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Foreword 

In recent years great efforts have been made in industry to reduce complexity of 
production processes and to lower setup times and setup cost. Still, we have ob- 
served numerous production facilities where lot-sizing continues to play a major 
role. Also, the issue of lot-sizing spans a much larger area than merely minimizing 
the sum of setup and holding costs as it also provides the clue for a better utiliza- 
tion of resources. For example, the author is aware of a case where improved lot- 
sizing and scheduling increased output by more than 20%! 

Still the question remains which lot-sizing model to choose. There is a vast 
number of lot-sizing models in the literature either based on a discrete time axis or 
on a continuous times axis. While the former is easier to solve in general aggrega- 
tion of time often results in missing "optimal" solutions or even feasible solutions 
(although these might exist). Continuous time models, despite being able to cap- 
ture more details, often are complex non-linear models resulting in prohibitive 
computational efforts for its solution. 

This was the situation when Christopher Suerie started his PhD project. In the 
course of the project he came up with a number of excellent ideas to improve 
modeling capabilities of discrete time model formulations. In the end he has been 
able to claim that now mixed integer linear model formulations for the capacitated 
lot-sizing problem with linked lot sizes (CLSPL) as well as the proportional lot- 
sizing and scheduling problem (PLSP) exist capturing details that make continu- 
ous time model formulations unnecessary. To be more precise, Christopher Suerie 
has shown how to effectively model restrictions on period overlapping lot sizes 
(campaigns), namely 

minimal and maximal production amounts, 
minimal resource utilizations throughout campaign production and 
production amounts that are integer multiples of a given batch size. 

Furthermore, he has developed a model formulation that mimics period over- 
lapping setup times. He also demonstrates that all his proposals are solvable by 
state-of-the-art Mixed Integer Programming solvers with rather modest computa- 
tional efforts - thus making it most appealing for applications in industrial prac- 
tice. 

In the end this PhD thesis not only contributes to a number of single issues that 
have been treated incorrectly or ineffectively in the literature but provides a com- 
prehensive, unifying modeling framework for single stage lot-sizing and schedul- 
ing problems directly applicable in the process industries. It is an excellent piece 
of research with great potentials for successful applications and worth reading 
from the first line until the very end. 

Hamburg, January 2005 Hartmut Stadtler 



This dissertation is the result of a four-year research effort conducted at the de- 
partment of Production and Supply Chain Management at Darmstadt University of 
Technology. 
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1 Introduction 

1 .I Motivation 

Different modeling paradigms often collide at the interface of short-term, opera- 
tional production planning and mid-term production planning. Mid-term plans are 
most often based on a discrete time scale made of weekly or monthly buckets 
without too much detail. On the other hand, short-term operational planning needs 
a lot more detail and therefore comprises time buckets with the size of days or 
shifts - or even better - is not attached to a fixed grid of time buckets, that is a 
continuous time scale. 

Both paradigms have their legitimacy in their respective settings. For mid-term 
planning it is sufficient to know, that e.g, products A, B and C will be produced in 
the quantities 50, 80 and 30 units in week 17. On the other hand, it is important to 
know that the setup change from product A to B for the stamping machine needs 
to take place on e.g. Tuesday between 2.30 p.m. and 5 p.m., because setup person- 
nel has to be scheduled for this event. 

Models and algorithms for both, production planning on a discrete time scale 
and for production planning on a continuous time scale, are known in large num- 
bers. A missing link and the focus of this thesis will be the representation of arbi- 
trary (continuous) plans on a discrete time scale. 

From a theoretical point of view this idea is very appealing, as it would allow to 
combine short-term and mid-term planning into one modeling approach. If a tele- 
scopic time scale with shorter time buckets at the beginning, to capture the detail 
necessary for short-term production planning, and bigger time buckets towards the 
end of the planning horizon is used, both planning steps can be accomplished with 
only one model. As a consequence, the structural differences which often compli- 
cate communication at the interface of short-term and mid-term production plan- 
ning are reduced. 

Anyhow, not a global model that solves all kinds of production planning prob- 
lems will be presented here, but rather several important building blocks, primar- 
ily intended for mid-term production planning and thus bucket-oriented will be in- 
troduced. These building blocks may be used as different extensions to standard 
lot-sizing models. They are motivated by practical production planning problems. 
Moreover, built together into one model, it will be possible to represent arbitrary 
continuous production plans in a bucket-oriented setting. 

The application of these planning models, which first comes into mind, is proc- 
ess industries. Furthermore, also discrete production environments might be eligi- 
ble for use of at least some of the building blocks that will be presented. This 



2 1 Introduction 

stems not only from the analogy between discrete production and process indus- 
tries,' but can also be seen from the case descriptions which follow in section 1.3. 

1.2 Some Definitions 

In different industries different terms are used - from a planning point of view - in 
the same or similar context. Here the focus will be on the terms "lot-sizing" and 
"campaign planning" first, which are in fact terms originating from totally differ- 
ent sources. 

The term "lot-sizing" has its roots in a discrete production environment. Lot- 
sizing is the arrangement of demands for the same product in different periods to a 
single production order ("l~t").~ This means, that customer orders (or anonymous 
demand) with different due dates for a certain product are combined to form a 
production order. The reasoning is, that each production order is usually associ- 
ated with a certain fixed cost (setup cost). If customer orders were produced as 
demanded ("lot-for-lot"-production), this would strongly affect costs. Further- 
more, it would affect capacity, because setups will generally consume also a fixed 
amount of capacity. To avoid that, customer orders are combined. The result of 
lot-sizing is a production plan, which shows when to produce (e.g., in week 13) 
and how much (e.g., 100 units). 

The term "campaign planning" on the other hand is typically used in the proc- 
ess industries. There, two variants of campaigns have to be distinguished: single- 
product campaigns and multi-product  campaign^.^ In analogy to lot-sizing a sin- 
gle-product-campaign can be defined as a production order, which comprises sev- 
eral customer orders (or anonymous demand) that share an unique setup state. 
With respect to the production environment there may be several specialties or ad- 
ditional constraints. The most important one is, that the production order may be 
made of several batches, with a batch defined as a combination of a production 
amount and a certain task.4 The batch size is often fixed and determined by the 
size of the production resource (e.g., a tank). Anyhow, in general - at least at this 
level of abstraction - there is not a big difference between a lot in lot-sizing and a 
single-product campaign in campaign planning. 

Multi-product campaigns do not fit into the lot-sizing scheme as easily. Here, a 
campaign consists of several products requiring different setup states, but cam- 
paigns are built such, that setup operations within a campaign require much less 
effort (cost andlor time) than setup operations between  campaign^.^ An analogy in 
lot-sizing is the grouping of products into families such that only minor setups are 

Cf. Volj and Witt (2003) pp. 75-81. 
E.g., Chase et al. (1998) pp. 648-649, Giinther and Tempelmeier (1997) p. 182, Guten- 
berg (1983) p. 201 and Silver et al. (1998) p. 198. 
Cf. Blomer (1999) p. 16 and Overfeld (1990) pp. 87-88. 
Cf. Schwindt and Trautmann (2000) p. 502. 
Cf. Overfeld (1990) pp. 87-88. 
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necessary between members of a product family and major setups are necessary 
between fa mi lie^.^ 

Moreover, a term used in discrete production as well as in the process indus- 
tries is "batching". Unfortunately the meaning is different in both contexts. In the 
process industries a batch is defined as a combination of a production amount and 
a certain task. If the batch size is not determined by the production resources, the 
decision on batch sizes is called batching here (first step).' In a second step, 
batches requiring the same resource configuration (setup) are combined to form a 
campaign. The reason why production planning in the process industries is often 
in batches and the batches are not put together to form a bigger batch for planning 
purposes is, that resources or tanks often limit certain production tasks.8 In dis- 
crete production however, the second step is referred to as batching. Here, the 
combination of production orders belonging to the same order family is called 
b a t ~ h i n g . ~  For a more extensive discussion we refer to Volj and Witt (2003), who 
discuss the different meanings of batching in discrete production and process in- 
dustries as well as find and define analogous terms in these two fields.1° 

In the remainder of this thesis we will stick to the following nomenclature: 
A lot (or lot size) is the production amount of a production order which is pro- 
duced in one production run without changing the setup state. 
As there are only settings in the scope of this thesis which require the planning 
of single-product campaigns, the term "campaign" can be used as a synonym to 
the term "lot". 

Anyhow, when literature from the different fields is discussed in chapters 2 and 4, 
the term "lot" will be used, if the lot size is produced within a period (time 
bucket), whereas the term "campaign" will be used, if the lot extends over several 
periods. But this is only not to confuse readers familiar with only one field and 
one should keep in mind, that generally - at this level of abstraction - there is no 
big difference between lot-sizing and campaign planning, apart from the latter re- 
quiring some side constraints. 

Furthermore, we will refrain from using the term "batching" to avoid confusion 
of the reader, because this term - as mentioned above - has very different mean- 
ings in discrete production and in the process industries. 

1.3 Case Studies 

The production planning models studied in this thesis are not only interesting from 
a theoretical point of view, but also relevant from a practitioner's perspective, as 
the following case descriptions illustrate. 

Cf. Potts and van Wassenhove (1992) p. 397. 
Cf. Trautmann (2001) p. 5. 
Cf. VoR and Witt (2003) pp. 76-77, 8 1. 
Cf. Potts and Kovalyov (2000) pp. 228,231 and Vol3 and Witt (2003) pp. 78, 81. 

lo Cf. VoR and Witt (2003) pp. 75-81. 
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Napkin production 
The production process consists of three stages. At the first stage paper is pro- 
duced in a continuous process. The second processing step - and in this case 
the bottleneck - is the conversion of paper into napkins. Here, an emblem or 
design is printed on the paper, which is then folded into shape. The folding op- 
eration involves a difficult setup step, which takes up to 36 hours. At the third 
stage the folded napkins are wrapped and packaged." 

Although production plans in this case assume a period length of approxi- 
mately one month, setup operations consume a substantial portion of time (5 % 
of capacity) and therefore need to be accounted for as accurately as possible. 
Otherwise production capacity may be lost or orders that should have been 
taken are declined. 
Self-adhesive laminate 
Self-adhesive laminates comprise of two layers. The top layer is formed by the 
face material made of paper or a synthetic, which is usually coated. On the 
back-side of the top layer an adhesive is applied. The bottom layer is mostly 
made of paper, which is silicon coated for easier release of the top layer.12 

In this case the bottleneck to be planned for is the coating of the face mate- 
rial. The planning horizon is three weeks and the varnish/paste coater is utilized 
five days per week and 24 hours per day. The period length is one day and the 
setup time is about 5 % of capacity. It is not only important to account for setup 
times correctly because of the tight capacity situation, but also because setups 
waste energy and raw materials, which go into scrap.13 
Production in a chemical plant I 
A chemical plant is considered in this case. Here, a reactor has to be planned 
for. This reactor can operate in different modes, producing exactly one distinct 
product in each mode. Changeovers are not only very costly, but also consume 
a considerable portion of available capacity. The planning horizon comprises 
one to three years with monthly buckets. Production plans are only accepted by 
the planners, if they meet certain criteria. These are e.g. that campaigns have to 
obey a minimal size of 300 tons or that they have to be built of batches with a 
size of 100 tons each.I4 
Production in a chemicalplant 11 
Here, a continuous process in a chemical plant that operates 365 days per year 
and 24 hours per day is to be planned for. The process is interrupted only for 
maintenance purposes a few days each year. In this process the minimization of 
changeovers is of paramount importance, because the plant produces off-grade 
products for a few days after each changeover between two products. There- 
fore, a minimum length is imposed on each production run. On the other hand, 

l 1  Cf. Gopalakrishnan et al. (1995) p. 1974. 
l2 Cf. Raflatac (2003). 
l3 Cf. Porkka (2000) pp. 7, 5 1-57, 
l 4  Cf. Kallrath and Wilson (1997) pp. 303-325 and Kallrath (1999) p. 335 
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storage space is limited and costly to increase. Furthermore, the process re- 
quires that the plant is always run at a minimum utilization rate.15 
Campaign planning 
A software company providing supply chain planning software wanted to en- 
hance the modeling and solution capabilities of its mid-term production plan- 
ning module. In this case it is crucial not only to solve a special case, but to 
come up with an universal model/algorithm that fits into the architecture of the 
software system in place. Characteristics within the scope of this project have 
been an exact modeling of setup operations within a bucket-oriented time struc- 
ture, specification of minimal campaign lengths and planning of campaigns 
consisting of batches with fixed size. 

1.4 Outline of Thesis 

This thesis is organized as follows. In the second chapter basic models in lot- 
sizing are introduced. According to their underlying time structure they are classi- 
fied into big-bucket, small-bucket and hybrid models. After having studied the dif- 
ferences of these models in detail, the third chapter analyzes their representation 
defects with respect to a continuous time scale. Thus, the effect discretization of 
time imposes on plans, that can be generated by those basic lot-sizing models, is 
evaluated. This analysis is based on four cornerstones, which are the representa- 
tion of setup states, the representation of lot sizes, the representation of setup op- 
erations and different assumptions on resource utilization. 

The fourth chapter provides a thorough literature review which is divided into 
two parts. The first part reviews basic models in lot-sizing introduced in the sec- 
ond chapter with special emphasis on the extensions to model time continuity as 
defined in chapter three. The second part contains a review of model formulations 
originating from applications in the process industries. These often incorporate 
some aspects of time continuity. As some of these model formulations are based 
on a continuous time scale, this second part of the literature review is hrther di- 
vided into model formulations based on a discrete representation of time and those 
based on a continuous representation of time. 

The planning framework and techniques considered capable of solving the later 
proposed model formulations are presented in chapter five. As solution techniques 
mathematical programming and decomposition will be introduced. 

The sixth chapter contains the heart of this thesis. Here, the modeling and solu- 
tion approach is presented. Mathematical programming model formulations are 
provided for the four aforementioned aspects to model time continuity in a time- 
indexed setting (setup states, lot sizes, setup operations and resource utilization). 
These extensions are given for two different basic models. Furthermore, they are 
provided as building blocks and may be freely combined dependent on the actual 

l5  Cf. Lee and Chen (2002) pp. 16-17. 
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decision situation. Finally, a decomposition heuristic is proposed to allow also for 
the solution of problems of bigger size. 

Computational results are provided in the seventh chapter. These are again or- 
ganized based on the four aspects to model time continuity in a time-indexed set- 
ting (setup states, lot sizes, setup operations and resource utilization). Solutions 
are analyzed to give insights into what makes certain decision situations difficult. 
Moreover, computational performance of the proposed model formulations is as- 
sessed by comparing them to other model formulations from literature. The exten- 
sibility of the proposed model formulations is shown as well as their independence 
from solver technology. 

Finally, chapter eight summarizes the achievements of this thesis and gives a 
brief outlook on hrther research opportunities. 



2 Basic Models in Lot-Sizing 

2.1 Classification of Lot-Sizing Models 

Obtaining cost-efficient production plans balancing the trade-off between setup 
and inventory holding costs - lot-sizing - has been a fundamental goal of practi- 
tioners since the beginning of industrialization. The first published work in this 
area by Harris titled "How many parts to make at once?" dates back as far as to 
1913.16 Since then, a broad stream of research has been developed, dealing with 
various types of lot-sizing problems for many different applications. 

These can be classified according to different attributes.17 For ease of presenta- 
tion these attributes are clustered into three sets according to their main relation- 
ship: time, resource and product. 

The first set "time" contains all attributes with relations to the time structure of 
the model and the data used: 

Planning horizon: The planning horizon may be finite or infinite. Models with 
an infinite planning horizon usually assume a constant demand rate like the 
Harris' economic order quantity (E0Q)-modell8 and will not be considered in 
the remainder. 

0 Time scale: The time scale may either be continuous or discrete. If a discrete 
time scale is chosen, time buckets may be either big or small and either uniform 
or non-uniform. Most standard lot-sizing models assume a uniform time discre- 
tization, which means that all time buckets have the same size (see sections 2.2 
and 2.3). Nevertheless, sometimes a telescopic time scale is chosen with larger 
time buckets towards the end of the planning horizon19 or time buckets may be 
non-uniform for other reasonsz0. The distinction into small- and big-bucket 
models concerns the relative length of the time periods with respect to the ex- 

l 6  Harris (1913). 
l 7  Other compilations of attributes and classifications of lot-sizing models and literature 

can be found in e.g., Derstroff (1995) pp. 20-24, Domschke et al. (1997) pp. 69-75, 
Haase (1994) pp. 3-7, Karimi et al. (2003) pp. 366-367, Kuik et al. (1994) pp. 247-249, 
Meyr (1999) pp. 46-55, Salomon (1991) pp. 21-22, Stadtler (2001) pp. 39-40 and Wol- 
sey (2002) pp. 1589, 1591, 1595. 

l8 Cf. Harris (1 913). 
l 9  E.g., Timpe and Kallrath (2000) pp. 424-425. 
20 E.g., Karimi and McDonald (1997) p. 2702. 
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pected length of any individual production lot.21 In models with small time 
buckets it is usually assumed that in each period only one or at most two prod- 
ucts may be produced. Therefore small-bucket models integrate lot-sizing and 
scheduling by not only determining the lot sizes, but also the sequence of pro- 
duction orders. On the other hand, big-bucket models permit multiple products 
to be produced each period without making any assertion about the sequence of 
orders. 
Temporal development of parameteddata: Parameters can either vary over 
time (dynamic) or not (static). Often models are distinguished into dynamic or 
static lot-sizing models according to the temporal development of demands,22 
but generally all parameters (e.g., production capacity, cost parameters, produc- 
tion coefficients) may vary over time. 
Availability and knowledge ofparameterddata: With respect to the availability 
and knowledge of the problem data deterministic and stochastic models have to 
be distinguished. In deterministic models all parameters and data are assumed 
to be known prior to planning. Stochastic models on the other side try to incor- 
porate the uncertainty of the future into the planning model. This is usually 
done by assuming a certain distribution or range of values instead of a distinct 
value for a certain parameter. Typical parameters which are modeled stochasti- 
cally are e.g. external demands or quantities of defective items.23 Only determi- 
nistic problems will be discussed in the remainder. 
Objectivefunction: Most commonly the objective of a lot-sizing problem is to 
minimize the sum of several cost components. Nevertheless, sometimes other 
objective functions are defined.24 These can be either monetary like the maxi- 
mization of profits or sales, or non-monetary. Then, the goal is not transformed 
into monetary units, because it is a rather physical accomplishment (e.g., re- 
source leveling) or a temporal objective (e.g., minimization of maximum late- 
ness or total completion time)25. 
Cost components: As stated above the standard objective function is the mini- 
mization of several cost components. These comprise classically inventory 
holding costs and setup costs. 

Inventory holding costs are typically taken into consideration as a linear cost 
function of the quantity of products in stock at certain points in time. Economi- 
cally they mainly consist of the costs of capital tied up in inventory. Other parts 
included in inventory holding costs are costs associated with warehouse opera- 
tions, taxes, insurance premiums, obsolescence and shrinkage.26 

21 Cf. Salomon (1991) p. 21. Buckets in small-bucket models can have a considerable 
length depending on the industry and level of aggregation. E.g., De Matta and Guig- 
nard (1994) discuss an example of a small-bucket model with a bucket length of one 
week. 

22 Cf. Domschke et al. (1997) p. 70, Kuik et al. (1994) p. 247 and Salomon (1991) p. 21. 
23 Cf. Haase (1 994) p. 3. 
24 Cf. Domschke et al. (1997) p. 73 and Kallrath (2002b) p. 224. 
25 Cf. Potts and van Wassenhove (1992) p. 398. 
26 Cf. Derstroff (19%) p. 23 and Haase (1994) p. 5. 
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Setup costs are costs incurred by the production process. Whenever a lot of 
any product is produced, resources involved in the production process have to 
be set up to cope with that specific product, e.g., re-tooling of a machine. These 
costs are charged to the objective function as setup costs. Setup costs consist of 
direct costs (e.g., cleaning materials) and opportunity costs. Opportunity costs 
are charged, if setup times, that are the times associated with setup operations, 
are not considered in the model explicitly. Then, one has to figure out how 
much capacity has been lost due to the setup operation in order to determine the 
value of this lost capacity (e.g., contribution margin of those products that 
could have been produced during the setup operation). Of course, these oppor- 
tunity costs are hard to estimate as they depend strongly on the scarcity of 
available capacity which may vary over time and which often is known only af- 
ter lot-sizing has been done. Therefore, many authors recommend to include 
setup times into the model and to charge only direct setup costs in the objective 
function.27 

Besides these classical cost components of lot-sizing problems other cost 
components might be considered in the objective function. 

First, there are more types of setup related costs. Reservation costs might be 
charged, if there is a cost associated with preserving the current setup state, 
when there is no production. Switch-off costs might replace setup costs, if the 
costs associated with a specific production lot are related primarily to the end of 
the production process and not to the start (e.g., the main cost component re- 
sults from cleaning). Generally, it suffices to include either setup or switch-off 
costs as long as the costs are assumed constant over time and no net present 
value calculation is performed in the objective function. Furthermore, Wolsey 
(2002) distinguishes between start-up costs and setup costs, where start-up 
costs are the costs associated with the start of a production lot and setup costs 
are charged in each period of production (including the start-up period).28 

Second, there are also more inventory related costs. These deal with the 
case, that there is not enough inventory to meet demand. In this case the de- 
mand is either lost (lost sales) or fulfilled in later periods (backlog). Both cases 
are not desirable and therefore a penalty cost is usually associated with these 
types of "negative" inventories. 

Moreover, production costs are most often assumed constant over time and 
therefore irrelevant in this decision situation. Nonetheless, it might be eco- 
nomically correct to assume declining production costs.29 

Finally, overtime costs for using extra capacity might be considered in the 
objective function. 

The second set of attributes concerns mainly the "resources" involved in the pro- 
duction planning problem. 

27 Cf. Kuik et al. (1994) pp. 249-250 for more criticism to this approach. 
28 Cf. Wolsey (2002) p. 1597. 
29 Cf. Domschke et al. (1997) p. 72. 
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Capacities: Capacities of resources can be assumed finite (capacitated) or infi- 
nite (uncapacitated). If assumed finite, they might be extended by overtime at a 
certain cost. Again, this extension can be finite or infinite. Usually capacities 
may be used up to a fixed budget in each period, e.g., according to a working 
calendar. On the other hand, very rarely, resources are assumed to be not re- 
newable or only partially renewable. This means the resource availability in a 
certain period depends on the use of that specific resource in former periods.30 
Product-resource-assignments: Product-resource-assignments3' are either such, 
that each product is assigned to only a single resource (unique assignment) or 
not. 
Number of resources: The planning problem may comprise of one or more re- 
sources. If a specific operation can be performed on more than one resource, 
these resources are called parallel resources. They can be either identical (with 
respect to the production coefficients, capacities and sets of possible product- 
resource-assignments) or not. On the other hand, if a single operation requires 
two or more resources in parallel (e.g., a machine and a worker), we will talk of 
a problem with multiple resources. 
Product/operation structure: The product/operation structure32 which shows the 
flow of materials through the production system may be either cyclic or non- 
cyclic. The productloperation structure is deemed cyclic, if at least one end- 
product requires two operations at the same resource. 
Minimal utilization rates: Minimal production 1 utilization rates are sometimes 
taken into ac~ount.~'  They are necessary to avoid production plans in which re- 
sources are utilized only to a negligible extent. In that case it might be more 
economical to turn this resource off and shift production to another resource or 
period. 
Production coeficient: Production coefficients are usually deemed constant. 
That means a production function of Leontief type34 or linear technology is as- 
sumed as a basis. Changes in intensity as considered in the Gutenberg produc- 
tion function35 are regularly not taken into account, but sometimes the assump- 

30 Cf. Kimms (1997) pp. 66-68 for an example with partially renewable resources. 
31 In this context of planning it is generally not sufficient to examine products at this 

level of detail. Instead operations should be focused on here, because an operation uses 
part of the available resource capacity, while a product is usually treated by several 
operations on (possibly) different resources (e.g., Tempelmeier (2003) p. 207). Never- 
theless, we will keep this distinction in mind, but continue to use the terms "product" 
and "item" as synonyms as done in most of the lot-sizing literature. 

32 Cf. Tempelmeier and Helber (1994) pp. 297-298 and Tempelmeier and Derstroff 
(1996) p. 739. 

33 E.g., Kallrath and Wilson (1997) p. 315, Lee and Chen (2002) pp. 21-22 and Wolsey 
(2002) p. 1597. 

34 Cf. Domschke and Scholl(2000) p. 89. 
35 Cf. Domschke and Scholl (2000) pp. 92-95, Thommen (1991) pp. 404-407 and Wohe 

(1990) pp. 587-594. 
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tion is made, that resources may operate in different modes.36 In continuous 
time model formulations the production coefficients (or the production speed, 
which is the term usually used in this context) are sometimes assumed zero 
[=production speed: +a] (e.g., in the EOQ-model). 
Setup operations: As already mentioned above where setup related costs were 
discussed, setup operations are also strongly connected with resources. A setup 
operation changes the setup state of a resource. 

Setup operations can either be sequence independent or sequence dependent. 
Moreover, sometimes minor and major setup operations are distinguished. Mi- 
nor setup operations are setup changes between products of a specific product 
family, whereas major setup operations are setup changes between products of 
different product fa mi lie^.^' Setup times consume part of the available capacity 
and because the resource is not productive during the setup operation, setup 
times are reduced as far as possible.38 As explained above switch-off times 
might be used instead of setup times. 

In most lot-sizing models setup times are assumed to be small with respect 
to the bucket length. Therefore setup times are usually modeled such that they 
lie completely in one period.39 On the other hand, this is often not true for 
small-bucket models. Consequently, setup times may span over several peri- 
o d ~ . ~ ~  Furthermore, setup operations can be confined to start only at the begin- 
ning of a period (e.g. on Monday morning) or they may lie during downtimes 
(e.g. on weekends) to save productive time. 

The last set of attributes "products" is devoted to the output of the production 
process. 

Number ofpuoducts: The number of products considered is an important attrib- 
ute. Single-product problems and multi-product problems have to be distin- 
guished. 
Bill of materials (BOW structure: The number of levels in the BOM and the 
structure of the BOM lead to two more attributes: 

According to the number of levels, single-level and multi-level problems are 
distinguished. In single-level problems there is no relationship between prod- 
ucts in form of a BOM. 

Regarding the structure of the BOM several cases are usually distinguished. 
In an assembly structure each (non-end) product has exactly one successor in 
the BOM. In a divergent structure each (non-purchase) product has exactly one 
predecessor in the BOM. A serial structure illustrates the special case of inherit- 
ing an assembly structure as well as a divergent (arborescent) structure. A gen- 

36 Cf. Kallrath and Wilson (1997) pp. 310-31 1. 
37 Cf. Potts and van Wassenhove (1992) p. 397. 
38 Cf. Trigeiro et al. (1989) p. 353. 
39 Cf. Griinert (1998) pp. 47-48. 
40 Cf. Drexl and Haase (1995) pp. 81-82, Haase (1994) pp. 31-35 and Helber (1994) 

pp. 34-38. 
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era1 structure can contain both elements as sub-structures (assembly and diver- 
gent structure). Fig. 2-1 shows examples of the different product structures. 

level assembly divergent serial general 

Fig. 2-1: Typical structures of BOMs. 

Supply process: The supply process concerns the issue, at which time a product 
becomes available to further stagesllevels after being processed at one stage. 
The first option is, that each single item of a lot will be available immediately 
to the next stage of processing (e.g., on a flow line). Other options are, that 
products become available only if the full lot has been finished, a certain batch 
has been finished or after a defined lead time. 
Lead times: Lead times in a lot-sizing model can be either endogenous or ex- 
ogenous. Endogenous lead times are the result of the model and therefore de- 
termined by the solution procedure. On the other hand, exogenous lead times, 
which are given by the circumstances of the production process (e.g., transpor- 
tation time between successive resources or simply drying of paint), result in 
minimal lead times that have to be re~pected.~'  Even if no exogenous lead time 
applies, it may be necessary to request a minimal lead time of one period. Oth- 
erwise the resulting production plan may not be feasible.42 Fig. 2-2 shows an 
example: Products 3 and 4 are predecessors of products 1 and 2. Although 
products 3 and 4 are procured in the desired quantity to produce 1 and 2 in pe- 
riod t ,  this schedule is technically not feasible, as product 4, which is needed as 
an input for 1 is produced too late. Whether product 3 (as an input to product 1 )  
can be procured in time depends on the assumptions made regarding the supply 
process. Anyway, if a minimal lead time of one period was requested before- 
hand, products 3 and 4 would have been produced in period t-1 at the latest. 

41 Cf. Kuik et al. (1994) p. 248. 
42 Cf. GTiinert (1998) pp. 48-49 and Haase (1994) pp. 14-18. 
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bill-of-materials schedule 

resource 1 

sch ds 

resource 2 

I I b 

t t+l periods 

Legend: (41 production lot 
setup time 

Fig. 2-2: Example for minimal required lead time to ensure feasibility. 

Inventory restrictions: Sometimes restrictions on inventory levels of products 
are imposed. These can be upper bounds to model a warehouse capacity or 
lower bounds to ensure that a certain safety stock is always held.43 Moreover, 
shelf-life restrictions might be included to prevent obsolescence of products. 
Shelf-life restrictions are common in the food i n d u ~ t r i e s . ~ ~  
Service policy: Service policies concern demand fulfillment. In most lot-sizing 
models an a priori known demand has to be fulfilled. As explained earlier, there 
are also models, in which demand not met is either lost (lost sales) or can be 
fulfilled in subsequent periods (backlog).45 Another possibility is that demand is 
assumed adjustable within certain bounds. Then the model has to decide which 
demands are met and to which extent.46 

0 Additional lot-sizing rules: Additional lot-sizing rules may apply. In the process 
industries the production quantity of a certain lot is often restricted. These 
restrictions can be lower bounds or upper bounds on the lot size or that the lot 
size has to be in multiples of a predefined batch size.47 These kind of restric- 
tions will be introduced in more detail in section 3.3. Other rules are minimum 
on and off times.48 These imply that if a certain product is produced it has to be 
produced for a certain (minimal) time (minimum on-time). On the other hand, 
if production has switched to the next product, the first product must not be 
scheduled again for a certain (minimal) time (minimum off-time). 

43 Cf. Belvaux and Wolsey (2001) pp. 996, 1001, 1004. 
44 E.g., Brown et al. (2001) p. 9. 
45 Cf. Haase (1994) p. 6. 
46 Cf. Wolsey (2002) p. 1591. 
47 Cf. Kallrath (1999) p. 334, Kallrath (2002b) pp. 224-225 and Suerie (2004) pp. 3-4. 
48 Cf. Belvaux and Wolsey (2001) p. 1000. 



14 2 Basic Models in Lot-Sizing 

In the remainder of this thesis the distinction between big-bucket and small-bucket 
models will play an important role. Furthermore, a third class of models (hybrid 
models) will be introduced, which encompasses models with elements of big- 
bucket as well as small-bucket models. The basic models of these three classes 
will be introduced briefly in the following three subsections. 

Models will be judged on their ability to model a continuous time scale. There- 
fore the following characteristics will be measured for the introduced models. The 
first one will be the preservation of setup states, whereas the second one will be 
the lot size (or campaign size, see section 1.2) a certain model permits. Lot size is 
hereby defined as the quantity of a distinct product that is produced after a setup 
operation for this product has been performed. Generally speaking, models are 
judged on the impact of time discretization on resulting production plans. 

2.2 Big-Bucket Models: Capacitated Lot-Sizing Problem 

The Capacitated Lot-Sizing Problem (CLSP) is the most basic big-bucket model 
studied in the context of multi-item capacitated lo t -~ iz ing .~~  Its fundamental as- 
sumptions are: 

Several products j are produced on one shared resource. 
The resource has a capacity limit. 
The planning horizon is finite and divided into T periods. 
All products face a deterministic dynamic demand. 
If a product is produced in a certain period, the resource has to be set up for this 
product in this period. 
Setups consume resource capacity and incur a setup cost. 
The aim is to minimize the sum of holding costs and setup costs. 

Mathematically, the CLSP can be stated as follows. 

Model CLSP: 

Min ~ ~ h , ,  .I j l  + ~ ~ S ~ , . Y , ~  
jc3 I c l  j ~ 3  IEQ 

X,, 2 0, I,, r 0, I,, = 0 y j j '~J ,  t t ~ l  (2-5) 

49 Cf. among others Dixon and Silver (1981) p. 24, Maes and van Wassenhove (1988) 
pp. 991-992, Richter (1975) pp. 385-386 and Trigeiro et al. (1989) pp. 354-355. 
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Indices and index sets: 

j Products or items, j ~ 3  
t Periods, t~ l 
3 Set of products 
I Set of periods 

Data: 

ai Capacity consumption to produce one unit of item j (=production co- 
efficient) 

bjt Large number, not limiting feasible production quantities of product j 
in period t 

CI Available capacity in period t 

41 Primary, gross demand for item j in period t 
(with d j T  including final inventory, if given for the planning horizon T )  

hjt Holding cost for one unit of product j in period t 
scj Setup cost for productj 
SQ Setup time for product j 

Variables: 

41 Inventory of item j at the end of period t 

41 Production quantity of item j in period t (lot size) 

51 Setup variable (=I, if a setup operation for item j is performed in pe- 
riod t, =O otherwise) 

The objective function (2-1) aims at minimizing the sum of holding costs and 
setup costs. Constraints (2-2) are inventory balance constraints and ensure that all 
demands are met in time. Available capacity may be used up by production of 
items (4,) and setup operations (I;.,) due to constraints (2-3). Constraints (2-4) 
couple production variables X,, with setup operations I;.,, where bj, is defined such, 
that it is not limiting feasible lot sizes of product j. Finally, (2-5) and (2-6) impose 
non-negativity conditions and binary conditions, respectively. 

The CLSP is a big-bucket model. So far, it inherits no aspects of time continu- 
ity, neither within the individual buckets nor between them: Within each individ- 
ual bucket no sequence of lots is given. Across time buckets no information is 
passed from one period to the next, except for the inventories. Therefore, the 
buckets are totally decoupled regarding the production process. Consequently, 
setup states are not preserved across periods. This means, a setup operation for a 
certain product j is necessary at the beginning of period t, even if this product was 
produced last in period t-1, because this information is not available in the model. 

Furthermore, due to the model formulation the lot sizes in the resulting produc- 
tion plan are limited by available capacity per period.50 

50 TO be exact, they are limited for product j in period t by (c, - stj)/aj  
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2.3 Small-Bucket Models 

In contrast to big-bucket models, small-bucket models consider lot-sizing and se- 
quencing decisions simultaneously.51 Therefore, at most one setup operation is al- 
lowed in each period. Different model formulations with various degrees of free- 
dom with respect to the decision variables of the model are known in this area. 

2.3.1 Discrete Lot-Sizing and Scheduling Problem 

The Discrete Lot-Sizing and Scheduling Problem (DLSP) is the model formula- 
tion with the least degree of freedom of the models presented here. Its fundamen- 
tal assumptions are:52 

Several products j are produced on one shared resource. 
The resource has a capacity limit. 
The planning horizon is finite and divided into Tperiods. 
All products face a deterministic dynamic demand. 
Only one product can be produced in each period. 
If a product is produced in a period, it will be produced at full capacity during 
this period (all-or-nothing assumption). 
Setup operations incur a setup cost. Thereby, a setup operation reflects the 
change of the setup state of a resource. 
The aim is to minimize the sum of holding costs and setup costs. 

Mathematically, the DLSP can be stated as follows. 

Model DLSP: 

Min z x h , ,  . I j t  + z x s c ,  .Yi, 
j t3  IcT j€3 l€T 

5 1  See section 2.1. 
52 Cf. Fleischmann (1990) pp. 337-338 and Magnanti and Vachani (1990) p. 458. 
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Variables: 53 

z j t  Setup state variable (=I, if item j is setup at the end of period t ,  
=O otherwise) 

The DLSP aims at minimizing the sum of holding and setup costs (2-7). As pro- 
duction has to be at full capacity or not at all in each period, the model formula- 
tion does not rely on production variables X,,, which are replaced by (cl/aj) .~,  in 
the inventory balance constraints (2-8). Constraints (2-9) and (2-10) couple vari- 
ables that indicate a setup operation 5, and variables that indicate the setup state at 
the end of each period 5,. At most one setup state can exist at the end of a specific 
period (2-9). If the setup state changes in two consecutive periods, a setup opera- 
tion Y,, must have taken place (2-10). Setup costs in the objective function are 
costs related to these setup operations. (2-1 1) and (2-12) impose non-negativity 
and binary conditions on the decision variables. 

Due to the fundamental assumptions of the model, the DLSP inherits first as- 
pects of time continuity. Setup states are preserved across periods.54 This means 
production of a specific product j can continue in period t without performing a 
new setup operation, i f j  was also produced in t-1. Therefore, lots can extend over 
several periods and are therefore only bounded by the maximal production capac- 
ity within the planning interval. On the contrary, lot sizes are still restricted due to 
the all-or-nothing assumption. 

2.3.2 Continuous Setup Lot-Sizing Problem 

The Continuous Setup Lot-Sizing Problem (CSLP)55 abandons the all-or-nothing 
assumption of the DLSP. Apart from that, its fundamental assumptions are the 
same as stated for the DLSP. 

Formally, the CSLP can be stated as follows. 

Model CSLP: 

53 In the remainder indices, index sets, data or variables will be explained within the text 
only at their first occurrence. A complete list of symbols is given in the List of Sym- 
bols. 

54 In the model formulation presented here, setup states are still lost in idle periods. But 
there are other model formulations for the DLSP, in which the setup state is preserved 
even during idle periods (e.g., Magnanti and Vachani (1990) pp. 458-459). 

55 Cf. Karmarkar and Schrage (1985) pp. 328-329 and Salomon (1991) pp. 33-36. 
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Xjl 2 0, Y,, 2 0, I,/ 2 0, I,, = 0 V j € J , t e T  (2-18) 

The objective function aims at minimizing the sum of holding and setup costs 
(2-13). (2-14) are inventory balance constraints. In constraints (2-15) production 
variables X,, are linked with setup state variables q,, whereas (2-16) and (2-17) 
couple the setup operation variables I;., and setup state variables 4, as has been 
done in the DLSP ((2-9) and (2-10)). Finally, (2-18) and (2-19) impose non- 
negativity and binary conditions on the decision variables. Setup times are easily 
integrated into the model formulation by adding CLSP-like capacity constraints 
(2-3).56 

With respect to time continuity, the CSLP resembles the DLSP. In contrast to 
the DLSP the setup state is even preserved during idle periods, leading to a more 
natural representation of the shop floor. Furthermore, lot sizes can take arbitrary 
values now, because the all-or-nothing assumption has been dropped. 

Solutions to the CSLP will always have a better (or equal) objective function 
value than solutions to the DLSP of the same test instance because of the excess 
production implied by the all-or-nothing assumption of the DLSP. On the other 
hand, the lower degree of freedom allows to develop more efficient solution pro- 
cedures for the DLSP than for the CSLP.57 So both models have their eligibility in 
respective situations. 

2.3.3 Proportional Lot-Sizing and Scheduling Problem 

The Proportional Lot-Sizing and Scheduling Problem (PLSP)58 is the most versa- 
tile of the small-bucket models. It shares the same basic assumption with the 
DLSP and CSLP, apart from the all-or-nothing assumption and the restriction to 
produce only one product per period. The latter is revoked by allowing one setup 
operation per period. Thereby, two products may be produced each period: One 
before and one after the setup operation has taken place. Moreover, the sequence 
of lots is still determined by the model, but the capacity of a period, which is lost 
in the CSLP when there is no production at full capacity, can be utilized to set up 
and produce another product. 

Mathematically, the PLSP can be stated as follows. 

56 Cf. Hauth (1998) pp. 53-56. 
57 Cf. Meyr (1999) pp. 64-65. 
58 Cf. Haase (1994) pp. 26-27, Drexl and Haase (1995) pp. 74-75, Kimms and Drexl 

(1998) pp. 1196-1 198 and Belvaux and Wolsey (2001) p. 999. 
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Model PLSP: 

Min x x h j ,  .I,, + x x s c j  (2-20) 
j t3  I d  jcg ItT 

I,-, + xi, = d,, + I ,  

C a J  .xj, + x s t J  .Y,, I C ,  

J E 3  je3 

C 
X j I  s 2. (Z,, + zj,-[) 

ai 

Cz, I1  
j e l  

Y,, 2 Z j ,  - Zj,_[ 

X ,  2 0 ,  Y,, 2 0 ,  I ,  2 0 ,  

zjl € {0;1), zj,  = 0 

VjeJ, t ~ l  (2-21) 

V t€ l (2-22) 

'd j€J, t € T  (2-23) 

'd t ~ l  (2-24) 

VjeJ, t ~ l  (2-25) 

I,, = 0 Vj j 'EJ , t~ l  (2-26) 

'dj~j', t~ l (2-27) 

Again, the objective is to minimize the sum of holding and setup costs (2-20). 
(2-21) are the regular inventory balance constraints and (2-22) are capacity con- 
straints, stating that production and setup operations never exceed available capac- 
ity. Constraints (2-23) link production variables 4, with setup state variables 4,. 
Production o f j  in t is allowed, if the product j is set up either at the beginning o f t  
(=at the end of t-1, .&=1) or at the end o f t  (qr=l) .  (2-24) take care that there is 
at most one setup state at the end of each period and (2-25) force the setup opera- 
tion variable I;., to "I", if the setup state is changed within a period. (2-25) to- 
gether with (2-20) guarantee that at most one setup operation is performed in each 
period and therefore the sequence of products is determined by this model formu- 
lation. Finally, (2-26) and (2-27) impose non-negativity and binary conditions, re- 
spectively. 

The solution space of the PLSP surpasses the solution space of the CSLP, be- 
cause it is able to utilize the capacity lost in the CSLP, when there is no full pro- 
duction in certain periods.59 Regarding time continuity, setup states are preserved 
during idle periods and lot sizes can take arbitrary values in the PLSP. The only 
restrictions still imposed by time discretization are, that setup operations must lie 
completely within a period due to constraints (2-22)60, and - of course - the limit 
of one setup operation per period. 

59 Cf. Haase (1994) p. 30 for a comparison of the set of feasible solutions of the small- 
bucket models DLSP, CSLP and PLSP and Kimms and Drexl(1998) p. 1198. 

60 Drexl and Haase (1995) pp. 81-82, Haase (1994) pp. 31-35 and Helber (1994) pp. 34- 
38 propose model formulations of the PLSP in which even setup times can extend over 
several periods. 
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2.4 Hybrid Models 

Apart from the big-bucket and small-bucket models introduced in sections 2.2 and 
2.3, there are three other models that do not fit into this classification. These are 
models with a big-bucket structure, i.e. which allow to produce multiple products 
per period, but on the other hand, give information (at least partially) on the se- 
quence of products, i.e. allow to preserve setup states across periods. 

2.4.1 Capacitated Lot-Sizing Problem with Linked Lot Sizes 

The first model of this kind is the Capacitated Lot-Sizing Problem with Linked 
Lot Sizes (CLSPL).6L It represents an extension to the CLSP by allowing to carry 
over a setup state across one or more periods. Therefore, it shares the fundamental 
assumptions with the CLSP except that it adds the link option. 

Formally, it can be stated as follows (with objective function (2-1) and con- 
straints (2-2), (2-3) and (2-5) taken from the CLSP). 

Model CLSPL: 

Variables: 

6 Single-product indicator, which indicates that (a) only one product is 
produced in period t, and (b) the setup state is carried over from pe- 
riod t-l and carried into the next period t+l (V,=l); otherwise (V,=O) 

TI Link variables, which indicate that product j was scheduled last in pe- 
riod t-l and therefore production can continue in period t without per- 
forming a new setup operation in period t (W,,=l); otherwise (W,,=O) 

Cf. Dillenberger et al. (1993) pp. 106-1 13, Haase (1994) pp. 18-21, Gopalakrishnan et 
al. (1995) pp. 1975-1981 and Suerie and Stadtler (2003) pp. 1041-1044. 
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Constraints (2-28) ensure that at most one setup state can be preserved from one 
period to the next. Variables TI therefore correspond to variables Zj,, of the 
small-bucket models introduced in section 2.3 by representing the setup state at 
the intersection of two adjacent periods. (2-29) guarantee that a setup state can be 
carried into period t only if either a setup operation has been performed in pe- 
riod t-l (I;.,,=l) or the setup state has already been carried over into period 2-1 
(T,.,=l). The same setup state is allowed on two consecutive period boundaries 
only, if the single-product indicator variable V,  is equal to "1" (2-30). This is only 
possible if no setup operation is performed in the enclosed period t (2-3 Con- 
straints (2-32) allow production of a certain item j in period t, if either a setup op- 
eration is performed in period t (I;,=l) or the setup state is carried into period t 
from period t-1 (T,=l).  (2-33) and (2-34) impose non-negativity and binary con- 
ditions on the decision variables. Due to constraints (2-30) and (2-3 1) variables V,  
will only take binary values in feasible solutions of model CLSPL without being 
defined binary explicitly. 

The set of feasible solutions to the CLSPL includes both, the set of feasible so- 
lutions to the CLSP and the set of feasible solutions to the PLSP. The CLSP is de- 
rived from the CLSPL by forbidding the linking option, i.e. all variables Ft$f are set 
to zero, whereas the PLSP is derived from the CLSPL by limiting the number of 
setup operations in each period to one for all periods. This constraint would have 
to be added. Therefore, the CLSPL is the most powerful model introduced so far. 

With respect to time continuity the CLSPL allows arbitrary lot sizes and a pres- 
ervation of setup states across (idle) periods. The last restriction, that prevents it 
from allowing to model all solutions that might be possible on a continuous time- 
scale are constraints (2-3), which force setup operations to lie completely within a 
period. 

2.4.2 Capacitated Lot-Sizing Problem with Sequence Dependent 
Setup Costs 

The Capacitated Lot-Sizing Problem with Sequence Dependent Setup Costs 
(CLSD) is an extension to the CLSPL, as it allows to model sequence dependent 
setup costs (and times).63 Other than that, it shares the same fundamental assump- 
tion as the CLSP and CLSPL. To yield the correct sequence dependent setup costs 
and times it is assumed that the so-called triangle condition is always fulfilled. 

The triangle condition states that it is more expensive (consumes more time) to 
change the setup state from product j to product i via product k than to change di- 
rectly from j to i. 

62 The special case, that the same setup state is carried over on consecutive period 
boundaries and a setup operation is performed in the enclosed period is also possible 
within this CLSPL model formulation. Cf. Suerie and Stadtler (2003) p. 1053 for an 
example. 

63 Cf. Griinert (1998) pp. 49-56, Haase (1996) pp. 53-55 and Meyr (1999) pp. 68-71. 



22 2 Basic Models in Lot-Sizing 

Model CLSD can be stated as follows. 

Model CLSD: 

Min z ~ h j , . ~ j l  + ~ X ~ S C ; ~ . K ; ~  
jcg l tT icg j t3  ttT 

j#i 

ic3 j€J  
i+k j t k  

F,, 2 + 1 - J .  (1- X;d) 

xj, 2 0, F,, 2 0, Ij, 2 0, I j0  = 0 

Indices and index sets: 

i, k Products or items, i ~ j ' ,  k c 1  

Data: 

Sequence dependent setup cost, if a setup operation from product i to 
product j is performed 
Sequence dependent setup time, if a setup operation from product i to 
product j is performed 

Variables. 

4, Position variable (takes only integer values), the larger F,, the later 
product j is scheduled in period t 

X;d Sequence dependent setup variable (=I, if a setup operation from item 
i to item j is performed in period t, =O otherwise) 

The objective function of the CLSD is to minimize holding costs and sequence 
dependent setup costs (2-36). Constraints (2-37) are the standard inventory bal- 
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ance constraints and (2-38) are capacity constraints, which take sequence depend- 
ent setup times into account. (2-39) allow production of item j in period t, if a 
setup operation originating from any other product i to product j is performed 
(Ciegx;d = 1 ) or the setup state for item j is carried into period t from period t-1 
(&=I). At the end of each period, a certain setup state must exist (2-40). Con- 
straints (2-41) describe the flow of setups. The left-hand side (LHS) is equal to 
"I", if a setup operation for product k is performed in period t (C,, I:;," = 1 ) or the 
setup state for product k is carried into period t (Zkt-l=l). Then, the setup state for 
k has to be carried into period t+l, and thus Zk,=l, or a setup operation from prod- 
uct k to any other product j is performed in period t ( C,,,Y$ = 1). The same rea- 
soning holds, if either side equals zero. Finally, (2-42) eliminates all possible sub- 
tours.'j4 (2-43) and (2-44) impose non-negativity and binary conditions. 

To obtain the sequence of products in a big-bucket period, sequence depend- 
ency has to be introduced into the formulation. With this extension it is possible to 
obtain the sequence of products within each period and thus lot-sizing and se- 
quencing is done simultaneously like in small-bucket models. Note, that with non- 
sequence dependent data, the CLSD solves the same problem as the CLSPL, but 
gives the sequence within periods at the (computational) cost of a lot more binary 
variables.'j5 

Again, the restriction, that setup operations lie completely in one period, is the 
only type of constraints that prevents the CLSD from allowing to model all pro- 
duction plans that might be possible on a continuous time-scale (2-38). 

2.4.3 General Lot-Sizing and Scheduling Problem 

The last model considered here is the General Lot-Sizing and Scheduling Problem 
(GLSP).66 The GLSP is the most general model (and therefore justifies its name) 
in the sense that it includes all models considered so far as special cases. Its fun- 
damental assumptions are: 

Several products j are produced on one resource. 
The planning horizon is finite and divided into T (big-bucket) periods. 
Each big-bucket period t is divided into a set of small-bucket periods s. 
The resource has a capacity limit in each of the big-bucket periods t. 
All products face a deterministic dynamic demand based on the big-bucket pe- 
riods. 
In each small-bucket period s at most one product j is produced. 
Setup states can be carried over across (small-bucket and big-bucket) periods. 
Setup operations consume resource capacity and incur a setup cost. 

64 Cf. Haase (1996) p. 54 and Miller et al. (1960) p. 327. 
'j5 Of course, it does not make any sense to use the model CLSD for data that is not se- 

quence dependent, because then the sequence within periods can be arbitrary. Anyhow, 
this comparison illustrates the relationship of models CLSPL and CLSD. 

66 Cf. Fleischmann and Meyr (1997) pp. 12-13 and Meyr (1999) pp. 78-82. 
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The aim is to minimize the sum of holding costs and (sequence dependent) 
setup costs. 
The triangle condition (on setup costs and setup times, (2-35)) does not have to 
hold and therefore the number of setup operations per big-bucket period is not 
restricted by the number of products. 

Mathematically, the GLSP can be stated as follows. 

Model GLSP: 

Min x x h j l . I j l  + x x Z s ~ ; ~ . r ; $  
j€3 tsT is3 jc.7 1€T 

Xis 2 minlot, . (Zjs  - Z,_,) 

x,, 2 0, I,, 2 0,  I,o = 0 

Indices and index sets: 

s (Small-bucket) periods, SES,  
St Set of (small-bucket) periods that form (big-bucket) period t 

Data: 

minlot, Minimal lot size for product j 

The objective function aims at minimizing holding costs and sequence dependent 
setup costs (2-45). Constraints (2-46) are inventory balance constraints. The sum 
in (2-46) reflects that two different time scales are used in this model. The first 
time scale denoted by the index t corresponds to a big-bucket period (or macro- 
period as it is called in Fleischmann and Meyr (1997)67). Inventory variables 4, 
and demands 4, are only updated according to this time scale. Within each big- 

h7 Cf. Fleischmann and Meyr (1997) pp. 11-21. 
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bucket period t a set of small-bucket periods (micro-periods) St is defined. Capac- 
ity constraints (2-47) are based on big-bucket periods t, because the capacity as- 
signed to each small-bucket period is a decision of the model. Therefore, capacity 
constraints state, that production and setup operations of all small-bucket periods 
s, which belong to big-bucket period t (.YES(), will not exceed available capacity in 
period t. (2-48) couple production quantities qs and binary setup state variables 
5.. (2-49) take care that the setup state at the end of each small-bucket period is 
well-defined. Constraints (2-50) couple setup operation variables l'$ with setup 
state variables Zj,. As it is assumed explicitly, that the triangle condition does not 
have to hold, constraints (2-5 1) have to be introduced into the model. They en- 
force a minimal production on each product j that has been set up to avoid that this 
setup is chosen to circumvent a direct setup change without actually producing 
(i-+j-+k, instead of i--+k).'j8 (2-52) and (2-53) are non-negativity conditions and 
binary conditions. Although not defined as binary variables explicitly, variables 
l$d will only take binary values in feasible solutions due to (2-45) and (2-50). 

Compared to the CLSD, the GLSP will have the same optimal solution, if the 
triangle condition (2-35) holds. Otherwise the GLSP is more flexible, as it allows 
multiple setup operations for each product j in each big-bucket period t. 

With respect to time continuity, again, setup times have to lie completely 
within one (big-bucket) period (2-47). Furthermore, this is also true for minimal 
lot sizes. Therefore, the lifting of the triangle condition leads to a new restriction 
regarding the modeling of solutions on a continuous time scale. 

2.5 Relationship Between Models 

From the description of the seven models which have been introduced in subsec- 
tions 2.2-2.4, it is obvious, that these models have more in common than separates 
them. The following discussion of the models will focus on one model from each 
group: one big-bucket model (CLSP), one small-bucket model (PLSP) and one 
hybrid model (CLSPL). The PLSP is preferred over the DLSP and CSLP, because 
it contains the largest amount of freedom, as it is neither restricted by an all-or- 
nothing assumption like the DLSP nor by the limit of one product per period like 
the CSLP. As one aim of this thesis will be to derive production plans, that match 
production plans derived on a continuous time scale best, the PLSP seems to be 
the one most suited to provide an appropriate basic model. The CLSPL is chosen 
among the hybrid models, because the CLSD and GLSP assume sequence de- 
pendency among setups, which will not be a topic in this thesis. Therefore, these 
two models picture more detail than required here. 

The triangle condition does not hold, if the intermediate product j has a cleaning effect 
on the resource. However, to utilize this cleaning effect, the intermediate product j has 
to be produced for a certain minimal amount (midoti). E.g., Fleischmann and Meyr 
(1997) p. 13 and Meyr (2002) p. 280. 
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Table 2-1 classifies the CLSP, PLSP and CLSPL according to the attributes 
presented in section 2.1. The planning horizon is finite, data and parameters are 
assumed dynamic and deterministic and the objective is the minimization of setup 
and holding costs in all three models. With respect to the time scale, the period 
length gives rise to identify big buckets at the CLSP and CLSPL and small buck- 
ets at the PLSP. Nevertheless, the CLSPL has not been introduced as a big-bucket 
model, but rather as a hybrid model, as it allows the preservation of setup states 
across periods (analogue to the PLSP), which is constituent to small-bucket mod- 
els. All three models are capacitated, assume constant production coefficients and 
sequence independent setup times. No differences regarding attributes concerning 
products can be observed between the three models. All of them are formulated as 
single-level problems here, assume only endogenous lead times, no inventory re- 
strictions, a demand fulfillment service policy and no additional lot-sizing rules. 

Table 2-1: Classification of CLSP, PLSP and CLSPL. 

CLSP PLSP CLSPL 
Time 

Planning horizon t finite + - 
discrete, discrete, discrete, Time scale big buckets small buckets big buckets 

Temporal development of parametersldata t dynamic + 
Availabilitylknowledge of parametersldata t deterministic + 
Objective function t minimization of costs + 
Cost components t setup costs and holding costs + 
- Resources 
Capacities t capacitated 
Product-resource assignment 
Number of resources 
Product/operation structure 
Minimum utilization rates 

(unique) 

- 
none 

Production coefficient t constant - 
Setup operations + sequence independent setup times -+ 
Setup state preservation across periods no yes Yes 

Products 
Number of Products t multiple + 
Bill-of-materials structure 4- single-level + 
Supply process 
Lead times 
Inventoly restrictions 
Service policy 

- 

endogenous 
t none + 
t demand fulfillment + - ~ 

Additional lot-sizing rules t none + 
-- 

A short example, which illustrates the modeling capabilities of the CLSP, PLSP 
and CLSPL, respectively, will guide the discussion of the advantages and disad- 
vantages of these models. In this example the aim is to plan for the production of 
three different products, which share a common resource with limited capacity 
over four periods. Two of the products face a rather steady demand, whereas the 
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third product is requested only sporadically. Table 2-2 gives the data of the prob- 
lem. 

Table 2-2: Example data. 

Product Demand di, Production Setup Capac- Holding cost Setup 
j trl t-2 t=3 ~4 coefficient time ity (per period) cost 

CLSP 

PLSP 

CLSPL 

Legend: Setup time Production 

Fig. 2-3: Optimal solutions of CLSP, PLSP and CLSPL. 

Fig. 2-3 shows the optimal solutions to this problem for all three model formu- 
lations. The objective function values are 95,72.5 and 60 monetary units [MU] for 
the CLSP, PLSP and CLSPL, respectively. The solutions are shown as gantt 
charts.69 

69 In general, solutions to the CLSP and CLSPL are not well-defined regarding the se- 
quence within periods, because this information is not available in the model formula- 
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The CLSP possesses the largest objective function value. As setup state preser- 
vation across periods is not possible here, large lot sizes within periods are built 
leading to high holding costs. Anyhow, the solution may be modified by a planner 
if a continuous time scale was intended. By right-shifting of the first three lots and 
therefore allowing an ex-post preservation of setup states, total costs of the plan 
may be reduced by 30 [MU] to 65 [MU] due to the reduction of inventory holding 

The PLSP allows the preservation of setup states and therefore saves much of 
the holding costs compared to the CLSP by splitting production of a certain lot 
into adjacent periods. Regarding lot sizes and the sequence of lots, the production 
plan created by the PLSP resembles the CLSP plan. Only the lot size for the pro- 
duction of product 2 differs between the two plans. 

The CLSPL shows the lowest objective fimction value. This observation does 
not hold for this example only, but also in general. Compared to the CLSP, the 
CLSPL can always generate the same solution or a better solution, if it is possible 
to link at least two lot sizes of adjacent periods, which saves ceteris paribus a 
setup operation and thus setup costs. Compared to the PLSP, the CLSPL can again 
generate the same solutions, but also better ones, if it is advantageous to perform 
two setup operations in a certain period. 

In this example the CLSP suffers from the non-preservation of setup states, 
whereas the PLSP suffers from the restriction, that only one setup change is al- 
lowed in each period. The CLSPL on the other hand benefits from the fact, that 
exactly these two restrictions are not existent in its model formulation and there- 
fore provides the best plan of the three. In general, the CLSPL is able to combine 
the advantages of both models. 

The following deficiencies of the CLSP as a typical big-bucket model are put 
f~rward :~ '  

Sequencing aspects are disregarded. 
Aggregation of small-bucket periods may lead to infeasibilities. 
In multi-level problems long processing times result due to the long period 
length. 

On the other hand, the following deficiencies of the PLSP are often mentioned:72 

No buffers against uncertainty can be kept, because the resulting plan is too de- 
tailed. 
Freedom to change elements of the plan is very limited. 

tion. In this example, this issue arises only in period four of the CLSP solution, where 
an arbitrary sequence is chosen. 

70 15 units of the third lot are moved into period 4 (saving 7.5 [MU]), the second lot is 
moved 20 units into period 3 (saving 10 [MU]) and the first lot is moved 25 units into 
period 2 (saving 12.5 [MU]). 

71 Cf. Haase (1994) pp. 11-18. 
72 Cf. Derstroff (1995) pp. 32-36 and Helber (1994) pp. 38-40. 
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Rolling schedules will result in plan nervousness due to frequent changes of 
data. 

The advantages of the CLSP and PLSP are the counter arguments of the other 
model. On the other hand, the CLSPL is universal, inheriting both other models as 
special cases. Therefore, its character can be shifted either towards a small- or big- 
bucket model depending on the period length, which is chosen in a certain situa- 
tion. Thus, the CLSPL is the basic model of choice from a modeling perspective. 
However, the CLSPL is also the most demanding model from a computational 
perspective. 

The modeling of time continuity, which is the main topic focused in this thesis, 
is only possible, if adjacent periods can be linked somehow. Therefore we will fo- 
cus on the CLSPL and PLSP as basic models in the remainder of this thesis. Nev- 
ertheless, we keep in mind, that the PLSP due to its restriction to allow at most 
one setup operation per period, imposes a hard constraint on potential solutions, 
whereas the CLSPL is in general preferable due to its universality. 



3 Extensions to the Basic Models: 
Time Continuity 

After having reviewed the basic models of lot-sizing in chapter 2, the extensions 
considered in this thesis will be introduced in detail here. The focus will be on the 
representation of arbitrary (continuous) plans on a discrete time scale. Therefore, 
the time structure of the models in general is analyzed first. Three building blocks 
corresponding to representation defects due to time discretization are taken into 
consideration thereafter: the carry-over of setup states, lots spanning over several 
periods and setup operations spanning over several periods. In conjunction with 
these extensions constraints regarding the utilization of resources might become 
an issue. Consequently, this topic is also discussed. 

3.1 Time Structure 

One of the attributes that has been used to classify lot-sizing models in section 2.1 
is the time scale. This topic is analyzed in more detail here. 

Different factors influencing the time scale are often distinguished. Timpe and 
Kallrath (2000) distinguish between a commercial time scale and a production 
time scale due to the different requirements of marketing and p r o d ~ c t i o n . ~ ~  Fur- 
thermore, Meyr (1999) and Pressmar (1980) differentiate into an exogenous (out- 
side) and an endogenous (inside) time struct~re. '~ Generally speaking, the choice 
of an appropriate time scale for production planning depends a lot on the inside 
dynamics of the production system, that is planned for, as well as the outside dy- 
namics of the world the production system is embedded into. 

The exogenous (outside) time structure is usually out of the sphere of influence. 
Fig. 3-1 shows the impact of demand variation on different time scales as an ex- 
ample. External demands cannot be influenced by the company and are therefore 
likely to determine constraints on the time structure, which has to be used. If de- 
mand is stable, this poses no restrictions on the appropriate time scale. In this case, 
models working on a continuous time scale with an infinite planning horizon are 
often chosen.75 The counterpart of this scenario is a discrete time structure which 
implies discrete demand variation. There, the demands are bundled such, that for 
each time bucket only an aggregated demand for the specific period needs to be 

73 Cf. Timpe and Kallrath (2000) pp. 424-425. 
74 Cf. Meyr (1999) pp. 49-51 and Pressmar (1980) pp. 455-456. 
75 See also section 2.1. 
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considered. In between these two extreme cases lies a free time structure, which 
either rests on continuous or discrete demand variation. Demand variation may ei- 
ther be discrete, e.g., if certain demands are the result of fixed customer orders at 
certain due dates, or continuous, e.g., if it is the result of a continuous demand 
function in a multi-level production process.76 

demand demand 

time 
stable demand 
. time 

continuous demand variation 
free time structure 

demand demand 

I time 

discrete demand variation 
free time structure 

I time 

discrete demand variation 
discrete time structure 

Fig. 3-1: Impact of demand variation on different time scales.77 

The endogenous time structure, which is the time structure used for production 
planning, is chosen by the planner. It has to respect the implications of the exoge- 
nous time structure to which it is usually coupled as well as the internal dynamics 
of the production system.78 Consequently, the endogenous time structure, i.e. the 
time scale of the production planning model, is often a finer resolution of the ex- 
ogenous time structure.79 

In the remainder continuous changes, which are mainly in the scope of short- 
term scheduling, will be disregarded. Instead, as a mid-term view is chosen, some 
aggregation is deemed possible, such that in reality continuous processes may be 
represented as discrete processes without too much loss of detail. However, the 
discrete time scale has to be chosen carefully.80 Moreover, a discrete time scale 

76 Cf. Meyr (1 999) pp. 49-5 1. 
77 Cf. Meyr (1999) p. 50. 
78 Cf. Meyr (1999) pp. 50-51 and Pressmar (1980) pp. 455-457. 
79 E.g., Fleischmann (1994) p. 396 argues that the external demands are not based on the 

periods of his small-bucket DLSP model, but on larger macroperiods, which each con- 
tain a (different) number of microperiods. This is also true for the GLSP introduced in 
section 2.4.3. 

80 Cf. Kuik et al. (1994) p. 247. 
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has also other advantages in terms of interpretability of results and planning of 
other side constraints (e.g., personnel availability, if personnel is not modeled as a 
resource explicitly). The discrete time buckets might be days, weeks or shifts, so 
the workload can be read off right from the planning result. 

Anyhow, as we will see in sections 3.2 to 3.4, the discretization of time im- 
poses some unwanted restrictions on the solution space and even prohibits certain 
solutions, which would have been possible, if a continuous time scale was used. 
Fig. 3-2 shows an example of the representation defect of the CLSP compared to a 
representation of the solution on a continuous time scale (two setups for C). How 
to overcome these representation defects due to time discretization will be the 
main topic of this thesis. 

continuous 

bucket- 
oriented 

bucket 1 bucket 2 time 

Fig. 3-2: Representation defect of a bucket-oriented model formulation (here: CLSP). 

Last but not least, regarding the discretization of time, several rules have to be 
obeyed depending on the type of model chosen for production planning. If the 
model, e.g. an CLSP81, is based on the assumption, that only one lot of each prod- 
uct may be produced each period, this imposes also a restriction on the period 
length, which has to be chosen such that it is not economical to produce a product 
in two or more lots in a certain period.82 

The next three sections will emphasize three extensions of standard lot-sizing 
models that incorporate - with increasing detail - aspects of time continuity within 
a time-bucket oriented setting. 

3.2 Setup States 

When thinking about time continuity in time-bucket oriented lot-sizing model 
formulations, the first issue that comes into mind, is the preservation of setup 
states across periods or setup carry-over, as it is sometimes referred to.83 Preserva- 

8l See section 2.2. 
82 Cf. Bogaschewsky (1988) p. 168. 
83 E.g., Gopalakrishnan et al. (1995), Sox and Gao (1999) and Porkka et al. (2003). 
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tion of setup states is already included in most of the basic models introduced in 
chapter 2. It is common knowledge for small-bucket models, because it is one of 
their constituent attributes. Moreover, the hybrid models proposed in section 2.4 
also contain setup carry-over. Nevertheless, as preservation of setup states is an 
important first step in representing time continuity in time-bucket oriented lot- 
sizing models, the modeling of setup state preservation will be motivated here. 

Fig. 3-3 shows in a didactic example, what happens, if preservation of setup 
states is not explicitly modeled. The first gantt chart depicts the case, in which 
setup times and setup carry-over are not modeled. Accordingly, the result is that 
setup costs are accounted for twice and available capacity is overestimated. The 
second gantt chart on the other hand depicts the case, where setup times are mod- 
eled, but setup carry-over is still out of the scope of the model formulation. Again, 
the result is not satisfactory. Still setup costs (and now also setup times) are ac- 
counted for twice and worse, available capacity is now underestimated, which re- 
sults in an infeasible production plan here, because the gray product cannot be 
fully produced by period t due to the shortcomings of the model formulation. Only 
the third gantt chart captures the characteristics of the real world and provides a 
realistic capacity allocation. 

MODEL TYPE 

no setup time 
no carry-over 

setup time 
' no carry-over 

setup time 
carryover 

Unnecessary Ignored 
setup setup setup time 
1 1 

period t-1 period t 

RESULTING SITUATIONS 

duplicate setup cost 
ignorance of capacity 
needed by setup 

work overflow and 
extra cost due to 
duplicate setup time 

realistic allocation 

period t+l 

Fig. 3-3: Motivating example for preservation of setup states.84 

Infeasible production plans due to the underestimation of available capacity are 
not only found in small didactic examples, but also in real world  application^.^^ 
Especially, if capacity utilization is high, small savings in allocated setup times 

84 Porkka et a1. (2003), p. 1135. 
85 E.g., Gopalakrishnan et al. (1995), pp. 1981-1985. Moreover, Smith-Daniels and 

Ritzman (1988) pp. 664-665 stress the importance of setup carry-over for process in- 
dustries. 
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can make the difference between feasibility and infeasibility of a solution of a 
production planning problem. 

Based on the results of Porkka et al. (2003), it can be concluded that a consid- 
erable amount of capacity is freed, if setup carry-over is included in the model for- 
m u l a t i ~ n . ~ ~  They conducted an experimental study to evaluate the effectiveness of 
setup carry-over. Table 3-1 shows results derived from their study. In their test set 
setup times for all products were equal for each test instance and varied between 
2 % and 15 % of the constant capacity per period. The capacity has been 
calculated such, that it matches on average 75 %, 100 % respectively 1 10 % of the 
capacity that would have been needed, if a lot-for-lot production was assumed 
(lot-for-lot utilization rate). Table 3-1 shows the difference in slack capacity, if a 
CLSPL is used for modeling instead of a CLSP. As expected, freed capacity in- 
creases, if setup times are relatively longer. This effect is even bolstered up, if ca- 
pacity is tighter restricted. 

Surprisingly, not as much capacity is freed for additional production as one 
would have expected. If all setup times are equal to 15 % of available capacity and 
in each period one setup carry-over is utili~ed,~' one would expect that 15 % of 
capacity are freed. This is clearly not the case. 

Table 3-1: Freed capacity as a percentage of total capacity depending on the relative setup 
time and lot-for-lot utilization rate. (Based on the results of Porkka et al. (2003), p. 1144, 
table 5.) 

Lot-for-lot utilization rate Relative setup time 

Why? If less capacity is freed and the same amount of products is produced, 
then the CLSPL must allocate relatively more available capacity to setup opera- 
tions. Here, roughly 213 of theoretically freed capacity are re-allocated to new set- 
up operations. This leads to the presumption, that plans created by a CLSPL 
model formulation are fundamentally different from those created by a CLSP 
model formulation. This is a strong argument for incorporating preservation of 
setup states into the lot-sizing model formulation. 

Consequently, several authors have made comparisons of (modified) CLSP and 
CLSPL solutions.88 

Haase (1998) concludes from his computational tests, that the inclusion of 
setup carry-over into a special purpose heuristic leads to significantly better solu- 
tions than the modification of CLSP solutions by a simple heuristic. He further 

86 Cf. Porkka et al. (2003) p. 1144. 
Cf. Porkka et al. (2003) p. 1143. Porkka (2000) p. 28 reports only one exception. 

88 Cf. Gopalakrishnan et al. (2001) p. 861, Haase (1998) pp. 140-143, Porkka et al. 
(2003) pp. 1141-1 146 and Sox and Gao (1999) pp. 176-178. Modified means, that 
some authors altered CLSP solutions by a simple heuristic to contain setup carry-over. 
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observes that this effect is more important the less products compete against each 
other for scarce capacity. Anyhow, as his test set comprises instances with J=8,20 
and 50 products, this result is quite obvious.89 

Sox and Gao (1999) compare solutions of CLSP, a modified CLSP and CLSPL. 
They find out that modified CLSP solutions, although these compare very favora- 
bly to CLSP solutions, are still more expensive than CLSPL solutions. Moreover, 
they have developed a measure to account for the difference in plans created by 
different solution procedures. This measure calculates the fraction of total demand 
that is produced in different periods in the two plans, that are to be compared. In 
their test set, which comprises of only five test instances, this fraction amounts to 
26.44%.90 

Gopalakrishnan et al. (2001) compare the objective function values of a test set 
solved with a special purpose CLSP heuristic with the solutions of their tabu- 
search CLSPL heuristic. From their extensive computational tests they conclude 
that the incorporation of setup carry-over leads to substantial savings. Again this 
effect is more concise the less products compete for scarce capacity.91 

Finally, Porkka et al. (2003) have conducted the most comprehensive study on 
the difference of CLSP, modified CLSP and CLSPL solutions. Regarding objec- 
tive function values, they confirm the results of previous studies. Modified CLSP 
solutions, although better than (optimal) plain CLSP solutions, are by far more ex- 
pensive than optimal CLSPL solutions. In their test set, CLSPL solutions show 
less setup costs as well as less inventory holding costs than respective CLSP solu- 
t i o n ~ . ~ ~  Furthermore, they have analyzed the solutions based on the difference 
measure proposed by Sox and Gao (1999)93. According to them, 47 % of produc- 
tion is allocated to different periods in CLSP and CLSPL solutions, respectively. 

All these results strongly support that the preservation of setup states across pe- 
riods is an important task as an enhancement of lot-sizing models in general, if ne- 
cessitated by the production system. 

3.3 Lot Sizes 

After having motivated why it is important to couple the production in adjacent 
periods via setup states, now the lot size itself will be focused on. In the process 
industries, there often arises the problem, that a lower and/or upper bound is im- 
posed on a continuous production run or that production has to be in multiples of a 
predefined batch size.94 This problem is usually referred to as campaign planning, 
with a campaign defined as the production amount of a specific product type of 

89 Cf. Haase (1998) p. 142. 
90 Cf. Sox and Gao (1999) pp. 176-178. 
91 Cf. Gopalakrishnan et al. (2001) p. 861. 
92 Cf. Porkka et al. (2003) pp. 1 141-1 146. 
93 See definition above or Sox and Gao (1999) p. 177. 
94 Cf. Kallrath (2002b) pp. 224-225 and Plapp (2003) p. 20. 
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one continuous production run, which can and generally will span over several 
planning periods. 

This task is illustrated in the following example (Table 3-2 and Fig. 3-4),95 
which is a slightly modified version of the example used in section 2.5 to demon- 
strate the difference of the presented model types. Here, the example comprises a 
single machine, two products and four periods. The PLSP, which has been intro- 
duced in section 2.3.3, will serve as a basic model. From the data given in Table 
3-2 follows a simple lot-for-lot production as the optimal solution with an objec- 
tive function value of 40 monetary units [MU], when the standard PLSP model is 
used for optimization (first gantt chart, PLSP). Therefore, the total costs only con- 
sist of setup costs (4.10) and no inventory holding costs. 

Now, campaign production comes into play. As campaign restrictions may be 
fulfilled in periods after the planning horizon of four periods, campaign restric- 
tions are not enforced on the last campaign within the planning interval in this 
small example. 

Table 3-2: Data for illustrative example.96 

Product Demand d,, Production Setup Available Holding cost Setup 
coefficient time capacity (per period) cost 

j t=l t=2 t=3 l=4 a,_-  CL h, S C J L  
j=1- O - 25 - 3O 35 1 10 o n  1 10 

First, minimal campaign lengths will be looked at. Minimal campaign length 
means, that there exists a minimum production amount, that has to be produced, 
whenever a lot of a certain product is started.97 Typically, a minimal campaign 
length is process dependent, e.g., a critical mass is required to initiate a chemical 
reaction. When minimum production amounts per campaign of, e.g., 50 units are 
brought into the example, the PLSP plan will no longer be feasible, because the 
first campaign of product j=2 lasting from period t=l to t=2 yields only 45 units. 
Fig. 3-4 (second gantt chart, MIN) shows the optimal solution to this slightly 
modified problem. Five units of production are shifted from the second campaign 
of product j=2 to the first campaign at an additional cost of holding five units of 
inventory for one period (period t-2 to t=3). 

Second, instead of a lower bound on the campaign length an upper bound on 
the production amount per campaign (maximal campaign length) is introduced. 
The rationale behind this is that, e.g., a cleaning operation may be required every 
time that a certain amount has been produced.98 In the example this upper bound is 
assumed to be 60 units. Again the initial PLSP solution is not feasible as the sec- 
ond campaign for product j=2 lasting from period t=3 to 6 4  yields 65 units. The 

95 Cf. Suerie (2004) pp. 2-4. 
96 Cf. Suerie (2004) p. 2. 
97 E.g., Braun (2002) p. 14, Kallrath (1999) pp. 334-335, Lee and Chen (2002) pp. 21-22 

and Porkka (2000) p. 62. 
98 E.g., Kallrath (1999) p. 334. 
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optimal solution to this slightly modified problem is shown in the third gantt chart 
(Fig. 3-4, MAX). Here, the shifting of five units stems from the violation of the 
upper bound restriction of the second campaign of product j=2. 

PLSP 

MIN 

MAX 

j= 1 

BATCH 75 MU 
j=2 

BATCH j=' 

(flow) j=2 t 
Legend: Setup time 11 Production 

Fig. 3-4: Solution to illustrative example.99 

In a third scenario, production must be in multiples of a predefined batch size 
(here: 20 units).Io0 Batch size restrictions often arise in the process industries, 
where for example the batch size is determined by a reactor load. Again, the initial 
PLSP solution needs several modifications to comply with this additional con- 
straint. The fourth gantt chart (Fig. 3-4, BATCH) shows the optimal solution with 
an objective function value of 75 [MU]. Here, it is not sufficient only to shift pro- 
duction quantities. Excess production of ten units of product j=2 is required as the 

99 Cf. Suerie (2004) p. 3.  
loo E.g., Braun (2002) p. 14, Kallrath (1999) pp. 334-335 and Porkka (2000) p. 62. 
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total demand within the planning interval (1 10 units) for this product is not a mul- 
tiple of the batch size. 

The fourth and last scenario stems from the fact that in campaign production 
different assumptions regarding the flow of materials have to be distinguished. So 
far it has been assumed that any production is available immediately, that is con- 
tinuous flow. In batch production often not only the total production quantity has 
to be in multiples of a batch size, but also the flow of materials is in batches (e.g., 
tanks). Therefore, materials only become available after the full batch size is pro- 
duced. This phenomenon is also called batch a~ai labi l i ty . '~~ If this restriction ap- 
plies, the solution shown in the fourth gantt chart will no longer be feasible with 
respect to product j=l and period t=2. Although 25 units are produced here, which 
matches the demand, five units will only become available when the second batch 
of product j=l  is finished in period 2+3. The optimal solution to this problem is 
shown in the last gantt chart (Fig. 3-4, BATCH (flow)). 

Looking at this simple example it seems obvious how to modify optimal PLSP 
plans to take into account campaign restrictions. Nevertheless, in general time dis- 
cretization forces a strict separation of production amounts belonging to different 
periods, albeit they may form one lot together, when watched on a continuous 
time scale. The information that the first lot of product j=2 (Fig. 3-4, PLSP) com- 
prises of 45 units is not available from the model, but rather the information that 
20 units are produced in period t=l and 25 units in t=2. Consequently, it is not 
straightforward to include a constraint into the model formulation, which restricts 
the production amount of a campaign. 

If the campaign restrictions were based on the time-indexed variables of the 
standard (PLSP) model formulation instead, this would distort production plans 
and unnecessarily limit the solution space. For example, minimal campaign length 
would have to lie completely within one period. The optimal solution to the above 
example would have shown the same lot sizes as in the second gantt chart (Fig. 
3-4, MIN), but the first three campaigns would have been left-shifted to lie com- 
pletely within one period. This would result in an objective function value of 140 
[MU] (45+30+30+3 5). 

Generally speaking, if plans that are feasible on a continuous time scale must 
be matched by a model formulation working on a discrete time scale, the model 
formulation has to take into account that lot sizes may comprise of production in 
several adjacent periods. 

3.4 Setup Operations 

When setup states and lot sizes are allowed to span over several periods, the last 
attribute not modeled with respect to time continuity is that setup operations might 
be spread over two or more periods. Up to now this feature was totally out of 

Cf. Potts and Kovalyov (2000) pp. 228,247. 
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scope of big-bucket models.'02 In conjunction with small-bucket models this fea- 
ture has been tackled as an extension to the DLSP, but there setup times have to be 
in multiples of a period's length.lo3 Moreover, several authors presented a mathe- 
matical model formulation of the PLSP with the extension to allow setup times of 
arbitrary length.Io4 Unfortunately, none of these very versatile PLSP extensions is 
mathematically correct. All of them fail even on small test instances,lo5 which 
should be motivation enough to develop a new - mathematically correct - model 
formulation. 

Anyhow, there are more arguments justifying a closer look at this topic. First, 
albeit much effort has been taken to reduce setup times, these still can consume a 
substantial portion of available capacity.Io6 

Second, even if setup times are operationally reduced, it has been noticed that 
their relative share of capacity roughly stays the same, because as soon as the re- 
duction has been achieved, setups are done more f req~ent ly . '~~  This is also sup- 
ported by the observation in section 3.2 (Table 3-I), that two thirds of the 
expected increase in capacity go into new setup operations. 

Finally, we will consider a thought experiment. Starting point is a production 
plan based on a continuous time scale. Setup times account for ten percent of ca- 
pacity in this experiment. If the time scale is divided into two periods, the chance, 
that exactly the same optimal solution can be obtained from a bucket-oriented 
model is 90 %, because the probability that a setup operation is performed at the 
bucket boundary is ten percent. Usually the time scale is not divided into two, but 
rather a lot more periods. If there were ten periods to be planned for instead, the 
probability, that the same optimal solution can be obtained with a standard bucket- 
oriented formulation decreases to 39 %. If setup times had been 15 % of capacity, 

E.g., Griinert (1998) pp. 47-48. 
Cf. Cattrysse et al. (1993) pp. 477-478, Salomon (1991) pp. 86-87 and Salomon et al. 
(1991) pp. 805-806. 
Cf. Drexl and Haase (1995) pp. 8 1-82, Haase (1 994) pp. 3 1-35 and Helber (1 994) pp. 
36-38. 
The table depicts such a test instance which none of the model formulations by Drexl 
and Haase (1995) pp. 81-82, Haase (1994) pp. 31-35 and Helber (1994) pp. 36-38 is 
able to solve to optimality correctly. These model formulations fail, because (a) setup 
times might be attributed to two setup operations at a time andor (b) binary values 
might allow production in certain constellations without any setup time attributed to 
this setup. 

Product Demand dit Production Setup Available Holding cost Setup 
coefficient time capacity (per period) cost 

j t = l t = 2 t = 3 F 4  a. 
I sti Ct hi S C ~  

j=l 0 20 0 30 1 2 50 loo 80 
j=2 0 0 20 0 1 60 2 5 0 

Io6 E.g., Hindi et al. (2003) p. 490, Leschke (1995) p. 12 and Trovinger and Bohn (2003) 
p. 2. 

'07 E.g., Porkka et al. (2003) p. 1133. 
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it would have decreased to 23 %.Io8 Although this does not give any indication, 
how good or bad the resulting plan of a bucket-oriented model formulation would 
be, it seems worthwhile to examine this case. 

Moreover, if setup operations can be modeled to span over two or more peri- 
ods, together with the extensions proposed in sections 3.2 and 3.3, any plan that 
can be represented on a continuous time scale may also be generated in a bucket- 
oriented setting. 

3.5 Resource Utilization 

Although not related directly to modeling on a continuous time scale, constraints 
regarding resource utilization may become an issue in the models considered in 
this thesis. When setup carry-over is introduced into a model formulation, this fea- 
ture is almost always used in an optimal solution. Unfortunately, this will often 
lead to solutions in which machines run continuously (to save setups), but well be- 
low capacity. However, this is not a desired outcome and will not likely find the 
approval of the decision maker involved. 

Therefore, constraints forcing a minimal (andlor maximal) resource utilization 
(or production rate) come into play. Several scenarios are possible: 

Minimal utilization: Minimal utilization rates are common in the process indus- 
tries. The argumentation closely follows the one above regarding minimal cam- 
paign lengths (section 3.3). Mostly, minimal utilization rates are induced by the 
processes. Consequently, several authors have proposed model formulations 
which contain this feature.lo9 
Full utilization: A special case is to force full utilization of capacity. This has 
also been a constituent characteristic of one of the small-bucket models intro- 
duced in section 2.3, namely the DLSP. Moreover, an extension to the CLSPL, 
which forces full capacity utilization whenever production is run, has been pre- 
sented. l I 0  

Constant utilization: Constant capacity utilization is required e.g. in paper pro- 
duction.lll It is a relaxation of the full utilization case, but a further restriction 
with respect to the minimal utilization case, because here production output is 
not allowed to vary for a certain lot. 

Moreover, combinations of the above scenarios are possible (e.g., minimal and 
constant utilization). Apart from that, constant or minimal utilization does not only 

'08 The capabilities of the bucket-oriented model formulation are rated too low by this 
rough estimate, if setup times can be (left-)shifted due to available capacity, but are in- 
tended to give an indication. 

lo9 E.g., Kallrath (1999) p. 332, Kallrath and Wilson (1997) p. 315 and Lee and Chen 
(2002) pp. 21-22. 

' I 0  Cf. Porkka et al. (2003) p. 1138. 
' I '  Cf. Porkka (2000) p. 11 and Porkka et al. (2003) p. 1138. 
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make sense for resources, but although for the workforce, where a constant work- 
load is even more important. 

A further distinction arises, if machines cannot be switched off. In this case the 
e.g. minimal production rates must be met throughout the whole planning interval, 
whereas otherwise the constraints on resource utilization only have to hold when- 
ever actual production takes place. 

Summing up the discussion, the modeling of resource utilization is an impor- 
tant issue when necessary, but closely dependent on the process which is modeled. 



4 Literature Review 

The aim of this literature review is twofold. The first aim is to give a brief over- 
view on lot-sizing models focusing on the extensions presented in chapter 3. This 
is done in the first part of this chapter (section 4.1). A more general review of lot- 
sizing models is omitted, as several of these are broadly available from litera- 
ture.lI2 Only hybrid models are reviewed in some more detail, because these are in 
the focus of this thesis. In the second part (section 4.2) production planning mod- 
els originating from specific process industries problems are examined. Although 
often many problem specific characteristics are incorporated in these models, they 
are of intense interest here, because some modeling ideas might be borrowed from 
these models and - even more important - they constitute potential areas of appli- 
cation for the models proposed in this thesis. 

4.1 Basic Models 

The representation of time in lot-sizing models is crucial for the integration of the 
proposed extensions which have been presented in chapter 3. As has been empha- 
sized in the classification of lot-sizing models (section 2.1), most of them operate 
on a discrete time scale with either uniform or non-uniform time buckets. These 
may be further distinguished by the nature of the time buckets in either small or 
big-bucket models. Bucket-oriented models will be reviewed in the following sec- 
tions. 

A model formulation related to a small-bucket model (CSLP) which contains 
some noteworthy characteristics with respect to the time domain is proposed by 
Pressmar (1980).113 The modeling of time is discussed in detail and resulting is a 
model with time buckets of variable length. These time buckets of variable length 
are coupled to some static time domain by a second time scale, which is given by 
exogenous events (e.g., due dates for orders) of the planning environment. There- 
fore, this model formulation in a sense combines a continuous time scale with a 

l I 2  See Domschke et al. (1997) pp. 69-165 for a comprehensive overview on all kinds of 
lot-sizing problems and solution algorithms, Kuik et al. (1994) pp. 243-263 for a broad 
review and classification of lot-sizing models, Drexl and Kimms (1997) pp. 221-235 or 
Staggemeier and Clark (2001) pp. 938-947 for recent surveys focusing on small-bucket 
and hybrid models and Karimi et al. (2003) pp. 369-375 for a recent review on solution 
approaches for the CLSP as well as the literature cited in these references. 

"3 Cf. Pressmar (1980) pp. 458-466. 
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discrete time scale. Unfortunately, to make the problem tractable for MIP optimi- 
zation, the objective function needs to be linearized, implicitly assuming a uni- 
form time discretization again. 

Continuous time scales are assumed by lot-sizing models which belong to the 
Economic Lot Scheduling Problem (ELSP) family. The ELSP is based on the as- 
sumptions that several products are produced on one resource in a cyclical pattern. 
Production and demand rates for all products are constant and demands have to be 
met. Setup costs and times have to be considered and the tradeoff between setup 
costs and inventory holding costs is to be optimized.li4 

The assumption of a constant demand rate is exploited by the fact that a cycli- 
cal production pattern can be generated as a solution. Cyclical production plans 
have the advantage of minor plan nervousness and easier integration to other 
stages of the order fulfillment process (e.g., purchasing and distribution) as well as 
other areas of a company (e.g., finance).lI5 On the other hand, this defining princi- 
ple poses a hard constraint, and consequently this type of model is not applicable, 
if dynamic demands are present. Therefore, ELSP-like models, for which efficient 
algorithms have been developed,l16 will not be considered in the remainder. 

4.1 .I Big-Bucket Models 

The CLSP is the most basic lot-sizing problem.l17 Its fundamental assumptions 
and model formulation have been presented in section 2.2. Even the single- 
product version of the CLSP is known to be NP-hard,H8 and the same is true for 
finding feasible solutions if setup times are pre~ent ."~ Numerous surveys are 
available for this problem, with the most recent survey by Karimi et al. (2003) fo- 
cusing on different solution approaches (exact methods, common-sense 1 special- 
ized heuristics and mathematical programming-based heuris t i~s) . '~~ 

The CLSP (without setup times) is studied by Constantino (1998). In his paper 
minimal production quantities are analyzed. In contrast to minimal campaign 
quantities the minimal production quantities that are studied there have to be re- 
spected in each period of production. The paper contains a polyhedral study and 
derives valid inequalities and a separation algorithm to deal with this kind of prob- 
lem.I2l 

Cf. Elmaghraby (1978) pp. 587-588. 
Cf. Carstensen (2002) pp. 2. 
E.g., Dobson (1987) pp. 764-771, Zipkin (1991) pp. 56-63, Carstensen (2002) pp. 53- 
79 and Wagner and Davis (2002) pp. 133-146. 
The uncapacitated single-product version is known as the Wagner-Whitin problem for 
which polynomial time solution algorithms exist. Cf. Wagner and Whitin (1959) p. 93 
and Wagelmans et al. (1992) pp. S147-S152. 
Cf. Florian et al. (1980) pp. 670-676 and Bitran and Yanasse (1982) pp. 1180-1 183. 
Cf. Maes et al. (1991) pp. 135-136. 
Cf. Kuik et al. (1994) pp. 258-259 and Karimi et al. (2003) pp. 369-375. 
Cf. Constantino (1998) pp. 101-1 18. 
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Furthermore, minimal and maximal production quantities per period are also 
present in the model formulation tackled by Belvaux and Wolsey (2000) by means 
of a specialized branch-and-cut code.122 

4.1.2 Small-Bucket Models 

Small-bucket models have been in the scope of lot-sizing research for more than 
20 years. Drexl and Kirnms (1997) have provided a comprehensive survey focus- 
ing on this topic. Complexity considerations show that even the basic DLSP is 
NP-hard. 123 

Blocher et al. (1 999) propose an algorithm for a DLSP-like problem. In contrast 
to the basic DLSP, their objective is to minimize setup costs. Setup times are also 
considered, but are restricted to be in multiples of a period's length.124 Further- 
more, the basic DLSP with period overlapping setup times, which have to be mul- 
tiples of a period's length, is considered by Cattrysse et al. (1993) as well as by 
Briiggemann and Jahnke (1994).lz5 

The DLSP in various mutations is solved by Jordan and Drexl (1998). They re- 
late the DLSP to a scheduling problem, which they term batch sequencing prob- 
lem. With their solution algorithm for the batch sequencing problem they solve the 
DLSP with sequence independent setup times and costs, sequence dependent setup 
costs as well as with sequence dependent setup costs and times. Setup times can 
be of arbitrary length in their model, but demands (in their representation: jobs) 
are not allowed to be split. From their computational tests they conclude, that their 
algorithm outperforms those for the DLSP with respect to solution quality and 
computational times, if either the number of products is small or the test instances 
exhibit high capacity utilization and significant (i.e. long) setup times.'26 

In another paper, Briiggemann and Jahnke (2000) consider again the DLSP 
with period overlapping setup times which have to be multiples of a period's 
length. Furthermore, they introduce the feature of batch availability into their 
model. In their model batch availability means, that any produced quantities only 
become available, if production of the specific product has ceased. In our termi- 
nology this means, that products only become available, if the campaign is fin- 
ished. A heuristic based on simulated annealing is presented to cope with these 
types of problems.12' 

lZ2 Cf. Belvaux and Wolsey (2000) pp. 724-738. 
Iz3  Cf. among others Salomon (1991) pp. 42-54, Salomon et al. (1991) pp. 805-81 1, Van- 

derbeck (1998) pp. 1414-1415, Webster (1999) pp. 768-769 and Briiggemann und 
Jahnke (2000) pp. 514-517. 

124 Cf. Blocher et al. (1999) pp. 559-569. 
125 Cf. Cattrysse et al. (1993) pp. 477-478 and Briiggemann and Jahnke (1994) pp. 755- 

757. 
126 Cf. Jordan and Drexl (1998) pp. 698-712. 
127 Cf. Briiggemann and Jahnke (2000) pp. 513-514,517-521. 
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A CSLP-like problem with additional constraints is tackled by Lee and Chen 
(2002). In their MIP model formulation minimal and maximal production rates, 
minimal and maximal storage capacities as well as minimal campaign production 
quantities are to be respected. Only setup costs, but no setup times are included, 
but setup states may be carried over for several periods. Minimal campaign pro- 
duction quantities must be met in each period.128 

Smith-Daniels and Smith-Daniels (1986) also consider a CSLP-like model al- 
though several items of one distinct family may be produced in each period, but 
setup and tear down costs are family dependent only. They present a MIP model 
formulation with the additional constraints that setup times are necessary between 
items of a family.Iz9 

Belvaux and Wolsey (2000) formulate a generic lot-sizing model, which is also 
valid for small-bucket problems. Their model formulation respects minimal pro- 
duction quantities per period. They propose a specialized branch-and-cut system 
to deal with these kinds of pr0b1ems.I~~ 

In a different paper, Belvaux and Wolsey (2001) present tight mathematical 
programming model formulations for small bucket problems. These are extended 
by consideration of minimum campaign quantities. Here, minimum campaign 
quantities are given either in an integer number of periods or - if this is not the 
case - it is assumed that within campaigns production must be at full capacity.l3I 

The PLSP which has been introduced in the literature by Haase (1994) is pre- 
sented by the same author with period overlapping setup times of arbitrary length. 
Although the model formulation is mathematically not correct,132 the selected so- 
lution algorithm remains valid. The solution algorithm is a heuristic approach that 
moves backward from the last period to the first and decides on the sequencing of 
products based on a randomized regret measure.'33 

A PLSP embedded in a model formulation of a multi-site production network is 
presented by Timpe and Kallrath (2000). Their model which is taken from the 
chemical industry is enhanced by transports and special inventory constraints 
(tanks). The model formulation is solved by a standard MIP solver.134 

Kallrath (1999) also introduces several other features into a basic PLSP formu- 
lation. In his model campaigns extending over several periods are considered. 
These can be specified to be in multiples of a distinct batch size or to respect 
minimal or maximal campaign quantities. Furthermore, he explains how different 
utilization rates may be included. He proposes a MIP model formulation to solve 
these kind of pr0b1ems.l~~ 

128 Cf. Lee and Chen (2002) pp. 16-17,21-22. 
129 Cf. Smith-Daniels and Smith-Daniels (1986) pp. 280-281. 
I3O Cf. Belvaux and Wolsey (2000) pp. 725-729. 
13' Cf. Belvaux and Wolsey (2001) pp. 997-1000. 

See section 3.4. 
'33 Cf. Haase (1994) pp. 31-35 and 69-77 and Drexl and Haase (1995) pp. 76-82. 
134 Cf. Timpe and Kallrath (2000) pp. 422-435. 
135 Cf. Kallrath (1999) pp. 330-337. 
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4.1.3 Hybrid Models 

Of the hybrid models presented in section 2.4, up to now, the CLSPL received 
most attention in literature. A mathematical model formulation of the CLSPL was 
presented first in 1979 by Lambrecht and Vanderveken. But at that time they con- 
sidered the problem as too difficult and therefore dropped the linking constraints 
and solved a CLSP 

Fourteen years later, in 1993, Dillenberger et al. motivated by a production 
planning problem from practice take up the CLSPL. They present a new MIP 
model formulation which forms the basis for their solution algorithm. Their algo- 
rithm consists of a branch-and-bound scheme, in which the order of binary vari- 
ables to branch on is given by the period sequence.137 

Haase (1994) introduces the model's name, CLSPL. He also provides a MIP 
model formulation, but solves the problem with the help of a stochastic heuristic. 
The heuristic moves backwards from the last to the first period and applies lot- 
sizing decisions based on a randomized regret measure.138 

Later, Haase (1998) changed the model formulation to allow only for one link, 
thereby forbidding continuous production of one product in three consecutive pe- 
riods. The reason for this is based on his observation that both models (original 
CLSPL and modified CLSPL) produce nearly the same solutions, but the modified 
model seems to be a lot easier to s01ve.I~~ 

Gopalakrishnan et al. (1995) propose a model formulation for the CLSPL with 
product independent setup times. Their model formulation is solved by a standard 
MIP solver (LINDO). Later, in a technical note, their model formulation is altered 
to accompany product dependent setup times. Most recently, Gopalakrishnan et al. 
(2001) apply a meta-heuristic, tabu-search, to the CLSPL.I4O 

Sox and Gao (1999) also propose a MIP model formulation for the CLSPL, 
which has been shown not to be mathematically correct for some cases.141 Their 
model formulation is based on a shortest route representation of the problem. A 
Lagrangian decomposition heuristic is proposed to cope with larger test instances. 
In line with Haase they experience that restricting the number of consecutive setup 
carry-overs to one makes the problem much easier without loosing to much from 
optimality. 142 

136 Cf. Lambrecht and Vanderveken (1979) pp. 104-107. 
137 Cf. Dillenberger et al. (1993) pp. 108-1 16, Dillenberger and Wollensak (1994) pp. 93- 

96 and Dillenberger et al. (1994) pp. 276-283. 
138 Cf. Haase (1994) pp. 18-2 1, 69-79. 
139 Cf. Haase (1998) pp. 130-13 1. 
I4O Cf. Gopalakrishnan et al. (1 995) pp. 1976-198 1, Gopalakrishnan (2000) pp. 342 1-3423 

and Gopalakrishnan et al. (2001) pp. 85 1-863. 
I 4 l  Cf. Suerie and Stadtler (2003) pp. 1053-1054. 
142 Cf. SOX and Gao (1999) pp. 174-1 80. 
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Moreover, Suerie and Stadtler (2003) present a MIP model formulation which 
is augmented by valid inequalities and a decomposition heuristic. This approach 
will be reviewed in more detail with some additions in chapter 6.143 

Porkka et al. (2003) introduce an important feature based on observations from 
process industries in their version of the CLSPL. In their application, idle time 
within a campaign is not allowed. Therefore, they add constraints to their model 
formulation which allow only for continuous production of one product through- 
out a period with setup carry-overs from the preceding and into the next period, if 
production is at full capacity in this ~ e r i 0 d . l ~ ~  

Recently, Quadt and Kuhn (2003) proposed a (heuristic) solution algorithm for 
the CLSPL based on a MIP model formulation which allows for backlogging and 
parallel resources. In their application (from semiconductor industries) the most 
important characteristic is a huge number of parallel resources which needs to be 
taken into account. Therefore, they do not model each resource explicitly by bi- 
nary variables, but introduce integer variables which represent the number of re- 
sources that hold a certain setup state. Their heuristic algorithm compares favora- 
bly with a MIP model formulation for larger test instances.145 

The CLSD which is an extension of the CLSPL with sequence dependent setup 
costs and setup times (see section 2.4.2) is first tackled by Smith-Daniels and 
Ritzman (1988). They present a MIP model formulation representing a production 
planning problem which they observed in the food 

Heuts el al. (1992) consider a case where production has to be in multiples of a 
predefined batch size. Their problem statement also includes sequence dependent 
setup times and maximum storage constraints. In their model formulation batches 
have to lie completely within a period, but this does not pose a very tight con- 
straint, as they chose demand per product per period to lie between 125 and 275 
batches. Two heuristics are proposed to solve this pr0b1em.I~~ 

Later, Haase (1996) considers the CLSD without setup times. He proposes a 
heuristic which moves from the last to the first period and applies a priority rule 
for making scheduling decisions. This priority rule is based on two parameters for 
which a local search method is proposed.148 

Kang et al. (1999) respect minimal and maximal production quantities. These 
have to be obeyed for each lot and not for each period, but in their model multiple 
lots per period are possible and lots cannot extend over several periods. Their 
solution approach is based on column generation and branch-and-b~und.~~~ 

143 Cf. Suerie and Stadtler (2003) pp. 1041-1048. 
144 Cf. Porkka et al. (2003) pp. 1136-1 139. 
145 Cf. Quadt und Kuhn (2003) pp. 185-188 and Quadt and Kuhn (2004). 
146 Cf. Smith-Daniels and Ritzman (1988) pp. 651-668. 
147 Cf. Heuts et al. (1992) pp. 413-424 and Selen and Heuts (1990) pp. 39-45. 
148 Cf. Haase (1996) pp. 5 1-56, 
'49 Cf. Kang et al. (1999) pp. 274-280. 
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Griinert (1 998) extends the CLSD to a multi-level product structure. In contrast 
to Haase's model, Griinert also considers sequence dependent setup times. His so- 
lution algorithm is based on Lagrangian decomposition and tabu-search.150 

Haase and Kimms (2000) propose an algorithm for the CLSD with sequence 
dependent setup times and sequence dependent setup costs. They assume, that 
setup operations for a certain product only occur in those periods, in which inven- 
tory of this product is empty at the end of the previous period (so-called "zero- 
switch-property"). However, this is generally not the case in capacitated lot-sizing 
problems. Their solution approach is a tailor-made branch-and-bound scheme.l5I 

A different approach using Lagrangian decomposition to cope with the original 
CLSD is presented by Magnusson (2001).152 

Clark and Clark (2000) present a MIP model formulation for the CLSD with 
backlogging, but they consider only inventory and backlog costs and no setup 
costs in the objective function. Their solution algorithm is based on their MIP 
model formulation which is combined with an LP model for periods which belong 
to subsequent planning cycles (based on the assumption of a rolling horizon).153 

Recently, Timpe (2002) proposes an algorithm for the CLSD which combines 
MIP and constraint programming. The constraint programming part is used to de- 
rive schedules within periods, while the products to be produced in each period are 
determined by a MIP model, which acts as a master process in this approach. The 
underlying problem is taken from industry and inherits minimal and maximal pro- 
duction quantities for each lot, but these conditions have to be fulfilled for each 
period inde~endent1y.I~~ 

As we have seen in section 2.4.3, the GLSP is the most general hybrid model. It 
has been introduced first by Fleischmann and Meyr (1997) who present a heuristic 
solution algorithm based on threshold accepting. In their paper, they consider two 
variants of the GLSP, one that loses setup states after idle time and one that pre- 
serves setup states. Both variants include restrictions on the minimum production 
quantity for each lot. These minimum required quantities have to lie completely 
within one ~ e r i 0 d . l ~ ~  

More variants of the GLSP are provided by Meyr (1999, 2000, 2002) and 
solved with a heuristic combining meta-heuristics (threshold accepting, simulated 
annealing) with dual re~p t imiza t ion .~~~ 

Furthermore, Meyr (2004) provides a MIP model formulation for a multi-level 
GLSP. Here, emphasis is on the coordination of different production lines. Solu- 
tions to this model formulation are generated by a standard MIP solver (CPLEX), 
but Meyr (2004) acknowledges that this is only appropriate for small examples.15' 

I5O Cf. Griinert (1998) pp. 47-56 and 97-144. 
Cf. Haase and Kimms (2000) pp. 161-165. 

152 Cf. Magnusson (2001) pp. 6-14 and 36-41. 
153 Cf. Clark and Clark (2000) pp. 2290-2295. 
154 Cf. Timpe (2002) pp. 435-445. 

Cf. Fleischmann and Meyr (1997) pp. 12-18. 
Cf. Meyr (1999) pp. 75-201, Meyr (2000) pp. 313-319 and Meyr (2002) pp. 279-286. 

15' Cf. Meyr (2004) pp. 589-607. 
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Stammen-Hegener (2002) also considers a multi-level variant of the GLSP. She 
does not provide any solution algorithm, but a mere model formulation. Her em- 
phasis is on reducing abundance in the time structure and on the exact modeling of 
holding costs. Unfortunately her model formulations become non-linear.ls8 

A model formulation which is related to the multi-level GLSP is presented by 
Kimms and Motta Toledo (2003). They present an interesting MIP model formula- 
tion which is focusing on a practical application and therefore devote much effort 
to that case. They introduce two time domains. The first one is a uniform time dis- 
cretization which they call micro periods and which is used to align the two stages 
of their production planning problem. The second one is based on slots with one 
slot for each lot. This time domain is used to enforce e.g. minimal campaign quan- 
tity  restriction^.'^^ 

4.2 Models Originating from Process Industries 

Models for production planning designated to process industries often contain 
problem specific characteristics and therefore several representations have been 
developed to describe these problems with their specific characteristics thor- 
oughly. The most relevant of these characteristics and problem representations are 
introduced in the following subsection (4.2.1). Pursuing these a brief literature re- 
view is given focusing on the more recent publications in this area.160 The litera- 
ture review is divided into two parts. The first part (4.2.2) reviews models with a 
discrete, i.e. bucket-oriented, time structure, whereas the second part (4.2.3) re- 
views models based on a continuous time scale. The reason for this is twofold. 
First, the models proposed in this thesis are bucket-oriented and therefore closer 
related to the discrete time models reviewed first. On the other hand, the models 
proposed here can generally represent all solutions that are possible within a con- 
tinuous time setting. Therefore, these models might as well be compared to con- 
tinuous time models. Second, a separated review is justified because of the objec- 
tive pursued here. Although most often time-based objectives (e.g., minimization 
of makespan) are in the focus of (short-term) models for production planning in 
the process industries, here a cost-based approach is followed, because the appli- 
cation of these models is intended in medium-term planning. This is not easily 
done in models based on a continuous time scale, because e.g. the problem of cal- 
culating inventory holding costs becomes non-linear as soon as the time interval 
between two successive events becomes variable. 

Is8 Cf. Stammen-Hegener (2002) pp. 126-208. 
Is9 Cf. Kimms and Motta Toledo (2003) pp. 2-14. 
I6O A careful literature review on production planning in the process industries (before 

1998) can be found in Blomer (1999) pp. 38-49, 61-63, 73-85 and Pinto and 
Grossmann (1998) pp. 438-457. 
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4.2.1 Characteristics and Representation of Models from Process 
Industries 

Production planning approaches in the process industries vary from those in 
manufacturing mainly due to the different nature of the production process.161 
More differences between these two types of industries are presented in Table 4-1 
taken from Ashayeri et al. (1995).162 In the following the focus will be on the as- 
pect of modeling. In this area several more distinctive elements come into mind.163 

First, in the process industries products or intermediates are far more often per- 
ishable. This means that stocking policies have to be obeyed, when planning for 
production.164 Usually products and intermediates are therefore classified into 
three categories according to their perishability: zero-wait, unlimited-wait and fi- 
nite-wait. Steady processing of zero-wait products must be arranged for during 
planning. 

Second, coupled with perishability is the question of stocking. Storage capacity 
is often scarce in the process industries, because special equipment is needed and 
this equipment is often dedicated to certain products. For example, if tanks are 
needed as storage equipment, only one product can use each tank at each point in 
time and often cleaning operations are required, if the tank needs to be used by 
another product. 

Third, processing times might require special modeling. Whereas in discrete 
manufacturing processing times for a certain lot are usually dependent on the lot 
size, i.e. the number of units to be produced, this is often not true in the process 
industries. Here, processing times are often constant, irrespective whether the re- 
actor is filled to 70% or 90% of its capacity."j5 

Finally, time consuming and costly setups can be identified as characteristic to 
process industries.166 This aspect has already been highlighted in chapter 3, where 
the advantages of realistic modeling of setup operations and setup states has been 
discussed. 

Based on these characteristics, various representations of the production proc- 
ess have been developed which differ from those known from discrete manufac- 
turing. There, the concept of parts lists, bill of materials (BOM) or the extension 
to product/operation structures prevail. BOMs consist of lists of components, 

16' E.g., Applequist et al. (1997) pp. 87-89. For a detailed analysis regarding the differ- 
ences of production systems within process industries see Dennis and Meredith (2000) 
pp. 1091-1096. 

162 More elaborate characterizations of especially the process industries can also be found 
in Loos (1997) pp. 17-66, Blomer (1999) pp. 5-36 and KieBwetter (1999) pp. 7-37. 

163 E.g., Pinto and Grossmann (1998) pp. 434-438. 
'64 Cf. Crama et al. (2001) p. 3 and Pinto and Grossmann (1998) p. 437. 
165 Cf. Dessouky and Kijowski (1997) p. 399. Reactors are sometimes not filled com- 

pletely, because they may have a higher yield if filled only to a certain amount or be- 
cause there is not enough demand for the generated product. Cf. Blomer (1999) p. 25. 

166 Cf. Shapiro (1993) p. 397. 
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which are needed to manufacture a certain product and show the requirement of 
each item for each item. They are usually organized in a tree structure with the end 
product at the top (see Fig. 2-1, p. 12). In contrast to parts lists, BOMs usually 
show how products are assembled.l'j7 Productloperation structures depict not mate- 
rials, but operations as the smallest unit that is planned for. Furthermore prod- 
uctloperation structures tie the operations to resources.168 

The most basic and widespread concept taking the role of BOMs in the process 
industries are recipes."j9 Recipes contain all information necessary to produce a 
certain product. These are lists of ingredients, descriptions of processes, informa- 
tion on necessary resources, description of products and by-products as well as in- 
formation on hazardous by-products and intermediates that might result during the 
production process.170 A very important feature of recipes is that they often allow 
for alternative ways to generate a certain product and that variable yields can re- 
sult.l7I Although recipes contain all data relevant for planning, they are often not 
used as sole source of information, because the information is often not presented 
clearly, as recipes hold much more data not relevant for ~ 1 a n n i n g . l ~ ~  

Consequently, in the chemical engineering literature different concepts resum- 
ing the role of BOMs in the process industries have been developed. In the follow- 
ing three of them will be introduced briefly, because almost all models discussed 
in the two subsequent sections build on either of them. The three concepts are the 
state-task network (STN), the resource-task network (RTN) and the state-sequence 
network (SSN). To illustrate the differences between these approaches, an exam- 
ple will be presented first, which is then modeled using each approach. 

In the example173 two products ("1" and "2") are made of three commodities 
("A", "B" and "C") (see Fig. 4-1 for an STN, Fig. 4-2 for an RTN and Fig. 4-3 for 
an SSN representation). The production process requires several operations / proc- 
esses. First, "A" needs to be heated for one hour, yielding "Hot A". Furthermore, a 
chemical reaction lasting two hours and requiring equal amounts of commodities 
"B" and "C" yields intermediate "BC". A second chemical reaction requiring two 
fractions of "Hot A" and three fractions of "BC" lasts two hours and yields two 
fractions of "1" and three fractions of intermediate "ABC". The third reaction 
uses one fraction of "C" and four fractions of "ABC" and requires one hour to 
yield "ABCC". Last, "ABCC" is distilled yielding nine fractions of "2" (after one 
hour) and one fraction of "AB" (after two hours). Four resources can be utilized in 
this process: a heater (capacity: 100kg) for heating of "A", two reactors capable of 
performing the three reactions mentioned (capacities: 80kg and 50kg) and one dis- 
tiller (capacity: 200kg). Unlimited storage is available for the products and com- 

16' Cf. Hi11 (2003) p. 4. 
I'j8 Cf. Tempelmeier and Helber (1994) pp. 297-298 and Tempelmeier and Derstroff 

(1996) p. 739. 
I'j9 Cf. Crama et al. (2001) p. 13. 
I7O Cf. LOOS (1997) pp. 174-175. 
I 7 l  Cf. Crama et al. (2001) pp. 14-15. 
17* Cf. Blomer (1999) p. 28. 
173 Cf. Kondili et al. (1993) pp. 215-216. 
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modities, but is limited for intermediates ("Hot A", "ABCC": lOOkg each; "BC": 
l5Okg and "AB": 200kg).174 

Table 4-1: Differences between process industries and discrete industries.175 

Process industries Discrete industries 
relations hi^ with the market 
Product type 
Product assortment 
Demand per product 
Cost per product 
Order winners 

Transporting costs 
New products 

The production process 
Routings 
Lay-out 
Flexibility 
Production equipment 
Labor intensity 
Capital intensity 
Changeover times 
Work in process 
Volumes 

Quality 
Environmental demands 
Danger 
Quality measurement 

Planning & Control 
Production 
Long term planning 
Short term planning 
Starting point planning 
Material flow 
Yield variability 
'Explosion' via 
By and Co-products 

Commodity 
Narrow 
High 
Low 
Price, 
Delivery Guarantee 
High 
Few 

Fixed 
By product 
Low 
Specialized 
Low 
High 
High 
Low 
High 

Yes 
Sometimes 
Sometimes long 

To stock 
Capacity 
Utilization capacity 
Availability capacity 
Divergent + convergent 
Sometimes high 
Recipes 
Sometimes 

Custom 
Broad 
Low 
High 
Speed of delivery, 
Product features 
Low 
Many 

Variable 
By function 
High 
Universal 
High 
Low 
Low 
High 
Low 

Hardly 
Almost never 
Short 

To order 
Product design 
Utilization personnel 
Availability material 
Convergent 
Mostly low 
Bill of material 
Not 

Lot tracing Mostly necessary Mostly not necessary 

The STN has been introduced first by Kondili et al. (1993). It is based on two 
types of nodes which are connected via directed arcs. The first type (state nodes, 
depicted by circles in Fig. 4-1) represents products and intermediates, whereas the 
second type (task nodes, depicted by boxes in Fig. 4-1) represents operations and 

174 Cf. Kondili et al. (1993) pp. 215-216. 
175 Ashayeri et al. (1995) p. 3. 
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processes that transform the states from an input state to an output state. STNs 
consider primarily the chemical structure of the production process, but not the 
physical structure (assignment of tasks to resources). If parallel resources prevail, 
i.e. tasks may be assigned to more than one resource, this can be indicated by 
grouping tasks in the STN representation or by addition of a second graph (re- 
source graph).I7'j It is important to note for planning processes that STNs do not 
need to be connected graphs. A disconnected graph results if two products consist 
of disjoint sets of intermediates, but share one resource in at least one processing 
step. Then, when planning for the joint resource (both) STNs need to be taken into 

Heating 

60% 

Reac tion3 

50% 20% 

Fig. 4-1: STN representation of example (adapted from Kondili et al. (1993) p. 215). 

One disadvantage of the STN representation is the non-existent coupling of 
tasks and resources, if tasks can be assigned to multiple resources. Furthermore, it 
has been criticized that tasks are always coupled with material transformation. Of- 
ten cleaning processes are process steps which may not be neglected, but as these 
tasks are usually related to resources and not to materials they cannot be modeled 
ea~i1y.l'~ 

The RTN re~resentation'~~ overcomes some of the aforementioned disadvan- 
tages. Similar to the STN it is based on two types of nodes. The first type of nodes 
(resource nodes, depicted in Fig. 4-2 as circles) represents resources, whereas the 
second type of nodes (task nodes, depicted in Fig. 4-2 as boxes) represents tasks. 
The concept of tasks in RTNs is more general than in STNs. Tasks may be any 
processing steps that transform one set of resources into another set of resources. 
Thereby, tasks may in addition to operations denote transportation or storage 

176 E.g., Blomer (1999) p. 3 1. 
177 Cf. Kondili et al. (1993) pp. 213-215. 
'78 Cf. Blomer (1999) p. 3 1. 

Cf. Pantelides (1994) pp. 267-272. 



4.2 Models Originating from Process Industries 5 5 

processes. Furthermore, in this context resources may not only stand for materials 
(states in the STN representation), but also correspond to energy, manpower, stor- 
age and transportation facilities. Fig. 4-2 shows the RTN representation of the ex- 
ample. Dotted lines indicate, that some resources (e.g., reactor 1 and 2) are input 
as well as output of a certain task. 

Heater 

Q 

Heating i': 

Distiller 

Fig. 4-2: RTN representation of example (adapted from Castro et al. (2001a) p. 

RTNs provide the missing link between resources and tasks of STNs. Cleaning 
operations are easily modeled, e.g. by a task which consumes a dirty resource, 
cleaning materials and workforce and turns out the cleaned resource, the work- 
force and some waste. 

The most current process representation, SSNs,lgO again build on STNs. In con- 
trast to these, there is only one type of nodes present (state nodes, depicted as cir- 
cles in Fig. 4-3). These state nodes directly correspond to the state nodes in STNs, 
i.e. products, intermediates and commodities. Tasks, i.e. processes/operations, are 
only given implicitly by the sequence of the states. If a state changes, a task must 
have been performed, i.e. the sequence of states corresponds to tasks. Thereby, 
three building blocks of SSNs can be distinguished. The first one is a state trans- 
formation indicated by an arc connecting two states (e.g., "A" -+ "Hot A" in Fig. 
4-3), the second one is a reaction indicated by two or more states forming a new 
state (e.g., "B", "C" -+ "BC" in Fig. 4-3), and the third one is indicated by split- 
ting one state into two or more states (e.g., "ABCC" -+ "2", "ABC" in Fig. 4-3). 
The main reason for getting rid of the task nodes in the SSN representation is that 
binary variables that are needed to model tasks in formulations using the STN rep- 
resentation can be saved, thereby yielding tighter model  formulation^.'^' 

Ig0  Cf. Majozi and Zhu (2001) pp. 5936-5938. 
I g 1  Cf. Majozi and Zhu (2001) p. 5936. 
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Fig. 4-3: SSN representation of example (adapted from Majozi and Zhu (2001) p. 5943). 

Although a first abstraction, STNs are closest related to recipes among the pre- 
sented representations. Their main disadvantage - the missing link between tasks 
and resources - is overcome by RTNs. Furthermore, in RTNs the concept of states 
is extended to comprise all types of resources. On the other hand, the inclusion of 
resources leads to a slight loss in clarity, if certain resources can handle a lot of 
tasks. SSNs resemble STNs without tasks and have been developed for modeling 
purposes to decrease the number of binary variables necessary. All of these repre- 
sentations have been used to tackle various production planning problems from 
process industries. The resulting model formulations will be discussed in the fol- 
lowing two subsections based on their approach how to model time. 

4.2.2 Discrete Time Model Formulations 

Comprehensive literature reviews on model formulations for process industry 
problems have already been Because of the vast amount of literature 
published in this area, in the following the focus will be on those published since 
1998 and therefore include only a selection of the most important contributions 
prior to 1998. As the terminology used in the literature often varies between dif- 
ferent references, the following terminology relating to the representation of time 
is introduced: A model formulation is called a discrete time model formulation, if 
the sequence of the periods and the length(s) of the periods are parameters. This is 
in contrast to a continuous time model formulation in which the duration of peri- 
ods andor their number are not known a priori. A discrete time model formulation 

I g 2  E.g., Shah (1998) pp. 78-83 and Blomer (1999) pp. 73-85 
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is called uniform, if all periods are of equal length, and non-uniform, if periods of 
different length are present. If the same time grid is imposed on the complete 
problem, this will be called a common time grid. In contrast, a non-common time 
grid prevails, if e.g. different resources operate on different time scales. 

The seminal paper by Kondili et al. (1993) introduced the STN representation. 
A MIP model formulation is presented to solve the arising scheduling problem. 
The model formulation is based on time discretization with uniform time buckets 
(Table 4-2). Binary variables are used to model if a resource m starts a task i at the 
beginning of period t. As the start or end of a task is only allowed at period 
boundaries, a common time grid is induced for all resources, which is an advan- 
tage as well as a drawback of the model. On the one hand, it allows to position 
each task against all competing tasks on one reference grid, while on the other 
hand, this leads to a large number of binary variables, especially if processing 
times of different tasks vary, because the period length has to be chosen as the 
greatest common factor of all process lengths. Thereby, in a sense the model for- 
mulation shows similarities to the DLSP, where changes in production are also al- 
lowed only at period boundaries and within periods full production is assumed 
(all-or-nothing assumption). Furthermore, problem specific constraints like tempo- 
rary unavailability of resources or limited availability of utilities are modeled. The 
authors admit that the model gets too large for practical problems, but the contri- 
bution of this paper remains the introduction of the STN representation. 

A problem from pesticide manufacturing is tackled by Dessouky and Kijowski 
(1997). There, the objective is to minimize inventory holding costs, overtime costs 
and a cost component which depends on the fixed batch size. This last cost com- 
ponent stems from configuring the plant to a batch size which is then assumed 
fixed during the planning interval. As this cost component is non-linear in the 
batch size, a MINLP model formulation results. Due to assumptions that are valid 
in the case studied by them, they are able to develop an optimizing procedure.Is3 

Mockus and Reklaitis (1997) present a MINLP model formulation based on the 
STN representation. Their initial model formulation uses a continuous time repre- 
sentation, but is simplified to reduce non-linearities to a non-uniform time discre- 
tization. The authors claim that the proposed non-uniform model formulation 
matches the model formulation by Kondili et al. (1993), if a uniform time discreti- 
zation is applied, but is more general, as it is not dependent on the equal period 
length which has to be chosen there.ls4 

A MIP model formulation intended for mid-term planning respecting minimal 
campaign quantities is proposed by McDonald and Karimi (1997). The model 
formulation relies on a uniform time discretization, but does not consider setup or 
cleaning times explicitly. Minimal campaign quantities have to be fulfilled within 
one or two successive periods.ls5 

This restriction is lifted in a companion paper intended for short-term schedul- 
ing. There one model formulation based on a continuous time scale and one based 

ls3 Cf. Dessouky and Kijowski (1997) pp. 399-408. 
Is4 Cf. Mockus and Reklaitis (1997) p. 1153 and Kondili et al. (1993) pp. 216-221. 

Cf. McDonald and Karimi (1997) pp. 2691-2700. 
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on non-uniform time discretization is proposed. In the latter, time periods are de- 
fined by due dates for product deliveries of the company. Similar to the GLSP (see 
section 2.4.3) an arbitrary number of time slots of arbitrary length to be deter- 
mined by the solution algorithm is assigned to each time period. The time periods 
(i.e. due dates) supply a common time grid across all resources, whereas the 
lengths of the individual time slots are not synchronized.ls6 

The same representation of time is used in a later paper by Lim and Karimi 
(2003b). As the individual time slots are not synchronized, resources used by 
many tasks in parallel cannot be modeled. To overcome this shortcoming so-called 
checkpoints are identified, which correspond to the beginning of each task. Re- 
source availability is then checked at these checkpoints. Unfortunately this leads 
to a tremendous increase of the number of variables and constraints of the model 
formulat i~n. '~~ 

An RTN-based MIP model formulation working on a uniformly discretized 
time axis is proposed by Yee and Shah (1998). Their aim is to reduce the large ob- 
served integrality gaps of such a formulation. Their analysis suggests that this in- 
tegrality gap stems to a large extent from the modeling of changeovers (setups). 
Therefore, they introduce additional constraints ensuring that at least a minimum - 
a priori determined - number of changeovers is planned for. Furthermore, they 
apply a standard reformulation technique known from lot sizing (SPL reformula- 
t i ~ n ~ ~ ~ )  to their model formulation. On their test bed, both measures proved to be 
quite effective.1s9 

Blomer and Gunther (1998) use the STN representation to develop a MIP 
model formulation. In their problem batch processing times are independent of the 
batch size, sequence dependent cleaning times are respected and constraints to 
model special storage policies (e.g., zero-wait) are included. The objective chosen 
is to minimize makespan. Making use of uniform time discretization, their model 
formulation is intractable for commercial MIP solvers. Therefore, different LP- 
based heuristics are employed. One of them decomposes the problem at hand into 
single-level problems, whereas another covers the time grid with a pattern of al- 
lowed start times for processes, thereby reducing the number of binary variables 
indicating the start of a process in a certain period significantly. According to their 
computational tests the time grid based approach performed best.190 

Later, the solution approach has been further refined as well as has the applica- 
bility of the model formulation broadened by Blomer (1999) and Blomer and Gun- 
ther (2000).191 

The solution approach proposed by Rodrigues et al. (2000) for the STN-based 
MIP model by Kondili et al. (1993)192 builds on time decomposition. Based on the 

ls6 Cf. Karimi and McDonald (1997) pp. 2701-2714. 
Is7 Cf. Lim and Karimi (2003b) pp. 6832-6842. 
Iss Cf. Rosling (1986) p. 121 and Stadtler (1996) pp. 570-571. 
Is9 Cf. Yee and Shah (1998) pp. S403-S410. 
I9O Cf. Blomer and Giinther (1998) pp. 245-259. 
I 9 l  Cf. Blomer (1999) pp. 93-126 and Blomer and Giinther (2000). 
192 Cf. Kondili et al. (1993) pp. 216-221. 
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problem data time windows are derived for the production of each batch. These 
time windows are further reduced by taking into account capacity considerations 
with the help of a constraint-propagation mechanism. When this is done, binary 
variables are introduced only within the time windows resulting in a significantly 
smaller problem size than the original m0de1.l~~ 

Trautmann (2001) devises a solution algorithm for a so-called batch-scheduling 
problem. His approach requires the batch size to be fixed in a prior planning step. 
His aim is then to schedule the batches taking into account aspects of perishability, 
sequence dependent setup times, availability of manpower, storage constraints and 
work break calendars. He proposes a heuristic based on branch-and-bound to ob- 
tain solutions to scheduling problems of practically relevant size.194 

Lee et al. (2002) propose a MIP model formulation based on non-uniform time 
discretization. The planning horizon is divided into shorter periods in the near fu- 
ture and larger periods towards the end of the planning horizon (telescopic time 
scale). Their model constrains minimum campaign quantities with no restriction 
regarding the number of periods within which this restriction has to be fulfilled. 
Thereby, campaigns spanning over several periods are allowed. Furthermore, 
planned outages (e.g., for maintenance) are respected. Backorders are allowed in 
the model and safety stock violations are penalized. In addition to these two cost 
components, the objective function minimizes (sequence dependent) setup and in- 
ventory holding costs. Regarding the model size (number of constraints, binary 
and continuous variables), the model formulation compares favorably to those of 
Karimi and McDonald (1997) and Ierapetritou et al. (1999).195 

A new representation of time is introduced by Lim and Karimi (2003a). First, 
the planning horizon is discretized according to due dates of orders. Furthermore, 
a number of time slots is associated with each due date. In contrast to the time rep- 
resentation by Karimi and McDonald (1997)196, who divide the time between two 
due dates into a predefined number of slots, here the assignment is such, that the 
first Kl slots fill orders for the first due date, the first K2 ( X I )  slots fill orders for 
the second due date and so on. At the same time, slots associated with a due date 
need not to be finished before the corresponding due date, thus allowing tardiness 
(backorders). Their model respects batch size limitations (minimum and maxi- 
mum) with batch processing times consisting of a fixed and variable part. Fur- 
thermore, (sequence dependent) setup times are modeled. Their computational re- 
sults reveal that solution times are significantly influenced (in an erratic manner) 
by the selection of M in so-called big-M  constraint^.'^^ Compared to other MIP 

193 Cf. Rodrigues et al. (2000) pp. 3823-3834. 
194 Cf. Trautmann (2001) pp. 5-100. 
195 Cf. Lee et al. (2002) pp. 58-66. 
196 Cf. Karimi and McDonald (1997) p. 2703. 
197 Big-M constraints are constraints taking the form x I My with a continuous variable x 

and a binary variable y and M chosen such that it is not limiting the feasible solution 
space. 
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model formulations from literature they conclude, that their model is more robust 
with respect to the selection of M.198 

Castro et al. (2003) consider the problem to obtain a cyclic schedule with 
maximum throughput. Their model formulation is based on the RTN representa- 
tion and uniform time discretization. In a case study they compare their discrete 
time MIP model formulation with one based on continuous time representation. 
Although they make use of a very short period length (five minutes), the model 
formulation based on time discretization outperforms their benchmark.199 

Maravelias and Grossmann (2003b) present an algorithm based on successive 
solution of MIP model formulations to determine the optimal makespan for a 
short-term scheduling problem. Their model formulation utilizes the STN repre- 
sentation and uniform time discretization. Batch sizes may vary between certain 
limits (minimum and maximum), but these have to be obeyed for each period in- 
dependently.200 

Table 4-2 summarizes the literature review on discrete time model formula- 
tions. For each reference it is indicated which process representation has been 
used, whether the process is characterized by some sort of batching considera- 
tions, how time is modeled and which solution method has been suggested by the 
authors. 

Table 4-2: Classification of literature (discrete time model formulations). 

Author(s) Process Process Model- Solution method 
Repre- charac- ing of 
sentation teristic time 

Blomer (1999) STN batch uniform LP-based heuristic 
Blomer and Gunther (1998) STN batch uniform LP-based heuristic 
Blomer and Gunther (2000) STN batch uniform LP-based heuristic 
Castro et al. (2003) RTN - uniform MIP, algorithm 
Dessouky and Kijowski (1997) - batch uniform MINLP, algorithm 
Karimi and McDonald (1997) non-uni. MIP 
Kondili et al. (1993) STN batch uniform MIP 
Lee et al. (2002) cont. non-uni. MIP 
Lim and Karimi (2003a) batch non-uni. MIP 
Lim and Karimi (2003b) non-uni. MIP 
McDonald and Karimi (1 997) uniform MIP 
Maravelias and Grossmann (2003b) STN batch uniform MIP, algorithm 
Mockus and Reklaitis (1 997) STN batch non-uni. MINLP, MIP 
Rodrigues et al. (2000) STN batch uniform M I . ,  heuristic, CP 
Trautmann (200 1) batch (uniform) heuristic 
Yee and Shah (1998) RTN - uniform MIP, cuts 

Although these models based on time discretization have been utilized to solve 
problems from industry, they contain several  disadvantage^:^^^ First, to capture 

198 Cf. Lim and Karimi (2003a) pp. 19 14- 1924. 
199 Cf. Castro et al. (2003) pp. 3346-3360. 
200 Cf. Maravelias and Grossmann (2003b) pp. 6252-6257. 
201 Cf. Shah (1998) p. 83. 
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enough detail, a fine resolution of time is needed, resulting in large MIP model 
formulations. Otherwise, processing times need to be rounded, which introduces 
some margin of error into the model that might jeopardize the optimality or even 
the feasibility of solutions. Second, continuous and semi-continuous processes 
have to be approximated. Third, processing times which depend on the batch size 
are difficult to model and therefore are considered seldom. Only Lee et al. (2002) 
and Lim and Karimi (2003a) consider variable processing times in their model 
formulation.202 Last, minimum campaign quantities can only be accounted for by 
complicated constraints, which has been done by McDonald and Karimi (1997), 
Lee et al. (2002) and Lim and Karimi (2003b).*03 

This is why models based on a continuous representation of time have been de- 
veloped, which will be discussed in the next section. 

4.2.3 Continuous Time Model Formulations 

In continuous time model formulations also assumptions based on the representa- 
tion of time need to be made. Three different representations of time will be dis- 
tinguished (see Fig. 4-4).204 All of them have in common, that the period length is 
unknown at the time of planning and the duration of periods is usually not equal. 
The first time representation (contl) is characterized by the fact, that each task 
(operation) has to start and end at a certain time point (period boundary), whereas 
in the second time representation (cont2) this constraint is somewhat relaxed and 
only the beginning (or only the end) of tasks needs to interfere with time points. 
Both time representations usually rely on a common time grid for all resources. 
This is no longer true for the third possibility to represent time, which will be 
called "event-based" in the following (event). There, the planning horizon is di- 
vided into a number of events. Events on different resources are coupled by se- 
quencing constraints, but the third event on one resource may well be finished 
prior to the second event on another resource. The event-based representation of 
time leads to even smaller model sizes with respect to the number of (binary) vari- 
ables than the two other approaches to model time continuously. 

An RTN-based model formulation is presented by Zhang and Sargent (1996). It 
relies on a common time grid for all resources. Batch processing times can be 
variable, but this leads to a MINLP model formulation. The model formulation is 
linearized using the assumption that processing times are fixed. The authors ac- 
knowledge that there exists no algorithm for solving their MINLP model formula- 
tion, but indicate that their solution algorithm seems promising, if some assump- 
tions regarding the planning problem are met.*05 

*02 Cf. Lee et al. (2002) pp. 60-61 and Lim and Karimi (2003a) p. 1916. 
*03 Cf. McDonald and Karimi (1997) pp. 2695-2696, Lee et al. (2002) p. 61 and Lim and 

Karimi (2003b) pp. 6834-6836. 
204 E.g., Maravelias and Grossmann (2003a) p. 3057. 
205 Cf. Zhang and Sargent (1996) pp. 897-904. Some extensions and improvements are 

presented in Xueya and Sargent (1998). 
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cont 1 

event 

Fig. 4-4: Alternative representations of time (adapted from Maravelias and Grossmann 
(2003a) p. 3057). 

The MIP model formulation by Schilling and Pantelides (1996) is also based on 
the RTN representation. Tasks can only interact at period boundaries following the 
time representation denoted by contl in Fig. 4-4. Their non-linear model is lin- 
earized and then solved by a branch-and-bound algorithm. The algorithm is non- 
standard, because it branches not only on binary variables, but also on continuous 
variables (the lengths of the periods). Although their results are encouraging, they 
state that the computational burden for model formulations based on a continuous 
time representation remains high.206 

A model which incorporates the DLSP207 as a special case is proposed by Jor- 
dan (1996).208 In his model, orders are already assigned to batches and only the 
sequencing of batches is in the scope of his approach. Batches are not allowed to 

206 Schilling and Pantelides (1996) p. S1226. 
207 See also sections 2.3.1 and 4.1.2. 
208 Cf. Jordan (1996) pp. 100-106. 
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be split, resulting in an a priori known (and constant) processing time for each 
batch. Several heuristics are proposed.209 

Karimi and McDonald (1997) propose an event-based model formulation, al- 
though their model relies also on a second time grid based on non-uniform time 
discretization. The planning interval is divided into a number of time slots which 
are not synchronized across resources. Timing of tasks and, e.g., the observation 
of minimal campaign lengths, is based on the continuous time scale (time slots), 
whereas the flow of material (inventory balance constraints, fulfillment of de- 
mands) is done on the discrete time scale. They conclude from their computational 
tests that their discrete time model formulation with a time representation similar 
to the GLSP (see also section 4.2.2) outperforms their continuous time model 
formulation.210 

Ierapetritou and Floudas (1998a) use the STN representation throughout their 
paper. Their MIP model formulation differs from the model formulation intro- 
duced so far in that it decouples tasks from resources. Instead of defining tri- 
indexed binary variables indicating that a task j starts at resource m at the begin- 
ning of period t, two sets of bi-indexed variables are defined, one relating tasks 
and periods and the other one relating resources and periods. Sequencing con- 
straints ensure the fit of these two sets of variables. Consequently, the time repre- 
sentation has to rely on a common time grid for all resources/tasks. Especially the 
reduction in binary variables in the model formulation leads to a significant per- 
formance improvement compared to earlier appro ache^.^" 

In a companion paper the same authors extend their model formulation to take 
semicontinuous and continuous processes into account. The difference resides in 
the fact that in continuous processes, intermediates become available continuously 
opposed to batch processes, where intermediates become available only if the 
complete batch has been processed (at the end of each period). This requires sev- 
eral modifications to the sequencing constraints.212 

In a third paper Ierapetritou et al. (1999) consider intermediate due dates in 
contrast to the former two papers, in which the complete demand has to be met at 
the end of the planning interval. Their MIP model formulation is altered accord- 
ingly. Furthermore, the integration of constraints forcing the observation of mini- 
mal campaign quantities is shown, but only for a special case that allows to fulfill 
this minimal campaign quantity requirement in two consecutive periods.213 Later, 
Lin et al. (2002) show, based on a case study, how this short-term scheduling solu- 
tion approach is integrated into a hierarchical planning framework based on the 
decomposition of time into independent planning intervals.214 

209 Cf. Jordan (1996) pp. 10-147. 
210 Cf. Karimi and McDonald (1997) pp. 2701-2714. 
211 Cf. Ierapetritou and Floudas (1998a) pp. 4341-4359. 
212 Ierapetritou and Floudas (1998b). Giannelos and Georgiadis claim that storage re- 

quirements are underestimated in this model formulation and provide a counter- 
example. Cf. Giannelos and Georgiadis (2002b) pp. 2435-2436. 

213 Cf. Ierapetritou et al. (1999) pp. 3446-3461. 
214 Cf. Lin et al. (2002) pp. 3884-3906. 
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Mockus and Reklaitis (1999a, 1999b) use the STN representation to propose a 
MINLP model formulation. Their model formulation is based on the assumption 
that each task can only be performed once on a resource within the planning inter- 
val. Thereby, the need arises to define several identical tasks, if operations need to 
be performed several times (e.g., several batches need to be processed). The repre- 
sentation of time in their model formulation corresponds to contl. As a solution 
method a so-called Bayesian heuristic approach is chosen. The central idea is to 
perform a sequence of heuristic rulesldecisions (e.g., the choice of the next object 
in a knapsack problem) based on some probability and doing this iteratively.215 

A continuous time model formulation based on the RTN representation is pro- 
posed by Castro et al. (2001a). Time is modeled similar to cont2, but shows also 
characteristics of contl. There is a common time grid for all resources and all 
tasks are coupled to a beginning and an end time point. However, the duration of a 
task does not have to match the difference between these two time points, but it 
can also be smaller. This avoids non-linearity in the model formulation. Further- 
more, the start and end time point do not have to be consecutive time points, 
thereby allowing basically batch sizes of arbitrary size, which are allowed to have 
variable processing times2I6 

In a later paper, Castro et al. (2004) improve the model formulation by chang- 
ing several constraints which yields a better linear relaxation. Furthermore, the 
applicability of the MIP model formulation is extended to cover also continuous 
processes.217 

Lee et al. (2001) devise a MIP model formulation based on the STN representa- 
tion which becomes non-linear if sequence dependent setup times need to be inte- 
grated. Time representation is based on contl with a common time grid for all re- 
sources. Three tri-indexed binary variables are used to couple tasks, resources and 
periods. The first one marks the beginning of a task on a resource at a certain time 
point, the second one shows the processing of a task on a resource at a certain time 
point and the third one marks the end of a task on a resource at a certain time 
point. Consequently, tasks can last arbitrarily long. As in most continuous time 
model formulations, variable processing times can be accounted for easily.218 

The SSN representation has been proposed by Majozi and Zhu (2001) to further 
reduce the use of binary variables compared to former MIP model formulations. In 
their approach only bi-indexed binary variables are necessary signaling that a cer- 
tain state is used at a certain time point. This is due to their new representation of 
the production process. Another point worth mentioning is that in contrast to all 
other approaches published so far, they allow processing times, which do not only 

2'5 Cf. Mockus and Reklaitis (1999a) pp. 197-203 and Mockus and Reklaitis (1999b) pp. 
204-21 0. 

2'6 Cf. Castro et al. (2001a) pp. 2059-2068. Their criticism to other MIP model formula- 
tions from literature is mainly based on a slightly different data set used by other au- 
thors. This is acknowledged by the authors in a later note. Cf. Ierapetritou and Floudas 
(2001) pp. 5040-5041 and Castro et al. (2001b) p. 5042. 

217 Cf. Castro et al. (2004) pp. 105-1 18. 
218 Cf. Lee et al. (2001) pp. 4902-491 1. 
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vary according to the batch size (material processed), but also according to various 
other factors (e.g., catalyst types, raw material 

Hui and Gupta (2001) avoid the use of tri-indexed binary variables similar to 
the approach of Ierapetritou and Floudas (1998a)220 by defining three sets of bi- 
indexed binary variables. One accounts for the sequence of orders, the second ac- 
counts for the assignment of an order to a resource and the third one indicates 
which order is assigned first to a specific resource. In contrast to the other con- 
tinuous time model formulations the authors assume constant batch sizes. Fur- 
thermore, they devise a heuristic to obtain the sequence of orders to be processed 
on a certain resource prior to starting their MIP model formulation. The use of this 
pre-ordering heuristic significantly reduces the number of binary variables and 
therefore speeds up the solution process. Anyhow, the optimal solution may not be 
found with this approach.221 

A model formulation based on time representation contl is proposed by Lamba 
and Karimi (2002a). They also consider minimal campaign quantities in their 
model formulation. Furthermore, several additional resource constraints are dis- 
cussed (limitations on the consumption of a common resource, limitations on si- 
multaneous production of a certain product etc.). As MIP model formulations 
grow too big for real-world problems, they first try different solver options 
(CPLEX options on branching and simplex pricing) to improve computational per- 
formance (with great success) and then propose a two-step decomposition heuris- 
tic in a companion paper.222 

The MIP model formulation by Giannelos and Georgiadis (2002a) uses an 
event-based representation of time. Binary variables are only bi-indexed, indicat- 
ing whether a certain task ends at an event point or not. The assignment of tasks to 
resources by explicit binary variables is avoided by defining multiple tasks, one 
for each resource. The correct material flow is guaranteed by defining a common 
event grid for those tasks that produce (or consume) the same states by special se- 
quencing constraints. Tasks can have variable processing times (dependent on the 
amount of material processed), but need not to start or end precisely at event 
points. Due to the event-based representation of time, their MIP model formula- 
tion requires less binary variables than earlier model formulations based on their 
evaluation of models from 1iteratu1-e.223 

In a companion paper the same approach is used for continuous processes.224 
Wang and Guignard (2002) present a MIP model formulation with a representa- 

tion of time similar to cont2. A common time grid is used for all resources. They 
do not compare their approach to other model formulations c~mputa t iona l ly .~~~ 

219 Cf. Majozi and Zhu (2001) pp. 5935-5949. 
220 Cf. Ierapetritou and Floudas (1998a) pp. 4341-4359. 
221 Cf. Hui and Gupta (2001) pp. 5960-5967. 
222 Cf. Lamba and Karimi (2002a) pp. 779-789 and Lamba and Karimi (2002b) pp. 790- 

800. 
223 Cf. Giannelos and Georgiadis (2002a) pp. 2178-2 184. 
224 Cf. Giannelos and Georgiadis (2002b) pp. 243 1-2439. 
225 Cf. Wang and Guignard (2002) pp. 113-126. 
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A single-level MIP model formulation is proposed by Chen et al. (2002). Their 
model formulation relies on a new time representation. A number of time slots is 
defined which equals the number of orders during the time horizon. Two sets of 
bi-indexed binary variables are defined which relate orders (rsp. resources) and 
time slots. Sequencing constraints guarantee that a resource m can only be as- 
signed to a time slot t if no resource n>m is assigned to a time slot s<t. Conse- 
quently a time slot with a lower ordering number can lie well behind a time slot 
with a higher ordering number. Therefore, time slots inherit only their natural or- 
dering for each resource independently. This modeling of time restricts the appli- 
cability of the proposed MIP model formulation to single-stage problems. Fur- 
thermore, batch processing times are assumed to be known a p r i ~ r i . ~ ~ ~  

The MIP model formulation by Grunow et al. (2003) uses two time scales. One 
of them is predetermined and associated with demand data, whereas the second 
one is continuous. The first time scale is used to match production with final de- 
mands. Consequently, inventory holding costs, which are calculated based on this 
time scale, are only included in the objective function for end products. The re- 
maining part of the model formulation is based on the continuous time scale. The 
MIP model formulation is embedded into a three-stage approach consisting of ag- 
gregation, solution of the proposed MIP model formulation for several times and 
post-optimization to tackle larger problem sizes.227 

Maravelias and Grossmann (2003a) present a MIP model formulation based on 
the STN representation. Their model formulation makes use of contl as well as of 
cont2. The reason for this is, that they want to take advantage of the smaller num- 
ber of time points needed in cont2, but at the same time need to model zero-wait 
policies for perishable intermediates, which requires to take end points of certain 
tasks into account. Their model formulation allows for variable batch processing 
times and sequence dependent setup times. They compare their model with four 
other models based on a continuous time repre~en ta t ion .~~~ As only small exam- 
ples are used to assess computational performance, all model formulations yield 
the same (optimal) solution, but the proposed formulation appears to be fastest. 
Especially the valid inequalities, which are basically constraints tightening the ca- 
pacity allocation, seem to have a great impact.229 

Table 4-3 summarizes the results of this literature review on continuous time 
model formulations. 

An important advantage of continuous time model formulations is that variable 
batch processing times may be accounted for easily, thereby resulting in a more 
realistic description of the planning problem. Processing times are variable in all 
model formulations except the ones by Chen et al. (2002), Grunow et al. (2003), 
Hui and Gupta (2001) and Jordan (1996). But there are also several drawbacks to 
this representation of time. 

226 Cf. Chen et al. (2002) pp. 1249-1260. 
227 Cf. Grunow et al. (2003) pp. 109-141. 
228 Their comparison comprises the model formulations of Schilling and Pantelides 

(1996), Ierapetritou and Floudas (1998a), Castro et al. (2001a) and Lee et al. (2001). 
229 Cf. Maravelias and Grossmann (2003a) pp. 3056-3074. 
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Table 4-3: Classification of literature (continuous time model formulations). 

Author(s) Process Process Model- Solution 
Repre- characteris- ing of method 
sentation tic time 

Castro et al. (2001a) RTN batch (cont2) MIP 
Castro et al. (2004) RTN batch, cont. (cont2) MIP 
Chen et al. (2002) batch MIP, heuristic 
Giannelos and Georgiadis (2002a) STN batch event MIP 
Grunow et al. (2003) batch cont2 MIP, algorithm 
Hui and Gupta (2001) batch MIP, heuristic 
Ierapetritou and Floudas (1998a) STN batch cont2 MIP, algorithm 
Ierapetritou and Floudas (1998b) STN cont. cont2 MIP, algorithm 
Ierapetritou et al. (1999) STN cont. cont2 MIP, algorithm 
Jordan (1996) batch cont. heuristics 
Karirni and McDonald (1997) event MIP 
Lamba and Karimi (2002a, 2002b) - contl MIP, heuristic 
Lee et al. (2001) STN batch contl (MINLP), MIP, 

algorithm 
Majozi and Zhu (2001) SSN batch MIP 
Mockus and Reklaitis (1999a, 199913) STN batch, cont. contl MINLP 
Maravelias and Grossmann (2003a) STN batch contl, MIP, cuts 

cont2 
Schilling and Pantelides (1996) RTN batch contl MIP, algorithm 
Wang and Guignard (2002) batch cont2 MIP 
Zhang and Sargent (1996) RTN batch, cont. - MINLP, MIP 

In all continuous time representations the number of time points needs to be de- 
termined beforehand: A too small number will not yield the optimal solution and a 
too big number will unnecessarily increase the model size and therefore affect the 
capability to solve the model formulation. Therefore, often an iterative procedure 
is proposed to determine the necessary number of time points.230 

Although continuous time representations require far less time points than dis- 
crete time representations require periods, they often suffer from large integrality 
gaps due to poor LP  relaxation^.^^' This stems from the fact that start (and end) 
times of tasks need to be coupled with time points, which is done by so-called 
big-M constraints. Thereby, the advantage gained due to the decreased number of 
periods is often lost. 

Moreover, to model interactions between tasks (multi-level case) or between 
resources (multi-resource case) a common time grid needs to be utilized, increas- 
ing the number of time periods / event points even further. 

Finally, inventory holding costs cannot be accounted for in continuous time 
model formulations easily. Grunow et al. (2003) and Karimi and McDonald 
(1997), who both include this cost component into their objective function, rely on 
a second discretized time grid for their computation.232 Mockus and Reklaitis 

230 E.g., Ierapetritou and Floudas (1998a) p. 4349 and Castro et a1 (2001a) pp. 2066-2067. 
231 Cf. Maravelias and Grossmann (2003a) p. 3057. 
232 Cf. Grunow et al. (2003) p. 125 and Karimi and McDonald (1997) p. 2708. 



68 4 Literature Review 

(1999a) accept that their objective function gets non- l i r~ear .~~~ All other model 
formulations dodge objective functions including this component and propose to 
maximize revenue or minimize tardiness instead. 

Among the literature reviewed, minimal campaign quantities are only consid- 
ered by Karimi and McDonald (1997) and the two papers of Lamba and Karimi 
(2002a, 2002b).234 

233 Cf. Mockus and Reklaitis (1999a) p. 201. 
234 Cf. Karimi and McDonald (1997) p. 2705, Lamba and Karimi (2002a) pp. 782-783 and 

Lamba and Karimi (2002b) p. 79 1. 



5 Planning Framework and Solution Techniques 

Before the proposed solution procedure is explained in detail, this chapter contains 
some thoughts on the planning situation and methodology as well as on applicable 
solution techniques. The concept of Advanced Planning Systems (APS) is intro- 
duced briefly as it provides an environment, for which the proposed solution pro- 
cedure is well-suited. 

Furthermore, the two fundamental building blocks the solution procedure is 
based upon are presented. These are mathematical programming and decomposi- 
tion. 

5.1 Planning Framework 

Two planning philosophies, simultaneous planning and successive planning have 
been widely discussed in literature.235 Whereas in simultaneous planning all deci- 
sions are taken simultaneously, the concept of successive planning aims at decom- 
posing the decision situation into (independent) subproblems, solving these and 
constructing an over-all solution by combining the solutions of these subproblems. 
As most practically relevant decision situations are too complex to be tackled with 
a simultaneous planning approach, successive planning, which usually follows a 
(natural) hierarchical structure of the decision problem, is most often used. 

In supply chain management, planning tasks can be structured along the two 
dimensions "planning horizon" and "supply chain process" to yield the so-called 
supply chain planning matrix (Fig. 5-1).236 This matrix represents such a hierarchi- 
cally organized planning system. In Fig. 5-1 typical planning tasks that occur in 
supply chains are shown. The planning tasks are structured into decisions based on 
a long-term, mid-term and short-term planning horizon reflecting the different 
temporal influences of the decisions. The second dimension is based on the typical 
flow of goods through a supply chain and describes the different processes (pro- 
curement, production, distribution and sales) involved. 

The assignment of planning tasks to positions in Fig. 5-1 is not fixed though 
and may change in different decision situations. For example, the decision upon 
lot sizes is regarded as a short-term planning task of production in Fig. 5-1. In the 
process industries, which will be the primary area of application of the solution 
procedure devised here, lot-sizing is often regarded as a mid-term planning prob- 

235 E.g., Stadtler (1988) pp. 21-29. 
236 Cf. Rohde et al. (2000) pp. 10-15 and Fleischmann et al. (2002) pp. 76-82. 



70 5 Planning: Framework and Solution Techniaues 

lem, because production is characterized by long production runs and setup opera- 
tions that are far from negligible. To accommodate these important characteristics 
a longer planning horizon is deemed necessary. 

P 
) procurement ) production ) distribution ) sales 1 

flow of oods a information b w s  

0- 

Fig. 5-1: Supply Chain Planning Matrix (planning tasks, Fleischmann et al. (2002) p. 77). 

Advanced Planning Systems, which are software tools that support decision 
making in supply chains, have been developed by different software companies 
(e.g., AspenTech, i2 Technologies, Peoplesoft, SAP). In most of these systems the 
planning functionality has not been built into one powerful software application, 
but the functionality has been split up into several modules which cover the supply 
chain matrix. Fig. 5-2 provides generic, vendor independent names for these mod- 
u l e ~ . ~ ~ ~  

The strategic network planning module covers the strategic long-term decision 
making level across all processes. With its help the structure of the supply network 
is determined (plant location, distribution system) as well as the product program. 
The demand planning module is used for short-term and mid-term sales planning. 
For short-term sales planning it is sometimes supported by a demand fulfillment 
and available-to-promise (ATP) module, which has the purpose to match invento- 
ries and production orders with demands, if customers require reliable quotes with 
only short notice. The master planning module coordinates procurement, produc- 
tion and distribution. This is usually done on a mid-term level. Here, the master 
production schedule is fixed. The short-term planning level needs to be anticipated 
at this planning level. Consequently, the most important characteristics of lower 
planning levels need to be modeled here. Distribution planning and transport plan- 
ning cover distribution related planning tasks, the latter one on a more detailed 

237 Cf. Rohde et al. (2000) pp. 10-15 and Meyr et al. (2002) pp. 99-101. 
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level (scheduling of transports, vehicle loading and routing). Production planning 
and scheduling on the other hand are the two modules to support production re- 
lated issues. Finally, purchasing and material requirements planning support the 
short-term procurement of materials.238 

long-term / Strategic Network Planning I 
mid-term Master Planning I 

Planning 
Material 

Demand 

Demand 
Fulfilment, 

&ATP ' 1 
Fig. 5-2: Supply Chain Planning Matrix (APS modules, Meyr et al. (2002) p. 99). 

The problem considered in this thesis is a production planning problem and - 
depending on the specific planning situation - can be attributed to the production 
planning or scheduling module or, if its decisions have a mid-term effect, to the 
master planning module. Its key components are products, resources and time. If 
their interaction can be anticipated fairly well by the mid-term planning level, it 
suffices to model their interaction explicitly only at the short-term planning level. 
On the other hand, if this is not possible, mid-term planning will result in plans 
that are either too ambitious and not feasible for the short-term planning level or - 
not even better - too conservative leading to an undesired under-utilization of re- 
sources. In this case, and especially if production decisions have a mid-term influ- 
ence due to long production runs and substantial setup operations, planning has to 
be done on the master planning level. 

In model based planning, an important cornerstone is that the real decision 
situation is represented adequately by the model, because otherwise the solution to 
the model cannot provide much benefit. As we have seen thus far with respect to 
the modeling of time, standard lot-sizing models do not provide an adequate 

238 For a detailed description of all modules see, for example, Stadtler and Kilger (2002). 
Neumann et al. (2002, pp. 253-258) present a slightly different framework with a focus 
on process industries. 
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model of the decision situation, if setup operations are substantial (with respect to 
the length of the periods) and thereby result in a representation defect.239 

5.2 Solution Techniques 

To overcome the aforementioned representation defect in various settings will be 
the focus of the proposed modeling and solution approach. A desirable attribute of 
the solution approach would be to incorporate additional restrictions easily as well 
as to allow a choice between the proposed modeling options, if not all of them are 
required in a specific situation. 

Special purpose heuristics, which have been devised for many problem set- 
tings - although they may be customized to some extent - generally will only per- 
form efficiently, if the underlying decision situation is matched by their premises. 
Thus, they are generally not the best choice here. 

Mathematical programming on the other hand is a solution technique that ful- 
fills this precondition. Additional restrictions are easily added to a model formula- 
tion as additional constraints. Thereby, mathematical programming based ap- 
proaches are generally applicable.240 Furthermore, the complete model formulation 
can be set up in a modular fashion such that several modules (sets of constraints) 
may be combined freely.241 Additional advantages of mathematical programming 
based approaches are:242 

Optimal solutions are guaranteed to be found (if enough computational time 
can be spent). 
A feasible solution will be found, if one exists. 
Bounds on the objective function value are available (and improving) any time 
in the solution procedure berformance guarantee). 
Objectives may be altered easily, respectively the objective can be made up of 
differently weighted components. 

Criticism on mathematical programming based approaches mainly considers scal- 
ability. Even as computational performance of hardware and software is con- 
stantly improving, model formulations with several hundred binary (or integer) 
variables constitute still a challenge.243 Even though smaller practical problems 
might be solved with standard software by a good mathematical programming 
model formulation, decomposition will be treated as the second major building 
block of the devised solution procedure. Thus, also larger problems can be tackled 
by the proposed modeling and solution approach. 

239 See chapters 2-4. 
240 Cf. Clark and Clark (2000) p. 2289. 
24' Such an approach is used in e.g. Wolsey (2002). 
242 Cf. Zentner et al. (1994) p. 260, Pekny and Reklaitis (1998) p. 104 and Miller et al. 

(2000) p. 3. 
243 E.g., Plapp (2003) p. 19. 
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5.2.1 Mathematical Programming 

Mathematical programming has seen a lot of progress in recent years. Neverthe- 
less, even in "spite of the remarkable improvements in the quality of general pur- 
pose mixed integer programming software, the effective solution of a variety of 
lot-sizing problems depends crucially on the development of tight formulations for 
the special problem features occurring in practice."244 As there are several excel- 
lent text books on mathematical programming available,245 this section will only 
focus on some selected topics, which will be exploited by the proposed modeling 
and solution approach, and not cover the whole area of mathematical program- 
ming. Especially, the focus will be on mixed integer programming model formula- 
tions which is a subset of mathematical programming in its entirety. 

Finding a good model formulation often does not mean using the simplest for- 
mulation. Using different (or additional) sets of variables will often improve the 
model formulation in terms of solution quality and speed. This approach which is 
often referred to as reformulation or as extended formulation will be analyzed 
first. Secondly, it has proven advantageous to find model formulations which are 
as tight as possible, what means that the gap between the optimal solution of their 
linear relaxation and their optimal solution - which in a sense is an indicator of the 
size of the search space the branch-and-bound process has to cover - should be as 
small as possible. Last, additional techniques like preprocessing are discussed 
briefly followed by an assessment of the capabilities of state-of-the-art standard 
software solvers. 

5.2.1 .I The "Art of Modeling" - Extended Formulations 
There does not exist a clear methodology on how to obtain a good model formula- 
tion. Formulating a mathematical program is often an iterative process of (a) de- 
fining variables, (b) defining constraints using these variables so that the feasible 
points correspond to the feasible solutions of the problem and (c) defining an ob- 
jective function using these variables.246 However, for each specific problem sev- 
eral (an infinite number of) model formulations exist. This is illustrated in Fig. 
5-3. All three polyhedra (PI, P2 and Pj) cover the same set of feasible integer solu- 
tions. Obviously, in this case P3 is the best formulation (an ideal formulation), be- 
cause its extreme points are integer solutions and thus the solution of the linear re- 
laxation of formulation P3 will yield an integer point. Although there exists such a 
formulation, i.e. the convex hull, for any problem, to obtain it may require too 
much effort to be an effective strategy. 

A standard modeling technique is to extend the model formulation by replacing 
variables or adding new sets of variables. Several reformulations exist with respect 

244 Belvaux and Wolsey (2001) p. 993. Overviews about these recent technological devel- 
opments are given by Bixby et al. (2000) and Johnson et al. (2000). 

245 E.g., Kallrath (2002a), Kallrath and Wilson (1997), Nemhauser and Wolsey (1988) and 
Wolsey (1998). 

246 Cf. Wolsey (1998) p. 5. 
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to lot-sizing model formulations.247 The most common approach is to use the so- 
called "simple plant location" (SPL) formulation.248 This approach will be demon- 
strated on the most basic lot-sizing problem CLSP introduced in section 2.2 
((2-1)-(2-6)). 

Fig. 5-3: Good and ideal model formulations (slightly adapted from Wolsey (1998) p. 15). 

Model CLSP (SPL uepuesentation): 

247 Cf. Eppen and Martin (1987) pp. 841-843, McKnew et al. (1991) pp. 287-288, Tem- 
pelmeier and Helber (1994) pp. 299-300, Stadtler (1996) pp. 562-572, Stadtler (1997) 
pp. 89-91 and Pochet (2001) pp. 73-77. A computational comparison has been carried 
out by Stadtler (1996, pp. 574-579) for the MLCLSP. 

248 Cf. Rosling (1986) p. 121, Pochet and Wolsey (1995) p. 253, Stadtler (1996) pp. 570- 
571 and Pochet (2001) pp. 73-74. 
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Variables: 

4, Fraction of demand of item j in period s which is produced in period t 

The idea behind this model formulation is to replace variables X,, for production 
quantities and 4, for inventories by a new set of variables X,, which is defined as 
the fraction of demand of product j in period s that is produced in period t ( t9 ) .  
The information regarding inventory costs can now be derived from variables X,, 
(first term in objective function (5-1)). Constraints (5-2) remain capacity con- 
straints much similar to the ones of the original model formulation (2-3). The so- 
called big-M constraints that resulted in a rather weak linear relaxation of the 
original formulation (2-4) are now somewhat improved by a much lower value for 
"M' (5-4) (here: "1"). Finally, (5-3) are used to guarantee that all demands are ful- 
filled. (5-5) and (5-6) state the domain of the variables. 

Fig. 5-4 shows a graphical representation of this approach for one product j. 
Production variables X,, are represented by directed arcs from a production node 
(shown on the left side) to a demand node (shown on the right side). Each period, 
supposed it has positive demand, shows up twice in this representation (once for 
production and once for demand). Total production in a period X,, is calculated by 
summing over all arcs leaving a production node. In the model formulation, con- 
straints (5-4) take care, that a setup operation is carried out, if any leaving arc con- 
tains a positive production amount. 

production periods 
quantity (production) 

periods demands 
(demand) 4, 

Fig. 5-4: CLSP in SPL representation. 

This model formulation has advantages and disadvantages. Its main advantage 
is, that its linear relaxation provides a much tighter bound than the original formu- 



76 5 Planning Framework and Solution Techniques 

lation (which will be called I&L representation due to the variables used). On the 
downside, it requires much more variables and constraints to be formulated. 

This basically constitutes the tradeoff to be analyzed when comparing MIP 
model formulations: A weaker model formulation with fewer variables and con- 
straints might require a huge branch-and-bound tree to be explored until the opti- 
mal solution is found and proven to be optimal. On the other hand, a tighter model 
formulation using a greater number of variables and constraints might require a 
much smaller branch-and-bound tree, but the linear relaxation that needs to be 
solved in each node requires additional computational effort. Stadtler (1996) has 
shown this effect for different problem sizes for the multi-level CLSP.249 

Regarding the SPL formulation it has been shown, that in the single-item unca- 
pacitated case, the linear relaxation always leads to an optimal solution with all 
variables I;., being binary. So, this structure is an ideal formulation for some sub- 
problems of the CLSP.250 

Reformulation techniques have been applied to all kinds of lot-sizing prob- 
l e m ~ . ~ ~ '  Recently, Wolsey (2002) even claimed that "certain multi-item lot-sizing 
problems can now be solved just using standard reformulations and an off-the- 
shelf MIP solver."252 This is due to the fact that during recent years a lot of knowl- 
edge has been accumulated on special structures of lot-sizing problems, which can 
be used like a toolkit to assemble good model formulations. Still, there remain 
many structures which still need in-depth exploration.253 

Using extended model formulations or reformulations is one way of finding 
good model formulations. A different approach is to follow good modeling prac- 
tice, which are ideas or guidelines that can help the solver avoiding numerical 
problems, reduce the computational burden at each node or help the solver to de- 
tect structures. A comprehensive collection of these modeling guidelines is given 
for example in the textbook by Kallrath (2002a)254 and will therefore not be dis- 
cussed in detail here. 

5.2.1.2 Valid Inequalities 
While reformulations change the variable space the model formulation is based 
on, applying valid inequalities to a problem is based on the initial variable space. 
The main idea of using valid inequalities lies in trying to find a description of the 
convex hull of a problem, while retaining the original variable space. The model 
formulation is simply extended by additional constraints (valid inequalities, cuts) 
here.255 

249 Cf. Stadtler (1996) pp. 574-579. 
250 Cf. Pochet (2001) p. 74. 
251 Cf. SOX and Gao (1999) pp. 175-176 for a network representation of CLSPL. 
252 Wolsey (2002) p. 1588. 
253 Cf. Wolsey (2002) p. 1600. 
254 Cf. Kallrath (2002a) pp. 102-149. 
255 Research on valid inequalities was initiated by the seminal paper of Gomory (1958). 

Its first application in lot-sizing has been by Barany et al. (1984). Comprehensive in- 
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Valid inequalities are constraints, that do not exclude any feasible point, but cut 
off some part of the polyhedron that describes the linear relaxation of the problem. 
They are most helpful, if they are violated. A valid inequality is violated, if it is 
not fulfilled at the optimal solution of the relaxed problem and therefore, its addi- 
tion would cut off this solution. Fig. 5-5 and (5-7)-(5-10) give an example. 

0 I p 1 4 and integer 

Constraints (5-7)-(5-9) describe the gray-shaded polyhedron in Fig. 5-5. Obvi- 
ously, (5-10) is a valid inequality for this problem. It does not cut off any feasible 
point, but at the same time - if the optimal solution had been in the lower right 
comer of the polyhedron - would cut off the optimal solution of the linear relaxa- 
tion. 

a 1 6 + 4 . P  

- - * feasiblesolutions 
---- valid inequality 

Fig. 5-5: Example for valid inequalities (slightly adapted from Wolsey (1998) p. 115). 

Thereby, violated valid inequalities tighten the model formulation by improv- 
ing the bound obtained by the solution of the linear relaxation of the problem. 
Consequently, research on valid inequalities has not only focused on deriving new 
classes of valid inequalities, but also on algorithms to decide whether any individ- 

- - -  

troductions into the theory of valid inequalities are given by e.g. Nemhauser and Wol- 
sey (1988) pp. 205-291 and Wolsey (1998) pp. 1 13-161. 
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ual valid inequality is violated at a current node in the branch-and-bound tree. 
These algorithms are called separation algorithms, as they separate the violated 
valid inequalities from those that are not violated.256 

Theoretically, one can use only the technique of valid inequalities without ap- 
plying any branch-and-bound to obtain the optimal solution to a MIP problem. As 
long as any integer variable remains fractional, one would have to find a violated 
valid inequality, which would produce a different solution to the linear relaxation 
and iterate. On the other hand, the branch-and-bound method has proven to be 
quite successful in solving mixed integer programs. Therefore, a combination of 
both methods has been developed: branch-and-cut. 

Branch-and-cut (B&C) as well as its special form cut-and-branch (C&B) com- 
bine the traditional branch-and-bound tree search with the use of valid inequali- 
ties. In B&C algorithms valid inequalities are added to the problem in any node of 
the search tree. These can either be inequalities that are only locally valid in 
branches diverging from the current node or globally valid inequalities that are 
also valid for the initial problem. In the first case, an efficient backtracking proce- 
dure needs to be implemented in addition. C&B is the special form of B&C where 
valid inequalities are only added to the model formulation in the root node of the 
search tree. This avoids any cut handling during the branch-and-bound process, 
but on the other hand incurs an additional computational burden, because many 
valid inequalities that are not violated (anytime) are carried through the whole so- 
lution procedure. Obviously, in C&B only globally valid cuts can be utilized. 

Research on valid inequalities relevant to this thesis can be divided into two ar- 
eas. The first area covers the derivation of new classes of valid inequalities in gen- 
eral. Valid inequalities belonging to this class are those, that can be applied to any 
mixed integer program.257 The second area of valid inequalities are those that rely 
on special structures of the underlying problem. In this area, also a research stream 
emerged aiming at lot-sizing problems. Building on these, specialized branch-and- 
cut special purpose solvers have been developed.258 Valid inequalities developed 
in this thesis are tailored to the MIP problems tackled here and will not be general- 
ized. As valid inequalities have proven to be a viable method in improving per- 
formance of commercial MIP solvers, its providers keep adding functionality for 
generating valid inequalities and detecting those violated to their software. Hence, 
the search for classes of valid inequalities that might be suited for a special prob- 
lem is no longer left to the user, but is done more or less automatically. 

5.2.1.3 Further Enhancements 
Whereas the first two approaches (reformulations and valid inequalities) in some 
way extend the initial problem formulation (by additional variables and/or con- 
straints), also much effort has been made to reduce model sizes. These techniques 
are often subsumed under the title of preprocessing. 

256 Cf. Cordier et al. (1999) p. 337. 
257 Cf. Marchand et al. (2002) and Wolsey (2003) for an overview and recent develop- 

ments. 
258 Cf. Belvaux and Wolsey (2000) 727-729. 
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P r e p r o ~ e s s i n g ~ ~ ~  consists of methods to 

strengthen bounds on variables (fix variables), 
aggregate andlor substitute variables and constraints, 
eliminate redundant constraints, 
change coefficients of constraints and the objective function and 
detect infeasibilities. 

Simple preprocessing techniques consider each constraint in isolation and 
check, e.g., whether it is consistent with the bounds of its variables. A more elabo- 
rate technique is probing. Here, variables are fixed to one of their bounds (0 or 1 
for a binary variable) and all constraints of the formulation are checked simultane- 
ously, whether this forces any other variables to their bounds.260 In Bixby et al. 
(2000) an example is reported where probing rendered branch-and-bound obso- 
lete.261 

Preprocessing can be done on any MIP model formulation, but has also been 
applied to lot-sizing by exploiting knowledge about the model structure. Its first 
application has been by Maes et al. (1991).262 We return to the model CLSP in 
SPL representation of section 5.2.1.1 ((5-1) -(5-6)) to illustrate their idea. 

The model formulation builds on variables 4, indicating the fraction of de- 
mand for product j in period s that is produced in period t. For example, if there is 
production in periods t and t+l to cover demand of periods t+l to t+3, the alloca- 
tion of production quantities to production periods is arbitrary, allowing any com- 
bination. Now the idea is to drop variables from the formulation based on the fact 
that production from an "early" period to a "late" period may not be possible. The 
decision on each "early"/"late" period combination is based on the fact, that up to 
a certain "early" period - taking into account also demand fulfillment for the other 
products k+j - only a limited quantity o f j  can have been produced (using the slack 
in capacity) resulting in inventory. Thus, any demands that occur in periods "later" 
than this maximal excess inventory can maximally cover cannot have been pro- 
duced and their associated variables may be dropped from the model formulation. 

Other enhancements that are often named as crucial improvements for the ap- 
plication of mathematical programming, but will not be explained in detail here, 
are the implementation of search strategies and primal heuristics.263 

5.2.1.4 Capabilities of Standard Solvers 
A lot of progress has been made in the last 15-20 years regarding the extent to 
which MIP model formulations can be solved now. This progress can be attributed 

259 Cf. Savelsbergh (1994) pp. 445-452, Johnson et al. (2000) pp. 6-7 and Atamtiirk and 
Savelsbergh (2003) p. 13. 

260 Cf. Atamtiirk and Savelsbergh (2003) p. 13. 
261 Cf. Bixby et al. (2000) pp. 23-24. 
262 Cf. Maes et al. (1991) pp. 138-139. 
263 Cf. Bixby et al. (2000) pp. 15-16, Johnson et al. (2000) pp. 7-9 and Atamtiirk and 

Savelsbergh (2003) pp. 5-13,20-21. 
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to developments in algorithms, modeling and analysis of constraints as well as to 
the developments regarding hardware and (standard) software.264 

For example, Table 5-1 shows the amount of time different versions of CPLEX 
needed to solve (the same) linear program. As these computations were performed 
on the same hardware, one has to take into account that during the same period the 
advance in computer hardware has been tremendous. 

Table 5-1: Solution capabilities of CPLEX (LP, Bixby et al. 2000, p. 6). 

Software - Year Time (seconds) 
CPLEX 1.0 1988 57840 
CPLEX 3.0 1994 
CPLEX 5.0 1996 
CPLEX 6.5 1999 165 

Today's standard solvers (CPLEX, LINDO, XPRESS-MP) offer much of the 
functionality introduced in the preceding sections right away: They incorporate 
functions to detect structure in the model formulation that allows for reformula- 
tions, they are able to generate valid inequalities and they perform different pre- 
processing techniques.265 

The most difficult part for commercial solvers is obviously the first part, be- 
cause to detect structure in a problem crucially depends on the model formulation 
the user has entered.266 

Therefore, much more emphasis has been on incorporating the detection and 
use of valid inequalities, which have been an integral part of standard solvers for 
about five years.267 Table 5-2 shows the impact the use of automatically generated 
valid inequalities has on six selected test instances. The different columns show 
the time (in seconds) and the number of nodes necessary to derive the optimal so- 
lution and prove optimality for each test instance. It is evident that in most cases 
computational effort is dramatically reduced by the incorporation of valid ine- 
qualities. 

In addition to the generation of valid inequalities, standard solvers (like 
XPRESS-MP, which will be used for most of the computational testing in this the- 
sis) offer additional functionalities. These concern the handling of valid inequali- 
ties or cut management. As argued above,268 the generation of too many valid ine- 
qualities slows down the solution speed in any particular node, because of the size 
of the matrix. Therefore, not all valid inequalities that have been generated are put 
into the matrix, but most of them are put aside into a cut pool, from which valid 
inequalities can be drawn during the branch-and-bound search once they are vio- 
lated. 

264 Cf. Johnson et al. (2000) pp. 2-3. 
265 Cf. Atamtiirk and Savelsbergh (2003) for a survey of capabilities and advanced fea- 

tures of current commercial integer programming software systems. 
266 Cf. Belvaux and Wolsey (2001) p. 996. 
267 Cf. Wolsey (2003) p. 423. 
268 See section 5.2.1.2. 
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Table 5-2: Impact of valid inequalities in CPLEX 7.5 (Atamtiirk and Savelsbergh 2003, 
p. 20). 

Problem with cuts without cuts 
nodes time (s) nodes time (s) 

fixnet6 83 0.64 522 0.96 
gesa2 148 1.90 101 852 264.14 
gesa3 109 3.27 613 2.92 
p0548 28 0.25 16 038 10.56 
p2756 27 1.09 163 074 525.68 

Furthermore, if the user has derived a set of valid inequalities the solver cannot 
generate on its own, he can add these to the model formulation marked as "model 
cuts". The solver will then decide which of these model cuts are violated and put 
only those into the matrix, but store all the other ones in the cut pool. This leads to 
much smaller matrices compared to those in which the whole set of valid inequali- 
ties is put into the matrix instantly.269 

Finally, Table 5-3 shows the impact preprocessing techniques have in a stan- 
dard solver. The same test instances are used that have been utilized to demon- 
strate the effect of valid inequalities before. Although not as dramatic as the im- 
pact of valid inequalities, the integration of preprocessing techniques has still 
proven worthwhile. 

Table 5-3: Impact of preprocessing in CPLEX 7.5 (Atamtiirk and Savelsbergh 2003, p. 16). 

Problem with preprocessing without preprocessing 
nodes time (s) nodes time (s) 

fixnet6 83 0.64 6 257 53.05 
gesa2 148 1 .90 52 0.92 
gesa3 109 3.27 108 2.27 
p0548 28 0.25 28 0.30 
p2756 27 1 .09 380 6.67 
v ~ m 2  8 812 7.69 18 492 22.57 

5.2.2 Decomposition 

Despite the remarkable advances in mathematical programming, a need for de- 
composition approaches remains when large industrial problems are tackled. In 
general, decomposition means (1) to divide a specific problem into a set of sub- 
problems, (2) to solve these subproblems and (3) to build a solution to the initial 
problem by combining the solutions obtained for the subproblems. If these three 
steps are not designed with great care, solution quality will generally be bad - or 
worse, no feasible solution can be obtained in step (3). 

269 Cf. Dash Optimization (2002) p. 168. 
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Fig. 5-6 shows two fundamental decomposition schemes, horizontal and verti- 
cal decompo~i t ion .~~~ Usually, all subproblems are related somehow (Fig. 5-6 (a)). 
Therefore, it is important to pay attention to the interdependencies of the problem, 
when decomposing it into its subproblems. Interdependencies of the problems ex- 
ist regarding the dimensions time, resources and products, which have been used 
before to classify lot-sizing problems in section 2.1. 

Legend: @ subproblem 

interdependency 
-..-. -, information flow 

anticipation 

(a) relationsship between sub-problems 

O.- -.-.-A center 9 

(b) horizontal decomposition (c) vertical decomposition 

Fig. 5-6: Decomposition schemes. 

Even more essential, these interdependencies are also important to observe 
when solving the subproblems. The reason for this is that a decision taken in one 
subproblem may influence decisions to be taken in another subproblem. There- 
fore, two types of coordination have to be distinguished. In horizontal decomposi- 
tion (Fig. 5-6 (b)), all subproblems are equally important and no (natural) ordering 
of the subproblems exists. Here, a central unit takes care of the coordination of so- 
lutions of the subproblems. The information flows from the subproblems to the 
center are solutions, while the flow in the opposite direction is problem-defining 
data which might be influenced by solutions from other subproblems. Often, sev- 
eral iterations are necessary until all solutions of the subproblems are aligned. 

In contrast, a (natural) ordering of the subproblems exists or can be determined 
in vertical decomposition (Fig. 5-6 (c)). Then, information regarding the solution 
of subproblems already solved is fed as data into the other subproblems. Thereby, 
coordination of solutions of the subproblems is achieved. On the other hand, deci- 
sions taken by a preceding subproblem may narrow the solution space for a sub- 
problem, such that either only an inferior solution or no feasible solution can be 

270 Cf. Steven (1994) pp. 35-36. 
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found.271 To avoid this, each subproblem has to anticipate the decisions of subse- 
quent subproblems. 

In lot-sizing literature as well as in literature dealing with related problems in 
the process industries, many decomposition schemes have been proposed. Most of 
them are based on time decomposition, but others are based on resource decompo- 
s i t i ~ n ~ ~ ~ ,  product decomposition273 or the relevance of decisions274. In the follow- 
ing, only those that are based on time decomposition combined with the applica- 
tion of mathematical programming techniques will be reviewed in more detail, 
because they offer the most promising results and fit best with the mathematical 
programming based modeling and solution approach proposed thereafter. Here, a 
(natural) ordering of subproblems often exists (by the ordering of the periods). 
Consequently, the proposed decomposition schemes mostly rely on some sort of 
vertical decomposition. 

As linear programs of almost any practical size do not pose a too big challenge 
to today's mathematical programming software, the main goal in decomposing 
models is to reduce the number of binary andlor integer decision variables that 
have to be considered in each sub-model, because their number significantly influ- 
ences the size of the branch-and-bound tree and therefore the running time of the 
algorithm. 

Dillenberger et al. (1993) introduced such a decomposition scheme called "fix- 
and-relax", which was later also applied by Clark and Clark (2000).275 Their de- 
composition approach for a CLSPL-like model considers the whole planning in- 
terval in each sub-model. In their first sub-model, integrality constraints for all pe- 
riods except the first one are relaxed. In each successive sub-model, binary and 
integer variables are only present for one specific period t. Corresponding vari- 
ables for periods s<t have been fixed according to the solution of preceding sub- 
models, whereas integrality constraints remain relaxed for periods s>t. As some- 
times infeasibilities may occur, they allow for backtracking. This means, the algo- 
rithm moves back one period at a time until a period is found, in which more than 
one feasible solution has been found. Starting from there, the next best solution is 
chosen and the algorithm continues.276 

Two different approaches have been proposed by Blomer (1999).277 In the first 
approach the number of binary variables is heuristically reduced. This reduction is 
based on a time-grid pattern and works as follows: Based on some insight or ex- 
perience, it might appear that on a certain resource a setup operation occurs in ap- 
proximately every third period. Then binary variables indicating setup operations 
on this resource are fixed to zero in two of three periods. The second approach is 

271 Cf. Scho11(2001) p. 35. 
272 Cf. Blomer and Gunther (1998) pp. 252-253, Blomer (1999) pp. 110-1 12 and Wu and 

Ierapetritou (2003) pp. 1268-1270. 
273 Cf. Blomer (1999) pp. 112-1 14 and Tempelmeier (2003) pp. 239-272. 
274 Cf. Papageorgiou and Pantelides (1996) pp. 510-520. 
275 Cf. Dillenberger et al. (1993) pp. 1 14- 11 5 and Clark and Clark (2000) pp. 2302-2305. 
276 Cf. Dillenberger at a1 (1994) pp. 282-283. 
277 Cf. Blomer and Gunther (1998) p. 253 and Blomer (1999) pp. 107-1 10, 1 14-1 17. 
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quite similar to the one by Dillenberger et al. (1993) although not periods, but sets 
of periods are considered in each sub-model. Furthermore, only those binary vari- 
ables that have been "1" in solutions of a preceding sub-model are fixed, thereby 
allowing to schedule additional products in successive sub-models. As before, in- 
tegrality constraints are relaxed in periods belonging to later sub-models. 

This second approach bears much similarities to the "relax-and-fix" heuristic 
by Belvaux and Wolsey (2000), who also do not consider single periods like Dil- 
lenberger et al. (1993) but sets of periods (called subintervals) instead.278 They 
also do not fix all variables based on the solution of preceding subintervals, but 
only those that have been "1" in the solution of a preceding subinterval. Thereby, 
they allow for additional production in periods preceding the current subinterval at 
the price of additional binary variables. Integrality constraints are relaxed in peri- 
ods trailing the current subinterval. 

Kelly (2002) somewhat broadens the methodology proposed before.279 His idea 
is also to solve successive sub-models containing sets of periods (called time- 
chunks), with binary variables fixed to their respective solution of preceding time- 
chunks and integrality constraints relaxed in periods following the current time- 
chunk. But unlike Dillenberger et al. (1994)280, who proposed to backtrack only if 
infeasibilities occur, he proposes a tree search with the nodes represented by fea- 
sible solutions of a time-chunk. The approaches described before followed a 
greedy heuristic: A sub-model was always based on the optimal or best known so- 
lution of the preceding sub-model. Although this procedure, which is called depth- 
first in Kelly's terminology, may often lead to a good solution, there might be the 
opportunity to find better solutions in successive sub-models, if not the best solu- 
tion had been taken each time. 

The approach by Federgruen et al. (2003) does not consider the whole planning 
interval in each sub-model like all the other approaches.281 Instead, each sub- 
model spans over an increasing number of periods, from which only the last t pe- 
riods contain binary or integer variables, whereas these variables in all periods 
preceding these last t periods are fixed from solutions of preceding sub-models. 

Finally, a different approach is followed by the time decomposition heuristic of 
Stadtler (2003).282 In his decomposition approach, sub-models (called lot-sizing 
windows) belong again to a set of periods, but consider the whole planning inter- 
val. Binary variables of periods preceding the lot-sizing window are fixed to their 
solution of preceding lot-sizing windows, whereas binary variables of periods later 
than the current lot-sizing windows are dropped from the sub-model. This can be 
done without loss of feasibility, as long as the binary variables are not bounded. 
This is the case here, if the MLCLSP without setup times is tackled. To overcome 
this feasibility issue when setup times are present, Stadtler (2003) proposes an an- 
ticipation of setup times arising in periods after the current lot-sizing window. 

278 Cf. Belvaux and Wolsey (2000) p. 729. 
279 Cf. Kelly (2002) pp. 2995-2999. 
280 Cf. Dillenberger et a1 (1994) pp. 282-283. 
281 Cf. Federgruen et al. (2003) pp. 3-4. 
282 Cf. Stadtler (2003) pp. 490-494. 
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Especially in time decomposition schemes based on vertical decomposition 
(Fig. 5-6 (c)), anticipation is an important issue in the design of a decomposition 
procedure. The reason is that here a feedback loop is usually not envisioned, but 
decisions taken in one sub-model strongly affect the decisions of successive sub- 
models. In solution approaches for lot-sizing based on time decomposition, an ef- 
fect calling for anticipation is well-known as truncated horizon or end It 
results, because in periods close to the planning horizon production and invento- 
ries go down, because a cost is usually associated with inventories and inventories 
at the end of the planning horizon are (in the view of the sub-model) useless. 
These effects can be dealt with by period overlap of sub- model^,^^^ assigning 
value instead of costs to ending inventories,285 assigning bonuses to setup deci- 
sions and production close to the end of the planning or by modifying 
the input data for successive s ~ b - m o d e l s . ~ ~ ~  

Interestingly, all approaches have in common, that each algorithm proceeds 
forward from the first period to the last. Sub-models are always based on single 
periods or sets of periods and except the approach by Federgruen et al. (2003) all 
remaining decomposition approaches incorporate some form of anticipation of 
successive sub-models, either by considering the whole planning interval in each 
sub-model, by explicit anticipation as described above or both. As all authors 
mentioned report great improvements regarding solution quality and solution 
speed, when applying their time decomposition approaches, time decomposition 
seems a promising option when designing the proposed modeling and solution ap- 
proach. 

283 Cf. Federgruen and Tzur (1994) p. 457, Stadtler (2000) pp. 318-320 and Fisher et al. 
(2001) pp. 679-680. 

284 Cf. Blomer (1999) p. 115, Kelly (2002) pp. 2995-2996 and Stadtler (2003) pp. 490- 
491. 

285 Cf. Fisher et al. (2001) pp. 679-684. 
286 Cf. Stadtler (2000) pp. 320-321 and Stadtler (2003) pp. 491-492,494. 
287 Cf. Clark and Clark (2000) pp. 2294-2295. 



6 Modeling and Solution Approach 

As has been outlined in the last chapter, the solution approach consists of two 
parts. The major part are mathematical model formulations that can be used in 
standard MIP solvers like CPLEX or XpressMP to generate solutions. These are 
hrther enhanced by modeling tricks and valid inequalities to improve computa- 
tional performance. Large industrial problems typically require some sort of de- 
composition to become tractable. Therefore, a decomposition heuristic which 
builds on these model formulations is proposed in the second part. 

6.1 Model Formulations and Enhancements 

The mathematical model formulations presented next are intended as building 
blocks. For ease of presentation this section is organized like chapter 3, in which 
the consideration of time continuity in time-indexed model formulations has been 
motivated by a thorough analysis of the representation defect usually encountered 
in this kind of model formulations. 

First, attention is paid to the basic models that are used throughout this work, 
namely the PLSP and the CLSPL. Thereby, the modeling of setup states at period 
boundaries is covered. Then the focus is shifted to lot sizes 1 campaigns that last 
several periods. Following that, period overlapping setup times are examined and 
different resource utilization requirements are analyzed. Last, issues arising if sev- 
eral of these modeling options need to be combined are discussed. 

In a problem setting with more than one resource, an additional index for re- 
sources needs to be introduced. The extension of the model formulations is 
straightforward taking into account that on each resource one setup state might be 
preserved rather independently. In section 7.5 an example will be presented. 

6.1.1 Time Continuity - Setup States 

The conservation of setup states across periods marks the first cornerstone to 
overcome the representation defect regarding time continuity in time-indexed 
model formulations. It is addressed here by defining a unique state for each re- 
source at each period boundary. In small-bucket models setup state conservation is 
a constituent attribute, but also hybrid models allow for setup state conservation.288 

288 See also sections 2.3 and 2.4. 
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In this work it is assumed that setup states cannot get lost during idle time, but 
this assumption is not too restrictive. If idle time of a resource leads to a loss of 
the setup state, this can be handled by adding a dummy product which represents 
idle time and at the same time requiring a minimum utilization of resources. 

Two basic models will be used throughout this thesis: The PLSP as the most 
universal small-bucket model suits perfectly as a basic model, because it offers 
sequencing and lot-sizing integrated into one model formulation. Setup states are 
preserved across period boundaries. The only disadvantage compared to other 
model formulations is the restriction of the PLSP that at most one setup operation 
can be performed in each period. This might require to define very short and 
therefore too many periods to obtain the "true" optimal solution to a specific pro- 
duction planning problem.289 This solution is only guaranteed to be found by the 
PLSP, if the period length is shorter than the smallest lot size present in this solu- 
tion. 

At this point, the CLSPL offers remedy. By allowing setup operations for each 
product in each period and preserving setup states across period boundaries, in 
general less periods need to be defined compared to the PLSP to obtain a similar 
solution 

Usually, the appropriate time discretization may not be freely chosen by the 
planner, but will at least in part be imposed by the circumstances and data of the 
planning problem. For example, period boundaries are defined by due dates of or- 
ders or any other relevant dates for the planner (e.g., closing dates at which high 
inventories need to be avoided). Starting from this natural time discretization, the 
PLSP can be used as a basic model, if the "true" optimal solution is expected to 
include only lot sizes that fit into this discretization. Otherwise a finer time resolu- 
tion needs to be imposed andlor the CLSPL needs to be chosen as a basic model. 

6.1 .I .I The Proportional Lot-Sizing and Scheduling Problem 
As argued above, the PLSP can basically be used in its standard model formula- 
tion presented in section 2.3.3 ((2-20)-(2-27)). Apart from some standard valid 
inequalities only two minor modifications are proposed here, one for modeling 
purposes and the other one to enhance computational performance. 

Modifications to Basic Model Formulation 
For modeling purposes it is important, that at each period boundary a unique setup 
state is defined. Therefore, (2-24) are replaced by (6-1). With (2-24) setup states 
can be lost during idle time. On the other hand, (6-1) force the determination of a 
unique setup state. If resources lose their setup state during idle time this must be 
accounted for by a dummy product. 

289 "True" optimal solution refers to the optimal solution based on a continuous time 
scale. 

290 See also section 2.5. 
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In MIP model formulations it seems wise to choose the M in so-called big-M 
constraints as low as possible to obtain a tight formulation. In (2-23) M is deter- 
mined as the maximal production quantity possible in a period based on available 
capacity and the production coefficient. Towards the end of the planning horizon, 
this estimate can be reduced, because the maximal production quantity is also re- 
stricted by the demand which needs to be fulfilled within the remaining periods up 
to the planning horizon. 

X, 5 min ' , Id ,  . (Z,, + ZjPl) 1: ::I I b' jeJ, teT (6-2) 

No more alterations to the PLSP are made. Other  reformulation^^^^ will not be 
proposed, because in preliminary computational tests these did not show a supe- 
rior performance. 

Valid Inequalities 
Two types of valid inequalities will be used throughout the computational tests in 
conjunction with the basic PLSP model formulation. For these and other valid 
inequalities the model cut option of XpressMP will be activated.292 

Both types of valid inequalities have been known for long and have been shown 
to suffice to describe the convex hull of solutions of uncapacitated single item 
problems if the cost structure observes the Wagner-Whitin condition.293 

The first one couples continuous inventory variables 4, with the binary vari- 
ables for setup operations and setup states. The rationale behind this constraint is, 
that a lower bound is imposed on the inventory variable if no production takes 
place within a certain interval of periods (t+l..t+p). Production of a certain prod- 
uct is not possible if no resource is set up for this product at the beginning of the 
interval (qt=O) and no setup operation for this product is performed within the 
time interval. 

f+P S 

Ijf 2 Edj,  .(I-Z,, - CY,,) b'je.7, FO..T-l,p=l..T-t (6-3) 
s=t+l r=t+l 

The second set of valid inequalities represents a simple relation between vari- 
ables for setup operations Y,, and setup states 5 , .  A setup operation in a certain pe- 
riod is always followed by a corresponding setup state at the next period bound- 
ary, because only this setup state allows for production (6-2). The validity is 
obvious: Otherwise, the setup operation has been wasted. 

291 E.g., Belvaux and Wolsey (2001) p. 999. 
292 See also section 5.2.1.4. 
293 Cf. Pochet and Wolsey (1994) pp. 301-303. The Wagner-Whitin condition imposes a 

relation between cost coefficients such that the sum of production costs in period t and 
holding costs in t are more expensive than production costs in period t+l. Particularly, 
the Wagner-Whitin condition is always fulfilled if production costs are period inde- 
pendent and holding costs are positive. 
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6.1.1.2 The Capacitated Lot-Sizing Problem with Linked Lot Sizes 
The basic model formulation of the CLSPL presented in section 2.4.1 allows for 
several improvements. First, a tighter model formulation is derived by introducing 
a new type of variables. This extended model formulation is further improved by 
the addition of three types of valid inequalities. These measures have proven to be 
effective, if the CLSPL needs to be solved by a standard MIP solver.294 Should 
also other elements like period overlapping lot sizes or setup times be required, 
this modeling approach lacks one important attribute, the unique setting of setup 
states. How to deal with that will be the last topic of this subsection. 

Extended Model Formulation 
The extended model formulation is based on a new set of variables W,,. These 
variables replace variables V, of the original formulation ((2-28)-(2-34)). Whereas 
variables V,  (=l )  indicate, that only one product is produced in period t and that a 
setup state is carried from period t-1 to period t+l, variables VV,, (=I) indicate the 
same with reference to a specific product. They are therefore product dependent 
versions of the former. Although they take only values "1" and "0" in feasible so- 
lutions, they do not need to be defined binary explicitly. 

With this definition in 
placed by (6-5)-(6-8). 

vv,, 5 wjs 

mind, constraints (2-29)-(2-31) and (2-33) can be re- 

VQt Single-product indicator, which indicates that (a) only product j is 
produced in period t, and (b) its setup state is brought from period t-1 
and carried into period t+l (W,,=l); otherwise (Wj,=O) 

Constraints (6-5) correspond to (2-3 1). They are derived by replacing V, in the 
original formulation by VV,, and by subtracting W,rVV,, (20, due to (6-7)) on the 
RHS, which strengthens the constraints. They are valid, because in a certain pe- 
riod t there can be either a setup operation for product j, a link for product j into 
period t ,  single-item production of any product kq'  or none of these options, but 
never two of them. This is not obvious, because a situation may arise, in which a 
setup state is carried into a period, some other products are produced and at the 
end of the period, the first product is set up again, because its setup state is re- 

294 Cf. Suerie and Stadtler (2003) pp. 1048-1052. 
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quired again in the subsequent period. This issue is resolved in the CLSPL such 
that the incoming setup state is lost due to (2-28). This does not affect the optimal 
solution of the CLSPL, because it does not make any difference if production is 
shifted from the beginning of a period towards the end.295 On the other hand, this 
remains an issue, if e.g. certain campaign quantities need to be matched. 

Constraints (6-6) correspond to (2-29) of the original formulation. Their valid- 
ity is obvious, as a setup carry-over from period t to t+l is only possible if the cor- 
responding product has been set up in period t or the setup state has already been 
carried over from t-1 to t, implying single-item production of the product in ques- 
tion in t. 

Finally, constraints (6-7) relate link variables W,, and single-item production 
variables VV,,. Single-item production forces both link variables (into and out of 
the period) to "1". (6-8) state the domain of variables VV,,. 

An additional set of constraints corresponding to (2-30) is not necessary, be- 
cause it will be dominated by (6-5) and (6-6).296 Summing up, the extended model 
formulation requires (J-1).T more continuous variables and J.T additional con- 
straints, but is much tighter than the original formulation (see Table 7-1 1). 

Valid Inequalities 
Three types of valid inequalities can be added to the model formulation. The first 
type (preprocessing-inequalities) rests on the following idea: If capacity is tight, it 
might be ruled out that there is production of only one product in a certain period. 
This information, which is solely derived from the problem data, is used to limit 
the domain of single-product indicator variables VV,,. Of course, this type of ine- 
quality is effective only in tight capacity situations, but these are usually the more 
difficult problems to solve. 

Before the valid inequalities are presented, the underlying concept will be 
shown by means of an example. Consider three products which have to be pro- 
duced on a shared resource. Production coefficients for these products as well as 
demands (with initial inventory already absorbed in the demand figures) are pro- 
vided in Table 6-1. Taking into account available capacity and that demand has to 
be fulfilled (no backlogging), one can compute cumulative slack capacity.297 
Cumulative slack capacity in period t is defined as the amount of capacity that has 
not been used up to period t if there has been lot-for-lot production up to period t 
and setup times have been neglected. For example, in t=2 cumulative slack capac- 
ity amounts to 50 (=2.100-20-30-20-2040-20). 

In the example, several conclusions can be drawn: First, in period t=2 produc- 
tion of only one product is not possible. The reason is, that to produce only one 
product in t=2 a minimum of 40 units must have been produced beforehand, but 

295 Such a case has been constructed by Suerie and Stadtler (2003) p. 1053. 
296 This is shown easily. First, V, in (2-30) is replaced by Vc;.,. Next, V c ,  is replaced by 

N$-I;, (6-6). Then W,,+l is subtracted on both sides. The remaining inequality is valid 
because of (6-5). Q.e.d. 

297 The concept of cumulative slack capacity is also used by Maes et al. (1991) to derive 
valid inequalities for the serial MLCLSP. Cf. Maes et al. (1 99 1) pp. 138-1 39. 
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cumulative slack capacity in t=l is only 30. Second, in period t=3 it is impossible 
to produce only j=l  orj=3. The reasoning here is similar. To produce eitherj=l or 
j=3 60 units must have been produced in earlier periods. Again this is not allowed 
as slack capacity in t=2 is only 50 units. Summing up, by calculating slack capac- 
ity it is possible to rule out single-item production for distinct periods (here: 6 2 )  
or for certain products in distinct periods (here: j = l  and j=3 in period ~ 3 ) .  Thus, it 
is possible to obtain upper bounds (here: "0") for certain variables W,,. 

Table 6-1: Example (preprocessing-inequalities). 

ai di, I 4 . 2  4 . 3  

Product j= 1 1 20 20 20 
Product j=2 1 30 40 40 
Product j=3 1 20 20 20 
Available capacity 100 100 100 
Cumulative slack capacity 30 50 

Generally speaking, the argument is as follows (u' [u2] denotes the length of 
the interval under consideration): If cumulative slack capacity (up to period t-1) is 
less than the amount that has to be pre-produced to allow for single-item produc- 
tion of just one product in the interval under consideration [t; t+~'-11, then at 
least two products have to be produced in the interval [t; t+ul-11. This implies 
that at least one setup activity has to be performed, which implies that not all peri- 
ods of the interval [t; t + ~ ' - l ]  can have single-item production. Thus, the valid 
inequalities can be stated as follows. 

k t )  

1-1 

C d j s > o  
$=I 

With U' chosen as "1" in (6-9), single-product indicator variables VV,, are 
forced to zero if the associated condition applies. This condition calculates &mu- 
lative slack capacity by summing up available capacity up to period t-1 (term 1) 
and subtracting those amounts of capacity that would have to be pre-produced to 
enable single-product production of item j. Demands up to period t-1 (term 2), 
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minimum required setup times (term 3)298 and those demands of period t that have 
to be pre-produced (term 4) are subtracted. Different values for U' extend this 
concept to consecutive periods of single-item production. Inequalities (6-10) are 
product independent variants of (6-9). As the effect of both of these constraints 
vanishes with increasing values for U' (rsp. u'), these constraints are formulated 
for ~ ' 5 3  (rsp. U2i3) only. 

The second set of valid inequalities (inventorylsetup-inequalities) transfers the 
set of valid inequalities presented for the PLSP (6-3) to the CLSPL. They are al- 
most similar, only the naming of variables is different. Whereas q,, denotes if a 
setup state for product j prevails at the end of period t-1 and thus at the beginning 
oft ,  here W,, denotes if the setup state of product j is linked from t-1 to t. 

The last set of valid inequalities (capacitylsingle-product indicator-inequalities) 
establishes a relation between capacity constraints (2-3) and single-product indica- 
tor variables VV,,. A version which does not require the definition of additional 
variables is (6-1 2). 

f' \ 

z ( a j  . X,, + st, . V JScX t ~ T \ { l , q  (6-12) 
~~313s 

These valid inequalities state, that if there is single-product production of any 
item k ~ J s  in period t no capacity is available in this period for any product not 
contained in this subset of products GE~JS) .  These inequalities are clearly valid, 
as they are reduced to a weaker form of the basic capacity constraints (2-3) if no 
single-product indicator variable VVk, takes a positive value. 

Valid inequalities (6-12) may be strengthened by the introduction of additional 
variables mi,, defined as the production amount of product j in period t if this pe- 
riod is a single-product production period. 

XY,, i m i n ( 2 , g  djs) - VV,, 
a, ,=, 

W j t  Production amount of product j in period t, if period t is a period with 
single-product production 

Constraints (6-13) and (6-14) define variables Wj, and (6-15) give the valid 
inequalities. The reasoning here is to simply bound the LHS of capacity con- 
straints (2-3) to the amount of single-product production if the period is a period in 

298 Constraints (6-9) and (6-10) assume that no product is set up at the beginning of the 
planning interval. Otherwise the third term would need to be adapted accordingly. 
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which single-product production takes place. Again, if this is not the case, (6-15) 
reduces to a weaker form of basic capacity constraints (2-3). 

Unique Setup States 
As has been argued above, the tight model formulation presented lacks one attrib- 
ute that becomes important, if e.g. campaign quantities have to be considered: The 
proposed model formulation does not guarantee that the setup state at each period 
boundary is defined properly. An example for this special case is presented by Su- 
erie and Stadtler (2003, p. 1053). This does not affect the optimal solution of the 
CLSPL, but may affect the optimal solution if additional restrictions are applied. 

To overcome this shortcoming, the basic CLSPL formulation requires several 
modifications. Constraints (2-28), (2-30) and (2-3 1) need to be replaced by (6-16) 
and (6- 1 7).299 

Cw,, =1 
~ € 3  

V 1 (6-16) 

Constraints (6-16) guarantee that there is a unique setup state defined at each 
period boundary. Constraints (6-17), which replace (2-30) and (2-31) of the origi- 
nal model formulation, allow for the correct setting of the binary variables. Essen- 
tially they state that if both link variables (into and out of period t-1) are "1" for 
one product j, there has to be single-product production (every Ykl-,=O) or there 
has to be a setup operation for product j in period t. 

This model formulation cannot make use of single-product indicator variables 
VV,,, which have been used to tighten the initial model formulation. The reason for 
this are constraints (6-5), which forbid that a setup state for a certain product j is 
carried into period t and also a setup operation for j is performed in t. In the ex- 
tended model formulation, this setup carry-over is lost.300 This has no consequence 
for the basic CLSPL, because it does not matter where production takes place 
within a period. On the other hand, this information is essential, if further exten- 
sions regarding time continuity are introduced. In consequence, this model formu- 
lation is less tight, because only one of the proposed valid inequalities does not 
make use of variables Wj, and thus can also be used here: inventorylsetup ine- 
qualities (6-1 1). 

6.1.2 Time Continuity - Lot Sizes 

In this section the focus will be on lot sizes which span over several periods. 
These will be reviewed in two steps. First, the PLSP will serve as the underlying 

299 This model formulation is used by Sox and Gao (1999) p. 174 and Porkka et al. (2003) 
pp. 1137-1 138. 

300 Cf. the example by Suerie and Stadtler (2003, p. 1053). 
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basic rnodeL3O1 Second, modifications which are necessary if the CLSPL is chosen 
as the basic model will be discussed. 

6.1.2.1 Basic Model: PLSP 
With the PLSP as the basic model,302 the integration of period overlapping lot 
sizes is straightforward, since the basic PLSP performs lot-sizing and sequencing 
simultaneously. The difficulty lies in (a) adding up the quantities produced in dif- 
ferent periods which belong to one lot and (b) the extension that two consecutive 
lots of the same product may be a desirable outcome. The latter needs to be mod- 
eled explicitly, because more than one lot of a certain product might be produced 
directly after another, if its production quantity would otherwise exceed its maxi- 
mum lot size. This will never occur in solutions to the basic PLSP, as it would in- 
cur a setup cost without any change in the setup state. 

We will start with the introduction of the basic campaign restrictions followed 
by the consideration of the special case called "batch flow" (see section 3.3). Af- 
terwards, some valid inequalities will be discussed and last, the extension that al- 
lows for consecutive lots of the same product will be presented. 

Basic Campaign Restrictions 
To compute lot sizes (or campaign quantities) new variables need to be intro- 
duced. These variables Kjl will be called campaign variables to distinguish them 
from production variables 4,. The campaign variables Kjl will be defined to hold 
the cumulated lot size (or campaign quantity) of productj in period t of the last (or 
current) campaign. As long as j is produced current production of j is added to 
variable K,,, whereas if production has ceased, variables K,, will remain constant 
until they are reset to zero at the beginning of the next campaign of product j. 
Constraints (6-18) to (6-21) define the new set of variables K,,. 

K,, 2 K,,-I + Xjr  -maxlot, .Y,,+, b' j ~ x  t€T\{T)  (6-19) 

Kjr 5 maxlot, . (1 - Y,,,,) V j t (6-20) 

Data: 

m in lo~  Minimal lot size (campaign quantity) for product j 
maxlotj Maximal lot size (campaign quantity) for product j 

'01 Some of these model formulations have been discussed (in less detail) in Suerie (2004) 
pp. 9-14. 

302 The basic PLSP is defined by objective function (2-20) and constraints (2-21), (2-22), 
(6-I), (6-2) and (2-25)-(2-27). Furthermore, the inequalities (6-3) and (6-4) are valid. 
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Variables: 

4, Campaign variable for product j in period t (current campaign quantity 
up to period t) 

Unless a new campaign of product j starts in the next period (Y,,+,=l) current pro- 
duction (X,,) is added to the campaign variables 4, ((6-18) and (6-19)). These two 
constraints provide upper and lower bounds on the campaign variables 4 , .  In this 
case, (6-20) and (6-21) take no effect. On the other hand, if there is a start of a 
new campaign, (6-19) is lifted (due to the last term on the RHS) and (6-20) which 
dominates (6-18) in this case forces the campaign variables to zero. 

At the beginning of the planning horizon variables K,, need to be initialized. 
This can be done by constraints (6-21). 

With variables K,, properly defined additional constraints can be identified to 
cope with the different restrictions posed to the decision problem by the produc- 
tion environment. As outlined in section 3.3, minimal lot sizes, maximal lot sizes 
and lot sizes which are multiples of an integer batch size are relevant restrictions 
to be considered here. 

k t 7  
k t j  

Kjl_, +Xi, = bsj . R,, +Sit V j e x  t e T \ { l )  (6-24) 

S,, 2 0 V j ~ x t ~ l r \ { T )  (6-26) 

R,, 2 0 and integer V j ~ x  teT\{r )  (6-27) 

Data: 

bs, Batch size for lots (campaigns) of product j 

Variables: 

Rjt Integer number of full batches produced in the current campaign of 
product j up to period t 

s i t  Slack variable, residual quantity of the last batch of product j in period 
t which is not finished in t 

To obey minimal lot sizes, (6-22) are necessary. They state that as soon as any 
new campaign of product k starts, the minimal lot size of product j has been pro- 
duced. These constraints also hold true if product j is not produced right before k 



6.1 Model Formulations and Enhancements 97 

because the re-initialization of campaign variables is just prior to its own next 
production start (6-20). 

Maximal lot sizes are obeyed due to constraints (6-23). Any campaign may not 
exceed its maximal production quantity maxlo$. 

To deal with batch size restrictions is slightly more elaborate. Two new vari- 
ables need to be defined, one of them being integer. In each period t the current 
campaign quantity (q,,+X,,) is split into two variables. One of them (R,,) counts 
the number of full batches already produced in the current campaign and the sec- 
ond one (4,) takes the rest. This is done by constraints (6-24) and (6-25). The lat- 
ter one takes care that neither more than a full batch is contained in slack variables 
4, nor any rest remains if production of another lot starts. Finally, (6-26) and 
(6-27) state the domain of variables R,, and 4,. 

Following this line of arguments it is easily seen that obeying minimal lot sizes, 
maximal lot sizes and batch size restrictions can be achieved rather independently. 
If one of these restrictions is not present in the underlying decision problem the 
corresponding constraints ((6-22), (6-23), rsp. (6-24k(6-27)) may be dropped 
from the model formulation. 

Unfortunately, we are not finished yet. With the additional constraints ((6-18)- 
(6-27)) in place, the basic PLSP loses one of its properties, namely that two con- 
secutive setup operations of the same product will not occur. This issue never ma- 
terializes in the basic PLSP, because it would incur additional setup costs and 
therefore deteriorate the objective function value without any benefit (the setup 
state remains unchanged). Here, this additional setup operation can be utilized to 
reset campaign variables K,, to avoid the correct verification of, e.g., the batch size 
restrictions. To avoid this case, (6-28) is added to the model formulation. (6-28) 
prohibits a new setup operation for product j, if the resource is already set up for 
product j. 

This modeling approach is fine as long as the aforementioned property of the 
basic PLSP is desirable. In many practical settings two consecutive setup opera- 
tions of the same product will never be necessary. But this changes, if the maximal 
lot size of a product becomes a hard constraint, e.g., due to regulatory cleaning re- 
quirements for the equipment. Before this special case and its consequences will 
be analyzed in detail, the general model formulation is finished first. 

As long as constraints (2-25), (6-I), (6-4) and (6-28) are present in the model 
formulation, variables I;., do not need to be defined as binary variables. Only if 
constraints (6-28) are skipped or constraints (6-4) are defined as model cuts, vari- 
ables Y,, need to be defined as binary variables. 

In the above model formulation assumptions have been made with respect to 
the beginning and the end of the planning interval. These are easily adapted taking 
the actual decision situation into account. 

Regarding the beginning of the planning interval it has been assumed that no 
machine state prevails and that therefore the resulting production plan will start 
with a setup operation. In practical settings the planner will experience that there 
is some frozen horizon based on production decisions taken in the last planning 
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cycle which he is not allowed to alter at this point. Consequently, his planning in- 
terval will start at some point in time with a fixed machine state and probably 
some production already started. This is easily taken into consideration by provid- 
ing initial setup states (qo) and by setting appropriate values for variables qo. If a 
campaign looms into the planning interval, qo may be set to the amount produced 
prior to the planning interval and (if applicable) lower bounds on the production 
amounts X,, of the first period(s) can be derived from shop floor decisions already 
taken (procured materials). 

Regarding the end of the planning interval, campaign restrictions are not ap- 
plied to the last campaign started in the planning interval (due to constraints (6-22) 
and (6-25)). The rationale here is that the campaign started in (one of) the last pe- 
riod(~) will probably fulfill the campaign restrictions after the planning horizon, 
i.e. in periods which are not considered yet. This is one way to overcome the so- 
called planning horizon or e n d - e f f e ~ t , ~ ~ ~  which is regularly observed in lot-sizing 
models. 

Campaigns with Batch Flow Constraints 
In order to include the batch flow scenario small changes to the inventory balance 
constraints (2-21) of the basic PLSP are necessary. They are altered to allow only 
completed batches to satisfy demand or build up inventories. This is done by add- 
ing the production amount which is kept in the slack variables 4, one period later 
to inventory (6-29). In the period following the completion of a lot 4, is set to zero 
due to (6-25) and thus the complete lot has entered the modified inventory balance 
constraints (6-29). 

Constraints (6-30) are for initialization purposes. 

I,-, + X,, + S, - ,  - S,, = I ,  + D, V ~ E J ,  t€T  (6-29) 

A shortcoming of this modeling approach is, that inventory can be held in the 
slack variables 4,. This is possible only for the duration of a campaign, because as 
soon as another campaign starts, variables $, are reset to zero. The maximal extent 
of inventory held in the slack variables amounts to one batch due to (6-25). This 
situation will therefore have considerable effects only if the capacity situation is 
not very tight. Anyway, if this is an issue, it suffices to add the inventory balance 
constraints of the basic PLSP (2-21) and to replace inventory variables 4, in (6-29) 
by a second set of inventory variables. Then, inventory considered in the objective 
function is calculated based on (continuous) production, but demand fulfillment is 
based on (batch) production. 

Valid Inequalities 
A first group of valid inequalities stems from the reasoning that whenever batch 
size restrictions are present, this leads to some inevitable base stock. This base 

'03 Cf. Stadtler (2000) pp. 318-319 or Fisher et al. (2001) pp. 679-681. 
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stock results from producing in full batches, while demand usually does not have 
this pattern, i.e. demand is usually not in multiples of batches. This can be ex- 
ploited by the addition of valid inequalities which adapt the ideas of (6-3) and 
tighten them (6-3 1). 

In the first parenthesis the amount of product j is calculated that has to reside in 
stock at the end of period t ,  if there is no production o f j  in the interval [t+l;t+p]. 
This is done by adding up demands of periods 1 to t+p and rounding to the next 
bigger integer number of full batches that have to be produced to fulfill demands 
up to period t+p and subtracting the demands already satisfied. Together with the 
second parenthesis a lower bound is derived for inventory variables Jl. 

In the presence of batch flow restrictions (6-31) can be tightened even further 
for p=O. Then, at the end of period t some inventory must reside in stock, if the 
demand up to period t is not an integer multiple of the batch size. The difference 
between the number of full batches minimally produced up to t and the demand up 
to period t is a lower bound on inventory at the end of period t. This is expressed 
by constraints (6-32) which can be added to the model formulation if batch flow 
restrictions are present. 

A better way of accomplishing the same result is not to increase the model size 
by these additional constraints, but to preprocess the problem data such that these 
additional constraints are redundant. In presence of batch flow restrictions this can 
be achieved by modifying the demand data. Knowing that overproduction is nec- 
essary because full batches have to be completed before the batch can be used to 
fulfill demand, it is possible to shift portions of demands to earlier periods.304 This 
shifting of demands should result in preprocessed demands (denoted by d j p )  
which are integer multiples of the batch size and deviate by the originally de- 
mands minimally. The formula for this shifting of demands to earlier periods is 
given by (6-33). 

- - - - 

This shift of demands will not alter the optimal solution in terms of the produc- 
tion decisions taken, but the resulting objective function value will decrease. The 
reason for this is that less inventory holding costs are attributed to the optimal so- 
lution, because demands occur earlier in time. This difference can be calculated by 

304 A similar procedure is described by Fleischmann (1994, p. 396) and Salomon et al. 
(1991, p. 806) for the DLSP. There production is not in multiples of a batch size, but in 
multiples of a period's capacity. Consequently, demands are preprocessed to show this 
characteristic. 
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(6-34) from the difference in time the demands occur in the original data com- 
pared to the preprocessed data. 

Consecutive Campaigns of the same product 
It has been argued above, that to allow for two (or more) consecutive campaigns 
of the same product is a desirable attribute of the model formulation if maximal 
campaign length restrictions are present. Due to (6-28) these are not allowed by 
the model formulation presented above. 

A straightforward extension of the model formulation that allows for two (or 
more) consecutive campaigns of the same product would be to double the number 
of variables in such a way that there are two variables of each kind for each prod- 
uct. These two sets of variables can then be used alternately to model campaigns. 
The only difference between this modified model formulation and the one pro- 
posed above would be its model size and a slight adaptation of the inventory bal- 
ance constraints (2-2 l), in which the two production amount variables 4, of each 
product would need to be joined. To enhance computational performance it seems 
wise to remove symmetry305 from the new model formulation by adding con- 
straints (6-35). 

In (6-35) it is assumed that the new variables have been indexed with J+1. .2J  
for products. Consequently, these constraints allow only setups for this new set of 
variables, if the same product has been produced immediately before. Thereby, the 
second set of variables can only be used for the second (fourth, ...) consecutive 
production run of each product. 

Nevertheless, this approach considerably enlarges the model size. Thus, a sec- 
ond modeling approach will be described next. This one uses far less additional 
variables, but requires several adjustments of the initial model formulation pre- 
sented above. 

The basic idea behind this second model formulation is to split the production 
amount variables X,, into two distinct sets of variables Xi and X;,. The super- 
scripts b and e denote if production takes place at the beginning or at the end of a 
certain period. Thereby, the number of (continuous) variables of the model formu- 
lation is increased by J.T. 

Production amount variables X,, are used in the inventory balance constraints 
(2-21), capacity constraints (2-22) and setup constraints (6-2) of the basic PLSP. 
In the former two, X,, is simply replaced by the sum of Xj, and X;, . With respect 
to setup constraints a disaggregation is possible ((6-36) and (6-37)). 

305 Sherali and Smith (2001) show the advantages of removing symmetry for various 
model formulations. Cf. Sherali and Smith (2001) pp. 1396-1407. 
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Variables: 

x,4 Production quantity of item j at the beginning of period t (first cam- 
paign in t )  

x; Production quantity of item j at the end of period t (second campaign 
in t) 

Production at the beginning of a period is possible only if the setup state has 
been carried over from the last period (6-36), whereas production at the end of a 
period is possible only if a setup operation has been performed in this period 
(6-37). 

This split of production amount variables becomes necessary, because the pro- 
duction amount of one period may otherwise be attributed to two different cam- 
paigns. If there are two consecutive campaigns of the same product, the partition- 
ing of the production amount to the beginning and to the end of a period resolves 
this issue. The exact partitioning is done arbitrary (by the solver) to reflect the 
needs of both campaigns and their associated restrictions. 

Next, the defining constraints of campaign variables K,, ((6- 18)-(6-20)) need to 
be altered. 

K,, I K,,-, + Xj, + maxlot, . Y,, b'je.7, t e  T (6-38) 

K,, 2 K,,-, + X$ - maxlot, . Y,, b'jeJ, t e  T (6-39) 

Constraints (6-38) and (6-39) replace (6-18) and (6-19). If no setup operation of 
product j in period t is performed (Y,,=O), production quantities are accumulated in 
campaign variables K,,. The two constraints provide (identical) upper and lower 
bounds in this case. Otherwise, if a setup operation is performed (Y,,=l), both con- 
straints do not restrict the allowed domain of campaign variables Kj,. 

Here, campaign variables K,, are initialized by (6-40) and (6-41) (which replace 
(6-20)) each time a setup operation for j is performed in t. In this case, (6-40) and 
(6-41) provide (identical) upper and lower bounds. In contrast to (6-20), in which 
campaign variables K,, are initialized to zero in the period preceding a new setup 
operation, here campaign variables K,, are initialized to the initial production 
amount in the starting period of a production run. Due to (6-37) this is the only pe- 
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riod of one production run (campaign) in which production amount variables X);, 
take values other than zero. In contrast to (6-21), variables Kjo are initialized at the 
beginning of the planning interval as minlo~.  

After having defined campaign variables K,, by means of constraints (6-38)- 
(6-41), the restrictions regarding minimal lot sizes, maximal lot sizes and lot sizes 
requiring to be multiples of a batch size have to be derived. This is done here quite 
similar to the model formulation presented above ((6-22)-(6-25)). In contrast to 
the initial model formulation, in which the production amount of the current cam- 
paign of product j in period t is given by the sum of variables K,, and $,, here, the 
production amount of the current campaign of product j in period t is given by the 
sum of variables K,, and Xi. Furthermore, as consecutive campaigns of the same 
product are now allowed, the index ranges in the sums of constraints (6-22) and 
(6-25) now also include product j. Both changes lead to constraints (6-42)-(6-45) 
replacing (6-22)-(6-25). 

Kjl-I + Xi > minlot, . C Ykl 
kc7 

Kj,+, + X$ = bs, . Rj1 + S,, V j t \ { l  (6-44) 

Sj1 I bs, . 1 - Z Y ,  [ k€J 1 V j t \ { l  (6-45) 

As in the initial model formulation the different restrictions regarding the cam- 
paign size can be used rather independently. 

However, a downside of this model formulation is that setup operation vari- 
ables q, need to be defined as binary variables here. This was not necessary in the 
initial model formulation, because due to constraints (2-25), (6-l), (6-4) and 
(6-28) they took only binary values in feasible solutions. Here, constraints (6-28) 
are no longer valid, because they forbid two consecutive setup operations of the 
same product. Moreover, constraints (6-4) are no longer valid inequalities, but be- 
come necessary constraints here. 

6.1.2.2 Basic Model: CLSPL 
The same modeling trick that worked to enhance the PLSP to allow for consecu- 
tive campaigns of the same product almost suffices to enhance the CLSPL to al- 
low for lot sizes spanning over several periods. As has been argued above, a pre- 
requisite for such a model formulation is that the setup state at each period 
boundary is uniquely defined.306 This is done by variables W,, in the CLSPL model 
formulation consisting of objective function (2-1) and constraints (2-2), (2-3), 
(2-5), (2-29), (2-32), (2-34), (6-16) and (6-17). The link variables W,, of the 
CLSPL indicate the setup state at the beginning of a certain period t and corre- 

306 See section 6.1.1.2. 
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spond to variables .& of the PLSP which indicate the setup state at the end of pe- 
riod t-l (which obviously matches the setup state at the beginning of period t). 

In solutions of the CLSPL it is possible that production of a certain product 
takes place at the beginning and at the end of a certain period, but some other 
product(s) are produced in between307 Therefore it is necessary to split production 
into two variables X $  and X;( as has been done above for the PLSP with con- 
secutive campaigns of the same product. Again, the sum of these variables re- 
places production variables X,, in the inventory constraints (2-2) and capacity con- 
straints (2-3), whereas the setup constraints (2-32) are altered accordingly to 
(6-36) and (6-37). 

The defining constraints for campaign variables K,, ((6-21) and (6-38)-(6-41)) 
can be taken directly from the model formulation for the PLSP with consecutive 
campaigns of the same product. Only for checking whether minimal, maximal or 
batch size restrictions are obeyed, slight adaptations to (6-42)-(6-45) are neces- 
sary. These concern the term that sums up variables I;, in constraints (6-42) and 
(6-45). This is not a valid method for the CLSPL, because in contrast to the PLSP, 
here generally more than one of these variables can take the value "1" in a certain 
period. 

In order to check minimal lot sizes and batch size restrictions the information is 
needed whether any setup operation occurs in period t. Therefore, new continuous 
variables YI, are introduced to indicate if any setup operation takes place in pe- 
riod t or not. These variables are defined by (6-48) and (6-49) and are used to re- 
place the term x,,, Ykt in constraints (6-42) and (6-45). 

YI, 2 Y,, V ~ E J ,  t ~ l  (6-48) 

Variables: 

yh Setup operation indicator for period t (=I, if a setup operation occurs 
in period t, =O otherwise) 

By definition, variable YIt will be forced to zero, if no setup operation occurs in 
period t (6-49). On the other hand, if any setup operation occurs, (6-48) forces YI, 
to become at least one. Furthermore, modified constraints (6-45) ensure that YI, do 
not exceed this value (due to the non-negativity of variables 4,). Thereby, vari- 

307 See e.g. the example by Suerie and Stadtler (2003) p. 1053. 
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ables YI, take only binary values although they are defined as continuous vari- 
ables. 

Summarizing, due to the analogy of variables q,, of the PLSP and W,, of the 
CLSPL only minor modifications are necessary to transfer the model formulation 
for lot sizes that span over several periods from PLSP to CLSPL. 

More Simple Formulations - Campaigns within periods 
Although not explored in more detail, for the sake of completeness also more sim- 
ple model formulations for the aforementioned restrictions will be presented 
briefly. These apply only if the period length is considerably larger than the ex- 
pected lot size and therefore the representation defect does not grow too big if the 
effect of period overlapping lot sizes is neglected. 

In this case, the CLSP308 can serve as a basic model ((2-1)-(2-6)). Minimal lot 
sizes are introduced by defining a lower bound on production, whenever produc- 
tion takes place or by defining variables X,, as semi-continuous. 

X,, 2 minlot, . Y,, 'd ~ E J ,  t~ T (6-50) 

The maximal lot size is observed, if the big number bj, limiting production in 
each period in (2-4) is replaced by maxlo$. Last, to facilitate batch production, 
production quantity variables X,, might simply be replaced by bsj.Rj, with Rj, being 
integer. 

Again, these much simpler measures do not help to overcome the representa- 
tion defect in any sense, but are a much simpler form to deal with these kind of re- 
strictions (minimal lot sizes, maximal lot sizes, batch restrictions), if less degree of 
accuracy is justifiable. 

6.1.3 Time Continuity - Setup Operations 

In this section period overlapping setup operations (setup times) will be consid- 
ered. First, the PLSP is chosen as a basic model, followed by modifications which 
show the necessary adaptations if the CLSPL serves as a basic model. 

6.1.3.1 Basic Model: PLSP 
With the PLSP309 chosen as a basic model, two alternative extensions to allow for 
period overlapping setup times will be introduced. The first one (called POST1) 
rests on the idea of cumulating setup times in analogy to the model formulation 
presented above for period overlapping lot sizes, where those have been cumu- 
lated in successive periods, if they belonged to one lot. The second one (called 
POS72) builds on a different modeling idea, which needs less variables (binary 
and continuous) and less constraints than the first one, but has some mild assump- 

'08 See section 2.2. 
'09 See section 2.3.3. 
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tions on the periods' lengths. After both alternatives will have been presented, 
some valid inequalities will be proposed. 

The basic PLSP consists of objective fimction (2-20) and constraints (2-21), 
(2-22), (2-25)-(2-27), (6-1) and (6-2). Inequalities (6-3) remain valid. This is not 
true for inequalities (6-4), because with period overlapping setup times included in 
the model formulation, the modeling capabilities in terms of products that are "ac- 
tive" in a period are increased: 

In the basic PLSP it is allowed to set up one product in each period. This 
means, that in each period there are at most two products active, one at the begin- 
ning of the period and one at the end of the period, whereby the latter has been set 
up during the period (see also Fig. 6-1, basic PLSP). With period overlapping 
setup times (POST) a third product may become active during a certain period. In 
this case, again the first product is produced at the beginning of the period, the 
second product is set up during the period and produced thereafter and at the end 
of the period the setup operation for the third product is started (see also Fig. 6-1, 
POST, period t=2). It might well be the case that the total setup time for this third 
product is attributed to this period, but due to the restriction of the basic model, 
that at most one setup isJinished in each period, the setup of this third product can 
only be completed in the next period. 

' POST : setup operation 
f 3 is allowed to start in t=2 

POST f 2  

j= 1 

Legend: Setup time Production 

Fig. 6-1: Illustration of modeling capabilities of model formulations POST compared to the 
basic PLSP. 

Period Overlapping Setup Times Variant 1 (POSTI) 
Model formulation POSTl needs three new types of variables, one of them being 
binary. The first type of variables, Sq,, contains the setup time attributed to a setup 
operation of product j in period t. Variables ST,, are continuous variables. Fur- 
thermore, variables KS,., are defined to contain the cumulated setup time of the cur- 
rent setup for product j up to period t. They correspond to variables K,, of the 
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above model formulation for period overlapping lot sizes.310 Finally, binary vari- 
ables ZS,, need to be defined. In a sense, these correspond to setup state variables 
5,. Whereas variables 5, are equal to "I", if the resource is set up for product j  at 
the end of period t and production can continue in t+l, variables Zq, express the 
same with respect to the setup operation. They become "I", if at the end of pe- 
riod t a setup operation for product j  is going on and can continue in the following 
period t+l . 

With these definitions in mind, model formulation POST1 (extending the basic 
PLSP3") can be stated as follows. 

C a j  . X,,  ST^, 5 c, 
~ € 3  its 

Xj, 5 min I , C d j s  . (ZjI-l + Y,,) 1" :::r 1 

ST,, I c, . (Y,, + ZS,, ) V j ~ x  t ~ l  (6-58) 

Variables: 

KS,, 

sl;, 
ZS,, 

Cumulated setup time of the current setup operation for product j  up to 
period t [in %] 
Setup time attributed to a setup of product j  in period t 
Binary setup operation state variable (=I, if a setup operation for 
product j  is going on at the end of period t (and can continue in period 
t+l); =O otherwise) 

3L0 See section 6.1.2.1. 
311 The basic PLSP consists of objective fimction (2-20) and constraints (2-21), (2-22), 

(2-25)-(2-27), (6-1) and (6-2). 
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Constraints (6-5 1) are capacity constraints. They replace constraints (2-22) of 
the basic model. Here, the second term on the LHS has changed to take into ac- 
count that the setup time is possibly split over two (or more) periods. Conse- 
quently, only the setup time attributed to this period is deducted from available 
capacity. 

Constraints (6-1) of the basic model are supplemented by a second term on the 
LHS to yield (6-52). These constraints identify the setup state at each period 
boundary. Either one of the variables Z,, equals "I", indicating that production of 
product j is possible at the end of period t and at the beginning of t+l, or one of 
the variables Zq, equals "l", indicating that a setup operation of product j can con- 
tinue from the end of period t to the beginning of t+l. 

Constraints (6-53) replace (6-2) of the basic model. These constraints restrict 
production of a certain product j to periods t, in which either the setup state is car- 
ried over from the preceding period (&=1) or a setup operation is finished 
(Ft=l). 

The set of constraints (6-54)-(6-56) is needed to cumulate setup times. First, in 
(6-54) setup times ST,, are cumulated into variables Kq,. Once enough setup time 
is attributed to a setup operation (stj.Kq, + ST,, 2 stj), binary variables Y,,, which 
indicate the completion of a setup operation, can become "1". Finally, variables 
KSj, are reset to the setup time of the current period, if a setup operation for any 
product has been completed in period t (6-55). To avoid that setup times for more 
than one product are accumulated, (6-56) resets all but at most one cumulation 
variable KSj, to zero. This suffices, because of (6-54) and (6-55) no "wrong" setup 
time can be accumulated. Apart from the last setup operation within the planning 
interval, the correct amount of setup time is attributed to each setup operation (due 
to (6-54) and (6-55)). Too much setup time can be attributed to the last setup op- 
eration, because at the end of the planning horizon KSj, is not restricted, but this is 
avoided if capacity is scarce (and needs to be used otherwise), or the resource 
would sit idle instead. 

Binary setup state variables Z,, are reset to zero directly, whenever a setup op- 
eration for any product k#j is completed due to constraints (6-57). But this may 
not suffice, because production must also cease, if any other setup operation is 
started. Consequently, constraints (6-58) force either the binary setup operation 
completion variables 5, or the binary setup operation state variables Zq, to "I", if 
a setup operation for product j is started (or continuing) in period t. This, together 
with constraints (6-52) helps to end any production run. 

Finally, (6-59) and (6-60) impose non-negativity and binary conditions on the 
variables used. 

Period Overlapping Setup Times Variant 2 (POSR) 
The second variant (POSZ2) follows from a totally different modeling idea. Here, 
compared to the initial PLSP model formulation, only two additional types of 
variables (both continuous) need to be defined. These two types of variables ( $, , 
Y; ) are used to model setup operations (setup time). They give the relative share 
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of the setup time for productj, which (w.1.o.g.) is either attributed to the end of pe- 
riod t ( Y$ ) or to any point in time in period t ( I$ ). 

The idea is to split the setup time into two components. The first component 
( Y:, ) holds that part of setup time resulting in the period the setup operation is 
completed in (e.g., in t). The remaining setup time must have been accrued in pe- 
riods preceding t. Therefore, only this other component ( Y;) is added up for a 
certain number of periods (sp,-1) to yield the complete setup time stj. Data spj in- 
dicates, over how many periods a setup operation for product j is maximally split. 
How to derive these spj in any given situation will be discussed later. Initially, we 
will assume a constant capacity c per period. In this case a setup time stj can be 
split over rstj / cl or rstj / cl + 1 periods. Thus, the maximum number of periods 
the setup time is split over is computed by the latter term. 

Furthermore, the index range of variables 5, is extended by a dummy product 
state (j=O). These new variables are also continuous and will be used to reflect, 
that the resource is not set up for a certain product, but that a setup operation is go- 
ing on at the period boundary between t and t+l. In the latter case, variables Zot 
will take the value one and otherwise zero. 

With these definitions the basic PLSP model formulation312 is replacedl ex- 
tended by the following constraints to yield model formulation POSl2. 

'I2 The basic PLSP consists of objective function (2-20) and constraints (2-21), (2-22), 
(2-25)-(2-27), (6- 1) and (6-2). 
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Y,: = o  

Data: 

SPj Maximum number of periods necessary for a setup operation for 
product j  (spj = rstj / cl + 1) 

Variables: 

5; Relative share of setup time for product j  in period t (start or within) 

y,: Relative share of setup time for product j  in period t (end) 
zot Setup state variable, indicates whether any setup state persists at the 

end of period t (=O) or none (=I). The latter case indicates that a setup 
operation for a product is going on at the end of period t 

Constraints (6-61) are capacity constraints which replace (2-22) of the original 
model formulation. Only the second term on the LHS is altered to reflect that 
setup times are possibly split over two (or more) periods. By the second term the 
share of the setup time attributed to the respective period is taken into account. 

A unique setup state is identified at each period boundary by constraints (6-62) 
which replace (6-1) of the basic model formulation. Only the range of the summa- 
tion on the LHS is changed to take the dummy product state (j=O) into account. 
Thereby, constraints (6-62) indicate, that either a setup operation is going on at the 
boundary of periods t and t+l (Zo,=l) or a setup state for any product ~ E J  persists 
at this point in time (Z,,=1). 

Similarly to (6-53) in model formulation POST1, constraints (6-63) replace 
(6-2) of the basic model. These constraints restrict production of a certain prod- 
uct j  to periods t, in which either the setup state is carried over from the preceding 
period (Z,,,=l) or a setup operation is finished (Y,,=l). As argued above, this al- 
lows that up to three products are active in each period, although only two of them 
are allowed to be produced, but idle time at the end may then be used to start a 
(second) setup operation (see also Fig. 6-1). 

Constraints (6-64) specify that a setup operation for a certain product j  in pe- 
riod t is only completed (I;.,=l), if enough setup time has been reserved in the spj 
periods, the setup time has been maximally split over (t-spj+l .. t). Then, the sum 
of variables representing the relative share of setup times in certain periods must 
equal at least "1" in this interval. Splitting of variables qi and Y j  prevents that a 
fraction of the setup time is attributed to more than one setup operation. 

A setup state for a certain product at a period boundary is lost, whenever a 
setup operation is going on at the end of this period due to (6-65). If a setup opera- 
tion is going on at the end of period t, indicated by a positive value of variable 
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Y j ,  no setup state can be saved (all qt=O for jej'), and due to (6-62) the dummy 
product state indicator (ZoJ will become "1". 

Constraints (6-66) are known from model formulation POST1 (6-57). Like con- 
straints (6-65) they reset binary setup state variables 4, to zero, whenever a setup 
operation for any product k#j is completed in period t. 

Furthermore, (6-67) forbid completion of a setup operation in a certain period, 
if at the end of the preceding period a setup operation for any other product was 
going on. This is a valid constraint, because if at the end of period t-1 a setup op- 
eration for product kzj was going on, this setup operation would have to continue 
and finish before a setup operation for j would be completed. As both setup opera- 
tions cannot be completed in t, the constraint is valid. 

Only, for situations with spj24 another type of constraints (6-68) must be added 
to the model formulation. These constraints prevent that during long setup opera- 
tions (spj24) one short setup operation is scheduled in between. Fig. 6-2 illustrates 
this special case. This situation arises, because the number of periods the setup 
operation is split over is not known in advance, but may be either spj or spj -1. 
This means that in some cases one period within the interval t-spj+l .. t might be 
empty (here: t-2), therefore not imposing any restrictions on setup operation com- 
pletion variables Ykl for the other products k+-j in the subsequent period (here: t-3). 
This can be used by the solver to schedule a short production run for product k 
(here: k=2) within the interval the setup operation forj=l should take place. 

POST2 
without f2 

(6-69) PI 

Legend: Setup time Production 

Fig. 6-2: Illustration of modeling error for spjt4 if (6-68) is omitted in the model formula- 
tion POSTL. 

Constraints (6-68) prevent this special case. If a setup operation for product j 
begins in period t and can be split over maximally sp! periods than its earliest 
completion will be in t+spJ-2. Thus, if a setup operation is completed for any 
product kzj in period t, no setup operation for product j can be finished in the in- 
terval t..t+sp,-3. As it is also impossible that two setup operations for product j are 
completed within such a short interval (t..t+spJ-3), constraints (6-68) are valid 
constraints. 

Finally, (6-69)-(6-72) impose non-negativity and binary conditions on the vari- 
ables used. 
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Derivation of assumptions on spj 
Two sets of constraints ((6-64) and (6-68)) make use of data spy In (6-64) frac- 
tions of the setup time are added up, whereas in (6-68) the completion of two 
setup operations is forbidden, if these were too close together. This concept works 
fine as long as capacity is assumed constant in each period. 

The latent danger of failing inherent to model formulation POST2 lies in the 
fact that it is not known a priori, whether the setup time is split over sp, or spJ-1 
periods. Whereas in model formulation POST1 the cumulated setup time is reset 
to zero as soon as a setup operation is completed, the danger here is that attribut- 
ing a fraction of setup time of a certain period to two different setup operations 
might become possible. The reason for this is that the summation in (6-64) must 
assume that the setup time is split over sp, periods. To avoid double counting of 
setup times, setup time variables have been split into two variables Y; and Y$ . 
Fig. 6-3 illustrates this case. The setup operation for j=l which is finished in t=6 
could have been split over three periods (4..6) like in the example shown here or 
over spJ=4 periods (3..6). This is why (6-64) must add up the setup time variables 
of periods 3..6. Attributing the setup time for product j=l in period t=3 to both 
setup operations (the one finished in t=3 and the one finished in t=6) is avoided by 
distinguishing between setup times that lie at the beginning of a period and those 
that lie at the end, which is done by splitting the setup time into variables I$ and 
Y$ . 

Legend: Setup time Production 

Fig. 6-3: Assignment of setup time variables in model formulations POSi'2. 

Generally speaking, this distinction suffices to allocate setup times correctly as 
long as the number of periods the setup time is eventually split over differs only 
by one (sp, and sp,-1). 

Now the assumption that capacity is constant will be lifted. Consequently, data 
spj cannot be determined as a constant over time either, because as capacities vary, 
the number of periods the setup time may be split over also varies. Therefore, we 
define sp,, as the number of periods the setup time is maximally split over, if the 
setup operation of product j is finished in period t. spit evaluates to 

V je.7, t~ T (6-73) 

The two affected constraints are aligned as follows. In (6-64) spj is simply re- 
placed by sp,,, whereas in (6-68) the second sum must consider that the decision, if 
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a setup operation must have started in t, is not dependent on spjt, but rather on spjs, 
with s being the period the setup operation is potentially finished in. This is taken 
into account in (6-74). 

T 

C y k t +  C y j s I l  
k C l  s=rJ 
kz j s-spjs+2d 

Two cases need to be distinguished: 

c, 2 cHl (capacities are constant or decreasing over time) 
When capacities are constant or decreasing over time, one can show that 

setup times are split over either spj, or spjcl periods. These are cases the above 
model formulation is valid for. 

Assuming that sp,, has been calculated by (6-73), the following inequality 
0 < ~ t j  - C,-, - ~~2 - . . . - c,-~+I I c,-,, holds. If stj - ct-l - ct-z - . . . - ct++l I C,  

then the setup operation can be split either over spjf 1 or sp,, periods, because 
the capacity in period t-n can be used for the setup operation but does not have 
to be used. On the other hand, if c, < s$ - c , ~  - cG2 - . . . - c W l  the whole setup 
operation cannot be completed in periods t-n+l..t and must have started in t-n. 
This second case means that a setup operation for product j which finishes in 
period t must have started in t-n, removing any uncertainty on its starting pe- 
riod. 
C,  < eel (capacities are increasing over time) 

Unfortunately the model formulation is no longer valid in this case. This will 
be illustrated by a short example (see Fig. 6-4). A setup operation that is fin- 
ished in period t=6 can start either in t=3 (scenario 1) or t -5 (scenario 2). Con- 
sequently, spit must assume the (worst) case (scenario 1) for the accumulation 
of setup times in (6-64). But then in scenario 2 this leads to the undesirable be- 
havior that the setup time in period t-3 is counted twice and attributed to the 
first setup operation, which is finished in t=4, as well as to the second setup op- 
eration. which is finished in t-6. 

Legend: Setup time Production 

Fig. 6-4: Assignment of setup time variables in model formulations POSE. 

Generally speaking, to distinguish between two setup time variables Yj: and Y; 
is a legitimate measure as long as the number of periods setup times are eventually 
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split over differs at most by one (spit and spj,l). If this is no longer the case, i.e. 
c, < c,, for any given t ,  model formulation POST2 can fail. 

Of course, one can avoid failing at the price of adding two further constraints 
similar to (6-54) and (6-55) of POSTl. These constraints ((6-75) and (6-76)) en- 
sure, that between two completions of setup operations a full setup time is sched- 
uled. (6-75) take care that enough setup time is accumulated, while (6-76) reset 
cumulation variables KS,., to zero. Furthermore, this construction makes (6-68) 
(rsp. (6-74)) obsolete, which have been used so far to tear two setup operations 
apart. 

KS,, ~ l - c ~ ,  

Following these arguments, one can conclude that model formulation POST2 
either requires the assumption that capacities are non-increasing over time or the 
integration of several additional constraints. On the other hand, no such assump- 
tion is necessary for model formulation POSTl. 

Valid Inequalities 
From constraints (6-57) of model formulation POSTl (which are the same as con- 
straints (6-66) of model formulation POST2) it is possible to generate a set of 
valid inequalities. Constraints (6-57) and (6-66) express that if a setup operation 
for any product k+j is completed in period t, it is impossible to have a setup state 
of product j at the end oft .  This is obvious, because to move to setup state j at the 
end of period t would require a second setup operation (that for j )  in addition to 
the one for kgj, which is not possible due to the assumptions of the basic PLSP 
model formulation. 

Valid inequalities (6-77) turn this argument around. If there is a setup state for 
any product k t j  at the end of period t, a setup operation for j has not been com- 
pleted in t. 

kc1 
k t j  

These valid inequalities can be generalized. If two types of constraints like 
(6-78) and (6-79) with binary variables q and P, are present, valid inequalities of 
the form (6-81) can be generated. The reasoning is as follows. If all binary vari- 
ables P, are "OH, (6-81) is valid because of (6-78). If one variable P, is "I", con- 
straints (6-79) force all but one variable q to "0". The one variable q which is not 
forced to "0" has the same index as the variable P, that was assumed to be "1". 
This is exactly, what is expressed by (6-81). The variable P,, which evaluates to 
"I", forces any q with a different index k#j to "0". As all the other P, are "0" the 
remaining q is restricted to be less than or equal 1, which is valid due to (6-78). 
Finally, no more than one P, can evaluate to "l", because otherwise (6-79) would 
not be feasible. Furthermore, constraints (6-81) render (6-78) redundant. 
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In model formulations POSTl and POST2 constraints (6-57), (6-66) and (6-67) 
are of the proposed form and can be used to derive valid inequalities as described 
above. 

6.1.3.2 Basic Model: CLSPL 
The concept of period overlapping setup times is also portable to the basic model 
CLSPL. As model formulation POSTl was evaluated to be the more general 
model formulation if the PLSP served as basic model, only this variant will be 
transferred to the CLSPL. Furthermore, some ideas are borrowed from the transfer 
of the lot size extension from the PLSP to the CLSPL. 

The basic CLSPL model formulation consists of objective function (2-1) and 
constraints (2-2), (2-3), (2-5), (2-29), (2-32), (2-34), (6-16), (6-17) and valid ine- 
qualities (6-1 1). Setup time variables S q ,  of model formulation POSTl will be 
split into two sets of variables ST,: and ST;. The reason for this is that setup time 
for product j  in period t might belong to two different setup operations, one at the 
beginning or some time inside the period (ST,: ), which is completed in period t, 
and one that is started and still continuing at the end o f t  (ST; ). Still, the condi- 
tion will be respected that in each period at most one setup operation for each 
product is completed. 

With this definition made the basic CLSPL model formulation is re- 
placedlextended by the following constraints to yield a model formulation which 
allows for period overlapping setup times. 

ST; 5 min{ct ,stj) .  Y,, V J E J ,  ~ E T  (6-84) 

ST; < min{cl,stj).ZSj, 'd J E J ,  t € T  (6-85) 
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1 
KS ,+, + - . (ST; + ST; ) = Y,, + KSj, 

Stj 

ST; ,ST,: 2 0, YI,, 2 0, KS, 2 0, (KS,o = 0 )  V jej', t~ T (6-90) 

Variables: 

ST,? Setup time attributed to a setup operation of product j at the beginning 
or somewhere in period t 

ST; Setup time attributed to a setup operation of product j at the end of pe- 
riod t 

Constraints (6-82) are capacity constraints and replace (2-3) of the basic model 
formulation. The difference is that setup times are not accounted for by binary 
variables, but by the actual amount of setup time attributed to the specific period 
which need not match a full setup time. 

The state of the resource at the end of each period t is determined by (6-83), 
which replace (6-16) of the basic model formulation. Either a setup state has been 
reached in one of the preceding periods and production can continue in t+l (one 
T,=1) or a setup operation is going on (one ZS,.,=l). 

Constraints (6-84) and (6-85) define variables ST,: and ST; . Only if a setup 
operation is completed in period t ,  variables s?? are allowed to become positive 
values, whereas variables ST; are allowed to become positive values only if a 
setup operation is still continuing at the end of period t. 

Production of product j in period t is only allowed, if the corresponding setup 
state persists at the beginning of period t or a setup operation for product j is com- 
pleted in period t (6-86). 

Constraints (6-87)-(6-89) accumulate setup times like (6-54)-(6-56). First, in 
(6-87) setup times are cumulated into variables KS,.,. Once enough setup time is at- 
tributed to a setup operation, binary setup operation completion variables 5, can 
become "1". Finally, variables KS,., are reset to the setup time at the end of the cur- 
rent period, if a setup operation for any product has been completed in period t 
(6-88). Thus, a setup operation for any product j can be completed within period t 
and a new setup operation for this product can start at the end of t ,  while several 
other products k#j might have been produced in between. This case depicts the 
typical big-bucket scenario of the CLSPL, that even within a period several setup 
operations may be completed. 

Finally, (6-90) and (6-91) impose conditions on the domains of variables. Of 
course, variables can also be initialized according to the initial plant state at the 
beginning of the planning interval. 
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6.1.4 Time Continuity - Resource Utilization 

As has been argued in Section 3.5 to maintain a certain resource utilization is an 
issue in the process industries. Therefore, several additional constraints will be 
proposed to keep production at a certain level or shut down resources when neces- 
sary. Two scenarios will be distinguished. In the first scenario resources are al- 
lowed to be shut down, whereas in the second scenario, resources cannot be 
switched off safely and therefore have to keep a certain production level all the 
time. Furthermore, it is assumed that the setup state is lost, if a resource is 
switched off. The minimum utilization rate utilj will be defined product dependent 
here. 

6.1.4.1 Resources with Off Times 
If resources are allowed to be switched off, it is necessary to add a product to the 
model formulation which represents idle time (j-1). Thereby, it is possible to 
model idle periods, which may emerge. Other than that, the idle product is not 
necessary. Especially, the idle product need not be set up in a "regular" PLSP pe- 
riod, in which some product j is produced at the beginning, a setup operation is 
performed for product k and this product is then produced until the end of the pe- 
riod. In this case, idle time can be attributed to the time interval between the end 
of production of j and the beginning of the setup operation of k, such that both 
products (j and k) maintain their respective minimum utilization levels. 

Basic Model PLSP and PLSP with Lot Size Extension 
Two variants of modeling minimum resource utilization constraints for resources 
with off times will be presented for the basic model PLSP as well as for its exten- 
sion with period overlapping lot sizes. The first one relates production quantity 
variables X,, to binary setup state variables 5 , .  

c, X,, 2 utilj .-. (Zit-, + Z,, - I) 
a.i 

Data: 

utih Minimum utilization rate for product j 

If production covers the whole period (Z,,,=l and &=I), constraints (6-92) 
demand that the actual production 4, is above the minimum utilization rate utilj. In 
the first and the last period of the production run (either 5,=1 or 2&=1) con- 
straints (6-92) are relaxed. The relaxation can be made, because in the first and 
last period of the production run, the remaining time can be filled by a setup op- 
eration, production of another product andlor with some idle resource time (off 
time). 

In contrast to this first variant which leads to 1 1  3 11.11 111 additional constraints, in 
the second variant it suffices to add 2.11 111 additional constraints to the model 
formulation. 
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x-,,, + ' . x,, z c, . (1 - Yj, ) 
jG3 util, j'3 

In periods with no setup operation (all Y,,=O) constraints (6-93) force either the 
production variable of the specific product j which is produced to be above its 
minimum resource utilization level, or idle product (X-,,,) must be "produced". 
Again, this restriction is relaxed in the first and last period of a production run. 
These are periods, in which a setup operation takes place (one 5,=1). Constraints 
(6-94) allow production of the "idle" product (j=-1) only, if this product has been 
properly set up. 

PLSP with POSTand PLSP with Lot Size Extension and POST 
It is fairly easy to broaden the extension proposed for the basic PLSP to the PLSP 
with period overlapping setup times as well as to a model formulation with both 
extensions, period overlapping lot sizes and period overlapping setup times. The 
latter model formulation will be proposed in section 6.1.5. 

The difference between this extension and the extension proposed for the basic 
PLSP is caused by the fact that here, it does not suffice to relax constraints (6-93) 
whenever a setup operation takes place in a period. The reason for this is obvious. 
In model formulations with period overlapping setup times, the setup operation 
usually does not take place within a single period. Therefore, (6-93) have to be re- 
laxed whenever some part of the setup operation takes place in a period. This is 
indicated either by setup time completion variables Y,, like in the basic PLSP 
model or by setup state variables indicating that a setup operation is going on at 
the end of the period. These are variables ZSj, in model formulation POSTl or 
variables Zo, in model formulation POSE!. 

Consequently, to get a valid extension also in this case the parenthesis on the 
RHS of constraints (6-93) has to be supplemented by the term -CjE3ZSj, for 
model formulation POSTl and -Zo, for model formulation POSE!. 

Basic model CLSPL and CLSPL with Lot Size Extension 
In analogy to the basic model PLSP, the basic model CLSPL as well as its exten- 
sion with period overlapping lot sizes may be extended to incorporate minimum 
resource utilization by two variants. 

As resources are allowed to be switched off, what can be done whenever a 
setup operation takes place in a period (between the end of production of the pre- 
ceding product and the setup operation), constraints (6-92) are altered to yield 
(6-95) to take the characteristics of the basic model CLSPL into account. 

Variables W,, replace variables Z,,, and a fourth term is added in the parenthe- 
sis on the RHS. The reasoning is the same as above. Only if the same setup state 
prevails at the beginning and at the end of period t (?,=I and Wjel=l) and no 
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setup operation has taken place within period t (all Y,,=O), product j is produced 
during the whole period t and must utilize the resource according to its minimum 
utilization rate utilj. Other than that, (6-95) are relaxed, because then any idle time 
can be attributed to the time interval in front of (one of) the setup operation(s). 

The second variant ((6-93) and (6-94)) can be taken directly from the basic 
PLSP. Only variables Z-I,l need be replaced by corresponding variables W&. 
When variables YIl are present in the model formulation, these can be used to save 
some coefficients in the matrix. These may then substitute the sum on the RHS of 
(6-93). 

CLSPL with POST and CLSPL with Lot Size Extension and POST 
The extension proposed for the PLSP with period overlapping setup times as well 
as for a model formulation with both extensions, period overlapping lot sizes and 
period overlapping setup times, is also valid if the CLSPL is chosen as the basic 
model. 

As the setup operation usually does not take place within a single period here, 
(6-93) have to be relaxed whenever some part of the setup operation takes place in 
a period. This is indicated either by setup time completion variables Y,, (or indica- 
tor variables YI,) or by setup state variables indicating that a setup operation is go- 
ing on at the end of the period (ZS,,). 

Consequently, in order to get a valid extension also in this case, the parenthesis 
on the RHS of constraints (6-93) has to be supplemented by the term -Cis ZSjt . 

6.1.4.2 Resources without Off Times 
If resources are not allowed to be switched off, the integration of minimum re- 
source utilization constraints is somewhat easier. In this case any capacity apart 
from the amount used up by setup operations has to be filled with production be- 
ing at least on its minimum utilization level. 

A single constraint for each period suffices to model this for the basic models 
PLSP and CLSPL as well as their respective extensions which allow for period 
overlapping lot sizes. 

On the RHS any setup time is deducted from available capacity, which is then 
used as a lower bound on the production quantity variables with respect to their 
minimum utilization level. 

When period overlapping setup operations are possible, this does not suffice. 
The reason for this is that is has been modeled there that a setup operation is com- 
pleted whenever enough setup time has been accumulated. It may well be the case 
that too much setup time will be attributed to a certain setup operation. This does 
not harm the solution in the basic case, but here it may prevent the model from 
maintaining minimum utilization levels. To avoid this, the following global con- 
straints must be added to model formulation POST1 (6-97) or POST2 (6-98), re- 
spectively. 



6.1 Model Formulations and Enhancements 119 

jcg tcT jc3 tcT 

Both simply state that the total amount of setup time in the whole planning in- 
terval is in line with the number of setup operations performed within the planning 
interval. 

Requiring minimum resource utilization levels of resources without off times 
should be done with great care.313 In the model formulations proposed here, de- 
mand fulfillment is assumed. This means that any production in excess of demand 
is carried in inventory until the end of the planning interval is reached. Conse- 
quently, if a minimum resource utilization is required, the plan will be distorted by 
unnecessary setup operations (to avoid excess production by increasing setup 
times) or unnecessary production of the cheapest product (to avoid inventory hold- 
ing costs) - whatever is less expensive. Thus, some penalty cost (on excess pro- 
duction) should be added in the objective function to guide the selection and quan- 
tity of products that are produced to fulfill the minimum resource utilization level. 

6.1.5 Combinations 

The different enhancements of the basic model formulations PLSP and CLSPL, 
which take into account lot sizes that are split over several periods or period over- 
lapping setup times, have been proposed as independent building blocks. There- 
fore, they are easily combined, if both of these restrictions are present in a certain 
situation. 

Model formulation POST2 as an extension of the basic PLSP model does not 
allow consecutive lots of the same product. This is not necessary in a basic PLSP 
model, but becomes a prerequisite when maximum lot size restrictions are present. 
The feature is only included in the POST1 extension (of both, the PLSP and the 
CLSPL). Consequently, this extension has to be used dependent on whether the 
PLSP or the CLSPL with period overlapping lot sizes is extended to allow also for 
period overlapping setup times. 

Furthermore, also both of the basic models (PLSP and CLSPL) might be com- 
bined. As the proposed building blocks are similar to each other, a model consist- 
ing of periods with a PLSP character and those with a CLSPL character can also 
be combined. In this case it suffices to secure that at the intersection of both mod- 
els the resource state (i.e. variables W,, and 4,)  is well-defined and matches both 
sides. 

With all these extensions made, there is only one limit left that restricts the rep- 
resentation of all plans that are possible on a continuous time scale within this 
time-discretized setting. This last limitation stems from the fact, that independent 
from whether the PLSP or the CLSPL is chosen as the basic model, the period ca- 

313 Cf. Suerie (2004) p. 14. 
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pacity has to be chosen such, that at most one setup operation of each product is 
finished in each period in an optimal (continuous time) solution. maxlotj limits the 
production of product j for each lot. Consequently, it is not possible to produce 
more than 2.maxlot, of product j in a single period. 

6.1.6 Further Modeling Enhancements 

Finally, another modeling trick will be introduced. In the process industries 
production is often not only restricted by constraints on masses but also by con- 
straints on time. An example for this will be presented with some computational 
results in section 7.5. There, one has to distinguish between timing constraints (a 
minimal lot size is measured in days of production), but at the same time this pro- 
duction time does not translate to an exact mass amount. The reason for this is that 
production output of a certain processing step is not fixed, but can be varied be- 
tween certain levels (minrate, and maxrate,). 

Modeling this scenario is easily accomplished within the proposed setting. The 
trick lies in distinguishing between production variables which represent the mass 
amount (usually 4,) and production variables which represent the time a certain 
product is produced (q,). 

The latter variables (AT,,) are used to replace corresponding variables (4,) in 
the capacity constraints of the model formulation. Then minimal lot size restric- 
tions are imposed on these variables. Finally, the production time variables (ATjt) 
must be transferred to the production mass variables (4,) as these are used to ful- 
fill demands. This is done by (6-99). 

minrate, . q, I X,, I maxratej . XT,, 'd j €J ,  ~ G T  (6-99) 

Data: 

maxrate, Maximal production rate of product j 
minratej Minimal production rate of product j 

Variables: 

-1 Production time of item j in period t 

6.2 Integration into a Decomposition Heuristic 

In this section a temporal decomposition heuristic will be described. It aims at 
solving larger problems, for which solving a MIP model formulation gets too time 
consuming. As the main contribution of this thesis has been the proposal of a new 
modeling approach that allows for time continuity within a time-indexed setting, 
not an entirely new decomposition heuristic has been developed, but a rather suc- 
cessful approach for the MLCLSP by Stadtler (2003) has been adapted to work 
also with these models. 
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First, the heuristic by Stadtler (2003) is briefly sketched in the next section. The 
two following sections will then describe in more detail the two most important 
building blocks of the heuristic, the rolling scheme and measures taken for antici- 
pation, as well as necessary adaptations for the models considered in this thesis. 

6.2.1 Outline 

The main obstacle, why MIP model formulations cannot be used to solve larger 
problems, is the immense number of binary andlor integer variables that necessi- 
tate a large branch-and-bound tree. As has been argued in section 5.2.2, the idea to 
overcome this obstacle is to decompose the overall problem into subproblems, 
each holding only a limited number of binary (integer) variables. Then, a tight 
model formulation can be used to solve these subproblems with a standard MIP 
solver. 

The temporal decomposition heuristic by Stadtler (2003)314 divides the planning 
horizon into three parts (see also Fig. 6-5). The most important part is the rolling 
window. Each rolling window is associated with one planning step. In each plan- 
ning step the rolling window is moved several periods farther, until the planning 
horizon is reached in the last planning step. Binary variables are only present in 
the model formulation inside the rolling window, i.e. setup decisions are made in 
each planning step only for those periods that belong to the rolling window. Setup 
decisions belonging to periods preceding the rolling window have been made in 
preceding planning steps and have been fixed according to solutions obtained in 
these planning steps. In periods following the rolling window no setup decisions 
are made, although capacity lost due to setup operations in these periods can be 
accounted for (heuristically). 

The main idea of Stadtler (2003) has been to use a tight reformulation of the 
MLCLSP (SPL reformulation) inside the rolling window, while a standard formu- 
lation (I&L) is used for the rest of the planning horizon. Thus, in each planning 
step a model formulation relating to the complete planning interval is solved. 
However, setup decisions are made in each planning step only for periods belong- 
ing to the rolling window. The time interval preceding the rolling window is con- 
sidered in each planning step (with fixed setup decisions) to allow for adjustments 
of production quantities in this time interval, e.g., to avoid a setup operation 
within the rolling window or to avoid a capacity overload if capacity lost due to 
setup operations has been underestimated in preceding rolling windows. The time 
interval following the rolling window is considered to anticipate bottlenecks of 
capacity in subsequent periods. 

The heuristic is governed by three parameters (Ah'/@) relating to the size of 
the rolling windows and a time limit. The first parameter A indicates the length of 
the rolling window. The third parameter @ relates to the overlap of rolling win- 
dows of two consecutive planning steps. If two rolling windows overlap, setup de- 
cisions taken in the first planning step are revised in the second planning step. 

- 

314 Cf. Stadtler (2003) pp. 488-494 for a more detailed description of the heuristic. 
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Thus, integrality constraints might be relaxed for some periods at the end of the 
(first) rolling window. This number of relaxed periods at the end of a rolling win- 
dow is indicated by the second parameter Y. Consequently, the following relation 
between parameters holds. 

A Length of the rolling window 
@ Overlap of rolling windows of two consecutive planning steps 
Y Number of periods with relaxed integrality constraints at the end of 

each (except for the last) rolling window 

In the last planning step no periods at the end of the rolling window are allowed 
to be relaxed, because in this planning step setup decisions for the remaining peri- 
ods need to be made. To identify the last planning step and to avoid that the last 
rolling window gets too big, the last planning step is defined to be reached, if the 
remaining number of periods is less than or equal to 1.5.(A-a). 

The time limit is allocated to the planning steps such, that the first planning 
steps gets 125% of the time it would have received, if the time limit would have 
been equally distributed between all planning steps. The last planning step gets 
75% of the time it would have received, if the time limit would have been equally 
distributed between all planning steps. All other planning steps get a time limit, 
which is linearly interpolated between these two extremes. However, there is one 
exception to this rule. The last planning step receives 125% instead of 75% of the 
time it would have received, if the time limit would have been equally distributed 
between all planning steps, because in this planning step the overall solution is de- 
termined. 

6.2.2 Rolling Scheme 

The rolling scheme is illustrated in Fig. 6-5. Like in Stadtler's (2003) approach, 
the planning horizon is split into three parts in each planning step: the rolling win- 
dow and intervals preceding and following the rolling window. Whereas in the 
original approach a tight SPL reformulation of the MLCLSP has been used for the 
rolling window and a standard I&L model formulation for the other two intervals, 
here the proposed model formulations are used within the rolling window, 
whereas only capacity and inventory balance constraints are needed in the two 
other intervals. Setup decisions (binary variables) are fixed in capacity constraints 
corresponding to periods preceding the rolling window, while these decisions are 
anticipated differently in periods following the rolling window. The different 
kinds of anticipation used will be described in detail in the next section 6.2.3. 

This means, if the heuristic is adapted for example for the CLSPL, that the ex- 
tended model formulation with valid inequalities3I5 is used within the rolling win- 
dow. Here, binary setup decisions are made in each planning step for periods be- 

'I5 See section 6.1.1.2. 
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longing to the associated rolling window. However, production quantities are al- 
lowed to vary freely in periods preceding the current rolling window as long as 
capacity requirements are respected and a corresponding setup decision has been 
fixed in a preceding planning step. 

periods I @ @ @ @ 0 @ @ @ =T 

1. Planning step: 

2. Planning step: 

3. Planning step: 

4. Planning step: I 
n n n 

Legend: I I Rolling window 

Interval of time with relaxed integrality constraints 

,--------. Interval of time following the rolling window 

Interval of timepreceding the rolling window 

Fig. 6-5: Rolling scheme of temporal decomposition heuristic (parameter combination 
AN/@ -+ 41112, slightly adapted from Stadtler (2003) p. 491) 

Regarding the proposed lot size extension, this is not a valid approach. If batch 
size restrictions are present, production quantities have to be in integer multiples 
of a predefined batch size. Thus, integer variables are coupled with production 
quantities and therefore the following dilemma arises: If production quantities are 
allowed to vary freely, restrictions to obey lot size restriction have to be imposed 
not only inside the rolling window but also in the interval preceding the rolling 
window. On the other hand, if production quantities were fixed in preceding plan- 
ning steps like setup decisions have been fixed, the heuristic might loose too many 
degrees of freedom to rearrange demands in the interval preceding the rolling 
window. 

Therefore, two variants have been implemented, if batch size restrictions need 
to be obeyed. The first variant (var) allows production quantities to vary freely in 
the time interval preceding the rolling window. Consequently, constraints calculat- 
ing period overlapping lot sizes and constraints obeying the associated restrictions 
need to be defined not only inside the rolling window, but also in the interval pre- 
ceding the rolling window. This increases the size of the matrix and especially the 
number of integer variables in each planning step. Especially in the last planning 
steps model formulations with a huge number of integer variables need to be 
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solved. Thus, this variant of the temporal decomposition heuristic is expected to 
need a lot more time than its original variant or the variant (fix) which will be ex- 
plained next. 

Fixing production quantities in the complete interval preceding the rolling win- 
dow does not seem to be a too good idea, because it has been observed for the 
MLCLSP as well as for the CLSPL, that adjustments of production quantities in 
periods preceding the rolling window are made frequently. Preliminary tests with 
a model formulation respecting batch size restrictions confirmed this notion and 
resulted in many test instances, for which no feasible solution could be obtained. 
Therefore, the second variant (fix) does a mixture of fixing production quantities 
on one side and allowing additional production in the interval preceding the roll- 
ing window on the other side. 

The procedure is as follows: In each planning step, the proposed model formu- 
lation (i.e. the constraints defining the lot size extension) is only defined inside the 
rolling window. Setup decisions and production quantities are fixed in each plan- 
ning step for those periods preceding the rolling window. On the other hand, to al- 
low for some flexibility in periods preceding the rolling window, inventory bal- 
ance constraints are amended such that for each product a certain number of 
additional batches (AB,) might be "bought" at the end of the period preceding the 
rolling window (T~") (6-101). The number of batches, that is allowed to be bought 
(addbatj), is limited to the minimum of three and ~T~"/J] (6-102). 

Furthermore, the number of batches to be bought is limited by the number of 
batches that can be additionally produced in the interval preceding the rolling 
window. To obtain this number, the capacity not used so far is calculated for each 
period fit), and it is evaluated whether the lots already planned might be in- 
creased by additional batches without violating capacity constraints or lot size re- 
strictions. E.g., if a lot starts in period 13 and continues to be produced in period 
14, it is evaluated, whether the remaining capacity in periods 13 and 14 allow for 
production of one (or more) additional batch(es) of this product. Fig. 6-6 describes 
the algorithm to derive the number of batches that are allowed to be bought (add- 
batj) and their associated costs (addcostj) in detail. 

I,,-, + x p  + bsj . AB, = d,, +I,, V j ~ x  t=p (6-101) 

Data: 

addbatj Maximal number of batches of product j allowed to be bought in 1$" 
addcostj Additional cost incurred if one batch of product j is bought in f" 
fct Free capacity in period t based on fixed setup and production deci- 

sions 
fpcjt Free capacity in period t to produce product j based on fixed setup and 

production decisions 
l@ Number of periods preceding the rolling window (= number of periods 

with fixed setup decision) 
x 9 Fixed production quantity of product j in period t 
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Variables: 

ABj Integer number of additional batches of product j bought in 

Compute free (unused) capacity in period t (fc,) 
j =  1..J 

IF product j is producible in period t based on the (fixed) setup pattern 
THEN ELSE 

C o m p u t e c o m p u t e  free capacity of period t to 
I produce product j (fpcjl = fc,) I produce product j (fpcjl = 0) 

[nitialize maximal number of additional batches allowed for each productj (addbat, = 0) 
1 Tiix 
- 

: =  1..3 
IF one batch (bs,) of productj is producible in period p + l - t  based on 

the free capacity of period fu+l-t to produce productj C ~ P C ~ , ~ ~ + ~ - ~ )  and 
the maximum lot size restriction of the current lot (maxlot,) 

AND addbatj < min (3; r ~ I J  1 ) 
rHEN ELSE 
zddbat, = addbat, + 1 
zddcost, = [(t-l).h,.bs, + (addbat,- 

IF one batch (bs,) of product j is produc- 
ible in period F+l-t and e - t  com- 

bined based on 
- the (fixed) setup pattern and 
- the free capacity of period @+I-t and 

7% @cj,?p+l-r + f P ~ ~ , ~ x - / )  and 
- the maximum lot size restriction of the 

current lot (maxlot,) 
AND addbat, < min (3; r 2 % ~  1 ) 

THEN LSE 

Fig. 6-6: Algorithm to derive addba9 and addcost, for variantfix. 

Finally, a cost has to be associated with this purchase of additional batches 
(addcosti). To keep it simple, the cost is calculated to match the mean holding 
cost, which would be incurred if all of the batches allowed to be bought are taken. 
E.g., if the evaluation of capacity constraints and lot size restrictions gives the re- 
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sult that one additional batch can be bought two periods in front of the rolling 
window and another one can be bought six periods in front of the rolling window, 
the cost of purchasing one batch would equal holding one batch four periods in in- 
ventory ([6+2]/2.hj.bsj). The exact procedure to derive addcostj is described in Fig. 
6-6. Prior to the next planning step, the additional batches (ABj) are converted into 
fixed production quantities . 

This variant (fuc) requires only some preprocessing of data. The model formula- 
tion itself is only slightly altered 

in the objective function (price and number of batches "bought", 
+xi,, addcostj . ABj), 

in inventory balance constraints of period T ~ "  (purchase of additional batches, 
(6-101)), 

and supplemented with J upper bound constraints limiting the purchase of addi- 
tional batches (6-102). Thus, the additional computational effort associated with 
this variant to model the batch size extension is negligible compared to variant 
(var) . 

However, variant (fuc) allows only to schedule additional batches, if enough ca- 
pacity for one batch is left over in two consecutive periods combined. This means, 
already fixed lots are not allowed to be moved to obtain space for an additional 
batch. In tightly capacitated test instances, the following situation may occur (see 
also Fig. 6-7). Due to fixed lot sizes, in each period 40 units of capacity remain 
unused. One batch requires 100 units of capacity. Thus, there are no two consecu- 
tive periods available to schedule one additional batch (of product 2 in Fig. 6-7). 
On the other hand, by shifting the preceding lot 20 units of capacity back in time 
(product I), the additional batch could have been scheduled. 

initial 
situation 

variant 
fix 

desired 
situation 

Legend: 0 Setup time Batch of product 2 

Fig. 6-7: Illustration of the desired lot movement for variants fur andfixl. 
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Therefore, a small adaptation of variant fix calledfixl will be proposed. This 
variant does not consider all possible movements a priori. Instead, it allows the 
purchase of just one additional batch of each product in each planning step, in 
which the interval preceding the rolling window is greater than five periods. 
Thereby, it is assumed that after more than five periods enough unused capacity 
has been accumulated to make such a movement of lots possible. In the whole 
planning interval, only one such additional purchase per product is allowed at a 
very high cost (>>xi, >>hi). However, these additional purchases are not con- 
verted into fixed production quantities x? in each planning step. Only after the 
last planning step has been carried out, these additional batches are to be sched- 
uled. Therefore, the complete model formulation is solved again with fixed setup 
decisions after the last planning step. Although there might be situations, in which 
such a movement of lots will not be possible, the computational tests revealed that 
these situations are rather seldom. 

6.2.3 Anticipation 

From a computational point of view it is desirable to keep the rolling windows as 
small as possible, because this reduces the number of binarylinteger variables in 
each planning step. On the other hand, short rolling windows suffer the most from 
planning horizon effech3I6 To alleviate these effects as well as to anticipate ca- 
pacity bottlenecks in periods following the rolling window, several measures will 
be taken. 

The interval following each rolling window is considered in each planning step 
to anticipate future capacity bottlenecks. As long as no setup times have to be re- 
spected, this anticipation is fine. However, if setup times occur, these have to be 
anticipated explicitly. This anticipation is important, because if future capacity 
losses due to setup times are overestimated, this may lead to too many setup op- 
erations in early periods, while an underestimation might result in infeasible solu- 
tions. For the MLCLSP, Stadtler (2003) proposes three options.317 The first one is 
to neglect setup operations in periods following the lot-sizing window, while the 
second option is to assume that each product is produced each period. Hence, the 
first option will underestimate setup times and the second option will overestimate 
setup times. The third option therefore assumes that a mean setup time plus some 
safety margin will occur in each period. Alongside these rather simple measures to 
anticipate setup times, also more accurate measures, e.g. by means of neural net- 
works, have been proposed.318 However, we will stick to these simpler measures 
here. 

The first option "min" assumes that no capacity is lost due to setup operations 
in the time interval preceding the rolling window. If the CLSPL is taken as the ba- 

3 1 6  See section 5.2.2. 
317 Cf. Stadtler (2003) p. 494. 
318 Eg. ,  Rohde (2004) anticipates capacities lost due to setup times in a PLSP with a neu- 

ral network approach. 
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sic model, the second option "max" assumes that each product except the one with 
the smallest setup time is set up each period. On the other hand, if the PLSP is 
taken as the basic model, this option assumes that the product with the biggest 
setup time is set up each period. Anyhow, with this option, many tightly capaci- 
tated test instances have resulted in infeasible solutions of the first planning 
step.319 Thus, this option has not been tested much further. 

In the third option "mean" it is assumed that in each period of the time interval 
following the rolling window the same amount of setup time is incurred like it has 
been incurred on the average in periods of the interval preceding the rolling win- 
dow. As the mean is not meaningful in the first periods, it is only used, if the 
number of periods in the time interval preceding the rolling window is greater than 
four. In prior planning steps the expected capacity lost due to setup operations is 
calculated to be C ,,, st /tbo . This means that it is assumed that each product j 
is on average set up according to its expected time between orders tbo,. The ex- 
pected time between orders tboi is calculated assuming production lots according 
to the EOQ-formula tbo , = J 2 .  sc , . T / ( h j  . C,,, dj, ) .320 

If the PLSP is used as a basic model, an anticipation of setup times may not 
suffice to obtain feasible schedules in each planning step. One can think of a situa- 
tion, in which three (or more) products face positive demands in the first period of 
a rolling window, but at most two products can be produced in this period due to 
the setup restriction of the PLSP. Therefore, it seems wise not to relax integrality 
constraints in (some of) the overlapping periods to better anticipate future setup 
patterns. 

Finally, to overcome the planning horizon effect Stadtler (2000, 2003) pro- 
posed the use of bonuses.321 The idea is to make setup decisions at the end of the 
rolling window more attractive. Thus, not a full setup cost is charged for a setup 
operation in the last period(s) of the rolling window, but only a portion of the 
setup cost. Prior to each planning step, for each period and product a myopic time 
between orders is calculated with the Silver-Meal or Groff heuristic. Then setup 
cost coefficients are updated such that only the fraction of periods inside the roll- 
ing window by this myopic time between orders of the full setup cost is used as a 
cost coefficient for the specific period. E.g., if the myopic time between orders 
was four periods for the last period of the rolling window, the updated setup cost 
coefficient would be only one quarter of its original value. Furthermore, bonuses 
are not only granted for setup costs, but also for inventory costs associated with 
these setup decisions. 

Although this calculation is exact for the single-level uncapacitated lot-sizing 
problem, it is only an approximation for the MLCLSP.322 Within the setting evalu- 
ated here, which allows to carry-over setup states, it is even a worse approxima- 
tion. The reason for this is that bonuses are intended to reduce setup operations by 
not imposing a setup pattern dependent on the size of the rolling window. If setup 

319 See Table 7-19 in section 7.1.3. 
320 Cf. Salomon (1 99 1) p. 1 15. 
321 Cf. Stadtler (2000) pp. 320-32 1 and Stadtler (2003) pp. 49 l-492,494. 
322 Cf. Stadtler (2003) p. 492. 
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carry-over is allowed, products with higher setup costs are associated with the 
highest bonuses, but exactly these are the products, which are rather rarely set up, 
but more often carried-over. Still, incorporation of bonuses proved to be a viable 
approach for the CLSPL and has been used again for this model here (option: bo- 
nus).323 

323 Cf. Suerie and Stadtler (2003) p. 1048. 



7 Analysis of Solutions and Computational 
Performance 

In this chapter the performance of the proposed model formulations and the tem- 
poral decomposition heuristic will be reviewed. This review is based on two pil- 
lars. One pillar is the analysis of solutions. This part is intended to give insights, in 
what makes specific situations difficult to solve, and thereby provides managerial 
insights. The second pillar is the assessment of computational performance. In this 
part, the solution approach is compared to benchmark approaches if suitable 
benchmarks exist in literature. If no suitable benchmark can be obtained, the com- 
putational performance is analyzed with respect to different problem sizes and dif- 
ferent variants of the solution approach. 

This chapter is organized similar to chapters 3 and 6.1. Sections 7.1-7.4 review 
the different aspects of time continuity introduced (setup states, lot sizes, setup 
operations and resource utilization). In section 7.5 hrther extensions are discussed 
and section 7.6 compares the influence of solver technology used on the proposed 
model formulations. 

In each section, the test set(s) and benchmark(s) are introduced before solutions 
are analyzed and computational performance is assessed. 

7.1 Time Continuity - Setup States 

The focus in this section will be on the basic model CLSPL, because a new model 
formulation has been proposed to solve it in section 6.1.1.2. Furthermore, it is the 
more difficult problem, as it allows more degrees of freedom than the PLSP. 

7.1 .I Test Sets and Benchmarks 

The CLSPL has been tackled by various authors before.324 Three approaches will 
serve as a benchmark here. The MIP model formulations by Gopalakrishnan 
(2000)325 and Sox and Gao (1999)326 have been implemented, so that they can run 

324 See sections 2.4.1 and 4.1.3. 
325 Cf. Gopalakrishnan (2000) pp. 3421-3423. The model formulation can be found in the 

appendix. 
326 Cf. SOX and Gao (1999) pp. 175-176. The model formulation of Sox and Gao (1999) 

does not consider setup times, which are present in the test set used here, and contains 
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on the same hardware and software for a fair comparison of model formulations. 
Furthermore, the tabu search algorithm by Gopalakrishnan et al. (2001)327 is a 
suitable benchmark. This algorithm has not been re-implemented, but the authors 
used one of the test sets (TT) which has also been used here. 

The first test set TT was developed by Trigeiro et al. (1989) for the CLSP,328 
but has been used subsequently also for the CLSPL.329 Test set TT is divided into 
three phases. For the first phase no results are reported in literature, because this 
phase is used for parameter tuning of the algorithm etc. The test instances from 
phases I1 and I11 can be clustered into nine classes according to the number of 
products and the number of time periods (see Table 7-1). The classes will be ref- 
erenced as test sets TT1-TT9 from this point. 

Table 7-1: Test set TT. 

Phase I1 I1 I1 I1 I1 I1 I11 I11 I11 
Class 1 2 3 4 5 6 7  8 9 
# products 6 6 12 12 24 24 10 20 30 
# periods 15 30 15 30 15 30 20 20 20 

Although test set TT has been used in literature to assess computational per- 
formance of the CLSPL, it does not seem to be an appropriate test set for model 
CLSPL in its entirety. If up to 30 products are produced in each period (test set 
TT'), there is not much to gain, if only one setup state is carried over from one pe- 
riod to the next. Furthermore, it is highly unlikely, that there exist periods with 
production of only one item (single-product production), which is an important 
feature modeled by the CLSPL. 

The CLSPL is intended for use in situations in which setup operations are sub- 
stantial. This means, there has to be a considerable amount of cost or use of capac- 
ity associated with a setup operation. Only in these situations it makes sense to 
model the preservation of setup states explicitly. At the same time, this means that 
usually only few items will be produced in each period. 

Taking these reflections into account, three new test sets TL1-TL3 are derived 
based on test sets TTi-719. Test set TLl originates from test set TT7 by aggregat- 
ing products 1-4 and 5-8 to form two new products. Together with products 9 and 
10 of the original test set Ti7 these two aggregated products form test set TL1, 
which now consists of four products. The aggregation has been defined such, that 
the sum of demands (setup times, setup costs) is taken as the demand (setup time, 
setup cost) of the new product, whereas the average is taken for holding cost and 

a bug. Therefore, the model formulation has been adapted according to Suerie and 
Stadtler (2003) pp. 1053-1054 to overcome these two deficiencies. The (corrected) 
model formulation can also be found in the appendix. 

327 Cf. Gopalakrishnan et al. (2001) pp. 853-859. 
328 Cf. Trigeiro et al. (1989) pp. 358-363. 
329 Cf. Gopalakrishnan et al. (2001) pp. 860-862. 
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production coefficients. This kind of aggregation could well be the result of an ag- 
gregation of items to product families. 

Test set TL2 is derived from test set TT8 by aggregating products 1-8 and 9-16. 
Consequently, test set TL2 consists of six products, two of them being an aggre- 
gate. Finally, test set TL3 is derived from test set T D  by aggregating products 1- 
10, 11-20, 21-23 and 24-26. It consists of eight products (four of them being an 
aggregate). 

7.1.2 Analysis of Solutions 

Difference of CLSP and CLSPL Solutions 
Several authors have analyzed the difference of optimal solutions of models that 
allow for setup preservation at period boundaries (e.g., CLSPL) and those that do 
not (e.g., CLSP) and claimed to have found fundamental deviations.330 These fun- 
damental deviations justify the additional computational effort associated with this 
modeling option, yielding a more natural representation of the shop floor in the 
model. Several observations derived from the computational analysis conducted 
here support this claim. 

Table 7-2 shows the optimal setup pattern of the first test instance of test set 
TT1 of model formulations CLSP and CLSPL. The setup pattern of the optimal 
solution to the CLSP is marked in gray, whereas setup operations (setup carry- 
overs) in the optimal solution of model CLSPL are identified by an X (0). Al- 
though the set of products that are produced in the first two periods is the same for 
both solutions, it is different in every single period thereafter. Thus, as soon as 
model CLSPL is able to generate enough "additional" capacity by the more exact 
modeling of setup times, this changes the setup pattern in subsequent periods. 

Table 7-2: Comparison of setup pattern for the first test instance of test set TT1 of optimal 
solutions to CLSP and CLSPL. 

Legend: Setup operation in optimal solution of CLSP 
X Setup operation in optimal solution of CLSPL 
0 Setup carry-over in optimal solution of CLSPL 

In Table 7-3 the objective function values (total costs) and its components (in- 
ventory holding costs and setup costs) are compared for optimal or near optimal 

330 Cf. Haase (1998) pp. 140-143, Sox and Gao (1999) pp. 176-178 and Porkka et al. 
(2003) pp. 1141-1 146. 
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solutions of the CLSP and CLSPL of test set It is interesting to note, that 
although solutions to the CLSPL are on average 20.58% less expensive than solu- 
tions to the CLSP, the ratio of inventory holding costs to setup costs stays more or 
less the same (30:70). Consequently, in absolute values the setup costs are de- 
creased farther than inventory holding costs (13.35% vs. 7.23%). There exist even 
some test instances, in which inventory holding costs are increased, which is of 
course offset by a massive decrease in setup costs. 

Table 7-3: Comparison of optimal (or near optimal) costs in models CLSP and CLSPL for 
test set TT1. 

CLSP CLSPL 
Mean percentage of inventory holding costs 30.13% 28.79% 
- standard deviation 4.99% 4.27% 
Mean percentage of setup costs 69.87% 71.21% 
- standard deviation 4.99% 4.27% 
Mean cost saving vs. CLSP 20.58% 
- minimum 15.76% 
- maximum 26.34% 
Mean savings (inventory costs) vs. CLSP 7.23% 
- minimum -2.72% 
- maximum 18.13% 
Mean savings (setup costs) vs. CLSP 13.35% 
- minimum 2.63% 
- maximum 25.09% 

Finally, Table 7-4 analyzes the setup patterns for the same set of solutions. As 
all products in test set TT1 have similar characteristics, no differences are ob- 
served regarding the different products. Comparing solutions of the CLSP and the 
CLSPL, it becomes obvious that due to the setup carry-over feature the number of 
periods a specific product can be produced increases from 7.7 for the CLSP to 8.9 
for the CLSPL despite a decrease in setup operations to 6.5. Thereby, the flexibil- 
ity to schedule products in certain periods increases (which allows for a decrease 
in inventory holding costs), while the cost of the schedule decreases (in terms of 
setup costs). 

In Table 7-5 CLSPL solutions are analyzed.332 Here, the conjecture is con- 
firmed that test sets TT1-TT9 are not as appropriate as test sets TLl-TL3 to assess 

Model CLSP (see section 2.2) and the extended formulation in SPL reformulation with 
valid inequalities of model CLSPL (see sections 5.2.1.1 and 6.1.1.2) have been given a 
time limit of 15 minutes to solve each of the 1 16 test instances of test set T1. All but 28 
(17) test instances have been solved to proven optimality with model CLSP (CLSPL). 
See Table 7-9 for detailed solution statistics. 
The extended formulation in SPL reformulation with valid inequalities of model 
CLSPL (see sections 5.2.1.1 and 6.1.1.2) with time limits of 900s (test set TI) and 60s 
(all other test sets) has been used to obtain the solutions. If no solution has been found 
within the time limit the first solution is taken instead. See Table 7-13-Table 7-16 for 
solution statistics. 
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the behavior of the CLSPL. Its feature to produce only one single product for a 
complete period (last column) is used either rarely (in test sets TT1, TT7, TT8 and 
TT9) or not at all (test sets TT2-TT6). In contrast, it is used massively in 20.5% of 
all periods in test set TL1 and somewhat less in test sets TL2 and TL3 due to the 
fact, that more products have to be scheduled in these test sets. 

Table 7-4: Number of setups in optimal (or near optimal) solutions to models CLSP and 
CLSPL for test set TT1, 

CLSP CLSPL 
mean min max mean min max 

Setup operations for j=l 7.7 3 15 6.5 3 15 
Setup operations for j=2 7.7 4 15 6.7 3 15 
Setup operations for j=3 7.6 3 15 6.5 3 15 
Setup operations for j=4 8.3 4 15 6.9 3 15 
Setup operations for j=5 7.5 3 15 6.4 3 15 
Setup operations for j=6 7.6 2 14 6.2 2 14 
Setup links for j=l 2.3 0 5 
Setup links for j=2 2.1 0 6 
Setup links for j=3 2.0 0 5 
Setup links for j=4 2.6 0 6 
Setup links for j=5 2.4 0 7 

Table 7-5: Number of setup operations, setup carry-overs (per product and test instance) 
and single-product production periods (per test instance) in solutions to model CLSPL for 
different test sets. 

Test Setup operations Setup Carry-overs Single-product 
set mean min max mean min max period 
TT1 6.5 2 15 2.3 0 7 0.2 
n-2 14.9 7 28 4.8 0 10 
TI3 7.6 3 15 1.2 0 5 
TT4 14.2 6 30 2.4 0 9 
TT5 7.5 3 15 0.6 0 4 
TT6 14.7 6 30 1.2 0 9 
m 9.0 3 20 1.9 0 9 0.3 
TT8 9.4 2 20 1 .o 0 9 0.1 

TL2 8.6 2 20 3.1 0 10 3.8 
TL3 9.0 3 20 2.4 0 10 2.5 

Due to the aggregation procedure, the products in test sets TL1-TL3 have dif- 
ferent characteristics opposed to those in test sets TTl-T79. Remember, that sev- 
eral products of test sets TTJ-TT9 have been aggregated to form product families 
in test sets TL1-TL3.333 Thereby, these test instances contain products with differ- 

333 See section 7.1.1. 
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ent characteristics. E.g., test set TL1 is made up of four products, with two of them 
facing a fourfold demand as the other two. Consequently, the analysis in Table 7-5 
needs to be product group dependent for test sets TL1-TL3 to reveal additional in- 
sights. Table 7-6 provides this analysis. As expected, products with higher demand 
are set up less frequently, but their setup state is carried over much more often. 
Thereby, these products are produced on average in more periods than those prod- 
ucts with a lower demand profile. Furthermore, products with a higher demand 
rate are far more often produced for complete periods (single-product production 
periods), which obviously makes sense. 

Table 7-6: Number of setup operations, setup carry-overs and single-product production 
periods (per product and test instance) in solutions to model CLSPL for test sets TL1-TL3 
depending on product group (high, medium and low demand profile). 

Test Demand Setup operations Setup Carry-overs Single-product period 
set profile mean min max mean min max mean min max 
TL1 high 6.7 3 1 1  8.2 5 12 2.0 0 7 

low 9.2 2 20 1.3 0 6 0.1 0 1 
TL2 high 7.0 3 11 8.2 5 10 1.9 0 6 

low 9.4 2 20 0.6 0 4 0.0 0 1 
TL3 high 7.0 3 1 1  7.5 3 10 1.2 0 6 

medium 9.8 3 20 1.6 0 6 0.0 0 1 
low 9.6 3 20 0.2 0 3 0.0 0 1 

Effectiveness of Valid Inequalities 
Table 7-7 and Table 7-8 intend to demonstrate the effect of using an extended 
formulation and the addition of valid inequalities. In Table 7-7 the solution of the 
linear relaxation334 of the basic model CLSPL335 is shown for the first test instance 
of test set TT1. In contrast, Table 7-8 shows the solution of the linear relaxation 
for the same test instance, if the extended formulation in SPL reformulation with 
valid inequalities of model CLSPL336 is taken. 

It is obvious, that the solution to the linear relaxation of the extended model 
formulation with valid inequalities contains a lot less fractional values for the bi- 
nary variables I;., and W,, than the solution to the linear relaxation of the basic 
model formulation. Thereby, the number of variables which are potentially used 
for branching is considerably reduced (here, in the root node, from 106 to 36). 
Furthermore, a lot more variables take the value "1" representing a setup operation 
or setup carry-over in the non-basic model formulation (here: 39 vs. 7 in the basic 
model formulation). This means, that nearly no (positive) decision is fixed in the 
basic model formulation. In addition, the number of fractional values that are 
greater than 0.5 hinting to positive decisions is bigger in the non-basic model for- 

334 In fact, not the linear relaxations of the original model formulations are compared, but 
the linear relaxations after presolving of the MIP solver (here: XpressMP, release 
2003G), which itself improves the linear relaxation considerably. 

335 See section 2.4.1. 
336 See sections 5.2.1.1 and 6.1.1.2. 
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mulation (17 vs. 4 in the basic model formulation). As 55 binary variables take the 
value "1" in the optimal solution, this is much more reflected in the non-basic 
model formulation than in the basic model formulation. 

Going into more detail, especially the value "1" of link variables 4, is (almost 
evenly) split over all products in the linear relaxation of the solution to the basic 
model formulation. Taking the view of the linear relaxation, this makes a lot of 
sense, since a positive (fractional) value of variables W,, allows production (2-32) ,  
but does not cost anything, as no setup costs are associated with this variable. On 
the other hand, to obtain a feasible solution, fractional values for any binary vari- 
ables need to be avoided. 

Table 7-7: Linear relaxation for the first test instance of test set TTl of basic model 
formulation CLSPL. 

Legend: Linear relaxation of setup operation variable Yi, 
Linear relaxation of link variable W,, 

Table 7-8: Linear relaxation for the first test instance of test set TTl of the extended formu- 
lation in SPL reformulation with valid inequalities of model CLSPL. 

Legend: Linear relaxation of setup operation variable 5, 
Linear relaxation of link variable W,, 
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Reviewing this analysis, it proved worthwhile to enhance the modeling capa- 
bilities of the standard lot sizing problem CLSP by adding the functionality to 
carry over setup states across period boundaries. Solutions to the CLSP are fun- 
damentally different to those of the CLSPL. Especially, if the number of products 
to be scheduled is small, the modeling capabilities of the CLSPL are useful. Then, 
even the feature to produce one product for three (or more) consecutive periods, 
i.e. to have at least one period with production of only one product, is used rather 
frequently. 

7.1.3 Computational Performance 

All computational results in this section have been obtained using XpressMP re- 
lease 2003G as a MIP solver on a PC equipped with a Pentium IV processor with 
a clockspeed of 1.7 GHz and 256 MB of memory. 

Table 7-9 compares the computational performance of the basic model CLSP337 
and the extended formulation in SPL reformulation with valid inequalities of 
model CLSPL338. Both have been given a time limit of 15 minutes to solve each of 
the 116 test instances of test set TT1. All but 28 (17) test instances have been 
solved to proven optimality with model CLSP (CLSPL). The remaining optimality 
gap33y between the best solution obtained within 15 minutes and the best bound 
obtained after 15 minutes has been on the average 4.54% (2.27%) for the 28 (17) 
test instances not solved to proven optimality within the time limit for the CLSP 
(CLSPL). The average time needed to prove optimality was 114.5s for the CLSP 
and 107.0s for the CLSPL. Thus, the best model formulation of the CLSPL com- 
pares favorably even to a basic model formulation of the CLSP. 

Table 7-9: Comparison of CLSP and CLSPL for test set TT1. 

CLSP CLSPL 
Average time to prove optimality (if less than 900s) [s] 114.5 107.0 
# not optimal after 900s 28 17 
Remaining gap after 900s (for those not optimal) 4.54% 2.27% 
Average cost saving vs. CLSP - 20.65% 

To analyze the behavior of different model formulations in more detail, the fol- 
lowing notation is introduced to distinguish between these model formulations 
(Table 7-10). The first field represents the basic model formulation, which is ei- 
ther based on the standard inventory and lot size ("I&L") format or on the simple 

337 See section 2.2. 
338 See sections 5.2.1.1 and 6.1.1.2. 
33y Different "gaps" are calculated to assess computational performance in this thesis. The 

gaps are always defined as the percentage deviation of an upper bound (UB) to a lower 
bound (LB) [=(UB-LB)/LB]. Here the upper bound is the best solution obtained 
within the time limit of 15 minutes and the lower bound is the bound obtained by the 
branch-and-bound search after 15 minutes. 
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plant location ("SPL") formulation. The second field represents the different vari- 
ants to model the "linking" of lots in the CLSPL. Possible values for this field are 
"basis", "ext" and "uss" as described in Table 7-10. Finally, the third field de- 
scribes the use of valid inequalities. These are either used ("vi") or not ("-"). If 
valid inequalities are used, they can be applied at the root node only (cut-and- 
branch approach, "C&B") or throughout the branch-and-bound search. The latter 
is indicated by "B&C". Here, the model cut feature of XpressMP is used. E.g., the 
abbreviation "I&L/uss/vi" describes a model formulation with inventory and lot 
size variables ("I&L"), in which the setup state is uniquely defined ("uss") and 
valid inequalities ("vi7') have been added to the model formulation. 

Table 7-10: Notation of different model formulations (CLSPL). 

Parameter Value Comment 
1 I&L Standard basic model formulation with variables for inventories and 

SPL 

2 basis 
ext 
USS 

3 - 
vi 
vi-C&B 

lot sizes (I&) 
Simple plant location (SPL) reformulation of the basic model formu- 
lation (see section 5.2.1 .l) 
Basic model formulation (see section 2.4.1) 
Extended model formulation (see section 6.1.1.2) 
Model formulation with unique setup states (see section 6.1.1.2) 
No valid inequalities 
Valid inequalities (see section 6.1.1.2) 
Valid inequalities (see section 6.1.1.2), Cut&Branch approach 
(=valid inequalities only applied in the root node, see section 5.2.1.2) 
Valid inequalities (see section 6.1.1.2), Branch&Cut approach 

Test Set TTI 
In Table 7-1 1 and Table 7-12 the capabilities of different model formulations are 
analyzed based on test set TT1. In Table 7-1 1 the best solution found within 20 
seconds is used as an upper bound which is set in relation to various lower bounds. 
If no solution could be obtained within this time limit (number in parenthesis) the 
first solution is taken instead. This solution is found after a maximum of 21s for 
I&L/ext/vi-C&B and 39s for Gopalakrishnan. The different lower bounds are the 
linear relaxation (LB~'), the lower bound obtained after cuts have been generated 
automatically by XpressMP (LB'~'), the lower bound obtained after cuts have 
been generated automatically by XpressMP for model SPL/ext/vi-C&B 
(LBXLP(SPUext/vi) ) and the optimal solution (LB"~). Model formulations I&L/basis/-, 

Gopalakrishnan as well as Sox and Gao are intended as a benchmark. 
One can observe, that the best model formulations are those that use the SPL 

reformulation as a basic model, the extended formulation to model the "linking" 
feature and valid inequalities. They provide the best lower bounds (see columns 2 
and 3 in Table 7-1 1) as well as the best solutions (see columns 4 and 5 in Table 
7-1 1). Both produce significantly better solutions than the three model formula- 
tions used as benchmarks based on the one-sided Wilcoxon matched-pairs signed- 
ranks test, which has been used here at confidence limits of 99%. Furthermore, all 
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model formulations that make use of valid inequalities provide on average better 
solutions than the three benchmark model formulations. 

Table 7-11: Average gaps of solution after 20s (to different lower bounds) of different 
model formulations for test set TTl. 

Model formulation 
I&L/basis/- 323.08% 21.64% 5.34% 3.49% 
I&L/ext/- 320.26% 19.51% 5.62% 3.76% 
I&L/ext/vi-C&B 3.77% (1) 3.09% (1) 2.99% (1) 1.19% (1) 
I&L/ext/vi-B&C 283.95% 2.91% 2.49% 0.69% 
I&L/uss/- 324.49% 22.31% 5.72% 2.61% 
I&L/uss/vi 6.48% 5.02% 3.10% 1.29% 
SPL/ext/- 13.57% 10.13% 3.88% 2.06% 
SPL/ext/vi-C&B 3.73% 3.17% 3.17% 1.35% 
SPL/ext/vi-B&C 12.40% 2.85% 2.62% 0.82% 
SPL/uss/- 20.27% 12.72% 3.95% 2.12% 
SPL/uss/vi 7.12% 5.41% 3.94% 2.10% 
Sox and Gao 7.32% 6.56% 4.12% 2.29% 

Table 7-12 depicts the worst case (maximum gap) for each model formulation. 
With one exception (one test instance, SPL/ext/vi-C&B) the worst case perform- 
ance is much better for model formulations based on the SPL formulation than for 
those based on the I&L formulation. On the other hand, feasible solutions are ob- 
tained much faster, if the I&L formulation is used as a basis. 

Table 7-12: Maximum gaps of solution after 20s (to different lower bounds) and solution 
times of different model formulations for test set 7'7'1. 

Maximum Gap to LB Avg. time lSt Max time 1'' 
Model formulation L B ~ ~ ~  LBO'~ solution [s] solution [s] 
I&L/basisl- 45.79% 10.51% 2.2 5 
I&L/ext/- 
I&L/ext/vi-C&B 
I&L/ext/vi-B&C 
I&L/uss/- 
I&L/uss/vi 
SPL/ext/- 
SPLIextlvi-C&B 
SPL/ext/vi-B&C 
SPLIussl- 
SPL/uss/vi 
Sox and Gao 
Gopalakrishnan 

Fig. 7-1 shows the results graphically. The solution quality after 20s compared 
to the optimal solutions is depicted (left scale) together with solution speed based 
on the average time to find a first feasible solution (right scale). Model formula- 
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tions I&L/ext/vi-B&C and SPLIextlvi-B&C are identified as the variants with the 
best solution quality and reasonable solution speed. On the other hand, it is obvi- 
ous that among those three model formulations that find a first feasible solution 
the quickest (I&L/basis/-, I&L/ext/- and I&L/uss/-) are also those that have found 
the worst solutions within the time limit. 

Fig. 7-1: Average gaps (lower bound: optimal solution) after 20s and average time to find a 
first feasible solution of different model formulations (test set TT1). 

Fig. 7-2 shows how long it takes for different model formulations to prove op- 
timality to the test instances of test set TT1. Apparently, SPL/ext/vi-B&C per- 
forms best and proves optimality to 81 out of 116 test instances within the time 
limit of 3 minutes. The benchmark model formulations by Sox and Gao 
(Gopalakrishnan) prove optimality to only 49 (2) test instances within the same 
time limit. 

Test Sets TR-TT9 
Table 7-13 and Table 7-14 help to analyze the solution capabilities of the different 
model formulations for test sets T12-TT9. In Table 7-13 the number of test in- 
stances for which a model formulation found the best solution is given for each 
test set. A time limit of 60s is imposed, but the first solution found thereafter is 
chosen, if none could be found within the time limit. The numbers in parenthesis 
indicate, how the result changes, if these solutions found after the time limit are 
excluded. Almost no solution is obtained within the time limit for test sets TT4 
and TT6, which are the test sets with the largest number of periods (30) and prod- 
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ucts (12 and 24), but as argued above340 the test sets with large numbers of prod- 
ucts are not well suited for the CLSPL anyway. 

5 30 55 80 105 130 155 180 

solution time [s] 

I t I&Lluss/vi + SPLlusslvi t SPLIexVvi-B&C -Sox and Gao -++ Go~alakrishnan I 

Fig. 7-2: Number of test instances solved to optimality over time (different model formula- 
tions, test set TT1). 

Table 7-13: Number of test instances (total: 5 (m-TT6); 180 (TT7-TD)) a model formu- 
lation found the best solution (# best) or no solution (# none) within the time limit of 60s. 

TT2 TT3 TT4 TT5 TT6 

TTl m m 
#best #none #best #none #best #none 

I&Uext/vi-C&B 42 (41) 77 39(38) 129 44 (42) 136 
I&L/ext/vi-B&C 5 1 (49) 22 45 (44) 99 47 (45) 125 
I&Uuss/vi 40 70 35 (34) 136 36 (34) 142 
SPL/ext/- 54 (53) 6 54 (51) 87 48 (43) 112 
SPUext/vi-C&B 90 (7 1) 57 90 (58) 100 105(57) 117 
SPUextIvi-B&C 107 (93) 43 102 (75) 79 105 (70) 103 
SPUuss/vi 61 (49) 55 77 (50) 111 76 (42) 131 

Numbers in parenthesis indicate the result (if altered) if the first solution is taken for those 
instances exceeding the time limit. 

340 See section 7.1.1 and 7.1.2. 
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Remarkably, all best solutions to test instances Tl2-TT6 have been obtained by 
model formulations with an SPL basis and valid inequalities. Regarding test sets 
TT7-TT9, the advantage of these model formulations compared to the others 
seems to increase, if the number of products increases. These results are confirmed 
by Table 7-14 which provides the average gaps of the solutions found after 60s 
based on LB'~', the lower bound obtained by XpressMP after automatic cut gen- 
eration. The average gap tends to be lower for test sets with a higher number of 
products, which is possibly explained by the reasoning that the relative portion of 
setup costs that is to be saved due to the linking feature of the CLSPL decreases, if 
more products are to be scheduled. 

Table 7-14: Average gaps (lower bound: LB'~') of different model formulations for test 
sets Tl2-T19 (time limit: 60s or first solution). - 
Model formulation Tn ri-3 TT4 TT5 TT6 
I&L/ext/vi-C&B 13.65% 6.70% 11.41% 5.70% 9.20% 

Test Sets TLI-TL3 

In Table 7-15 and Table 7-16 the same information as in Table 7-13 and Table 
7-14 is provided, but now for test sets TL1-TL3, which are better suited to assess 
the computational performance of the CLSPL. Again, model formulations with 
valid inequalities outperform those without. Furthermore, a feasible solution is ob- 
tained for all test instances with all model formulations for test set TL1 and for 
almost all for test set TL2. For these two test sets, in addition to the best model 
formulations for test sets T1-T9, also model formulation I&L/ext/vi-C&B pro- 
vides reasonable results. Interestingly, test set TL2 seems to be more difficult 
(based on the observed average gaps) for the model formulations with an SPL ba- 
sis, while the difficulty seems to increase with the number of products (4, 6 and 8 
for test sets TL1, TL2 and TL3) for model formulations with an I&L basis. 
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Table 7-15: Number of test instances (total: 180) a model formulation found the best solu- 
tion (#best) or no solution (#none) within the time limit of 60s. 

Model formulation # best # none # best # none # best # none - 
I&L/ext/vi-C&B 94 0 75 4 57 (55) 13 
I&L/ext/vi-B&C 76 0 75 0 ' 66 5 
I&L/uss/vi 73 0 64 (63) 2 52 14 
SPL/ext/- 66 0 70 2 73 5 
SPL/ext/vi-C&B 75 0 68 (65) 6 Sl(66) 51 
SPL/ext/vi-B&C 98 0 79 4 103(97) 18 
SPL/uss/vi 
Numbers in parenthesis indicate the result (if altered) if the first solution is taken for those 
instances exceeding the time limit. 

Table 7-16: Average gaps (lower bound: LB'~') of different model formulations for test 
sets TL1-TL3 (time limit: 60s or first solution). 

Model formulation TL 1 TL2 TL3 
I&L/ext/vi-C&B 10.78% 13.23% 21.49% 
I&L/ext/vi-B&C 20.52% 23.07% 20.28% 
I&L/uss/vi 16.80% 20.34% 26.46% 
SPL/ext/- 28.59% 32.77% 26.26% 
SPL/ext/vi-C&B 11.35% 15.23% 10.85% 
SPL/ext/vi-B&C 11.65% 14.42% 10.33% 
SPL/uss/vi 15.96% 19.11% 15.15% 

Finally, in Fig. 7-3 to Fig. 7-5 average gaps of the different model formulations 
are shown. The upper bound is the solution obtained within the time limit of 60s 
or the first solution, if it has been found later. The lower bounds used are LB'~', 
the lower bound obtained after the automatic cut generation of XpressMP, the 
bound obtained by the branch-and-bound search after 60s or at the time the first 
solution has been found (whichever is later) (best bound), as well as the best solu- 
tion obtained by any of the model formulations tested (best solution). The differ- 
ence between the first two bounds shows how much of the gap is closed within the 
first minute of computational time. This portion is clearly bigger for test set TL1 
(Fig. 7-3) than for the other two test sets TL2 (Fig. 7-4) and TL3 (Fig. 7-5). 

Furthermore, it is interesting to note that the ranking of the different model 
formulations changes for the different test sets. In Fig. 7-3 (test set TL1) model 
formulation I&L/extlvi-C&B seems to outperform the other model formulations. 
Based on the Wilcoxon matched-pairs signed-ranks tests the solutions obtained by 
this model formulation are significantly better than even those of model formula- 
tions SPL/ext/vi-C&B and SPL/ext/vi-B&C, which come in second and third, at 
confidence levels of 99%. However, this result is reversed for test sets TL2 and 
TL3. For both test sets, SPL/ext/vi/B&C outperforms I&L/ext/vi/C&B signifi- 
cantly based on the same statistical test as above. The reason for this difference is 
presumably the different size of the test instances in each test set. The I&L model 
formulation seems to work much better with smaller test instances. 
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I LB: XLP 

30% 0 LB: Best Bound 1 

Fig. 7-3: Average gaps (to different lower bounds) of different model formulations (test set 
TL 1, time limit: 60s or first solution). 

40% 

35% 

LB: Best Solution 
30% 

Fig. 7-4: Average gaps (to different lower bounds) of different model formulations (test set 
TL2, time limit: 60s or first solution). 
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SPUext SPUexVvi- SPUexVvi- SPUussIvi I&UexVvi- I&UexVvi- I&Uuss/vi 
C&B B&C C&B B&C 

35% - 

Fig. 7-5: Average gaps (to different lower bounds) of different model formulations (test set 
TL3, time limit: 60s or first solution). 

30% - 

25% 

Decomposition Heuristic 

L3 LB: Best Bound - 

LB: Best Solution 
-- . . . .  

Thus far, the diffcrcnt model formulations have been compared. Lastly, the per- 
formance of the temporal decomposition heuristic presented in section 6.2 will be 
assessed. As the model formulations itself provide a reasonable solution quality, if 
the underlying decision problem is not too big in terms of number of products and 
periods, the heuristic is intended to increase solution speed considerably without 
loosing too much solution quality, if the solution quality of the model deteriorates 
due to its matrix size. 

Table 7-17 provides a comparison of solution quality (based on the average gap 
between the best solution found and the lower bound after automatic cut genera- 
tion of model SPL/ext/vi-C&B) and solution speed. The best model formulation, 
the decomposition heuristic and the tabu-search heuristic by Gopalakrishnan et al. 
(2001) are to be compared.341 The decomposition heuristic has been run with pa- 
rameter combination 61212, a time limit of 15 seconds and no anticipation of setup 
times after the rolling window (option "min"). Computational times are only an 
indicator here, because different hardware has been used by Gopalakrishnan et al. 
(2001) compared to our tests. Gaps are much lower for either the model formula- 
tion or the decomposition heuristic compared to the tabu-search heuristic by 
Gopalakrishnan et al. (2001). As their solutions and lower bounds have not been 
available, a further analysis, whether the difference stems from better solutions or 

.... . . . .  . . . .  .... . . . .  .... P - - ... .... . . . .  . . . .  . . . .  . . . .  . . .  - -- .. . .  .-- . . . .  . . . .  . . . .  . . . .  . . . .  

. . .  . . . .  ... . . .  . . . .  . . . .  . ... . . . .  

341 Data for the tabu-search heuristic by Gopalakrishnan et al. (2001) are taken from their 
paper. Cf. Gopalakrishnan et al. (2001) pp. 861-862. 
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better bounds is not possible. However, although the decomposition heuristic pro- 
vides slightly worse solutions compared to the model formulation, it takes a much 
shorter amount of time to arrive at these solutions. 

Table 7-17: Comparison of model formulation SPLIextlvi-B&C, decomposition heuristic 
and tabu-search heuristic of Gopalakrishnan et al. (2001). Gaps (except Gopalakrishnan et 
al. (2001)) are based on L B ~ ~ ~ ( ~ ~ ~ ~ ~ " ~ ~ ) .  

Test sets SPLIextlvi-B&C Decomposition heuristic Gopalakrishnan et al. 
TT (60s or first solution) (61212, 15s, min) (2001) 

[Pentium 3,550 MHz] 
Gap Time [s] Gap Time [s] Gap Time [s] 

1 ,2  1.9% (1) 41.5 3.0% 6.3 27.8% 
3 ,4  0 %  (4) 65.6 1.9% 17.9 13.9% ) 20.8 
5 ,6  0.4% (5) 122.4 1.5% 32.6 6.0% 
7-9 2.0% (225) 155.4 4.1% 23.8 12.4% 81.7 

The performance of the temporal decomposition heuristic will be analyzed in 
some more detail based on test sets TL1-TL3, which are better suited for the 
CLSPL as has been argued above. A crucial factor must be the choice of a good 
parameter combination, i.e. the choice of the size of the rolling windows. Different 
parameter combinations are compared in Table 7-18. Here, and in all subsequent 
tables, corresponding data for model formulation SPLIextlvi-B&C are given as 
reference values. Apart from test set TL1 the decomposition heuristic finds on av- 
erage better solutions than the reference model formulation for at least one pa- 
rameter combination (61212). To do so, the decomposition heuristic only needs a 
fraction of the time compared to the reference model formulation. 

The parameter combination without overlap of rolling windows (41010) shows 
the worst average solution quality (Gap) and worst case performance (Max). The 
solution quality is significantly342 worse than for all other parameter combinations. 
Still, it outperforms almost all other model formulations (Table 7-16). Overlap- 
ping rolling windows as well as relaxing integrality constraints within this overlap 
(41012 and 41212) improves average solution quality as well as worst case behavior. 
However, the computational effort almost doubles, if integrality constraints are not 
relaxed. Increasing the size of the rolling windows while retaining an overlap with 
relaxed integrality constraints (61212) seems to be the best choice balancing the 
gain in solution quality with the loss in solution speed. This parameter combina- 
tion shows a significantly superior solution quality compared to all other combina- 
tions depicted in Table 7-1 8. 

In Table 7-19 different variants to anticipate setup times in periods after the 
rolling window are compared. Although the best solution quality (Gap) is re- 
ported, if the anticipation deducts a product's setup time from available capacity 
in each period with positive demand (anticipation of setup times: max), this stems 
from the fact that approximately 20% of test instances of each test set could not be 

342 Again the Wilcoxon matched-pairs signed-ranks test is used here and in the following 
paragraphs at confidence levels of 99% to obtain conclusions regarding the different 
parameter combinations of the temporal decomposition heuristic. 
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solved with this kind of anticipation. Often even the first rolling window is infea- 
sible rendering the whole test instance infeasible for the heuristic. 

If setup times are anticipated by option "mean", average and worst case per- 
formance are slightly improved versus variant "min", if parameter combination 
41212 is used. However, the opposite is true for parameter combination 61212, but 
neither of these two differences are significant. 

Table 7-18: Performance of decomposition heuristic for test sets TL1-TL3 and different 
sizes of the rolling window (time parameter: 15s; anticipation of setup times: rnin). Gap and 
maximum deviation are based on L B ~ ~ ~ ( ~ ~ ~ ' ~ ~ " ~ ~ )  used as a lower bound. 

Parameter TL 1 TL2 TL3 
combination Gap Max Time[s] Gap Max Time [s] Gap Max Time[s] 
SPWextlvi-B&C 10.7% 32.4% 50.9 14.4% 51.7% 128.6 10.3% 48.4% 286.7 
4 1 2 1 2  13.3% 45.7% 2.5 14.6% 46.5% 3.6 10.1% 29.5% 5.3 
41010(a '  14.9% 52.7% 1.8 17.1% 57.6% 2.6 13.4% 44.1% 3.8 
4 1 0 1 2  12.6% 42.2% 3.5 14.6% 44.2% 5.1 10.2% 26.9% 7.5 
6 1 2 1 2  11.2% 39.6% 3.6 12.9% 37.6% 6.2 9.5% 32.4% 

(a) For two instances of test sets TL2 and TL3 no solution has been obtained with this pa- 
rameter combination (41010). 

Table 7-19: Performance of decomposition heuristic for test sets TL1-TL3 and different an- 
ticipations of setup times (time parameter: 15s). Gap and maximum deviation are based on 
L B ~ ~ ~ ( ~ ~ ~ / " ~ ' ~ ~ )  used as a lower bound. 

Antici- Parameter TL I TL2 TL3 
pation combination Gap Max Time Gap Max Time Gap Max Time 

[sl [sl [sl 
SPWextlvi-B&C 10.7% 32.4% 50.9 14.4% 51.7% 128.6 10.3% 48.4% 286.7 
min 4 1 2 1 2  13.3% 45.7% 2.5 14.6% 46.5% 3.6 10.1% 29.5% 5.3 
mean 4 1 2 1 2  13.0% 35.2% 2.6 14.5% 43.8% 3.7 9.9% 30.1% 5.4 
mar(") 4 1 2  12 (10.6%) (28.7%) 2.0 (12.1%) (32.7%) 2.7 (8.8%) (29.0%) 3.9 
min 6 1 2 1 2  11.2% 39.6% 3.6 12.9% 37.6% 6.2 9.5% 32.4% 9.5 
mean 6 1 2 1 2  11.8% , 40.7% 3.8 13.0% 31.0% 6.5 9.7% 28.2% 9.7 

times (TL~I  35, TL2: 41, TL3: 39) 
(b) For many test instances no feasible could be obtained with this anticipation of setup 
times (TL1: 29, TL2: 34, TL3: 34). 

As solutions are obtained very quickly with the temporal decomposition heuris- 
tic, in Table 7-20 the effect of the time parameter is analyzed. Increasing it from 
5s to 15s and from 15s to 30s adds only marginal additional time that is actually 
used (test set TL1). However, the first increase improves solution quality signifi- 
cantly. For test set TL2, the first increase (on average) leads to almost one second 
more computational time used, again accompanied with a significant increase in 
solution quality. Only for test TL3 both increases in computational time lead to 
significant increases in solution quality. However, the imposed time limit is never 
exceeded and computational times are only 11.2s on the average. 
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Table 7-20: Performance of decomposition heuristic for test sets TLl-TL3 and different 
time parameters (parameter combination: 61212). Gap and maximum deviation are based on 
LBXLP(SPUext/vi) used as a lower bound. 

Time pa- Antici- TL 1 TL2 TL3 
rameter pation Gap Max Time Gap Max Time Gap Max Time 

5 min 11.8% 39.6% 3.5 14.8% 43.7% 5.4 11.1% 37.2% 7.2 
5 mean 12.6% 40.7% 3.7 15.0% 39.7% 5.5 11.3% 36.4% 7.4 
15 min 11.2% 39.6% 3.6 12.9% 37.6% 6.2 9.5% 32.4% 9.5 
15 mean 11.8% 40.7% 3.8 13.0% 31.0% 6.5 9.7% 28.2% 9.7 
30 min 11.2% 39.6% 3.6 12.9% 37.6% 6.3 8.7% 25.7% 10.9 
30 mean 11.8% 40.7% 3.8 12.9% 31.0% 6.5 8.8% 23.3% 11.2 

Finally, Table 7-21 analyzes the effect of bonuses. As indicated in section 6.2.3 
bonuses are intended to reduce the so-called planning horizon effect. Bonuses are 
used here without the component valuing the loss of capacity due to setup times 
after the rolling window. For parameter combination 41212 bonuses decrease the 
average gap for all test sets significantly. Especially, the worst case performance 
(column "Max") is improved. However, the effect of bonuses diminishes, if pa- 
rameter combination 61212 is used. There, the average gap even deteriorates for 
test set TL3. However, while parameter combination 61212 provides the best solu- 
tion quality with bonuses and no anticipation of setup times for test sets TL1 and 
TL2, for test set TL3 parameter combination 41212 provides the best solution qual- 
ity with the same anticipation used. 

Table 7-21: Performance of decomposition heuristic for test sets TL1-TL3 and different an- 
ticipations of setup times including bonuses (time parameter: 15s). Gap and maximum de- 
viation are based on 

combina- Gap Max Time Gap Max Time Gap Max Time 
tion [%I ["!I [s] [%I [%I [s] [%I [%I [s] 

SPLIextlvi-B&C 10.7 32.4 50.9 14.4 51.7 128.6 10.3 48.4 286.7 
min 41212  13.3 45.7 2.5 14.6 46.5 3.6 10.1 29.5 5.3 
min+bonus 4 / 2 / 2 12.2 32.6 3.0 13.7 37.3 4.2 9.5 21.4 6.2 
mean 41212  13.0 35.2 2.6 14.5 43.8 3.7 9.9 30.1 5.4 
mean+bonus 41212  12.5 28.3 2.9 13.8 35.9 4.4 9.5 21.7 6.4 
min 6 / 2 / 2 11.2 39.6 3.6 12.9 37.6 6.2 9.5 32.4 9.5 
min+bonus 6 12  / 2  11.1 27.6 4.3 12.8 33.8 7.5 10.0 31.0 10.4 
mean 61212  11.8 40.7 3.8 13.0 31.0 6.5 9.7 28.2 9.7 

Summarizing, regarding the computational performance all improvements 
compared to the basic version of CLSPL have had positive effects. Both, reformu- 
lations (SPL reformulation and extended model formulation) and the addition of 
valid inequalities helped to increase the computational performance of the pro- 
posed CLSPL model formulation. Compared to the benchmarks from literature, 
both the proposed model formulations as well as the temporal decomposition heu- 
ristic proved to be very effective. Furthermore, the decomposition heuristic im- 
proved the quality of solutions compared to the best model formulation proposed 



150 7 Analvsis of Solutions and Com~utational Performance 

for test sets TL1-TL3 using far less computational time. Regarding their customi- 
zation it proved worthwhile to include an overlap of rolling windows and bonuses 
to overcome the so-called planning horizon effect. Setup times after the rolling 
windows have been anticipated best by options "min" and "mean". 

7.2 Time Continuity - Lot Sizes 

7.2.1 Test Sets and Benchmark 

In this section almost the same test sets which have been introduced in the preced- 
ing section 7.1.1 as test sets TL1 and TL2 will be used. These test sets will be en- 
riched by minimal and maximal lot sizes as well as different batch sizes to pose 
corresponding restrictions. Furthermore, their demand profile will be altered 
slightly to make them feasible at least for the basic PLSP. The most test instances 
of test sets TL1 and TL2 are not feasible for the PLSP, because demand for all 
products generally starts in the first period and the PLSP can at most set up one 
product per period. 

The demand profiles are changed according to the following procedure to yield 
test set TC1 based on test set TL1. Demands of products j=2..J in periods t=l.j-1 
are shifted to the last period within the planning interval (2'). Symmetrically, this 
is done to yield test set TC2 based on test set TL2. Demands of products j=J-1.. 1 
in periods t=l..J-j are shifted to the last period within the planning interval (2'). 

Furthermore, to generate also a test set with a larger number of periods to as- 
sess the computational performance of the temporal decomposition heuristic, test 
set TC4 (TC5) is generated by doubling the number of periods in test set TL1 
(TL2) and afterwards applying the procedure to make the test instances feasible at 
least for the PLSP which has been used to generate test set TCl (TC2) based on 
TL 1 (TL2). 

Lot size restrictions are imposed on all products. The batch size (bsj) has been 
chosen to be 250 units for all products, if not stated otherwise. The minimum lot 
size (minlot,) is 4.bsj (l.bsj) for products j= l ,  2 (j=any other product). This also re- 
flects the different characteristic of the demand profiles of these two product 
groups. The maximum lot size (maxlot,) is 3,000 for all products. This might have 
been the result of the following planning scenario (test set TC1): Four products 
with different demand profiles (two products face a fourfold higher demand than 
the other two products) require treatment on one bottleneck resource. This re- 
source operates only in batch mode with a batch size of 250 units. The resource 
needs to be cleaned (requires a setup operation) after having processed at most 12 
batches. 

In two other scenarios the batch size is reduced to bsJ=125 (bsJ=50) to calculate 
the cost advantage, if the equipment allows to produce in smaller batches. Fur- 
thermore, a scenario with a smaller maximum lot size (maxlot,=1,500) is defined 
to analyze model formulations and solutions which allow to produce consecutive 
lots of the same product. 
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As the model formulation by Kallrath (1999)343 is the only model formulation 
with similar properties compared to the PLSP model formulation with the lot size 
extension, it is chosen as a benchmark here. The benchmark formulation requires 
to determine a parameter a, beforehand, which is the number of lots that are 
maximally produced of product j within the planning interval. Consequently, if a, 
is chosen too low, the optimal solution cannot be found, while on the other hand 
the matrix size is inflated unnecessarily, if a, is chosen too high. Here, for test set 
TC1 a, has been set to six for all products in all test instances after extensive pre- 
liminary tests. Furthermore, although Kallrath (1999) has provided a different ba- 
sic PLSP model formulation in his paper,344 the one used throughout this thesis 
supplemented by valid inequalities is taken,345 which gives much better results. 

7.2.2 Analysis of Solutions 

To analyze the behavior of model formulations with the lot size extension, the fol- 
lowing notation is introduced (Table 7-22). The first field represents the basic 
model formulation, which is either the PLSP or the CLSPL. The second field 
represents the different lot size restrictions present (none, maximal lot sizes, 
minimal lot sizes, production in integer multiples of a batch size, batch flow sce- 
nario, consecutive lots of the same product allowed). Finally, the third field de- 
scribes the use of valid inequalities or indicates the use of the preprocessing pro- 
cedure outlined for the batch flow scenario in section 6.1.2.1. Valid inequalities are 
either applied at the root node only (cut-and-branch approach, "vi-C&B") or 
throughout the branch-and-bound search. The latter is indicated by "vi-B&C". 
Again, the model cut feature of XpressMP is used here. E.g., the abbreviation 
"PLSP/minmax/vi-B&C" describes a model formulation using the PLSP as the 
basic model formulation, obeying restrictions on minimal and maximal lot sizes 
and applying valid inequalities via the model cut feature of XpressMP. 

Difficulty of Different Restrictions 
From Fig. 7-6 differences regarding computational tractability of model formula- 
tions with different restrictions imposed on lot sizes become obvious. It is de- 
picted, how many test instances (test set TC1; total: 180) have been solved to 
proven optimality over time. Apparently, the most easy model formulation is the 
basic model PLSP with no additional constraints. All test instances are solved to 
optimality within the time limit of three minutes. The second easiest case are 
minimal and maximal lot size restrictions. The constraints associated with these 
restrictions do not contain any additional binary or integer variables. Third comes 
the model formulation in which batch size restrictions are imposed on production 
lots, and fourth the model formulation which contains all of the above restrictions 

343 Cf. Kallrath (1999) pp. 331-334. The model formulation can be found in the appendix. 
344 Cf. Kallrath (1999) p. 332. 
345 See sections 2.3.3 and 6.1.1.1. Valid inequalities (6-3) and (6-4) are defined as regular 

constraints here, because this setting provides the best outcome for the benchmark. 
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at the same time. Most difficult seems to be the batch flow scenario. However, this 
ranking changes somewhat, when the preprocessing procedure outlined in section 
6.1.2.1 is applied for the batch flow scenario (Fig. 7-1 1 and Table 7-32). 

Table 7-22: Notation of different model formulations. 

Parameter Value Comment 
1 PLSP Basic model formulation PLSP (I&L) 

CLSPL 
2 - 

max 
minmax 
bat 
all 

+flow 
+cc 1 

+cc2 

+K 

3 vi-C&B 

vi-B&C 

+PP 

Basic model formulation CLSPL (I&L) 
No further restrictions 
With maximal lot size restrictions (see section 6.1.2.1) 
With minimal and maximal lot size restrictions (see section 6.1.2.1) 
With batch size restrictions (see section 6.1.2.1) 
With minimal, maximal and batch size restrictions (see section 
6.1.2.1) 
Additionally with the batch flow scenario (see section 6.1.2.1) 
Additionally with consecutive campaigns of the same product al- 
lowed (see section 6.1.2.1, first modeling approach) 
Additionally with consecutive campaigns of the same product al- 
lowed (see section 6.1.2. l ,  second modeling approach) 
Additional constraint to allow for a fair comparison with the Kallrath 
(1999) model formulation (see section 7.2.3) 
Valid inequalities (see section 6.1.2. l), Cut&Branch approach 
(=valid inequalities only applied in the root node, see section 5.2.1.2) 
Valid inequalities (see section 6.1.2.1), Branch&Cut approach 
(=model cut feature of XpressMP, see section 5.2.1.4) 
Preprocessing procedure applied (see section 6.1.2.1) 

In Table 7-23 the aforementioned results are confirmed and provided in some 
more detail. If the lot size extension can be modeled without extra binary or inte- 
ger variables (max and minmax), all test instances are solved to proven optimality 
within the time limit, first solutions are found fairly quick (in less than three sec- 
onds on the average) and also the optimal solutions are obtained in a reasonable 
amount of time. If batch size restrictions are present, it takes a bit longer to find a 
first feasible solution and only two thirds of all instances have been proven opti- 
mal within the time limit. Finally, the batch flow scenario takes the longest to find 
a first feasible solution and proves optimality to a bit less than one half of the test 
instances of test set TC1. 

Table 7-24 analyzes the average and maximum cost increase compared to the 
optimal PLSP solution based on test instance characteristics. As described 
above346 the 180 test instances of test set TC1 originate from test set Ti7 defined 
by Trigeiro et al. (1989).347 These have been generated using three capacity 
utilization profiles (low, med. and high), three TBO profiles (low, med. and high), 
two different coefficients of variation for demands as well as two setup time 
profiles. For each of these 3 x 3 x 2 x 2 = 36 combinations five different demand 

346 See sections 7.1.1 and 7.2.1. 
347 Cf. Trigeiro et al. (1989) pp. 358-362. 
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series have been randomly generated to yield the 180 test instances. Consequently, 
one can evaluate the effect of these characteristics by taking the aggregation 
scheme into consideration. 

5 30 55 80 105 130 155 180 

solution time [s] 

Fig. 7-6: Number of test instances solved to optimality over time (different lot size restric- 
tions, test set TC1). 

Table 7-23: Solution speed of model formulations with different lot size restrictions for test 
sets TCI . 

Number of test instances for which PLSP/ * /vi-B&C 
* = - max minmax bat all all+flow 

- a feasible solution is found within 15s 180 180 180 178 177 164 
- a feasible solution is found within 30s 180 180 180 179 180 175 
- a feasible solution is found within 60s 180 180 180 180 180 177 
- a feasible solution is found within 90s 180 180 180 180 180 177 
- a feasible solution is found within 180s 180 180 180 180 180 179 
- optimality is proven within 180s 180 180 180 131 126 83 
Average time (in seconds) to 
- find a first solution 1.17 2.14 2.72 5.37 6.12 10.01 
- find an o~timal solution'"' 4.86 8.28 11.29 50.44 61.70 57.06 
- prove op;imality@) 6.45 10.36 14.97 65.83 84.56 87.69 

(a) Only for test instances with proven optimality 

From Table 7-24 it becomes clear that the TBO profile has the biggest impact 
on cost increases compared to optimal PLSP solutions. TBO profile "high" means 
that setup costs are expensive compared to inventory holding costs or, equiva- 
lently, holding inventory is relatively cheap. Restrictions on lot sizes (e.g., mini- 
mal lot sizes or batch size restrictions) yield ceteris paribus (here: the setup pattern 
stays the same) higher stocks. Thereby, the cost increase has to be bigger for TBO 
profile "low" than for TBO profile "high", which definitely is the case here. Of 
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course, the ceteris paribus assumption is not valid here, because the setup pattern 
will change to offset (or at least alleviate) the cost increase, but this is one expla- 
nation for the impact of the TBO profile on costs here. 

Table 7-25 provides average and maximum gaps for the same model formula- 
tions and at the same level of detail as Table 7-24. This data is provided here, be- 
cause the solutions which have been used to derive Table 7-24 have not been op- 
timal for all model formulations. So, the interpretation obtained from Table 7-24 
might have been disguised due to bad solutions. However, this is not the case, as 
the gaps are fairly low (Table 7-25). 

Table 7-24: Average and maximum percentage deviation from optimal PLSP solutions of 
different model formulations (time limit: 3 minutes) for test set TC1. 

Average Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
PLSPImadvi-B&C 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
PLSPIminmadvi-B&C 4.3 5.0 4.1 8.3 4.4 0.7 3.9 5.1 4.4 4.5 
PLSP/bat/vi-B&C 25.9 26.7 26.8 41.9 25.1 12.5 25.8 27.1 26.8 26.1 
PLSPIalllvi-B&C 29.2 29.7 29.5 47.3 28.1 12.9 28.6 30.2 29.6 29.3 
PLSP/all+flowlvi-B&C 41.5 40.6 39.6 64.6 38.5 18.5 40.0 41.1 40.3 40.8 

Maximum Capacity utilization TBO profile Demand Setup time 
variation length 

low med. high low med. high low high low high 
PLSPImadvi-B&C 0.6 0.6 0.8 0.0 0.0 0.8 0.0 0.8 0.2 0.8 

Table 7-25: Average and maximum gap [%I (upper bound: best solution found within a 
time limit of 3 minutes; lower bound: bound after 3 minutes) for test set TC1. 

Average Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
PLSP/-/vi-B&C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 

PLSPImadvi-B&C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
PLSPIminmadvi-B&C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
PLSP/bat/vi-B&C 0.9 1.1 2.5 0.0 0.4 4.2 1.8 1.2 1.5 1.5 
PLSPIalllvi-B&C 0.9 1.6 2.7 0.0 0.7 4.5 2.3 1.2 1.6 1.9 
PLSP/all+flow/vi-B&C 3.4 3.6 9.2 0.8 4.5 10.8 5.7 5.0 6.4 4.4 

Maximum Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
PLSPI-Ivi-B&C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Although the cost increase compared to optimal PLSP solutions seems to be af- 
fected only by the TBO profile, the gaps seem to be not only dependent on the 
TBO profile, but also on the capacity utilization level (Table 7-25). The gaps, 
which are the gaps that remain for each test instance after three minutes of compu- 
tational time (deviation of best solution and best bound after three minutes), 
thereby - in a sense - measure the difficulty of test instances. High capacity utili- 
zation levels as well as sharp tradeoffs between setup costs and inventory holding 
costs seem to make the problem more difficult. Moreover, test instances with low 
demand variation (stable demand) show gaps that are a bit higher than those with 
high demand variation. 

Different Batch Sizes 
Obviously, if additional restrictions on the lot size are present, it will generally be 
no longer possible to find the same solution as before (for the basic PLSP). Con- 
sequently, the optimal solution to the basic PLSP is a lower bound for all model 
formulations with additional restrictions (on lot sizes). Furthermore, this deviation 
from the optimal PLSP solution has an economic interpretation: It is the cost of 
obeying these lot size restrictions, e.g., the cost of producing in batches. Thereby, 
it is possible to calculate the cost of different scenarios (e.g., different resources 
which allow for different batch sizes) and use the outcome not only for schedul- 
ing, but also as a help for investment decisions. The cost decrease in inventory 
holding costs due to smaller batch sizes (or minimal lot sizes) may pay off an in- 
vestment in a resource which allows for smaller batch sizes (minimal lot sizes). 

Fig. 7-7: Average cost increase vs. optimal PLSP solutions for different lot size restrictions 
(test set TC1, black: average gap after 3 minutes of computation). 
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In Fig. 7-7 the average cost increase compared to the optimal PLSP solution is 
shown for different lot size restrictions. As these model formulations have not 
been solved to optimality, it might be, that the cost increase stems from bad solu- 
tions. This is not the case here and the effect is depicted by the shaded (black) area 
of each bar, which represents the average gap between the solution used in this 
calculation and the lower bound obtained on this solution. This means the average 
cost increase of different lot size restrictions compared to the optimal PLSP solu- 
tions lies somewhere in the black area of each bar. 

Minimal and maximal lot size restrictions have only a minor effect here (left 
bar). Different batch sizes on the other hand seem to have a big impact on costs. 
Furthermore, if consecutive lots of the same product are allowed, this results in a 
small cost reduction here (second and third bar from right). 

55 80 105 130 

solution time [s] 

Fig. 7-8: Number of  test instances solved to optimality over time (different batch sizes, test 
set TC1). 

Table 7-26: Gap [%I (upper bound: best solution found within a time limit of 3 minutes; 
lower bound: LB'~') and cost comparison [%I to optimal PLSP solutions for different 
batch sizes (test set TC1). 

PLSP/-/ PLSPhatIvi-B&C PLSP/all/vi-B&C 
vi-B&C 250 125 50 250 125 50 

Gap (average) 4.8 22.4 23.5 22.4 23.7 23.5 22.4 
Gap (standard deviation) 4.1 6.4 6.5 6.7 6.2 6.4 6.7 
Gap (minimum) 0.0 8.9 12.1 12.2 8.0 12.6 12.3 
Gap (maximum) 14.5 45.0 52.0 52.5 45.4 50.6 50.5 
Cost increase vs. PLSP (average) - 26.5 14.5 6.2 29.4 14.6 6.2 
Cost increase vs. PLSP (std. dev.) - 12.9 7.1 3.1 15.0 7.1 3.1 
Cost increase vs. PLSP (minimum) - 7.2 3.9 1.8 7.2 4.2 1.8 
Cost increase vs. PLSP (maximum) - 61.9 33.7 13.9 65.8 33.7 13.9 

In Fig. 7-8 the effect of different batch sizes on the ability to obtain optimal so- 
lutions is analyzed. Apparently, the batch size seems to have only minor impact on 
the ability of the model formulation to prove optimality of the test instances. On 
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the other hand, Table 7-26 shows that costs are strongly affected by the batch size. 
But there is an explanation to this phenomenon, because the bigger the batch size, 
the more stock will ceteris paribus lie in inventory. 

Comparison of Basic Models PLSP and CLSPL 
Table 7-27 shows the average percentage deviation in total costs between model 
formulations using the CLSPL as a basic model and those using the PLSP as the 
basic model. Theoretically, all values must be negative, because model formula- 
tions with the CLSPL as a basic model allow all solutions that are feasible with 
the PLSP as the basic model plus those, in which more than one product is set up 
in a single period. Therefore, solutions using the CLSPL must be cheaper than 
those using the PLSP. As not all solutions obtained have been proven optimal, 
sometimes (especially with TBO profile "high") model formulations using the 
PLSP produced better solutions within the time limit of 3 minutes. 

Apparently, the cost difference between CLSPL and PLSP solutions is re- 
markably high for TBO profile "low". This is the expected result, because here 
setup costs are relatively low compared to inventory holding costs. Therefore, it 
makes sense to perform setup operations more frequently, what, of course, is eas- 
ier integrated in plans based on the CLSPL as this basic model is not limited to 
one setup operation per period. Moreover, CLSPL plans are relatively cheaper for 
low capacity utilization. Also in this case, it seems advantageous to schedule more 
products in each period. 

Furthermore, from Table 7-27 one can observe, that the cost advantage de- 
creases the more lot size restrictions are present (all vs. max) and the stronger 
these restrictions are (mmlot,=3,000 vs. mmlot,=1,500). 

Table 7-27: Average percentage deviation of objective function value (total cost) between 
CLSPL and corresponding PLSP solutions (time limit: 3 minutes) for test set TC1 with dif- 
ferent maximum lot sizes. 

rnaxlot = 3,000 Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
CLSPL/max+cc2/vi-B&C -24.3 -23.4 -21.0 -55.9 -12.1 -0.7 -23.4 -22.4 -22.9 -22.9 
CLSPL/all+cc2/vi-B&C -12.7 -9.5 -4.2 -21.3 -7.2 2.1 -9.1 -8.5 -7.6 -10.0 

maxlot = 1,500 Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
CLSPL/max+cQ/vi-B&C -22.8 -22.2 -20.1 -56.3 -11.8 3.0 -22.3 -21.1 -21.7 -21.7 
CLSPL/all+cc2/vi-B&C -11.6 -8.7 -3.4 -22.5 -6.6 5.4 -8.3 -7.5 -6.1 -9.7 

Finally, Table 7-28 provides the average number of setup operations per prod- 
uct and test instance. The numbers are given separately for those products with 
high demand and those products with low demand. As expected, especially prod- 
ucts with low demand are set up much more often, if the CLSPL is used as a basic 
model. Moreover, the average number of setup operation increases, if the maxi- 
mum lot size allowed decreases (mmlo~=1,500 vs. maxlot,=3,000). 
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Table 7-28: Number of setup operations in model formulations with different lot size re- 
strictions (test set TC1). 

Demand profile high low 
Setup operations mean min max mean min max 
PLSPI-hi-B&C 5.30 3 7 3.69 2 5 

Summarizing, the analysis of solutions revealed the different computational ef- 
fort associated with different restrictions on lot sizes. Test instances tend to be- 
come more difficult, if batch size restrictions are present compared to the case in 
which minimal and maximal lot size restrictions are present. The difficulty seems 
to be independent from the batch size, but different batch sizes have fairly differ- 
ent cost effects (Fig. 7-7). As expected, using the CLSPL as the basic model in- 
stead of the PLSP has been most advantageous, if setup costs are relatively cheap 
compared to inventory holding costs, while the effect has been negligible, if rela- 
tively high setup costs lead to CLSPL plans that almost match PLSP plans. 

7.2.3 Computational Performance 

All computational results in this section have been obtained using XpressMP re- 
lease 2003G with standard settings as a MIP solver on a PC equipped with a Pen- 
tium IV processor with a clockspeed of 1.7 GHz and 256 MB of memory. 

Comparison to Benchmark 
The model formulation proposed in section 6.1.2 is first compared to the bench- 
mark by Kallrath (1999).348 The benchmark model formulation does not allow to 
relax the lot size restriction for the last lot within the planning horizon. Therefore, 
to allow for a fair comparison, a corresponding restriction is added to the new 
model formulation. If this additional restriction is present, this is indicated by 
"+K" in the second field of the description of the model formulation. Thus, both 
the Kallrath (1999) model formulation and the proposed model formulation have 
the same feasible region and the same optimal objective function value. 

Fig. 7-9 shows the number of test instances solved to proven optimality over 
time for different model formulations. Apparently, solution behavior does not 
change by the addition of the additional constraint "+K" for the proposed model 
formulations. While the proposed model formulation solves a majority of test in- 
stances to proven optimality if minimum and maximum lot size restrictions are 
present, the Kallrath (1999) model formulation proves optimality for only 32 test 

348 See section 7.2.1. The model formulation can also be found in the appendix. 
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instances. If batch size restrictions are also included, the proposed model formula- 
tion still solves two thirds of all test instances of test set TCl to proven optimality, 
while not one single test instance is solved to proven optimality by the Kallrath 
(1 999) model formulation. 

5 30 55 80 105 130 155 180 

solution time [s] 

+- PLSPIminmaxJvi-B&C + PLSPlminmax+Klvi-B&C t PLSPIalllvi-B&C 

* PLSPlall+K/vi-B&C + Kallrathlminmaxhi-B&C + Kallrathlalllvi-B&C 

Fig. 7-9: Number of test instances solved to optimality over time (comparison to bench- 
mark by Kallrath (1999), test set TC1). 

Furthermore, as shown in Table 7-29, the Kallrath (1999) model formulation 
does not even provide feasible solutions to a considerable number of test instances 
within the time limit of 3 minutes. Also the time until the first feasible solution is 
found is considerably higher for the Kallrath (1999) model formulation than for 
the new model formulation. 

Not only solution speed is much higher for the proposed model formulation 
compared to the benchmark by Kallrath (1999), but also the quality of solutions 
obtained is much better. Table 7-30 and Table 7-3 1 provide the remaining gaps af- 
ter three minutes of computational time for model formulations with minimum 
and maximum lot size restrictions (Table 7-30) and for model formulations in 
which production has additionally to be in multiples of a batch size (Table 7-31). 
By comparing the gaps, one can observe that the remaining gap after three minutes 
of computational time is on average only 0.00% (1.31%) if minimum and maxi- 
mum lot size (and batch size) restrictions are present. Thus, the solutions obtained 
by the new model formulation are almost optimal. The corresponding gaps for the 
Kallrath (1999) model formulation are 9.03% and 126.76%. The question whether 
these gaps are due to bad lower bounds or due to bad solutions is answered, if so- 
lutions for both model formulations (the new one and the one of Kallrath (1999)) 
are set in relation to the same lower bound - the optimal PLSP solutions. Solu- 
tions to the Kallrath (1 999) model formulation are approximately 4% worse (more 
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expensive) if minimal and maximal lot size restrictions are present, but 90% 
worse, if additionally batch size restrictions need to be applied. This means, a 
good plan (new model formulation) might be implemented at roughly 6 0 9 ' 0 ~ ~ ~  of 
the cost of a bad plan (Kallrath (1999) model formulation). And this number only 
holds for the subset of test instances the Kallrath (1999) model formulation has 
been able to obtain a feasible plan at all. 

Table 7-29: Solution speed of model formulations with different lot size restrictions for test 
sets TC1. 

Number of test instances for which PLSPI * lvi-B&C Kallrathl PLSPI * Ivi-B&C KallraW 

* = minmax minmax+K 
minmaxl all all1 
vi-B&C vi-B&C 

- a  feasible solution is found within 15s 180 180 45 177 174 4 
- a  feasible solution is found within 30s 180 180 118 180 180 
- a feasible solution is found within 60s 180 180 163 180 180 
- a  feasible solution is found within 90s 180 180 176 180 180 
- a  feasible solution is found within 180s 180 180 180 180 180 
- optimality is proven within 180s 180 180 32 126 113 0 
Average time (in seconds) to 
- find a first solution 2.72 2.81 28.73 6.12 6.25 37.99 

find an optimal solution(a) 
- prove optimality'") 14.97 15.24 112.28 84.56 81.89 - 

Comparison of Different Variants 
In section 6.1.2.1 it has been argued, that the lot size extension can either be mod- 
eled by defining variables Y,, as binary variables or by using (6-4) as regular con- 
straints. According to Fig. 7-10 this seems to have no impact on the solution be- 
havior of different model formulations based on test set TC1. On the other hand, a 
difference is observed between the model formulation using valid inequalities only 
at the root node (C&B) and the one using the model cut feature of XpressMP 
(B&C). Using valid inequalities only at the root node seems to speed up the solu- 
tion process at least in the beginning. At the time limit the model formulation us- 
ing the C&B approach has found only seven optimal solutions more than the B&C 
approach (133 vs. 126), while after 90 seconds the advantage has peaked at 30 test 
instances (104 vs. 74). 

349 From the last row in Table 7-3 1 one can obtain the average cost of solutions to model 
formulation PLSP/all+Wvi-B&C (135.04%) and Kallrath/all/vi-B&C (226.80%). 
Thus, the cost ratio of these two model formulations is about 60% (=135.04/226.8). 
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Table 7-30: Gap (upper bound: best solution found within a time limit of 3 minutes; lower 
bound: bound after 3 minutes) and cost comparison to optimal PLSP solutions for 
PLSP/minmax/vi-B&C and benchmark (test set TC1). 

PLSP/minmax/ PLSP/minmax+K/ Kallrathl min- 
vi-B&C vi-B&C maxlvi-B&C 

Gap (average) 0.00% 0.00% 9.03% 
Gap (standard deviation) 0.00% 0.00% 7.68% 
Gap (minimum) 0.00% 0.00% 0.00% 
Gap (maximum) 0.00% 0.00% 35.66% 
Average cost increase vs. PLSP 4.46% 4.79% 8.87% 

Table 7-31: Gap (upper bound: best solution found within a time limit of 3 minutes; lower 
bound: bound after 3 minutes) and cost comparison to optimal PLSP solutions for 
PLSPJalVvi-B&C and benchmark (subset of test set TC1 for which the benchmark found a 
feasible solution within the time limit; 96 test instances). 

PLSP/alV PLSP/all+K/ KallrathIalV 
vi-B&C vi-B&C vi-B&C 

Gap (average) 1.75% 1.31% 126.76% 
Gap (standard deviation) 3.01% 2.56% 64.51% 
Gap (minimum) 0.00% 0.00% 24.24% 
Gap (maximum) 13.48% 12.92% 33 1.92% 
Average cost increase vs. PLSP 29.44% 35.04% 126.80% 

solution time [s] 

Fig. 7-10: Number of test instances solved to optimality over time (different model formu- 
lations, test set TC1). 
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Fig. 7-1 1 shows the speed up for the batch flow scenario if the preprocessing 
procedure outlined in section 6.1.2.1 is applied. Approximately half of the test in- 
stances seem to become fairly easy, just by rearranging demands. 90 out of 180 
test instances are solved to proven optimality after at most 22 (31) seconds by 
model formulation PLSP/bat+flow/vi-B&C+pp (PLSP/all+flow/vi-B&C+pp). 
Thus, by applying the preprocessing procedure, the batch flow scenario, which has 
been identified as the most difficult in the beginning (Fig. 7-6), gets suddenly a lot 
easier. 

solution time [s] 

Fig. 7-11: Number of test instances solved to optimality over time (impact of preprocessing 
on batch flow scenario, test set TC1). 

With Table 7-32 solution speed and solution quality can be analyzed a bit fur- 
ther. In the first two columns, the C&B-approach is compared to the model cut 
feature of XpressMP (B&C). Applying valid inequalities only at the root node 
(C&B) leads to much smaller gaps based on the linear relaxation after automatic 
cut generation (LB'~'). On the other hand, this takes a lot of time. A first feasible 
solution has been obtained after 3 1 seconds on the average compared to just 6 sec- 
onds for the B&C approach. After three minutes of computation, both approaches 
are about even strength, proving optimality for nearly the same number of test in- 
stances (126 and 133) and finishing with roughly the same final gap (based on the 
lower bound after three minutes, LB~) .  

Preprocessing in the batch flow scenario carries only minor computational ef- 
fort. The time to find a first feasible solution roughly stays the same, whether pre- 
processing is applied or not, but integrality gaps are halved. 

Two variants to allow for consecutive campaigns of the same product have 
been proposed in section 6.1.2.1. The first variant (CC1) was to simply double the 
number of variables (two for each product) and to switch between these two sets 
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of variables, whenever a product needed to be set up twice or more. From Fig. 
7-12 it is obvious that this variant is computationally more expensive than the sec- 
ond approach (denoted by CC2). This is especially true, if batch size restrictions 
need to be obeyed, because this doubles not only the number of binary, but also 
the number of integer variables of the model formulation. Moreover, variant CC2 
performs almost as well as the basic variant, which does not allow two or more 
consecutive campaigns of the same product. So variant CC2 is clearly the best 
choice. 

Table 7-32: Solution speed and solution quality o f  different model formulations for test 
sets TC1. 

PLSPl 
all/ alY bat+flow/ bat+flowl all+flow/ all+flow/ 

Number of test instances for which vi-B&C vi-C&B vi-B&C vi-B&C vi-B&C vi-B&C 
+pp +pp 

- a feasible solution is found within 15s 177 3 163 154 163 160 
- a feasible solution is found within 30s 180 87 174 171 174 174 
- a feasible solution is found within 60s 180 179 177 178 176 178 
- a feasible solution is found within 90s 180 180 179 178 176 178 
- a feasible solution is found within 180s 180 180 179 180 179 179 
- optimality is proven within 180s 126 133 90 133 83 126 
Average time (in seconds) to 
- find a first solution 6.12 30.96 8.85 9.28 10.01 8.73 
- find an optimal solution"' 61.70 57.08 57.03 33.52 57.06 33.00 
- prove optimality(" 84.56 67.68 77.32 38.13 87.69 37.89 
Gaps 
Average gap [%I (lower bound: LBXL4 23.66 12.16 20.72 10.99 21.63 12.10 
Average gap [%I (lower bound: LB') 1.75 1.66 5.00 1.84 5.43 2.10 
Minimum gap [%I (lower bound: LB') 0.00 0.00 0.00 0.00 0.00 0.00 

Fig. 7-13 shows the number of test instances solved to optimality over time, if 
not the PLSP, but the CLSPL is chosen as the basic model. Surprisingly, not batch 
size restrictions seem to make the problem difficult, but minimal lot size restric- 
tions. Even the number of test instances solved to proven optimality after three 
minutes for the version with all restrictions present (minimal, maximal and batch 
size restrictions) is greater than the number of test instances solved if only mini- 
mal and maximal lot size restrictions need to be respected. 
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solution time [s] 

Fig. 7-12: Number of test instances solved to optimality over time (different model formu- 
lations with consecutive campaigns, test set TC1 and maxlo$=1,500). 

solution time [s] 

Fig. 7-13: Number of test instances solved to optimality over time (different lot size restric- 
tions, test set TC1, basic model: CLSPL). 

As test set TC1 (J=4, T=20) seems to be fairly easy - at least if the proposed 
modeling and solution approach is used - the number of products has been in- 
creased (J=6) to yield test set TC2, the number of periods has been increased 
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(T=40) to yield test set TC4 and both modifications yield test set TC5.350 Table 
7-33 compares, how well these test sets are solved with a model formulation for 
the basic PLSP. All test instances of test set TC1 have been solved to proven op- 
timality within three minutes with a remaining gap after three minutes (lower 
bound: L B ~ )  of 0.00%. Test set TC2 seems to be somewhat more difficult. It takes 
on average slightly more than four seconds to obtain a first feasible solution. After 
three minutes of computational time all test instances are proven to be optimal and 
a gap of 5.44% remains on average. However, the tougher challenge is to double 
the number of periods. Although feasible solutions to all test instances are still 
found in a reasonable amount of time, only half of the test instances are proven 
optimal within the time limit of three minutes. 

Table 7-33: Solution speed and solution quality of model formulations PLSPI-Ivi-B&C for 
different test sets (upper bound: best solution after three minutes or first solution). 

Number of test instances for which TC1 TC2 TC4 TC5 
- a feasible solution is found within 15s 180 180 133 10 
- a feasible solution is found within 30s 180 180 180 68 
- a feasible solution is found within 60s 180 180 180 161 
- a feasible solution is found within 90s 180 180 180 180 
- a feasible solution is found within 180s 180 180 180 180 
- optimality is proven within 180s 180 180 95 70 
Average time (in seconds) to 
- find a first solution 1.17 4.16 11.03 36.81 
Average gap [%I (lower bound: LBXLP) 4.81 4.88 5.87 6.35 
Average gap [%I (lower bound: LB3) 0.00 0.00 3.05 4.57 

Table 7-34: Solution speed and solution quality of model formulations PLSP/minmax/vi- 
B&C for different test sets (upper bound: best solution after three minutes or first solution). 

Number of test instances for which TC1 TC2 TC4 TC5 
- a feasible solution is found within 15s 180 174 3 3 0 
- a feasible solution is found within 30s 180 180 155 0 
- a feasible solution is found within 60s 180 180 180 58 
- a feasible solution is found within 90s 180 180 180 150 
- a feasible solution is found within 180s 180 180 180 179 
- optimality is proven within 180s 180 153 46 9 
Average time (in seconds) to 
- find a first solution 2.72 8.19 20.68 71.36 
Average gap [%I (lower bound: LBXLP) 7.27 8.77 9.38 14.54 
Average gap [%I (lower bound: LB3) 0.00 0.57 5.65 12.82 
Average gap [%I (lower bound: PLSP~) 4.46 6.80 4.41 10.37 

Table 7-34 shows the same behavior for a model formulation which respects 
minimum and maximum lot size restrictions. Here, the gaps are also reported tak- 
ing the PLSP solution after three minutes as a lower bound (PLSP~). One can ob- 
serve, that the cost of respecting these restrictions increases with the number of 

350 See also section 7.2.1. 
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products. Solutions to test sets TC1 and TC4 (both J=4) show a lower cost in- 
crease than solutions to test sets TC2 and TC5 (both J=6). Moreover, solutions to 
test sets with a higher number of periods (TC4, TC5 vs. TC1, TC2) seem to have a 
higher cost associated with obeying minimal and maximal lot size restrictions, but 
this may well be due to the fact, that these solutions are not as good as those ob- 
tained for test sets TC1 and TC2 (see the remaining gap after three minutes). 

The problem gets most difficult, if also batch size restrictions need to be 
obeyed (Table 7-35). Although feasible solutions have been obtained for each test 
instance, this took quite a while for some test instances. The maximum computa- 
tional time to obtain a first feasible solution for test set TC2 (TC4, TC5) has been 
229 (279, 1637) seconds. Interestingly, with respect to optimal PLSP solutions, 
here the cost increase is lower if more products need to be scheduled. 

Table 7-35: Solution speed and solution quality of model formulations PLSPIalVvi-B&C 
for different test sets (upper bound: best solution after three minutes or first solution). 

Number of test instances for which TC1 TC2 TC4 TC5 
- a feasible solution is found within 15s 177 33 0 0 
- a feasible solution is found within 30s 180 138 101 0 
- a feasible solution is found within 60s 180 172 160 2 
- a feasible solution is found within 90s 180 175 170 40 
- a feasible solution is found within 180s 180 178 178 139 
- optimality is proven within 180s 126 4 0 0 
Average time (in seconds) to 
- find a first solution 6.12 27.12 36.94 158.97 
Average gap [%I (lower bound: LBXLP) 23.66 27.38 33.97 47.56 

- ~- 

Average gap [%I (lower bound: LB3) 1.75 16.27 27.73 44.85 

Decomposition Heuristic 
In Fig. 7-14 and Fig. 7-15 the performance of the temporal decomposition heuris- 
tic is evaluated for the basic PLSP. Fig. 7-14 shows the minimum, maximum and 
average deviation from the PLSP solution found by model formulation PLSPI-hi- 
B&C after three minutes for test sets TC1, TC4 and TC5. For each test set the so- 
lution quality is given for the model formulation with respect to a time limit (e.g., 
PLSP (30s)), one run of the decomposition heuristic (e.g., parameter combination 
61013 (15)) and a multiple run351 of the decomposition heuristic (Best). In paren- 
thesis, the actually used computational time is indicated. 

Fig. 7-14 can be interpreted as follows. For test set TC5 the solution quality af- 
ter 90 seconds for model formulation PLSPI-Ivi-B&C ranges between 0.0% and 
1 1 .O% and averages 1.8% (indicated by a mark + in Fig. 7-14). On the other hand, 

35' A multiple run of the decomposition heuristic means to run the heuristic with five dif- 
ferent parameter combinations. The computational times of these runs are added, while 
the best solution obtained by any of these runs is chosen as the solution of the multiple 
run. Unless otherwise noted, the parameter combinations for the multiple run have 
been 41012, 51012, 6/0/2,5/0/3, 61013. 
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solutions of the temporal decomposition heuristic with parameter combination 
61013 lie between -9.8% and 4.5% averaging -3.0%. This means, the temporal de- 
composition heuristic has been able to find solutions, which are on average 3.0% 
less expensive than those found by model formulation PLSPI-Ivi-B&C after three 
minutes. Furthermore, the heuristic needed only approximately one tenth of the 
time (22.1s) to do so. The multiple run produced only slightly better results, pro- 
viding solutions which are on average 3.6% less expensive than the reference val- 
ues. 

Fig. 7-14: Comparison of solution quality of model formulation PLSPI-Ivi-B&C and the 
temporal decomposition heuristic for test sets TC1, TC4 and TC5. 

Fig. 7-15 provides a map of solution quality and solution speed of the temporal 
decomposition heuristic for test set TC4. Again, the solutions to model formula- 
tion PLSPI-Ivi-B&C after three minutes are taken as reference values. This is in- 
dicated by the point "PLSP (180s)" on the map. The solutions of model formula- 
tion PLSPI-hi-B&C after different amounts of computational time mark the 
frontier the heuristic has to cross, if it wants to add value. Points of the heuristic 
must lie either left of this frontier or below it. A point left of the frontier means, 
that the heuristic is able to provide the same solution quality in less time. A point 
below this frontier indicates, that the heuristic provides better solutions in the 
same amount of time. 

Apparently, one run of the decomposition heuristic takes only a short amount of 
time. The solution is obtained on average within 7.0 seconds for parameter combi- 
nation 41012 and within 1 1.1 seconds for parameter combination 61013. The latter 
even shows a slightly better solution quality than model formulation PLSPI-Ivi- 
B&C after three minutes. Moreover, solution quality can be improved by perform- 
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ing a multiple run. However, the cost associated with this is additional computa- 
tional effort. 
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Fig. 7-15: Comparison of solution quality and speed of model formulation PLSPI-Ivi-B&C 
and the temporal decomposition heuristic for test set TC4. 
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Table 7-36: Average gap between best solution and the best solution found by PLSPI-hi- 
B&C after 3 minutes for test sets TC4 and TC5 ("Best" refers to a multiple run of the heu- 
ristic). 

TC4 Capacity TBO profile Demand Setup time 
utilization variation length 

low med. high low med. high low high low high - 
PLSPI-Ivi-B&C (60s) 0.8 1.1 2.0 1.1 1.3 1.4 1.3 1.2 1.6 1.0 
51012 (1 5 ,7 .4~)  0.9 0.2 1.0 1.1 1.0 -0.1 -0.2 1.5 1.1 0.3 
Best (45.1 s) -0.7 -0.9 -1.1 -0.2 -0.3 -2.1 -1.4 -0.3 -0.7 -1.0 

TC5 Capacity TBO profile Demand Setup time 
utilization variation length 

low med. high low med. high low high low high 
PLSPI-Ivi-B&C(90s) 1.2 1.7 2.4 1.3 1.8 2.1 1.5 2.1 2.1 1.4 
61013 (30,22.l S) -2.3 -2.5 -4.0 -2.8 -3.4 -2.8 -3.6 -2.3 -2.8 -3.1 

In Table 7-36 the performance of the heuristic is evaluated for different test set 
characteristics. ~ifferent  levels of capacity utilization seem to have only a minor 
impact on the performance of the heuristic for test set TC4, while in test set TC5 
the solution of the heuristic is better for higher capacity utilization levels. 
On the other hand, in test set TC5 the TBO profile seems to have only a minor im- 
pact on the performance of the heuristic, while the solution quality of the heuristic 
is best for TBO profile "high" in test set TC4. Thus, the heuristic performs best in 
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those cases, that have been identified to be the most difficult (high capacity 
utilization and relatively high setup costs; Table 7-25). Moreover, the heuristic 
performs better the more stable the demand situation is, while the length of setup 
times has only minor impact. 

In Fig. 7-16 the solution map which has been provided for the basic PLSP in 
Fig. 7-15 is drawn for the PLSP with additional restrictions on minimal and 
maximal lot sizes. Note, that the scale of the ordinate has changed, but the shape 
of the frontier has not. Here, all parameter combinations tested for the heuristic 
provide the same or a better solution quality than model formulation 
PLSPIminmadvi-B&C after three minutes, which has been used as a basis here 
"PLSP (180s)". The best parameter combination has been 61013 using on average 
20.6 seconds to obtain solutions that are on average 1.4% less expensive than the 
reference values. Again, solution quality can be improved by performing a multi- 
ple run, which takes 82.6 seconds on the average and provides solutions that are 
on average 2.1% less expensive than the reference values. 
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PLSP (60s) 
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41012 (60 PLSP (120s) . , 61kR (60) 
P'LSP (1 80s) 

51012 (60) 
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Fig. 7-16: Comparison of solution quality and solution speed of model formulation 
PLSP/minmax/vi-B&C and the temporal decomposition heuristic for test set TC4. 

The analysis of solution quality with respect to test instance characteristics in 
Table 7-37 reveals no new insights compared to the results for the plain PLSP 
(Table 7-36). Again, the heuristic performs relatively best if capacity utilization 
levels are high and demand variation is low. 

To evaluate the absolute solution quality of the heuristic, a subset consisting of 
ten randomly chosen test instances has been tried to solve to optimality on a much 
faster PC (Pentium IV, 2.4 GHz, 256 MB) with model formulation 
PLSPIminmadvi-B&C. A time limit of 12 hours has been imposed on these runs. 
Three test instances have been proven optimal, while the average final gap after 12 
hours has been 3.75%. The multiple run of the heuristic provides solutions, which 



170 7 Analvsis of Solutions and Computational Performance 

are on average only 1.35% worse (worst case: 5.57%). However, the computa- 
tional effort of the multiple run is only slightly more than one minute on a much 
slower PC. 

Table 7-37: Average gap between best solution and the best solution found by 
PLSP/minmax/vi-B&C after 3 minutes for test set TC4 ("Best" refers to a multiple run of 
the heuristic with parameter combinations 41012, 51012, 61012, 51013 and 61013). 

Capacity TBO profile Demand Setup time 
utilization variation length 

low med. high low med. high low high low high 
PLSP/minmax/vi-B&C (90s) 0.9 1.3 1.4 1.7 0.9 1.1 1.3 1.1 1.1 1.3 

Best (82.6s) -1.2 -2.1 -3.0 -2.5 -1.3 -2.6 -2.5 -1.8 -2.1 -2.2 

Finally, the decomposition heuristic has been evaluated for model formulations, 
which also have to respect batch size restrictions. It has been pointed out in sec- 
tion 6.2.2 that the decomposition heuristic needs to be altered to take also batching 
decisions in periods preceding the rolling window into account. Three variants to 
do this have been proposed (var, fuc and fucl). Table 7-38 evaluates their behavior 
for test set TC4. Each individual parameter combination does not find feasible so- 
lutions to all test instances. Therefore, multiple runs should be performed. Variant 
var finds the most feasible solutions for each individual parameter combination, 
but is also the slowest rolling scheme as has been expected. On the other hand, 
variant $XI finds much more feasible solutions than variant fix without using too 
much computational time and without deteriorating the solution quality. Thus,$xl 
should be preferred over fuc. The best results have been obtained performing a 
multiple run combining fuc and fucl. 

Table 7-38: Evaluation of different rolling schemes for the decomposition heuristic, if 
batch size restrictions are present. Gap refers to the best solution found in relation to the 
best solution found by PLSP/alWvi-B&C after three minutes. "Best" refers to a multiple run 
of the two parameter combinations presented. 

Gap Time [s] # feasible 
Average Min Max solutions 

Best offix - 5.61 -6.07 22.42 34.27 168 
51012 @.XI, 30) 8.57 -5.71 37.15 17.16 170 
51013 @I, 30) 7.72 -7.88 29.53 25.24 162 
Best of fucl 5.84 -7.88 22.42 42.40 178 
Best offix and fucl 4.06 -7.88 22.42 76.67 178 
51012 (var. 30) 9.05 -4.43 43.58 65.58 176 
51013 (var; 30j 10.36 -6.08 51.63 95.85 179 
Best of var 6.75 -6.08 24.08 160.90 179 
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For several instances (e.g., 21 for "Best offix"), the decomposition heuristic 
finds better solutions than model formulation PLSPIalllvi-B&C (Table 7-38). 
Table 7-39 aims at identifying, in which cases the heuristic is expected to result in 
better solutions and in which cases the complete model formulation should be 
used. One individual parameter combination and a multiple run are compared to 
model formulation PLSPIalllvi-B&C. 

The heuristic tends to perform better, if capacity utilization is high. One possi- 
ble explanation for this phenomenon is, that when capacity utilization is low de- 
mands are balanced over longer periods to build lots. Thus, the decomposition 
heuristic may suffer from some kind of planning horizon effect here. Furthermore, 
the heuristic tends to perform better, if demand variation is low, which points into 
the same direction. Hence, when improving the heuristic, effort should be devoted 
to reducing these planning horizon effects. 

Table 7-39: Average gap between best solution and the best solution found by PLSPIalllvi- 
B&C after 3 minutes for test set TC4. 

Capacity TBO profile Demand Setup time 
utilization variation length 

low med. high low med. high low high low high 
PLSPIalVvi-B&C (30s) 5.7 7.1 10.0 8.3 6.2 1.9 7.4 7.0 7.8 6.6 

Summing up, computational testing reveals that the proposed model formula- 
tions clearly outperform the benchmark by Kallrath (1999). Better solutions as 
well as better lower bounds have been computed with the new model formulation 
in less time. The preprocessing procedure outlined for the batch flow scenario has 
been shown to increase computational performance severely. Moreover, if maxi- 
mal lot size restrictions are present, the second variant to model consecutive lots 
of the same product has proven to be the more viable approach. With respect to 
different test sets, an increase in the number of products consumed less additional 
computational effort than an increase in the number of periods. However, for these 
test sets, the temporal decomposition heuristic provided good results with reason- 
able computational effort. 

7.3 Time Continuity - Setup Operations 

7.3.1 Test Sets and Benchmark 

The focus of this section will be on period overlapping setup times. As this sce- 
nario has - so far - not been addressed computationally in literature, a new test set 
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needs to be defined. This new test set comprises two classes of test instances TS1 
and TS2. Furthermore, test set TC1352 will be used here again. 

Test sets TS1 and TS2 both comprise 40 test instances with J=3 products and a 
planning horizon of T=15 and T=30 periods. Capacity (c,) is set to 100 for each 
period in each test instance. Production coefficients (a,) are set equal to 1 for each 
product, while inventory holding cost coefficients (h,) are set to 1, 2 and 3 for 
products 1, 2 and 3. Setup costs (sc,) are proportional to inventory holding costs 
and are set to 400, 800 and 1200 for products 1, 2 and 3. Two capacity situations 
will be evaluated. In the first one (tight capacity) the demand per period for each 
product is equally distributed between 10 and 30, whereas in the second situation 
(loose capacity) less customer demand is assumed (equally distributed between 8 
and 24). Five different demand series have been randomly generated for each 
situation. To make test instances feasible, demand has been set to 0 for all prod- 
ucts in periods 1-3 (test instances 1-10, 16-30, 3640), 1 4  (11-15, 31-35), 1-5 
(41-50,56-80), 1-6 (51-55). 

Four different setup time profiles have been generated. In the first setup time 
profile, setup times for all products (st,) are equal to 40. This means a setup opera- 
tion consumes 40% of available period capacity. In the second and third scenario, 
setup times are even higher (80 and 120). In the latter case, it is impossible to 
solve the problem with a standard lot sizing model formulation, because no setup 
operation fits completely into one planning period. A fourth setup profile mixes 
the different setup times. Here, setup times are 40, 80 and 120 for products 1, 2 
and 3. Table 7-40 shows the generation scheme for test sets TS1 and TS2. 

Table 7-40: Test instance generation scheme for test sets TS1 and TS2. 

Test instances 
TS1 T=15 1-5 6-10 11-15 16-20 21-25 26-30 31-35 3 6 4 0  
TS2 T=30 41-45 46-50 51-55 56-60 6 1 4 5  66-70 71-75 76-80 

Setuv i=l 40 80 120 40 40 80 120 40 
times j=2 40 80 120 80 40 80 120 80 
sfi j=3 40 80 120 120 40 80 120 120 

capacity tight tight tight tight loose loose loose loose 

In section 3.4 it has been shown that a similar model formulation known from 
literature is not correct. Therefore, this model formulation353 can only be used as a 
benchmark to some extent. Instead, the basic models PLSP and CLSPL are used to 
serve as a benchmark. 

7.3.2 Analysis of Solutions 

To analyze the behavior of different model formulations, the following notation 
is introduced to distinguish between the model formulations (Table 7-41). The 

352 See section 7.2.1. 
353 See section 3.4 and e.g. Drexl and Haase (1995) pp. 81-82. 
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first field represents the basic model formulation, which is either the PLSP or the 
CLSPL. The second field characterizes the different variants to model period over- 
lapping setup times. Finally, the third field describes the use of valid inequalities. 
These are either used ("vi") or not (""). If valid inequalities are used, they can be 
applied at the root node only (cut-and-branch approach, "C&B7') or throughout the 
branch-and-bound search. The latter is indicated by "B&CW. Again, the model cut 
feature of XpressMP is used here. E.g., the abbreviation "PLSPIPOSTll-" de- 
scribes a model formulation using the PLSP as the basic model formulation and 
variant POSTl as described in section 6.1.3.1 to model period overlapping setup 
times. Valid inequalities are not used in this example. 

Table 7-41: Notation of different model formulations (POST). 

Parameter Value Comment 
1 PLSP Basic model formulation PLSP (I&L) 

CLSPL 
2 POSTl 

POST2 
3 - 

vi-C&B 

vi-B&C 

Basic model formulation CLSPL (I&L) 
Period Overlapping Setup Tunes Variant I (see section 6.1.3.1 
[PLSP] and 6.1.3.2 [CLSPL]) 
Period Overlapping Setup Tmes Variant 2 (see section 6.1.3.1) 
No valid inequalities 
Valid inequalities (see section 6.1.3.1), Cut&Branch approach 
(=valid inequalities only applied in the root node, see section 5.2.1.2) 
Valid inequalities (see section 6.1.3.1), Branch&&t approach 
(=model cut feature of XpressMP, see section 5.2.1.4) 

In Table 7-42 the optimal solutions of test set TS1 are compared. The model 
with period overlapping setup times is benchmarked with the basic PLSP354 and 
Haase's (1994)355 model formulation. The PLSP is solved to proven optimality the 
fastest, needing approximately a third of the computational effort compared to 
PLSPI POST2Ivi-C&B. On the other hand, the integrality gap (upper bound: op- 
timal solution; lower bound: LB'~') of the model formulation allowing for period 
overlapping setup operations is much lower compared to the standard PLSP. Fur- 
thermore, the standard PLSP will find only feasible solutions to 19 out of 40 test 
instances, because it cannot find any feasible solutions for those 20 instances in 
which at least one setup time exceeds the period length. In 6 out of these 19 test 
instances the optimal solution of the PLSP matches the one of the model allowing 
for period overlapping setup operations. All other optimal solutions to the basic 
PLSP are inferior, because the plan needs to fit setup times completely into one 
period. This inferiority (cost increase) increases with the length of setup times pre- 
sent in the planning problem (test instances 6-10 vs. 1-5, 26-30 vs. 21-25) as 
well as with the capacity utilization (test instances 1-10 vs. 21-30). 

The second benchmark (Haase's (1994) model formulation) needs on average 
three times the computational effort compared to PLSPPOST21vi-C&B. Further- 
more, its integrality gaps are higher. It finds the correct optimal solution only in 14 
of 40 test instances, but due to a modeling mistake fails in the remaining 26 test 

354 See sections 2.3.3 and 6.1.1.1. 
355 Cf. Haase (1994) pp. 3 1-35 and Drexl and Haase (1995) pp. 81-82. 
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instances. Therefore it is not deemed appropriate as a benchmark and is discarded 
from further analyses. 

Table 7-42: Comparison of solutions for test set TSl. 

PLSP/POST2/ PLSP Haase 
Test vi-C&B 
in- Avg. Gagp Avg. G;% Same Cost Avg. G;T~ Same Failed 

stances time (LB ) time (LB ) solution increase time (LB ) solution 
[s] [s] (POST) (POST) [s] (POST) 

1-5 7.6 12.4% 2.0 21.3% 2 0.5% 8.4 22.7% 5 0 

Table 7-43 analyzes the difficulty of different test instance characteristics for 
test set TS1. Average time to prove optimality (time limit: 5 minutes) and integral- 
ity gaps are reported. With respect to the capacity situation, tight capacities seem 
to make the problem more difficult. Both, integrality gaps and average computa- 
tional times are higher in this case. Regarding the different setup time profiles, the 
easiest scenario seems to be the one with rather small setup times. Surprisingly, 
test instances with setup times exceeding a period's capacity (120) seem to be eas- 
ier than those with setup times somewhat below a period's capacity (80). Finally, 
the setup time profile with mixed setup times seems to have the same difficulty 
like its mean setup time suggests. 

The observations do not change whether different basic models are chosen 
(PLSP or CLSPL) or whether different modeling approaches are taken (POST1 or 
POST2). Of course, those two model formulations with the PLSP as the basic 
model are solved somewhat faster. 

Table 7-43: Comparison of difficulty of test instances in test set TS1. 

Avg. time 
Gapp 

Avg. time 
G;~PL~ 

Avg. time 
[sl (LB [sl (LB [sl 

tight 17.8 29.1% 21.3 32.3% 76.9 33.0% 
Capacity loose 12.4 23.2% 13.1 25.6% 31.3 26.4% 

40 5.6 17.0% 3.8 16.9% 6.3 20.2% 
Setup 80 31.2 36.4% 25.4 36.0% 82.0 31.4% 
times 120 6.4 19.5% 14.4 28.4% 35.5 32.4% 

Although test set TC1 contains rather short setup times (average length of one 
product's setup time in relation to a period's capacity: 5.27%), it is used here to 
gain additional insight in which cases the explicit modeling of period overlapping 
setup times is most beneficial. Again, the information on the generation scheme 
for test set TC1 as explained in section 7.2.2 is used. 
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In Table 7-44 the percentage deviation from optimal PLSP solutions is shown. 
Positive numbers indicate a cost decrease, while negative numbers indicate a cost 
increase compared to optimal PLSP solutions. Negative numbers are only possi- 
ble, because not all test instances have been solved to ~ p t i m a l i t y . ~ ~ ~  

Comparing the variants based on the PLSP as a basic model, there is not much 
to gain here. This has been expected, because the setup times are too small com- 
pared to a period's capacity to have a great impact if splitting them over two peri- 
ods is allowed. Still minor improvements to optimal PLSP solutions are possible 
even for some test instances with model formulation PLSPIPOSTllvi-B&C al- 
though this is never reflected in the averages reported here (which are all negative 
or zero). Much more can be gained, if more than one setup operation is allowed in 
each period. If the CLSPL is used as a basic model, massive cost reductions (on 
average 23.56%) can be achieved. These are higher for low capacity utilization, 
low demand variation and rather short setup times. The biggest impact has the 
TBO profile. In TBO profile "low" setup costs are low compared to inventory 
holding costs. This means setup operations will be performed rather frequently. In 
this case, the CLSPL plays at its strength, because it allows for more than one 
setup operation in each period in contrast to the PLSP. 

Table 7-44: Average percentage deviation from optimal PLSP solutions of different model 
formulations (time limit: 5 minutes) for test set TC1. 

Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
PLSP/POSTl/vi-B&C -0.01 -0.06 -0.15 0.00 0.00 -0.21 -0.10 -0.05 -0.07 -0.08 
PLSP/POST2/vi-B&C 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.01 0.01 0.01 
CLSPL 24.84 23.89 21.95 55.95 12.74 1.98 23.95 23.16 23.47 23.64 
CLSPWPOSTlIvi-B&C 24.46 23.48 21.32 55.95 12.34 0.98 23.54 22.64 23.12 23.05 

Summarizing the results, it is worth modeling a period overlap of setup opera- 
tions, if the ratio of the length of an (average) setup operation to the length of a pe- 
riod approaches one. Cost savings increase with this ratio, but also does computa- 
tional effort to find optimal solutions. If setup operations exceed a period's 
capacity, the resultant problem tends to become easier to solve (based on the aver- 
age gap between the optimal solution and the linear relaxation after automatic cut 
generation LB'~'). 

7.3.3 Computational Performance 

All computational results in this section have been obtained using XpressMP re- 
lease 2003G with standard settings as a MIP solver on a PC equipped with a Pen- 
tium IV processor with a clockspeed of 1.7 GHz and 256 MB of memory. 

356 A time limit of 5 minutes per test instance has been imposed on all model formula- 
tions. Cf. Table 7-45 for solution statistics. 
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Table 7-45 and Table 7-46 compare the computational effort of different model 
formulations with period overlapping setup times to the basic models PLSP and 
CLSPL for test set TC1. Optimality is proven for all test instances for the basic 
model formulation PLSP within the time limit of 5 minutes. With respect to the 
different variants to model period overlapping setup times (POST1 vs. POST2), 
POST2 consistently outperforms POSTl based on the number of test instances 
solved to proven optimality within the time limit (Table 7-45) and based on the 
average integrality gap (Table 7-46). 

Fewer instances are solved to proven optimality with the CLSPL as a basic 
model, but if the CLSPL is used as a basic model the solution speed strongly de- 
pends on the characteristics of the test instances. The strongest influence stems 
from the TBO profile. If setup costs are low compared to inventory holding costs 
(TBO profile: low), integrality gaps are much lower for the CLSPL than for the 
PLSP, while the opposite is true, if setup costs are high compared to inventory 
holding costs (TBO profile: high). Furthermore, high capacity utilization seems to 
make the problem more difficult, while demand variation and absolute setup time 
length seem to have only minor effects here. 

Table 7-45: Number of test instances (test set TC1, total: 180) solved to proven optimality 
within a time limit of 5 minutes. 

Capacity utilization TBO profile Demand Setup time 
variation length 

low med. high low med. high low high low high 
PLSP 60 60 60 60 60 60 90 90 90 90 
PLSP/POSTIIvi-B&C 56 51 43 60 58 32 67 83 78 72 
PLSP/POST2/vi-B&C 60 59 57 60 60 56 86 90 89 87 
CLSPL 30 27 19 59 16 1 33 43 37 39 
CLSPL/POSTl/vi-B&C 22 22 19 59 4 0 30 33 32 31 

Table 7-46: Average gap [%] (upper bound: best solution found within 5 minutes; lower 
bound: LB'~') for test instances of test set TC1. --- 

Capacity utilization TBO profile Demand Setup time 
variation length - 

low med. high low med. high low high low high 
PLSP 15.9 18.1 24.2 16.5 16.3 25.3 20.1 18.7 20.2 18.5 
PLSP/POSTl/vi-B&C 15.4 17.7 23.9 16.8 15.3 24.8 19.6 18.3 19.8 18.2 
PLSP/POST2/vi-B&C 15.4 17.5 23.5 16.8 15.2 24.4 19.4 18.2 19.6 18.0 
CLSPL 17.8 20.4 28.3 3.6 24.7 38.2 22.4 21.9 22.5 21.9 
CLSPUPOSTllvi-B&C 18.4 20.9 29.4 3.7 25.2 39.7 23.1 22.7 23.1 22.7 

Fig. 7-17 shows the number of test instances solved to proven optimality over 
time for different model formulations. It is obvious, that the basic PLSP is the 
easiest model formulation to be solved here. Variants POST2 and POSTl using 
the PLSP as a basic model show a similar behavior over time. Because a subset of 
test set TC1 (TBO profile: low) is solved much faster with the CLSPL as a basic 
model, these lines lie on top at the beginning, but are subsequently intersected by 
those lines representing model formulations with the PLSP as a basic model. 
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solution time [s] 

-+- PLSP + PLSPIPOSTIM-B&C -+- PLSP/POST2I+B&C 

-CLSPL + CLSPLIPOSTIM-B&C 

Fig. 7-17: Number of test instances solved to optimality over time (different model formu- 
lations, test set TC1). 

Test set TS2 comprises test instances that cannot be solved to proven optimality 
within the time limit of 5 minutes. Again, the basic PLSP is only able to produce a 
feasible solution to 20 out of 40 test instances, because there is at least one setup 
time exceeding the period length present in each of the other 20 test instances. 
Compared to either PLSPPOSTI/vi-B&C or PLSPPOST21vi-B&C the basic 
PLSP model formulation has found a better solution ten times, the same solution 
once and a worse solution nine times. Still, the solution found with either of the 
model formulations allowing for period overlapping setup operations is on average 
0.23% better (cheaper) than the one found by the basic PLSP model formulation. 

Finally, Table 7-47 shows the impact of valid inequalities on the two variants to 
model period overlapping setup times (POST1 and POST2) based on test set TS2. 
The gaps are based on the lower bound after automatic cut generation (LB'~') to 
show the impact of valid inequalities, on the bound obtained after 5 minutes of 
branch-and-bound search (LB') to show the convergence over time as well as on 
the best bound obtained by any model formulation ( L B ~ ~ ~ ~ ' )  to compare the solu- 
tion quality based on one common lower bound for all model formulations. 

Regarding variant POST1 the C&B approach provides lower initial gaps as 
well as lower gaps after 5 minutes of computational time. Still, the B&C approach 
provides better solutions. The variant without any valid inequalities is clearly out- 
performed by the two model formulations making use of valid inequalities. These 
observations hold also true for variant POST2. Comparing the two variants, 
POST2 seems to have a slight advantage over POST1, at least if valid inequalities 
are used. Only within the subset of test set TS2 with long setup times (120), 
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POSTl outperforms POST2 with respect to providing better bounds as well as bet- 
ter solutions. 

Table 7-47: Average gap [%I (upper bound: best solution found within a time limit of 5 
minutes) to different lower bounds (XLP = bound after automatic cut generation; 5 = bound 
after 5 minutes; BEST5 = best bound (of all model formulations) after 5 minutes) for test 
set TS2 for different model formulations. 

Based on these results, variant POST2 to model period overlapping setup times 
seems to be slightly more favorable computationally compared to POSTl. Still, 
this observation is not true for all setup time profiles and - even more important - 
variant POST2 might need to be altered, if the data changes. As has been argued 
above,357 additional constraints apply if the assumptions on spj are not met. Model 
formulations using the CLSPL as a basic model are fairly easy to solve, if setup 
costs are low compared to inventory holding costs (TBO profile: low), but they are 
computationally much more expensive compared to model formulations using the 
PLSP as a basic model in all other cases. 

7.4 Time Continuity - Resource Utilization 

7.4.1 Test Set 

Test set TC1 with additional restrictions on lot sizes, as it has been proposed in 
section 7.2.1, will be used throughout this section again. To analyze the effects 
different preconditions on resource utilization have, three resource profiles, forc- 
ing resources to be used to at least 55% (70%; 85%) are defined and their effects 
are computationally explored. 

Model formulations, in which resources are modeled as if they are not allowed 
to be switched off, are indicated by "+On(55)", while the number in parenthesis 
indicates the required minimal resource utilization level. Regarding resources with 
off times, two variants have been proposed in section 6.1.4.1. "+Offl(55)" indi- 

357 See section 6.1.3.1. 
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cates that constraints (6-92) have been used in the model formulation, while 
"+Off2(55)" indicate the use of constraints (6-93) and (6-94). 

7.4.2 Analysis of Solutions 

The average cost increase of different restrictions on resource utilization compared 
to optimal PLSP solutions without any such restrictions is shown in Table 7-48. If 
resources are not allowed to have off times, too much product is produced result- 
ing in much higher inventory holding costs. As argued in section 6.1.4.2, this sce- 
nario needs some hrther treatment (e.g., penalty costs for excess production, such 
that only the "correct" product is overproduced). Clearly, less excess production is 
necessary, if capacity utilization is high anyway. Moreover, the cost increase 
compared to optimal PLSP solutions is smaller, if inventory costs are relatively 
cheap (TBO profile: "high"). Variations in demand seem to have no influence, 
while shorter setup times have a much smaller cost effect than long setup times. 

If resources are allowed to be switched off, a cost increase compared to optimal 
PLSP solutions without any restrictions on resource utilization still exists, but is 
almost negligible. Again, lower capacity utilization by demands leads to a higher 
cost increase, while the pattern changes compared to resources without off times 
for different TBO profiles. Here, the cost increase is bigger, if inventory costs are 
rather low. 

Table 7-48: Average cost increase [%I (upper bound: best solution found within 3 minutes; 
lower bound: optimal PLSP solution without any restrictions on utilization) for test in- 
stances of test set TC1. 

Capacity utilization TBO profile Demand Setup time 
variation length 

low med. high low med. high low high low high 
PLSPI-hi-B&C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 7-49 and Table 7-50 show gaps compared to optimal solutions without 
any restrictions on resource utilization, if additionally minimal and maximal re- 
strictions on lot sizes are present or batch size restrictions are applied.358 The same 
patterns that have been identified for the basic PLSP model formulation (Table 
7-48) are present here: Low capacity utilization (by demands) leads to higher cost 
increases, while the results differ between resources with and without off times for 
different TBO profiles. 

358 See Table 7-22 for the notation of model formulations. 
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Table 7-49: Average cost increase [%I (upper bound: best solution found within 3 minutes; 
lower bound: optimal solution to PLSP/minmax/vi-B&C without any restrictions on utiliza- 
tion) for test instances of test set TC1. 

Capacity utilization TBO profile Demand Setup time 
variation length 

low med. high low med. high low high low high 
PLSP/minmax/vi-B&C 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 7-50: Average cost increase [%I (upper bound: best solution found within 3 minutes; 
lower bound: optimal solution to PLSPIalllvi-B&C without any restrictions on utilization) 
for test instances of test set TC1. 

Capacity utilization TBO profile Demand Setup time 
variation length 

low med. high low med. high low high low high 
PLSPIalllvi-B&C 0.1 0.2 0.3 0.0 0.1 0.4 0.2 0.1 0.1 0.2 
+On(55) 10.7 4.8 2.3 11.0 4.4 2.3 5.6 6.2 3.5 8.3 
+On(70) 66.4 24.7 7.4 73.4 19.5 5.5 33.7 31.9 14.4 51.2 
+On(85) 192.1 98.4 35.8 219.7 84.4 22.2 110.0 107.5 69.6 148.0 
+OM (55) 1.3 0.8 0.5 0.2 0.8 1.5 0.8 0.9 0.7 1.0 
+Offl(70) 1.8 1.0 0.6 0.3 0.9 2.2 1.1 1.2 0.9 1.4 
+Offl(85) 2.2 1.3 0.7 0.4 1.0 2.9 1.4 1.5 1.2 1 6 -  

From these results, one can conclude that restrictions requiring a minimal re- 
source utilization have only a minor impact on solutions as long as resources are 
allowed to be switched off. If this is not an option in reality, because production 
has to continue all time at a certain rate, the model needs to be amended to guide 
the selection (and quantity) of products that are produced in excess of demand. 

7.4.3 Computational Performance 

The computational cost of having additional restrictions on required minimal re- 
source utilization levels is analyzed in this section. All computational results have 
been obtained using XpressMP release 2003G with standard settings as a MIP 
solver on a PC equipped with a Pentium IV processor with a clockspeed of 
1.7 GHz and 256 MB of memory. 

Table 7-5 1 shows average and maximum gaps after 3 minutes of computational 
time for the different required minimum resource utilization levels and the differ- 
ent variants to model minimum resource utilization. Although slightly higher than 
the gaps of model formulations without any restrictions on minimal resource utili- 
zation levels, the difference is rather small. 

For resources with off times, the average gap increases, if the required minimal 
resource utilization increases. No such pattern is identified for resources which are 
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not allowed to be switched off ("On"). There, the scenario with a minimal re- 
source utilization level of 70% shows the highest average gaps. 

Table 7-51: Average and maximum gap [%I (upper bound: best solution found within 3 
minutes; lower bound: bound after 3 minutes of computation) for test set TC1. 

- 
Average Gap On Off l  Off2 None 

Resource utilization 2 55% 70% 85% 55% 70% 85% 55% 70% 85% 0 
PLSPI-/vi-B&C 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.3 0.0 
PLSP/minmax/vi-B&C 0.5 0.7 0.6 0.6 0.7 0.8 0.8 1.0 1.1 0.3 
PLSP/all/vi-B&C 2.7 3.3 2.8 2.7 2.9 3.1 2.9 3.1 3.5 1.7 

Maximum Gap On Offl Off2 None 
resource utilization^ 55% 70% 85% 55% 70% 85% 55% 70% 85% 0 

PLSPI-hi-B&C 4.1 5.0 2.6 7.2 3.7 4.5 3.1 2.9 5.4 2.6 
PLSP/minmax/vi-B&C 11.4 10.9 6.9 9.4 11.9 9.9 11.6 10.1 10.2 8.4 
PLSP/alVvi-B&C 15.1 18.5 15.0 15.7 14.0 19.2 17.8 15.0 16.5 13.5 

Fig. 7-18 shows the number of test instances solved to proven optimality over 
time. If no restrictions on required minimal resource utilization levels are present, 
almost all test instances (170 out of 180) are solved to optimality within the given 
time limit. If minimum resource utilization levels have to be obeyed, fewer, but 
still a majority of test instances are solved to proven optimality (142, 147 and 
152). The three variants show a similar behavior, which does not change if other 
minimal resource utilization levels are chosen. 

solution time [s] 

Fig. 7-18: Number of test instances solved to optimality over time (different model formu- 
lations, test set TC1). 

Fig. 7-19 shows what will happen, if batch size restrictions need to be obeyed 
in addition to required minimal resource utilization levels. Again, all model for- 
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mulations show a similar behavior, but there is one exception. The exception con- 
cerns the case that resources are not allowed to be switched off. In this scenario, 
fewer test instances can be solved to proven optimality, if the required minimal re- 
source utilization level is higher. 

5 30 55 80 105 130 155 180 

solution time [s] 

Fig. 7-19: Number of test instances solved to optimality over time (different model formu- 
lations, test set TC1). 

Summing up, to include requirements of minimal resource utilization seems to 
have low computational costs. Average gaps after 3 minutes of computational time 
are only slightly higher compared to model formulations without any such restric- 
tions based on test set TC1. Thus, the solution quality stays almost the same 
(Table 7-51). Only if resources are not allowed to be switched off, it seems more 
difficult to prove optimality (Fig. 7-19). 

7.5 Further Extensions 

This section explores how further extensions can be incorporated into the pro- 
posed modeling and solution approach. Therefore, a standard test set "KM7 is cho- 
sen, which has been used by several authors before,359 and the model formulation 
is adapted accordingly. The extensions considered in test set KM comprise 

penalties on backlog, 
penalties on safety stock target violations, 
sequence dependent setup costs, 

359 Karimi and McDonald (1997), Ierapetritou et al. (1999) and Lee et al. (2002). 
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variable production rates, 
parallel resources and 
planning of maintenance and test tasks within a given time interval. 

7.5.1 Test Set and Benchmarks 

The test set KM has been introduced first by Karimi and McDonald (1997)360 and 
describes a chemical site consisting of seven resources. Fourteen different prod- 
ucts are produced on the site, but not all products can be produced on each re- 
source. The aim is to derive a production schedule for the next three months, 
which minimizes a cost function which includes inventory holding costs, sequence 
dependent setup costs as well as penalties on backlogs and violations of product 
dependent safety stock targets. The production schedule needs to be more accurate 
for the first month and is therefore derived in weekly buckets (7 days) for the first 
month and in monthly buckets (30 days) thereafter. 

In Table 7-52 the initial conditions of the plant are given. For each resource the 
initial setup state and the duration of the campaign prior to the beginning of the 
planning interval are provided. For each product on each resource the minimal 
campaign length is 10 days. As only resource m=4 is allocated for a shorter time 
all other resources are free to change their setup state at the beginning of the plan- 
ning interval. 

Apart from production, on some resources several other tasks (test of equip- 
ment and maintenance operations), which will be called outages, have to be car- 
ried out. These outages are defined by a fixed duration and may only be carried 
out in certain time windows (see also Table 7-52). 

Table 7-52: Initial conditions and planned outages for test set KM (Karimi and McDonald 
(1997), p. 2709, table 1). 

resource initial conditions planned outages 
rn product j duration [days] outage duration [hours] time window [days] 
1 3 20 
2 none 10 
3 1 35 test1 100 [15; 301 

test2 200 [30; 601 
4 7 8 
5 12 15 maintenance 400 [15; 881 
6 12 16 
7 8 30 test3 300 [60; 881 

Table 7-53 provides the initial inventory levels at the beginning of the planning 
interval as well as safety stock targets and product demands. Product demands 
have to be fulfilled at the end of each period. Safety stock targets are watched 
monthly. Therefore, penalties for the violation of safety stock targets are only cal- 

360 Cf. Karimi and McDonald (1997) pp. 2709-2712. 
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culated at the end of week 4, month 2 and month 3. The penalty cost data is given 
in Table 7-54. Penalties on backlog on the other hand are assessed in each period. 

Table 7-53: Initial inventories, safety stock targets and demands for test set KM (Karimi 
and McDonald (1997), p. 2710, table 2). 

vroduct stocks rmassl product demands [mass] 
j initial ' safety week 1 week 2 week 3 week 4 month 2 month 3 
1 10700 2000 1400 15000 1400 15000 5600 60000 

Furthermore, Table 7-54 provides data on holding costs. In this test set it is as- 
sumed that demand is fulfilled at the end of each period, but at the same time in- 
ward stock movement is continuously. Therefore, holding costs are calculated by 
assessing inventory at the beginning of a period with a full holding cost coefficient 
and the production quantity of a period with half of the holding cost coefficient. 

Table 7-54: Shortage penalties, inventory holding cost and production rates for test set KM 
(Karimi and McDonald (1997), p. 2710, table 3 and 4). 

product shortage penal- holding resources and production rates [mass/hour] 
ties [$/mass] cost 

j safety back- [$I1000 rn rninratemj maxratemj rn rninrate, rnaxratemj 
stock log masslday] 

1 1.7 5.1 1.304 3 11.0 21.9 
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In Table 7-54 the assignment of products to resources as well as their respective 
minimal and maximal production rates are given. Each product can be produced 
on two resources at most. By analyzing this information, it is possible to decom- 
pose the overall production planning problem into five subproblems defined by re- 
source groups, such that each product belongs to only one single resource group. 
Thereby, the resource groups are independent from each other and the associated 
planning problems may be solved separately. Resource m=l (m=2; m=3 and m=4; 
m=5 and m=6; m=7) makes up the first resource group and will be called test in- 
stance KM1 (KM2; KM3; KM4; KM5) in the rest of this section 7.5. 

Four different kinds of setup operations have to be distinguished. There is no 
cost incurred to shut down a resource for doing nothing (idle time), test or mainte- 
nance, whereas a setup cost of 5,000$ is assessed for starting regular production 
after idling, test or maintenance. Some setup operations are fairly easy and cost 
only 600$. These are the setup operations from product j=6 to j=3 (3+11, 4+10, 
8+13, 12+5 and 7+14).361 Setup costs between any two other regular products 
are 3,000$ each. Setup times are neglected, because they are considerably shorter 
than the minimal campaign length of 10 days. 

Three model formulations from literature will be used to benchmark the pro- 
posed modeling and solution approach. These are the model formulations by 
Karimi and McDonald (1997, model M2), Ierapetritou et al. (1999) and Lee et al. 
(20021.3~~ 

7.5.2 Customization of Solution Approach 

As test set KM assumes sequence dependent setup costs, a basic model formula- 
tion has to be chosen which is capable of determining not only lot sizes but also 
the production sequence. Therefore the PLSP is chosen here as a basis.363 Fur- 
thermore, minimal lot sizes (campaign quantities) have to be observed. As produc- 
tion runs can span over several periods, a model formulation that considers time 
continuity with respect to lot sizes needs to be Here, it suffices to select 
the most simple variant ((6-1 8)-(6-22) and (6-28)), because there are no restric- 
tions on the maximal lot size. 

As there are several specialties to be considered the complete customized 
model formulation will be presented here. Idle time (j=O) and outages are modeled 
as additional products. Outages are modeled as products, for which backlog is not 
allowed, production is only possible during the assigned time windows (Table 
7-52) and the minimal (and maximal) campaign length equals the duration. 

Moreover, a different time discretization needs to be chosen compared to the 
problem statement, because the basic model PLSP allows at most one setup opera- 

361 Karimi and McDonald (1997, p. 2710) add also 7 4 3  and 8-+14, but these products are 
not produced on the same resource. 

362 The model formulations can be found in the appendix. 
363 See sections 2.3.3 and 6.1.1.1. 
364 See section 6.1.2.1. 
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tion per period. As the minimal campaign length is 10 days, it generally suffices to 
split the monthly time buckets (month 2 and month 3) in three buckets of 10 days 
size. The reasoning for this is, that within each 10-day bucket at most one setup 
operation can occur. As one of the test tasks (test 1 on m=3) lasts only for 4.17 
days and to make the time discretization generally applicable, the following algo- 
rithm is applied to derive the time structure: 

Each time period s c l M  (with lM denoting the given time structure) is di- 
vided into r time periods of equal length with r being the smallest integer value 
bigger than the capacity (=duration) of time period s divided by the minimal 
campaign length of any product producible in period s.365 

In the model formulation the index s is used to refer to the time structure of the 
initial problem statement, whereas the index t is used to refer to the time structure 
derived by the algorithm described above. 

Min ~ ~ h j s ~ I j ~ ~ , + ~ , ~ ~ ~ h ~ ~ X m , ,  
~ € 3  s d M  ,€I s€TM fdS me!M 

IBjr + I,,-, + Cxmj, = I j ,  + IBjt_l + d,, 
me!M 
A j H m  

365 E.g., in example KM3 week 3 (in days: 114; 211) has a capacity (duration) of 7 days. 
The minimal campaign quantity of any product producible on any resource in KM3 is 
4.17 (test 1 on m=3). Therefore week 3 is split into two periods (&7/4.171$1.681=2) 
of equal length (3.5 days). 
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I j ,  2 0, IB,, 2 0, IBjo = 0, 

K,, 2 0, Xmj, 2 0, XT,,, 2 0, V j ~ z  t ~ l  (7-15) 

Y,,, 2 0 

Indices and index sets: 

s Periods, SE lM 
T~ Set of (macro-)periods defined by due dates 

Is Set of periods which belong to (macro-)period s 

Data: 

bl&t Backlog penalty cost associated with one unit of backlog of product j 
at the end of period t 

maxlot,, Maximal lot size (campaign quantity) for productj on resource m 
maxrate,, Maximal production rate of product j on resource m 
minlot,, Minimal lot size (campaign quantity) for productj on resource m 
minrate,, Minimal production rate of product j on resource m 
SSP,, Safety stock penalty cost associated with the violation of the safety 

stock target for one unit of product j at the end of period t 
sstj Safety stock target for product j 

Variables: 

Is,, Backlog of item j at the end of period t 
ISSV,, Safety stock violation for item j at the end of period t 
Kmjt Campaign variable for product j on resource m in period t (current 

campaign quantity up to period t )  
X m j ,  Production quantity of product j on resource m in period t 
n m j t  Production time of product j on resource m in period t 
ymqt Setup variable (=I, if a setup operation from item i to item j is per- 

formed on resource m in period t, =O otherwise) 
z m j t  Setup state variable (=I, if item j is set up on resource m at the end of 

period t, =O otherwise) 
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The objective (7-1) is the minimization of costs. Relevant cost components are 
inventory holding costs (term 1 and 2), sequence dependent setup costs (term 3) as 
well as penalties on safety stock target violations (term 4) and backlog (term 5). 
Inventory balance constraints (7-2) are altered to take the possibility of backlog 
into account and (7-3) are used to calculate violations of the safety stock target. 

As idle time is modeled as a distinct product here, total capacity in each period 
must be assigned completely to the products producible on the respective resource. 
Otherwise it would not be possible to account for the setup costs correctly, be- 
cause these differ if two regular products are produced one after another depend- 
ing on whether there is idle time between them or not. This is done by modeling 
capacity constraints (7-4) as equations. 

Constraints (7-5) and (7-6) form relationships of production variables indicat- 
ing the quantity produced (Xmjt) and the time produced (.Urn,,). Both types of vari- 
ables are necessary, because the first one is needed to fulfill demands (with mass 
used as unit of measurement), whereas the second one is used to comply with pro- 
duction requirements (minimal campaign length with time being the unit of meas- 
urement). In contrast to the basic model assumptions366, here the intensity of 
production is variable between certain bounds (minimal and maximal production 
rates, Table 7-54). 

Constraints (7-7)-(7-9) are taken from the basic PLSP model formulation.367 
They limit production in a certain period to those two products that are set up ei- 
ther at the beginning of the period or at the end of the period (7-7). A setup opera- 
tion from product i to product j has occurred on resource m in period t (Ymw=l) if i 
was set up at the beginning of the period (Zmi,,=l) and j at the end of the period 
(Zmj,=l) (7-8). Of course, at each period boundary only one product can be setup 
(7-9). 

Time continuity regarding lot sizes is introduced by constraints (7-10)-(7-14), 
which are essentially the same as constraints (6-18)-(6-22) and (6-28) in section 
6.1.2.1. The first two constraints accumulate production (time) for product j on re- 
source m as long as no new setup operation for j on m is performed, while (7-12) 
resets this variable if this is the case. Whenever any setup operation occurs on re- 
source m the minimal campaign length has to be met (7-13). Again, constraints 
(7-14) are to prevent unnecessary setup operations. 

Finally, (7-15) and (7-16) state the domain of the variables. Note, that variables 
YmO, do not need to be defined as binary explicitly. Fractional values of Ymfl will 
not occur. They are forbidden for setup operations to product j in period t, i f j  is 
set up at the beginning o f t  (7-14). On the other hand, constraints (7-8) force YmO, 
to "1" in case a setup operation takes place. 

In addition, some variables need to be initialized at the beginning of the plan- 
ning interval. This is done for variables Zmj, and Kmj, according to the initial plant 
state given in Table 7-52. Furthermore, some variables can be fixed or bounded 
based on the problem data. These are the variables that model outages. As these 
are only allowed in certain time windows, binary setup state variables Zmi, outside 

366 See sections 2.2-2.4 and 6.1 .l-6.1.5. 
367 See sections 2.3.3 and 6.1.1.1. 
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these time windows may be fixed to zero. Furthermore, if an outage can lie within 
a period only to a certain extent, this is modeled by providing an upper bound on 
the corresponding production time variable XTmjl.368 

Similar to valid inequalities (6-3) and (6-4) in section 6.1.1 . l ,  two types of 
valid inequalities might be added to the model formulation. Valid inequalities 
(7-18) are resource dependent variants of (6-4), whereas (7-17) extend the concept 
of (6-3) to a model formulation in which backlogging is allowed. 

Valid inequalities (7-17) state, that if a product j cannot be produced within the 
time interval [t; t+p] (second parenthesis on the right-hand side evaluates to "I"), 
the total demand within this interval (first parenthesis on the right-hand side) must 
either reside in stock at the beginning of the interval (&,>O) or is backlogged until 
the end of the interval (IBjt+,20) or a mixture of both. However, in the rather small 
test instances considered here, the definition of these two types of valid inequali- 
ties did not make a difference and therefore they have not been used in the compu- 
tational tests. 

As will be seen from the analysis of solutions and the evaluation of the compu- 
tational performance, the proposed customized model formulation will produce 
optimal solutions as long as the following two assumptions are met. First, the 
minimal campaign length needs to be greater than the period length, which is the 
case here due to the time discretization procedure outlined above. Second, as idle 
time is modeled as the production of a dummy product, idle time is counted as a 
product with respect to the basic PLSP assumption, which states that at most one 
setup operation might be performed in each period.369 Although idle time will not 
obey any minimal lot size restrictions ((7-10)-(7-13)), this prevents short amounts 
of idle time between two production runs of regular products. Anyhow, as produc- 
tion intensity may be shifted within rather wide ranges (Table 7-54) and because 
setup operations starting from the idle state are rather expensive, this will not lead 
to any problems in finding the optimal solutions here. 

7.5.3 Analysis of Solutions 

Table 7-55 provides the optimal objective function values (and its components) 
for the five test instances of test set KM, while Fig. 7-20 provides gantt charts of 
the optimal solutions. These gantt charts are not distinct, because production rates 

368 E.g., in example KM3 at most two days of outage test 2 (time window: [30; 601) can lie 
in month 3 (in days: 158; 881). Therefore an upper bound for the corresponding vari- 
able XT,i, is 2. Cf. Lee et al. (2002) pp. 62-63. 

369 See also section 2.3.3. 
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are allowed to vary in rather wide ranges and a different allocation of time to 
products will yield the same objective function value as long as the same quanti- 
ties are produced in each period. 

Table 7-55: Optimal objective fimction values for test set KM. 

example optimal objective holding costs setup costs safety stock vio- backlog 
function value [$I [$I [$I lation penalty [$] penalty [$I 

KMl 128,003 4,889 8,400 0 114,713 

resource Production rate 
m 

max 
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Fig. 7-20: Gantt charts of optimal solutions for test set KM. 
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However, for some test instances, different optimal solutions have been re- 
ported in literature. These differences will be analyzed first, before the proposed 
model formulation is compared computationally to the benchmarks by Karimi and 
McDonald (1997), Ierapetritou et al. (1999) and Lee et al. (2002). 
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For test instance KM1, Karimi and McDonald (1997) and Ierapetritou et al. 
(1999) report a different objective function value of 125,603$.370 However, they 
report the same optimal solution (gantt chart).371 Thus, they might have used a 
slightly different data set. Their model formulations have been rerun with our data 
set yielding an optimal objective function value as reported in Table 7-55. 

With respect to test instance KA42, all three benchmarks propose different op- 
timal objective function values. Karimi and McDonald (1997) report 16,201$, 
Ierapetritou et al. (1999) report 16,138$, while Lee et al. (2002) report 16,737$.372 
However, the last two propose the same optimal solution (gantt chart), while in the 
optimal solution of Karimi and McDonald (1997) the setup operation from prod- 
uct 4 to product 10 is scheduled to be in the fourth week instead of the second 
month. Anyhow, neither of the reported optimal solutions is the correct solution 
with respect to the problem data, because all solutions start with production of 
product 10 at the beginning of the first week. However, as the resource is idle at 
the beginning of the planning interval, it is possible to save holding costs by keep- 
ing the resource idle for some more days. 

Karimi and McDonald (1997) could not find the optimal solution with their 
model formulation, because one of their constraints forbids idle time, if backlog- 
ging occurs in a later period.373 Thus, in this test instance, idle time in the first 
week is not allowed by their model formulation. However, in some rare cases (like 
this one) it might be less costly to keep a resource idle, because the product that is 
backlogged is not produced in their solution either. If this constraint is removed 
from the model formulation, this leads to the same optimal objective function 
value and solution (gantt chart) as reported here. We could not reproduce the ob- 
jective function values of the other two papers, because in our implementation, 
these model formulations produced the optimal objective function value and opti- 
mal solution as reported here. 

For test instance KM3, again all three benchmarks propose different optimal 
objective function values. Karimi and McDonald (1997) report 350,257$, Iera- 
petritou et al. (1999) report 350,216$, while Lee et al. (2002) report 345,944$.374 
Ierapetritou et al. (1999) report the same optimal solution as provided in Fig. 7-20. 
Thus, their reported optimal objective function value, which differs from ours by 
600 $ might be due to a different setup cost coefficient used. Moreover, with our 
implementation of their model formulation we arrived at 350,816$ as reported in 
Table 7-55. The model formulation by Karimi and McDonald (1997) seems to suf- 

370 Cf. Karimi and McDonald (1997) p. 271 1 and Ierapetritou et al. (1999) p. 3459. 
371 Here (and for test instances KMZ-KM5), the optimal solutions are considered the 

same, if production quantities are the same in each period. Due to the variation of pro- 
duction rates, allocation of time to products may vary without altering the optimal ob- 
jective hnction value. 

372 Cf. Karimi and McDonald (1997) p. 271 1, Ierapetritou et al. (1999) p. 3459 and Lee et 
al. (2002) p. 62. 

373 Cf. Karimi and McDonald (1997) pp. 2705,2706,2714. 
374 Cf. Karimi and McDonald (1997) p. 271 1, Ierapetritou et al. (1999) p. 3459 and Lee et 

al. (2002) p. 62. 
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fer from the same constraint as in test instance KM2, although we could not repro- 
duce their solution. They propose to start to produce product 14 again at the end of 
the third month, presumably because no idle time is allowed at the end of the third 
month, because a backlog (for product 1) occurs. Moreover, the difference of 4 1 $ 
between Karimi and McDonald (1997) and Ierapetritou et al. (1999) is exactly the 
difference in holding costs of product 14 in their respective solutions. However, 
the additional setup cost cannot be accounted for by this explanation. 

The objective function value and solution reported by Lee et al. (2002) are 
definitely wrong. First, they propose to schedule test 2 directly after test 1. Post- 
poning it like in the solution proposed in Fig. 7-20 would save 5,360$ in backlog 
costs, but incur only 5,000$ in additional setup costs. Moreover, they produce too 
much of product 7 in the third month with an ending inventory of 7,348 exceeding 
the safety stock target of 1,080. Producing less, which is possible as the minimal 
campaign length has already been met, would reduce holding costs by 130$. Our 
implementation of their model formulation produces the correct optimal objective 
function value and solution, after some initialization conditions have been added. 

With respect to test instance KM4, again all three benchmarks propose different 
optimal objective function values. Karimi and McDonald (1997) report 794,385$, 
Ierapetritou et al. (1999) report an optimal objective function value of 794,386$, 
while Lee et al. (2002) report 800,278$.375 The optimal solution (gantt chart) by 
Karimi and McDonald (1997) matches ours except for the first lot of product 12 
being produced on resource 6 instead of resource 5. As both resources are identi- 
cal (Table 7-54), this does not change the optimal objective function value. Thus, 
they might have used a somewhat different data set, because in our implementa- 
tion their model formulation yields the same optimal objective function value as 
reported above (Table 7-55). 

The optimal solution (gantt chart) by Ierapetritou el al. (1999) shows produc- 
tion of product 12 on both resources at the beginning of the first week. This is not 
optimal, because inventory holding costs for product 12 are higher than for prod- 
uct 5. As both products are produced at the same production rate and as no back- 
logging occurs in the first period, it would have been better to start production of 
product 5 on one resource right at the beginning of the first week, while postpon- 
ing some of the production of product 12 into the second week. The cost saving 
for doing so is exactly 1.03$ and explains the different objective function values 
reported. 

Again, the optimal solution (gantt chart) by Lee et al. (2002) is definitely wrong 
and may be improved by inspection. In addition to producing product 12 on both 
resources at the beginning of the first week (like Ierapetritou et al. (1999)), they 
propose to schedule maintenance at the beginning of the third month instead of the 
end. This incurs additional setup costs of 5,000$ without yielding any benefits. 

375 Cf. Karimi and McDonald (1997) p. 271 1, Ierapetritou et al. (1999) p. 3459 and Lee et 
al. (2002) p. 62. 
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The reason for this is that constraints (23) of their paper does not allow outages at 
the end of the planning horizon.376 

For test instance KM5, Karimi and McDonald (1997) and Ierapetritou et al. 
(1999) report a different objective function value of 42,072$.377 However, they re- 
port the same optimal solution (gantt chart). Thus, they might have used a slightly 
different data set also here. Their model formulations have been rerun with our 
data set yielding an optimal objective finction value as reported in Table 7-55. 

Lee et al. (2002) report the same optimal objective function value, but a slightly 
different optimal solution (gantt In their optimal solution test 3 and pro- 
duction of product 8 are switched in the third month. However, this does not 
change the objective function value. 

Although not affecting optimal solutions to test set KM, there is another flaw in 
the model formulation by Lee et al. (2002). They forgot to model sub-tour elimi- 
nation constraints.379 Thus, setup cycles distorting solutions are possible. This is il- 
lustrated best by an example: If the setup operation from product 13 to product 9 
is easy instead of difficult and therefore costs only 600$ instead of 3,000$, the 
model formulation by Lee et al. (2002) will produce a setup cycle in the third 
month. The reason is, that it is cheaper to perform setup operations from product 
13 to 9 (600$), 8 to test 3 (0$), test 3 to idle (0$) and idle to 8 (5,000$) totaling 
5,600$ than performing the optimal sequence from 13 to 8 (3,000$), 8 to test 3 
(O$), test 3 to 9 (5,000$) costing 8,000$. The first setup pattern is not forbidden, 
because sub-tour elimination constraints are missing in their model formulation. 
However, the sequence cannot be implemented. Therefore, the optimal solution of 
the model formulation by Lee et al. (2002) is not even feasible, because of the 
missing link in and out of the cycle (8, test 3, idle). 

376 Moreover, if they had modeled idle time in this test instance, they would have received 
the correct schedule, because at the end of the planning interval a setup operation from 
maintenance to idle would have occurred at a cost of 0$, which in fact would have al- 
lowed the maintenance at the end of the planning horizon despite the error in constraint 
(23). However, they modeled idle time only for those test instances from which they 
knew that idle time would occur in the optimal solution. This is obvious from the solu- 
tion statistics presented in their paper and understates the true number of binary vari- 
ables necessary for modeling, because the optimal solution is usually not known be- 
forehand. E.g., they claim that only 54 binary variables have been used to model test 
instance KM4. On each resource there are 3 products to be produced (5, 12 and idle). 
With 6 periods and 2 variables for each product on each resource, this gives 3.2.6.2=72 
binary variables. The binary variables for the maintenance operation have to be de- 
fined only for the periods and resource the maintenance operation is allowed to be 
scheduled (1.1.4.2=8). Thus, in our view, 80 binary variables are necessary in the 
model formulation by Lee et al. (2002) for test instance KM4. Presumably, they did the 
same with test instances KM1 and KM5. 

377 Cf. Karimi and McDonald (1997) p. 271 1 and Ierapetritou et al. (1999) p. 3459. 
378 Cf. Lee et al. (2002) pp. 62-64. 
379 See constraints (2-42) for the CLSD (section 2.4.2). 
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7.5.4 Computational Performance 

As has been outlined in the previous section 7.5.3, all benchmark model formula- 
tions had minor defects. These have been removed, such that all model formula- 
tions will find the same optimal solutions and can be compared on a fair basis.380 
XpressMP release 2003G with standard settings has been used as a MIP solver on 
a PC equipped with a Pentium I11 processor with a clockspeed of 800 MHz and 
128 MB of memory to obtain the computational results in this section. 

In Table 7-56 the size of the model formulations (number of binary variables, 
total number of variables, number of constraints and number of non-zero coeffi- 
cients), lower bounds provided by the model formulations as well as the time to 
prove optimality and the size of the branch-and-bound tree necessary to do this 
(number of nodes) are compared for the five test instances of test set KM. 

Except for test instance KM3 the proposed model formulation (a) needs the 
fewest number of binary variables to model the described decision situation. If 
there had not been the missing sub-tour elimination constraints, which require 
setup operation variables YmV, to be declared binary, the model formulation by Lee 
et al. (2002, 0) would have needed the second fewest number of binary variables. 
On the other hand, their model formulation now produces always the best bounds 
and therefore the smallest search trees. However, the time needed to prove opti- 
mality of solutions is lower for the proposed model formulation as long as the test 
instance comprises only a single resource (test instances KM1, KM2 and KM5). 

The model formulation by Karimi and McDonald (1997, 0) also provides tight 
lower bounds, but suffers from its bigger model size yielding longer solution times 
(with test instance KM3 being an exception) than the proposed model formulation. 

Finally, the model formulation by Ierapetritou et al. (1999, 0) shows the weak- 
est bounds. Consequently (with one exception), the biggest branch-and-bound 
trees are built by this model formulation. To prove optimality to test instance KM4 
takes almost half an hour, while all other model formulations only take a few sec- 
onds. However, they claim in their paper to have obtained much smaller branch- 
and-bound trees by assigning priorities for branching on the binary variables.381 
Nothing similar has been done here. 

Summarizing the results, the application of the proposed model formulation re- 
veals new insights and a new optimal solution (KM2) to a test set frequently used 
in literature. Computational effort has been slightly higher compared to two of the 
three benchmarks, if parallel resources need to be planned for. However, no effort 
has been taken to tailor the proposed model formulation to this scenario. Although 
only the extension to respect minimal lot sizes could be used here, the proposed 
model formulation has been shown to be highly competitive. Thus, further addi- 
tions to the model formulation (here: penalties on backlog and safety stock viola- 
tions, sequence dependent setup costs, variable production rates, planning of out- 
ages) can be made easily without loosing performance. 

380 The (corrected) model formulations can be found in the appendix. 
381 Cf. Ierapetritou et al. (1999) p. 3458. 
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Table 7-56: Comparison between the proposed model formulation (@) and the benchmark 
model formulations by Karimi and McDonald (1997, a), Ierapctritou et al. (1999, 0)  and 
Lee et al. (2002, 0) for test set KM. 

Test Model #binary # #cons- # non- # LB'" Optimal Time 
in- formu- variables variables traints zero coef- nodes [$I solution [s] 
stance lation ficients [$I 

0 64 496 556 1,985 147 20,487 4 
8 45 471 1,067 3,824 130 15,783 128,003 3 

K"I 0 120 297 489 1.533 85 24,381 2 

6 125 1,488 11918 9,689 1,692 327,016 32 
0 107 860 978 3,493 21 795,040 4 
8 

KM4 70 528 1226 4,456 383,989 542,647 797,129 1.65; 
188 446 746 2,288 3 797,129 

6 67 528 718 2,515 330791 ,618  3 
0 67 675 703 2,689 453 18,262 6 
8 KM5 a 5 1 552 1,294 4,451 1,881 2,676 43,272 1: 

170 371 608 1,974 326 24,278 
@ 42 517 655 2,743 374 15,740 2 

LBXLP . is the LP relaxation after automatic cut generation by XpressMP. 
A solution time of 0 seconds indicates that the solution was proven optimal in less than one 
second, because XpressMP rounds solution times down to the second. 
The number of slots assigned to individual periods have been two for each weekly period 
and four for each monthly period in the model formulation of Karirni and McDonald 
(1997). For the model formulation of Ierapetritou et al. (1999) it has been two for each 
weekly period and three for each monthly period except for test instance KM5, in which 
four slots have been used in the third month. This is in line with the recommendations of 
the authors (cf. Karimi and McDonald (1997, p. 271 1) and Ierapetritou et al. (1999, p. 
3457)) and gives the best results. Generally, several assignments will have to be tested until 
the "optimal" allocation is known (cf. Karimi and McDonald (1997, p. 2709), Ierapetritou 
and Floudas (1998a, pp. 4349 and 4358)). Therefore, the "Time" column understates the 
true computational effort for these model formulations. 

7.6 Dependency on Solver Technology 

So far, all computational results are based on XpressMP release 2003G as the 
standard MIP solver. As the main contribution of this thesis is in modeling, this 
section aims to show that the computational results are rather independent from 
the MIP solver used. Therefore, a subset of the tests has been run again with three 
different commercial MIP solvers. 

The first one is of course XpressMP release 2003G. The second MIP solver is a 
newer release of XpressMP (2004B) which became available during the work on 
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this thesis. Third, CPLEX 9.0 has been used. All solvers have been used with 
standard settings on a PC equipped with a Pentium IV processor with a clockspeed 
of 2.4 GHz and 256 MB of memory running Windows XP Professional. 

Test set TC1 and the model formulations using the lot size extensions will be 
used here again.382 

Fig. 7-21 shows the number of test instances solved to proven optimality for the 
model formulation with minimal and maximal lot size restrictions and its corre- 
sponding benchmark by Kallrath (1999) for different MIP solvers. For all solvers, 
the proposed model formulation solves a lot more test instances to proven optimal- 
ity in the same time. The two different releases of XpressMP show almost the 
same behavior regardless whether the proposed model formulation or whether the 
Kallrath (1999) benchmark is used. CPLEX 9.0 clearly outperforms XpressMP, if 
the benchmark model formulation by Kallrath (1999) is used. With respect to the 
new model formulation, CPLEX seems to have advantages in the beginning, but 
needs a lot more time to prove optimality for all test instances. The last test in- 
stance is proven optimal after 488 seconds by CPLEX, but after 280 (222) seconds 
by XpressMP 2004B (2003G). 

solution time [s] 
PLSPlminmax+Wvi-B&C Kallrath/minmaxlvi-B&C 

+ (2003G) + (20048) -A- CPLEX 9.0 -- (2003G) ++ (2004B) - CPLEX 9.0 

Fig. 7-21: Number of test instances solved to optimality over time (PLSP/minmax+Wvi- 
C&B and Kallrath/minmax/vi-C&B with different solvers, test set TC1). 

In Fig. 7-22 the same picture is drawn for model formulations which addition- 
ally respect batch size restrictions. Here, not a single test instance can be proven 
optimal for the benchmark formulation by Kallrath (1999) by either of the three 
MIP solvers. Concerning the proposed model formulation, all three MIP solvers 
show a similar behavior. Again, CPLEX seems to be advantageous in the begin- 

382 See section 7.2.1 for a description of test instances and Table 7-22 for a description of 
the notation of the model formulations used here. 
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ning. More test instances are proven optimal in the first 2 !4 minutes. Afterwards, 
XpressMP seems stronger. Here the last test instance is proven optimal after 386 
(522) seconds by XpressMP 2004B (2003G), while not all test instances (only 177 
out of 180) have been proven optimal by CPLEX within the time limit of 10 min- 
utes. 

solution time [s] 
PLSPlall+Klvi-B&C KallrathlalVvi-B&C 

(2003G) + (20048) -A- CPLEX 9.0 -e- (2003G) +- (20048) - CPLEX 9.0 

Fig. 7-22: Number of test instances solved to optimality over time (PLSP/all+Wvi-C&B 
and Kallrath/all/vi-C&B with different solvers, test set TC1). 

Finally, Table 7-57 compares the solution quality of the different model formu- 
lations and solvers. Therefore, the best solutions found within certain time limits 
are compared to corresponding optimal solutions. Concerning the tests with mini- 
mal and maximal restrictions on the lot size, the proposed model formulation pro- 
vides solutions which deviate from optimal solutions on average only approxi- 
mately 1% after 15 seconds (MIP solvers: XpressMP 2003G and 2004B). The 
benchmark model formulation by Kallrath (1999) on the other hand needs more 
than 60 seconds to find even a feasible solution for all test instances. It takes 10 
minutes to obtain a comparable solution quality (-1%) with this model formula- 
tion regardless which MIP solver is used. 

If batch size restrictions are also needed, the proposed model formulation needs 
approximately 30 seconds to arrive at the same solution quality as above (-1%). 
No MIP solver was able to provide solutions to all 180 test instances within the 
time limit of 10 minutes for the benchmark model formulation by Kallrath (1999). 
For this model formulation, CPLEX seems to find more and better solutions than 
XpressMP 2003G which again seems to find more and better solutions than 
XpressMP 2004B. 
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For the three other model formulations tested, the ranking of MIP solvers based 
on the quality of solutions seems to be XpressMP 2004B first, CPLEX 9.0 second 
and XpressMP 2003G third. 

Table 7-57: Solution quality of different model formulations for test sets TC1 (upper 
bound: best solution found within . . . seconds; lower bound: optimal solution). Numbers in 
parenthesis indicate the number of test instances a feasible solution has been found for 
within the time limit (if not equal to 180). 

Solution PLSP/ KallratW PLSPI KallratW 
aualitv after minmax+W minmaxl all+W all/ 
A - 
. . . seconds vi-C&B vi-C&B vi-C&B vi-C&B - 
XpressMP 2003G 

15 1.05% 41.02% (94) 2.48% 106.83% (11) 
30 0.43% 18.62% (139) 1.05% 95.04% (42) 
60 0.13% 8.85% (174) 0.57% 81.43% (80) 

120 0.01% 4.93% 0.18% 62.39% (105) 
180 0.00% 3.47% 0.07% 54.28% (120) 
300 0.00% 2.53% 0.01% 46.42% (129) 
600 0.00% 1.29% 0.00% 40.22% (141) 

XpressMP 2004B 
15 0.95% 17.18% (137) 1.81% 126.15% (12) 
30 0.39% 11.24% (165) 0.93% 121.76% (25) 
60 0.17% 5.87% (176) 0.45% 111.84% (38) 

120 0.03% 3.52% 0.17% 98.88% (61) 
180 0.01% 2.61% 0.07% 97.23% (78) 
300 0.00% 1 .90% 0.01% 84.92% (93) 
600 0.00% 0.95% 0.00% 74.59% (112) 

CPLEX 9.0 
600 0.00% 1 .06% 0.03% 36.12% (162) 

Summarizing, the difference between the three MIP solvers is much smaller 
than the difference observed between the proposed model formulations and their 
benchmarks. Thus, based on these results, the proposed modeling approach seems 
to be independent from the MIP solver, which has been used as a standard tool 
throughout this thesis. 
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The aim of this thesis has been to provide a modeling framework to incorporate 
aspects of time continuity into lot-sizing model formulations based on time discre- 
tization. 

The starting point has been a classification of basic lot-sizing models. Big- 
bucket, small-bucket and hybrid models have been compared and their advantages 
and disadvantages have been discussed. Modeling aspects of time continuity is 
only possible, if adjacent periods in these models can be linked somehow. There- 
fore, only small-bucket and hybrid models have been found eligible for further 
consideration. The PLSP, which is the most versatile small-bucket model, and the 
CLSPL due to its universality have been chosen as basic models to be used 
throughout the rest of this thesis. 

In the third chapter different extensions to model aspects of time continuity 
have been defined. The first important cornerstone has been the modeling of setup 
states at period boundaries. Period boundaries are the result of time discretization, 
and therefore it is crucial to model these points in time explicitly to avoid disrup- 
tions in the resulting plan. With examples from literature it has been shown that 
plans are fundamentally different depending on whether setup states are carried 
over period boundaries or not. Later on, this is also shown based on the computa- 
tional results in section 7.1. 

The second cornerstone addressed in chapter three is the modeling of lot sizes 
that span over two (or more) periods. In the process industries the problem often 
arises that lot sizes have to respect certain restrictions on their minimal and / or 
maximal size, or that they have to be in multiples of a predefined batch size. In 
these scenarios, the correct lot size needs to be determined, and it does not suffice 
to pose restrictions on the production quantities in each period independently. The 
modeling of setup operations is the third cornerstone, as setup operations may also 
lie at the boundary of two periods. Lastly, the impact of these measures, which in- 
corporate time continuity into a bucket-oriented setting, on the resource utilization 
of the resulting plans has been analyzed. 

The fourth chapter has provided a review of relevant literature. The aim of this 
literature review has been twofold. On the one hand, the emphasis has been on ex- 
tensions of standard lot-sizing models presented in the second chapter to account 
for time continuity. On the other hand, model formulations originating from proc- 
ess industries have been discussed. Although these often contain additional side 
constraints, their thorough analysis has proven worthwhile, as they offer a great 
variety of modeling ideas, as well as they constitute a major area of application for 
the model formulations proposed later on. To show the extensibility of the pro- 
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posed model formulation, it has been benchmarked to three of these model formu- 
lations from literature in section 7.5. 

Although the major contribution of this thesis lies in modeling, the model 
should be integrated into a planning framework. Therefore, chapter five introduces 
briefly the concept of Advanced Planning Systems, for which the proposed model 
formulations and solution procedure is well-suited. Furthermore, an overview of 
the state-of-the-art in mathematical programming (including capabilities of current 
standard solvers) and an introduction into decomposition has been given. 

Chapter six contains the major contribution of this thesis. Model formulations 
for the four cornerstones defined in chapter three have been developed. The model 
formulations have been presented for both basic models chosen, PLSP and 
CLSPL. This has been necessary to account for the differences of these two basic 
models. However, also these two models can be coupled by aligning them at a pe- 
riod boundary. 

The extensions to model setup states, lot sizes spanning over several periods, 
period overlapping setup times and different restrictions on resource utilization 
have been presented as building blocks and may be freely combined. To enhance 
computational performance the model formulations are enriched by valid inequali- 
ties. As each extension requires several variables and constraints to be added to 
the model formulation, in order to reduce computational effort usually not a com- 
plete model should be solved, but rather one tailored to the individual decision 
situation. Furthermore, as MIP model formulations often grow too big, a temporal 
decomposition heuristic has been proposed to cope also with this issue. 

Finally, the proposed model formulations and the temporal decomposition heu- 
ristic are evaluated computationally in the seventh chapter. An analysis of optimal 
solutions revealed the fundamental difference of solutions to models which allow 
for setup state preservation across period boundaries and those that do not (section 
7.1.2). Furthermore, it has been shown that minimum or maximum restrictions on 
lot sizes are considerably easier extensions than batch size restrictions on lot sizes 
(section 7.2.2). However, the progress in the ability of solving problems contain- 
ing this kind of extension has been most remarkable. Extensive computational 
tests have shown that benchmarks from literature are clearly outperformed with 
respect to solution quality and solution speed (sections 7.1.3 and 7.2.3). 

The extensibility of the proposed approach has been demonstrated by solving a 
test set frequently used in literature and by comparison of its solution to solutions 
from literature. This analysis not only revealed the computational competitiveness 
of the proposed approach, but also showed improvements compared to solutions 
provided in literature (section 7.5). Lastly, the independence of the proposed solu- 
tion approach from the solver technology used has been shown (section 7.6). 

In summary, this thesis has provided a new modeling approach that allows to 
represent plans that are possible on a continuous time scale within a time-indexed 
setting. Only small limitations prevail. These are, that in each period at most one 
setup operation (basic model PLSP) or at most one setup operation per product 
(basic model CLSPL) are allowed. On the other hand, the model formulations (and 
practical relevance) suggest to plan with rather short periods, because otherwise 
the correct modeling of period boundaries would be less relevant. Thus, by incor- 
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porating these measures into a planning system, resulting plans are no longer dis- 
rupted by discontinuities due to time discretization. Furthermore, the proposed 
model formulations have been shown to be computationally efficient. 

Further research opportunities in the modeling area could be to calculate hold- 
ing costs continuously rather than based on end-of-period inventories, and to allow 
for more options regarding resources to be planned for. These might be parallel re- 
sources or other types of (shared) resources like, for example, personnel or tanks. 
Furthermore, to allow for a multi-level operations structure would be an attractive 
extension. On the algorithmic side, improving the anticipation capabilities of the 
temporal decomposition heuristic might be a rewarding topic. 
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Appendix - Model Formulations of Benchmarks 

Gopalakrishnan (2000) 

The benchmark model formulation by Gopalakrishnan (2000) consists of objective 
function (A-1) and constraints (A-2) - (A-17): 

Min ~ ~ h , , . I , ,  + ~ ~ s c , , Y , ,  

2 .  S,, I y,,-, + a,, 'd j ,  t 1 (A-6) 
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Variables ($different from List of Symbols): 

=1, if the setup for item j is carried into period t; =O otherwise 
=1, if item j is produced in period t; =O otherwise 
=1, if a setup operation for item j is performed at the end of period t; 
=O otherwise 
=1, if item j is produced first in period t; =O otherwise 
=1, if item j is produced last in period t; =O otherwise 
=0, if exactly one item is produced in period t; >O otherwise 
=1, if the resource is set up for item j at the end of period t; =O oth- 
erwise 
=1, if at least one item is produced in period t; =O otherwise 

Remarks: 

In contrast to the original model formulation by Gopalakrishnan (2000) no cost is 
charged in the objective hnction for production in a period, in which no setup op- 
eration occurs. 

lerapetritou et al. (1999) 

The benchmark model formulation by Ierapetritou et al. (1999) consists of objec- 
tive fbnction (A-18) and constraints (A-19) - (A-51): 

Min c ~ h j t  - ~ j e - e , t ,  + z xh/ . C C C X m k - I  
j€J~%ur t€Q jt31Jout 1cQ i t 1 e e C m s ~  

nr last in t 

+ C C C C sc;d . K e  + C C scoutage . Yme 
icr / € I  m c U  esE rncw ecE 

~e lasr in 1 n e  last in 1 

minrate,,,, . ( P T : ~ ~  - PTiiTt) I Xm,, 

(A- 1 8) 
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IBje = IBje-I - Sje + d,, 'v' J E J  I Jout, e~ E (A-24) 

ISSVIe 2 sst, - I ,  
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Indices and index sets (fdifferent from List of Symbols). 

e 
i, 1 
I 
I", 

8 
Rut 

0 

Z 

Event points ( e ~  E) 

Tasks (i, I E  I )  

Set of tasks 
Set of tasks producible on resource m 
Set of tasks producing product j 
Set of tasks representing outages 
Tasks representing outages (o  €JOut) 
Set of event points within period t 

Data (ifdifferent from List of Symbols): 

4 demand for product j at event point e 
4 )  Number of event points within period t 
maxratemi Maximal production rate of task i on resource m 
ininratemi Minimal production rate of task i on resource m 
sc,,, Setup cost incurred after resource idle time or an outage 
ToO"l~slarl Earliest point in time, at which outage o is allowed to start 
ToO"l,end Latest point in time, at which outage o is allowed to end 

Variables (fdifferent from List of Symbols): 

IBje Backlog of product j at event point e 
ISSYe Safety stock violation of product j at event point e 



Appendix - Model Formulations of Benchmarks 221 

Time that tasks i ends on resource m at event point e 
Time that outage tasks o ends on resource m at event point e 
Time that tasks i starts on resource m at event point e 
Time that outage tasks o starts on resource m at event point e 
Amount of product j shipped at event point e 
Task start variable (=I, if task i starts at event point e, =O otherwise) 
Outage task start variable (=I, if outage o starts at event point e, =O 
otherwise) 
Resource usage variable (=I, if resource m is utilized at event point e, 
=O otherwise) 
Production of task i on resource m in the time slot associated with 
event point e 
Setup variable (=I, if a setup operation from task i to task I is per- 
formed at event point e, =O otherwise) 
Setup variable (=I, if a setup operation after idle time or after an out- 
age task is performed on resource m at event point e, =O otherwise) 

Remarks: 

Variables (resource-task-event point combinations) that do not exist or that are not 
allowed (in the case of outages) must not be defined or must be set to zero. In con- 
trast to the original model formulation by Ierapetritou et al. (1 999) the benchmark 
model formulation has been altered at several points. First, transition constraints 
((27) - (3 1) in their paper) do not account for setup operations after idle time cor- 
rectly as well as they do not allow transitions at three consecutive event points. 
Therefore, these constraints have been replaced by (A-31) - (A-36). Second, 
minimum run length constraints ((32) and (33) of their paper) force the minimum 
run length to be fulfilled within the first three event points, which is generalized to 
an arbitrary number Z+1 by (A-43). Here, Z is set to 4. Third, constraints (A-37) 
are added to force each outage to occur once. Last, to account for idle time cor- 
rectly, constraints (25) of their paper are supplemented by (A-29) and (A-40). 

Kallrath (1999) 

The benchmark model formulation by Kallrath (1999) consists of objective func- 
tion (2-20) and constraints (2-21), (2-22), (2-25) - (2-27), (6-1) - (6-4), (6-28) and 
(A-52) - (A-64): 
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2 n . Ca ,,,, = Ct,, 
n=O 

Xujtn 2 bj, . Ca ,, 
Xu,,, I X,, 

Xujln 2 Xi, + bjl . Caj,, - b,, 

Xn,, I max lot, 

'v' j € J ,  n e w  (A-59) 

Rn,, 2 0 and integer 

Indices and index sets (ifdifferent from List of Symbols). 

n Campaigns, n E fl 
3- Set of (possible) campaigns (n=l ..N) 

Variables (if different from List of Symbols): 

Ca,, Campaign activity (=I, if production of product j in period t belongs 
to campaign n, =O otherwise) 

C$I Counting variable (= number of setups of product j in periods 1 ..t) 
Rnjn Batch variable (= number of batches produced in campaign n of prod- 

uct j )  
XajCn Production amount of product j in period t, which belongs to cam- 

paign n 
Xnjn Production amount of product j in campaign n 

Remarks: 

In contrast to the original model formulation by Kallrath (1999) the PLSP model 
formulation with valid inequalities as described in this thesis is used as a basis 
model (see section 7.2.1). 
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Karimi and McDonald (1997) 

The benchmark model formulation by Karimi and McDonald (1997, model formu- 
lation M2) consists of objective function (A-65) and constraints (A-66) - (A-95): 

Ynds 2 ymjjx-I V ~ E % , J E & ,  ~EI;sES,, ( s - l ) ~ S ~ ~ , s n o t  last i n t  (A-74) 

mmjs 2 Cl . Wws tl m~ %t, jeJ,, t~ I; s first in t (A-75) 

' ' I  . (wmJs - ymj3-~ ) tl me!%& j ~ j ' ~ ,  t ~ ? ;  s not first in t (A-76) 
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ISSV,, 2 sst, - I j ,  b' J E J  I Joul, t € T  (A-81) 

PT.> = C cr 
r r l  V m E %f, t~ T, s E S,,,, s last in t (A-90) 

Indices and index sets (ifdifferent from List of Symbols): 

KUt Set of products representing outages 
S Slots ( seS)  
S Set of slots 
Sm Set of slots on resource m 
Smt Set of slots on resource m in period t 

Data (if differentfrom List of Symbols): 

f(m,s) First slot of the first period after slot s on resource m 
g(m,j,s) First slot of the first period after slots on resource m, which will guar- 

antee that the minimal campaign length of product j is fulfilled if the 
campaign has started in slot s 
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gJ(m,j,s) First slot of the first period after slot s on resource m, which must be- 
long to the campaign of product j if the campaign has started in slot s 

- in order to fulfill the minimal campaign length 
pT, Latest point in time at which slots s ends on resource rn 
Ems Earliest point in time at which slots s ends on resource m 
t(s) Period to which slots belongs 
TjO"t,slarl Earliest point in time at which outage j is allowed to start Tend Latest point in time at which outage j is allowed to end 

Variables ($different from List of Symbols): 

pTms Point in time at which slots ends (and s+l begins) on resource m 

4, Amount of product j shipped at the end of period t 

w,i, Production indicator variable (=I, if the setup state for product j per- 
sists on resource m in slots, =O otherwise) 

XTmjS Production time for product j on resource m in slots 
ymijs Setup variable (=I, if a setup operation from item i to item j is per- 

formed on resource m at the end of slots, =O otherwise) 

Remarks: 

Variables Wmjo and XT,io have to be initialized according to the data of the indi- 
vidual test instance. Variables (resource-product-period combinations) that do not 
exist or that are not allowed (in the case of outages) must not be defined or must 
be set to zero. In contrast to the original model formulation M2 by Karimi and 
McDonald (1997) the benchmark model formulation does not include the con- 
straints that forbid idle time in a period, if backlog occurs in a later period, be- 
cause the inclusion of this constraint will sometimes exclude the optimal solution 
(see also section 7.5.3). 

Lee et al. (2002) 

The benchmark model formulation by Lee et al. (2002) consists of objective func- 
tion (A-96) and constraints (A-97) - (A-125): 

+ 1 1 C C sck$. . Y,,, + C C ssp . ISSVjt + C C blp, . IBj, 
icy jsJ m ~ w  tsTm, nb, id300t  l€Q t t Q  

A jfi A ~EJ , ,~  
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ISSV,, 2 sst, - I,, b ' j eJ \Jou , , t~T (A-113) 
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Indices and index sets (ifdifferent from List of Symbols): 

Jo7t Set of products representing outages 

Tml Set of periods, in which product j is producible on resource m 

Data (ifdifferent from List of Symbols): 

caomjt Capacity, which is maximally available on resource m for outage j in 
period t 

Variables (ifdifferent from List of Symbols): 

Fmjt Position variable (takes only integer values), the larger Fmj, the later 
product j is scheduled on resource m in period t 

s i t  Amount of product j shipped at the end of period t 
urn,, Production indicator variable (=I, if the setup state for product j per- 

sists on resource m at some point in period t, =O otherwise) 

Remarks: 

Variables Kmjo and ZmjO have to be initialized according to the data of the individ- 
ual test instance. Variables (resource-product-period combinations) that do not ex- 
ist or that are not allowed (in the case of outages) must not be defined or must be 
set to zero. In contrast to the original model formulation by Lee et al. (2002) the 
benchmark model formulation is supplemented by sub-tour elimination constraints 
(A-121) to guarantee that the correct optimal sdlution is found (see also section 
7.5.3). 

Sox and Gao (1999) 

The benchmark model formulation by Sox and Gao (1999) consists of objective 
function (A-126) and constraints (A-127) - (A-141): 
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Indices and index sets (ifdifferent from List of Symbols): 

4 P  Arc index (=O, if a setup operation is incurred in the period; =1, if a 
setup carries over into the period) 
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Data fiydiffeevent from List of Symbols): 

Cojts Holding cost for flow variable X,,,p for product j from period t to pe- 

riod s: c o ,  = x:+, x::hjr dIp 

mjts Cumulated demand of product j from period t to period s-1 

t ~ 4  First period with positive demand of product j in the planning interval 

Variables (ifdifferent from List of Symbols): 

51 Setup variable (fraction of setup cost to be incurred in the objective 
function, which is not included in the flow variables Ttmp 

X,,,p Flow variable for product j from (period t; setup state a) to (period s; 
setup state f l  

Remarks: 

In contrast to the original model formulation by Sox and Gao (1999) the bench- 
mark model formulation is extended to work also with setup times along the lines 
of Suerie and Stadtler (2003, pp. 1053-1054). 
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