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Preface

The present monograph has emerged from an attempt to develop a time-variant discrete
compensation theory for achieving both stabilization and disturbance attenuation. After a
short period of investigation it became clear to us that a systematic and coherent treatment
of various subjects which are specific for time-variant discrete systems is needed. This
forced us to confront several different topics such as exponential dichotomy; input-output

operators between lz(Z ) spaces; nodes, as the time-variant discrete counterpart of the ones
studied by Bart, Gohberg and Kaashoek (see [5]) for the continuous case; Hankel and
Toeplitz operators, and Liapunov and Riccati equations. To our knowledge such a treat-
ment has never appeared in book form and we are convinced it will be useful to the reader
in order to encourage the development of his own theoretical and practical work. In spite of
the lack of monographs devoted to this subject, many publications do exist. Thus we have
often found ourselves in something of a dilemma: on the one hand many facts should be
known and on the other hand it is nearly impossible to give adequate reference to all. We
must therefore apologize that our comments on references, made at the end of each chap-
ter, are far from being complete. Moreover, we also rediscovered some results established a
decade or more ago, such as those concerning stability via solutions to Liapunov equations
or the ones related to exponential dichotomy deeply investigated by Ben-Artzi and Gohberg
(see [7], [8], [9]). Thus we can not exclude the possibility that other results presented in the
book for which we have no specific references were already known for some time. We feel
that this situation argues all the more forcefully for writing a monograph on the subject.

At this point we wish to acknowledge the sources that influenced us and oriented our
investigations. These were the theory of nodes due to Bart, Gohberg and Kaashoek [5]; the
state-space approach to H”-control of Doyle, Glover, Khargonekar and Francis [18); and
the results of Popov and Yakubovich concerning the so-called “positivity theory” (see [55]).
The present form of the book is in fact the result of several revisions that were succesively
performed on the initial version of the manuscript. The first two chapters were, for example,
drastically modified. These modifications concern the structure of the material, examples
and various new facts inspired by the recent volume edited by Gohberg, Time-variant Sys-
tems and Interpolation OT 56, Operator Theory: Advances and Applications, Birkhduser,
1992. The third and fourth chapters also underwent radical changes before the present form
was achieved. At present we believe that these chapters offer a new sight on the Riccati
theory and disturbance attenuation problem as well. We are also conscious that our
monograph is not one on operator theory, but that there are many operator-theoretical
aspects disseminated in the text and a lot of facts may be more deeply imbedded in an
operator framework. We are convinced that the well known interplay between operator
theory and control system theory which is very transparent in transfer matrix terms must
have also a state-space counterpart for which the time-varying case is of the greatest
relevance.

We would like to warmly thank Professor Israel Gohberg for stimulating us to write this
book and for publishing it in the series on Operator Theory: Advances and Applications.

We thank also Assistant Professor Mihai Tache for his dedication and skill in processing the
text.

Finally, we are indebted to the Birkhéuser publishing staff for friendly and helpful assis-
tance.

Aristide HALANAY

Bucharest 1993 Vlad IONESCU



Notation

the set of integers

real n-dimensional Euclidean space
the set of natural numbers

defined by as well as defines

for all
end of proof, lemma, remark, etc.

O < > ZEN

12(2 ,U) the Hilbert space of square summable U-valued functions defined on
U

12([3, ©),U) the Hilbert space of square summable U-valued functions with
support in [s, ) CZ

12((_00 ,s—1],U) the Hilbert space of square summable U-valued functions with
support in (—» ,s — 1] CZ

Il 1l norm in Hilbert space X

<, >y inner product in Hilbert space X

I ||2 12-norm

<,> [>-inner product

A* adjoint of the operator 4

471! inverse of the operator 4

A=A*»0 36>0,<dx,x>,20 || x||3 V x€X
AA) the spectrum of the operator A

pA) the spectral radius of the operator 4

Cross references will follow the rule: Lemma 1 means lemma 1 in the same section; Lemma
2.1 means lemma 1 in the section 2 of the same chapter; Lemma 3.2.1 means lemma 1 in the
section 2 of the chapter 3. The same rule applies to formulae: (1) means formula (1) in the
same section; (2.1) means formula (1) in the section 2 of the same chapter; (3.2.1) means
formula (1) in the section 2 of the chapter 3.
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Chapter 0

General motivation

Discrete-time systems have proved to be a subject of major interest in many scientific areas
promoting intensive research equally disseminated both in theory and practice. Such sys-
tems arise naturally in modeling various types of processes but they are of crucial impor-
tance in Control Systems Theory. They are included in the 1991 Mathematical Subject
Classification as 93C55 and in the version of sampled-data systems as 93CS7. As such, the
topics do not require supplementary motivation. What we would like to discuss here is the
choice of matters and the structure of the present monograph. The starting point lies in the
H®-optimization problem where model uncertainties have for the first time been systemati-
cally accounted for in the design. Initial examples of H”-solutions consisted solely of small
numerical examples used to illustrate the theory. Now H™ -optimization techniques are used
for solving real-world problems arising from the area of the most advanced technologies. It
is why H”-control has been finally included in the 1991 Mathematics Subject Classification
as 93B36. In fact during the past decade the H™ -optimization problem seems to be one of
the most exciting research areas in Systems and Control Theory, and progress accomplished
in this direction has been quite spectacular in the way it combined a sophisticated mathe-
matical theory with practical engineering design considerations. The fascinating interplay
between an engineering approach and advanced mathematical topics, mostly from Operator
Theory and Complex Analysis but equally from Differential Equations and Linear Algebra,
was the key of such rapid development of the field. Moreover we can conclude that a
characteristic feature of control science is that mathematical and engineering advances have
been closely intertwined at every stage of the development.

The H”-control theory was focused first on the continuous time-invariant systems but later
it has been extended to the discrete-time and time-variant systems. Extension of the theory
to general time-variant discrete systems is well motivated by the fact that when sampling a
periodic continuous-time system one gets a discrete system with almost periodic coeffi-
cients.

In the second half of 1990 we started to study the suboptimal solution of the so-called
disturbance attenuation problem which consists in finding a controller for a given time-vary-
ing discrete system such that closed-loop stability and regulated output attenuation with
prescribed tolerance are simuitaneously achieved. When the problem was completely solved
(in terms of necessary and sufficient conditions) we discovered that it required a lot of
specific results concerning discrete-time systems. Such results may be seen as being parti-
tioned in two categories. The first category includes those results that we considered to be
new such as a general Riccati theory for game-theoretic situations, developed in the
perspective of the Popov-Yakubovich viewpoint. The second category, a rich one, consists of
partially known results, or those which could be obtained by a specialist when necessary, but
which never have been collected in a systematic way. The above considerations led us to
write the present monograph. Let us remark that as we were stimulated to investigate
specific aspects of time-variant systems starting from the disturbance attenuation problem,



2 General motivation

Ball, Gohberg and Kaashoek developed a similar study motivated by the time-varying
Nevanlinna-Pick interpolation theory (see [4]).

Let us be now more specific in order to have an idea concerning the topics we shall con-
sider.

Let X, U,., Yi’ i = 1,2 be Hilbert spaces and let A = (A4 = (B.

k)kEZ’Bi l,k)kEZ’
Ct=(Ci,k)kEZ ,i=1,2and Dijz(Dij,k)kEZ ,i,j =1,2 be bounded operator sequen-
2 2 2
cesie.sup{|| A, || +2Z B, Il +2Z|IC;, || + 2 || D;;, ||} < © where 4, : X~ X,
keZ{ o L T } k
B :Ul.->X,C‘. :X-»Yi,i=1,2andD.. :U.-»Yl.,i,j=1,2.HereweassumeD22=0.

ik , ikt j
Ifx = (x,), ¢ z is any X-valued sequence, let o be the unit shift that is (ox) g = Xyqe Write

also A x for the sequence (4, i.e. consider A as a multiplication operator or,

ez
equivalently, as having a diagonal matrix representation where the diagonal entries equal

A,. With these in mind consider the linear discrete-time systems
ox=Ax+ B1 u +B,u,
yy=Cx+Dyu +Dpju, 1)
= Cox+ Dyuy
hez = WpezVi= Ve i=1,2 withy €X,
u,,,u,, )EU XU, and (y,,,y,,) EY, XY, are the state, the exogenous input, the con-
1, %2k 17 Y 152 Y2k 175 8

where x = (x,

trol input, the regulated output and the measured output evolutions, respectively. The distur-
bance attenuation problem consists in finding a controller, i.e. a system
ox =A x. +B.y, )
u,=C.x_+D_y, @
activated by the measured output y, and providing the control input u, such that the resul-
tant closed loop system
Oxp=Apxp +Bpu,
¥y = Crxp + Dryy ©)
does satisfy simultaneously the following two conditions
1. A, defines an exponentially stable evolution i.e. || AR}._IA Ri-2 "'AR,,' || =pg™ for
pzl,0<g<landVi>j
2. Once condition 1. satisfied, system (3) defines a linear bounded input-output operator
Ty u :l2(Z ,U)~> lz(Z » Y;) which must be such that it y-attenuates the exogenous inputs
11

that is || 7} . || <7, wherey is an apriori given tolerance.
11

Notice also that 4 , B, C,, D_are of the same operator nature as the coefficients of (1) and

x, = (x, ,k)k ez %ex € X _ is the controller state evolution.

Let us explain a little more the origin and the relevance of the above stated problem which,
in the time-invariant case, coincides with the well known H*-optimization problem (the
suboptimal version). At a first inspection conditions 1. and 2. arise as standard requirements
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imposed to a control system: a) closed loop stability and b) to keep y, “small”, i.e. to achieve
the attenuation condition ||y, ||, <¥|| «, ||, or, equivalently, || Ty 4 I < 7. Notice that
11

here y, must be seen as the classical tracking error. If Y is augmented, that is more internal

signals are considered as regulated outputs, then by achieving the above mentioned attenua-
tion condition the resultant closed loop configuration will be endowed with new remarkable
properties. Such properties concern the so-called robust stability. The notion of robustness
can be described as follows. Assume that the (operator) coefficients of the generalized
system (1), i.e. A4, B, C, D’.j ,i,j=1,2 are perturbed. Thus we may consider (1) as
belonging to a class F and, due to these perturbations, the system (1) ranges the class F.
Usually such perturbations are viewed as model uncertainties. Consider also a characteristic
of the closed loop system (3), for instance internal stability. We shall say that the controller
(2) is robust with respect to this characteristic if this characteristic, i.e. internal stability,
holds for every system in F. In order to argue in a deeper way the above mentioned robust-
ness property consider first the so-called small gain theorem

Theorem 1 (Small Gain). Let

e e o~ T 4
y,.=C.x.+D.ui @)

be two internally stable systems defining the linear bounded input-output operators
T: 12(Z ,U) - 12(Z ,Y,), i = 1,2 Assume that the two systems are feedback compatible that

is 172 = gl, \72 = 61 and (I - 51 ]32)_1 is well defined and bounded. If, for a given y > (,
Il fl || = y_l and || ’172 || < y then the resultant closed loop system O;R =4 R ;R’

;R = (;1 ,;2), i.e. that system obtained by making 1:1 = ;2 and 1:2 = ;l is internally stable (A R
defines an exponentially stable evolution). O

Remark 2. Theorem 1 asserts that if the first system (4) (;f . B, ) ranges the class F

- 1’51’5 1
characterized by || T, || < y_l then the second system (A4,, B, , C,, D,) stabilizes the
whole class F. t

In order to illustrate how robust stability is achieved let us connect together the disturbance
attenuation problem and the small gain theorem. This will be done for a particular case of
(1). To this end consider first

Lemma 3. Assume that (1) reduces to

b

ox=Ax +Bzu2
n= U &)
Yy = C2x +uy

Consider also the first system (4) assuming that 61 =Y, and fl =U,. Then the next two
system operations lead to the same resultant system:
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1. Connect (2) to (5) and obtain (3). Connect then to (3) the first system (4) by making
u = ;1 and 1:1 =y, that is consider (3) as playing the role of the second system (4).

2. Perturb additively the system
ox=Ax+ 32 u,

y,=Cyx (6)
by the first system (4) and obtain
X 4 0]l B,
g = -~ + u
=~ 0 A4/||= 7| 2
X, 1 |xg B,
~ " = ()
»,=I6 Gl | +Du,
!
and then connect to (7) the controller (2). - O

The proof of Lemma 3 is obtained by performing simple computations.
Now we have

Theorem 4. Let v > 0 and assume that both A and ’21 in (7) define exponentially stable

evolutions. If (2) is a solution to the disturbance attenuation problem formulated for (5), then
(3) stabilizes (7) for all systems (A, B, , C,,D,) for which || T || < y~", that is (2) robustly
stabilizes (6).

Before proving the above stated theorem let us remark that by perturbing additively the
system (6), it ranges the class F = {TZ + 771 | 1l 7-:1 | = y_l} where T, is the input-output
operator of (6).

Proof of Theorem 4. Apply Lemma 3 in conjunction with small gain Theorem 1. ad
Thus we conclude that robust stabilization of a given system (see (6)) reduces to solving the

disturbance attenuation problem for an adequately generalized system (see (5)). Therefore the
disturbance attenuation problem plays a central role in the robustness theory.

Let us return to Theorem 1. In the continuous time-invariant case the proof of this theorem
is a simple exercise in applying the Nyquist criterion which in fact is an engineering version
of the variation of the argument formula. In our case such a treatement fails. In order to
prove Theorem 1 we had to prove a more powerful result which is intimately related to the
Popov positivity theory. Such result is stated as follows.

Theorem 5. Let T': 12(Z ,U)—-» lz(Z , Y ) be the input-output operator defined by the exponen-
tially stable system 0x = Ax + Bu,y = Cx + Du. Then, foragiveny > 0, || T || <y iff the
Jollowing Kalman-Szegi-Popov-Yakubovich system in the so called positivity form

Y¥I-D*'D+B*cXB=V'V
—-C*'D+A'0cXB=W'V
~-C"C+A" 0 XA-X=W'W ®)
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has a stabilizing solution (X ,V, W), i.e. there exist bounded operator sequences
X=Xx"= X ez V=0 ezp W= W), cz for which (8) holds, VYis well defined
and bounded and A - BV™'W defines an exponentially stable evolution. Moreover X < 0. O

Based on this result we have immediately
Proof of Theorem 1 (sketch).

Assume without loss of generality that || fl || <%~ Then by applying adequately
Theorem 5 to both systems (4) we may writg twg Kalman-Szegd-Pgpoy-Yakubovich systems
of type ~(8) with the stabilizing solutions (X, V,,W,) and (X, ,V, , W), respectively, and
uihere X, =<0 and

X, = 0. Let

2z
X8 YOXI _()).(. 20
2

"Ehen simple computations lead to the Liapunov equation X R= Z; oX R A Rt 5; 5R where
Ap is associated to the resultant closed-loop system obtained by coEnecEng together the
systems (4) and Cp is adeguately defined. It is shown that the pair (Cp,4p) is detectable.
This fact combined with Xy > 0 which satisfies the above Liapunov equation provides the
exponentially stable evolution defined by 4  and the proof ends. O

Let us now be a little more involved in the disturbance attenuation problem, for which we
need firstly

Definition 6. Call = = (4, B ; M), where
m=2 Loy
L" R

and A defines an exponentially stable evolution, a Popov triplet. Here 4 = (Ak)k ez
B=B).cz M=M), c, are bounded operator sequences where A X=X,

Bk U, xU2 -X Mk X X U1 X U2 - X X U1 X U2, andX, U, U2 are Hilbert spaces.

Associate to X:
J(kfu) 2 < m : {f 2} m > ©)

1. The Popov index
defined for all k €Z and (£4) € X X X[k, =), U)) x X([k, ), U)) ([k, ®) CZ) where x
and y are linked byox =4 x + By, X, = &
2. The Kalman-Szeg6-Popov-Yakubovich system in “J form”
R+B'oXB=V'JV

L+A*cXB=W'JV (10)
Q+A 0 XA-X=W'IW
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;o vV, 0
= , V=
A Vyy Vo (11)

where

with [; the identities in 12([k, ), Ui)’ i =1,2 and V partitioned in accordance with J.

3. The triplet (X, V, W) is called a stabilizing solution to (10) if it satisfies (10), X = X",

V= 1is well defined and bounded and A4 + B F defines, for F= =V~ W, an exponentially
stable evolution. a

Remark 7. Notice that the exponentially stable assumption made on 4 can be easily
removed. We needed it in order to simplify the presentation. In fact we invoke here the so-
called “feedback invariance”. a

By simple computation we have

Proposition 8. Let Z be a Popov triplet and assume that the associated Kalman-Szegé-Popov-
Yakubovich system in J form has a stabilizing solution (X, V , W). Then the Popov index can be
expressed as

J0egm) = =yl uy 117+ 113 1l (12)
forall (k&) €Z x Xand allu = (u,, u,) € 12([k, w),U,) X 12([k, ), U,) and where

~ A
yup =Viu+ Wix (13)
y, v % %
V1=Vt + Vi + W) (14)
with x and u linked by ox =Ax+ Bu=Ax +Byu, +Bu,, x, =Eand W' = [WI W;]
partitioned conformaly with V in (11). O

Assume now that A4 in (1) defines an exponentially stable evolution. As we mentioned and
as we shall argue a little more at the end of this chapter such assumption does not restrict
the generality of the problem.

Let

A A = A =+
B—PIBJ,Q—QCPL—C{QID4

* 2 '
a | P v, 0 (15)

D D.,| -

The Popov triplet £ constructed with data defined by (15) will be called the Popov triplet
associated to the generalized system ().

We have at once

Proposition 9. The Popov index corresponding to the Popov triplet X associated to (1) can be
expressed as

R

Jeku) = =Vl ug 12+ Ny, 112 (16)
O



General motivation 7

The first basic result can be stated as follows.
Theorem 10. Assume that

T;z Tiy»0 amn

where T, 4 Clol- A)_lB2 +D,,andlet Z be the Popov triplet associated to (1). If (2) is

a solution to the disturbance attenuation problem (of prescribed tolerance y) then the Kalman-
Szegd-Popov-Yakubovich system (10) associated to Z has a stabilizing solution (X, V , W) with
X=0 O

Here T, is the input-output operator defined by 0x =Ax + B,u,,y, = C;x + D, u, and

12%2
its expression in terms of the unit shift operator o is justified in Section 2.1.
There is also a dual version of Theorem 10. In order to state it introduce the dual data of
(15) as

A 1 AA T A * .
C= c2 ’Q'BlBl ’L_B1|:D11 D21]
. [Dy vl of . [~ o (18)
R = D‘l D‘l - y ]: A
Dy, [ n 21] 0 0 0 I

where I is the identity in (lk, ®),Y),i=1,2.
Then we have
Theorem 11. Assume that

Ty 15170 (19)

where T, = C (0] - A)—IB1 +D,.. If (2) is a solution to the disturbance attenuation prob-
lem, then the dual version of the Kalman-Szego-Popov-Yakubovich system (10), that is
R+cyc' =viv
_ Lvavc=wiv (20)
Q+AYA —oY=WIW

has a stabilizing solution (Y, I//\, fi\’), i.e. it satisfies (20), P Vis well defined and bounded and
is of the form

I’/‘= Vll II/\IZ
0 V22
and A - WV ¢ defines an exponentially stable evolution. Moreover T=o O

Automatically from Theorem 10 we have
Corollary 12. Assume that all the conditions in the statement of Theorem 10 hold. Then

2 2 2 217 =~
=l 15+ Ny 15 = =1l 15+ 115, 13 1)
where each term of the right-hand side of (21) has been introduced by (13) and (14), respectively.

0
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We may rewrite (13) and (14) as
- 1~ 1
u =y V.ou -V Wx 22)

- | -
Y= W= Vo Vg Wk +y Vo Vit + Va4, (23)

Substitute (22) in (1) and replace y, by ;1 given by (23). Thus one obtains the “modified”
system (derived from (1))

ox =A0x + BO1 u, + Bozuz

¥1=Co1x+ Dy 4y + Dy, (24)

¥, = Cppx + Dpyy 4y
where

4 1 _ 1 _
Ap=A-B V)W, By =yB V|, By,=B,

L 1 _ 1 _ 25
Cor=W, =V VW12 Doy =7V Vi » Do =V (25)
o 1 _ 1
Copa=Cy =Dy Viy Wy s Doy =vDy V)

Remark 13. Equality (21) suggests that (2) is a solution to the disturbance attenuation
problem formulated for (1) iff it is a solution of the same problem formulated for (24). O

Based on the above remark one can prove

Theorem 14. Assume that both (17) and (19) hold. If (2) is a solution to the diturbance
attenuation problem then the Kalman-Szego-Popov-Yakubovich system in the dual version (20)
written for the system (24), that is

. =
R, +C,Y,Cp=V,IV,

o'o%o i 26)

L,+A4,Y,C,= WOJ~V:)

0, +ApYpAp=0Y,=W,IW,
has a stabilizing solution (Y, ,V,, W) with Y, 2 0. Here O, L o R and I are defined
through (18) with data given by (24). 0

Let us be more explicit with the asumption concerning the exponentially stable assumption
made on A. To this end consider first the following result which may be easily proved.

Proposition 15. The controller (2) is a solution to the disturbance attenuation problem formu-
lated for (1) iff the modified controller

ox.=A x +[B, Oly,,
27)
u,=Cx +[D, -F)ly,
is a solution to the disturbance attenuation problem formulated for the modified system
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ox=(A+ByF))x+Bu +Bu,
»=(C ¥ D Fye+Dyyuy + D u,
(28)
C D
= 2 21
Y= | | x+ 0 u; o
Corollary 16. If the pair (A , B,) is stabilizable then the original disturbance attenuation prob-

lem reduces to one for which the system to be compensated is internal exponentially stable.
Indeed choose F, such that 4 + B, F, defines an exponentially stable evolution and con-

sider the pair (27), (28). O

Thus the question of preassuming the exponentially stable evolution defined by 4 reduces to
that of performing a prestabilizing feedback. Once this question is solved we must be sure
that for such a modified system condition (17) holds. This problem has been solved as
follows.

Consider first the following four assumptions
Al D, is uniformly monic, i.e. D}, D , » 0.

A2.D,, is uniformly epic, i.e. D,; D, » 0.

. . A * —1p*
A3. The pair (I1,, C, ,4 - B, DIZ C,) is detectable where DIZ =Dy, D,) Dy, and

A, T
le_l D12D12'

A4. The pair (4 — B, D}, C,, B, T, ) is stabilizable where D}, £ D3, (D, D5)™" and
A, _pt

1) = 1=Dy Dy

Then we have

Theorem 17. Assume that Al and A3 hold and let Q, £ CC,, L, # C} D, R), 2 D}, D,
If (2) stabilizes (1) then
1. The following Kalman-Szegi-Popov-Yakubovich system in the “positivity form”
Ry + B0 X,B,=V;V,
L,+A"0X,B,= vl/; "
0, + A 0 X, A-X, =W, W,
has a stabilizing solution, i.e. there exists a triplet X,,V,, W,) for which (29) is fulfilled,

(29)

172—1 is well defined and bounded, and A + B, I::2 defines, for I::2 4 —I72—1 ﬁ/z, an exponentially
stable evolution. Moreover X, = (.
2. Condition (17) holds for (28) if I::2 is the one above. 0

By combining Theorems 10, 11, 14 with Theorem 17 we obtain the main result concerning
necessary conditions for solving the disturbance. attenuation problem. This result is stated in
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Theorem 18. Let assumptions Al, A2, A3 and A4 be all valid. If (2) is a solution to the
disturbance attenuation problem formulated for (1) then for each Kalman-Szego-Popov-
Yakubovich system (10), (20), (26) and (29) there exists a stabilizing solution. If the stabilizing
solutions are denoted by (X, V , W), (Y,V, W), (YO R VO R WO) and (X2, V2, W2), respective-

ly,thenXZO,YZO,YOZOandXZZO. O

The converse result stated in Theorem 18 is given in
Theorem 19. If for each Kalman-Szegi-Popov-Yakubovich system (10) and (26) there exists a

stabilizing solution then a solution to the disturbance attenuation problem can be effectively
constructed. O

Let us insist a little more on the procedure for constructing the disturbance attenuation
problem solution. We shall do it in order to emphasize the fact that no additional con-
straints on the coefficients of system (1) must be imposed.

Such constraints are usually encountered in the literature as “normalized conditions”.

For solving the disturbance attenuation problem we shall apply the following

Algorithm

Step 1. Assume that
al) D, and D3 are both well defined and bounded.

bl)4 - B, D2_11 C, defines an exponentially stable evolution.

cl)4 - B, Di'zl C, defines an exponentially stable evolution.
Under such conditions the disturbance attenuation problem is termed as the disturbance
estimation problem.

A solution to the disturbance estimation problem is given by
= 4 — -1~ _ -1 -1 -1
A.=A-B,D, C,-B,D,,C,+B,D,,D, D, C,

2712
_ -1 -1

B = (Bl_ BzD12D11>D21
_ _p-1 _ -1

C.= Dy (Cl Dy, Dy, Cz) (30)

_ _n-1 -1
Dc_ D12D11D21

For (30) the “exact” attenuation is attained i.e. Ty = 0. Formulae (30) are easily obtained
11

by simple algebraic manipulations.

Step 2. Assume that

a2) D5 is well defined and bounded.

b2)A - B, D;ll C, defines an exponentially stable evolution.

¢2) the Kalman-Szeg6-Popov-Yakubovich system (10) has a stabilizing solution.

Under a2), b2) and ¢2) the DAP is termed as the disturbance feedforward problem.

By taking into account Remark 13 a solution to disturbance feedforward problem is ob-
tained as follows.

Consider instead of (1) (satisfying a2), b2) and ¢2)) the modified system (24). It can be easily
checked that for this system conditions al), b1) and c1) hold. Hence formulae (30) can be
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applied and a solution to the disturbance feedforward problem is obtained by reducing it to
a disturbance estimation problem.

Step 3. Assume that
a3) Dl_zl is well defined and bounded.

b3)A4 - B, D1_2l C, defines an exponentially stable evolution.

c3) the Kalman-Szeg6-Popov-Yakubovich system (20) has a stabilizing solution.

In this case the disturbance attenuation problem is termed as the output estimation prob-
lem.

Since the output estimation problem is the dual of the disturbance feedforward problem a
solution to the output estimation problem is obtained by dualizing the solution of the
disturbance feedforward problem obtained at Step 3.

Step 4. Assume that

a4) the Kalman-Szego-Popov-Yakubovich system (10) has a stabilizing solution.

b4) the Kalman-Szegd-Popov-Yakubovich system (26) has a stabilizing solution.

Similarly to Step 2 consider the system (24). Now it can be easily checked whether (24)
satisfies a3), b3) and c3). Hence the disturbance attenuation problem has been reduced to
an output estimation problem. By applying the formulae obtained at Step 3, where the
Kalman-Szeg6-Popov-Yakubovich system (20) is now replaced by the Kalman-Szego-
Popov-Yakubovich system (26), the solution to the original disturbance attenuation prob-
lem is obtained. Note that in the context of the present algorithm the disturbance
attenuation problem is usually termed as output feedback problem. g
Now several final considerations will be pointed out. In order to obtain the above stated
results an extension of what we called the Popov-Yakubovich theory has had to be
developed. Such an extension, thought in a general operator framework, generalizes in fact
the positivity theory created by Popov and Yakubovich. As it is known, the positivity theory
deals with conditions formulated in frequency-domain terms and it served to construct a
Riccati theory in a more general setting than that based on the “local positivity” assumption,
i.e. the positivity of the quadratic form which appears in the integral cost criterion. To be
more specific the discrete version of the positivity theory is intimately related to the Kal-

man-Szeg6-Popov-Yakubovich system (29). Indeed if I72 and P~V2 are eliminated in (29) the
classical discrete-time Riccati equation is obtained, i.e.
L * * -1 * *
X,=A"0X,A~ (Ly+ A0 X,B)(R,, + B0 X,B) (L} + Bj0X,A) + Q,
where R, +B,0X,B,»0.

For solving the disturbance attenuation problem we had to study the “nondefinite sign”
case, that is the Kalman-Szeg6-Popov-Yakubovich system in “J form” explicitly written in
(10) and (11). As it is shown in Chapter 3, such a system generalizes the Popov-Yakubovich
theory to the game-theoretic situations which also incorporate the disturbance attenuation
problem.

We have to emphasize the fact, which in a way appears unexpected at a first glance, that
results concerning global existence of the stabilizing solutions to Kalman-Szego-Popov-
Yakubovich systems, either in “positivity” or in “J form”, can be derived from the input-out-
put properties of a linear system as it is, or after connecting a stabilizing controller. a
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Let us make now a final remark. From the uniqueness of the global on Z stabilizing solu-
tions to Kalman-Szego-Popov-Yakubovich or discrete-time Riccati equation systems we
deduce that in the time-invariant case such solutions solve the algebraic versions of these
equations. Consequently the whole theory for the time-invariant case is completely
recovered.

When we investigated these topics we met many interesting “personages” as time-varying
nodes, Toeplitz and Hankel operators, Hankel singular values etc. We hope that the reader
will enjoy the beauty of the theory, even if the consequences for an engineering viewpoint
are not always transparent. We must also remark that by investigating the time-variant case
of linear systems many notions and ideas came into their proper setting and connections
with various problems from differential or difference equations theory became clear.
Similarly to those situations in which frequency-domain aspects stimulated the people work-
ing in Operator Theory or Linear Algebra, the state-space approach we used for studying
different topics on discrete-time systems has a special appeal for people working in the field
of differential or difference equations. It is our opinion that all the approaches have their
specific charm and all of them prove in fact the impact of Control Theory on different
branches of Mathematics.



Chapter 1

Evolutions and related basic notions

In this chapter several basic notions for discrete-time linear systems with time-varying coef-
ficients are introduced. The main attention focuses on exponentially stable and exponentially

dichotomic evolutions, which allow to associate an input-state operator between lz-spaces.
Thus an operator based characterization of the forced evolutions is given and this fact will
be a constant point of view during this work. Influence of recent results of Ball, Gohberg
and Kaashoek [4] is acknowledged.

1. Evolution operators

Let X be a (separable) Hilbert space. Let 4 = (4, ) €2
and uniformly bounded with respect to k operators, i.e. sup { N4, 1l | keZ } < o, We call

A, : X~ X, be a sequence of linear

A abounded operator sequence.
Definition 1. Let 4 be a bounded operator sequence and let

I =]

A . .

gg BA_ Ay 4y P>
Ay Ay i< )
be defined for all pairs (i ,j)) €EZ X Z. Ifi 2 j (i <j) call S;‘; the causal (anticausal) evolution
operator associated to A4. O

Sometimes S; is also called the state-transition operator associated to 4. In order to

simplify the notation we shall often suppress the upper index 4 and we shall write simply
Si].. This will be done whenever such notation will not provide any confusions.

If

Yer1 = A% @
is any causal free evolution, defined on the state-space X by 4, we have

xk=Sl':.xin2i 3)
as immediately can be proved by induction.
Similarly if
5= Ak (4)
is an anticausal free evolution we can write
X, = S:.x‘ V k=i
(N

Directly from Definition 1 we have

©)

Proposition 2 [fk,i,j€EZ withk =i > jork =i < jwe have the composition rule
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5= 5a% ©)
0

If we consider now the linear space of X-valued sequencesx = (x,), < »
hez V= Oer
define on this space the shift operator o' as (o' x), ==x,  for arbitrary k EZ. If i = 1 the

(ax +ﬂy)k=axk+ﬂyk for arbitrary x = (x, a,f €ER) we can

upper index is suppressed and we shall write simply o. In this case o is called the unit shift
operator. It can be easily remarked that (2) and (4) can be rewritten as

ox=Ax @)
and

x=Aox 8)
respectively. During our exposition we shall use intensively the notations (7) and (8) due to
their simplicity.
Notice now that in (7) and (8) A acts as a multiplication operator. It can also receive a
diagonal matrix representation as shown below

%o Ay *_1
x| = A0 X
* 4 %
)
and - B
[ . 7 [
X2 A_ *_1
x_4| = A, X,
o 4 *
(10)
L J L A
respectively. ) }
From (7), (8) we can also write
(@I-A)x=0 (11)

and
(I-Ad)x=0 (12)
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Thus any X-valued sequence x = (x, is a causal (anticausal) evolution iff it belongs to

hez
Ker (01 — A) (Ker (I — 4 0)). I A™" is well defined and bounded, that is (4; 1), _, is well

defined and uniformly bounded with respect to k € Z, any causal evolution (7) defines also
an anticausal evolution by

x=A"lox (13)
Similarly, (8) provides the causal evolution
ox=A"1x (14)

In this case we have also

(shH1 =s;,*(—1 V (k,i))EZ XZ

ki (15)
as easily can be checked.
In the time-invariant case that is Ak =AY k€Z,A:X - X we have
_ k=i . _ 4k
S;:,.—A , k=i and S;:i—A , 12k (16)

If we define now the map
sh=4° k=0
(= 4

0 k<0

it has a unilateral z-transform Z {Ak} =z(z1 - A) " Hor |z] > p(A) where p(A) stands for
the spectral radius of A.

k

Definition 3. Let T be a bounded operator sequence with T~! well defined and also
bounded i.e. sup{ll T+l Tk_1 | | k€EZ } < ®. We call T a Liapunov transformation.
O

Definition 4. Two bounded operator sequences 4 and A are called causally (anticausally)
Liapunov similar if there exists a Liapunov transformation T such that

A=cTAT ' A=TA(@GD™Y 17)
O

It can be immediately remarked that the evolutions ox =4 x and ox = A x, with A defined
by (17), are related through the variable changing x = T'x. The same is true forx = 4 gx and

¥=Aox with A defined by the parenthesized formula (17).
From (17) one can easily prove that

_ 1 : 4 _ 1 .

ST T ke =TT ks 9

Let x = (x,), c be any X-valued sequence and let M = M), czo M, : XY, be any

bounded operator sequence (Y any Hilbert space). Introduce the operator Q acting on x and
M as

(Qx)k=x_k , (QM)k=M_k VYkeZ

It can be immediately checked that

(19)

Qox=0"'Qx (20)
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Definition 5. Let M = (M,), _,, M, :X~>Y, be any bounded operator sequence. The
bounded operator sequence M defined as
M =oMm 1)
where M* = (M;)k c z s called the dual of M. O
Clearly
M{ =M,V kez 22)

Hence (M*)* = M and M NY* = N* M.
Proposition 6. If M is any bounded operator sequence and M is its dual then

M=oMQ (23)
and

MY =M (24)
with M and M” seen as multiplication operators acting on the linear space of X-valued sequen-
ces.
Proof. We have

OM Q. =QM(Q))) =(QM").

and (23) follows. For (24) we have (M,f); cz=M" ez =M_)), c ;= QM Q where
the above result has been used. g
Definition 7. Let A be any bounded operator sequence on X and A* its dual. Then the
evolutions 0x = A x and o.x = A" x are said to be dual. 0
Remark 8. According to (23) we have 0x =A* x = QA Qrxor Qox=0"1Qx =4"Qx
from where we get Qx =0(4" Qx) =0 A" 0(Qx). Thus the dual evolution of ox =Ax
reduces to the anticausal evolution Qx = 0 4* o(Qx). g
Proposition 9.

# .
Sgc = (S/ik+1,—i+1) VikeZ (25)

Proof. Using (22) we get fori > k

#
_ . #* # _ > * * _ *
S:Ilc AL m A A=A A ) = (Sik+1,—i+1)
Similarly for i < k. The case i = k is trivial. ad

2. Forced evolution (affine systems)

Let A = (4

sequence.
Definition 1. We shall say that A and the input sequence v define
a) a forced causal evolution if

be a bounded operator sequence on X and v = any X-valued

k)k €z (Vk)k €Z

gx=Ax+v (1)
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b) a forced anticausal evolution if
x=Aox+v )
O

Proposition 2 If x = (x,), _  satisfies (1) then

k—1
X, = Shx, +,-§is’f”'“vf Vik>i o
Proof. We proceed by induction. Fork =i + 1 we getx, | = A;x; + v, Assuming that (3) is

true for any k > i one obtains
-1

o Ax v = SAx SA,j+1vj)+Vk S"1 x+2SA v; +v

X X (Ski%; k+1,j+1 X

from where (3) follows. ]

Proposition 2’ If x = (x,), _ , satisfies (2) then
i-1
Szxt+.§ksg.vj Vk<i @

Proof. As for Proposition 2 we can proceed by induction, although we prefer to use formula
(3) combined with duality arguments since, similarly to Remark 1.8, one obtains from
ox=A%x +vthatox = QA" Qx +vor Qox) =4 Qx + Qv. Hence
0~} (Qx) = A® Qx + Qv from where it results that Qx = (0.4%)o(Qx) + Q™1 v).
Hence

o(Qx) = 0 1A Qx + Q1) (5)
is equivalent to (2). By applying formulae (3) and (1 25) to (5) one obtains forr > s

—1 s # r—
(Qx), =sC 4) (Qx)s+2s(" 4’ (0Qx),
l=s

rl+1
or
LN r—1
= Slg‘o ) * s + ZSSIU+IA ) Voi-1% Si’s:i -r+1% + Esi’ \—r+1 V-1
. -1 r=1
= Sis,—rx—s +I§ssil—1,—rv—l—1 = Sir,—sx—s +I§A_S{ir,—1—1 V_i-1

Letk=-ri=—-s,-l-1=}. Then the last above equality provides
=51y + SAV—SAx+ESAv k<i

ki~i

and the formula (4) is obtained. a

Formulae (3) and (4) are usually termed as representation formulae or as variation of
constants formulae.

In the time-invariant case (3) and (4) become

k—i k—j—1 .
=A x+}§A ],Vk>l (6)
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i-1
_ 4k i—k .
x, =4 xi+j§kA Vi s Vk<i )
The formulae (3) and (4) lead to a remarkable operator-based interpretation as Ball, Goh-
berg and Kaashoek have showed.
Denote by I (X) the linear space of X-valued sequences of finite negative support that is if
x=0)cz € 1+(X) then there exists an integer i+(x) €Z depending on x for which x; = 0
wheni < i*(x). Letv € I"(X), set i = i (v) and assume that (1) rests up to iy, i.e.x; = 0 for
i < iy Then (3) yields
k-1 k-1 o
% =2 Slf,j+1vj =2 Slf,j+1 Vi =2 K, k—i Yk—i—1
=,0 j=—o i=0 (8)
Introduce now on the linear space of X-valued sequences the operator (o_lA)i, iz1as
-1 8. A —1,,. —1 -1
@ 'aywlo i ue .. o7 aw)...))
| emmm= immmmm- - ©®

where w = is any X-valued sequence. Since ((U_IA)w)ké(a-l(Aw))k=A

k-1"k-1
it follows by induction that (9) has the

W ez
. . -1 -1
implies (0~ (A(0" " (AwW)), =A,_1 A2 Wi—p
explicit meaning
=1 4\ - =
(@ Aw)y =A_ Ay AW = Sf,k_,- Wi—i (10)
By comparing (8) with (10), the first can be rewritten in terms of (9) as
-]
x, =S (0 Ao 1)
k%o * (11)

or equivalently as
x=X @ 1a)yoly
i=0 (12)
where clearly x € I*(X) and the infinite series in (11) degenerates to a finite sum as (8)
shows. Hence the right-hand side of (12) is well defined. Since (1) is equivalent to
(cl-A)x=vand(cl-A)x € 1+(X) ifx € l+(X) the above considerations lead to

Proposition 3. The operator oI — A is invertible on l+(X) and its inverse has the explicit
formula

@l-A) " '=-0"'a) o =3 (07 a)o!

i=0 (13)
where the right-hand side of (13) is well defined. 0
Similarly we may introduce !~ (X) the linear space of X-valued sequences of finite positive
support that is x € I” (X) if there exists an integer i~ (x) €Z for which x=0 ifi2i (x).In
this case if we consider v € [*(X) and assume that (2) rests after iy = i (v)ie. x; = 0 for
iz i0 then formula (4) leads to
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i —1
0
x, =Yy S5ty =3 st
k I—k kj ] ]—k ki 1 ,= kk+i Vie+i (14)
Similar arguments as above give the anticausal version of formula (12), i.e.
= (A 0) v
i=0 (15)

where

A wl A ... Alow)...)
S (16)
and as above we may write ((4 o)w), = (A(ow)), =4, Werr (A0) w)k P R L
etc., obtaining finally the formula

(Mﬂmk ke ﬂﬁ4ﬂﬁ=$HWHi (17)
Thus we obtained

Proposition 3’. The operator I — A g is invertible on I” (X) and its inverse has the explicit
formula

I-A0) ' =3 o)
i=0 (18)
where the right-hand side of (18) is well defined. u]

3. Exponentially stable and dichotomic evolutions

Definition 1. Let A = (4,), e z be any sequence of bounded operators on X. We shall say
that
a) A defines an exponentially stable evolution if there exist p = 1 and 0 < g < 1 such that
k—i .
Il Sgll <pg*'V k=i (1)

b) A defines an anticausal exponentially stable evolution if there existp = 1and 0 < g < 1
such that

ISgll<pq' ™V k=i

@
¢) A defines an antistable evolution if Ak_1 exists and is bounded ¥ k €Z and A defines
an anticausal exponentially stable evolution. g

Remark 2. Any sequence A of bounded operators on X which defines an exponentially
stable (anticausal exponentially stable) evolution is uniformly bounded with respect to k as
directly follows from (1) ((2)) for k —i=1 (i — k= 1). Hence any sequence 4 which
defines an exponentially stable (anticausal exponentially stable) evolution is automatically a

bounded operator sequence. In the case of antistable, A~ is bounded. a
Remark 3. If 4, = 0 for all k then 4 defines simultaneously an exponentially stable and an
anticausal exponentially stable evolution. d
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Remark 4. Let X = R" and A, =4 V k €Z. Then exponentially stable and anticausal

exponentially stable are both equivalent to the fact that the spectrum of A is located inside
the unit disk while antistable means that the spectrum of A4 is located outside the unit disk.
a

Example 5. Let X = R" and let M, N € R™™". Assume that p (N) < 1 and define, for any
k, € N, the following two matrix sequences: A=A epA= @k)k ez 384, =M for
|k| < kg A, =N for |k| > kjand A4, =N V k€Z. Clearly A defines an exponentially

stable evolution. We shall show that 4 defines also an exponentially stable evolution. A
simple evaluation shows that

NE i<k < -k,
a) fori < —ky: St = { MK NTRTI! ,—ky <k =k,

NRTIM N ks kg

isk<k
. ’ 0

b)for -k . <i<k :S. .
) 0 0" "k | Nk—ky=1 k=i Jk > k0
. _ - .
c)fork0<z.Sz.—Nk , k=i

Letv=||M| if [M|| >1andv=1if ||M| <1 Since || N7 || <spd™ V k=i
p =1,0 < g < 1andp(N) = g we have the following evaluations

pq"'i i<k < -k
a) fori < —k,: || S/f; | < (vk+k0/qk+k0+1)Pq"—,' kysksk,

ot o d T kzk,
A Y A isks<k
o/ o gk k> k,
c)fork, <i:|| Sfl 1 =qu_i , k=i

2ko/qy‘o“) and the conclusion follows. O

b) for —k, <i<ky: || SEIl < 0

k—i .
Hence || S:l | <pyq " ifpy = p(

Example 6. Consider the evolution associated to the Crank-Nicholson approximation
scheme i.e.

_ A T aky—1 T Ak
xk+1—Akxk,Ak—(1+§A) (1——2-A)
where 7 > 0, A:X~>X, A=A"and <A¥x x> 2;t||x||2 V x €X for all k and some

u > 0. Since (I + %A")(I - %Ak) =3- % AT + %A") it follows that
A= ~Z A0+ % A1 LetxeXandy 2 (1 + > A7, Then

2 T kv (2 2 k k.12
A x|I"= 1T =5 AW 7=y lI"—v<y,ATy>+ || ATy |
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On the other hand
2= 11 (145 A9y 17 =y 117 +r<y, Afy> + || Aty |7
Hence
| Ax 17 = 11x 117 = =27 <y, A'y> < —2zu||y ||
If || A¥ | <A V kthen ||x || =(1 +%/1)||y || and we deduce that

2 2tu 2_ 2 2
|4, x]"= |1 - x|l“=q"1 x|l

TA
1+ 5
where q2 =1- ﬁ% Hence for 7 small enough we get 0 < q2 < 1 and clearly
1+
2
|4, 1l <qfor0<gq<1Since || S 1l = |4 Il ... 14,1l =¢*7 for k > i it follows
that 4 = (A,), ¢ z defines an exponentially stable evolution. O

Theorem 7. Liapunov similarity preserves exponential stability, anticausal exponential stability
and antistability.

Proof. Follows directly from (1.18). a

Definition 8. A sequence 4 = (A4 of bounded operators A i - X > X defines an ex-

k)k €z
ponentially dichotomic evolution if there exist a Liapunov transformation T=(T,

Wk ez and
a splitting X = X~ @ X" such that

A

A =T AT '=
k™ “k+17k Tk +

A 3)

where A = (4,), c 7,4, : X~ = X" defines an exponentially stable evolution on X~ and

AT = (A:)k ez A: :X* > X" defines an antistable evolution on X™. 0

If one of the subspaces X~ or X* is trivial, we are confronted with exponentially stable or
antistable only.

Remark 9. Write

X, X, 0
~ k k
X, = T X, = = +
k k"k + +
xk 0 xk (4)

in accordance with the direct decomposition of X = X~ @ X™. Therefore the evolution

;k+1 = /Tk ;k is also splitinx, | =A4, x, and x:ﬂ = Ak+ x: as (3) and (4) show. Since 4~

defines an exponentially stable evolution, there existp = 1 and 0 < g < 1 such that

lx, 1l =1l Sz x| Squ—'” x| 'V k=i Similarly since A™ defines an antistable
+,-1 .

evolution we may write || x: Il = SI((‘? ) x,.+ Il Spq'_k I x; || V k < iwhere, by ade-

quate slight modifications, the same p and ¢ can be used. Further we have
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I x,.+ || zp! qi_kll x,': || Vi= k. Thus we conclude that the whole evolution is the super-

position of two partial evolutions (see also (4)). The first is an exponentially decreasing
evolution while the second is an exponentially increasing one. Both evolutions are con-
sidered for increasing time.

Concerning the above remarks, more details are now in order. Let
A—1[I" 0
=T T,
k k [ 0 o] % (5)

where I” is the identity in X~ Clearly IC =TI and || T || <4* ¥ k €Z where

p=sup{|| T || + | ;" || | k €Z}. Here Il = (11

)k e z s a family of uniformly bounded

projections. The same is true for I — I1 = (I — IT.), ¢ 7 as directly follows from
0 0
I-m =11 T,
k™ Tk |i0 1+] k (6)

where I'* is the identity in X ™. The above considerations lead to

Definition 10. A family IT = (IL,), _, of projections for which there exists a Liapunov

transformation T such that (5) holds is called a family of uniform projections. a
Remark 11. In accordance with Definition 10 it follows that if 4 defines an exponentially
dichotomic evolution we can associate to it a family IT of uniform projections.

An intrinsic description of the family IT of uniform projections associated to a sequence 4
which defines an exponentially dichotomic evolution is given in

Proposition 12. Assume that A defines an exponentially dichotomic evolution and let T1 be the
associated family of uniform projections. Then the following are true

1.4 =11, . A4 @)
2. Thereexistp = 1and 0 < q < 1 such that
“S;‘:.”H,xllqu'”n,x” ]207162 (8)
1
s (I-M)x||z—]| (I-M)x]| j=0,i€zZ
J‘HJ( l) pq’ < l) 9)
forallxeX

- A A
3. Let X, 11, Xand X = (I - TL)X. Then

£yt
) A XS CX: VkEZ

+ _ oyt
bAX =X Vkez

©)x €X, ifflim Spixr=0i20

-

d)x € X;' iff there exists a sequence (x;); .  such that S: K—i%i X and limx; = 0.

>
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Proof.
1. Using (3) and (5), (7) follows by pre- and postmultiplying both sides of

A O o] _[r o]|4 O
0 A47|l0o of [0 of|0 A4

by Tk_:I and T, respectively.

2. Follows directly from Definition 8 combined with (3), (5) and Remark 9.
3. a) Follows directly from (7).

b) Letx € X: +1 - Hence (see (4) and (6))

-1 1|y — = |
x=(I- x= + | = +_+

( k+1> k+1(x, k+1 Akxk

_ 17 110 0 1-0 _ _
=LA T T [0 ﬁ} T Te 5| =4 (I-1)z

Thus A (I-11) is onto and the conclusion follows.
c) The “only if” part is a consequence of (8). For the “if” part let x be such that
S:ﬂ.,kx - (0 as i > ». Hence (8) implies || S:+i,k(1 —IL)x || = 0asi- « from where one
obtains with (9) that (I — I, )x = 0 or I, x = x and the conclusion follows.
d) For the “if” part assume the existence of a sequence with the property in the statement.
Then using (7) one obtains

T, S = (10)

i | 2

Stpeiti = Sepmi Ty, and || Tpx || <pg’ || TL,_, 111, [| spg|l x,

SATL Y k=i
Hence IT, x = IT,
(Il I || s,uz) from where I1, x = 0 as follows by taking i - «. Thus (I - Myx=x€ X;: .
For the “only if” part letx € X;' and set x, = x. Then using 3.b) it follows that there exists
x, €X, _, such that A% =x, Hence by induction it can be immediately proved the
existence of a sequence @i »p% EX :—i , such that Sf J—i%i =% Moreover we have also

S;:k_i(l = II, _)x; = x because of x, € X;:_i . Hence by (9)

1 1
=]l =1l s,;‘,k._,.(l— m,_)x I 2 (=T | ikl
from where || x, || <pg'||x || andx, > 0 asi > o. 0

Remark 13. Proposition 12 is directly inspired by Ben-Artzi and Gohberg (see [7]).
Moreover, in the finite-dimensional case, one can prove that if there exists a family IT of
uniform projections for which (7), (8) and (9) all hold then 4 defines an exponentially
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dichotomic evolution. Notice that in [7] the above conclusion serves as starting definition for

the notion of exponential dichotomy and related topics. (]
Remark 14. In the finite-dimensional time-invariant case exponential dichotomy reduces to
0 4
where A and A" have their spectrum located inside and outside the unit disk, respectively.
O
Example 15. Lety,  , =y, +, be the Fibonacci sequence. By setting x,lc =Y % = Yier1
one obtains xllc 1= xz and xz "= x; + xi. Hence we have x, | = Ax, forx, = (x1 ,xz) and
_10 1
+
Since the eigenvalues of 4 are 1, , = Q—_-ZQ ie. |4,] <1, |4;] > 1 it follows that A
defines an exponentially dichotomic evolution. It is also interesting to note that [0, 1] is a
golden section of [0, 4,]. 0

Exponentially dichotomic evolutions combined with invertibility of A © VY k€Z, lead to

Proposition 16. Assume that A = (A,), . 5 defines an exponentially dichotomic evolution and

let T1 = (I1,), be the associated family of uniform projections. If A, Lis well defined and
bounded for all k then
-1 .
||s]f}n,.s;,‘( l<vgd ™ Vjizk=i a1
and
-1 .
||s;(1—ni)s; l<vd7 ¥V k=zj=zi (12)

for adequatev = 1and0 < q < 1.
-1

-1

Proof. From (10) one obtains Hk=SZ.H'.S;.Z ,k=zi HenceS]f;(Hk=S]':Hng( ,J =k and

(11) follows from (8). From (9) we have || (7 — IL)x || Squ_'||S;:i(I—Hi)x||,k2i. Let
-1 -1 . .

x=8, v Then || (I =TSG y Il <pqd I 1=TL 11|y |l <pu>d|lyl. Since y is

-1 .
arbitrary we get || (/ — H,.)S; || v qk_’ v= p/tz). Further from

-1 -1 -1
(I-T)= S]'.‘;(I - n,.)sg , j=zi we get (I- nj)s]f}c = Sﬁ(l -k, k=)
-1 -1 .
Hencel|| S;(I - III.)S;.‘,‘( l=1d- Hj)Sj'.‘;( || <vq* and (12) is proved. O
Proposition 17. Let A = (A,), ¢ , with
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where A, = (A ,k)k epd, =4 ,k)k  z define exponentially stable evolutions and
Ay =4, ,k)k g z s bounded. Then A defines an exponentially stable evolution.
Proof. The evolution defined by A is explicitly written as
le =A1x1 +A3x2 (13)
0x, = Ay, (14)
By applying to (13) the variation of constants formula one obtains
k-1
k= St 14 +2 S:,+1A3,;x2,; SZ xt 2S;:,+1A3,, S,:i X
Hence

. k-1 . -
lxy lspd Tl 1+ Zpd 7 upd x|l
j=i

for | St Il sp g I S2 1l spd ™ p21,0<g < Lk=ziand || 4y [l sp V jEZ
Further

k—i N 2 k—i—1
lxy i =pd eIl + G -dpng " llxy,l

. 2 . .y
- . -~ k-
<pd g 11+ EER = DA Ty

Lety- where 0 < g < g < 1. Hence 0 <y < 1 and j¥ - 0 as j > . Thus one can
write

2 2
=i ~ ki I =
ey 1 5o llxy, 1+ EEva* 11 = 0+ E g il

But we have also || x, x I =p < || x; II, & = i. By combining this last equality with the
previous one we get

2
e 11 ey |+l Il < @o+ EE0g T I 1 ke zi
and the conclusion follows. ]
Proposition 17°. For A as in Proposition 1 7ifA1 and A, define anticausal exponentially stable
(antistable) evolutions, then A defines an anticausal exponentially stable (antistable) evolution.
O
Corollary 18. For A as in Proposition 17 ifA1 and A, define exponentially dichotomic evolu-
tions, then A defines an exponentially dichotomic evolution. O
Let us end this section with a result concerning duality

Proposition 19. If 4 defines an exponentially stable (anticausal exponentially stable) evolution,
then A* defines also an exponentially stable (anticausal exponentially stable) evolution.
Proof. Use Proposition 1.9. o
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Corollary 20. If A defines an exponentially antistable (exponentially dichotomic) evolution,
then A* defines also an exponentially antistable (exponentially dichotomic) evolution. O

Proposition 21. If A defines an exponentially stable evolution, then A* defines an anticausal
exponentially stable evolution. O

4, lz-forced evolutions

This section deals with forced evolutions caused by Iz-forcing terms under the exponential
dichotomy assumption.
We have

Theorem 1. Assume that A defines an exponentially stable evolution. Then the following hold

1. Foreachv € 12(Z » X') the sequence x = (x,), o , with
k—lsA
x,=>8 . v. YVKEZ

k i=—eok"+1 i (1)
is well defined and belogs to IZ(Z , X).
2. We have

ogx=Ax+v 2

for anyv € IXZ , X ) and x defined by (I).
3. x = (x,), ¢ z defined by (1) is the unique solution in 12(Z ,X)to (2)

4. There exists p such that || x ||, s u|| v ||, for each v € 12(Z , X) and x the corresponding

I-solution to (2).
Proof.
1. We have

) k=1 , [t 2 -1 i 2
e =113 S IP< (2 IS vl < |3 pd =yl

—o00 =00 j=—0c0

j=—o00 [=—0o0 j=—o0

S s eimnp i SV g kmict’ S amin 2
—i— —i- JEy J
= |2 pg“ My Ivll] = 224712 47l
I

e S Tk

where || S% || =pd~ k=i 1<p0<g<1
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Further
zuxkn J’—— 5 >: ¢ v 112 = JL znvn 3 o
qk_—oo,——oo ql——oo k=i+1
P 2
= vl
(1- gy 3)
Hencexelz(Z , X).

2. By direct checking.
3. It suffices to show that the zero valued sequence is the unique solution in 12(Z ,X)to
ox=Ax. Letx 612(Z X) such that 0x = A x. Hence x, = S:’.x’. V k =iand

2 2k~ 2 2
12, 11? <p>q®* D | x, |2 Further 2 1z 117 <p 5 1% 1% Since x€AZ ,X)
- q
x;~> 0 asi~> xoo. Hence by taking i > — in the last 1nequality one obtains || x ||, = 0 and
the conclusion follows.
2

4. Follows directly from (3) for 4 = ——Lz

(1-9) O

Remark 2. Formula (1) shows that the 2-bounded operator v = x can be represented by the
lower-left triangular matrix form

~1,-2 9-11
So-2 So-1 Sop v .
S1-2 Si-1 S S v—z _ x_l
-1 0
VO xl

4

L B L B

Here the upper index A of the evolution operator $* has been suppressed for the sake of
simplicity. a

Theorem 3. Assume that A defines an anticausal exponentially stable evolution. Then the
following hold

1. Foreachv € I (Z , X)) the sequence x = (x )k cz With
x=3Sv, ¥V k€Z
kT A0k ©)

is well defined and belongs to 12(Z , X).
2. We have
x=Adogx+v (6)
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foranyv € 12(Z , X') and x defined by (5).

3x=(x, defined by (5) is the unique solution in 12(Z , X) to (6).

)k €Z

4. There exists p such that || x ||, <u||v ||, for each v € 12(Z , X)) and x corresponding
1-solution to (6).

Proof. The proof runs similarly to that given for Theorem 1. Another way consists in reduc-
ing, by duality, the anticausal case to the causal one (see the proof of Proposition 2.2). O

Theorems 1 and 3 have an operator-based counterpart as Ball, Gohberg and Kaashoek [4]
have showed. Thus, similarly to Proposition 2.3, we have

Proposition 4. Assume that A = (A defines an exponentially stable evolution. Then

k)k ez
1. =1 A is well defined and bounded on I*(Z , X).

2. Formula (2.13) holds on lZ(Z , X).
Proof. 1. Follows directly from Remark 3.2.

For 2. it suffices to evaluate the spectral radius of o 4.
p(0~14) = limsup || (01 4) || V% From (2.10) we get

i>o
I ((a_lA)iw)k Il =l Slf,k—i we_ |l <pq || w,_; Il for some w EIZ(Z , X). Hence

I (a_lA)iw ||§ szq:’jH w ||§ and consequently || (G_IA)i ||l/i Spl/iq—>q < 1las

i o, o
The correspondent of Proposition 2.3’ is

Proposition 4'. Assume that A = (A,), c 5 defines an anticausal exponentially stable evolu-
tion. Then

1. 0 A is well defined and bounded on IZ(Z , X).
2. Formula (2.18) holds on IXZ , X). O

Let us now assume that 4 in (2) defines an exponentially dichotomic evolution and assume also

thatv € lZ(Z , X). Let T be the Liapunov trasformation considered in Definition 3.8. Then
using (2) one obtains

0Tox=0(Tx)=0 TAT {(Tx)+0Tv
or

ox=Ax+v @)

~ x| = o _ |47
x=Tx=|:x+:|,v=UTv=l:+},A=[ A_,_} ®)
Hence (7) yields with (8)

ox"=A"x +v xt =) loxt - (A+)—lv+

where
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By applying now Theorems 1 and 4 one obtains

ZS:,HI i
P S(A+)_1 @~ ZS(A 1oy )—1 +
X = Ekkz‘ i) Vi T kiv1 Vi = 2 (S

withx* € 4(Z , X*). Thus
| S Sewr O ([ o] N L [0 0] Vi
+| = + +
| im0 S| L0 O] ko (S;A+1,k)
or, by using again (8) one obtains eventually

g T
2SA,:+1H1+1 i _?k[sfﬂ,k(l_ rIi+1)] ¢

= )
where
ta.-1]0 0
|:S;'4+1,k(1 - Hi+1)] =T 0 SA Ti+1
(a1 (10)
is a pseudoinverse for S‘L 1 ,k(I - 1I1, +1)- In this way we have established

Theorem 5. Assume that A defines an exponentially dichotomic evolution. Then the following
hold

1. For each v € 12(Z Xy x= ) ez with X, defined by (9), is the unique solution in
HZ ,X)to(2).

2. There exists p such that || x ||, <ul||v ||, for all veE l2(Z , X)) and x the corresponding
solution to (2) in 12(Z , X). O

Corollary 6. Assume that A = (A,), c , defines an exponentially dichotomic evolution and
A k— 1 4l exist and are bounded. Then (9) becomes

k-1
xk7=§wslf,i+l i+1Yi ESAH(I L v (11)

or equivalently
k

%= ’_ SA IL, S]f,{z+1 i .E‘SVI:‘_I(I_H)S;H Vi

For the last formula we used the commutation relation (3.10) which provides

-1
Mt =54 1. ands? T, =TL§% . aswell

jojit+1 ji+1 i+l Ji+1Ti+1 Jjd+1 : ]

(12)
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Remark 7. Similar results may be obtained if vEPZ ,X),p=10rvEI®Z, X). We
confine ourselves to p = 2 in order to use the nice Hilbert space structure. o

Remark 8. Ben-Artzi and Gohberg [8] obtained also the converse result stated in Theorem

5 that is if equation (2) has for each v € 12(Z , X) a unique solution x in 12(Z , X) then 4
defines an exponentially dichotomic evolution. In fact, [8] contains not only the converse of
Theorem 5 but also this theorem itself. Such a remarkable result is also expressed in terms
of the equivalence between exponential dichotomy and the invertibility of the operator with
the bidiagonal representatrion

ie. (8,1 - a,.jHAj);;:_; (see [7], [9)).

In this book we do not dwell on this subject and on other significant results related to it. O

3. Liapunov equations

About a century ago A.M. Liapunov introduced the so called direct method for the study of
motion stability. At present this method is usually known as the method of Liapunov func-
tions. Liapunov himself applied his method to the case of linear systems with constant
coefficients using a special matrix equation which later was termed as the Liapunov equa-
tion. The Liapunov equation method has been successfully applied also for investigating
stability of time-variant linear systems. Main results in this area are pointed out below.

LetA = (Ak)k ez 9= (Qk)k < z be two sequences of linear bounded operators on X.

Definition 1. The equations
X=A'0XA+Q (1

oY=AYA +Q ()
are termed as the Liapunov equations associated to the causal evolutions defined by 4, i.e.
ox=Ax.
The equations

0X=A"XA+Q (3)

Y=AoYA*"+Q )
are called the Liapunov equations associated to the anticausal evolutions defined by 4, i.e.
x=Aox. O
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The following result is of major importance.
Theorem 2. Assume that Q is bounded and that A defines an exponentially stable evolution.

Then X = (X)), c z and Y = (Y}), ¢z with
X =3 ()0 s
k ,,Z:k( lk) Ql ik (5)
and
k-1 .
Y, T}_ f:,iﬂ Qi(Slf,Hl) ©)

are well defined and bounded, and are the unique bounded solutions on Z to (1) and (2),
respectively.

Proof. Let us prove the first part of the theorem, i.e. that regarding (5). We have
. 2 2w k) _ P
Il X, Ml szkus,.in 10,1l <p’uZq >=l 7 v kez
l= ,= f—

and the uniform boundedness with respect to k is proved. To further check (1) is an easy
exercise for the reader. For uniqueness it suffices to show that X = 0 is the unique bounded

onZ solution to X = 4™ 9 X 4. To this end notice first that X, = (S]’.?)'Xj S;}, j = i. Hence if
X is any bounded solution to the above homogenous equation we get

X1l <p*q*0™ | X <prd 0y | X\l v V j. By taking j > & we deduce

Il X; || = 0 for arbitrary i €Z and the conclusion follows.

For the second part of the theorem use Proposition 1.9. Hence following the first part of this
theorem it follows that W = (A#)'o wA* + (Q')# has a unique bounded solution W. Fur-
ther we have

W=QAQoWQA +QQ>QW=Ac (QW)A* +Q=>0Y=AYA" +Qfor
Y207 ' QW= Qo W. From here simple computations involving (5) provides (6). We can
also prove (6) by direct checking,

Similarly by using Proposition 3.21 we have

Theorem 3. Assume that Q is bounded and that A defines an anticausal exponentially stable

evolution. Then X = (X, ezadY = (Y, ez with

k=1
X, =2 (S;'q+1,k)‘Q'SA

ii+lk

i=—oo @)
and

Vo= 2 S0 ®
are well defined and bounded, and are the unique bounded on Z solution to (3) and (4),
respectively. O

For the case of exponential dichotomy we shall state the following result of Ben-Artzi and
Gohberg [8]. Notice that this result is essentially the trivial part of the main result of [8].
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Theorem 4. Assume that A = (A,),  , defines an exponentially dichotomic evolution and let

T be the associated Liapunov transformation. Then there exists a bounded sequence
X=(X), ez =X ande > 0such that

X-A"0XA=zel 9)

~_
X= [‘k X*] (10)
and X" =1, X" =1".

Proof. Let A be defined by (3.3). According to Theorems 3 and 4 let X~ and X" be the
unique and bounded solutions to X~ = (A7)0 X" A~ + I and

oXxt = [(A+)_l]"X+ (A+)_1 -1t respectively. Rewrite the last equation as

Xt =@M oxt 4t + (4*) 4. Thus one obtains with (10)

and X = T* X T with

s o osT | 0

X-A'0XA= 11
Since (A+)_1 defines an anticausal exponentially stable evolution it is bounded. Hence
there_exists ¥ > 0 for which (A"')'A+ >vI*. Take v subunitary. Hence (11) leads to
X — A" 0 XA zvI From here one obtains

T*XT-T*A* (0 T*) " 'oT"0XoT(o T) " AT=T"XT-T*A*(c T*) " 'o(T*XT)(c T) " 'AT

2vT " T2zvul=¢l , e=vu>0
and the conclusion follows. g

Now we shall relate Liapunov equations more strongly with exponential stability and an-
ticausal exponential stability.

Theorem 5. If (1) is fulfilled for X=X" and Q with 0 <X <sul, vI<Q, v >0, then A
defines an exponentially stable evolution.

Proof. Note first that (1) shows that Q0 = Q* andX 20 =zvI] Thusu > 0. Let
(i,&) €Z x X be arbitrary chosen and let qpk <x,, X x> forx, = SAE k = i. Then

—p, = <1, X > <, Xx>=<t, (A X, A -X)N>

Pr+1 a1 Y+ 1%k+1

v
__<xk’Qkxk = 1’” ” <x XX>=‘PV’k,P=/7
with 4 augmented enough such that 0 < p < 1. Hence Prr1 = 1- p):pk from where
¢, =< (1= p)7'p, Therefore v||x, [I><pu(1—p) || 11> or || SEEN =p,d I £l
forp0 (I‘/v)léandq (1 —p)vzwherepo >0and 0 < g < 1. Thus || SA [l =P, = V

k > i and the theorem is proved.
By duality it follows immediately

Theorem 5°. If (2) is fulfilled for Y=Y" and Q with 0<Y <ul vI<Q, v > 0, then A
defines an exponentially stable evolution. O
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Similarly to Theorems S and 5’ we have via Proposition 3.21

Theorem 6. If (3) is fulfilled for X=X" and Q with 0<X<ul,vI<Q v >0, then A
defines an anticausal exponentially stable evolution. 0O

Theorem 6. If (4) is fulfilled for Y=Y and Q with 0sY<ul,vI<Q v >0, then A
defines an anticausal exponentially stable evolution. a

Example 7. Consider again the Crank-Nicholson approximation scheme given in Example

3.6. Let A and Q be defined by 4, 2 (I + %Ak)'l(l - %Ak) and
Q, =2t + %Ak)_lAk(I + %A")_l. Then one can easily check that (1) is fulfilled for

X =1 Hence if A = a I,a > 0 V k, the result given in Example 3.6 is recovered. |

6. Uniform controllability. Stabilizability. Uniform obser-
vability. Detectability

Let X, U and Y be Hilbert spaces and let 4 = (4,), c ,, B= Biez €= Crez b

bounded operator sequences where A ' X>XB :U~>XandC .- X =Y. Subsequently we

shall introduce the notions of uniform controllability and uniform observability each of them
being associated to the pairs (4, B) and (C, A), respectively.
Definition 1. The pair (4, B) is called causally uniformly controllable if there exists i = 1
and v > 0 such that

k-1

(4,B)4 BB S, 2vIV k€Z

k,kt E Jki+17 7 Pk (1)

The pair (4, B) is called anticausally umformly controllable if there exists i = 1 and v > 0
such that
k+i—1
k,k'H(A B) EkSij].Bj Sk].ZVI VkeEZ

Here Sk' stands for S2.
j kj

@

O

The connection between causally uniformly controllable and anticausally uniformly control-
lable can be expressed by duality as follows in

Proposition 2. If the pair ((A')# , (B*)#) is causally uniformly controllable then the pair
(A, B) is anticausally uniformly controllable.

Proof. Using (1) combined with (1.25) one obtains

k *
g S B @y —2 <S", veimies ) B ST e
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Letr= —j , I =~k + 1. Then the last sum becomes

~l I+i-1
E SIr Br B: S;' = 2 Slr Br B: Sl'r
—r==—l+1-i r=|
and the conclusion follows. O
Causal uniform controllability endows the causal forced evolution x X =A%, By,

termed also as a causal controlled evolution, with nice properties as will be shown below.

Proposition 3. The pair (A, B) is causally uniformly controllable iff there exists i = 1 such that
for all pairs (k ,£) €Z X X there exist u(i, || & ||) and a sequence w,_,, ... ,u, _, such that

I u; || =@, || &||) and the evolutionx] A X; +B Ui s Xy =0, reachesE atj = k.
Proof. “Only if”. Let uj— k,l+1( P)'E, j=k—i,..,k—1 where PS(A,B) is ab-
breviated by P,’. Then || || <Bdv| &|| for ||B]. | <Band ||4]| <a V j Let

uG, €D 4 B dv || € || and the upper bound for || u; || is obtained. Further by applying
the variation of constants formula one obtains

k-1
* % c\—1e _
_% ; k,;+1 ]Zk ‘Sk,,+1B, Bj Sk,j+1 (Pki) §=¢

Let us prove now the “if” part. This will be done by contradiction. If the pair (4, B) is not

causally uniformly controllable, then for eachi = 1 and ¥ > 0 there exist k €EZ and £ € X
k-1

with || € || = 1 such that <&, P ;£> <vor expllcnly] §_<§, vi+15; B S, jr1€><v
k—1 5
i.e:=%_i|| B].' S/:,,' +1& |7 <v. Take the sequence u,_,,...,u, , with the property in the
k-1
statement. Then we have & = 2 k,1+1 S u; || su(@,1).Since || € || = 1 it results
j=
k 1 k—1
1= <§, E =3 <B E,u>
mtei Bjw> jmki k1+1 “j
1
k-1 2 (k-1 “
<2 IIB i S I1P (2 Il 12| =v"iuG,1)
. kj
j=k- j=k—i
But such an inequality is a contradiction because of the arbitrariness in choosing v. a

Similarly we have

Proposition 3'. The pair (A, B) is anticausally uniformly controllable iff there exists | = 1 such
that for all pairs (k ,&) €Z X X there exist u(i, || € ||) and a sequence Uy ooy Uy SUCh

that || u; [| =u(, || & |l) and the anticausal evolution x. —A]xj_H +B].u]. » X4is1 =0

reaches § atj=k 0
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Notice that the reachability properties pointed out in the above theorems claim uniformly
bounded control energy.

Causal uniform controllability combined with exponential stability lead to significant conse-
quences as these are emphasized below.

Proposition 4. Let (4, B) be any pair with A defining an exponentially stable evolution. Then
1YW P((— ,k—1],U) = X expressed as

1_2_ ki+1 l l (3)
is well defined and uniformly bounded with respect to k € Z.
2. If (A, B) is causally uniformly controllable, then ‘Pf( is onto.

3. Let P€ = (P), o z be defined by P_ 4 Wi(W,)". Then F* is bounded and it is the unique
positive semidefinite solution to the Liapunov equation

GP°=AP°4* + BB @
If (A, B) is causally uniformly controllable then P° » 0.

Proof. 1. and 2. follow directly from Theorem 4.1 and Proposition 3, respectively. For 3. one
can easily prove that

«WC)*&),.= Stk s isk—1 5)

Using (5) it follows that PC B. B S .. . and the conclusion follows by combinin
J k i+1 % B Okt g

Theorem 5.2 with Definitxon 1 =
Definition 5. ‘I‘Z is called the (causal) controllability operator at k and P° is termed as the
(causal) controllability Gramian. o
Notice that in the absence of exponentially stable assumption on A, ‘P; is well defined for
sequences of finite length. Sometimes, in order to simplify the notation, the upper index ¢
of ‘Pi and P° will be suppressed and we shall write simply W, and P, respectively.

Similarly to Proposition 4 we have

Proposition 4°. Let (A, B) be any pair with A defining an anticausal exponentially stable
evolution. Then

LW *((k, ®],U) - X expressed as

ki i 6)
is well defined and uniformly bounded with respect tokE€Z.

u=ES B.u.
i=

2. If (4, B) is anticausally uniformly controllable, then ‘PZ is onto.

3 Let PP = (P Wk  z be defined by ‘I’a(‘Pa) Then P* is bounded and it is the unique
positive semidefinite solution to the Lzapunov equation
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P=A0P° A"+ BB @)
If (A, B) is anticausally uniformly controllable, then P* » 0. |
Definition 5. ‘P‘; is called the anticausal controllability operator at k and P* is termed as the
anticausal controllability gramian. |
Definition 6. Let cx = 4 x + Bu be any controlled evolution and let F = (Fk)k ez be any

arbitrary bounded sequence, F, : X > U. A dependence u = Fx + u is called a (causal)

state-space control law. If u = 0, u = Fx is usually called a state-space feedback law.

Let x=Aadx+ Bu be any controlled anticausal evolution. Then u = Fox + u and
u = Fax are termed as anticausal state-space control law and anticausal state-space feed-
back law, respectively. F is termed as feedback gain. ]

If a control law u = Fx + u is applied to ox = Ax + Bu it becomes ax=(4+BF)+Bu.

Similarly for the anticausal case one obtainsx = (4 + BF)ox + Bu foru = Fox + u.
Two major questions are now in order. The first concerns preserving causally uniformly
controllable (anticausally uniformly controllable) under causal (anticausal) control law, i.e.
if the pair (4 + B F, B) still remains causally uniformly controllable (anticausally uniformly
controllable). The second question consists in the possibility of causally (anticausally)
stabilizing a controlled system, i.e. the existence of a feedback gain F such that 4 + BF
defines an exponentially stable (anticausal exponentially stable) evolution.

Concerning the first question we have

Proposition 7. If (A, B) is any causally uniformly controllable pair, then for every feedback
gain F, (A + BF, B) is also a causally uniformly controllable pair.

Proof. According to Proposition 3 there exists i = 1 such that for all pairs (k,§) €Z x X
there exist u(i, || £ ||) and a sequence u, _;, ... ,u, _, such that || U [| su@, |l &) and

xk=§ for xj+1=ijj+Bjuj » X
-1

i )
xj=r_§_isj,+18’urwe deduce that|| x; | <ipa'uG,|I€]]).Here || B,||<Band || 4 || <a.

= 0. Let ﬂjéuj—ijj , k—i<j<k-1 Since

Hence || || < [l Il + [ F |1l x 1| < (1 + piBauG, [1€1)=4G, 1 €11),
| F |l < p.Letx;,, = (4 + B;Fx,+ Bu, withx,_,=0.Then

Y1 ™% = U+ BiFpe + By = Foxp = Apx = By = (4 + B )y = )
Since X i~ X%
Proposition 3 the conclusion follows. ]

The anticausal version of Proposition 7 can be easily stated and it is omitted here.

_; =0 it follows that Ej -5 = 0 and consequently ;k = £. Using again
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Concerning the second question mentioned above we shall introduce first

Definition 8. A pair (4, B) is said to be causally (anticausally) stabilizable if there exists a
feedback gain F for which A + B F defines an exponentially stable (anticausal exponentially
stable) evolution.

We have

Proposition 9. Let (4, B) be a causally uniformly controllable pair and assume that A Vs
well defined and bounded. Then (A , B) is (causally) stabilizable.

Proof. Let us show first that there exists # > 1 such that (,uA)_1 defines an anticausal

-1 i-k
exponentially stable evolution. For write Sf:i‘A) = (’%) Ak_1 Ai__ll, k <i— 1. Hence

I i~k
(| S,(;“.‘A) || = (I%) where sup{l]Ak-1 Il | kEZ} <v. By choosing 4 > v the con-

clusion follows. Since (4 , B) is causally uniformly controllable (A—1 AT B) is anticausally
uniformly controllable. Indeed from
k-1

Pex-i4,B) = % SA B; B; {Cng )
j=k—i

kj+1

-5 ,{kilsz‘ WSt BB, S }(S“

=k k—ik k,}+1) kk—i

k-1 -1
=S:Jc—i[.2 S: ij+15 (S:“J“) ](St'k i

»“.i

k—ij

k-1
=Sf;<—.-[ ) UA]'IB(A'IB)(SA )}(s‘:k_,

n r+1,r

B r+i—lsA_1 -1 -1 'SA_I‘ SA
=Srip|2 S A4 BB S, )

= -1 ,-1
_S:i+t,r r,r+t(A A B)(SrAﬂ

for r 2 k — i. Thus the followmg formula holds

(ah,47'B)= s:‘,+, c AL B,

r r+i (8)
and the conclusion follows. Clearly ((x A) ,(mwA)” 1B) is also antlcausally uniformly con-
trollable. According to Proposition 4’ we have

P=@A) o PuAd®y '+ @A) BB (uan)? )
From (9) one obtains
AP =pu" 2o PP 4+ u2BB(A%)!
or

A-p BB AN P =u T o P Aty TP (10)
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Since P? » 0 it acts as a Liapunov transformation and consequently the right-hand side of
(10) defines an exponentially stable evolution (see Proposition 3.21). By defining

F=p"2B*(4")"(P*) it follows that A + B F defines an exponentially stable evolution and
the proof ends. 0O

Using Proposition 2 we have also the anticausal version of Proposition 9 stated as follows

Proposition 9. Let (4, B) be an anticausally uniformly controllable pair and assume that

A Vis well defined and bounded. Then (A , B) is anticausally stabilizable. O
Definition 10. Two pairs (4, B) and (Z , E) are said to be Liapunov similar if there exists a
Liapunov transformation such that A =g T A4 T_l, B=0TB. a

Proposition 11. Liapunov similarity preserves causal (anticausal) uniform controllability.

Proof. Follows directly from (1.18), (1) and (2). a
Based on Proposition 11 we have

Proposition 12. Assume that (A , B) is causally uniformly controllable and that A defines an
exponentially dichotomic evolution. Then (A , B) is causally stabilizable.

Proof. Since A defines an exponentially dichotomic evolution there exists a Liapunov trans-
formation T such that

A=oTAT =4,
A

where A~ defines an exponentially stable evolution and 4™ defines an antistable evolution
(see Definition 3.8). Let

~ B_

B=0oTB=| 4
Since (A4, B) is causally uniformly controllable the pair (4 , B) defined above is also causally
uniformly controllable as Proposition 11 asserts. Hence (A+ ,B+) is causally uniformly

controllable as follows from <Pfci(g ,E);E,; > 2> x ||2, x=Tx=(x",x") by taking
x~ = 0. According to Proposition 9 there exists F * such that A* + B* F* defines an ex-
ponentially stable evolution. Let Fé [0 F']. Then A + BF defines an exponentially
stable evolution and the conclusion follows via Theorem 3.7. g

All the above treatment has been concerned with the pair (4, B). Let us now look at the
notion of uniform observability which is related to the (C, 4) pair. To this end we have

Definition 13. The pair (C,A4) is called causally uniformly observable (anticausally
uniformly observable) if the pair (A# , C#) is causally uniformly controllable (anticausally
uniformly controllable). o

Thus uniform observability is a dual notion to uniform controllability. Therefore all the
above results can be dualized. We shall do so explicitly only with those results which seem to
be relevant.

Proposition 14. Let (C, A) be any pair with A defining an exponentially stable evolution. Then
1.6 :X~ Pk, ), Y) expressed as
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is well defined and uniformly bounded with respect to k €Z.
2. If (C, A) is causally uniformly observable, then @; is one to one.

3. Let OF = (Q}), < z be defined by O} = (©7)"6;. Then F is well defined and bounded and
it is the unique positive semidefinite solution to the Liapunov equation
Of=A'cQ0‘4+C'C (12)
If (C, A) is causally uniformly observable, then OF » 0. O
Definition 15. @; is called the (causal) observability operator at k and Q° is termed as the
(causal) observability Gramian. ]

Sometimes the upper index c at © and O° will be omitted.

Proposition 14°. Let (C,A) be any pair with A defining an anticausal exponentially stable
evolution. Then

L (-)Z:X—>IZ((— k= 1],Y) expressed as

(Gax) +1,kaiSk—l,xEX

(13)
is well defined and uniformly bounded with respect tok €Z.

2. If (C, A) is anticausally uniformly controllable then 92 is one to one.
3. Let 0° = (QF), < z be defined by OF = (©;)"©}. Then Q" is well defined and bounded and

it is the unique positive semidefinite solution to the Liapunov equation

c@*=4"Q°A+C'C (14)
If (C, A) is anticausally uniformly controllable then Q° » 0.

As above S‘.}. stands for S:

O
Definition 15°. ©; is called the anticausal observability operator at k and Q“ is termed as the
anticausal observability Gramian. a

Definition 16. Let F be any feedback gain for the pair (4% , C*). Then K & F* is called an
injection gain for the pair (C, 4). a
Clearly if K is any injection gain it associates to the pair (C,4) the bounded sequence
A+KC.

Preservation of causal (anticausal) uniform observability under injection is obvious as fol-
lows by dualizing Proposition 7.

Let us introduce

Definition 17. A pair (C, A4) is said causally (anticausally) detectable if (A ,c* ) is causally
(anticausally) stabilizable.

By dualizing Proposition 9 one obtains
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Proposition 18. Let (C, A) be any causally uniformly observable (anticausally uniformly ob-

servable) pair with A1 well defined and bounded. Then (C,A) is causally (anticausally)
detectable. a

Example 19. Preservation of uniform controllability by sampling. Consider the continuous
time systemx = A(t) x + B(t) u where t = A(t), t = B(t) are continuous and bounded matrix
valued maps of dimensions n X n and n X m, respectively. Let S(t,7) be the evolution
operator associated to 4. In this situation uniform controllability means the existence of
7 > 0,v > 0 such that

fS(t,s)B(s)B‘(s) S*¢,s)dszvI VYV tER

t—-t
Take h > 0 called the sampling period and let i EN, i = 1, such that ik = 7. Then for
k > i we can write

f Stkh,s)B(s)B*(s) S*(kh,s)ds = v I

kh—ih
that is
oy G+
> S(kh,s)B(s)B*(s)S*(kh,s)ds =vI
j=k=i
As is well known the discrete system Xiq =ij]. + Bj u. obtained by sampling from the

(Gj+h
continuous one is characterized by A]. =S(G+1) h,jh), Bj = f S((j+1) h,0) B(s) ds.

From here we deduce that

k-1
Ay A;+1B B; A Al:—l
j=k—i
-1 (i+Dh G+Dh
=3 Skh,({+1)h) fS((,+1)h s) B(s) ds fB () S*((+1) h,0)da S*(kh, (j+1) k)
j=k—i jh jh
k , G+Da (i+Dh
= fsach 5) B(s) ds f B*(0) $*(k h , 0)do
1 jh jh
ey U+DA
=h3 f S(kh,s)B(s)B*(s) S*(k b, s)ds +
j=k=i jp
_p G+DA (+Dh

+ 2 f S(kh ,s) B(s) f (B'©)S"(kh,5) - B*(5) "k ,5)) do | ds

j=k—i jh
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kh

=h f S(kh ,s)B(s) B*(s) S*(k h ,s)ds + Eh)
(k—i)h
where by E, (h) has been denoted the second term in the preceding equality, but
Il E,;(h) || = M hw(h) where w is the modulus of continuity for B*(t) S*(k h , t). Hence by

taking kA small enough the causal uniform controllability of the discretized system is guaran-
teed. a

Example 20. Uniform controllability under delayed controls. Let us consider the system with
a one step delay, thatisx,  , =4, x, + B u,_,. Letv, , =u, and obtain the augmented

system
Fr+1 A Bl % 0
= T %
Ve+1 0 0% m

Thus we must investigate the uniform controllability of the pair

A B 0
_ k k _
Aa,k - 0 0 ’ Ba,k {Im}

Observe that (1) is, according to the variation of constant formula, the solution to Liapunov
equation Xj+1 =A.X.A +B ;, X,_;=0,j 2k —i. It can be immediately checked that

A J

the above Liapunov equation written for the above augmented pair is satisfied for

X, 0

|7
ayj

0 I,

Since P;'; =X, =2vI ,obviouslyX , =v] for v adequately modified in order to become
i k n ak n+m

subunitary if necessary. 0O

7. Further results concerning exponential stability

Using the concepts of stabilizability and detectability introduced in the previous section we
are now in the position to improve the results stated in Theorems 5.5, 5.5%, 5.6 and 5.6".

Theorem 1. Assume the pair (C, A) causally detectable. If the Liapunov equation
X=A'dXA+C'C 1

has a bounded on Z positive semidefinite solution X (0 < X < u I) then A defines an exponen-
tially stable evolution.

Proof. Choose (i,§) €Z X X arbitrary and let X1 = Akxk, x; = &, k = i. Then from (1) we
have
— * _ - - 2
X1 Xep1 %41 T Ko X > = <x X A4 - Xg> = -l Cx

Thus
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k-1
2
<xk’kak> - <E )XiE> = _12,” C']x] ”

from where
k-1 ) )
SICxlI2< <6, X,6> <ull ]|
=t
or
- 2 2
SICxIPsullE]
j=i

Let K be such that 4 + K C defines an exponentially stable evolution. Since

X 1= K C ) —K Cix, the variation of constants formula gives
+KC +KC
=5 5+2$H1Kc
Thus

+KC +KC 2
= 117211 557 | +2||zs,’:,+1 KCx |l

k-1 .
<20 @ NP +2|Z pdTTHIK NI Cix
J=i

k-1 k-1
<202 ¢ g 11720 3 47 S ¢TI e 1
Jj=i Jj=i
2p202 k=
<202 D €17+ Zq"" e

where || S C | <pd ™ L p 21, o<q< 1, ||K,.|| <cy
Further

22 © k=1
_B k—j—1 2
2”&” SIIEN7+ 2 > g Il
k=i j=i
) 2 22 ©
2 —j—-1
<2212+ 20 S e 12 3 4
l1-g¢ 9 j=i k=j+i

2 2

2

o[22 2T e g
1-¢° (-9

2.2
20 +2p Kl
2 2
1-¢° (1-9)

where (2) has been used and By =

@
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Hence

>:||s ENP=pll NP (S,;=S58)

k=i
or equivalently

IspP= Ekzk— I

But Pi =A; Pi +1Ai + I as can be checked easily and the exponential stability of the evolu-

tion defined by A follows from Theorem 5.5. d
Dualizing Theorem 1 one obtains

Theorem 1’. Assume the pair (A, B) is causally stabilizable. If the Liapunov equation

ocY=AYA'+BB" 3)
has a bounded on Z positive semidefinite solution Y then A defines an exponentially stable
evolution. O

Using Proposition 3.21 we have also
Theorem 2. Assume the pair (C , A) is anticausally detectable. If the Liapunov equation

cX=A"XA+C'C 4)
has a bounded on Z positive semidefinite solution X then A defines an anticausal exponentially
stable evolution. O

Theorem 1’. Assume the pair (A , B) anticausally stabilizable. If the Liapunov equation

Y=AoYA"+BB" )
has a bounded on Z positive semidefinite solution Y then A defines an anticausal exponentially
stable evolution. 0

Example 3. Let us consider again Example 5.7. Take C = (2 t)w(Ak)VZ(I +< Ak)_1 and

T k- ky—1
k=W(A )%. Then A, +K,C, = (I +~ A) . Hence if (I +~ Ak) ez
defines an exponentially stable evolution the same is true for A defined in Example 5.7 as
Theorem 1 asserts. o

Notes and References

General results concerning discrete-time systems may be found in [24]. The same topics
restricted to linear systems are treated in [44]. A rather recent book on stability of time-in-
variant discrete linear systems is that of La Salle, see [47]. For the concept of duality
(Definition 1.5) see [4] and [58]. The forced evolution caused by inputs of finite negative
(positive) support are inspired from [4] (see Propositions 2.3 and 2.3’). Concerning ex-
ponential dichotomy a very thorough investigation has been made by Ben-Artzi and Goh-
berg (see [7], [8] and [9]). For several connections with our treatment on these topics see
Remark 3.13. Results on exponential dichotomy in the discrete case may be also found in
[14], [53], [43] and [50]. Here we have to mention the stimulating and useful text on ex-
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ponential dichotomy, in the continuous case, belonging to Coppel, see [15]. For 1-forced
evolutions the results stated in Propositions 4.4 and 4.4’ are inspired from [4]. Remark 4.8
contains also a relevant result on this subject which is extensively developed in [7] and [9].
General results on the discrete version of the Liapunov equation may be found in [2]. Such
an equation is termed in [7] as the Stein equation. A pioneering work on stability of dis-
crete-time systems is that of Kalman and Bertram, see [41]. For the notions of uniform
controllability and observability see for instance [56]. Results on controllability and obser-
vability Gramians, in the continuous case, may be found in [19]. Propositions 6.4 and 6.14 in
the text are extensions of these results. Equivalent results on constructing a stabilizing
feedback (see Proposition 6.9) are available in [42] and [45]. Similar results to those stated
in section 1.7 on exponential stability may be found in [2].



Chapter 2

Nodes

In this chapter an operator-based approach of the input-output behaviour of discrete time-
variant linear systems is the focus of our attention. More exactly if any linear system has an
internal exponentially dichotomic free evolution, then we can always associate to it a linear
bounded operator between the 12(Z ) spaces of the input and output sequences. Such an
operator will be called a node. Nodes have remarkable system-theoretic properties which
play a central role in solving different tasks of system compensation. From a theoretical
viewpoint our study may be considered as a discrete time-variant analogue of the one
developed by Bart, Gohberg and Kaashoek (see [5]) for the continuous-time systems.

1. Linear systems. Input-output operators

Let us start with

Definition 1. Let X, U and Y be Hilbert spaces and let A = Aez B= (Bk)k ez
Cc=(C and D= (D

ez Jx ez De bounded operator sequences with A X~>X
B, :U~-X, Ck :X->Yand D, :U -~ Y. The quadruple (4, B, C, D) defines a linear system
in the causal version (or a causal system) if
Yepr =A%+ Buy
Y%=Cx. tDu, (1)
The quadruple (4, B, C, D) defines a linear system in the anticausal version (or an an-
ticausal system) if

=Ax . tBou,

Y= CXip T Dy )

In both above cases x,, , and ¥, are the state, the input and the output, respectively, and all

v
being considered at the time-moment k € Z. a
Usually we shall adopt for (1) and (2) the representation in terms of sequences that is

ox=Ax+Bu

y=Cx+Du 3)

and

x=Aox+Bu

y=Cox+Du )
respectively, where x = ez =W crV =0,  z» U is the unit shift operator, i.e.

(ox)k =X 1 ((o_1 x)k = k—l) and A, B, C and D act as multiplication operators.
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Let l+(U ) be the linear space of U-valued sequences u = (u,); . , of finite negative support
that is u € I* (U ) iff there exists i* () €Z such thatu, = 0fori < i* (u). Letu € I*(U), set

ji= i+(u) and assume that x; = 0 for i < ji.e. (1) rests up to the moment j. Then the output
of (1) is well defined by

k“ki+170 70 k“k
D, u, yk=j ®)
0 , k<j
where S, stands for the evolution operator SI’; and the variation of constants formula has

k-1
SCS, .. Bu+Du  k>j
=4 i=sj

Y

been used (see Proposition 1.2.2). Clearly y = (y,), ¢ z » for y, defined by (5), belongs to
I"(Y) and i*(y) = i*(u). For a given j EZ denote lj+(U ) the subspace of I* (U ) consisting
of all the sequences u for which i¥ (1) = j. Then (5) defines a linear operator

TCJ. : l].+ u)-1 +(Y) called the causal input-output operator at j. Following Proposition 1.2.3

we can now characterize the whole family (ch)j < z by a single operator well defined on the

whole /7 (U ). Indeed one can write from (3) x=(01—A)_lBu, y=D+Clol- A)"IB)u,
u€ l+(U ), x € l+(X ),y € l+(Y ) and obviously the desired operator is
T.=D+C(@l-A)"'B ©)

The explicit formula for (o1 — A)_1 (see (1.2.13)) gives the explicit action of
T :IY(U)~I"(Y)as

T.u=Du+3Co ' Afo™ (Bu)
i=0 (M
T_is called the causal input-output operator associated to (3).
A similar treatment may be developed for the anticausal version. For let [ (U ) the linear
space of U-valued sequences of finite positive support that is ¥ €~ (U ) iff there exists
i (u) €Z for whichu, = 0i=i"(u). Letu €17 (U), setj =i (u) and assume that (2) rests
afterj — 1, i.e.x; = 0 for i = j. Then the output of (2) is well defined by
0 L k>j—1
_ D u, ,k=j-1
yk - (8)

j—-1
. ECkSk+1,iBiui+Dkuk ,k<j—1
i=k+1

where formula (1.2.4) has been used. As above y = (y,), ¢ > ¥, defined by (8), belongs to
I”(Y) and i (y) =i (u). Let l}."(U ), J EZ, be the subspace of I”(U) consisting of all

sequences u for which i («) <. Then (8) defines a linear operator T .: l}._(U )= (Y)

called the anticausal input-output operator at j. Following now Proposition 1.2.3’ one can
easily check that (4) provides the anticausal version of (6?, ie.

T,=D+Co(l-A0) 'B ©)
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T,:I"(U)~1I"(Y), which acts explicitly (see (1.2.18)) as

T.u=Du+3Co4 oYBu
i=0 (10)
T is called the anticausal input-output operator associated to (4).

Remark 2. The operators T_and T, generalize the notion of transfer function introduced in
the time-invariant case. In this case (6) and (9) correspond to T (z) =D + C(z/ —A)_lB
and T (z) =D +z Cl-A4 z)_lB u, respectively. O
Definition 3. Two causal systems (4,B,C,D) and (4,B,C, D) are said to be (causal)

input-output equivalent if T = TC where T_and T_ are the causal input-output operators

associated to (4, B, C, D) and (;1 , B , c , 5), respectively. a
In a similar way the anticausal input-output equivalence is defined.
Definition 4. Two causal system (4,B,C,D) and (4, B, C, D) are said to be Liapunov

similar if there exists a Liapunov transformation T such that A=0TA T_l, B=0TB,
C = CT !, D= D.If the above systems are anticausal the Liapunov similarity is written as

A=TA@D \B=TB,C=C(N ,D=D. O
Proposition 5. Liapunov similarity preserves input-output equivalence.
Proof. Using (6) we get

T.=D+C(el-A)'B=D+CT '@TT '~oTAT ) 'oTB

=D+CT Tl -AT 1 'eTB=D+CeI-A)'B=T,
A similar equality holds for anticausal input-output operators. a
Some elementary system connections are now in order.
We shall treat only the causal case. The anticausal one is left to the reader as an exercise.
Let (A1 B, C, Dl) and (A2 , 32 Gy, Dz) be two (causal) systems with input-output
operators T, and T ,, respectively. Assume that U, =Y. Then T , ar o T is well
defined from l+(U ,) into l+(Y ,) and means that the input u, equals the output y.. Tpis

really a causal input-output operator which is associated to a resultant system obtained by
cascading the above two systems. Indeed

— - -1 -1
Tp=T,T, =D,+Cy0l-A4)B)D, +C(o1-4)""B)

_ -1 -1 -1 -1
=D,D,+D,C,(01-A,)"'B,+C,(01-A,)'B,D +C (0 1-4)'B,C (01-A)) "B,
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(@I-4)~" 0 B,

=D, D, +[D.C, C
2D+ DL Gl (01-4,)"'B,C01-4)7" (01-4,)7"| B,

— -1
=D+ Cilol —A) "B,

a-4, 0 17 B,

=D D, +[DC, C,]
271 271 2 —BZC UI—A2 Ble
where

S ¢ c,=[pC, C],D,=DD (11)
A = s = , = , = 11
R 1B,C, A4, R |B,D, R 271 72 R 271
IfU,=U,andY, =Y, wecan define the parallel connection of the two systems. Indeed

TcR = TC1 + T62 is well defined and

- _ 41 RS
Tp=T,+T,=D +C@I~-A)"'B +D,+Col-A)"'B,

-1
OI—A1 0 B1

=D +D,+[C. C
1 TG Gl 0 ol-A, B,

_ -1
—DR+CR(01—AR) BR
where

A 0 B,

Ap = 0 4 , Bp = B , Cp=I[C, C)J),Dg=D,+D, (12)
2 2

Consider now the causal system (4, B, C, D) and assume that D1 is well defined and

bounded. Then the second equation (3) yields u = -D7ICx+ D_ly. By substituting it in
the first equation (3) one obtains

ox=A-BD ICx+BD7Y (13)
~ u= -D7cx +D7Y
Denote by T the causal input-output operator o£ (13) which acts from [*(Y) into I*(U ).
Using (11) one can easily check that T.T,=T,T_ =1 This can be also checked by direct
computation in accordance with the rules of algebra of linear operators between I (U) and
I*(Y). The above considerations motivate to call (13) the inverse of system (3) and to
denote its causal input-output operator by Tc_l.

Definition 6. If (4,B,C,D) is a causal (anticausal) linear system then the causal (an-
ticausal) system (4%, B*,C*  D*) is called the dual of (4,B,C,D) and is denoted
A,B,C,D)*.

Proposition 7. Let (A, B, C,D) be a causal system and let TC be its causal input-output

operator. Denote by Tf the causal input-output operator of the dual system. Then

T =QT,Q (14)

where
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T'&D* +B ol -A"0)"'C’

15
Proof. According to (15), the right-hand side of (14) is defined by =
w=A"aw +C'Qy
u=QBow+QD'Qy
Premultiplying the first equation by & one obtains
Qw=(QA"NQow + (QC"Yy
u=(QB"Qow+ (QD"Yy
Letx=Qow= a_l(Q w). Hence ox = Q w and we obtain finally
ox=A*x+c* y
u=B*x+D* y
and the conclusion follows. a

From Definition 6 we have automatically that (Tf)# =T,

The anticausal version of Proposition 7 is left to the reader as an exercise.

2. Nodes. Basic operations

As we have seen before, any causal (anticausal) linear systems defines a linear operator
between the input and oug)ut spaces of sequences of finite negative (positive) support. This
fact has been put in evidence by the causal (anticausal) input-output operator T (Ta)

defined through (1.6) ((1.9)). In this section we shall restrict our attention to the following
three cases: a) A defines in (1.3) an exponentially stable evolution; b) A defines in (1.4) an
anticausal exponentially stable evolution; ¢) A4 defines in (1.3) an exponentially dichotomic
evolution. We shall see that in all these cases the corresponding linear system defines a

linear bounded operator between 12(Z ,U)and 12(Z , Y). Such an operator will be called a
node.

Case a)
Following Proposition 1.4.4 one can immediately see that (1.6) and (1.7) are well defined on
IZ(Z , U) and the causal input-output operator T becomes a linear bounded operator from
lz(Z , U)into 12(Z » Y ). The explicit action of T_is given by (see (1.4.1))
k-1
Ve = (Tu), =i=§_: mck S:,i+1 Biu;+ Dy uy (1)
Case b)

Based on the arguments given by Proposition 1.1.4’ the same conclusion as in the preceding
case holds, but with respect to the anticausal operator T, (see (1.9) and (1.10))

Ve = (T, =i=§+ ICk Slf+1,i Byu;+ D, u, ()
Case ¢) o
This case incorporates both previous cases. Let (4, B, C, D) be linked to (4,B,C,D)

through the Liapunov similarity defined by the Liapunov trasformation introduced in
Definition 1.3.8 that is
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Z=aTAr1=[’:) A‘L} ,§=aTB=lg+J ,C=CT'=[c ¢*,D=D

;=Tx= +
X

where A~ and A™ define exponentially stable and antistable evolutions, respectively. Then
we have
ox =A"x  +B u
= loxt - aH) BV Y
y=Cx +C*xt+Du=Cx +ctUN) loxt + D - Cct4) B )
According to the previous cases we can writex” = (01 — A_)‘IB_ u,
f=-u- (A+)_la)_1(A+)—1B+ u for any u EIZ(Z ,U). So the output y of the above
system can be expressed as
y=[C"©@I-A7) B~ =t lot-4*) o) i) BT +(D-Cct 4 B
Thus y = T° u where
TcéC”(ol—A_)_lB_—C+(A+)_10(1—(A+)_10)_1(A+)"IB++D—C+(A+)_IB+ (€)

is a linear bounded operator mapping 12(Z , U)into 12(Z , Y). Here the lower index ¢ is a
reminder that the exponentially dichotomic system is written in the causal version (1.3). An
explicit action of (3) may be rapidly obtained by using (1.4.9), that is

k-1 o
- _ _ t
T )= 2 C S:,m I, By Ekck[sfﬂ,k(] L, )V Bu+Du 4)

i=—oo

forallk €Z and u EIZ(Z ,U).
Now we are ready to introduce

Definition 1. We call the node the linear bounded operator between 12(Z ,U) and
12(Z , Y) originated in one of the three preceding cases a), b) or c). a
We shall write TC =[A4,B,C, D]c if the node is defined by the system (4, B, C, D) written
in the causal version (1.3) and T ,=1[4,B,C,D], if the node is defined by the system

(A, B, C, D) written in the anticausal version (1.4). The quadruple (4, B, C, D) is called
the system realization of the node (in the causal or the anticausal version). The realizations
corresponding to the cases a), b) and c) are termed as internal exponentially stable, internal
anticausal exponentially stable and internal exponentially dichotomic ones, respectively. If

T =[4,B,C, D]C and A~! defines an anticausal exponentially stable evolution we shall
say that T_ has an internal antistable realization. Usually, if no confusion appears, the
subscripts a and ¢ will be suppressed writing simply T, instead of T and T,

Example 2. 0x = u , y = x defines the causal node TC =[0,1,1, O]C with internal exponen-
tially stable realization. Since Y; = u;_, » | €EZ the matrix representation

T.=,

t,i+1)i jez should also be used. a
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Remark 3. A node is invariant under Liapunov transformations performed on its realization.

a
Now some basic operations with nodes are in order.
First we shall evaluate the adjoint. To this end note first three facts:
1)
o"=0"" 5)

because of <ox,y> = <x,0 y> V x,ygli(ZJ_X_).
2) The causal systems (4,B,C,D) and (4,B,C,D) are Liapunov similar iff the an-
ticausal systems (4*,B*,C*,D*) and (4", B*,C*, D*) are Liapunov similar (see Defini-
tion 1.4).
3) We have

[A)By _C!D]C= [A! _ByC)D]C and [A’B’ —C,D]a= [As —B)C)D]a (6)
Let[4,B,C,D]_ bean internal exponentially stable node. Then with (5) its adjoint is

[4,B,C,D].=T.=(D+ CelI-A) B =D"+B'@" I-4""c"

=D+ B [-A)TIC' =D+ B ol -A"0)"'C" = (4", C",B", D", (p)
Similarly if [4,B, C, D]a is an internal anticausal exponentially stable node, we have

[4,B,C,D],=4",C",B",D" @®)
Finally for an internal exponentially dichotomic node we may write according to (3), (6), (7)
and (8) that

[4.B,C.D];=[A7B™.CT. D +[(4") =" TB TN T -t TIBY
=[(7)"(CT)"(B7)"D"),
HAN T =A@HTCEH BT U T -BY U TEh,
where (4*)™* stands for ((A+)°1)'. The above expression leads to
xT =) 'ox” +(CT)Yy
ox” = (") - @hHTENYy
u=(B7)'ox” + BN+ D" - B UHT(CY
or equivalently
xT=A)'ox” +(C)Yy
F=uUhHext +(CcHYy
u=(B")'ox” + B U4 ox" +(CT)Y)
+ (D - BN)'UNTHCH) )y =B )ox™ + BN oxt + DYy

, [C— C+]t, |:B

Hence

*

* A”
A,B,C,D] =
[ I [[0

0

At B*

] ,D],=14",C",B",D"], (9)
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where the last equality is a consequence of the second fact mentioned above in conjunction
with Remark 3.
Thus (8) and (9) lead to

Proposition 4. For any causal (anticausal) node [A,B, C, D]C ( [A ,B,C, D] a) we have

[4,B,C,D|;=[4",C",B",D"), (4,B,C,D|;=[4",C",B",D"]) O
For a cascading operation and / or a parallel connection we have
Proposition 5. If two nodes [A1 , B1 , C1 ’D1]c and [A2 , Bz’ C2 , D2]c are cascaded then the
resultant node [Ap , By, Cp, DR]c is given by (1.11). If the parallel connection is performed
then (1.12) holds.
Proof. The resultant systems (1.11) and (1.12) are really nodes in accordance with Proposi-
tion 1.3.17’ and Corollary 1.3.18. ]
Proposition 6. Let [4,B,C , D], be a causal node. Assume that D™ is well defined and
bounded and that A - BD™C defines an exponentially dichotomic evolution. Then

[4.B,C,D ' =14-BD"'c,BD™', -D7'C, D7),

Proof. See (1.13). O
Definition 7. Let TC =[4,B,C ,D]C be a causal node. Then the dual node is defined as

Tf =[A4,B,C, D]f 4 [A# , c* , B* , D#]c. It is similarly so for the anticausal case. O
Clearly (Tf)# =T_. We have also
Proposition 8. a) If T_ is a causal node then Tf =QT. Q

b)If T and T, are two causal nodes then (T, Tcl)# = Tfl sz

Proof. a) See the proof of Proposition 1.7 and remark that (1.15) really defines the adjoint
T, of T, (see also (5)). For b) apply Definition 7. O

The anticausal version of Proposition 8 is left to the reader.

Remarkable connections between linear systems (which are not necessarily nodes) and
nodes are now emphasized through the so-called doubly coprime factorization. We shall treat
only the causal case.

Definition 9. Let (4, B, C, D) be a causal system and let T_ =D + C(o ] -A)—IB be its
causal input-output operator (T_: I*(U)->1*(Y)). Then
a) A pair (N, M) which consists of two internal exponentially stable nodes N and M, with M
invertible as input-output operator i.e. M1 :l+(U ) l+(U ) exists, is called a right-
coprime factorization of T if
_ -1
T.=NM (10)

and there exist two internal exponentially stable nodes G and H such that

GM+HN=1I (11)
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b) A pair (N M) which consists of two internal exponentlally stable nodes N and M with

M invertible as input-output operator, i.e. (M) A Y)- l+(Y ) exists, is called a left-
coprime factorization of TC if

T.=M"'N
c - - (12)
and there exist two internal exponentially stable nodes G and H such that
MG+NH=1I (13)

Definition 10. We say that a causal linear system (4, B, C, D) with the causal input-output
operator T_has a doubly coprime factorization if there exist eight internal exponentially

stable nodes N, M, XI, M, G, H, 5, H with M~ " and M~ well defined on l+(U ) and l+(Y ),
“H Gll-n G
M Ny &

respectively, such that
I 0
[0 ,} (14)
either equality (10) or (12) holds. o o
Remark 11. It can be easily checked that the pair (N, M) and (N, M), for N, M, N, M in the
statement of Definition 10, are right- and left-coprime factorization of T, respectively.
We have

Theorem 12. Let (4, B, C, D) be a causal linear system and let TC be its causal input-output

operator. If (A, B) and (C , A) are causally stabilizable and detectable, respectively, then the
system has a doubly coprime factorization.

Proof. Let F and K be such that both 4 8 4+BFandA K 8 4+ KC define exponentially
stable evolutions. Then we have

ox=Ax+Bu=(A+BF)x+Bu

u=u-Fx
Hence
x=(0I-Ap) 'Bu
and
u=(I+Fol-A) 'Bu
or
u=(I+Fol-4)"'B)

where the inverse exists according to (1.13) and it is taken on l+(U ). Thus

x=(01-A)"'BU +Fol-4,)7'B)™"

and consequently

y=Cx+Du=(Clol-A) "B +Fol-A)"'B)™" + D
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= (C(eI-Ap)™'B+D(I + FoI-Ap) 'B)(I + FoI-Ap) 'B)
=((C+DF)0I~A) "B+ D)l + Fol - A.) 'Bu (15)
Let

N=[4+BF,B,C+DF,D] (16)
M=[A+BF,B,F,]]C (17)

which are both internal exponentially stable nodes. Then

_ -1

T =NM (18)

as follows from (15). Apply now the same scheme to the dual system (4 ,B,C,D)# =
(A# , c* ,B#,D#) and obtain

=m1v
T =M'N (19)
where -
M=[A+KC,K,C,1]C (21)

Write now the so called “full-state observer” for the causal system (4, B, C, D) that is
ox=Ax+Bu+K(Cx—-y+Du)
u=Fx

and look for the transition y = u. Hence

x=(01-A) '(B+KDu-(0]-A4) 'Ky
and
Ik

y

u=Fol-A) YB+KDu-Fol-A

K) K)_

Thus
u=-(-FoI-A4) ' B+KD) 'FoI-A4
and define the nodes

o Ky 22)

G=[A+KC,B+KD,-F,I_ 23)
H=[A+KC,K,F,O]C (24)
which characterize (22) asu = -G 'H y. By duality we have also
G=[A+BF,—K,C+DF,I]C (25)
H=[A+BF,K,F,0] 26)

Let Cp.=C+ DFand B, = B + KD. Then (16), (17), (23) and (24) provide
GM+HN=(-Fol —AK)"IBK+ D (FoI —AF)"IB +1)

+FoI-A) 'K(CHol-A,) B+ D) =1 @)
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as immediately can be checked. Similarly

MG+NH=I (28)

~-HG+GH=0 (29)
and _ _

~MN+NM=0 (30)

as directly follows from (18) and (19). Thus (27), (28), (29) and (30) show that (14) is true
and the proof ends. a

Corollary 13. If in the statement of Theorem 12 the causal system (4 , B, C , D) is substituted
by the causal node [A,B, C, D]C , then M1 and M~ are also nodes.

Proof. See Proposition 6. a

3. Hankel and Toeplitz operators. The structured stability
radius

Let s €Z. Then for any Hilbert space H we may write /%(Z ,H) = [}((-=w s — 1],H)
912([s, ), H) where by 12((—00 ,5 — 1], H) we have denoted all sequences belonging to
12(Z , H) for which their support is located in (—% ,s — 1] and by 12([3 , @), H) all sequen-
ces of 12(Z , H) for which their support is located in [s, ©). Denote by Ps— and by P:' the
orthogonal projections of 12(Z , H) onto 12((— w,s~1],H)and lz([s, «), H), respectively.

Definition 1. Let T be a node. The operators T57 4 P TP and T#T £ P" TP are

called the causal and anticausal Toeplitz operators associated to T at s, respectively. a
Definition 2. Let T be a node. The operators Hﬁ’Té P: TP and H?’Té P- TP:r are
called the causal and anticausal Hankel operators associated to T at s, respectively. a

Usually if no confusion appears the upper index T will be omitted writing simply TsC , Ts” ,
H¢  H®
s’ s

Proposition 3. Let T be a node with internal exponentially stable (intermal anticausal exponen-
tially stable) realization. Then Tﬁ = TP;' (T‘; = TPS_) and H? =0 (H:~ =0) Vs€EZ

Proof. Follows directly from (2.1) ((2.2)). a
Remark 4. If T has an internal antistable realization then the parenthesised text of Proposi-
tion 3 is also true (see (2.4)). a

Proposition 5. Let T be a node. Then
(TSC,T)* - Tsa,T , (Tsa,T)* = T;:,T , (Hﬁ,T)* — H:,T , (H:,T)* - H;:,T
Proof. Follows from Definitions 1 and 2. O
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Proposition 6. Let T be a node with internal exponentially stable realization and let G be any
node such that G T is well defined. Then

T ¢,GT _ Tc,G Tc,T and Ha,GT = Ha,G TL’,T
s § s s s §
Proof. Following Proposition 3 we may write 'I’SC’GT=PS+GTPS+ =P:GPS+TPS+=T:’GTSC’T.
a,GT _ p— + _ p—- + + _ ya,G pe,T
We have alsoH>™" =P GTP =P GP TP’ =H " T " . O
As Proposition 3 asserts, any node with internal exponentially stable realization has null

anticausal Hankel operator. Under stronger assumption the converse is also true as is
pointed out in

Theorem 7. Let T=[A,B,C, D]c be a node with internal exponentially dichotomic realiza-
tion. Assume that A~ is well defined and bounded and the pairs (A, B) and (C,A) are
causally uniformly controllable and causally uniformly observable, respectively. If H?’G =0V
s €Z then A defines an exponentially stable evolution.

Proof. In accordance with (1.4.12) we have

-1
(Tu)k ,_2_:_5 ‘SA SS:HI i ZC SA (I_H)S:,HlBtu:
Lets €Z. Then H; = 0 implies
o -1
0=i§scks",fs (I—H)S:‘HBlu, , k=<s—1 1

for all u Elz(Z ,U). Since (4, B) is causally uniformly controllable it follows that

(A—1 ,A_lB) is anticausally uniformly controllable (see (1.6.8)). Hence there exist r > 0
and v > 0 such that
s+r-1 _4

-1 -1 -1 ~1 ptod Lk
Pond™ AT By = 3 S5 AT BT BY(S; )
s+r— -1 . -1,
S,l+lBl Bi( s,i+1) zv] 2)

-1
< —_ = -
,ez Sg+l)x,s_15s+r landu,. 0 other

Let x € X and define u = (u ).
wise. For such u, (1) yields
s+r—1

0=3c, st - n)s" s" - )P (A7, a7 By
i=s i+1 S+r

l S,l+1) x=
Since x is arbitrary and Ps’; 4+, i invertible as (2) implies, it follows that
-1
C, St (I-T)=0 , k<s-1 3)

Since (C, A) is causally uniformly observable it follows that (CA™! ,A_l) is anticausally
uniformly observable Hence there exist r > 0 and v > 0 such that
s—1

-1 -1 -1
SA ‘cACAst = 3 stce st ozvr
k=s

k+1,r kk+1s ks Tk Tk ks 4)
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-1
Postmultiplying (3) by (SZy )"C}, and then summing from k =5 = r to k = s — 1, (4) yields
I-1I =0,ie. II = I for all s and this proves that A defines an exponentially stable evolu-
tion. |

Following Hinrichsen and Pritchard let us introduce
Definition 8. Let T= [4, B, C, 0]  be a node with internal exponentially stable realization.

Call ry(4;B,0)2
inf {r | || H|| < r&A+BHC does not define an exponentially stable evolution} the struc-
tured stability radius of A with respect to the pair (B, C). a

Remark 9. If in the previous definition B = C = Ithend + BHC = A + H and A is directly
perturbed by H. In this case r(A4;I,]) is called the unstructured stability radius of A.

Otherwise H acts on 4 through the “structure” of B and C. ]
The structured stability radius is intimately related to the norm of the causal Toeplitz
operator Tg associated to the node T at s. This is made explicitly in

Theorem 10. Let T=[4,B,C, 0], be a node with intemal exponentially stable realization.
Then
1

A;B,0)z ————
o O T Q)
Ry

Proof. Let 0 < ¢, < 1. We shall show that 4 + B H C defines an exponentially stable evolu-
tion if
)
WH| = ———— 6
sup || T¢ | ©
5
from where (5) will follow. To this end let s €Z and £ € X and consider the linear system
ox=Ax+BHy xs=§

- ™

n=Cx

withy € 12([s , @), Y) and A defining an exponentially stable evolution. Following Proposi-
tion 3 in conjunction with (2.1) we get

77=CSS§+1§H.V (8)
where 7,y € lz([s » @), Y) and the operator S is defined by (SSE)k 4 st &. For fixed &, (8)

defines a linear bounded operator y = 5 from 12([s, «),Y) into itself. Moreover such an
operator is a contraction because of

Wy =mylly= TS Hy, = T Hy, L, < I TS H |y, =y, 1, S qglly, =y, 11,
where (6) has been used. Hence there exists unique y € lz([s, ©),Y) for which

~ PR
y_CSs§+Ts Hy (9)
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This implies
Nyl =< CS NNEN+UTNHINY I < UCSATEN+ 1y 14,
Thus
Iy ll,<vIlEll (10)
A lICS - _ -
forv = T=4 Let x be the state evolution of (7) fory =y . Hence
0
0;=A;+BH§ ;s =§
o (11)
y=Cx
that is
ox=A+BHCx x =§ (12)
Since A defines an exponentially stable evolution the first equation (11) shows that
Y€’([s, »),X)and
Nxll,<eClEN+ 1y (13)
(see Theorem 1.4.1). Using (10), (13) yields -
Xl <n@+ 0N EN =yl €Nl (5 =p(1+9) (14)
By combining (12) with (14) and taking into account the arbitrarity of £ one obtains
IsP=3@EYst<v I
s 2k ks =0 (15)

for A24+BHC. But (15) implies that A defines an exponentially stable evolution be-
cause of

A*0P A —P_+1I=0and Theorem 1.5.5. O
s 5 s

4. Hankel singular values

LetT=[4,B,C, D]c be a node with internal exponentially stable realization. We have
Proposition 1. The causal Hankel operator H§ associated at s can be expressed as
C _ ¢
Hs - es \P§ 1)
where W' and ©, are the causal controllability and observability operators at s, respectively.

Proof. For ‘Pﬁ and 6? see Definitions 1.6.5 and 1.6.15. Following (2.1) we have
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(HCu), = 2 c st cs” B.u

i= k k,l+1 k s,1+1 i

= (@(W w)), = (W), , k=s
for allu € 1%(Z , U ) and the conclusion follows. O
A remarkable result is given in
Theorem 2. Let T=[A,B,C, D]C be a node with internal exponentially stable realization.
Then foralls €Z

1. p(F, ) = p((H))"HY).
2. P O and (HY)"H; share the same nonzero eigenvalues.

Here P* and Q° stand for the causal controllability and observability Gramians, respectively.

Proof. For P* and Q° see Definitions 1.6.5 and 1.6.15, respectively. According (1) one
obtains

(HE)HE = (%)"(69)"6° ¥° )
Hence following Propositions 1.6.4 and 1.6.14 we have
C\* LgCy\ _ * C\*\C —- * C\*\C\ __
P((HEY'HY) = p((¥9)"(€5)"0° W°) = p(WE(¥)"(65)"€) = p(F ) )
and 1. is proved. For 2. denote by A'(T) the set of nonzero eigenvalues of any operator T.

Then the chain of equalities (3) is also true if p is changed by A’ and the conclusion follows.
O

Using the anticausal version of Proposition 1 combined with Propositions 1.6.4’ and 1.6.14’
we get the anticausal version of Theorem 2 stated as follows

Theorem 2. Let T=[A,B,C, D], be a node with internal anticausal exponentially stable
realization. Then for all s EZ

1. p(P2 ) = p((HY)'HY).

2. P} O and (HY)"H? share the same nonzero eigenvalues.

Here P? and Q° stand for the anticausal controllability and observability Gramians, respec-
tively. O
Definition3.Let T=[4,B,C, D]C be a node with internal exponentially stable realization.

Call sup || H{ || the causal Hankel norm of T and denote it by || T ||5,. In a similar way the
5
anticausal Hankel norm || T ||‘:l of a node T with internal anticausal exponentially stable

realization is defined. a
If no confusion appears the superscript ¢ (or @) will be omitted writing simply || T || -
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Corollary 4. Let T=[A,B, C, D], be a node with internal exponentially stable realization
and let p(F* 0F) & sup p(F~ OF). Then
5

N ITIE<IITI @
Proof. Since p((H))'H) < || H{ ||2 the first inequality in (4) follows. The second inequality
holds because of || H, || = || PY TP || < || PT I TIIP || =Tl ]

The anticausal version of Corollary 4 is left to the reader.
Of remarkable significance is the finite-dimensional case thatisU = R, X =R",Y=RP.In
this case P{ and Q¢ are both n X n positive semidefinite matrices. Hence if P; and O are

nonzero matrices it follows that A'(P¢ ) # @. Call Usc,i 4 AP O )1"2 for those

i=1,...,nfor which of # 0, the causal Hankel singular values of T at 5. If 6: is the greatest
Hankel singular value at s, then clearly
=C c
supa” = || T ||
s ° H (5)

A similar comment holds for the anticausal evolutions.

3. All-pass and contracting nodes

Definition 1. Let U = Y. A node T for which T* T = T T* = I will be called an all-pass node.

g
Clearly any all-pass node is a unitary operator and T is all-pass iff T" it is. We have
Theorem 2. Let T=[A4,B,C, D] bea causal node. Assume that
A B|.

L [ C D] is onto
2. There exists a Liapunov transformation Q = Q)i e z such that

C*'C+A'0QA=Q

C*'D+A"0QB=0

D*'D+B'0oQB=1I (1)

Then T is an all-pass node.
Proof. Equations (1) can be compactly written as

4 Bl To ol[4 Bl _[o o

cC D 0 I||{Cc D 0 I )
But equation (2) is of type M* S M = N where M is onto and S~ ! and N~ ! are well defined
and bounded. Since N has a bounded inverse there exists 3 > 0 such that

INx|| 6]l x||. Hence 8] x || < || Nx|| = || M"SMx || < || M| S||{| Mx|| from
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0
™IS
|| M -1 || = #'. Based on the above considerations (2) provides

{4 B]_la 0! 61{4 B]"= Fg“ (1
C D o 1I/|C D 0 I
where we used for (M) ™! the notation M~ *. Therefore
[A B] o' o|[4 B]*=0 o' o
C Djl o [||€C D 0 1 3)
The action of T, i.e. T = Tu is described by 0x = Ax + Bu y = Cx + D u. Postmultiplying

where || Mx || 29d'|| x || with 0’ 4 > 0. Thus M is also one to one and

both sides of (2) by z one obtains
(4* ] [oQox _|ox
B D*|| ¥ u

thatisx =A*0x+ C'y,B*x+ D"y =u forx 2 O x. But these equations show that
u=Ty=T Tu Hence T T = I. Postmultiplying both sides of (3) by [‘Lx], similar argu-
ments lead to T T* = I. Therefore T is all-pass and the proof ends.

Remark 3. Let P 2 071, Then (3) yields
BB*+APA*=0P
BD'+APC =0 (4)
DD +CPC' =1 O
Remark 4. In the finite dimensional case i.e. X =R", U=R™ Y = RP condition 1. in
Theorem 2 is superfluous. Indeed (2) yields
A, By

| det
Ck Dk

|=v >0V kEZ

Thus we may conclude that in the finite-dimensional case condition 2. alone makes T to be
all-pass. O

Lemma 3. Assume that both conditions 1. and 2. in Theorem 2 hold. Assume also that both
A" and D™ are well defined and bounded. Then the following two causal systems

A-BD7'c,BD7',-D7'c,D NYand (4™, -A7*C* ,B*A™* D" =B A" C*) are
Liapunov similar.

Proof. From (3) we obtain
-1
A Bl|o7' of _le@7! o||a® C s
C Diio 1 o 1I||B" D ©)
Premultiplying both sides of (5) by

I -BD7!
0 I
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one obtains
4-8p7c ol[o™! o] [o0™! -BD[4* ¢
o pllo 1 | o ! ||B" D ®)
But
4 Bl _| 1 ofl4 B
[C D]—[CA"I 1||o D—CA'IB} (7)

Hence the last factor in the right-hand side of (7) clearly has a bounded inverse. Since A7t
is bounded it follows that (D - CA‘IB)_1 is well defined and bounded. Hence (7) provides

4 B]7'_ (a7t —aTBO-caTBV| 1 0
¢ D -ca”l g

0 (D-CA™'B)"!
_ a7 '+47'B>-ca7'B) 1ca™! —A“lB(D—CA‘lB)‘l]

~(D-cA7'B)"'ca™! (D-ca”'B)~! ®

Using (8) in (6) one obtains
@-BD"'0)0™! 0| _ [aQ“A"+(aQ‘1A“c‘+BD‘1)(D‘—B'A‘*c')‘lB‘A"‘
co! D L —-(D*-B'A*C")"'B*A™"

|00~ U"C*+BD ) D*-B"4~*C") !
(D'—B‘A-'C‘)—l
Identifying entry by entry in (9) it results
“4-BD IO =00 U™, 00" u*'C*+BD =0
cCo '=-(D*"-B'A""C"y B4 , D=(D"-B'4~*C")!
from where we have finally
A*=00U4-BD Q7! -47*C* = -00BD™!

B'A™*=-Dp7'c,D'-BA~*C*=D""

and the assertion of lemma is proved. a

&)

Theorem 4. Assume that all the conditions stated in Lemma 3 hold. Then
T '=u-BD"'c,BD7!,-D7c,D7Y

Proof. We have )
T '=T =[",C",B" D), =[4"",-A7°C" ,B'A™" ,D*-B'A™"C"],
Using Lemma 3 we obtain that
[A7",-47°C",B°A™",D*~B’'A™"°C") = [4-BD"'C,BD™",-D7'C, D7},
and the conclusion follows. O

Under stronger assumptions the conditions expressed by systems (1) and (4) are necessary
conditions for a node to be all-pass. This is shown in

Theorem 5. Let T=[A,B,C , D), be an all-pass node with internal exponentially stable,
causally uniformly controllable and causally uniformly observable realization. Then both sys-
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tems of equations (1) and (4) hold for Q = QF, P = F*, where Q° and F are the observability
and controllability Gramians, respectively, and P* = (Q° )_1

Proof. T'T = I reads
ox=Ax+Bu

x=A"0x+C'(Cx+Du)=A"0x+C'Cx+C'Du
u=B'ox+D'(Cx+Du)=B'ox+DCx+D'Du

Since A°0 Q°A + C*C = (', i.e. the first equation (1) holds, one obtains further
ox=Ax+Bu

x=A"cx-AcfAx+x+CDu
=A%0x - A0 Qfox + (A*0 O°B + C*D)u + O
u=Box+D'Cx+D*Du

Let M2 A0 OB+ C*'D,NL B¢ B+ D*D,z 8% - ¢f x.
Then the above system becomes

x=Ax+Bu

z=A'cz+Mu

(11)
u=B'(0z+0Q0x)+D'Cx+D'Du
=B'0z+B'0Q°Ax+Bu)+D'Cx+D*'Du=B%0z+M'x+Nu
k-1

Since A defines an exponentially stable evolution we may write X, 2 it B u,

Z S M u, for any u = (u. Diez € 12(Z , U). Here S,; stands for S;:, Thus

k—1

2 My S B+ E e Sige1 Miu + Now, (12)

k+1
For u chosen u; =v for i=kandu =0 for i #k (12) yields v = N,v. Hence N =1 V

k €Z. Thus the last equation (l) holds and (12) becomes

0_ 2 M,S Seiv1Bi¥; ‘.LE'HB z,k+1M” (13)
Let u be such that —B Sk +1xforanyxEXandisk—l, and u; = 0 for i = k. With

such u, (13) provides M, P, x = 0 (see Proposition 1.6.4). Therefore M, P, = 0 due to the
arbitrariness of x. As PkC has a bounded inverse ((4 , B) is causally uniformly controllable)
we get M; =0 V k €Z. Thus the second equation (1) holds and w have proved the validity

of system (1) for Q = OF. Starting from T T* = ] and based on the causally uniformly observ-
able assumption made on (C, 4) similar arguments lead to the validity of the system (4) for

P = P*. From here we conclude that both equation (2) and (3) hold: the first for @ = O° and
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the second for Q™ 1'= F*. Since both (Q°) ™! and (P°)~! are well defined and bounded the
above two mentioned equations are of type M'SM =N and M §' M* = N’ where S, N, S’
and N’ have all bounded inverse. From here one obtains easily that || Mx || =d]|x ||,

|| M*x || 28| x|| ford > 0. Hence M~ ! is well defined and bounded. It follows that

‘5

is well defined and bounded. Following the same scheme as in the proof of Theorem 2 we
conclude that the system (4) is simultaneously satisfied by P° and (QC)_I. Since the first
equation (4) has a unique bounded on Z solution, 7 and (QC)"1 must coincide and the

theorem is completely proved. |

Corollary 6. Assume U =Y =R"™ and X = R". If all conditions of Theorem 5 hold, then
ITIy=1

Proof. Since P* = (Q°) ! it follows that PEQ°=1VY s €EZ. Hence the conclusion follows
from (4.2). a
Remark 7. The anticausal version of the above results can be easily obtained by duality. Let
T=[A,B,C,D),. Then T"=[4",C*,B*,D"]. Note also that (4, B) is anticausally
uniformly controllable iff (B*,A4") is causally uniformly observable. Since T is all-pass iff
T" is all-pass the procedure is obvious. O
Let Y=U=U"@®U~ and denote by I'* and I” the identity operators in /*Z , U*) and
XZ ,U7), respectively, (Z,U)=PZ , UNH®RZ,U7). Let J=—-It +I" or
equivalently in a matrix representation
It

-
Definition 8. Let T be a node. We call T J-unitary if T*J T=TJT" = J. ]
Theorem 2 can be adapted in the following manner

Theorem 9. Let T =[4, B, C, D]_ be a causal node. Assume that

A B}.
1. l:c D}zsonto.

2. There exists a Liapunov transformation Q = (Qk)k e z Such that

J=|"

C'JC+A*0QA=0
C*JD+A*0QB=0 (14)
D'JD+B*0cQB=1J

Then T is a J-unitary node.

Proof. Equations (14) can be rewritten as

e gl 22 g
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By combining assumption 1. of the theorem with (15) it follows, by using similar arguments
as in the proof of Theorem 2, that (15) is equivalent to
UQ'1 0:|

A B||o™! o|[4 B]"_
C D||g J||C D 0 J

Now we shall evaluate v = T"J Tu for any u € 12(Z , U). To this end postmultiply both

(16)

sides of (15) by z where ox =Ax + Bu,y = Cx + Du thatisy = Tu. We obtain
A* C*||oQox| _ (Ox
B* D'|| Jy Ju
Letx & Ox and obtain furtherx = A*ox + C*Jy, Ju=B"0x+D"Jy, thatis
Ju = T* ] Tu. Since u was arbitrary chosen it follows thatJ = T* J T. Similar arguments lead

toJ = TJT" if (16) is used. Thus T is J-unitary and the proof ends. a
Note that for the finite-dimensional case Remark 4 holds with respect to Theorem 9.

Remark 10. Several topics on J-unitary operators on 1% have been closely investigated by
Ball, Gohberg and Kaashoek (see [4]) in order to develop their theory regarding Nevanlina-

Pick interpolation for time-varying input-output maps. a
Definition 11. Let y > 0. Any node T for which || T'|| < y will be termed as a y-contracting
node. O
Theorem 12. Let T=[4,B,C, D]c be a causal node. Assume that there exist
X=X ez =X, V=V cgamdW=W,), o, suchthat
v I-D*D+B'0cXB=V'V
~-C*D+A'0XB=W'V (17)

—C*'C+A* 0 XA-X=W'W
then || T|| <.

Moreover if v1is well defined and bounded and A + B F defines, for F = -1 W, an
exponentially stable evolution, then || T || < y.

Proof. Let ox = Ax + Bu,y = Cx + Du be the state-space description of the node. Then
by using (17) one obtains
u

Pllull2=1lylI2= < H , [’C ¢ -cD
. H ’ {W‘W W"V] H o< H | lX—A'UM ~A"XB

AR

=||Wx+Vu ||§+ <x,Xx>—- <Ax+Bu,0X(Ax + Bu)>

u|’|-p*c y-D'D
ul’\V'w V'V |u u -B*0X4A -B'0XB

=||Wx+Vu ||§+ <x,Xx> - <0x,0X0x>=||Wx+Vu ||§ (18)

Thus y2|| u ||§ - |ly ||§ = 0 and the first part of the theorem is proved.
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To prove the second part of the theorem assume that || T || =y. Hence there exists a
sequence {uk | kEN,ukelz(Z,U), Il u* |l, = 1j such that || Tu ||,y ask—> . Let

yk 2 T4* Hence y2|| uk |I§ - ||yk ||§-> 0ask—> o, LetxkEIZ(Z , X ) be uniquely defined

by 0x* = Ax* + Bu*, k € N. Then we have 0* = (4 + BFY* + ¥ - F), F= -v"w,
and, due to (18), clearly u*¥ — Fx* > 0 as k> . Since A + BF defines an exponentially
stable evolution it follows in accordance with Theorem 1.4.1 that £* 0 as k » ®. Hence

u* >0, k>  which contradicts the fact that Il u* || = 1. Thus the second part of the
theorem is proved. a

The dual version of Theorem 12 is

Theorem 13. Let T=[A,B,C, D]c be a causal node. Assume that there exist Y = Y", V and
W such that

Y I-DD*+CYC' =VV*
-BD*+AYC =WV (19)
-BB*+AYA*-Y=WW'
then || T|| <¥.

Moreover if V1is well defined and bounded and A + K C defines, for K = -wvl an
exponentially stable evolution then || T || < y.

Proof. Since || T || <yiff || 77 || <y and || T|| < yiff || T* || < y, Theorem 13 follows
by applying Theorem 12 to T = [A# , c* , B* , D#]c. O

Remark 14. It is clear that corresponding results may be also stated for J-contracting nodes,

i.e. for those nodes for which <u, T"JTu> < y2 <u ,Ju> (or with strict inequality). Such
a topic will be extensively treated in Chapter 4 in connection with the so-called disturbance
attenuation problem. ]

6. Nehari Problem

The Nehari problem has a long history that we shall not repeat here. Roughly speaking the
problem consists in evaluating the distance from a given function f, which is bounded and
analytic in |z| < 1, to the space of functions which are bounded and analytic in |z| > 1.
Here bounded means sup { lf@| | lz] < lll < ® and sup { @1 | Iz] > 1} < o,
respectively. From an operator viewpoint the Nehari problem can be stated as follows: given
a lower left triangular infinite matrix find an upper-right completion for which the resultant
matrix is of minimum norm. Subsequently we shall be confronted with the systemic version
of the Nehari problem relaxed to a suboptimal one. To be more specific, let

T=1[A4,B,C,0]_ be a node with internal exponentially stable realization and let y > 0 be

a_prescribed tolerance. The suboptimal Nehari problem cgnsists in finding a node
T=14,B,C,0], with antistable realization such that || T— T|| <y. A solution to this

problem will now be given.
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Theorem 1. Let T=[A,B,C,0] be a node with internal exponentially stable, causally

uniformly controllable and causally uniformly observable realization and assume that A lis
well defined and bounded. Let y > 0 be a prescribed tolerance and suppose that

@ P)]”2 < y where P and Q are the (causal) controllability and observability Gramians,
respectively. If

~A _ N _
PEyPPU-y 2P (1)

and

A4y W u+c cP),B%0B,Cc8-cP @)
then A defines an antistable evolution and || T — T || <y for T= [/T , B , c , 0],
Proof. Since (4, B) and (C, A) are causally uniformly controllable and causally uniformly
observable pairs, respectively, and p(Q P) < y it follows that P» 0, Q » 0 and P»0.
Consider the difference system (4 r»Bgr+Cg,0) defined by

A 0 B -
A, = B, = c,=|C -C €)]
R ~ > 7R
0 A4 B [ ]
with 4, B and C introduced via (2) and show that (5.17) is fulfilled for (3), that is there exist
X, V and W such that

2 * _
y 1+BRaXBR—V*V
AR0XB,=W'V )
~CRCr+ A0 XAy —X=W'W

Take
-0 I
X= - ©)
1 P
Then using (1) and (2) one obtains
_|—0Q I ||B
y*1+ByoXB,=y'I1+[B" B’] 11
I oP||B

=y? I+B*0 Q B+B*0 Qo Po Q B=y* I+B*0 Q(I+0 Po Q)B=y*I+B'c QB (6)

where
~A B
02U-yoP7'0 (7
Since p(Q P) < y2 it follows that O » 0 and the first equation (4) is fulfilled for
V& I+B 0 QB 8)

as follows from (6).
For the second equation (4) we get
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A* 0|[-00 I][B 0 0
AL0XB, = ~ | <= B @)
R R — ry g Tx 1 .y
0 A*|| I oP||B| |A'U+a(PO)B| |A4*(0Q) '00QB

where I + o(P Q) = (¢ )0 Q as immediately can be checked from (1) and (7). Let

and the second equation (4) holds for
A Tx -1.3 1
W,=A4'cQ) 0 QBV" (11)
It remains to check that
CtC,+A 0OXA, - X b Lo %o w 0 0
— + _ = - = =
RORTARIAAR L, L, w |0 Wl= |, Wi, (12)

where L11 a —C*C-A"0 QA+ Q=0, in accordance with the equation of the obser-

vability Gramian, and L, & C*C +4° A4~ 1= ~C* CP+ A" '¢+ C' CP) - I =0.
Thus it remains to prove that
L, 2—~C"C+A"0PA~P=W;W,=A4"(0 0) " '00Bly’I+B"00B]"'B"0Q(0 0)"'4 (13)

where (8) and (11) have been used. Making C explicit, (13) receives the equivalent form

A’0P(A*) " '-P=4"(0 )" '0QB[y*I+B*0QB] " 'B*0Q(c Q) ' (4"}
which reduces to

P=A*0P-(0Q) 0 QBy* I+ B 0 QB B 0 Q0 Q) 4" ™! (14)
In order to prove (14) perform some simple computations on the right-hand side of (14) and
obtain with (1) and (7)

oP-(0Q) 0 QB +y *B" 0 QB Yy 2B a Q0 )~

=y2(I—~y~%0PoQ)~YoP-(I-y~%0PoQ) ~[I+y~*BB"(I-y~%0QuP) 'oQ] X

xy 2BB'(U-y20QoP) =y I -y APA 0 Q" AP A
where the equation of the controllability gramian has been used. Using the above expression
in (14), in conjunction with the equation of the observability Gramian, equality (14) follows
after simple manipulation.
Using (13) we get
ca™!
b_ an—1p -1 =1 e —
oP=()TPAT H[(A)TC @YW (15)
wA~
and notice that according to (2)
Al-cca'=q+ccpa =4 (16)
where A* defines an anticausal exponentially stable evolution. Therefore (16) shows that the
pair



6. Nehari Problem 69
Gi-

WA
is anticausally detectable. This conclusion together with (15), where P> 0, imply via

Theorem_1,7.2 that A~! defines an anticausal exponentially stable_evolution. Thus
T=[A4,B,C,0], is really a node with antistable realization and || T—T]|| <y holds be-

cause of (4) and Theorem 5.12. The proof is complete. a
A direct consequence of Theorem 1 is

Theorem 2. Let T=[A,B,C,0], be a node with internal exponentially stable, causally

A—l

uniformly controllable and causally uniformly observable realization and assume that A7l
well defined and bounded. Let y, & inf{|| T~ T || | Twith antistable realization ). Then
vo= Il T}

Proof. Let HC’T and HC’T be the causal Hankel operators associated to T and T at s,

respectively. Smce T has an antistable realization it follows (see Proposition 3.3) that
HoT =0V 5 €Z. Hence || HT || = || HOT = HOT || < || T— T|| from where

T
I T||H=51;p ITHS || < || T - T||. Thus || TS vy 1|l Ty < 7ylety > 0be such

that || T ||:l <y < ¥, Since [p(P Q)]]/2 < | T~||;l (see Corollary 4.4) it follows, in accord-
ance with Theorem 1 that there exists a node T with antistable realization such that

[| T—- f|| <y <y, which is clearly a contradiction. Hence || T ||il =7, and the con-
clusion follows. a
The anticausal versions of Theorem 1 and 2 are

Theorem 1’. Let T=[A,B,C,0]. be a node with internal antistable, causally uniformly
controllable and causally uniformly observable realization. Let y > 0 and assume that

[o(P* Q")]]’ﬁ <y where P’ and Q° are the anticausal controllability and observability
Gramians associated to the pairs (A -1 471 B)and (CA “14 _1), respectively. If

PRy 2P —y 2 Py

and

Lunylg+c'cPy,BRogfB, C4 cE‘f )|
then A defines an exponentlally stable evolution and || T— T || <y for T

Theorem 2’. Let T=[A,B,C, O]C be a node with internal antistable, causally uniformly
controllable and causally uniformly observable realization. Let

8 inf { | T- T~|| | T with exponentially stable realization } Then yg =||T ||f{. 0
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Notes and References

The ideas concerning nodes follow the ones developed in [S]. Expressions, in terms of the
unit shift operator, for an input-output operator associated to a linear system (see section 1)
are due to Ball, Gohberg and Kaashoek (see [4]). Definitions for Hankel and Toeplitz
operators are in the framework of the general approach. For the continuous case an
elementary treatment may be found in [19] and for details see [54]. Definition 3.8 and
Theorem 3.10, regarding the structured stability radius, follow some ideas developed in [30]
and [31]. The results exposed in section 4 are the time-variant discrete counterpart of those
due to Glover (see [20]). The results of section 5 must be compared with those presented in
[22]. Concerning the Nehari problem a solution via the so-called band method is presented
in [21].



Chapter 3

Riccati equations and nodes

This chapter is dealing with the operatorial aspects related to the existence of the stabilizing
solution to the discrete-time Riccati equation which, in turn, is equivalent to the so-called
(generalized) Kalman-Szegd-Popov-Yakubovich system. The treatment intends to inves-
tigate two major questions: a) how some properties of different nodes, for instance contrac-
tion, are reflected in terms of discrete-time Riccati equation or Kalman-Szego-Popov-Yaku-
bovich systems; and b) how the causal (anticausal) stabilizing solution to the discrete-time
Riccati equation is involved in remarkable node operations such as doubly coprime normal-
ized factorizations, all-pass completion, lz-synthesis, the extended Nehari problem etc.
Moreover, the present chapter can be seen as a generalization of the Popov-Yakubovich
theory. As it is well known one striking result of this theory consists in emphasizing the
connections between the properties of a quadratic (cost) functional and the existence of a
solution to the discrete-time Riccati equation or Kalman-Szegd-Popov-Yakubovich system.
In fact our treatment is based on replacing the Popov “positivity condition” with a more
general one, described through the invertibility of an adequate sequence of Toeplitz
operators, which allows to incorporate the game-theoretical situations as well. The results
on positivity theory as well as those concerning traditional linear quadratic problems are
easily recovered as particular cases. Notice also that the present theory prepares the ground
for the next chapter devoted entirely to the disturbance attenuation problem.

1. Popov triplets

Let X and U be Hilbert spaces and consider the linear system
ox=Ax+Bu , xk=§

M
where x = (xi)izk’ u = (u),,, are the state and the control evolutions, respectively, with
x,€Xand 4, €U and 4 = ), cp B= (Bi)iez with A4;: X=X, B;:U~X bounded
operator sequences. Here (k,§) €Z X X is any arbitrary initial conditions pair. Let
U(kg) CI([k, ©),U) be the class of all >-control inputs for which the solution to (1),
denoted x*4#), belongs to IA([k , ©), X ), and where (see (1.2.3))
i-1
(ku) .
x; —S;§+j§kss+13juj ,i>k (2)
Associate to (1) the quadratic (cost) functional

Yk = <m ’ [1? ﬁ} [i] > = )
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defined for all triplets (k,5u) €Z X X X U(k,£) and where Q = (Q,.)l. ez L=Wer
R=(Ri)iezwithQi:X—’X,Qi=Q,.',Ll.:U—’XandRi:U—»U,Ri=R:. Here the inner

product (3) is taken in I2([k, ®), X ) X I%([k, @), U). Call J the Popov index associated to

(D).
Note that U(k,£) could be empty for some pairs (k,£). A situation when Uk,§) = @ V
(k&) EZ x X is given by

Proposition 1. If the pair (A , B) is stabilizable, then UkE) # DB V (kE)EZ X X
Proof. Let F = (F)
; + B;F)

; ez F:X = U be a bounded operator sequence for which 4 + BF =

; ¢ z defines an exponentially stable evolution. Let (k,£) be given and let

u € P(lk, »),U). Let x*#% be defined by 0x = (4 + BF)x + Bit,x, =& Then
EBD € [k, @), X). Let u®E50 & prlbiF) 4 4 then u®65F) € Pk, ), U ') and
ox®EAF) = 4 KEWF) | g (kEuF)

Hence u®5#F) ¢ U(k £), that is U(k,&) contains the parameterized by u family of controls
u®EBE) I fact it is easy to see that for every u € U(k,£) and every F for which 4 + BF
defines an exponentially stable evolution, there exists u€ 12([k, ©),U) such that
u=u®**H. Let indeed u € UkE) and let x be defined by 0x=Ax +Bu, x, =¢,
x € X[k, ®), X). Such x exists since u € U(k,£). Hence & = u — Fx is in ’([k , »), U ) and

0x = (A + BF)x + Bu. Therefore x = 26AHF) and yy = y®EHF), a
Proposition 1 shows that if (4, B) in (1) is stabilizable, then the Popov index (3) is well
defined. Moreover if A defines an exponentially stable evolution, then

UkE) = Pk, »), U).
Now we can introduce

Definition 2. = = (4, B; M) where A = (4,), c 5, B=(B,), ¢ z and
L
_[o L]_ 1% L _
M'[L* R| = WMdkez=||r R i
ko "k )rez
with4, :X>X B, :U~>X M, :X X U~ X X Uis called a Popov triplet. O

We shall use also the explicit notationZ = (4,B;Q,L,R).
It is easy to see that a Popov triplet Z incorporates all the elements defining (1) and (3), that
is the pair (A4, B) corresponds to the system (1) and M defines (3) via

JkEw) =3 <z, , M z,>

forz, = (x,,u,) EX X U,u € UkE) and x = UoEH),
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Example 3. Consider the linear system
ox=Ax+Bu ,x, =§

k
y=Cx+Du o)
For each (k,£,u) €Z x X x U(k,E) let us associate )
Jl(kagau) = ” y “2 (6)
and ) s )
Lkt =Pllull2=1IylI2, >0 a

for u € U(k,) and y the output to (5) corresponding to (k,£,u). (In Chapter 4 we shall be
concerned with Jy(k.&,u) = || u ||§ + |y |I§)
Since
|y I13=1| Cx+Du ||2=<x,C"Cx>+ <x,C"Du>+ <u,D"Cx>+ <u,D"Du> ®
it can be easily remarked that for (6) and (7) correspond to the Popov triplets
S =(@4,B;C'C,C"'D,D"D)
1 (€)
and X
* * *
2,=4,B;-C'C,-C'D,y'I-D"D) (10)
respectively.
As we shall see later, (9) will be involved in the classical linear quadratic problem and will

be termed as the first Popov triplet associated to (5) while (10) will serve to describe, in
discrete-time Riccati equation’s terms, the contracting property of a node and we shall term

it as the second Popov triplet associated to (5). a
Definition 4. Let = = (4, B; 0, L, R) be a Popov triplet. Then
a) ‘

A'0XA-X+Q A'oXB+L||I| _

S . =0 (11)
L*+B'0XA  R+B'0XB||F

with X = (X,

ez F=Fep X, = X; :X=>X, F, : XU, is called the discrete-time

Riccati system associated to 2. A pair (X, F) with X, F bounded operator sequences satisfy-
ing (11), for which A + B F defines an exponentially stable evolution, is called a stabilizing
solution to (11).
b)

R+B*0XB=G

L+A*0XB=H

* (12)
Q+A4A*0XA-X=FGF
GF+H =0

with X = X*, F as above and G = (Gk)keZ’H= (Hk)keZ’ Gk:U-> U,Hk:U-> X is called
the extended Kalman-Szeg6-Popov-Yakubovich system associated to Z. A quadruple
(X,F,G,H) with X, F, G, H all bounded operator sequences satisfying (12), for which
A + BF defines an exponentially stable evolution, is called a stabilizing solution to (12). O
Under selfadjointness of X, which is always assumed, clearly (11) and (12) express the same
object written in two different ways.

A reason for introducing the extended Kalman-Szegé-Popov-Yakubovich system (12) is for
the purpose of a simple representation of the Popov index (3). In this respect we have
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Proposition 5. Let (k,§) € Z X X and assume that U(k,E) # 0. Assume also that a bounded on

Z solution (X, F, G, H) to (12) exists (not necessarily a stabilizing one). Then
J(kfu)= <u—Fx,Gu—-Fx)>+ <£,X E>¢ (13)

forue Ukt)andx = 2 bH),
Proof. Using (12) substitute Q, L and R in (3) and obtain with (1)
Jktu) = < H 0 L H . H [FoF+X-A'oXA H-AoXB m N
X _|* A’0XA A*0XB oo |® X0 fxf
-GF G u u|’|B*oXxA4 B'oXB| |u u(’[0 0f|u
x I =F[{0 o|| I oO||x x| |4
=< [u} , [0 p [0 G] {—F I] [u] >—-< [u] s {B :lUX[A B] [ ] >+<x,Xx>

L* R||u u H*-B'0XA G-B'0XB
=<u-Fx,Gu—-Fx)> - <ox,0X0x> + <x,Xx>

i [ﬁ] ’ {F’GF -F'G"

=<u—Fx,G(u—Fx)>+<‘§-',Xk§>x a

Proposition 6. If (X, F) is a stabilizing solution to the discrete-time Riccati system (11)
(X,F,G,H)isa stabilizing solution to the extended Kalman-Szegi-Popov-Yakubovich sys-
tem (12) ) then X is unzque

Proof. Assume that (X F) is another stabilizing solution to (11). Hence
I

F

* *
A*oXA X+Q A*0XB+L -0 (14)

L*+B'0XA  R+B'0XB
Then from (11) and (14) we get
A0 XA-X+Q+ (A0 XB+L)F=0

L*+B'0XA+(R+B 0XBF=0 (15)
and
A"0XA- X+Q+F’(B oXA +L%=0 (16)
A*0XB+L+F[R+B'0XB)=0
We get further from (15) and (16)
A*0XA+BF)-X+Q+LF=0 )
L*+RF+B'0XA+BF)=0
and o 5 5
A+BF)'0XA-X+Q+FL"=0
(18)

L+FR+(A+BFR'cXB=0
By substracting the first equation (18) from the first equation (17) and taking into account
each second equation from (17) and (18), we get with a little computation

A+BF)'X-X)A+BF) - (X-X)=0 (19)
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Since both A + BF and A + B F define exponentially stable evoutions the unique solution

to (11), bounded on the whole Z, is X — X = 0 and the conclusion follows. a

equivalent if there exist bounded sequences F and X = X* such that
A=A+BF

B=B
0=Q+LF+FL*+FRF+A4"0XA-X

L=L+FR+A"0XB (20)
R=R+B'0XB

If _ _ _

a) X = 0, 2 is called an F-equivalent of Z.

b) F=0and Q = 0, Z is called a reduced equivalent of Z, a

It can be checked that (20) really defines an equivalence relation on the family of Popov
triplets.

Notice that if A defines an exponentially stable evolution then the Liapunov equation
X=A"0XA+ Q has a unique bounded on Z solution X. Consequently if we take F=0

then (20) yields for such X a reduced equivalent £ of = because of é = 0 as immediately can
be seen.
Related to Definition 7 we have

Proposition 8. Let £ and £ be two equivalent Popov triplets. Then
L Iffor (k£) €Z x X, U(k,E) # @ then

JkEw) = k) + <&, X &>,
where J and J are the Popov indices associated to £ and 3 respectively, u € U(k,E) and
ulu-Fx

2. Equality (11) holds iff

Ao (X-XA-X-X)+Q A'o(X-X)B+L|| |

=0
L*+B'o(X-X)4  R+B'o(x-X)B|F~F

Proof.

" J(k,s,u)=<[§],{f, AR

=Bl T 7l Al A 8-
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- <[ 9. [Q+Lf+hifmi L+FR] EEIE

—F I||u L*+RF R -F I||u
_ || oAt L-a'oxB||*|
2| | L*~B'aXA  R-B'eXB||;

-}
]
S

= J(kEu) — <ox,0Xox> + <x,Xx> = J(kEn) + <E,X E>,

where (20) has been used and also the fact thatox =Ax + Bu = Ax+Bu.

2. Follows by direct computation. d
Definition 9. Let = = (4, B; Q, L, R) be a Popov triplet. Then
a) We call

X=A'0XA-(A"0XB+L)R+B0XB) \(L*+B0oXA)+Q (1)

with X = X*, the discrete-time Riccati equation associated to =. A bounded sequence X,
with (R + B*'o X B)_1 well defined and bounded, satisfying (21) and for which 4 + B F with

FA_(R+B'oXB)\(L*+B0XA) (22)
defines an exponentially stable evolution, is called a stabilizing solution to discrete-time
Riccati equation (21).

b) We call

R+B'eXB=G

L+ACXB=H (23)

Q+A0XA-X=HG 'H"

with X = X*, the generalized Kalman-Szego-Popov-Yakubovich system associated to Z. A
triplet (X, G, H) with X, G and H all bounded operator sequences satisfying (23) with
G~ ! well defined and bounded and for which 4 — G~! H* defines an exponentially stable
evolution, is called a stabilizing solution to the generalized Kalman-Szegs-Popov-
Yakubovich system (23).

Remark 10. If the invertibility of G, =R + B; X, ;1B YV k€Z is assumed, then the

discrete-time Riccati equation (21) and the generalized Kalman-Szego-Popov-Yakubovich
system (23) result from the discrete-time Riccati system (11) and the extended Kalman-
Szegd-Popov-Yakubovich system (12), respectively, by eliminating F. Thus

F=-G v (24)
with F defined by (22). Hence the discrete-time Riccati equation and the generalized Kal-
man-Szeg6-Popov-Yakubovich system are equivalent.
Note also that according to Proposition 6 if a stabilizing solution to the discrete-time Riccati
equation (Kalman-Szegi-Popov-Yakubovich system) exists it is unique. ]
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It is worthwhile now to emphasize some remarkable consequences of the uniqueness
property proved in Proposition 6.

Let X be any solution to discrete-time Riccati equation (21) and assume that the elements
of the Popov triplet are all periodic sequences, that is there exists p = 1 for which
A=0PA,B=0”B,Q=0PQ,L=0”LandR =0”R. As we can immediately see 0¥ X is
also a solution to (21). Note further that if A + B F defines an exponentially stable evolution
then 0” A + 0? Bo? F = 6P(A + B F) defines also an exponentially stable evolution, Com-
bining the above two statements it follows that if X is a stabilizing solution to (21) then
oP X is also a stabilizing solution to (21). Consequently by the uniqueness argument given
in Proposition 6 it follows that 0” X = X. From here we conclude that if the coefficients of
discrete-time Riccati equation (21) are periodic of period p, the stabilizing solution (if it
exists) is also periodic of the same period. It follows further that if 4, B, O, L, R are all
constant, the stabilizing solution (if it exists) will be also constant and will satisfy the al-
gebraic discrete-time Riccati equation

A*XA-X-(L+A"XB)R+B XB) " \(B* x4 +L)+Q=0.

Of practical importance is

Lemma 11. Assume that X = X" satisfies (21) and assume also that R™Vis well defined and
bounded. Then (21) is equivalent to the following forms

X=A"0XA-A0XBR+B'0XB)~ BoXA+D (25)
X=A'0XU+BR'B'oX)" 2 +D (26)
where
A=A-BR7!L* , 0=0Q0-LR'L" 27)
Note also that
A+BF=(1+BR'B'ox)™4 (28)
for F defined via (22).

The proof is a direct consequence of 2. of Proposition 8 by considering, for F=-R1 L',

the corresponding F -equivalent of Z. o
Now some considerations concerning duality are in order. R
Letd=(A), c A4, X>XC=(C)ep C: X>Yand M = M)y ez
M XXY->XXY,
M, = o Al = M
k k
L, R,

be bounded sequences and consider the Popov triplet £ = (A# , c* ;IQ# ). Write for it the
corresponding discrete-time Riccati equation
X=(A%y oxa® - (%) oxc* + D) R* +(c*) oxc?y \(L*) +(c*) oxa®)+ O*
and obtain succesively (see Proposition 1.1.6)
X=QA4Q0XxQA4"*
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—(QUQUXQC'Q+QL"Q)QRQ+QCXQC'Q) QL +QCQuXQ4")+Q0
QX=A(QuX)4* —(4(QX)C* +L*)R+C(Qux)C") " (L+C(Qux)4*)+0

0Y=AYA'—(4YC*+L"\R+cyc Y\ L+cyah+0 (29)
where
QoX=0'Qxad¥Y40 QX
Similarly, the operator corresponding to (22) is
K = —-@R* + (*) ox )y ([ + (ct)'ox 4%
from where we get succesively
K =-(QRQ+QCcQoxQC*' Q) QL +QCcQoxQ4"

Qk*=-R+cychy WL +cyaY

K=-AYC +L[YR+cycy)™ (30)
Note also that A* + C* K* defines an exponentially stable evolution iff 4 + K C defines an
exponentially stable evolution.
Equation (29) is usually known as the discrete-time Riccati equation for estimation (while
(21) is known as the discrete-time Riccati equation for control). If Y satisfies (29) with
(1’2\ +C YC‘)—1 well defined and bounded, and A + K C defines, for K given by (30), an
exponentially stable evolution, Y is called a stabilizing solution to (29) and K is termed as
the stabilizing injection gain.
In a similar way (23) and (24) can be dualized providing

R+cvc'=6
L*+avc =8 €3]
O+AYA -oY=HG A"
and
K=-H671 (32)
respectively.

2. A Popov-Yakubovich type result

In this section general conditions for the existence of the stabilizing solution to the discrete-
time Riccati equation (1.21) are described. In what follows we shall refer to a fixed Popov
triplet Z=(A4 , B ; M). We shall assume throughout this section, except in the cases that will
be mentioned, that A defines an exponentially stable evolution. Under such an assumption,

for each (k&u)EZ XXXIZ([k,oo),U) there exists a unique solution to (1.1) belonging to
[k, ©), X ) and denoted x*4#) given explicitly by
(kEu) —
X = SkE + fk u (1)

where S, : X = P(lk, ), X), £, : (lk, @), U) > X[k, ®), X ) are defined by
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A ,
(5,8 =S, ¢ izk
where S, is the state transition operator associated to 4, and
0 yi=k
A
(T u); = ESJHB.u]. isk

It is an easy exercise to check that if (1) holds, then for each i = k we have
LEn) = S; xl(ké,u) +Xu

where x*#%) and u are restricted to 12([1', ), X) and 12([1', w), U), respectively.

The adjoints S; and I; are evaluated as follows. Letx € 12([k , @), X). Then

oo oo [
<x,S, &> =i§k<x‘.,S‘.k§>X =i§k<§ VS x >y = <& ,igksi'kxl>

and
i-
<qu>—E<x & u),>y _§+1<x ZS,IH >y
-1
E 2 <x., E E <u B S
i=k+1 j=k i Sij B j=k i=j+1 4157
oo
=j=k —]2+1B’ S+
Hence from (5)
[
S, x =i§k5‘.kx‘.
and from (6)

(L), = _Z B S 5=@n, Vizs=k

79

@

©)

Q)

)

(6)

™

®

Now we can evaluate the Popov index (1.3) which under exponentially stable assumption is

well defined for each (k,Eu) €Z x X X 12([k, w), U). We have with (1)

Yt = <lx("’5”’} [Q L] lx("’g’“’] o - < Sk€+fku] 0 L} {Skéﬁ“fk" >
” w |"|LY R|| u u “IL* R u

s* s, ¥ X 9
ot O [ R A
* I||L* R F R,
= <&, X E>, +2<E, P u>y+ <u, R u>
where
o A o=
X 2s0s,

®)

(10)
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? 450 +L)
kT Ok N (11)

A * * *
~ RER+L'L +EL+E QF, (12)
with X, : X+ X, #, : [k, @), U) > X, &, : [k, ©),U) > [k, ), U). Here
I= (Ii)izk withI,. = I;. Note that R and L act on 12([k, ), U) and Q acts on

@ and (R

12([k, «), X') as multiplication operators. Note also that (.5(~ Jkez

k)k =4 k)k €eZ
are all bounded operator sequences.

Using (2) and (7) it follows that X, can be explicitly written as
X, =i§ksik Q; S

Hence according to (Theorem 1.5.2) X= (fk)k ez

X=A"0XA+Q _(13)

Consider now the reduced equivalent = of X constructed via (1.20) for F=0andX given by
(13). Then we shall have

satisfies the Liapunov equation

_ £=(4,B;0,L,R) (14)
where Q = 0 as follows from (1.20), and _
L=L+A'0XB (15)
and _ _
R=R+B'0XB (16)

Then using 1. of Proposition 1.8 in conjunction with (9) we obtain for (11) and (12) the
reduced expressions

Fe=SL @17

ﬂlk=§+lj‘rk+r,:i (18)
where L and R are given by (15) and (16), respectively. Therefore we can work from the

beginning with the reduced triplet (14) and finally we shall convert the result to the original
one.

Remark 1. Let £: /XZ , U ) » 2Z , X ) be defined by
i-1
(x u)i =j=§ wsij +1 Bj U (19)
Then by comparing (19) with (3) it follows that
_¢pt _ ptypt
L, =tP =P IP VkeZ (20)
Hence £ is the Toeplitz operator associated to I at k. Let now

RAR+YL+L' L+ Q=R+ L+L"¢ (1)
where the second expression in (21) is called the reduced expression of R.
Then using the first equality (20), (21) provides

— pt +
glk_Pkak (22)
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Hence ..‘Rk defined by (12) (or (18)) is the Toeplitz operator associated to the operator (21).
O

The sequence of Toeplitz operators (R,), o, plays a crucial role in the main result of this

section stated below.

Theorem 2. Let Z = (A, B ; M) be a Popov triplet. The following assertions are equivalent:

a. (R, is well defined and bounded.

b. The discrete-time Riccati equation (1.21) (the generalized Kalman-Szegi-Popov-Yakubovich
system (1.23)) has a stabilizing solution.

As the proof is a little lengthy we shall proceed by stating several auxiliary results. As we
already mentioned we shall work with the reduced Popov triplet (14).
Associate to 2 the system
ox=Ax+Bu , xk=§
A= Lu+d’od (23)
y=L'x+Ru+B'0i
For each (k,Eu) €Z x X X 12([k , @),U ) the system (23) associates a unique output
y€E 12([k, ©),U ) denoted y(k’g’"). Indeed, this follows directly from the fact that the second
equation (23) has a unique solution A € 12([k, ), X ) denoted A&#) angd given by
W) =SS Lu=SLu=FuVizk
o=t (24)
as follows from (7) and (17).

Lemma 3. 1. For each (kfu) €EZ X X X 12([k, ), U) and each i = k we have

kEu) _ * (k&
y( #)_ﬂiu+3ai xl( ) (25)

with y® &) restricted to 12([i , ©) , U ) and x®54) given by (1).
2. The system (23) considered for u € 12([k, ), U) with &£ = 0 is a realization for the node
.‘ﬂk; the same system considered for u € IZ(Z , U) is a realization for the node 3.

Proof. 1. First note that from (24) and (8) we have

(B* ol(k’“))j =B A](’;»‘p =’_2+ IB; Sien Lu=@L w, , jzizk (26)
With (26) and (4) substituted in the 1as]t equation (23) one obtains with (17) and (18)

y(k’g’u) =L S’.x’(k"”:’") +L* Lu+ Ru+ I; Lu= Rou+ .‘Pi' x}k’g’u) izk

and (25) is proved.
2. The conclusion follows directly from 1. combined with (19) and (21). 0
From Lemma 3 we have
Corollary 4. Assume that a. in Theorem 2 holds. Then for each (k,£) €Z X X there exists a

unique control u € 12([k , @), U), denoted u(k’g), which zeros the output y of (23). Moreover if
we denote by %% the solution x*4#) foru= u(k’g), then
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wt) = — 3719 0 v ik

(@7
with u®*) seen as belonging to 12([i ,9),U).
Proof. For i = k, (25) provides
y(k,E,u) =0 (28)
iff
u=ul® L 19"t € Pk, @), U) 29)

Hence (28) and (25) provide with (29)

RuB) 12168 =0 ik
from where (27) follows. a
Denote by 2%£) the solution A%*) for u = u®#). Then we have

I/’\roposition 5. Assume that a. in Theorem 2 holds. Then there exist two bounded sequences
X = X" and F such that

LA =X 68 >
2. ul.(k’g) = F,.x,(k’g) izk

forall (kE)€EZ x X
3. A + BF defines an exponentially stable evolution.

4. The discrete-time Riccati system (1.13) (the extended Kalman-Szegi-Popov-Yakubgvich
(1.14)) with Q = 0 and L and R updated with (15) and (16), respectively, is fulfilled for X and
F in the statement.

Proof.
1. Using (24) for u = u®#) we get with (27)
26E) = @ cd) = _p q=19* (k)
] 1 1 1l [ 20N
and the conclusion follows for

A _ -1 p* .
X. = 3’].31’. 33‘. VieZ (30)

-~

2. From (29) it follows that
Ew *E) _ (_ R1PrE
U= CERTE,

is a well defined linear bounded operator for all k €Z and uniformly bounded with respect
to k. Denote it by Fk. Using now (27) the result is obvious.

3. By substituting u®) = Fy®8) in the first equation (23) we get ox%4) = A4+B F)x(k'f).
Butx*4) € (lk,, @), X) and || x®8) ||, = || (5, - X, R1EDE N, <ull €],

7 4 IS, —E R, ! 3’; || as follows by substituting (29) in (1). Hence the last equality shows
that I < F‘ 4 > 5;:‘ 5;“ < u Iwhere 5;“ is the evolution operator of A2 4+ BF. Since ob-
k=i

viously 13; = ,Zl : I-’: +1’Ii + I, the conclusion follows from Theorem 1.5.5.
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4. Using 1. and 2. of Proposition 5, (23) becomes
ox=(A+B F)x 31)
Xx=LFx +A oXox
0=L*x+RFx+B oXox
for x = x*4), By substltutlng the first equatlon (31) in the last two equations one obtains
(,:1 oXA- X+(A aXB+L)F)x 0 (32)
(L*+B* oXA +(R+B UXB)F)x 0
Take now (32) at moment k, that is x, = &, and the discrete-time Riccati system (1.13) is
fulfilled because of the arbitrarity of & e X. O

The next step consists in obtaining the discrete-time Riccati equation from the discrete-time
Riccati system. To this end let, for F introduced in Proposition 5,

ox=Ax+Bu , xk=0
v=-Fx+u
which defines the operator N, : ([k, ©),U) = (fk, ®),U) V k €Z. Clearly (N,), ¢,
is bounded. Since (33) holds iff
ox=A+BFx+Bv , x,=0
- (34)
u=Fx +v

and A + BF defines an exponentially stable evolution (see 3. of Proposition 5) it follows
that (N l)k ¢ z is well defined and bounded, where N, Lis the operator associated to (34).

(33)

Now we can state
Lemma 6. Assume that a. in Theorem 2 holds. Then

LN,GN, =8 VY k€Z
with G introduced in (1.12).

2. G Liswell defined and bounded.

Proof. First notice that according to 4. of Proposition 5 the extended Kalman-Szegd-Popov-
Yakubovich (1.12), with Q = 0, R and L updated with (15) and (16), respectively, is fulfilled
for X and F.

1. Letu € 12([k, w), U). Then using (1.12), (33) and (18), succesively, we can write
<u,N;GNku> = <Nku,GNku> =<v,Gv>=<—-Fx+u,G(-Fx+u)>

=<x,FFGFx> —-2<u,GFx> + <u,Gu>
= <x,(A*0KA4-Xx> +2<u,(L* +B'0XAx> + <u,R+B*aXB>
= <(Ax+Bu),UX’\(Ax+Bu)>—<x,)?x>+<1?x,u>+<x,[u>+<u,§u>

= <ox,0K0x> - <x,fx> + <u,(ﬁ+E'Ik + I;Ij)u> =<u,R u>
Since both selfadjoint operators N; GNk and S‘ik generate the same quadratic functional
they coincide.
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2. Since condition a. in Theorem 2 implies the existence of ad > 0 such that
| Reull,z6]lull,V (ku) EZ x 12([k, «), U), it follows from the present lemma that
—1\* -1
”Gu”2= ”(Nk )‘ﬂka u“zzd()”ullz (35)
for all (ku) €Z X 12([k »®),U)and 6, > 0 adequately chosen. Let v € U be arbitrary and

letu € 12([k, ), U) defined as w=v,u=0 for i = k. Then (35) provides
| Gv Iy =Gl v Il that is

N

g *
which shows that G™! = (R+B* oX B)_1 is well defined and bounded. O

Now we can proceed to the
Proof of Theorem 2.

a. = b. Using 2. of Lemma 6 we can eliminate F in the discrete-time Riccati system (1.13)
and obtain the discrete-time Riccati equation

X=A"0XA- A 0XB+LYR+B'0XB) (L' + B 0XA4) 37)
as well as
F=-R+B'0XB)"\(L*+B' 0 XA) (38)
To convert (37) and (38) into original data use (15) and (16) and define
x4x+% (39)

with X introduced by (10). Then (37) and (38) are clearly equivalent to (1.21) and (1.22),
respectively. Notice also that this is a direct consequence of 2. of Proposition 1.8. By making
(39) explicit we get with (30)

X =X -9 R'? Vkez (40)
which is a representation formula_for the stabilizing solution to the discrete-time Riccati
equation and where the solution X to the Liapunov equation (13) has been used.

b. = a. Follows directly from 1. of Lemma 6. o
Example 7. LetZ£ = (4,B; Q, L, R) where
10, kodd _ _ 10, kodd _ _
A= l,keven’Bk_l’Qk— 1, keven ’ =0, R=1
For this data the discrete-time Riccati equation (1.21) becomes
0 , kodd
X = 2
k X
X k+1 +1 , keven

k+1
1 +Xk+1

We shall obtain the stabilizing solution to the above discrete-time Riccati equation. For, we
shall compute the operators (10), (11) and (12) and then (40) will be applied. We shall start
with the operators S, and I, given in (2) and (3), respectively. It is easy to see that the

following matrix representations are true
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S [ o
Sex S B
S k+1k+1"k
k+1k S B, S B
Ses2k k+2k+1°k  Pk+2k+2 k+1
S, = Seani| t o= |Sersp+1Be SkasprBirr Skaspe3Birz
By substituting the given da;a we get
a) for k odd - i i
1 0
0 1 0
0 01 0
S = L = 1 1 0
k » Tk
0 1
. 1
and ) _- )
0 1 0
0 1 1
0 1 0
* *
Si=[1 0 .1, %= 0 1 1
0 1
0
Then ) ) _ i
0
1 1
- . 0 0
Xk—SkQSk—[l 0 ] 1 =0
0 Mo -
1 10
0 010
P =508 =[10.] 1 110
0 010
1 11

85

=[00 ...
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R,=R+L QL =

(=1
(=]
—_

Then

and (40) provides

b) for k even
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N =

W

[SVRTE

1

P
- N
N —

| —

I
Wi

N |—

wle

—

—

p—




1]
1
0
5.=10
and
S;=[1 10
Then
X, =508 =1
1
F=850L=[110.]
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—

S - O

L], B

—— O

—

S = O

™

|
O = O
(=R

P
(= ]
—_—— O

(= =]

— O

87

=[00..]
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- - r ar

0 1 1 1 0
01 0 0 1 0
0 1 1 1 1 1 0
+ 01 0 0 01 0
0 1 1 1 1 1 0
. 0 0 1
i I L JL L]
o .
2 1
1 2
= 2 1
1 2
[1 ]
% -
_1/32/3
-1=
Ry % -1
_1/3%

and the result,as can be seen, is
X =1
Hence
_ 10, kodd
X = {1 , keven
and the discrete-time Riccati equation is fulfilled as it can be directly checked. Moreover
the stabilizing feedback is

0, kodd
Fo= =R + B X, B) B X, A, = _% . keven
which provides
0, kodd
A+ B F, = % , keven
and clearly A + B F defines an exponentially stable evolution. a

Theorem 2 has some remarkable corollaries.

Theorem 8. Let = be a Popov triplet. Then the following assertions are equivalent

1 ﬁk»o YkeEZ (41)
that is there exists > O such that <u, R, u> 26|l u ||§forallpairs

(ku) €Z x P([k, »),U).
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2. The discrete-time Riccati equation (1.23) has a stabilizing solution X and

R+B'0XB»0 42)
3. The following Kalman-Szegi-Popov-Yakubovich system
R+B'0aXB=V'V 43)
L+A'cXB=W'V (43,)
Q+A"0XA-X=W'W (43,

has a stabilizing solution, that is, there exists a triplet of bounded sequences (X, V , W) satis-

fying (43) with X = X* and V™" well defined and bounded, and for which A — B V™ W defines
an exponentially stable evolution. We have also

F=-vlw (44)
with F given by (1.22).

If 3. holds then
4. The Popov index can be expressed as

Jktu)= || Vu+Wx |2+ <€,X E>, (45)

V (kfu)€EZ x X X lz([k , @), U) and attains its minimum for the stabilizing state feedback
law

u=Fx=-V1Wwyx (46)
and this equals <§,Xk§>.

Proof.

1. = 2. Since (41) implies the validity of condition a. of Theorem 2, the existence of the
stabilizing solution to the discrete-time Riccati equation follows from b. of Theorem 2.
Condition (42) follows by combining (41) with 1. of Lemma 6.

2. » 1. follows directly from 1. of Lemma 6.

2. = 3. To this end notice that (42) is equaivalent to

R +Bka+lBk2’V1 v keEZ (47)

for an adequate v > 0. Hence there exists a bounded sequence V = (Vk)k ez With
V1= h), <z well defined and bounded such that
R, + B,X, .B, =V, Ve

kk+1"k (48)
: 1&
(for instance we can choose Ve= (R + Bk X.1B ) )
Define now
_ 1%, *
W= )W+ B X, 1 4) (49)

Then using the discrete-time Riccati equation (1.21), (43) follows, and (43,) and (43,) are

true due to (48) and (49), respectively. Equality (44) follows from (48) and (49) too.
3. = 2, is trivial.
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4. By comparing (43) with (1.23) we have

G=V'Vv (50)
H=W'V (51)

and consequently
HG H'=w'W (52)
By substituting (50) and (44) in (1.13), (45) is obtained, and (46) is a direct consequence of
(45) and of the fact that (44) is the stabilizing feedback gain. Since || Vu + Wx I, = 0iff

(46) holds

min  JkEw) = <&, X E> )

u€l(k,),0)
for all (k,£) €Z X X. Thus the theorem is proved. a

Remark 9. Condition (41) is the time-varying, discrete-time counterpart of the Popov
“positivity condition”. The positivity condition (41) implies factorizations (50), (51) and (52)
that make the generalized Kalman-Szego-Popov-Yakubovich system take on form (43).
Such a form is the “classical” Kalman-Szeg$-Popov-Yakubovich system encountered in the
Popov-Yakubovich theory. Note also that (41) can be expressed in the Popov index terms,
that is

JkOm) 2o |lulll , 6>0 (54)
for all (ku) €Z x IX([k, ®), U ) as follows from (9). ]

Theorem 10. Let £ = (A, B; Q, L, R) be a Popov triplet where A does not necessarily define
an exponentially stable evolution. If

a)L=0

b)R»0

c)0=0

d) (A, B) is stabilizable

e) (sz ,A) is detectable (causally uniformly observable)
then the discrete-time Riccati equation

X=A"0XA-A"0XBR+B'0XB) B0 XA+Q (55)
has a positive semidefinite (definite) stabilizing solution X and (42) holds.

Proof. Since (A4, B) is stabilizable there exists F= ( ke z bounded on Z such that

A=A +BF defines an exponentially stable evolution. Let £ = (4,B;Q,L,R) be the

F -equivalent of Z (see Definition 1.7 a)) where B= B, é =0+ F'RF, L=F R, R=R.

Let R, be the operator (12) associated to Z, that is
.‘le=13+f;:lf+f‘ﬂ(+f:§f;=R+f:F‘R+Rff;+i't:(Q+F‘R17)fk

=(+FL)'RU+FL)+T, OF, (56)
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where f is defined via (3) with the state tramsition operator associated to A Clearly
31 2 ( as follows from assumptions b) and c). Let (¢)),

~ o~ o~ e o~

;EN’S >0ande;>0asi~> . Let
=(4,B;0,L R+£I)forwhlchxtcorrespondsﬂi 51 +eIz€Nand
RzelVkeZ

Hence (41) holds for .‘ﬁi . Then by applying Theorem 8 to £ it follows that: 1) the discrete-
time Riccati equatlon . _ ) - S~ o~
X=A"0XA-(A'0XB+L)R+¢eI+BoXB) (L' +B'aXA)+0 (57)

has a stabilizing solution X for each i €N and 2) the Popov index .F(k,&,u) associated to
£ attains its minimum for an adequate control input, say u'e 12([k, ), U) and it equals
<& ,X"'c E> x- Denote by ¥’ the corresponding optimal evolution in 12([k , @), X). Since
gt Fllo offr o] 00
0 I1|{0 R|]|- 0 &l
F I
it follows that M' = M'*! = 0 and consequently we can write

<§,X‘I;§>x=.i7(k,§,1:i)= < x! M x! >z<|* |, M F >
;l ;1 ;i l‘;i
Sl it i+1 X = [
=)' kEu'TY = <§,X‘k E>y=< M >=20V k& EZxX
~i+1 ~i+1
u u

Hence

1 2. 3
X, z2X 22X >..20V kEZ

and consequently

X, -—E:X‘ 20Vkez (58)

defines a bounded sequence X = (X, ik ez Since b) and (58) imply R + B*0XB»0 it
follows by takmgz - 0 in (57) that

X=A"0XA —(A UXB+L)(R+B aXB)_l(L+B aXA)+Q
Using now 2. of Proposition 1.8 (for X = 0) the last equation is equivalent to (55). Let

FA2-R+B'0XB) 'B*oXxA (59)
which is a bounded sequence. Using (59) we can bring (55) into the Liapunov form
X=(A+BF)'cXA+BF)+Q+F'RF (60)

But
_ [~ w| 0%
Q+F RF—[Q F'R ][RVZF}

and
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A+BF+ [K —BR’”] [RﬁF] =4A+KC VK

Hence the pair ((Q + F* R F)V‘ ,A + BF) is detectable since (C, A) is as e) asserts. Since
X =0 apply Theorem 1.7.1 and the conclusion follows. For the parenthesized text see
Proposition 1.6.14. 0
Remark 11. Theorem 10 is the standard result of the linear quadratic problem formulated
under the “local positivity condition”, that is, conditions a), b) and c) in the statement of the
theorem. g

Theorem 12. Let = = (A,B; Q, L, R) be a Popov triplet where A does not necessarily define
an exponentially stable evolution. If

o L
> Ly
9 Rr
b) R»0

¢) (A, B) is stabilizable

d({(Q-L R7! L‘)l/2 ,A-BR™! L") is detectable (causally uniformly observable), then the
discrete-time Riccati equation (1.23) has a positive semidefinite (definite) stabilizing solution.
Proof. Since

I -LR7Y (o L I ol _ {Q-LR7IL* 0 0
o I ||L® R||-R7IL* I 0 R|

the conclusion follows by applying Theorem 10 to the F-equivalent
£=U4- BR™IL* B; Q0-LR7'L*o0, R) and then use 2. of Proposition 1.8. o

Corollary 13. Let = = (A, B ; M) be a Popov triplet for which a. of Theorem 2 holds. Then the
Popov index can be uniquely expressed as

Jtu) = <€, X E> + <u—u®®) R, (- uby > (1)
for all (k,&u) EZ x X x X[k, @), U ) and where R u®4) and X, are given by (12), (29)

and (40), respectively.
The proof is an easy consequence of (29) and simple manipulations on quadratic functionals
on Hilbert spaces. g

Remark 14. Equality (61) shows that u = u®®) is a stationary point for the quadratic func-
tional (61). If R, » 0 (R, «0) it provides a minimum (maximum) of it. Other cases as those

that will be investigated in the next chapter will lead to game-theoretic situations. g
Let us now point out the connections of the above developed theory with the Hamiltonian
approach to Riccati equations which in the discrete-time case presents some particularities.
To this end consider again the system (23) with y = 0 written in terms of the original data of
X that is
ox=Ax+ Bu
A=Qx+A'cA+Lu (62)
0=L'x+B*0A+Ru
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To obtain (62) from (23) write LandR explicitly by the aid of (15) and (16), respectively,

and then replace A by 4 + Xx. As we already mentioned in 2. of Lemma 3, (62) defines the
node & which was deeply involved in the above theory through its associated Toeplitz
operator family (R Rewrite (62) as

ogx=Ax +Bu
-A*cA=Qx-A+Lu
-B*0l=L"x +Ru

k)k €z

or in the “descriptor” form

& ok

0] [x B

0 -A4" ol|o|A|=|Q -I L (63)
0 |« R

Introduce now

Definition 15. Let = = (4, B; O, L, R) be a Popov triplet with 4 not necessarily defining
an exponentially stable evolution. Call (A, B ), with

I 0 0 A 0 B
A=10 -4 0| , B=|Q -I L (64)
0 -B* 0 L* 0 R

the Hamiltonian pair associated to Z. We shall say that the pair (A, B ) is dichotomic if there
exist two bounded sequences V' = col(V,, V,, V) = (col (V x v, x Vi Jc))k ez
Vl’k:X*X, Vz,k:X->X, V3,k:X->U and § = (S,), cz> S, : X > X with S defining an ex-
ponentially stable evolution, such that

BV=AdVS (65)
If in addition Vl_1 is well defined and bounded we shall term this property as disconjugacy.

O

Now we can state the result which emphasizes the connection between the Popov-
Yakubovich approach and the Hamiltonian approach.
Theorem 16. Let X be a Popov triplet. The following are equivalent
a. The discrete-time Riccati system (1.11) has a stabilizing solution (X , F).

b. The Hamiltonian pair (A, B) is dichotomic and disconjugate

Proof.
a.=>b.
The equality (65) holds for
I
V=|X| , S=A+BF
F

where (X, F) is the stabilizing solution to the discrete-time Riccati system. Indeed, (65) is
explicitly written as

0 B|I I o0 0] |1

-1 L||X|=]|0 -4" 0|o{X|{(4+BF)

0 R|[F] |0 -B" of |F

l**pg '
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ie.
A+BF=A+BF
Q-X+LF=-A4"0X(4 +BF)
L' +RF=-B'0XA+BF)
that is, in fact, the discrete-time Riccati system (1.11) which is clearly fulfilled. Since
A + BF defines an exponentially stable evolution and V, = I, the conclusion follows.
b. = a.
To this end we shall prove first
Proposition 17. If (65) holds with S defining an exponentially stable evolution, then
V; Vi= V; v (66)
Proof. Write explicitly (65) i.e.
AV, +BVy=0VS§
QV,-V,+LV,=-A"aV,S§ (67)
* — _ *
L'V, +RV,=-BaV,S
From (67) we get
§To(V,V)S=S"aV,AV, + S aV,BV,
-V, V,==8"aV,AV, - VIQV, - VL'V, (68)
0=-S"0V,BV,~V;RV,-V|LV,
and by summing the left-hand and right-hand sides of (68) one obtains
S0 VIS =V V= V1OV — VL'V, - VILV, - V3RV,
Since S defines an exponentially stable evolution, the above Liapunov equation has a unique
solution and, since the right-hand side is selfadjoint, V; V, is selfadjoint too and equality
(66) holds. D
Let us go back to the proof of implication b. # a.. Define
= 1 _ 1
X=Vvi ., F=V¥ (69)
According to Proposition 17, X = X*. With (69), (67) provides
_ 1
A+BF=(V)SV,
Q-X+LF=-A"oX@V)SV]' (70)
L* +RF=-BaX(@V)sv]'
Since S and 4 + B F are linked by a Liapunov transformation as first equation (70) shows,
it follows that A + B F defines an exponentially stable evolution and the last two equations
(70) become
Q-X+LF=-A"0X(A +BF) 1
L* +RF=-B"0XA+BF)
which is exactly the discrete-time Riccati system as we have already seen. g
Remark 18. Theorem 16 shows the connections between the dichotomy-disconjugacy
property of the Hamiltonian pair (A, B) and the existence of the stabilizing solution to the
discrete-time Riccati system (1.11), but not to the discrete-time Riccati equation (1.21). This
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happens because of the fact that no information is known about the invertibility of

R + B* 0 X B. In the case of the Popov-Yakubovich approach such information is obtained
via Lemma 6 while in the Hamiltonian theory such information is not available. Neverthe-

less in the time-invariant, finite-dimensional case it can be proved that R + B* X B is inver-

tible if the matrix pencil 1 A — B is regular i.e. det(AA — B) % 0. In the time-varying,
finite-dimensional case a similar result can be obtained by taking into consideration some
additional constraints. a

In this respect we have

Proposition 19. Let X = R”, U=R" and let T = (4,B;0,L,R)be a Popov triplet. Assume
that

a) R~ is well defined and bounded.

b) A Vis well defined and bounded where A = A — BR™' L*.
¢) The Hamiltonian pair (A , B) is dichotomic and disconjugate.
Then the discrete-time Riccati equation (1.21) has a stabilizing solution.

Proof. According to Theorem 16 there exists a stabilizing solution (X, F) to the discrete-

time Riccati system (1.11). Using 2. of Proposition 1.8 for X = 0 and F = ~R™! L*, rewrite
(1.11) as

A oXA+BF)-X+0=0
RF+B*0XA+BF) =0 (72)
where 0=Q - LR 'L*and F=F-R'L",
From the last equation (72) we get

F=-R'B'0X{@ +BF)
and consequently

A+BF=A-BR'B*oX(A +BF)
or
(I+BR'B'oX@+BF) =4 (73)
Since we are in the finite dimensional case, (73) shows that (I + BR™!'B oX)'1 is well
defined and bounded because of assumption b). Eliminate now 4 + B F from (73) and the
first equation (72), and obtain

A'oXI+BR'B'eX) A-X+0=0
By using Lemma 1.11 the conclusion follows. a
Consider finally a Bucy type result

Proposition 20. Let (4, B, C, 0) be a stabilizable and detectable linear system. Then

a) The discrete-time Riccati equations

X=A"0XA-A*0XB(I+B'0XB) B'oXA+C"C (74)
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and
OY=AYA* - AYC'U+CYC)ICYA"+BB" (75)
have positive semidefinite stabilizing solutions X and Y, respectively.
b)
A+BF=(I+0YaX) {4 +KOI+YX) (76)

where F and K are the stabilizing feedback and injection gains, respectively.

Proof.

a) For the discrete-time Riccati equation (74) the result follows directly from Theorem 10

for R=1 and Q = C* C. Referring to the discrete-time Riccati equation (75) apply the

previous result to £ = (A# , c*, B#) and then dualize the result.

b) Equations (74) and (75) can be rewritten as (see Lemma 1.11)
A'aXA+BF)-X+C'C=0
(A+KC)YA*-0Y+BB =0

from where we get

YA*0XA+BF)-(I+YX)+I+YCC' =0
A+KQOYA'aX-(I+0YoX)+I+BB0X=0
Further
A+KCQOYA 0 XA+BF)—-(A+KCO(I+YX)+A=0
A+KCYA*0XA+BF)—-(I+dYoX)A+BF)+A=0
where (1.30) and its dual have been used. From the above two equalities the following holds
MA+KOI+YX)y=((+0YoX)A+BF) an

Since X,Y =0, (I + YX)_1 is well defined and bounded and consequently (77) impli?:'s

(76).

Remark 21. A corresponding result holds for Kalman-Szeg6-Popov-Yakubovich systems. OI

3. Positivity. Factorizations. Contracting nodes

Let T=[A4,B,C, D] be an internally exponentially stable node. As in Example 1.3 as-
sociate to it the Popov triplets X, = (4, B;C°C,C*D,D"D) and
z,=(4,B;-CC,-C'D, y*I-D*D) for any y > 0. We shall say that T has the positivity
property on the left (right) if 7° T» 0 (T T" » 0), that is, there exists d > 0 such that
WTull,zo|lull, ¥V u EIZ(Z ,U). We call T a y-contraction if || T || < y. In what fol-

lows we shall emphasize the connections between the positivity property and the existence
of the stabilizing solution to the discrete-time Riccati equation and the Kalman-Szego-
Popov-Yakubovich system associated to Z, on the one hand, and the y-contracting property

and the existence of the stabilizing solution to the discrete-time Riccati equation or the
Kalman-Szegd-Popov-Yakubovich system associated to Z,, on the other hand. In the first

case the so called inner-outer and normalized factorizations will be obtained.
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We shall start with the Fosmwty problem in which, as we already mentioned, the so-called

Popov triplet Z, is invo
We have

Lemma 1. Let T=[A, B, C, D] be an internal exponentially stable node and associate to it
the Popov triplet £, = (A,B;C°C,C'D,D'D). Then R =T" T where R is the operator

(2.21) associated to Z,.

Proof. Following Proposition 2.2.4 T* T has the following realization
ox=Ax +Bu
A=C"Cx+A4'0l+C'Du
y=D*Cx+B*0A+D*Du
Hence by using 2. of Lemma 2.3 (see also (2.62)), the conclusion follows.
We have now the main result of this section
Theorem 2. Let T = [4, B, C, D] be an internal exponentially stable node. Then

a. The following assertions are equivalent

LT T»O0.

2. The discrete-time Riccati equation associated to Z,

X =A"0XA - (A"0XB + C*'D)(D"D + B'GXB)_I(D'C + B'oXA) + C*C

has a positive semidefinite stabilizing solution X.

3. The Kalman-Szegi-Popov-Yakubovich system associated to Z
D'D+B*'aXB=V'V
C*D+A'cXB=W'V

C'C+A0XA-X=W'W
has a stabilizing solution (X ,V ,W)with X = (.
We have also

T"T»0=>D"D»0
b. The following assertions are equivalent

LTT »0.
2. The discrete-time Riccati equation

OY=AYA* - (AYC'+BD*)DD*+CYC") (DB +CYA")+BB"

which is the dual of (2), has a positive semidefinite stabilizing solution Y.
3. The Kalman-Szegd-Popov-Yakubovich system
DD +CYC =PV
BD*+AYC =W

BB +AYA -0Y=WW
which is the dual of (3), has a stabilizing solution (Y , v, W) withY = 0.

We have also
TT*»0=>DD*»0

M

@

®)

4)

®)

(6)

™
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Proof. We shall prove part a. of the theorem.
1. = 2. Notice that the following double implication holds
+ +_
T"T201P, T'TP[ =T, T, 201V k€Z @®)
Here T, stands for the (causal) Toeplitz operator associated to T at k.
The equality in (8) is trivial because T, = PI': TP: = TP; as a consequence of T being an
internal exponentially stable node. For the direct implication in (8) we have
2 +
|| Pully< <Pfu,T" TP u>=<Pu,P, T"TP u>
for all u € I%(Z , U) and the conclusion follows.
For the reverse implication in (8) let u € lz(Z , U) be arbitrarily chosen. Then P,': u ap-

proaches u in 12(Z , U) as k approaches ~ . Hence by taking k - ~ o in the inequality
o||Pull5< <Pfu,P} T"TP u>= <P} u,T" TP u>

the result is obtained.

We can proceed now to our proof. From (8) and Lemma 1 we get R, » 0. We have also

J,(k.£,u) = 0 for the associated Popov index as follows from (1.8). Hence by using Theorem

2.8, the conclusion follows.
2. = 1.1is a direct consequence of 1. of Lemma 2.6.
2.  3.is as in Theorem 2.8.

To prove (4) let (k) EZ X U be arbitrarily chosen and define u € lz(Z ,U)asu, =vand
u; = 0 for i # k. Since 4 defines an exponentially stable evolution, (1) provides for such 4,

P ,,x=0and P;Hl = (), where (x 1) € 12(Z ,X) x 12(Z , X)) is the solution to (1). Hence
the last equation provides
2 2
ollvilg=ollully= <y,u>

* * 2 2
=<D, Cx,v>y+ <B A v>u+ D vIg= 1Dy

for 0 > 0, that is D,: D, 261, V k €Z and the implication (4) is proved.
To prove part b. apply part a. to T = [A# , c* , B* , D#] and then dualize the result. O
We shall now be concerned with applications of the previous theorem.

Corollary 3. Let T=[A, B, C, D] be an internal exponentially stable node. Then we have
LIfT T»O0then

T'"T=T,T, )
where

T,=A,B,W,V]=[4,B,-VF,V] (10)

with F= -V W and V, W given by the stabilizing solution to the Kalman-Szegi-Popov-
Yakubovich system (3).
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2 IfTTt » 0, then

T =1, T (11)
where

To=M,W,C,V]=4,-VK,C,V] (12)

with K= -V W and I//: v given by the stabilizing solution to the Kalman-Szegi-Popov-
Yakubovich system (6).
Proof.

1. According to Theorem 2 the Kalman-Szeg6-Popov-Yakubovich system (3) has a stabiliz-
ing solution. Hence by combining 1. of Lemma 2.6 with Lemma 1 we get

N'V'VN=R=T'T (13)
where N is the node
ox=Ax+Bu
v=—-Fx+u (14)
Let T, 4 YN and (9) and (10) both hold due to (13) and (14).
2. This follows by dualizing 1. o

Definition 4. An internal exponentially stable node T for which T~ ! is also an internal
exponentially stable node will be termed as an outer node. |

Since 751 =[A+BF,B v-L1,F, V1 as follows from (10) and 4 + B F defines an ex-
ponentially stable evolution, it follows in accordance with Definition 4 that T, in the fac-
torization (9) is an outer node.
Definition 5. An internal exponentially stable node T will be called inner (coinner) if
T"T=1 (TT'=)) O

We have
Proposition 6. Let T = [4 , B, C, D] be an internal exponentially stable node. Then
a) T'is inner if there exists X = 0, bounded on Z, such that

D*'D+B*'0XB=1

C*D+A’0XB=0 (15)

C'C+A"0XA-X=0

If T is inner and the pair (A, B) is causally uniformly controllable then there exists X = (),
bounded on Z, for which (15) holds.

b) T is coinner if there exists Y = 0, bounded on Z, such that
DD*+CYC' =1
BD*+AYC =0 (16)
BB"+AYA*-0Y=0

If T is inner and (C, A) is causally uniformly observable then there exists Y = 0, bounded on
Z, for which (16) holds.

Proof.
a) Remember that (1) defines T* T. For the first part of a) use (15) in (1) and obtain
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Ox=Ax +Bu
A=Xx-A"0XAx+A'0A-A"0XBu=Xx+A'0A—-A"0Xox
y=-B'0XAx+B'0A+u—-B'0XBu

or
A-Xx=A4"0(A - Xx)
y=B'o(A-Xx)+u
Since the unique solution in 12(2 ,X)tow=A"owisw =0, it follows from the above two
equations that A — Xx = 0 and consequentlyy = u, i.e. T" T=1I.
For the second part of a) let X = 0 be the solution to the last equation (15). Such a bounded
on Z solution exists because of the exponentially stable evolution defined by A4. This,
together with (1), provides
ox=Ax+Bu
A-Xx=C'Cx+A*0(A-Xx)+A"0o(Xx)-Xx+C*Du
=-A'"0XAx+A'0(d - Xx)+A*0(Xx) + C*' Du
=A*0(A-Xx)+(C°'D+A*0XBu
u=D"Cx+B0(A-Xx)+B'0(Xx)+(D*'D+B"0XBu~B 0XBu
=B'0(A—Xx)+ (D°C+B*0dXAx+ (D"D+ B 0 XBu
Denote z = A — X x and the above system can be written as
ox=Ax+Bu
z2=A"0z+(C"D+A*0XBu (17)
u=B'0z+(D*'C+B*'0XAx+ (DD +B* 6 XBu
Let (k,v) €EZ X U be arbitrarily chosen and define as before u € 12(Z ,U) by w, =v and

u; = 0 for i # k. Since A defines an exponentially stable evolution we will have x; =0 for
i <k and z;=0fori 2 k + 1 for the solution (x,z) € lz(Z , X)X 12(Z , X) to (17). Hence by
taking the last equation (17) at moment k it follows that
_ * *
v=(D, D +B X A B)
and the first equation (15) is fulfilled due to the arbitrariness of v and k. Now (17) becomes
ox=Ax+Bu
z=A'0z+Hu
0=B'0z+H'x

where H2 C* D + A* 0 XB. Since x =%u, and B0z =" Hu (see (2.19)) the above sys-
tem provides
0=C"H+H Lu (18)
Let u be defined again as above. Then (18) provides
P T Hu=0
that is

BiSk,i+1Hkv=0 i<k

from where we get

Hv=0

k

k-1
* %
(2__:_ msk,i+l Bi Bi Sk,i+1
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Since (A4, B) is causally uniformly controllable the above equality provides H,v=0and

consequently H = 0 due to the arbitrariness of v and k. Thus the second equation (15) holds
and a) is completely proved.

To prove b) apply a) to T = [A# , c* , B* , D#] and then dualize the result. g

With the above result we can proceed to the inner-outer (outer-coinner) factorization of a
node. We have

Theorem 7. Let T=[4,B,C,D] be an internal exponentially stable node. If T* T » 0
(T T »0), then T can be factorized as

T=T,T, (T=T,T)

~ . (19)
where T (T)) is an inner (a coinner) node and T,, (T,) is an outer node.
Proof. Assume 7" T'» 0. According to Corollary 3, (9) holds. Define T as
_ 1
=TT, (20)

which is really a node. Indeed, since Tal =[4A+BF,B y1 JF, V—l] we have for
w= T51 v

oz=(A +BF)z+BVIV
w=Fz +v 1y
Hence we have fory = TT(;lv

oz=A+BFz+BV 1y

ox=BFz+Ax+BV 'y

y=DFz+Cx+DV 1y
and by subtracting the second equation from the first we get

oz=(A+BFz+BV 1y

o(x—2)=Ax ~2)
y=(C+DFr+Cx—-z)+DV !y

Since the unique solution in 12(Z ,X)too(x —2z) =A(x —z) isx —z =0, due to exponen-
tially stable evolution defined by A4, the above system reduces to

0z=A+BFz+BV 1y
y=(C+DI7)z+DV1v
that is
T,=[A+BF,BV ' ,C+DF,DV] 1)
which is clearly a realization of the node because of the exponentially stable evolution
. . . _ 1.# 1_ 1\* 1_
defined by 4 + B F. Since (20) and (9) provide T;T,=(T,,")'T'TT,, =(Ty )Ty T, T, =1
we conclude that T is an inner node. For the parenthesized text use dual arguments. In this
case

~ 1 1
T,=14+KC,B+KD,V'c,V D] 22)
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is the coinner factor and (12) is the outer factor, and where the stabilizing solution to (4) has
been used. [m|
Example 8. Let us illustrate now an inner-outer factorization. For, consider the internal
exponentially stable node T = {4, B, C, D] defined by

A_O,kodd _ 1, kodd _ |1, kodd D=O,kodd
k=12, keven > "k~ |0 , keven > "k~ |0 , keven > "k~ |2 , keven
k~1
For these data the input-output operator described by y, = > G Skj B4+ Dy, (see
i=—oo
(1.2.1)) becomes
= Ou, +0u,_,+2u,_,+0u_,+0u_,+.. , kodd
k2w, +0u,_ +0u,_,+0u,_,+0u_,+.. , keven

-3 -2-1 0 1 2 3

- s
35 ]
oN
N o
o N
N o
SN

in the matrix form. Hence 7° T = 41» 0 as can immediately be checked from the above
matrix representation of the node. The discrete-time Riccati equation (2) becomes

¥ - 1 | kodd
k Xk+1 , keven

thatis, X, =1 V k €Z which is exactly the stabilizing solution.
Now the Kalman-Szegd-Popov-Yakubovich system (3) is easily obtained from

2 _ |1, kodd _ |1, kodd
Dk+Blchk_{4 , keven Vk_{Z , keven
¢ D, +A4,B X =0 Vi > Wk=0 V k
and
2, 2 —
Cet A Xpr1 X, = WZ

since both sides equal zero for all ks. Since F = -vlw=y, (21) and (10) provide

= . _ _ 1 _ _ 1
T,=[A,,B,,C,, D) withd, =A4,B, =BV ',C,=C,D,=DV"
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and
To = [AO,BO,CO,DO] with AO =A, BO =B, Co =W=), Do =V, respectively. One
can immediately prove that T=T, T, O

Now we shall confront the “all-pass completion” problem. It consists in finding a completion
T for a given inner node T'such that [T T*]is an all-pass node. We shall solve this problem
in the finite-dimensional case. Thus we have

Proposition 9. Let X=R", U=R™, Y=RP and let T=[A,B,C,D] be an internal ex-
ponentially stable node. Assume that

a)T" T»0.
b)(A-B pt C)—1 is well defined and bounded.

c) (H]/2 C,A-B pt C) is causally uniformly observable.
Then for the inner factor in (19), given by (21), there exists a node

L _ 1 1
Tf =[A+BF,B* ,C+DF,D"] 23)

such that T, , 4 [T[T}L] is an “all-pass” node.

Here D' 8 (0" D)D", T1 & 1 — D(D* D)™'D* where (D* D)™ is well defined and bounded
because of implication (4).

Proof. Following Theorem 2 the discrete-time Riccati equation (2) has a stabilizing solution
X = 0. Because of b) we can rewrite (2) as (see Lemma 1.11)
X=A'0XA-A"0XB(D*D+B'0XB) B oXA+C'TIC (24)
where, with actual data,
A=A-BR'L*=4-BD'D)"'D*c=4-BD'C
0=0-LR!L*=c'c-Cc'DD*'D)"'D'c=c'TiC
By applying Theorem 2.10 (see the parenthesized text) to (24) it follows that X » 0 and
consequently X 1, 0. Rewrite now (2) in the Liapunov form (see (2.60))
A+BF)'¢X(A+BF)-X+(C+DF*C+DF)=0 (25)
where according to (1.30)
A+BF=(+BR'B'ox)™4 , R=D'D
and, consequently (4 + BF’)_1 is well defined and bounded since 4 is so (see b) in the
statement).
Thus X is the positive definite observability Gramian of the pair (C + DF,A + BF) with
A4+B F)'1 well defined and bounded. Now we can use Theorem 2.5.2. This means we have

to :ns a bounded B* = (BY), ¢ o D* = (D)), cz» By ER™P™™), D} € RPXCO~™)
such that _ ~
(C+DF)'[D D*]+A+BF)oX[B B'1=0 (26)
T - Sk - I 0
D L B i m
D DY+ JoX[B BY= . @7
{(D*) (BY) o I,
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Moreover we shall let (D m)_1 be well defined and bounded where
AS pi
Dy, =D D71 (28)
Here BV~! and D V! have been denoted by B and D, respectively. Since T, is inner (see

(15)), it follows that those equations derived from (26) and (27) which do not contain B*
and D* are automatically fulfilled. Hence B* and D* must satisfy

(C+DF)'D* +(4+BF)’0XB* =0 (29)
D'D*+B'0XB=0 (30)
(DHY'Dt + BYY oXBt =1 (31)
As we mentioned 5 _
(C+DF)'D+(4+BF)'6XB=0 (32)
is true. From (29) and (32) we get
B* = -(@x) 4 +BF'T"\(C+DF)'D* (33)
and
B=-0X)"4+BFR'T"{C+DF'D (34)
By substituting (33) and (34) in (30) and (31) one obtains the following two equations
D'ZD* =0 (35)
(DY ZDr =1 (36)
that must be simultaneously satisfied by D*. Here
Z2I+(C+DFPU+BF) Y o) Y4 +BF)' T C+DF)*»0 (37
To solve (35) and (36) write them as
~ L
D, Zk Dy =0 (38)
L\* L _
D) 2D = Ip-—m 39)

Since Ek = Dk Vk_1 has full column rank as (4) asserts, there exists an orthogonal matrix
Uk such that
D

~ k
Uy Dy = (40)

0
with D, nonsingular. Since D; D, = 5; Ek clearly the sequence D! is bounded. Let

Uz, U, partitioned as
z VA
Uz U= |1k T124 @1)
k *
ok Zog Lo

with Z,,, € RP=™XP~" and Z,,, » 0 as follows from (37). Let
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0
z-1| VkEZ (42)
2k
which clearly defines a bounded onZ sequence D*t. By using (40) and (41) it can be easily
checked that Dj" given by (42) satisfies both (38) and (39). With D" substituted in (32),

B is also obtained. Finally note from (28), (40) and (42) that

1A
D, 2 U,

D o
22,k
and consequently D_1 is well defined and bounded. Thus the proof ends. a

Remark 10. By dualizing the result of Proposition 9, 1n other words by using the Kalman-
Szeg6-Popov-Yakubovich system (6), a completion T of T given by (22) may be found

such that T* = [TI (TIL) ] is an all-pass node. a

A remarkable application of the Kalman-Szegd-Popov-Yakubovich systems (3) and (6) is
the so-called normalized factorization.
Definition 11. Let T be a node. We shall say that T has a right (left) normalized factorization

if it can be writtenas T=NM"~ (T M N) where N, M (N M) are internal exponential-
ly stable nodes and

M'M+N'N=I (MM'+NN*=1) O
Since the Bezout identity is fulfilled, the normalized factorization is coprime. We have
Theorem 12. Let T=[A, B, C, D] be an internal exponentially stable node. Then T has a
right (left) normalized factorization.
Proof. Since RA 1+ T*T»0 is the operator (2.21) associated to the Popov triplet
X' =(A,B;C"C,C"D,I + D" D) we can apply Theorem 2 and Corollary 3 to Z',. Thus
we obtain
I+T T= T;) T, 43)
with T, given by (10) and where V' and W have been replaced by the new ones correspond-
ing to the stabilizing solution to the Kalman-Szeg6-Popov-Yakubovich system
I+D*'D+B*'0XB=V'V
C*D+A"cXB=W'V (44)
C'C+A 0 XA-X=W'W
associated to Z',.

Let M2T,'=[4+BF,BV"',F,V"" and NATT,'=[4+BF,BV",C+DF,DV"]
(see (21)) and notice that in this case N is not inner. Notice also that both M and N are
internal exponentially stable nodes. Using (43) we get (7'61)'7'51 +(T T(;l)'(T 7'51) =1
that is M* M + N* N = I. For the parenthesized text use dual arguments. d
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An interesting result which can be directly derived from the above theorem in conjunction
with Theorem 2.2.12 is the one concerning the doubly coprime and normalized factorization
of a node. Consider first
Remark 13. Let (4, B, C,0) be a linear system. Assume that the discrete-time Riccati
equation (2.74) has a stabilizing solution X = 0 and let F be the stabilizing feedback gain.
Let the following two internal exponentially stable nodes be defined via formulae (2.2.17)
and (2.2.16) thatisM =[A + BF,B,F,lland N={4 + BF,B,C,0]. Then
M*M+N'N=V'V (45)
where V* V' =I + B* 0 X B. To prove (45) notice that the Kalman-Szegé-Popov-Yakubovich
system associated to (2.74) is
I1+B'oXB=V'V
A'cXB=W'V (46)
A'0XA-X+C'C=W'W
By comparing now (46) with (44) the result follows directly from the proof of Theorem 12.
O
From Remark 13 we derive

Theorem 14. Let T = [4, B, C, 0] be a node with (4 , B) stabilizable, (C , A) detectable. Then
both discrete-time Riccati equations (2.74) and (2.75) have stabilizing solutions X = 0 and
Y = 0 and let F and K be the corresponding feedback and injection gains, respectively. Let the
following internal exponentially stable nodes

[A+BF BV F, v M [A+KCKV'1C 7Y

=[4+BF, BV’1 C,0] =[4+KC,B, V‘c 0] @7
—[A+KC,B, -VF,V] =[A4+BF,-KV,C,7
=[A+KC,K,VF,0) H=[A+BF,KV,F,0)

be defined. Here I + B* 6 XB=V*Vand [+ CYC* = V. Then T=NM~' = M N,

-H G||-N éz[l 0]

-~ - 0 I (48)
M N{|M
and
M'M+N'N=] (49)
MM +NN' =1 (50)
that is T has a doubly coprime and normalized factorization.
Proof. By dualizing (45) we get
MM +NN =V7 (51)

where M = [A+KC,-K,-C,I}, N=[4A+KC,B,C,0]. By making the followmg
replaces M « MV~ N «NV‘IM«I?‘IMN«I?‘NandG«VGH«VHG <GV,

H « HV with original G, H, G, H given in (2.2.23), (2.2.24), (2.2.25), (2.2.26) the result
follows directly from (45), (51), (2.2.11) and (2.2.13).



3. Positivity. Factorizations. Contracting nodes 107

As we mentioned in the introductory part of the present section the question of contracting
nodes will be now in order. Such a topic will be investigated by reducing it to the positivity
theory. Similarly to Lemma 1 we have

Lemma 15. Let T = [4, B, C, D] be an internal exponentially stable node and associate to it
the Popov triplet £, = (A, B; —~C* C,=C" D ,¥*1 - D" D), foranyy > 0. Then

R= y2 I — T" T where R is the operator (2.21) associated to z,

Proof, A realization of y*I — T* T'is
ox=Ax +Bu
(-))=-C"Cx+A*a(-1)-C"'Du (52)
y=-D'Cx+B'a(-A)+ #*1-D"Dyu
which is exactly the system (2.62) written for the triplet Z,. Hence the conclusion follows by
using 2. of Lemma 2.3. O
The main result in this section is

Theorem 16. Let T = [A, B, C, D] be an internal exponentially stable node. Let y > 0. Then
the following assertions are equivalent

LTI <
2. Both discrete-time Riccati equations
X=A"0XA—(A*aXB—C'D)(yI-D*D+B*aXB)"{(B'aX4-D*C)-C'C  (53)
and
0Y=AYA*—(AYC*-BD*)(y*I-DD*+CYC*)~(CYA*-DB")-BB* (54)
have negative semidefinite stabilizing solutions X and Y, respectively, and
Y’ I-D*'D+B'6XB»Qy¥*I-DD* +CYC*»0
3. Both Kalman-Szegi-Popov-Yakubovich systems
V' I-D'D+B'0cXB=V'V
~-C'D+A"cXB=W'V (55)
-C'C+A0XA-X=W'W

Y¥I-DD'+CYC' =V
-BD* +AYC =W (56)
~BB"+AYA'—oY=WW
have stabilizing solutions (X,V , W) and (Y ,V, W), respectively, with X < 0and Y < Q.
We have also

IT|| <y=>y*I-D*D»0andy*I - DD*»0 57)
Proof. We have

| T <y¢y21—T'T»O (58)
Indeed, for the direct implication we have

2 20012 = 211 112
T <y=[Tully=[ITINully < |lull;
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2 2 2, .2 2 2 2 2
=y lully= I Tullzz @ = I TINully> <u, ¢ T-T Tu> =20 |lull;

ford = y2 -IIT ||2 > (. The reverse implication is trivial.
As in (8) we have

VI-T' T»0ey’ P - T, T »0 VY kEZ (59)
where T, is the Toeplitz operator associated to T at k.

Using now Lemma 15 we get
_.2pt

where ﬂlk is the Toeplitz operator associated to R at k, for R given by (2.21) and cor-
responding to the Popov triplet Z,. By combining (58), (59), (60) and then by applying
Theorem 2.8 the equivalence of 1. with the existence of the stabilizing solutions to the
discrete-time Riccati equation (53) and the Kalman-Szegd-Popov-Yakubovich system (55)
is obvious. Simple inspection of the Liapunov equation in (55) shows that X < 0. To prove
the rest of the equivalences use dual arguments based on the fact that || T|| <y iff

Il T || < v. Finally (57) follows exactly as (4) and (7) but with respect to the system (52)
Thus the theorem is completely proved.

4. Stabilizing compensators. Small Gain Theorem

In this section several relevant applications of the positivity theory, exposed in the previous
section, are presented. These concern the question of constructing stabilizing compensators
such that the resultant closed-loop system has “good” properties with respect to internal
uncertainties.
Let (4,B,C,D)
ox=Ax+Bu
y=Cx+Du (M

and(4 ,B ,C ,D)

c 4 [ c

ox =A x +B u
c c C c C

y.=C.x +D u, &
be two linear systems. Here x = (x,), c ,, ¥, € X u=Wer MELY=0 ) cp
yk EYandxc = (xc,k)kEZ’xc,k S XC, uc (uC,k)kEZ’ uC,k (S Uc,yc = (yc,k)kez’yc’key
Assume that
a)
UC=Y and YC=U (3)
and

b) (I =D, D)™" is well defined and bounded. Note that (1 =D D_)™" will also be well

defined and bounded.
Conditions a) and b) are usually termed as the feedback well-posedness conditions.
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We shall say that the system (2) compensates the system (1) or that the system (2) is a
compensator (controller) for (1) if

u =y and u=u, 4)

that is, (2) is coupled to (1) (or vice versa). This is the reason that if (2) is a compensator for
(1) we shall write it usually as

ox =A x +By
c c C Cc
u=Cx +Dy ©)
Notice that the roles of the systems (1) and (2) may be interchanged, such that (2) is a
compensator for (1) iff (1) is a compensator for (2).

By substituting the second equation (1) in the second equation (5) one obtains
u=Cx +D Cx+D Du
c C [ [
from where
u=(I-DD)Y'D Cx+(I-DD)'Cx
[ [ c c C

-1 -1
=D(I-DD) 'Cx+(-D,D)'C,x, ©)

where the second condition of feedback well-posedness has been used. By substituting (6)
in (1) and (5) we get

ox=(A+BD(I-DD) 'Cy+B(I- D D)”'C_x_
_ -1 -1 7
ox, =B -DD) 'Cx+(A4 +BI-DD) 'DC)x, 0
or in a compact form

Oxp =Apxp ®)
with
. , [4+BDCc BT
= Ap= oz ©)
R= (x| * 7R BC a
[ C
and
A -1 A -1
A24 +8D0-D,D)'C, , B,AB(-DD)
c2a-ppy'c , Depu-DD)! (10)
c c C c (o4 C

Remark 1. If D = 0 in (1) or D, =0in (5) then the second feedback well-posedness condi-
tion is automatically fulfilled. If D = 0 then (9) and (10) become
A=4 , B=B , C=C , D=D
[ [ [ Cc c c [
and
A+BDC BC,
R™| BC 4 an

[

A

respectively. By comparing (9) with (11) we conclude that if the second feedback well-
posedness condition holds then (10) can be considered as data of a new compensator for the
system (1) in which D = 0, and providing the same resultant closed loop operator A g Hence
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the second feedback well-posedness condition allows to assume from the beginning that
D = 0in (1) and this assumption will be frequently made.

According to the above remark the compensation techniques deal only with systems of the
form
ox=Ax+Bu
y=Cx (12)
The system (5) is called a stabilizing compensator for the system (12) if Ay given in (11)
defines an exponentially stable evolution.
We have

Proposition 2. The compensator (Ac s Bc s Cc s Dc) stabilizes the system (A, B, C,0) iff the
compensator (Af , Cf , Bc# , Df) stabilizes the system (A# , c* , B* , 0).

Proof. As we know (see Proposition 1.3.19) A: defines an exponentially stable evolution iff
Ap defines an exponentially stable evolution. But
, |A*+c*fB* c'B*
Ap = c*p* 4t (13)
c [+
which shows that (4_,B_,C_, D ) is a compensator for (4, B, C, 0) iff
(Af , Cf , Bf , Df) is a compensator for (A# , c* , B* , 0), and the conclusion follows.

Remark 3. Proposition 2 is usually known as the duality principle in compensation. a
A remarkable result is given by

Theorem 4. There exists a stabilizing compensator (5) for the system (12) iff the pairs (4, B)
and (C, A) are stabilizable and detectable, respectively.

Proof.
“Only if”. Assume that a stabilizing compensator (5) exists for (12), i.e. A, given in (11)
defines an exponentially stable evolution. Fix any s €Z and construct by induction a

bounded sequence (X, , V), W), ., _, generated by the Kalman-Szego-Popov-Yakubo-

vich system
I,+B. X!, B, =)'V,
A X B =WV, (14)
L+ A X A -X =W)'W,

initialized for X: = (), such that X, ks = (X, k) =0 and (Vk) ! exists and it is bounded for all
. . . s *y S s *y 75

k =5 —1.Fork <s — 1 the first two equations (14) give (V,_ ) V_,=I, W,_)) V,_,=0

Hence we may choose V;_l = I, and consequently W;_l = (). Then the third equation (14)

provides X;_l = Iy. Letk <5 — 2 and assume that (14) is fulfilled fork + 1 <i <5 - 1and
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S _ (yS* s A * S 473 s A 5\=1p* s
for X; =(X;)" 20, V; SUytB; X, ,B)*" and W =(V)) B, X;, A, Note that

Vi =Iyand W;_, = 0 as we already obtained.

. A * . A -1
Since X, ; = 0, choose Vk‘=(IU+Bkas+1Bk)w and then define W, = (V)™ B, X\ | A,
and st =1y + A; X,fHAk - (Wks)*Wk‘. Thus Xk‘, Vks, W,: have been constructed and, since

Vi 2 I, it has a bounded inverse. Let us show that X, = 0. Using (14), we can rewrite the

third equation (14) as X/ =4, X; 4, +C, C, where 4, -é-Ak - Bk(Vk‘)—lW,f ,
C;é[l w,; )*(V,:)'l]. It follows that X, 0. Thus the whole sequence (X, , V), W.)), ..,

with the desired properties is constructed. Fix now any pair (rn§) €Z X X and r<s— 1.
Then for any two sequences (x,), . . &), 5  linkedbyx, , , =A x +B u,x = & we get
from (14)

x I, 0]j}x
2 2 _ k X k
ka”x+ “uk”U— <[“1J’[ IU:| ukjl>XxU

B

S\ * 5 1) *v 5 S\*1/5 *y 5
_ < ol (W)Wt X —AX Ay W) V= AX 1B | %
’ S\*11,S p*FuS S\*1/5_p*yS XxU
“ V) W =B X s V) Ve BXir1Bi | |

- s s 2 s _ s
=W tViu gt < Xen >y = <5 0 X 0% >x

By summing from k = r to k = 5 — 1, and taking into account that XSS =0, we get
s 2 2 g s s 2 s
kér(llxk Ix+ 1l 11y =k§r“ Wex +Viully+ <8, X &>y (15)
from where
s—1
<6 XE>y=3(lx, 1%+ 1w 13 (16)

Using (15) and (16) we have further

s—1 s
2 2 2 2
<EXE>y s T (llx Mg+ N Il =Zdlx 15+ e 1D
Pl kX kU fmr kX kU

5
_ +1 +1 2 1
_Ern Wx + V) I5+ <6, X E> 17)
Consider the particular choice of (v,), ,, given by x, ., = (4, = BV, ") T'W )y,
A 1,-1 1 .
x, =& Then foru, = ~(V; ") 7w, x, both (r,), , , and (u), , , are linked by
X1 =A%, + B, x =& and, in addition, || W;ka + V;H U, ||%J =( for k = r. Con-

sequently (17) gives <£,X £>y < <& ,X"H £>, that is,



112 Chapter 3/Riccati equations and nodes

0=sX*<x**'V 5 Vrss-1 (18)

due to the arbitrarity of &.
Consider now the state-space evolution of the resultant closed loop system

Xp g+l = AR,ka,k’ initialized at k=r by Xpx = (£0)€X x X_. In this case we have
u =C, K ¥ex +D, y C,x,- Since A, defines an exponentially stable evolution one obtains

2 2 2 2
”xk”X+ ” U “U= “xk”X+ ” Cc,kxc,k+Dc,kaxk”U

2 2 2 2 2 2
< g 1%+ 20 Cop WPl I3+ 211D, I €, 12115 11

2 2 2 2(k— 2
sa(llx g+ Nz ) =allxg, lix x <ap’@ 1N 9
[ [

for adequate a, p and 0 < g < 1. With (19) in (16) we get
<s,x:s>xskzap2q2<""> NENZ=p, l1E113
=r

ap?

Hence
3
—-q

forp0 = )

X‘:SPOIVS,VI'SS-I (20)
By combining (18) and (20) we conclude that for each r €Z, lim X” exists. Denote it by X

s>

where 0 <X <p I V r€Z thatis X = (X  z i positive semidefinite and bounded.
. . _ * 1B A . s _ S\—1p* A
Since :LI:V: =(U+B X, B)"=V, andslir:Wk =) B X, .14, = W, as follows

from the above construction, by taking k -  in (14) one obtains
I+B'0XB=V'V=1
A*aXB=W'V
I+A" 0 XA-X=W'W
From here we have immediately that
X=A+BF)'0XA+BF)+I+F'F (21)

for F& —V"1W. Since X=0 and [ + F'F 2 I, (21) shows, via Theorem 1.5.5 that
A + BF defines an exponentially stable evolution. Therefore (4, B) is a stabilizable pair.
Since the compensator (AC R Bc , Cc , Dc) stabilizes the system (4, B, C, 0) it follows (see

Proposition 2) that (Af , Cf , Bf ,Df) stabilizes (A# ,c* B*, 0). Acording to the above

proof (A# ,c* ) is a stabilizable pair. Therefore (C, A) is a detectable pair and the “only if”
part is proved.
“If”. Since (4, B) and (C, A) are stabilizable and detectable, respectively, there exist F and
K such that both 4 + B F and A + K C define exponentially stable evolutions. If

A, =A+BF+KC , B.=-K , C.=F , D =0 22)

then (22) defines a stabilizing compensator. Indeed, by substituting (22) in (11) one obtains
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4 = A BF
R™ |-KC A+BF+KC (23)
If we consider the Liapunov transformation
i1 0
r- [_ i 1] (24)
then
~ 1_ |A+BF  BF
Ag=0TAT "= [ 0 A+KC]
which clearly defines an exponentially stable evolution in accordance with Proposition
1.3.17. Thus the “if” part is proved and the proof of the theorem ends. a

Remark 5. In the finite dimensional time-invariant case the proof of the “only if” part of the
above theorem is a simple exercise in applying the Hautus criterion to test the stabilizability
of any pair (4, B). In the time-variant case the frequency domain approach fails and conse-
quently other tools must be used. The proof given above further emphasizes the efficiency
of the Riccati theory (see the “only if” part of the proof of Theorem 4). o

Remark 6. In Proposition 1.6.9 it has been proved that uniform controllability of any pair
(4, B) implies the stabilizability property for it. The mentioned proof required the existence

of AL, Using similar arguments as in the proof of the “only if” part of Theorem 4 the

restriction concerning the existence of A™! can be removed. Assume that (4,B) is any
causally uniformly controllable pair. For any s €Z construct the sequence

X VW) <51 Satistying (14) and initialized for X7 = 0. Then, as it has been shown, (15)

and (16) hold and consequently the monotonically increasing property (18) is true. It
remains to prove (20). Since the pair (4, B) is causally uniformly controllable, according to
Proposition 1.6.3 there exist v > 0 and 8 > 0 such that for each (rn§) €Z X X (r<s—1in

this case) there exists a control sequence w, .. u,,_, for Xep1 = A, By, x = 13

which steers & in the origing in v steps. Moreover if xf = ., xf + = 0 is the associated

state-space evolution then
r+v—1

,E,(”"i [N ARE A (25)

A A

Let(uk)karbedefinedasuk=u£forr5k5r+v—landzi;c=0fork2r+v.Thenthe

associated state-space evolution will be (x;)k >, such that x/; = i forr<sk<r+v-—1and
x: = 0 for k = r + v. Hence (25) provides

z U %+ N 1) <BlIEN> (26)

and using (16) one obtains from (26) <& ,er E><pB| & ||2. Thus (20) follows. Further,
the proof runs similarly as in Theorem 4 and the stabilizability of (4, B) is proved. a

Theorem 7 (Small Gain Theorem). Let T=[A,B, C, 0} and T = [AC,BC , CC ,D ] be two
internal exponentially stable nodes. Assume that T, compensates T. If Tl <y and

1 . e
H T, I} < y then T_is a stabilizing compensator for T.
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Proof. According to Theorem 3.16 there exist two stabilizing solutions (X, V, W) and
&X,,V_, W) to the Kalman-Szegé-Popov-Yakubovich systems

VI+B'cXB=V'V
A*cXB=W'V 27
—-C'C+A" 0 XA-X=W'W
and
ZI-D'D +B'oX B =V'V
y c C c c C c C
* *
—C;D +A0X B,=W.V, (28)
* 3
—C.C.+A0X A ~X =W.W_
respectively, with X < 0 and X =0
Let
-X

X, = =0
R _yZXC (29)

and evaluate Q 840X, 4, -X, forA given by (11). Using (27) and (23) we get
R R R“°R R R

A*+C°D'B* C'B’||-0x 0 A+BDC BC.| |X 0 0. 0
. ‘c ‘c c c + 5 - :l 12 (30)
Cr:B Ac 0 _YZUXC BCC AC 0y XC Q12 Q22
where
0, =-WW+W'VD.C+C'DIV'W+C'D:V'VD_C+y*C*' Vv, C)
0,=~-W'VC +C' DIV'VC +YCViW) 1)
= * 2
Q22 = —(Cc v VCC +y W; WC)
But (31) gives O = —Cp, Cp, where
W+VDCC VCC 32)
C,= 32
R Y.C YW,
Hence we get the Liapunov equation
XR=ARUXRAR+CR CR (33)

with Cp, given in (32). Let

-By1 0
K, =
R 0 "}’_IB V—l
c C
Then
cc A+BV w 0
A, + =
R-TRTR 0 A+BV W

[ c c
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which clearly defines an exponentially stable evolution since (X, V', W) and (X ,V_, W )
are stabilizing solutions to (27) and (28), respectively. Hence (Cp,Ap) is detectable and
consequently the positivity of X, (see (29)) together with (33) imply, via Theorem 1.7.1, the
exponentially stable evolution defined by 4. Thus the proof ends. O

Remark 8. If in the statement of Theorem 7 the contracting properties of the nodes 7 and

T, are modified as || T'|| <y and || T || < % the conclusion still remains valid. Indeed,
. 1
there exists y; > y suchthat || T|| <y, and || T_ || <7;. O

The following corollary of Theorem 7 emphasizes the significance of this theorem versus
“parameter” uncertainties.

Corollary 9. Lety > Oand let T={T=[4,B,C,0] | || T|| <y}and
T = {TC =HM,,B,,C,D]| |IT|l < %} two families of internal exponentially stable con-

tracting nodes. Then every T_€ T _is a stabilizing compensator for every T € T. O

Remark 10. Assume the conditions of Corollary 9 to be valid and fix two nodes T € T and
T_€T,_. Then the closed loop stability is preserved under “parameter” uncertainties that
occur in the “structure” of T and T provided that they still belong to T and T, respectively.

In fact the Small Gain Theorem asserts the stability robustness of the resultant closed loop
configuration. O

S. 12-Optimization

In this section the time-varying counterpart of the H2-optimization problem will be inves-
tigated. The next development is essentially based on the pair of the Riccati equations
(Kalman-Szegd-Popov-Yakubovich systems) (3.2) and (3.5) ((3.3) and (3.6)). Unlike in the
previous section, where the stabilizing question has been exclusively under interest, now we
shall be interested in attaining supplementary properties concerning the input-output be-
haviour of the resultant closed-loop configuration. For evaluating such input-output proper-
ties the I>~seminorm of an lz-operator will be introduced. Notice that all the treatment will
be developed in the finite-dimensional case.

Let T:IXZ ,R™) > IXZ , RP) be a linear bounded operator and let

% =2T,u , T,ER™ | kez (1)

i= - 00
be its action written explicitly. Here u = () ez ady = (), ¢ 7 belong to 12(Z ,R™) and
I*Z , RP), respectively.
Introduce the positive numbers

A .
t = trace (T, T,) = trace (T, T,) V k,i€Z @)
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and, for eachi €Z and 1 <j < m, define U € 12(Z ,R™) by

e.,. k=i
]

= 3
ik 0, kemi ©
whereej =col(0,...,0,1,0,...,0).
J
Let
vy = Ty )
Then according to (1) and (3), (4) provides y, ik = Ty ¢ and consequently
E ||ylk 112 = Ee wi T =trace (T, T,) = ¢,
from where
2 Ily,,ll2 El =E_Ily,,,cll 2_2“ (5)
Thus (5) and (4) show that
kZ EIITII IIu,,IIZ—MIITII Viez (6)
—-—co ]_
Because of (6) the following quantity
1
E 2 :
| T || 11m sup @)
2 25+ ll— sk——s

is bounded by m || T ||2 Here s €N. Thus || T ||, is well defined for all linear bounded
T:IZ ,R™)~*Z ,RP). It can be easily checked that || T, + T, =< | T, |l + || T, |
for arbitrary T, T, (for which the sum is defined). Notice also that || T ||2 =0if¢, # 0 for
a finite family of index pairs (i.k) €Z X Z. Therefore || ||, is a seminorm.

Definition 1. For any linear bounded operator T:IXZ ,R™) - %(Z | RP) call || T|l,

defined by (7) the associated /*~seminorm. o
We have
Lemma 2.
ITH, =0T 1= 1 T* I, ®)

Proof. Since

(T"y), = E TZ, A
and

(7*y), = s T, Y

]—-—oo

(see Definition 1.1.5), the conclusion follows from (7). a
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Now we deal only with lz-operators defined by internal exponentially stable nodes. To be
more specific let T=[4,B,C,D] be an internal exponentially stable node. Here

— — _ _ . Xn xXm
A=A ez B=Bliez C=Clep D=Dy), cg%ith 4, ER", B R,
C, €ERP" and D, € RP*™, thatis X = R", U = R™,Y = RP. In this case

C S B.,i<k-1

kS ki+170
T,=1 D, ,i=k
0 ,i>k &)
where Sk,‘ +1 S,':,. +1 18 the evolution operator associated to 4. Consequently

t; =0 fori>k (10)
Notice also that in this case Pl:—i Yi = 0 for Yi defined by (4). For this reason Yi will be

called the j-causal impulse-response at initial time i, that is, the output when the system is
excited on the j[h input channel by a unit impulse at the moment i.

The following result will be usefull for our next development.

Proposition 3. Let T=[A, B, C, D] be an internal exponentially stable node. Then

L

s m

1
T3 =limsup 5 =g 3 3 1y 11 a1

5> l_S

2.If D =0 then

l
Il T||2—11msup 23 Etrace(B 0,,1B)

l——S

= lim sup T 1+1 2 trace (C; P, C ) (12)

§—> 00 i==s
where Q =(Q),;c, and P = (P); ¢ z are the (causal) observability and controllability
gramians i.e. the bounded on Z solutions to

0=A'cQA+C'C (13)
and
oP=APA" + BB, (14)
respectively.
Proof.
1. Following (5) and (10), (11) is equivalent to
I T||2-S11msup 7o 4 1,—2sk§t’“ (15)

where, according to (6), the right-hand side of (15) is bounded.

Because of the exponentially stable evolution defined by 4 we have that ¢,. < aqk_i v
k =i for adequate @ 2 1 and 0 < g < 1. Hence
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oo

1< @ S e i O % stl-i e k-s—1
S X< > 4= zq WA
25+ 1,22 B 25+ 1 20 i 25+ 1,27 k=s+1

_aqg 1 go-i_eg 1 3 ;__ag 1

2> (ass—> o (16)

T1-g 25+ 1,1 1-q2s+1 ;57 5 G2 25+1
Based on (16) we have for an adequate subsequence (s,),, <
s -] S oo
1 1 "
lim sup > dt.=lim-—— 3 3¢,
s> 25 + li=—s k=ik' y->00 ZS‘V + 1i=—Svk=ikl
s s s © s 5
v v 1 v v 14
= lim > >t + >  >t.| =lim 3y >,
vaw |25, +1 ;220 2K 25 +1 imes k=“'v+’1a yo> o0 2sv+1 i=—suk=ik'
13 2
Ssl_l.rgsuP 25 + 1i£s ,?;i’kf =Tl (17)

On the other hand, according to Definition 1, the left-hand side of (15) is less or equal than
the right-hand side of (15). This, together with (17), proves the equality (15).
2. Using (15) we obtain for D = 0

. 1 S
IT|2=limsup =—— 3 S ¢.
2 s> 2S+li=—.\'k=i+1k’
1 3 <
= lim sup > Xtrace(B'S,.. . C.C,S,. . B)
s>00 2s+1i=—sk=i+l i “ki+1 Tk Tk Ski+1 7
)
. 1 *
= slir?o SUPp 5o 1i=2__strace (B; 0,11 B)

where (1.5.5) has been used to express the solution to (13). Thus the first equality (12) is
proved. For the second equality (12) use the first equality (8) in conjunction with
5 i-1

2. 1
” r ”2 _sllrisup 2s+1 i.—_z—sk=2—oiik
and then proceed similarly as above where now formula (1.5.6) has been used. Thus the
proof ends. O

Remark 4. The first part of Proposition 3 provides a dynamical significance of the I~-norm
of an internal exponentially stable node, that is, it equals the square root of the causal

impulse-response energy. The second part gives an evaluation of the I%-seminorm in terms
of the controllability and observability Gramians.
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In the time-invariant case we have for the causal impulse-response Yik = Yojj—i and conse-

m m m
2 2 ) 2
quently ¥ || Vi ||§ = 21|| Yoj ||§. Hence || T|[5=2 || Yoj ||5 which is exactly the H"-norm

2
of the node. By the Parseval equality we get || T ||§ = Zln ftrace (T'(eio) T(eig))de
0

where Tz) =C (z1] - A)_IB + D is the associated transfer matrix. o

Now we are ready to deal with the lz-optimization problem. For, consider the system (or the
plant) written in the generalized form, that is

ox=Ax+ B1 u + Bzu2
¥ =Cpx +Dpu, (18)
Y= Cyx + Dy uy
Fkez “1= Wpez Y= Mphez V1= Opdiez 2= Vg ez 1€
the state, external input, control input, regulated output and measured output, respectively,
withxkEX=R",uk=(ul,k,uz’k)EU1 X U2=Rm1XRmZand
o= O 1) €Y, XY, = RAXRP:
Let also the compensator (4.5) be written with D_ = 0, i.e.

where x =

ox.=A x . +B y, (19)
u,=C x

c cC
where x_= (x, ,k)k ez ek € R": activated by the measured output y, and providing the
control input u,.

Notice that we preserved the system and compensator structures encountered in the classi-
cal Linear Quadratic Gaussian setting, i.e. D11 = (), D22 =0, Dc = (.

By connecting (19) to (18) one obtains

axR=ARxR+BRu1
y1=CRxR (20
where
x A BZCC B1
"= |x| > 4R=|Bc, 4 | Br=|BD, | GRTIC DpCl @1
c 2 c c 21

as it can be checked.

The lz-optimization problem can be stated as follows. Find a compensator (19), usually called
in this case a controller, which

(S) Stabilizes the resultant closed-loop system, i.e. 4 g defines an exponentially stable evolu-
tion.

(O) Provides the minimum of the 1>-seminorm of the resulting internal exponentially stable
node (20), with respect to all compensators (19) satisfying requirement (S).



120 Chapter 3/Riccati equations and nodes

Denote the resulting node (20) by 7} , and by 7; its optimal value.
11

4.0t
Now we can state the main result of this section.
Theorem 5. If both discrete-time Riccati equations

X=A"0XA~(A"0XB,+C;D,,)(D},D,,+Bj0XB,)~(D},C, +BjoXA)+C;C, (22)
and

_ . . . . .

0¥ =AYA"—~(AYC}+B D} )(D, DYy +C,YC,
associated to the Popov triplets X, = (4,B,;C; C,,C] D
—_q#* ~#. # # #
flz - (A ’ C2 ’Bl Bl ’Bl D21 ’ D21 D21

respectively, then a solution (19) to the lz-optimization problem exists. To be specific, this
solution is

-1 * . *
) 'DyBIHCYANBB] (3
120Dy Dyp) and

), respectively, have stabilizing solutions X and Y,

A =A+BF,+KC) , B.=-K , C.=F, (29)
where F, and K, are the stabilizing feedback and injection gains associated to (22) and (23),

respectively. The optimal value of the 1%-seminorm is
k
1

2k + 1 i}_ . [trace (€}, Y, C, ) + trace (B, X, ., B )] @9

2 .
T = lim s
I yl"l"P‘Hz lim sup
a

Notice that if the stabilizing solutions to (22) and (23) exist, then they are positive semi-
definite because of the non-negativity of the Popov indices (see (1.8)).

In the sequel three particular problems will be examined which gradually lead us to the final
result.

1. The Disturbance Estimation problem
Such a problem arises in the following circumstances.
(DE1) Dl_zl and D2_11 are well defined and bounded.
(DE2) Both 4 - B, Dz_l1 C,and4 - B, Dl—z1 C, define exponentially stable evolutions.
We have
Proposition 6. If (18) satisfies (DE1) and (DE2), then
-4 -1, _ -1 _ -1 s |
A, =A-BD, C,-B,D, C, Bc_BlDZI » €= Dy, € (26)

is the optimal controller and it makes

1T, o 12 = @7
Proof. Applying (21), with actual data, we get
-1
_ A ~BD;, ¢ _ B, _
%= \pp-ic. a-p-'c.-pp-ic |’ B || RT ~C
1721 %2 1021 €=B D, G 1

Further by applying the Liapunov transformation
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]

-1 -1
A-B,D,, ¢, -BD,,C; B = [Bl}

-1 » PR
0 A-B,D}cC,

one obtains

”~N

Ap=054,5"=
Pa) _ _1 _
ACR =CpS =0 C]
Since A R defines an exponentially stable evolution, as DE2 asserts, and the node
[/TR ,§R , ¢ r » 0 equals zero as can be checked directly, the conclusion follows. O

2. The Disturbance Feedforward problem

The hypotheses are now relaxed to
(DF1) Dz—ll is well defined and bounded.

(DF2) 4 - B, Dz'l1 C, defines an exponentially stable evolution and the discrete-time Ric-

cati equation (22) has a stabilizing solution.
Then we have

Proposition 7. If (18) satisfies (DF1) and (DF2), then

=4 -1 = -1 -
A =A-B D) C,+B)F, , B =B D) , C.=F (28)
is the optimal controller which provides
k
2_ 1 1 .
I 7:vlulopt ”2 _klimw Sup 2k+1 ‘____E_ktrace (Bl,i Xi+l Bl,i) (29)

Proof. According to Theorem 2.8 DF2 is equivalent to the existence of a stabilizing solution
(X, V, W) to the Kalman-Szeg6-Popov-Yakubovich system associated to the Popov triplet
z ., le

Vg

D},D, +B,0XB,=V'V
CiD,+A’0XB,=W'V (30)
CICI +A* 0 XA-X=WW

Here F, = —V~! W. Instead of ¥, in (18) introduce a fictitious output ;1 and obtain the new
system
ox=Ax+B u, +B,u,
;1 =Wx +Vu, (31)
= Cyx+ Dy uy
Since both Dz_ll and V! are well defined and bounded, (31) satisfies (DE1) and (DE2).
Then by applying (26) to (31) and taking into account that F,= -vlw, (28) is recovered
and it is the optimal controller for (31). Since the difference between (18) and (31) occurs
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in regulated outputs, clearly (28) will be a stabilizing compensator for (18). Let us prove
now its optimality for the original system. Consider an arbitrary stabilizing compensator
(19). Using (30) in conjunction with (18) one obtains

2 _ 2
”yl,k ” - “ Cl,kxk+D12,ku2,k ”

— 2 _
= Vkuu+ kak I“+ <x ,kak> <xk+1,Xk+1xk+1>

* *

F2<uy B X M T Uy B K Bctix (32)
Let Y1ij be the j-causal impulse-response of the resultant system (20) at initial time i and let
(xij ,k)k ez and (um.j ,k)k < z be the corresponding state-space and output evolutions of the

system and the controller, respectively. In such conditions (32) becomes

2_ 13 2 -

+2<uy B X Kige1™ T <M B Xipn Bug e (33)
By summing both sides of (33) from k= —» to k = » and taking into account that:
Xig = 0, Uiip = Ofork<i (D, = ()),x‘.j,‘.+1 = Bl,iulij,i = Bl,iej and Uiiip = 0 for k # i, we

get

2_ 1= 2 * %
” yll:f “2 - ” yljj “2 + ej Bl,i/Yi+lBl,iej
Another summation from j = 1 to m gives finally

m m
Z My 113 =2 Wl 3y 113 + trace (B, X, By ) (34)
J= J=
Using (11), (34) provides .
2 : 1 *
I Tylu1 115 zklir?osup Th T li=2_ktrace (Bl,‘.Xl.+1 Bl,i)

m
and equality is attained for (24), which nullates Y || ;Ui ||§ for alli €EZ as a solution to the
j=1

disturbance estimation problem for (31). Thus the proof ends. a
3. The Output Estimation problem

This is the dual of the previous disturbance feedforward problem. The initial assumptions
are now

(OE1) Dl‘; is well defined and bounded.

(OE2) 4 - B, D1_21 C, defines an exponentially stable evolution and the discrete-time Ric-

cati equation (23) has a stabilizing solution,
Then we have

Proposition 8. If (18) satisfies (OE1) and (OE2), then

=4 — -1 - —n-1
A, =A-B,D, C,+KC, , B.=K, , C.=Dp G (395)
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is the optimal controller which provides

k
2_ 1 1 *
I Tylulopt 3= klf_risup 2k+1 i=2— Jrace CTRASH) (36)
Proof. By dualizing system (18) and the discrete-time Riccati equation (23) one obtains
0x=A#x+nyl+C#

_ pt#
u=Byx + D}y, (37)
U, = B x+ D12 Y
and the discrete-time Riccati equation assoc1ated to le, respectively. In this case the cor-

responding assumptions (DF1) and (DF2) both hold. Hence the result follows by applymg
Proposition 7 and then dualizing the result and taking into account Lemma 2.

Now we shall deal with the
Proof of Theorem 5

We follow the main lines in the proof of Proposition 7. After introducing the fictitious

output ;1 (see (31)) the system (31) satisfies in this case the conditions (OE1) and (OE2)

where the corresponding discrete-time Riccati equation coincides with (23). According to
Proposition 8 the optimal controller given by (35) receives exactly the form given in (24).
Consequently (24) is the optimal controller for (31). Hence it also stabilizes (18). Since
equality (34) still remains valid for any stabilizing compensator, it follows from Proposition
8 that
: 1k .
I Tylu1 Il Zklin:osup k1 i=23k [trace (€, Y,C;+ B ;i X 1’,)]

m
with equality attained for the controller (24) for which 3 || -;lij ||§ =tr (C 1 Y,C L.)
j=1

V i €Z as follows by applying again Proposition 8. Hence (24) is the optimal controller. O

Remark 9. The reader can recognize the perfect similarity of (24) with the classical solution
to the Linear Quadratic Gaussian problem. 0

6. Reverse-time Riccati equation and contracting nodes

Unlike in sections 3.2 and 3.3, where the theory concerns the infinite-time interval [k, ),
our attention will be now focused on system evolutions which take place on (—% ,k — 1]
and that are evaluated via the reverse-time Popov index. These facts will be expressed in
terms of the so-called reverse-time Riccati equation. Application to the extended Nehari
problem will be also given. To be more specific let = = (4,B; 0, L, R) be a Popov triplet
and assume throughout this section that: a) 4 defines an exponentially stable evolution, and

b).A ™! is well defined and bounded.
Let

ox=Ax+Bu 1
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Then for any k €Z, (1) linearly maps I*((—e ,k — 1], U) in (- » ,k — 1], X ) X X,

fl\c L&)
Uu |—) = k
v, x,E ) 2)
through
ku) _ ¢
X = Iku (3)
with fl: :12((—00 ,k—1],U) -»lz((—oo ,k — 1], X) defined by
k) _ f S
X = (L, u), =j=§:_ms,.,i+1 Bj wo, is k-1 0
(S;= s;]‘) and
(k) S
X, =‘I’ku ]=.=_wskj+lBjuj 5)

with W, : (e ,k — 1], U) - X. In fact x**)), __ is the unique solution in

12(( —,k],X) to (1) and ¥, is the controllability operator. Notice that both (f;()k ez and
(¥ e z are bounded (operator) sequences.
To describe the adjoints f; and ‘P,:, that is

HRRAlE

for (t,€) € X((—% ,k - 1],X) X X and u € X(<e , k — 1], U ) we write

k-1 k-1 i-1

<x, I u> —‘_§w<x (I u),>y —l—§°°]—§ ";’S;J+1B-”j>x
k-2 k-1 k-2 k-1
=y X< u B s! = Y <u.,y B S
jm— o imj+1 ij+1 l jmmco i’ _j+1 J+1 i U
and consequently
O yi=k—-1
q
E=1 S'ps o ick-2 ©)
i ],¢+1 -
j=i+1

for all x € (-, k—l] X) Further
k-1
<&, u>, = <§, E kJ+IB.uj>x=j=§_:m<Bj Sejr1Eou>y= <Y u>y
with
For each pair (ku) €Z X P((-» ,k — 1],U) let

S & < [x(z;t)] ’ I'g II;] [x(l;#)} . ®
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be the reverse-time Popov index, written explicitly
k-1 | k)| [ L|]%k#)
J(k,u) = 2 < lu i ] il

l==—00 i

A R|| w |TxxU 9)
I3 1

]
and associated to the triplet Z.

Introduce now

Definition 1. Call

R+B*0XB=(G+B" H)G G +H"B)
L+A4'0XB=A"HG (G + H' B) (10)
Q+A"0XA-X=A"HG 'H" A
the reverse-time Kalman-Szeg6-Popov-Yakubovich system associated to Z. A triplet

(X,G,H) withX = X*, G = G" and both X! and G™! well defined and bounded, is called
an anticausal stabilizing solution to (10) if (10) is fulfilled for it and

F=-G'H (11)
defines via u = F ox an anticausal stabilizing feedback for (1) that is A—l(I — BF) defines
an anticausal exponentially stable evolution.
Remark 2. Note that the right-hand side of (1) differs drastically from the right-hand side of

the Kalman-Szegd-Popov-Yakubovich system (2.23). Moreover, with a little computation
we can rewrite (10) into equivalent form

G=R-L'A"'B-B*U")"'L+B'U) Q-X47'B (12)
H=A)"(L-(@-X047"B) (13)
oX+UY Q-4 -HG'H =0 (14)

Equation (14) with H and G substituted from (12) and (13), i.e.
oX+AM " Q-047 -4 L~ (@-X)4"BYR-L"47B-B* (4" IL

+B'(4")7/(Q-X)47'B) "' (L"-B" (") TN (0-X))1”'=0 (15)
is called the reverse-time Riccati equation. X is an anticausal stabilizing solution to the
reverse-time Riccati equation (15) if gX , G, H) is a stabilizing solution to the reverse-time
Kalman-Szegd-Popov-Yakubovich system (10). Since (15) has an intricate form, we shall not
operate with it and we shall prefer to work with the reverse-time Kalman-Szegé-Popov-
Yakubovich system (10). The next remark is an argument for this preference. a

Remark 3. Assume that G » 0 and let V' 2 G** + G H* B and W & G™" H" 4. Then (10)
can be rewritten in the simpler form
R+B'0cXB=V'V
L+A*cXB=W'V (16)
Q+A'GXA-X=W'W
which coincides with the Kalman-Szegd-Popov-Yakubovich system (2.43). However V and

W have here different meanings. Indeed, the anticausal stabilizing feedback (11) is written
in terms of V and W as

F=-(V-wA B lwa™! (17)
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where V is not necessarily invertible as in the case of (2.43). Thus a triplet (X, V, W) with

X =X"and both X! and (¥ - WA B)™! well defined and bounded, is called an an-
ticausal stabilizing solution to the Kalman-Szeg-Popov-Yakubovich (16) if (16) is fulfllled
for it and (17) defines an anticausal stabilizing feedback.

By substituting (3) in (8) one obtains

J(k,u) = <u ) ﬁku > (18)
where
A ox S YRS
@-R+§L+Lg+ggg (19)

with f; described in (6).

In what will follow we shall be interested in finding conditions for the existence of an
anticausal stabilizing solution to the reverse-time Kalman-Szego-Popov-Yakubovich system
(or the reverse-time Riccati equation). As the next theorem will emphasize, the operator
(19) will play a central role.

Theorem 4. Under assumptions made on the triplet X the following two assertions are
equivalent

1. The following hold:

a (.‘ﬂ; ! is well defined and bounded.
-1 -1
b. ((Wkﬁk ‘pk) )k €Z
2. The reverse-time Kalman-Szegd-Popov-Yakubovich system (10) (reverse-time Riccati equa-
tion (15)) has an anticausal stabilizing solution (X , G , H) with X unique.
As for Theorem 2.2 we shall proceed by dividing the proof into several steps.
First we introduce the system
ox=Ax+Bu
A=Qx+Lu+A%ch , Ak=,u (20)

hez
is well defined and bounded.

y=L*x+Ru+B'gl
For each (k,pu) EZ x X x 12((—00 ,k—=1],U) (20) provides a well defined output
y&9) € P(—w  k — 1], U). Indeed, let x**) be given by (3) which is the unique solution
in 12(( -,k — 1], X) to the first equation (20). Forx = 2%*) and each u the second equa-

tion (20) has a unique solution in I%((— % , k], X ), and let A&#*) be the restriction of it to
(= ,k — 1]. Then

k, _& k
d Ak = § p+ S (Lu+ Qxt) 1)
an
(@A%mDy =p (22)
where (see 1.1.5)
S, M =Sm Visk-1 (23)

and

(8,2); =j§isjizj Vi<k-1 24)
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forallz=(z) L, _, € }(~e,k - 1],X). Hence

y(k,ﬂ»“) =L %) L Ru+ B g i) (25)
Concerning (25) the following result holds

Lemma S. For each (k,u,u) EZ x X X 12((—00 vk ~ 1], U) and for each i < k we have
y©rs) = Ry 4w g KpH)
] Pl

(26)
(withy(k’”’“) seen in 12((—00 ,i—1],U0))
Proof. Notice first that (4) provides
(Iku)j=()‘liu)j Vjsi-1<k-1 @7)
and let z & Lu + 0x%*). Then with (6), (7) and (21)-(24) we get
k-1
* k,
(B Gl(k’#’u))j_B A;(+fw) B; @, kMt (82 = B (5 kj+1H + ES j+1%)
i-1 k=1 i-
=B; (SlJ+l kz’u+ Zsrg+lz + z r,/+lzr) =B; SJ+1(S T Z,Sr,tzr)+=ZB rj+1 %

k, £ gk £
=B'S;, g AE) 4 () 2= (¥; Alssit) 4 2)
forjsi-1<k-1 Hence

B oA®h) = @t o) o £ (Lu + 0x®) = wialr ) rtLu+£7 0 Fu (28)

where (27) has been used By substituting (3) and (28) in (25), (26) follows with (19) and
@n.

We have immediately the important result stated in

Corollary 6. If 1.a. and 1.b. in the statement of Theorem 4 hold, then for each (k,£) €EZ x X
the following are true

1. There exist unique u € lz(( - k—1],U), denoted u(k’g), and u €X, denoted /t(k’g), for
which ¥, u = & and y*##) =
2. Let x**) and 1%%) pe the corresponding solutions ) gng 3k ) respectively, for
u =u®d and y = /l(k’g). Then
208 = _ g Ry~ 1 (k)
1 [ ] I 1

(29)
and
(kyg) —_— -1 * -1 *—1 kyg
us) = R W AT x§ ) (30)
forall'i < k and all k €Z and where x*¥) = £ and A{#9) = &),
Proof. For i = k, (26) and (22) give for y(k’” M) =0
0=.‘ﬁku+‘l’k/4 G1)

and consequently
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—1 yye*
u=-R"Wp (32)
zeros the output y®#*). Further, from
E= Vou=-Y .’ﬂ Ty k iy

one obtains . .

n=-P R (33)
By substituting (33) in (32) we éegt ) . .
Sk HU R (34)
which is exactly the desired control input and it is um?kue Now with (34), (26) becomes

0= R u® + ¥ A
from where

kE) _ =1 y* 1 (k,E
ul )__ﬁi qji)'i( ) (35)

But (k£) (k&)

xi = ‘P u (36)
by definition of x®#) (with u®#) seen in I%((—= , i — 1], U )). Hence (35) and (36) prov1de
(29) and (30), in the same way as (33) and (34) have been obtained.

Proposition 7. Assume that 1.a. and 1.b. in the statement of Theorem 4 hold. Then there exist
two bounded sequences X = X* and F with X unique, X~ Lyell defined and bounded, such that

1 1}"@ = X‘.x‘(k"f) i<k
and

2.8 = Fx* j<k-1
forallk €Z (xl((":f) =£).

3. u = Fox is an anticausal stabilizing control law that is A _1(1 — BF) defines an anticausal
exponentially stable evolution.

4. X and F satisfy the system
oX+UAY N Q-X4"1+HF=0

H*+GF=0 37)
with G and H given by (12) and (13).
Proof.
1. Follows directly from Corollary 6 by setting in (29)
- =1y -1 _
X;= _(qjiﬁi ¥) ‘X; (38)

2. Looking at (34) it follows that & = (R W3(W, =1 w*)1g)  defines a linear bounded
k kN kTk k k—1

operator F,_, : X~ U,V k €Z, for which u*%) = F, _ & Clearly F = (F,), _, is bounded.
Using now (30) we get

(’%5) (ﬁ I\p (¥, 5{ 1\p)—1 (k,E)) . t(k,é’) , i<k

and 2. is proved
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3. From the first equation (20) we have

ax(k’g) = Ax(k’g) + Bu(krf)
which becomes for u®#) = F g x*#)

28 = 4~Y(1 - B Fyox*4)
Since for all (kf) €Z x X, x* € P((~w,k - 1],X) and ||2%9 ||, <pll&|l, (@
evaluated directly from (3) and (34)) it follows (use a similar argument as for proving 3. of
Proposition 2.5) thatA_l(I — B F) defines an anticausal exponentially stable evolution.
4, If 1. and 2. just proved above are now used in (20) one obtains

x=A"YI-BFox

Xx=Qx+LFox+A'cXox

0=L'x+RFox+B'0Xox

foru = u(k’g), x=x% and 4 = 2&4), Using the first equation in the next two ones it results
(Q-X)A"I-BF)+LF+A*0X)0x=0
(L*A” Y -BF)+RF+B* 0 X)ox=0

Since (0x),_; =& and the pair (k£) is arbitrarily taken in Z X X, it follows that both

operator coefficients of o x in the above system equal zero. From here simple manipulations
lead to system (37).
To prove umqueness of X assume the existence of another pair (X F) satisfying (37) and

that makes A~ (I B F) to define an anticausal exponentially stable evolution. Then after
some simple manipulations, omitted here, one obtains

oX —X) = (4~ - BA)'(X -~ X)4™"( - BF)
Hence according to (1.5.7) it follows that X — X = (. Thus the proof ends. a

Assume again that 1.a. and 1.b. in Theorem 4 both hold and consider, for F introduced by
Proposition 7, the following system

ox=Ax+Bu

(39
v=-Fox+u
For each k €Z such a system defines a linear bounded operator
R :P((—% k= 1],U) > (- ,k=1],U) X X as
A Se
Neu= |y, |« (40)

where S, u 8 _Fox®) 1y=—F a(f; u) + u with f;( and ¥, introduced by (3) and (5),
respectively. Notice also that N ' : (=%, k = 1],U) X X > (=, k = 1],U) is well
defined and bounded as follows by inverting (39), that is

x=A"'I-BFox+A"'Bv , x =&
u=Fox+v (41)

and where A_l(l — BF) defines an anticausal exponentially stable evolution. Clearly
A A1
(N ez and (N, ), ¢, are bounded.

Now we can state
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Lemma 8 Assume that 1.a. and 1.b. in Theorem 4 hold. Then for G and X given by (12) and

(38), respectively, we have
L

G 0|

ﬁ;[o x, N =% Vkez (42)

2.G Liswell defined and bounded.
Proof.
1. We show first that

sstk=ﬁk+wkkak (43)

Letu € (- ,k — 1], U ). Then using (37) with (12) and (13) one obtains
g
<u,S,GSu>=<Su,GS u>=<-Fox+u,G(-Fox+u)>

=<-Fox+u,H'0x+Gu>=<-HFox+Hu,0x>+<-GFox,u>+<u,Gu>
=<0Xox+A) Q-4 ox,0x>+<Hu,0x>+<H' ox,u>+<u,Gu>
=<0Xox,0x>+<A")NQ-X)4 \Ux+Bu), Ax+Bu>
+2<(AY L-Q-)4" B, Ax+Bu>
+<(R-L°A7'B-B* ") IL+B*U") " Y(0-X)4" By, u>
=<0Xox,0x>+<(Q-X)x+A ' Bu),x+A" ' Bu>
+2<(L—-(Q-X)4 ' By, x+A" ' Bu>+<Ru,u>
—2<A7'Bu,Lu>+<(Q-X)A"'Bu, A" 'Bu>
=<0X0ox,0x>—<Xx,x>+<Qux,x>+<x,Lu>+<L'x,u>+<u,Ru>
= <X x,5>+<E0of +L"f + £ L +Ru,u>

= <X Yu,Yu>+ <R u,u>=<@ +¥, X, ¥)u,u>
Since both sides of (43) are selfadjoint operators and generate the same quadratic function-
al, equality (43) holds. Write now (43) as
Sk
v

. e o 2
[t v =
kTl —x || T T

and (42) follows by using the definition of N,.
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2. From (42) we can write
G

0 -X,

BR R H @
for arbitrary (v,£) € lz((— ©,k —1],U) X X. By taking £ = 0, (44) provides

GVl =1l (ﬁ;)‘lﬂkﬁ;l[g} 12 8l v I, @)

for an adequate 8, > 0 (8, = ——, || A1 || <6 and || B, || ¥ V k€Z,8,v > 0).
ov
Based on (45) the proof runs similarly to that given for 2. of Lemma 2.6. |
Now we can proceed to the
Proof of Theorem 4
1. = 2. Using 2. of Lemma 8 we can eliminate F in (37) (see (11)) and obtain the system

(12)-(14) which is equivalent to system (10) in which X = X* and X~ 1is well defined and

bounded (see 1. of Proposition 7). Notice also that A—l(I — BF) defines an anticausal
exponentially stable evolution as 3. of Proposition 7 asserts.

2. = l.a. Using (42) and taking into account that (ﬁk_l)k ez G~ and X1 are all well
defined and bounded, it follows that (.‘Rk_ 1)k < z 18 also well defined and bounded.

2. = 1.b. From (42) we have

G' oo
q-1= {1 £+y-1
k k 0 __X;l ( k)
Gl o
Kk kT 0 _ Xk—l

(here G! acts as a multiplication operator on 12((— o, k—1],U)).
By replacing N, from (40) we get further

S 7' o
M B W=y
from where
v R l V=X,
and the conclusion follows because of boundedness of X. Thus Theorem 4 is completely
proved. a

A direct consequence of Theorem 4 is

Theorem 9. Besides the conditions a) and b), imposed at the beginning of this section, to the
triplet 2 assume additionally that the pair (A , B) is causally uniformly controllable. Then the
Jollowing two assertions are equivalent

1 .‘ﬁk » 0 uniformly with k € Z (46)
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2. The reverse-time Kalman-Szeg-Popov-Yakubovich system (16) has an anticausal stabilizing
solution (X, V, W) with X « 0 and

G»0. (47)
Moreover, if 1. holds then

3
min J(ku)=-<§,X, &>
for all k €Z and & € X and the minimum is attained for u = u**®) given in (29). Here J(ku)
is the reverse-time Popov index expressed in (13).
Proof.
1. = 2. According to (46) we have .‘ﬁk_ 1, 0and uniformly bounded with respect to k. Thus
1.a. of Theorem 2 holds. Further, there exists 0 > 0 such that
-1 2
<u,ﬂk u> 20| ully
for allk €Z and all u € *((—e ,k — 1], U ). Hence
=1 yqy* _ * =1 \y* * 2
<€, W R W E> = <V E TV E> 20<E, W,V E>, 200§
where <&,¥, ‘I’; E>y2v|[§ ||§, v > 0 due to causally uniformly controllable assump-
tion. Thus ¥, ﬁ; 1 ‘P; »0
V k €Z and 1.b. of Theorem 2 holds too. Using now (38) and (42) the conclusion follows.
2. = 1. This follows directly from (42).

3. Use the Lagrange multipliers rule. Write

Fllu,p) = J(eu) +2<p, W, u>y = <u, R u> +2<¥p,u>

By zeroing the Frechet derivative of F one obtains

* —
Ru+¥u=0
from where
—_q-ly*
u=-FWu (49)
But
- _ “ly*, =
Y ou= ‘Pk.‘Rk Viu=¢
and

w=-w A v
By substituting it in (49) it follows that
_ a1y -1 y*\—1g _ =1 y* _ . (k
u= W@ AT Y e = Rt x g =0t
Hence
J(k,u(k’g)) = <u(k'5),ﬁku(k'§)> = <ﬂ;1‘P;Xk§,‘P;Xk§>

- 1 -
= —<E, XXX E> = -<E, X E>
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Since ﬂk »0, J (k,u(k"f)) is really the minimum of J(k) constrained by ¥, u = £ and 3. is
proved. ]

Remark 10. Theorem 9 can be seen as the reverse-time Popov’s Positivity Theorem in the
time-varying discrete version. O

Remark 11. Since A4 defines an exponentially stable evolution we can consider also the
reduced equivalent 2 = (4,B;0,L,R)of£2=(A4,B;0Q,L,R)where L=L +A" 0 XB,

R =R + B* 0 XB with X given by (2.13). As we have seen in (2.21) we can write

R=R+L'E+2L+XQF=R+L"2+1"L (50)
with £ given by (2.19). As we already mentioned the second expression in (50) is termed as
the reduced form of R. Consider also the operator (19) written for £ and X that is

R =R+L r +£ Q r (51)
and
respectively.
Looking now at (4) it can be immediately seen that

ie., £ is exactly the anticausal Toeplltz operator assoc1ated to ¥ at k. Consequently using

the reduced form of R given in (50) one obtains with (52) and (53)
P AP PRP+PLT.P+PILP—R+LPIP+PIPL

_hEL TR ST
=R+1L rk+rkL_ﬂk (54)

By comparing (52) with (54) we conclude that the anticausal Toeplitz operator associated to

R at k coincides with the operator (19) associated to the reduced equivalent T and not to the
original 2.

Notice also that

and this is because of I # ZP , while in the causal case we have I = I’.P and conse-
quently the causal version of (55) i.e. 31 .‘R holds. 0

To be more specific in connection with (55) we have

Proposition 12 If 2 =(4,B;Q,L,R) and $= (4,B;0, L , E) is its reduced equivalent
mentioned above then
1

Jeu) = hu) = <u, ¥ X, W, u> (56)

where J and J are the reverse-time Popov indices associated to = and 3, respectively, and ¥,
has been introduced by (5).
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Kk~ ko TkTk Tk (57
with & given in (52).

3. Ifﬂk » 0 then gtk » 0.

Proof.
1. Following the same computation as in the proof of 1. of Proposition 1.8 one obtains
J(ku) = J(ku) — <ox,0Xo0x> + <x,Xx>
for x = x**)_ Since the time horizon is (=, k — 1] the above equality yields
(k) = Jew) = <) X, x84 >
from where (56) follows by using (5).
2. Follows directly from (51), (52) and (56).
3.Fixk€Z andletr 2 k. Letanyu € 12(Z » U) be such thatu; = 0 fori = k. Then (4) yields
~ r—-1 ~ k-1 ~ ~
<u,Lu> T_E:ui X u),>y = i_%:ui , (Iku)i>U =<u,l u>
Hence from (54) we get

<u,ﬂ’u>=<u,ﬁku> Vr=k (58)

With (58), (57) provides

- - _ L~
<u,ﬁku> =<u,Ru>2z<u,f u>- | <u,¥'X W u>|

5 ~
26”“”2— |<u,‘P:X"Pru>| (59)
for an adequate 6 > 0. But
| <u, ‘P X‘Pu>| =|<¥u, X‘Pu>x| <;t||‘Pu||x—;t|| ES i+1B; 1”X
k-1 -1 2
=ull 3 S, Bullx=w Z S, 1B 1T 2 [y
j=—o -

kl
</‘ﬂ 2“ }+1|| E”u”U<'“:B ||u||2 ZPZ 2r—i-1)

=—o

= 1 20 2P 2 S D < 7 = I |2

i=—o

where || X, || <p, || B, sBand || S, || spdizj,0<q <1
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-1 2(' k) <2 2 that is

| <u, ‘I’ X‘P u>| <3 9 and (59) becomes <u, .‘ﬁ u> =z 2||u||2 Since u has been ar-

Hence for r sufficiently large u ﬂz p2(1 -q )

bitrarily chosen in 2 ((=»,k — 1], U) we deduce that .ﬁk » 0. O

A natural question which arises is that of recovering the usual discrete-time Riccati equa-
tion (1.21) from the reverse-time Riccati equation (10). In this respect we have

Proposition 13. Let X be a Popov triplet. Assume that R Yand (A-BR -1 L*)_1 are all well

defined and bounded. If X = X" with X~ 1 el defined and bounded is any solution of the
reverse-time Riccati equation (15) then

1. X is a solution to the discrete-time Riccati equation (1.21).
2. (R+B*9XB) L and (I - BF)™! are both well defined and bounded and

A+BF=(1-BF)™4
for F and F defined through (11) and (1.22), respectively.

Proof.
1. Rewrite the reverse-time Riccati equation (15) as

A*0XA-X+0-(L-(Q-X4"'B)x
X(R-L*A"'B-B'U""1L +B*U") Y0 - X471 B)"1x
L -B'U)e-x0n=0 (60)
Let A=A -BRIL* and X=X - Q. Since ™! and 47! are both well defined and

bounded, it follows that (1 —4 ' BR™'LY ), 1 -BR7IL*A™Y), (-R7'L*47'B)™!
and (I - L*47'B R_l)—1 are all well defined and bounded. Then we can rewrite the last

term in the left-hand side of (60) as
(L+XA7'B)(R-L*A™'B-B*(4")"'L-B"(4*)"'R4~1B) " }(L* +B*(4")"1®)
=(L+XA7'B)R"II-L*47BR™1-B* ") X4 BR"H L +B" (4" %)
=(L+XA" B R"YU-L*47'BR™1)"Ix
X[[-B* A" L+XAB)R™IU-L*A7 BRI~ \(L* +B* 4" " 1X)
=(L+X4A7'B)I-R7'L*47B) R 1x
X[[-B* A" L+XA"B)U-R7'L*A7 By R\ +B" (4" %)
=[I-(L+XA"'B)U~-R™'L*A7'B) 'R 1B* (4" YL +X47'B)x

x(I-R7IL*47'B)" 'R\ +B°(4")"'X) (61)
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With (61) substituted in (60) we get
[I-(L+XA7'BYU-R™IL*A7'B)"IR71B*(4*) 4" aX4-X)

—~(L+XA7B)I-R7IL*47'B) IR +B* (4"~ X)=0 (62)
From (62) we obtain succesively
[I-(L+XA"'B)U-R™IL°*47'B)"R™1B*(4") |4 aX4-X
—(L+XA7B)I-R™'L*47'B) IR 1L* =0,
A*aXA-X+Q-L(I-R™'L*4A7'B)"'R"1B"ox4
~XA"'B(I-R™'L*47'B)"'R"1B*0X4+Q4"'BU-R™'L* 47 'B)"'R"1B"0xA4
—~LJ-R7IL*47'B)"R*L*-XA"'BU-R™L"4~'B)"R7IL
+047BU-R7IL*47'B)"R7IL =0,
A'oXa-X[I+(I-A7'BR7ILY U7 BR™IL)+Q-LUI-R™L°A7'B) " 'R™B"ox4
~X(I-A7'BR7IL*) 147 BR™ 1B ox4+Q(-A"BR™IL") 147 'BR™'B" XA
—LR7IL*U-4"BR7IL) 14+ Q-4 BRTILY AT IBR ™I =0,
A*0XA-XA'A+Q0-L(I-R™'L*"A7'B)"'R™'B*ox4-XA"'BR"'B*0x4
+04 'BR™1B*0XA-LR™L* A" '4+04 'BR™IL" =0,
A*0X+LR™B'oX-XA~'-L(I-R~'L*A7'B) "R~ 1BoX-X4~'BR"'B*ox
~LR™IL*A"14+QU+A71BR™1B*oX4+A 7 BR™IL")4 =0,
A*'aX-XA '-L(I-R™L*47'B)" 'R B*oX- XA~ 'BR™'B*oX-LRIL*2~"
+QA@A+BR™L*~BR™'B*aXxA)4 =0,
A*oX-XA'-L(I-R7L*47'B)"'R™IL*4" ' BR"1B*ox-X4~'BR'B*0x
~LR™ L2+ 02" 1+BR™ B 0X)=0,
A*oX-XA 1-LR7IL*U-A"BRILY Y4~ 'BR'B'ox- XA~ 'BR™'B*ox

~-LR™'L*27 '+ 02" \u+BR™ 1B 0x)=0,
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A'oX~XA~'-LR™'L*A™'BR™'B’'oX-XA"'BR"'B'oX-LR™'L"A"!
+0A4~ Y 1+BR™'B*0Xx)=0,

A*oX+(-X-LR™IL*+0) " '(1+BR™1B*0X)=0 (63)

Rewrite (63) as
A =X+LRIL*-0d Y (ox)"'+BR71B" (64)
Hence the right-hand side of (64) has a bounded inverse. Since both (X + L R7IL - Q) and

(X" +B R_lB') are self adjoint (multiplication) operators it follows that each of them
has a bounded inverse. With this conclusion (63) yields

AoXI+BRBox) ™ @-X+0=0 (65)
where 0= Q - LR™!L". Since (65) is just (1.26) the conclusion follows.
2. Using (11) one obtains

I-FB=G(I-B'A" 'LR™HR

with G defined by (12). Hence (I — BF)_1 is well defined and bounded. Similar computa-
tions as above prove that A + BF= - BF)_lA. O
We have immediately
Corollary 14. Assume that all conditions stated in Proposition 13 hold. If X is the anticausal
stabilizing solution to the reverse-time Riccati equation (15) then it is the anticausal stabilizing
solution to the discrete-time Riccati equation (1.21) thatisx = (A + B I?)—lox is an anticausal
exponentially stable evolution for F defined by (1.24). O

We shall end this section by stating the reverse-time counterpart of Theorems 3.2 and 3.16.

Theorem 15. Let T=[A,B,C, D] be an internal exponentially stable node with A1 well
defined and bounded and (A , B) causally uniformly controllable. Let

2 =(A4,B;C"C,C"D,D"D) be the (first) associated Popov triplet. Then the following are
equivalent
1L.T'T»0.

2. The reverse-time Kalman-Szegé-Popov-Yakubovich (16) associated to the reduced
equivalent Z, of Z,, i.e

D*D+B'0XB+B'aXB=V'V
C'D+A°0XB+AcXB=W'V (68)
X+A0XA=W'W
has an anticausal stabilizing solution (X ,V , W) with X « 0 and G » 0 and where G is given by
(12) forQ=0,L = c'D +A OXB R=D"D + B* 0 XB. Here X is the unique and global
solution on Z ofX A'cXA+CC
Proof.

1. = 2. According to Lemma 3.1 & = T T is the operator (2.21) associated to Z,. Take it

into the reduced form and then apply (54). It follows that P, T TP, = .‘ﬁk . Following
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similar arguments as in the proof of Theorem 3.2 one can prove that T* T'» 0 iff .‘ﬁk » 0.

Hence the conclusion follows from Theorem 9.
2. = 1. Follows from Theorem 9. a

Theorem 16. Let T=[4, B, C, D] be an internal exponentially stable node with A~ well
defined and bounded and assume (A , B) causally uniformly controllable. Let

2,=(4,B; -c*c,-C'D, y21 — D'D) be the (second) associated Popov triplet. Then the
following are equivalent
LTI <y

2. The reverse-time Kalman-Szego-Popov-Yakubovich system (16) associated to the reduced
equivalent Z, of Z,, i.e.

YI1-D*D-B'0XB+B'dXB=V'V
~C*'D-A"0XB+A*0cXB=W'V (69)
X+A'aXA=W'W
has an anticausal stabilizing solution @x,v, W) with X « 0 and G » > 0 and where G is given by
(12)forQ 0,L=-C"D-A"0XB R=y 2]—D*D - B*0 XB. Here X has the same
meaning as in the previous theorem.

Proof. See the previous proof in conjunction with that of the Theorem 3.16. g

7. Extended Nehari problem

Now a remarkable application of the results presented in the ﬁrevious section will be given.
It consists in solving the so-called extended Nehari problem stated as follows. Let
T,=H,B,C;,0land T, = [4,B,C,, D,] be two (causal) internal exponentially stable

nodes with A~ well defined and bounded and the pa1r (A B) causally uniformly control-
lable. For a ?emﬁed y > 0 find a node T = [A B C 0] with A~ well defined and

bounded and defining an anticausal exponential stable evolution such that
-
<
T =Y
2 (1)

First, necessary solvability conditions, in terms of T1 and T2, will be established for the

extended Nehari problem.
Clearly (1) is equivalent to

(T~ Du |12+ 1| T 12 <9 u )2 @)

v uElz(Z U). Further
||Tu||2 <T,u,T,u>= <(C,x+D,u),(C,x +D,u)>

cc, C cc, C
=<[x], 3 2 EDZ [x]>=<[§]u, 3 2 ZDZ [ﬂu>=<u,312u> (3)
4] " |D,Cp DyD, | |¥ D¢, D,D,



7. Extended Nehari problem 139

where x = Lu (see (2.19)) and
A * * *
R,ER,+TL,+L I+ QX )
i.e., it is the operator (2.21) associated to the Popov triplet X, , = (4,B;0,,L,, R)) with

A » A A
R,=D,D, L,=C,D, 02,=C,C,

As we have seen in (2.21) we can write also

where
= A » * o A e Pt
N R2=D2D2+B 0X2B, L2—C2D2+A UXZB )
and where X2 is the solution to
Fix an arbitrary k €Z and let u € 12(Z , U) such that
+
Pk u= 0 (7)

Then we have for such a u
2 - 2 2 - - 2
| Hyull;= | PE T Py ully= Il Py Tyull5< || P} T,u+P, T,u—P_ Tull;

= || Tyu =P, Tull5= || Tyu—P; Tu-P Tu|2=|| (T~ Du|? ®)
because of P;: Tu= P: TP,  u = 0 (remember that T is an anticausal internal exponential-
ly stable node and consequently its causal Hankel operator equals zero). Here H,
for the causal Hankel operator associated to T, atk.

J(stands
By combining (2) and (8) we get
2 2 2 2
IHully+ I Tully<yllull

or with (3) . . B _
<u,H1)kH1,ku> + <u,312u> = <u,H1,kH1,ku> + <Pk u,.‘Rsz u>

Lk

*

=<u,H 1k

H  u>+ <u,Pk 512Pk u>=<u,H H, u>+ <u,5?2,ku>

X K,

<y’lull; ©)

for anyu € 12(Z , U) satisfying (7) and where

é -— - - — o - ~# — - - g 43 g g
RSP Ry P =R+ P Y P L+ P EP =R+ £ L+ L%, (10)
Thus (9) provides

<u,()721—ﬁ2k)u> - <u,H
for allu € (- ,k—1],U) and anyy > y.
According to (2.4.2) and Proposition 1.6.14 we have

* W * _w* v
H = Y0000 i = Ve X Yig (12)

*

-2 2 2
1,1(“1,ku>2(7 _7)“””2 (11)



140 Chapter 3/Riccati equations and nodes

where ,{"1 is the solution to

> s o A
X =A"0X4+0, , 0,5CIC (13)
and ¥, X and ©, ) are the controllability and observability operators at k for the system
“4,B,C,,0).
Using (6.56) and (12) we get further _
<u,H; ,kH 4> =<u ‘I‘l’le,k‘I’ Ju>=- 3, (k) + 3, (ku) (14)

where J; and J are the reverse-time Popov indices associated to 21 1=4,B; C C,,0,0) and
its reduced equlvalent 2‘. =(A4,B;0, L Rl) respectively, and where

L1=A aXlB , R1=B oXlB (15)
By combining (11) with (14) we get
w21 = Ry pu> +3,0) = 3 kw) = <u, Ru> 2 @2 =Dllull; (g6
or equivalently

R» 0 (17)
where .‘ﬁ is the operator (6.19) associated to the Popov triplet Z = (4, B; Q, L, R) with
049 =
A~ - * * o v P
L2~L ~-L,=~C;D,~A"0(X, +X))B=~C,D,~A"0XB (18)

R&y?I-R -R,=y*I1-D}D,-B"o(X, + X)B=y21-D,D, - B" 0 XB
as immediately can be seen from (16) and the explicit forms of 3, and J in conjunction with
(5) and (10). Here X= X + X is the solution to

X=A4"0XA+C]C, +C,C, (19)

as follows from (6) and (13).
Thus we have

Theorem 1. Assume that a solution to extended Nehari problem exists. Then for each y > ythe
reverse-time Kalman-Szegi-Popov-Yakubovich system (6.16) associated to the Popov triplet
defined by (18)
y*[-D,D,-B'0XB+B 0XB=V"V
~CyD,~A"0XB+A'cXB=W'V (20)
CiC,+A"0XA-X=W'W
has a bounded on Z solution (X ,V , W) with X = X* and X «0. In fact such a solution is
exactly the anticausal stabilizing solution to (20).

Proof. As we have seen above, (17) holds with respect to the Popov triplet given exp11c1tly
in (18). Hence by applying Theorem 6.9 to this triplet the conclusion follows.

An explicit solution to the extended Nehari problem will be now effectively constructed. To
this end we have
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Theorem 2. Assume that for y =y the reverse-time Kalman-Szegi-Popov-Yakubovich system
(20) has a bounded on Z solution (X ,V , W) with X = X" and X « 0. Then

A=@y'x-clepx!

B=oXB+@A"7'CyD, @1
E=cx!

where X is given by (19), defines a node T = [,:1\ , B , ¢ , 0] which is a solution to the extended
Nehari problem.

Proof. First of all note that A1 is well defined and bounded because of X — C; C1 «0.

We shall prove first that A~ defines an anticausal exponentially stable evolution. Using the
first equation (21), rewrite the last equation (20) as
X-Crepx A lox @YX X - CjC) - X+ CiC, =W W
Further we have
~—1 e —1 * —1vy _ A 7
A0 XA) -XX-C C) X=WWw 22)

where

ne>

wewx-cic)'x 23)
From (22) we get further
—X=Alo(-0A) - XU - (X -C{C)T) + W W

AL A

=4 lo(-x0@ M+ xx - ClcpTICiC + W
= Ao~ A+ U - Cle xhC C + W
=4 lo(-x)A) T+ ClU-c xI e, + W W

- ~— 1 |u—cxichv
=A o)A+ [ClU - xR WY (24)
W
Using again the first equation (21) we obtain
A =4"1-clcx' 4!

J-cx 'chc x4

~~1 * 1 . —1 A

=A -[ClU-C, X C) w1 (25)
0

Since A4 defines an exponentially stable evolution A* defines an anticausal exponentially

stable evolution and consequently (25) shows that the pair (/:1\ -1 [CI(I -C X lC';)_]/2 ﬁ"]) is

anticausal stabilizable. This fact combined with Liapunov equation (24) where —X » 0 implies,
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via Theorem 1.7.2’, that A1 defines an anticausal exponentially stable evolution. Hence
T=I[A,B,C,Q0]is really a node.
Now we shall prove that (1) is fulfilled for T defined through (21). Consider the realization

Tl_T
Tp= T, =g, By, Cr, Dyl
where (see (1.1.12)) i
N’ (8 e, € o
wl o foa [t Jont] e

To prove that (1) holds, it suffices to show (see Theorem 2.5.12) that the following Kalman-
Szeg6-Popov-Yakubovich system
y?*1 - Dy Dy + By 0 Xy By = Vi Vg
~CrDp + AR o Xp By =WV 27
~CpCp+ AR 0 X, Ap — X = Wy Wy
has a bounded solution (X r> Ve Wg) with X, R= X;.

To this end choose first
(28)

where X and X « 0 are the solutions to (19) and (20), respectively.
Using the second equation (20) we have for B given by (21)

B=0XB-@)"'Ww'v (29)
Using (26), (28) and (29) the left-hand side of the first equation (27) becomes

y*1 - Dy Dy, + By 0 X, By

=y*1-D;D, +[B" B'oX-V'WA™"|

—oX I B
I —x)7"||oXB-")" WY
=y21-DiD,~ B 0XB+B o XB-V' WA Yo X) {4y W'V

=V -WA o) AW = ViV,

where the first equation (20) has been taken into account and where
Ve 2 - WA o)™ (4w (30)

is well defined with V;l well defined and bounded because of X « 0.
Consider now the left-hand side of the second equation (27). Using (26) and (29) one

obtains
¢ C 4 o)[-x 1 |8
+ e -1

o Al 1 -|p

* * _ 2 0
~CRDg + ARo X Bp=~| A lDz
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= 9%
A ~ -1, #—1
AB-A'0X)'B AEX)" A" W R

where the second equation (20) has been used and where

We=00 (-WA @)™\ Wy wx™| 31)
as follows after a little computation by using (30), the first equation (21) and the third
equation (20).
Finally the left-hand side of the third equation (27) can be expressed as

~CrCr+ A" 0XpA - X,

|G Gl € [a ol[-x 1 |4 o_[-X 1
¢ o||G 0|70 A1 —@ex M0 4 |1 -x

* * Pyt > D N ]
-CICI—CZCZ—A aXA+X C1C+A A-I

Crc+aa-1 ~C'C-A"ox) A+ x !

~CyD,-A"cXB+A"B| _ 0 B
- A=W

_10 0 =W W

0 X 'Wa-wa \ox) '\ wywx ! RTR
as follows from (31) and the explicit form for A and C given by (21). Resuming, it follows
that the Kalman-Szegd-Popov-Yakubovich (27) is fulfilled for Xy, V, and W, given by (28),

(30) and (31), respectively. Hence inequality (1) is true for T specified by (21) and the proof
ends. O

Notes and References

As pioneering works devoted to the discrete-time Riccati equation and Hamiltonian systems
in the time-variant case [23] and [24] have to be mentioned. It is also difficult to track the
whole history for the linear quadratic problem for infinite time horizon. As a basic reference
on this subject we cite [44]. The same topics may be found in [1] and [40). For the con-
tinuous time case a basic reference is that of Coppel, see [15]. A very recent and interesting
treatment of the time-varying discrete-time Riccati equation associated to the optimal filter-
ing may be found in [17]. Section 1 extends the results given in [S5]. Section 2 originates in
[29] and [36]. For the positivity theory developed in section 3 see [3] where the results given
in [55] are extended to the infinite-dimensional case. Inner-outer factorizations of nodes
have been intensively studied in [5]. The subject of section 5 has been treated first in [35].
Sections 6 and 7 intend to offer the discrete-time counterpart of the topics developed in
[39]. For pioneering work on the subject see [38].



Chapter 4

Disturbance Attenuation

This chapter may be viewed as the heart of this book, for it joins together almost all the
results exposed in the previous chapters, with a special accent on the Popov-Yakubovich
theory developed in Chapter 3. In fact, what will follow is, in a way, the time-variant (dis-
crete) version of the H” theory whose natural framework is the time-invariant case. As is
well known, the H” theory has been deeply investigated in the last decade and many math-
ematical tools proved efficiency in solving different aspects of the cited theory. Our option
here concerns the game-theoretic situation directly derived, as a particular case, from the
Popov-Yakubovich-like result presented in Theorem 3.2.2. Such a result invokes an operator
based approach which, in our opinion, provides better understanding of the structural
aspects of the solution to the so-called disturbance attenuation problem, as well as easier
ways for deriving the formulae. In fact our motivation in developing the subsequent theory
was the following. Given a (generalized) time-variant discrete system, assume that a stabiliz-
ing controller exists such that the resultant closed-loop input-output operator has its norm
bounded by a prescribed positive number y, that is, such a controller provides y-disturbance
attenuation. Starting with this general hypothesis and taking into consideration a minimal set
of initial assumptions made on the given system, our major objective consists of deriving “as
much as possible” necessary conditions expressed in a very suitable form, i.e. by means of
the Kalman-Szeg6-Popov-Yakubovich systems. Such expression of the necessary conditions,
which turn out to be also sufficient, points out a striking fact: the existence of a stabilizing
controller that simultaneously provides y-disturbance attenuation has remarkable implica-
tions concerning the existence of solutions to some nonlinear system, in fact as Kalman-
Szegd-Popov-Yakubovich system. Finally, it is worthwhile emphasizing that our approach
can be viewed also as a Popov-Yakubovich version for solving (indirectly) a general Nehari
problem.

1. Problem formulation and basic assumptions

Consider the (generalized) system

ox=Ax+ B1 u + Bzu2

yy=Cyx+Dyu +Dyuy (1)

= Cpx +Dyuy
where x = (0) 70 41 = U ez U= Wy hezr Y1 = Ohez V2= 0y )kez are the
state, the external input, the control input, the regulated output and the measured output
evolutions, respectively with (x, , u, g axoYipo Vs ,k) €XxU xU,xY x Y, and where
X, Ul, U2, Y1 and Y2 are Hilbert spaces. Here A=(4 k)kez’ Bl=(B1 ,k)ka’ Bz=(B2 ,k)kez’
C,=(C C,=(C, D,=(D

1z Krez npkez P~ Piyphezr Doy=Dyy ez 2re all
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bounded operator sequences defined as follows: 4, : X > X, B, ,k:Ui_’ X, C X X->Y,
Dij,k:Ui_’Yj i,j=1,2 (D22,k=0)'
Consider also for the system (1) the controller (see 3.4.5)
ox.=A x + ch2
U = chc + Dcy2 2
x, € X , which provides the resultant closed-loop system

Oxp=Apxp +Bpu,
y1=Cgxg+ Dpuy )
where
_|* _ A+BZDCC2 BZCc _ B,+B,D.D,,
*=|r[4=| Bc, 4 |'Bx=| BD
c 2 c ¢ 21

Cr=[C#D,DC, D1CJ, Dp =Dy +D,D.D,, (4)
Let y be any positive number. The disturbance attenuation problem consists in finding a
controller (2) for the system (1) such that the resultant closed-loop system (3) exhibits
internal exponential stability, that is, A, defines an exponentially stable evolution; and

provides y-disturbance attenuation, that is, the (closed-loop) input-output operator Ty . I8
11

O
Notice that according to the first requirement of the disturbance attenuation problem,

a y-contraction, i.e.|| Tyu | <7
11

T, is a linear bounded operator from 12(Z , U,) into 12(Z » Y;) whose action is expressed
11

as

k-1
(Tyl"lul)k= i=§fR’k Sll:,i+1BR,iu1,i + DR,k Uy VkEZ )

and where S® is the state evolution operator associated to Ap.

Any solution to the disturbance attenuation problem will be called a y-attenuator.
The following four assumptions will be used in the sequel

AL D, is uniformly monic that is there exists v > 0 for which D;Z x D, P IU2 VkeEZ.

A2.D,, is uniformly epic that is D;1 is uniformly monic.

. . A+ —1*
A3. The pair (I1,,C, , A-B, D}, C,) is detectable where D}, £ (D}, D ,)"'D}, and

Ap I )
n,=1-D, D’l‘2 with I, the identity operator in I(Z , Y,).

A4. The pair (4-B, D;I C, , B,TL,)) is stabilizable where D;I 4 D,,(D,, D;I)_l and
A

I,, £ 1, - D}, D, with I, the identity operator in Z , U,).
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Notice that both I, and II,, are orthogonal projections of 12(Z ,Y,) and lz(Z , U,), respec-
tively.
The reasons for which such assumptions have been considered as well as how they can be

relaxed under adequate circumstances, will be discussed during the exposition of this chap-
ter (see Remark 5 in section 5).

2. Statement of necessary solvability conditions: the Kal-
man-Szego-Popov-Yakubovich systems

Associate to system (1.1) the following two Popov triplets: 2, = (4, B, ; 0, , L, , R,) where
* * *
0,=¢ ¢, L,=C Dy, , R,=Dy, Dy (1
andX = (A4,B;0Q,L,R) where
_ — *
B=[Bl Bz] ’ Q_Q2 ’ L—Cl[Dll D12]

* 2 2
R= b;, (D.. D._]- vl R Ry @)
“\|p* 1 12 TR
b, 0 R, Ry

where R, = R, Introduce also
-1
A 1
J= ©)
where I, has been already introduced in A4 and I, is the identity in lz(Z »Uy).

Recalling the notions given in Section 3.1 we can state

Theorem 1. Assume that both Al and A3 hold. If there exists a stabilizing compensator (1.2) for
(1.1) then the following “standard” Kalman-Szegé-Popov-Yakubovich system associated to z,

) -
Ry, +B,0X,B, —I:; 2
L,+4"0X,B, =W;I:2 4)

Q+A°0X,A-X,=W,
has a stabilizing solution X,,V,, W,) with X,z0 0
The proof of Theorem 1 will be given in the next section.
Theorem 2. Assume that both Al and A3 hold. If there exists a y-attenuator (1.2) for (1.1), i.e.
a solution to the disturbance attenuation problem, then the following Kalman-Szegi-Popov-
Yakubovich system in “J- form” associated to
R+B'0XB =V'JV
L+A’cXB =WV ®)
Q+A 0 XA-X=W'IW
has a stabilizing solution (X ,V , W) with X = 0 and V of form
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V. 0
11

=l v (6)
21 22

partitioned in accordance with J in (3).

The proof of Theorem 2 will be given in Section 5. Notice that while Theorem 1 can be
viewed as a standard (Riccati) result for standard linear quadratic problem (see Section 3.5),
Theorem 2 is the key for solving the disturbance attenuation problem.

Theorems 1 and 2 have dual versions as immediately follows. Consider the dual of (1.1), i.e.

_ A#
ox =A x+Cfu1+Cfu2

_ p# # #
= B1 x +D11 u +D21 u, ™
# #
y2=32 x+D12u1

For (7), the assumptions A2 and A4 work in a similar way as Al and A3 work for (1.1).
Hence Theorems 1 and 2 hold also with respect to the Popov triplets

# # # AQF ¥ HF
22=(A ,CZ;QZ,LZ,Rz)where

A _ * N * oo *
0,=BB,, LZ_BIDZI » Ry=Dy Dy, 8)
and 3% = (A#,C#;Q\#,ﬁ,f?\# where
C
1 A_A ~_ * *
C= Cz , Q_Q2 ’ L—BI[DH D21]
D yzlA )
o 11 * * 1
R= (D, D,.]-
{1)21 n “a 0
Introduce also .
-I
2A 1
J= IA (10)

where £, has been introduced in A3 and £, is the identity in /Z, Y,).
If now we shall write the Kalman-Szegd-Popov-Yakubovich systems (4) and (5) updated
with Zf and E#, respectively, and then such systems are dualized one obtains

Theorem 1'. Assume that both A2 and A4 hold. If there exists a stabilizing compensator (1.2)
for (1.1) then the following Kalman-Szegi-Popov-Yakubovich system

If\2+C2Y2C2 =Z2[7;
L,+av,c, =W21?A; (11)

0,+AY,A" -0V, =W, W,
has a stabilizing solution (Y, ,V, , W,) with Y, 2 (. 0
Theorem 2. Assume that both A2 and A4 hold. If there exists a y-attenuator (1.2) for (1.1), i.e.

a solution to the disturbance attenuation problem, then the following Kalman-Szegé-Popov-
Yakubovich system
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R+cyct =0iv
Lravc =wiv (12)
O+ AYA —oY=WIW

has a stabilizing solution (Y , V WywithY = 0 and Vof form

N

1 %
p|'n n (13)
0 V22 0

The above Kalman-Szegd-Popov-Yakubovich systems are written in terms of the original
data of system (1.1).

Now a modified system will be in order. Such a system is a hybrid one from the data point
of view since it incorporates both data of (1.1) and new data derived from the stabilizing
solution of the Kalman-Szegd-Popov-Yakubovich system (5) (if it exists). Such a system is

ox =A0x + BOl u + Bozu2

=Co1x + Doty + Dy (14)

2= Copx + Dy 4y
where
A,2A+BF, B, 2yB V' B, =B,,C,=-V,F,
o1 1 02~ %20 “o1
Coz 2c 2 ¥ Dy F Dy =vV, Vl_ ’Douész’Dozl vD, V_l ()
and
Flé—Vl'IIWI,F2§V2'21V21V1'11W1—V2'21W2 (16)
where
W,
W=[W2 (17)

partitioned conformally with (6).

The origin of system (14) will be discussed in Section 6 of this chapter. Notice that the
subscript O in (14) is motivated by the fact that such a system is outer in some sense. More
exactly, the inverse of the system “y, 02, Co15Dp1,) exists and it is internally exponen-

tially stable as directly can be checked.
Consider the data (9) updated for (14), that is
C o1 L

0~ Cpy| » Qo =By, 01’ 0=B01Po11 Doyl

(18)
R = Doy D%, D ]- v
o |D o1 ~ox 0

021
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~ —I1
J= Ia (19)
Then we have

Theorem 3. Assume that Al, A2, A3 and A4 all hold. If there exists a y-attenuator (1.2) for
(1.1) then the following Kalman-Szegi-Popov-Yakubovich system

and let

R, +C,Y,C, =VOJ%

L,+A4,Y,C, = WOJ~V;‘) (20)

Qp+A,Y,A,-0Y, = WOJW'O

has a stabilizing solution (Y, ,V,, W) with Y, = 0 and V, of form
vV v
V. = oun 012 (21)
0 0 v g
022

Notice that the Kalman-Szeg6-Popov-Yakubovich system (20) corresponds to the Kalman-
Szegd-Popov-Yakubovich system (12).

The proof of Theorem 3 will be given in Section 6.

Before ending this section some preliminary results will be derived.

Proposition 4. Assume that a y-attenuator (1.2) exists for (1.1). Then
* 2 2
1.DDp < || Tylul | I <y,

* 2N 20
2. DRDR < || Tylu1 1 I1 <y I1

* 2 2
3.0y M, Dy =i Tylul I < v,

4.Dy 1, Dj; < || Tylul I} < 721:

with D, defined in (1.4) and the significance of I , and I/; Just explained above.

Proof.

1. Fix a pair (k,v,) EZXU, and letu, € 12(Z , U,) be defined by U=V and zero other-
wise. Then (1.5) provides

k
2 2 _.2 2 2 2 2 2
Yol vy HY1 =yl 13>l Ty1"1 =1 ey 152l Tylulul 115 2i=§_3°°|| (7;,1,,1”1); ||Y1

_ 2
- “ DR,kvl ”Yl
and the conclusion follows due to arbitrariness of k and vy

2. By dual arguments.
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3. Since I1,, is an orthogonal projection and I1,, D, , = 0, as easily can be checked, we have
from (1.4)

o< | [ 1o || - || [Pe@utPePe
R I=1,1"R (,-M,)Dp
I1
(I, -11)Dpg 2
and the conclusion follows because of Hfz = 1'112.
4, By dual arguments. O
Using (2) we have for R
* 2 *
R= Ry, Ry _ DyDy,—v1ly DyDy,
Riy Rp| | DDy DuDy

v

and let R & R, R, R2_21 R;z be the Schur complement of R,,. Notice that R,, has a
bounded inverse because of Al. Then the following corollary of Proposition 4 holds
Corollary 5. Assume that a y-attenuator (1.2) exists for (1.1).Then

a) Ry, 2vI,

v
b)R = -ul
forv,u >0

Proof. a) follows from Al. For b) we have

v _n* * * —1pn* 2
Ry =D} Dy =~ DyyD1y(Dy, Dyy) Dy Dy ~v7 1

e 2, - 2 2
=Dy, Dy —v L ==~ |l Tylul 190

and the conclusion follows for u 4 y2 | Ty “ ||2 >0
11

O

a)
In fact Corollary 5 asserts that R has constant signature J. The same is also true for R, i.e. it
has constant signature J.

3. The standard Kalman-Szego-Popov-Yakubovich system

This section is devoted to the proof of Theorem 2.1 which asserts that the existence of a
solution to the disturbance attenuation problem implies the existence of a stabilizing solu-
tion to the standard Kalman-Szegd-Popov-Yakubovich system (2.4).
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Proof of Theorem 2.1. Fix any s EZ and construct by induction the operator sequences

(Xzs,k)k BN (A ess (W;,k)k <, With X;J = 0 for which the Kalman-Szegé-Popov-Yakubo-
vich system (2.4) is fulfilled and such that X, = 0 and (st,k)_l is well defined and uniform-
ly bounded with respect to k < s.

To this end use the first equation (2.4) at k = s — 1 and define V;J_1=(R

* 173 . s
(D12,s'—1D12,s—1) . According to Al V2,r-1

Let further WZSJ_ = ((V;,f—l)')_ll';,s—l and the second equation (2.4) will be fulfilled at
o s

k=s5-1 Now )(2;__1

results (see (2.1))

Va_
2,5'—1) -

has a bounded inverse, i.e. || (V;_)™" [|<v~

can be constructed via the last equation (2.4) taken at k =s — 1. It

s = _ W s
X2,s-—1 s—1 W2,s—1W2,s—1

o _* * -1 *
“C1,r—1C1,r—1 C1J—1D12;—1(D12;—1D12,9-1) D12;—1C1,s—1

=C}, My, 1€y 20

*
1s—1"12,5-1
Assume now that X‘;,‘. +1 2 0. As above st}. and Wzs". can be obtained from the first two

. . s _ * s Y _ /n* * s 1)
equations (2.4) i.e. Vz,,' = (Rz,‘. + Bz,iXi +1 Bz".) = (Dlz}. D12,i + Bz,iXi +% Bz,,') and

= -1 . . - - .

Wzs,,' = ((V;}.) )7Ly, +4; Xzs,i+132,i)" Clearly Al implies || (st’r_l) | <v~"2 Using
the third equation (2.4) one obtains

S _ 4*yS S \* 1178
X2,i - Ai X2,i+1Ai + Q2,i - (Wz,i) W2,i

\ . VeouV
A+ (W5) W‘.+(C1‘j) Cl.=0

AN
_(Ai) X2,i+1 2 2 1i

Vs A -1 Vs A -1 .
where 4] = 4, — BZ".(VZ‘,‘.) Wzs}. and Cls". = CL. - D12,i(V2s,i) Wzsj as easily can be checked
using the expressions of st}. and W2s,,. just obtained before. Thus the above mentioned

sequences are iteratively constructed.
If the sequences x and u, are linked by 0x =Ax + B, u, we have by using the Kalman-

Szeg6-Popov-Yakubovich system (2.4)

X; Q,. L,.||x
| C;x+ Dy, u 2 =< ol ERER S
a1 125 72 Y1 u2,i L2,i R2,i u2,i X><U2
1 S \*1175 S \*1/S
__|x] (e, Wy Vil [ %]
’ * XxU
| )W Vo |Pa] T
[ s *y,S§ *v 8
4+ < il X AiXuei A B || S
1’ _p* yvS _p* yS . XxU
“2 BZ;XZ,HIA:' BZ,zX2j+lBZ,i 2 2
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_ s s 2 s _ s
= || Vyuy; + Wy, “U2+ <% X2y T <X X% x
By summing from i = r to s ~ 1 one obtains
s—-1

s—1
2
2 Coyx+ Dy uy; ”Yl =E’II Viu,. +WS.x

2 s
2 2ilg; T WX ||U2 +<x, X, x>y 0))
where <x; ’X;,yxs> = ( because oszs,Y = 0. From (1) we get
s—1
s 2
0= <x’,X2,x’>x SE’H Cl,ixi + D12,i Uy ||Y1 ()

Choose any £ € X and consider now the free evolution of the resultant system (1.3)
Xpitl = AR,‘.xR,‘., Xp, = (£,0) and Xpi = (x; ,xc}.) , i Zr. Asu, is delivered by the control-

ler (1.2) we have Upy; = Cc,‘. x;t Dc,‘. Cc,‘. x;. Since 4, defines an exponentially stable evolu-

tion it follows that ||xR,‘. ”XXXC Spqi"’|| Elly Vizr, 0<g <1 From here simple
computations lead to
o 2 g 2 2

=r
With this inequality, (2) yields
0= <€,X; &> <cll €Iy

or OSXZS,SCOIXVrSs—I and V s €Z. Thus (X, )

2Prss is uniformly bounded with

respect to r and s. Moreover Xzs, < XZS:I. Indeed because of (1) and (2) we have

s—1

R
) 2 2
<5’X2,r§>x SE’H Cl,ixi +D12ju2j ||Yl < i§r“ Cl,ixi + D12,i”2,i ||Yl
5

= <&, X s + 3y + Wity |2 3
2 P TR TR TR A 3
where x; and u,; are linked by X = A,.xi + Bz}. Upp X, = &, i = r. Using the state feedback
law u, = (V3 ) T'Wy %, (3) provides <&,X; &>y < <€,X5*€>, and the con-

clusion follows. Therefore we conclude that (Xzs}.)s <z is a monotonically increasing and
uniformly bounded with respect to i sequence.

Thus lim X2S. = X2,i with 0 < ij scyl Vi €Z. According to the above recurrent construc-
S§=>o00

tion we have
* 18 VB _ 15 %)
(Rz}. + Bz,iX2j+1 Bz,i) =V, . zv"*I

2j u,
s y*\—1 * v 8 — S
(Vo)) (Lo, + 4] X5, By ) = Wy, 4
* v, 8 S _ S \*1178
O+ A; X1 A =~ X = (W)W
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By taking s > ® in the first two equalities (4) one obtains

Vi —sllrgvﬁ = (Ry; + B}, X,,, B, )= vWIUZ
W,, —slln;W’ =V )‘1(L +A4;X,,,1B,) ©)
Thus the last equality provides with (5) and for s » «
Q +A7 i XA~ X = Wz;Wz,z 6)
Hence (5) and (6) prove the existence of the bounded sequences X, = (X. ,k)ke z
= (V. )k ez and W ( )k ez satisfying the Kalman-Szeg6-Popov-Yakubovich sys-

tem (2.4) with X, >0 and V2_1 well defined and bounded. It remains to show that

&X,, V2, W) is a stabilizing solution, ie. A — B, V;l W, defines an exponentially stable

evolution. Rewrite the last equation (2.4) as
Ve v VeV
A 0X,A-X,+C C, =0 0

where A2 4~ B, V-1 W,and C2 C, - D, VW,

Using now A3 it follows that there exists a bounded sequence K such that

A-B, DIZ C,+K 1,C defines an exponentially stable evolution. By choosing

— _ T
)/( = B2D12+K l'I 1t results

A+K & =4 - BV W,+(-B, D, +K,11,)(C,~D,V; ‘W) =A—B,D!,C,+KIL, C,

12) 112

that is the pair (C1 ,A) is detectable. This fact together with (7) and X, = 0 imply via

Theorem 1.7.1 that/VI defines an exponentially stable evolution and the proof ends. a

4. A game-theoretic Popov-Yakubovich-type result

This section is crucial for the development of our next argument. Here a game-theoretic
version of the general result presented in section 3.2 will be given.
LetZ=(4,B;0,L,R)be aPopov triplet where A defines an exponentially stable evolu-
tion and B, L and R are partitioned as follows

R. R
1n 12
B=[B, B),L=[L; L)J,R=|_. 1
R12 22 ( )
withB, :U xU,>X L :U XU,>XR,:U X U,»U, xU,andB=(B)), .,
L=(L), ez R=R), ez U=U, XU, Consider also the Popov triplet

22=(A’ 2’Q’ 2’ 22)
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Let
R R
R =R+ L+L"Y +XQF = | 1Kk ~12 5
k k k" Tk Tk Rie R ()
and
SJk=SI:(QIk+L)=[3,1,k S)Z,k] (3)

be introduced in accordance with (3.2.11), (3.2.12) and partitioned conformally with (1).
Here I, = [E, x 9 ,k] as follows from (3.2.3) for B= [B; B,]and

Ry P, ©),U) x P(lk, @), U,) > P(lk, ©), U)X F(lk, =), Uy),

P, 12([k , ), U)X 12([k , @), U,) = X. Notice also that ank and S’Z,k are associated to Z.,.
The main result of this section is

Theorem 1. Assume that there exists v > 0 such that

5122’1‘2111 VYVkez (4)
and
A
%u’k_ mlzkmmmm_—w YkeZ )
Then
1. The discrete-time Riccati equation
_4* _(A* * -1/, * *
XZ—A UXZA A 0X232+L2)(R22+320X232) (L2+BZUX2A)+Q 6)

associated to 2, has a stabilizing solution X,, for which there exists u, > 0 such that

Rypt BZ,kXZ,k+lBZ,k —/‘21112

(™)
2. The discrete-time Riccati equation
X=A"0XA—(A"0XB+L)(R+B*0XB)~}(L*+B*0XA)+Q )
associated to T has a stabilizing solution X satisfying
and for which there exists p > 0 such that
E, zul VYV kKkEZ
2600, (10)
Ap -
E 2B, By Bl By, < Hly V¥ k€Z -
where
A * i<i Qi
Eij=Rij+B,.aXBj i<j i,j=1,2 (12)

3. If the Popov index (3.1.3) associated to X is written J. Jsk, &, u up,u,)
(= (g, up) €[k, @), Uy) x ([, =), U,)) then



156 Chapter 4/Disturbance Attenuation

a. There exists uy(k,&,u,):Z X X X [k, @), U,) > *((k, ®),U,), linearly depending
upon & and u, and uniformly bounded with respect to k € Z, such that

Jz(k’gyulvl?z(kaSaul))S]z(kyg’ul’uz) (13)
forallu, € P(lk , »), U,) and u, € [k, ®), U,).

b. Let u®*) pe defined via (3.2.27) and partitioned

N
Leh - |1
u068) (14)
2
in accordance with (1). Then
k. ~ k.
uf® =ik, &) (15)
and
<€,X,E>, =Jo(k, E,ulD) ulR)y = 1 (k& uy,uyk & u,) (16)
for allu € P(lk, =), U,)

We have also the “feedback maxmin” solutions

ugk,E) =F, &5 ugké) =F, £%£)
where F* = [FI F;] is the adjoint of the stabilizing feedback gain
F=-(R+B'0X B)_I(L‘ + B* 0 X A) partitioned conformally with (1) and where
o x®8) = 4 x*E) 4 gy 0h) x,(ck,§) =E

(17)

Before proving the above stated Theorem notice that (13) and (16) show that we are con-
fronted with a maxmin problem, i.e.
maxmin]z(k,.’;',ul,uz)= <&, X §>x 8
Yot (18)
often encountered in the game-theoretic situations.

We need also

Lemma 2 Let H and H2 be Hilbert spaces, H 4 H xH, and let

Ey Ep * Gy G *
E=]|_, =E*,G=| ., =G
Ey, Ep G, Op

be two linear bounded self adjoint operators on H. Denote by I, and I, the identities in H, and
H,, respectively. Assume that

a) E,,»0and G,,»0

b) There exists a linear bounded operator T:H = H with a bounded inverse such that
E=T GT. Then
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A —1 > ; A _ -1
lv':u =B, -E,E,E), “O’ﬁ(\{"u =G, -GG, Gy«

Proof. It suffices to prove the “if” part. Assume éll «0 and write

-1 W i
£= I EjpEy éu 0 I 0
- 12 —Vor* 7] 1
0 E22 0 12 LE22 E12 E22 ( 9)
-5 [
oo |1 Gun G, ol 1, o
- 17) —Vo > V2
0 Gy 0 I Gp G Gp (20)

Using assumption a) it follows from (20) that G has a bounded inverse. Hence using b) E

v
has also a bounded inverse and consequently E,, has a bounded inverse. Condition b)
provides explicitly

\i )
k= T;l GuTyt 7;1 Ty

0=Tj, (\(;11 T+ TuTy 1)
Vv
I= 7:2 GpTpt TEz Ty

Hence T;z T,, > I as follows from the last equation (21) and consequently 7, is one-to-

- . “1g# _ =1 — Y1
one. Condition b) provides also TE™" T" =G~ which yields I = T, G’ T5, + T, T,

Thus T,, T;z > I and consequently T,, is onto. Therefore T,, has a bounded inverse.

Making explicit T;l from the second equation (21) and the substituting it in the first equa-
tion (21) one obtains

) Vv
éu = TIl Tyt TIl G

1,1+ Y
11 Tl2 7'2_2 (75 ) TIZ Gll Tll

_ v -1 v, _ y v -1 v
_T;l Gu(l + T12(7;2 Tzz) TIz Gll)Tll_TII G11(1 + T12(I - TIz Gu T12) TIz Gll)Tll

_ V Vv -1 Vv _ Vv Vv -1
_T;1 Gud+U-Ty TIz G Ty le Gll)Tll_T‘Il G -Ty, TIZ G Ty
Y—1 -1
_T;l(_Gll +Ty, TIz) T =0 (22)
where the last equation (21) has been used. By combining the existence of a bounded

inverse for 1%11 with inequality (22) it follows that }%11 « 0 and the proof ends. 0O
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Proof of Theorem 1.
1. Using (4) the existence of the stabilizing solution X, to the discrete-time Riccati equation (6)

together with the inequality (7) follows directly by applying Theorem 3.2.8 to the triplet z,
2. With

a8 B0 g aftu 0 @)
k ~1 g+ v B
3122,1:‘%12,1: ) 0 R, "
we may write (see (2))
R =0 E D, (24)

which shows that (51,: l)k  z Is well defined and bounded. By applying Theorem 3.2.2 to the
whole triplet Z the existence of the stabilizing solution X to the discrete-time Riccati equa-
tion (8) follows.

Using (3.2.40), (23) and (24) one can write

.‘P; P

=Y — 1o _ v _
X=X -2 89 =X -7 77

1p—1 /91
k Ek (0k)

Lk ‘?Z,k] 0

-1

—v _ . _ -1 * -1 _ -1 * *
=X, =P R Fo— @y 5’2k5122k5112k)5ﬁ11k(3’u i Roos B0

=X, + X, (25)

and where X,Z,k = 0 due to (5). Hence (25) implies (9). Using now 1. of Lemma 3.2.6 we
have with (12)

E. P} E.P/ R R
11k 127k -1 -1 -1 Mk 12k A -1
+ +|= (N;) Slk Nk =(M) * N, 26
Eufe B Ry | ¢ @
Remember that N, and N,/ 1 are described by (see (3.2.33) and (3.2.34))
ox=Ax+ B1 u + Bzu2

(R+B" 0 XB)P} =

v, = —le +uy @7
v, = —F2x tu,
and
ox=(A+ BlF1 + Bze)x + Blv1 + Bzv2
u, = le +v, (28)
u2=F2x +v,

Since E,, P: 2 p, 1, py > 0, as directly follows from (7) and (9) just proved and
5122* zv 1, v > 0, as has been assumed by (5), it follows with (26) that Lemma 2 can be

applied for E£ (R + B"0 X B)P}, G & &, and T2 N1, Hence (5) implies that
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A -
EP+ E11P: ElzPlj(E P+) 1(E12 k) = -u 1 (29)

for an adequate By > 0. Similar arguments as those used for deducing (3.2.36) from (3.2.35)
lead to the validity of (10) and (11).
3. a. Write (3.2.61) as
st o fat
J}:(k,E,u1 ’”z) =<E, X §>x + < ) ,ﬂk Ekﬂk ) > (30)
2 2 %2

where (14) and (24) have been used.
Define

ke, & up) Bl — R0 AL @) - ul)
Then (30) can be rewritten with (23) as

Jz(k,E,ul,uz) =<E, X I,-‘>x + <u - ugk’g),iﬁu’k(ul-— ugk"f))>

(1)

+ <u, - u2(k £,u), 3122k(u 2(k £,u)))> 32)
Using (4), (13) follows and u is exactly the function defined by (31). Notice that

u,— u®®)

n;in]z(k,E,ul,uz)= <E, X E>y+ <u, "ugk’g)"%u,k( 17>

(33)
2
with min taken over all u, € 12([k , @), U,). Notice also that for u, = 0 we have

Tsk 8, 0,u) =Jg (k5 ,up) = <6, X, 6> + <uy =P, R (1) i) >

with u A(k’g) = —.‘Rz'sz 3’2 ,kf;' and Jz the Popov index associated to Z,. Hence it follows from

(32), where u; = 0, combined w1th uniqueness arguments concerning the minimum, that
P = ik, &, 0) and
min]z(k,E,O,uz) = ming (k,&,uz) = <¢ ’Xz,k5>x 34)
2 2

3. b. Using (5), (32) and (13), (15) and (16) follow trivially. Thus Theorem 1 is completely
proved.

Now the equivalence between the existence of the stabilizing solution to the dlscrete-tlme
Riccati equation (8) satisfying in addition (10) and (11), and the existence of the stabilizing
solution to the Kalman-Szeg6-Popov-Yakubovich system in “J-form” will be pointed out.

Proposition 3. Let £ = (4,B;Q, L, R) be a Popov triplet with A defining an exponentially
stable evolution. Let U = U1 xU, and let (1) be the corresponding partitions.

Then the discrete-time Riccati equation (8) has a stabilizing solution X satisfying (10) and (11)
iff the following Kalman-Szegi-Popov-Yakubovich system
R+B'0XB=V'JV
L+A*0cXB=W'IV (35)
Q+AcXA-X=W'IW
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where J is defined by (2.3), i.e.

_Il
I= I, (36)
and V is of the form (2.6), i.e.
V. 0
11
V= 37
V21 Vﬂ ( )

has a stabilizing solution (X,V ,W), i.e. it is bounded, X =X v is well defined and
bounded, and A — B y! W defines an exponentially stable evolution.
Further, we have

F=-v'w (38)

for the stabilizing feedback F = —(R + B* 0 X B)_I(B' 0 X A + L"), and the Popov index can
be expressed as

Ik, 6, u)= <€, X E>y + <Vu+Wx,JVu+Wx)> (39)
u=(upu,) EF(lk, ®), V).
Proof. “Only if”. Write using (12)

E E
" 11k 12k
R +B X , . B =
k" Pk k1%
* E;2,k Ezz,k
I. E, E} I 0
_ U 12522k %uyc 0 1U1 (40)
0 1 ELEY I
U, 0 E, il | 212k Ty,
Since both (10) and (11) hold, we can write
E22,k = V22k V22,k 41)
_)§11J< = V;l,k Vll,k (42)

v
for V,, ,k 4 (E,, ’k)vz, Vi x 4 (-E, ’k)l'2 where Vz_sz and Vl_lfk both exist and are uniformly
bounded with respect to k €Z.

Let

A —1p*
V21,k - (V;2,k) E12,k (43)
then (40) provides, with (41), (42) and (43), the first equation (35) and V' of the form (37).
Let

WRIWV YL + B oXxA) (44)
and the second equation (35) holds for such W. Finally, using the discrete-time Riccati
equation (8) the validity of the last equation (35) can be immediately checked.

The “if” part is trivial. Further (38) and (39) are checked by simple manipulations. a
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In Chapter 0 we termed (35) as the Kalman-Szeg6-Popov-Yakubovich system in “J form”.
With Theorem 1 and Proposition 3 we obtain directly

Corollary 4. Assume that both (4) and (5) hold. Then the Kalman-Szegd-Popov-Yakubovich
system in “J form” has a stabilizing solution (X, V , W) with V of the form (37). O

Remark 5. While Theorem 1 is the basic result of this section as we mentioned above,
Corollary 4 is in fact the essential tool that will be used in solving the disturbance attenua-
tion problem. a

5. Disturbance attenuation. Proof of Theorem 2.2

The purpose of the present section is to link together the y-contracting property of the

resultant input-output operator 7} , (see (1.5)) and the game-theoretic Popov-Yakubovich-
11

type result given in the previous section. For a time being we shall assume that 4 in (1.1)
defines an exponentially stable evolution. Later this assumption will be removed.
Consider the associated Popov triplet Z introduced by (2.2). Then we have

Proposition 1. For the Popov triplet X mentioned above the following hold

2 2 2
I'JX(k’Erul’u2)=—y “ul ”2+ “y] “2 (1)
where y, is the regulated output of (1.1) caused by any quadruple

(k, € uy,u,) EZ X X X P(lk, ®),U,) X F([k, =), U,).

2 Let Ty: Xz, Uy~ P(Z ,Y,) be the linear bounded operators defined by 0x = A x + Bu;,
y;=Cx+ D,.j Ui 1,j=1,2(Dy,=0)and Tij y be the associated (causal) Toeplitz operator

at k that is
A o+ + _ +
Tij,k - Pk Tl] Pk - Tt] Pk (2)
where the second equality holds due to the exponentially stable assumption made on A, i.e. Tij
are all causal. Then

2
A = mll,k Foax| _ T T.. T ]- vl 0
k 11 12
Aok Rog T{z,k d A 0
2
_|77 11+T;1,lel,k TIl,kT12,k o)
T{Z,lel,k T{Z,kTu,k

where .‘Rk is associated to Z via (4.2).

Proof. 1. Writey, = C, x + D, u,, compute —-y2|| u; ||§ + 1y, ||§ and then use (2.2).



162 Chapter 4/Disturbance Attenuation

2. Since T,.j =C )‘lj + Dij’ , where T.j u is the unique solution in lz(Z ,X)toox=Ax + B] U;
for U € 12(Z , U].), i,j=1,2, the conclusion follows directly from (2.2). O
Proposition 2. Assume that the controller (1.2) stabilizes (1.1). Then the resultant input-output
operator Ty u is given by

11

7}1.41 =Ty + TS5 Ty @

where Sp, is the input-output operator associated to

o)
Oxgp =ARxR +BRy2

" ~ ©)
u,=Cpxp+ Dpy,
with xp and A defined in (1.4) and
Br=| B | CR=ID& Cl,Dp=D, ©6)
Proof. By direct computation. a
Proposition 3. Assume that (1.2) stabilizes (1.1). Then
1T,y 5= Trg+ Tiog S Ty ¥ K €2 )

2 Tylul | <y iff there exists p such that || 7:"1"1"‘ I spy<v VEkeEZ

Here Sp, x and T:vlu % stand for the Toeplitz operators associated to S r and 7;11[1, respectively,

1
atanyk €Z.

Proof
1. Since all the operators involved in (4) are associated to exponentially stable systems, we
can write using (2) and (4)
+ + _ pt + 4 pt +_ + + + +
Pk 7}lu1Pk _Pk Tqu +Pk TIZSR T21Pk - TIIPk + T12Pk SRPk T21Pk
from where (7) follows.
2. The proof runs similarly to that given to prove (3.3.8). a

Now we can state and prove the fundamental result of this section
Theorem 4. Assume that
1. A defines an exponentially stable evolution.

2. The disturbance attenuation problem has a solution, i.e. there exists a y-attenuator (1.2) for
(1.1).
3. There exists v.,, > 0 such that

Tiz,k le,k zv, I, YkeEZ

Then the Kalman-Szegi-Popov-Yakubovich system (2.5) has a stabilizing solution (X ,V , W)
with X = 0 and V of the form (2.6).
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Proof. By applying Proposition 1, the operator &, associated to the Popov triplet Z (given

by (22)) can be expressed as shown in (3). Let S, 4 Sp x T, x Then, according to (7)

73’1”1’1‘ = Tll,k + T12,k Sk and
I1 Sk .‘Rll P 5112’1‘ Il 0
0 12 51;2,]‘ 3122 ,k Sk 12
_1h 5% Tiix .. T.]- vrool||lh 0
0 L[|l T2 T o ol]lS &
2
- —I+T T T T
T;lul,k (T T ]- }'ZI 0} - Y Yk Yk 12k
yuk 12k 8
TIZ,k b i 0 0 T:Z,kTylu * Tiz,lez,k @®

From (8) we deduce that R, = T;Z,k Tiox ZV1al, ¥ k €Z and (4.4) holds. Further by

applying 2. of Proposition 3 we get

— 2 —
v+ 7;1u1,k Tylul,k 7;1“1 T12,k(T;

-1
2 TR Tiox Ty

2 2 2
< —yI+ 7;1,‘1 X Tylu1 £ =0 =l

Hence with (8) Lemma 4.2 provides the validity of (4.5). Thus Corollary 4.4 can be applied.
To prove that X 2 0 consider the Popov triplet Z, defined via (2.1). Since

M 0 L _|G [C, D 120
= T = * =

it follows that Jy (k,&,u,) = 0 and consequently X, = 0 by (4.34). Using (4.9) the con-
2

clusion follows and the proof ends. o

Based on Theorem 4 we are now ready to prove Theorem 2.2. This will consist in fact in
removing the exponentially stable assumption made on A, assumption that allowed us to
develop the operator based approach of the disturbance attenuation problem exposed
above.

To this end we shall invoke first an outstanding result given by

Proposition 5. Both (1.1) and (1.2) provide the same resultant system as
ox=Ax+ B21i'z)x +B,u, +B,u,
»#=C,+D,Fx+D u +D,u,

127 2
C
= 2
ygg-lil

D
x+ [ Zl]u
0 1
to whom is connected the controller

&)
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ox, = Acxc + [Bc O]y&
u, = chc + [DC —leyk

,k)keZ’ FZJ(:X*UZ.

Proof. By direct computation. g

Now, using the notion of F-equivalent of a given Popov triplet (see Definition 3.1.7) we shall
proceed to the

Proof of Theorem 2.2

Consider again the Popov triplets £, and X associated to (1.1) via (2.1) and (2.2), respective-

(10)

for arbitrary I::2 = (Ij:2

ly. Since Al and A3 are true, the conclusion of Theorem 2.1 holds and consequently the
stabilizing solution (X, , V,, W,) to the Kalman-Szeg-Popov-Yakubovich system (2.4) as-

sociated to X,, with X, > 0, exists. Hence F, £ —¥/;" W, is a stabilizing feedback gain, ie.
it makes A4 + B, F, to define an exponentially stable evolution. Let F be defined as
F= [0 F’;] (IA";c :X->U, x UZ) aEId let fz and £ be the I?z-equivalent and I::-equivalent of
Z, and Z, respectively. Note that F, in (9), (10) coincides with F, defined above. Then the

following conclusions hold as directly can be checked:

a) The A-operator sequence of (9) defines an exponentially stable evolution.

b) fz and  play for (9) the same role as Z, and Z play for (1.1). More exactly fz and £ are
obtained via (2.1) and (2.2) but with data taken from (9).

¢) Since (1.2) is a y-attenuator for (1.1) it follows directly from Proposition 5 that (10) is a
y-attenuator for (9).

Thus assumptions 1. and 2. of Theorem 4 hold with respect to system (9) as follows from
conclusions a) and c). We shall show now that assumption 3. of Theorem 4 also holds for
system (9). To this end apply 2. of Proposition 3.1.8 to the Popov triplet Z, and obtain that

the associated discrete-time Riccati equation has the same stabilizing solution X, as the
discreti-time Riccati equation associated to Z, has, but with null stabilizing feedback gain
(F, = F, = 0, see 2. of Proposition 3.1.8). Hence the operator N, (see (3.2.33)) associated to
Z, equals 12 and the identity given at 1. of Lemma 3.2.6 becomes

* —_ * * —_ a
R, +By0X,B, =D, D, +B,0X,B, =R, (11)

where (4.2) becomes now ﬁk as beeing associated to £. Following 2. of Proposition 1
applied to (9) one obtains

Rk = TIZ,k Tiox (12)
Since DIz D, 2vI, (see Al) and X, =0 it follows from (11) combined with (12) that

assumption 3. in Theorem 4 holds for system (9). Therefore by applying Theorem 4 to the
couple (9), (10) it follows that the Kalman-Szeg-Popov-Yakubovich system (2.5) associated
to Z has a stabilizing solution. Using now again 2. of Proposition 3.1.8 the conclusion still
holds for the original Kalman-Szegd-Popov-Yakubovich system (2.5) and the proof ends. O
Remark 5. It becomes clear now that the proof of Theorem 2.2 is essentially based on
Theorem 4 and the role of assumptions Al and A3 is in fact that to imply the validity of
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condition 3. in Theorem 4. To be more specific, condition 1. in Theorem 4 can be always
admitted, because of the stabilizability of the pair (4, B,) which follows directly from the

existence of the solution to the disturbance attenuation problem (see Theorem 3.4.4).
Hence there is always a feedback gain F, that makes 4 + B, F, define an exponentially

stable evolution. The major difficulty which arises now consists in finding adequate require-
ments for the original data of (1.1) such that condition 3. in Theorem 4 holds after perform-
ing the prestabilizing feedback of gain F,,. In the time-invariant finite dimensional case the

standard requirement is

°I-4 -B,
rank

=n+m, ¥V 6€[0,2n]

Cl D12
How such a condition can be translated from frequency domain into time domain, for
time-variant systems, is still an open problem. Thus the origin of assumptions A1 and A3

now becomes more transparent. O

6. A modified system. Proof of Theorem 2.3

In this section our attention will be focused on system (2.14). Assume that the Kalman-
Szego-Popov-Yakubovich system (2.5) has a stabilizing solution (X, V, W) with X = 0, V of
form (2.6) and W partitioned in accordance with V' (see 2.17)). Then the cited system can be
written more explicitly as follows

VitV =7'1=D} Dy, -~ BjoXB, + VoV 1)
V31Vy =D}y Dy, + Bio X B, (1)
VaaVr = D1y Dyy + B0 X B, (1y)

CiDy +A"0XB = -WV,, + W,V (1,)
CiD, +A"0XB,=W,V,, 1)
CiCi+A 0XA-X=-WW, +W,W, (1)

with Vl_ll, Vz-zl well defined and bounded, X =0and4A + BF=A4 + B F + B, F, defining
an exponentially stable evolution for

1
F=_y-lw-= By _ u ?
F 1 Iy -1
2 VaVaVuWi " W,

Notice that according to Theorem 2.2 the above considerations are really true if Al and A3
both hold and (1.2) is a y-attenuator for (1.1).
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Consider now the modified system (2.14), obtained from (1.1), and written explicitly with
(2.15) as

1~
ox=(A+B Fy+yB V u +Bu,

~ - _ 1~
V=V Bty Vy Vig uy +Vpu, ?3)

1 o~

Y, =G+ Dy Fx+yDy Vig uy

The next two propositions are crucial for proving Theorem 2.3 and they emphasize also the
origin and the importance of system (3).

Proposition 1. Assume that Al and A3 hold and that (1.2) is a y-attenuator for (1.1). If (1.2)

stabilizes the modified system (3) then it is also a y-attenuator for this system.

Proof. Consider (1.2) coupled to (1.1). Then Ty , is well defined and it is a y-contraction
11

from 12(Z ,U,) into 12(Z , Y,). Thus we can write for any u, € 12(Z ,U)andy, =T u

ylul 1
that
71, 0|[u
’ N >
0 L1

1

u

2 2 2 1
-y “ul ”2+ ”yl “2= <|:

1

2 2 2
==y llugll3+ 1 C;x+Dyyuy + Dyyu, |l

=<x,0x>+ <x,Lu>+ <u,L'x> + <u,Ru> = <Vu+Wx,JVu+ Wx)>
- Vuu1+Wlx —I1 0 V11u1+W1x .
V21u1+V22u2+sz 10 I2 V21u1+V22u2+W2x

-1 -1 —a2 -1 -1
- Y~V utyT Wi yI, Olly Vit W

b

V21u1 + V22u2+ sz 0 I A V21u1 + V22u2+ sz
-~ ) -
wl |=vh 0]y 20% 124 = 12
=< > =- +
_ ’ 0 12 _ 14 ”ul ”2 ”ylllz (4)
4T 41
with

~ A - -1
u, =v ! V11 u +y Wlx 5)
AV u A Vou + W
NT=Vn¥h Tk, TWX (6)

and where (2.2) and the Kalman-Szego-Popov-Yakubovich system (2.5) have been used
together with the identity <ox,0Xox> — <x,Xx> =0forx € 12(Z , X).
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Let ij' . 12(Z U= 12(Z , U,) be defined via (6) as a new output of the same closed loop
11

system (1.1), (1.2).
From (5) and (6) one obtains with (2)

= 1~
ul-—F1x+yV1_l u (7

~ 1~

Y=V Bty Vy Vigu +Vpu, ®)
Perform now on the system (1.1) alone the extra state feedback (7) and obtain together with
(8) the system (3) to which is now recoupled the controller (1.2). Since (1.2) stabilizes (3),
as it has been assumed, it follows that (3) and (1.2) define a linear bounded input-output

operator TS" i :IZ(Z ,UD —>12(Z ,Y,). For this system (7) defines also a linear bounded
11

operator T . : 12(Z , Ul) d 12(Z , U;). Thus 171 and ;1 defined via (5) and (6) are now exact-
11

ly the input and the corresponding output, respectively, of the resultant system obtained by
coupling (1.2) to (3). Hence using (4) and the above considerations we can write

2 2 2 2107 2 ~ 2
-y ” Uy ”2+ ” Tylulul ”2= =Y ” U “2+ “ Tylﬁl Uy ”2

)
u =T -u
1 up 1 (10)
and
T.. =T. °T .
T M, (11)
If|| T, . Il =0, (11) shows that || T:v~ iz || =0 <y and the conclusion follows. If
11 11
Py 4 Il Ty , |l andp, 4 II'T, ; Il #0,(9) combined with (11) yields
11 11
207 12 = 2 2 2207 12
-Y “ U ||2+ ” Tyliilul ”2 i —p())pl “ L2 ”2 (12)
Since p, < y and p, # 0, (12) shows that || 7}. i || < v and the proof ends. O
11

Remark 2. As it has been shown the modified system (3) is obtained from (1.1) by perform-
ing the substitution (7), (8). The key of such substitution is equality (4) that led finally to
equality (9). 0
Proposition 3. Assume that Al and A3 hold and that (1.2) is a y-attenuator for (1.1). Then
(1.2) stabilizes (3).

Proof. Assume first that, instead of Al and A3, conditions 1. and 3. of Theorem 5.4 hold.
Hence if (1.2) is a y-attenuator for (1.1) all three conditions of Theorem 5.4 hold. This fact

allows us to use all the results given in section 5 as well as those given in section 4 and
related to the game-theoretic situation, especially to the point 3. of Theorem 4.1.
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As we already pointed out in the proof of Proposition 1, or which can be seen simply by
direct inspection, the resultant system obtained by coupling (1.2) to (3) can be also obtained
by performing to the closed loop configuration (1.1), (1.2), i.e.
Oxp=Apxp +Bpu,
¥y = Cpxp + Dpuy (13)
where A, defines an exponentially stable evolution, the extra state feedback law

Fx+yV— u FRxR+yV1_11;1 (14)

=[F, 0 (15)
Hence the question of the exponentially stability of the new resulting system consists in fact
in checking if the state feedback law

Uy = Fpxg (16)
preserves the exponentially stability of the system (13) or, equivalently, if
1A
Ap =Ap + Bp Fy 17)
still defines an exponentially stable evolution.

We shall prove it by contradiction. To this end, remark first (see the final part of the proof
of Theorem 1.7.1) that ox = A x defines an exponentially stable evolution iff

E I SA 3 ”X =P, || & ”X for all initial pairs (k,£) €Z x X (5" the evolution operator of
i=k
A). Hence if A g does not define an exponentially stable evolution, it follows that for every

s €Z there exists a triplet
(E‘;,is,ks)EXR X Z X Z with || 6‘;2 HXR: 1,k > i such that

k

s<§:||s -k (18)

Here X, =X x X and S'is the evolutlon operator associated to A

Define the finite honzon evolutions

AT .
x‘ —S"l;‘;2 i sisk
1; FR,;*';z,, i sisk -1 (19)

7t Critri+ Dpityy  Gsisk-1
Since the free motion 0x, = A x,, is obtained by applying (16) to (13) it follows that (13)
is fulfilled for the variable defined by (19), that is

Xpiv1 = Ap;¥R; + Brity; st,is
iR

y; =Cpq

=&k
(20)

+D u.
1
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with i < i< k,— 1. Remember that in (20) x‘ and u j are linked by the second equation
(19). From (20) we can write for i, <i <k
i-1
x;Q,i i,zsgs +'§i su+1 Rj IJ (21)

s
where by § we denoted the evolution operator associated to Ap. Since A, defines an ex-

ponentially stable evolution, i.e. || S,.]. Il Spqi_j V i=j, and adequate p =1 and
0 < g < 1, simple manipulations performed on (21) lead to
k k-1
s s
2 s 12
s<Zllag;llx Sei+e, 2 llui;ll
= RiTXp T 1 2 T LT,

(22)
where (18) has been used. Here clearly ¢, > 0 and consequently (22) implies
k -1
i 33, I, My, = @)
For each (k, & ,u,) €EZ X Xp X 12([k, ), U,) associate the quadratic cost
T g u) =~ llug 115+ Ny, 113 24)

where y, € 12([k, ©),Y,) is the output of (13) caused by (k, &y , u,).

Since A defines an exponentially stable evolution and (1.2) is a y-attenuator for (1.1), it
follows, by applying Proposition 5.3, that

Tk, 0,u) < 2 = ol uy 115 (25)
wherey > p, 2 || T,, |l andall (k,u,) €Z x Ak, ), U,).
11

Hence following Remark 3.2.9, (25) shows that for each (k,&g) €Z X X, there exists a
unique (k&) :Z X X = (lk, ), U,) such that

Tl &g uy) < Jk, Eg (K, ER)) (26)
forallu € 12([k, »), U,). Here the “positivity condition” (3.2.54) has been converted into

a “negativity condition” and consequently the “min” condition of the linear quadratic prob-
lem becomes a “max” one.
Remark now that according to 1. of Proposmon 5.1 we have according to (24)

R, Srotp) =I5k, 8 uy,u) 27
where £, = (§,£ ) € XX X and u, equals the output of the y-attenuator (1.2) (initialized
atk with & ).

As we mentioned at the beginning of the present proof, Theorem 4.1 with the corresponding

technical machinery works in this case. Therefore by using 3.a. of Theorem 4.1 (see (4.13))
we get

Tyl o &y ) 2 Jglh &yt €, uy) 28)
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for any fixed u, and arbitrary u,. Combining (26), (27) and (28) one obtains

Jz(k €, Uy uz(k €, ul)) s J(k, ER ’ ul(k ’ ER)) (29)
for all u, € 12([k » @), U,). Using now 3.b. of Theorem 4.1 (see (4.16), (4.18)) it follows
from (29) that

<&,X E>, < Sk, Eq, ik, ) (30)
Let us estimate N
JG, Ex,4) @31
for
S
= A “1i 0 ’s"""s—l
Ui (k P ), <i 32)

A simple evaluation of J, (k ,E, u1 »Uy) (see (4.39)) combined with (27), provides
T & i8) = e, R,k ) = <8, X B>y~ <4 X 4 >y

k-1 k-1
2
_2 Vi, + xv”U +2 Va0 + Vg, W2,ixz”|U2 (33)

Notice that “2,;‘ in (33) is the output of the y-attenuator and £, = (£, &),
Xp ;= * ,xs ) € X X X_ = Xp. As we showed before (see (15) and the second equation

(19)) we have u‘L Fg; x;} Fl}.x; Vl_li W, x‘ fori <i=<k_,, where (2) has been
used. Hence
11}1[;}+W X: 0 lsSlSkx—l (34)
Notice also that (32) combined with (30) implies
Sk, , % RA B) =Mk 5, iy, Y ) = <% X 1 >y (35)

Using (34) and (35) in (33), it results, because ofX = 0, that
i &)= 0

which is the desired estimation of (31).
Let us now consider the evolution

A x + BR ul , xR,is = 5‘;{
— TS ~5 36
= Coxs+ Dy} (36)

of (13) caused by (i, &5 , 4;).
Write y; =)7ls +y; p Where ils is the free output of (13), ie. that corresponding to
u; =0andxp =§£,andy y1 b is the forced output of (13) for x, , = 0 and u = u . Since

Ap defines an exponentxally stable evolution and || 5; Ilx =1, clearly
R
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=S
“yl,allzsc:; 37
for an adequate constant c,.
Using now (24) and 2. of Proposmon 53, we get

- 2

T, 8, = A1 12+ 1153 112 =~ 12+ 1155, +55, 12
20 =512, 15 112 -5 = =5 12
==y up |3+ Nyi, 13+ 2<yy . 31,> + 11¥5, 15

25512
< -y ||u1’||2+||T +c? +203||T

2
Hlll ,,1||2

2 —
= -—(y _po)” us ||2+C3 + 2p0c3” ui’ ”2

2 -
3 +2pycllufll,

- 2
= -0 -l 131 - -
vrr T2 @ -l ul |l

(38)
where p, = 4 Il T || <yand T "s is the (causal) Toeplitz operator associated to T, ats.

Looking now at t3§) and (23), it fohows that || u u1 ||, =  ass - ». Hence for s sufﬁc]iently
large

2
_63+2p063” uylly _1

2
@ -l ] 113 =2
and (38) provides
s, —s 1.2 252
J(ls’E;e’ul)S_z(y pO)”ul ”2<0 (39)
Since (39) contradicts (35), the initial assertion was wrong, and consequently 4, defines an

exponentially stable evolution.

Now assumptions 1. and 3. of Theorem 5.4 will be substituted by Al and A3, and we shall
follow exactly the same scheme as that used in the proof of Theorem 2.2, given in the
previous section. Use instead of the couple (1.1), (1.2) the couple (5.9), (5.10) where

F V"1 W, is the stabilizing feedback gain whose existence is guaranteed by Al and A3 via
Theorem 2.1. As has been shown in the proof of Theorem 2.2, assumptions 1. and 3. of
Theorem 5.4 hold for (5.9) and consequently (5.10) is a y-attenuator for (5.9). Hence, by

using the result obtained in the first part of the present proof, it follows that (5.10) stabilizes
the modified version of (3)

= - 1=
ox=(A+B F +B,F)x+yB V  'u +B,u,

- =y 1=
W=V R+ Vo Fx+yV, Viiu, +V, ) Uy

21' 11
C,+D,.F yD, V7!
yze= l: 2 121 1 x+ [ 21 11} 1 (40)

0
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obtained from (3) exactly as (5.9) has been obtained from (1.1). Hence by applying Proposi-
tion 5.5 to the couple (40), (5.10) it follows that (1.2) stabilizes (3) and the proof ends. O

By combining Propositions 1 and 3 one obtains

Proposition 4. Assume that A1 and A3 hold and that (1.2) is a y-attenuator for (1.1). Then
(1.2) is also a y-attenuator for (3). 0O

Now we are ready for the
Proof of Theorem 2.3

To this end we shall show that assumptions A2 and A4 both hold for (3) and then we shall
apply Theorem 2.2’ combined with Proposition 4 just proved above.

Assumptions A2 and A4, adapted for (3), become

A2 . D___is uniformly epic.

0 ~o2
A4y (A, — By, DS,y Cpys By Ty, is stabilizable.

02102’
For the sake of a compact form in writing this assumption, the notations (2.15) have been
used.

2 1 1,*
For A2, we have D, D021 =y D,V (V]

11 (V11)" D}, Hence for any 5 € Y, we have for all
kez

<n,D —<D

p1
2k ll,k( l,k) DZl,k 1>y 21 ll,k( l,k) Dy x>y
2
zp<Dy 1, Dm'/> ﬂ<'7,D2U(D§1,(77>Y2 =eviinlly
with # ,v > 0 and the conclusion follows.
For A4 ), using (2.15) we try to equate F, from

T il
-B, D021C +B, I,y Fp=A-B, D, C,+B I, F1 1)
where, in accordance with Ad, F. 1 makes the right-hand side of (41) to define an exponential-

ly stable evolution.

We have from (41)
- t t
A+BlF1 yBlVl—1 D021C02+)'BIV1—1 H021F0 =A- B D C +B r121F1
Therefore we have to equate now
1 = _ \ _nt r
Vip Dop(vFg) = =F, +y VI D}, Cpop = D} Cy + Ty Fy

- t t t o
= = =y V3 Doy Dyy)Fy + (7 V3, Dpyyy = DI)C, + 1L, Fy

(- t t o
- (1 21 D021 V )Fl + ()’ V— DOZI D21)C2 + lFIZl Fl
- t
= -V 'y, V, F, + @V DL, Dy - DDY, €, + 10, F
vl t £
Ifl_l V F + (I DOZl 021 l)D C2 + I-121 Fl
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! 1 t A
- _lel I-1021 Vll Fl Vl_l I-1021 Vll D21 C2 + I-121 Fl
or
- _ t 2
I-1021(’), FO) - 1—1021 Vll Fl I-1021 Vll D21 C2 + Vll I-121 Fl

Premultiplying both sides of the above equality by II ,, and taking into account that I ,,,
is a projection one obtains

oy Fo) =11
Hence we may choose

.'. pay
021 Vil(=F; =Dy G, + 1L, F)

=1 _F _pt o
Fo=y Vi (=F =Dy G, + I F) 42)
and (41) will be fulfilled for F,, defined by (42). With this result Theorem 2.3 is completely
proved. O

In the next sections we shall be involved in proving the converse result of Proposition 4.

7. Another modified system

As in the previous section we shall assume that the Kalman-Szeg-Popov-Yakubovich sys-
tem (2.5) has a stabilizing solution (X, V', W) with X = 0 and V of form (2.6). Consequently
(6.1,) to (6.1) with (6.2) can be written and the change of variables (6.5), (6.6) makes sense.
As we have already seen, by using (6.5), (6.6) in the form (6.7), (6.8), the original system
(1.1), which expresses the transition (u,,u,) = (y,,y,), has been converted into another

system (see (6.3)) which expresses the transition (1:1 N Rad (;1 »¥,)- Now using again (6.7)

and (6.8), a new system, describing the transition (u, ,;l) ad (8 171) may be obtained. Such
a system is

ox=(4-B,V,' W)+ (B, ~B

1 1=
2V Vo + BV vy

_ 1 1 1~
¥1=(Cy =Dy Vi Wokk + (Dyy =D, Vi Vo uy + D1y Voo 'y,

2 "2 2 (1)
u =y Wty
and it has been obtained from (1.1) via
~ -1 -1
ul =y Vll ul +y Wlx (2)
u,= -V IV, u +V3ly —VIIW x
2 20T V2N T Ve Wy 3)

which are equivalent to (6.5), (6.6).
Concerning the system (1) we have to remark that by rewriting equality (6.4) as

~ n2 2 2 ~ 2
vy 13+ g 3= lvay 13+ 115, 12 @
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we should expect that (1) must be an inner system. Such a property will now be the subject
of our attention. First of all we shall start by emphasizing the meaning of the couple of
systems (6.3) and (1). In this respect we have

Proposition 1. The resultant system obtained by connecting the system (6.3) to the system (1) is
Liapunov similar to the system (1.1) modulo an exponentially stable uncontrollable part.

Proof. Denote by L= (xA)k ¢ z the state-space evolution of (6.3). By connecting (6.3) to (1)

one obtains
Oxg = Azx}: + B2 u 5
y=Csxs + Dsu
where
¥ 5 ’ u2 ’ y2
and
A+BZF2 _Bze B1 32
Az = ’ B2 =
—BlF1 A+BlF1 B1 32
C+D,F,  —Dyf, Dy, Dy,
C.= D= (6)
s i
—D, F,  C,tD,F, D, 0

with F, and F, given explicitly in (6.2). If now the Liapunov transformation

~ | I 0 _
xx—[_l I]xz—Txx

is considered, (6) receives the state-space equivalent form

A -BjF, B, B,
~ 1 ~ _
Az—aTAxT' = , Bz—aTBz-
0 A+BF 0 0
€, ~DypFy )
~ . ~
Co=CsT "= , Dg =Dy
C, C,+D,F
Simple inspection of (7) leads to the conclusion. a
According to (4) introduce now the normalized version of (1) as
ox=Ax+Bv
w=Cx+Dyv ®)

where
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A Yuy A Y
v= =Ckez = =Weez i €U XUy, w EY, XUy (g
»1 yul
and
A 1 Afl,-1pn _ 1 1] _
AI_A —Bsz—z Wz ’ BI_ [” (B1 Bsz_z V21) Bsz—z] _[Bll BIZ] (10)

C
I
4]

Then we have
Proposition 2

1. The system (8) defined via (9), (10) is inner.

2IfT;: 12(Z Uy X U)~ 12(Z , Y, X U,) is the input-output operator defined by (8) and
partitioned in accordance with (9) i.e.

T T
m ‘n2
T = {T T ] (11)

-1 1 1
A|C-DLV W, _[Cn] b=l Dy;=DVu V) DiVn _[Dm Dm}
i\ - , D=

Cp y"qu 0 D, D

121 122

121 122

then TI_zi is an internal exponentially stable node.

l1).1.;)3(;".using (6.1,)+(6.1;) one can easily check (the computation is omitted) that
Aj0XA,-X+C;C,=0
AjoXB,+C;D, =0
D;D,+B;oXB; =I

where X =2 (0 and 4 I BI s CI s DI have been introduced via (10).

(12)

1 1 1 . .
LetK,=[0 -B,V,; +B,V,, V, V], W]. Then 4, + K, C, = A + BF with F defined
by (6.2). Hence 4, + K, C, defines an exponentially stable evolution and consequently the
pair (C,,4 p) is detectable. This fact combined with the first equation (12), in which X = 0,
leads to the conclusion (see Theorem 1.7.1) that 4 ; defines an exponentially stable evolu-

tion. Using now the whole system (12) Proposition 3.3.6 shows that (8) defines an inner
node.

2. By inspecting (10) it follows that the node T},, is defined by
ox=(A-B,Vy, W +y (B, - B,V V,)vu,)
yi,=Wx+y 1V vu) (13)

Since V1_11 is well defined and bounded, system (13) can be inverted providing

_ _ 1 _ _ 1 1 _ 1 | P
ox=[Ad-B)Vy Wy~ By =B,V VyV1ys Wilx + (B, = B, V3, V)V )
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= 1 1.7
=(A+BFx+ (B1 —B2V2_2 V21)V1_1 (vu,)

1 —~
YV vu) —yWyx (14)
As A + BF defines an exponentially stable evolution the conclusion follows. |
Corollary 3. Equality (4) really holds for system (8). n|

The next proposition is the key result in achieving the aim of this section. It combines
Proposition 2 with the “Small Gain Theorem” (see Theorem 3.4.7).

Proposition 4. Consider for the system (1) the controller

ox =A x +B u
c c’c c’'1

- - (15)

"= chc + Dcul
Assume that
a)A, defines an exponentially stable evolution.
b) || T, || <y whereT_is the linear bounded input-output operator defined by (15).
Then (15) is a y-attenuator for (1).
Proof. First we shall normalize (15) in order to connect it to (8), that is

ox . =Ax +B(yu)
(16)

;l = chc + Dc (}’I:l)
where 1‘3; =y! B_ and EC =y~! D Let 7~'C be the input-output operator defined by (16).

Asy, =T, u =y ' T(yu) =T, (yu,) it follows that T, =y ' T Hence
IT Il <1 (17)

Using now Corollary 3, (4) provides for u, = 0 that || yﬂl ||§ + |y ||§ = || ;1 ||§, ie.

lvugll, < lly, Il or

1T, 5 =t

1”1 (18)
Using (17) and (18) the conclusion of the “Small Gain Theorem” holds (see Remark 3.4.8)
and consequently (16) stabilizes (8) or equivalently (15) stabilizes (1).
Now we shall prove that (15) is a y-attenuator for (1). Using (11) we can write

¥1=Th(vu) + Ty,

- - (19)
vuy=Tp(vu) +Tyy,

We have also

"= fc(yal) (20)
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Notice that ifu; € 12(Z , U,), the closed loop exponential stability proved above assures that

0y, 4y) EFZ ,Y) x AZ ,U)) x XZ , U,). By substituting (20) in (19) it results

(= Ty T u) = Ty (v uy) 1)
Using now 2. of Proposition 2, (21) yields
vu,=G@u,) 22)
where G & TI‘Z} (1 - T, fc ) is well defined and bounded. Since T,,, = T7'7151’ (17) and
(18) show that G has a bounded inverse. Hence || G || # 0 and (22) provides
- lyull,
1yl = =67t 23)

Combining now (4) with (17) and (23) one obtains

2 2 =~ 12 ~ 2 2 T n2 ~ N2 ~ 12
”yl ”2= Hyul ”2+ ”yl ”2_ ” )’ul st Ilyul “2+ “ TC ” “')’ul ”2_ ” yul ”2

2 =g TV ARTY. "”i”z 2
=llyu 12— A= T, 10 va 1< |1 -———llvu, |2
Gl
2 2
=P ||)’u1||2 (24)
where
=2
a. 1-IT
S1-—F<
G (25)

Hence || Ty " || =py <y as follows from (24) and (25) and the proof ends. 0
11

Now we can state and prove the main result of this section

Proposition 5. Assume that the Kalman-Szego-Popov-Yakubovich system (2.5) has a stabiliz-
ing solution as mentioned in Theorem 2.2 and consequently the modified system (6.3) is well
defined. If (1.2) is a y-attenuator for (6.3) then it is also a y-attenuator for the original system
(1.1).

Proof. If (1.2) is a y-attenuator for (6.3) the corresponding resultant closed-loop system has
exactly the properties of system (15) in Proposition 4. Hence, by connecting now such a
resultant system to (1), Proposition 4 implies that the new resulting system is an internal
exponentially stable y-contracting node. Following Proposition 1 the above two succesive
connections provide the same effect as that provided by the direct connection of (1.2) to

(1.1).
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8. The y-attenuator

In this section a solution to the disturbance attenuation problem will be effectively con-
structed. The main result can be stated as follows

Theorem 1. Assume that both Kalman-Szegd-Popov-Yakubovich systems (2.5) and (2.20) have
stabilizing solutions (X,V , W), (Yo R VO , WO)’ respectively, with X = (), Yo 20and V and
V) of form (2.6) and (2.21), respectively. Then there exists a y-attenuator (1.2) for the system
(1.1), i.e. the disturbance attenuation problem has a solution.

O
In this section we shall assume without loss of generality that y = 1, since this is achieved biy
the scalings y“vz Bl, y_l/2 Cl, sz B2, sz C2 and by multiplying the controller output by y™ .
Indeed, if W.C .write formally for (1.1). y.1 =T, u, + T4y y, =T, u, + T, u,, where Tij
are the transitions maps from ; to Ypisj= 1,2, and for (1.2) u, = T_y, one can express the

resultant input-output transition map 7:" , 2 alinear fractional transformation of T, with
11

coefficients Tij that is

= _ -1
7:v1u1 =T, +Ty, Tc(l T22 Tc) Ty

Hence as || y! Tyu || < 1we have
11
y‘lrylul=(y“’2ruy‘”)+(y“’zrny”)(y“rc)u—(y”Tny”)(y'ITc)rl(y”Tuy‘”)

and the conclusion follows automatically.
The solution to the disturbance attenuation problem will be expressed in the parameterized
form

ox,= Agxg + Bgly2 + Bgzy3

uy= Cg1 X, + Dgny2 + Dg12y3 )
Uy = ngxg + Dg21 Y,

to which is connected the arbitrary exponentially stable system

axq=Aqxq+Bqu3 @
y3=C x +D u

with the associated input-output operator of strictly subunitary norm, i.e.
2 2

T =T:1Z,Y)=1“Z,U),||T, | <1

v, = Ty %) = P2 U | T,
In order to give an effective procedure for solving the disturbance attenuation problem we
shall succesively reduce it to simpler situations for which the solution can be easily con-
structed. Such reductions are performed by using the Kalman-Szego-Popov-Yakubovich
systems mentioned in the statement of Theorem 1.
Before starting our construction we need a preliminary result stated in

Lemma 2. Consider the system (1.1)
x=Ax+Bu, +B,u,
yy=Cyx+Dyyuy+Dpyu, 3)

V= sz + D21 U
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Consider the following exponentially stable uncontrollable and unobservable system
X =A% tAgx, + By, + By,

%= A,x,
U = Ca%, *Y )
U= Cp*ty,

(A, 4, define exponentially stable evolutions) placed betweeen system (1.1) and the controller
(1.2)
iC =ACxC + BCuC
=C D ©)
yC [ xC + [ uC
If (1.2) is a y-attenuator for (1.1) then the tandem (4), (5) is also a y-attenuator with identical

input-output behaviour. In other words, any exponentially stable uncontrollable-unobservable
extension of the controller preserves its effects.

Proof. The resultant system (3), (4), (5) is
X =AGxG + BGu1

¥1=Cs%g +t Dguy ©
where Xg = (x 'X, X ,x2) and
A+BDC, BC, 0 B,(C,+DC,) B,+B,DD,
4 = BcCZ Ac 0 BCC22 , = BcD21
G |BytBRD)C, B,C, A Ay+BD, G | By +B,D,
0 0 0 A, 0

CG = [C1+DlchC2 DIZCC 0 D12(C12+Dcc22)] ’ DG = D11+DIZDCD21
By direct checking of 4, B, C;, D ;, one can conclude that 4 ; defines an exponentially
stable evolution since A, (see (1.4)), 4, and A, define exponentially stable evolutions and
(6) gives rise to the same input-output operator as (1.3). ]

Remark 3. In the case of the couple (1), (2) any exponentially stable uncontrollable-unob-
servable extension of (1) can be automatically transferred to (2) and consequently only the
parameter of the compensator family (1) is modified.

Now we are ready to start our construction of the y-attenuator. As we already mentioned
this will be achieved by reducing the problem to simpler cases.
The simplest case in order is that of

A. The Disturbance Estimation Problem

In this case (1.1) satisfies the following
DEL. Dy is well defined and bounded.

DE2. Dz_ll is well defined and bounded.

DE3. 4 - B, D2_11 C, defines an exponentially stable evolution.
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DE4.4 - B, D12 C, defines an exponentially stable evolution.

In this case Y1 = U2 and Y2 U1' We have

Theorem 4. If DE1+DE4 all hold, the class of all solutions to the disturbance estimation
problem is given by

A,=A-B Dy c BD_1C+BZD1_21D D}, c

-1 —1
=(B, - B,D, Dll)D21 ’ =B,Dy,
-1 -1 _ _n-1
cg -D},(C, - D,, D} C,), c =-D; C, 7
-1 1 = ~1 _ n-1
Dgll D 2Dy D21 ’Dg12 b,, ’Dg21_D21

for an arbitrary exponentially stable system (2) with the associated input-output operator Tq
such that || Tq [| <1

Proof. We shall show first that the couple (1), (2) with data given by (7) is a solution to the
disturbance estimation problem. Indeed by coupling (1) to (1.1) one obtains with (7)

A B_|'1
= X +
2T Psly,
8
] u, ®)
s —CZxZ+DZ X
X
where x5 = |, | and
g
1 1 -1
_ A—BlezDuDle -BDp, (C D10y €y
¥ |(B,-B,D,D,)Dy'C, 4-BD;'C,~Bp;'C,+B,D7ID D;lC,
B,-B,D;'D,, B,D7
B, = 1 121 11 121
B,—-BD; Dy, BDpp
C. = ¢ D11D21C -(C,~D,D;, 21 oY)
b -1 -1
D, ¢, -D,, €,
0 1
_ 2
De=11, 0}
Performing on (8) the Liapunov transformation
=|1 0 9
s= 12 1] ©

(8) becomes
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A B!

X, =Agxg +

TR TRy,

y] - " (10)
u, =szz +Dz ¥,

where Xy = S Xy and

-1 -1 -1
A =0SA.51= A-BD, C; —BD;, (€;=DyDy €Y
LR 0 A-BDIC
1721 %2
-1 -1
~ B-BDy, Dy ByDy,
2=GSBZ=
0 0
~ 0 -(C,-D,,D;!C)
_ -1_ 1 “1u¥2 2
CX—C S =

z -1
0 -D,,'C,
According to DE3 and DE4 As defines an exponentially stable evolution. Moreover due to
the structure of the triplet (Ay, By, C5) one can remark that (10) becomes

2 I L R AU Y A O I 2

By coupling y, = Tq usto (11) it results thaty, = Tq u, together with closed loop stability, as
can be checked simply. Since || Tq || < 1 the conclusion follows.

Conversely. Assume now that (1.2) is a y-attenuator for (1.1) which satisfies DE1+DE4,
Therefore the resultant system

axR=ARxR+BRu1 .

y1=Cgripg+Dpu, (12)

is exponentially stable and || Ty » |l < 1. Hence (12) may play the role of (2). Connect (12)
11

to (1), that is

V3=V T (13)
where the feedback compatibility is achieved because of U, =Y, and U, = Y,. Notice now

that the connection of (12) to (1) can be achieved in two stages. The first is that of connect-
ing (1.1) to (1) and the second consists in coupling the controller (1.2) to the last resultant
system. By coupling (1.1) to (1) one obtains
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(Ixz—-A>:xz+B2 y
c
14
u —sz2+D2

where xg = (x ,xg) and y, and u, in (1.2) have been updated by u,andy , respectively. Here

-1 -1
1= A ~BDy G, A = BD,; B,
T -1 -1 » P T -1
Blezc A -B,D, 'C,~-B,D,, C, BD," B,
p;lc, -p;lc 0 I
fo=| 21 2 5 o_p 2
z _ TR OFE OO0
C2 C2 1
Performing on (14) the same Liapunov transformation (9), it becomes
Oxy =Agxs + By y
r 15
AN (15)
ul= sz}: + Dz y
[ [
where -
,( . A-BDj'c, -BDj'C,| . |BDI' B
Az=aSAzS'1= 1721 -2 121_1 B =asB, = 121 2
0 A- BZD C 0 0
&=t,5=] o3
) ) "o —C
2

Thus (15) is placed between (1.1) and the controller (1.2) exactly as in Lemma 2. Following
the cited Lemma and Remark 3 it follows that the y-attenuator (1.2) coincides with (1) to
which is coupled (12). Notice also that such coincidence is modulo an exponentially stable
uncontrollable-unobservable part which is automatically transferred to (2) as mentioned in
Remark 3.

A little more complicated situation is represented by

B. The Disturbance Feedforward Problem

In this case the assumptions made on (1.1) are

DF1. Dz_ll is well defined and bounded.

DF2.4 - B, Dz‘l1 C, defines an exponentially stable evolution.

DF3. The Kalman-Szegd-Popov-Yakubovich system (2.5) has a stabilizing solution with the
properties mentioned in Theorem 2.2.
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We have

Theorem 5. If DF1+DF3 all hold the class of all solutions to the disturbance feedforward
problem is given by (1), (2) where (1) is made explicit by

_ -1 1 -1 1

A, =A-B Dy Co+ By Fy+ By Vo Vo Doy G+ By Vo Vi
_ -1_ 1 -1

B, =B Dy ~B, V3V, Dy

2V Y

B,=B, V'Zzl

Ca=F+ Vz—z1 V21D2_11C2+ Vz—z1 VaF

Cp= -V, Dl C, -V, F, (16)
Dy = _Vz_z1 Va Dz_ll » Dopp = V2_21 » Dy = VnDz_l1

Proof. Consider the modified system (6.3) (y = 1)
ox=(A+B Fy+BV'u +B,u,

~ 1~
V=V Fpx +Vy Vip 4t Vi, a7
1~
¥, =(C+ Dy Fix + Dy Vg uy
For this system assumptions DE1-+DEA4 all hold.
Indeed

DEL’. V2’21 is well defined and bounded.

DE2’. (D,, Vl'll)'1 is well defined and bounded according to DF1.
DE3’.

1
A+ B F - B, V1 (Dy

1,-1 — _ -1
Vl—1 ) (C,+D, F)=A4+ B,F,-B,D, (C,+D, F)
—4_ -1
=A-B,D, C,
which defines an exponentially stable evolution according to DF2,
DE4. 4 + B, F, —B,V;(=V,,F,) = A + B, F, + B,F, = A + BF defines an exponen-
tially stable evolution according to DF3,

Hence formulae (7) can be applied for actual data of (17) and (16) follows. Therefore (1),
(2) with (16) is, in accordance with Theorem 4, the class of all solutions to (17). Following
now Proposition 7.5 it is also a class of solutions to the original disturbance attenuation
problem. Since according to Proposition 6.4 any y-attenuator for (1.1) is also a y-attenuator
for (17) it follows that the class of all solutions to the disturbance attenuation problem is
given by (1), (2) with (16) and the proof ends. g

The dual of the disturbance feedforward problem is
C. The Output Estimation Problem

The assumption made on (1.1) are
OE1. D[} is well defined and bounded.
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OE2.4 - B, D1_21 C, defines an exponentially stable evolution.

OE3. The Kalman-Szego-Popov-Yakubovich system (2.12) has a stabilizing solution with
the properties stated in Theorem 2.2,
We have

Theorem 6. If OE1-+OE3 all hold the class of all solutions to the output estimation problem is
given by (1), (2) where (1) is made explicit by

A,=A-B,D}C +K,C,+B,D] v,V c,+K V0 lc,
By=K,+ B, D,V V) + KV V)
B,=-B, D1_21 I//\11 -k I’/\u
Ca = D1—21 € - D1—21 I’/\IZ I//\2—21 )
Co=V5 G, (18)
Doy = _D1—21 l//\12 I/;2_21 » Dy = D1_21 I’/\u » Dy = Il/\z;l
Proof. By dualizing the result of Theorem 5 (see also (2.7)). Here K = [K; K)] = -wiy!
partitioned in accordance with (2.13). a

Using the result of Theorem 6 we are now ready for
The proof of Theorem 1

Consider again the modified system (6.3) written in (17). Such a system is now originated
from the initial version (1.1) and satisfies the output estimation problem assumptions. In-
deed usin% the notations (2.14), (2.15) we have

OEL’. DSu = V;ll is well defined and bounded.
’ - -1 = 1 = =
OE2’. AO BOZD012C01_A +B1F1+BzV2_2 V22F2 A+BlF1+B2F2 A+BF

defines an exponentially stable evolution.

OE3’, The Kalman-Szeg6-Popov-Yakubovich system (2.12) associated to (2.14), that is the
Kalman-Szegé-Popov-Yakubovich system (2.20), has a stabilizing solution with the proper-
ties stated in Theorem 2.3. By applying Theorem 6 in conjunction with Proposition 7.5 and
then with Proposition 6.4 the conclusion follows and the theorem is completely proved. O

Exactly as for Theorems 46, Theorem 1 can be reformulated in a procedural way that is

Theorem 7. Assume that both Kalman-Szegd-Popov-Yakubovich systems (2.5) and (2.20) have
stabilizing solutions mentioned in Theorem 2.2 and Theorem 2.3. Then the class of all solutions
to the disturbance attenuation problem is given by (1), (2) where (1) is made explicit by

4 -1 -1 1 1
Ag =45 =802 D612 Co1 * K02 €02+ Boa Po12Vo12 Vo2 €02 * Ko1 Vo012 Vo022 Co2

= -1 1 1
Bgl =Ko2 * BpaDora Von V(;zz +Ko1VorVon
= — -1 — 72
Bg2 = B4y D012Vo11 ~ Ko1Von
Ca

—n-1 _ -1 1
gl b 012 C01 D 012 Vo12 Vc;zz Coz (19)
v ..,D, =V}

_ -1 _ _pn-1 1 . _
Ca=Von €02 o1 = Por2Vora V22 » Pera =DPo12Vor1 » Pt =Vom
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where all data are expressed in (2.15). Here K, = WO V(;l = [K01 Kp,b partitioned in ac-
cordance with (2.21). a

Notes and References

For the general framework of the topics treated in this chapter see [18]. The discrete
counterpart of the results presented in the above cited reference may be found in [32]. For
finite time horizon the subject has been treated in [48]. The main result concerning y-at-
tenuators for the time-invariant discrete case may be found in [57]. Following the ideas
presented in [36] the same topics, for the time-invariant case, have been treated extensively
in [33] and [35]. The papers [26] and [27] must be considered as pioneering works for the
time-variant discrete case. Leading ideas for section 5 may be found in [29]. The finite
horizon disturbance attenuation problem in a game theoretic context is investigated in [6].



Appendix A

Discrete-time stochastic control

1. Discrete-time Riccati equation of stochastic control

Consider the linear system

N o

Xy = (Ak+.2167cv;c)xk+3kuk ,k€EZ (1)
i=

where 4, ER™™", G, €R”" i=1,..N, B, ER”™ and A=(4,), ¢ 5» C=(G), e 2~

B=(B,), ¢ z are bounded sequences. Here V. are scalar random variables.

k
Associate to (1) the quadratic cost
JsEu) =EX (] Cl C,x, +ul R u,) @)
kzs
with C=(C)), ., bounded and R=(R), ., uniformly invertible and where s €EZ,

x = (x,), ¢ z is the solution to (1) with s-initial state £ and the control sequence (), ., .

which belongs to the class U 68 defined by: u, k = s are random vectors measurable with
respect to o-algebra F, generated by {v;: ij <k-1,1<isNLE|lu, 12 <  and
J(s,£,u) < =, Here E stands for the mean value (or expectation).

The problem in order is to minimize J(s,£,u) when u ranges the class U 2y for arbitrary

SEZ andE ER".
The following notation will be subsequently adopted

N
A i, N N T A i P A
v, = colvy..v) ER , A, =4, +i§lG'kv , @) SE(W, V)
We assume also that (v,), c , is a sequence of independent random vectors of zero mean

value, i.e, Ev, =0and supE||v,|
kez

| < o,
To (1) and (2) the following discrete-time Riccati equation is attached

4T T T 15T
X = A X 14~ A Xep 1 BR + B X, L B) B X, A,

N
T i T '
+ G G -’;Jélak(dk) X410, k€Z 3)

Our aim is to state conditions for existence of a stabilizing solution to the discrete-time
Riccati equation (3). This notion will be made clear further on.
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Consider the evolution _

- Y1 =A% €))
with A " defined above.
Definition 1.

a. {A :G',1 =i < N}is called stable if A defines via (4) an exponentially stable evolution in
mean square, that is there exist § = 1 andg € (0, 1) such that

E|lsgli*<pqd
for all k = j.

b. The system (1) is said stabilizable if there exists a bounded sequence F such that
{A +BF;G,1 sisN} is stable in the sense of a.
c. If a fictitious output

Ve = Gy )
is introduced, we shall say that the system (4), (5) is detectable if there exists a bounded

sequence K such that {A +KC; G ,1=<i= N} is stable.
d. A symmetric solution X to (3) is called stabilizing if it is global and bounded and makes

{4+BF;G,1=ix=Njstable for
FA&-R +B'x B)Y'BTx A
k k" Tk Tk+1 7k k “k+17k )
e. The system (4), (5) is said observable at s if there exists L > s such that

Elly, (s , 5) ||2 = (Qforall s < k < L implies £ = 0; if the above property holds for all s the

system (4), (5) is called observable (onZ). Here y, (s , ) ¢ " S;:g 3
f. The system (4), (5) is said uniformly observable if there exists v > 0 and k, > 0 such that
kk =1 _ _
E 'Zk s, clTs,zvIVkeZ
i=

Clearly uniform observability implies observability.
g The system (1) is said uniformly controllable if there exists ¥ > 0 and k, > 0 such that

k-1~ ~
T T
Ei_kzks,meiBi(sﬁm) 2vIVkEZ
=%

Both {. and g. used the same k0 and v, assumption that may be always accepted. O

Proposition 2. Assume the existence of ¢, > 1 such that
EZ ||ISiI*<c,, forall iEZ )
k=i

Then {A;G',1<i < N} is stable.
Proof. Letx, = S;:y& be an evolution defined by (4) with s-initial state £. Define

X AE ]Ek (8307}
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According to (7)
I= Xk < cOI vk
Define
P, LE x,{Xk X,

Then using the independence of random matrlcesA we get
=EE(SOTES (s" Ts" sie = ETEE (S")Ts"s
j=k
From (10) it follows that

—¢'ES (S")Ts’;g ETEE (S")Ts"s

Pre1” A

=" E(z (S")TS" E(S")TS”)s——s ESTshe=E || x, |2

Using (8) and the mdependence of A it results that
1
E|lx, || Ekakxk Cogok

Linking (11) and (12) we have

1 A 1

Pre1 = l_c_)‘pk=q‘pk ) q=1_C_E(O’1)

0 0
Thus

¢, < s p, k=s
from where using (8) we obtain, since £ is arbitrarily

2 k—
E||st|| <cyq S kzs

and the conclusion follows.
Consider the afine system

X = A x, +f,
where fk are random vectors measurable with respect to F,.

Proposition 3. If {A ; G ,1<i=< N} is stable and there exists ¢, > Osuch that
SE|| f; ||2 =< ¢, for all k € Z, then for every solution x to (14)
i=k

2/3c1
E E E—
_kz+ 512 < 222 5 )15, 112 + v

where B, q are those for which E || §2 e ||25ﬂqk_s (st).

Proof. We use the representation formula

i-1 ~
S:l*c"k“L 2 Siied; 1>

j=k

189

®)

©

(10)

(11)

(12)

(13)

(14)
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Since x, is independent of ka’A and Sfﬁc is independent of f; we can write

E|lxl <2E||s‘|| E|lx|I*+2E

2 usﬂl [[F? ||]

i-1 j—j— ._._1

- imj=1 _
<264 E N5 I +2E(2 0 ¢ 0 o ,,Hnnfu)
=k

_ =l j-j-1 i—j—1
<284 E||x, |I>+2E qu 2 ][}:kq 2 ||s‘+1n I ]
i—k PR it R i 2 2
=284 Ell5 P 423 a2 Bam EN A, IS
-
1
<2847 E |z |I*+ “L‘”z E|lf11?
Hence
o -1 j—j—1
- gé =j=1
S Bl 12 <2ﬂ2q “E |5 1475 2, ST EIG
i=k+1 9=
<284 gy 2+ 22 §E||f|| S5 2‘3"En et
1-q 77k et T g
and the desired inequality is proved. |
Lemma 4. Let Us,L s < L be the set of controls u = {us U1 ’uL—l} such that

E|lw ||2< o and u; is measurable with respect to ¥, foreachs <i <L — 1. Letu € Us,L and

let x:.‘(s ,&) be the corresponding solution to (1) for u and initial state & at s. Let X bea
symmetric solution to (3) defined fors <i < L. Then

(i) E|| x:.‘(s,E) ||2 < o, x:.‘(s,E) is measurable with respect to F, and therefore the couple
u .. ~ . .

(u;,x; (s , £)) is independent of {vj | j=zi}

(ii) Using for x’.‘(s , €) the abbreviated notation x; we have that

L-1
E@] X, x,)- 5TX§——Ez(xTcTCx +u] R, u)+EZ(u - Fox)"(u, - Fx)

where

A _ Ty ~1,T
F,=-(R +B Xi11B) B X114
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Proof. Assertion (i) is easily derived by induction. For (ii) we shall use the facts that
(x;, u;) is independent of v, and E'v, = 0. Therefore

E(x

T
i+1 l+1 l+1 xi Xixi)

=E{x] 4] +u B, +x] 2 (G")Tv"]XH[Ax +Bu +
i

M=z

Gf"::xi J _xiTXixi}
1

N
- T k T
=E{«][A] l+1A,.+j’k2=1(c;4) X, G d* ~X 1x,+u B' X, Bu +2u Bl X,  Ax)

where the independence has been used. Further, using (3) we have

Exz+1X;+1 i+1 Ex X%

=-E (] C]Cx.+u/Ru)+E {u][B'X,, B+RJu+2uBX Ax.

T ,T T —1pT
+x A4 X, B(R,+B X, B)"B X, 4]}

— g TAT T T -1
=-E (x,C; Clx,.+u,.R,ui)+E{[u +x;AX. B(R, +B 1B 11X

T -1pT
X(R+B; X, B)lu+(R; +B +1B) B X, Ax])
Hence by summation the conclusion follows. a

Proposition 5. Assume that (1) is stabilizable. Then the Riccati equation (3) has a global
positive semidefinite and bounded on Z solution.

Proof. The result is a rather standard one in the stochastic control. Let us briefly discuss the
main ideas of the proof.

Consider a linear discrete-time stochastic system
Y =Ao)x +B(o)u, , k25, 0€EQ
We say that A4, (), B,(.) are independent if
o | A () €T, ,B(w) €T, , k=2s}= P | A ) ETHIIP (v | B(w)€L}}
kzs k=s

for all sets of matrices L I";

Associate the performance index
16.,€,9) = E 3 [f] @) 0;x (@) + u] (@) R u(@)]
with @, 20, R, 201,0 > 0 and x; églslerated by
X4y = A@)x; + Bw)p,(x) , x, =€ , . : R" > R™ Borel measurable.
Denote by H 66) the set of function ¢ for which x(w) and u (o) satisfy || x|l € LZ(Q),

Il ;1| € LAQ). Denote by H‘()s 4 the subset of H_, for which J (s£p) < . Then
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stabilizability implies that H(()s £ is nonempty for all s and all £&. From here it follows that an

optimal control does exist and the optimal performance index is a quadratic form in £ whose
matrix is just a solution to (3). The technical machinery is the same as in the deterministic
case, i.e., starting with the finite horizon and passing to the limit. O

Proposition 6. Assume that the system (4), (5) is detectable. Then every global positive semi-
definite and bounded solution to (3) is a stabilizing solution.

Proof. Let K be such that {4 + KC; G*k=1,.. , N} is stable. Let X = 0 be a global and
a bounded solution to (3) and let

A _ T —1pT
F=-R+B X1 B) B X1 4y (15)

Consider the system
N
x, .=, +B,F +3G V)X , x =¢
k+1 k k™ k i1 k" k”k s (16)
and define u, 4 F, x,. From Lemma 1 (ii) it follows thatu € U ©8) and
JGs,Eu) < ETXxE <v || &||*for alls EZ and £ € R". But we may also write

N
— ]
Gy =AU K C +EIG;< Ve (17)
where

A
f =B F,-KC

W =Bu, —K Cx,

It follows
WA %= B I w12+ LK N Cx, 112

< (&)uTR u +,uxZCTC X

T T AT
o | % KU k Ci%e S0y Ryuy +x, G Cx)) (18)

k
where 0 =max{(%) ,/4}, B, IIK || <uandol<R_V k,0>0.
From (18) we obtain

E3 If 1P <0dGEu)=0E X E<ov &>
=5

where 0 < X, < I. Applying Proposition 2 with respect to (17) we have with the above that

EX |lx ||2 =p,ll § ||2 and stability follows from Proposition 2. .
k=s

Proposition 7. Assume the system (4), (5) to be uniformly observable. Then if X is a global
positive semidefinite and bounded solution to (3) we have

(i) There exists p > O such that X, zp1 VY k €Z;

(ii) X is a stabilizing solution to (3).
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Proof. Let 4 X A4 «TBF. + Z G vk and let SA be the random causal evolution operator
=1

associated to ;1\, i.e., to (16). Let k, and v be the numbers in the definition of uniform

observability. Define
k+k —1

A ANT T T
T, 2E Ek sl c,+F R,.F)S;‘;( ,
where F; is defined through (15). We shall prove that
inf (" T x | |lx|l=1,k€Z} >0
Assume by contradiction that
infle” T x | ||x]l =1,k€Z}=0

Then for every £ > 0 there exists k,_ and x_such that || x_ || = 1 such that
T
x, T x <€ (19)
Let
_A_ A
=53 %, (20)
e 3
u =Fx (21)
both obtained from (16). It follows from (19), (20) and (21)
k otk =1 k +k ~1
e>xTx—xTE z(s“)(c C+FRF)SAva E||u|| )

E

Butfork +1=<j<k_+kj—1(withk, eventually increased) we have

[z 1 o 1711 u}

_1,_,

-1
E||zsA Bul||I>sE (_zknB,.n2
=

Ji+1

<(ky= 1 E(Ens"+1 IHE 4 11H=c, 2E||u I1scye 23)

where (22) has been used. From the representation formula applied to (16) where (21) has
been substituted we have

l

€ _ ] e .
xj_ SJA+1 lul JZke+1 (24)

|IM|'

~
==

e
£

Hence with (20), (23) and (24) we get
ke+k0—1 k +k -1
T
e >l Tksx€=xZE ,-—% (5"“) (c C+ FTR F)SA xT_.E }3 % 112

4
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ke+k0—1

2 2
= 3 (E||cs"x+ ’ks“ﬂ U} ||)+E||Ckex€||

£ § jk €
=k,

k+k -1 k+k -1

0 j-1 ~
2
2E||Cx|| +5 E z ||cs*‘xe|| “E_3 1G]l ,zkns** B ||?
e J ’=£

j= j=k_+1 Ji+

k+k—1

-1-||Cx||+EZ SAx||—c
2 . j,

k+k—1

E E ||CSAx Il - 825 I x|l —638“11/—(:

2¥ T6¢

va-a

Thus

T 1
1+ c3)£ 2x, Tkexe 2 3
which is a contradiction since ¢ is arbitrarily small. Hence we deduced the existence of
p > 0 such that
A Txzpllx||> VxER and ¥V kE€Z

Consider now the evolution (16) and let u be defined by
U, Fkxk ,kzs (25)
From Lemma 4 (ii) we have with (25) and (24) that

L-1
Eigs(x,.’ ClCx+u  Ru)<& X &
Hence
Jbu)sETXE

It follows that

2 T T -2 2

PIEN"sE T E<Isbm)<E X E=pl&]l

and consequentlyp I <X V s and the first part of the proposition is proved.
Using again (ii) of Lemma 4 we have with (25)

Ex] Xy Fone ~ 8 X 5= ~ET T8 p €I -SETx e
from where
EX X Fx¢, q81-%€0,1 26
xs+k s+k, s+k =q » 4= Z\ 0,1 (26)

(with peventually increased). Since SA 1s independent of SA it follows from (26) that

FESE, X s‘ Esqf E(s;‘,)TXSSf,E

s+k,r s+k s+k,r
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where & 4 SSAIE for arbitrary £ and s > r. The last inequality shows the stabilizing property
of X and the proof ends. O
Proposition 8. Suppose that (4), (5) is either detectable or uniformly observable. Then the
Riccati equation (3) has at most one global positive semidefinite and bounded solution.

Proof. The proof follows from Lemma 4 (ii) which implies that, under the assumptions
made in the above statement, a symmetric stabilizing solution is maximal. a

As a consequence of the above developments we have

Theorem 9. Assume that

(i) the system (1) is stabilizable;

(ii) the system (4), (5) is either detectable or uniformly observable.
Then the Riccati equation (3) has a unique stabilizing solution X and

min J(s5,£,u) = ETX §(=0)

“CUsh o

In the same way we may state a dual result, corresponding to a dual quadratic stochastic
control problem.

Consider the following systems (in reverse -time version)

X =, +EG‘ vk) k+1+c{ U1 1)

and
x =4, +Zd )ka @)
Y41 ™ Bk *r+1 ()

By F; we denote the o-algebra generated by {vk | k =i}. Associate the quadratic cost

Yok =E 2 BBl R ) @)
where R 29I v>0 Vi and where x; , i =5 — 1is the solution of (1’) caused by the
control sequence u = {u_,u__,,... } and initial condition x_ = £. The class of admissible
controls is given by U 64) which consists of those control sequences # for which:

1) 4; is measurable with respect to F,

E | y|? <

DIG,E,u) < o,

The Riccati equation associated to (1), (2°) is the dual of (3) and is given by

T -1 T T T .,
Yoo =4 YA - A Y, CIR, +C, Y, C'C, Y, AT + B, B +za‘fc‘y D@3

Note that equation (3°) with G;( = 0 appears in filtering theory.
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All the above definitions and results can be dualized (in anticausal version). The dual of
theorem 1 is

Theorem 10. Assume that

(i) the system (I’) is antistabilizable;

(ii) the system (4’), (5°) is either antidetectable or anticausal uniformly observable.

Then the Riccati equation (3’) has a unique positive semidefinite antistabilizing solution Y and

minJ(s.£) = &7 X &
“EU(;,;:) O
2. Optimal compensator under independent random
disturbances

We shall begin with the problem formulation. Consider the system

N
_ i i 1.1 2 2
X =M, +EIG'k Vi, + B u, + B u,

y; = C,lcxk +D112 uz (1
2 2 21 1
Ye =GOy
Here x € R, u;; ER™ i=1,2, yi €ERPii=1,2and (ull‘)k cz is an additive noise. We

also assume that ) )
12, ~1 1
DG, D=[0 1]
and 21, pNT 21\ T
D2 ah” oM = n
As in the previous section v;‘ are scalar random variables.
Letv, 4 col(v1 y oo ,vN )E RY and assume that:
1) {(v ,u,lc) |k €Z } are independent,
2)Ev,=0,Eu, =0,
2 12
3)E(||vk [+ ||uk I )<¢, VkEZ
4)E (u].l(ujl)T) =1
Denote by az =E (vi vfc) as in the previous section.
We have to mention that as elsewhere in this monograph the boundedness of the sequences
A4,B',B%,C!,C?, D", D" is assumed.
The following compensator is connected to the system (1)
N
C [ 4€ i iy ¢ 2
Gep1 = Ay +i§1(fk Ve + By @

2 _ c
u, = C X
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and the following resultant system is obtained

N
— 4R i i 1
x1§+1 =, +i§10f‘ "k)‘f + Bf % o)
1 _ R
Y= Cka
where
4R A Ak Bf(Ci ) G 0
KU lECG 4| GRe K,
Kk “k k 0 G
Bl
A k A1 A2
B.= chDil Cll: =[G, DGl
The problem consists in finding a compensator (2) which stabilizes system (1) i.e.
s+L
{AR GR1<is< N} is stable and lim sup% > E| y}( ||2 is minimal with y! the output
L»x k=s+1
of (3).
Now we shall be concerned with the evaluation of
1 s+L )
limsup— X Ellz, ||
L>o L k=s+1 k
for the system
N
— i
g1 = Ay +Eldk Vi + Bew,
7= Cx ®

where {A ; G ,1=sis N} is stable. The assumptions made on the random perturbations
v, and w, are the same as above. Assume also that the initial state of (4) x = £ is such that

E|| & ||2 < o and & is independent of{(vk,wk) | k= s}.

Consider the Liapunov equations

N )
Q= AkT Q14 '*‘JE_ fZ(G'k)TQm G+ CZ Cy &)

N
_ T i p T T
Pev1 =4 PeA, -'-‘,JEIaIiG‘kP (G +B, B, (6)

~ A N
andlet4, £4, +k§=‘,16’k Vi
Theorem 1. Assume that A defines a mean-square exponentially stable evolution. Then
(i) Equations (5) and (6) have unique global and bounded solutions Q and P, respectively.
s+L s+L s+L

o) s . 1 Ty 1. 1 T
(i) imsup+— S E ||z, ||*=limsup= 3 tr(C,P,C)=limsup— 3 tr(BTQ, . B,)
Lo Lk=s+1 k Lo Lk=s+1 ke "k L+ Lk=s+1 ke Fk+1 7k
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Proof. Let # be the space of nXn symmetric matrices endowed with the scalar product

<H ,H,> 8u(H,H) ¥V H ,H€¥
LetT :# - # be defined for eacht, JEZ andizj through

T(H)=E s" H (s")
Clearly T. is a linear bounded operator and for each H 20,T; (H) 2 (. Clearly
T,(H)=E (s*‘) Hs*‘

It is easily checked that mean-square exponentlally stable evolution defined by A is
equivalent to

I T <8~ izj,q€(0,1)
Define
2 T;(C] C)
Then
A« T o AT ik 24 1
“ Qk ” _iEk” ’Itk(c,' C,') ” S[Ek” Ci C,' ”ﬁq‘ S,ucﬂ l—q vk
I C; || =u_) and the boundedness is obtained.
Clearly O, = 0. We have

Q41 = : 2 +1(CiT G f_alf (S?,k+1)TC ¢ S:k+1

Since /Tl is independent of S"fk +1 We get further

- ~ o0 ~
~T ~ T AT -~ _ T AT
EAL Q14 ';EIfAk(ng) GG S?Jc+IAk ;gff (Sgc) G C;‘Sﬁc
On the other hand
N N
~T -~ _ i i\T, i j
EA Q1 4) =EA, +i§1(’7c Vi) D1y +j§1qc )

q T j

=4 Qk+1Ak+2“ ) Oc+10k
Linking the last relation to the previous one it follows that Q = (Q,), . » is a global posi-
tive semidefinite and bounded solution to (5). This solution is unique. Indeed if Q}‘ and

Q are two symmetric global and bounded solutions to (5) we obtain by subtraction
0~ 0 =4, Dy ~ Oy + Z “u( ) Qry ~ G4 )= EALQ 1~ OF M,

where the independence has been used as above. From the above equality it follows directly

by induction that _ -
0 -0 =ESHTQ - 0)S; =TQ - @) j=i
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Hence
1_ 2 1_ 7 =iy ol _ 2
g -GN <T@ -0 1l <Bd~ Il -2
Taking j = « and based on the boundedness of Q1 and Q2 it follows that
10 -Q}I=0Viez
Following the same machinery we deduce that P defined by

T
P E k,z+1(Bi Bi )

is the unique global and bounded solutlon to (6). Thus the first part of the theorem is
proved.

To prove (ii) let us compute

T T
Exe 1 Q1% ~ EX O x,

N N
- ) T, i J _FT
=E(4, +i§16'k v, tBw) 0, A, +j§101kv;<+Bk w)—Ex Q x

N
_T,,T i T i T T
=Ex (Ap Oy 4y “:leak(dk) 041G, ~ Q) +Ew, B O, B w,

where the facts that x, is independent of vi, vi, W, and v;(, w, are independent as well as the

k
zero mean-values of v' and w, have been used. Since E W, w,{) =T we deduce

T _ T T\ _ ., pT
Ewg By Q41 B, w,=Eti(By Oy, Bw,wp) =tB{ O, ., B,
Hence we get eventually with (5)
T
Exk+1 O +1%+1 ~Ex % Q% = Exk Ck Cex * 1B, Oy By
Since A defines a mean-square exponentially stable evolution it follows as in the deter-
ministic case that sup E || x, || < o, Hence we get

izk
s+L ) T s+L T T
E E [EA _f% E E kaCkxk_Lk [ExkQkxk_E"k+1Qk+1xk+“Bka+1Bk]
1.\'+L T
=_=§+terk Ori1Bx L(E +1Qs+1 1" EX 1O Xoir+1)

The second term approaches zero when L approaches « and the second formula of (ii) is
derived.

To obtain the first formula we can write
Ellz 1I*=E || Cx, II* = ExC,x, x{ C; = C, Ex, x})CL = trC, P, CT
where

éE(x
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But it is easy to check that Pisa solution to (6) for k = 5. Hence as above
P-P =T (P —-P) kzs

Taking into account the mean-square exponential stability we get from the preceding
equality that
s+L ~

limsup— X trC,(P,—P,)C, =0

L L k=s+1 Kk Kk
from where the validity of the first formula follows. (]
Now we shall be involved in evaluating the cost of the resultant compensated system. We
shall use adequately the formulae given in Theorem 1. To this end consider an arbitrary
stabilizing compensator and evaluate for the resultant system

1 s+L 12 1 s+L T
limsup+ 3 E ||yl |12 =limsup+ 3 t(BYTQR,  BR
Lo =s+1 L>e =s+1

where QR is the unique global and bounded solution to

N .
Gp = (40 G A + 2H(G) Cy O+ QG

as well as
1 s+L 102 1 s%L CRPRCRT
limsup— Y E ||y, ||”=limsup— tr (o))
L+ Lk=s+1 k L»o Lk=s+1 ko k

where PR is the unique global and bounded solution to

Pl = AL PR + 3 O PG + BB
Write

11 12 11 12
Qk Qk = Pk Pk

QII: = 0T 22| 12,7
(o) Ll I (e Wl
where the partition is conformally with (xR)T = [xT x, ]T.

Thus we obtain
s+L

. 1 12
limsup+~ ¥ E ||y, ||
Lo Lk=s+1 k
11 12 1
, 1 T T ey Zkt1 Q|| Be
=limsup+~ Stri[(B)" (D) (B))']
L+ L k=s+l{ k k k (Q,lcil)T Qii] B;:(Dil }
1 pl2 1T
: 157 e P P (G
=limsup~ Y tr{[C, D,°C%]
with
1 2 T I, pernT 1 12 2
o, 9 A, (C)'(BY Q1 Q|| 4 BEG

@ 07| @@ @l ||@)" o[BG 4
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+§ al (Go" 0 Qk+1 Qcr1||Ge O (i [1 Duc‘]
=1l 0 @] |©@4)T G| 0 G (Ci)T(DItZ)T £okE
and Pll P12
k+1 k+1
Pesd” P
| A BiC|| P! P2 A7 (AT E)T
BCy A ||@DT P BT “p”
N |G of|l P! P2 o B,
ijl Tk ] k k k ] D21 T, B T;
2 o G [|BDT PEl| 0 (@) B“D21 CUNCRlC
respectively.

To transform the above formulae use the Riccati equations

T T 2 -1 T
X Aka+1Ak Aka+lBk(1+( ) k+1 ) (B )Xk+1Ak

+UE au( TXk+1 G’ + CT M
and

T -1 T T T
Y, =4, YA -AY, ClU+CY.ChH ckYkAk+za‘JG‘Y ) +B, B (3)

We have proved in the first section of this appendlx that under stabilizability and detec-

tability assumptions on the pairs (A Bz) and (C A) equations (7) and (8) have unique
positive semidefinite stabilizing solutions X and Y, respectively. Use for (7) and (8) the
equivalent Kalman-Szeg6-Popov-Yakubovich form i.e

I+B)x,, B=vlV,

k+17k
A X Be=WV,
N )
ATX A -X +ClC +_§a;'{( VX, G =W W,
and v
1+CY T =Ty,
A Y (COT =WV, @)

T _ T ij "'T
AY AT -v,_ +B B +2a G, Y (G =WI'W,

Note also that
- -1 T o-T
Fe=Ve W K=W TV,
are the stabilizing feedback and injection matrices, respectively.
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We have now

1
lim sup + 2 E |y, II?
L+ L k=s+1 k

= lim sup s; [tr(BY7x, .. BY
Loo L kest1 k k+1"k

Qll k Q Bl
1o OO oz o, |mor]

If we write down the corresponding equations for the blocks and use the Kalman-Szegé-
Popov-Yakubovich system (9) we deduce that

11 12
T (DltZ)T(Bc)T] Q14X k+1 Q/;2+1 B}clz }
@2)" 93, | (B

is the cost associated to a system with the same dynamics as (3) but the regulated output is
defined by

1 s+L
lim sup — L, 2 :r{[(Bllc)
+

L-»o0

~1_ R R
Ve = 6ka
where
A
617: =W, chfc]

Using the last result and applying the second formula for cost evaluation we get

1 s+L
LIT:,SUPL EEIkaII
1 s+L T 1 s+L P11 P12 WT
= lim su tr X .B + tr{[W, VCC
Jim. PT » E (B ) e+1B1) 2 {[ ] (P12 T Pzz (Cc)TVT }
s+L T 1 s+L T
-LIT:OSUP —[ 2 tl‘ (( Xk+1 B ) +=§:;(Wk Yk Wk)

pli_y pi2 wT
k k "k k
+W, VGl "1 om 7,7 ]]
{ BT BV }
If we write down the corresponding equations for the blocks and use the Kalman-Szego-
Popov-Yakubovich system (10) we deduce that
11 12
pRA Pe =Y Py
k 12T p22
Gl
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is the solution to the same Liapunov equation as for PR but with the matrix Bg replaced by
ﬁ,T
Al "k
k -y
AP

Consequently i‘;ﬁ 2 0 and we deduce a lower bound for the cost, i.e.

1 s+L 12 1 s+L WT . s+L T
limsup—~ Y E||y, ||°=limsup— X [tr((B,)'X,, B)+ > tt(W, Y, W,)]
L»w L k=s+1 k L>» L k=s+1 k-1 Tk k=s+1 k ke Tk
and we may guess that we discovered the optimal cost value.
We are now in the position to state the main result

Theorem 2. The optimal stabilizing compensator is obtained by taking

C__ 2 2 _—— —
A, =A +B F +KC, , B, =-K , Cf(—Fk

where F, and K, are expressed through the stabilizing solutions to the Riccati equations (7) and
(8) (under the stabilizability and detectability assumptions stated above).

Proof. We have to show first that the compensator is a stabilizing one and then that it
provides

T
5, k
u((W, V,GJP If 7)) =
€)'V,
For the first part we have
R NGR. . A, BlF, NGR. .
AR GR = + S GRY
KSR R -k G A+BFAKCH s Kk
Using the Liapunov transformation
s [0
k™| =11
we get
2 N i 2
R A +BF, k-'-iz:lG‘kvk BF,
Ser1¢4y +i§1Gf VS, = , N L
= ()
0 Ak+Kka+,,§16ka

from where the exponential stability follows.
For the second part we have

w, VG| ot

T
W,

PN T
rr|) =t W, T, W,
Kk

where
Apll _ 5 _ pl2_ pI2T 2
=P ~Y—P - F) ”’i
By direct computation we have

N
_ 2T 2 o iTp
T = A+ K G T A, + K C) thl“z(G‘k) T, Gy
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Since {A +KCG,1=is N} is stable the above Liapunov equations provides T, = 0.

From this conclusion it follows that the optimal cost is exactly that guessed at the end of III
The theorem is completely proved. ]

Notes and References

The results in this Appendix have been obtained in [52] for section 1 and in [28] for section
2. The definition for observability given in section 1 has been used in [60]. The result in
Proposition 3, section 1, is rather standard in stochastic control see [37], [51], and [25]).
General results concerning optimal control with incomplete state information for stochastic
discrete-time linear control may be found in [49).



Appendix B

Almost periodic discrete-time systems

1. Standard theory of almost periodic sequences

Definition 1. Let X be a Banach space. A sequence x = (x,), _ 5, X, € X'is said to be almost
periodic if for every € > 0 there exists a positive integer N, > 0 such that among every finite
sequence of Ne consecutive integers, i.e. i+1, ... ,i +N8, V i there is one, say p, such that
Il x, +p % || < ¢ for all k €Z. Integers like p are called e-almost periods of the given
sequence. a
If a sequence is periodic any multiple of the period is an &-almost period for any ¢ > 0.

Proposition 2. An almost periodic sequence x = (xk) ez is bounded.

Proof. Letk, €Z and & > 0 be arbitrarily chosen. According to the definition 1 there exists
N, > 0 such that among the consecutive integers —k +1, ..., —k,+N_ there is an integer p
such that || xk0+p - xko || <& Notethat1=<p+kj)=N_.Then

I, 1= 1lx, =x, . [l +1lx
k, k, Tk tp k

|| se+]| x || <e+max || x. ||
otP kytp 1<isN

Since k is arbitrary, the proposition is proved. O
Given an almost periodic sequence x = (x,), ., it follows from Proposition 2 that

sup|| x, || is finite. Define || x || 4 sup|| x, ||. For any two arbitrary sequences
k k

. A A
x = (xk)kEZ andy = (yk)kEZ deflnep(x’y) = ”x -y ” = Slll(p”xk —yk ”

A sequence (xi)

limp(¥ ,x) = 0.

>

i_ o . . .
; e n Where x = (x,),  » is almost periodic, converges to a sequence x if

Proposition 3. Let (xi )i  z be a sequence of almost periodic sequences X= (x;.c) ez Assume
that x' converges to a sequence x. Then x is almost periodic.
Proof. Let & > 0. Then there exists an integer A_ such that
€
|4 —x, || < s Vkez
Let p be an #3-almost period of . Then
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E & €
ey =5 1S Wy, =, 11+ 1, =S 1l + e —x | < 5+5+5=¢
Hence p is an e-almost period of x and may be found among every N% consecutive integers
where N _ is associated to the almost periodic sequence L. O
Corrolary 4. The space of almost periodic sequences of X is a complete metric space.

Proof. Letx andy be two almost periodic sequences. Then

plx,y) 4 sup || x, =y, |l = |lx [ + ||y || < = according to Proposition 1. Consider now a
k
Cauchy sequence (x'), o, of almost periodic sequences x' = (x}), - ;. Then for every
¢ > 0 there exists 4_ such that
N4 x|l <eVi>i, VjEN, kEZ

For any fixed k, (x;.(),. ez is a Cauchy sequence in X. Consequently there exists x, such that

« approaches x, when i approaches %. For the sequence x = (x we have
k 2PP k pp q YkeZ
. . i i i

N, —x <l -5+ 17 —x |l <e+ |57 x|

Taking j >  one obtains || x, -x;'( | <eVk€EZ and Vi>4. Hencep(x,xi) <e

Vi>A and g converges to x. 0

Theorem 5. A necessary and sufficient condition for a sequence (x to be almost periodic

k)k €Z
is that for every sequence (m].)]. enw ™ €N there exists a subsequence (mi,-)i e i Such that

% +m ); e i converges, uniformly with respect to k €Z.
j.

1

Proof. First we shall prove necessity. Let () e z be almost periodic. Let (mj)]. ey be an
arbitrary sequence with m, €N and let € > 0. There exists N, > 0 such that among the

consecutive integers ml.—Ne+1,...,m]. there is an ¢-almost period p; ie. mj—N€+15ijmj.

Thus Osmj_ijNe_l‘ Let 9; 4 m; = p; It follows that q; takes only a finite number, N, of
values. Hence there is an integer 0 < g < N_such thatg = m; = p; for an infinite number of
different values taken by j, i.e. ¢ = m =p; i € N. We have

”xk+mj T Yk4q =1 xk+q+pj “Xktq Il <e

Hence particularly

||xk+mj —xk+q|| <eVkez

Consider now the sequence ¢ = % Using the technique described above which led us to the

last written inequality, we can extract from (xk a subsequence (xk +mj1)i e Such
i

+mj)j eEN

that
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| xk+mj1 Ll <g

!
From this last subsequence we can extract a new subsequence (x, +mj2)i eN
i

such that

I Hitma ” Terd’ Il <e,
i

If we proceed in this way we get a nesting sequence of subsequences ((x, +m]r)i eNrs1

I

such

that
||xk+m]’—xk+qr|| <e ,rzl
i

Extract now the diagonal subsequence (x, i), ;- Let € > 0 and consider the integer
iz
1
r,z 1for which
< E
& <3

Fors,t > r,we have therefore

I
I xk+m}:_xk+mjx =l xk+m}s—xk+q’s I1+1] xk+q'e—xk+mjx I <5+5_8
s t s t
where the fact that both (m].;)s > (mjxt)t » 1 are subsequences of (mj'::s)i e n has been used.

From the last inequality it follows that (x, , ) . |
J

s
ges uniformly to an almost periodic sequence.

Let us prove now the converse. Assume the condition in the statement to be valid and
suppose that the given sequence is not almost periodic. Then there exists an &, > 0 such

that for every integer N > 0 there are N consecutive integers which do not contain an
£,-almost period for (x,), o ,. Denote by L, the set of the N consecutive integers men-

tioned above for which the existence of an £;-almost period fails and let m, be arbitrary.
Choose m,, such that m, —m, € L, (for example if ~m € L, we may choose m

is a Cauchy sequence. Hence it conver-

=m, - m).

2 1

A .
LetL, = L,. Choose now v, > |m; ~m,| and m, such that m, — m, and m; — m, are in

2

L, .Todothatletl+1, ... ,l+1/2 be the set L, and assume m,<m,. Choose m3=l+m1+1.
2

2
Hence m,—m, ELV2 and my—m,2l+1, my—m,<l+m,—m,+1<l+v, and consequently

+1 such

m,—m, € L . If we proceeed according to the above scheme we obtain Y and m;
2
that
v.2 max |m,—m |
l=susvsj v ~

and M m, ELV' for 1 =u <j (we may take

constructed ac-

M= min{s ls ELV:} + max{m” | lspu=< j}). For the sequence (mj)j >1

cording to the above procedure we have
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—X

k” ym—m€L  (s>10)

s—1

sup|| Tktm " Xk+m Il = supl| Ye+m —m
k s t k s t
According to the definition of L, we deduce that

| z¢

Sup “ Ye+m Fk+m ' 0
k s t

By the initial assumption we can extract from (mj)j a subsequence (mj ); such that (x, ),
i .
1

converges uniformly with respect to k €Z, that is there exists j, such that if s > ¢ > j, we

have
€
5im ~em || <5 ¥ kEZ
5 t

and this contradicts the property of the sequence (mj)j. |

Corollary 6. If x and y are almost periodic sequences then ax+fy 4 ((zx,.+ﬂy‘.)i VYa,BERIs
an almost periodic sequence. O
Corollary 7. If X is a Banach algebra and if x, y are two almost periodic sequences then

xy 4 (5,%,); ¢ z is also an almost periodic sequence. O

Theorem 8. A necessary and sufficient condition for the sequence (x i e z to be almost peri-
odic is the existence of an almost periodic function f : R - X such that X, = =fk) kEZ.

Proof. Assume f: R > X be almost periodic such thatx, = fk) k €Z, and choose
(m) ™ €N. Thenx, = f(k+m) and there ex1sts a subsequence (m ) such that

(f(t+m )) converges umformly with respect to ¢. It follows that (x, ) converges uniform-

ly with respect to k. Hence following theorem 1 (x x,), is almost perlodlc

Conversely, for a given almost periodic sequence (xk)k defines on R
fO =x, +-k)—x), k<t<k+l,k€Z

It is easy to see that an ¥3-almost period for x is an e-almost period for f. a
From Theorem 8 it follows that if f is a T-periodic function then the sequence x, = f(k) is
almost periodic. O
Remember now that for an almost periodic function

lim f fis)ds

T-»oo

exists uniformly with respect to ¢ € R. This 11m1t is termed as the mean value of f.
Theorem 9.If (x,), .  is an almost periodic sequence then

X, +x +...+x, .
. k+1 k42 ’ k+j ~
lim . =x
j-vao ]

exists uniformly with respect to k; % is called the mean value of x.
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Proof. Let f be the almost periodic function defined in Theorem 2, i.e.
fO=x +t-k)x ,,—x), kst<k+land kEZ.

As we already mentioned
k+j
tim 2 [ 7y
jro J k
exists uniformly with respect to k and equals the mean value of f. But
k+j

1 1 1
J—.ff(t)dt=‘-,:(xk+l+xk+2+ +xk+j—-2-(xk+].—xk))
k

Hence

k+j k+j
lim 3 sx oy =timd [oa+diimle, ) =tml [0 a
'1m]. Gppqte xk+].)— 1mj v 2.1mj (xk+j xk)_.lmj fv
jroo k jroo jre k

j—bm

2. A new Bochner theory for almost periodic sequences

The following notations are made. If (lj)j for l] €N is a sequence and (m,), is a subsequence
of it, i.e, m, = l] we shall write m C . If (lj)j and (mj)j are sequences with l]. ,m; €N then

l+m= (l]. + m].)j.If (l].)j, (mj)j are two sequences with l] s m; € N, the subsequences (l]. ); and
(mj ); are termed as common subsequences. For a sequence / = (lj)j l] €N T,x=y means
i

Y =jl_i’r: X ; foreachk€Z. If m = (m].)j m, €N is another sequence we have z =T y

and the composition T, T, is definedbyz =T Tx.

With such notation the statement of Theorem 1.5 is equivalent to: x is almost periodic iff for
every sequence of positive integers | there exists a subsequence m Cl such that T x exists

uniformly on Z .

Theorem 1. Let x be a sequence. Assume that for every pair of sequences of positive integers

I' ,m' there exist common subsequences I, m, ICl' and mCm' such that TI me =T, m*

pointwise on Z. Then x is almost periodic.

Proof. Let n’ be a sequence of positive integers. If we choose I' =0, m’ =n we deduce

according to the property stated in the theorem the existence of a subsequence n C n’ such

that 7 x =y exists pointwise. Assume limx, =y, is not uniform with respect to k €Z.
j—» o0 j

Then there exists £, > 0 such that for every J EN there exist j',j"' > J and k; such that
A A

— > =7 = = " 1
|| x ktn, xk] +n, || = &, Take J =i, denote n,=nyn,=n and rewrite now
[| x PRap S || = £ From the property in the statement we deduce the existence of
i it

subsequences n' , k with n’ C " ,k C k such that T; ;7% = T T, x pointwise. Using again
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. VII 1 v _ 7
the property in the statement we deduce the existence of subsequences n'' Cn'' |k Ck

L . v,
such that Ty, v, x =TyTy,x pointwise. For the corresponding subsequence n' we have

.. v oV
also Ty, v, x = TyTy, x pointwise. But n' ,n"" are subsequences of n, hence Ty, x = Ty, x =y

pointwise. From here we deduce that limxy_ v, = limxy v, , hence
jre o jew j

lim |xy, v - || = 0 which contradicts Il XN XY, o O

jre i j A Y

Remark 2. If x is almost periodic then for every pair of sequences of positive integers

I’ ,m’ there exists common subsequences ! C I’ ,m C m' such that T, r.x=T,, x uniformly

onZ. We choose ] CI',m Cm' succesively, in order to obtain common subsequences such
that T x=y, T, ~x=z uniformly on Z. Choose € > 0 and J_ > 0 such that

> l+m
~z, || <2V k€Z andV j > I, || <Y i>0,

xlzlj_,_’y, || =€

[ B Xerttm. " Viam |
J J ] J !

V j>J. It follows that ||xk+mj—zk | <eV k€EZ andV j>J. Hence T y=z
uniformly onZ. |

3. Almost periodic evolution

Theorem 1. Let A = (A A € R" be almost periodic and assume that A defines an

k)k €z’

exponentially stable evolution. Let v = (v € R" be almost periodic. Then the system

Wk ez Vk
K1 A% TV
has an unique bounded on Z solution which is almost periodic.

Proof. If I' is an arbitrary sequence of positive integers there exists a subsequence / C /' such
that T4 = A exists uniformly on Z (see Theorem 1). The evolution defined by 4 is also

exponentially stable. Indeed,

1S5 1= 1Ay 1=l [ Ay oy 1=Bim S5 11<B4 k2
forp=1andq € (0,1).
Consider now the sequence x defined by

= 4
i =i_2_ wS;i Vier F Ve
Clearly x is convergent since 4 defines an exponentially stable evolution and v is bounded.
It is also easy to check that for the above defined sequence
Yer1 = A TV
Now we shall prove that x is almost periodic. Let ', m' two sequences of positive integers
and consider common subsequences / C I’ ,m C m' such that

Tl+mA = TITmA ’ Tl+mv= Tlev
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From
k-1 k=
Yy = 2 Slf+l,,jvj—l+vk+1.—1= E S:+1,s+1 s+ - 1Y Vw1 -1
i j=— i ] = l

we deduce that

.hmxk 2 Sfé V-1 %

i-»o s§=—00
Hence

k-1

M= 2 S Ty + Ty

and consequently
k-1
T T,
(Tm Tlx)k = E Sksm ﬁ(Tm Tlv)s—l + (Tm Tlv)k—l

k-1
T
=3 wsksm+f4(Tm+1v +(T,

Following Theorem 2.1, x is almost periodic. a
We have also

=(T

m+V k=1 m+

Theorem 1. Assume A = (A,), <  be almost periodic and defining an exponentially antistable
evolution. Then forv = (v,),  , almost periodic, the anticausal system

e = AFer1 Ve

has an unique bounded on Z solutlon which is almost periodic. o

Remark 2. In Theorem 1 exponential stability can be replaced with exponential dichotomy
(using also Theorem 1°). 0

Lemma 3. Let X be a Banach space and let f, : D C X > X be a sequence of continuous
functions, almost periodic, uniformly with respect to x belonging to every compact subset of D.
Let x = (x}), c z be an evolution defined by

Yep1 =hlx) kEZ
and located in a compact subset C of D. Then for every sequence I of positive integers there
exists a subsequence L C I such that T)f =f, Tix=y,y, ., =f0,), v, €C VkELZ.

Proof. Consider the interval [-K, K] inZ and the sequence (x _ ); with I'’ CI' such that

K+1 "
T,.f= f uniformly on C. We may take a subsequencel C['" C /' such that (x_, 1) conver-
ges and let

limx

j»

et k00 =Pk @onn) k-0

Yk= -K+,

Then
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=f —K+1‘.(x —K+I,.) —f g —K+I,.) +Hf_x —K+I‘.) ~f_0_g)
Taking i » = it follows that -
lim ¢ —K+H+1 f_KO_©) =Y k41

j»00
In the same way we obtain eventually that _
11m"k+1‘. =V » Vw1 S0 ¥V k€K, K]

i»o0
The subsequence [ C I’ obtained in this way depends upon K and this will be denoted as K.
Let [ be the diagonal subsequence l;\ = l].] . For this subsequence we have

'limxk+1'.~=yk VkezZ
jrw j
and _
Yer1 =500 0

Theorem 4. Let the assumption of Lemma 3 be valid. If for every sequence | the system
2, 11 = f(z), with f = T, f has a unique solution located in a compact C, then this solution is

almost periodic.
Proof. According to Lemma 3 for the solution x of Z = fk(zk) with x, € C we have that
TeT~xisasolutiontoz,  , = (T T~f),(z,) and Tj; ~x is a solution to

2 41 = T2 Ni(z,) both located in C. Since T, = T o f it follows by uniqueness that
TIAT nx= Tlf_;’;;x and according to theorem 4, x is almost periodic. O

Corollary 5. Consider the discrete-time Riccati equation

4T 4T T —1,T
Xk —Aka+ IAk Aka+ lBk(Rk+Bka+ lBk) Bka+ IAk + Qk @

withA = AerB=B)epR= R czand Q= (O € z 9most periodic (matrix)
sequences of appropriate dimensions o.= QZ 20, R, = RZ zkl, k > 0. Assume that there
exists 0 <y < 0 such that every discrete-time Riccati equation obtained by translation has a
unique solution X for whichy I < X, = 01 Y k €Z. Then such a solution is almost periodic.

Proof. Obviously the set of n X n symmetric matrices X satisfying y I < X < d I is compact
and the sequence f defined through

f(X)=A] XA, - ATXB(R, +BIXB) BT x4, +0,
is almost periodic, uniformly with respect to X in any compact set. Apply now Lemma 1 and

Theorem 6 and the conclusion follows. Note that the recurence goes backwards but this
does not affect the validity of Lemma 1 and Theorem 6. O

The above corollary serves for solving the linear quadratic problem with almost periodic
reference tracking. More exactly, let

Xep1 = A+ By Q)
withd =(4), . B= (B}),, ¢ z almost periodic (matrix) sequences. Let r = Dk ez be
almost periodic. We look for a state feedback law u, = F x +h, such that the optimal
tracking of 7 is achieved; that means
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N+k—1 r r
Aim Ek (G =) Qo =) + wy Ry 3)
is minimized, where Qj = Q].T 2 0 and Rj = RI.T 2kl , k > 0, define for j €Z almost peri-

odic sequences.
Let (1) be the associated Riccati equation and let, under usual assumptions (see section

32), X = (X), ¢ z be the unique stabilizing solution. If F = (F, Wk  z 1s the corresponding
stabilizing feedback, consider the equation

8= At B F)gy  + Okr kKEZ 4)
According to Theorems 1 and 4, X and g = (g,), ., are almost periodic. Usual computa-
tions lead to the optimal feedback law

uk=Fkxk+hk (5)
with
F,=-R,+BTx B) 'BTx . A
k kT B A1 B Bk M1
- T ~1,T
he =R+ B, X 1B) B8y
If (5) is used the optimal cost is
k-l T T ~1,T
Yop=limyy - 2 17 Q1 =821 BB, + B; X1 BY™ B g54] ©)

Let us end this section by proving that almost periodicity is preserved by sampling. Let

x = A(tx + B(t)u @)
be a linear system with 4(.), B(.) almost periodic. If the sampling period is 9, i.e.
tey1 =t 0, k EZ, then the discrete version of (7) is

_ 4d
Yy = A Bfuk ®)

where

tk+1

A=) B = [ 50 080 0
t

k

®

and §* is the evolution operator of (7).

Theorem 6. The sequences (AZ)k ez’ (BZ)k e z are almost periodic.

Proof. For each TER we see directly that s (t+rs+7) = SAv(t,s) for AT(t)éA(Hr). Con-
sider the sequence of positive integers (k;); and the sequence (4, o) Since 4 () is almost

periodic there exists a subsequence (kid)j such that (4, 6)/. is uniformly convergent on R.
j i

! i

Denote
I(t,5) & S%o(t,5) , A1) R A 4(0) = A( + k,0)
J i}- J
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By using the variation of constants formula and Gronwall’s lemma we get
19°€.5) -9 @.9) | sa™aswl| 4" ®) - 4O |
for |t — 5| < a. It follows that
14~ A I sOPasupll 4@ -4 @) V kez
Hence (4), . is alnllost perioiiic.

In the same way consider a subsequence k; such that both A and B defined by
i

B (3] 2y (t+ k.d) are uniformly convergent on R. We obtain directly the estimate

i) s 6 s 4]
;= B;ik <6%ug e asupl| 4" ©)=A4' 6) || +8e¥ssup| B ©)-B'O) |
Ik i
which shows that (Bf)r ¢ z s almost periodic. O

4. Evolutions under Besicovitch sequences

Definition 1. Let X be a Hilbert space and denote by M, the set of all sequences x = (x )k ez
x, € X with the property that
1
k+N 5
sup limsup [ 2 || J =p,lx) < @
k€EZ N-w
where the limsup is uniform with respect to k. a

It is immediately clear that p,(ax) = |a|p,(x) for V. a ER and V x € M,. We have also

k+N
plx +x) = sup llmsup[ > ||x +xk||]
kez

N->w i=k+
1 1
k+N 5 k+N _
< sup limSUP[( 2 llx & ( Sl H < pylx) + pylx)
k€Z N-»w i=k+1 =k+1 k X( X(

Hencep, isa seminorm on M v Inorder to obtain a normed space consider the equivalence

relation ~ on M, defined by x ~x iff Pxlx = x) = 0. Then the quotient space M, /~ will
be a normed space equipped with the norm p, and will be called a Besicovitch space
denoted B,.. ~

Note that the space of almost periodic sequences on X is a subspace of B, .
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Theorem 2 Consider the linear system
Yy = A X+ By
=C,x ©)

with A, B and C bounded sequences. Assume that A defines an exponentially stable evolution.
There exists y > 0 such that for any u € B, we have p(y) <y p (u) wherey = (y,), c 7 With

2 ksvl‘cl,z+1 i l , kEZ (10)
Hence the well-known formula (1 0) def nes a linear bounded operator from ﬁU into ﬁy, ie

between input and output Besicovitch spaces.
Proof. We have

IkaI|<ﬂ2 N (IEsg <B4, g€ 0,1)

j=—o

or
2
k=1 f—i-1 k—i—1 k—1 k—1
2 k—i—1 k—i—1 2
Iy, I1><B [Eq 2 q 2 IIu,-II] °2q 7 Zq "
j=—o j=—o i=—w
2 k—i—1 2
—4 E %l
i=—o
Hence
2 j+N k-1
2 _
) lly, 1I” = f— N P&
k=j+1 -4 k=j+1 i=-o
-1 . HN-1
_q S iy l1? zq"+ a7 w12 2</‘
== k=j+1 i=j k=j+1
= ﬂ2 .+1 Eq—l lllu “ :§—q—l lnu “2 l+1___L
1-q 1-q;, .~ & 1—¢
Thus
1 2 +11 ﬁlj—l_l 1N11+N1
i _%Ilykll _qq’ - qu__m‘ a1+ L TN EIIu 1| ()
Now we shall prove that
1T 2
l&lmﬁ 29 T llyll*=0 (12)
~» 00 j=—o0

Write
® j-(s—1L-1 j—(s—1L-1

zq" My 1?=2 2 ¢ iyl <2q<s DT w2 (13)

i=—o s=1 i=j—sL i=j—sL
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But

0 [

j+L-1
Pf®) —suphmsup( DY )

Hence

N[

j+L-1
11msup( E A ) sp,u) V kez

L»w

Using it we can write further

=

. ] e Lot :
llmsur’(L 2yl ) spyw) Vs,j

Lo i=j—sL
and there exists S such that

1/ s—-1)5S-1 % ‘
(5 2 i) spw+1vs,
i=j—sS
or
j-(-1)s-1
3 w12 Sy + )2V s, j
i=j—sS
It follows that

zq“ Ul ] <—q7S<p,,(u) +1y?
j=—o
and we have eventually that

lim Sq MNuli?=0

N> "j==0w
and (12) holds. Remark that we have used essentially in the proof the uniformity with
respect to i of limsup in the definition of p ().

Using (12) in (11) we obtain

(SIS

1
‘ 1 2 1 j+N-1
llmsup( Z ||y Il ) —L llm( 2 Il % 1% " <p u)
N->x N k N U(
or finally

B -
Pyy) < 1__qpu(“) =ypyu)
and the proof ends. ]

Remark 3. Let us return to the space of almost periodic sequences. If (x,), < . (), ez 2

almost periodic then (<x, ,y, >), is almost periodic (this follows directly by using Bochner
arguments). It follows that
i+N
lim = X <x,,y,>
N> N k=i+1 k> 7k
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exists uniformly with respect to i and the limit does not depend on i. Thus a pre Hilbert
structure is introduced on the space of almost periodic sequences. We shall show that this
structure is equivalent to that induced by the supnorm.

Obviously

lim 5 >: 51" < sup 15 11°#

We have to prove that there exists p >0 such that
2
lim < 2pv
Jim z 15 112 p
Note that (|| x, || )k ez is almost perlodlc hence there exists ry €N, r, > 0 such that

among any r, consecutive integers there is a %s-almost perlod. Let N] =jr, Since
1 N
hm 2 Il x, ||? exists, it follows that

N
1
hmﬁ 2 II x, || —llm— 2 II x, ||
jr T k=1
Wemaywrite
jr 21
2 (e —E Il x 11 —E (EA| +Z IkaII +ot 2 ||x 12
k=@~ l)r
According to the definition of ¥ there exists k such that
3v
>.____
5 177

Among the numbers (s — Drog+1-k,... ,er — k,, there exists a 7+-almost period r, that
is
2 21 Y
l”xk.,.,-:“ - ka“ | <Z vk
Ifwetakek=k0wehave (s=Dry+1 sk0+rs5sr0 and
2 2 Y _V
N o 172 Ml 117225
k0+r: ko 4 2

We deduce that

Sl lPzlx,, 1225
k= +1 kotr 2
and
g y
2.V 1 2_ 1w
D A b v E A (et
= jk=1 0
Hence
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Thus we have proved that the two structures are equivalent, hence on the space of almost
periodic sequences we have a natural Hilbert-space structure induced by the scalar product

i+N
<t,y>=lim—= X <x, ,y,>
’ N-'°°Nk=i+1 k> 7k

This structure is to be called the Besicovitch structure motivated by the fact that in the
continuous-time case it corresponds to the class of almost periodic functions considered by
Besicovitch. a
For the sake of completeness we shall end this Appendix with

Theorem 4. Besicovitch spaces are complete.

Proof. Consider the sequences (x, for which

kez

1
imepsl 3 115,17’
im sup x <
e | 2NHL TN
For such sequences define the distance by

Al 1 N p|?
d(x,)’)— h-inoosup 2N+1 X ZN ”xk—)’k ”

A sequence (xi)i > 1 of sequences £is Cauchy if for every € > 0 there exists L, such that if
i > L, then

dif ,# ) <e VsEN
Assume that (x’)i > 1 1s @ Cauchy sequence and choose a subsequence (x’j)j 5 1 Such that

. . 1
d@i,xi) < per}

Choose further a sequence ().j)j >qSuchthat24, +1<4, , and
1
N 1
1 i i pl? 1
sup{——E ||x'—x'+1||} <=
N> 2N+ Loy £k 2

Define the sequence x = (x,), c 7 by
Ay if A k| <Ay,

TV 0 [k <4,
We shall prove that '
limd(x',x) =0
>0
Letd, <N <4, .. We have
N

S llx, =2 |IP
N k |

J . k-1 . .
=3 S g2 P+ 3 S g lIP+ S (g~ I1P+3 (1411
v=1 A s<lk|<d v=j+1 A slk|<d A <|k|<N lk| <A
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We write further forv < j

. 1
(z 1%, — ¥4 ||P)p= (Esl

).vs |k| <ﬂ.v+1

1
. Jlx‘;{—x’/; 1P\ p
|<'M—l
1

Sls 1d-den el
< — +
K=kl <, £tk

S |-

i1 . .
< Xy —dprr|P
£ B ]

j-1
by L %< 1%
< (211. +1) y§v2" < (2/1]. +1D)? < A].H
We deduce that

2 llx =2 IP <jd,
w21 ase ko j+1
v v+1
In the same way
k-1 1

2(-1p

S g -dlP <2N
v=j+1 Avs |k| <}.v+1
i 1

> lx, -2 IIP<2N+1)——
asikl<N ¥ k 21

S I IP = @4 + 1) max || £ 1P
ki<, ! lk| <A,
From the above developments it follows that

d(x ,xij) <2 1

2i—1

from where d(x ,xij) approaches zero as j approaches infinity.
For an arbitrary i choose j such that ij <i< i]. +1 and deduce that

dx, @) < d(x, &) +ddi &) < d(x, &) + #

from where )
limd(x,x') =0
j» o0

and the completeness is proved. O

Notes and References

The general concept of almost periodic functions has been introduced by [13). A significant
step in studying this class is due to S. Bochner, see [11]. Almost periodic sequences seem to
have been studied first in {59]. An important reference on the subject is [46]. A very useful
application to differential equations is presented in [12]. A basic source on the subject may
be found in [10].
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