Leary and White [19] for algebraic systems of
equations and was adapted by Jeltsch and Pohl [15] to systems of ODEs. The
effect of this is to reduce the coupling effects and allow faster convergence (see
Burrage, Jackiewicz, and Renaut [8]).

10.2.1. Distributed Computing. The waveform approach is suitable for
implementation in a distributed environment, because it allows a decoupling
of the original problem into subproblems that can then be solved more or less
independently of one another on different processors (depending, of course, on
the nature of the coupling of the components in the original problem). This
approach allows the programmer to take existing sequential codes that are
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known to be efficient and robust in a sequential environment and to apply
them to the set of subproblems. One such code is VODE [1], which is based on
the Adams and backward difference formula (BDF) methods and is suitable for
both stiff and nonstiff problems. Through this type of decoupling we guarantee
a portability and robustness of the parallel code through the same properties
of the sequential solver that has been under continual development through its
offspring EPISODE, LSODE, etc. for approximately the last twenty years.

VODE has a user interface that is almost identical to LSODE but improves
on the efficiency of problems that require frequent and large changes in step
size. In the solution of the nonlinear systems for the update point, VODE
offers a choice of either functional iteration or modified Newton iteration in
which the Jacobian is either user supplied or computed internally. VODE
also caters to full or banded problems. Since most of the computational
work in any differential equation solver involves the solution of the nonlinear
equations defining the update, VODE uses a number of techniques to reduce
this work. These techniques include repeatedly using the LU factors of
the amplification matrix until convergence properties deteriorate as well as
accelerating the convergence of the iterations within the Newton step by
relaxing the amplification matrix based on estimates of the extreme eigenvalues
of the problem. At the end of each step within VODE, the local error
is estimated and a step size change is considered for the current step or
subsequent steps depending on the magnitude of the error.

VODE uses direct linear algebra techniques for solving the linear systems
associated with implicit methods. Recent advances in iterative techniques
for linear systems based on preconditioned Krylov generalized minimum
residual (GMRES) methods [20] have meant that these approaches can now
be incorporated into ODE solvers, and this has been done within VODEPK.
VODEPK has a very similar structure to VODE except that a preconditioned
GMRES technique based on a scaled preconditioned incomplete version of
GMRES (SPIGMR) is used for the linear solver.

In the tests presented in this paper, however, VODE is used as the core
solver in the waveform relaxation code that will henceforth be known as
PWVODE.

As a consequence of the use of a standard ODE integrator in PWVODE,
the programmer now has to focus only on the communication protocols, which
can be programmed in some generic message-passing environment, such as
PVM (Parallel Virtual Machine) [14] or P4 (portable programs for parallel
processors) [10]. These software environments are suited for Fortran-77 or
C programs consisting of subtasks that offer highly granular parallelism.
Both environments are based on the message-passing model, allowing message
transmission, barrier synchronization, and broadcast. An essential difference
between PVM and P4 is that PVM uses a pvmd daemon to control the status of
the processes, whereas P4 does not, so that P4 communication on distributed-
memory machines is done by native message-passing, whereas PVM utilizes
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the daemon.
A code has been implemented that uses VODE as the basic integrator and

a standard message-passing environment such as the Message-Passing Interface
(MPI) for the message-passing "glue." The code is based on a block Jacobi
multisplitting technique. The first version of PWVODE uses a static load
balancing in which the work is split more or less evenly among the processors
at the beginning of the integration, and this loading then remains fixed. This
version also used a fixed window length that could be chosen by the user.
Within PWVODE there is a default setting that gives the number of output
points in a given window. This is set to 40. An option in VODE is used
to calculate an approximation to the solution at exactly these points. The
waveform for that sweep is then calculated by a piecewise linear approximation.

Care must be taken in choosing the convergence criteria for the problem.
In fact there are two criteria: the waveform tolerance and the tolerance used by
VODE. The waveform tolerance (ewr) is used to determine whether successive
waveforms are sufficiently close. The maximum absolute difference between
successive waveforms over all components and all timepoints is computed. The
iterates are deemed to have converged once this difference is less than ewr. The
VODE tolerance evo controls the local error and the choice of step-size.

Numerical results are presented in the next section. The advantage of
these general message-passing environments is that a code can be debugged
and tested on a network of workstations and then ported to a larger message-
passing MIMD computer such as the Intel Paragon with no additional changes.

10.3. Numerical Results

To demonstrate some of the material presented earlier, two test problems,
both involving two-dimensional partial differential equations, are presented.
Although they can be considered as test problems rather than "real life"
problems, they do allow a number of parallel aspects to be examined such
as load balancing, communication protocols, static versus dynamic scheduling,
etc.

The first problem is the linear diffusion equation defined on the unit square:

with Dirichlet boundary conditions given by

which can be converted to a system of ODEs by the method of lines. If the
second-order spatial derivatives are replaced by central finite differences on a
uniform grid, with the grid discretization parameter given by h = ^Vj, the
resulting linear system of differential equations of size TV2 will be of the form
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Here Q is a block tridiagonal matrix of the form (/jv,T, //v)> where IN is the
identity matrix of order N and T is the tridiagonal matrix (1, —4, 1) with'— 4
on the diagonal entries and 1 on the upper and lower subdiagonal entries. For
this problem, q can be 8(AT + 1)2, so that the eigenvalues of Q lie in the interval
[-9,0].

The second problem, a reaction-diffusion equation known as the diffusion
Brusselator equation [21], takes the form

with initial conditions

and Neumann boundary conditions

Here u and f denote chemical concentrations of reaction products, A and B
are constant concentrations of input reagents, and a is a constant based on a
diffusion coefficient and a reactor length.

Again, central differencing leads to a system of coupled nonlinear equations
of order 27V2 (with a = a(N + I)2) of the form

10.3.1. SIMD Implementation. The linear problem and the one-
dimensional form of the Brusselator have been solved on the 4K MasPar by a
fixed step-size scheme based on the trapezoidal corrector. The computational
results can be summarized as follows:

1. In the case of the linear problem of dimension AT2, some care must
be taken in choosing TV. If N = 65 and the number of available
processors is 64 x 64 = 4096, for example, the computational time will
be approximately twice as long as in the case of AT = 64. The reason
is that the MasPar automatically "layers" the computational grid into
memory, so that two layers are required when N = 65. This layering is
done automatically and does not require programmer intervention. On
the other hand, the time required to solve a problem of any dimension
AT2, with N < 64, should be approximately the same, although it can
depend on the machine load.
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2. Although the implementation described in §10.1 requires only BLAS
operations of the form Qv, where Q is as in (10.20) and v is a vector
defined on all the elements of the computational grid, it is important
to structure the problem so that this is done efficiently. Accordingly, v
is represented as an N x N matrix, and Qv is formed as a sequence of
EOSHIFTs:

EOSHIFT(v,SHIFT=-1,BOUNDARY=f1,DIM=1) +
EOSHIFT(v,SHIFT=-l,BOUNDARY=f2,DIM=2) - 4.0*v +
EOSHIFT(v,SHIFT=+1,BOUNDARY=f3,DIM=2) +
EOSHIFT(v,SHIFT=+l,BOUNDARY=f4,DIM=1).

Here SHIFT represents a shift up or down the computational grid, DIM
represents column or row shifts, and /I, /2, /3, /4 are the boundary
conditions.

3. For the one-dimensional Brusselator, two coupled vectors, each of
dimension JV, are automatically layered as two row vectors onto the
MasPar topology. For a type II implementation (see (10.12)) a Jacobian
matrix has to be evaluated at each timestep. Because the Jacobian
matrix has a simple block tridiagonal structure, with the identity matrix
as the off-diagonal blocks, the vector product of the Jacobian and each
of the two vectors representing the components of the problem is easily
formed as a sequence of two EOSHIFTs columnwise for each vector.

4. Equation (10.20) has also been solved by a block method of size 2
based on a two-stage Radau corrector of order 3. In this case, two
approximations (one a third of the way along the integration step and
the other at the end of the integration step) are computed per processor.
The computational time is, as expected, approximately twice that for the
trapezoidal corrector.

10.3.2. MIMD Implementation. The two-dimensional form of the Brus-
selator has been solved on a distributed cluster of SPARC-2 workstations and
on the 96-node Intel Paragon, at ETH Zurich. Each node consists of two 50-
MHz i860XP processors, with 32 Mbytes of memory and a 16-Kbyte cache.
Only one processor per node is accessible for computation, and this processor
has a peak rating of 75 Mflops. Before presenting the results we briefly dis-
cuss a number of issues relating to the effectiveness of any parallel waveform
implementation.

10.3.3. Ordering. Burrage and Pohl [6] observed that there are two
natural ways of ordering the components of the two-dimensional Brusselator.
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The first ordering is

and the second ordering for the components is

If the first ordering is used, the Jacobian of the problem has the structure

where each of the matrices are of dimension TV2, and D\ and D2 are diagonal.
For the second ordering, the Jacobian is banded with a half-bandwidth of 27V.
If we ignore the effect of the ordering on the convergence rate of the waveforms
and consider only the storage requirements of each ordering, it is apparent
that the second choice is far superior. The bandwidth is a factor of TV/2
smaller, which yields a substantial saving in storage and the linear algebra
requirement. In the case of a parallel implementation, however, the situation
is more complicated.

Using the ordering in (10.22), if the number of subsystems L satisfies

then a block Jacobi approach leads to the solution of a tridiagonal problem
on each processor. If L < 27V, then portions of the upper diagonal and lower
diagonal blocks of T\ and T2 must be included in each subsystem. On the
other hand, for the ordering in (10.23), if L satisfies

then a block Jacobi approach leads to the solution of a banded problem with
bandwidth 5 on each system. It is obvious that in a parallel environment the
first ordering appears to be more appropriate if L > 27V, while the second
ordering is preferable if L < 27V.

v10.3.4. Communication. This analysis, however, is still incomplete b
cause it does not address overlapping or communication issues. In the case of
a dense problem, a waveform algorithm requires communication between all
subsystems to update the waveform at the end of each iteration and to com-
pute the input for the next step. Rather than perform multibroadcasts (with
possible risk of deadlock) a master-slave model can be used. In this model, at
the end of each waveform iteration the master collects and sends all the nec-
essary information in order to proceed with the next iteration. This requires
that each node send the computed waveform for its subsystem as well as error

t
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diagnostics to the host at the end of each iteration. This option is used as the
default option if the problem is dense or if the user does not wish to exploit
any structure within the problem. In this model it does not matter whether
there is overlap or no overlap; nor does it particularly matter which subset of
processors is allocated to a task or what the connection topology is.

If the first ordering is used it is not possible to write the problem in a
block-tridiagonal form to allow for local communication in an efficient manner,
whereas in the case of the second ordering this is possible, and, hence, local
communication can be exploited. This means that when the waveform is to be
communicated to the relevant processors for the next sweep only the processors
to the left and right of a processor need communicate their results to that
processor. Burrage [4] solves the two-dimensional Brusselator on 64 processors
of an Intel Paragon using both a master-slave model and local communication
for various overlaps. The problem dimension is m = 5000, and the interval
of integration is t = [0,6]. The second ordering of components is chosen. The
executions times (in seconds) are given in Table 10.1.

TABLE 10.1
Overlap and communication times.

Overlap 0 1 2 3 4 5
Local 211.8 207.7 207.7 208.7 211.7 260.7
Master-slave 470.1 463.9 458.7 462.9 462.7 508.7

These results show that a master-slave implementation is at least twice
as slow as a local communication implementation that exploits the tridiagonal
structure of the problem. Although it is claimed that long messages can be
sent efficiently by wormhole routing in a global manner, local communication
is clearly important if the locality of data can be guaranteed.

Despite the previous comments on ordering, it has been found (see [4]) that
the second ordering is much more efficient, in that the number of iterations
needed to achieve satisfactory convergence is considerably less than for the first
ordering. The reason for this is that there is a natural coupling between the
Uij and Vij, which the second ordering exploits, while the first ordering breaks
this coupling by putting corresponding elements u^ and Vij in separate blocks
far removed from one another. However, the partitioning of the system for the
second ordering must always be such that there is no splitting between the
components u^ and v^. Thus in this paper numerical results are based on the
second ordering of the components.

10.3.5. Load Balancing. In spite of the apparent uniformity of the
subsystems in (10.22), it has been observed that, through a study of the
space-time diagram created by ParaGraph executed on the Paragon on a
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run of PWVODE, there are still considerable load-balancing difficulties (see
Figure 10.3). Thus a dynamic load-balancing approach has been implemented
by exploiting the use of overlap.

ParaGraph is an extremely useful software tool for analyzing the parallel
performance of a code. The results given in Figure 10.3 show a concurrency
profile for a 16-processor implementation of the code using static load balancing
or dynamic load balancing, respectively, by controlling the overlap.

FIG. 10.3. Space-time diagram created by ParaGraph.

For the static load balancing it appears the full 16 processors are busy
for approximately only 30% of the execution time and, for example, for 20%
of the execution time only seven processors are fully busy. This suggests a
poor load balancing. In the case of dynamic load balancing, however, the
profile indicates that all 16 processors are busy for 60% of the time and there
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is an even distribution of busy time in general. This shows the success of
dynamic load balancing by controlling the overlap. These results have been
confirmed by analyzing a space-time diagram created by ParaGraph over the
entire execution of the program. Here dynamic load balancing was enabled for
the first two iteration sweeps and then turned off. The space-time diagram
for the first two iterations shows that the processors are much busier than in
later iterations.

Dynamic load balancing works on the assumption that initially the
workload is distributed as above, with a small initial overlap OQ of, say,
two or three. After a few waveform sweeps on a particular window, each
processor i computes the average time Tj taken for one waveform sweep for
its own subsystem. A native global routine is then used to compute the
maximum (Tmax), minimum (Tmin), and average (Tav) of these times over all
the processors. These numbers now reside on all the processors. Each processor
now computes a load balancing factor

where C is a safety factor chosen to be 0.5 that mitigates against changing
the dimensions of the subsystems by too much. This factor is now used to
increase or decrease the dimension of the zth subsystem (see [4] for more
details). Periodically these quantities are updated after a suitable number
of sweeps.

10.3.6. Adapting the VODE Tolerances. The default settings for
PWVODE implement VODE with the tolerance set at 10~8. Furthermore, the
initial guess is merely a matrix of constants. Therefore, it is highly unlikely
that the first few iterations will be particularly accurate, and thus it seems that
demanding the VODE tolerance to be 10~8 is a little unrealistic. A feature
of PWVODE, then, is the ability to change the VODE tolerances so that
initially they are relaxed and then they are progressively tightened. The user
can thus specify a sequence of VODE tolerances and a corresponding sequence
of iteration numbers that describes for how many iterations a given VODE
tolerance is imposed. Such a modification generally results in a decrease in the
total execution time by at least a factor of 2.

10.3.7. Adapting the Window Size. As we have seen, a feature of the
waveform approach is that as t increases toward T, the waveforms are slower
to converge; hence, smaller time windows are needed. If n windows are
specified by the user, then each window is of length (T — to)/n. Although
this strategy does allow some control over the length of each window, the
control does not take into account the development of the waveforms. If it is
expected that convergence deteriorates toward the end of the window of length
T — £o? then it may be ideal to use a nonuniform division of the windows (see
Dyke [12]). Burrage and Dyke [7] have considered how to automate the choice
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of the number and length of time windows. Thus if ?/z'(c, t) represents an
approximation to the solution component c of y at time t during iteration i, and
assuming that an approximation to the solution has already been calculated
for iterations i — 2 and i — 1, then the behavior of the ratio

may be monitored. If there are over k successive timepoints, £ ,£+! , . . . ,£+&—1,
vthis ratio is greater than some convergence tolerance (tol) specified, in advanc
by the user; then the window is rescaled from [£o,T] to [to,t]. If there are
p timepoints in the original window, and the problem occurs at the fcth
timepoint, the new window created from [tQ,t] will contain k timepoints,
leaving the second window from [£, T] with p — k timepoints.

The window is rescaled by interrupting the integration in other subsystems.
As soon as a troublesome timepoint t is encountered, integration on the
involved processor ceases. The point t is sent to the master. Then the master
sends emergency interrupt messages to all other subsystems. Once a subsystem
has received the point t, there are two options available. First, if the timepoint
t has not already been attained, then the integration proceeds until t is reached.
However, it should be noted that in PWVODE a limit is placed on how many
steps VODE can take in order to get to a specified point, and if this point is
not reached in that number of steps, the window is shortened to the current
point.

Second, if t has already been reached, then integration stops immediately.
Meanwhile, the master is calculating the new number of timepoints required
in each window and rescaling the window to the new endpoint. Integration
then commences on each subsystem for the new window [to,t], using the last
iterate as the starting solution. In some applications it is possible that this
resizing process will be necessary more than once. If this is the case, then
suppose that the window has already been rescaled to the interval [to,ti] and
that further rescaling to [£Q, £2] *s necessary, where £2 < ti- Then on reaching t^
the new window is [^2,^1]- This represents a global approach to windowing, in
which the largest possible window size is chosen initially and is only reduced
if appropriate.

10.3.8. Results. The results of adapting the window automatically are
not given here (see Burrage and Dyke [7] for more details). The results are
not conclusive. In some cases adapting can be more efficient than a fixed
window implementation and sometimes it is not. It is expected that as the
communication properties of the underlying architecture improve adapting
would be the preferred option.

Table 10.2 shows the timings obtained for the (B) ordering compared with
VODE running on a single processor on a problem of dimension 5000. In the
parallel execution, L denotes the number of subsystems (with L — 1 processors)
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TABLE 10.2
Timings (sees), m = 5000.

VODE

1348.66

L

3

7

15

31

63

Time

13555.1

6493.2

4956.6

991.3

64.8

and the results are only given for the optimal window size and by adapting the
tolerance.

It can be seen here that only when the number of processors exceeds 30
is there any improvement over VODE running on one processor. However, if
64 processors are used then the speedup over VODE is more than 20, which is
very respectable. One of the reasons for this sudden improvement is due to the
fact that only when L > N (which in this case is equivalent to L > 50) does
the (B) ordering give a small bandwidth (5) on each subsystem. Otherwise
the bandwidth is IN. Caching can also have an effect for large systems with
a small number of processors. These results are illustrated in Figure 10.4 i
terms of speedup versus number of processors.

The final graph of results (Figure 10.5) gives a summary of speedups
obtained for differing window sizes. The three curves show, respectively, the
effects of both adapting the tolerance and using local communication (the solid
line), or just using local communication (the dashed line), or just adapting the
tolerance (the dotted-dashed line). As can be seen, the improvements are quite
significant. For this problem, clearly a small window size is an efficient choice.

10.4. Conclusions

The results obtained for the MasPar suggest that large stiff problems can be
solved without recourse to the solution of large systems of linear equations
(possibly at each timestep) and that these techniques are ideally suited to
massively parallel machines.

In a MIMD environment, the approach emphasized here suggests that,
where possible, parallel algorithmic development should make use of existing
sequential packages that have been fine-tuned over a number of years and that
have proved to be robust and efficient. Such an approach will not only provide
some robustness to the parallel algorithms, but will also allow the programmer
to focus only on the interprocessor communications. The use of packages such
as PVM or p4, moreover, will provide significant portability. In addition, it

.
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FIG. 10.4. Speedup on the Paragon.

FIG. 10.5. Effect of adapting tolerances and local communication.

appears that waveform relaxation can be effective for solving large systems of
equations in a parallel environment, especially if some form of preconditioning
is used along with various adaptive strategies including adapting the tolerances
and adapting the window size.
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Lack of space precludes a more detailed discussion of the wide variety of
parallel algorithms that have been developed for the solution of ODEs. It is
clear that the various algorithms will not fare equally well on all architectures.
For the immediate future, it seems likely that the variety of parallel codes,
both problem-dependent and architecture-dependent, will have to be greater
than in the sequential case. However, given the apparent trend among vendors
toward massively parallel MIMD machines (possibly with shared memory, such
as the SGI Power Challenge), it may well be that this situation is temporary
and that we can expect uniformity and portability of codes across a large set
of parallel machines, not only in the area of differential equations but in all
areas of scientific computation.
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Chapter 11

Parallelizing Computational Geometry: First Steps

Isabel Beichl
Francis Sullivan

Editorial preface

Triangulation ought to be quite familiar to finite-element practitioners. In
addition to this well-known application, triangulation can also be used in
visualization. In each case the triangulation is viewed as an adjunct task
to the computation itself; however, it is also true that the triangulation
itself can be a challenging computation. This chapter details the data
structures and algorithms used to completely parallelize the triangulation
task. The development is done in two dimensions, but the extension to
three dimensions and the performance on three-dimensional problems is
discussed.

This article originally appeared in SIAM News, Vol. 24, No. 6, November
1991. It was updated during the summer/fall of 1995.

Great progress has been made in devising parallel algorithms for classes
of problems in which the core computation is a convergent iterative method.
In the case of linear systems, results have been extremely encouraging. Good
results have also been obtained for some nonnumeric problems, such as sorting
and graph traversal. Methods for those problems that combine numeric
and combinatoric features, however, are less well developed. An especially
important and interesting subarea in this class is computational geometry and,
in particular, geometric methods that will work on real machines and real
problems. The questions themselves are often deceptively simple to describe.
However, the numeric problems are different (some would say much harder)
because there is no guarantee of convergence as there is, for example, in
Newton's method. Instead, we are given a finite number of coordinates and
asked to determine things like interior and exterior, where there is no real
notion of an approximate answer.

We will outline a new algorithm for triangulation that exploits the
parallelism of a SIMD machine. We will describe a two-dimensional version
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because it is simpler, but at the end we'll see that things really aren't too
different in three dimensions.

11.1. What is Triangulation?

Triangulation has been used in finite-element calculations for many years.
It has been used to determine the structure of crystals, given only the
coordinates of the points (which can number in the thousands). Other
researchers are interested in triangulation for free Lagrangian calculations,
geometric modeling, global climate models, and particle simulations. Recently,
investigators at NIST in collaboration with a group at Clark University have
been using triangulation in molecular dynamics calculations to study dense,
two-component liquids and glasses. The object is to relate the geometric
properties of glasses to their dynamic behavior by examining defect structures
and "holes." The typical simulation involves 500 particles, and one would like
to generate a picture of the geometric structure after every few time integration
steps. For this to be a practical possibility, the triangulation should require
only a few floating-point operations per particle. Our new algorithm will make
this possible in two and three dimensions.

Suppose we start with a set of input vertices given by their coordinates.
We want to fill out the convex set that these points span using triangles.
Geometrically speaking, the triangles must fit together meeting only at edges,
and we are not allowed to add any extra vertices. A triangulation of these
input vertices is this set of triangles. Of course the triangulation is really the
set of triples defining the triangles.

How could we find the triangles? A naive approach would be to try all
triples of points, but this would give us at best an O(n3} algorithm even in
two dimensions—not a very satisfactory solution. In fact, there are well-known
methods for finding triangulations in three dimensions in O(n2} operations.
Our algorithm is more efficient than this.

In addition, there is still the question of determining that a triangulation
is complete and correct. A good way to ensure completeness is to have the
triangles enumerated in shelling order. This means that we start somewhere,
find triangle number one, and then add triangles successively so that at each
stage, the set of already enumerated triangles is always simply connected.
Intuitively, step k of a shelling is a choice of triangle k in the triangulation so
that no holes or bridges are formed with the already chosen set of triangles
1 through k — I . Figure 11.1 is an example of a triangulation; the numbers
indicate a shelling order. Note that if we had placed triangle 44 immediately
after triangle 22 it would have made a bridge separating the area containing
triangles 23-43. This is illegal. Specifically, a new triangle may intersect
previous ones only in something homeomorphic to a ball, which in the two-
dimensional case means that it can intersect in one edge or two edges and
nothing else.

Shelling has applications in physical problems involving a moving front,
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FiG. 11.1. An example of a triangulation; the numbers indicate the shelling order.

such as simulation of self-avoiding random surfaces. It also reduces the amount
of calculation needed in a sequential version of the algorithm, because we don't
need to consider points that are behind the moving front when building new
simplices. Since shelling checks topological properties, it helps to ensure that
numerical results are logically consistent. We use it as a check of correctness
at every stage of a triangulation.

11.2. Empty Spheres: The Central Idea

Not all triangulations are the same. We would like to find the Delaunay
triangulation. This means that the circle determined by the three vertices
making up a triangle contains none of the other vertices [3].

Here is the procedure we use to make a single triangle. Suppose that we
already know (a,b) is an edge of a triangle, and we are looking for the third
point, c. We know that if we already had c, the center of the circle determined
by (a,b,c) would be somewhere on the perpendicular bisector of (a,b) (see
Figure 11.2). So we search along the perpendicular bisector for the center of a
circle that goes through a, 6, and one other point, c, and that does not contain
any other vertices in its interior. We start by picking any other point d and
calculating £, the center of the circle that passes through a, 6, d. Then, using
a nearest neighbors algorithm (for the moment pretend that we just try every
point, but there are faster ways), we find the nearest neighbor of £. If the
nearest neighbor isn't a, 6, or d, then that circle is not a Delaunay circle and
(a,b,d} is not a legal triangle. Suppose the nearest neighbor is point c. We
then just repeat the center calculation with d replaced by c.

Here is the whole procedure:
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FIG. 11.2. Procedure for making a single triangle.

0. Choose any d different from a or b.

1. Find £, the center of the circle determined by (a,b,d).

2. Find the input point c closest to £ (using a nearest neighbors algorithm).
If c G {a, 6, d}, we're done. If not, repeat step 1 with d replaced by c.

We must also keep track of an orientation of the points (a,b) and consider
only points c, d on the positive side of (a,b}. This technicality is necessary
because there are usually two triangles that attach to an edge, and we need to
find both of them. In addition, we must determine when edge (a,b} is on the
boundary. This happens when there are no points on its positive side. How
we do this in practice is slightly more complicated than we want to be in this
article.

Two important facts make this an efficient method. First, there is a
modified nearest neighbors algorithm that works in (9(log(n)) time, assuming
there are n input points. That is what step 2 in the above procedure costs
us. Second, the step 1-step 2 cycle can be refined using a binary search so
that it will converge in 0(log(n)) steps. When we combine these two ideas,
we get an O(T * Iog2(n)) algorithm for triangulation and shelling, where T is
the number of triangles created. The algorithm is more stable than classical
methods because distances rather than angles are compared.

11.3. Putting Triangles Together

We still haven't explained how to put the triangles together so that we don't
get repetitions and we are sure to stop correctly. To do this, we use a concise
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data structure to represent the triangulation: t-lisfs. We number the triangles
according to the order in which we make them. We call these shelling numbers.
The t-lisfs are an array of lists, one list for each point a; t-listfaj is an
ordered list of the shelling numbers of triangles that contain a. If at any point
t-listfa] is empty, it means that point a has not been seen before. We can also
tell the number of triangles that contain an edge (a,b) by finding #(t-list[a]
H t-list[b]), that is, the number of elements in this intersection. Because the
average number of triangles that contain a point is six, these intersections don't
usually become unwieldy. In pathological cases we use the fact that since the
lists are ordered, we can do the intersections using yet another binary search.

Here's how things fit together: we start with any point and its nearest
neighbor as an initial edge (a,b) and find the potential triangles (a,b,c) and
(a, b, c'} that may be made on either side of (a,b}. We create a stack of potential
triangles to be processed, initially containing (a,b,c] and (6, a, c'}. (We get
both if (a,b] is not a boundary edge. We will not give the details of boundary
conditions in this article.) We remove the top element, (a,6,c), from the stack.
Intersecting t-lists will tell us if edge (a,b) is already in two triangles. In that
case we do nothing and continue to the next stack element. Otherwise, we
check for the legality of (a,b,c) by checking t-lists. If (a,b,c) passes the legality
tests, we make the triangle and then, for each of the edges (a,c] and (c,6),
we use the empty spheres method to tell us if either edge is on the boundary
and, if not, what point it should connect to. We then put these new potential
triangles on the stack. We continue in this way until the stack is empty.

Note that because of the shelling order, the checking tells us when a vertex
is completely surrounded by triangles. In two dimensions, for example, this
occurs when #(t-list(c}) ^ 0, but no bridge is present. In that case, either
point a or b is surrounded. Such points are "dead" because they need not
be considered in later determinations of potential triangles. In the sequential
case, recognition of dead points decreases running time significantly.

We can streamline the shelling process greatly by associating with each
triangle a floating-point number // = p2 + g2 — r2, where (p,q) is the center and
r is the radius of the circle determined by the three points of the triangle. The
connection between shelling and // was discovered by Bruggesser and Mani [1],
and we use it in our program. Shelling by //, ordering starts at the origin in
the middle of the points and orders triangles by distance from the origin and
the size of the circles. We get // "free" as a side effect of the way in which
we determine triangles. Our procedure for finding a new triangle always ends
by determining the center and radius of the circle. Figure 11.1 is a strict
ordering; Figure 11.3 is not. Bruggesser and Mani proved that if we follow
strict // ordering, we will be guaranteed that there will be no bridges and
no wasted steps. But the theorem applies under ideal (i.e., infinite-precision
arithmetic) conditions, which in practice occasionally do not happen. Thus,
the legality checking is still needed. The stack ordered by // is now a heap, and
at each stage we remove the potential triangle with the smallest //.
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FlG. 11.3. A triangulation in which the shelling order is a strict JJL ordering.

11.4. Parallelizing

We can identify the major components of the algorithm:

(1) Getting a next point for defining a new triangle, which requires determi-
nation of the nearest neighbors of the successive centers.

(2) Saving triangles (t-list) and potential triangles (the stack).

(3) Using the t-lists to avoid repetitions and bridges, i.e., to check the legality
of the potential new triangle {a, b, c}.

We parallelize each of these operations. The Connection Machine is
arranged with a front end that has its own memory and a large number of
parallel processors, which we call CM processors, each that has its own local
memory. The CM processors all perform the same instruction at the same
time, but it is possible to turn individual processors off and on. When we do
this we call it changing the context. There will be three ways that we look at
the CM processors, i.e., three basic contexts: (1) Each CM processor represents
a point. The coordinates of the point as well as its index are stored there. (2)
The processor is a potential triangle. In this context each processor holds the
indices of the vertices of the potential triangle and its associated /^. (3) Each
CM processor represents a triangle as a t-list, with slots in memory representing
each vertex. The vertices that actually make up the triangle represented by this
processor have 1's in the appropriate vertex slot; the others have O's. Thus, a
vertex is a bit plane across the processors, while the processor itself represents
the triangle (see Figure 11.4).
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FlG. 11.4. Context 3 for the CM processors: each processor represents a triangle
as a t-list.

We select the next potential triangle to test by switching to potential
triangle context 2 and carrying out a global minimum over all processors to
find the one with the smallest //. The indices of these three points are brought
back to the front end. We then switch to t-list context (context 3) to check
for legality. We can check if a point has been seen before by doing a global or
over all bit planes. We can find how many times an edge (a,b) has been used
before in the triangulation by doing an and of the bit planes for a and b and
then a global or over all those that are true followed by a count of the number
of "trues."

To find new points for the next potential triangles, we switch to the point
context 1. We broadcast the new edge (a,b) to all the processors. Since each
processor represents a point d, we can check if d is on the positive side of (a,b}.
For those that are, we compute the center of the circle determined by a, 6, and
d. The center at the minimum distance from the center of the previous triangle
containing (a,b} is the desired one. (The very first triangle must be computed
on the front end as described above for the sequential version.)

Note that in all dimensions the parallel complexity is (9(M(n)T(n)), where
M(n) is the complexity for determining the minimum or maximum of n items
and T(n) is the number of simplices made. The M(n) term appears because of
the determination of the minimum // value and the minimum distance between
centers.

11.5. How Are Things Different in Three Dimensions?

We have written a three-dimensional CM-2 program. It is very similar to the
two-dimensional version described here. The average number of tetrahedra
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that contain a point is 24 instead of six. In order to check legality, we need to
find the number of times a face has occurred. This requires three intersections
in the sequential case and two local and's and one global or in the parallel
case. The empty spheres method does indeed find spheres rather than circles,
so the linear algebra is slightly more complicated, but this doesn't change the
complexity. Instead of potential triangles, we have potential tetrahedra. Last,
the overall complexity is the same, but T(ri) will be the number of tetrahedra
made rather than the number of triangles.

The sequential version with 1000 three-dimensional input vertices takes
220 seconds on an IBM RS/6000 workstation. The parallel version with 1000
points takes 106 seconds on the CM-2. If we don't do any checking for shelling,
but keep enough logic to prevent infinite loops, it takes half as long. Because
standard algorithms are O(n2) and the parallel algorithm is (9(M(n)T(n)), the
CM program eventually beats any standard program. However, one can really
see the price paid for doing the legality checking, and the communication it
requires, on the relatively slow processors of the CM-2. A back-of-the-envelope
estimate says that the floating-point arithmetic accounts for only 1% of the
time.

11.6. Alternative Parallel Methods

Because we construct the triangles in shelling order, there will always be a
T(n) term in the complexity. However, if we give up shelling order, we could
triangulate in parallel by another method that first assigns a vertex to each
processor and then gives all possible triangles for the given vertex [4]. In this
article, in order to get the fastest time, we keep the list of available edges from
which tetrahedra may grow. This list is distributed over the processors using
load-balancing techniques, and separate triangulation processes are run at each
node. A binning technique is used so that not every vertex is examined to find
one tetrahedron, and this gives on the average an 0(polylog(n)) algorithm.
The worst case, however, is O(ri). This algorithm has been implemented on
the CM-2 and CM-5, and running times can be found in the paper.

In effect, what we have is a concordance of the triangulation: for each point
p we have a complete record of all occurrences. We can then compute // and
use the // values as a key variable for a giant merge-sort step that eliminates
the duplicates and assembles the triangles in shelling order. Doing this without
additional logic checking is fast, but believing the result would require deeper
faith in floating-point arithmetic. For example, if some triangle is found by
points pi and pi, we would have to trust the arithmetic to tell us that /z from
the pi search is the same as p, from the p2 search.

Another interesting algorithm and implementation, for two dimensions,
is described in [2]. This algorithm divides areas to be triangulated among
processors.
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Chapter 12

Parallel Inverse Iteration for Eigenvalue and Singular
Value Decompositions

Richard J. Hanson
Glenn R. Luecke

Editorial preface

The determination of eigenvalues and their eigenvectors and the singular
value decomposition (SVD) is a rather common linear algebra operation.
A novel approach to both tasks on a single-instruction multiple-data
(SIMD) machine is considered here. Also illustrated is how the choice
of language can strongly affect the performance of the algorithm's
implementation, and how the use of additional memory can help gain
enhanced performance.

This article originally appeared in SIAM News, Vol. 27, No. 5, May/June
1994. It was updated during the summer/fall of 1995.

In this article we describe new algorithms we developed for carrying out two
commonly used mathematical techniques in scientific computing on the MasPar
MP-1 and MP-2 single-instruction multiple-data (SIMD) parallel computers.
In particular, the symmetric, real matrix eigenvalue-eigenvector and singular
value decompositions (SVDs) are discussed.

Parallel implementations of the serial Fortran-77 versions of the symmetric
matrix eigenvalue-eigenvector and SVDs—the routines _SYEV and _GESVD from
LAPACK [2]—had performed poorly on these computers.

Parallel program execution on the MasPar computers is achieved by using
Fortran-90 array syntax and some of the new Fortran-90 intrinsics. (For a
description of Fortran-90, see [8] and especially [1].) Parallel execution can
also be achieved by writing in a lower-level language called MPL, a C language
extension available on MasPar computers. Although better performance can
often be achieved with MPL [7] than with Fortran-90, it is much easier to write
in Fortran-90 than in MPL.
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12.1. Background
The eigenvalue problem for a real, symmetric matrix A requires the compu-
tation of an orthogonal matrix Q such that AQ = QD, where D is an n x n
diagonal matrix. This decomposition is obtained by first reducing A to tridi-
agonal form, AH = HT, where H is orthogonal and T is tridiagonal. This
is followed by the decomposition TG = GD, where G is orthogonal and D
is diagonal. Thus, Q = HG. An algorithm that uses the product of N - 2
Householder transformations to reduce a symmetric matrix to tridiagonal form,
yielding the matrix T, can be found in [5]. This same algorithm also produces
the H matrix.

The SVD of a rectangular, real matrix A G IRmxn is AV = US, where
U G ]Rmxm and V G IRnxn are orthogonal matrices and S G IRmxn is a
rectangular, diagonal matrix. This decomposition is obtained by first reducing
A to upper bidiagonal form, AX = YB, where X and Y are orthogonal and
B G Hmxn is upper bidiagonal. This step is followed by the decomposition
BW = ZS, where W and Z are orthogonal and S is diagonal. Thus, V = XW
and U = YZ. The reduction to bidiagonal form and the computation of X,
y, and the bidiagonal matrix B can be found in [4].

12.2. Eigenvectors of Tridiagonal Matrices

In this work we have focused on computing the eigenvalues and eigenvectors
of the real tridiagonal matrix

and the SVD of the real upper bidiagonal matrix

Our methods for computing the SVD of B use the observation [5] that
the singular values of B are opposite-signed eigenvalue pairs of the 2n x In
symmetric tridiagonal matrix
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The equivalence relations between the left and right singular vectors for
in terms of eigenvalues and eigenvectors for T, are

Since the time required to compute the eigenvalues is a small part of
the time required to compute both the eigenvalues and the eigenvectors, the
increased efficiency resulting from the use of a "very fast" method for eigenvalue
vcalculation will have little effect on overall performance. Thus, we use the
Pal, Walker, and Kahan (PWK) method [9, §8.15] because of its accuracy,
simplicity, and reasonable efficiency. Other efficient methods are available
(see [11] and its bibliography). The eigenvalues of T, AI, . . . , An, are sorted so
that |Ai > • • • > |An .

The eigenvectors of T are computed with two applications of inverse
iteration [9], (T — \il)gi = Pi, i = 1, . . . ,n, where a uniform random number
generator is used to initialize each pi. Indeed the set of pi must not be
pathologically ill conditioned for clusters of A^. In the extreme case in which
the clusters of values are multiple, then choosing the same initial value of pi
may result in a deficient set of eigenvectors.

Since the matrix elements for the n problems represent the lattice points
of a three-dimensional nxnxn box, each n x n rack, or slice, of the box is the
matrix T —Aj/ , i = 1 , . . . , n. Let DM denote this box, and p the corresponding
right-hand-side vectors associated with inverse iteration. For the SVD problem
the n systems (T — <7il}qi = Pi are solved; the problem size is 2nx2nx n. The
operations we perform are designated G = DM~1p for the eigensystem case
and Q — DM^1p for the SVD case. The eigenvectors and singular vectors are
then orthogonalized by the method presented by Bjork and Paige [3, §7]. Their
approach is based on Householder triangularization, in which G is augmented
with a zero matrix.

For efficient parallel implementation of inverse iteration, it is critical that
the operations performed to solve a system in each rack of DM be identical. By
contrast, the LAPACK code SSTEQR computes the eigenvalues and accumulates
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the vectors during the decomposition of the tridiagonal matrix. Similar
remarks hold for the decomposition of the bidiagonal matrix in the SVD with
SBDSQR. Considerable care is taken to apply the products of plane rotations in
consecutive planes, using routine SLASR, and to enhance the efficiency of vector
accumulation. This inherent dependence on immediate past results prevents
parallelization and will result in poor parallel performance.

12.3. The Parallel Eigenvector/Singular Vector Computation

Our approach can be superficially summarized as follows:
Start with a fast method, i.e., cyclic reduction. If this fails, use a
more reliable and slower method, i.e., Gaussian elimination.

This approach is effective if the fast method is not likely to fail and if a
failure can be cheaply discovered and fixed. Typically, parallel cyclic reduction
plus checking for a failure was roughly twice as fast as parallel Gaussian
elimination on the test problems used for this study. Moreover, very few
failures of cyclic reduction were encountered when we used matrices whose
elements had been randomly generated. Thus, at least for the eigenvalue and
singular value test cases we have run, this approach was efficient.

In developing our cyclic reduction code, we began with the description
given in [10, Kershaw]. The parallel cyclic reduction code added a second
rank or subscript to the single system code. It is well known that for systems
of equations that are not positive definite, cyclic reduction is not necessarily
numerically stable. As indicated earlier, this was not a problem for the test
cases we ran. However, it is necessary to evaluate the quality of the results
produced by cyclic reduction, as shown later in this article.

An example of a tridiagonal matrix for which cyclic reduction fails to
give a complete set of eigenvectors is given by W^n+i [12], even for modest
values (n > 10). This matrix has subdiagonals, all with a value of 1. The
diagonals decrease from the value n to 0 and then increase to n. Some pairs
of eigenvalues agree to working precision for n — 10, even though the values of
the off-diagonals imply that eigenvalues are distinct.

Our advice to users is to try parallel cyclic reduction first, and to keep
using it unless it has clearly failed to compute a solution that is accurate
in the direction of the eigenvectors. As an alternative, the solver code will
compute the LDU factorization, using parallel Gaussian elimination with
partial pivoting. This algorithm delivers numerically stable results for the
eigenvectors.

In developing our parallel eigenvector and parallel singular value implemen-
tations, which are summarized below, we wrote the parallel Gaussian elimina-
tion and parallel cyclic reduction routines in MPL in an effort to achieve very
high performance.

To compute the eigenvectors of T perform the following steps:

1. Compute the eigenvalues A i , . . . , A n of T by the PWK method. This
portion is executed serially.



Parallel Inverse Iteration 135

2. Solve in parallel the multiple system G = dM~1p, using p <— G on the
second iteration. Parallel cyclic reduction is used to solve each of the
above systems.

3. Normalize G so that all columns have unit Euclidean length. This is
executed in parallel.

4. If the residuals satisfy \\TG - GD\\/(n x epsilon(T)} < (j>\\D\\\(we use
4> = 4), in which case the answers computed by using cyclic reduction
are acceptable, proceed to step 5.

If this condition is not satisfied, then repeat step 2 using parallel Gaussian
elimination in the solve step, normalize (7, and then proceed to step 5.
The function epsilon(T)(is the Fortran-90 intrinsic that gives the value
of working precision of the data for T.

5. Orthogonalize the matrix G.

6. Compute the matrix multiplication Q = HG.

To compute the singular vectors of B perform the following steps:

1. Compute the singular values <TI, . . . ,crn of 5, using PWK. This portion
is executed serially.

2. Solve in parallel the multiple systems Q = DM~"1p, using p <— Q on the
second iteration. Parallel cyclic reduction is used to solve the systems.

3. Normalize Q so that all columns have unit Euclidean length. This is
executed in parallel.

4. If the residuals satisfy \\TQ - QS\\/(n x epsilon(f))(< <j>\\S\\ (we use
(f) = 4), in which case the answers computed by cyclic reduction are
acceptable, proceed to step 5.

If this condition is not satisfied, repeat step 2 using parallel Gaussian
elimination, normalize G, and then proceed to step 5.

5. Extract the n x n matrices W and Z from Q using (12.4). Orthogonalize
both W and Z. This is executed in parallel.

6. Compute the matrix products V = XW and U = YZ. This is executed
in parallel.

In each case, the residuals are computed in parallel in step 4. A classic
"storage-required-versus-time" tradeoff is evident in both cases at step 2. The
storage required for computing the systems equals twice the number of nonzero
grid points in the box. The total storage used by our solver is 8n2 for the
tridiagonal problem and 16n2 for the SVD. Traditional approaches based on
the accumulation of plane rotations typically require n2 additional storage

SE
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for eigenvalues and 2n? for the SVD. The storage requirement for our cyclic
reduction algorithm can be attributed to its use of twice the dimension of the
problem size for each diagonal, codiagonal, and right-hand-side vector to avoid
storage-accessing conflicts. This additional storage requirement can restrict
the size of the problem computed, and we consider this the major defect of the
algorithm.

On the up side, cyclic reduction is inherently "fast": the computational
complexity is Iog2(n) array arithmetic operations of size no larger than
(n/2) x n. In fact, both of the algorithms sketched here are rich in O(n?)
and O(n2) array arithmetic operations.

12.4. Performance Results

TABLE 12.1
CPU times, in seconds, for the eigenexpansion on the 16K processor MasPar MP-

1. Speedup is the ratio of the Fortran-9Q algorithm to the MPL algorithm.

n

128
512
896

1280

MPL new alg

1.88
11.23
32.03
92.39

F90 new alg

2.89
19.52
67.06

158.31

Speedup

1.5
1.7
2.1
1.7

Tables 12.1-12.5 support our claims that these methods for computing
eigenvectors and singular vectors have merit in terms of computational
efficiency. The front-end workstations for the MasPar MP-1 and MP-2 are
DEC-Stations 5000/240 running ULTRIX V4.3A (rev .146). The Fortran
compiler used on the DEC-Stations was the DEC Fortran X3.2-430. All
runs were made on a 16K MasPar MP-1 and on the newer 4K MasPar MP-2
with version 2.2.52 of the MasPar Fortran compiler and version MP3.2.1 of
the MPL compiler. The MP-1 has a peak theoretical speed of 1137 Mflops
(16K processors, 0.0694 Mflops/processor) for 32-bit floating-point arithmetic
and half that speed for 64-bit. The MP-2 has a peak theoretical speed of
1528 Mflops (4K processors, 0.373 Mflops/processor) for 32-bit floating-point
arithmetic and half that speed for 64-bit. All timings reported in this paper
use 32-bit. The speed of the communication network is the same on the MP-2
and MP-1 machines. All MasPar computers use a two-dimensional toroidal
grid of processors and are SIMD machines.

All times reported are wallclock timings measured in seconds. All matrices
were initialized with the pseudorandom number generator rand_gen [6]. In
Tables 12.1-12A "F90 new alg" refers to the algorithm described earlier,
written in Fortran-90, with the exception that cyclic reduction was written
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TABLE 12.2
CPU times, in seconds, for the eigenexpansion on the 4K processor MasPar MP-2.

Speedup is the ratio of the Fortran-^ algorithm to the MPL algorithm.

n

128
512
896

1280

MPL new alg | F90 new alg

2.06
10.74
31.38
66.11

2.93
24.72
97.26

246.75

Speedup

1.4
2.3
3.1
3.7

TABLE 12.3
CPU times, in seconds, for the SVD on the 16K processor MasPar MP-l. The

speedup is the ratio of the Fortran-^ to the MPL implementation.

n =size

128
384
640
896

1152

MPL new alg

1.95
11.01
32.43
62.15

111.13

F90 new alg

5.38
34.79

101.43
218.28
517.68

Speedup

2.8
3.2
3.1
3.5
4.7

in MPL. "MPL new alg" refers to the algorithm described earlier, written in
Fortran-90 with computationally intensive portions written in MPL to achieve
high performance. The Gaussian elimination algorithm was also written
in MPL, although, to our knowledge, the branch that executes Gaussian
elimination never occurred in our test problems.

Since all LAPACK routines are written in Fortran-77, these routines will
execute only on the front-end workstation and are not able to take advantage
of the parallelism of the MasPar machines. The MasPar will provide parallel
execution only for those portions of a program written in Fortran-90 array
syntax. It is our experience that simply translating the Fortran-77 LAPACK
code for eigensystems and for the SVD to Fortran-90 array syntax produces
parallel code that actually runs slower than the original Fortran-77 code! This
observation underscores the need to develop new algorithms to achieve high
performance for these operations on MasPar computers.

As expected, the larger the problem size, the greater the advantage we
could achieve by using parallel processing; for a problem size of 128, parallelism
really offers no advantage, and it is just as effective to use LAPACK routines
on the front-end workstation. For an absolute comparison, we include sample
times for eigenexpansion and SVD, restricting computations to the front-end

4

8

1
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TABLE 12.4
CPU times, in seconds, for the SVD on the 4K processor MasPar MP-2. The

speedup is the ratio of the Fortran-90 to the MPL implementation.

n

128
384
640
896

1152

MPL new alg

1.77
9.83

27.67
59.31

107.92

F90 new alg

5.30
40.37

132.22
305.92
589.00

Speedup

3.0
4.1
4.8
5.2
5.5

TABLE 12.5
CPU times, in seconds, for the eigenexpansion and SVD on the DEC-Stations

5000/240 with F77 LAPACK.

n

128
512
896
1280
1664

Eigenexpansion || n

2.98
111.38
557.14
1650.69
3488.96

128
384
640
896
1152

SVD

3.39
142.26
655.07
1802.74
3946.78

workstation (Table 12.5). This shows the relative merit of using the MasPar
and a new algorithm for these calculations.

What are the benefits of writing computationally intensive portions of
these routines in MPL? For the eigenvalue routine, use of MPL increased
performance by a factor of 1.5-1.7 on the 16K MP-1 and 1.4-3.7 on the 4K
MP-2, as the problem size increased from 128 to 1280. Because of memory
limitations, 1280 is about the size of the largest eigenvalue problem that could
be run on either the MP-1 or the MP-2. For SVD, use of MPL increased
performance by a factor of 2.8-4.7 on the 16K MP-1 and 3.0-5.5 on the 4K
MP-2 as the problem size increased from 128 to 1152. Because of memory
limitations, 1152 is about the size of the largest SVD problem that could be
run on either the MP-1 or the MP-2.

12.5. Conclusions

Parallel execution on MasPar computers can be achieved only by using Fortran-
90 array syntax or MPL, an extension of C. As an example of the greater
difficulty of writing programs in MPL than in Fortran-90, a 60-line Fortran-90
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code required approximately 800 lines of MPL! As mentioned earlier, simple
modifications for converting the Fortran-77 LAPACK code for eigensystems
and SVD to Fortran-90 array syntax produce code that actually runs slower
than the original Fortran-77 code. The new parallel algorithms for eigenvalue
and SVDs presented here achieved high performance on MasPar computers.
The good performance achieved with Fortran-90 array syntax improved even
further when the computationally intensive portions of the code were written
in MPL.
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Chapter 13

Parallel Branch-and-Bound Methods for Mixed
Integer Programming

Jonathan Eckstein

Editorial preface

Mixed integer programming (MIP) problems are quite often very highly
leveraged problems in industry. This means that their solution offers,
or leverages, large savings or manufacturing efficiencies. Therefore, the
ability to solve larger MIP problems, and to solve existing MIP problems
faster, is of more than academic interest. This chapter details how this can
be achieved by mapping the branch-and-bound MIP solution algorithm
to parallel machines.

This article originally appeared in SI AM News, Vol. 27, No. 1, January
1994. It was updated during the summer/fall of 1995.

Mixed integer programming (MIP) is an important class of mathematical
problems that arise in industrial and operational planning. MIP, like linear
programming, involves maximizing or minimizing a linear function subject to
linear equality and inequality constraints, but with the restriction that some
subset of the variables can take only whole-number values. Its applications
run the gamut from production planning and freight routing to the design of
fiber optic networks and the development of schedules for sports leagues.

MIP is a very general problem class that essentially subsumes all of
combinatorial optimization, and the problems are therefore A/'P-hard. In
practice, MIP problems with identical numbers of total variables, integer
variables, and constraints can vary from trivial to intractable.

Many special cases of MIP have been extensively studied in their own
right, and some have been solved by efficient algorithms. Among algorithms
for general MIP, however, the traditional implicit enumeration, or branch-
and-bound, class is by far the most common in practice. These methods
effectively search the entire space of possible solutions and select a solution
that is provably the best; however, they try to use information gleaned from
related linear programs to limit the amount of detail in which they examine
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portions of the search space. With luck, the vast majority of the space proves
"uninteresting" and need not be looked at very closely.

Often, however, one is not so lucky, and this is where parallelism enters
the picture. The branch-and-bound process subdivides the search space
into successively smaller pieces. Each piece must be examined in some
aggregate manner (bounding] and, possibly, further subdivided (branching).
The bounding and branching tasks for any given region of the search space
are largely independent of those for other regions and can thus be performed
simultaneously. As the space is divided into ever-finer pieces, the potential for
parallelism grows.

Parallel branch-and-bound algorithms have existed since the 1970s—
see [4, 5, 8] for some survey material—but most earlier work tested specialized
versions used for very specific problem classes, such as traveling salesman or
vertex cover. There are some partial exceptions to this observation [1, 3, 4],
but results are available for only a handful of processors, and the parallel
architectures used were not very advanced.

This article describes the implementation, called "CMMIP," of a general
MIP branch-and-bound algorithm on a large-scale parallel computing system,
the Thinking Machines Corporation CM-5. The CM-5 implementation shows
that, on a reasonably up-to-date parallel system and without extensive
specialization or tuning, efficient use of at least a hundred or so processors
is now a reality for a variety of hard, "real-world" MIP problems. The
implementation, which uses a single "hub" processor to control the search,
is described in considerably more detail in [5]. Central control has its
limitations, and [5] begins to address the possibilities for more distributed
control strategies, drawing on the prior literature.

As usual, parallelism is not a panacea that makes it possible to use
carelessly selected or inappropriate algorithms to solve arbitrary problems.
What the work described here does show is that, in a fairly broad range of
practical contexts, if a sequential branch-and-bound algorithm is within a few
orders of magnitude of running within some required timeframe, it is likely
that parallel processing can "close the gap."

13.1. General Branch-and-Bound Algorithms for MIP

Formally, we consider optimization problems of the form

Z denotes the set of integers, A and A are m\ x n and 777/2 x ra matrices,
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respectively, and c, 6^), and 6(2) are conformally sized vectors. The vectors
/ and u are sets of lower and upper bounds on the n decision variables x;
elements of / may be — oo, and elements of u may be +00. D C {1, . . . , n} is a
nonempty set of indices identifying the discrete variables, which may take only
integer values.

The standard branch-and-bound method for MIP, which is described in
most introductory operations research textbooks, starts by considering the
linear programming (LP) relaxation (13.1)-(13.4) of the original problem,

This "root" problem, which is denoted by R, has only continuous variables
and can be solved efficiently by such techniques as the classical simplex method.
The optimal objective value of R can be denoted by z(R) = cTx(R), where
x(R) is some optimal solution. This quantity provides a lower bound on the
solution z* of the original problem (13.1)-(13.5). If x(R) happens to satisfy
(13.5), then x(R) solves the entire problem.

Usually, of course, this is not the case, and one selects some j(R) 6 D such
that Xj(p)(R) £ Z. R is then separated into two subproblems: one, the "up
child," C+(R), has the additional constraint that ^-(j?) > \Xj^(R)~\, and the
other, the "down child," C~~(R], has Xj^ < \Xj^(R)\. These restrictions
can be enforced by modifying the / and u vectors. Since Xj^ is supposed to
be integer, any solution to (13.1)-(13.5) must be feasible for at least one of
these children. Furthermore, the value z(C+(R)) of C+(R) is a lower bound on
all solutions to the original problem with Xj^ > \Xj(ty(R)], and the optimal
value z(C~(R}) of C~(R] is a lower bound on all others. If the solution to
either child meets (13.5), then its value is also an upper bound on z*.

The algorithm continues by treating subproblems in much the same way
as the root. At any time £, there is a pool of active subproblems P(t). Each
member of the pool resembles (13.1)-(13.4), except that some of the bounds lj
and Uj are more restrictive. There is also an incumbent value z(£), which is the
best objective value of a feasible solution to (13.2)-(13.5) seen up to time t. If
no such solution has been encountered, ~z(t) = +00. Thus, ~z(i) is a decreasing
upper bound on z*.

The algorithm removes some problem Q from the pool and calculates an
optimal solution x(Q] with objective value z(Q) — cTx(Q). If z(Q) > z(t),
then Q can be "fathomed" (discarded), because any feasible solution to Q,
including those meeting (13.5), must have an objective value less desirable
than ~z(t}. Therefore, the portion of the search space corresponding to Q need
not be considered in any further detail.

In the alternative case, z(Q) < z(t). If x(Q) meets (13.5), there is no need
to examine Q's portion of the search space any further, and z(Q) becomes
the new incumbent, ~z(t + 1) = z(Q). For any subproblem S, let P(S) denote
its parent. All outstanding subproblems S for which z(P(S}} > z(Q) can be
immediately fathomed by deleting them from the pool. If, on the other hand,
x(Q) does not meet (13.5), the corresponding piece of the search space must

,

,
(13.1)_(13.5).

.
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be examined more closely. Some j(Q] 6 D is chosen such that %j(Q)(Q] ^ %>,
and Q is separated into two children, C+(Q) and C~(Q), just as with the root
problem. The children are placed in the pool, and the algorithm then repeats.
When the pool becomes empty, the method terminates with z(t) proved equal
to z*.

Because the method's hierarchy of subproblems can be thought of as a tree
emanating from the root problem, fathoming is also called pruning. At any
time £, define z_(t) = m i n { z ( P ( Q } } \ Q e P(t)}. With the convention that
z(P(R}} = —oo, z_(t) is an increasing lower bound on z*. The goal of the
algorithm is to "squeeze" ~z(t) and z_(t) together until they meet.

Commercial MIP codes tend to contain a number of refinements on the
basic algorithm. One such refinement concerns the choice of branching indices,
j(Q). In theory, an arbitrary member of D with #j(Q)(Q) £ Z will suffice, but
a more careful choice is required in practice. In this project, the branching
index was chosen to maximize a "score" computed from an optional set of
user-assigned "priorities," the values of the Xj(Q),j G D, and the relevant
pseudocosts. Each j 6 D has an "up" and a "down" pseudocost; see, for
example, [9]. The up pseudocost of Xj, which estimates the average rate at
which the optimal objective value rises as Xj is forced upward, is computed
by comparing all problems with branching index j to their up children. The
down pseudocost is similar but estimates the objective change as the variable
is forced lower. Both are continually updated as the algorithm proceeds.
For further particulars of the implementation, see [5] and references therein.
Generally speaking, variables with large pseudocosts tend to be the most
desirable branching variables, as they are the most likely to cause an increase
in z_(i).

The selection of problems from the pool is another important detail. Two
popular general search strategies are depth-first, in which the task pool is
treated as a stack, and breadth-first, in which the pool is a queue. In branch-
and-bound algorithms, a common alternative to breadth-first is "best-first,"
in which the subproblems Q with the loosest bounds z(P(Q)) are processed
first, on the grounds that they are the least likely to be pruned later. Such
strategies usually involve organizing the pool as a heap.

A typical approach in commercial serial codes is to pursue a depth-
first search until an incumbent (or a value of "reasonably good" quality) is
encountered, and then to switch to best-first. Finding any valid incumbent
might require probing quite deeply into the search tree, something depth-first
search can accomplish without massive consumption of time or memory. Later
in the search, ~z(t] may be at or near z*, and the primary goal should be to
increase z(t); in this case best-first search is most appropriate. In the CMMIP
runs presented here, the switch from depth-first to best-first occurs when ~z(t}
and z(i) come within some fixed percentage, T (typically 50%), of one another.

Alternative methods for generating incumbents are another important
detail. Rather than waiting for some x(Q) to meet (13.5), additional, heuristic

J
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methods can be used to generate integer-feasible solutions. Solutions to (13'.2)-
(13.5) obtained in this way are just as valid for pruning the tree and updating
z(t) as any other and can result in very aggressive fathoming if found early
enough. The possibilities range from simple rounding off of the Xj(Q), j €. D,
to a variety of more sophisticated or specialized heuristics. CMMIP's current
heuristic is general and somewhat ad hoc, using linear programming with large
cost perturbations in an attempt to modify x(Q)'s to meet (13.5) without
violating (13.2)-(13.3). For further details, see [5].

Some useful enhancements, such as special techniques for branching
on groups of variables, and polyhedral methods for strengthening linear
programming lower bounds, have not yet been incorporated into CMMIP.
However, they are not ultimately incompatible with a parallel implementation
of the type described here.

13.2. Implementation on the CM-5

The CM-5 is a MIMD multiprocessor that has p = 1k processing nodes (PNs),
each with a single SPARC-2 microprocessor and four optional vector floating-
point units. The basic approach of the implementation, as in most prior parallel
branch-and-bound work, is to evaluate multiple subproblems simultaneously,
each on its own PN. Due to the short vector lengths typically encountered in
commercial mixed integer models, there was no attempt to take advantage of
the vector units. For the work described in this article, then, the CM-5 can be
viewed as a tightly coupled set of SPARC-2 microprocessors with distributed
memory.

Each node runs its own copy of the CPLEX implementation of the simplex
method (from CPLEX Optimization, Inc.). CPLEX was used strictly as a
linear program solver; there was no attempt to use the serial mixed integer
capabilities within CPLEX, except for one problem-input routine.

The processors of the CM-5 are interconnected by two user-accessible
networks, the data network and the control network. The control network
is dedicated to global computation and synchronization operations. The
data network is a point-to-point message system whose architecture makes
it possible for many arbitrarily chosen pairs of nodes to exchange data packets
without "blocking" one another. Thus, the CM-5 can often be programmed
as if it were a densely connected set of processors in which the available raw
bandwidth between any pair of processors is about five megabytes per second
in each direction.

CMMIP is implemented in the C language, using the CMMD 3.0 message-
passing programming environment. CMMD incorporates a facility called active
messaging [11]. An active message is a single data network packet, the first four
bytes of which contain the address of a "handler" function /. Such messages
behave like asynchronous remote procedure calls: the arrival of one of these
messages immediately causes suspension of the current program and execution
of /, with the remainder of the packet supplied to / as arguments. Once the
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handler has run, control returns to the suspended program. This mechanism
permits communication-related code to operate in the "background," while
"foreground" code (such as CPLEX) may be completely oblivious to being
used in a parallel environment.

13.2.1. Central Control. A key issue in parallel search is whether tasks
should be assigned to processors by a single "master" processor or shared data
structure, or in some more decentralized way. As the number of processors
grows, a centralized approach risks bottleneck or contention problems involving
common resources. With more distributed approaches, on the other hand,
scheduling decisions must be made on the basis of limited information; there is
a risk that the search process might evolve very differently from serial versions
of the underlying algorithm, perhaps resulting in a larger search tree.

Initially, a decision was made to implement a centralized scheme and then
assess the seriousness of the resulting bottlenecks. Therefore, one processor was
set aside to be the "hub" that controls the search, with the others designated
as "workers." The hub maintains the pool of active subproblems and assigns
subproblems to workers in an asynchronous manner, attempting to give each
worker a new task as soon as possible after it becomes idle. On receiving a
subproblem Q, a worker uses CPLEX to calculate the lower bound z(Q), which
it then compares with the incumbent value. If the bound is worse, the worker
immediately reports itself idle. Otherwise, if x(Q] meets (13.5), the worker
asynchronously broadcasts z(Q) as the new incumbent value (see below), saves
x(Q) in a local buffer, and then reports itself idle. If x(Q) violates (13.5), the
worker creates a new pair of child subproblems, reports the pair to the hub,
optionally executes the incumbent heuristic, and then reports itself idle.

The workers use a feature of CPLEX that allows subproblem solutions to
be aborted if their outcomes are provably above some "cut-off" value. Just
before entering CPLEX, this cutoff is set to the current value of the incumbent.

As with the basic serial algorithm, the search is divided into two phases.
In the initial, depth-first phase, the hub treats the pool as a stack. Due to
parallelism, however, the search tree can evolve in a way very different from
that of a pure serial depth-first search. When the relative gap between ~z(t]
and z_(t) drops below r, the hub switches to a best-first strategy, storing the
pool as a heap.

13.2.2. The Nature of the Active Pool. In the operations research
community, it is common to view the branch-and-bound process as acting
on a pool of unsolved problems, each inheriting a lower bound from its parent.
In the computer science community, it is more common to work on a pool of
solved subproblems. In this alternate version of the method, the basic work of
evaluating a subproblem is first to separate it into two children, and then to
calculate a lower bound for each child. Children that violate (13.5) and survive
comparison with the incumbent are returned to the pool.
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The tradeoffs between the two approaches are fairly involved: the solved-
pool approach may require less memory, because some of the leaf nodes of the
fully developed search tree need not pass through the pool, but these savings
may be offset by the need to attach extra data to each subproblem entry. The
solved-pool approach makes branching decisions as late as possible, presumably
benefiting from more accurate pseudocost information.

In a parallel setting, however, the unsolved-pool approach has an advantage
that would be of little concern in a serial context—the task granularity is
finer, because evaluating a member of the pool involves the calculation of
only one LP lower bound. The consequence of this difference is greater
potential parallelism, at the cost of additional communication. Because the
CM-5 scales to potentially large configurations, interprocessor communication
is fairly rapid, and the LP work required to calculate a lower bound is generally
substantial, a decision was made to stick with the unsolved-pool approach. To
save memory and communication, however, the two children of a subproblem
are reported to the hub as a single data structure, with a "tag" indicating the
branching variable. A single message reports the existence of both problems,
and the pool consists of subproblem pairs. A pair is deleted from the pool only
after it has been dispatched twice, once for each child.

13.2.3. Quasi-Distributed Pool Storage. When a worker reports a
subproblem pair to the hub, it sends only a small "token" consisting of the
parent's calculated lower bound, the worker's processor number, and a memory
address a. All the remaining information associated with the pair, including
the parent's / and u bound vectors, a concise description of the parent's optimal
simplex basis, and branching variable information, are stored in the worker's
memory, at address a. This scheme dramatically reduces communication and
memory requirements at the hub, and the tokens fit into low-overhead active
messages. The hub stores a "scale model" of the active pool, containing just
enough information to control the search, while most of the related data is
distributed essentially randomly among the workers.

Active messages figure prominently in the way CMMIP transfers subprob-
lem information to idle workers. Suppose that the hub learns that worker B
is idle. According to the best-first rule, some subproblem Q should be evalu-
ated next. Chances are, however, that this problem is stored on some other
worker, say A, which is busy using CPLEX to bound some other subproblem.
To deliver all of Q's data to 5, the hub sends an active message to A. This
message interrupts A and instructs it to begin an asynchronous, background
transfer of Q's data, including all bound and basis information, to B. Worker
A then returns to its foreground task. When the transfer is complete, B begins
work on the newly arrived problem, while A is again interrupted, and decre-
ments problem Q's count of unevaluated children. If this count reaches zero,
A deletes Q from its memory.

Figure 13.1 outlines this quasi-distributed-memory scheme, which allows
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FIG. 13.1. Hub-initiated transfer of subproblem data from a busy worker (A)
to an idle worker (B). The hub stores a "scale model" of the active pool (a small
"token" for each pair of subproblems), containing just enough information to control
the search. Most communications do not pass through the hub; rather, the data are
transmitted between random pairs of worker processors. Use of this scheme reduces
communication and memory requirements dramatically.

virtually all communication involving the hub (including some bookkeeping
functions glossed over here) to be low-overhead, single-packet, active messages.
More crucially, the bulk of the code's communications do not pass through the
hub at all. Instead, the vast majority of data is transmitted in relatively large
batches between random pairs of worker processors. Many such transfers may
take place at any one time. Random point-to-point communication of this type
is well suited to the CM-5 data network architecture.

Rayward-Smith, Rush, and McKeown [10] have implemented a similar com-
bination of central control and distributed storage for more specialized branch-
and-bound algorithms on "transputer" multiprocessors. Their approach em-
ploys multiple processes per computing node, communicating via intraproces-
sor "messages." While overhead is probably higher than for active messages,
the general principles of the implementations are similar.

13.2.4. Distribution of Incumbent Values. Active messages also figure
in the distribution of incumbent information. Essentially, the code implements
an emulation of a shared, global, monotonically decreasing memory register.
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Each processor has a memory location called incumbent. Whenever a
worker constructs a candidate incumbent, it compares its objective value with
incumbent. If the candidate is better, the candidate solution is copied to a local
buffer, its value replaces incumbent, and the worker initiates an asynchronous
broadcast operation. The worker starts this broadcast by sending an active
message to the k processors whose addresses differ from its own in exactly one
bit.

Consider now a receiver of one of these messages, whose address differs
from the sender at bit number / < k. The receiver interrupts and compares the
contained incumbent value with its own instance of incumbent. If incumbent
is better, the receiver does nothing. If the message's value is better, the handler
updates incumbent and forwards the message to the / — 1 processors whose
addresses differ in lower order bits than /. These messages are then processed
and/or forwarded by those processors, and so on. Thus, all processors learn the
new incumbent value within O(k) = O(logp) time, or distribution of the value
is stopped through collision with a better, simultaneously spreading value. The
initial value of incumbent is +00.

Because this scheme is interrupt driven, the foreground code merely sees a
memory location that occasionally changes to reflect improving values for the
global incumbent. When the algorithm terminates, the worker originating the
final value of incumbent has an optimal global solution in its local buffer.
Interrupt-driven incumbent distribution is described in [4], although on a
smaller scale and in a more cumbersome form.

13.2.5. Storage of the Pseudocosts. Like the incumbent value, the
pseudocost tables are global information. It appears that no prior parallel
branch-and-bound implementation has attempted to maintain any global data
of this sort. Because production of new pseudocost information is much more
frequent than creation of new incumbents and the amount of data involved is
much greater, global memory emulation seems less practical.

As with the search control strategy, a decision was made to start with
a centralized approach, assess the severity of the resulting bottlenecks, and
then move to a more distributed method if necessary. Another processor, the
pseudocost server, was set aside to store the pseudocost tables.

Whenever a worker computes the LP bound of a subproblem, it sends an
active message packet to the pseudocost server. This packet identifies the
problem's branching variable, states whether it is an "up" or a "down" child,
and gives the lower bound difference between it and its parent. When the
message arrives, the server immediately updates the master pseudocost tables.

When a worker needs to make a branching decision, it sends a list of the
integrality-violating variables to the server. While the worker is waiting for
a reply, it attempts to occupy itself with other tasks. The server collects the
corresponding pseudocosts and returns them to the sender.
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13.2.6. Starting and Stopping. Starting the method is quite straightfor-
ward: the hub creates a description of the root LP relaxation (13.1)-(13.4) and
sends it to a worker. This is the only message involving the hub that exceeds
one packet.

When the hub detects termination, it uses the control network to simul-
taneously inform the pseudocost server and all the workers. All processors
then enter a largely synchronous clean-up phase in which they jointly calcu-
late statistics about the run, and one processor outputs the optimal solution to
a file. To select this processor, the code uses the global reduction capabilities
of the control network to compute the global minimum of incumbent. Then,
from the group of workers whose local buffers correspond to the minimum,
they elect the one with the lowest network address. This step requires one
additional control network global reduction.

13.3. Sample Computational Results

The CM-5 implementation was tested on problems culled from "real-world"
industrial applications, which are all available in the MIPLIB public collec-
tion [2]. Full details appear in [5]. It should be kept in mind that for any
particular problem, there may be specialized algorithms that perform much
better than the general branch-and-bound method described here. In other
cases, a general method enhanced by cutting plane techniques might be most
appropriate. However, to the degree that they incorporate branch-and-bound-
style search procedures, such alternative algorithms might benefit from parallel
implementations resembling CMMIP.

Some care was exercised in choosing test problems. Some MIP problems
have relatively small search trees, consisting of tens or hundreds of nodes. In
such cases, little parallelism is inherent in the tree, and parallel branch-and-
bound is unlikely to perform well. To apply parallel computing to such cases
would require the exploitation of some kind of concurrency within each LP
bound calculation. Parallel LP methods do exist, but they depend on the
structure and sparsity of the constraint matrices A^ and ^4(2)-

On the other hand, some MIPLIB problems are specifically designed to
require specialized solution methods and produce gargantuan search trees when
solved with standard branch-and-bound. In such cases, ample parallelism is
available in the search tree, but an astronomical number of processors would
be needed for CMMIP, as currently constituted, to take sufficient advantage
of it.

The trees in the problems tested in [5] have on the order of 1000 to 100,000
search nodes, although it turns out that even larger trees would probably prove
tractable. Another criterion for problem selection was that the LP relaxations
be solvable within a few minutes on a single processor.

Figure 13.2 summarizes the results for four of the most difficult problems
in the study, on configurations ranging from three to 128 processors. Since
message latency in the CM-5 data network is not entirely deterministic, search
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FIG. 13.2. Results for four difficult MIP problems. Both axes are logarithmic;
the x axis plots the total number of processors, and the y axis the total runtime in
seconds. The solid lines trace the average runtime for each problem as the numbers
of processors vary, and the dashed lines show how average time would scale if it were
perfectly linear in the number of workers.

tree sizes and runtimes can vary between runs of the same problem on the
same number of processors.

Problem air05 is the difficult "kernel" portion of a hard airline crew
scheduling problem. The search tree stays fairly stable at about 5000
subproblems, each of which takes about two minutes to solve using CPLEX's
dual steepest-edge simplex algorithm. Runtime scales superlinearly—as the
number of workers grows, it appears that CPLEX is able to abort a larger
proportion of problems, as it can prove they are above the incumbent cutoff.
This effect appears in turn to be a result of the earlier discovery of better
incumbents obtained with the initial parallel depth-first search than with a
purely serial depth-first search. Air05 has "set partitioning" structure and (to
the author's knowledge) has so far been solved only by specialized techniques.9

9In subsequent research, it was found that some adjustment of algorithm parameters, principally
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Qiu is a fiber optic network design problem whose solution initially required
about 90 hours on a desktop workstation. In parallel, it is possible to solve it
in under 20 minutes. Runtime scales very slightly worse than linearly, partly
because the root problem is quite time consuming. There are about 20,000 to
30,000 search nodes.

Stein45 has more than 100,000 search nodes, and the optimal solution
tends to be discovered very early in the search. Runtimes scale almost perfectly
linearly with the number of workers. BellSa, another fiber optic network
design problem, has a search tree of more than 40,000 nodes. Again, average
performance is nearly linear. Interestingly, configurations of fewer than eight
processors could not solve the problem at all, because they never discovered an
initial incumbent. Apparently, pure depth-first search is not a good strategy
for this problem, and the more randomized search obtained by using multiple
workers is much more effective.

Tests of 15 additional problems, most considerably easier than those shown
in Figure 13.2, are contained in [5]. As a very rough rule, it was found
that for problems with T nodes in their serial search trees, at least T/100
processors could be used very efficiently. Harder problems showed good
efficiencies through at least 64 processors, while runtimes for easier problems
could generally be reduced to roughly the order of seconds, after which gains
from parallelism tended to become minimal.

For some problems, central control did pose some limitations. For example,
stein45 and bellSa both have relatively easy LP relaxations, solvable in a
tenth to a few hundredths of a second. In the 128-processor configuration, the
hub and pseudocost server occasionally fall behind in servicing the workers,
explaining some small deviations from linear performance. For problems with
extremely easy LP relaxations, such limitations can become severe even with
as few as 32 processors.

Forthcoming papers will describe versions of CMMIP that have partially
and fully distributed storage and control options capable of eliminating such
bottlenecks.

While there are certainly a number of open questions, the results here and
in [5] suggest that parallel branch-and-bound solution of real MIP problems is
now a reality. For repeated use in a specific application, of course, it would
probably be advisable to specialize the method somewhat. Such specializations
could include some of the cutting-plane-based techniques for improving bounds
that have become popular during the last decade or so. (It is also possible
that these techniques will help in general settings.) There is no reason such
techniques could not be combined with parallel search, providing even greater
strides toward the solution of difficult MIP problems.

disabling the incumbent heuristic, reduced the difficulty of air05 to somewhere in between the next
two problems, qiu and stein45. Runtime then scaled approximately linearly with the number of
processors. Specialized cutting plane techniques should also significantly reduce runtimes for airOB
(see, e.g., [6]).
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Chapter 14

Optimal Scheduling Results for Parallel Computing

Hakan Lennerstad
Lars Lundberg

Editorial preface

Load balancing is one of many possible causes of poor performance on
parallel machines. If good load balancing of the decomposed algorithm or
data is not achieved, much of the potential gain of the parallel algorithm is
lost to idle processors. Each of the two extremes for load balancing—static
allocation and dynamic allocation—has advantages and disadvantages.
This chapter illustrates the relationship between static and dynamic
allocation of tasks.

This article originally appeared in SIAM News, Vol. 27, No. 7, Au-
gust/September 1994. It was updated during the summer/fall of 1995.

It is a common situation to have several tasks to be executed, some of
which may be dependent on others, and several available executors of tasks.
Clearly, some kind of scheduling is needed: Which executor is to do which task,
and when? A frequent goal is to minimize the global execution time, i.e., the
time from the start to the termination of the last task. One central scheduling
question is whether to allow transfers of tasks from one executor to another.
The two extremes are to allow any transfer at any time, usually called dynamic
allocation of tasks, and to allow no transfers at all, which is static allocation.

A situation of this type occurs when a parallel program is executed on a
parallel computer. In this case the processors are most often identical, and
the tasks themselves are usually not affected by the way they are scheduled.
The formulas we present in this article compare the performance of optimal
static and optimal dynamic allocations for scheduling problems of this type.
The functions give the ratio of the execution times in the worst case: it
is a maximum of the ratio over all parallel programs with any interprocess
dependency structure, with the only exception of deadlock. Immediate
applications include the design of parallel computers and the evaluation of
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static allocation algorithms. Our results arose in the context of parallel
computing, and it is in that terminology that they are presented here.

14.1. Parallel Program Scheduling
Consider a parallel computer with k identical processors and a parallel
program P with n processes. In the usual and worst case, the program P
has many dependencies among its processes—at several points in time some
processes cannot execute unless certain other processes have completed certain
calculations. If n > fc, then some processor must execute at least two processes.
If n < fc, there is no scheduling problem; in this case each process can occupy
a processor of its own.

An essential performance issue is how to distribute the processes over the
processors in a way that minimizes the total execution time. A parallel program
P can obviously be allocated to the processors in many different ways, with
varying total execution times. There is a basic set consisting of all possible
allocations. For some of these allocations, no processes are transferred; this is
the subset of all static allocations. Within this subset, an allocation for which
the total execution time is minimal represents an optimal static allocation.
The execution time for the program P with the optimal static allocation is
denoted by TS(P}. The execution time for the program P with an optimal
dynamic allocation is analogously denoted by Td(P).

Static allocation is a more restricted scheduling scheme than dynamic
allocation. Clearly, the execution time for a parallel program P with optimal
static allocation is never shorter than that for an optimal dynamic allocation.
However, the transfer of processes allowed in dynamic allocation is sometimes
complicated and can be time consuming. This suggests that the adverb
"clearly" may be too definitive. How much worse can it actually be to apply
static allocation than to apply dynamic allocation is an issue of real concern
to parallel computer designers and the subject of this article.

14.2. NP-Hard Scheduling Problems
The problems of finding optimal static and optimal dynamic allocations are
both known to be NP-hard. Nevertheless, we can compare the performance
of the two allocation schemes; the ratio is given by the values obtained from
the formulas presented in this article. The execution times for calculating
these values increase slowly with n but faster with k. Experiments show that
the computation of the values can be parallelized, allowing values for large n
and k to be computed. It is not known whether the execution time increases
exponentially with k.

We make two standard assumptions. First, we neglect the execution time
of dependency signals between processes, which usually is negligible. Second,
we neglect the cost of transferring processes, which often is not negligible.
With these two assumptions, we have a situation where the adverb "clearly"
of our earlier statement is fully valid, and where, given an executable parallel
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program P, the execution times with optimal static and dynamic allocations,
TS(P) and T^(P), respectively, are well defined.

In this notation we present an explicit formula for the function

where the maximum is taken over all parallel programs P with n processes,
executed on a multiprocessor with k processors.

14.3. The Process-Dependent Function

If n > /c, we define g(n, k) = I . Otherwise, if w = n/k is an integer,

where ?r(fc, w, g, /) is denned below. If w = n/k is not an integer, we
let w = \n/k\ and denote the remainder of n divided by k by n&; i.e.,
n/c = n — k [n/k\. Then

The function 7r(k,w,q,l) is 0 if min(</, w} < I or if q > kl; otherwise, if
= 1 then ?r(fc, u>, g, /) = (n) . In all other cases it is given by

Here the sum is taken over all sequences of nonnegative integers / =
^ i , . . . , ik-i} that are decreasing (ij > ij+i for all j = 1, . . . , k — 2), bounded

by / (i\ < /), and have the sum q — I (]CLi ij = Q ~ 0- By definition, 6(7) is
the number of distinct integers in /, and a(7, j) is the number of occurrences
of the j'th distinct integer in /. The notation {/} + / = {/, i\, . . . , ik-i} is used.

The maximum of g(n, k} for n and k up to 50 is 2.543. It follows that for
any parallel program consisting of at most 50 processes, the execution time
with optimal static allocation is never more than a factor of 2.543 longer than
that with optimal dynamic allocation. The ratio itself is optimal; there are
programs having this value. Computer scientists studying parallelism have
found this ratio surprisingly low.
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The cost of transferring processes is probably strongly application
dependent. In any case, taking this into account favors static allocation even
more. On the other hand, it is easier in practice to find close-to-optimal dy-
namic allocations than close-to-optimal static allocations. For the static case,
the formula gives quantitative information on how close to optimal the alloca-
tion is.

14.4. The Mathematical Formulation

We briefly and intuitively sketch the mathematical reformulation; for a full
presentation see [2, 6]. Formulas (14.2)-(14.4) can be deduced by reformulating
the problem about parallel programs into a problem about 0,1 matrices. A 0,1
matrix represents a program P with optimal dynamic allocation. The matrix
consists of n column vectors representing the processes; the rows represent
time intervals of equal lengths. In this matrix, 1 denotes an active process and
0 an idle process for a certain time interval.

For a given program, the time is discretized in time intervals of equal
length in such a way that each dependency signal and process activity change
occurs at an end-point of a time interval. Each row has k 1's, one for
each processor, since the worst-case programs keep all processors constantly
busy. Each static allocation is represented by a partition of the set of column
vectors. The execution time with a specific static allocation is computed by
adding the column vectors in each partition group, resulting in k column
vectors representing the load on the k processors for each time interval.
Next the componentwise maximum is taken, since at each time interval all
processors must wait for the processor with maximal load. This results in
a single remaining column vector, representing the multiprocessor load for
each interval. The sum of its entries is the execution time with this static
allocation. In this formulation, because the execution time with optimal
dynamic allocation is the number of rows, the ratio can be described as
the arithmetic mean of the entries in the multiprocessor load vector. It is
proved [2, 6] that a matrix whose rows are exactly all (]J) permutations of
the k 1's in n positions represent extremal programs, those that maximize the
ratio of static to dynamic allocation. In addition, there is always an optimal
static allocation from which the sizes of the sets in the partition differ as little
as possible. When this situation is achieved, a formula for g(n, k) can be
deduced.

14.5. Optimal Topography

The function g(n, A;), when plotted as a function of two variables (see
Figure 14.1), has a surprising and interesting topography. The main parts
of the plot can be described as plateaus and the transitions between them.



Optimal Scheduling Results 159

FlG. 14.1. The optimal worst-case function g(n,k), defined as the woist-
case ratio of static versus dynamic allocations: g(n, k) = maxp T (P\ • Here Ts (P)
and Td(P) denote the execution times for a parallel program P with optimal static
and optimal dynamic allocations, respectively, executed on a multiprocessor with k
identical processors. The maximum is taken over all parallel programs P consisting of
n processes.

The plateau g = I is immediately visible; this is the trivial case in which
there are more processors than processes. In this case no process ever needs to
be transferred, there is no difference between static and dynamic allocations,
and the ratio is thus identically 1.

The plateau g = 2 is also visible within n, A: < 50. When moving from the
first plateau, from, say, the point k = n — 15 to k = 15, n = 16, we can observe
a sharp jump. In the 0,1 matrix formulation, we have here a worst-case matrix
(parallel program) whose rows are the 16 permutations of 15 1's and a single 0.
In this time interval the execution time with optimal dynamic allocation is 16.
In the partition (static allocation), two columns (processes) will belong to the
same partition set (execute on the same processor). When adding the column
vectors, we will get 14 2's and 2 1's (in most time intervals this processor
will have two busy processes), giving #(16,15) = (14 x 2 + 2)/16, which is
almost 2.

The plateau g = 3 is not visible in the domain n, k < 50. It is established
that for each positive integer w;, #(n, k) has a plateau g = w; i.e., | g(n, k) — w \
is arbitrarily small for all points (n, k) in an unbounded domain sufficiently far
away between the "straight lines" n = (w — l)k and n = wk. The main
unknown geometrical feature of the function g(n, k) is perhaps the distance
from the origin to each plateau.
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14.6. Optimal Ridge Mountains
Valleys and ridges can be observed in the plot of Figure 14.1. Before the
plateaus are fully developed, they have the form of "mountain ridges." As
shown in Figure 14.2, the plateau g = 2 actually has a ridge, although ver
flat, in the middle. Observed from the n-axis, and perpendicular to it, this is
the highest ridge until n = 10. The second ridge starts at n = 10, taking over
as the highest from n = 11 to n = 23, where it is surpassed by the third ridge.
At n = 36 the first sign of the fourth ridge appears. The last two ridges will
eventually become the plateaus g = 3 and g = 4. The plots suggest that each
subsequent ridge rises to the plateau level much more slowly than the previous
one. Accordingly, the transition areas between the plateaus become larger.

The statements that can be made when the plot is viewed from the k-
axis are even more definite. The function p(n, k] is increasing as a function
of n; when the number of processes increases, it is possible to find parallel
programs with larger ratios of optimal static to optimal dynamic allocations.
This is an obvious truth for computer scientists and can be proved within this
mathematical framework. It turns out that it is also possible to calculate an
explicit formula for the limit linin-^oo g(n, k) = G(k}. In the plot of p(n, fc), the
function G(k) represents the horizon when the landscape of g(n, k) is viewed
from the fc-axis, in the direction of the n-axis. In parallel computing terms, the
function G(k) is the worst-case ratio of optimal static to dynamic allocations
for a parallel computer with k processors, where a worst-case program is found
in the domain of all parallel programs of any number of processes.

14.7. The Process-Independent Function

With the same notation used above, the formula for the horizon function
G(k) [3, 7] is

The sum over / is taken over the same sequences as in (14.2) and (14.3),
with q = k. Here we have a factor, (fc!)2fc~fc, that tends rapidly to infinity,
multiplied by a sum over certain decreasing sequences. The number of terms
in this sum tends to approach infinity rapidly. On the other hand, the
terms of the sum are inverse values of products of factorials, i.e., numbers
that are certainly very small and tend to zero very rapidly as k becomes
large. These numerical aspects balance each other to result in moderate
behavior for G(k}. G(k) stays slightly larger than logefc up to k = 38, but
G(39) = 3.65393 < 3.66356 = loge 39.
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FIG. 14.2. Ridges and valleys of g(n, k). Details of the ridge/valley structure of
the surface g(n, k) are revealed by studying the function g(n, k) as a function of k, for
each constant n. The locations of global maxima I, local maxima IS. and local
minima El are plotted. Notes: (1) g(n,k) is increasing as a function of n. (2) The
straight line equations shown in the margin are simply constructed from the graph. (3)
The function maxfc g(n, k) gives the worst-case ratio for all parallel programs with n
processes and for all multiprocessors with identical processors.
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14.8. Further Applications and Generalizations

By formulating a central parallel computing problem mathematically, we were
able to derive formulas that give answers to the parallel computation scheduling
problem. Since mathematics is in principle application independent, it is
natural to look for related applications. From a general point of view, the
formulas are optimal scheduling bounds, which represent a problem domain
that appears in several other contexts. A practical example is the construction
of a house; of the many tasks that need to be performed, some can be done
only after others are fully or partially completed. The processes here are the
work tasks; the processors are the workers. Static allocation means that the
worker who starts a task always completes it, while in dynamic allocation a task
can be taken over by another worker. The hypothesis of identical processors
is usually not valid here—humans tend to be specialists. This, like further
parallel computer problems, suggests one line of generalization: the case of
nonidentical processors.

In telecommunications, scheduling problems are frequent. The perfor-
mance of the algorithm that schedules incoming messages and other events
on the available nodes is essential for telecommunication system efficiency.

14.9. Previous and Future Results

The only previous general results of a similar type are those of Graham [1].
In [3] it is established that, as expected, linifc^00G(fc) = oo. In [1] it is
proved that when only parallel programs with no interprocess dependency are
considered, this limit is 2. Another result of [1] concerns a dynamic allocation
scheme called self-scheduling. Self-scheduling has the property that any time a
processor becomes idle and there are waiting executable processes, one of the
processes is immediately allocated to this processor. In [1] it is also proved that
the execution time with a self-scheduling algorithm is never more than twice
the execution time with optimal dynamic allocation. This result is useful in,
for example, the evaluation of static allocation algorithms, since the problem
of finding self-scheduling allocations is certainly not NP-hard.

With similar techniques it is possible to establish results comparing cluster
allocation with dynamic allocation [3, 7], optimal ratios for parallel programs
with a certain parallelism [8], and the gain achieved by increasing the number
of memory units in simultaneous memory-allocation problems [9].

The results of [10] come closer to the application. In this report one test
execution of the program is done with some static allocation schedule, and this
execution time is measured. By taking advantage of the extra information we
obtain a tighter bound, optimal for the new situation.

The report [4] presents our first results on single processors. Optimal
bounds comparing cache memory associativity are derived. Also in this article
we finally arrive at a basic problem that is solved by similar arguments as in
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the other reports. However, the sequence of transformations leading to this
basic problem here constitute the major part of the report. The report [5] is a
survey article over all our results to this date.
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Chapter 15

Airline Crew Scheduling: Supercomputers and
Algorithms

Jeremey Schneider
Theresa Hull Wise

Editorial preface

Integer programming (IP) problems are difficult to solve. Particularly
difficult is the airline crew scheduling problem, a 0-1 set partitioning
variant that requires special solution methods. The typically large size
of the set-partitioning problem for the crew scheduling problem makes it
even more challenging.

This chapter formulates the crew scheduling problem, summarizes some
of the past solution methods, and details various current approaches. The
application of a vector computer to this problem is presented.

This article originally appeared in SIAM News, Vol. 23, No. 6, November
1990. It was updated during the summer/fall of 1995.

"The crew scheduling problem has been 'solved' many times using many
and varied techniques. It has never, however, been completely solved to the
satisfaction of all airlines, and certainly not to the degree of rigor that the
term 'solution' would imply to a mathematician." [2]

Stated more than 20 years ago, this passage is an equally valid assessment
of the airline crew scheduling problem today. While advances in computer
technology and operations research (OR) algorithms have made it possible to
handle larger, more complex problems more quickly and more precisely, the
size of the crew scheduling problem and the demand for precision have evolved
even more rapidly. Mergers and acquisitions have brought larger and more
complex problems to the crew scheduler. To help Northwest Airlines solve
this problem, in 1988, we acquired a Convex supercomputer specifically and
exclusively for this application. In the ensuing years, we have continued to
research other forms of advanced computing as well. We discuss here our
usage and on-going investigation into advanced computers and OR algorithms
for the crew scheduling problem.
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The crew scheduling problem is an economically significant topic for the
airline industry. Crew costs are, in fact, one of the two highest components
of direct operating cost, exceeded only by fuel costs. Therefore, the OR
practitioner, equipped with today's hardware technology, has the potential
to make a deep financial impact by attacking this problem. Even a 1%
improvement could be worth millions of dollars per year. Whereas manual
solutions once gave acceptable (if not optimal) results, the problem has so
grown in difficulty and importance that it now warrants the very latest in
OR and computing technology. While some organizations have had success
developing this in-house, others are interfacing with the academic community
for mathematical and technological expertise. Northwest Airlines' AirLine
Pairing Planning System (ALPPS) development project has taken the latter
approach.

15.1. Overview

The goal of the airline crew scheduler is to assign personnel optimally within a
strictly specified set of constraints. At the very least, each flight leg (a nonstop
flight between a pair of cities) in a given flight schedule must be covered once
and only once with a full complement of pilots and flight attendants. Each
leg then becomes part of a roundtrip, called a "pairing," for some set of crew
members.

Each pairing originates at a crew-base station, traces a path through a
network defined by the flight schedule, and returns to its original crew-base
station. The airline's crew staffing plan dictates the maximum and minimum
number of crew members who may start from each base. The duration of the
trip varies with equipment type and other factors from as little as two days to
as many as 14. The number of flight legs in the trip can also vary from trip to
trip and among equipment types.

The description above transforms the task of legally assigning airline crews
into a search for round-trip pairings that partition the legs of a given flight
schedule. Now, by defining a cost for each pattern, the optimal assignment of
personnel becomes equivalent to the minimum cost partition of the flight legs
into pairings. In this way, the airline crew scheduling problem acquires the
structure of a set partitioning problem (SPP), making it amenable to known
OR techniques. As an SPP, the problem takes the form

Each row of A (indexed by i = 1,..., m) represents a flight leg to be flown.
Each column of A (indexed by j = 1,... ,n) represents a round-trip pairing
that a crew may legally fly.
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As the matrix A is constructed, column-by-column,

{ 

1 if flight leg i is on pairing j,
0 otherwise.

For example, the first pairing may include flight legs 1, 3, and 62, causing
the first column to have a "1" in rows 1, 3, and 62 with "0" in all other rows.
Then we have something like

Now, supposing that this first pairing is legal and its cost to the airline is
210, then the corresponding (first) entry in the cost vector would be c\ = 210.
This means that if the first pairing is selected to be flown, its cost of 210 must
be added to the objective function. Note also that once pairing 1 has been
selected no other chosen pairing may cover legs 1, 3, or 62 as mandated by
the equation Ax = 1 in SPP. Here 1 is a vector of 1's (i.e., the row sums are
identically 1).

The goal of the optimization phase is to select a "covering" or "partition-
ing" set of pairing columns at minimal cost; i.e., we must solve SPP for the
assignment vector x. The vector x — ( x i , X 2 , . • • ,xn) has one entry for each
pairing column in matrix A.

An element that greatly complicates this formulation of the crew schedul-
ing problem is the complexity that arises from contractual rules and pay guar-
antees. To be considered, a pairing must conform to both Federal Aviation
Regulations and union contract requirements. These include maximum flying
and minimum rest times per duty period. Other company policies, generally
described as "soft" constraints, are not steadfast rules but, rather, preferences
honored by the scheduler if the cost of doing so is not too high. Such policy
parameters could include minimum crew connect times. The airline pays no
actual monetary penalty for violating policies of this type.

The airline also maintains a set of rules that pushes the dollar cost of a
pairing higher than its actual operating cost. This difference (the "penalty") is
driven by a collection of, again, well-defined parameters. Most are categorized
as "credit time" paid to the crews. Because of minimum guarantees per duty
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period, for example, crew members who fly less than x hours are nonetheless
paid for x hours. Likewise, there are average and minimum percentages of time
away from home that must be paid.

"Deadheading," which occurs when pilots fly as passengers to position
themselves to fly the next leg of their crew pairing, is another expense
incurred as difficult pairings are completed. Although sometimes necessary,
deadheading is an expensive option as a result of both the loss of revenue seats
occupied by the crew and the pay provided to the crew to travel but not fly.

The length of a pairing can also create penalty costs in the form of per
diem expenses and hotel room fees. While these are major expenses, they tend
not to be significant in driving decisions. Other "soft" penalties arise from
situations such as substandard crew connect times, pairings beginning at one
coterminal station and ending at another, and trips that contain too much
flying.

15.2. Methods for Solving SPP
A common simplifying assumption is that the crew scheduling problem has two
more or less distinct phases: the first is the explicit generation of the pairings,
also called column generation; the second is optimization to select a subset
of those pairings meeting all requirements at a low, if not the lowest, cost to
the airline. However, as will be discussed below, the generation of all legal
pairings (or, equivalently, all columns for matrix A ) is not practical from an
operational standpoint. As a result, the solution methods addressed below
are solutions to subproblems of the original crew scheduling set partitioning
problem. Owing to the number of possible approaches, and the mathematical
flavor of the problem, we elaborate on several of the existing methods we have
used or considered and several of the emerging methods in which we hold great
promise.

15.2.1. Implicit Enumeration Techniques. The success of implicit
enumeration, a widely used approach for solving crew optimization problems,
apparently results from the special structure of the problem. Its performance
depends on an appropriate selection of a branching scheme, which considers
variables for assignment, and a bounding scheme, which assesses the quality of
each assignment.

The required branching scheme may involve fixing particular variables (e.g.,
Xj = 1) to satisfy certain constraints, where the decision is based on whether
or not a particular pattern should be forced to cover a given leg. The verdict
is then fixed on that branch of the solution process and on all subproblems
extending from it. An analogue of this approach (developed in the 1970s and
used in an early version of Northwest Airlines' ALPPS optimizer [10]) is to
group the pattern columns into classes and then to select the class to cover a
given row. This early heuristic was considered to be well suited for the larger
crew optimization problems of the time.
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A good bounding scheme enhances the performance of the implicit enumer-
ation technique as it reduces the size of the enumeration tree. Early bounding
strategies, such as that of Marsten [14], computed the bounds via linear pro-
gramming (LP) relaxation at each step. This later proved quite costly for the
larger problems. The next set of strategies, such as that of Marsten and Shep-
ardson [15], sought good approximations of the LP bounds without actually
computing them. This was used in the early versions of the ALPPS optimizer
that remained in use through the late 1980s. Bounds were approximated with
Lagrangian relaxation and subgradient optimization. This approach is also
described by Etcheberry [8].

While it, too, is sufficient for smaller problems, this approach has several
inherent drawbacks. The algorithm requires an initial bound as well as several
parameter settings, all of which may vary from problem to problem and
affect overall performance. Also, because convergence is asymptotic and not
monotonic, an oscillating lower bound may be observed. Finally, convergence
is demonstrably slow for larger problems. This originally prompted Northwest
Airlines' search for new optimization algorithms for our crew scheduling
system.

More recently, Chan and Yano [6] introduced the multiplier adjustment
method to find lower bounds. This algorithm is a hybrid involving both
Lagrangian relaxation and LP. By quickly identifying a good set of Lagrangian
multipliers, they are able to initiate their linear program at a more advanced
state. Their computational results show this method to be superior to
subgradient optimization. In addition, convergence is monotonic and neither
user-specified parameters nor an initial upper bound are required as input.
Further studies also found this method to be superior to early use of LP bounds.

Another bounding approach considered for the Northwest Airlines' crew
optimization problem was that of Fisher and Kedia [9] who used the "greedy
heuristic" followed by an improvement heuristic, followed (only if necessary)
by subgradient optimization.

Table 15.1 displays the relative results of a 1990 benchmark at Northwest
Airlines, using four different solution techniques to solve the same series of 100
small subproblems. While exact problem sizes are not available, the number
of rows was approximately 30 and the number of columns approximately
700. Selected for the study were an implicit enumeration approach using
Lagrangian relaxation and subgradient optimization (as was found in our
crew optimization software at that time), Kedia's SPMINC heuristic [13],
PAR4, an implementation of the interior-point method by Lustig, Marsten,
and Shanno [16], and the simplex-based CPLEX-mip10 developed by Bixby [3].
All arrived at the same solution values but at greatly differing rates. Note
that while the problems were too large for the Lagrangian relaxation method
to solve efficiently, they were perhaps too small to give an advantage to an

10CPLEX is a trademark of CPLEX Optimization Inc.
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interior-point method. Note that the simplex method CPLEX was superior in
terms of computation time.

TABLE 15.1
Running time on DC9-daily batch job (100 subproblems).

Total time (sec.)
Lagrangian

341.57
SPMINC

94.30
PAR4
68.54

CPLEX
10.10

15.2.2. Elastic Set Partitioning Techniques. This model for the crew
scheduling subproblem is described by Graves et al. [11]. Rather than the
usual set partitioning model, this group considers the elastic set partitioning
problem

which allows each constraint i to be violated at a cost of penalty p^. They
indicate that performance is again constrained by the size of the problems to
be solved.

15.2.3. Probabilistic Relaxation Techniques. Wedelin [19] describes
a probabilistic relaxation algorithm that can be used as a general purpose
approximation for combinatorial optimization. This fundamentally different
approach has been applied to airline crew scheduling problems by the Volvo
Transportation Group in Sweden. In combinatorial optimization problems,
such as this one, probabilistic relaxation seeks a good integral approximation
to the optimal solution.

The procedure is iterative. Each variable, Xi, is initially assigned between
0 and 1. Later iterations, in sequence or parallel, adjust the variable subject
to the constraints until they converge to "yes" or "no" in the final assignment
network.

In terms of computational results, our benchmarks in 1990 indicated that
while probabilistic relaxation did produce high quality approximations to very
large problems, the computational effort outweighed the benefit to Northwest
Airlines. However, on crew optimization problems with up to 2,000,000
columns, Desrosiers et al. [7] later found that this method produced high
quality approximations in less time than was required by standard LP packages.
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15.2.4. LP Relaxation. An intuitive approach to the set partitioning
formulation is to "relax" the IP problem to an LP problem. This is achieved by
replacing the integrality condition Xi = {0,1} with the nonnegativity condition
Xi > 0 for all i. While the relaxed problem is much easier to solve, we now
face the possibility of fractional solutions—an unacceptable alternative in the
crew scheduling application.

Interestingly, some computational experience has indicated that for crew
optimization subproblems, the LP relaxations often yield natural integral
optimal solutions. While some believe this behavior to be characteristic of the
airlines' set partitioning problems in a certain size range, our recent research
contradicts this claim [20]. As such, one cannot rely on an LP relaxation alone.

Nonetheless, LP relaxation has been a primary tool in the development
of solution methods for IP problems. And, as such, knowing that we will be
making use of large LP relaxations we digress here to discuss their behavior
on supercomputers. The combination of new algorithms for solving LPs,
improvements to classical methods, and the availability of modern computer
architectures has worked to permit solutions to problems of sizes previously
thought impractical. Today's vector processors, which are capable of efficient
indirect addressing, help the math programmer take full advantage of the
sparse matrices encountered in LP and in particular in the crew scheduling
model.

The simplex method has great success with such large systems. Vector
processing enhances the simplex method allowing larger problems to be solved
with reasonable computer resources.

Research into interior-point methods also improved the prospect of solving
very large LP problems. The major computational step in this method is
amenable to vector processing and loop-level parallelization. While using
technology too new to be as solid as the simplex codes, benchmarks on large
crew scheduling problems have proven very successful using interior-point
methods. Problems with a few hundred rows and several million columns
can now be handled by modern LP codes such as CPLEX, OBI, and OSL. For
further details, refer to Bixby et al. in [4].

15.2.5. Integerization Techniques. As mentioned above, one difficulty
in crew scheduling is arriving at an optimal integral solution. While the
LP relaxations may be a first step, they do not always deliver the desired
integrality. In some cases, the problem structure results in "highly integral"
answers that are then resolved with simple heuristics. In other cases, however,
stronger integerization procedures must be employed.

As an example of an integerization procedure, consider the branch-and-cut
method used by Hoffman and Padberg [12]. In this case, branch-and-bound
is combined with the generation of cutting planes based on the polyhedral
structure of the integral polytope. The process has, in fact, been specialized
to solve general 0-1 problems and performs particularly well on integer linear
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programs with a large number of branching nodes. Hoffman and Padberg [12]
have shown very promising results in their application of this method to airline
crew optimization problems. Trotter [18] has also demonstrated success on the
Hoffman and Padberg data set using a set of related heuristics.

The sequential implementation of the branch-and-cut approach has been
adapted to allow parallel processing by Cannon and Hoffman [5]. In that work
they describe an implementation on a collection of commercial workstations
connected by a local area network.

Cannon and Hoffman note that the speedup of their approach over others
is especially prevalent on large-scale 0-1 IP problems, particularly those with
a large number of branching nodes. This describes the crew scheduling set
partitioning problem. Studies have been performed on both distributed- and
shared-memory environments.

15.3. The Challenge of Column Generation

As stated above, a common simplifying assumption made during crew opti-
mization is that the problem may be partitioned into the two more or less
distinct phases of column generation and optimization. Our recent research
indicates, however, that such an assumption is not generally valid [20]. We out-
line first the magnitude of the problem of explicit column generation, followed
by several approaches designed to avoid this difficulty.

The following is an example that emphasizes the complexity of the column
generation problem in crew scheduling. For most airlines, the scheduling
task is viewed from a 30-day perspective, and every takeoff and landing in
that month-long period must be covered by some round-trip crew pattern.
Fortunately, each type of airplane (747, DC9, DC 10, for example) has its own
uniquely qualified pool of crew members. Thus, the crew scheduling problem
may be decomposed into a set of subproblems, one for each fleet type. While
this greatly reduces the complexity, the problems associated with some fleets
remain too large to handle efficiently. Further note that these subproblems
are not necessarily fully independent, because in some situations the pilots
deadhead on a fleet type other than their own. Crews deadhead, that is travel
as passengers, to position themselves to fly the next leg of their pairing.

Computational experience has indicated that the number of columns that
could be generated for a crew scheduling problem with r flight legs and rows
is of the order

where c is the number of columns (pairings) that may be generated. To
give an approximation of a "typical" problem size, consider that Northwest
Airlines' DC9 fleet contains over 150 aircraft flying over 800 flight legs per day.
Extending this to the perspective of a 30-day flight schedule, we now have a
problem with 24,000 legs that could then induce on the order of c = e24000

columns, a number far too large for explicit column generation.
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In earlier versions of our crew scheduling software, we applied empirical
rules to avoid considering such a problem. We did this by working first on
so-called daily problems, knitting the solutions into weekly solutions, and
then knitting the larger solutions into the monthly schedule. Even within
the daily problem, which was done first, we did not attempt to solve the 800-
row problem. Rather, a series of subproblems covering 50-80 flight legs were
iteratively solved. The problems at all levels were cast as SPP. Even with this
empirically reduced approach, it was necessary for us to make use of advanced
architectures to approach the problem more efficiently.

15.3.1. Column Generation in Parallel. The route structure of North-
west Airlines is such that we have a small number of crew bases for each
equipment type. If we view the production of the pairings for a given base as
completely independent of all other bases, then it is a relatively straightforward
task to allow the code to operate on each base simultaneously with regard to
pairing generation. This parallel approach to the task of column generation
is in some sense a brute-force approach, but the speedup achieved, weighed
against the complexity of the pairing-generation code, warrants it use. The
use of bases as parallel tasks is not only quite natural but also nicely amenable
to the machine that we were using when it was implemented, a Convex C220, a
shared-memory MIMD machine. The resulting "grain size" can be quite large.

The two major issues of concern with this approach were (1) synchroniza-
tion of the updating of the data structure and (2) the handling of redundant
pairings. Both of these were easily handled. Redundant pairings would only
have been a concern if a large number of them were produced relative to the
number of unique pairings. This did not happen. Before the pairings were
passed to the SPP algorithm they were sorted and redundancies eliminated.
The synchronization issue was handled by updating the global data structure
after all the individual bases were completed.

At that time, the computational work involved in pairing generation alone
was roughly comparable with that of solving the SPP. Thus we were taking
approximately 50% of the runtime of our application and dividing it among a
small number of tasks (i.e., bases).

15.3.2. The Pattern Sifting Approach. Even in parallel, the column
generation technique described above for the original ALPPS is able to
consider only small subproblems of the true crew scheduling problem. While
improvement may be observed from iteration to iteration, this approach
generally does not guarantee optimality. Pattern sifting is a more global
approach to crew optimization, as a much larger set of crew patterns may
be generated and evaluated using a dual pricing scheme. This approach is
based on the SPRINT methodology introduced in the early 1970s [17].

Before sifting, many millions of crew patterns must be generated and
stored. Next, a set partitioning problem such as those described above must
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be built. Dual pricing, based on the solution to set partitioning subproblems,
is then used to "sift" through the millions of pregenerated crew patterns to
determine which should be next considered for optimization. In this way, the
many million-column SPP may be solved to optimality.

Promising results of the application of sifting to crew optimization prob-
lems is described by Anbil, Tanga, and Johnson [1], as well as by Bixby et al.
[4]. Anbil, Tanga, and Johnson use the IBM Optimization Subroutine Library
on the 3090E Vector Facility, while Bixby et al. use CPLEX and OBI, as well
as a hybrid combining the simplex and interior-point approaches on a CRAY
Y-MP supercomputer.

15.3.3. Delayed Column Generation. Even with the millions of
columns that may be considered with a column sifting approach, we are still
considering only a subproblem (a subset of columns) of the larger crew schedul-
ing problems. We are not ensured that the best or even a good subset of columns
is contained in this original set.

Unknown at the outset of pairing generation is the meaning of "good"
in the context of the given schedule. A high cost pairing that completes an
otherwise inexpensive crew schedule may be worth its price. Reduced costs,
which can be generated from the LP solution to SPP, provide insight into the
fit of newly generated patterns into the existing crew network. This is part
of the rationale behind "delayed column generation," which has recently been
incorporated into the ALPPS software at Northwest Airlines [20].

After solving SPP over an initial subset of legal crew pairings, we use
reduced cost information to help us generate more legal crew pairings that, if
added to the initial subset, could improve the overall cost. The SPP is then
resolved, and the process is repeated until no more "improving" crew pairings
can be generated. In this case the column generation phase is a variation of
a shortest path problem, and it, too, is amenable to parallelization at several
levels.

15.4. Conclusions
While still not solved to the complete satisfaction of either airlines or
mathematicians, the crew scheduling problem has benefited from advanced
computing and OR technology.

We have applied a shared-memory MIMD computer in which each CPU
is a vector processor to large-scale optimization problems. Each phase of
the application, column generation, and optimization has utilized a particular
aspect of the architecture to advantage.

The scalar-parallel pairing-generation phase maps well to computing
platforms such as the shared-memory MIMD Convex by treating crew bases
as the parallel chores. This area is also one that is quite different among the
different airlines. Owing to the rules and regulations of the airline and the
setup of the schedule development organization, it is not likely that a single-
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column generation algorithm can be applied across all airlines. We suspect that
at a high enough level, in whatever algorithm is used, the column generation
phase will continue to utilize parallelism.

The solution of the large LP relaxations has benefited from the vector
architecture of the Convex. This combination of supercomputing hardware and
the newer algorithms for solving the SPP has permanently changed our view
of the crew scheduling problem. The expected savings from the combination
of hardware and software will certainly help Northwest Airlines.

Our near-term approach to the problem will continue to focus on the
advances in the SPP algorithms as well as improved problem formulation
and column generation techniques. All aspects of this problem are interesting
blends of supercomputing, mathematical programming, and combinatorics.

A final point on our improved crew scheduling is that the crews themselves
are happier with the newer trips. The crews want to fly when on duty and
by producing more efficient, i.e., less costly, pairings they achieve that goal.
Therefore, not only has supercomputing saved the corporation money, it has
resulted in greater satisfaction on the part of the crews.
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Chapter 16

Parallel Molecular Dynamics on a Torus Network

Klaas Esselink
Peter A.J. Hilbers

Editorial preface

The parallelization of molecular dynamics enables scientists to study
macroscopic properties from large collections of microscopic particles.
Accomplishing this requires a very large number of molecules, but because
the treatment is of discrete particles, there is inherent parallelism.

Particle interactions are shown to be problematic, and the authors develop
a parallel algorithm for molecular dynamics that runs on a network of
Transputers.

This article originally appeared in SIAM News, Vol. 26, No. 3, May 1993.
It was updated during the summer/fall of 1995.

Computer simulations of physical systems are playing an important role in
statistical mechanics. Macroscopic phenomena of physical systems are studied
on the scale of microscopic particles, such as atoms, molecules, electrons, and
nuclei. The capacity of available computers, however, places restrictions on
the total number of particles that can be studied and on the total simulation
time. In the past, considerable effort was devoted to optimizing algorithms for
molecular dynamics simulations for both sequential and vector architectures.
Today, because the computations involved are suited to parallelization, more
and more articles are describing parallel implementations. The details of a
parallel algorithm depend in general on the topology of the processor network.
Therefore, it is important to be able to estimate a priori which mappings of an
algorithm onto a processor network will yield optimal performance with respect
to both the distribution of work over the processors and communication costs.

In this article, we explain some aspects of molecular dynamics simulations
and show why the use of "geometric parallelism" leads to very efficient
implementations. This approach yields optimal mappings with respect to both

177



178 Molecular Dynamics on a Torus Network

load balancing and communication costs. We also describe some aspects of the
implementation of simulations involving multiparticle potentials. Timings of
simulations performed on toroidal networks of Transputers demonstrate that
molecular dynamics simulations can greatly benefit from parallel computing
both in time and in cost. In effect, parallel machines make it possible to study
very large systems and new problems that previously could not be dealt with
in reasonable computing times.

16.1. Molecular Dynamics

Molecular dynamics is a simulation technique that can be used to study the
dynamic behavior of many-particle systems. By integrating Newton's equation
of motion at each timestep, trajectories of mutually interacting particles are
calculated. Given a system of particles we solve

(16.1)

where mi and ri are the mass and the position of particle i, respectively,
and where fi = —VjV is the force on particle i due to the total potential V.
Usually, this potential is divided into terms depending on the coordinates of
pairs, triplets, and quadruplets of particles. In this section we consider some
potentials that are widely used in molecular dynamics codes. For readers who
are interested in more details, we recommend [I].

The first and most important potential is the Lennard-Jones 12-6 potential
for the interaction between pairs of nonbonded particles. It has the following
form:

(16.2)

where TIJ is the length of f^, the vector from the position of particle i to
particle j, e is an energy parameter, and a is a length parameter. Because
the Lennard-Jones potential rapidly decays to zero, it is usually truncated at
a fixed cut-off radius Rc and then shifted to make the potential continuous.
This means that a particle has nonbonding interactions only with the particles
contained within the sphere of radius Rc of which it is the center.

Other forces within molecules also play a role. We take these intramolecular
potentials from [10]. A chemical bond between two particles can be modeled
by a harmonic spring potential:

where I BO is the equilibrium bond length and CQ is the spring constant.
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Bending forces in a chain of bonded particles are modeled by the three-
particle potential, which maintains the valence angle between a successive pair
of bonds close to the tetrahedral value 9:

9ijk is the angle between fji and r}fc in the chain (f,j, fc), and c\ is an energy
parameter.

A four-particle torsion potential can be associated with an angle
between the planes ijk and jkl:

vwhere an, with 0 < n < 5, and c<2 are energy parameters; see also [10]. The
torsion potential models the molecular property that four particles preferably
all lie in the same plane (jijki = ±0°, the so-called trans conformation), or
that TijM = ±60° (gauche conformation).

Lennard-Jones (truncated), bonding, bending, and torsion are computa-
tionally short-range potentials, since the distance between any two particles
involved is at most a certain Rc. If constant density and a homogeneous distri-
bution of particles are assumed, the amount of work done for each particle does
not depend on the total number of particles in the universe. Implementations
for which the time complexity scales linearly with the number of particles are
therefore feasible.

For instance, for a typical system of 1000 decane molecules modeled by
a linear chain of 10 particles, the number of interactions to be calculated
each timestep and the execution time per potential evaluation (on a T800
Transputer) are shown in Table 16.1. The bulk of the computation consists of
the evaluation of Lennard-Jones potentials. Torsion, although an expensive
potential, has a contribution that involves four particles. The cost per particle
is therefore roughly equal for all potentials.

Because of the large number of Lennard-Jones evaluations, we concentrate
first on the efficient implementation of the nonbonding interactions in parallel.

16.2. Parallel Molecular Dynamics

Two phases can be distinguished in molecular dynamics simulations. In the
first phase, the forces on each particle are determined, and in the second the
displacements of the particles are determined from all the forces taken together,
possibly along with some macroscopic properties of the system. The latter
phase is trivial to parallelize. Parallelization of the former is usually more
difficult, as the processors need to cooperate (exchange information) in order
to compute the potentials.
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TABLE 16.1
The number of evaluations to be performed at each timestep, and the execution

times per potential evaluation on a single T800 Transputer, for a system o/lOOO chains
of length 10, with a typical density o/2.3<j~3, and a cut-off radius o/2.5cr (a is a length

parameter).

Potential
Lennard- Jones

Bonding
Bending
Torsion

Evaluations
752292
9000
8000
7000

Time (/xs)
110
125
306
507

There are three main techniques for exploiting parallelism: processor farm,
particle parallelism, and geometric parallelism. We briefly discuss each one,
with reference to its appropriateness for the evaluation of the Lennard-Jones
interactions and its scalability properties.

16.2.1. Processor Farm. In the processor farm approach to parallel
processing, a group of independent work processors receive tasks ikom a single
control processor. Because of the bottleneck at the control processor, the
scalability is poor. Therefore, we do not consider this technique useful.

16.2.2. Particle Parallelism. The second technique for exploiting paral-
lelism assigns particles to processors [6, 7]. Each processor continually calcu-
lates the forces and the new positions for the particles it "owns." The initial
distribution of particles remains unchanged during the simulation and can be
chosen such that the workload is evenly distributed. For bonding, bending, and
torsion potentials, this technique is particularly convenient if particles from a
bonding, bending, or torsion tuple are assigned to the same processor. How-
ever, in some cases (those involving large chains and small processor networks,
for example), it is not possible to guarantee that all the particles involved will
belong to the same processor.

Implementation of the Lennard-Jones potential poses a problem. It is
quite possible for two particles, initially far apart, to approach each other
closely during the course of the simulation. Despite the short-range nature of
the potential, it is therefore necessary for each processor to communicate with
all the others to determine whether any two particles have come close enough
to each other (i.e., within Rc).

It is difficult to analyze the communication behavior of this technique a
priori. In general, it will be difficult to achieve good scale-up properties if
the processor network size increases. This disadvantage is quite serious, as
the bulk of the computation consists of the evaluation of Lennard-Jones (or
comparable) potentials.
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16.2.3. Geometric Parallelism. When geometric parallelism is applied,
space, rather than particles, is assigned to processors [8, 9]. During a
computation, a processor calculates the trajectories of all particles it finds
in its space. Because of the movement of the particles, some particles may
enter or leave a processor's space during the computation. For this reason,
processors continually need to redistribute the particles to ensure that each one
has the right subset. The short-range nature of the Lennard-Jones potential
can be used to determine which part of the universe should be assigned to a
processor—because the interaction does not extend over distances larger than
Rc, it is not necessary to exchange information over longer distances. As in
the "linked-list" method [1], we assume that the simulation box is divided into
a number of cells, such that particles interact only with particles in the same
cell or in neighboring cells. Hence, we can associate with each cell a search
space of cells in which particles to be investigated for interaction reside. In [4]
we considered several choices for cell shapes, such as octahedron, rhombic
dodecahedron, and cube, to determine which shape results in the smallest
search space. The cube turns out to be the best, because it has both a modest
volume and a modest number of neighbors (see Figure 16.1).

FlG. 16.1. Cell "C," with 13 neighbors in three dimensions. By using Newton's
third law (fij = —fji) it suffices to search only half the space, and 13 neighbors
therefore suffice.

Having divided the simulation box into a regular cubic lattice of cells, and
assuming a homogeneous distribution of particles, we can achieve good load
balancing by assigning the same number of cells to each processor. To minimize
communication costs, which, in general, depend on both the number of cells
for which results must be communicated between processors and the distance
between the communicating processors, cells must be assigned judiciously to
processors. Suppose we have a square torus of processors. The most "natural"
mapping (and also the most widely used) is the orthogonal projection of the
universe onto the torus of processors. This mapping has the advantage that
the wrap-around in the z-direction can be achieved without the need for extra
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communication. We can show, however, that this ^-mapping is not always the
best.

Suppose that the processor torus is of size Q2. We divide this torus into
subsquares of size q2 (q divides Q} and define a Hamiltonian path in each
subsquare, such that the endpoints are at a distance of at most 2. If the
size of the universe is n3 cells (Q divides nq; notice that there may be more
than one cell per processor in either dimension), we map columns of size
n(nq/Q}2 to each subsquare. In this way each processor gets a subcluster
of (nq/Q] x (nq/Q] x n/q2 cells. For the special case of q = 1, we obtain the
^-mapping; for larger q an implementation that also clusters in the ^-direction
is obtained. In this way it is possible to derive a formula for the communication
cost as a function of q. In [4] we show that column mapping is very efficient
for processor networks of up to size 32 x 32, but that for larger networks it is
better to map more spherical subclusters of cells.

When the size of the cubic cell is Rc, each processor needs particle
information from only four other processors. Figure 16.2 shows a situation in
which the cells are not cubic; the edge lengths are Rc/1 in the ^-dimension and
Rc/3 in the ^/-dimension. In that case, processor P needs to communicate with
17 other processors. In the most general case, communication cost increases
with the distance between the two communicating processors. Here, however,
we can avoid high cost by using the following scheme. First processor P receives
particle information from its first neighbor to the south (simultaneously
sending its own particles to its first neighbor to the north, north being the
positive ^-direction). P should then get information from its second neighbor
to the south, but this information has just been sent to its first neighbor to
the south. Thus, although the distance between P and its second neighbor to
the south is 2, the necessary information can be obtained at a communication
cost of 1. This principle can be extended, with the result that all data are
effectively obtained at a communication cost of 1. Consequently, the time
needed for communicating particle information is roughly independent of the
size of the processor network.

16.2.4. Multiparticle Potentials with Geometric Parallelism. So far
we have considered only the Lennard-Jones potential in combination with
geometric parallelism. For a multiparticle potential, such as the torsion
potential, the implementation seems to be rather complex. Four particles
are involved, and they may reside on different processors. Moreover, during
the course of the simulation the particles may change processors. Thus,
we cannot predict which processor should evaluate the potential if no extra
communication is allowed (see Figure 16.2). We can, however, prove the
following theorem.

DEFINITION 16.2.1. Consider a particle i, and let its Lennard-Jones list be
the collection of particles j for which a Lennard-Jones potential evaluation has
to be performed (the distance between i and j is thus at most Rc). Moreover,
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FIG. 16.2. Processor P and its environment of 17 other processors. Which
processor evaluates torsion potential (a, b, c, d) ? It cannot be P, as it lacks information
about particle d.

for any pair of particles, say p and q, p is not in the Lennard Jones list of q
or q is not in the Lennard Jones list of p.

THEOREM 16.2.1. Let the quadruplet ( z , j , / c , / ) of particles determine a
torsion. Assume that the distance between any two particles from {i,j,/c,/} is
at most Rc and that the search space of a cell is as shown in Figure 16.1. Then
there exists exactly one particle p £ {«,J, &, 1} such that the other three are in
its Lennard-Jones list.

In [3] a constructive and more general proof is given; here we give only
a sketch of a proof. Let (i, j, &, /) determine a torsion such that the distance
between any two of the four particles is at most Rc. Then we can determine
a cubic block of eight cells, each of size Rc, such that all four particles are in
this block. Assume that one of the four particles is in the cell marked with a
dot (Figure 16.3A; compare the dotted cell with cell C in Figure 16.1). Then
the other three particles are in the search space of this cell and, hence, in
the Lennard Jones list of the particle residing in this cell. This particle will
therefore have information for the other three particles (in fact, it is the only
one that does so; see the definition of the Lennard Jones list), and it should
evaluate the torsion potential. To complete the proof, we next assume that
none of the four particles is in the marked cell of Figure 16.3A and, hence, that
all four particles lie in the remaining seven cells (Figure 16.3B). Assume that
one of the four particles is in the cell marked with a dot (in Figure 16.3B).
Then the other three particles are in the search space of this cell and, hence,
in the Lennard Jones list of the particles residing in this cell. Next we assume
that none of the four particles is in the marked cell of Figure 16.3B and, hence,
that all four particles lie in the remaining six cells, and so forth. By continually
choosing an appropriate cell and a particle in that cell, proving that the other
three particles are in the search space of that cell, and removing that cell, all
possibilities can be checked. This proves the theorem.
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FIG. 16.3. Three blocks of cells.

Thus, by using the information of the two-particle Lennard-Jones poten-
tial, we can determine which particle, and hence which processor, should eval-
uate the torsion potential. It is possible to prove a similar theorem for other
multiparticle potentials. For the evaluation of multiparticle potentials, no ex-
tra communication is needed, beyond that for the Lennard-Jones potential,
when geometric parallelism is used.

16.3. Timing Results

Our simulations are run on two toroidal networks of T800 Transputers, one
with 36 and the other with 400 processors. The implementation (written in
Pascal) does not assume a relation between the size of a column of the universe
and the cut-off radius Rc. Furthermore, a processor can have any number of
columns in the x- and y-directions. The Lennard-Jones lists are used to keep
track of nearby particles for the Lennard-Jones potential. If the search space
of a cell is enlarged slightly, these lists can be used for several (typically 10)
iterations before updating.

Without using bonding, bending, or torsion potentials, we found the
following formula for the time T per timestep [4]:

where p denotes the density, N the number of particles, and P the number of
processors. There is some performance degradation when N/P becomes very
small.

For an average system, the number of bonding, bending, and torsion
potentials is several orders of magnitude smaller than the number of Lennard-
Jones evaluations (see Table 16.1). We found that the Lennard-Jones potential
is responsible for 92-94% of the time needed to calculate all forces. This
includes the search for all three- and four-particle tuples constituting the
potentials.



Applications on Advanced Architecture Computers 185

16.4. Applications
The implementation described here has been used to study the behavior of
rather large systems. The first application consisted of surfactants in water and
oil solutions [11]. The water and oil were modeled by using particles interacting
by a Lennard-Jones potential. The water-water and oil-oil interactions were
truncated at 2.5cr, while the water-oil interaction was truncated at 1.12cr, so
as to make this interaction completely repulsive. (The potential minimum of
the Lennard Jones function can be found by solving "dLJ(r)/dr = 0." The
result is r = 21/6cr, which is « 1.12cr. After the shift only a repulsive part
remains.) Surfactants were introduced by using harmonic spring potentials to
chain together water-like and oil-like particles. In this way, a surfactant could
have a hydrophilic head and a hydrophobic tail. No specific three- or four-
particle potential was used. A simulation was started with 39,304 particles,
a density of 0.7cr~3, equal amounts of bulk water and oil, and surfactants
randomly placed in the simulation universe at concentrations of 1.5 and 3%.
After 250,000 timesteps (At = 0.005; we use reduced units [1]), the system had
many interesting features.

The surfactants were aggregated into spherical micelles, a monolayer was
formed, and there was a depletion layer void of surfactants close to the
interface. The micelles were evident in the water phase; the oil phase was much
less ordered. One of the novel aspects of these simulations is that the interface
and the micelles are described with one model, whereas previous theoretical
work was concerned mainly with either isolated micelles or a monolayer.
In earlier simulations of much smaller systems (up to 1000 particles), the
formation of micelles was not observed. A possible explanation is that those
systems were too small for this phenomenon to be observed; finite size effects
prevent cluster formation because of periodic boundary conditions. When
a parallel machine is used, much larger systems can be studied in a cost-
effective way, and simulations like the one reported here become possible. In
this case, one iteration of the 39,304 particle system takes 0.82 seconds on the
400 processor network, while a vectorized version on a much more expensive
single processor Cray X-MP takes 2.2 seconds.

The second application involves the simulation of universes consisting of
chain molecules, like decane [5]. In this work, we simulated a universe of 1000
chains of length 10. Within a chain, bonding, bending, and torsion forces were
used, as in [10], and a Lennard-Jones potential, cut off at 2.5<r, was applied
between nonbonded atoms and atoms separated by more than three bonds.
The density was approximately 2.3<J~3.

Starting from a high temperature, the system was cooled down to 210°K,
using the loose coupling techniques of [2]. The temperature coupling At/r^ was
set to 0.0001, and the pressure was kept at 1 atmosphere by using a pressure
coupling constant A£/TP of 0.00001. The timestep was set to 10 femtoseconds.
The system started to show crystallization behavior as soon as 210°K had been
reached. The ordering process took approximately one million iterations (10
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nanoseconds of simulated time), resulting mostly in two large layers of decane,
wrapped around the periodic boundaries. Using a new algorithm, we are able
to identify all nuclei in the system and thus to study the nucleation process in
great detail. Furthermore, the size of the simulated systems is kept large to
minimize size effects. One timestep in this simulation takes 0.85 seconds on
the 400 processor network, while a comparable run on a Silicon Graphics Iris
4DW35 takes 15 seconds.

16.5. Conclusion
Parallel computers can be successfully applied to solve problems that are too
large to be tackled by conventional workstations. Some phenomena depend
critically on the size of the simulated system. We have presented our approach
to an efficient parallel implementation that is being used by physicists and
chemists at our laboratory.
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Chapter 17

A Review of Numerous Parallel Multigrid Methods

Craig C. Douglas

Editorial preface

The study of multigrid methods is a contemporary topic that is undoubt-
edly an important algorithm for solving many modeling problems. Thus
the parallelization of multigrid methods has broad applicability. The
multigrid method in the context of parallel implementations is reviewed
and implementation details relative to current programming methods are
considered. This chapter is "must" reading for anyone interested in multi-
grid methods.

This article originally appeared in SIAM News, Vol. 25, No. 3, May 1992.
It was updated during the summer/fall of 1995.

Parallel multilevel methods are shown to be the natural precursors to
standard multilevel methods based on the personnel computing era of earlier
this century. They are also the natural successors to standard multilevel
methods in the age of computers. What makes six parallel multilevel methods
practical and impractical is discussed in the context of the three algorithms
that encapsulate them.

17.1. Preliminaries

Multigrid methods originated earlier this century, in the personnel computing
era. Someone who needed to compute an approximation to the solution
of a partial differential equation during that era would fill a room with
people. After using very simple mechanical calculators to compute parts of
the approximation, these people would pass their parts to the other people
in the room who needed them. Except for the very different timescales and
approximate solution accuracy, this process is similar to computing on today's
distributed-memory parallel computers.

The most basic model problem for elliptic boundary value problems in
multigrid has always been, effectively, the two-dimensional Poisson equation
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on a square, namely,

An N x N uniform mesh with mesh spacing h = l/(N — l ) is placed over f]
as shown in Figure 17.1.

The grid points are o^-, where 1 < i, j ' < JV. A central difference discretiza-
tion is applied to (17.1) to get a set of linear equations

where F^_i^+j — h2f(xij) and A = [— /, T, — /] is the block tridiagonal matrix
defined using the N x N matrices /, the identity matrix, and T = [—1, 4, —1],
a tridiagonal matrix.

In the early part of the twentieth century, partial differential equations
were approximately solved by relaxation techniques. (In fact, many types of
equations are still solved in this way today.) Solving (17.2) by a Gauss-Seidel
method could take the rest of the personnel computers' lives if TV was large
enough and the required accuracy was strict enough. Hence, new tricks were
needed to reduce the computation time.

FlG. 17.1. Uniformly meshed domain.

During the 1920s, and probably several decades earlier, two-level schemes
were used by engineers. An auxiliary grid fli was used to generate an initial
guess to the solution to (17.2) on 172-

Let GS(j,n) = n Gauss-Seidel sweeps on level j. Algorithm 1, a one-way
two-level algorithm is defined as follows.

ALGORITHM 1. One-way Two-Level
(a) Solve the problem on 17i by any means.
(b) Interpolate U\ onto f^-
(c) Do GS(2, •) until convergence.

Bilinear interpolation was typically used in step b. Let
of grid points on grid ty and define

be the numbernI
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FIG. 17.2. Meshes for the two-level schemes.

FIG. 17.3. Multiple grid meshes.

Before digital computers were commonplace, 02 was typically between 5 and
10 (see [30]).

During the 1960s, Soviets developed what is now considered true multigrid
(see [3, 4, 19, 20]). In this case, the auxiliary grid Oi was used to correct
approximations to the solution to (17.2) on ^2; see Figure 17.2. Algorithm 2,
a two-level correction algorithm is defined as follows.

Projection of the style of step b, known as injection, is in disfavor today;
once again, bilinear interpolation has become typical. In this case, &2 is
typically 4. (Note that this changes f^i in the diagram.)

Algorithm 2 is a notoriously slow algorithm for solving (17.2). The
best trick for speeding it up is to use more than two grids. Define fJj,
j = 1 , . , . , / c according to Figure 17.3 and place uniform meshes fij over fi,
with hj = a 3hk, for some a G H. Then solve

using the C7j, j < k in some prescribed manner.
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Other tricks include

• using different orders of interpolation (e.g., bicubics instead of bilinears)
or projection to transfer information between meshes,

• using better discretization methods (e.g., finite-elements or volumes) for
the partial differential equation,

• solving the level-1 problem by a direct method,

• using a more sophisticated solver, such as conjugate residuals or
BiCGSTAB,

• starting the computation on level 1 instead of level k. (This is commonly
referred to as a nested iteration in multigrid lingo.)

Thus, for a general linear differential equation on some domain 17 that has
been discretized into a sequence of problems j — 1, . . . , fc, we have

The solution spaces M.J are typically function or vector spaces based on the
discretization method (typically, finite differences, finite elements, or finite
volumes), and C stipulates that Aj is a linear operator on M.J. We assume
that there exist mappings between the neighboring spaces:

While not necessary (see [15]), we also assume that there are mappings
Qj : M.J — » Aij-i such that

This leads to Algorithm 3, a truly abstract correction algorithm of the following
form.

This definition assumes that \i\ — 1. Common values for /ij, 2 < j < fc, are
1 (V cycle) and 2 (W cycle). It is quite common for either the PreSolver or
the PostSolver (but not both) to be the identity operator. Common solvers
are relaxation methods and conjugate gradient-like methods. On the coarsest
grid, a direct solver may be used.
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The purpose of this article is not to analyze Algorithm 3 (see [14] and [15]
for extensive analysis) but to discuss various methods for parallelizing it.
Further, no mention will be made of nonlinear and/or nested iteration versions
of Algorithm 3—the commentary applies to these cases verbatim.

There are two major themes in parallel multigrid today; telescoping and
nontelescoping methods. Telescoping methods (cr > 1) include domain decom-
position methods and a method that computes on all levels simultaneously.
Nontelescoping methods use multiple coarse subspaces in which the sum of the
unknowns on any level equals the sum on any other level.

17.2. Telescoping Parallelizations
Domain decomposition techniques [5] offer a relatively easy path to paralleliz-
ing Algorithm 3. Each processor computes on the block of data per level that
is assigned to it.

Because almost no work is required to get good convergence bounds,
this is certainly the most attractive parallelizing technique from a theoretical
standpoint. The method is merely a block iterative method used for the
approximate solver combined with standard multigrid. Hence, many standard
multigrid convergence theorems apply verbatim.

Some communications and processor scheduling issues arise with this
method. The amount of data communication involved and the location of the
processors in a network will determine whether or not the problem is converted
into an input-output problem rather than a computational one.

The factor Oj in (17.3) determines the telescoping of unknowns and thus
plays a key part in processor scheduling. When the number of unknowns
assigned to each processor falls below some threshold (which is a function of the
problem, processor speed, and communications bandwidth and latency), some
of the processors may be idle some of the time. To avoid this, an agglomeration
of unknowns is typically performed, and a certain number of processors become
completely idle or compute the same thing.

Having idle processors may seem like a waste of computer time on a parallel
processor, but it actually is not necessarily the case. If the problem can
be solved faster (as timed by a stopwatch) with some processors out of the
computation some of time, then it is clearly a good approach, even if it is a
bit wasteful. The principal reason for actually solving problems on parallel
computers is that the results are perceived to be needed much sooner than
just running many problems, one per processor.

As an aside, more and more parallel computing seems to be done on clusters
of workstations (i.e., distributed computing) rather than on explicitly parallel
machines. The workstation approach means that when a processor is out of
the computation, its task scheduler can assign it to work on something else;
thus, it may not actually be idle. This also occurs naturally on a parallel
machine that has a multiuser or multitasking operating system on each node
of the machine.
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During the approximate solve steps, information must be passed between
processors along neighboring data regions. If a solver like conjugate gradients
is used, then information from dot products and matrix-vector multiplies will
also clutter the communications mechanism.

An asynchronous relaxation method would seem to be ideal in this
environment. With this approach, each processor does its local relaxation
method and uses the information obtained most recently from other processors.
This is fast, and if the standard relaxation procedure converges, so does
the asynchronous version, just not quite as quickly [8]. Unfortunately,
asynchronous relaxation methods have never caught on in the parallel multigrid
community, mostly because the small number of smoothing iterations (2-6
iterations) makes it impossible to ignore changes in neighboring data.

Another approach to telescoping multigrid involves massively parallel
computers (at least as many processors as unknowns on all of the meshes).
Gannon and Van Rosendale [22] proposed what is referred to as a concurrent
multigrid method. Typically, this means there should be TV logd N processors
for a d-dimensional problem.

The concept is that all operations should be performed simultaneously on
all unknowns on all levels. An initial approximation of zero is assumed for the
solution. Two sets of vectors, qj and dj, are used to hold information about
right-hand sides and data on the spectrum of levels in the sense that

A third set of vectors, Xj, contains the approximations to the solutions to each
problem on each level. This information percolates to the finest level, fc, to
finally provide the approximate solution to the real problem. Algorithm 4,
CMG(k,fj,, Ffc), is as follows.

ALGORITHM 4. CMG
(1) Initialize in parallel:

(2) Repeat
(2a) Smoothing in parallel

(2b) Compute data corresponding to xj in parallel:

(2c) Compute residuals in parallel:

(2d) Project q onto coarser levels in parallel:
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This definition assumes that /x evenly divides twice the number of levels.
Algorithm 4 has a number of noteworthy aspects. First, communication

between adjacent levels is twice the amount that would be expected. This is
absolutely required in order for the algorithm to be consistent (without which
it diverges).

Second, this algorithm limits what types of iterative methods qualify as
approximate solvers. The cost of one iteration on any level must be the same
as the cost on any other level, assuming one processor per unknown. If the
matrices Aj are similar enough to each other, Jacobi and conjugate gradients
are fine, but Gauss-Seidel and symmetric successive overrelaxation (SSOR) are
not. The latter two methods assume that the data is traversed in a particular
order rather than all at once. Hence, the length of time to complete each
iteration is dependent on the number of unknowns, violating the requirement
of identical time per level.

Third, the number of levels that information must traverse to move from
the finest level to the coarsest one and back is twice the usual number.
Hence, all work estimates will be 0(2 log TV) (with the 2 being part of the
constant) asymptotically in the number of levels, the usual multigrid method
of estimating the problem complexity. This may seem high, but it is actually
equivalent to the complexity of a standard V cycle.

Finally, there is a similar, but quite different, approach to parallel
multigrid: apply a domain decomposition method to the finest grid and then
use a serial computer multigrid method on each of the subdomains. Studies
have shown (e.g., [23]) that this is not as fast an approach as using domain
decomposition methods on each level of the multigrid algorithm.

17.3. Nontelescoping Parallelizations

Several competing methods have the same number of unknowns on each level.
Each method has advantages and disadvantages.

The concept of using multiple subspaces to solve a problem whose solution
lies in a particular space is hardly new. In fact, no one from the era in which
it was invented is alive today. We will never know who really invented it, but
we can be certain that it was introduced no later than in 1869 [29]. Further, it
has been an active area of research in the field of symmetry groups (see [18])
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for many years.
Assume a rooted tree of problems (see (17.4)) that are arbitrarily num-

bered. For a given problem fc, it either has a set Ck of coarse space correction
problems or it has none at all (i.e., Ck = 0). When Ck ̂  0, there are restriction
and prolongation operators for each coarse space problem t 6 Ck such that

We also assume that there are mappings

These mappings are defined much as in the serial case.
A multiple coarse space correction multigrid scheme is defined by algorithm

5, MCSMG(j,jjij,Cj,Xj,Fj), as follows.

The performance of any variant of Algorithm 5 is dependent mainly on
how small 6j is, where

This is a measure of how many of the error components in Mj are not
completely represented in the subspaces.

Ta'asan [31] introduced this method to the multigrid community when
standard multigrid failed to converge for a class of problems with highly
oscillatory solutions. He uses standard interpolation and projection methods
and a Kaczmarz relaxation method in his examples.

Using a different set of interpolation and projection methods Hack-
busch [26] developed a variant of Ta'asan's method using standard smoothers.
Ta'asan's and Hackbusch's methods are both referred to as robust multigrid,
which adds confusion (and heated discussions) to the field. More recently,
Hackbusch's method has been referred to as frequency decomposition multi-
grid [27].
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Frederickson and McBryan [21], using an approach different from that of
Gannon and Van Rosendale, also investigated ways to keep all of the processors
busy on a massively parallel single-instruction multiple-data (SIMD) machine.
They used standard interpolation and projection methods and an elaborate
smoother on each level. Unless great care is taken, this method computes the
correction in one of the correction spaces while the corrections in the remaining
spaces add up (pointwise) to zero. Their method is referred to as parallel
superconvergent multigrid. A comparison of this method with that of Gannon
and Van Rosendale might make an interesting student exercise.

The methods of Ta'asan, Hackbusch, and Frederickson-McBryan all use
interleaved grids. For a problem on a square, this translates into the following,
where the numbers refer to which subproblem the unknowns belong:

3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2

(The motivation is similar to that for multicolored orderings [1] for standard
iterative methods.) Each of these methods requires that all of the matrices
associated with the spaces be generated, except in trivial cases, thus doubling
the memory requirements expected for solving boundary value problems. In
addition, the coarse space operators are more difficult to compute using
Hackbusch's variant than with either of the other two methods. In general,
these are all space-wasteful methods.

A fourth, very different, approach that my colleagues and I developed, is
referred to as either constructive interference [17] or, more recently, domain
reduction (many references can be found in [9] and [16]). Our original
motivation for using a multiple coarse space parallel multigrid algorithm was to
eliminate the approximate solve step from standard multigrid algorithms. The
solver takes most of the computational time but contributes almost nothing
to the convergence rate, whereas coarse grid corrections take little time and
reduce the error substantially. A general theory and simple examples were
developed for multiple coarse space methods using no solver on the finest grid
and mutually orthogonal subspaces that covered all of the error components
of the original space (thus, 6j = 0 in (17.5)). This leads to very efficient direct
methods rather than the expected iterative ones.

A side benefit of this theory is that the fine grid problem and, if a trick
is used, most of the coarse space matrices do not need to be generated [9].
This method can use substantially less memory than a standard iterative or
multigrid algorithm.

An additional note about domain reduction is that it leads naturally
to more than 2d subspaces for a of-dimensional problem. An eight-way
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decomposition of a problem on a square can be constructed, leading to
problems denned on squares, rectangles, and triangles [6]. Both 60- and 64-
way decompositions of a problem on a cube can be constructed with moderate
difficulty [9]. In theory, a 192- way decomposition of a problem on a cube
is possible. The entire problem would be solved 2660 times faster, if each
of the 192 subproblems were solved by sparse Gaussian elimination, than if
the original problem is solved by the same method (the latter is not advised,
however) .

To see how each of the variants operates, consider various projection
operators in one dimension (where XQ = c/y+i = 0):

Let one subspace consist of the odd numbered y^s and another sub-
space for the even numbered y^s. This is used by both Ta'asan and
Frederickson-McBryan.

Linear-linear orthogonal complement projection: for 1 < i < N,

The subspaces are defined as in the linear projection case. The values
at odd numbered ?/i's correspond to the orthogonal complement of the
traditional space defined by linear projection. This is used by Hackbusch
and is actually a set of prewavelets.

Symmetric-antisymmetric projection: for 1 < i < N/2,

One subspace consists of y^s and the other of y^s. This defines a domain
folding (or reduction) where even and odd functions are annihilated in
exactly one subspace and exactly reproduced in the other. This is the
method that my colleagues and I used.

The two-dimensional definitions of the above are defined in the obvious
manner using tensor products.

Unfortunately, these methods have not been directly compared on a
nontrivial example problem. The closest is a simple problem from the
literature:

lINEAR PROJECTIOPN: FOR
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To make things comparable with known results, a uniform mesh is used, a
standard (simple) discretization, the energy norm, one Jacobi iteration in the
analysis for multigrid (MG) and robust MG, and a direct solve on the coarsest
level(s). The contraction factors are the following:

Method
MG
Robust MG
Domain reduction (iterative)
Domain reduction (direct)
Parallel superconvergent

Contraction factor
0.97
0.33

e
0.00

"small"

(17x17 grid)
(h independent)
(h independent)
(h independent)
(h independent)

The solver in the domain reduction method is either iterative (solving
each problem to an accuracy of e) or direct. If the smoother called for in
the parallel superconvergent method can be constructed, then the contraction
factor missing from the table will be very small, on the order of 0.05. Note
that a line relaxation method, instead of point Jacobi, would make multigrid
work well.

17.4. Implementing Parallel Multigrid

17.4.1. Shared Virtual Memory. I have been distributing a public do-
main multilevel, aggregation-disaggregation code, Madpack (see [10] and [13])
for some years. Madpack is really a linear algebra package, rather than a
package designed specifically for partial differential equations. The user spec-
ifies the domain or differential operator to Madpack indirectly, not directly.
Interpolations and projections are computed as matrix-vector multiplies. Sev-
eral sparse matrix formats are allowed including a stencil format that is very
efficient on regular meshes.

Madpack2, first distributed in early 1986, has a sparse matrix-vector
(and matrix transpose-vector) multiplier, a sparse direct solver, and three
smoothers, namely, Gauss-Seidel, conjugate gradients, Orthomin(l). The
latter two are preconditioned by SSOR. It is quite compact.

As an experiment, I parallelized parts of it in 1989 in the spirit of finding
out how painlessly it could be done. Since I wanted to run my code on
distributed-memory (Intel iPSC2) and shared-memory (Sequent Symmetry)
parallel processors, as well as a network of workstations with a minimal amount
of code changes, I started from the C version of Madpack and adapted it to the
Linda system [7]. (I rejected proprietary message-passing systems at the time
on the grounds that I refuse to program in any computer's assembly language,
so why would I voluntarily program my communications in exactly that sort
of nonportable environment?)

First, I realized that the obvious approach of storing matrices by column
strips and vectors by row strips meant that the sparse matrix-vector multiplies
were trivial to implement in parallel. I then replaced the three smoothers by
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two—diagonally preconditioned conjugate gradient and Orthomin(l)—which
added a parallel dot product routine. Then I load balanced the operating
processors by maintaining the same number of unknowns per processor
independent of the level (effectively agglomerating at each level). Finally, I
made absolutely sure that if I was doing a direct solve on the coarsest level,
that I had only one processor involved. (The point of this exercise was to
learn something about implementing something substantial in parallel and get
something running quickly, not to produce a product quality code.)

The good news is that it was reasonably efficient in all three machine
environments. The first implementation (on the Sequent) took a long time;
the second (on the Intel iPSC/2), which unfortunately required porting to the
distributed-memory environments, took an afternoon. With twenty minutes
more work, I also had a simple three-dimensional domain reduction example
running (with 99% parallel efficiency) that produced publishable results.
Assuming there was really enough data associated with each active processor
to keep them all active computationally, the parallel efficiency could be kept in
the 75-99% range for most problems tried, even accounting for idle processors.

The bad news is that the differential equation front end to Madpack had to
determine how to break natural data objects like vectors and sparse matrices
into strips. This was not nearly as painful as had been expected but introduced
many subtle bugs into the process that had to be found and fixed.

17.4.2. Explicit Message Passing. Over the years, Madpack has evolved
into an object-oriented code based on a combination of C and Fortran [13].
More solvers have been added, temporary memory is dynamically allocated
and freed, and the extremely complicated data structures have been hidden
from the user.

The latest version, Madpack5, has been parallelized [28] using several
message-passing systems (IBM's MPL, Intel's NX/2, and MPI). Information
concerning the global problem must be entered before the package can
determine which processor has which part of the global data. A fairly simple
approach was taken once again. The advantage is that the user interface
remains almost identical to the serial case: each processor calls the same
routines in the same way as in the serial case, but one more routine is called
to register local and global information.

By using a small collection of routines for the parallel communications that
is not based on any specific message-passing system, it is now fairly painless to
add interfaces to message-passing systems not already addressed. Due to the
large number of ports of systems like PVM [24] and MPI [25], this is likely to
be the direction that almost everyone in the scientific computing community
takes.

17.4.3. Cache Awareness. Many parallel computers of the middle 1990s
use RISC-based processors. As is commonly known, RISC processors require
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very careful use of their memory caches in order to operate at a high percentage
of their peak speeds. (A cache is a very fast memory system that is tightly
coupled to the processor that duplicates small parts of the main memory.) Most
multigrid codes, for parallel or serial computers, do not attempt to optimize
for caches. This is a serious flaw since it can be done quite easily, though not
completely portably.

For example, consider a red-black ordering of Gauss-Seidel on a grid like
that in Figure 17.1. The red-black ordering specifies that the red points are
relaxed first, followed by the black ones. The usual implementation does this.
Hence, all of the data (matrix, unknowns, and right-hand side) passes through
the cache twice. Instead, the following algorithm can be performed.

ALGORITHM 6. Cache Aware Red-Black Gauss-Seidel
(a) Update all of the red points in row 1.
(b) Doj = 2,N

(bl) Update all of the red points in row j.
(b2) Update all of the black points in row j; — 1.
(b3) End Do

(c) Update all of the black points in row N.

When four grid rows of data along with the information from the corre-
sponding rows of the matrix can be stored in cache simultaneously, this is a
cache-based algorithm (a domain decomposition approach can be used to do
this when four rows do not fit). The advantage is that all of the data and the
matrix pass through cache only once (instead of the usual twice) per iteration
of Gauss-Seidel.

On many machines, this improvement alone speeds up a multigrid solver by
25-40% alone. Other steps, like residual computation, projection of residuals,
and interpolation can be drawn into a complex, cache-aware multigrid algo-
rithm [12]. The speedup can be quite startling (e.g., 600% on some machines
with particularly badly designed memory systems).

17.5. Conclusions

Parallel multilevel methods, which originated earlier this century in the
personnel computing era, were the natural precursors to standard multilevel
methods on single processors. Parallel multilevel methods are also the
natural successors, in the age of advancing computers, to standard multigrid
methods. What makes the six parallel multilevel methods different, practical,
and impractical was discussed in the context of the three algorithms that
encapsulate them. Because no one has carefully compared all of these methods,
on a collection of common problems, on a variety of machine architectures, it
is difficult to determine the conditions in which a particular method is really
the right or wrong choice.

Using high-level programming tools makes implementing these methods
much easier, although nontrivial. The use of low-level tools, such as explicit
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message-passing methods, should have been dismissed by the scientific com-
puting community as a waste of human time. However, the community has
flocked to message-passing systems, and this choice has been considered here.
In fact, the choice is not as bad as it once was now that a standard exists for
message-passing systems (i.e., MPI).

Whether or not high-level tools are used, parallel multilevel methods scale
well assuming there is enough data to make using a parallel computer quite
worthwhile. By paying close attention to the cache, dramatic improvements in
speed can also be achieved.

There are a number of parallel multigrid codes in existence. In particular,
the SUPRENUM project produced a collection of interesting codes [2]. There
are several parallel multigrid codes available by anonymous ftp from MGNet.

17.6. MGNet
MGNet (see [10] and [11]) is an Internet repository that contains numerous
preprints, conference proceedings, codes, a large bibliography, and general
information about multigrid methods. It can be accessed through either the
World Wide Web or anonymous ftp.

Location
USA
Europe

Anonymous ftp
na.cs.yale.edu
ftp.cerfacs.fr

WWW URL
http : //na . cs . yale . edu/mgnet/www/mgnet . html
http : //www . cerf acs . f r

A monthly electronic newsletter can be subscribed to by sending a request
by e-mail to mgnet-requests@cs.yale.edu.
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Chapter 18

Shared-Memory Emulation Enables Billion-Atom
Molecular Dynamics Simulation

Eduardo F. D'Azevedo
Charles H. Romine

David W. Walker

Editorial preface

Exploiting parallel computing technology in molecular dynamics (MD) is
a logical approach. There can never be enough atoms in the simulation,
since the more atoms there are the closer the simulation is to providing
macroscopic understanding. Parallel computing is the only viable path
that can provide the requisite computing power to continuously increase
the number of atoms in MD simulations.

This chapter details the simulation of one billion atoms on a distributed-
memory machine using a software interface that provides a logical shared-
memory view of the machine.

This article originally appeared in SIAM News, Vol. 28, No. 5, May/June
1995. It was updated during the summer/fall of 1995.

Very large scale molecular dynamics (MD) simulations, involving hundreds
of millions of atoms, allow the study of "macroscale" material properties and
are thus receiving a lot of attention from researchers. To simplify parallel
programming for MD applications, we developed shared-memory emulations
of large-scale (more than one billion atoms) MD codes, which we ran on Oak
Ridge National Laboratory's Intel Paragon, a distributed-memory computer.

We began with a parallel MD code for simulating Lennard-Jones fluids
that had been written originally for an explicit message-passing environment.
Using shared-memory primitives, we rewrote the code; the resulting code
has no explicit message primitives and resembles a serial code. The shared-
memory code can perform dynamic load balancing, and its performance is
competitive with that of other explicit message-passing MD codes using spatial
decomposition. This code was then applied to a billion-atom simulation.

It was the inherent difficulty of programming for a message-passing
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environment that motivated us to develop the Distributed Object Library
(DOLIB) [3, 5], which emulates a shared-memory environment. During the
design of DOLIB, we were guided by several questions: (1) What programming
environment will allow the rapid porting of a serial code to a massively parallel
machine? (2) How can particle tracking be done effectively in a situation
in which the velocity field can cause the particles to cross interprocessor
boundaries? (3) How can dynamic load balancing be supported in a natural
way on distributed-memory MPPs?

We have used DOLIB in the rapid parallelization of several large-scale serial
application codes, including groundwater and global atmospheric models, in
addition to the large-scale MD simulations described here. This article may
be of interest to scientists or programmers considering the use of shared-
memory emulation for more sophisticated MD simulations or for particle-in-
cell methods. The new parallel MD prototype code can perform dynamic load
balancing and achieves performance competitive with codes that use spatial
decomposition and explicit message-passing.

18.1. DOLIB

Distributed-memory multiprocessors have proved to be scalable and to offer
good performance. Because of the limited memory on each processor node,
however, programmers generally need to perform their own data decomposi-
tion, carefully moving needed data among nodes by explicit message-passing.
Writing parallel application code in this way can be difficult. Shared-memory
emulation enables a programmer to make full use of the aggregate (gigabyte)
memory resources of a system while avoiding the difficulties of message-passing.

Achieving good performance with strongly coherent, emulated shared
memory on a distributed-memory system requires an effective caching strategy.
Thus, much of the research into shared virtual memory, such as Li [6], Li and
Hudak [7], and Stumm and Zhou [16], concerns intricate network protocols
that maintain cache coherency in the presence of multiple concurrent updates.
Shiva [8] is a shared virtual memory system for the Intel iPSC/2 hypercube
multiprocessor; it uses the Memory Management Unit (MMU) page fault
mechanism on each Intel i386 node to generate memory requests for remote
pages. The CHAOS library [15] is an attempt to provide support for the
parallel solution of irregular problems, i.e., problems whose communication
patterns are not easily predictable. CHAOS is a runtime library that can
analyze the pattern of indirect addressing of arrays and automatically devise
an optimized schedule of communication. The Global Array (GA) library [11],
developed at Pacific Northwest Laboratory, supports asynchronous access
to logical blocks in physically distributed matrices for use in computational
chemistry. MetaMP [12] offers a programming environment with C++ classes
and preprocessors that supports lightweight sharing through weakly coherent
mechanisms.

DOLIB is similar in many ways to GA and MetaMP in that it provides a set of
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Fortran and C callable routines to emulate weakly coherent shared memory in
distributed-memory environments, such as Intel multiprocessors and clusters
of workstations. DOLIB supports runtime dynamic creation and destruction
of one-dimensional global arrays. Index calculations can be used to support
higher-dimensional arrays. Explicit gather and scatter operations provide
access to array elements. DOLIB is portable in that no language extension
is introduced and no preprocessor, compiler, or operating system support is
required.

A global array in DOLIB is stored as fixed-size pages in a block wrapped
fashion across all processors. DOLIB translates requests for remote data
(gather) or updates (scatter) into the appropriate message sent to the
"owner" processor of that data page. These DOLIB requests are then serviced by
the IPX [10] message system, which is based on the concept of active messages.
We have also used global shared memory in DONIO [4] as a large disk cache to
enhance I/O performance on the Intel Paragon.

18.2. The Message-Passing Code

To demonstrate that logically shared memory on distributed-memory com-
puters is useful in large-scale computations and performs at least as well as
traditional message-passing codes, we implemented a DOLIB version of a three-
dimensional MD code for simulating a Lennard-Jones fluid. We created the
DOLIB version by modifying a message-passing MD code that was ported to the
Intel Paragon and enhanced by David Walker of ORNL. The message-passing
code was originally written at the University of Southampton, England, and
subsequently adapted to run on the Intel iPSC/2 hypercube at Daresbury
Laboratory.11

The message-passing code uses a link-cell (geometric hashing) algorithm in
which all particles are hashed into a three-dimensional mesh of JV& x N^ x Nb
cells to model short-range atomic interactions. The minimum cell size is the
cut-off distance (rc) used in the short-range force evaluation, so that each
particle interacts only with particles in the same cell or in the neighboring
cells. Exploiting the symmetry of Newton's third law, the code requires the
examination of atoms in only 13 (instead of 26) neighboring cells. The code
assumes an Nc x Nc x Nc face-centered cubic (FCC) periodic lattice with a
total of N = 4AT? atoms. Use of a "shifted-force" [14] Lennard-Jones 6-12
potential ensures that the potential and its first derivative are continuous at
the cut-off distance. A simple Verlet [17] leapfrog scheme is used to update
particle positions at each timestep. Details of the MD algorithms used are
described in [1].

The MD code distributes the cells in blocks over a three-dimensional mesh
of processors in such a way that each process is responsible for the particles in
a rectangular subdomain. Particle information for cells lying at the boundaries

11 The source is available from the CCP5 archive at ftp.dl.ac.uk:/ccp5/SOTON_PAR.
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of a process must be communicated to one or more neighboring processes, since
these particles may interact with particles in neighboring processes.

The code uses the standard approach of creating "ghost" cells around the
boundary of each process. The communication can then be performed in a
series of six shift operations (one for each face of the rectangular subdomain).

Particles can migrate from the subdomain of one process to that of another.
The induced communication can again be performed in a series of shift
operations. In the message-passing code, communications of boundary data
and particle migration are combined to reduce the frequency (and hence the
overhead) of message-passing.

This communication scheme requires that the code developer explicitly
manage the packing of particles into message buffers, the communication of the
message buffers, and the unpacking of the message buffers at the destination
process. The coding of these operations is tedious, error prone, and as we show
in this article, unnecessary.

18.3. Overview of Parallelization with DOLIB

We used DOLIB to develop an emulated shared-memory version of the MD code.
The two codes are similar in overall structure; however, we believe that the
new code, without the complexities of explicit message-passing, is much easier
to write and understand.

The two most time-consuming kernels in the MD codes are those for (1)
geometric hashing and the migration of atoms and (2) the force and potential
evaluations. Hashing the atoms, which can be parallelized easily, requires only
O(N) work. The link-cell method is memory efficient, requiring only O(N^}
storage for the three-dimensional bins, nine real vectors of length TV (x,y,z,
vx,vy,vz, fx,fy,fz, for the positions, velocities, and forces, respectively), and

an integer vector of length N for maintaining the link cells. The total storage
requirements, then, are 40A/"-|-O(A^) bytes for single precision or 52N+O(NJf)
bytes if the vectors (fxj /y, fz) are in double precision.

Another common technique is to construct and maintain, for each atom, a
list of neighboring atoms [17] that is updated every few timesteps. These lists
can grow quite long, however, resulting in prohibitive memory costs for very
large scale MD calculations.

We implement the link-cell method by performing a global reordering or
renumbering, so that all atoms in a bin are contiguously numbered; if each bin
has, say, 10 atoms, then after the reordering, the first bin will contain atoms
1 to 10, the second bin will contain atoms 11 to 20, and so forth.

Two passes are required for the geometric hashing and reordering. The
first pass performs the geometric hashing and stores the result of the mapping.
For each bin, we compute the number of atoms to be assigned.

In Figure 18.1, element i in the particle-to-bin array holds the bin
number of particle i. The particles-in-bin array gives the total number
of particles in each bin. Both are DOLIB global arrays. The DOLIB atomic

D
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FIG. 18.1. Hashing of particles into bins. The solid lines indicate interprocessor
communications.

accumulate operation is used to construct the particles-in-bin array.
We then use a pointer array to set up and allocate storage for each bin.

The second pass performs the actual reordering and data movement. The
vectors (/x, /y, fz) are used as temporary storage and are cleared for the force
computation.

We have found that after the first iteration, most of the particles will be
hashed into the same bins (and processors) to which they belonged in the
previous timestep, thus requiring very little data movement.

18.3.1. Force evaluation. For simplicity, we consider a two-dimensional
partition of the computation. The N^ x N^ columns are block partitioned and
assigned to individual processors. The code uses DOLIB's efficient contiguous
block gather and update operations, since all atoms in each bin are contiguously
ordered. Moreover, we exploit data reuse by selecting the 13 neighboring cells
from five neighboring columns (see Figure 18.2). Position data from the shaded
region in the left half of Figure 18.2 are required for processing column ( i , j ) .
In processing the next column, (i + 1, j), position data from three of the five
columns are reused; data must be brought in for only two new columns, (i+2, j]
and (i + 2,j + 1). This organization reduces the amount of communication
required for gather and update operations. No further communication is
required once all position data for the two new columns have been gathered,
which simplifies automatic thread parallelization by the Intel Paragon MP node
compiler.

To avoid loss of accuracy by catastrophic cancellation, we have also
modified the energy and potential computation to have the positive and
negative contributions summed separately.
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FIG. 18.2. Top view of columns used in processing column ( i , j ) . Only two new
columns are needed for processing column (i + 1, j ) .

18.3.2. Dynamic Load Balancing. Since a highly nonuniform distribu-
tion of particles can result in a serious load imbalance, we include an option
for dynamic load balancing. We compute a work measure for each column and
use this estimate to distribute columns to processors (see Figure 18.3). One
simple measure of workload is the total number of atoms in the column.

For a sufficiently uniform distribution of atoms in the domain, this
technique generally attains good load balance. For nonuniform distributions,
however, a more reasonable work measure is to count, for each bin, the total
number of possible atom-atom interactions for all other particles in the 13
neighboring bins. Both of these work estimates are provided as options to the
load-balancing routine.

The load-balancing strategy then computes the overall total and average
amounts of work for each processor, satisfying this average by using a greedy
algorithm to assign columns to processors. In the future, we will provide a
more sophisticated bin-packing algorithm. For the simple Lennard-Jones fluid
simulations, however, each bin has approximately the same number of atoms,
and there is almost no load imbalance.

18.4. Parallel Performance
Our parallel code was tested on an Intel MP node Paragon system. Each
MP node contains three CPUs, one of which is configured as a dedicated
message coprocessor, and at least 64 Mbytes of memory in a local shared-
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FlG. 18.3. Simple block assignment of work (columns) to processors. The
numbers are a measure of the work associated with the column.

memory configuration. All our MD computations were done in single precision
with two threads. One CPU runs the main computational thread, and the
other is utilized for automatic thread parallelization by the Paragon MP
Fortran compiler. We also implemented a double-precision option for force
computations that ran about 15% slower, although we found essentially no
difference in the numerical results.

We tested our code with a benchmark problem described in Plimpton [13,
p. 23]: a Lennard-Jones 6-12 potential with reduced density (p = 0.8442)
and reduced temperature (T = 0.72). The system is initialized with an FCC
lattice, and randomized velocities are chosen from a Boltzmann distribution.
The integration timestep is 0.00462 in reduced units, and the cut-off distance is
rc = 2.5cr. We estimate that each atom requires about 2200 flops per timestep
for both the force and the potential evaluation.

Table 18.1 and Figure 18.4 show averaged runtimes per timestep for three
problems: 7VC = 159 (16,078,716 particles), Nc = 200 (32,000,000 particles),
and Nc = 250 (62,500,000 particles). The total initialization and setup times
were approximately 10 minutes for Nc = 250 on 64 processors. We achieved
slightly faster runtimes without the overhead of computing work measure
and dynamic load balancing, because the problem was already well balanced.
We relied solely on the Intel f77 optimizing compiler (with -03 -Mvect
options when appropriate). Approximately 0.25 millisecond/atom/processor
was required for each timestep.

For a 500,000-atom problem on a single processor (with parallel threads),
our code achieved a speed of about 0.17 millisecond/atom/timestep. For the
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TABLE 18.1
Time for one timestep (in seconds) on the Intel MP Paragon. Cutoff rc = 2.5o~.

Particles

16,078,716
32,000,000
62,500,000

Processors
16

174
-
-

32

91
180
-

64

49
95

179

128 | 256

27
51
98

15
28
53

512

9
16
30

FIG. 18.4. Time per timestep (in seconds) versus number of processors.

one-processor run, the same "parallel" code was used on a single processor.
No messages were generated in the DOLIB gather/scatter, which on a single
processor are translated into memory copies.

Table 18.2 shows the performance of the code on very large simulations.
About 75% of the time was spent in the force evaluation and 20% in
hashing/reordering. Because the computation is based on a shared-memory
programming paradigm, however, there is some overlap of message-passing
and servicing of remote memory requests even within the force and potential
computations.
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TABLE 18.2
Time for one timestep (in seconds) on the Intel MP Paragon. Cutoff rc = 2.5cr.

Particles

256,000,000
500,000,000

1,000,188,000

Processors
256

182
-
-

512

103
194
-

1024

63
120
233

Although we used single precision in our codes, our runtimes compare quite
favorably with the times of 0.24 millisecond/atom/processor achieved on an
Intel Delta [13] and about 0.26 millisecond/atom/processor [2, 9] (performed in
double precision) on a 1024-processor CM-5 both using a spatial decomposition
and linked-cell method.12
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Chapter 19

Probing the Playability of Violins by Supercomputer

Robert T. Schumacher
Jim Woodhouse

Editorial preface

A journey into the culturally refined arena of a classic musical instrument,
the violin, is the theme of this chapter. This chapter shows the inherent
difficulties present in attempting to model the underlying behavior of a
musical instrument. The computational advantage gained from a parallel
implementation on the CM-2 is a significant help; however, much more
remains to be explored.

This article originally appeared in SIAM News, Vol. 25, No. 5, September
1992. It was updated during the summer/fall of 1995.

The violins made by Antonio Stradivari and a few other luthiers from the
16th, 17th, and 18th centuries are surrounded with an air of mystery, and
they command staggeringly high prices. It may seem surprising that this
should continue to be the case, given the advances in both theoretical and
experimental techniques for studying sound and vibration. But researchers
who make a serious effort to apply these techniques find time and again that
they are pushing against the limits of what can be achieved.

There are two related reasons for this situation. First, the assessment of
a violin as "good" is based on subjective impressions of players and listeners,
and before any useful physics can be done, it is necessary to try to pin down
physical correlates of those impressions. Second, the violin, in common with
any other successful musical instrument, has evolved to take the best possible
advantage of human abilities: it allows motor actions, up to the limit of what
we can achieve, to be turned into a range of sounds that we can process most
acutely. The result is that the all-important nuances distinguishing a great
violin from a moderate one may stem from rather small and subtle physical
differences.

The most reliable judgments of violins, with respect to physical correlates
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of "quality," are obtained not from listeners but from players. A good player
may be able to make compensations that mask the inadequacies of a poor
instrument to a considerable extent, so that a listener is hardly aware of them.
But the player, being inside the feedback loop of those compensations, will be
quite well aware that the instrument is a poor one, precisely because it calls
for such compensation. This suggests that physical correlates be sought for
differences of "playability" between instruments and between notes on the same
instrument. Such differences certainly exist, and they point to the possibility
that the "stick-slip" oscillations produced by bowing a string are somehow
influenced in their details by the acoustical behavior of the wooden box, which
is the violin body, to which the string is attached.

This is a matter suitable for investigation by the physicist. Theoretical and
experimental study of the bowed string has a long history, and the physical
basis for much of the observed behavior is believed to be fairly well understood.
A bowed string is a self-sustained oscillator, in which a complicated linear
system (the string, with attached violin body, which is in turn weakly coupled
to the acoustics of the auditorium) is driven by the friction force from the bow.
The dependence of this friction force on the string motion under the bow is
strongly nonlinear. Because this description is generically similar to that of
various other nonlinear systems that have been much studied in the last 15
years or so, complicated behavior involving the possibility of many periodic
and nonperiodic ("chaotic") regimes might be anticipated. This expectation
is in qualitative agreement with the wide range of unmusical noises that can
be elicited from a violin, especially in the hands of a novice.

Out of that multiplicity, the violinist is almost always trying to achieve
one particular regime, which was first described by Helmholtz in the 19th
century and is thus known as Helmholtz motion. It is a periodic, or at least
approximately periodic, regime in which the string sticks to the bow for most
of the time, slipping rapidly backward relative to the bow motion just once per
vibration period. Many issues of playability therefore depend on how readily
Helmholtz motion can be initiated and maintained, by means of various bowing
techniques that the player wants to be free to use for musical reasons. Perhaps
an instrument considered "easy to play" or to "speak easily" is one that readily
yields a Helmholtz motion, with an acceptably short starting transient, under
a wide range of bowing conditions.

To investigate how the vibration behavior of the violin body might influence
this capability, we must resort to simulation. Certain knowledge, especially
about the regimes of self-sustained oscillation that are possible under given
conditions, can be gained by analytic calculation. Because of the strongly
nonlinear character of the system, however, it is very hard to make progress
on the questions of starting transients and of the choice among the possible
regimes from a given bowing transient.

An efficient simulation scheme, based on the simplest physical model of
a bowed string that seems to allow the main observed effects, has existed for
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some time [5, 6]. This scheme has been used to explore various questions of
bowed-string behavior, and has also penetrated the commercial world, where
musical synthesizers based on this technique have been reported to be under
development for replacing or augmenting the standard FM-synthesis paradigm
that has long dominated synthesizers and computer music. (No commercial
products had been produced when this article was written, but the expected
products were implicit as well as explicit at the International Conference on
Physical Modeling, Grenoble, France, September 1990.)

Early implementations of the simulation scheme took the form of inter-
active programs, in which the playing parameters could be varied during a
run so that the program could be "played" roughly like the real string. This
yielded many valuable insights into the bowing process and the strengths and
weaknesses of the particular model used. The parameter space explored in this
way is so large, however, that it is extremely difficult to discern any structure
in the overall behavior by watching individual interactive runs of the program.
A more organized use of simulation is needed.

The aim of the project described here is to use simulations to map out
some part of the player's parameter space and then represent the results in
diagrammatic form so that any interesting structure can be readily discerned.
Study of a two-dimensional subspace is suggested as it is hard to convey
results in more than two dimensions. The choice of a suitable subspace for
a preliminary investigation requires some care, since the computational cost is
quite high and there are many possibilities to consider.

Previous discussions of regimes of bowed-string motion focused mainly on
the influence of the "bow force," the normal force with which the bow is pressed
against the string. Players know very well that this force must lie within
certain limits for a Helmholtz motion to be obtained: too little force produces
a "surface sound," which involves more than one slip per cycle of oscillation,
while too much force can produce a raucous "crunch," in which the motion is
not periodic at all. It therefore seems natural that the steady bow force at the
end of the transient should be one variable to consider.

A second variable is then wanted, one that can be used to specify a range
of different starting transients, all of which share the same eventual bow force.
It was decided to use a second force-like variable. Starting transients can
be simulated in which the initial bow force is different from the asymptotic
value, with the offset decaying exponentially with time. In this way a range of
somewhat plausible bowing transients can be simulated.

If the force starts from zero and increases to the final level, the result is a
simple representation of a string-crossing transient in which the bow alights on
the string and the force takes a finite time to build up. If the initial force is the
same as the final value, a switch-on transient is produced. This probably does
not represent anything done in normal playing, but it was a favorite condition
for previous simulations and is useful for comparison. Finally, if the force starts
high and decreases to the final value, we obtain at least a crude representation
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of a martele transient. (Martele bowing, a common way to give an emphatic
start to a note, involves "digging in" to the string with the bow at the initial
instant.) This transient will be less accurate than the string-crossing transient,
because the bow speed will also vary significantly during a martele. Despite
this reservation, the two-dimensional space of transients in which the initial
and final forces are varied (keeping the exponential timescale and the rest of
the model constant) seems to be a promising candidate for a first study.

The calculation to be done is now analogous to the computation of the
famous Mandelbrot set: for each point in the parameter plane, a nonlinear
process is simulated with the coordinates of the point used as input data. The
simulation is continued long enough to indicate the eventual outcome (in our
case, whether a periodic Helmholtz motion is or is not produced); that point
can be colored in some way to represent this outcome, and the calculation then
moves on to the next point. When a reasonable area has been covered in this
way, a picture will have been built up of the region of the parameter subspace
in which Helmholtz motion actually occurs from a starting transient.

This computation lends itself very easily to implementation on a parallel
computer. Values of the asymptotic force and the initial force may be assigned
to different processors, which can simulate the string motion independently of
one another. This suits the architecture of the Connection Machine-2 (CM-2)
perfectly: in fact, it is the simplest possible application for such a machine.
(The CM-2 used for the work described here is operated by the Pittsburgh
Supercomputer Center.) We are interested, typically, in the performance of
16,384 processors running simulations that do not interact with one another.

The basic algorithm is described in [5, 6]. Two quantities are involved, the
string velocity at the bowed point, v(t), and the force applied to the string
by the bow, /(£). These quantities are connected in two different ways; the
combination gives the governing equation for the process.

First, when the string and attached violin body are considered as a linear
system, then

where YQ is the characteristic admittance of the string. The first term on
the right-hand side of this equation represents the instantaneous response to
the force (as would be found on an infinite string); the second represents
the combined effect of all reflected velocity waves arriving back at the bowed
point at time t. The latter is expressed as a convolution integral involving the
impulse response function of the system, g(t). For computational efficiency,
this integral is best evaluated via two much shorter convolutions with the
"reflection functions" of the two sections of string on either side of the bow,
the impulse responses hi(t) and h,2(t), which would apply if one or the other
section of string were replaced by a semi-infinite string. It is readily shown
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where * denotes the operation of convolution.
The second relation between v(t) and f(t] is a nonlinear function,

/ = F(v), giving the velocity dependence of the frictional force between bow-
hair and string. The adequacy of such a function to characterize the physics
of rosin friction is by no means obvious, and exploration of a more complete
characterization is in the forefront of modern tribological (frictional) research.
Here we simply assume a function F(v) with a plausible and mathematically
tractable form loosely based on experiment, which is known to give fairly re-
alistic results when applied to the bowed-string problem [5, 6]. The function
is plotted as the heavy curve in Figure 19.1. If when the convolution integral
from (19.1) is denoted by ^(t), it is plain that the values of f ( t ) and v(t) are
found at the intersection of this curve with a straight line with slope 2/Yo
intercept Vh(t), as shown.

FIG. 19.1. Friction force as a function of string velocity at the bowed point
(heavy curve). The vertical portion represents sticking, which occurs when the string
velocity equals that of the bow. The curved portion represents sliding. The sloping line
and ringed intersection illustrate the solution procedure for the governing equations at
a given moment t.

The two parts of the F(v) curve require different calculations to solve
for the intersection point, depending on whether the string is slipping or
sticking at the given timestep in the calculation. Because the CM-2 is a SIMD
(single-instruction multiple-data) machine, every processor is executing the
same instruction at a given time. Because each processor has a different set of
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bowing force parameters, as described earlier, it is clear that not all processors
are slipping or sticking at the same time. In fact, because of the possibility
of multiple intersections of F(v) and the straight line, an ambiguity whose
correct resolution is described in [5], there are four separate branches in the
computation. On a serial machine, they are handled straightforwardly with
Fortran IF THEN statements. On a CM-2, they are dealt with by means of the
WHERE statement. Each processor executes every instruction, whether or not
it is appropriate to the particular state of the processor at that time, and the
processors for which the instruction is inappropriate for their current states
throw away the results of that step of the calculation.

Thus, the price paid for the parallelism is a certain inefficiency; each branch
of the code written for a serial machine is executed on every processor. The
advantage of the large number of processors far outweighs this inefficiency,
however. A single period of oscillation takes about 0.4 second to execute.
A comparison of speed with that of a serial machine running in "real time"
(1/440 second for a period of oscillation, at a sampling rate corresponding
to commercial CD recording, 44,100 samples per second) can be made by
dividing the per period execution time by the number of processors. When
we use half of the processors of the Pittsburgh Supercomputer Center's CM-2,
16K processors, the arithmetic shows a speedup of approximately 100 over the
same mapping of the two-dimensional subspace of parameter space by a serial
machine running in real time. That factor spells the difference between an
investigation that is doable and one that would never be attempted.

Perhaps the most interesting technical part of the problem lies in the
interpretation and classification of the output. The player is interested in how
quickly an acceptable oscillation is established. An acceptable oscillation is
that originally described by Helmholtz, with a single slip and recapture to the
sticking state per period of oscillation. A great many other forms of periodic
oscillation are possible, as is the nonperiodic noise that sometimes seems to be
the most common result of a beginner's efforts. From this "zoo" of oscillations,
periodic and nonperiodic, an experienced listener has no trouble distinguishing
the Helmholtz motion from other regimes. Similarly, when watching a single
simulation run on the screen, the human eye has no trouble classifying regimes
into "Helmholtz" versus others. But it is not so easy to find a robust algorithm
that allows each processor to recognize the characteristic Helmholtz pattern,
so as to tell the experimenter which processors are oscillating properly.

For the first trials, we developed a detection criterion based on several
simple tests. After a given number of iterations, we examine five nominal
periods of the oscillation for periodicity by computing the autocorrelation
function. We also keep track of the number of stick-slip transitions during that
time, and of the number of "kinks," or velocity discontinuities, traveling on the
string. The criteria for a successful Helmholtz oscillation are that the motion
be periodic and that the number of stick-slip transitions and the number of
kinks per period be equal to one. These tests must be fine-tuned to work
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adequately. Fine tuning is not easy since the main objective of the simulations
is to cover a wide range of parameter values, to insure the Helmholtz motion
itself varies quite widely. Both the waveform and frequency vary with bow force
within a given model. There is no doubt that further effort will be needed in
this area if a more sophisticated "expert system" is to be developed for regime
classification.

From the tests just described, we construct a 128 x 128 pixel plane in which
white space is Helmholtz motion and black space is not, for one reason or
another. By saving the equivalent, color-mapped planes for autocorrelation,
number of slips, and number of kinks, we can also make informed guesses
about the nature of the oscillations in the non-Helmholtz regions. Some of the
interesting ones can then be examined directly by reading out those portions
of the simulation from selected processors in a separate run.

Another useful technique is to examine the output at periodic intervals,
looking at the last five nominal periods at, say, 30-period intervals. We thus
produce a "movie" of a few frames in which we can see the development of the
Helmholtz region as a function of time since the onset of bowing. In that way
the length of the transient can be assessed in various regions of the parameter
plane. An example of the output is shown in Figure 19.2.

FIG. 19.2. Region of the parameter space in which a periodic Helmholtz
motion has arisen (white space) after (a) 50 periods; (b) 60 periods; (c) 100 periods.
The horizontal axis represents the asymptotic vertical force of bow on string, in the
logarithm of natural units. The vertical axis represents the initial vertical bow force,
from zero at the bottom to twice the asymptotic force of each column. The decay to the
asymptotic force has an e-fold time of eight nominal periods of the oscillation. The
picture is 128 x 128 pixels, where each pixel corresponds to a separate processor of the
Connection Machine.

In each diagram in Figure 19.2 the horizontal axis shows the asymptotic
bowing force, on a logarithmic scale. The vertical axis shows the initial force
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as a multiple of the asymptotic force, on a linear scale. The force begins as
the specified multiple of the asymptotic force and decays to the asymptotic
force with an e-fold time of about eight nominal periods. A very simple model,
developed in [1], is used for the rest of the system. It allows for the frequency-
dependent energy dissipation of a string on a real violin, but it does not attempt
to model the reactive, resonant nature of the response of the violin body. By
separating these two effects, this model makes a very useful benchmark case
against which the changes produced by more sophisticated models may be
judged.

For the example illustrated here, there is no "white space" in the diagrams
until about 35 period lengths have passed. After 50 period lengths, as shown in
Figure 19.2a, some small areas of the parameter plane have settled into periodic
Helmholtz motion. By 60 period lengths (Figure 19.2b), the white region has
broadened significantly. After 100 period lengths (Figure 19.2c), the diagram
shows a quite large area within which Helmholtz motion has been produced.
The three regions of different non-Helmholtz behavior that can be distinguished
in this final picture correspond well, qualitatively at least, to what happens
in real playing. At low bow forces, the Helmholtz motion gives way to other
periodic regimes with more than one slip per period, known to players as
"surface sound." At very high bow forces, the figure shows a rather fuzzy
vertical stripe. Here, the destabilizing effect of "negative resistance" [10] at
the bow during slipping prevents periodic motion of any kind being established.

In between these regimes is a large area of white space traversed by streaks
of black. These streaks indicate a quite different periodic oscillation regime,
which we have christened "multiple-flyback motion." That motion has more
than one slip per period, but instead of being spread through the whole
period, as in the surface sound obtained at low bow force, they appear in
a tight cluster. This regime has been observed on real violin strings and is
recognized by players as an undesirable sound, but it has not been the subject
of any detailed investigation. The diagrams shown in Figure 19.2 are the
first definite indication of any coherent structure in the parameter dependence
of this regime, and they provide encouragement for continuing investigations
along the lines described here.

It is very easy to think of further models and cases about which much
might be learned by applying this technique, and we intent to explore at least
some of them in the near future. Examples of model enhancements include the
following:

incorporation of flexural stiffness in the string model,
• more correct allowance for torsional motion of the string (a major ener
loss mechanism in the bowed string),
• use of measured or predicted data on the reflection behavior of a pla
finger, and
• inclusion of one or more resonances of the violin bo

This last possibility is of the most obvious interest: knowledge of the
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influence of instrument-body behavior on playability would immediately open
the way to an investigation of how playability is influenced by specific
constructional details (such as choice of wood, arching profile, and thickness
distribution for the front and back plates of the violin). This would relate to
physical measurements that can be made on old instruments and also to the
concerns of present-day instrument makers.

19.1. Recent Developments
Since the original publication of this article, in September 1992, a number of
developments anticipated in the article have occurred, along with some that
were not anticipated.

It was anticipated that commercial applications would soon appear. That
has indeed happened, and it is well documented by three articles in Keyboard
Magazine [4, 7, 8]. The first, in February 1994, announces the forthcoming
keyboard synthesizer by Yamaha; the second, in June, is a review of the
Yamaha VL1; and the third, in September, is a review of the technical aspects
of "physical modeling," as the technique used in this article is known in the
commercial world.

The penultimate paragraph in the previous section anticipates some further
developments of our own work. Work describing the incorporation of torsional
motion and flexural stiffness into the model is described in [12, 13]. In addition,
partly stimulated by some experimental work by one of us [11], we have recently
focused on using our modeling methods to investigate maximum bow force for
acceptable Helmholtz motion as a function of the string model.

The latter requires some explanation. The simulations that allow for
torsional motion of the string require values for two parameters, conveniently
expressed as ratios: the ratio of the torsional wave impedance to the transverse
wave impedance (the reciprocal of the wave admittance YQ in (19-1) and
(19.2)) and the ratio of the torsional wave velocity to the transverse wave
velocity. However, these ratios are not independent for a given string, but
are proportional, with a proportionality constant that is essentially the second
moment of the radial mass distribution of the string. (Most modern stringed
instrument strings are wrapped with one or more layers of metal, usually
aluminum or silver, on a core that can itself be metal, the traditional sheep
gut, or a thin bundle of very fine strands of nylon or similar plastic thread.
The exception is that most violin E strings—the highest pitch string—are solid
steel and hence are homogeneous.) That allows us to define an axis for a two-
dimensional representation, for which the variable is the velocity ratio, with the
constraint that the wave impedance ratio is constrained by a particular radial
mass distribution. That this is useful not just for the class of homogeneous
strings is shown in an illustration of a review article [13]. The maximum
bow force work is intended to classify regimes in which the breakdown of
Helmholtz motion is either from a transition to a different periodic regime or
to an aperiodic regime, depending on where on the string the bow is placed.
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This investigation is still in progress at this writing.
An unanticipated development was stimulated by a review [9] of a concert

by violinist Mari Kimura in New York, in which she demonstrated the
musical usefulness of a class of tones that have been dubbed anomalously
low frequencies (ALF). These periodic oscillations of the bowed string at
frequencies well below the usual fundamental frequency of the plucked string
were in the process of being investigated experimentally by Hanson, Schneider,
and Halgedahl and, theoretically, using computer physical modeling methods
similar to ours, but on a PC-type computer, by Knut Guettler. Their work
was published in companion papers a few months after the concert [3, 2].

Finally, it has to be admitted that although the original stimulation for our
method of systematically classifying and exploring the very large parameter
space of the act of bowing a string on a violin was ready access to a CM-
2 massively parallel processor machine, the current work is done on a "von
Neumann"-type machine—a single processor of the DEC Alpha cluster at the
Pittsburgh Supercomputer Center (PSC). The change of machine was forced
by the removal of the CM-2 from the PSC, but we have made a virtue of
necessity by considering cases that the CM-2 architecture would not allow.
The difficulty with the CM-2, as a SIMD machine, is that axes in a parameter
plane that require changes in the iteration loop limits are not allowed. Among
such axes is the bowing position: where on the string relative to the bridge
is the bow placed? The DEC Alpha processor has allowed more flexibility in
programming, at the expense of, typically, about a factor of six in CPU time
for comparable jobs.
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Chapter 20

Ray Tracing with Network Linda

Rob Bjornson
Craig Kolb

Andrew H. Sherman

Editorial preface

Ray tracing, which is part of the overall field of visualization, is
a computationally demanding task and thus a logical candidate for
parallelization. A network of workstations is employed concurrently
to solve the ray tracing problem. Using the programming language
Linda, which offers an abstract view of parallelism different from normal
message-passing, speedups of 30 on 40 workstations are achieved.

This article originally appeared in SI AM News, Vol. 24, No. 1, January
1991. It appears in its original form.

The potential of high-performance network computing has long been
recognized. Recently, we used the Network Linda System13 to achieve better
than a 30-fold speedup on a network of 40 workstations at Yale University
running a compute-intensive image rendering computation. The application
was a parallelized version of the fractal image rendering program, Rayshade,
which was developed by Craig Kolb while a student at Princeton University
and a research assistant to Benoit B. Mandelbrot at Yale University. Rayshade
is an example of the type of compute-intensive program now in everyday use
to apply ray tracing algorithms to the rendering of color images.

The version of Rayshade discussed here was parallelized using the Network
Linda System to exploit the substantial number of idle cycles available on a
large network of Sun SPARCstations in the Department of Computer Science
at Yale. It is obvious, of course, that most workstations will be idle at night or

13For additional information about the Network Linda System or other commercial Linda products,
contact Scientific Computing Associates, Inc. at 246 Church Street, Suite 307, New Haven, CT 06510,
(203)-777-7442, E-mail: lindafflsca.com.
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on weekends or holidays. However, even during normal working hours, most
workstations in such networks are only lightly used, since common tasks such
as editing, reading mail, and debugging programs generally consume only a
small fraction of each workstation's available CPU power. In modern RISC-
based workstations such as those at Yale, each CPU is capable of completing
several million operations per second, so the idle cycles in a moderately large
network can amount to a substantial computing resource in the aggregate. The
Network Linda System provides the tools required to harness these idle cycles
for useful work.

The Network Linda System is the network implementation of the Linda
parallel programming language [1, 2]. Other versions of Linda are available for
more traditional parallel computers, including Intel hypercubes and shared-
memory computers from Silicon Graphics, Encore, and Sequent. More prop-
erly, Linda is a coordination language, comprised of a few simple statements
that can be added to any base language to produce a parallel dialect of that lan-
guage. Linda leaves to the base language the chores for which such languages
were designed—I/O, arithmetic, loop control, procedure calling, etc.—and con-
cerns itself solely with interprocess communication and control. Programmers
continue to use their own familiar idioms for the bulk of their coding.

Linda operates on tuples and tuple spaces. A tuple is the fundamental
Linda data object, consisting of an ordered list of typed values (called actuals}
and typed wild-card placeholders (called formals). Tuples exist in tuple space,
an unordered, logically shared, associative tuple memory.

Linda adds four new operations to the base language. Out produces a tuple
and dumps it into tuple space. An in or rd operation is used to retrieve tuple
data from tuple space. Either one specifies a template that is used to search
tuple space for matching tuples. A tuple and template match provided that
both have the same number of fields, the corresponding fields have the same
type, and corresponding actual values are equal. A placeholder matches any
value of the correct type and, as a side effect, is bound to the corresponding
actual value in the matched tuple. The difference between the in and rd
operations is that in removes the tuple from tuple space (guaranteeing unique
access), while rd leaves it in tuple space for other processes to use. If in or rd
fails to find a matching tuple, the invoking process blocks until an appropriate
tuple is available. Finally, eval, which is similar to out, provides a method of
process creation in Linda by dumping an unevaluated tuple into tuple space
and creating new processes to evaluate each field of the tuple.

Although Linda may bear a passing resemblance to message-passing
primitives commonly used on multiprocessors, it is fundamentally more
powerful, message-passing requires that the sender know the identity of
the recipient; data does not exist independently of computing processes.
In contrast, data produced by a Linda program, in the form of tuples,
is completely autonomous. Processes can create data without knowing or
caring what process will eventually use it, or when this use will occur.
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This persistence of tuples, independent of the processes that create them,
substantially decouples processes from one another, making Linda programs
much easier to write and understand than their message-passing counterparts.

The Network Linda System includes the C-Linda precompiler, analyzer,
and runtime library. In outline, the precompiler assembles information about
all Linda operations in the source and generates pure C code that is compiled
by the native C compiler. At link time, the analyzer divides all the Linda
operations into classes according to the style of tuple space access and maps
them onto appropriate calls to the runtime library. Linda's in and rd
operations support general associative lookup, but the goal at runtime is to
use a tuple space access routine that performs efficiently by restricting the
generality to that actually needed. Accordingly, each basic Linda operation is
represented not by a single library routine, but by a family of routines; the
system implements each Linda operation in the user's source by selecting the
most appropriate member of the family.

The Network Linda System runs on networks of UNIX workstations, in-
cluding HP-Apollo, IBM, Silicon Graphics, and Sun computers, among others.
The user logs onto one node of the network, compiles the Linda program, and
invokes TSNET (the Network Linda control program) to run the executable.
The number of processors on which to run the application is a command-line
input to TSNET, which selects the least-loaded workstations from a list of per-
missible candidates and starts the code as a separate process on each one. The
individual processes compute independently, periodically coordinating through
tuple space. The responsibility for managing tuple space is divided among the
workstations to even out the Linda system overhead across the network and to
prevent any single machine from becoming a bottleneck. Network Linda uses a
reliable protocol built on UDP (Internet's User Datagram Protocol). Messages
are point-to-point; no expensive broadcasts are necessary to transmit tuples
from node to node. After the computation is complete, TSNET removes the
processes and executables from the participating workstations.

We present performance data from running the Linda version of Rayshade
on up to 40 Sun SPARCstation 1 workstations connected on a standard
Ethernet network. Rayshade contains approximately 10,000 lines of C, lex,
and YACC code (YACC and lex are standard UNIX tools for writing parsers
and lexers, respectively) and is designed to run effectively across a wide variety
of computing platforms [3]. It uses ray tracing to render color images composed
of a number of primitive objects, currently including discs, planes, polygons,
spheres, boxes, cylinders, cones, tori, and height fields. Arbitrary linear
transformations, including translation, scaling, rotation, and skewing, can be
applied to these primitives. Through the use of surfaces and textures, it is
possible to make objects appear to be made out of plastic, wood, glass, or a
wide variety of other materials.

Object appearance in Rayshade is also controlled by the number, type,
color, and position of light sources throughout the scene. Supported light
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sources types include point, extended, directional (infinite), quadrilateral, and
spotlights. Additional features include atmospheric effects (e.g., fog or mist),
depth of field adjustment, support for stereo rendering, and options for control
of overall image quality.

Ray tracing is an extremely compute-intensive floating-point computation.
Rendering an image requires finding, for each sample of the image plane,
the primitive closest to the viewer's eye. Determining the closest primitive
requires that every object in the scene be tested, in one way or another,
for intersection with the ray. While there are a variety of techniques for
reducing the computational complexity of ray tracing (through, for example,
partitioning of the model space into discrete regions), there are nevertheless
typically dozens of ray/object intersection tests to perform per ray. On top of
this, it is necessary to compute lighting functions, to apply complex procedural
textures, and to trace additional rays from the surface of the object to each
light source in order to determine shadowing. As a result, extremely complex
images may require days of computation on the most powerful workstations.

FIG. 20.1. Ray shade-rendered scene.

Rayshade was parallelized using a standard Linda paradigm, the master-
worker model. The master process runs on the user's workstation. Using
eval, the master starts one worker process for each of the other participating
workstations. It then uses out to create a task tuple for each computational
task (rendering one scan line of the final image). Each worker looks for task
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tuples and grabs one with in. After finishing the computation required by the
task, the worker uses out to dump a tuple containing the completed scan line
into tuple space and looks for more task tuples. Meanwhile, the master collects
the output scan lines and saves them in a file. When the master has collected
all the scan lines, it causes all the workers to terminate by creating a special
"poison-pill" task tuple.

Figure 20.1 shows a scene rendered by the parallel Rayshade program on
the network at Yale. The image shown is a fractal "sphereflake," consisting of
a mirrored ball, floating in space, surrounded by other, smaller mirrored balls,
themselves surrounded by still smaller balls, ad infmitum.14 The mirroring
causes many rays to be reflected during the rendering process, perhaps several
times. The image resolution is512x512 pixels, and it was rendered using nine
samples per pixel. On a single Sun SPARCstation 1, the computation requires
almost four hours.

FIG. 20.2. Rayshade using the Network Linda System: rendering times for
different numbers of workstations.

Figure 20.2 shows the speedup realized for various numbers of workers;
the 45-degree line represents perfect speedup based on the number of workers.
With 40 workstations, the rendering time is reduced to just over seven minutes
(433 seconds). The master is excluded from the machine count in the plot,
since for this application the demands on it are quite modest. The times

14We axe indebted to Eric Haines from 3D/Eye of Ithaca, New York for providing the necessary
data, which is part of his Standard Procedural Database.
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shown are wallclock times and include all time involved in initialization and
shutdown of Network Linda (which amounts to roughly 60 seconds, or 14% of
the 40-processor time, for this image) and demonstrate the high-performance
computing capability latent in large networks of workstations. For comparison,
the same code run on a single processor of a Cray-2 (with no effort at
vectorization) required over 66 minutes (3972 seconds) of CPU time.

A wide variety of other Linda applications have been developed, includ-
ing genetic sequence comparison, erosion simulation, LU factorization, elec-
tromagnetic calculation, two-dimensional fast Fourier transform computation,
parameter sensitivity analysis, and data fusion. Applications written in Linda
are portable to any of a wide range of machines that support Linda, includ-
ing most shared- and distributed-memory multiprocessors, as well as networks.
Experience to date indicates that applications parallelized using Linda usually
run essentially as efficiently as versions coded with nonportable native parallel
programming constructions (such as explicitly shared memory or explicit mes-
sages) , even when the Linda versions are transported without change from one
type of parallel processor to another.
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Chapter 21

A SIMD Algorithm for Intersecting
Three-Dimensional Polyhedra

David Strip
Michael Karasick

Editorial preface

We seldom make the connection between high-performance computing
and geometric modeling. However, geometric modeling can be a rather
computationally expensive task and thus is a natural candidate for paral-
lel machines. The intersections of polyhedra on a parallel architecture are
determined, and using a unique combination of data structure and careful
attention to the host architecture, the authors describe an implementa-
tion of geometric modeling on a single-instruction multiple-data (SIMD)
machine.

This article originally appeared in SIAM News, Vol. 27, No. 3, March
1994. It was updated during the summer/fall of 1995.

Solids are most often represented using boundary representations, which
describe a solid by enumerating the zero-, one-, and two-dimensional boundary
sets. Descriptions of solid representations, systems, and algorithms are
found in [6, 7]. Set-operation algorithms for solids are computationally
intensive because they need to deal with many special cases. In addition,
the computation time is a function of the output size, and interesting models
tend to be large.

Theoretical results have addressed parallel algorithms for some of the
simpler geometric problems in solid modeling (see, for example, [1]). Singular
configurations are frequently ignored in these treatments, although they must
be addressed in practical applications. (In a singular configuration, two solids
intersect in such a way that small perturbations in location change the topology
of the boundary of their intersection.)

Special-purpose, multiple-instruction multiple-data (MIMD) computers
have used boundary representations to compute the intersection of polyhedra,
with coarse-grain load balancing [4, 5]. In this article we describe a polyhedral
representation for SIMD architectures, sketch an intersection algorithm, and
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show how some of the singular configurations are handled. We also present
performance results comparing our Connection Machine implementation with
a serial solid modeler.

21.1. Defining and Representing Solids
A boundary representation is an organized enumeration of the point sets on
the surface of a solid. Face / of solid S is a regular two-dimensional set on
the surface of S. The interior of 5, Interior(S), is below /. More precisely,
if / is contained in plane P(x,y,z) = ax + by + cz + d = 0, then Below is
the half-space defined by {(x,y, z) : P(x,y,z) < 0}. For every neighborhood,
Nbhd, of every point of /, Nbhd fl Below fl Interior(S} is nonempty. Plane P
is the oriented plane of /, and vector N = (a, 6, c) is the (outward) normal to
/. If the plane Q is coincident with but oriented opposite to P, then the face
contained in Q is distinct from /. The edges of a solid are the line segments
defined by the intersection of two or more faces, and the vertices of a solid are
the points defined by the intersection of three or more faces.

The Star-Edge data structure [3] is a typical serial boundary representation.
An edge e with initial vertex u and terminal vertex v can bound many faces.
Directed edges describe these incidences. If N is the outward normal of /,
then d-edge (rhymes with hedge) et exists if (v — u) x N points from e
into the interior of /, and e7 exists if (u — v) x N points into the interior
of /. D-edge et has InitialVertex u and TerminalVertex v. D-edge ej has
InitialVertex v and TerminalVertex u. The Tangent vector of a d-edge is
(TerminalVertex — InitialVertex). The FaceDirection vector of a d-edge
is Tangent x N. A d-edge with unspecified orientation is denoted by e*,; the
subscript is omitted when the face is unspecified. Face / and edge e are referred
to as the underlying face and edge of e*, respectively.

The d-edges of an edge e are ordered by radially ordering their face direction
vectors on a plane perpendicular to e (see Figure 21.la). The interior of the
solid will lie between et (face / at e} and its radial successor, e~ (face g at
e). This d-edge pair is called a volume-enclosing pair. Similarly, the d-edges
incident to a vertex and contained in a face / are ordered by radially ordering
their tangents in the plane of /, and certain adjacent d-edge pairs are area-
enclosing (see Figure 21. Ib).

SIMD architectures optimize performance on independent, identical com-
putations. This uniformity is attained by having a homogeneous data repre-
sentation. Rather than describing vertices, edges, and faces with linked data
structures, we use a single distributed data structure, called a parallel d-edge,
with the following slots:

InitialVertex TerminalVertex Edge Face
Label Label Label Label
Point Point Successor Normal
Successor Successor Orientation Distance
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FlG. 21.1. (a) Radial ordering of faces around edges; (b) radial ordering of edges
around a vertex.

For example, if the faces of the solid are labeled 0, . . . ,-F, then FaceLabel is
simply the number assigned to the face of this d-edge. In the previous section
we said that d-edges are radially ordered around vertices and edges. If the
d-edges of a solid are labeled 0, . . . ,-D and e* is a d-edge, then EdgeSuccessor
is the label of the radially counterclockwise d-edge around its edge e, and
Orientation is a bit that is true if and only if the d-edge is oriented with e.
InitialVertexSuccessor and TerminalVertexSuccessor are the labels of the
d-edges of / that are radially counterclockwise around the initial and terminal
vertices of the d-edge, respectively. The equation of the plane P of / is
represented by FaceNormal, the unit outward normal, and FaceDistance,
the signed distance from the origin to P. Each d-edge of a solid is represented
as a parallel d-edge, one per processor, with the label of a d-edge corresponding
to the name of the processor containing the d-edge. For example, 24 parallel
d-edges (and hence 24 processors) are used to describe a cube, which is defined
by 12 edges and 24 d-edges.

This data structure provides a natural assignment of work among proces-
sors for certain tasks. For example, solid modeling computations often require
computing information, such as d-edge tangents, face-direction vectors, and so
on. Parallel d-edges allow such quantities to be computed directly:

Tangent = e*.TerminalVertex. Point — e'.InitialVertex.Point.

The calculation for the serial representation, by contrast, uses a total of
four instances of three different data structures:

e = e* .Edge
if e* .Orientation then

Tangent = e.TerminalVertex. Point — e.InitialVertex. Point
else

Tangent = e.InitialVertex. Point — e.TerminalVertex. Point

Parallel solid modeling algorithms and serial algorithms manipulate bound-
ary representations in different ways. Rather than iterations through several
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data structures, computation on a massively parallel processor is done by se-
lecting a set of processors for a calculation and then performing the calculation
on that set of active processors. For the example of the d-edges of a face, selec-
tion is accomplished by activating those processors whose FaceLabel matches
the given face. Associative selection is an important property of parallel d-
edges.

21.2. Labeling Boundary Elements for Efficient Computation

The efficiency of algorithms that use the representation is determined by
the particular assignment of parallel d-edges to processors. For example,
the processors can be viewed as a spatial mesh—each processor represents a
volume, and each vertex is assigned to the processor for the containing volume.
This assignment works well only if the spatial distribution of a solid's vertices
is uniform.

Alternatively, because each boundary element is labeled by an integer,
we can simply assign the vertex, edge, and face labeled i to processor i. This
assignment works well if processor i does not need to operate on more than one
of its boundary elements simultaneously. For example, if we wish to enumerate
the boundary elements containing point p, this assignment works well if at most
one of the boundary elements labeled i contains p.

Each parallel d-edge contains the coordinates of two vertices and the
plane of a face. Unless the corresponding edge labeled i is described by the
parallel d-edge assigned to processor i, another data structure on processor i
is required. (Similarly, the vertex labeled j and the face labeled k should be
described by the parallel d-edges assigned to processors j and fc, respectively.)
Given an assignment of d-edges to processors, we need to label vertices,
edges, and faces in such a way that additional data structures are not
needed. Furthermore, we would like to compute this boundary element labeling
efficiently. The intersection algorithm that motivates the parallel d-edge
data structure requires that a boundary element labeling has the following
properties:

Uniqueness Property: No two distinct boundary elements of the
same type have the same label. (This is the minimal requirement
for a labeling.)
Incidence Property: Each boundary element is labeled by an
incident d-edge.
Intersection Property: Given A, a labeled solid, and fi, a point,
line, or plane, no two distinct boundary elements of A with the
same label have point intersections with Q. (For example, a plane
cannot transversely intersect an edge and a vertex with the same
label.)

The importance of the uniqueness property is self-evident. The incidence
property ensures that the data describing a boundary element labeled i are
present in the parallel d-edge contained in processor i. The intersection
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property allows significant reduction in the complexity and communication
costs of parallel solid modeling procedures.

Consider, for example, the problem of labeling the vertices of a solid C
formed by intersecting solid A with solid B. Some of the vertices of C are
vertices of A or B. The others arise from boundary intersections. Suppose
we need to label a vertex that is the point intersection of an edge of A with
an edge of B. If the edge of A has m adjacent faces and the edge of B has
n, then at least n + m processors contain parallel d-edges incident to the
point. Each of these processors can label its copy of the point identically,
using the label (a,/?), where a is the label of the edge of A and (3 is the
label of the edge of B. Any point intersection of a boundary element of A
with a boundary element of B can be labeled analogously with the labels of
the intersecting boundary elements. This computation can be done efficiently,
with no interprocessor communication. The incidence property of the labeling
guarantees that any other object of A labeled a is incident to edge a. A case
analysis using the intersection property shows that only one point common to
both solids is labeled (a,/3).

There is a simple algorithm for computing the labeling from an assignment
of parallel d-edges to processors: label each parallel d-edge by the processor
to which it is assigned; label face / with the largest label of a d-edge of /;
label edge e with the largest label of a d-edge of e; and label vertex v with the
largest label of a d-edge with TerminalVertex v (InitialVertex could also
be chosen). Figure 21.2 contains an example. The uniqueness, incidence, and
intersection properties follow from this algorithm.

InitialVertex. Label
InitialVertex. Point
InitialVertex. Successor
Terminal Vertex. Label
TerminalVertex. Successor
TerminalVertex. Point
Edge. Label
Edge. RadialSuccessor
Orientation
Face.Label
Face.Normal
Face. Distance
SolidLabel

15
(1, 0, 0)

12
9
8

(0, 0, 0)
15
15

false
12

(0, 0, 1)
0
6

FIG. 21.2. Labels for boundary elements referenced in d-edge 9.
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21.3. Communication Protocols Used by the Intersection Algorithm

The intersection algorithm uses a variety of primitive communication protocols
that are supported by the Connection Machine architecture. The simplest is
nearest-neighbor communication, in which a processor sends (receives) a mes-
sage to (from) one of its nearest neighbors along an arc of the hypercube. We
treat the hypercube as a linear array of processors and can thus describe com-
munications using shorthand like "send data to the right (or left) processor,"
denoted a' := a[±l].

Although most communication is nearest-neighbor, there is some commu-
nication between arbitrary processors in the machine, most often just a per-
mutation of data among (a subset) of the processors. The algorithm also
uses a small number of one-to-many broadcasts, where each of n processors
sends data to m (nonoverlapping) processors (such communications are very
efficiently handled on the Connection Machine). Finally, we use a very few
many-to-one reductions, in which, say, mn processors send their data to one
of n processors, and results at each of the n processors are combined logically
or arithmetically. Details can be found in [2].

In addition to primitive communications, the intersection algorithm uses
the (primitive) rank function, denoted r := rank(a), which assigns to each
processor's parallel variable (pvar) r its order in a sort of the values of pvar a.
(A parallel variable p is the logical aggregation of the values of the variable p on
each processor.) Finally, we use a scan, denoted a' := scan±(a, t, ©), operation,
which scans the value of a into the a' of neighboring processors, applying
operation 0 cumulatively and terminating when one of these processors has
(boolean) t set true (0 defaults to copy a).

21.4. Relocating Data to Reduce Communication Costs

For the exchange of a sequence of general messages, it is beneficial to reassign
the data to be exchanged to physically adjacent processors so that nearest-
neighbor protocols can be used. For example, consider the radial ordering of
faces around an edge described with the Edge. Radial Successor field of a paral-
lel d-edge. Suppose that each processor p containing d-edge ej needs to commu-
nicate with processor q containing processor e*g = e**. Edge. Radial Successor.
Even though p and q are not physically adjacent, two ranks and a single
permutation-send can be used to relocate the interchange data, D, to pro-
cessors that are adjacent:

(1) Construct a local coordinate system with z-axis Tangent(Edge. Label}.

(2) Compute the pseudo-angle 0 from +x to FaceDirection = Tangent x
Face. Normal. For unit vectors x, y, and v, pseudoAngle(v) = sign(v •

(3) Construct the (integer) sort key given by K = (Edge. Label, rank((f))).
(The sort key has 2d bits, where d is the dimension of the hypercube.)
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(4) Each processor sends D and Edge.Label to the processor rank(K).

The radial orderings are now linearized, so that D can be exchanged using
nearest-neighbor communication.

As an example of the use of this reassignment technique, suppose that
each processor wishes to classify a pvar-vector v that intersects d-edge e*.
Each processor classifies v as follows: v is parallel to Tangent(e*} and oriented
with or opposite to Tangent(e*}\ v points from e* into the interior of face
e*.Face.Label, or into the interior (alt. exterior) of the solid between faces
e*.Face.Label and (e*.Edge.Successor}.Face.Label. These first two cases are
easily determined by each processor. The remaining cases are distinguished by
the above assignment procedure, for which the relocated data are

(pseudoAngle(v), Orientation).

21.5. Sketch of the Intersection Algorithm

Figure 21.3 shows the intersection of two solids and the result of the
intersection. The edges of the new solid can be divided into three groups.
Figure 21.3a shows the edges that lie on the boundaries of both input solids
(i.e., on the "intersection curve" of the two input solids); Figure 21.3b shows
the edges that meet the intersection curve at one or two points; and Figure
21.3c shows the edges that lie on the boundary of one of the input solids and
are completely contained in the interior of the other.

The three phases of the algorithm correspond to these three classes of
edges. For each phase there are numerous subcases, depending on how the
boundaries of the input solids meet. The challenge is to arrange the data and
computations efficiently on a SIMD architecture. (See [2, 8] for details.)

FIG. 21.3. (a) Phase I: Construction of the d-edges of the intersection curve.
(b) Phase II: Construction of d-edges incident to the intersection curve. D-edges that
are incident to the intersection curve are constructed by testing to see whether either
segment of the d-edge incident to the intersection point lies in the interior of the other
solid, (c) Phase III: D-edges of one solid that are contained in the interior of the other
are identified by ray-casting and added to the intersection-solid.
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21.5.1. Preprocessing. Before starting to identify the d-edges of the
output solid, we carry out a preprocessing step that calculates how the d-
edges of each solid intersect the planes of the faces of the other. Our algorithm
does this by assigning each d-edge/face pair to a (virtual15) processor and
then having that processor calculate the intersection of the d-edge with the
face. This step can be viewed as the creation of two matrices of processors.
Each matrix is indexed by d-edges of one solid ("rows") and faces of the other
solid ("columns"); two one-to-many broadcasts, two scans, and a permutation
are used to construct the matrices. A d-edge can intersect or be parallel to the
plane of the face, or a projection (ray) of the d-edge can intersect the plane of
the face. Eventually, we will be interested in whether the d-edges that intersect
the plane actually intersect the interior of the face or the boundary of the face,
or do not intersect the face at all.

We construct axis-aligned bounding boxes for each solid and use these
boxes to eliminate intersections that are outside the bounding boxes. We
classify the intersections of the d-edges with the face planes and then create a
sparse-matrix representation by reassigning the d-edge/face pairs of interest.
Typically, the remaining set is much smaller than the complete d-edge/face
matrix. It is also more sensitive to output size than to input size.

21.5.2. Phase I—Constructing D-Edges of the Intersection Curve.
The first group of d-edges of the new solid that we identify are those that
lie on the boundaries of both input solids (see Figure 21.3a). These d-edges
are formed by the intersecting faces of the two input solids. Recall that each
processor is associated with a d-edge/face pair. If / is a face of solid A and
g a face of 5, an intersection of d-edge e^ with the plane of g is denoted
as e*f/g. The intersection points e*Jg and e*/f lie along the line defined by
the intersection of the planes of / and g. We reassign these linearly ranked
intersection points to physically adjacent processors. Using scans, we identify
those regions of the intersection line that are on both faces, and we then
create the new d-edges that lie on the intersection curve. Many cases must be
analyzed to determine the d-edges that are built, which depends on whether
the faces intersect in their interiors or on their boundaries. While this step
is conceptually similar to that used in a serial algorithm, there are major
implementational differences, especially in the use of the ordering of points
along the intersection line to make the computation efficient.

When the first phase of the algorithm is complete, we have identified
precisely the d-edges that intersect the faces (as opposed to the planes) of
the other solid. We can then further refine the number of intersection points
that we carry around. This in turn reduces the (virtual) processor requirement

15Throughout the algorithm we assume that the machine has enough processors. Many processors,
i.e., millions, are often required. We assume that the SIMD machine provides a means for simulating
more processors than are physically available. In the remainder of the paper we drop the modifier
"virtual."
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to a number more tightly bounded by output size and hence reduces the time
required for future computations.

21.5.3. Phase II—Constructing D-Edges Incident to the Intersec-
tion Curve. The second group of d-edges to be identified for the new solid
are those that are incident to the intersection curve at one or two points (see
Figure 21.3b). These output d-edges are segments of d-edges of one of the
input solids that intersect boundary elements of the other. In Phase I of the
intersection algorithm, we determined which of the d-edge/plane intersections
actually intersect the solid boundary. What remains to be determined is which
portions of the d-edge are in the interior of the other solid, and which are not.

The most difficult case, which occurs when a d-edge intersects a vertex, is
refined to an equivalent d-edge/edge or d-edge/face test. The d-edge/face
incidence test is simple (just a dot product). (The d-edge/edge test was
described in the section on the relocation of data. While conceptually similar to
algorithms used at this stage on serial machines, the parallel implementations
of the d-edge/edge and d-edge/vertex incidence tests are necessarily quite
different.)

21.5.4. Phase III—Constructing D-Edges Interior to an Input Solid.
The final set of d-edges we identify for the new solid are those d-edges of one
input solid contained in the interior of the other, as shown in Figure 21.3c.
These d-edges, which are built in a manner completely unlike that typically
used on serial machines, can be divided into two groups: those contained and
those not contained in lines that intersect the other solid. For the first group,
we use the results of the incidence tests computed in Phase II to determine
whether the d-edge is interior or exterior to the solid. For the second group,
it is sufficient to know whether the other input solid is unbounded.

This ray-casting approach contrasts with the methods typically used in
serial algorithms. Since the incidence tests of Phase II of the algorithm are
comparatively expensive, they are not, in general, applied to rays. In a serial
algorithm, a transitive closure is used instead for Phase III. It is possible
that isolated regions of the input solid boundaries cannot be classified by
transitive closure. In that case, the serial algorithm must use a ray-casting
procedure to classify some point on that isolated portion of boundary. Another
transitive closure step is then needed to classify the rest of that portion.
Transitive closure is very inefficient on a parallel machine—its execution time
is proportional to the distance (in a graph sense) of a d-edge from the closest
d-edge intersecting the boundary.

21.6. Performance Measurements

We implemented the parallel solid modeling algorithm described in this paper
on a Thinking Machine CM-2. (Since these tests were made (in 1990), a faster
model of the CM-2 has appeared.) In order to evaluate the performance of
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FlG. 21.4. Toolpath test problem—block-spiral.

our algorithms, we compared our modeler with GDP, a production modeler
developed internally at IBM Research. GDP is executed on an IBM 3090
600S. (This is the only supercomputer for which we have been able to identify
a general-purpose polyhedral solid modeler.)

This comparison is difficult, as the CM-2 has a large number of very simple
(bit-serial) interconnected processors, and the IBM 3090 is a classic "big-
iron" supercomputer that achieves its speed by such means as very high speed
components, pipelines, and vector processors. The two intersection algorithms
are also quite different. With the SIMD algorithm, the number of virtual
processors required can grow asymptotically with the product of the number
of faces in the two input solids. Runtime is in turn a function of this number,
except that the code will skip (large and time-consuming) portions if there are
no intersections of certain types, such as edge-vertex intersections. We have
generated two examples at roughly opposite ends of the range.

In the first example (Figure 21.4), all the faces of one solid intersect a single
face of the other. Thus, "complexity" grows linearly with the problem size.
In addition, all the intersections are in "general position"; i.e., they are all
edge-face intersections and, therefore, easy to analyze. Figure 21.5a compares
the SIMD algorithm with that of GDP, showing speedups of up to 35. When
the performance of GDP is extrapolated to larger problems, speedups of 50 or
better are predicted. For problems that fully occupy the machine, the results
as well as data for 32K processors (which are not shown here) show an almost
perfectly linear speedup in the number of processors.
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The second example balances the sizes of the two solids, so that the number
of face-face pairs grows like n2. In addition, all the intersections are edge-
edge intersections, which require execution of many of the time-consuming
procedures. This pathological example case takes a faceted approximation
to a cylinder, duplicates it, rotates the duplicate by half a facet, and then
intersects the two solids, obtaining a faceted approximation to a cylinder with
twice the number of facets. As the number of singular intersection points
increases, we expect the CM-2 intersection time to degrade relative to GDP
because of increased interprocessor communication. As shown in Figure 21.5b,
the CM-2 intersection algorithm is still faster, but the disparity is smaller.
The discontinuities are induced by the virtual processor requirement, which is
a step function. (The spike in the Connection Machine data is the result of a
known router utilization bug for n = 512 facets.)

FlG. 21.5. (a) "Milling" a path on a cube with an n-faceted approximation
to a spiral, (b) Making a In-faceted approximation to a cylinder by intersecting two
n-faceted cylinders.

21.7. Conclusions

We believe the work described in this article has produced three main
contributions. The first is the parallel d-edge data structure. We have shown
how the rich combinatorial structure of a boundary representation can be
embedded in a distributed, uniform structure appropriate to a SIMD processor.
Second, although not described here, we have dealt with all singularities that
arise in an intersection algorithm. This is difficult even for serial algorithms,
and we have efficiently incorporated the treatment of singular cases into a
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SIMD algorithm. Third, our avoidance of transitive closure procedures in the
intersection algorithm allows us to have an algorithm whose execution time is
independent of input solid topology.

Because the best solid modeling algorithms are primarily combinatorial,
standard measures like megaflop throughput achieved are not effective. Fur-
thermore, our algorithm is structurally different from serial analogues, substi-
tuting a larger, homogeneous data-structure for serial computations. Hence,
the only meaningful comparison of performance between these two approaches
requires the use of benchmarking.

We have shown in our tests that our parallel intersection outperforms a
serial one by a factor of 35 or better. As the models become bigger, the dis-
parity increases. Furthermore, the nature of our intersection algorithm and the
architecture of the Connection Machine allow scaling to essentially arbitrarily
large arrays of processors with linear scaling in algorithm performance.
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Chapter 22

Numerical Simulation of Laminar Diffusion Flames

Craig C. Douglas
Alexandre Ern

Mitchell D. Smooke

Editorial preface

Combustion problems, which include detailed chemistry, are difficult to
solve. Using the convergence of a number of sophisticated algorithms
and a parallel architecture, the authors formulate a solution scheme for
these types of problems. The parallelism is achieved in a portable way,
permitting the same code to run on WAN-based clusters of RS/6000 work-
stations or the IBM SP1 or SP2 machines. Although space constraints
in this article don't permit a more complete coverage of the algorithms,
there is sufficient reference to published literature to complete the picture.

This article originally appeared in SI AM News, Vol. 27, No. 9, November
1994. It was updated during the summer/fall of 1995.

Not too long ago, anyone wanting to solve large science or engineering
problems had to have access to a supercomputer costing millions of dollars.
Quite recently, a new breed of relatively inexpensive workstations has become
widely available, making it possible to solve such problems on machines
individuals can afford to own. The scalar peak speeds of these machines are
30-275 megaflops, with 400 megaflops or more on the horizon (which compares
rather favorably with the speeds of vector supercomputers of not so long ago).
While these rates have been attained only for simple problems, like dense
matrix-matrix multiplication, the rates seen for many other problems are also
quite high.

The class of problems described in this article—the numerical simulation of
combustion systems—is an example of the large problems being solved on the
new workstations. Of course, the problem for the user of a single one of these
machines is that the options of either connecting a collection of machines or
buying a parallel version of the workstation become more and more tantalizing.
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In fact, over the course of two years, we did all of the above. We started on
a single machine with a peak rate of 100 megaflops (an IBM RISC System/6000
model 560 computer) and then used a farm of these machines. We then
moved to an IBM SP1 and, finally, to an IBM SP2. Due to a nice feature
of the communications library we used (MPL), the executables worked on the
Ethernet at Yale and on the fast switches in the SPl/SP2s without either
recompiling or relinking.

22.1. Problem Formulation

Improvements in computational algorithms and computer capabilities have
provided new, extremely powerful tools for investigations of chemically reacting
systems that were computationally infeasible only a few years ago. Diffusion
flames are one example of such systems. These flames are important in
studies of the interaction of heat and mass transfer with chemical reactions
in commercial burners, gas turbines, and ram jets. The ability to predict
the coupled effects of chemical reactions and complex transport phenomena is
critical in modeling turbulent reacting flows, improving engine efficiency, and
investigating the processes by which pollutants are formed.

Practical combustion systems require multidimensional studies. In the
past, the modeling was done along two independent lines, with either the
chemistry or, the fluid dynamics effects given priority. For many years,
most of the detailed chemistry computational studies therefore involved
strictly one-dimensional configurations: freely propagating or burner-stabilized
premixed flames and counterflow premixed or diffusion flames. Recently, two-
dimensional configurations have become common. Three-dimensional models
combining fluid dynamics effects with finite-rate chemistry will appear shortly,
thanks in large part to fast RISC-based parallel machines with adequate
memory per node (.125-2 gigabytes).

In this article we discuss the formulation and numerical solution of two-
dimensional, axisymmetric laminar diffusion flame models, including detailed
chemistry, in which a cylindrical fuel stream is surrounded by a coflowing
oxidizer jet. We obtain a computationally feasible solution, while being able
to study the interaction of the fluid flow and the chemical reactions in the
diffusion flames. The full elliptic problem, including up to 50 chemical species
in addition to the temperature and the fluid dynamics variables, is treated.

The fuel jet shown in Figure 22.1 discharges into a laminar air stream.
The concentric tubes through which the fuel and oxidizer flow have radii Rj
and RQ, respectively. The two gases make contact at the outlet of the inner
tube. Once the flame forms, it resembles a candle unless it is lifted (as it is in
Figure 22.1). Since the solution is axisymmetric, the computational domain is
only the upper right quadrant of Figure 22.1. The right and bottom boundaries
are the z and r axes, respectively, in Figure 22.1.

Our model consists of the full set of two-dimensional axisymmetric govern-
ing equations expressing the conservation of total mass, momentum, energy,
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FIG. 22.1. Physical configuration of the fuel jet (not in scale).

and species mass in steady-state form. The dependent variables are the axial
and radial velocity components, the pressure, the temperature, and as many
chemical species as considered in the chemical reaction mechanism (typically
16-50). Boundary conditions are specified for the dependent unknowns at the
axis of symmetry (r = 0), outer zone (r — Rmax), inlet (z = 0), and exit
(z = L). The formulations for the fluid dynamics processes that have been
used to date are stream function-vorticity [8], primitive variables [10], and
vorticity-velocity [3]. Each of these formulations has advantages and disad-
vantages.

In the stream function-vorticity formulation, pressure is eliminated as a
dependent variable from the momentum equations, the number of equations
to be solved is reduced by one, and continuity is explicitly satisfied locally.
Despite these attractions, this formulation presents a severe difficulty in the
specification of vorticity boundary conditions. A zero vorticity boundary
condition at the inlet of the computational domain results in a rough
approximation of the true solution. The specification of vorticity boundary
values in terms of the stream function, however, requires the discretization of
second-order derivatives, making it necessary to solve severely ill conditioned
linear systems. In addition, the stream function-vorticity formulation is not
extendible to three-dimensional configurations in a simple form.

The primitive variable formulation allows for accurate boundary conditions
and can be used for three-dimensional unsteady problems, but it generally re-
quires a staggered grid arrangement. Staggered grid schemes have drawbacks
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in complex geometric configurations where nonorthogonal curvilinear coordi-
nates are used.

The vorticity-velocity formulation is a relatively new formulation for
reacting flows. It eliminates the pressure variable while replacing the first-order
continuity equation with additional second-order equations. Unlike stream
function-vorticity, vorticity-velocity is easily extendible to three dimensions
and allows more accurate formulation of boundary conditions in a numerically
compact way. Off-diagonal convective terms in the linear systems that exert a
strong influence in a stream function-vorticity formulation disappear. Another
attractive feature of vorticity-velocity is that the governing equations can be
discretized on a nonstaggered grid, thus allowing easy implementation of a
multigrid algorithm.

Once the fluid dynamics model has been selected, the evaluation of the
chemistry and the thermodynamics and transport properties of the mixture
needs to be specified. This task is an important and often expensive part of the
numerical calculation. A set of databases and general-purpose subroutines are
available. Data in the literature are used for the chemical reaction mechanism,
which can include up to 50 chemical species along with 100 elementary
reactions. For example, a typical chemical reaction is of the form

with some constants associated with how the reaction is accomplished. The
complete reaction table we used, containing 46 reactions, is in [4]. On the
other hand, a general theory for fast and accurate multicomponent transport
evaluation has become recently available [5]. In the framework of this theory,
the transport properties of the mixture are expanded into convergent series.
Accurate and cost-effective approximations for the transport properties are
then obtained by truncation. For a more mathematical discussion of the
iterative algorithms involved, we also refer to [6].

22.2. Some Details

Our present laminar diffusion flame model consists of the full set of two-
dimensional, axisymmetric equations expressing the conservation of total
mass, momentum, energy, and species mass. Because of the advantages
described earlier, we adopt the vorticity-velocity formulation of the Navier-
Stokes equations. The vorticity (a;) is defined in terms of the radial and axial
components of the velocity vector v — (vr, vz] as follows:

The vorticity transport equation is formed by taking the curl of the
momentum equations, which eliminates the partial derivatives of the pressure
field. Due to the high temperature gradients present in the flame, no viscosity
derivatives in the right-hand side of the vorticity transport equation are
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neglected. On the other hand, a Laplace- type equation is obtained for each
velocity component by taking the gradient of (22.1) and using the continuity
equation. A complete description of the governing equations for diffusion
flames in vorticity-velocity form can be found in [3, 4]; these equations are
simply restated here.

In the notation we use, p denotes the mass density of the mixture, // its
shear viscosity, and g the gravitational acceleration. For convenience, we de-
fine the components of V/3 to be ( Jj/3, —'jjP) f°r anv scalar (3. The cylindrical
divergence of the velocity vector v is denoted by div(t>) — ^-jfc(rvr) + -j%vz.
The unknowns are vr, vz, u, the temperature, and the species mass fractions.
The governing equations for the diffusion flame can then be written as follows:

Radial Velocity.

Equations for the energy and species conservation can be found in any
textbook on the area. The density is computed from the ideal gas law as a
function of the pressure p, the mean molecular weight of the mixture W, the
universal gas constant R, and the absolute temperature T as follows:

Equation of State.

Since we consider only low-Mach-number flames, we can use the constant
outlet pressure in (22.5) to compute the density. The pressure field is then
eliminated from the governing equations as a dependent unknown. Once a
computed numerical solution of (22.2)-(22.4), plus the energy and species
equations, is obtained, pressure can be recovered by solving a Laplace-
type equation, which is derived by taking the divergence of the momentum
equations.
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22.3. Solution Methods

The computational method used is a combination of a steady-state and a time-
dependent approach. The latter is used to find an approximate solution on a
coarse grid, with a flame sheet used for the starting estimate.

A discrete solution of the governing equations is computed on the (tensor
product) mesh M^ whose initial nodes are at the intersection of the lines of
the meshes

Local mesh refinement techniques on Mr and Mz are used to refine the
mesh MI. A steady-state solution is attempted on the new tensor product
mesh M-Z.

22.3.1. Damped Newton Method. A finite difference procedure is used
to approximate the spatial operators in the governing equations. Central and
upwind differences are used to approximate diffusion and convection terms,
respectively. An approximation to the analytic solution is then found at each
node of the mesh. With the difference equations written in residual form, we
seek a solution U* to the system of nonlinear equations

starting from an initial guess C/°. If this guess is sufficiently close to [/*, then
the damped Newton iteration

converges to the correct solution. Here, J(Un] = dF(Un}/dU is the Jacobian
matrix and An, 0 < An < 1, is the nth damping parameter.

vThe Jacobians are effectively nine-point operators, but the points are dense
square blocks equal in size to the number of components in the calculation.
Hence, for a flame calculation with 50 components, the Jacobians have up to
450 nonzeros per row. The number of spatial points in the mesh determines
whether the Jacobian is still considered a sparse matrix.

Once the Jacobian is formed, the Newton equations (22.7) are solved by
either a preconditioned (Gauss-Seidel) BiCGSTAB or a generalized minimum
residual (GMRES) procedure. Rather than working with dimensionless
variables, we introduce a scale factor for each dependent variable. The scale
factors are chosen so that the Newton corrections Un+1 — Un are similar for
variables of equal importance [4]. The Newton iteration continues until the
scaled norm of the discrete vector Un+l — Un is reduced appropriately. An
appropriate choice of the scale factors can yield significant savings in the
execution time, on the order of a factor of 10.
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22.3.2. Adaptive Mesh Multigrid Methodology. In the solution of
the governing equations, the dependent variables in some regions in each
coordinate direction exhibit extensive spatial activity (a steep front and sharp
peaks). In some cases, the solution components can vary by three orders
of magnitude between neighboring mesh points. These active regions must
be refined adequately. Adaptive techniques that attempt to equidistribute
positive weight functions have been used successfully. The equations for flames
with more than 50 chemical species and 100 chemical reactions can be solved
efficiently by this technique [8].

In the nested iteration multigrid method, (22.6) is first solved on a coarse
mesh. This mesh is then refined, and the solution from the coarser mesh is
interpolated (using linear or cubic interpolation) onto the new, finer mesh.
Then (22.6) is solved on the new mesh. These steps can be repeated until
there are k meshes, with the kih one sufficiently refined to resolve the flame.

The standard approach uses a one-way multigrid method. This means that
each of the coarser meshes is used only to initialize the next finer mesh. By
saving the last Jacobian used in the damped Newton iteration (22.7), correction
problems can be calculated on the coarser meshes. This method can be used
to accelerate the iterative solver used for (22.7) [1, 2].

22.3.3. Flame Sheet Starting Estimates. In order to converge, the
solution procedure just described requires an adequate starting estimate.
Determining an estimate that is good enough can be challenging. The difficulty
lies in the exponential dependence of the chemistry terms on the temperature
and in the nonlinear coupling of the hydrodynamic and the thermochemistry
solution fields. One approach that has been used for more than a decade
(cf. [8]) begins with the solution of a flame sheet problem.

In the flame sheet model, the fuel and oxidizer are assumed to undergo
an infinitely fast and irreversible conversion reaction into stable products in
the presence of an inert gas. Such an approach provides profiles for each of
the major components of the flame, including temperature and major species,
and is used to initialize diffusion flame problems with detailed chemistry. In
the two-dimensional flame sheet models used in our calculations, the vorticity-
velocity equations are coupled with a Shvab-Zeldovich equation of the form

Here, S is a conserved scalar and D is a diffusion constant. The
temperature and major species profiles are recovered from the conserved
scalar S.

22.3.4. Time Relaxation. The adaptive mesh multigrid methodology and
the flame sheet starting estimate help eliminate some of the convergence
difficulties associated with the direct solution of the governing equations [8].
Nevertheless, neither the interpolated solution from one mesh to the next finer
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one nor the flame sheet starting estimate generally lies in the convergence
domain of (22.7). Therefore, a scaled pseudotransient term DscaiedU/dt is
appended to the left-hand side of the conservation equations to produce a
problem that is parabolic in time. The time derivative is replaced by a
backward Euler approximation [8]. At each timestep, a damped Newton
iteration is again used to solve a system of nonlinear equations. This new
problem is quite similar to (22.6); in fact, the major difference is that the
diagonal of the steady-state Jacobian is weighted by the reciprocal of the
timestep. After an appropriate number of timesteps, a switch to the steady-
state form of the equations becomes possible.

22.4. Parallel Computing Methodology

Reasonable solvers for this class of problems separate the chemistry parts of
the code from the algebra parts. The complete rewrite of a few thousand lines
of code that at first appeared to be required for parallelization is no longer
necessary. This is due to the large amounts of memory per node on recently
delivered parallel computers. Similar considerations hold for workstations used
in cluster configurations for distributed computing.

The Jacobian matrices have a regular block sparse structure, which we
exploited in our parallelization strategy. Additionally, we wanted the operation
of our parallel code to be similar to that of our serial code.

The four principal sets of operations we needed to parallelize were the
following:

1. Jacobian matrix construction,

2. matrix-vector multiplication,

3. nonlinear residual evaluation,

4. inner products and norms (i.e., simple level-1 BLAS).

The vast majority of the serial computer time is spent on operations 1-3.
The block structure of the Jacobians is shown in Figure 22.2. Each block

has a similar block structure with three subblocks. The subblocks are nc x nc

and dense, where nc is the number of dependent unknowns. Hence, the
Jacobians resemble nine-point operators but have 9nc nonzeros per row on
average. Assuming nc £ [16,50], the Jacobians use a considerable amount of
memory in comparison with the solution vector.

We decided to use a sparse matrix domain decomposition method; i.e.,
we considered the Jacobian matrix to be a two-dimensional domain, which
we decomposed by rows of blocks. This corresponds to a strip domain
decomposition method. For example, in Figure 22.2, we decomposed every four
rows of blocks. Hence, for a matrix-vector multiply, only the nc-nr unknowns
associated with end blocks must be transferred between processors.

We considered two other domain decomposition methods. Schur comple-
ment methods simply use too much extra memory in computing the comple-
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FIG. 22.2. Upper left corner of the Jacobian matrix block structure.

ment of a matrix with 9nc, 16 < nc < 50 nonzeros per average row. Alternating
methods on two-dimensional subdomains, additive or multiplicative, have two
problems: first, the gradients of the solutions along the internal subdomain
boundaries are quite large. Second, standard theory based on condition num-
bers indicates that a huge number of iterations of the alternating procedures
would be required to solve our problems.

We have two matrix-vector multiplication routines; in one the precon-
ditioner is prefactored into the operations, and in the other it is not. The
parallelization of each routine follows the techniques just described. The pre-
conditioner is local to each processor, not global. Hence, the total numbers of
iterations for our parallel solvers are not always the same as the serial computer
equivalents.

The nonlinear residual calculation uses the same vector decomposition as
the matrix-vector and Jacobian routines. Hence, no data need to be transferred
between processors to start this procedure.

One aspect of the large number of nonzeros in the Jacobians is that we
can afford to store the complete solution vector on a single processor without
using much extra memory. In our case, our parallel computers had from 128
megabytes to 2 gigabytes of local memory on each node. Hence, if some
operation is quick and does not parallelize well (or at all), we can actually
gather all the data, do the operation on a single node, and then scatter data
back to the remaining processors. This was particularly useful in parallelizing
the code, one major operation at a time, and for debugging purposes.

The general computing methodology used was that of a single processor
directing all the processors to do various computing tasks. Tasks assigned to
processors included carrying out their part of the parallel iterative procedures,
computing a Jacobian, and evaluating a nonlinear residual. Large tasks are
the typical operation, not small tasks, such as requiring all processors to do an
inner product.

The communications library we used, MPL [9], allowed us to produce one
executable for each of the following IBM computers: SP1, SP2, and clusters of
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RS/6000s. The fast switches could be used with no relinking or recompiling.
Hence, only one copy of the source files and one executable were maintained
for all these environments.

Since we want the code to run on other machines, we are porting the code
from MPL to MPI [7]. An excellent, free version of MPI can be retrieved by
anonymous login from info.mcs.anl.gov. A number of proprietary versions
of MPI will soon be available; the one from IBM still has the nice feature of
one executable for all three platforms.

22.5. Numerical Results
The flame sheet model provides a test problem of moderate computational
cost for probing the efficiency of solution algorithms that can then be used to
tackle diffusion problems with detailed chemistry. Such a study is presented
in [2, 3]. The flame sheet considered is adequately resolved on a grid with up
to 2xl04 nodes, with 20% of the nodes clustered in a region covering 0.1% of
the computational domain. This requires up to 100 megabytes of work space.
The adaptive mesh multigrid procedure outlined here is particularly efficient
for solving flame sheet problems. In comparison with traditional solution
procedures, the total execution times drop by a factor of 10. Speedups as
high as 166 in the time relaxation phase have been seen on a single processor.
For three-dimensional problems, speedups much greater than 10 should be
obtained. At the beginning of this study, using an IBM RISC System/6000
model 560 workstation, we spent as much as 96 minutes on the flame sheet
phase. Recently, using an eight-node SP2, we spent as little as 45 seconds.

The step from a flame sheet problem to a finite-rate chemistry flame
problem is a challenging one, involving a dramatic increase in the difficulty
of the problem. This is attributable mostly to the much larger number of
dependent unknowns, the nonlinear fluid dynamics-thermochemistry coupling,
and the disparate length scales that must be resolved in the computed solution.
In particular, excellent resolution of a flame sheet problem requires up to 128
megabytes, while a reasonable solution of a diffusion flame with 50 chemical
species can require up to a gigabyte. Traditional solvers for two-dimensional
laminar diffusion flames used to require more than a hundred CPU hours on
a supercomputer. Owing to recent improvements in computational algorithms
and computer capabilities, this is no longer the case.

The flame configuration is a methane-air lifted laminar diffusion flame
with a triple flame structure at its base, as illustrated in Figure 22.1. Although
extremely difficult to compute numerically, this flame configuration was chosen
in [4] because of the availability of experimental and numerical results for
it [10]. The numerical solution that is considered first includes 16 chemical
species engaged in a Cl-chain reaction mechanism; i.e., only molecules with at
most one carbon atom are considered. In addition to the 16 chemical species,
four unknowns are associated with each mesh point. Hence, there are a total of
20 unknowns per mesh point. The flame is appropriately resolved with 5xl03
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mesh nodes, and very good agreement with previous experimental (2.5xl05

data points) and numerical data is obtained. Consider a one-way nonlinear
multigrid method with BiCGSTAB/Gauss-Seidel as the solver on all levels.
On the finest level, the wallclock times for convergence on the 89 x 85 grid are
given in Table 22.1.

TABLE 22.1
Fine-grid solution times for various machines. Peak speeds are 130 Mflops for the

SP1 and RISC %tf era/6000 model 580 and 266 Mflops for the SP2.

Machine
RISC System/6000-580
SP1

SP2

Processors
1
4
8
12
16
8
16

Wall-time
602.59
137.21
70.37
58.89
53.85
40.10
20.96

Speedup
1.00
4.39
8.56

10.23
11.19
15.03
28.75

The chemical mechanism just considered yields adequate resolution for the
temperature and several chemical species. More detailed investigation of the
flame structure requires additional chemical species in the model. For instance,
the study of the formation of pollutants, such as nitric oxide, requires up to 50
chemical species. While the memory requirements for such problems are too
large for current serial computers, these problems can be adequately solved
on parallel computers with large amounts of memory per node. The diffusion
flame just described can then be conveniently used to initialize diffusion flame
calculations with more detailed chemistry submodels. Such work is in progress.
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Chapter 23

Applications of Algebraic Topology to Concurrent
Computation

Maurice Herlihy
Nir Shavit

Editorial preface

All parallel programs require some amount of synchronization to coor-
dinate their concurrency to achieve correct solutions. It is commonly
known that synchronization can cause poor performance by burdening
the program with excessive overhead. This chapter develops a connection
between certain synchronization primitives and topology. This connec-
tion permits the theoretical study of concurrent computing with all the
mathematical tools of algebraic and combinatorial topology.

This article originally appeared in SIAM News, Vol. 27, No. 10, December
1994. It was updated during the summer/fall of 1995.

Today, the computer industry is very good at making computers run faster:
speeds double roughly every two years. Eventually, however (and perhaps as
early as the turn of the century), fundamental limitations, such as the speed
of light or heat dissipation, will make further speed improvements increasingly
difficult. Beyond that point, the most promising way to make computers more
effective is to have many processors working in parallel, the approach known
as multiprocessing.

The hard part of multiprocessing is getting the individual computers to
coordinate effectively with one another. As a typical coordination problem, if
two computers, possibly far apart, both try to reserve the same airline seat,
care must be taken that exactly one of them succeeds. Coordination problems
arise at all scales in multiprocessor systems—at a very small scale, processors
within a single supercomputer might need to allocate resources, and at a very
large scale, a nationwide distributed system, such as an "information highway,"
might need to allocate communication paths over which large quantities of data
will be transmitted.

Coordination is difficult because multiprocessor systems are inherently
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asynchronous: processors can be delayed without warning for a variety of
reasons, including interrupts, preemption, cache misses, and communication
delays. These delays can vary enormously in scale: a cache miss might delay
a processor for fewer than ten instructions, a page fault for a few million
instructions, and operating system preemption for hundreds of millions of
instructions. Any coordination protocol that does not take such delays into
account runs the risk that a sudden delay of one process in the middle of a
coordination protocol may leave the others in a state where they are unable to
make progress.

The need for effective coordination has long been recognized as a funda-
mental aspect of multiprocessor architectures. As a result, modern processors
typically provide hardware mechanisms that facilitate coordination. Until re-
cently, these mechanisms were chosen in an ad hoc fashion, but it is becoming
increasingly clear that some kind of mathematical theory is needed if the im-
plications of such fundamental design choices are to be understood.

In this article, we focus on some new mathematical techniques for analyzing
and evaluating common hardware synchronization primitives. Aside from its
inherent interest to the computer science community, we believe this work may
be of interest to the mathematical research community because it establishes
a (perhaps unexpected) connection between asynchronous computability and
a number of well-known results in combinatorial topology.

In many multiprocessor systems, processors communicate by applying
certain operations, called synchronization primitives, to variables in a shared-
memory. These primitives may simply be reads and writes, or they may include
more complex constructs, such as test-and-set, fetch-and-add, or compare-and-
swap. The test-and-set operation atomically writes a 1 to a variable and returns
the variable's previous contents. The fetch-and-add operation atomically adds
a given quantity to a variable and returns the variable's previous contents.
Finally, the compare-and-swap operation atomically tests whether a variable
has a given value and, if so, replaces it with another given value.

Over the years, computer scientists have proposed and implemented a
variety of different synchronization primitives, and their relative merits have
been the subject of a lively debate. Most of this debate has focused on the ease
of implementation and ease of use of the primitives. More recently, however, it
has emerged that some synchronization primitives are inherently more powerful
than others, in the sense that every synchronization problem that can be
solved by primitive A can also be solved by primitive B, but not vice versa.
This article describes the new conceptual tools that are making it possible
to provide a rigorous analysis of the relative computational power of different
synchronization primitives. This emerging theory could provide the designers
of computer networks and multiprocessor architectures with mathematical
tools for recognizing when problems are unsolvable, for evaluating alternative
synchronization primitives, and for making explicit the assumptions needed to
make a problem solvable.
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Our discussion focuses on a simple but important class of coordination
tasks called decision problems. At the start with such problems, processors
are assigned private input values (perhaps transmitted from outside). The
processors communicate by applying operations to a shared-memory, and
eventually each process chooses a private output value and halts. The decision
problem is characterized by (1) the set of legitimate input value assignments
and (2) for each input value assignment, the set of legitimate output value
assignments. For example, consider the following renaming problem: as input
values, each processor is assigned a unique identifier taken from a large range
(like a social security number). As output values, the processors must choose
unique values taken from a much smaller range. (Renaming is an abstraction
of certain resource allocation problems.)

To solve a decision problem, a processor executes a program called a
protocol. Because processors are subject to sudden delays, and because halting
one processor for an arbitrary duration should not prevent the others from
making progress, we require that each processor finish its protocol in a fixed
number of steps, regardless of how its steps are interleaved with those of other
processors. Such a protocol is said to be wait-free, since it implies that no
processor can wait for another to do anything.

23.1. Simplicial Complexes

A decision problem has a simple geometric representation. Assume we have
n + 1 processes, each assigned a different color. A processor's state before
starting a problem is represented as a point in a high-dimension Euclidian
space. This point, called an input vertex, is labeled with a process color and
an input value. Two input vertices are compatible if (1) they have distinct colors
and (2) there exists a legitimate input value assignment that simultaneously
assigns those values to those processes. For example, in the renaming problem
described earlier, input values are required only to be distinct, so two input
vertices are compatible if and only if they have distinct colors and distinct input
values. We join any two compatible input vertices with a line segment, any
three with a solid triangle, and any four with a solid tetrahedron. In general,
any set of k compatible input vertices spans an input k-simplexin fc-dimensional
space. The set of all possible input simplexes forms a mathematical structure,
called a simplicial complex. We call this structure the problem's input complex.

The notions of an output vertex, output simplex, and the problem's output
complex are defined analogously, simply replacing input values with output
values. The decision problem itself is defined by a relation A that carries each
input n-simplex to a set of output n-simplexes. This relation has the following
meaning: if S is an input simplex, T is an output simplex, and the processors
start with their respective input values from S, then it is acceptable for them
to halt with their respective output values from T.

For example, consider the instance of the renaming problem in which three
processors are assigned unique input values in some large range and must
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coordinate to choose unique output values in the range 0 to 3. Here, an output
simplex is a triangle whose vertices are labeled with distinct colors and distinct
input values in the range 0 to 3. There are 4-3-2 = 24 distinct output triangles,
and it is not difficult to draw them on a sheet of paper. The result, shown in
Figure 23.1, is topologically equivalent to a torus.

FIG. 23.1. Three-process renaming with four names.

Having shown how to specify a decision problem with a geometric model,
we now do the same for the protocols that solve such problems. Recall that a
protocol is a program: each processor starts out with its input value in a private
register, applies a sequence of operations to variables in the shared-memory,
and then chooses an output value based on the results of the computation.
We can view any such protocol as accumulating a history of shared-memory
operations—when the protocol has "seen enough," it computes its output value
by applying a decision map to its history.

Any execution of a protocol generates a set of histories, one for each
processor. The set of all possible executions also defines a simplicial complex:
each vertex is labeled with a processor color and a history, and two vertices
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are compatible if they are labeled with distinct colors and if in some protocol
execution, they see those two histories. We call this the full-information
complex for the protocol. More precisely, for every input simplex S, any
protocol induces a corresponding full-information complex f(S}. The union
of these complexes is the full-information complex for the protocol.

What does it mean for a protocol to solve a decision problem? Recall that a
decision map 8 carries each history h to the output value chosen by the protocol
after observing h. The decision map induces a map from the full-information
complex to the output complex: <5({P, h)) = (P,6(h}). We are now ready to
give a precise geometric statement of what it means for a protocol to solve
a decision problem: given a decision problem with input complex J, output
complex O, and relation A, a protocol solves a decision problem if and only if,
for every input simplex S e 1 and every full-information simplex T G ̂ r(5f),
6(T) C A(T).

This definition is simply a formal way of stating that every execution of
the protocol must yield an output value assignment permitted by the decision
problem specification. Roundabout as this formulation of this property might
seem, it has an important and useful advantage. We have moved from an
operational notion of a decision problem, expressed in terms of computations
unfolding in time, to a purely combinatorial description expressed in terms
of relations among topological spaces. It is typically easier to reason about
static mathematical relations than about ongoing computations, but, more
importantly, this model allows us to exploit classical results from the rich
literature on algebraic and combinatorial topology.

To prove that certain decision problems cannot be solved by certain classes
of protocols, it is enough to show that no decision map exists. We can derive a
number of impossibility results by exploiting basic properties that any decision
map must have. In particular, any decision map is a simplicial map: it carries
vertices to vertices, but it also carries simplexes to simplexes. Simplicial maps
are also continuous: they preserve topological structure. If we can show that a
class of protocols generates full-information complexes that are "topologically
incompatible" with the problem's output complex, then we have established
impossibility. Conversely, if we can prove that the decision map exists, then
we have shown that a protocol exists.

A complex has no holes if any sphere embedded in the complex can be
continuously deformed to a point. (More technically, the complex has trivial
homotopy groups.) It has no holes up to dimension d if the same property holds
for spheres of dimension d or less. (Notice that when d is zero, this condition
means the complex is connected.) For example, a two-dimensional disk (e.g.,
a plate) has no holes, and a two-dimensional sphere (e.g., a basketball) has
no holes up to dimension one, because any loop (e.g., a rubber band) on the
sphere can be deformed to a point. By contrast, a torus has no holes only up
to dimension zero—it is connected, but not every 1-sphere (loop) placed on
the surface can be deformed to a point.
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23.2. Read/Write Protocols

The simplest interesting synchronization primitives are atomic reads and writes
to variables in shared-memory. We recently used this simplicial model to give
a complete combinatorial characterization of the decision problems that can
be solved by read/write protocols [8].

The full-information complexes for read/write protocols have a remarkable
property: for any input simplex S, the full-information complex P(S) has
no holes. This property holds for any read/write protocol, no matter how
many variables it uses or how long it runs. This property is a powerful tool
for proving impossibility results. A careful analysis of the renaming problem
shows that if there are fewer than 2n+l possible output values, then the output
complex has a hole. Moreover, any decision map must "wrap" a particular
sphere in the full-information complex around that hole in such a way that
the image of the sphere cannot be continuously deformed to a single point.
Because the full-information complex has no holes, however, that sphere can
be continuously deformed to a point in the full-information complex. Because
the decision map is continuous, the image of that sphere can also be contracted
to a point, and we have a contradiction. The same kind of analysis shows that
a variety of fundamental synchronization problems have no wait-free solutions
in read/write memory.

This topological model also yields a "universal" algorithm that can be used
to solve any problem that can be solved by a wait-free read/write protocol.
Any decision problem can be considered as a kind of "approximate agreement"
problem in which each processor chooses a vertex in the output complex,
and the processors negotiate among themselves to ensure that all processors
choose vertices of a common simplex. This problem, which we call "simplex
agreement," provides a simple normal form for any decision task protocol.

We can combine these two notions to give a complete characterization of
the decision problems that can be solved by wait-free read/write protocols.
Because the exact conditions require some technical definitions beyond the
scope of this article, the focus here is on the underlying intuition. A decision
problem has a wait-free read/write protocol if and only if the relation A can
be "approximated" by a continuous map on its underlying point set, in the
following sense. Given the input complex J, construct a new complex, cr(J),
by subdividing each simplex in I into smaller simplexes. If v is a vertex in
cr(T), define carrier (v) to be the smallest simplex in J that contains v. The
decision problem is solvable in read/write memory if and only if there exists
a subdivision cr(Z) and a simplicial map // : cf(T] —> O such that for each
vertex v e cr(X], /j,(v} e ^.(carrier(v)). Informally, this condition states that it
must be possible to "stretch" and "fold" the input complex so that each input
simplex can cover its corresponding output simplexes.

This condition is shown schematically in Figure 23.2. The top half of the
figure illustrates the relation A for a generic decision problem, and the bottom
half shows how A can be approximated by a simplicial (continuous) map //.
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FIG. 23.2. Existence condition for read/write protocols.

23.3. Other Kinds of Protocols

Although read/write protocols have considerable theoretical interest, real mul-
tiprocessors typically provide more powerful synchronization primitives. The
topology of full-information complexes for such protocols is more complicated.
For example, Figure 23.3 shows the full-information complexes for two simple
protocols in which processors communicate by applying test-and-set operations
to shared variables. Casual inspection shows that these full-information com-
plexes differ from their read/write counterparts in one fundamental respect:
they have one-dimensional holes. Nevertheless, they do resemble them in an-
other respect: they are connected. In general, any protocol in which (n + 1)
processors communicate by pairwise sharing of test-and-set variables has a
full-information complex with no holes up to dimension \n/2\.

In a recent paper, Herlihy and Rajsbaum [6] analyzed the topological prop-
erties of full-information complexes for a family of synchronization primitives
called k-consensus objects, which encompasses many of the synchronization
primitives in use today. The larger the value of fc, the more powerful is the
primitive. The full-information complex for any protocol in which processes
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communicate via fc-consensus objects has no holes up to dimension \n/k\. So
at one extreme, when k = 1, the complex has no holes at all, and at the other
extreme, the complex becomes disconnected. As k ranges from 1 to n + 1,
holes appear first in higher dimensions and then spread to lower dimensions.
A surprising implication of this structure is that there exist simple synchroniza-
tion primitives that are incomparable: it is impossible to construct a wait-free
implementation of one from the other.

FIG. 23.3. Full-information complexes for some test-and-set protocols.

23.4. Related Work

The consensus problem is an idealized form of the transaction commitment pro-
tocols commonly used in distributed databases. In 1985, Fischer, Lynch, and
Paterson [5] showed that if processors communicate by exchanging messages,
then any consensus protocol has a "window of vulnerability" during which the
failure or delay of a single processor will cause the protocol itself to fail or
delay. This result showed that the notion of "asynchronous computability"
differs in important ways from conventional notions of computability. Since
then, a variety of research efforts have focused on characterizing the decision
problems that can be solved by particular synchronization primitives in the
presence of unpredictable failures and delays.

In 1988, Biran, Moran, and Zaks [1] gave a graph-theoretic characterization
of decision problems that can be solved in the presence of a single failure in
a message-passing system. This result was not substantially improved until
1993, when three independent research teams—Borowsky and Gafni [2, 3],
Saks and Zaharoglou [9], and Herlihy and Shavit [7]—succeeded in applying
combinatorial techniques to protocols that tolerate delays by more than one
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processor.
We provided the complete characterization of read/write solvability in

two recent papers [7, 8]. The analysis of the topological properties of full-
information complexes for protocols using more powerful primitives appears in
a recent paper by Herlihy and Rajsbaum [6]. Recently, Chaudhuri et al. [4]
were able to use similar topological techniques to derive the first lower bounds
for a class of decision problems in a message-passing system in which processors
execute in lockstep, but in which a processor can fail at any time by halting.

23.5. Conclusions

We believe this topological approach has a great deal of promise for the
theory of distributed and concurrent computation, and that it merits further
investigation. It has already produced a number of new and unexpected results
and has illuminated an unexpected connection between the emerging theory
of concurrent computation and the well-established theories of algebraic and
combinatorial topology.
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Chapter 24

Parallel Computation of Economic Equilibria

Anna Nagurney

Editorial preface

The mathematical formulation of economic equilibria presented in this
chapter involves an interesting blend of techniques. Variational methods
and mathematical programming are combined, and a decomposition to
induce parallelism is then applied. An interesting contrast is provided
by the performance of the solution algorithm on two very different
architectures, the CM-2 and the IBM 3090.

This article originally appeared in SI AM News, Vol. 25, No. 1, January
1992. It was updated during the summer/fall of 1995.

Problems in which agents compete for scarce resources until the system
is driven to an equilibrium state are numerous in economics. Examples
of economic equilibrium problems include oligopolistic market equilibrium
problems, spatial price equilibrium problems, problems of human migration,
and general financial equilibrium problems. The concept of equilibrium,
hence, is central to economics, and the determination of equilibrium prices
and quantities is central to computational economics. Here we explore the
application of parallel architectures to this problem domain.

The methodology that we utilize—the theory of variational inequalities—
was introduced initially for the study of partial differential equations, primarily
those in mechanics. It has now been used (cf. [9]) to study a plethora of
economic equilibrium problems, governed by such distinct equilibrium concepts
as Nash equilibrium, spatial price equilibrium, and Walrasian price equilibrium.
By way of explanation, Nash equilibrium denotes the state in which no agent
can increase his utility by unilateral action, given that all other agents keep
their actions fixed, whereas Walrasian price equilibrium denotes the state
in which there is no excess demand of a commodity at a positive price.
In addition to providing qualitative properties of existence, uniqueness, and
sensitivity of equilibrium solutions, variational inequality theory helps us to

265
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develop mathematically correct algorithms for the computation of solutions to
equilibrium problems.

Interestingly, besides the variational inequality formulation, many eco-
nomic equilibrium problems also have an underlying network structure (see,
e.g., [9]). A classical example is the spatial price equilibrium problem where
the nodes represent the markets and the links the transportation routes. In
this case the underlying network is bipartite. Recently, networks have been
used to model migration equilibrium problems, pure exchange economies, and
general financial equilibrium problems. Network models have also been used
to assist in policy analyses, where the effects of regulatory instruments such
as price controls, trade restrictions, tariffs, and taxes are to be determined.
Such policy interventions are used by governments as part of agricultural and
energy programs and may result in disequilibrium.

Finally, we note that the connection established recently in [3] (see also
[11]) between the set of solutions to finite-dimensional variational inequality
problems and the set of solutions to projected dynamical systems allows one to
study a wide range of equilibrium problems not only at the equilibrium state
but in the richer (and behavioral) framework of this new class of dynamical
system.

The computational approach to equilibrium problems in economics has
been primarily serial in nature. Here we illustrate how parallel computation
can be applied to solve equilibrium problems that are very large. For additional
background and applications, see [13].

24.1. Background
The finite-dimensional variational inequality problem, VI(F, K), is to deter-
mine the vector x* in a closed convex subset K of IRn such that

where F(-} is a known function from K to IRn.
VI(F, K) contains, as special cases, complementarity problems, min-max

problems, as well as minimization problems, and is also related to fixed
point problems; hence, it is a natural framework for the study of equilibrium
problems. For example, the connection between variational inequalities and
minimization problems is as follows. Let /(•) be a continuously difFerentiable
scalar-valued function defined on some open neighborhood of K, and denote
its gradient by V/(-). If there exists an x* £ K such that

then x* is a solution to the variational inequality
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On the other hand, if F(-), again on an open neighborhood of K , is the
gradient of a convex, continuously differentiate function /(•), then VI(F, K)
and the minimization problem (24.2) are equivalent. Hence, an optimization
form of a variational inequality exists only when the Jacobian matrix [dF/dx] is
symmetric, but VI(F, K) can also handle problems with asymmetric Jacobians
for which no equivalent optimization formulation exists.

Now consider the dynamical system defined by the ordinary differential
equation (ODE):

ODE (24.4) has been termed a "projected" dynamical system (cf. [11]).
As shown in [3], the stationary points of (24.4), i.e., those that satisfy
0 = HK(%, —F(x}}, coincide with the solutions of (24.1).

24.2. Parallel Decomposition

We consider variational inequality problems in which the feasible set K can be
expressed as a Cartesian product of sets; that is,

where each Ka C IRnQ, Y/a=i na — n, xa denotes a vector in Hn<*, and
Fa(x] : K \-+ HRHa for each a. In this case parallel variational inequality
decomposition algorithms can be applied for the computation of the solution
x* to VI(F, K}. The motivation is to resolve the variational inequality problem
into simpler variational inequality or optimization problems, each of which
can then be allocated to a distinct processor. Many equilibrium problems in
economics can be defined over a feasible set K of the form (24.7). For example,
in the case of multicommodity problems, each subset Ka would correspond to
the constraints of a commodity a [6]; in the case of multiclass problems in
human migration, each Ka would correspond to a distinct class a [5].

The linearized parallel decomposition algorithm, which we now describe,
decomposes VI(F,K) into £ simpler subproblems, which are quadratic pro-
gramming problems [1]. Each of these problems can then be allocated to a
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distinct processor, and all can then be solved simultaneously. The statement
of the algorithm is as follows.

Initialization:
Start with an initial vector x° G K. Set r = I .

Step r , r=l,2, . . .:
Construct the functions

for a = !, . . . ,£, where Da(x
r~1} is the diagonal part of VaFa(:r),

the gradient of Fa with respect to o;a, and solve the £ subproblems:

Let the solution to (24.9) be x^; a = 1, . . . , C
If (equilibrium conditions are satisfied) then

stop
Else

Set r = r + 1, and go to (24.8).

Because variational inequality problems are usually solved iteratively as
mathematical programming problems, the overall efficiency of a variational
inequality algorithm depends upon the efficiency of the mathematical pro-
gramming algorithm used at each iteration. Furthermore, in the case in which
there is a special network structure to each subproblem (24.9), an even finer
decomposition may be possible. We now present an algorithm for the solution
of a network subproblem with special structure that arises in the realization
of the linearized parallel variational inequality decomposition algorithm. The
notable feature of this procedure is that it lends itself to a massively paral-
lel implementation, as we will demonstrate later. This demand market exact
equilibration procedure is described and theoretically analyzed in [2]. Addi-
tional applications, ranging from finance to transportation, in which the exact
equilibration algorithm can be used as a subroutine, can be found in [9], [11],
and [13].

In particular, we are interested in computing the flows xu, . . . ,xmi from
the supply markets 1, . . . , m to the demand market / that satisfy the following
equilibrium conditions: the cost of the good from i to /, gixn + ha, is equal to
the demand price, — n Ei xu + <ll, at demand market /, if there is a positive flow
xn; if the cost exceeds the demand price, then there will be zero flow between
the pair of markets. Mathematically, the conditions are

where the <ft, i = 1, . . . , m, terms are all greater than zero, as are the terms
and .

R
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This problem may be viewed as a network problem with two nodes and /
links connecting the origin node with the destination node. The x^/'s then may
be interpreted as corresponding to the flows on the respective links where the
associated cost on the ^th link is given by giXu+hu. The function —r/ ]Tj xn+qi,
in turn, may then be interpreted as the demand price associated with trade
between the origin/destination pair.

The algorithm below computes the solution to the above system (24.10) in
closed form.

SORT:
Sort the /i^/'s, i = 1, . . . , ra, in nondescending order and relabel the
h^s accordingly. Define fom+i,/ = oo.

TEST:

In the case where the demand ̂  xz/ ig known and fixed, the procedure
that will equalize the costs for all of the positive trade flows can be obtained
from the above scheme by replacing the qi/ri term in the numerator in (24.11)
by the known demand and by deleting the second term in the denominator in
(24.11). The TEST step is then unnecessary, provided that v is initialized to
one.

Finally, we recall the general iterative scheme proposed in [3] for the
computation of stationary points of the projected dynamical system (24.4),
equivalently, the solutions to the finite-dimensional variational inequality
problem (24.1). In the case where the feasible set K is the nonnegative orthant,
as occurs in many economic equilibrium problems, which require, for example,

iF THEM

STOP

eLSE

compute:

goto SET
Else

goto COMPUTE:
SET
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that the commodity outputs and prices must be nonnegative, the equilibrium
problem can be massively decomposed into subproblems that can, in most
cases, be computed explicitly and in closed form. The general iterative scheme
takes on the following form.

Initialization:
Start with an initial vector x° G K, Set r = 1.

Step r, T = 1,2,. . . :
Compute

where ar is a sequence of positive scalars and FT is a sequence of vector fields
that "approximates" F(-) (cf. [3, 11]), with the simplest approximation being
FT = F, and yields an Euler method.

Note that in the case that K = .R", each term of the vector xT+l can be
computed independently and simultaneously according to (24.12) as

24.3. Applications

We now illustrate the above ideas in the context of several applications. For
example, the parallel variational inequality decomposition procedure applied
to the multiclass migration equilibrium model developed in [5], with known
populations of each class in the economy, would yield, per iteration, as many
fixed demand network problems of the form described above as there are
classes. In the case of the pure exchange general economic equilibrium problem
(cf. [9]), the algorithm would yield a series of single network subproblems in
which there are as many links as there are commodities.

Next we expand upon the ideas in the context of other partial and general
economic equilibrium problems. In a partial equilibrium model only segments
of producers, consumers, and/or commodities are considered, whereas in
general equilibrium models, all of the economic entities are treated.

24.3.1. Partial Economic Equilibrium Models. In the case of static
multicommodity spatial price equilibrium problems, the variational inequal-
ity decomposition algorithm would yield as many classical, single commodity
spatial price equilibrium problems as there are commodities. In this appli-
cation, each single commodity subproblem (24.9) could then be solved using
a demand market equilibration algorithm [2]. This in turn resolves the sub-
problem into precisely the specially structured network problem of the form
outlined above. Such a decomposition was applied to multicommodity market
equilibrium problems in [6] and implemented on a coarse grain architecture, the
IBM 3090/600E, at the Cornell National Supercomputer Facility (CNSF). The
results of the parallel implementation for problems up to 50 supply markets,
50 demand markets, and 12 commodities, are presented in [6].
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A dynamic market equilibrium model, formulated as a projected dynamical
system, was introduced in [12] in which the optimal commodity production,
consumption, and trade patterns are to be determined over space and time.
The Euler method (cf. (24.12)) was then implemented on the Thinking Machine
CM-2 Connection Machine and on problems with as many as 50 supply markets
and 50 demand markets, that is, with 250,000 unknown commodity shipment
variables solved using this parallel architecture. In [14], an alternative dynamic
market model was introduced, in which both the commodity shipments and
prices were to be computed. Therein is discussed the implementation of the
Euler method, along with numerical results on both the Thinking Machines
CM-2 and CM-5 architectures.

In many applications, subproblems of the form (24.8) that possess a
network structure, such as the bipartite network problems, may be decomposed
into even finer subproblems, each of which will then be of the special single
origin/destination pair form and be amenable to solution on massively parallel
architectures (see also, e.g., [7]). Toward the goal of exploiting precisely the
simplicity of the exact equilibration procedures, we have developed a splitting
equilibration algorithm (SEA) [7], which resolves a variety of bipartite-type
network problems into series of single network subproblems, each of which
can then be solved explicitly in closed form using the exact equilibration
procedures.

24.3.2. General Economic Equilibrium Models. The SEA has been
used not only to compute solutions to spatial price equilibrium problems, but
also to estimate input/output tables of the U.S. economy, to estimate migration
flows in the U.S., and to estimate the social/national accounts for the U.S.
Department of Agriculture. For example, an input/output table is a matrix
whose rows correspond to the origin sectors of the goods (the producers) and
whose columns correspond to the destination sectors (the purchasers). The
matrix elements in an input/output table are the flows of the products from
each of the producing sectors to each of the consuming sectors. A social
accounting matrix, on the other hand, is a general equilibrium data system
that consists of the accounts in the economy of a nation. The rows represent
the receipts of the accounts, the columns the expenditures of the accounts,
and the individual matrix entries the transactions in the economy. Numerical
results for the application of the algorithm to a spectrum of such problems
in both a serial and in a parallel environment on the IBM 3090/600E can be
found in [7].

Macromonetary policy is another area of application that holds particular
promise for the above ideas. We have developed a network model of financial
flow of funds accounting that explicitly incorporates feedback and can be used
to calculate reconciled values of all outstanding financial instruments in an
economy, as well as tangible assets and net worth. The model captures,
as special cases, distinct data-specific problem scenarios and permits the
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estimation of sector holdings of both assets and liabilities, total outstanding
financial instrument volumes, and total sector holdings. Examples of sectors
are households, private businesses, commercial banks, etc.; examples of
financial instruments are money market fund shares, corporate equities, life
insurance reserves, etc.

To solve such problems, we have recently developed network decomposition
algorithms based on the SEA and applied them to establish a consistent set of
financial flow of funds accounts for the Federal Reserve Board (see [8]). This
is the first stage in the development of a general equilibrium model of credit
policy reform for the U.S. Department of Agriculture. We have also recently
developed a multisector, multi-instrument general financial equilibrium model
in which each sector uses the market value of its portfolio and its individual
assessment of price risk as simultaneous choice criteria to maximize utility
of its expected future portfolio. The variational inequality decomposition
algorithm applied to this general equilibrium model results in series of network
subproblems, which, again, can be solved simultaneously and in closed form
(cf. [13] and [10]).

24.4. Implementation on the CM

The Connection Machine model CM-2 from the Thinking Machines Corpora-
tion (TMC) is a distributed-memory, SIMD (single-instruction multiple-data)
massively parallel processing system with 64K processors in its full configura-
tion. Each processing element is under the control of a microcontroller that
sends instructions from a front-end computer to all of the elements for execu-
tion. The model of computation is data level parallelism; that is, all processors
execute identical operations.

The language that we used for the implementation was CM Fortran version
1.0. It is a high-level language that compiles into Paris, the assembly-level
language of the machine. It is a very compact language: the addition of two
matrices, for example, is expressed in a single statement.

We now briefly describe some of the intrinsic functions of CM Fortran that
make it very well suited for implementing the exact equilibration algorithms
outlined in §24.3. For example, the intrinsic function cmf .order sorts elements
of a matrix either rowwise or columnwise and returns the indices. The minval
and maxval functions return the smallest and largest elements, respectively, in
either a row or a column of an array. The transpose feature of a matrix is
useful in minimizing the cost of communication between processors in which
the data elements are located.

Since matrix operations must be conformable, i.e., the matrices operated
on must be of the same dimensions, one may need to change a matrix into a
vector or vice versa; the functions pack and unpack are very useful for such
transformations. Also one may use the spread command to replicate a vector
into a matrix.

Finally, we note the availability of logic statements, such as the where,
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else, end statements that check conditions on vector/matrix elements in
parallel.

In order to take advantage of the data level parallelism a large number of
processors are needed to operate on multiple copies of the data simultaneously.
Note that in an input/output matrix consisting of 500 rows and 500 columns
we would need 250,000 processors, which is greater than the number of physical
processors available to us even in a fully configured CM-2. The CM-2, however
has the notable feature known as virtual processors (VP) that permits a
processor to operate on multiple copies of the data. This feature is identical to
having multiple physical processors operating on their own copy of the data.
The VP ratio is defined as the ratio of the number of virtual processors to
physical processors.

We considered the estimation of an input/output matrix for the U.S.; the
matrix consisted of 485 row and 485 columns. We implemented the SEA
(cf. [7, 4]), which resolves the general equilibrium system to be estimated into
a series of supply market and demand market equilibrium problems of the
form described in §24.3 (cf. (24.10)). In particular, there were 485 supply
subproblems and 485 demand subproblems to be solved at each iteration, until
convergence.

We now briefly highlight some important implementation issues. In
particular, the solution of each of the 485 subproblems of the form (24.10),
which consisted of 485 unknown xu variables, was carried out by using 485 of
the processors to first compute the p\ given in (24.11) for v = 1,.. . ,485. A
shift command was then utilized to bring the neighboring hvi,hv+ij values
to the same location to minimize the communication. The hvi < p\ < hv+ij
check condition was implemented using the where, else, end construct. All
485 demand problems were solved in the same fashion, simultaneously. The
Xj/'s for i — 1, . . . , 485; / = !,..., 485 were then updated, also simultaneously.

We also implemented a parallel version of the SEA on the IBM 3090/600E.
For this purpose we utilized as the base the serial Fortran code and added
the Parallel Fortran (PF) constructs to handle the task allocation, that is,
the assignment of each of the 485 demand/supply subproblems to the six
CPUs. The conversion of the serial code to the parallel code was relatively
straightforward in that only task origination statements, dispatch statements
that allocated a demand/supply subproblem to the next available processor,
a waiting statement for synchronization, and task termination statements had
to be added to the original serial code.

Our experience with implementing the parallel version of the code on an
IBM 3090/600E will now be compared and contrasted with our experience
with implementing the code on the CM-2. As the discussion above reveals, a
highlight of our experience was the ease with which the parallel implementation
on the IBM 3090 was done. On the other hand, our serial Fortran code
developed on the IBM 3090 was of limited value in the preparation of our
CM Fortran code. Indeed, programming in CM Fortran on the CM-2 required
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the use and application of entirely different concepts, and, consequently, even
the fundamental approach to the implementation of the exact equilibration
algorithm had to be rethought, as discussed above. Essentially, rather than
allocating a particular market subproblem to a processor, as was the philosophy
and realization on the 3090 implementation, all trade flows were, instead,
computed simultaneously on the CM-2; this was the finest level possible of
decomposition for the problem, both conceptually and architecturally.

Since we were able to eliminate most of the DO loops and to use CM Fortran
intrinsic functions, which are well-suited to our algorithm, we were able to
produce a very compact code vis-a-vis the 3090 PF code. The convenience
and elegance of having critical matrix operations represented in a single step
and the availability of useful intrinsic functions, however, was tempered by
the absence of certain features that are taken for granted in Fortran. For
example, in the version of CM Fortran available to us, only vectors and not
matrices could be used as indices into arrays. Even though vectors could be
used as indices into other vectors or matrices, however, no two elements of
such an index vector could have the same value, which would have resulted in
"collisions."

We now present the results of our implementations on the two architectures.
In Table 24.1 we present the results of the computations for the CM-2
system. The CM-2 used for these results was located at the Northeast Parallel
Architectures Center (NPAC). It consisted of 32K processors; each processor
contained a local memory of 8K bytes. A SUN workstation was used as the
front end. The problem was solved using 8K processors with a VP ratio of 32,
16K processors with a VP ratio of 16, and 32K processors with a VP ratio of 8.

TABLE 24.1
Results of SEA implemented on a CM-2.

No. of physical Real time CM time Front-end CM
processors (sec.) (sec.) virtual time % utilization

8K
16K
32K

52.05
29.86
16.76

51.74
29.58
16.34

52.05
29.86
16.72

99%
99%
98%

Observe that the CM time decreases approximately linearly as the number
of processors is increased. The estimated CM time for 64K processors would be
approximately nine seconds. We note that the same problem was solved on an
IBM 3090/600E and required 438.35 CPU seconds for the serial Fortran code
(cf. [7]). In Table 24.2 we report the stand-alone results of SEA implemented
on an IBM 3090/600E for the same example. SEA required four iterations for
convergence on both architectures.
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TABLE 24.2
Results of SEA implemented on an IBM 3090/600E.

Number of Wallclock time
processors (seconds)

1 444.18
2 229.85
4 118.76
6 86.32

These numerical results strongly suggest that our implementation on
the CM-2 using CM Fortran is very promising. We believe that further
enhancements to the language will make even more efficient implementations
realizable.

24.5. Conclusions

A wealth of computational problems in economics are amenable to solution by
algorithms developed for the exploitation of advanced architectures. Here we
have attempted to interest the reader in economic equilibrium problems that
can be formulated as vadational inequality problems or as projected dynamical
systems and, moreover, may have an underlying network structure. For
additional background on parallel algorithms and applications to economics,
we refer the reader to [13].
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Chapter 25

Solving Nonlinear Integer Programs with a
Subgradient Approach on Parallel Computers

Robert Bixby
John Dennis

Zhijun Wu

Editorial preface

Mixed integer programming ranks among the most difficult computational
problems to solve. It is further exacerbated by a nonlinear objective
function, and the complexity of developing solution schemes for realistic
problem sizes is significant. An intricate algorithm is described that, in
the context of gas pipeline network optimization, offers parallelism in
which good speedups are achieved on an nCube.

This article originally appeared in SIAM News, Vol. 25, No. 4, July 1992.
It appears in its original form.

Many large, and hard, nonlinear integer programming problems—or,
more generally, mixed integer nonlinear programming problems—arise in
both theoretical study and practical applications. No general and efficient
solution to these problems can be found with traditional computers. Thus, it
becomes necessary to develop new algorithms for solving these problems on
advanced architectures, such as parallel computers. This article describes a
new algorithm for solving nonlinear integer programs, developed at the Center
for Research on Parallel Computation at Rice University, and shows how the
solution to a nonlinear integer program can be achieved on a parallel computer.

Nonlinear integer programming is concerned with solving the problem

aor its natural extension
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where / : Rn —> R is a general nonlinear function.
This class of problems contains many NP-hard problems and has both

theoretical and practical applications. For example, consider the problem that
for any norm || • ||,

where b e Rm and A is an m x n matrix with integer elements. This problem,
called the closest vector problem in integer programming, has been proven to
be NP-complete even for simple norms such as /2 and l^.

Another example is related to the solution of a class of more general
problems: mixed integer nonlinear programming problems. It turns out that
under some circumstances, problems of this class can be reduced to general
nonlinear integer programs. For instance, an unconstrained mixed integer
nonlinear program,

can be formulated, under some appropriate assumptions, as the following
problem:

Mixed integer nonlinear programming has recently found an important
application in the steady-state optimization of gas pipeline network operation.
Percell [4] studied three model problems for pipeline networks with up to 12
compressor stations, each of which contains several compressor units. Given
demands and resources for the network, the goal of the optimization is to find
steady-state profiles of pressure, flow, temperature, and compressor station
configurations (i.e., choice of compressor units to be run). These solutions
are optimal for chosen objectives, such as minimizing the amount of fuel,
maximizing the total flow, and maximizing gas inventory.
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Mathematically, the problem is formulated as a minimization of a nonlinear
objective function subject to nonlinear equality constraints. There are two
groups of variables: continuous and discrete. The continuous variables
correspond to pressures, flows, temperatures, speeds, powers, etc. The discrete
variables correspond to compressor stations, and their values are the number
of compressor units to be run.

There are several well-studied methods for nonlinear continuous optimiza-
tion. The challenge of applying them to the pipeline optimization problem lies
in finding an effective way to handle the discrete variables, i.e., in deciding
how many compressors should be used and which should be turned on or off
for the network operation. Simply enumerating all possible values for the dis-
crete variables is infeasible as there are exponentially many combinations with
respect to the number of discrete variables. Besides, the number of discrete
variables tends to be large in practice. Anglard and David [1] considered a gas
pipeline network with 196 compressor stations, each of which contained up to
eight compressor units. A robust way to deal with the discrete variables is to
solve a nonlinear integer program, as illustrated in (25.6).

Several approaches to the solution of a nonlinear integer program have
been studied in the last 30 years (see [3] for a general review). The main ones
are enumeration, algebraic, and linearization approaches. Most of them work
for problems with special structures. But for problems with general objective
functions, such as (25.6), the enumeration method is hardly efficient, and the
other two approaches cannot be applied owing to their special requirements
for the forms of the objective function.

25.1. The Subgradient Approach

Bixby, Dennis, and Wu [2] have proposed a subgradient approach to nonlinear
integer programming problems with more general or complicated objective
functions. With this approach, a nonlinear integer program in the form
of (25.1) is considered as a nonsmooth problem over the set of 0-1 integer
points. Notions of subgradients and supporting planes are then introduced
for the objective function at integer points. By computing subgradients
and supporting planes, a sequence of linear approximations to the objective
function is constructed, and the optimal solution is found by successively
solving the sequence of linear subproblems.

More specifically, the subgradient algorithm iteratively searches for the
solution among integer points. At each iteration, it generates the next
iterative point by solving the problem for a local piecewise linear model that
is constructed from the supporting planes for the objective function at the set
of iterative points already generated. The supporting planes are computed
by using special continuous optimization techniques. The problem for the
local piecewise linear model in each iteration is equivalent to a linear integer
minimax problem, which can be solved with a standard method for linear
integer programming.
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In Algorithm 1, /r, the restriction of / to Bn, where Bn = {0, l}n, is called
the discrete objective function and dfr(x^>} is the subdifferential of fr at x^.
Formally, the algorithm can be outlined as follows.

v
0 {Initialization}

1 {Iteration}
do while i < m

1.1 {Optimality testing}

then
x^ is the optimal solution, stop

1.2 {Generating supporting planes}

a - # U {p
1.3 {Solving a linear integer minimax problem}

find a solution z^ for

1.4 {Updating}

end do

There are three major steps at each iteration: optimality testing, genera-
tion of a supporting plane, and solution of a linear integer minimax problem.
The essential work in the first step is to construct the optimality criteria. The
challenge of the second step lies in finding a method for computing a subgradi-
ent such that a supporting plane can be generated. For the third step a special
linear integer program needs to be solved.

The optimality criteria are based on the following facts (given in [2]):

Fact 1: A necessary and sufficient condition for x* 6 Bn to be the

Fact 2: For the sequence T = {x^ G Bn, j = 1, . . . ,i} generated by the
algorithm at the ith iteration, if 3j < i such that a;^ = x^\ then x^
must be an optimal solution.

It follows from Fact 2 that the algorithm stops whenever an iterate is
repeated. Because there are only finitely many distinct iterates, the algorithm
is finite.

Consider the generation of a supporting plane for the function fr at a given
integer point x. If g is the function for the supporting plane, then g is a linear

Algorithorithmm 1 {The Subgradient Algorithm 1 {The Subgradient Algorit
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function and

To obtain this function, fr(x] can be computed easily, but the subgradient
s must be chosen such that g bounds fr from below as tightly as possible. In
the case where / is convex and differentiate, it is easy to verify that V/(x),
the gradient of / at x, is a subgradient of fr at x. A trivial way to choose s,
therefore, is to set s to V/(x). However, with this subgradient, g could be too
"steep" to be a preferred supporting plane; in this case a subgradient other
than V/(x) is required, such that g is as "flat" or "close" to fr as possible.

Unfortunately, there are no simple methods for computing any subgradients
for general nonlinear nonsmooth functions. In this algorithm subgradients are
obtained by a process that can successively improve a given subgradient. The
process starts with the subgradient s = V/(x) and then updates it such that
the corresponding supporting plane g is "lifted," i.e., made "flatter" or "closer"
to fr. The updated s remains a subgradient as long as g still supports fr at
x, i.e.,

The lifting process continues until the best possible supporting plane is
obtained. However, for every update, condition (25.8) must be verified. For
a given subgradient s, if S is defined such that x E S if f ( x ) < g(x), then
condition (25.8) is equivalent to the following statement:

A vector s is a subgradient of fr if and only if the interior of S
does not contain 0-1 integer points.

Figure 25.1 illustrates with a simple example how the lifting process is
conducted and condition (25.8) is guaranteed. In this example, the lifting
process is applied to find a subgradient of fr at x. First, s is set to
V/(x). The supporting plane defined by this subgradient is <?(0)- Then s
is updated to "lift" #(0) a little bit, and g^ and S^ are obtained. Let
A = {x e Rn : Xi > 0 if Xi — 1, and Xi < 1 if Xi — 0, i = l , . . . ,n}.
Geometrically, A is a region that contains Bn, and its boundaries are formed
by hyperplanes xi = 1 — x^, i = 1 , . . . , n. Once it has been observed that the
interior of A contains no points in Bn other than x, condition (25.8) holds if
5(1) is inside of A. In general,

for each S obtained in the lifting process, the interior of S does not
contain 0-1 integer points as long as S is contained in A.

To obtain better subgradients, s can be further updated until the corresponding
S hits the boundary of A (see #(2) and 5(2) in Figure 25.1).

Now consider the updated subgradient s and its corresponding S. Let di
be the distance between S and the ith boundary of A. Then d = (d\,..., dn) is
a function of s. It can be proven that the function is well defined under some
assumptions. The lifting process can then be formulated mathematically as an

r
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FIG. 25.1. The lifting process for computing subgradients.

optimization problem:

The major computation for this optimization problem is the evaluation of
the function d(s} for each s. In terms of the lifting process, distances between
the boundaries of S and A need to be calculated for each lifting step. If the
distances are positive, S is inside A and hence condition (25.8) holds. In any
case, di(s) for any i can be calculated by first computing an extreme point of S
along the Xi direction and then calculating the distance between the extreme
point and the ith boundary of A. The extreme point of S can be found by
solving a relatively simple continuous optimization problem (linear objective
function with only one nonlinear constraint).

Finally, the third step of each iteration involves the solution of a linear
integer minimax problem. Because the problem can be formulated as a special
linear integer program, a branch-and-bound procedure can be applied. To
compute the bound for every branching step, the standard simplex method is
used to solve the dual problem of the linear relaxation problem.
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25.2. Generating a Supporting Plane in Parallel
As described in the preceding section, the subgradient algorithm requires that
a number of subproblems be solved at every iteration. These subproblems are
difficult, and their solutions involve large amounts of computation. Reducing
the time required to solve these subproblems appears to be a very important
and challenging consideration. Bixby, Dennis, and Wu [2] propose the use of
parallel computers to speed up the algorithm so that reasonably large problems
can be solved. In fact, parallelism can indeed be exploited for the algorithm
to achieve high performance.

The subgradient algorithm carries at the top level an iterative procedure
that is sequential and cannot be done in parallel. Numerical experiments show
that for most problems the algorithm can find an optimal solution in only
a few, at most (9(n), iterations. Therefore, the algorithm can be effectively
parallelized if the computation at each iteration can be done in parallel.

For each iteration the major computational costs are those of generating a
supporting plane and solving a linear integer minimax problem. To generate
the supporting plane, the lifting process is conducted to achieve a solution to
problem (25.9), where most of the work is in the evaluation of the function
c?(s), as discussed previously. Computing each component of d(s] involves the
solution of a continuous optimization subproblem. A total of n subproblems,
therefore, need to be solved to obtain all components of d(s) for each given s.
The computation here could be very expensive.

Each of the n subproblems is totally independent, however, and they
all have almost the same structure and size. Thus, it is easy to introduce
parallelism to do the function evaluation, and if up to n processors are
used, subproblems can be distributed evenly over the processors and solved
in parallel with little communication overhead. Parallelism of this type is
suitable for such parallel systems as the Intel iPSC/860 hypercube, with up to
128 processors, and the nCube, with up to 8192 processors. For large problems
(n = 100 ~ 1000), very high performance can be achieved as many, up to n,
processors can be used.

25.3. Parallel Branch-and-Bound for the Linear Subproblem

The linear integer minimax problem induced at each iteration by the subgra-
dient algorithm is solved by applying a branch-and-bound procedure, a pop-
ular scheme for solving linear integer programming problems. But for large
problems—those with, say, 100 to 1000 variables—the method may still pro-
duce so many subproblems that the solution cannot be obtained in a reasonable
time.

The branch-and-bound procedure can be represented by a tree, with nodes
corresponding to subproblems and branches corresponding to relations among
subproblems. The process can thus be parallelized by exploiting the tree
structure, although it is not straightforward to do so. The tree structure is
constructed dynamically as the procedure moves forward, and the parallelism
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among subproblems often is not known until the subproblems are generated.
Algorithm-2 is the parallel branch-and-bound procedure used within the

subgradient algorithm for the linear subproblems. The algorithm is based
on the general branch-and-bound method, but a multiple branching strategy
is used instead of the more common binary branching. More precisely, if p
processors are used, the algorithm always makes p branches at every branching
step, producing p subproblems and solving them, one for each processor, in
parallel. After solving the subproblems, the algorithm proceeds by making
branches recursively for the new subproblems.

With the multiple branching strategy, processors can be scheduled in a
systematic way: each time p subproblems are produced, they are assigned to
the p processors, one for each processor. All groups of p subproblems produced
in this way are almost the same, except for some variables set to different
values. The load is thus balanced automatically in solving the subproblems.
Moreover, because subproblems are generated regularly and correspond to
processors, first subproblem for first processor, second subproblem for second
processor, etc., processors do not need to trace a global subproblem stack to
find the subproblems they need to solve. Instead, each processor has only a
small local stack of its own subproblems.

Globally, the parallel branch-and-bound procedure conducts a depth-first
search because at each step the new subproblems always are processed first.
But after every group of p subproblems is solved, they can be sorted according
to some priority. The branching can then be made for the subproblems in the
sorted order (local best-first branch).

Algorithm 2 { The Parallel Branch-and-Bound Algorithm}
* {Initial Procedure}

initialize p, zp, z, and x (p represents the initial subproblem)
solve p
let z_p and xp be the optimal value and solution
if xp is integral then

z — mm{z,z_p}, x = xp, stop
push(p, P) (P is a local subproblem stack)
branch-and-bound(l, x, z)
pop(P)

* {End of Initial Procedure}

* {Recursive Procedure}
branch-and-bound (i, x, z)

broadcast zp from processor i
if zp > z, return
if processor # = i then

select branching variables
broadcast branching variables from processor i
generate and solve subproblem p
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let z_p and xp be the optimal value and solution
if xp is integral then

z = minlz,;^,}, x — xp

update z and x if necessary
push(p, P)
for j = 1 , . . . , # of processors do

branch-and-bound(j, x, z)
pop(P)

* {End of Recursive Procedure}
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a of processors p in [Iog2(p)]

FIG. 25.2. Speedup obtained with varying numbers of processors.

25.4. Remarks

Computational experiments have been conducted with a parallel implementa-
tion of the subgradient algorithm on a 512-node nCube located at the California
Institute of Technology. The program is written in Express C, an extended C
language for distributed-memory parallel computers. In addition to standard
C, the language provides a variety of message-passing functions.

Small problems (up to 64 dimensions) have been tested. Preliminary results
show that most of the test problems can be solved by the subgradient algorithm
in only a few, at most (9(n), iterations, if proper initial guesses are used. For
a test problem of dimension n there are 2n 0-1 integer points. In the worst
case, therefore, the algorithm might need to run 2n iterations, which cannot
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be done in a reasonable time, even for an average n, say 32, for which there are
4,294,967,296 0-1 integer points in total. In reality, however, most of the test
problems can be solved more efficiently than by exhausting all possible integer
points. For test problems of dimension 32 or 64, with some initial guesses, only
several iterations were taken.

For the parallel implementation of the program on the nCube, if the number
of processors p (p < n) is doubled, the total computation time can often be
reduced by almost half. Figure 25.2 shows the speedup that can be obtained for
a 32-dimension test problem when different numbers of processors are used.
The greatest speedup is about 18, which can be improved by testing larger
problems.
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Chapter 26

Parallelizing FDTD Methods for Solving
Electromagnetic Scattering Problems

Sandy Nguyen
Brian Zook

Xiaodong Zhang

Editorial preface

Owing to increased use of electronics in many forms of industrial and
commodity products, the study and characterization of electromagnetic
scattering is becoming a mainstream area of study for industry. The
solution to the electromagnetic scattering problem using the finite-
difference time-domain (FDTD) method via a parallel virtual machine
(PVM) for networks of workstations is presented.

This article originally appeared in SIAM News, Vol. 28, No. 4, April
1995. It appears in its original form owing to its recent appearance in
SIAM News.

The study of electromagnetic scattering involves the modeling, simulation,
and analysis of the electromagnetic responses of complex systems to various
electromagnetic stimuli [4]. Knowledge of a system's responses is used in
the design and modification of the system. The finite-difference time-domain
(FDTD) method, one of the many computational approaches to this problem,
is applicable to a spectrum of problems [2]. The problem domain of the
simulation, consisting of the scatterer surrounded by some amount of free
space, is gridded along Cartesian coordinates into cells and is truncated at
planar boundaries. The scatterer can be a collection of objects of various
shapes and sizes, composed of a variety of materials. The FDTD method
explicitly follows the evolution of an incident electromagnetic wave as it
impinges on the modeled system, calculating the values of the electromagnetic
field throughout the volume of the problem space.

This application is a good arena for the study of algorithms and implemen-
tations in parallel and distributed computing environments. Electromagnetic
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scattering is a computationally intensive task: the problem domain can be-
come very large as the number of cells or timesteps is increased for computing
precision. Furthermore, large problems require large amounts of memory, mak-
ing a distributed-memory environment desirable. Another consideration is the
computational pattern of the problem. The mathematical foundation of an
FDTD simulation is the solution of the two Maxwell curl equations in the time
domain:

These coupled partial differential equations are discretized by means of
central finite differencing. Because the fields are updated at each timestep,
this computation has the special feature of involving only nearest-neighbor
interactions. This minimization of global communications makes the FDTD
method well suited to a distributed computing implementation.

We began this work with a complete sequential production code. Then,
using PVM, we developed a parallel implementation on a distributed worksta-
tion network. By first implementing the application across a local area network
(LAN), we avoided some costly developmental time on an MPP system while
still producing efficient distributed algorithms. A cluster of workstations is a
useful environment for intermediate-sized simulations — those that are too in-
tensive for a single workstation but do not warrant the use of an MPP system.
In addition to PVM, we studied message-passing models for FDTD methods
and their performance on the Intel iPSC/860 and the CM-5 multicomputers.

26.1. The FDTD Method

The FDTD code we used to solve the electromagnetic scattering problem was
originally developed in Fortran by Luebbers [2] . This program uses a marching-
in-time scheme to follow the evolution of the electric (E) and magnetic (H)
fields in the problem space. The computational domain is defined as a set of
Cartesian cells on which the electric and magnetic field components are to be
computed. A sample cell is illustrated in Figure 26.1.

The electric field components are computed at the midpoints of the cell
edges; the magnetic field components are computed at the centers of the cell
faces. Only the component of the electric field parallel to the cell edge is
computed, and only the component of the magnetic field perpendicular to the
cell face is computed. Offsetting the field components within each cell results
in spatially centered differencing. Time-centered derivatives are obtained by
computing the electric field values at integer timesteps and the magnetic field
values at half-integer timesteps. The basic algorithm for the FDTD method is
as follows.
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FlG. 26.1. A sample FDTD cell showing the points for computation of the
electric (E) and magnetic (H) fields.

Initialize problem space.
Do

Update E-field with neighboring H-field.
Increment timestep by 1/2.
Update H-field with neighboring E-field.
Apply H-field boundary condition.
Save near-field values.
Calculate and accumulate far-field.
Increment timestep by 1/2.

Until predetermined timestep is reached.
Save far-field values.

The field-component algorithms calculate the response of a component
from its value at the previous timestep and from the values for its nearest
neighbors, according to the material type at that component location. For
updating the E'-field components, the neighboring H-field components must
be available for the previous half timestep. Similarly, updating the H -field
components requires the neighboring .E-field components at the previous half
timestep.

Since many of the desired modeling structures are situated in free space,
the scattered fields should propagate into boundless space. The FDTD
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computational space must be bounded, however, and so for each timestep,
an outgoing-radiation boundary condition is applied to absorb the scattered
field at the outermost portion of the computational domain and thus prevent
artificial reflections. The boundary conditions need to be applied only to either
the tangential E'-field or //"-field components.

26.2. Distributed Method and Implementation

We have developed distributed FDTD algorithms by applying a divide-and-
conquer strategy. Our principal objectives for the distributed algorithms are
to minimize the communication cost and balance the execution workload.

26.2.1. Domain Decomposition via Recursive Bisection. The do-
main decomposition scheme we used to parallelize the FDTD program is a
bisection algorithm. The computational domain is cut into two equal parts
along its longest edge, and these two parts are in turn cut along their longest
edges. Cutting of the subboxes continues until the number of boxes equals
the number of nodes available [1]. These subboxes are then assigned to the
nodes. Because of the nature of the recursive bisection, the number of nodes
that can be utilized concurrently must be a power of 2. More sophisticated
decomposition algorithms can be used to get around this minor limitation as
long as the common faces of adjacent partitions have the same dimensions.

For most of the cells in a subdomain, nearest-neighbor information local
to the node is sufficient for updating the field at each timestep. One layer
of electric and magnetic cells, however, will require field information from a
neighboring node for completion of the update, as illustrated in Figure 26.2.
To update Ex along the partition boundary, node 2 requires the value of Hz

contained in node 1. Conversely, to update the value of Hz, node 1 requires
the value of Ex contained in node 2. For communication of the required grid
points to the neighboring nodes, the cells along the partition boundaries of
the subboxes are duplicated when the computational box is partitioned. Each
duplicated cell, called a "guard grid," is computed by one node and then sent
to the neighboring node.

26.2.2. Communicating Guard Grids. After the electric field grids have
been updated, each partition needs to acquire the E'-field guard grids from
the neighboring partition in order to do the magnetic field updates. Then,
once all the H-field grids have been updated, the J^-field guard grids have to
be duplicated by the neighboring partitions so that the E'-field grids can be
updated at the next iteration.

A strategy used by designers of effective algorithms for distributed comput-
ing is to minimize the ratio of communication to computation and to maximize
the size of messages. We have implemented two algorithms for communicating
the guard grids. The straightforward method is to send all the grid points
directly to the corresponding guard grids of neighboring nodes and wait to
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FIG. 26.2. T/ie partition boundary between two cells showing the relationship of
the discretization points for the electric and magnetic fields in the guard grid.

receive the local guard grids from other neighboring nodes. The guard grids
along the edges and at the corners are sent to multiple nodes. This algorithm
requires exchanging at most seven messages: three to adjacent partitions that
intersect at boundary planes, three to the partitions that intersect only along
the edges, and one to the partition that is common at the extreme corner, at
either the lowest or the highest partition indices. Because the messages from
sending nodes do not arrive in a predetermined sequence, the receiving node
must recognize the origin of each message in order to unpack it properly.

The second communication pattern interleaves the send and receive mes-
sages by having all partitions simultaneously communicate in one direction
before starting the next direction. All the partitions send and receive first
along the XY plane, then along the YZ plane, and finally along the ZX plane.
Unlike the first pattern, the second pattern sends duplicate guard grids along
the edges and at the corner indirectly, by combining them with other partition
boundaries. Use of the second method will reduce the number of messages to
at most three packets, while increasing the size of the message packets. Al-
though we would expect the second pattern to be more efficient, we have not
found this to be the case, as discussed below.

26.2.3. Outer Partitions. Following the electric and magnetic field up-
dates, the outer boundary condition must be applied to the magnetic field
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values along the outer surfaces of the computation box. Without any attempt
to balance the load among all the nodes, we make the outer nodes responsible
for applying the boundary condition to the magnetic fields in their partitions.
In addition, the nodes containing cells along the boundary of the closed surface
are used to complete far-field values. We do not discuss the far-field transfor-
mation in this article; details can be found in [3].

26.2.4. The FDTD Distributed Algorithm. Either the master/slave or
the single-program multiple-data (SPMD) model with static load balancing can
be used to implement the FDTD distributed algorithm. In the master/slave
model, the master is in charge of partitioning the problem space and assigning
a subset of the problem to each slave. Each slave then applies the FDTD code
to its local problem space and communicates the guard grids to the master
when necessary. With the SPMD model, each node concurrently partitions
the same problem space and selects the partition to which it will apply the
FDTD distributed code, depending on its node number. The concurrent FDTD
algorithm proceeds as follows.

Initialize local problem space.
Do:

Update local E-field with local H-field.
Communicate local E-field guard grids.
Increment timestep by 1/2.
Update local H-field with local E-field.
If outer partition,

Apply H-field boundary condition.

Communicate local H-field guard grids.
Save local near-field values.
If outer partition,

Calculate and accumulate local far-field.
Increment timestep by 1/2.

Until predetermined timestep is reached.
Global sum of far-field.
If node 0,

Save far-field values.

The application starts by determining the number of nodes available for
the computation. Using the bisection algorithm, it partitions the problem
space and assigns a partition to each node. Depending on the model, the
partitioning of the problem space can be executed either by one node or by all
nodes concurrently. Once the partitions have been defined, each node applies
the distributed FDTD code. The outer boundary condition and the far-zone
calculations apply only to the partitions that contain the outer boundaries of
the problem space.
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26.3. FDTD on a Workstation Network

The concurrent FDTD code was first implemented on a network of worksta-
tions. The message-passing library used to support the distributed computing
is PVM version 3.2.

For evaluating the distributed FDTD code, the parallel virtual machine
(PVM) environment that would most closely emulate an MPP is a cluster of
homogeneous workstations in a closed LAN, which minimizes contention from
other sources. Since this was not possible, our alternative was to run the
code in a heterogeneous environment during periods of light network traffic.
Because of the heterogeneity of the network, we used the master/slave model,
with the fastest workstation running the master program.

The workstation network used for this computation is composed of four
SUN SPARCstation 2 and four IBM RS/6000 machines. The four IBMs
are clustered in one LAN, and the four SUN workstations are spread across
various LANs, all located at the Southwest Research Institute. To compare the
efficiency of the two communication algorithms on a network of workstations,
we treated the heterogeneous cluster as a homogeneous cluster of workstations
of the slowest type, using the homogeneous partitioning algorithm.

As mentioned earlier, we expected communication pattern 2 to be more
efficient than pattern 1. To compare the two communication patterns, we ran
two sets of tests. By running FDTD programs with the two communication
patterns, we were able to compare the effects of the communication overhead.
Figure 26.3 plots the execution times for a fixed problem size, 64 x 64 x 64,
running on one, two, four, and eight computers. The performance results
indicate that the first communication pattern used with the FDTD program
outperformed the second one when more than two processor nodes were used.
Figure 26.4 provides further insight, showing significant differences in the
communication overheads for the two programs when we increased both the
size of the problem and the number of nodes in the network to keep the parallel
computing efficiency roughly constant.

As shown in Figure 26.4, communication pattern 1 is more efficient than
pattern 2. The use of pattern 2 produces extra delays because the nodes
have to wait for the first message to arrive. Some information from the first
message is then sent on with the second message, and a similar delay occurs
with the communication of the third message. With communication pattern
1, the transmission delay is not as apparent. All seven messages are packed
and sent at the beginning; by the time the nodes are ready to receive, the first
few messages have already arrived at their destinations and are ready to be
unpacked. Because the actual data transfer takes place during the packing and
unpacking of other messages, the waiting time is avoided.

Both programs running on the eight-processor virtual machine achieved
reasonably good speedups (5.3 6.1) and efficiencies (67 76%). We expect
further gains for the FDTD program with the first communication pattern,
as compared with the second, when a larger problem is solved on a larger
system.
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FIG. 26.3. Execution timings for the two communication patterns with PVM on
the LAN-based workstation cluster.

26.4. FDTD on the iPSC/860 and the CM-5

To port the distributed FDTD code from PVM to the iPSC/860 and the
CM-5, we had to change three major sections of the code to suit the
specific architecture of the target machine. The iPSC/860 NX and CM-5
CMMD message-passing routines replaced the PVM routines. Whereas the
master/slave model was used to implement the distributed FDTD code in
PVM, the SPMD model, sometimes called a "hostless program," was used on
the iPSC/860 and the CM-5. In the SPMD model, a single node program runs
on all the nodes. Knowing its own node number, each node can determine its
partition of the problem space. Since each architecture has different message-
passing mechanisms, different algorithms were used to communicate the guard
grids on the various machines in order to minimize communication overhead.

To study the load balance and to evaluate the performance of the two
communication patterns on the iPSC/860 and the CM-5, we executed tests
similar to those performed on each machine under PVM. For the speedup test
on the iPSC/860, we used a constant problem size of (128x 128x64), running on
one, two, four, eight, 16, 32, and 64 nodes. Figure 26.5 shows the performance
results for the two communication patterns. As the number of nodes was
increased from one to 32, the speedup achieved was nearly perfect. Beginning
at 32 nodes, the speedup began to decline, although the computation and
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FIG. 26.4. Communication overheads for the two communication patterns on
the LAN-based workstation cluster when the problem size was increased to keep the
parallel efficiency approximately constant.

communication times continued to decrease. This is because as the number of
processors is increased, the startup time for reading the configuration files and
initializing the local problem space increases while the partition size decreases.
Since startup time occurs only once, at the beginning of the simulation, this
overhead becomes less significant when the number of timesteps is increased.

On the CM-5, the speedup test used a constant problem size of (256 x 256 x
128), running on 32, 64, 128, 256, and 512 nodes. In calculating speedup, the
base value used for comparison was the total execution time from the 32-node
run. Figure 26.6 reports performance results for patterns 1 and 2.

Even though the iPSC/860 statistics are not as dramatic as those for
PVM, communication pattern 1 still proved to be more efficient than pattern
2. The transmission rate on the iPSC/860 was faster than that on a LAN.
The difference in the results for the CM-5 is even less pronounced: overall, the
time spent communicating for pattern 1 was only slightly less than that for
pattern 2.

26.5. Summary

Our experiments on a PVM LAN network and on the Intel iPSC/860 and the
CM-5 show that our message-passing models for distributed FDTD algorithms
are highly effective and scalable. The choice of network architectures is seen
to have a direct effect on the computation's scalability. In general, the
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FIG. 26.5. Timings for the two communication patterns on the iPSC/860.

FIG. 26.6. Timings for the two communication patterns on the CM-5.

interconnect latency increases proportionally as the iPSC/860 architecture
is scaled. The interconnect latency of the CM-5 data network decreases as
the system is scaled. A major design and performance evaluation issue for
a scalable multicomputer system is the interconnect latency limit and its
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changing patterns in a computation as the system is scaled. In this study, what
appeared to be a superior communication pattern was shown to be inferior.
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Chapter 27

Using a Workstation Cluster for Physical Mapping of
Chromosomes

Steven W. White
David C. Torney

Editorial preface

The mapping of chromosomes, the "Human Genome Project," is a
nontrivial computational task, which has recently received significant
press. Fortunately the task has inherent parallelism. This parallelism
is exploited and the application's concurrency achieved on networks of
workstations is described. What makes the implementation approach
unique is the use of the UNIX mail facility as the communication and
synchronization mechanism.

This article originally appeared in SIAM News, Vol. 26, No. 2, March
1993. It was updated during the summer/fall of 1995.

Human heredity involves the DNA sequences of 24 large molecules called
chromosomes (1 through 22, X and Y). These sequences can be thought of
as long strings made up of beads of four colors, corresponding to the four
molecules (bases) adenine, cytosine, guanine, and thymine. The objective of
the "Human Genome Project" is to determine the sequence of the approxi-
mately 3 x 109 of these bases contained in human chromosomes [7, 3].

With the ability to clone fragments of chromosomal DNA, and then to make
as many copies of the cloned fragments as desired, researchers can generate the
"raw materials" for subsequent experiments. A physical map, a minimal set
of clones spanning a chromosome, would be a useful resource. With such a
map it would be possible, for example, to generate a chromosome's sequence
by sequencing the clones of the spanning set.

Ordering of the clones into a minimal spanning set has been accomplished
primarily through computational analysis of "fingerprint" experiments and
unique sequence (sequence-tagged site) content. Fingerprint experiments fall
into three categories: restriction enzyme digestion, probe sequence hybridiza-
tion, and partial sequencing. (A fingerprint experiment can include more than
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one of the basic types.) Each type of fingerprint experiment extracts part of
the sequence information, as shown in this article.

Restriction enzymes cut DNA whenever a specific sequence (typically 4-8
bases in length) occurs. Therefore, if two clones are overlapping and share
many of these sequences, a restriction enzyme digestion of the two clones
followed by the size determination for the resulting fragments will result in
many pairs of "matching" fragments. Probe sequence hybridization is used
to detect the presence in the clone of sequences closely similar to the probe
sequence. If the clone is cut into restriction fragments, we can ask which of
the fragments contain sequences similar to the probe sequence. This provides
additional information: "matched" pairs of fragments must be comparable in
size and, in the absence of experimental error, have the same hybridization
probe results. In experiments being done at Los Alamos National Laboratory
to map human chromosome 16, two different restriction enzymes are used
separately and jointly to generate three sets of restriction fragments for each
clone. Los Alamos researchers have determined the size (by electrophoresis)
and the presence or absence of several repeated DNA sequences (by probe
sequences) for every fragment.

Initially, approximately 2000 clones from chromosome 16 were fingerprinted
at Los Alamos [4]. There are about 40 fragments per clone and two
hybridization values per fragment, resulting in 105 pieces of data. To construct
an overlapping clone physical map, we begin by determining the probability
of overlap for all clone pairs; 2 x 106 clone pairs must be examined. To a
first approximation, our clones are all the same length, 4 x 104 bases, and
have equal probability of originating at each possible base in the target DNA
sequence. The computer program that calculates overlap probabilities for pairs
of clones attempts to match as many fragment pairs as possible separately for
each restriction digest of a pair. This calculation results in a number closely
related to the ratio of the likelihood of the data and overlap to the likelihood
of the data and nonoverlap for an applicable statistical model [1].

In the Los Alamos data, the average number of fragments for each of the
three restriction enzyme digests is between 10 and 20; the position of the
restriction enzyme fragments within the clone is not ordinarily determined
in these experiments. Because the order is not known, the fragments must be
permuted. Fortunately, exhaustive permutation of the n\ fragments in a digest
of the first clone and the 712 fragments in the same digest of the second clone
is not necessary.

Using sorted lists of fragment sizes and a cutoff for accepting matrix
elements, we ordinarily compute only a small fraction of the n\ x n<i elements
of a comparison matrix. The matrix is effectively sparse because of the
parameters of the experiment. To compute the likelihood ratio, we then sum
the (nonzero) elements, sum all possible products of two elements, and so on,
up to products of min(ni,n2) elements. The products are restricted so that
no fragment is matched more than once. The number of nonzero elements is
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typically quite small, particularly for nonoverlapping clones, and the dominant
part of the calculation is to determine which matrix elements are worth
computing and then to compute them. Because the a priori overlap probability
is approximately 10~3 for a chromosome of 108 bases, the nonoverlapping clone
pairs dominate the calculation and shape the algorithms used. We collect a
three-dimensional histogram of the three likelihood ratios (one for each digest)
computed for simulated fingerprint data of nonoverlapping and of overlapping
clones to determine the overlap probability for a pair of clones. The details of
the computer algorithm are discussed elsewhere [6, 9].

The overlapping set(s) of clones can be constructed from the overlapping
pairs by finding the connected components of the graph whose vertices are
clones and whose edges between vertices exist when the corresponding overlap
probability is above some threshold [5]. Currently, the physical map of
chromosome 16 has about 4000 4 x 104 base-long clones and several hundred
longer clones, resulting in about 450 clone islands—groups of overlapping
clones. A similar approach has been applied to the mapping of all human
chromosomes with a library of megabase (106 base-long) clones; more than
20,000 clones have been fingerprinted [2].

Although current experiments typically involve fewer than 104 clones (orig-
inally 2000 for chromosome 16), to perform a statistically complete analysis, we
typically simulate considerably more clones (say 20,000) and do all of the pair-
wise comparisons. Because the comparison process is time consuming (more
than 10 hours of CPU time on an IBM RISC System/6000 model 530 for 20,000
clones) and each pair comparison can be done independently, the use of par-
allel processing substantially increases the number of simulated experiments
that a scientist can perform in a given time. A larger number of simulated
experiments increases the accuracy of the statistical analysis performed on the
data [9].

27.1. Inherent Parallelism

To allow algorithm evaluation for data sets of different sizes, we create
simulated data sets with characteristics similar to the experimental data. The
routine SIMCLS, which generates the simulated clone data (fragment sizes and
six probe sequence hybridization arrays), represents a negligible amount of the
overall execution time. This code segment runs serially on the master processor
before any parallel work is started.

For the analysis of nonoverlapping clones, the main body (PAIRS) of the
program consists of (nc — l)(nc/2) pairwise comparisons of nc unique data sets,
where nc is the number of clones. The main outer loop selects a data set while
the inner loop compares this data set with all data sets logically to the right of
it. For each pair, a complex function is evaluated to select one bin in a three-
dimensional histogram, which is then incremented. Because the selection of the
appropriate bin for a particular pair is independent of the computation for any
other pair, iterations of the inner loop could be run in parallel. Exploiting the
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parallelism at the outer loop is more efficient, however, and still allows sufficient
granularity to provide excellent load-balancing characteristics. Parallelization
at such a high level also allows the mathematical algorithms that select a bin
to be easily modified without substantially affecting the parallel performance
traits.

A feature of outer-loop parallelism in this application is the natural load
balancing resulting from the fact that later iterations of the outer loop perform
fewer iterations of the inner loop. Each of the early chunks of parallel work
(i.e., groups of iterations of the outer loop) requires an enormous amount of
compute time, and the relative cost for synchronization will be almost zero.
Toward the end of the computation, each chunk becomes very small, and the
total waiting time of the other processors for the last-to-complete processor
should be minimal. For 20,000 clones, the first outer-loop iteration should
take about four seconds, while the last should require only 200 microseconds.
To ensure that chunk-distribution overhead is amortized efficiently, chunks
consist of multiple outer-loop iterations.

In the serial version of the code, the array containing the histogram
information is the only array modified during the PAIRS phase of execution.
Because it is independently updated by each iteration of the inner loop and
it is only 200,000 bytes, we give each worker its own private copy to update.
This eliminates the need for placing the histogram update code in a critical
region. The merging of the workers' histogram arrays is extremely quick and
is performed as each task completes; therefore, because the workers are not
expected to finish simultaneously, the majority of the histogram merge is
complete by the time the last iteration of the outer loop is finished.

The amount of computation required for a clone pair depends on the
degree of similarity of the two data sets. As a result, vectorization has not
provided even marginal performance improvement. The code's resistance to
vectorization and its well-behaved stride-1 storage-accessing patterns map
well to superscalar machines, such as the RISC System/6000. This code,
because of its coarse-grain nature and minimal communication requirements,
is an ideal candidate for a distributed-memory environment. The following
section describes the problem partitioning, synchronization, and other factors
that allow codes of this type to perform well on a cluster of workstations.
It is important to realize that the class of codes that exhibit this level
of computational independence would not be suitable for the majority of
applications.

27.2. Loosely Coupled Cluster Environment

A serial version of the code, developed at Los Alamos, was submitted to the
PERFECT club to represent the grand challenge area often referred to as the
"Human Genome Project." A shared-memory parallel version that had been
written for IBM ES/3090 systems [8] contained a hint of distributed computing
in that it exploited all 12 processors of two six-processor mainframes using IBM
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Clustered Fortran. This article focuses on a purely distributed-memory version
for networked workstations. The distributed-memory cluster programming
model uses a master process and n nearly identical worker processes. One of
the worker processes is unique in that it resides on the same system as the
master process, which has load-balancing implications.

The main goal of this work is to illustrate the acceleration of a well-
suited real application that can be accomplished by utilizing otherwise wasted
cycles. Workstations can perform useful work for others while their owners
are attending meetings, sleeping, or doing both simultaneously. To maximize
the number of available workers, a key part of our goal is to place as few
requirements as possible on the workers. The code should run on most systems
without change to the code or system. Given a common data format, such as
IEEE-754, the code should run on a heterogeneous collection of AIX/UNIX
boxes.

The major functional problems of communication and synchronization
between parallel processes across a network can be summarized in the following
questions: Has the data been written for me to read? Has the file been updated
since I last read it? Has all of the file been written? One solution uses NFS
remotely mounted files to simulate shared disks. A predefined set of shared
files, with a distinct writer per file, can be used to implement a disk version
of software locks. Alternatively, a variable in a separate control file can be
monotonically updated to indicate that the data file is again ready to be read.
Because the updates are defined to be monotonic, a pair of these control files
can be used alternately to signal "the data file has been updated" and "the
last update has been read."

The extensive system caching of files made synchronization via lock/control
files difficult because the order of file updates did not necessarily match the
order seen by all readers. (We did not flush the files or use NFS locks.) We
also encountered problems with spurious end-of-file problems when one process
tried to read a shared file that was also being updated by another process.
Remotely mounted files also resulted in a separate directory for each worker,
which made administration awkward for a continually varying set of workers.
Multiple directories with multiple files also make it more difficult to determine
which file to open. Furthermore, any approach that uses remotely mounted
files initially requires root authority for each worker to allow the mount.

Although these problems are solvable, we wanted a communica-
tion/synchronization scheme that would not require much effort from the sys-
tem administrators (system changes should be kept to a minimum when ac-
counts are received from 20 different machine owners) and is readily available
on most systems. Due to the very coarse-grain nature of this application, we
decided to try a rather novel approach to parallel processing synchronization
across the workstations—use of the AIX/UNIX mail facility. Each mail mes-
sage is like a token. The receiver can read each message only once. This makes
it easy to answer the question: Has the data been sent? Multiple workers
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can simultaneously send messages to the master without requiring locks—they
exploit the synchronization that exists in the normal mail handler. Likewise,
the master can send out messages without checking to see whether previous
messages have been received. Because the control information (MBOX value)
is embedded with the data (usually specifying the columns to be operated on
next), synchronization is provided by the mail facility.

Use of the standard mail facility also simplifies the administration of the
systems. When requesting use of a machine as a worker, the only root authority
required is that to create the login ID and ensure that mail is running. No
special permissions are required.

Use of a general facility such as mail requires a mechanism for coping with
"unexpected" messages from existing users. Ideally, the master and workers use
special login IDs reserved for parallel processing. If no one sends mail to these
phantom users, no spurious mail messages arrive while the job is executing.
Because we use existing login IDs, however, we include tag information in
the message headers as a mechanism for detecting (and ignoring) unexpected
messages.

The bulk of the data transferred during a run is from the SIMCLS portion of
the program, the simulated clone data. To diminish the communication delays
for this large block of data, which must be transferred before any worker begins,
we made an exception to our "communicate by mail" strategy. Transferring
the data in binary form reduces the traffic and latency. Binary files also
minimize the parallel overhead—each of the n workers has to read the file,
and unformatted I/O is more efficient. Unfortunately, mail does not easily
handle binary files (without ENCODE/DECODE). Therefore, for transferring the
clone data, we use remote copy, rep, which allows more compact binary files.

The master program, written in Fortran, uses open/write/close statements
to create files with the appropriate mail headers and mail data. It uses "call
systemQ" to issue AIX/UNIX commands, such as sendmail and inc/show
(receive). A common set of parameterized routines (send mail, start mail,
check mail) is used by both the master and worker routines. A template of the
master and worker code with these mail routines, as well as the application
code itself, is available as unsupported code.

27.3. Loosely Coupled Cluster Program Structure

Figure 27.1 illustrates the relations between tasks. To begin, each worker
requests work by sending a mail message (with a variable, MBOX, set to zero)
to the master. The worker then checks for mail and performs the work as
requested by the master. This approach is convenient for several reasons.
First, the master process does not need a list of worker machines prior to the
run. The master inspects the "from" portion of each message header to identify
available workers. When new requests (MBOX=0) are received, the name of
the worker is added to a dynamically created list. As a result, workers can
be added at any time during the run. Finally, the code and files require no
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FIG. 27.1. Parallelism at the task level.

changes as the number of available processors fluctuates.
Before checking for mail from potential workers, the master process

generates the simulated clone data and writes the data to a local file. To allow
the workers to start as soon as possible, the master sends each worker a chunk
of work (a unique range of outer-loop iterations) along with the initial reply
that the clone data is available (MBOX=1). It is important that the worker
does not have to send a message to get the initial chunk of work as the master
processor is probably busy processing the other workers' initial requests. When
MBOX=1, the worker knows to initialize its private histogram array and to
get the read-only clone data arrays from the master using the rep command.
A message requesting additional work is sent to the master, and the worker
then starts on the current chunk.

To make it easier for all workers to finish at about the same time, we
use the classic approach of breaking the work into chunks that are far more
numerous than workers, making the later chunks smaller, and dynamically
allocating chunks as workers request more work. This is usually better than
static load balancing because there are many sources of differences in execution
rates, such as cache behavior, paging, and multiprogramming in a nondedicated
environment. (In this application, furthermore, the amount of work in each of
the parallel tasks varies with the clone data, even when the chunk sizes are the
same.)
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When the master sees a worker's request for more work (MBOX> 0), it
mails a message to the worker with the next range of outer-loop iterations;
MBOX is then set to one more than the previous value sent to that worker.
The worker handles the block of iterations given to it and updates its private
histogram array accordingly. The master task keeps track of the consecutively
numbered MBOX values for each worker. Because the worker's reply echoes
the MBOX value from the master's message, both the worker and the master
can verify that work messages have not been lost.

To decrease the probability that a worker will have to wait for the next
chunk of work, we choose to let the worker ask for more work before starting its
current chunk. For this coarse-grain application, most of the chunks of work
take significantly longer than the latency of mail messages. Therefore, it is
quite likely that when a worker finishes a chunk of work, a message containing
more work will be waiting to be read.

At some point, all work will have been allocated when a worker requests
more work. The master will then send a message with MBOX=—1, signaling
that this is the last dispatch. This mail message also contains a unique file
name selected by the master process. The worker writes its local histogram
array to a file and uses rep to copy the file to the specified location on the
master processor. It is only on this final transfer that the worker histogram
information is transferred to the master to be merged into the final histogram
results. The worker sends a final message, echoing MBOX=—1 and the unique
file name, to notify the master that the local histogram data exists in the
specified file on the master processor. The worker process then terminates.

When the master receives the message (with MBOX=—1), it reads the file
name from the message, gets the data from the file, and merges it with the
histogram data from the other workers. As workers are added (messages with
MBOX=0), their names are appended to the internal list. As workers complete
(MBOX=—1), their names are deleted from the list. When the last worker is
removed, the job has been completed.

27.4. Results

Table 27.1 shows the performance measurements for problems of various sizes.
Speedup is defined as the ratio of the execution times for the best serial version
to the best j^-processor version; nc is the number of clones; nc = 20,000 is a
typical production run. Most of our measurements are done at night and
on weekends, when the systems are reasonably idle, so that the potential
speedups can be illustrated. Dedicated systems are not required, however;
any extra cycles that a scientist can "steal" from a moderately loaded system
will contribute to a reduced turnaround time for the job to be done.

The runs were made on a collection of RISC System/6000 model 530,
machines. Some runs, in addition to those shown in Table 27.1, used workers
more than 1200 miles away, but the speedups attained were within 2% of
those listed here. The only common threads were that all machines were
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TABLE 27.1
Speedup ratios for problems of various sizes. When the code is partitioned into two

units (master/worker), arrays and code sections that are not referenced in one unit
are not included in that unit. As a result, the order of data and code in storage varies
slightly from the serial version. In the particular case of nc = 20,000, the p = 1 row
shows that the rearrangement is slightly (1%) favorable.

Speedup

P
1
2
3
4
5
6
7
8
9
10
11
12

12t

nc = 5000

0.98
1.89
2.72
3.46
4.20
4.87
5.50
6.15
6.60
6.97
7.35
7.63

8.20

nc = 10, 000

0.99
1.95
2.88
3.75
4.64
5.46
6.23
7.06
7.75
8.42
9.17
9.75

10.26

nc = 20, 000

1.01
2.00
2.99
3.96
4.90
5.82
6.75
7.68
8.53
9.43
10.23
11.08

11.39

'Run for which the rep times are not included.

model 530s (to make the interpretation of speedups easier) and that mail
was running. Because this approach to distributed computing uses generally
available facilities and requires no special privileges, this application could
easily have been run on a heterogeneous collection of AIX/UNIX machines.
(If the collection includes machines with differing data types, ASCII data sets
or XDR may be required.)

The data transfers included the read-only clone data (about 180 nc bytes
per copy) and the histogram arrays (200 Kbyte each). The master process ran
on a machine connected to the network via a slow (4 Mbit/second) token ring
connection. As the number of workers increases, the average time spent waiting
for the initial rep (before a worker can start) increases due to contention.
Therefore, although communication is almost negligible, the use of a faster (16
Mbit/second) token ring would cut this overhead to one-fourth of the current
level, resulting in a move slightly closer to the ideal linear speedup. The last
row of Table 27.1 shows the speedup for 12 processors if the rep overhead is
completely eliminated. (The rep overhead is eliminated if the simulated (or
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measured) data is transferred once prior to many runs.) Without the rep calls,
for nc = 20,000, this corresponds to 3299 seconds. A linear speedup of 12.0,
over the p = I case, corresponds to 3096 seconds. Most of the 203-second
difference is accounted for by the 100 seconds of serial time before the workers
are started. Imperfect load balancing is the next most significant contributor.

TABLE 27.2
Average time per clone pair (in microseconds).

RISC System/6000
model 530

185

IBM ES/3090 600E

180

Cray Y-MP RISC System/6000
model 560

140 | 95

On the RISC System/6000 model 530, the serial nc = 20,000 production
run takes more than 10 hours. With 10 model 530s, the time is just over an
hour. The time for moderate runs (nc = 10,000) drops from more than two
and a half hours to less than 20 minutes with nine processors. Table 27.2 shows
the average time per clone pair required for several platforms. In a processor-
to-processor comparison, the model 530 is almost as fast as the IBM ES/3090
model 600E. A newer RISC System/6000, the model 560, is approximately
twice as fast as either the ES/3090 or the model 530, and it is 50% faster than
the Cray Y-MP.

27.5. Summary

Construction of an ordered-clone physical map of a human chromosome
benefits substantially from the computational capabilities described in this
article. To do justice to the data, ordered-clone physical mapping requires a
considerable amount of computational time in preparation for and during the
pairwise comparisons. The performance of the loosely coupled implementation
of this algorithm for detecting clone overlap allows scientists to simulate
experiments substantially larger than those that would be feasible on a
single machine. Today's scientific/engineering workstations are extremely
competitive with mainframes for this application, as it is difficult to exploit the
vector hardware that often makes mainframes advantageous. The granularity
of this application efficiently supports a rather novel approach to parallel
processing synchronization—use of the AIX/UNIX mail facility. The efficiency
of parallel speedups of greater than 11 on a 12-processor cluster makes
parallel processing across clusters a practical alternative to 10-hour waits or
expensive shared-memory mainframes. The coding structure developed for
this application to exploit a cluster of RISC System/6000 systems could be
considered a starting framework for applications with similar characteristics.
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Chapter 28

Massively Parallel Computations in Finance

Stavros A. Zenios

Editorial preface

Advanced architectures are often mistakenly associated with solutions to
problems in the physical sciences; this chapter presents their application
to financial modeling. Specifically, the valuation of mortgage-backed
securities is discussed, a field that is growing in popularity. A large
portfolio is solved on the CM-2, the solution of which presents a distinct
advantage to large financial institutions.

This article originally appeared in SIAM News, Vol. 24, No. 2, March
1991. It was updated during the summer/fall of 1995.

It is difficult to find an area of the fixed income markets that does not rely
on analytic techniques for the pricing of financial instruments. The valuation of
the complex instruments that appears in the banking and insurance industries
requires simulations of their cashflow behavior in a volatile interest rate
environment. These simulations are complex and computationally intensive;
their use, thus far, has been limited to interday analysis and planning.

The emergence of advanced architecture computers has opened new
possibilities for the use of these simulation models. Applications that would
take several minutes on mainframes can now be executed in fractions of a
second on a massively parallel computer. Hence, models that were once
restricted to secondary support roles can now be moved to the trading desk.
Analyzing a large portfolio of these instruments—a task that would take a
couple of days on a mainframe—can now be completed in less than one hour.
As a result, it is possible not only to build a risk profile for a given portfolio,
but also to build portfolios with better risk profiles.

This article describes research carried out at the HERMES laboratory of
the Wharton School, with collaborators from Thinking Machines Corporation
and the Union Bank of Switzerland on the valuation of mortgage-backed

311



312 Applications on Advanced Architecture Computers

securities (MBS). Details on the material presented here can be found in the
paper by Hutchinson and Zenios [3].

28.1. Understanding MBS

MBS are created when mortgages from individual homeowners are pooled
together. Investors purchase interest in the pool and receive prorated shares
of the pool's cashflows. The issuing institution handles the transfer of funds
and retains a service fee. These instruments facilitate the flow of funds from
the ultimate lenders in the capital markets to the mortgage borrower.

MBS emerged in the early 1980s. As of the second quarter of 1988,
outstanding mortgage debt in the U.S. was approximately $3.5 trillion, nearly
70% of which was in residential mortgages. Some 25% of the outstanding
residential debt has been securitized via the issuance of MBS, which represent
the fastest growing segment of the debt markets. Interest in MBS is not
restricted to the U.S. Almost 90% of all residential debt in Denmark has been
securitized. In Canada, where the first issue took place in January 1987, there
are more than 70 issues backed by more than $500 million in mortgage loans.

MBS, in that they embody features of both bonds and options, are complex
and difficult to value. The ability of the homeowner to prepay outstanding
principal represents a call option on the underlying mortgage. For any specific
mortgage within a pool, it is uncertain whether this call option will be exercised
and, if so, when. Many factors outside the characteristics of the pool may
affect the option's value. Among them are the level, structure, and history
of interest rates, the market perception of future interest rates, and total and
disposable consumer income. Adding to the complexity of early MBS has been
the constant stream of innovative new derivative securities whose risk and
return characteristics can bear little resemblance to the original MBS.

Determining a "fair" price for MBS is a complex process that relates the
possible future paths of interest rates to the cashflows generated by the security.
Such cashflows take into account both payment of principal and interest and
prepayment of mortgages (i.e., exercise of the underlying call option by some
homeowners). In the analysis, simulations are used to generate paths of interest
rates, usually in monthly intervals for a period of 30 years. The state space
from which simulations are drawn could be enormous: for a binomial lattice
model of interest rates, there are 2360 paths from which a sample can be drawn.

28.2. The Valuation Methodology

The general framework of the valuation analysis has three phases:

Phase I: Generate arbitrage-free interest rate scenarios that are consistent
with the prevailing term structure of interest rates. Here, we use the Cox-
Ingersoll-Ross model [2], which assumes that interest rates follow a Markovian
diffusion process:
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where du(t) is a Wiener process, i.e., du(t) = lim^t-^o \/A£2, and z is a
standard, normal random variable. The discrete approximation to the diffusion
process, which is used recursively in a Monte Carlo simulation, is

An alternative to the simulation of a diffusion process—also used in our
models—is to assume that interest rate movements can be approximated by a
discrete binomial process represented by a lattice (Figure 28.1).

FlG. 28.1. Binomial lattice of interest rates and the generation of a sample path.

Discrete points in time are marked on the horizontal axis, and the nodes of
the lattice represent possible states of interest rates at every point in time. The
rates can move to one of two possible states between successive points in time—
conveniently called the "up" and "down" states. The lattice is connected in
the sense that an "up,down" and a "down,up" path starting from the same
state will lead to the same state after two periods. After t time periods from
the origin, the lattice has t possible states. Each of these states can be reached
through 2* possible paths. Short-term forward rates at the nodes of the lattice
are computed on the basis of market data in such a way that the arbitrage-free
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property is satisfied. In our work we use the Black-Derman-Toy model [1] for
calibrating the lattice.

Once the binomial lattice has been fitted to the current term structure — in
itself a difficult and compute-intensive process — we can represent the short-
term rate at time period t and at state uj by the relation

(28.1)

The quantities r^o and kt, for t = 1, 2, 3, . . . , 360, represent the Oth (i.e., ground)
state and the volatility of short-term rates at period £, respectively. These
parameters are estimated by the Black-Derman-Toy model. We compute a
large number of interest rate scenarios by using equation (28.1) to sample
paths from the binomial lattice.

Phase II: Generate cashflows along each interest rate scenario. The cashflows
generated by MBS at each month have three components:

1. Interest payment is the portion of cashflow that reflects interest. It
depends on the mortgage contract interest rate and the outstanding
mortgage balance, net any servicing fee that is kept by the lending
institution.

2. Scheduled principal payment is the scheduled payment of outstanding
principal.

3. Projected principal prepayment represents any cashflow generated by the
exercise of the call option by some homeowners. Due to sale of the
property or refinancing of the loan, some mortgages in the pool will
pay a lump sum equal to the outstanding mortgage balance. Principal
prepayment is estimated on the basis of projected monthly prepayment
rates that indicate the fraction of outstanding balance that is prepaid.
The primary factor that affects prepayments is the interest rate path, as
generated in Phase I. If interest rates are low, then prepayment rates are
high as homeowners refinance their mortgages. A model for estimating
prepayment activities is described in Rang and Zenios [4].

Phase III: Use the cashflows and the short-term interest rates along each
path to compute an option- adjusted spread (oas) over the yield curve.

The option- adjusted spread is the incremental spread over the short-term
rates that equates the expected present value of the cashflows under all
scenarios with the market price. If P denotes the market price, the option-
adjusted spread is obtained by solving for oas the nonlinear equation

where S is the sample of interest rate scenarios, and cff denotes the cashflow
at time period t under short-term rate rf , for each scenario s G S.
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28.3. Massively Parallel Designs

The simulation procedure parallelizes nicely if each processor carries out all
the computations for a single interest rate path. Multiple processors can then
execute in parallel multiple simulations. Communication across processors is
required only in computing statistics across all simulations. On a system like
the Connection Machine, however, we want to exploit the massive parallelism
not only in simulating multiple paths simultaneously but also in performing the
calculations for each path. Otherwise, a large number of processing elements
will remain unused, and the performance of the program will fall far short of
the typical performance of the hardware.

The key to our implementation is the configuration of the CM-2's virtual
processors into a two-dimensional NEWS grid. One dimension of the grid is
equal to the desired number of simulations, which for computational efficiency
is taken to be a power of 2. The second dimension of the grid is equal to the
number of time periods, rounded up to the next integer that is a power of 2.
A 1024 x 512 NEWS grid suffices. Each of the 1024 rows of virtual processors
carries out the calculations for a single path. The first 360 virtual processors
in each row execute the path-dependent calculations (the remaining 152 are
idle).

With this configuration of the CM-2, it is possible to implement efficiently
all the components of the model. However, substantial reformulations of the
model were needed to bring it into a form that would allow us to use the
parallel primitive operators of the CM-2. These primitives facilitate parallel
computations at distinct processors and efficient communication of results
among processors. For example, the scan-add primitive accepts as input data
a,j from processor j = 1, 2, 3 , . . . , P and returns to processor i — 1, 2, 3 , . . . , P
the value /% = Y^j-i aj- This point is illustrated for the sampling of a binomial
lattice.

To generate sample paths from the binomial lattice, we need to determine
the state of each path at each point in time. Once the state u of the sth path
in the binomial lattice is specified at the virtual processor with NEWS address
(s, t), the short-term rate can be computed by a simple application of equation
(28.1). Of course, the paths must be continuous: the state of the lattice at
instance t must be attainable by either an "up" or a "down" step from the
state at instance t — I .

Such a sequence of states is produced on the CM-2 as follows: a random
bit, mt € {0,1}, is first generated at each virtual processor. A scan-add
operation along the time axis on these bits generates an index (ut = Xlrmr)
indicating the state of the virtual processor (i.e., its distance from the ground
state rto). Clearly, the distance from the ground state at instance t differs at
most by one unit from the distance at instance t — 1. Once the distance ujt
is determined, equation (28.1) can be evaluated simultaneously by all virtual
processors. Figure 28.1 illustrates the use of this procedure to sample a path

.1
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FIG. 28.2. Timing the option-adjusted analysis for a portfolio 0/3000 MBS.

from a binomial lattice.
A complete model was implemented on a Connection Machine CM-2a, with

4K processing elements, using the language C/Paris. The various components
of the model achieve computing rates up to 120 Mflops. Figure 28.2 illustrates
the performance of the model in evaluating a portfolio of 3000 MBS. It is
compared with the performance of an identical system developed by us and
run on a variety of computers. The analysis that would take two weeks on a
workstation and two days on a mainframe can be completed in less than one
hour on the smallest CM-2 model.

28.4. New Avenues: Stochastic Optimization

The massively parallel designs described in the preceding section bring
quantitative improvements in the use of mortgage-related models. For
example, we can now observe the duration (i.e., first derivative of price) and
convexity (i.e., second derivative of price) of MBS with different prepayment
characteristics under a host of interest rate scenarios. The response time for
the analysis of a single security (1-2 seconds) makes the system usable for
real-time applications.

The quantitative improvements in performance are now leading us to seek
qualitative improvements in the modeling process. In particular we can now
attempt answers to the following question: "Can we construct a portfolio of
MBS with a total cashflow stream that is independent of the interest rate
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V
under uncertainty with MBS. The nodes along the vertical axis represent financial
instruments (this example includes only a security i and cash). Time evolves along the
horizontal axis. Arcs pointing forward in time represent investment decisions, while
reverse arcs from t+l to t represent borrowing decisions. Multipliers on forward arcs
represent reinvestment interest rates; multipliers on reverse arcs represent borrowing
rates. Of course, all multipliers after period I are stochastic. The key coefficients
P/it represent the cashflow of security i to the interest rates that prevail at period t
under scenario s. They are generated by the simulation program and, together with
the holdings Za-\ of security i, determine the total cashflow. Lt indicates the level
of liability at time period t. At the end of the time horizon, the total net wealth is
accounted for, and some measure of utility of this wealth is optimized.

environment or that, at least, varies less with interest rate changes than
the cashflow components of individual securities?" Such questions can be
formally posed as two-stage stochastic network optimization programs. A
simple multiperiod model, with only one security and a riskless asset, is
illustrated in Figure 28.3.

Using the CM-2 it is now feasible to generate the data for this model
using several hundred securities. However, the model itself can grow very
quickly. Constructing a portfolio with 100 securities for 30 yearly intervals
under 500 scenarios, for example, gives rise to an optimization problem with
approximately 1.5 million variables and 50,000 constraints. We have designed
massively parallel algorithms [5] that solve problems of this size in 10-15
minutes of elapsed time on the 32K CM-2. These developments open new
possibilities for financial planning under uncertainty. Without the use of
advanced computer architectures, such models would have been very difficult
to build and impossible to solve.

I G . 2 8 . 3 . Two-stage stochastic network opt imizat ion model  for  planning
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Chapter 29

Robust Optimization on PC Supercomputers

John M. Mulvey

Editorial preface

Robust optimization is an enhancement to the classic linear programming
method that allows for the treatment of "noisy" input data or uncertainty
in the input data. Fortunately, the structure of the larger system that
is needed to accomplish the robustness is such that parallelism and
vectorization are easily applied.

Three examples are presented to illustrate the application and origin of
robust optimization problems. Performance results are offered on both a
network of workstations and on classic vector computer hardware.

This article originally appeared in SIAM News, Vol. 26, No. 7, November
1993. It was updated during the summer/fall of 1995.

Robust optimization is a practical approach for handling noisy data and
uncertainty within the context of optimization models. The approach broadens
the range of applicability for linear and nonlinear programs.

The key idea is to define a spectrum of plausible model representations—
depicted by the usual data coefficients—as a set of scenarios. The resulting
large-scale optimization problem considers the original objective, e.g., profit,
cost, market share, and a new objective called the "robustness" term. The
purpose of the latter objective is to ensure that the model recommendations
are close to optimal, regardless of which scenario occurs. When this situation
arises, the solution is said to be "robust over the scenario universe." Model
robustness is an indication that the recommended course of action is insensitive
to potential modifications to the data coefficients.

While the robust optimization approach does not address all of the issues
associated with the presence of uncertainty within a linear program (LP) or
nonlinear program (NLP), we have found that it provides a useful framework
for a number of important problem areas. The three examples presented in
this article illustrate the range of applicability for the approach.
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The size of a robust optimization model is much larger than the correspond-
ing linear program. Nevertheless, such models possess a special structure that
can be taken advantage of by optimization algorithms tailored to these prob-
lems. Substantial progress has been made in solving problems in this class by
means of clusters of desktop computers connected via a broadband communi-
cation network such as Ethernet. These distributed algorithms can also take
advantage of classic supercomputer vector capability, if available.

The increasing use of robust optimization will be accelerated by several
new developments. First, several software packages have been developed to
link to the most popular spreadsheet packages, e.g., Microsoft's Excel and
Borland's Quattro Pro, in a simple and intuitive manner. These products will
ease the pain of generating robust optimization models. In addition, the arrival
of the Windows NT operating system will bring much more powerful hardware
to bear on the solution of the resulting spreadsheet-generated optimization
problems, via desktop 64-bit processors. The new PC/workstations, when
employed effectively in a distributed computing environment, will generate
power almost at the supercomputer level for applications that can take
advantage of distributed computations.

The trend to bring a high level of computational performance to a large
number of users should have a profound effect on the types of problems that are
addressed via LPs and NLPs. In the 1940s, George Dantzig had the foresight
to realize that solving large systems of equations (hundreds or thousands)
would someday be feasible and important. Today, we are on the verge of being
able to solve, simultaneously, a large number of linear or nonlinear programs.
This power should expand the range of appropriate optimization problems.
Robust optimization is a natural area for application of this expanded linear
and nonlinear program solving capability.

29.1. The Robust Optimization Framework

The models used in robust optimization have two distinct components: (1)
a structural component that is fixed and free of any noise in its input data
and (2) a control component that is subjected to noisy input data. To define
the appropriate model, we introduce two sets of variables, x G 5Rni denotes
the vector of decision variables that depend only on the fixed, structural
constraints. The optimal value of these design variables is independent of
any realization of the uncertain parameters, y G 3ft"2 denotes the vector of
control decision variables that are subjected to adjustment once the uncertain
parameters are observed. Their optimal value depends both on the realization
of uncertain parameters and on the optimal value of the design variables.

Design variables determine the structure of the system and the size of
production modules. Control variables are used to adjust the mode and level
of production in response to disruptions in the system, changes in demand or
production yield, and so on. Viewed in the context of portfolio management,
for example, the design variables specify the composition of the portfolio.
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Control variables determine the decisions about borrowing, reinvesting, or
rebalancing that are made once the returns are observed.

With these variables, the optimization model we are interested in has the
following structure:

Here (29.1) denotes the structural constraints, which are fixed and free of noise.
(29.2) denotes the control constraints, the coefficients of which are subject to
noise.

We now introduce a set of scenarios, ft = {1,2,3, . . . ,5}. With each
scenario s e ft, we associate control variables, [y\, y%, . . . , ys}, and constraints
with coefficients {ds, Bs, Cs, es}. The probability of scenario s is equal to ps

(lLts=iPs — !)• The optimal solution of the mathematical program (29.1)-
(29.2) will be robust with respect to optimality if it remains "close" to optimal
for any realization of the scenario s G ft. It is then termed solution robust.
The solution is also robust with respect to feasibility if it remains "almost"
feasible for any realization of s. It is then termed model robust. The meanings
of "close" and "almost" are made precise through the choice of norms. The
robust optimization approach is most appropriate when a moderate number
of scenarios (currently < 1000) is adequate to cover the range of possibilities.
The generation of representative scenarios is a current research topic [8].

Of course, it is unlikely that any solution to the mathematical program
will remain both feasible and optimal for all realizations of s. If substantial
redundancies are built into the system being modeled, then it might be possible
to find solutions that remain both feasible and optimal. Otherwise, we need a
model that will allow us to measure the tradeoff between solution and model
robustness.

We have proposed a model that formalizes a way to measure this tradeoff.
We define a set {z\,Z2, . . . , zs} of error vectors that will measure the infeasi-
bility allowed in the control constraints under scenario s. The following is the
compact formulation of the robust optimization model:

With multiple scenarios, the objective function £ = CTX + dTy becomes a
random variable taking the value £s — CTX + d%ys with probability ps. Hence,
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there is no longer a single choice for an aggregate objective. We could use the
mean value:

This is precisely the function used in stochastic programs. In worst-case
analysis, the model minimizes the maximum value, and the objective function
is defined by

In (29.3), the second term in the objective function, p(z\, . . . ,25), is a
feasibility penalty function. It penalizes violations of the control constraints;
these constraints are called "soft" and may be conditional under some of the
scenarios. This proposed model takes a multicriteria objective form. The first
term measures optimality robustness, whereas the penalty term is a measure of
model robustness. The goal programming weight uj is used to derive a spectrum
of answers that trade solution for model robustness. The introduction of the
penalty function distinguishes the robust optimization model from existing
approaches for dealing with noisy data.

Two popular approaches for handling moderate- to high-risk decisions in
the context of robust optimization are (1) mean/variance models and (2) von
Neumann-Morgenstern (VM) expected utility. For the former, risk is equated
with the variance of the outcomes. A high variance for £s means that the
outcome is much in doubt. Given outcome variance as a surrogate for risk, we
are naturally led to the minimization of the expected outcome for a given level
of risk. In this case an appropriate choice for cr(-) would be the mean plus a
constant (say, A) multiplied by the variance:

An efficient frontier can be readily constructed by parametrizing the
tradeoff between risk and expected outcome. This approach requires that the
distribution of the random variable £s is symmetric around its mean. Third
and higher moments are simply ignored.

The derivation of the efficient frontier gives the user an opportunity to
achieve a robust recommendation, which is not possible by means of traditional
sensitivity analysis. The slope of the risk-return curve, as shown in Figure 29.1,
provides a true measure of the robustness of the solution. This curve becomes
a surface in three dimensions when we add the feasibility robustness objective.
Alternatively, a series of curves can be drawn for various levels of feasibility
attainment. Regardless, the robust optimization approach should replace the
usual parametric curve.
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FIG. 29.1. The efficient frontier. The slope of the risk-return curve provides a
true measure of the robustness of the solution.

An alternative approach to handling risk is based on the use of VM utility
curves [4] via the concept of certainty equivalence. The result is, for risk-averse
decision makers, a concave utility function £/(•). A decision maker displays
consistent behavior by maximizing expected utility. In this situation we define

The primary advantage of the expected-utility model over the mean/
variance approach is that asymmetries in the distribution of £5 are also cap-
tured. A consistent and repeatable decision process can also be implemented,
given a time-invariant utility function. Of course, an additional information
burden is placed on the user, who must decide on an appropriate level of risk
tolerance.

As compared with alternative approaches for dealing with uncertainty,
robust optimization has several advantages, while it is not without its
shortcomings. Sensitivity analysis (SA), a reactive approach to controlling
uncertainty, just measures the sensitivity of a solution to changes in the input
data. It provides no mechanism by which this sensitivity can be controlled.

Stochastic programming (SP), like robust optimization, is a constructive
approach. Both SP and robust optimization are superior to SA. With
stochastic programming models, the decision maker is afforded the flexibility
of recourse variables. These variables are identical to the control variables
of robust optimization and provide the mechanism for adjusting the model
recommendations to account for the data realizations.

The SP model, however, optimizes only the first moment of the distribution
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of the objective value £s. It ignores higher moments and the decision maker's
preferences with respect to risk. These aspects are particularly important for
asymmetric distributions, and for risk-averse decision makers.

Furthermore, striving for expected-value optimization implicitly assumes
an active management style whereby the control (i.e., recourse) variables are
easily adjusted as scenarios unfold. Large changes in £s may be observed among
the different scenarios, but their average value will be optimal. The robust
optimization model minimizes higher moments as well, e.g., the variance of
the distribution of £s, and, hence, assumes a less aggressive management style.
Since the value of £s will not differ substantially among different scenarios,
little or no adjustment of the control variables will be needed.

This important distinction between robust optimization and SP defines the
domains of applicability for the two approaches. Applied to personnel planning,
for example, an SP solution will design a workforce that can be adjusted (by
hiring or layoffs) to meet demand at the least expected cost. The important
consideration of maintaining stability of employment cannot be captured. The
robust optimization model, on the other hand, will design a workforce that
will need few adjustments to cope with demand for all scenarios. However,
this cost will be higher than the cost of the SP solution.

The importance of controlling variability of the solution (as opposed to
just optimizing its first moment) is, of course, well recognized in portfolio
management applications due to the work of Markowitz [5]. It has been
ignored in most other applications of mathematical programming. The robust
optimization framework allows modelers to address this issue directly.

As mentioned earlier, another important distinction between robust opti-
mization and SP is the handling of the constraints. Stochastic programs seek
to find the design variable x such that for each realized scenario there is a
control variable setting, ys, that satisfies the constraints. For systems with
substantial redundancy, such a solution might always be possible. Indeed, the
SP literature even allows for the notion of complete recourse, whereby a fea-
sible solution ys exists for all scenarios and for any value of x that satisfies
the control constraints. What happens in cases where no feasible pair (x, ys]
is possible for every scenario? The SP model is declared infeasible. Robust
optimization explicitly allows this possibility. In engineering applications (e.g.,
image restoration), such situations inevitably arise due to measurement errors.
Multiple measurements of the same quantity may be inconsistent with each
other. Hence, even if the underlying physical system has a solution it will not
satisfy all the measurements. The robust optimization model, through the use
of error terms {zs} and the penalty function p(-}, will find a solution that vio-
lates the constraints by the least amount. Such an approach is fairly standard
in medical imaging (see Elfving [2] and Herman et al. [3]).
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29.2. Three Robust Optimization Examples

The concepts of robust optimization are perhaps best explained in the context
of some real-world applications. Certainly, the idea that data coefficients are
not always accurate with machine precision is unassailable for actual linear and
nonlinear programming problems. The following three examples are from the
area of planning and scheduling. Further details of these and other applications
are available [6]. In each example the goal is to locate recommendations that
are relatively immune to errors or mis-specifications in the data coefficients.

29.2.1. Air Force STORM. The Air Mobility Command (AMC, formerly
MAC) is responsible for managing all U.S. military airplanes and flights
worldwide. It is this group that planned the massive airlift for the 1991
operation in Iraq. One of AMC's planning systems, called STORM, assigns
military aircraft to routes in such a way that costs are minimized and
anticipated travel plans are met for each of the services (Army, Navy, Air
Force, and Marines). In this domain, the planners assign military planes before
leasing any civilian aircraft in order to reduce the overall costs.

Each service generates its demand for cargo and other movements roughly
one month ahead of time. Constraints specify capacity for each aircraft in
terms of size, weight, and cargo type. For instance, tanks can be moved only
by the wide-body planes (e.g., the C5A). The resulting linear programs are of
moderate size—500 to 5000 equations and 2000 to 20,000 variables—depending
on the geographic area under study.

Several difficulties arise in the solution of the deterministic STORM LP.
First, the cargo demands must be modified as the month unfolds; delays occur,
and new crises and other unplanned events arise. Thus, the minimum-cost
solution as defined by the LP may not be very accurate. A second difficulty
involves the disruptions in the detailed scheduling of individual aircraft to
time-sequenced routes. These disruptions cause problems for the staff who are
responsible for scheduling of specific airplanes. The goal of a robust solution to
the STORM model is a set of core routes and contingency plans that are cost
effective over a range of scenarios and cause minimum disruption in scheduling.
The robust optimization framework handles this problem in a natural fashion.

29.2.2. Telecommunication Networks. Before deregulation of long-
distance telephone service, telephone networks were designed with a great deal
of redundancies, such as multiple links between every major pair of cities (nodes
in the network), and overcapacities. In contrast, today's telecommunication
networks are designed to be adaptive, via new switching technology and other
measures (e.g., Digital Cross Connect), and cost effective. Thus, there is a ten-
sion between supplying adequate capacities under a variety of traffic scenarios,
e.g., Mother's Day, or a major disaster, such as an earthquake in Los Angeles,
and the costs of building or leasing extra transmission lines.
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For this problem a robust solution is a communication network that
remains reliable and stable for a spectrum of scenarios, such as loss of a
single node, and that is relatively inexpensive to build and operate. Clearly,
there is a tradeoff between short-run profit and system reliability. The robust
optimization model provides a systematic approach for handling this difficult
planning problem.

29.2.3. International Investment Strategies. Diversification of risks is
a key ingredient in financial planning. As any seasoned investor knows, the
goal of diversification is to provide stable profits regardless of the scenario that
actually occurs. In this respect, a well-diversified portfolio equals a robust
solution. Investments that are relatively uncorrelated with each other are
prized because they can be employed with great advantage to reduce risks.
International investments are important, for example, because of their relative
lack of correlation with U.S. markets.

A robust solution for an investor depends on that investor's circumstances.
For instance, people close to retirement should have more conservative risk
profiles than people just starting their careers. In addition to the relevance
of the horizon, the users of the moneys must be considered. Savings for a
home purchase should be treated differently than savings for a child's college
tuition. The notions of robust optimization are ideally suited to the problem
of personal investment strategies.

29.3. Solution Strategies

Solution of the robust optimization problems that arise in these examples is
a formidable computational task. The total number of decision variables and
equations can quickly exceed the capacity of most computers. To give an
example, the LOQO linear programming system [9, 10] solved a version of the
STORM model with a nonlinear expected-utility function. The size for this
deterministic LP is 585 constraints and 1380 variables. Figure 29.2 depicts the
size of the robust optimization problems and the resulting execution time as a
function of the number of scenarios. Even for these problems, the solution time
hits a wall at about 20 scenarios on the Silicon Graphics Indigo workstations
for the LOQO direct solver, primarily due to the large size of the convex robust
optimization problems.

Specialized solvers are more successful than direct optimization methods
for handling the structure of the robust optimization model. As an example,
the diagonal quadratic approximation (DQA) method [7] handled much larger
problems, as detailed in Figure 29.2. Methods of this type parcel out the work
to computers on a network, each according to its capacity, with more powerful
machines getting larger subproblems. The DQA algorithm takes advantage of
the distributed computational resources and attains a substantial performance
level.

The examples shown in Figure 29.2 were solved at Princeton University
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Scenarios

1

5

10

20

60

Constraints

585

3,530

7,060

14,120

42,360

Variables

1,380

6,900

13,800

27,600

82,800

FIG. 29.2. CPU execution time as a function of the number of scenarios for the
U.S. Air Mobility Command's STORM aircraft planning system. The DQA algorithm
can handle much larger problems than direct optimization methods by parceling out the
work to the computers on a network, each according to its capacity.

using the PVM software package in conjunction with a standard Ethernet
connection. By breaking the problem into smaller digestible pieces, we were
able to handle a 35-scenario STORM model using a single SGI workstation
(SGI R4000 Indigo). Moving to a four-machine configuration, we solved up
to 60 scenarios. Finally, with a configuration of 20 SGI machines, we solved
a 220-scenario problem in 5374 CPU seconds. These NLPs are quite large:
300,000 variables and 130,000 constraints. Their solvability can be attributed
to the collective resources of our workstation network.

In addition, DQA is able to take advantage of the vector capabilities of clas-
sic supercomputers, as shown in Figure 29.3. Here, since each scenario has an
identical sparsity pattern, with different numerical values, the computationally
expensive Cholesky factorization can be recast. Normally, the factorization's
inner loop is quite short, and indirect addressing must be used; these features
are the bane of high performance on a vector computer. When using DQA, we
can recast the factorization so that the inner, vectorized loop is going "across"
the scenarios. The inner loop is then as long as the number of scenarios, and
there is no indirect addressing.
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FIG. 29.3. CPU execution time per iteration as a function of the number of
STORM scenarios, showing that the DQA algorithm can also take advantage of the
vector capabilities of traditional supercomputers. The inner loop of the computationally
expensive Cholesky factorization, which is normally short, goes "across" the scenarios
with DQA, and there is no indirect addressing.

Another technique that shows great promise is to specialize interior-point
algorithms for the structure of robust optimization and multistage stochastic
programming models. The approach is called tree dissection [1]; it orders
the problem matrix such that its sparse properties are maintained during
factorization. Empirical tests have shown that the run time of problems with
this method grows linearly in the number of scenarios. Alternative ordering
heuristics, such as minimum degree ordering, do not take advantage of the
special structure of the multistage stochastic program. These techniques can
result in dense factorizations and longer running times.

Tree dissection was tested on a financial optimization problem. In this
problem, the decision maker is an individual who wishes to decide how to
allocate assets among seven different asset categories in each future time
period. The decision maker must also decide whether to pay back loans early.
The constraints model the flow of funds between asset categories as well as
the flow of funds outside the system, such as transaction costs and interest
payments. The uncertainties in this problem are the returns on the assets and
the adjustable interest rate on the debt. Table 29.1 shows the size of the model,
which depends on the number of scenarios and the structure of the scenario
tree. The basic single scenario model has 96 constraints, 156 variables, and six
time periods. The structure of the tree depends on the number of splits that
occur at each level of the tree ("branchings") and the way linking constraints
are handled in the model ("compact form" and "split variable form").
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These problems were run on a Silicon Graphics Power Challenge worksta-
tion with a 100 MHz R8000/R8010 chip and 4GB of main memory. Berger et al.
incorporated tree dissection into LOQO version 2.07 and compared the results
with the same problems running on an unmodified version of LOQO running
using its default settings (LOQO default) as well as using LOQO settings that
attempt to resolve the dual problem first (LOQO "dual first"). The results are
summarized in Table 29.2. These results indicate that small problems can be
solved faster with tree dissection, and problems formerly unsolvable can now
easily be handled with tree dissection.

TABLE 29.1
Problem size for tree dissection tests, rounded to nearest thousand.

Scenarios
1,024
2,048
4.096
8,192
16,384

Branchings
16x4x4x2x2
16x8x4x2x2
32x8x4x2x2
32x16x4x2x2
64x16x4x2x2

Compact form
Constraints

65,000
131,000
263,000
525,000

1,050,000

Variables
109,000
218,000
435,000
869,000

1,738,000

Split variable form
Constraints

146,000
299,000
597,000

1,195,000
2,390,000

Variables
160,000
319,000
639,000

1,278,000
2,556,000

TABLE 29.2
Runtimes (in minutes) until solution. Final relative optimality gap < 10~5.

denotes problem not solved due to excessive memory requirements.
NS

Scenarios
512

1,024
2,048
4,096
8,192
16,384

LOQO run times
Default settings

423
NS
NS
NS
NS
NS

"dual first"
18
45
431
1776
NS
NS

Tree dissection
Run time

7.5
24
86
167
330
600

Iterations
31
49
73
70
57
51

In the future, algorithmic designers will need to match the hardware
characteristics with the available software to solve the robust optimization
problem under study. Specialization, unfortunately, may become more
common in this environment. Due to their enormous sizes, robust optimization
problems will require efficient use of advanced computer architectures in order
to achieve solutions within practical time limits.
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29.4. Research Challenges

The future of robust optimization will depend on the attainment of three
goals. The first, and the main, challenge is to develop realistic approaches for
generating scenarios that can be readily understood by optimization modelers
and the user community. Representing noisy data can be quite onerous and
dependent on the actual problem environment. Second, research must continue
on the design of efficient parallel algorithms for robust optimization. Third,
graphical interfaces for helping users select an acceptable level of robustness
for their problems will be essential. Much progress on each of these goals has
been made.

The popular scenario managers in spreadsheets will help in the modeling
of noisy data for robust optimization. The upcoming spreadsheet implementa-
tions will open the topic of robust optimization to millions of potential users.
Still, the modeling public will be able to use the robust optimization concepts
effectively only if further progress is made on the aforementioned goals.
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Chapter 30

History Matching of Multiphase Reservoir Models on
Hypercubes

Jianping Zhu

Editorial preface

The inverse problem associated with modeling the behavior of oil reser-
voirs offers a challenging simulation problem. This chapter details the
formulation of the problem occurring when fluid is injected into an under-
ground reservoir to force the oil to the extraction well(s). The algorithm,
which is run on the Intel hypercube, uses multilevel grid methods. The
results indicate a highly parallel solution method.

This article originally appeared in SIAM News, Vol. 25, No. 2, March
1992. It was updated during the summer/fall of 1995.

Scientific study shows that only a small portion (15-25%) of the oil in
a reservoir can be recovered by natural means—through reservoir pressure
forcing the oil to the surface. As removal of the oil continues, the well output
declines due to the diminishing pressure gradient and increasing viscosity. To
maximize the oil production, various secondary and enhanced oil recovery
processes have to be used. If they are properly designed and implemented,
the use of these processes can result in the production of at least 1015% more
oil from the reservoirs.

These processes involve primarily the injection of water or chemicals into
the reservoir to build up the pressure gradient or to increase the mobility of
the oil. The moving fluid front between the injected fluid and the oil should
move in such a way as to drive the oil out of the production wells. The stability
of this front is crucial to the success of these processes. If the front becomes
unstable, it will no longer displace oil toward the production wells.

In the simple two-dimensional reservoir oil field shown in Figure 30.1, the
injection well is located at the lower left corner and the production well is
located at the upper right corner; the contour lines represent the front between
the injected fluid and the oil at different times. The injected fluid is supposed
to displace oil toward the production well. However, when the front becomes

331



332 Applications on Advanced Architecture Computers

FIG. 30.1. The fingering phenomenon. The long narrow "fingers" represent the
unstable injected fluid front bypassing the oil.

unstable as indicated by the contour lines in the figure, the injected fluid can
move much faster than oil, producing the so-called "fingering phenomenon" [5].
What comes out from the production wells can then be the injected fluid, rather
than oil. To prevent this from happening and to make enhanced oil recovery
methods productive, we must be able to monitor and predict the fluid front
movement during the injection process.

Because reservoirs are usually deep under the ground, the movement of
the fluid front between the injected fluid and the oil is not directly observable.
Therefore, mathematical models are very important for keeping track of the
changes in reservoir pressure and the movement of the fluid front.

A commonly used two-phase black oil reservoir model describing the flow
of slightly compressible fluids through porous media is given by the following
system of nonlinear partial differential equations (PDEs) [8]:

and the boundary conditions
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where K(x_) is the absolute permeability distribution; the subscripts o and w
represent phases of oil and water, respectively; Aj is the phase mobility, which
depends on the phase saturation, Si; PI is the phase pressure; pi is the phase
density; $ is the rock porosity; qi is the production (injection) rate; n is the
normal vector to the boundary 517; and g is the gravitational acceleration.
These equations were derived from conservation of mass of all phases. If all
the parameters are known, we can solve (30.1)-(30.5) and get the information
on pressure changes and fluid front movement (in terms of saturations) that is
needed to facilitate the oil recovery process.

Unfortunately, some parameters in the above equations, like the absolute
permeability distribution K(x), are usually not known in advance. Because of
the high cost of drilling (at least $100,000 for a well), it is unrealistic to drill
many wells and get rock samples to measure the values of the permeability
distribution. Therefore, a numerical algorithm for estimating the underground
reservoir structural parameters by computer simulations is necessary for the
reservoir simulations.

Although the true permeability distribution can not be measured directly
in general, the values of reservoir pressure PI corresponding to K(x) are known
from measurements made at observation wells (including both production
and injection wells) during the production period. This means that we can
obtain partial information about the solution of (30.1)-(30.5) without actually
solving them. The task of identifying the unknown parameter distributions
by using the available knowledge of the solution of a given PDE system
is called an inverse problem. (This is opposed to the forward problem in
which all parameters are known and the major task is to solve the PDEs to
get the solution.) In particular, the purpose of solving inverse problems in
reservoir modeling is to identify the reservoir structural parameters by using
the available pressure, saturation, and other production data obtained at wells.

30.1. History Matching

The process of identifying the unknown permeability distribution usually starts
from an initial guess, K°, at the true permeability distribution K. By solving
(30.1)-(30.5) with K°, we can get the pressure distribution P^ that corresponds
to KQ. If K° happens to be the same as K, meaning that we had a perfect
initial guess, then Pf should also be the same as, or very close to, the measured
PI , which is supposed to be the solution corresponding to the true permeability
distribution K. Such a coincidence is unlikely in practice and the initial guess,
K°, is in general different from K, which means that Pf is also different from
PI. The differences 8 PI = PI — P® can then be used to calculate a correction
term 6K°, so that K1 = K° + 6K° will be a better approximation to K . The
entire iterative process can be described as follows:
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STEP1: Solve (30.1)-(30.5) with Kn to get the corresponding pressure
distribution P". For n = 0, K° is the initial guess of the absolute
permeability distribution. We can solve (30.1)-(30.2) by linearization
and a finite difference scheme. The discretized form of (30.1)-(30.2) is

where A is normally sparse and structured.

STEP2: Compare P™ with PI. If the computed pressure P"-matches the
measured pressure data PI, go to STEP4; Kn is the true permeability
distribution. Otherwise, go to STEPS.

STEPS: Set 6Pf = Pi- Pf and 6Kn = K-Kn, where Pf is the computed
pressure that corresponds to the permeability distribution Kn, and the
measured pressure PI corresponds to the true permeability distribution
K. We then have

PI and K should satisfy (30.1)-(30.5), as should Pf and Kn. If we
substitute PI and K into (30.1)-(30.5) and utilize the fact that P™
and Kn should also satisfy (30.1)-(30.5), we will have a PDE system
that relates 6Kn to SP™ [18]. By using the finite difference scheme to
discretize this PDE system and putting together those equations at the
observation wells (so that dP™ is known), we will have the following
algebraic equations:

where B is a dense rectangular matrix and b represents the influence
of SP™. This equation can be solved by the least squares method.
Because of the illposedness of inverse problems, Tikhnov's regularization
method [12] is usually used to solve a better conditioned system

Here a is a nonnegative parameter that is usually called the regularization
factor. The key idea is to solve a better conditioned system whose
solution can be taken as a reasonable approximation to the solution
of the original ill-conditioned system. The value of a is problem
dependent and sometimes needs to be adjusted dynamically during the
computations [18]. After solving this system, Kn can be updated by
Kn+l _ Kn + $Kn^ an(j the process retums to STEPl.

STEP4: Stop.

1
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Because the key issue involved here is to match the computed pressure
Pn with those measured history pressure data P by adjusting the unknown
permeability distribution K(x), the process is called history matching in the
oil industry.

Since the early 1970s when Chen et al. [2] proposed the use of optimal
control methods for automatic history matching, there have been many im-
provements in automatic history matching [1, 4, 6, 10, 13, 14]. However,
two major difficulties continue to impede further development of efficient
history matching algorithms for multiphase multidimensional nonlinear reser-
voir models:

• The sensitive dependence of the identified parameter distribution on the
initial guess used to start the iteration.

• The large amounts of numerical computation involved. As can be
seen from STEP1 and STEPS, the nonlinear reservoir models of
(30.1) (30.5) must be solved repeatedly at many timesteps and a dense
regularized least squares problem needs to be solved at each iteration to
compute 6Kn from dP™.

Some recent efforts to solve these problems are presented in the next two
sections.

30.2. Multilevel Grid Method

It is the experience of many researchers that the identified permeability
distribution is very sensitive to the initial guess. If the initial guess K® is not
close enough to the true distribution, the identified permeability distribution
Kn might not resemble the true distribution K at all, even if the iterative
process converges in the sense that the computed pressure Pu matches the
measured pressure history P. In practical applications, however, it is unlikely
that a very accurate initial guess will be available for history matching.
Therefore, a good history matching algorithm must be capable of identifying
the true permeability distribution from a fairly general initial guess.

Chen and Zhang [3] first used multigrid strategy to reduce the compu-
tational complexity of a parameter identification algorithm (the GPST algo-
rithm) for linear diffusion equations. McCormick and Wade [7] applied the
multigrid method to the inverse problem in electrical impedance tomography.
Recently, we used the multilevel grid method to reduce the sensitive depen-
dence of the identified permeability distribution on the initial guess [17]. The
multilevel grid method was chosen based on the finding that, as the number
of unknown parameters (grid points) increases, the history matching process
becomes more sensitive to the initial guess K°. If the reservoir model is dis-
cretized by a relatively coarse grid system with fewer unknown parameters to
be identified, the parameter estimation process will be less sensitive to the ini-
tial guess. However, the resolution of the identified permeability distribution
on the coarse grid is usually not good enough for large-scale reservoir simula-
tions (which can involve thousands of grid points). This was the motivation
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for the use of the multilevel grid method in history matching.
We begin the process by constructing a hierarchy of grids GO C GI C

G-2 C G9, where GO is just fine enough to accommodate all the wells
and some auxiliary points added to keep the grid regular. Gi can be generated
from Gi-i in many ways. We used the bisection method for its simplicity.

The history matching process starts on grid GO with an initial guess
KQQ. The identified permeability distribution KQQ is then interpolated to
the finer grid G\ and used as the initial guess K^i on GI to start the history
matching process. Because history matching on the coarse gird is less sensitive
to the initial guess, KQQ should be a reasonable approximation to the true
permeability distribution on the coarse grid GQ. Therefore, the interpolation
of KQQ to KQ: could be a very good initial guess of the true permeability
distribution on the finer grid GI. Although the history matching process
becomes more sensitive to the initial guess as the number of grid points
increases, the use of the multilevel grid technique ensures that the history
matching process has a better initial guess KQI to start the iteration on the
finer grid GI. This process can be repeated until the desired resolution has
been achieved.

30.3. Implementation on Hypercubes

Advanced parallel computers have been used to cope with the large amounts
of numerical computation involved in the history matching process with
multiphase multidimensional reservoir models [16, 18, 19]. We have used the
iPSC/2 hypercube at the Cornell Theory Center and the iPSC/860 hypercube
at the NSF Engineering Research Center of Mississippi State University in our
investigation of parallel processing. The code optimizations used to achieve
large speedups have been concentrated in the following two aspects:

dividing the whole solution process into smaller tasks that can be
executed in parallel,

reducing the internode communication as much as possible.

Timing analysis of the sequential program shows that the solution of (30.6)
and (30.8) is the most time consuming part of the process, taking more than
95% of the total CPU time when several thousand grid points are involved in
the computation. The rest of the CPU time is used for processing data and
generating (30.6) and (30.8).

Equation (30.6) is a sparse system that can be solved by iterative methods.
We find that the block SOR method with red-black ordering is very efficient
for the following reasons:

Simplicity for parallelization. With red-black ordering, all unknowns of
the same color can be solved in parallel.

Satisfactory convergence rate. Since the initial reservoir pressure distri-
bution is a very good initial guess to start the iteration, and the pressure
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distribution calculated at the current timestep can be used as a good
initial guess for the iteration at the next timestep, the successive over-
relaxation (SOR) iteration for (30.6) always has good initial guesses.
Furthermore, we find that the number of SOR iterations needed at each
timestep does not increase significantly as the number of grid points in-
creases.

Internode communication is required on two occasions in the solution of
(30.6).

1. Because the domain is decomposed into subdomains, which are assigned
to different nodes, each node needs to communicate with nodes in ad-
jacent subdomains at every SOR iteration. For simplicity, we discuss
rectangular domains; irregular domains can be mapped into rectangular
domains by numerical grid generation schemes [11]. For rectangular do-
mains, the subdomains can be cut into strips and mapped to nodes by
using the binary reflected gray code so that the internode communica-
tions always occur between the nearest neighbors.

A simple example can explain this. Suppose we have eight subdomains
Di, i — 0 , . . . , 7, and each subdomain D^ needs to exchange information
with Di-i and -Dz+i, except for DQ and Dj, which exchange information
with DI and Dg, respectively. If we map D{ directly to node i on a
hypercube, the communication may go beyond the nearest neighbors.
If we use the binary reflected gray code to map the domains onto the
hypercube, however, communication will always be between the nearest
neighbors. The code is a sequence of n-bit binary numbers such that
any two successive numbers in the sequence differ in only one bit and all
binary numbers with n bits are represented. The one-bit binary code is
C\ = {0,1}. The n-bit code can be built recursively from the (n — l)-bit
code by prepending a 0 to each element in the (n — l)-bit code and then
prepending a 1 to the same (n — l)-bit code elements taken in a reversed
order. Since there are eight (23) subdomains, a three-bit gray code is
needed:

The elements in C% gives the node numbers to which the corresponding
subdomains

should be assigned. For example, Dj should be assigned to node 4, rather
than directly to node 7.

2. Verification of the stopping criterion requires that each node compute
the error ei associated with its assignment of solution vectors and that
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max(ej) < e, where e is the given tolerance. We used two different
schemes to accomplish this. Because the host program of the cube does
not do any numerical computation, we first let all nodes send e^s to the
host for comparison; the host then broadcasts the signal to all nodes for
continuation or termination of the iteration.

In the second scheme one node (not the host) is selected as the master
node. All other nodes send the errors ei to the master node, which then
determines whether the criterion max(ei) < e has been satisfied and
broadcasts a signal to all other nodes for the continuation or termination
of the iteration process. We find the second method faster, which is an
indication that communication between the host and nodes should be
avoided on architectures of this type.

Equation (30.8) is in the form of the normal equation for a least squares
problem. For numerical stability, the best way to solve this system is to use
QR decomposition, rather than forming the normal equation explicitly. We
can rewrite (30.8) as

The main task is to carry out QR factorization on the matrix C, which has
the structure

This is neither a complete full matrix nor a sparse matrix. The upper part is full
and the lower part is sparse (in diagonal form). Many QR factorization schemes
for general dense matrices were implemented and tested for comparison [9, 15].
Timing results show that the column-oriented Householder transform is more
efficient than other algorithms for matrices of this special type. In this
algorithm, the matrix is distributed to different nodes and transformed by
columns. For an ra x n equation system (assume m > n), n steps are required
to annihilate all nonzero elements below the main diagonal. In the ith step
the node holding the pivoting column c^ broadcasts the pivoting column to all

or
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other nodes. After receiving the pivoting column, each node can proceed to
update its assignment of columns.

The efficiency of the algorithm has been further improved by the following:

1. Take the special structure of matrix (30.11) into consideration. In the
first step of the transformation, for example, only the elements in the
submatrix

will be affected, rather than the entire matrix. Similarly, in each of the
n transformation steps, the transformation will be applied to only part
of the original matrix.

2. Schedule the node holding the next pivoting column c^+i to broadcast the
column to all nodes as soon as it finishes updating c^+i, thereby reducing
the waiting time of all other nodes for the arrival of the next pivoting
column. Given the matrix in (30.11), if n is even and two nodes are
available on the hypercube, the columns can be assigned to the two nodes
in a wrap-around fashion for better load balancing. Node 1 is assigned
columns 1, 3, . . . , n — 1 and node 2 is assigned columns 2, 4, . . . , n. In the
first step, node 1 sends column 1 to node 2 and updates all the columns
it has; node 2 updates its columns by using the pivoting column received
from node 1. The new pivoting column for the next step will be column
2, which is held by node 2. Node 2 should send column 2 to node 1
as soon as it finishes updating the column and before it starts updating
columns 4, . . . , n in the first transformation step. In this way, node 1
gets the new pivoting column sooner for the second transformation step.

30.4. Numerical Experiments

The algorithm has been tested by extensive numerical computations in two and
three dimensions. Using the multilevel grid in history matching significantly
reduces the dependence of the identified permeability distribution on the initial
guess K° of the true permeability distribution. With the multilevel grid, the
algorithm discussed here can be used to identify the absolute permeability
distributions varying by an order of magnitude over the domain, with an initial
guess deviating from the true distribution by two orders of magnitude.

Timing results for this example on iPSC/2 and iPSC/860 hypercubes (32
nodes), with two different final grids, are given in Figure 30.2. The final grids
are 32 x 32 for the first model and 64 x 64 for the second model. The curves
in the figure represent speedup versus the number of nodes on the iPSC/2 and
iPSC/860 hypercubes. We can see clearly the linear speedup on iPSC/2 with
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the 64 x 64 final grid, while the speedup for the 32 x 32 grid slows down as the
number of nodes increases.

The same program runs about 25 to 30 times faster on the iPSC/860 than
on the iPSC/2. By incorporating routines from the Basic Linear Algebraic
Subroutine package into the program, we achieved a sustained rate of about
20 Mflops on a single node. There is, however, a communication problem
to be solved in order to fully utilize the computing power of large number
of processors. It is obvious from the figure that the speedup for iPSC/860
is not as good as that of iPSC/2. The imbalance between the significantly
improved computation speed and the relatively slow communication rate on the
iPSC/860 is responsible for this situation. For the history matching problems
discussed here, we find that the sustained numerical computation rate in
Fortran is about 40 times faster on i860 nodes than on the 386-based iPSC/2
nodes, while communication is only three to five times faster. Therefore, as
the number of nodes increases, the performance degradation due to internode
communication is more significant on the iPSC/860 than on the iPSC/2.

30.5. Conclusions
History matching is very important to oil reservoir simulations. A successful
history matching algorithm can save millions of dollars by helping engineers
identify the underground reservoir structural parameters without drilling
additional wells. These parameters can then be used for reservoir simulations

FIG.  30.2.  Speedup curves on iPSC/2 and iPSC/860 huyp0ercubes.  P is
number of processors.



Multiphase Reservoir Models on Hypercubes 341

to make the enhanced oil recovery process more productive and generate even
greater economic benefit. This could involve billions of dollars.

When the reservoir model is large enough, the efficiency of the history
matching algorithm can be well above 90% with linear speedup. A 128-node
iPSC/860 hypercube can deliver Gflop performance, which is comparable with
that of the Cray Y-MP, and the performance/price ratio is at least an order
of magnitude higher for the former. Considering that distributed-memory
parallel computers can be scaled to a large number of processors, they are very
promising for large-scale computational problems in reservoir modeling.

References

[1] G. CHAVEN, M. DUPUY, AND P. LEMONNIER, History matching by use of
optimal control theory, Soc. Pet. Eng. J., 15(1975), pp. 74-86.
[2] W.H. CHEN, G.R. GAVALAS, J.H. SEINFELD, AND M.L. WASSERMAN, A new
algorithm for automatic history matching, Soc. Pet. Eng. J., 14(1974), pp. 593-608.
[3] Y.M. CHEN AND F.G. ZHANG, Multigrid strategy for efficiency improvement of
GPST inversion algorithm, Appl. Numer. Math., 6(1989), pp. 431-446.
[4] G.R. GAVALAS, P.C. SHAH, AND J.H. SEINFELD, Reservoir history matching
by Bayesian estimation, Soc. Pet. Eng. J., 16(1976), pp. 337-350.
[5] J. GLIMM AND O.A. McBRYAN The mathematics of reservoir simulation,
in Inverse Problems in Partial Differential Equations, R.E. Ewing, ed., SIAM,
Philadelphia, 1983, pp. 107 160.
[6] T. LEE AND J.H. SEINFELD, Estimation of two phase petroleum reservoir
properties by regularization, J. Comput. Phys., 69(1987), pp. 397-419.
[7] S.F. McCORMlCK AND J.G. WADE, Multigrid solution of a linearized, regu-
larized least-squares problem in electrical impedance tomography, Inverse Problems,
9(1993), pp. 697 713.
[8] D.W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier-
North Holland, Amsterdam, 1977.
[9] A. POTHEN AND P. RAGHAVAN, Distributed orthogonal factorization: Givens
and Householder algorithms, SIAM J. Sci. Statist. Comput., 10(1989), pp. 1113-
1135.

[10] Y.N. TANG, Y.M. CHEN AND W.H. CHEN, Generalized pulse-spectrum tech-
nique for 2-D and 2-phase history matching, Appl. Numer. Math., 5(1989), pp. 529-
541.

[11] J.F. THOMPSON, Z. U.A. WARSI, AND C.W. MASTIN, Numerical Grid
Generation, North-Holland, New York, 1985.

[12] A.N. TlKHONOV AND V. ARSENIN, Solutions of III-Posed Problems, John Wiley
& Sons, New York, 1977.

[13] M.L. WASSERMAN, A.S. EMANUEL, AND J.H. SEINFELD, Practical applications
of optimal control theory to history matching multiphase simulator models, Soc. Pet.
Eng. J., 15(1975), pp. 347-355.

[14] A.T. WATSON, Sensitivity analysis of two phase history matching, SPE Reservoir
Engineering, 4(1989), pp. 319-324.

[15] J.P. ZHU, QR factorization for the regularized least squares problem on hyper-
cubes, Parallel Computing, 19(1993), pp. 939-948.

[16] J.P. ZHU AND Y.M. CHEN, Parameter estimation for multiphase reservoir
models on hypercubes, Impact Comput. Sci. Engrg., 4(1992), pp. 97-123.



342 Applications on Advanced Architecture Computers

[17] J.P. ZHU AND Y.M. CHEN, On the application of the multilevel grid to the
solution of inverse problems of reservoir simulations, Appl. Numer. Math., 10(1992),
pp. 159-174.

[18] , History matching multi-phase multi-dimensional oil reservoir models on
IBM supercomputer, Scientific Excellence in Supercomputing: The 1990 IBM Prize
Papers, Baldwin Press, Athens, GA, 1992.

[19] , History matching for multiphase reservoir models on shared memory
supercomputers, Internat. J. Supercomputer Appl., 6(1992), pp. 193-206.



Appendix

A Retrospective on the "Applications on Advanced
Architecture Computers" SIAM News Column

Greg Astfalk

Editorial preface

This brief article appeared shortly before the SIAM News column on
"Applications on Advanced Architecture Computers" reached its fifth
anniversary. In answer to questions about how the column originated,
I gave a somewhat personal and casual tale of its origin. At the time, as
mentioned in the appendix, the column was enjoying a milestone, its first
repeat author!

This article originally appeared in SIAM News, Vol. 27, No. 9, November
1994.

With the publication of this issue's "Applications on Advanced Architec-
ture Computers" column, SIAM News editor Gail Corbett and I thought it was
an appropriate time to look back over the years since the column first appeared
in March 1990. It was the author of this issue's article, Craig Douglas, who
unknowingly prompted our look to the past.

Craig, whose article begins on page 1 [SIAM News, Vol. 27, No. 9,
November 1994], is our first repeat author. His previous column article, which
appeared in the May 1992 issue of SIAM News, was actually something of a
departure for the column in that it focused on a method—multigrid—rather
than an application. Multigrid methods resurface in his current article on the
solution of two-dimensional models of laminar flames. Gail and I felt that
having a repeat author gave the column a certain maturity. (In the very near
future we will also have our first two-part article.)

As a matter of history, the column got started when I happened to be in
the Philadelphia area on business and paid SIAM managing director Ed Block
a visit. Over lunch, Ed talked about the nature of SIAM News and asked if I
had any ideas for increasing interest and improving circulation. At that point
I unwittingly decided my fate by telling Ed that SIAM News could use more
technical articles.
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Ed and I had been talking earlier about the growing union between
mathematicians and computers. "Ahhh, a series of articles, or better yet,
a column, would be just thing," Ed said, looking directly at me. I was
volunteered (an Ed Block euphemism for enlisted), and that was the beginning.
At least he paid for lunch!

The March 1990 article was a brief survey of high-performance computing
architectures that I wrote. At that point, justifiably concerned about how
a column would be received (and whether it would be possible to acquire
enough articles to keep it going), we didn't formally identify it as a column.
The second article, in which Mike Mascagni detailed how the use of a SIMD
architecture led to a "backward" random walk algorithm for elliptic boundary
value problems, appeared two issues later (July 1990). Mike's article was still
not formally identified as a column article. It was the article in the next issue
(September 1990), Liam Healy's symbolic and parallel approach to celestial
mechanics, that officially kicked off the column.

Over the three and a half years since the column began, we have worked
with a group of high-quality, enthusiastic and incredibly cooperative authors
to produce articles on a regular basis. Craig's article in this issue is the 25th
to appear. Since the first article appeared, in fact, we have missed only eight
issues. The complete set of articles is 306 pages in 12pt I^TgX.

For readers who are new to SIAM News, or for those who haven't saved
(or read) back issues, we include a complete list of the articles.16 Reprints of
the articles are available (send requests to siamnews@siam.org). If you would
like to offer feedback or feedforward (i.e., recommendations) for the column
contact Gail (corbett@siam.org).

As to the future, we are always looking for contributors for the column.
The prerequisites are simple: the articles should describe some real application
with a formulation that has some mathematical flavor and a solution done on
an "exotic" architecture of any form. Anyone interested in submitting an
article can contact me (astfalk@rsn.hp.com).

16We have eliminated the list in this book since the articles themselves appear.
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Delaunay, 95
phase space, 94

coordination
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T90, 59
X-MP, 185
Y-MP, 15, 21, 24, 174, 308,
341

Cray Computer Corp., 58
crew scheduling, 151, 165-175
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cyclic reduction, 134-136

d-edge, 232 239
daemon, 108
damped Newton iteration, 248,

249
data

decomposition, 69
layout, 61, 86, 88
reuse, 207

data structure, 233, 234
d-edge, 234, 241
distributed, 232
linked, 232
star-edge, 232

deadheading, 168
DEC

Alpha, 86, 89, 91
DEC-Stations, 136
decision problem, 257-260, 262,

263
diagonal quadratic approxima-

tion, 326-328
diffusion, 28, 109

Markovian, 312
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diffusion flame, 244, 246, 247,
249, 252, 253

direct SCF method, 3, 4
direct solution method, 51, 54
direct solver, 190

sparse, 197
distributed computing, 191

heterogeneous, 6
distributed databases, 262
distributed-memory, 8, 29, 30,

35, 40, 62-64, 69, 172, 187,
197, 198, 203-205, 230,
302, 303

distributed-shared-memory,
63-64, 72, 204

DNA, 299, 300
sequences, 299, 300
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domain decomposition, 191,

193, 199, 250
dot product, 192, 198, 239
DQA, see diagonal quadratic

approximation
DRAM chips, 64, 65
DSM, see distributed-shared-

memory
dual pricing, 173, 174
dusty-deck, see legacy code

earthquake, 45, 46, 52-54
economic equilibria, 265-275
eigenvalue, 104, 108, 110

generalized, 2
electromagnetic

scattering, 287, 288
electronic structure, 1-13, 76
elliptic problem, 244
empty spheres method, 125, 128
Encore, 226
enumeration, 141, 279
EPISODE, 108
equation(s)

Brusselator, 110, 111, 113
nonlinear, 108
of motion, 75, 79, 97

Newton's, 178
of state, 247
reaction-diffusion, 110
Roothaan, 3, 4
second-order equilibria, 97
Shvab-Zeldovich, 249

equilibrium, 265
Nash, 265
spatial price, 265
Walrasian, 265

Euler method, 103
eval, 226, 228
expansion

spherical harmonic, 47, 48

FCC, see lattice, face-centered
cubic

FDTD, 287-290, 292-295
FEM, see finite element method
fetch-and-add, 256
Feynman's path integral, 17
financial instrument, 317

pricing, 311
fingering phenomenon, 332
finite difference, 79, 109, 190,

248
central, 288

finite-difference time-domain,
see FDTD

finite-element method, 51, 71,
122, 190

flame
burner-stabilized premixed,
244
freely propagating, 244

flame sheet, 248-250, 252
flight leg, 166, 167, 172
flight schedule, 166, 172
Fock matrix, see matrix, Fock
force evaluation, 205, 207
Fortran, 67, 68, 70, 87, 198, 340
Fortran-77, 67, 73
Fortran-90, 67, 98, 105, 131,

135-139
array syntax, 131
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intrinsics, 131
fractal, 225, 229
fracture experiment

three dimensions, 81
friction force, 214
Fujitsu

VPP-500, 79
full-information complex, 259-

261, 263
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convex, 281
differentiable, 281
nonlinear nonsmooth, 281
nowhere differentiable, 27
space, 190

GA, see genetic algorithm
Galerkin method, 51
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197, 199
Gaussian elimination, 134, 137

sparse, 196
GDP, 240, 241
genetic algorithm, 37-43
geometric
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global climate models, 122
GMRES, 108, 248
Gordon Bell Prize, 88
GPST algorithm, 335
grain size, 70
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Green function, 28
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memory
guard grid, 290-292, 294

Hamiltonian, 3, 20, 94-98
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hardware synchronization prim-
itives, 256
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parallel, 4

heat transfer, 244
Helmholtz motion, 214-216,

218-220
heredity, 299
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Hewlett-Packard, 58, 227

PA-RISC, 89
PA7100, 91

hierarchy
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high-performance computing,
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high-performance Fortran, see
HPF

hill-climbing algorithm, 37, 42
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Householder
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image segmentation, 36, 38
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386, 340
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i860, 340
iPSC/2, 35, 197, 204, 205,
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irregular problems, 68, 204
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ISV, 72, 73
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Krylov method, 108
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multipliers, 169
relaxation, 169

LAN, 288, 293-295
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Laplace equation, 28, 30, 32,
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legacy code, 69, 71
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relaxation, 282
system, 104
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local error, 108

expansion, 103
loops, 70
LOQO, 326, 329
LP, see linear programming
LSODE, 108
LU factorization, 66
lunar theory, 94

machine architecture, 86
macromonetary policy, 271
macros

C, 88
Madpack, 197, 198
Madpack2, 197
MadpackS, 198
Mandelbrot set, 216
MAO, see mechanized algebraic

operations
mapping

algorithm-processor, 177
between spaces, 190, 194
problem, 35-43

market
fixed income, 311

Martele bowing, 216
MasPar, 102, 105, 110, 111,

117, 119
MP-1, 131, 136
MP-2, 29, 131, 136, 138

mass transfer, 244
master

process, 303-307
processor, 301, 305, 306

master-slave, 4, 112, 113, 228,
292-294

material properties, 75, 76, 85,
203

matrix
0-1, 159
amplification, 104, 108
bidiagonal, 132, 134
block

sparse, 250
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structure, 250
tridiagonal, 110, 188

constraint, 150
dense, 338

unsymmetric, 66
diagonally dominant, 53
Dirac gamma, 23
Fock, 3, 4, 7-11
identity, 110, 111
orthogonal, 132
sparse, 171, 248, 300, 338

format, 197
SU(3), 16, 22
tridiagonal, 110, 132, 134,
188
unitary, 16

matrix multiply, 243
complex, 22, 23

matrix-vector multiply, 23, 192,
197, 250, 251

matrix-vector operations, 104
MBS, see mortgage-backed se-

curities
MD, see molecular dynamics
measure theory, 27
mechanized algebraic opera-

tions, 96, 97
memory

allocation, 162
bandwidth, 65
hierarchy, 65-66
organization, 62
nodal, 9

mesh
three-dimensional, 205
partitioning, 71
uniform, 188, 189, 197

message-passing, 6, 41, 63, 64,
67-69, 72, 73, 78-80, 86-
89, 108, 109, 145, 197, 198,
200, 203-206, 210, 226,
227, 262, 263, 285, 288,
293-295

method of lines, 104, 109

MIMD, 24, 29-31, 33, 62, 73,
102, 109, 117, 119, 173, 174

minima
global, 37
local, 37

minimization, 141, 279, 322
problem, 266

MIP, see mixed integer program
MIPLIB, 150
MIPS

R8000, 91
mixed integer program, 141-

144, 150-152, 277, 278
mixed integer programming,

141-152
model

global atmospheric, 204
groundwater, 204
local piecewise linear, 279

modified Newton, 103, 108
molecular dynamics, 20, 75-77,

80, 81, 85, 88, 122, 177-
179, 203-206, 209, 211
large-scale, 75-82, 85-92
parallel, 179-184
three-dimensional, 77
two-dimensional, 77

Monte Carlo, 18, 29, 30, 33, 313
hybrid, 20-22, 25

mortgage
debt, 312
residential, 312

mortgage-backed securities,
311, 312, 314, 316, 317

motion
violin string, 214-216

MPFortran, 105
MPI, 69, 73, 198, 200, 252
MPL, 131, 134, 136-139, 244,

251, 252
multicolored ordering, 195
multigrid, 107, 187, 193, 199,

200, 335
acceleration, 107
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concurrent, 192
frequency decomposition,
194
nested iteration, 249
one-way, 249, 253
parallel superconvergent,

195, 197
robust, 194, 197
telescoping, 192

multilevel grid method, 335,
336, 339

multilevel method
parallel, 187, 199, 200
standard, 187

multiplier adjustment method,
169

multiprocessing, 255
multiprocessor, 157, 161, 255,

256, 261
load, 158

musical instrument
quality of, 213-214

mutation, 39, 40, 43

nCube, 283, 285, 286
nearest-neighbor, 23, 24, 30, 31,

105, 236, 237, 337
nested iteration, 190, 191
network, 38, 266

bipartite, 271
computing, 225
fat-tree, 25
model, 266
problem, 317

two-stage stochastic, 317
processor, see processor,
network

network of workstations, 30,
109, 172, 205, 288, 293,
303, 320

NEWS, 23, 30, 31, 315
Newton corrections

scaled, 248
Newton's third law, 78, 205
Newton-Raphson method, 97

NFS, 303
nine-point operator, 248, 250
NLP, see nonlinear program
noisy data, 319, 320, 322, 330
nonlinear program, 319, 320
nonlinear system, 214
nontelescoping method, 191
Northwest Airlines, 165, 166,

168-170,172-175
NOW, see network of worksta-

tions
NP-complete, 37, 38
NP-hard, 141, 156, 162, 278
NUMA, 64

OBI, 171
objective function, 279, 282

discrete, 280
nonlinear, 279

Occam, 41
ODE, 109, 119, 267

nonstiff, 108
parallel across the method,
102
parallel across the system,
106

stiff, 108, 117
systems, 101-119

oil recovery
enhanced, 331

operations research, 165, 166,
174

operator
genetic, 39, 40
inversion, 40
prolongation, see prolonga-
tion, operator
restriction, see restriction,
operator

optimality, 280
optimization, 39, 267

algorithm, 37, 39
problem, 282, 283, 319
stochastic, 316
with uncertainty, 319
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option
call, 312, 314

option-adjusted spread, 314
orbiting bodies, 94
ordering

red-black, 199, 336
ordinary differential equation,

see ODE
orthogonalization, 133
Orthomin(l), 197, 198
oscillation

self-sustained, 214
OSL, 171
out, 226, 228, 229
oxidizer jet, 244

P-wave, 46, 47, 52
p4, 79, 108
pairing, 166-168, 172-175

generation, 173, 174
ParaGraph, 113-115
parallel

architecture, 36
computing, 60-62
processing, 61, 65, 70-72
processor, 58, 66, 69
program, 36
programming model

portable, 69
parallelism

coarse-grained, 70-72, 108
fine-grained, 6, 40, 70, 72,
73, 147
hierarchical, 71
loop-based, 70

parallelization
hierarchical, 72
loop-level, 171

Paris, 22, 272, 316
partial differential equation, see

PDE
partial sequencing, 299
particle

parallelism, 180
simulations, 122

trajectory, 181
partition function, 17, 20, 21
partitioning

arrays, 106
ODE systems, 113
processes, 35

Pascal, 184
pattern sifting, 173
PDE, 27-29, 188, 190, 288, 332,

333
parabolic, 27, 28, 104

PERFECT club, see bench-
mark, PERFECT

performance
single processor, 60

permeability distribution, 333
perturbation, 48, 94, 96
phase

space, 93, 94, 97-99
velocity, 47, 48

Picard iteration, 106
planetary problems, 94
plate tectonics, 45
Poincare, 94, 95
Poisson equation, 187
polyhedron

convex, 267
intersecting
three-dimensional, 231

portfolio, 311, 316, 317
porting

software
third-party, 72

POSIX.l, 87
potential, 75, 178-180, 182,

184, 185
gravitational, 94
harmonic spring, 178
intramolecular, 178
Lennard-Jones, 80, 178-
182, 184, 185
many-body, 75
multiparticle, 178, 182
short-range, 80
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three-particle, 179
torsion, 179, 180, 182-184

PowerPC, 89
preconditioner, 107, 108, 118

diagonal, 198
polynomial, 104
right, 107

prediction-correction
techniques, 102, 103

prefetching, 66
price

convexity, 316
duration, 316

probabilistic relaxation, 170
probability, 27-29

density, 27
distribution, 2
of crossover, 39
of mutation, 39

probe sequence hybridization,
299

problem
graph partitioning, 36 38
input-output, 191
mapping, 35-43
minimax, 279, 280, 282, 283
three-body, see three-body
problem

process allocation, 155-160, 162
processor

bit-serial, 21
clock cycle, 58, 59, 65
commodity, 62
custom, 58
cycle time, 59

limit, 59
farm, 180
frequency, 60
network, 177, 182
RISC, 58-60, 62, 64, 65, 67,
73, 89-91, 198, 244
stall, 90, 91

programming
environment, 41

language, 66
portable, 68

model, 61
projection

linear, 196
linear-linear orthogonal
complement, 196
symmetric-antisymmetric,
196

protocol, 257-263
consensus, 262
read/write, 260, 261
transaction commitment,
262
wait-free, 257, 260, 262

pvar, 236
PVM, 10, 69, 73, 79, 86, 89,

108, 117, 198, 288, 293-
295, 327

PWK method, 133 135

QCD, see quantum, chromody-
namics

QR decomposition, 338
QR factorization, 338
quadratic programming prob-

lem, 267
quantum

chemistry, 1 13
chromodynamics, 15-25

lattice, 17
mechanics, 33

quark, 16-20, 22, 23, 25

random number generator, 133,
136

random walk, 29 33
mapping to architecture, 29

ray tracing, 225, 227, 228
Rayshade, 225, 227-229
rd, 226, 227
reaction

Cl-chain, 252
reduced costs, 174
reduction
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global, 150
many-to-one, 236

regularization method
Tikhnov's, 334

relaxation method, 190, 192
asynchronous, 192
Kaczmarz, 194
line, 197

relaxation techniques, 188
renaming problem, 257, 260
reordering

global, 206
reproduction, 39
reservoir model

multiphase, 331-341
residual evaluation, 250
restriction, 280

enzyme, 299, 300
operator, 194

RISC processor, see processor,
RISC

risk profile, 311
RNG, see random number gen-

erator
robust optimization, 319-330
router, 30, 105, 241
routing, 36, 40, 41

wormhole, 113
RS/6000, see IBM, RS/6000

S-wave, 46-49, 51, 52
satellite, 94, 95, 99, 100

theory, 94, 96
SBDSQR, 134
scalability, 12, 63, 80
scan-add, 315
scenarios, 319, 321, 322, 324-

328, 330
SCF, 7-9, 11, 12
scheduling, 155, 156, 162

communication, 191
processes, 155-163
processor, 191

search
best-first, 284

breadth-first, 144
depth-first, 144, 146, 151,
152, 284
space, 142, 143, 181, 184
tree, 144, 146, 150-152

seismograms, 45, 46, 48, 49, 51-
54

seismology, 45-55
self-scheduling, 162
semiconductor trends, 60
Sequent, 226

Symmetry, 197
set

minimal spanning, 299
set covering, 167, 173
set partitioning problem, 151,

166-168, 171-174
elastic, 170

SGI, 4, 186, 226, 227
Power Challenge, 119

shared-memory, 29, 30, 62-64,
69, 172, 174, 197, 230, 256-
258, 260
emulation, 203, 204

shelling, 122-125, 128
numbers, 125
order, 122, 123, 125, 126,
128

Shiva, 204
short-range MD problem, 76
sifting, 173, 174
Silicon Graphics, see SGI
SIMD, 21, 29-31, 33, 62, 68, 88,

89, 102, 105, 121, 217, 222,
231, 232, 237, 238, 240-
242, 272

simplex, 143, 145, 147, 151,
169-171, 174, 282
input, 257, 259, 260
output, 257, 258, 260

simplicial
complex, 257, 258
map, 259

simulated annealing, 37, 42
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single-program multiple-data,
see SPMD

singular value decomposition,
131-139

SLASR, 134
SMP, 61, 72
socket, 7, 10
software

third-party, 59, 62, 72
solid

intersection, 237
modeler, 232, 240
modeling, 231 233, 235,
239

solver
linear programming, 145

SOR, 32, 337
block, 336
red-black, 33

SPaSM, 79-81, 88
spatial decomposition, 203, 204,

211
speedup, 6, 12, 42, 43, 98,

172, 173, 199, 218, 225,
229, 240, 252, 286, 293-
295, 306-308, 336, 339, 340
linear, 339, 341
superlinear, 42, 151

splitting techniques, 103
SPMD, 292, 294
SPMINC, 169
SPP, see set partitioning prob-

lem
spreadsheet, 320, 330
SSOR, 193, 197
SSTEQR, 133
stability

oil/water front, 331
staggered grid, 245
Stark Zeeman problem, 100
statistical mechanics, 17, 177
stochastic

optimization, 316
program, 322

search, 37
stopping criterion, 30, 337
Stradivarius, see violin, Stradi-

varius
strip-mining, 70, 71
subgradient, 279-281, 283-285

optimization, 169
successive overrelaxation, see

SOR
Sun, 227

SPARC, 86, 91, 225, 227,
293
SPARC-2, 111
SuperSPARC, 86, 89

supercomputer, 57 60, 65, 71,
72

Supernode, 40
supporting plane, 279-281, 283
SUPRENUM, 200
surface sound, 215, 220
surfactant, 185
SVD, see singular value decom-

position
_SYEV, 131
symbolic

algebra, 95, 96
processing, 93

Symbolics, 96, 97
symmetric multiprocessor, see

SMP
symmetric successive overrelax-

ation, see SSOR
symmetry, 95

groups, 193
synchronization, 61, 70

barrier, 108
cost, 302
primitives, 256, 260 262

synthesizer, 215

t-list, 125 127
task management, 69
tectonic plate, 45
telescoping method, 191
tensor product, 196, 248
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test-and-set, 256, 261
tetrahedra, 127, 128
Tflops, 21
Thinking Machine Corp., see

Connection Machine
three-body problem, 94
time-centered derivatives, 288
TMC, see Connection Machine
topology, 41, 63, 113, 177

algebraic, 255
fat-tree, 86
mesh, 63, 105
ring, 63
torus, 63, 86

torus, 41, 181, 182, 258
trans conformation, 179
transitive closure, 239, 242
transport phenomena, 244
Transputer, 40, 41, 178

T800, 179, 184
triangulation, 121-125, 127,128
tribology, 217
tuple, 226-229

space, 226, 227, 229
two-level scheme, 188
two-phase flow, 332

uniform memory access, 62
UNIX

AIX, 303, 304, 307, 308
mail, 303, 304

upwind differences, 248
User Datagram Protocol, 227

V cycle, 190
variable

decision, 320
design, 320
random, 321

variance, 30, 31
variational

inequality, 265-270, 272,
275
method, 51

vector

architectures, 177
hardware, 4, 308, 320
processor, 171, 174, 175,
240
spaces, 190
unit, 86, 88, 89, 91

Verlet
list method, 76
method, 205

very large scale integration, see
VLSI

violin, 213-222
body, 220-221
bow, 214-217, 219, 220
bow force, 215, 219, 220
bow-string

stick-slip, 214, 218
Stradivarius, 213
string, 214

torsional motion, 220
VLSI, 36, 38
VODE, 108, 109, 115-117
VP ratio, 273, 274
VU, see vector unit

W cycle, 190
wave

body, 46, 49, 54
compression, 46
elastic, 45, 46, 48, 53
Love, 47
Rayleigh, 47
shear, 46
surface, 46-49, 52, 54

waveform
inversion, 48

iterative linearized, 54
relaxation, 106-108, 118

WHERE, 218
Wiener

integral, 28, 31, 33
measure, 28
process, 313

windowing, 106, 116
Windows NT, 320
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workstation cluster, see cluster,
of workstations

workstation network, see net-
work of workstations

XDR, 307

YACC, 227


