
ptg11539604

ptg11539604

The Technical and Social
History of Software
Engineering

ptg11539604

This page intentionally left blank

ptg11539604

The Technical and
Social History of
Software Engineering

Capers Jones

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg11539604

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:
Jones, Capers.
 The technical and social history of software engineering / Capers Jones.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-90342-6 (alk. paper)—ISBN 0-321-90342-0 (alk. paper)
1. Software engineering—History. 2. Computer software—Development—Social aspects.
3. Computer software industry—History. 4. Computer software industry—Social aspects. I. Title.
 QA76.758.J644 201
 005.1--dc23

2013036017

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Cover design by Chuti Prasertsith

Cover images © Jim Richardson/National Geographic Image Collection/Alamy; © Graeme
Dawes/ShutterStock; © Tim Jenner/ShutterStock; © Franck Boston/ShutterStock; © iFong/
ShutterStock; © Hintau Aliaksei/ShutterStock; © dvande/ShutterStock; © Everett Collection/
ShutterStock; © anaken2012/ShutterStock; © Peshkova/ShutterStock

ISBN-13: 978-0-321-90342-6
ISBN-10: 0-321-90342-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2013

ptg11539604

v

Contents

Foreword by Walker Royce .vii

Foreword by Tony Salvaggio . ix

Preface . xix

Acknowledgments .xxvii

About the Author . xxix

Chapter 1: Prelude: Computing from Ancient Times to the Modern Era . . . 1

The Human Need to Compute . 1
Early Sequence of Numerical Knowledge . 3
Inventions for Improved Mathematics . 8

Mathematics and Calculating . 10
Recording Information . 14
Communicating Information . 15
Storing Information . 17
Enabling Computers and Software . 18

Key Inventions Relevant to Software . 21
Alphabetic Languages. 21
Binary and Decimal Numbers and Zero 21
Digital Computers . 22
Higher-Level Programming Languages 22
Random-Access Storage . 23

The Impact of Software on People and Society 23
Beneficial Tools and Applications . 23
Harmful Inventions . 32
Weighing the Risks . 34

Summary . 35

Chapter 2: 1930 to 1939: The Foundations of Digital Computing 37

The First Innovators of Modern Computing 37
Small Mathematical Applications . 40
Summary . 42

ptg11539604

vi Contents

Chapter 3: 1940 to 1949: Computing During World War II
and the Postwar Era . 43

Global Conflict and Computing . 43
Wartime Innovations . 45

Analog Computers During World War II 46
Computers in Germany During World War II 47
Computers in Japan During World War II 50
Computers in Poland During World War II 51
Computers in France During World War II 52
Computers in Australia During World War II 52
Computers in Russia During World War II 53
Computers in Great Britain During World War II 54
Computers in the United States During World War II 59

Computers in the Postwar Era . 68
The Cold War Begins . 69
Postwar Computer Development . 69

Historical Contributions of the Decade . 73
Building Software in 1945. 75
Summary . 76

Chapter 4: 1950 to 1959: Starting the Ascent of Digital Computers
and Software . 77

Military and Defense Computers in the 1950s 77
SAGE . 78
BOMARC . 80

Innovators of the 1950s . 81
Programming Languages of the 1950s . 84
The First Commercial Computers . 85

LEO . 85
IBM . 86
Other Computer Business Implementations 88

Software Applications in the 1950s . 89
Function Points in 1955 . 90
Summary . 91

Chapter 5: 1960 to 1969: The Rise of Business Computers
and Business Software . 93

An Evolving Workforce . 93

ptg11539604

viiContents

vii

Early Specialized Outsourcing . 95
Computer Programmers in the 1960s . 96

Becoming a Programmer . 96
A High Demand for Programmers 100
Emergence of the Software Engineer 103

IBM System/360 . 104
The Turing Award . 106
The Invention of the Credit Card . 109
Automation and New Professions . 110
The DEC PDP-1 . 111
Programming Languages of the 1960s . 112
The Computer Business of the 1960s . 115
Litigation Changes the Computer World Forever 118
Computers and Software in Space . 119
Computer and Software Growth in the 1960s 120
Function Points Backfired for 1965 . 122
Summary . 123

Chapter 6: 1970 to 1979: Computers and Software Begin
Creating Wealth . 125

Software Evolution in the 1970s . 125
Trends in Software . 126
Political Failures . 127
Rapid Rise of Computer Companies 128

Major Companies Formed During the 1970s 129
FedEx . 129
NASDAQ . 129
Southwest Airlines . 130

Computer and Software Companies Formed During the 1970s . . 130
Altair Computers . 131
Apple Computer . 132
Baan . 132
Computer Associates (CA) . 132
Cray Computers . 134
Cullinane . 134
Digital Research . 135
Galorath Incorporated . 136

ptg11539604

viii Contents

IMSAI Computers . 137
InterSystems Corporation . 137
Lawson Software . 138
Microsoft . 138
Oracle . 139
Price Systems . 140
Prime Computers (Pr1me) . 141
Systems Applications Programs (SAP) 141
Tandem Computers . 142
Yourdon, Inc. 144

The Impact of Companies Founded During the 1970s 145
The Troublesome Growth of Software Applications 146
Numerous Fragmented Software Subcategories 147

Advanced and Experimental Software 147
Business Software . 147
Communications Software . 148
Cybercrime and Hacking Software 148
Database Software . 149
Education Software . 149
Embedded Software . 150
Gaming and Entertainment Software 151
Manufacturing Software. 151
Middleware Software . 152
Military Software . 152
Open-Source Software . 153
Personal Software . 154
Programming Tool Software . 155
Project Management Software . 155
Scientific and Mathematical Software 155
Security and Protective Software . 156
Social Network Software . 156
Survey Tools Software . 157
Utility Software . 157

A Lawsuit That Changed Computer History 158
Background Enabling Inventions . 159
Function Points in 1975 . 162
Summary . 163

ptg11539604

ixContents

Chapter 7: 1980 to 1989: The Rise of Personal Computers
and Personal Software . 165

Rapid Changes in Computing . 166
Companies Formed During the 1980s . 168

Accenture . 171
Adobe . 172
America Online (AOL) . 173
Avira . 174
BlackBerry (Research in Motion, or RIM) 174
Borland . 175
Computer Aid, Inc. (CAI) . 177
Cisco Systems . 178
Digital Consulting Institute (DCI) 179
Huawei . 180
Intuit . 183
KPMG . 184
Lotus . 186
NeXT . 187
PeopleSoft . 188
Rational . 189
SEI . 192
Software Productivity Research (SPR) 194
Stepstone Corporation . 197
Symantec . 198
TechSoup Global . 200
Wolfram Research . 202

The Growth of Software During the 1980s 204
Results for 1,000 Function Points Circa 1985 204
Summary . 205

Chapter 8: 1990 to 1999: Expansion of the World Wide Web
and the Rise of Dot-Coms . 207

Emergence of the World Wide Web . 208
Other Innovations of the 1990s . 210
Companies Formed During the 1990s . 212

Akamai . 214
Amazon . 214

ptg11539604

x Contents

Apache . 216
Craigslist . 216
Digital Playground . 217
eBay . 218
GoDaddy . 220
Google . 221
Heartland Payment Systems . 223
Insight Venture Partners . 224
The ISBSG . 225
Monster.com . 227
Netscape Communications . 228
Priceline . 229
Red Hat Software . 230
Red Storm Entertainment . 231
Sirius Satellite Radio . 232
ThoughtWorks . 234
Visio . 235
VMware . 236

Mass Updates and Aging Legacy Software 237
Incompatibilities of International Date Formats 239
The Expansion of Outsourcing . 243
Growth of Software Applications During the 1990s 243
Results for 1,000 Function Points Circa 1995 244
Summary . 245

Chapter 9: 2000 to 2009: The Rise of Social Networks
and Economic Crises . 247

The Dot-Com Bubble . 248
The Great Recession . 250
Innovations of the 2000s. 254
Companies Formed During the 2000s . 257

AbsolutData Research . 260
Andreesen Horowitz. 261
Archon Information Systems . 262
Canonical, Ltd.. 262
Facebook . 263

ptg11539604

xiContents

Freelanthropy . 265
Global Insight. 266
HIVE Group. 267
Intellectual Ventures . 268
Internet Marketing Association (IMA) 270
Meeting Zone . 270
Moody’s Analytics . 271
Mozilla Foundation . 272
Open Source Development Labs (OSDL) 274
PerfectMatch . 275
RPX Corporation . 276
SolveIT Software . 277
Twitter . 278
YouTube . 279
Zillow . 281

Growth of Software from 2000 to 2010 . 283
Results for 1,000 Function Points Circa 2005 284
Summary . 285

Chapter 10: 2010 to 2019: Clouds, Crowds, Blogs, Big Data,
and Predictive Analytics . 287

Predicting the Future . 288
Professional Status for Software Engineering 289
Possible Software Engineering Improvements

in the 2010s . 293
Companies Formed During the Early 2010s 296

AngelPad . 298
Authr . 299
CloudVelocity . 299
CrowdCube . 300
Fiverr . 301
Flattr . 302
Geekli.St . 303
GoFundMe . 304
Namcook Analytics LLC . 304
Nest Labs . 308

ptg11539604

xii Contents

Peer Index . 309
Unified Inbox . 310
Yesware . 310

Predicting New Companies and Products from
2013 to 2019 . 311

Big Data . 312
Crowd Intelligence and Crowdfunding. 312
Cybercrime and Cybersecurity . 313
Education . 314
Intelligent Agents . 321
Medical Devices . 322
Predictive Analytics . 323
Wearable Computers . 325

Projected Growth of Software from 2010 to 2019 327
Results for 1,000 Function Points Circa 2015 328
Summary . 329

Chapter 11: Modern Software Problems . 331

Analysis of Major Software Failures . 331
1962: Failure of the Mariner 1 Navigation Software 333
1978: Hartford Coliseum Collapse. 333
1983: Soviet Early Warning System 334
1986: Therac 25 Radiation Poisoning 334
1987: Wall Street Crash . 335
1990: AT&T Telephone Lines Shutdown 336
1991: Patriot Missile Target Error 336
1993: Intel Pentium Chip Division Problem 337
1993: Denver Airport Delays . 337
1996: Ariane 5 Rocket Explosion 338
1998: Mars Climate Orbiter Crash 339
1999: Failure of the British Passport System 339
2000: The Y2K Problem . 340
2004: Shutdown of Los Angeles Airport (LAX) Air-Traffic

Controls . 341
2005: Failure to Complete the FBI Trilogy Project 342
2005: Secret Sony Copy Protection Software 343

ptg11539604

xiiiContents

2006: Airbus A380 Wiring Problem 344
2010: McAfee Antivirus Bug Shuts Down Computers 345
2011: Failed Investment in Studio 38 in Rhode Island 345
2012: Knight Capital Stock-Trading Software Problems . . 347
2012: Automotive Safety Recalls Due to Software 348

Summary . 349

Chapter 12: A Brief History of Cybercrime and Cyberwarfare 351

A New Form of Crime . 351
The Hacker Invasion . 352
Preparing Defenses . 354
Increasing Seriousness of Cyberattacks 356
A Growing Number of Victims . 358

Types of Cyberattacks . 362
Bluetooth Hijacking . 363
Botnets . 364
Browser Hijacking . 365
Computer Voting Fraud . 366
Cyberwarfare Against Civilian Targets 371
Data Theft from Corporations . 372
Data Theft from Unsecured Networks 373
Denial of Service Attacks . 374
Electromagnetic Pulses (EMPs) . 375
Email Address Harvesting . 376
Identity Thefts . 378
Java Vulnerability Attacks . 379
Keyboard Trackers . 380
Macro Attacks in Word and Excel Documents 381
Pharming . 381
Phishing . 381
Rootkits . 383
Skimming . 384
Smart Card Hijacking . 385
Spam . 387
SQL Injections . 388
Trojans . 388

ptg11539604

xiv Contents

Viruses . 389
Worms . 390
Zero-Day Security Attacks . 391

The Odds of Being Attacked . 392
Improving Defenses Against Cyberattacks 394
Raising Our Immunity to Cyberattacks . 396

Access Controls . 399
Authentication Controls . 400
EMP Protection . 401
Encryption . 401
Estimating Cyberattack Recovery Costs 402
Insurance Against Cybertheft and Cyberattack Damages . . 403
Secure Programming Languages . 404

The Increasing Frequency and Costs of Cyberattacks in the United
States . 404

Summary . 406

Appendix A: Annotated Bibliography and References 407

Index . 423

ptg11539604

xv

Foreword by Walker Royce

Over the last several decades, the software industry has advanced at a breakneck
pace. Few of us have stopped to reflect on all the foundations, breakthroughs,
and know-how that have made software the world’s most dominant product.

Our world now depends on software. It is everywhere, in almost every
man-made thing, and used by almost everybody. All that invisible stuff in our
phones, cars, gadgets, banks, and hospitals was once considered to be magical.
Now it is taken for granted as just another necessary part, service, or feature.
Don’t you wonder how it all evolved? And where it came from? And why it was
built? If you are curious about the evolution of all this magical technology, this
book provides an authoritative chronology of software’s evolution. Moreover,
if your profession depends on software—and there are very few that don’t—
you will find this book to be a valuable and educational history lesson. It
is loaded with quantified benchmarks of performance that you won’t find
anywhere else in the literature.

As a young engineer, I was introduced to Capers Jones through his books
and papers on software measurement. He was one of the go-to thought leaders
on software economics, and he was bold enough to publish facts and figures
that helped quantify the challenges and opportunities. He has written more
than a dozen books since then. When I wrote my first book in the 1990s, Capers
was one of my top choices for peer review. To some degree back then, we were
competitors, and his review of my manuscript was . . . well . . . let’s just say that
it was brutal. However, his review was, by far, the most valuable, insightful,
and constructive. He knows how to write. His strong convictions are credible
because he compiles extensive data and statistics on software quality and
productivity across diverse industries. The big lesson he taught me was this: In
the software world dominated by uncertainty, the person with the best data will
be the most persuasive. His critique was effective for steering me in a better
direction, and we have maintained a great professional relationship ever since
by frequently exchanging ideas, presentations, and provocative positions.

The measurements and forecasts of progress, quality, and business trends in
most software organizations sound like the sleight-of-hand statistics quoted by
politicians rather than the matter-of-fact measurements expressed by engineers

ptg11539604

xvi Foreword by Walker Royce

and scientists. Is this statement too harsh? No. Politicians have a well-deserved
reputation and a track record similar to the software industry for under-
delivering on committed forecasts and productivity improvements. The soft-
ware marketplace is full of cynical customers because their experience with
software productivity improvement—internally from their own people as
well as externally from vendors—is plagued by hyperbole and spin. Software
delivery endeavors have a high degree of uncertainty and complexity.

Reducing uncertainty through better measurement can increase trust among
consumers, suppliers, and developers. Through his decades of work on meas-
urement, Capers Jones has contributed immensely to the trust we put in today’s
software industry. Capers is a great writer and an authority on software history.
He was a firsthand participant in the evolution of software from its infancy.
This book synthesizes his research, knowledge, and quantified insights into a
history lesson that every software professional will find useful and every soft-
ware user will find enlightening. His writing is fluid, engaging, and crisp. Enjoy
this measured story of software advances and learn from it.

—Walker Royce
Chief Software Economist, IBM

ptg11539604

xvii

Foreword by Tony Salvaggio

When we founded Computer Aid, Inc., (CAI) in the early 1980s, we stated that
our business mission would be to strive toward thought leadership in the areas of
software engineering, software development productivity, and application support
productivity. The founders of CAI had a strong belief that doing things the right
way, repeatedly, would unlock tremendous business value for our future clients.
Although our startup team had deep experience in software engineering, as well as
large-project design and development, we knew that such experience alone would
not be sufficient to qualify us as “thought leaders.”

There is a great quote from Isaac Newton about how scientists “stand on the
shoulders of giants.” Newton meant that all scientific discovery and progress—
in particular, his own historic breakthroughs—were built upon the hard work
and insight of previous individuals. At CAI, our team members and associates
have all stood solidly on the shoulders of Capers Jones. Over the course of CAI’s
30-year history, Capers has been the most learned, most knowledgeable, and
most prolific discoverer in the software engineering industry, perhaps even in the
entire history of computing. He has written more than eighteen books across the
entire spectrum of IT management, and each one has unlocked and revealed new
insights, both for engineers and managers. I have personally given countless
executive-level presentations on productivity and process improvement while
waving a copy of Capers’s original thick “yellow book” in one hand.

Capers has accumulated, without doubt, the most comprehensive data on
every aspect of software engineering, and he has performed the most scientific
analysis on this data. To say that he has forgotten more than the average top
software professional ever learns would be an understatement. In his new book,
Capers performs yet another invaluable service to our industry, and for each
current and future IT professional, by documenting, for the first time, the long
and fascinating history of information technology.

This profession, which was unheard of in the 1960s and ’70s, has evolved
through so many dramatic changes in the course of my lifetime. I have seen the
software industry lead the business reengineering revolution and watched how
this, in turn, has revolutionized life on our planet for billions of people. History
will repeat itself, whether we study it or not, and in this sense, Capers’s new

ptg11539604

xviii Foreword by Tony Salvaggio

book is a must-read for every software engineering student and IT professional.
In spite of our revolutionary successes, there has been a consistent record within
the IT industry of not diligently putting to work the lessons of the past, the les-
sons first documented so well in Capers’s original “yellow book.”

Over these past three decades, Capers has become a treasured friend of mine
who often starts my day with early morning emails in which we discuss quality
management, removing early defects, and avoiding project failures. His words
ring in my ear with their clarity and insight and for thirty years have helped me
guide our business here at CAI. I highly recommend Capers’s new book, as well
as many of his earlier works. The messages are timeless in their value.

—Tony Salvaggio
 CEO and President, Computer Aid, Inc. (CAI)

ptg11539604

xix

Preface

I was born prior to World War II and therefore just before the dawn of the
computer era. From growing up, I have personal recollections of the announce-
ment of the transistor being invented and of reading about integrated circuits.
I also remember the arrival of television and later of color television.

When I attended the University of Florida, there were no on-campus com-
puters, no computer science programs, and no software engineering programs.
In fact, engineering students still used slide rules, and there was an active debate
about whether new electronic calculators could be used for exams.

There were no personal computers, no personal music players, no social
networks other than fraternities and sororities, and certainly no smartphones.
There were no embedded software applications and no embedded medical
devices such as cochlear implants; all of these things would come later.

Older readers have lived through the entire history of the computing and
software industries from the very beginning. So many inventions have occurred
so rapidly, and so many companies have sprung up, that they tend to blur
together. We are living in remarkable times with technical advances occurring
almost every month.

This is the fi fteenth book I have written. Although I had been a professional
programmer in the 1960s, my fi rst eleven books, which included Programming
Productivity; Assessment and Control of Software Risks; Applied Software
Measurement; and Estimating Software Costs, were all about software man-
agement issues. I became interested in management topics while working at
IBM when I was commissioned to develop IBM’s fi rst software estimating tool
in 1973 with a colleague, Dr. Charles Turk.

My fi rst book was published while I was at IBM. Later, I moved to ITT and
then founded my own software company when ITT sold its telecommunica-
tions businesses. In general, I have written a book every two years.

As a lifelong reader of Scientifi c American, I like to stay current on scientifi c
topics. (One of the highlights of my publication career was publishing an article
about sizing software in Scientifi c American in December 1998. This article
featured function point metrics.)

Having sold my fi rst software company in 1998, my wife and I moved to
Rhode Island, a state where I had never lived before but where my wife was

ptg11539604

xx Preface

born and had many relatives. Soon after we arrived, the history of the state
attracted my interest.

The economic history of Rhode Island was almost a microcosm of the U.S.
economy, having started with ship building and commerce, then manufactur-
ing, then moving toward services as labor costs drove out manufacturing. In
2006, I published The History and Future of Narragansett Bay, which was my
fi rst non-software-related book as well as my fi rst history book.

The “future” part of the Rhode Island book dealt with modern problems
that are also becoming endemic: rising taxes; unsustainable government pen-
sions; pollution of the Bay and fresh-water aquifers; political corruption; new
exotic diseases such as West Nile virus and Lyme disease; the dwindling num-
bers of professionals such as physicians and dentists; and an ever-expanding
bureaucracy that primarily supports special interests rather than the general
population. These are national problems as well as state and local problems.

In any case, having written a history of Rhode Island, it seemed useful to
consider a history of the software engineering fi eld, but at the time I had other
book projects in mind. Two of these other books were Software Engineering
Best Practices and The Economics of Software Quality. I was also busy starting
a new software company, Namcook Analytics LLC, with my business partner,
Ted Maroney.

The specifi c event that led to this book was a casual visit to a used book
store adjacent to the University of Rhode Island. At the store, I happened to
pick up a book with an interesting title: Paul Starr’s book The Social Transfor-
mation of American Medicine. This book won a Pulitzer Prize in 1984 and is
highly recommended for software professionals. It shows the transformation of
medicine from a craft with barely adequate training to the top tier of respected
professions with perhaps the best training of any profession.

Starr’s book was the inspiration for this book. Software “engineering” is still
also a craft and only approaching the status of being a true profession. For ex-
ample, licensing is just getting started for software; formal specialization and
board certifi cations are still in the future. Malpractice monitoring is in the
future. Starr’s book contains a good road map for what software engineering
needs to accomplish.

I had always had an interest in medical topics since my fi rst programming job
was in the Offi ce of the Surgeon General at the U.S. Public Health Service in Wash-
ington, D.C. We were working on software for the National Institutes of Health.

In fact, one of my earlier books from 1994 was titled Assessment and Control
of Software Risks. This book used the exact structure and format of a medical

ptg11539604

xxiPreface

textbook titled Control of Communicable Diseases in Man. The medical format
has worked very well for discussing software problems.

There have been so many inventions and so many companies springing up in
the computer and software domains that this new book needed a workable
structure. What I decided was to look at software innovations, inventions, and
companies decade by decade starting in 1930 and running through 2012 and
beyond. Social and professional organizations such as the Institute of Electrical
and Electronics Engineers, the Association for Computing Machinery, the
Society for Information Management, SHARE, and so on would also be
discussed.

The fi nal chapter begins in 2010 and includes projections of potential future
progress through 2019. This is reminiscent of the “future” chapter of my Rhode
Island history, which also projected ten years from the completion of the book.

However, starting in 1930 was a bit too abrupt. Therefore, I decided to add
a prelude chapter that would summarize the human drive toward faster compu-
tation from ancient times though the modern era. The overall structure of the
book includes 12 chapters:

 • Chapter 1 is a prelude on computing from ancient times to the current era.
It deals with several interlinked topics, including the evolution of mathe-
matics; the drive to speed up mathematical calculations using mechanical
devices; methods for communicating mathematical results from person to
person; and methods for storing or archiving mathematical results for his-
torical purposes, including famous libraries from the ancient world.

 • Chapter 2 deals with the 1930s and discusses the foundations of digital
computing and software. The seminal works of Alan Turing, Konrad
Zuse, and other pioneers are covered. The Great Depression was in force
during this decade, and many companies failed. IBM came close to failing,
but the arrival of social security in 1935 revived IBM earnings and led to-
ward future growth for forty-fi ve years in a row. Without social security,
IBM might not have survived the decade, and computer and software
history would be very different than it is today.

 • Chapter 3 deals with the 1940s. This chapter covers computers and
software among the belligerent countries during World War II and also
the postwar era. The famous British code-breaking devices at Bletchley
Park are discussed, as are Konrad Zuse’s computers in Germany. How-
ever, during World War II, analog computers were the real workhorses, so

ptg11539604

xxii Preface

the book also discusses ship-board gun controls, torpedo-aiming comput-
ers, bombsights, and other analog computing devices. The end of the
chapter deals with the early electronic digital computers and the dawn of
programming as we know it today.

 • Chapter 4 deals with the 1950s. This decade witnessed computers and
software moving from military and scientific purposes to business
purposes. Two huge efforts bracketed this decade: The SAGE air-defense
system at the beginning of the decade and the SABRE airline reservation
system at the end were the two largest systems built up until that time.
Many enabling inventions occurred, such as transistors and integrated cir-
cuits. High-level programming languages, like COBOL, began to appear.

 • Chapter 5 deals with the 1960s. This decade saw computers and software
becoming business tools for hundreds of corporations. Physical sizes of
computers shrank as transistors and integrated circuits replaced tubes and
discrete wiring. This decade also saw IBM growing rapidly due to com-
puters such as the IBM 1401 and later the System 360. Minicomputers
and special computers also emerged. Software expanded as operating
systems and database applications made computers easier to use. Some
universities began offering computer science and software engineering
degree programs. Software jobs were exploding in numbers.

 • Chapter 6 deals with the 1970s. This decade witnessed the birth of Apple
and Microsoft and a push toward commercial packages. Several companies
began to use computers to create new business models such as Southwest
Airlines and Federal Express, with its unique hub-and-spoke arrangement
to optimize shipping logistics. Software engineering became a common aca-
demic subject. Programming jobs expanded rapidly. Structured develop-
ment emerged to control software chaos as applications got larger and
harder to manage. Several companies founded in this decade would later
grow and create wealth beyond imagination and become global power-
houses: Apple and Microsoft are two. Embedded medical devices, such as
cochlear implants, appeared.

 • Chapter 7 deals with the 1980s. This decade is clearly dominated by the
IBM personal computer and the advent of the DOS and Windows
operating systems. Hundreds of specialized software companies sprang
up like mushrooms. Programming jobs continued to grow rapidly in
numbers. Object-oriented development and object-oriented languages

ptg11539604

xxiiiPreface

began to appear. Programming languages expanded from dozens to hun-
dreds for reasons that are hard to understand. Personal computers
began to move toward portability, although the fi rst of these weighed
more than twenty-fi ve pounds. The Software Engineering Institute (SEI)
was founded to assist the military sector in achieving better and more
reliable software.

 • Chapter 8 deals with the 1990s. The big news during this decade was the
development and rapid expansion of the internet and the World Wide
Web. Toward the end of this decade, the famous dot-com bubble began to
infl ate as hundreds of companies tried to market products and services via
the web. This bubble burst early within the next decade. Cybercrime
began to expand as the internet made remote hacking of data centers
fairly easy to accomplish. Outsourcing, in particular international out-
sourcing, expanded rapidly as companies decided that building their own
software programs was not cost-effective.

 • Chapter 9 deals with the 2000s. The start of this decade saw the burst-
ing of the dot-com bubble. However, dot-coms that survived, such as
Amazon, would grow to become giants. Social networks appeared, as
did new search engines and new web browsers. The Agile development
method began to expand in popularity, but so did others, such as
the team software process (TSP) and the rational unifi ed process (RUP).
The number of programming languages topped 2,500 by the end of the
decade and continues to grow, with new languages appearing
almost every month. All of these programming languages and the aging
of software make maintenance very expensive. During this decade,
maintenance and support of legacy software applications moved past
new software development as the dominant work of the industry.
A new subindustry of “patent trolls” appeared, and patent litigation
became endemic among computer, software, and telecommunication
companies as they each tried to use patents to damage competitors and
push ahead.

 • Chapter 10 deals with the 2010s, with speculation about possible future
inventions. Current trends that will expand include clouds, crowds, big
data, and predictive analytics. Some possible future inventions may be
wearable computers, virtual education, and signifi cant advances in em-
bedded medical devices. Quantum computing may occur, with another
increase in speed and another reduction in physical size. Intelligent agents

ptg11539604

xxiv Preface

will become increasingly powerful in extracting useful information from
heterogeneous, big data sources. Cybercrime will certainly increase and
cyberwarfare is already happening. The nations of the world now have
formal cyberwarfare units, and attacks on industrial, fi nancial, and
military sectors are becoming common.

 • Chapter 11 deals with topics that are diffi cult to pin down to a specifi c
decade. This chapter revisits famous software failures and explains what
happened and how they might have been avoided. It seemed better to
show these in one place than to separate them by decade.

 • Chapter 12 outlines the nature and forms of various cybercrime and
cyberwarfare issues, which are becoming increasingly severe and increas-
ingly common. Here, too, there are so many kinds of cyberattacks that it
was best to put them in one chapter in order to emphasize their magni-
tude and seriousness.

History books are enjoyable for authors to write. Hopefully, this book will
be enjoyable to read. It quickly became obvious while writing it that if the book
attempted to include every company and every invention that appeared during
this timeframe, it might top 1,000 pages, which no publisher would want and
probably no reader would want either.

Therefore, quite a few companies are omitted in the interest of space. When
a number of companies occupy a similar niche, only one or two are cited to
explain the niche. There is no need, for example, to name fi fty static analysis
companies, fi fty computer game companies, twenty-fi ve webinar tool compa-
nies, or twenty-fi ve antivirus companies.

Note
It is an interesting social characteristic of the software industry that as soon as a niche
becomes hot, dozens of similar companies and products rush into it. It is sometimes hard for a
new invention to get venture funding, but it is much easier for the next dozen companies within
the same space.

When stringing together dates and timelines, some of the source informa-
tion is inconsistent. One source might say a company was founded in 1982,
while another might cite 1983 for the same company. Hopefully, this book is
generally correct in timelines and dates, but it is easy to be off by a year in
either direction.

ptg11539604

xxvPreface

The purpose of this book is to show the overall sweep of progress and the
bubbles of inventions that keep occurring. The software engineering fi eld has
been one of the most innovative and exciting fi elds in human history, and
I hope younger readers will enjoy learning about older inventions that might
have occurred before they were born. I hope older readers will enjoy reading
about the many new inventions such as social networks and (soon) wearable
computers.

ptg11539604

This page intentionally left blank

ptg11539604

xxvii

Acknowledgments

As always, thanks to my wife, Eileen, for her support through fifteen books
over a thirty-year period. Thanks also to my business partner, Ted Maroney, for
his interest and support of my various patents and inventions.

Thanks to Bernard Goodwin, acquisitions editor at Addison-Wesley Profes-
sional, for his support of this book and several of my past books, too. Thanks
to the capable editorial and production staff as well.

Many thanks to the reviewers of the drafts of this book and also of my older
books, because often the same reviewers have seen more than one. Thanks to
Rex Black, Gary Gack, Peter Hill, Leon Kappelman, Alex Pettit, Walker Royce,
and Joe Schofi eld. Some unoffi cial reviewers, such as Tom DePetrillo, Pontus
Johnson, Tony Salvaggio, Paul Strassmann, and Jerry Weinberg, also deserve
thanks.

Thanks also to the editors of web journals who have published excerpts from
this book and some of my older books: Andrew Binstock of Dr. Dobb’s Journal;
Greg Hutchins of the Certifi ed Enterprise Risk Management Academy; Ben
Linders of InfoQ; and Michael Milutis of the Information Technology Metrics
and Productivity Institute.

All of us in the software fi eld owe thanks to the pioneers and inventors who
make this fi eld so interesting: Al Albrecht, Barry Boehm, Fred Brooks, Ward
Cunningham, Esther Dyson, Bill Gates, Grace Hopper, Watts Humphrey,
Steve Jobs, Steve Kan, Mitch Kapor, Ken Olson, Alan Turing, An Wang, Jerry
Weinberg, Stephen Wolfram, and hundreds more.

Over the years, I’ve had the good fortune of meeting several senior execu-
tives who understood the value of software to the world and to their compa-
nies. These executives funded research centers chartered to improve software
methods and practices, and I was fortunate to work in some of them.

Among these top corporate executives have been Thomas J. Watson, Jr., of
IBM, Harold Geneen and Rand Araskog of ITT, Mort Myerson of Electronic
Data Systems, and Dr. Hishahi Tomino of Kozo Keikaku Engineering.
Dr. Tomino’s company has translated most of my older books into Japanese,
and the translation teams did an excellent job. Hopefully, this new book will
also fi nd its way into Japanese and other languages.

ptg11539604

xxviii Acknowledgments

Software and computers have changed human communications in profound
ways. Today, many people have more virtual friends than real friends. Some
young people spend more time texting and using social networks than speaking
face to face. The internet and World Wide Web have opened up vast new collec-
tions of information, larger than the sum of every library in the world. Almost
every complex device is now controlled by embedded software, including auto-
mobiles, aircraft, and even smart appliances. Computers and software have
changed the world, and more changes are still in store for us.

ptg11539604

xxix

About the Author

Capers Jones is a cofounder, vice president,
and chief technology officer of Namcook
Analytics LLC. Namcook Analytics builds
patent-pending advanced risk, quality, and
cost-estimation tools. The website is www
.namcook.com. Capers Jones’s blog is
http://namcookanalytics.com.

Until cofounding Namcook Analytics
LLC in 2011, he was the president of
Capers Jones & Associates LLC from
2000 through 2011.

He is also the founder and former chair-
man of Software Productivity Research LLC (SPR). Capers Jones founded SPR
in 1984.

Before founding SPR, Capers was assistant director of Programming
Technology for the ITT Corporation at the Programming Technology Center
in Stratford, Connecticut. He created the fi rst software measurement pro-
gram at ITT.

Capers Jones was also a manager and software researcher at IBM in
California, where he designed IBM’s fi rst software cost-estimating tools in
1973 and 1974.

In total, Capers Jones has designed seven proprietary software estimation
tools and four commercial software estimation tools.

Capers Jones is a well-known author and international public speaker. Some
of his books have been translated into fi ve languages. His four most recent
books are The Economics of Software Quality (Addison-Wesley, 2011);
Software Engineering Best Practices (McGraw-Hill, 2010); Applied Software
Measurement, Third Edition (McGraw-Hill, 2008); and Estimating Software
Costs, Second Edition (McGraw-Hill, 2007).

The Technical and Social History of Software Engineering is his second his-
tory book. This book was inspired by Paul Starr’s book The Social Transforma-
tion of American Medicine, which won a Pulitzer Prize in 1984.

http://www.namcook.com
http://www.namcook.com
http://namcookanalytics.com

ptg11539604

xxx About the Author

Among Capers’s older book titles are Patterns of Software Systems Failure and
Success (Prentice Hall, 1994); Software Quality: Analysis and Guidelines for Suc-
cess (International Thomson, 1997); and Software Assessments, Benchmarks,
and Best Practices (Addison-Wesley Longman, 2000).

ptg11539604

1

Chapter 1

Prelude: Computing
from Ancient Times to
the Modern Era

The human need to compute probably originated in prehistory when humans
began to accumulate physical possessions. It soon became desirable to keep
track of how many specifi c possessions (e.g., cattle) were owned by a family or
tribe. Once simple addition and subtraction became possible, a related need
was to record the information so it could be kept for long time periods and
could be shared with others. Early recording devices were pebbles or physical
objects, but it was eventually found that these could be replaced with symbols.

As humans evolved and began to settle in communities, other calculating
needs arose, such as measuring the dimensions of bricks or marking off fi elds.
With leisure came curiosity and a need for more complex calculations of time,
distance, and the positions of the stars.

Fairly soon, the labor involved with calculations was seen as burdensome
and tedious, so mechanical devices that could speed up calculations (the abacus
being among the fi rst) were developed.

Tools for assisting with logical decisions were the last to be developed. The
needs for rapid calculations, long-range data storage, and complex decision
making were the critical factors that eventually came together to inspire the
design of computers and software.

The Human Need to Compute

A book on the history of software engineering and computers should not just
start abruptly at a specifi c date such as 1930. It is true that digital computers

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era2

and the beginnings of software were fi rst articulated between 1930 and 1939,
but many prior inventions over thousands of years had set the stage.

From ancient times through today, there was a human need for various kinds
of calculations. There has also been a human need to keep the results of those
calculations in some kind of a permanent format.

Another human need that is harder to articulate is the need for logical analy-
sis of alternative choices. An example of such a choice is whether to take a long
fl at road or a short hilly road when moving products to a marketplace. Another
choice is what kind of crop is most suited to a particular piece of land.

More important alternatives are whether or not a community should go to
war with another community. In today’s world, some choices have life and
death importance, such as what is the best therapy to treat a serious medical
condition like antibiotic-resistant tuberculosis.

Other choices have economic importance. The Republicans and Democrats
are examples of totally opposite views of what choices are best for the U.S.
economy.

For choices with diametrically opposing alternatives, it is not possible for
both sides to be right, but it is easily possible for both sides to be wrong. (It is
also possible that some other choice and neither of the alternatives is the best.)

From analysis of what passes for arguments between the Democrats and
Republicans, both sides seem to be wrong and the end results will probably
damage the U.S. economy, no matter which path is taken.

From the point of view of someone who works with computers and software
on a daily basis, it would not be extremely diffi cult to create mathematical mod-
els of the comparative impacts on the economy of raising taxes (the Democratic
goal), reducing spending (the Republican goal), or some combination of both.

But instead of rational discussions augmented by realistic fi nancial models,
both sides have merely poured out rhetoric with hardly any factual information
or proof of either side’s argument. It is astonishing to listen to the speeches of
Republicans and Democrats. They both rail against each other, but neither side
presents anything that looks like solid data.

The same kinds of problems occur at state and municipal levels. For exam-
ple, before the 2012 elections, the General Assembly of Rhode Island passed
unwise legislation that doubled the number of voters per voting station, which
effectively reduced the places available for citizens to vote by half.

The inevitable results of this foolish decision were huge lines of annoyed vot-
ers, waits of up to four hours to vote, and having to keep some voting stations
open almost until midnight to accommodate the voters waiting in line.

ptg11539604

3Early Sequence of Numerical Knowledge

This was not a very complicated issue. The numbers of voters passing
through voting stations per hour have been known for years. But the Rhode
Island Assembly failed to perform even rudimentary calculations about what
halving the number of voting stations would do to voter wait times.

As a result, in the 2012 elections, many Rhode Island citizens who could not
afford to wait four hours or more simply left without voting. They were dis-
franchised by the folly of a foolish law passed by an inept general assembly.
This law by the Rhode Island Assembly was incompetent and should never have
been passed without mathematical modeling of the results of reducing polling
places on voting wait times.

The point of carping about governments passing unwise laws and issuing
foolish regulations is because in today’s world, computers and software could
easily provide impact assessments and perhaps even eliminate thoughts of pass-
ing such foolish laws and regulations.

The fact that humans have used mathematics, made logical choices, and kept
records from prehistory through today brings up questions that are relevant to
the history of software and computers:

• What kinds of calculations do we use?

• What kinds of information or data do we need to save?

• What are the best storage methods for long-range retention of
information?

• What methods of analysis can help in making complicated choices or
decisions?

• What are the best methods of communicating data and knowledge?

It is interesting to consider these fi ve questions from ancient times through
the modern era and see how computers and software gradually emerged to help
in dealing with them.

Early Sequence of Numerical Knowledge

Probably soon after humans could speak they could also count, at least up to
ten, by using their fi ngers. It is possible that Neanderthals or Cro-Magnons
could count as early as 35,000 years ago, based on parallel incised scratches on

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era4

both a wolf bone in Czechoslovakia from about 33,000 years ago and a baboon
bone in Africa from about 35,000 years ago.

Whether the scratches recorded the passage of days, numbers of objects, or
were just scratched as a way to pass time is not known. The wolf bone is the
most interesting due to having 55 scratches grouped into sets of fi ve. This raises
the probability that the scratches were used to count either objects or time.

An even older mastodon tusk from about 50,000 years ago had 16 holes drilled
into it, of unknown purpose. Because Neanderthals and Cro-Magnons overlapped
from about 43,000 bce to 30,000 bce, these artifacts could have come from either
group or from other contemporaneous groups that are now extinct.

It is interesting that the cranial capacity and brain sizes of both Neanderthals
and Cro-Magnons appear to be slightly larger than modern homo sapiens,
although modern frontal lobes are larger. Brain size does not translate directly
into intelligence, but it does indicate that some form of abstract reasoning might
have occurred very early. Cave paintings date back more than 40,000 years, so
at least some form of abstraction did exist.

In addition to counting objects and possessions, it was also important to be
able to keep at least approximate track of the passage of time. Probably the length
of a year was known at least subjectively more than 10,000 years ago. With the
arrival of agriculture, also about 10,000 years ago, knowing when to plant cer-
tain crops and when to harvest them would have aided in food production.

One of the fi rst known settlements was Catal Huyuk in Turkey, dating from
around 7,000 bce. This village, constructed of mud bricks, probably held sev-
eral hundred people. Archaeological fi ndings indicate agriculture of wheat, bar-
ley, and peas. Meat came from cattle and wild animals.

Findings of arrowheads, mace heads, pottery, copper, and lead indicate that
probably some forms of trading took place at Catul Huyuk. Trading is not eas-
ily accomplished without some method of keeping track of objects. There were
also many images painted on walls and this may indicate artistic interests.

The probable early sequence of humans acquiring numerical knowledge may
have started with several key topics:

• Prehistoric numeric and mathematical knowledge:

• Counting objects to record ownership

• Understanding the two basic operations of addition and subtraction

• Measuring angles, such as due east or west, to keep from getting lost

ptg11539604

5Early Sequence of Numerical Knowledge

• Counting the passage of time during a year to aid agriculture

• Counting the passage of daily time to coordinate group actions

• Numeric and mathematical knowledge from early civilizations:

• Counting physical length, width, and height in order to build structures

• Measuring weights and volumes for trade purposes

• Measuring long distances such as those between cities

• Measuring the heights of mountains and the position of the sun above
the horizon

• Understanding the mathematical operations of multiplication and division

• Numeric and mathematical knowledge probably derived from priests
or shamans:

• Counting astronomical time such as eclipses and positions of stars

• Measuring the speed or velocity of moving objects

• Measuring curves, circles, and irregular shapes

• Measuring rates of change such as acceleration

• Measuring invisible phenomena such as the speed of sound and light

• Numeric and mathematical knowledge developed by mathematicians:

• Analyzing probabilities for games and gambling

• Understanding abstract topics such as zero and negative numbers

• Understanding complex topics such as compound interest

• Understanding very complex topics such as infi nity and uncertainty

• Understanding abstract topics such as irrational numbers and quantum
uncertainty

Prehistoric numeric and mathematical knowledge probably could have been
handled with careful observation assisted by nothing more than tokens such as
stones or scratches, plus sticks for measuring length. Addition and subtraction
are clearly demonstrated by just adding or removing stones from a pile.

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era6

Numeric and mathematical knowledge from early civilizations would have
needed a combination of abstract reasoning aided by physical devices. Obvi-
ously, some kind of balance scale is needed to measure weight. Some kind of
angle calculator is needed to measure the heights of mountains. Some kind of
recording method is needed to keep track of events, such as star positions over
long time periods.

Numeric and mathematical knowledge probably derived from priests or
shamans would need a combination of abstract reasoning; accurate time keep-
ing; accurate physical measures; and awareness that mathematics could repre-
sent intangible topics that cannot be seen, touched, or measured directly. This
probably required time devoted to intellectual studies rather than to farming
or hunting.

Numeric and mathematical knowledge developed by mathematicians is per-
haps among the main incentives leading to calculating devices and eventually to
computers and software. This required sophisticated knowledge of the previous
topics, combined with fairly accurate measurements and intellectual curiosity in
minds that have a bent for mathematical reasoning. These probably originated
with people who had been educated in mathematical concepts and were inven-
tive enough to extend earlier mathematical concepts in new directions.

One of the earliest cities, Mohenjo-Daro, which was built in Northern India
about 3,700 years ago, shows signs of sophisticated mathematics. In fact, bal-
ance scales and weights have been excavated from Mohenjo-Daro.

This city may have held a population of 35,000 at its peak. The streets are
laid out in a careful grid pattern; bricks and construction showed signs of stand-
ard dimensions and reusable pieces. These things require measurements.

Both Mohenjo-Daro and another city in Northern India, Harappa, show
signs of some kind of central authority because they are built in similar styles.
Both cities produced large numbers of clay seals incised both with images of
animals and with symbols thought to be writing, although these remain undeci-
phered. Some of these clay seals date as far back as 3,300 bce.

Other ancient civilizations also developed counting, arithmetic, measures of
length, and weights and scales. Egypt and Babylonia had arithmetic from before
2,000 bce.

As cities became settled and larger, increased leisure time permitted occupa-
tions to begin that were not concerned with physical labor or hunting. These
occupations did not depend on physical effort and no doubt included priests
and shamans. With time freed from survival and food gathering, additional
forms of mathematical understanding began to appear.

ptg11539604

7Early Sequence of Numerical Knowledge

Keeping track of the positions of the stars over long periods, measuring
longer distances such as property boundaries and distances between villages,
and measuring the headings and distances traveled by boats required more
complex forms of mathematics and also precise measurements of angles and
time periods. The advent of boat building also required an increase in mathe-
matical knowledge. Boat hulls are of necessity curved, so straight dimensional
measurements were not enough.

Rowing or sailing a boat in fresh water or within sight of land can be done
with little or no mathematical knowledge. But once boats began to venture onto
the oceans, it became necessary to understand the positions of the stars to keep
from getting lost.

Australia is remote from all other continents and was not connected by a land
bridge to any other location since the continents broke up. Yet it was settled
about 40,000 years ago, apparently by means of a long ocean voyage from one
(or more) of the continents. The islands of Polynesia and Easter Island are also
far from any mainland and yet were settled thousands of years ago. These things
indicate early knowledge of star positions and some kind of math as well.

Many early civilizations in Egypt, Mesopotamia, China, India, and South
America soon accumulated surprisingly sophisticated mathematical knowledge.
This mathematical knowledge was often associated with specialists who
received substantial training.

Many ancient civilizations, such as the ancient Chinese, Sumerians, Babylonians,
Egyptians, and Greeks, invested substantial time and energy into providing training
for children. Not so well known in the West are the similar efforts for training in
India and among the people of Central and South America, such as the Olmecs,
Mayans, Incans, and later the Aztecs.

Japan also had formal training. For the upper classes, Japanese training
included both physical skills in weapons and also intellectual topics such as
reading, writing, and mathematics. All of these ancient civilizations developed
formal training for children and also methods of recording information.

The University of Nalanda in Northern India was founded circa 472 bc and
lasted until about the 12th century, with a peak enrollment during around 500 AD.
It was one of the largest in the ancient world, with more than 10,000 students
from throughout Asia and more than 2,000 professors. It was among the fi rst
universities to provide training in mathematics, physics, medicine, astronomy, and
foreign languages.

The University of Nalanda had an active group of translators who translated
Sanskrit and Prakrit into a variety of other languages. In fact, much of the

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era8

information about the University of Nalanda comes from Chinese translations
preserved in China since the University of Nalanda library was destroyed dur-
ing the Moslem invasion of India in the 12th century. It was reported to be so
large that it burned for almost six weeks.

Indian scholars were quite advanced even when compared to Greece and
Rome. Concepts such as zero and the awareness of numerous star systems were
known in India prior to being known in Europe. (The Olmecs of Central America
also used zero prior to the Greeks.)

In ancient times, out of a population of perhaps 1,000 people in a Neolithic
village, probably more than 950 were illiterate or could only do basic counting
of objects and handle simple dimensional measures. But at least a few
people were able to learn more complex calculations, including those associ-
ated with astronomy, construction of buildings and bridges, navigation, and
boat building.

Inventions for Improved Mathematics

From the earliest knowledge of counting and numerical concepts, those who
used numerical information were troubled by the needs for greater speed in cal-
culating and for greater reliability of results than the unaided human mind
could provide. In order to explain the later importance of computers and soft-
ware, it is useful to begin with some of the earliest attempts to improve mathe-
matical performance.

It is also useful to think about what computers and software really do and
why they are valuable. The services that are provided to the human mind by
various calculating devices include, but are not limited to, the following:

• Basic arithmetic operations of addition, subtraction, multiplication, and
division

• Scientifi c mathematics, including powers, sines, cosines, and others

• Financial mathematics, including simple and compound interest and rates
of return

• Logical calculations, such as routing and choices between alternatives

• Calculations of time, distance, height, and speed

ptg11539604

9Inventions for Improved Mathematics

• Deriving useful inductive knowledge from large collections of disparate
information

• Deductive logic, such as drawing conclusions from rules

In doing research for this chapter, a great many interesting and useful sources
were found during my web searches. For example, IBM has a graphical history
of mathematics that can even be downloaded onto iPhones. Wikipedia and
other web sources have dozens of histories of computer hardware and some
histories of software development, too. More than a dozen computer museums
were noted in a number of countries, such as the London Science Museum,
which has a working version of the Babbage analytical engine on display.

For this book, it seemed useful to combine six kinds of inventions that are all
synergistic and ultimately related to each other as well as to modern software.

Mathematics is the fi rst of these six forms of invention. Calculating devices,
computers, and software were all fi rst invented to speed up mathematical calcula-
tions. Mathematics probably started with addition and subtraction and were then
followed later by multiplication and division. After that, many other and
more abstract forms appeared: geometry, trigonometry, algebra, and calculus, for
example.

The second form of invention is the recording of ideas and information so
they can be shared and transmitted and also to keep the ideas available over
long time periods. The inventions in this category include writing systems and
physical storage of writing. Physical storage of writing includes stone tablets,
clay tablets, papyrus, animal skins, paper, and eventually magnetic and optical
storage. Storage also includes manuscripts, books, libraries, and eventually
databases and cloud storage.

The third form of invention is that of physical calculating devices that could
assist human scholars in faster and more accurate calculations than would be
possible using only the human mind and the human body. Tables of useful val-
ues were perhaps the fi rst method used to speed up calculations. Physical devices
include the abacus, protractors, astrolabes, measuring devices, mechanical cal-
culating devices, slide rules, analog computers, and eventually electronic digital
computers.

A fourth form of invention involves the available channels for distributing
information to many people. The fi rst channel was no doubt word of mouth and
passing information along to be memorized by students or apprentices. But soon
information transmission started to include markings on stones and bones;
markings on clay; and eventually pictographs, ideographs, and fi nally alphabets.

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era10

The fi fth form of invention is that of software itself. This is the most recent
form of invention; essentially all software used in 2013 is less than 55 years
old, probably more than 50% of the software is less than 20 years old.

A sixth form of invention is indirect. These are enabling inventions that are
not directly connected to computers and software but that helped in their devel-
opment. One such enabling invention is the patent system. A second and very
important enabling invention was plastic.

Mathematics and Calculating

Table 1.1 shows the approximate evolution of mathematics, calculating devices,
and software from prehistory through the modern era. It is intended to show
the overall sweep of inventions and is not a precise timeline. The table focuses
on the inventions themselves rather than providing the names of the inventors,
such as Newton, Leibnitz, Turing, Mauchly, von Neumann, Hopper, and many
others. The topics in Table 1.1 that eventually had an impact on computers and
software are shown in italic.

Mathematics, Calculating Devices, and Software Approximate Number of
Years Prior to 2013

Counting objects 35,000

Addition and subtraction 30,000

Measuring angles 25,000

Counting the annual passage of time 20,000

Pebbles used for calculation 20,000

Counting the daily passage of time 19,000

Quantifying physical length, width, and height 18,000

Measuring weights and volumes 15,000

Measuring long distances between towns 10,000

Measuring astronomical time 7,000

Geometry 5,500

Sundials 5,500

Measuring the height of the sun and mountains 5,000

Table 1.1 Evolution of Mathematics, Calculating Devices, and Software

ptg11539604

11Inventions for Improved Mathematics

Mathematics, Calculating Devices, and Software Approximate Number of
Years Prior to 2013

Multiplication and division 4,500

Measuring the speed of moving objects 4,000

Analog computing devices 4,000

Algebra 4,000

Trigonometry 4,000

Fractions 4,000

Multiplication tables 3,900

Clocks: water 3,300

Decimal numbers 3,100

Abacus and mechanical calculations 3,000

Clocks: mechanical 3,000

Binary numbers 2,700

Zero 2,600

Measuring curves, circles, and irregular objects 2,500

Measuring temperature 2,500

Antikythera mechanism 2,200

Astrolabe 2,100

Abstract topics such as zero and negative numbers 2,000

Hourglasses 1,500

Complex topics such as compound interest 1,400

Measuring probabilities for games of chance 1,000

Accounting 900

Graphs 800

Slide rules 575

Measuring rates of change and acceleration 500

Mechanical calculators for addition and subtraction 425

Measuring power 400

Calculating trajectories 400

Mechanical calculators for multiplication and division 375

(Continued)

Table 1.1 (Continued)

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era12

Mathematics, Calculating Devices, and Software Approximate Number of
Years Prior to 2013

Measuring invisible phenomena such as sound 350

Abstract topics such as irrational numbers and uncertainty 350

Punch-card calculating devices 350

Calculus 350

Counting short passages of time (<1 second) 300

Large-scale statistical studies with millions of samples 250

Very complex topics such as infi nity and uncertainty 250

Mathematical weather prediction 250

Measuring electrical and magnetic phenomena 200

Mechanical tabulating machines 200

Boolean algebra 175

Set theory 150

Fuzzy sets 145

Relativity 105

Measuring the strong and weak forces and gravity 100

Digital computers 70

Operations research 65

Programming languages 65

Sorting algorithms 55

Databases 55

Pocket calculators 50

Mathematical software applications 50

Scientifi c software applications 50

Financial software applications 45

Statistical software applications 40

Accounting software applications 40

Architectural and engineering applications 40

Graphics rendering engines for games 35

Table 1.1 (Continued)

ptg11539604

13Inventions for Improved Mathematics

Table 1.1 illustrates the fact that the human use of mathematics is ancient
and can be traced almost as far back as speech. The reason for this is that
mathematical knowledge became a critical factor when human beings started to
live in villages and trade with others.

Those who hunt and gather wild plants have little need for math and only
rudimentary needs for sophisticated communications of any kind. But the
advent of agriculture, living in communities, and trade with other communities
brought the needs for weights, measures, awareness of seasonal changes, and at
least basic arithmetic such as addition and subtraction.

Table 1.2 Evolution of Recording Methods and Media

Recording Methods and Media Approximate Number of Years
Prior to 2013

On stone or bones 50,000

On clay 6,000

With pictographs such as hieroglyphics 4,500

On papyrus 4,000

With ideographs such as Chinese characters 4,000

Using encryption 2,500

With alphabetic information 2,500

On vellum 2,000

On paper 2,000

In full color 700

Graphically 400

On punched cards 350

Using tactile symbols such as Braille 250

On paper tape 250

Using cameras and fi lm 160

Recording sounds 130

Magnetically on tape 125

On vinyl 125

Dynamically in full motion 100

On microfi lm 80

(Continued)

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era14

Recording Information

Once calculations have been performed, there is also a need to keep the infor-
mation in a permanent or at least long-lasting format so that the information
can be shared with others or used later on as needed. Table 1.2 considers all of
the various methods used from ancient times through the modern era for
recording information in a permanent form.

As can be seen from Table 1.2, the recording of information is an ancient
activity that dates back about as far as the invention of writing and numerals.
Without a method of recording the information, calculations or ownership of
articles could not be shared with others or used later to verify transactions.

A modern problem that will be discussed in later chapters is the fact that
storage methods are not permanent and there is uncertainty about how long
either paper records or computerized records might last.

Paper is fl ammable and also affected by insects, moisture, and other forms of
destruction. Magnetic memory is long lasting but not permanent. What’s worse
is that any kind of stray magnetic fi eld can damage or destroy magnetic records.

Optical records stored on plastic disks might last 100 years or more, but the
plastic itself has an unknown life expectancy and the recording surfaces are eas-
ily damaged by abrasion, soot, fi re, or mechanical stress.

The bottom line is that the earliest known forms of records, such as carvings
on stone or clay, probably have the longest life expectancies of any form of
recording yet invented.

Recording Methods and Media Approximate Number of Years
Prior to 2013

Recording in three dimensions 75

Magnetically on disks 55

Optically on disks 50

On solid-state devices 35

Using multimedia 30

Using digital cameras 25

On e-books 25

On smartphones 10

Using quantum bits 5

Heterogeneous databases (big data) 5

Table 1.2 (Continued)

ptg11539604

15Inventions for Improved Mathematics

Communicating Information

Table 1.3 lists the inventions for how information can be transmitted or shared
with other human beings once calculations have been performed and the results
stored in some fashion. It is obvious that almost all information will be needed
by more than one person, so communication and information sharing are
almost as old as mathematics.

Table 1.3 Evolution of Communication Channels

Communication Channels Approximate Number of Years Prior
to 2013

Word of mouth 50,000

Couriers 6,000

Flashing lights 5,000

Smoke signals 5,000

Music notation 4,500

Carrier pigeons 3,500

Codes and ciphers 2,500

Handwritten books 2,500

Mirrors or polished surfaces 2,000

Sign languages 1,750

Knotted strings 1,500

Printed books 1,000

Graphs for mathematical values 800

Newspapers 350

Magazines 300

Signal length (Morse code) 175

Touch for the blind (Braille) 175

Telegraph 175

Radio 150

Telephone 130

Television 70

Satellite 60

Subliminal signals 50

(Continued)

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era16

Over the centuries, the human species has developed scores of interesting
and useful methods for conveying information. Often, there is a need to trans-
mit information over very long distances. Until recently, carrier pigeons were
used for messages between distant locations.

However, military organizations have long recognized that visible hilltops or
other high places could be used to send information over long distances by
means of either polished surfaces during the day or fi res at night. Recall the
famous line from Paul Revere’s ride that describes lighting lanterns in the North
church tower to warn of the approach of British troops: “. . . one if by land,
two if by sea.”

Communication with undersea submarines was diffi cult until the advent of
communication by ultra-low frequency sounds.

Codes and secret communications also have a long history of several thou-
sand years. Later chapters of this book will deal with several forms of codes
and secret communications during World War II, including the famous Native
American “code talkers” who spoke in a code based on Navajo, Choctaw, and
other Native American languages.

Communication Channels Approximate Number of Years Prior
to 2013

Sleep learning 40

Ultra-low frequency sounds 35

Internet 30

Devices for the deaf (cochlear implants) 30

Electronic books (e-books) 25

Lasers 25

Automatic language translation 25

Intranet 20

Avatars in simulated worlds 15

Blogs 12

Webinars or podcasts 12

Wiki sites 10

Social networks 10

Animated multisensory methods 5

Table 1.3 (Continued)

ptg11539604

17Inventions for Improved Mathematics

Awareness of the need to communicate is ancient knowledge. There is a curi-
ous passage in a Buddhist sutra dating from about the third century bc, in which
the Buddha discussed how his teachings might be transmitted. He mentions cas-
ually that, on earth, teachings are transmitted with words, but on other worlds,
teachings are transmitted by lights, by scents, or by other nonverbal means.

Storing Information

Table 1.4 lists how information has been stored and accessed. As all scholars and
researchers know, once the volume of information exceeds a few books or a few
dozen written documents, there is an urgent need for some kind of taxonomy or
catalog scheme to ensure that information can be found again when it is needed.

Information storage and access are critical features of modern computers,
and modern software has played a huge part in improving information retrieval.

Table 1.4 Evolution of Information Storage and Access

Information Storage and Access Approximate Number of Years
Prior to 2013

Personal collections of written information 6,000

Libraries or public collections of written
information

4,500

Topical collections of laws and legal codes 2,000

Topical collections such as medical and law libraries 1,200

University curricula for information by topic 1,000

Taxonomy for biological and scientifi c organization 300

Dewey decimal system for book organization 135

Sequential databases of information 65

Random databases of information 55

Relational databases of information 50

Affi nity recommendations based on past
preferences

35

Web search engines for selection of keyword
information

25

Intelligent agents for selection of relevant
information

15

Big data analytical tools 10

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era18

Table 1.4 shows topics that have been diffi cult for large volumes of infor-
mation for thousands of years and that in fact are becoming worse in the
modern world. For most of human history, information collections seldom
topped more than 10,000 volumes, even for large libraries. In today’s world
of almost instantaneous recording of all books, magazines, research papers,
images, and other forms of intellectual content, there are now billions of
documents. Every week that passes, more and more information is published,
recorded, and added to cloud libraries and other forms of computer storage.
There is no end in sight.

There is an urgent need for continuing study of the best ways of recording
information for long-term survival and for developing better methods of sort-
ing through billions of records and fi nding and then aggregating topics rele-
vant to specifi c needs. The emerging topic of “big data” is beginning to
address these issues, but the solution is not currently visible and is still over
the horizon.

The fi rst and most long-lasting method of storing and accessing data was by
means of libraries. Throughout civilized history, many famous libraries have
served scholars and researchers. The library of Alexandria, the library of the Uni-
versity of Nalanda, the library of Perganum, the fi ve libraries of Ugarit, the Roman
libraries of Trajan in the Forum, and the library of Constantinople were all famous
throughout antiquity.

Modern libraries such as the Library of Congress, the Harvard Library, and
in fact many large college libraries still serve as major repositories of informa-
tion for students and researchers.

Books have been used for thousands of years to record and convey knowl-
edge from human to human, especially from teachers to students. Personal
libraries of reference books are the normal accoutrements of all professions,
including engineering, law, medicine and, of course, software engineering.

More recently, e-books, web search engines, and intelligent agents are mak-
ing it possible for individuals and scholars to access more data and information
at greater orders of magnitude than was possible at any time in human history
up until about 25 years ago.

Enabling Computers and Software

Table 1.5 departs somewhat from the direct line of descent between inventions
and computers and software. This table deals with some of the enabling inven-
tions that later became important when computers and software also became
important.

ptg11539604

19Inventions for Improved Mathematics

One of the fi rst enabling inventions is that of the patent system itself. The
fi rst known patent in English was granted in 1331 in England to a man named
John Kemp. Later, an Italian patent was granted in Florence in 1421. Patents
similar to modern patents and enforced by statute appeared in Venice in a law
establishing patents in 1474.

Table 1.5 Enabling Inventions for Computers and Software

Enabling Inventions Approximate Number of Years
Prior to 2013

The modern patent systems 800

Boolean algebra 175

Plastics for computer cases, screens,
connections, etc.

125

Vacuum tubes 120

Punched cards 120

CRT tubes 80

Von Neumann architecture 75

Paper tape 75

Integrated circuits 70

Transistors 70

Magnetic tape 70

High-level programming languages 65

Magnetic disks 60

Operating systems 55

Magnetic ink for bank checks 55

Magnetic stripes for credit cards 50

Graphics display adapters 40

Laser printers 40

Floppy disks 40

Dot matrix printers 35

Ethernet 35

LED displays 30

Ink-jet printers 25

Solid-state memory 20

Flash disks 15

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era20

The fi rst patent issued in North America was issued by the Massachusetts
General Court in 1641 to a man named Samuel Winslow for a method of
making salt. The fi rst federal patent law in the United States was passed
on April 10, 1790, and had the title of “An Act to Promote the Progress of
Useful Arts.”

Note
The name “patent” is derived from the phrases “letters patent” and “letters close.” The seal on
letters close covered the fold and had to be broken in order to read the letter. The seal on letters
patent was attached to the bottom of the document so it could be read with the seal intact.

Software patents have had a very convoluted path and were sometimes
barred and more recently accepted. But there is no guarantee that software pat-
ents will always be accepted by the U.S. Patent Offi ce. In the 1960s, software
patents were barred and several lawsuits were fi led, with the courts generally
concurring that software was not patentable.

In 1981, the U.S Supreme Court became involved in the case of Diamond vs.
Diehr and decided that, at least in special cases, software was patentable. This
forced a change of procedure in the Patent Offi ce. But the situation remained
murky and ambiguous and largely decided on by a case-by-case basis without
any real guides or fi xed rules.

In 1998 in the famous case of State Street Bank vs. Signature Financial
Group, it was fi nally decided what forms of software could be patented. This
case involved the hub-and-spoke method of processing mutual funds. The
Supreme Court decided that business processes, including those embodied in
software, were patentable.

A number of other precursor inventions were also important. For example,
without transistors and integrated circuits, there would not be any portable
computers, embedded computers, or any types of small electronic devices that
today all use software.

The inventions that became integral parts of computers include plastic
for cases and screens, integrated circuits, transistors, graphics boards, and
LED displays.

Other inventions had a strong impact on the use of computers and hence on
the software that was created to support those uses. For example, without the
1960 IBM patent on a magnetic stripe that could be applied to plastic, credit
cards would not have been developed. Without the invention of magnetic ink,
bank checks would still be sorted alphabetically instead of in numeric order and
probably sorted by hand.

ptg11539604

21Key Inventions Relevant to Software

Key Inventions Relevant to Software

The inventions listed in the previous tables are all important in one way or
another. However, in thinking about the inventions that had the greatest
impact on software, the inventions discussed in the following section are the
most critical.

Alphabetic Languages

Information recorded using pictograms such as Egyptian hieroglyphics is ele-
gant and beautiful and has produced some wonderful calligraphy, but such sys-
tems do not lend themselves to rapid data entry and computerization. The same
is true of information recorded using ideograms such as Chinese and
Japanese kanji (which uses Chinese symbols). There are thousands of symbols,
which makes typing extremely diffi cult.

During World War II, the text entered into the Japanese “Purple” coding
machine actually used two American Underwood typewriters and plain text
using English characters. Alphabetic languages have the greatest speed for
typed entry.

Binary and Decimal Numbers and Zero

Computers and software can process numbers using any base such as binary,
octal, decimal, or hexadecimal. However, electronic circuits for performing
mathematics are somewhat easier to design using binary arithmetic. Octal or
base 8 numbering systems are easily convertible from binary. (Some Native
American tribes used octal numbers since they counted by using the gaps
between the fi ngers rather than the fi ngers themselves.) Several computers were
based on octal numbers such as the DEC PDP line.

Hexadecimal or base 16 numbers are also used in computers and are con-
venient because they match byte capacities. However, the bulk of day-to-day
calculations used by humans are based on decimal or base 10 numbers. Deci-
mal numbers are somewhat analogous to the QWERTY keyboard: not optimal
but so widely used that switching to something else would be too expensive to
consider.

The decimal point seemed to have originated in India during the ninth cen-
tury, but it was John Napier who made the concept important in Western math-
ematics around 1620. Napier also invented logarithms and an interesting manual

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era22

calculator called “Napier’s bones.” Logarithms were used in the fi rst slide rules
and hence are an important background topic for analog computation.

The concept of zero seemed to have several independent sources. It was used
in Babylon with base 60 math, but apparently as a placeholder rather than
actual calculations. This use was about 2,500 years ago.

The Olmecs and Mayans both used zero as a true number, and it was used
for calendar calculations, which were quite complex. This use of zero seems to
date to around 400 AD.

The use of zero in India dates to about 458 AD when it was found in a text
on mathematics. Whether this was an indigenous invention or inherited from
Babylon is not certain. Later in the 600s, the famous Indian mathematician
Brahmagupta wrote a paper on the uses of zero, which moved past zero itself
into negative numbers.

Decimal numbers, the decimal point, and zero were all important precursors
leading to computers and software calculations.

Digital Computers

Later chapters in this book will discuss the evolution of digital computers and
associated software from the mid-1930s through 2010, with projections to
2019. Suffi ce it to say that software was created specifi cally to operate on digi-
tal computers. Without digital computers, there would be no software. Without
software, digital computers would have no major purpose and would probably
not have supplanted analog computers.

Higher-Level Programming Languages

I started as a young programmer in the 1960s. Programming using both
machine language (mainly for patches and bug repairs) and basic assembly lan-
guage was how I fi rst programmed IBM 1401 computers.

My fi rsthand experience was that machine language was very error prone
and also rapidly fatiguing due to the high attention span needed to deal with
it. Assembly language was a step in the right direction, but not a very big step.
Having to use dozens of assembly instructions to handle calculations or
format printed output was time consuming and actually boring. Higher-level
languages, starting with ALGOL, COBOL, FORTRAN, PL/I, APL, and oth-
ers, reduced coding time, signifi cantly reduced coding errors, and converted
programming into a viable occupation.

ptg11539604

23The Impact of Software on People and Society

Random-Access Storage

Sequential storage of data on paper tape, card decks, or magnetic tape had a
fairly long and useful life. But it was very ineffi cient and required far too much
movement of tapes to achieve high speeds. The invention of disk drives and
random-access storage allowed faster processing, sophisticated search algo-
rithms, and a path that eventually would lead to today’s “big data” world with
billions of records and millions of fi les being accessed for specifi c problems.

Without random access, modern computing and software could handle only
a small fraction of important data analysis problems. Random access would
also lead to the relational database concept, sorts, and a variety of powerful
query languages in the Structured Query Language (SQL) family.

The Impact of Software on People and Society

The time frame in which computers and software have developed has barely
been more than 75 years. Yet their impact on individual humans and on socie-
ties has been as important as the printing press, airplanes, television, and
automobiles.

Benefi cial Tools and Applications

The following is a summary of tools and applications that have transformed the
way businesses operate; wars are fought; and individuals gather information,
communicate, and use their leisure time. It is surprising that these have all orig-
inated within the past 50 years. Probably half of these tools and applications
are less than 25 years old.

• Business tools

• Accounting

• Actuarial studies

• Advertising via the web

• Agricultural planning

• Analytics

• Bar-code scanners

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era24

• Big data

• Budget analysis

• Cloud computing

• Competitive analysis

• Cost and resource tracking

• Cost estimating

• Crowdsourcing

• Customer relationship management (CRM)

• Customer satisfaction analysis

• Customer support

• Distribution optimization analysis

• Electric power grid controls

• Enterprise resource planning (ERP) packages

• Finance

• Governance

• Human resource management

• Inventory

• Investments

• Just-in-time inventory controls

• Legal support

• Marketing

• Oil exploration

• Order entry

• Order tracking

• Planning and scheduling

• Process controls

• Reservation systems

ptg11539604

25The Impact of Software on People and Society

• Risk estimation and analysis

• Robotic manufacturing

• Sales support

• Supply chain management

• Surveys and opinion analysis

• Telephone network controls

• Water purifi cation

• Web retailing

• Databases

• Graphics and images

• Music

• Signals and analog

• Text and numeric

• Data warehouses

• Mixed-data forms

• Education tools

• Comparative education statistics

• Curriculum planning

• Customized e-learning for each student

• Skills inventory analysis

• Special tools for the handicapped

• Student research via the web

• Virtual classrooms

• Embedded devices

• Automotive engines and brakes

• Automotive security systems

• Avionic

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era26

• GPS navigation

• Hearing aids

• Manufacturing

• Medical

• Signal processing

• Smart appliances

• Telecommunications

• Government tools

• Air traffi c control

• Background verifi cation

• Budget analysis

• Census

• Court records

• Disaster preparedness

• Economic analysis

• Employment statistics

• Environmental monitoring

• Financial controls

• Health and longevity statistics

• Highway siting, design, and construction

• Identity verifi cation

• Land management

• Law enforcement

• Legislative records

• Mandates and regulations

• National defense

• Patent analysis

ptg11539604

27The Impact of Software on People and Society

• Political records

• Pollution monitoring

• Prisons

• Property assessments

• Redistricting

• Regulatory agencies

• Risk analysis

• Taxation

• Traffi c analysis and controls

• Unemployment support

• Voter records

• Water supply controls

• Welfare

• Zoning

• Leisure

• Blu-ray and digital video

• Computer games

• Digital music formats

• Geocaching

• Music playlists

• Online magazines

• Streaming video

• Virtual reality worlds

• Medical

• Coordination in real time among medical teams

• External devices

• Implanted devices

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era28

• Insurance record keeping

• Lab tests

• Patient hospital monitoring

• Patient records

• Robotic surgical devices

• Statistics: national, global

• National defense

• Antimissile shields

• Combat simulation

• Command and control

• Cybersecurity

• Deep ocean monitoring

• Early threat warnings

• Encryption and decryption

• Intelligence gathering and coordination

• Logistics analysis

• National Security Agency signal interception

• Satellite monitoring

• Secure communications

• Threat analysis

• Personal tools

• Blogs

• Computers

• Contact lists

• Daily news feeds

• Digital appliances

• Digital cameras

ptg11539604

29The Impact of Software on People and Society

• Digital image processing

• Digital watches

• E-books

• Email

• Graphics

• handheld full-function digital calculators

• Handicap support for the deaf, blind, etc.

• Home fi nances

• Instant computer chat

• Music

• Natural language translation

• Presentations

• Scheduling

• Search engines

• Smartphones

• Social networks

• Spreadsheets

• Statistics

• Tablet computers

• Text to speech

• Video processing

• Web browsers

• Word processing

• Professional tools

• Accounting

• Analytics

• Animation and graphic arts

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era30

• Architecture

• Civil engineering

• Computer animation

• Data mining

• Drafting

• Economic analysis

• E-learning

• Encryption and decryption

• Engineering

• Intelligent agents for web scanning

• Law enforcement

• Legal support

• Math

• Medical support

• Music composition

• Music recording, playback, and mixing

• National security

• Patent analysis

• Pharmaceutical

• Project management

• Property management

• Publishing

• Real estate listings

• Spell checkers and grammar checkers

• Statistics

• Programming tools

• Application sizing

ptg11539604

31The Impact of Software on People and Society

• Automatic testing

• Complexity analysis

• Confi guration controls

• Continuous integration

• Cost and schedule estimation

• Data mining of legacy applications

• Debugging

• Inspection support

• Maintenance and support estimation

• Measurements and benchmarks

• Programming language compilers

• Quality estimation

• Requirements and design analysis

• Requirements modeling

• Reusability analysis

• Risk estimation

• Static analysis

• Test tools (design and execution)

• Virtualization

• Website design and construction

• Protective tools

• Antispam

• Antispyware

• Antivirus

• Smart alarm systems

• Scientifi c tools

• Archaeological analysis

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era32

• Astronomical analysis

• Biological analysis

• Chemical analysis

• Computer-enhanced image calibrations

• Computer-stabilized optical devices

• Deep ocean exploration

• DNA analysis

• Epidemiology analysis

• Forensic analysis

• Geological exploration (side-scan radar)

• Linguistic analysis

• Metallurgy

• Meteorology analysis and weather predictions

• Nanotechnologies

• Nuclear device controls

• Physics research equipment

• Self-aiming telescopes for the deaf, blind, etc.

• Simulations of physical phenomena

• Space vehicles, rovers, and satellites

• Visualization

As can be seen from this list, computers and software are making profound
changes to every aspect of human life: education, work, warfare, entertainment,
medicine, law, and everything else.

Harmful Inventions

Computers and software have also introduced a number of harmful inventions
that are listed below, some of which did not exist before. Among the harmful

ptg11539604

33The Impact of Software on People and Society

inventions caused by computers and software are identity theft, hacking, and
computer viruses. These are new and alarming criminal activities.

• Browser hijackers

• Computer botnets

• Computer keyboard tracking

• Computer spam

• Computer spyware

• Computer viruses

• Computer worms

• Computerized customer support

• Diffi culty in correcting errors in computerized data

• Electronic voting machines without backup

• Hacking tools

• Identity theft

• Phishing

• Piracy

• Robotic telephone calls (robo-calls)

• Robotic weapons systems

• Smart weapons: bombs, drones, and missiles

• Spam

• Special viruses attacking industrial equipment

• Spyware

• Stock market software without anomaly shutoffs

• Unintelligible telephone voice menus

• Web pornography

ptg11539604

Chapter 1 Prelude: Computing from Ancient Times to the Modern Era34

These threats are comparatively new and all are increasingly hazardous in
the modern world. Indeed, identify theft has become one of the largest and
most pervasive crimes in human history. It is also an example of a new kind of
crime where the criminal and the victim never see each other and can be sepa-
rated by more than 12,000 miles when the crime takes place.

These harmful aspects of computers and software have triggered new laws
and new subindustries that provide virus protection, hacking insurance, and
other forms of protection.

These inventions have also led to the creation of new and special cybercrime
units in all major police forces, the FBI, the CIA, the Secret Service, the Depart-
ment of Defense and the uniformed services, Homeland Security, and other gov-
ernment organizations. The emergence of the Congressional Cyber Security
Caucus is a sign that that these new kinds of cybercrimes are attracting atten-
tion at the highest levels of government.

Weighing the Risks

Computers and software are making profound changes to every aspect of
human existence. Many readers have thousands of “friends” on social net-
works. Even more readers follow the daily lives and activities of countless celeb-
rities and personal friends by using “tweets” or short messages. Text messages
are beginning to outnumber live telephone calls (and also cost more due to new
computerized billing algorithms).

Purchases of electronic e-books recently topped purchases of ordinary paper
books. Banks now charge extra fees to provide paper bank statements as
opposed to online electronic statements. All of our medical and education
records are now computerized and stored in databases.

It would not be possible to book an airline fl ight or a hotel without comput-
ers and software. Indeed, after large snowstorms or hurricanes when power
lines are down, many kinds of businesses cease operations because they are no
longer equipped to handle manual transactions. Computerized games, includ-
ing massively interactive games with thousands of simultaneous players, are
now the preferred form of entertainment for millions of young people. Modern
fi lms use special effects with lifelike realism that are generated by computers. It
is even possible to create new roles for actors and actresses who are no longer
living by means of computers and software.

ptg11539604

35Summary

The impact of computers and software has been a mixture of good and bad.
Certainly, the ability to send emails and text messages and to fi nd information
on the web are very useful additions to our daily lives. We use GPS maps on our
smartphones almost every time we travel, particularly when we travel to new
and unfamiliar locations.

The ability of physicians to communicate instantly with colleagues helps
medical practice. Computerized medical diagnostic machines such as CAT
scans and MRI equipment are also benefi cial. Cochlear implants have restored
hearing to thousands of profoundly deaf patients. Robotic manufacturing is
cheaper and sometimes more precise than the manual construction of many
complex devices.

But the ever-increasing odds of identity theft and the constant need to keep
our computers and electronic devices safe from hackers and data theft are a
source of continuing worry and also a source of considerable expense.

In evaluating the advantages and disadvantages of computers and software,
the weight of available evidence is that software and computers have provided
more benefi ts to the human condition than they have caused harm. Of course,
those who have been harmed probably disagree.

But statistically looking at all known uses of computer and software in the
modern world, there have been signifi cant benefi ts in the way we can communi-
cate, transact business, and carry out scientifi c and engineering work. It is
doubtful that any scientist or engineer would want to stop using computers and
software. The same is true of many other kinds of work such as health care, law
enforcement, accounting, and even real estate.

Summary

This prelude showed the evolution and convergence of many fi elds that would
come together to create modern computers and software. Mathematics, data
storage and retrieval, communication methods, and software itself would
come together to create the modern era of personal software and personal
computing.

Later chapters in this book discuss the evolution of software engineering from
the earliest dreams of visionaries in the 1930s through the growth of the largest
and wealthiest companies in human history by the end of the 20th century.

ptg11539604

This page intentionally left blank

ptg11539604

37

Chapter 2

1930 to 1939: The
Foundations of Digital
Computing

The early years of the 1930s witnessed original papers leading to the design of
digital computers. By the end of the decade, several working digital computers
proved that electronic computers were possible. Also during this decade, the
probability of a major war led to large government investments in military
analog computers for fi re control, torpedo launches, and bombsights.

The First Innovators of Modern Computing

The decade from 1930 to 1939 was an era without software as we know it today.
But it was a very fruitful era in terms of both the invention of the underlying
logical ideas behind software and also the design of physical computing devices.

Toward the end of this decade, it was obvious that a major war would soon
occur. This created a sense of urgency that led to substantial funding for rapid
calculation devices that could be used for military purposes, such as ballistics
calculations, logistics, and cryptanalysis.

There were signifi cant investments by all countries for analog computers for
military purposes such as naval gun control, submarine torpedo aiming, and
bombsights. While many such analog devices were built and tested in this
decade, it is best to discuss them in the chapter discussing the 1940s when they
were actually used for combat.

In 1930, Vannevar Bush developed a differential calculator, which was
proof that calculating devices could handle a range of mathematical problems

ptg11539604

Chapter 2 1930 to 1939: The Foundations of Digital Computing38

instead of a single narrow form of calculation. This was an analog device
rather than a digital computer, so it is not in the line of direct descent to
today’s digital computers.

In 1934, the German scientist Konrad Zuse put forth the idea that a
computer or calculating engine would need a control unit, memory, and an
arithmetic unit. Zuse was a pioneer of both computing architecture and
programming languages. However, his work was not well known in the United
States until after the end of World War II. He is a contender on the short list of
having built the fi rst computer. His most successful computers were built during
the next decade.

In 1935, IBM hired three female employees, among the fi rst for a technology
company. The IBM chairman, Thomas J. Watson Sr., announced that IBM
would offer equal pay and equal responsibilities, regardless of gender. IBM later
did the same for ethnic minorities who were often discriminated against. In
future decades, the computer and software industries would be more egalitarian
than some of the older technical fi elds such as mechanical and electrical
engineering. It is a matter of sociological interest that computers and software
started out with a major company declaring equal rights and equal pay.

In 1936, Zuse started construction on a relay-based computer (similar to the
work of the American George Stibitz) called the Z1. This machine was fi nished
in 1938 but proved to be unreliable for mechanical reasons. However, it did
feature programmability.

After an intermediate Z2 machine, later in 1941, Zuse fi nished a more sophis-
ticated Z3 machine that was programmable, with the programs being entered
via punched fi lm. Zuse’s machines used binary numbers and are viewed as
operating precursors of today’s computers. There is still some debate as to
whether Zuse or Atanasoff and Berry deserve credit for building the fi rst
working computer. In fact, both worked independently, and both deserve credit.

In 1936, the famous Alan Turing published a seminal paper titled “On
Computable Numbers,” which is generally held to be a description of a work-
ing computer with an executable program. Turing’s work had both practical
and theoretical concepts that would lead to impressive future inventions and to
working computers used for code breaking.

A Turing machine is an abstract depiction of a working computer that
sequentially processes instructions and performs mathematical and logical
operations. Even today, a standard defi nition of a successful computer is that
it be “Turing complete” or embodies all of the concepts put forth in Turing’s
seminal paper.

ptg11539604

39The First Innovators of Modern Computing

Turing also developed and defi ned the concept of an algorithm, and he
contributed important insights into problems that can be solved by a computer
and problems that are insolvable. Turing’s contributions to the war effort at
Bletchley Park will be discussed in the decade from 1940 to 1949.

In 1937, Claude Shannon, while a graduate student at MIT, wrote a thesis
that proved that electrical relays could implement the concepts of Boolean
symbolic logic. Shannon’s work led to the development of successful digital
circuitry, which is needed for digital computers to operate.

A Russian investigator, Victor Shestakov from Moscow State University,
developed a theory similar to Shannon’s as early as 1935. However, the
Shestakov concepts were not published until 1941, so Shannon’s ideas have
precedence.

Both Shannon and Shestakov recognized that symbolic logic, as put forth by
the mathematician George Boole in his 1854 book, An Investigation on the
Laws of Thought, could be dealt with by relays and electronic circuits that
could handle logical decisions as well as carry out mathematical operations.

It is the combination of logical processing with mathematical processing that
gives modern computers (and software) their enormous breadth of problem-
solving capabilities. Computers and software can not only provide rapid
mathematical calculations but also handle complex logical problems such as
telephone routing.

In November 1937, a Bell Labs mathematician named George Stibitz, work-
ing at home on a kitchen table, built a prototype device that used two telephone
relays and fl ashlight bulbs to represent the binary numbers 0 and 1. Stibitz
also realized that this experimental device could be extended to handle rapid
calculations involving both division and multiplication.

After some initial indifference, Bell executives decided to fund a larger work-
ing version of the prototype Stibitz relay machine. At a cost of about $20,000,
this eventually became a machine in 1938 called Model 1.

The Model 1 computing machine had about 450 relays that initially could
handle multiplication, division and, later, addition and subtraction. This
machine used binary numbers to represent decimal values, which of course later
became the main way that computers operate today. Stibitz would continue to
make improvements that will be discussed in the next chapter.

One interesting aspect of the Stibitz machine was the use of a teletype
keyboard for inputs and outputs. This meant that it was not necessary to have
the computing device adjacent to the input mechanism. Within a few years, in
1940, Stibitz demonstrated remote input and output via telephone lines over a

ptg11539604

Chapter 2 1930 to 1939: The Foundations of Digital Computing40

distance of more than 20 miles. This early demonstration of remote computing
would eventually expand into the internet as we know it today.

In 1938, William Hewlett and David Packard founded the Hewlett-Packard
Company (widely known by the initials HP). This company started with a
variety of electronic equipment such as oscilloscopes and audio oscillators.
In later years, HP became a major vendor of notebook computers, printers,
and custom software applications.

In 1939, John Vincent Atanasoff and Clifford Berry developed a prototype
computer called ABC (named after the initials of the inventors). This machine is
often claimed to be the fi rst digital computer in the world, although there are
rival claims and considerable debate and even litigation involving the origin of
modern computers. The famous lawsuit between Honeywell and Sperry-Univac
will be discussed in Chapters 5 and 6.

In 1939, work started on yet another computer at the IBM laboratory in
Endicott, New York. This was called the Harvard Mark 1 computer. The offi -
cial name of this device was the “automatic sequence controlled calculator.”

The Mark 1 was designed by the Harvard mathematician Howard Aikin and
other colleagues such as Grace Hopper and several IBM engineers. The design of
the Mark 1 was infl uenced by the earlier mechanical computing device designed
by Charles Babbage in the 1870s but not completed during his lifetime.

Note
A working Babbage analytical engine was not built until 1991. Until the successful 1991 con-
struction, there had been debate as to whether the analytical engine would work or not. But it
did work and was in fact a Turing complete digital computer. After Babbage in the 1870s, the
next Turing complete digital computer would not occur until the 1950s.

The Mark 1 was an electromechanical device that used relays, storage
wheels, and rotary switches. It could be “programmed” with sequential instruc-
tions fed into the computer via a paper tape. Development of this computer was
started in 1939 but not fi nished until 1944, so the main discussion will be in the
next chapter.

Small Mathematical Applications

In this decade, very small mathematical applications were the norm. There were
no true programming languages, very little storage capacity for either instruc-
tions or data, and rather crude input and output devices.

ptg11539604

41Small Mathematical Applications

Table 2.1 shows the approximate numbers of worldwide software applica-
tions from 1930 through 1939. These are primarily small experimental “pro-
grams” created using either a machine language or some form of keyboard
entry. As can be seen, scientifi c applications dominated during this decade.

Computer programming as we know it today did not really exist in the
1930s. Instead, various controls were used to change the assumptions of elec-
tromechanical computing devices. The Zuse Z1 machine was intended to be
programmable, but it did not work reliably.

Later sections of this book will discuss application sizes, productivity rates,
and quality. There is no available data from the 1930s to make this kind of analy-
sis feasible. The later chapters use 1,000 function points as a standard size, which
is roughly equal to about 50,000 code statements in a language such as Java.

In the 1930s with the limited capacities of computing devices, probably the
largest mathematical applications (there were no other kinds) were less than 10
function points or perhaps 500 code instructions. Most “programs” were in the
range of 2 function points or less than 100 code instructions.

From 1930 to 1939, the world was facing a major war. Warfare brings with
it a need for many thousands of computations in order to handle logistics,
ballistics, and cryptanalysis.

Table 2.1 Worldwide Software Applications from 1930 to 1939

Application Types Number of Applications Percentage

Scientifi c 15 60.00%

Military and defense 10 40.00%

Civilian government 0 0.00%

Systems and middleware 0 0.00%

Embedded software 0 0.00%

Commercial 0 0.00%

Information technology (IT) 0 0.00%

U.S. outsource 0 0.00%

Offshore outsource 0 0.00%

Web applications 0 0.00%

Games and entertainment 0 0.00%

Open source 0 0.00%

Total Applications 25 100.00%

ptg11539604

Chapter 2 1930 to 1939: The Foundations of Digital Computing42

In 1939, the British Navy installed an analog gun control computer on the
battleship HMS King George V. The cost of this computer was about £213,000,
which is approximately $20,000,000 in today’s money. It would be many years
before digital computers received that kind of funding, and it would be many
years before digital computers were sophisticated enough to replace analog
computers onboard naval vessels and aircraft.

The on-rushing military threats of this decade highlighted an urgent need for
rapid and reliable high-speed calculations of mathematics and also for expanding
computing devices from pure math into the domain of logical problem solving.

The pioneering theories and papers created by Turing, Shannon, Zuse,
Atanasoff, Aikin, Stibitz, and others would soon lead to true digital computers
that could handle logic and math problems thousands of times faster than had
ever been possible throughout human history.

Some of these concepts would begin to have practical impacts on the
outcome of World War II within just a few years.

Summary

At the start of the 1930s, the need for rapid computation was recognized, but
practical knowledge about building such devices was sparse. By the end of the
decade, impressive research had provided the logical basis for digital comput-
ing, and working computers were under development. This decade also wit-
nessed the inclusion of symbolic logic into computer designs, which would soon
open up a vast array of new kinds of applications dealing with logical issues
such as telephone routing and other forms of decision making. Computers were
no longer envisioned merely as fast mathematical calculators but as tools that
could help in solving complex logical problems. Several new analog computers
were built for military purposes such as naval gun control, bombsights, and
submarine torpedo launching.

ptg11539604

43

Chapter 3

1940 to 1949: Computing
During World War II
and the Postwar Era

The decade from 1940 to 1949 witnessed the fi rst use of computers in warfare in
all of human history. The need for high-speed calculations to handle encryption,
decryption, logistics, ballistics, and other military purposes led to a rapid expan-
sion in computer and software sophistication. Thousands of analog computers
were used for naval gunnery, bombsights, and submarine torpedo aiming. By
the end of the decade, computers had become useful and powerful military tools
and were poised to expand into the commercial sector in the next decade. When
the decade started, the word “computer” was a job title that was applied to
human beings who performed complex calculations, sometimes with the aid of
mechanical calculators. By the end of the decade, the term “computer” was
phased out as a human job description and had shifted to the modern context of
an electronic device.

Global Confl ict and Computing

World War II was a global catastrophe that left millions of people dead, homeless,
and impoverished. But the military need for high-speed calculations and crypta-
nalysis led to rapid advances in computer technology and to the fi rst software
applications that are similar to the ones used today. All of the major belligerents
had some research programs into computing: Australia, China, France, Germany,
Great Britain, India, Italy, Japan, the Netherlands, Norway, Poland, Russia, and
the United States. Analog computers received more funding than digital computers
because they were used for ballistics calculations.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era44

The United States and the United Kingdom were the most ambitious and
the most successful. The computers designed and developed by Great Britain
are the best known due to their success in breaking German codes and for
deciphering messages created on the German Enigma code machine.

In 1940, the word “computer” was used as a job description for human
workers who performed complex calculations for military and civilian organi-
zations. Both technical companies and military organizations employed
hundreds of human computers who worked by using either their own minds or
mechanical adding machines and calculators. Some of the calculations were
complex differential equations, while others were more mundane calculations
of payrolls and costs.

The majority of these human computers were women. The reason for this is
that many women were trained in mathematics, but the inequality in pay for
women meant that it was much cheaper to hire women computers than male
computers. This inequality in pay would not be rectifi ed for several more
decades, and indeed it is not fully rectifi ed even today.

When the Electrical Numerical Integrator and Computer (ENIAC) was near-
ing completion in 1945 at the Moore School of Engineering in Philadelphia,
six women computers were selected to learn how to program it. Thus, the
evolution of the term “computer” from a human job description to the name of
an electronic device was partly due to the fact that human computers became
the fi rst programmers of electronic computers.

When the ENIAC was moved from the university to a military base, the six
women programmers lost their jobs, apparently because of some gender restric-
tions in force at that time. Most continued to program but only for civilian
companies instead of the military. This problem of gender discrimination also
persisted for several more decades. The major role of women in early computer
development is underreported in history.

Note
Pay scales for software engineering work were somewhat more equal by gender than
for some of the older technical disciplines such as mechanical and electrical engineering.
One reason for this perhaps is that in 1935, Thomas J. Watson Sr., the chairman of
IBM, announced a corporate policy of equal pay for equal work. Later, when IBM entered
the computer business, it continued this egalitarian policy. In the software engineering fi eld,
equal opportunities provide a competitive advantage because programming is a diffi cult
task. Equal opportunity employment and compensation increase the pool of personnel with
good software skills.

ptg11539604

45Wartime Innovations

Wartime Innovations

Throughout history, warfare has led to countless inventions that later proved
useful in civilian life. A few examples include canned foods (developed under
Napoleon, who offered a reward for a method of preserving food), chronom-
eters, ambulances, sonar, radar, screw propellers for naval ships, tractor
treads, the use of railroads for logistical movement of supplies, jet engines,
high-altitude rockets, satellites, and Quonset huts (developed at the Navy
base at Quonset Point, Rhode Island, as a portable building that could be
easily transported and rapidly assembled). Operations research was also
developed as a method for improving military logistics and optimizing
large-scale movements of equipment and troops.

The reverse is also true with civilian innovations often becoming important
for military operations. For example, the German General Staff sent observers
to the United States to study the way the Barnum and Bailey Circus loaded and
unloaded trains when moving from one city to the next. Students of logistics
would visit the Circus Museum in Sarasota, Florida, and examine the models
used to demonstrate how the circus could set up and take down tents so rapidly.

When a major war, such as World War II, breaks out, there is a huge need for
intelligence gathering, encryption, and decryption. There is also a huge need for
logistics support in order to optimize the construction of military materials and
the shipment and delivery of those materials to the troops that need them. In
addition, there is a huge need for other kinds of calculations, such as ballistics
predictions or predicting the run of a torpedo under varying conditions.

Before the war started, and indeed throughout the war, many of the calcula-
tions needed to support military and manufacturing operations were performed
by human computers who were trained in either mathematics or accounting
and could handle the calculations needed to support modern warfare.

There were thousands of these human computers employed by all of the
belligerents since they all had needs for mathematical support. In the United States
and the United Kingdom, many of these human computers were women, because
in those days there was no equal pay for equal work.

However, the human mind, even aided by a mechanical adding machine, can
only process a few calculations per minute. Human computers cannot work
around the clock and they also need rest and meal breaks. When overworked,
fatigue would raise the probability of errors in manual calculations. It was
obvious to military and industrial planners that much faster and more reliable

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era46

ways were needed to handle the millions of calculations necessary to support
modern armies, navies, and air forces.

Because Germany was the prime aggressor in World War II, many of the
computer programs in other countries were aimed at interfering with German
military success and breaking German codes.

Analog Computers During World War II

Combatants used analog computers throughout World War II and digital
computers only near the end of World War II after about 1943. Analog computers
are not “programmed” via separate stored programs; rather, the programming
was built in by the designers of their circuits, gears, spindles, vacuum tubes,
and other electronic devices.

Note
Analog computers received more funding than digital computers because they were used
for ballistics calculations. Most of the belligerents devised analog computers for use on
submarines in aiming torpedoes.

Analog computers were small enough and sophisticated enough to handle
complex military problems such as naval gun control, bombsights, and subma-
rine torpedo launching. It would be another 30 years before digital computers
with embedded software programs would be small enough and reliable enough
to replace analog devices onboard ships at sea and in combat aircraft.

The future inventions of transistors, integrated circuits, and dynamic random-
access memory (DRAM) would be needed in order to shrink digital computers
to small-enough physical sizes and low-enough electric power consumption to
be useful on military aircraft and small ships such as submarines. In addition,
the invention of better programming languages than basic assembly would be
needed to handle the very complex calculations involved in target acquisition
and fi re control, bomb runs, and naval gunnery.

Better software quality control would also be needed, because the embedded
applications used for weapons control were complex and large. Bugs or defects
in the embedded software operating weapons systems can be fatal to the crews
and vessels using them.

Analog computers would continue to be the workhorses of ships at sea and
aircraft in combat on through the Korean War and into the Vietnam confl ict.
Digital computers and embedded software would not fully replace analog
computers as weapons systems until the 1980s.

ptg11539604

47Wartime Innovations

Those of us in software owe a debt of gratitude to the analog computing
engineers and designers who built devices such as the Norden bombsight, the
British “bombe” for cryptanalysis, and the Mark III Torpedo Data Computer
(TDC) used on American submarines. These analog computers played a major
part in the Allied victory of World War II. The history of military analog
computers is as important as the history of digital computers.

Computers in Germany During World War II

It is fortunate for the United States and the Allies that the German military did not
place a high priority on digital computers, even though one of the major pioneers
in the history of computing, Konrad Zuse, lived in Berlin and developed several
working computers between 1940 and 1945. He even designed what is probably
the fi rst programming language, called Plan Calculus (or Plankalkuel in German)
in 1945. This language was not supported by a working compiler, however.

Zuse started as an aeronautical engineer at the Henschel Aircraft Company
in 1935. Zuse soon left full-time work and set up a computer laboratory in his
parents’ apartment in Berlin. He continued to work part-time at Henschel. In
1938, Zuse built his fi rst prototype computer, the Z1, to prove the concept of
machine computation. This fi rst machine did not work well due to mechanical
issues.

In 1940, Zuse built the Z2 computer, which did work and was probably the
fi rst operational electromechanical computer built in the world.

In 1941, Zuse built the Z3, which was an operational electromechanical
computer based on binary digits. The German military used the Z3 to calculate
wing fl utter in combat aircraft. Zuse requested funds to build a fully electronic
version, but his request was denied as “not being important to the war effort.”

In 1945, Zuse completed the Z4, which had a number of technical advances.
It used binary arithmetic and could be programmed using paper tape as the
input method. The Z4 could also produce printed output. It was used to solve
mathematical calculations and could also handle conditional branching logic.
The Z4 was a major contender for being the fi rst successful digital computer.
Due to the advance of Russian troops on Berlin, the Z4 was shipped to safer
locations several times, which slowed fi nal developments. After World War II,
the Z4 was acquired by the Swiss Federal Institute of Technology and it
continued to solve mathematical problems through 1950.

Although Zuse approached the German government about using computers
for military purposes, there was apparently no interest and no recognition of

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era48

their capabilities. In fact, Zuse proposed to build an encryption computer, but
the idea was rejected.

As a result of government indifference, Zuse had to use scrap parts and hire
workers, such as invalids, who were not assigned to military tasks. As in other
countries, some of Zuse’s workers were women.

In retrospect, the German failure to understand the need for high-speed
computing harmed German war efforts and benefi ted Allied war efforts. During
World War II, the German government spent more money on occult studies
than on computation. However, Germany did build cryptanalysis machines that
were successful in cracking Soviet military codes.

As with other countries, Germany did develop a sort of analog computer to
aid in aiming torpedoes when they were fi red from submarines. There were also
German analog computers used for naval gunfi re control.

The German V-1 cruise missile and the V-2 rocket also had analog computer
guidance systems, as well as gyroscopes and inertial sensors. However, neither the
V-1 or V-2 proved to be accurate. Cities were the targets rather than specifi c loca-
tions within those cities. However, random hits did cause deaths and destruction.

These missiles were constructed using slave labor from concentration camps.
One report claimed that due to the harsh treatment of the workers, more people
died while building V-2 rockets than were killed by the rockets used in combat.

The V-2 did trigger a need for an effective antimissile defense that would
later result in satellites and the Patriot Missile. The V-1 could be shot down
by fast fi ghter aircraft, but the V-2 descended almost vertically at more than
Mach 3 speed, so there was no effective defense.

An even more sophisticated analog computer developed in Germany during
the war was the Lotfernrohr 7 bombsight, which was installed in the world’s
fi rst operational jet bomber, the Arado AR 234 bomber in 1945.

Analog Espionage

Some of the technology for the German bombsight was based on the American
Norden bombsight that had apparently been passed to Germany by the infamous
Duquesne spy ring started by Fredrick Duquesne.

Thirty-four people were tried and convicted of espionage in 1941, the largest spy
case in U.S. history. (A 1945 motion picture, The House on 92nd Street, was based
on this spy ring, and it won an Academy Award for original motion picture story.)
However, another source on Wikipedia says that the Norden data was passed to
Germany in 1938.

ptg11539604

49Wartime Innovations

The German government largely ignored digital computing, a technology
that actually changed the outcome of World War II. Of course, Germany was
a pioneer in other military technologies such as jet engines and fi eld artillery.
Germany also built the famous Enigma cypher machine, which turned out to
be less secure than the German government thought it was. The Enigma
machine resembled a typewriter and its codes were created with mechanical
wheels.

Germany also had another military encoding system named FISH that
was electromechanical. This was usually reserved for high-level communi-
cations between Berlin headquarters and various army headquarters, while
the Enigma was used for more frequent operational communications. The
FISH machines were less common and less well known than the Enigma
machines.

The FISH machines were designed by the company of C. Lorenz in
Berlin. The machine used a stream cipher and was built as an attachment to
a standard teleprinter. There were several models produced between 1941
and 1944.

The coding system used by the FISH machines was based on a method
devised by Gilbert Vermam of AT&T Bell Labs in 1917. The cipher system
used methods of symbolic logic from George Boole’s work with emphasis on
the “exclusive or” function. Several other researchers developed similar
codes.

In August 1941, a FISH message of 4,000 characters was intercepted by the
British. Using manual precomputer analysis, Brigadier John Tillman and the math-
ematician Bill Tutte were able to crack the code and reverse-engineer the FISH
machine, a remarkable achievement. This work later fed into the design of
computers to speed up decryption.

German cryptanalysts managed to break the Soviet military codes, just as the
British broke the German codes. After the war, the Germans turned over their
cryptanalyst machines to the British and Americans. These German machines
(more than seven tons’ worth) were transported to Bletchley Park, where they
were used by British cryptanalysts during the Cold War to continue to decipher
Soviet coded messages.

Germany also had a nuclear program during World War II. The Allies
benefi ted greatly from the folly of German anti-Semitism, which led to the
migration of scientists such as Albert Einstein, Edward Teller, and Leo Szilard
to the United States. Enrico Fermi also moved to the States to escape Fascism
in Italy. John von Neumann also moved from Hungary but in 1930 before
wartime repressions had started.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era50

Computers in Japan During World War II

Japan had a strong tradition of mathematics and pioneered building calculation
devices as early as 1902. In that year, Yazu Ryoichi built a mechanical calculat-
ing machine called the automatic abacus. In appearance, this looks a bit like
the Curta mechanical calculator, only larger. In 1906, Kawaguchi Ichitaro of
the Ministry of Communications and Transportation built a working mechani-
cal calculator powered by electricity.

During World War II in 1944, the aviation laboratory at Tokyo Imperial
University built an electromechanical device for solving simultaneous
equations. This was not a true computer but was a step in that direction.

During World War II, the Japanese navy, as most other navies also did, devel-
oped an analog computing device for use on submarines to calculate their aiming
points. Incidentally, the Japanese long lance torpedo was among the most effec-
tive at the start of World War II. It had a longer range and was more reliable than
Allied torpedoes.

Japan’s main development efforts in computers will be discussed in future
decades, when the high-quality levels of Japanese companies enabled them to
pull ahead in products such as LCD screens, disk drives, and other computer
peripherals. Software in Japan also benefi ted from the contributions of the
Americans W. Edwards Deming and J. W. Juran during the postwar years.

Japanese Technology and Intel’s First Chip

An important business event occurred in Japan in 1945 that in later decades would
cause Intel to become the world’s largest manufacturer of computer chips. Although
this had no impact on World War II, it was extremely important for the later com-
puter industry and is not widely known.

In 1945, a company called the Nippon Calculating Machine Corporation was
founded to build calculators. Later, it changed its name to Busicom. In the 1960s,
Busicom patented the fi rst microprocessor and entered into an agreement with Intel
to manufacture it. (Intel was founded in 1968.)

An Intel engineer named Ted Hoff improved on the original Busicom design, and
Intel’s fi rst microcomputer, produced in 1971, was the Intel 4004 microprocessor,
which was based on the Busicom patents that were shared with Intel. It is not widely
known in the United States that Intel’s entry into the microprocessor fi eld was due to
gaining access to Japanese patents.

ptg11539604

51Wartime Innovations

Japan developed several cryptographic machines for encoding naval and mili-
tary messages. These were mechanical devices and not computers. One Japanese
device resembled the German Enigma machine (Japan had acquired Enigma
machines in 1937).

But another Japanese coding machine was indigenous and used electrical
step switches instead of the rotors used by the Enigma devices. This code
machine was called “Purple” by Allied intelligence personnel, and it was
decrypted by the United States Army Signal Intelligence Service (SIS) by 1939.
Some of the more useful Purple messages that were decoded were Japanese
foreign offi ce messages by the Japanese Ambassador to Berlin.

One famous decrypted message, which has been shown in several feature
fi lms, was the message to the Japanese Ambassador in Washington that Japan
was breaking off negotiations on the day of Pearl Harbor, December 7, 1941.
In fact, the U.S. offi cials had the text of this message before the Japanese
Ambassador received it.

Later during the war, messages from Ambassador General Hiroshi Oshima
in Berlin were translated. These secret messages often included vital military
information, including some told to Oshima by Hitler himself.

Computers in Poland During World War II

World War II started on September 1, 1939, when Germany invaded Poland.
However, on July 25, 1939, about fi ve weeks before the invasion, there was a
secret meeting between Poland, France, and Britain at Pyry in a forest about
30 miles south of Warsaw. At this meeting, several cryptanalysis methods and
an actual Enigma machine were turned over to France and Britain by Polish
mathematicians.

By good fortune, Alan Turing was one of the British mathematicians who
received the Polish information. This fact would become signifi cant as the war
continued and the British began to develop decryption computers. As most
readers may know, Alan Turing is a famous mathematician who contributed to
the fundamental theory of digital computers, and he also contributed practical
engineering knowledge to the development of British decryption computers.

Starting in 1932, Polish mathematicians had been working on breaking the
codes used by the German Enigma machine. One of the methods used for
decryption was a mechanical calculating device called a cryptologic bomb, or
“bomba” in Polish. This was one of the methods provided by Poland to the
Allies, and it later developed into the famous bombe built at Bletchley Park.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era52

The Polish mathematicians probably sped up British decryption efforts by more
than a year and hence aided the Allies in deciphering Enigma codes.

Although Poland as a country was occupied by Germany and later Russia,
Polish troops in exile continued to serve with the Allies in both air and ground
operations. Polish intelligence during World War II was among the most
successful of any of the combatants. During 1939 to 1945, about 40% to 45%
of all useful intelligence reports from the German-occupied countries were from
Polish agents.

Computers in France During World War II

The rapid collapse of France during World War II interfered with many kinds of
scientifi c studies, including computation. However, the French company Groupe
Bull would in later years become a major manufacturer of computers and a rival to
IBM. This company was founded in 1931 with the name H. W. Egli-Bull (Egli was
a Swiss company).

The Bull company had acquired the patents of the late Norwegian inventor
Fredrik Rosing Bull, a famous pioneer in punch-card tabulating machines. Bull
died of cancer at age 42 in 1925, leaving a rich legacy of patents and intellec-
tual property. Equipment and tabulating machines using punched cards based
on the Bull patents were produced in both Norway and France.

In 1933, the Bull company reorganized under new owners and took the
name Compagnie des Machines Bull. The Bull company operated during World
War II and remained a major producer of punch-card tabulating equipment.

The original Bull punch card had 45 columns and round holes. When IBM
began its rapid expansion with tabulating machines, the IBM punch card had
80 columns and rectangular holes.

Civil litigation such as patent suits continued during World War II, even in
occupied countries such as France. In the early war years, Bull switched from
round to rectangular holes, which triggered a patent lawsuit between Bull and
IBM. In December 1941, IBM France won the patent litigation against Bull.
Bull also lost an appeal that was decided in June 1942.

In the postwar years, Bull became a major competitor to IBM and operated
in more than 100 countries.

Computers in Australia During World War II

The Australian government sponsored an organization called the Council for
Scientifi c and Industrial Research Automatic Computer (CSIRAC). Although

ptg11539604

53Wartime Innovations

the design of an indigenous Australian computer started near the end of World
War II, the fi rst computer produced in Australia was tested in November 1949.
The team was headed by Trevor Pearcey and Malcom Beard.

Inputs to the CSIRAC Mark I computer were paper tape and outputs were on a
standard teleprinter. Versions of this machine operated from 1949 through 1960,
and they eventually featured a programming language called INTERPROGRAM
that resembled BASIC.

A nonworking version of the CSIRAC Mark I can be found in the
Melbourne Museum. The Mark I is perhaps the ninth working digital com-
puter, after ABC, BINAC, COLOSSUS, EDSAC, ENIAC, Harvard Mark 1,
MESM, and Z3.

Computers in Russia During World War II

For a variety of reasons, cooperation between the Soviet bloc and the western
Allies during World War II did not encompass cryptanalysis or code-breaking
computing devices. There was never the same level of cooperation as existed
between the United States and Great Britain.

After World War II, the Cold War increased hostility between the former
allies, which meant that Soviet work on computers was not known in the West,
except perhaps by those military and security offi cers with very high clearance
levels. Russia and other Soviet countries such as Ukraine were fairly active both
during World War II and the later Cold War.

Some of the Russian computer pioneers were contemporaries of Turing,
Aiken, Mauchly, Atanasoff, and von Neumann in the 1940s, but their names
are hardly known in the West. Some of these Soviet computer pioneers included
S. A. Lebedev, I. S. Brook, B. I. Rameev, V. M. Glushkov, and others equally
unknown in western computer literature.

There is not much information about Soviet computing during World War II
itself, but by 1948, Lebedev in Ukraine built the fi rst Soviet computer, the
MESM (a small electronic counting machine). The MESM was later used for
calculations involving nuclear devices, space exploration, and electrical trans-
mission. This is one of the fi rst indigenous general-purpose computers built on
the continent of Europe except for the work of Konrad Zuse in Germany.

Lebedev later transferred his operations from Ukraine to Moscow and
continued to build advanced computing devices, some of which pioneered new
technologies and gathered useful patents.

In later decades, Russian and Soviet computers would approach western
computers in processing power and capabilities.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era54

Computers in Great Britain During World War II

Because of the success of British code-breakers in solving the codes generated by
the German Enigma and FISH machines, the work at Bletchley Park has become
famous and is described in books and feature fi lms. Not only did Bletchley Park
and computers play a signifi cant part in World War II but also one of the greatest
pioneers of computing, Alan Turing, worked there during the war.

In the summer of 1939, when it was obvious that war was going to occur,
the British government evacuated the Government Code and Cipher School to
Bletchley Park, a large manor house located about 50 miles away from London
in Buckinghamshire. Although the initial staff at Bletchley was small, by
the time the war ended, about 10,000 people were working there and using a
variety of temporary buildings called “huts.” Alan Turing was located in hut 8,
which has become famous.

Many of the mathematicians were from the Women’s Royal Navy Service
(WRNS). Here, too, women were pioneers in computing and software.

In 1936, prior to joining Bletchley, Alan Turing published his famous paper
“On Computable Numbers,” which became the logical and philosophical basis
for computer architecture. Even today, the concept of computers as being
“Turing complete” is used to ascertain if computing equipment can handle all
of the concepts in Turing’s seminal paper.

In July 1939, Turing was one of the British mathematicians who received
secret information from Polish mathematicians about decoding German codes
based on the Enigma. In fact, they received a working Enigma machine that
could be reverse-engineered.

As mentioned earlier, Turing developed a new and improved form of machine
called the Bombe at Bletchley Park. The version developed by Turing was
electromechanical. It was a massive machine that was about eight feet high and
weighed at least a ton. It used wheels similar to the Enigma machine. The local
name at Bletchley for this fi rst Bombe was “the bronze goddess.”

Turing was not the only brilliant mathematician and inventor at Bletchley
Park. T. H. Flowers was the chief architect of a fast electronic computer that
became known as Colossus and was aimed at decrypting codes based on the
FISH Lorenz coding scheme.

A large team of engineers and mathematicians worked for two years on
building the Colossus. When fi nished in 1943, it was the fi rst operational com-
puter in Great Britain and a contender for being the fi rst operational computer
in the world.

ptg11539604

55Wartime Innovations

Note
In 2006, a working replica of the Colossus was created and was entered in a code-breaking
contest against modern notebook computers. Although Colossus did not win, it had very
respectable results for a device designed using 1940s technology.

The British code-breaking program was called the Ultra program. The
derivation of the word “ultra” implied that the secrecy was even higher than
top secret, so it was “ultra secret.” Some of the information about the Ultra
program was not declassifi ed until 1972, which means that early work on
digital computers as part of Ultra was not widely known. Senior offi cers from
both the United States and the United Kingdom credit the Ultra program with
shortening the war by perhaps two years. A few even state that the war might
have been lost if not for Ultra.

In 1946, Alan Turing presented a paper, written in 1945, to the executive
committee of the British National Physical Laboratory. The title was “Auto-
matic Computing Engine” (ACE). It described a very sophisticated stored-
program digital computer. Because Turing’s work was covered by the Offi cial
Secrets Act, he was prevented from publishing the paper or making the
contents known.

The proposed Turing computer features subroutine calls, which were not in
the Electronic Discrete Variable Automatic Computer (EDVAC), described by
von Neumann in his 1945 paper. This means that the Turing computer was some-
what in advance of the EDVAC. Turing also defi ned a programming language in
a section of his report titled “Abbreviated Computer Instructions.”

Because of secrecy, a working computer based on Turing’s ACE concepts was
not built until 1950, when it was the fastest computer constructed up until that
time. This was named the Pilot Model ACE and it became operational on May
10, 1950. This computer used vacuum tubes for computation and mercury
delay lines for memory.

A larger version called MOSAIC, which stood for Ministry of Supply Auto-
matic Integrator and Computer, was completed in 1952, and some of the details
of this device remain classifi ed even today. It was used to support radar sight-
ings of aircraft and to compute their future fl ight paths.

Had the British government moved more rapidly and used the Turing
paper as a computer architecture in 1946, high-speed digital computers would
probably have occurred about fi ve years faster than they did occur.

It is an interesting historical fact that John von Neumann was familiar with
Turing’s work. Some of the concepts in von Neumann’s paper on the EDVAC

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era56

seem to be similar to Turing’s paper, although this may be a case of independent
inventions by both Turing and von Neumann.

Although the Colossus is the best known of the wartime British computing
systems, various analog computers were also produced. Those who have not
served in the military may not be aware of the complex calculations needed
during combat at sea and in the air. Analog computers were the most effective
solutions for these calculations from World War II through the Vietnam War.

When two ships are fi ghting at sea, both ships are typically moving in differ-
ent directions and at different speeds. To aim a shell at an opponent with a
good chance of a hit requires integrating data on the direction and speed of
both ships, the velocity and trajectory of the shell, and other factors such as the
roll of the ship due to wave action and also wind speed and direction.

The fi rst British mechanical naval gunnery computers were installed on the
HMS Rodney and HMS Nelson in 1924. By World War II, improvements made
these devices fairly accurate. By the war’s end, radar would also be available,
which would greatly improve the accuracy of naval gunnery.

These mechanical analog computers were complex to build and quite expen-
sive. For example, the analog fi re-control computer on the battleship HMS
King George V in 1939 cost about £213,000. This is roughly equivalent to
$20,000,000 today. Prices stayed high throughout World War II, although so
many were built that there were economies of scale.

Note
The Harvard Mark I computer only cost about $1,000,000. The cost of the analog fi re-control
computer on the HMS King George V was roughly equal to the costs of all digital computers
put together between 1939 and 1945. Needless to say, these analog fi re-control computers
were very complex devices.

Surface naval battles involving capital ships can begin at ranges of almost
20 miles, and the ships seldom approach each other at ranges of less than a
mile. Ships in combat usually pursue zigzag courses in order to make enemy
aiming diffi cult. Therefore, naval gunnery deals with aiming massive projectiles
over very long ranges and involves both a moving gun platform and a moving
target. These are not trivial calculations and they cannot be performed manu-
ally with anything like the speed and accuracy required.

Prior to the development of analog fi re-control computers, almost 400 shots
were needed to ensure one hit at ranges of more than three miles. Analog
fi re-control computers reduced the number of shots down to perhaps 40 shots
per hit.

ptg11539604

57Wartime Innovations

Not only is surface gunnery a task requiring many computations but also
launching torpedoes from submarines requires a great many complex calculations
that need high-speed computing. Most of the belligerents used fairly effective
torpedo-launch analog computers during World War II.

These analog computer torpedo-aiming devices were quite large for subma-
rines: Some were fi ve or six feet tall and perhaps two feet wide and deep.
The urgency of the torpedo-aiming challenge explains why such big machines
were squeezed into the very small control rooms of World War II submarines.
They also required two extra crew members to keep them up and running.

Even more diffi cult than naval gunnery is the task of shooting antiaircraft guns
against enemy planes. Not only are the planes moving much faster than ships at
sea, but they can also move in three dimensions and can change directions rapidly.

Thus, antiaircraft calculations involve altitude, direction, velocity, wind
speed, wind direction, and rates of change in any or all of these factors. The
essential problem is hitting a very small target that might be traveling an erratic
course at more than 350 miles per hour at an altitude of more than 25,000 feet.
This is not a trivial set of calculations.

As anyone who has tried skeet shooting knows, the shell must be aimed at
where it will be when it arrives, not where the shell is currently located. For
airplanes, the radius of destruction from World War II explosive antiaircraft
cannon shells was only about 30 feet, which meant that the shells had to be
very close to the target to be successful.

Equally challenging and requiring sophisticated calculations is the aiming of
bombs from moving aircraft. All of the belligerents developed analog comput-
ers for bombsights, with probably the most famous being the American Norden
bombsight, to be discussed later in this chapter.

Surprisingly, the accuracy of these electromechanical analog computers for
naval and air combat was good enough so that they stayed in operation
throughout World War II, the Cold War, the Korean War, and indeed into the
1960s and even the ’70s. Some even saw service during the Vietnam War. It
would be many years after World War II before digital computers and software
were good enough to replace analog computers onboard ships and aircraft.

Within the context of aiming cannons or torpedoes at moving targets, the
electromechanical analog computers had one of the longest useful lives of any
form of computation. They were accurate enough to provide effective targeting
through three wars and numerous police actions.

These were not programmable computers in the modern sense. They only
covered a specifi c set of calculations, and the “programming” was built into

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era58

the devices by the designers in terms of the mechanical wheels, cogs, and
electrical relays.

Bletchley Park was not the only British research establishment with an
impact on computers and software. Another location that would have an
impact on software in particular was the Bawdsey Research Station, where
mathematicians and statisticians would pioneer a discipline known as opera-
tional research in Great Britain and operations research in the United States.
This new discipline would expand in scope and would soon involve Army,
Navy, and Air Force personnel.

Operations research is concerned with optimizing the effectiveness of group
activities, and it involves logic and network analysis as well as ordinary math and
statistics. A few examples of the problems studied by operations research will
show the combination of logic and math needed to handle complex situations.

One question of great importance involved whether a few large convoys of
ships or many small convoys would be most effective in escaping German
U-boat attacks. Operations research found that avoiding attacks correlated
most strongly to the number of available destroyers and armed escorts that
could defend the convoy. Large convoys with many armed destroyers and escort
vessels proved to be the best solution.

Another question involved what color of paint on the bottom of antisubma-
rine aircraft would be least visible to German U-boats. It turned out that
aircraft with white bottoms were not spotted until they were 20% closer to the
target than aircraft with black bottoms.

A related question was the optimal depth for detonating depth charges
dropped from aircraft. The initial standard depth was 100 feet. However, it
turned out that most diving U-boats did not reach that depth before the depth
charge exploded, so they escaped serious damage. A shallow depth of 25 feet
was optimal for aircraft depth charge settings.

When World War II started, 20,000 antiaircraft shells were needed to shoot
down one airplane. By the middle of the war, based on analog fi re-control com-
puters and operations research applied to antiaircraft loading and aiming
operations, the number of shells needed per destroyed aircraft was down to 4,000.

Note
The huge ratio of shots to hits explains why surface-to-air missiles (SAMs) with computer
guidance systems would replace antiaircraft guns as the best method of air defense in later
decades. To be effective, SAMs required compact onboard radar, small analog computers for
guidance, and other sophisticated electronics such as heat sensors. These would not come
together during the war but arrived in 1947 and became very sophisticated in later decades.

ptg11539604

59Wartime Innovations

These real-world military problems combine a need for empirical data and
statistical analysis with complex calculations performed at high speeds. These
are the very problems that digital computers and software would eventually
tackle with great success in future decades.

After the war, operations research and digital computers would apply these
concepts to a huge variety of complex civilian problems, including queuing the-
ory, telephone network optimization, supply chain management, “just-in-time”
manufacturing, freight delivery-route optimization, railroad and airline traffi c
analysis, and game theory, among many others.

At the level of individual projects, critical path analysis and PERT diagrams
were offshoots from operations research. At a higher corporate level, organiza-
tion dynamics, business process reengineering, and market analysis would also
be derived from World War II operations research.

Digital computers and software would eventually be the best tools in history
for solving complex logical problems at high speeds, but many more years and
many more inventions would be needed before digital computers and software
became truly effective tools for complex real-world problems.

Computers in the United States During World War II

Before addressing the developments of digital computers by the United States in
World War II, it is important to consider the analog computers used for bomb-
sights, naval gunnery, artillery ranging, and torpedo launches. There were
only a few digital computers built during World War II, but there were many
thousands of these sophisticated analog computers deployed on all surface
ships, submarines, and bombers.

One of the most interesting analog computers developed by the United States
during World War II is the famous Norden bombsight used on both Air Force
and Navy bombers. This bombsight had a very long service life—much longer
than the average digital computer. It continued to be used during the Korean
War and into the Vietnam War. The slang name for this bombsight by fl ight
crews was “the blue ox.”

Earlier bombsights could compensate for aircraft speed and direction but
were still not extremely accurate. They also required a lot of verbal communi-
cation between the pilot and the bombardier during the fi nal stages of the
bombing run. The Norden bombsight included a linkage to the aircraft’s
autopilot and actually calculated the bomber’s fl ight path on the fi nal run before
the bombardier would release the bomb.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era60

The Norden bombsight was developed by a Dutch engineer named Carl
Norden who moved to the United States and worked for the Sperry Gyroscope
company. However, he was also a consultant to the Navy, who awarded
Norden a contract in 1929 to build a working automatic bombsight. Norden
completed a working prototype in 1930.

The Navy accepted the design, and production of the Norden bombsight
started in 1931. Norden founded his own company to build these bombsights
and was awarded a Navy contract. Later when the Army and Air Force wanted
to buy the Norden bombsights, they had to acquire them from the Navy, which
caused interservice rivalry.

Prior to the Norden bombsight, bombardiers also needed to use a variety of
tables and manually entered data into the bombsight while communicating
course directions to the pilot. As might be imagined, the process was sluggish
and prone to a variety of errors.

With the Norden bombsight, all of the calculations were handled by embedded
analog computers in the bombsight itself. The bombardier only had to make
adjustments using two control wheels. The time required for the analog computers
to perform their calculations was about six seconds.

The Norden bombsights were complex devices that used gyro stabilization
to ensure a level platform. The accuracy of the bomb drops using the Norden
bombsight was within 35 feet for best results and about 75 feet for average
results. This is not smart bomb accuracy, but it is not bad for iron bombs with
marginal aerodynamic qualities.

In a trial run using an obsolete battleship as the target, about 50% of the
bombs dropped from 4,000 feet using the Norden bombsight hit the target.
Older bombsights had less than a 20% hit rate under the same conditions.

During actual combat operations, the results from the Norden bombsight
would be less successful. This is because combat bombing during the war
moved to much higher elevations to avoid ground fi re. Some B17 bomb runs
were made from more than 25,000 feet, while some B29 bomb runs were
made above 30,000 feet.

Norden realized that feedback was needed between the bombsight and
the aircraft autopilot, so he developed an improved form of autopilot with a
direct link to the bombsight. This was called the Stabilized Bombing Approach
Equipment (SBAE), and this was also a form of analog computer.

The Royal Air Force approached the United States in 1938 about acquiring
the Norden bombsight but was rebuffed. In fact, they were rebuffed several
times, and the situation reached a point where in 1938, Neville Chamberlain

ptg11539604

61Wartime Innovations

wrote a personal letter to President Roosevelt, but this still did not achieve a
transfer of Norden bombsights.

Technical cooperation between the United States and Great Britain almost
came to a standstill because of U.S. reluctance to provide the Norden bombsight
to the Royal Air Force. The United States was concerned that if the Norden
bombsights were used in British planes over occupied Europe, their design might
become known to the Germans if any planes were shot down.

Note
Although this fact was not known during the war itself, as mentioned earlier in the chapter,
German spies had passed along information about the Norden bombsight to Germany as
early as 1938. Giving the Norden bombsight to Great Britain would not have degraded its
security because the Germans were already building a similar bombsight based on stolen
technology passed on by German spies.

The impasse between Britain and the United States on military weapons led to
the famous Tizard mission of 1940 to try and improve technical information
transfer. This mission was named after Henry Tizard, the chairman of the British
Aeronautical Research Committee.

Although the Tizard mission did not acquire the Norden bombsight, it did
smooth the animosity between British and American military leaders. The
United States benefi ted greatly by receiving information about British jet-
engine development, the cavity magnetron which enabled small radar sets,
self-sealing fuel tanks, plastic explosives, and other technologies where the
United Kingdom was a world leader.

The magnetron was a critical product that allowed radar sets small enough to
be placed in fi ghters and bombers, which greatly improved combat effectiveness.
Even better, these airborne radar sets allowed planes to locate submarines at
great distances and even at night. Small radar sets operating in aircraft were one
of the most important inventions of World War II, and this has had signifi cant
civilian benefi ts as well.

It is an interesting historical fact that both analog and digital computers
changed the course of World War II. In fact, the strong British desire for the
Norden analog computer yielded extremely valuable technologies that benefi ted
U.S. war efforts, with the magnetron being a key invention that revolutionized
air combat by introducing radar to combat aircraft.

Analog computers were the workhorses of World War II computation. Every
war ship, bomber, and artillery battery used analog computation as a standard
method of operation. These devices increased both the accuracy and the rates of

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era62

fi re of land artillery and naval guns. They also increased the accuracy of bomb-
ing and made precision bombing one of the most effective weapons leading
to the Allied victory, although not all results were successful.

Another effective analog computer developed by the United States was the
Torpedo Data Computer (TDC), used aboard all U.S. submarines. There were a
number of models of this device, but the Mark III and Mark IV were the best of
those during the war. The Mark III was operational in 1940, and the Mark IV
was operational in 1943.

These bulky devices were so important to accurate aiming that they were
carried in submarine control rooms and two extra, specially trained crew
members kept them operational. The Mark III and Mark IV torpedo-aiming
devices are cited as being the best of any country during World War II.

Unfortunately, the American Mark 14 torpedo was not as reliable as the
Japanese long lance torpedo when the war started, but it improved over time.
The later Mark 18 American torpedo was one of the best in the war.

The Mark 14 torpedo used a form of analog computer as a detonator, called
the Mark VI detonator, which included both magnetic sensors and contact
detonation. For reasons of cost, the Mark VI detonators were not given live
tests prior to becoming operational. A great many American torpedoes hit their
targets but failed to explode during the fi rst two years of World War II due to
faulty magnetic detonation.

Another problem was that the initial tests of the Mark 14 torpedo used
dummy warheads, which were lighter than actual combat warheads. As a result,
the Mark 14s in combat ran about 10 feet deeper than programmed, which
caused many misses.

It was only in September 1943 that the various problems of American torpe-
does were solved. Problems with the torpedoes were often found under actual
combat conditions, and the Bureau of Naval Ordnance ignored dozens of reports
from frustrated American submarine commanders. The fi nal fi xes required that
Admiral Ernest King, the Chief of Naval Operations, “lit a blowtorch under the
Bureau of Naval Ordnance.”

A naval base for spotting German submarines was established in 1942 on a
property adjacent to the torpedo testing area in Newport, Rhode Island. The
buildings were designed to look like beach houses in order to conceal their
purpose from German submarines that might be approaching Narragansett Bay
to attack U.S. ships at the Newport naval base.

ptg11539604

63Wartime Innovations

Note
One of the torpedo test areas and one of the submarine-spotting buildings are visible from
the window of the offi ce where this book was written. Even today, unexploded World War II
torpedoes are being removed from Narragansett Bay. This property is now used as a training
base by the Rhode Island National Guard and is called Camp Varnum after a Revolutionary
War general who lived nearby.

It is an interesting historical fact that the last U-boat sunk during World War
II was spotted near the entrance of Narragansett Bay and was sunk near Block
Island, about seven miles off the coast of Rhode Island.

This boat was the U-853 and it was on its third combat patrol. The U-boat
was destroyed by the U.S. Navy after the Battle of Point Judith on May 6, 1945.
The U-boat was sunk by depth charges and the entire crew was killed. Later,
several German crew members were buried with full military honors in
Newport, Rhode Island.

The U.S. ships involved in hunting and sinking the U-853 included the
destroyer escorts Ericsson, Amick, Atherton, and Moberly. Blimps and aircraft
also participated. Atherton and Moberly were credited with fi ring the depth
charges that sank the U-853, using analog computers for setting the depth of
the explosion.

Shortly before being sunk, the U-853 sank a coal ship named the Black
Point, the last American freighter destroyed during World War II. It was sunk
on May 6, 1945, with the loss of 12 crewmen. Another 34 crewmen were
rescued. The Battle of Point Judith was the last Atlantic naval battle of World
War II. Black Point Park in Narragansett, Rhode Island, is named after the fi nal
U.S. ship sunk in World War II.

On May 5, Grand Admiral Dönitz, Commander in Chief of the German
Navy, had issued orders for all submarines to cease offensive operations and
return to port, since the German surrender was scheduled for May 8. (Dönitz
had become chief of state and president of Germany after Hitler’s suicide. He
held this position from April 30, 1945, to May 23, 1945, when the German
government was dissolved by the Allies.)

Apparently, the U-853 had not received the order to cease combat opera-
tions, or the captain chose to ignore it. It is unfortunate for both sides that the
battle took place so close to the end of the war and one day after all German
submarines had been ordered to cease combat. Since the U-853 sank in water

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era64

that is 121 feet deep, the hull can still be seen by scuba divers who are certifi ed
for deep dives, although this dive is dangerous and should not be attempted by
amateurs. There may also be torpedoes and naval cannon shells still onboard,
which become unstable with time.

There are only a few working examples of digital computers that the United
States completed during the war. The fi rst of the U.S. digital computers was not
aimed specifi cally at military uses but rather to solve linear equations. This
computer was designed in 1937 by John Atanasoff of Iowa State University.
A graduate student, Clifford Berry, assisted in the construction of the computer.
It was called the ABC computer after the initials of the inventors.

The ABC computer was fi nished in 1942 but was not programmable and
hence was not Turing complete. However, it did use binary arithmetic and
featured parallel processing. It had separate memories for intermediate data
and instructions. All calculations were electronic, using vacuum tubes, and did
not involve wheels or moving mechanical parts. The ABC could add or subtract
at a rate of about 30 calculations per second.

As will be discussed in the chapters about the 1960s and ‘70s, this computer
fi gured prominently in a patent lawsuit between Sperry-Rand and Honeywell.
The judge’s decision included a statement that the ABC was the fi rst digital
computer, which triggered a controversy still not entirely settled in 2013. The
judge stated that Atanasoff was the original developer of electronic computers,
which cast doubt on the contributions of Zuse, Mauchly, and Eckert.

In 1942, both the U.S. Navy and the U.S. Air Force established formal opera-
tions research groups to apply mathematical methods to the analysis of combat
operations. The Navy group analyzed submarine warfare and the Air Force group
analyzed bombing and fi ghter operations. These studies led to innovations
in combat patrol logistics and also to the most effective formations for combat
aircraft. It would not be until later decades that digital computers and software
would be powerful enough to contribute to the solutions of operations research
problems.

The next digital computer in the United States was the ENIAC. It was started
in 1943 in order to calculate artillery ballistics. It was funded by the United
States Army Ballistic Research Agency. ENIAC was not completed until 1946
and so missed World War II service. However, once operational at the Aberdeen
Proving Ground, the ENIAC worked well until 1955.

ENIAC was a massive machine that weighed more than 30 tons. It used more
than 17,000 vacuum tubes, 70,000 resistors, and 10,000 capacitors. There were
no integrated circuits or printed circuits in those days, so construction involved
more than 5,000,000 hand-soldered joints, according to Wikipedia.

ptg11539604

65Wartime Innovations

As is common with vacuum tube devices, tube failure was common. In fact,
several tubes burned out every day. A partial solution to this problem was
to leave the computer running twenty-four hours a day (at great cost for elec-
tricity consumption). This is because most vacuum tube failures occur when
they are fi rst turned on and are warming up. In 1948, special high-reliability
vacuum tubes were developed, which reduced the frequency of tube failures.

The main designers of ENIAC are the famous computer pioneers John
Mauchly and J. Presper Eckert of the University of Pennsylvania, although
many others participated in the design and construction.

Many of the technical advances for the ENIAC were patented by Mauchly
and Eckert. After Sperry-Rand acquired these patents, the company began to
charge royalties for computers built using the same features. This led to a
momentous patent violation lawsuit between Sperry-Rand and Honeywell,
discussed in later chapters.

Mauchly visited Atanasoff and witnessed the ABC computer in operation.
There was also correspondence between Mauchly and Atanasoff about the
differences between ABC and the proposed ENIAC. This interaction would
play a major role in future decades when there were mutual patent lawsuits
between Sperry-Rand and Honeywell.

In 1944, Mauchly and Eckert started the design of a more advanced computer
called the EDVAC. The EDVAC was not fi nished until 1949, and John von
Neumann was part of the fi nal team. As with ENIAC, the EDVAC was aimed at
ballistics calculations and was funded by the Army’s Ballistic Research Laboratory.

Both ENIAC and EDVAC came to the attention of nuclear scientists at Los
Alamos, who realized that computers would play a role in solving complex
nuclear equations. One of these scientists at Los Alamos was John von Neumann.
The notes prepared by von Neumann on the design of EDVAC became world-
famous as the essence of the architecture of future digital computers.

The decade from 1940 to 1949 was heavily infl uenced by the work of von
Neumann, who was a polymath and who made contributions not only in
computer architecture but also in pure mathematics, nuclear energy, set theory,
linear programming, and many other fi elds. He published 150 scientifi c and
mathematical papers on many important topics.

It was von Neumann’s seminal paper in 1945 titled “First Draft of a Report
on the EDVAC” that established the von Neumann architecture as the basis for
computer hardware design. However, another paper in 1945 by Alan Turing
titled “Automatic Computing Engine (ACE)” is remarkably similar to the von
Neumann report, and probably von Neumann had seen the Turing paper or
knew of it.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era66

The von Neumann architecture envisioned a digital computer as comprising a
processing unit for math and logic calculations, a control unit, internal memory
for storing both data and instructions, and a bus or channel for fetching data
and instructions as they were needed. There would also be external mass storage
and input/output mechanisms.

Although the von Neumann architecture has been visibly successful in
hundreds of computing machines, it had one feature that has been questioned.
The von Neumann architecture uses a single bus for both fetching data and
instructions, which limits performance. This is called the von Neumann bottle-
neck. Other machine architectures, such as the Harvard architecture, envisioned
separate buses for data and for instructions.

Future generations of researchers would also discover that the von
Neumann architecture might have security vulnerabilities that hackers could
take advantage of.

Another computer started during World War II was known as the Harvard
Mark I. The offi cial name was the IBM Automatic Sequence Controlled
Calculator (ASCC). This was an electromechanical computer commissioned
in 1943 and constructed in 1944. The U.S. Navy’s Bureau of Ships issued the
contract.

The Harvard Mark I was designed by another famous computer pioneer,
Howard H. Aiken of Harvard. The computer itself was built at IBM in
Endicott, New York, and transferred to Harvard upon completion in 1944.

Another famous software pioneer who was also part of the Mark I design
team was Grace Hopper. She later became famous for the development of
COBOL and for becoming a U.S. Navy Admiral at the peak of her illustrious
career.

Grace Hopper took a leave of absence from Vassar in 1943 and joined
the WAVES, which was the U.S. Navy organization for women personnel. At
the time of the Mark I project, her Navy rank was Lieutenant JG.

Note
Grace Hopper’s military career was in the Navy Reserve rather than the regular Navy.
She was promoted to Rear Admiral in 1985 and at the time of her retirement in 1986,
she was the oldest serving naval offi cer at age 79. She was a polymath who made great
contributions to software and computer engineering. I had the honor of attending one of
her speeches just before her retirement. She was an excellent public speaker as well as a
brilliant inventor and administrator.

ptg11539604

67Wartime Innovations

As examples of why early computers were expensive, the Harvard Mark I
had 500 miles of wire and more than 3,000,000 soldered connections.

The Mark I was followed by other Aiken designs called the Mark II, Mark
III, and Mark IV. None of these should be confused with the British Mark I
designed in Manchester, which became operational in 1948.

Aiken caused hard feelings at IBM by announcing the Mark I as his sole
invention and for failing to name any of the IBM designers and builders other
than James Bryce. This annoyed the IBM Chairman, Thomas J. Watson, and led
to IBM moving in a different direction.

The direction IBM selected was to build the IBM Selective Sequence Elec-
tronic Calculator (SSEC), The design of the SSEC started in 1944, but the
machine was not completed until 1947. The SSEC was the very last electrome-
chanical computer completed. After it, all computers were purely electronic.

Wallace John Eckert of Columbia University (no relation to Presper Eckert)
designed the SSEC, but it was constructed at IBM Endicott under the supervi-
sion of John McPherson using some technology by an IBM engineer, James
Bryce. Francis Hamilton and Robert Seeber also contributed to the design.

The SSEC was not Turing complete and was more of a high-speed calculator
than a true computer. However, the SSEC did much to make computers known
to the general public. The SSEC was installed in New York near IBM and was
located in a former shoe store with a plate-glass window that allowed passersby
to see the machine.

The SSEC was a large and impressive machine; because it was going on
public display, it was designed to look impressive. The SSEC started a trend of
glass-wall, raised-fl oor computer rooms, which hundreds of companies imitated
to show off their entries into the computer era. Of course, terrorism reversed
this trend, and computers are now located out of sight in secure buildings.

The SSEC was the fi rst operational computer to be put on public display, and
it garnered IBM a great deal of favorable publicity. Partly to present a clean
appearance to pedestrians passing by, the SSEC computer was the fi rst to inspire
the use of raised fl oors with cables hidden from view.

Several famous software pioneers were programmers on the SSEC, including
John Backus, Herb Grosch, and Ted Codd, later to become famous as the inven-
tor of the relational database concept.

IBM fi led a patent on the stored-program capabilities of the SSEC; this pat-
ent was later upheld and remains a basis for storing programs and data.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era68

Computers in the Postwar Era

Germany surrendered to the Allies on May 8, 1945, which is now called V-E
Day and stands for Victory in Europe. Japan surrendered on August 15, 1945,
V-J Day (Victory over Japan). These surrenders ended the immediate hostilities
between the Allies and the Axis powers, but they did not reduce the need for
either analog or digital computers for military use.

Soon after the end of hostilities, tensions began to occur between the Soviet
Union and its former allies. By 1947, this tension had started to be called “the
Cold War” and this state of mutual hostility lasted until 1991.

A group of computer engineers meeting in New York at Columbia University
on September 15, 1947, decided to form the Association of Computing Machinery
(ACM), which is an important business association of computer manufacturers.
This organization has become one of the largest technical associations in the
world. Its original mission statement is still valid today: “The purpose of this
organization would be to advance the science, development, and construction
and the application of the new machinery for computing, reasoning, and other
handling of information.” There are currently about 100,000 ACM members
and 170 regional and local chapters. Because of the diversity of computer and
software technologies, there are numerous special interest groups (SIGs) within the
ACM umbrella. Currently, there are about thirty-fi ve of these SIGs.

Many of the SIGs are famous in their own right, and their conferences
are often venues where interesting new inventions surface. Among the special
interest groups are SIGCOM for communications, SIGGRAPH for graphical
topics, and SIGPLAN for programming languages.

There was a subcommittee on large-scale computing within the American
Institute of Electronic Engineers (AIEE) in 1946. Another association was the
Institute of Radio Engineers (IRE), which had a committee on electronic
computers in 1951. The AIEE and IRE would eventually merge in 1963 to
become the Institute of Electrical and Electronic Engineers (IEEE), which would
include the IEEE Computer Society, whose headquarters are located in
Washington, D.C. The IEEE Computer Society has numerous conferences and
publishes thirteen peer-reviewed journals.

There are also computing and software associations in many other countries.
These include the British Computer Society, the Computer Society of India, the
Australian Computer Society, and many more. Computing and software have
vast nets of social groups that share information via conferences, journals and,
in today’s world, the web.

ptg11539604

69Computers in the Postwar Era

In 1947, two inventors, Thomas Goldsmith and Estie Ray Mann, fi led a
patent for using a cathode ray tube as a gaming device. This would later explode
into a multibillion-dollar game industry within future decades.

The Cold War Begins

In 1949, the Soviet Union detonated its fi rst atomic bomb, and this led to the
concept of mutually assured destruction, which meant that an atomic war on
both sides would probably blast everyone back to the Stone Age. The Soviet
atomic bombs helped to keep the Cold War cool, since neither side wanted a
full-scale atomic confl ict.

The Soviet atomic bomb also had a major impact on computers and soft-
ware. A direct response to the Soviet bomb was a new and massive air-defense
system called SAGE, which stood for semiautomatic ground environment.
SAGE will be discussed in the next chapter.

In 1949, Nationalist Chinese forces evacuated the mainland for Taiwan and
the Chinese Communist government took over, which also led to tense relations
with Western countries.

These tense relationships led to military arms races on both sides, and part
of such escalation involved designing and building newer and more powerful
computers of both digital and analog forms.

Postwar Computer Development

Two of the more technically important postwar computers were developed
at Victoria University in Manchester, England. The fi rst was the Manchester
Mark I, also called the Small-Scale Experimental Machine (SSEM), which was
operational in 1948.

The second and larger computer was the Manchester Automatic Digital
Machine (MADM), which was operational in 1949. The British press called
this machine an “electronic brain,” and this started a dispute between the
engineering side of the university and the medical school. The dispute centered
on whether computers could ever be creative.

The MADM led to 34 patents, some of which were later used in the IBM
701 and IBM 702 computers. The designers of the MADM were Frederic
Williams and Tom Kilburn.

Kilburn and Williams fi led a patent for a special kind of cathode ray tube
called the Williams-Kilburn tube. It provided one of the fi rst and fastest memory

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era70

devices for storing digital data. Some of the early computers that used Williams-
Kilburn tubes included the IBM 701 and IBM 702, the Univac Whirlwind, and
the Ferranti Mark I.

When a dot is drawn on a cathode ray tube, it results in a positive charge,
and the area surrounding the dot becomes negative. The charges spontaneously
disperse, but they can be read and manipulated to store data. These tubes
permitted random access, which was a major advance that opened up new
kinds of computation.

Williams-Kilburn tubes were somewhat troublesome and not fully reliable. They
were used during the late 1940s but were soon replaced by magnetic core memory
devices in the early 1950s. Magnetic core memory was faster and more reliable.

However, when fi rst introduced, magnetic cores had to be assembled by hand,
using retrained garment workers who could deal with very small objects. In the
early years of core memory, hundreds of garment workers in Europe and the
United States were retrained to build computer core memories. As it happens,
automated equipment for garment making occurred at about the same time, so
otherwise the garment workers might have been laid off or unemployed.

Later in 1964, Dr. Robert Dennard of IBM’s Thomas J. Watson Research
Center would receive U.S. patent 3,387,286 for the invention of DRAM, which
would supplant older forms of computer memory. Several researchers working
on core memory had fi led patents, including Forrester and An Wang (who later
founded Wang Laboratories). There were several years of patent disputes
that were eventually resolved when IBM purchased all of the patents related to
magnetic memory cores.

Another technically interesting postwar computer was the Electronic Delay
Storage Automatic Calculator (EDSAC). This computer was built at the Math-
ematical Laboratory at Cambridge University in Great Britain. The designer
was Maurice Wilkes and his colleagues. EDSAC was operational in May 1949
and was used to compute prime numbers, among other things.

As the name implies, the EDSAC used mercury delay lines for memory rather
than cathode ray tubes. The mercury delay memory did not provide random
access but was fairly reliable for sequential access.

An EDSAC programmer named David Wheeler is credited with having
received the fi rst Ph.D. in Computer Science in Great Britain. He is also credited
with inventing the concept of subroutines. Subroutines would later be impor-
tant in many programming languages, and they also led to the fi rst creation of
reusable code.

ptg11539604

71Computers in the Postwar Era

Some of the EDSAC library of 87 subroutines included fl oating point arith-
metic, trigonometric functions, and exponentiation. Subroutines also allowed
loops, and thus the do while loop was a feature of subroutines used on the
EDSAC.

One of the most important postwar computers is the Whirlwind computer
built by the Massachusetts Institute of Technology (MIT). The U.S. Navy
approached MIT in 1944 about building a fl ight simulator for training bomber
crews. The idea was to have a more realistic fl ight experience than was
provided by the mechanical LINK trainer.

In 1947, Perry Crawford and Robert Everett completed the design of the
Whirlwind (after prototype analog devices proved inadequate). The Whirlwind
digital computer went operational on April 20, 1951.

The engineering team that built the Whirlwind worked for three years and
included about 175 personnel, including seventy engineers and technicians. As
can be seen, computers constructed from circuits that require hand soldering of
connections are not easy to build. This is why the computer industry would be
a small niche industry without the later development of integrated circuits in
the next decade.

Among the novel features of the Whirlwind was the use of 16 math units
operating in parallel, which made the Whirlwind sixteen times faster than com-
puters using serial math.

The Whirlwind initially used mercury delay lines for memory. In a mercury
delay line, a tube of liquid mercury had a microphone at one end and a trans-
ducer at the other end. Pulses were sent into the mercury and moved through it
at the speed of sound until they were received at the other end. The signals were
then amplifi ed and sent back again, so the memory recirculated. The speed of
sound varied with temperature, so the mercury delay lines did not operate at
constant speeds, which caused problems. In addition to erratic performance,
mercury is poisonous, so broken tubes were an occupational hazard of some
signifi cance.

Both mercury delay lines and cathode ray tubes were too slow and unreliable
to be effective as computer memory devices. The project manager for Whirlwind
was Jay Forrester. He had read about a new form of magnetic material
and ordered samples. He experimented in his spare time at a workbench in
the corner of the lab. After several months Forrester developed magnetic core
memory. His fi rst prototype consisted of thirty-two cores, each about 3/8 of an
inch in diameter.

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era72

Forrester turned over the memory core project to a graduate student, and
within two years, magnetic core memory was ready to go commercial to replace
mercury delay lines and cathode ray tubes as the memory storage of choice for
digital computers. Later, IBM developed the magnetic core concept as well as
machines to speed up core memory construction.

The Whirlwind computer would be the basis of the SAGE air-defense
system in the next decade and some of its technology would also fi nd its way
into SABRE, although improved by IBM. (SABRE stands for Semi-Automated
Business Research Environment, which is a somewhat convoluted name
perhaps selected merely to use the acronym “sabre.”)

An informal use of the Whirlwind computer was the development of a
“bouncing ball” game in about 1949 by a researcher named Charley Adams.
This was a precursor to later games such as Pong that would generate billions
in revenue. It is interesting that computer games started to appear almost as
soon as computers themselves.

Eckert and Mauchly formed the Eckert-Mauchly Computer Company
(EMCC) in 1949 and it later became Univac. This was the world’s fi rst pure
digital computer company.

Northrup Grumman commissioned EMCC to build a computer for corpo-
rate use, and the result was the Binary Automatic Computer (BINAC). This
computer had two separate processing units, each of which could hold
512 words. Mercury delay lines were used for memory storage.

Since the computer was commissioned for a client, it can be considered the
world’s fi rst commercial computer, but that is really stretching the defi nition
of “commercial,” which normally implies multiple customers and multiple sales
of the same product. The BINAC was defi nitely the fi rst contract computer, but
only one was built and there was only one customer.

As examples of how diffi cult and small computer programs were in this era,
some of the BINAC test programs were each fi ve to seven lines of code, and a
“big” program during testing was 23 lines of code. The largest test program
prior to delivery was 50 lines of code.

The BINAC was delivered to Northrup in September 1949, but it did not
work properly after delivery. Northrup claimed the computer was not packed
properly or was damaged in shipping. EMCC stated that the computer had
probably not been assembled properly by Northrup, since EMCC personnel
were not permitted onsite and assembly was performed by a graduate student
without assistance from EMCC.

ptg11539604

73Historical Contributions of the Decade

Historical Contributions of the Decade

The literature and data on early computers are surprisingly ambiguous for such an
important technology. This is partly due to independent work in a number of
countries where the computer pioneers were unaware of similar work elsewhere. It
is also partly due to the fact that a number of models and upgrades were built,
often using the nomenclature of Mark I, Mark II, Mark III, and so forth. However,
since this nomenclature was used for different computers in different countries, it
is sometimes hard to tell which specifi c “mark” a reference is citing.

Table 3.1 shows the approximate sequence of digital computer construction
from 1940 to 1950. There are various sources that often provide different

Table 3.1 Computers Developed from 1940 to 1950

Year Computer Name Country Primary Designers

1940 Cryptographic bombe U.K. Alan Turing

1941 Z3 Germany Konrad Zuse

1942 ABC U.S. John Atanasoff, Clifford Berry

1943 Colossus U.K T. H. Flowers

1944 Harvard Mark I U.S. Howard H. Aiken, James Bryce,
Grace Hopper

1944 Bell Labs Model 3 U.S. George Stibitz

1945 Z4 Germany Konrad Zuse

1946 ENIAC U.S. J. Presper Eckert, John Mauchly

1947 SSEC U.S. Wallace John Eckert, Robert Seeber

1948 SSEM U.K. Frederic Williams, Tom Kilburn

1949 BINAC U.S. J. Presper Eckert, John Mauchly

1949 EDSAC U.K. Maurice Wilkes

1949 CSIR Mark I Australia Trevor Pearcey, Malcom Beard

1949 EDVAC U.S. John Mauchly, J. Presper Eckert,
John von Neumann

1949 MADM U.K. Frederic Williams, Tom Kilburn

1950 MESM Ukraine Alexey Lebedev

1950 Pilot Model ACE U.K. Alan Turing

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era74

timelines for when these machines were completed, so this table provides only
an approximation of when these computers were fi rst activated during this
decade.

The earlier computers were electromechanical, while the later computers
were electronic. None of them used transistors or integrated circuits, because
neither of these inventions would be patented until later in the 1950s. Tubes
and relays provided the computing power. Mercury delay lines and cathode ray
tubes provided the storage. The magnetic core arrived for the Whirlwind in
1951, so it is not shown in Table 3.1.

These early computers were not commercial products but were custom built
by hand and required thousands of vacuum tubes and relays and millions of
hand-soldered joints. Early computer construction was highly labor intensive in
the era before printed circuits and automated assembly lines.

As can be seen from Table 3.1, computer research during the war years and
the postwar era was a truly international undertaking, with the United States
and the United Kingdom spending the most money on digital computers due to
military necessity.

Germany had very early and rather sophisticated computers created by Konrad
Zuse but did not think that they benefi ted the war effort, so little or no funding
came from the German government, which is fortunate for the Allies.

Table 3.2 shows the approximate numbers of software applications
developed in the United States from 1940 through 1949. Military and defense
software dominated during this decade due to World War II and the Cold War.

Table 3.2 U.S. Software Applications from 1940 to 1949

Application Types Applications Percentage

Scientifi c 75 37.50%

Military and defense 100 50.00%

Civilian government 10 5.00%

Systems and middleware 10 5.00%

Embedded software 0 0.00%

Commercial 5 2.50%

Information technology (IT) 0 0.00%

U.S. outsource 0 0.00%

Offshore outsource 0 0.00%

ptg11539604

75Building Software in 1945

During this decade, assembly language and macro-assembly language were
the norm. High-level languages would not appear until the next decade.

Building Software in 1945

Function points had not been invented, so all data were measured by using lines
of code. Although this example shows software of 1,000 function points, in the
1940s, most applications were all below 100 function points. This is just a
hypothetical prediction. Backfi ring or mathematical conversion from lines
of code (LOC) to function points show these results for a project of 1,000
function points in this decade:

• Source code for 1,000 function points: 320,000 logical code statements

• Programming language: Basic assembly language

• Reuse percentage: 0% to 1%

• Methodology: Mathematicians or engineers, ad hoc programming

• Productivity: 2.5 function points per staff month

• Defect potentials: 7.50 per function points

• Defect removal effi ciency (DRE): 75%

• Delivered defects: 1.875 defects per function point

• Ratio of development personnel to maintenance:

• Development: 97%

• Maintenance: 3%

Table 3.2 (Continued)

Application Types Applications Percentage

Web applications 0 0.00%

Games and entertainment 0 0.00%

Open source 0 0.00%

Total Applications 200 100.00%

ptg11539604

Chapter 3 Computing During World War II and the Postwar Era76

The following are the background data for 1945:

• Average language level: 1

• Number of programming languages: 2

• Logical statements per function point: 320

• Average application size: 1 function point

• Average application size: 320 logical code statements

This decade was characterized by custom hardware and limited memory size.
Large programs were impossible because computer memory could not store them.

By the end of the decade, digital computers began to show value but were
much too large and expensive for general use. Only military organizations and
some universities could afford digital computers. The next decade would see
major changes in hardware and major expansion of software.

Programming was also poised to expand, with the development of subrou-
tines and reusable code laying the foundation for future high-level programming
languages.

Summary

At the start of the 1940s, World War II rapidly engulfed the world in one of
the most devastating confl icts in history. The war led to a massive increase in
the need for rapid calculations for military ballistics, cryptanalysis, and other
military necessities.

As a result of these military needs, the Allies and the Axis powers both
increased their spending on analog and digital computers. Digital computers
were used by the Allies to break key military codes for both Germany and Japan,
which probably shortened the war and raised the odds of Allied success. Analog
computers were built by the thousands for naval fi re control, submarine torpedo
launching, antiaircraft fi re control, and also bombsights linked to autopilots.

At the beginning of the decade, the word “computer” was a job description
applied to a human mathematician. By the end of the decade, the word “computer”
was starting to be used as it is today, as the name for a high-speed electronic
calculating device. The rapid advances of this decade due to military needs would
lead to computers entering the business world.

ptg11539604

77

Chapter 4

1950 to 1959: Starting the
Ascent of Digital Computers
and Software

The 1950s witnessed the migration of computers from military and academic
purposes into the business domain. It also witnessed the evolution from
custom-built, special-purpose computers to commercial computers such as the
Ferranti Mark I, LEO I, UNIVAC I, IBM 701, and IBM 650. Even more
important, transistors and integrated circuits were patented during this decade
and began to be used on production computers. By the end of this decade,
computers were being built globally in China, Russia, Poland, Japan, and
many other countries. Programming became a signifi cant occupation and the
early “high-level” languages of FORTRAN, COBOL, and LISP were created.
The term “software” as we know it was coined. The Cold War and the Korean
War continued to demand increased funding for both digital and analog com-
puters, and they also increased the importance of software in military and
civilian sectors.

Military and Defense Computers in the 1950s

The tense Cold War between the Soviet Union and the United States and its
allies continued during the 1950s. The fi rst Soviet atomic bomb was detonated
on August 29, 1949. Needless to say, having the Soviet Union join the nuclear
club triggered a massive increase in defense funding for both weapons systems
and computer technology. U.S. air defenses needed a major upgrade. It was also
obvious that manual air defenses could not possibly be effective, so computeri-
zation was mandatory.

ptg11539604

78 Chapter 4 Starting the Ascent of Digital Computers and Software

SAGE

In the previous decade, defense funding for computers was far greater for
analog computers for fi re control and ballistics than for digital computers. Very
early in the 1950s, the balance began to swing toward digital computers with
the SAGE system, or semiautomatic ground environment, which eventually
became the most expensive computer ever built, and the SAGE software pro-
gram became the most expensive program to date. These would remain the
most expensive until the end of the decade. After SAGE, large systems and large
expenses would sweep through both the defense and business communities.

The SAGE air-defense system would soon create the world’s largest digital
computer and the world’s largest military software application. The conver-
gence of computing, software, and defense was about to hit full stride.

The SAGE project was a landmark in several respects. Perhaps the most
important is that it marked the transition of digital computers from dealing
with a narrow band of specialized problems to tackling huge and diverse prob-
lems of enormous complexity. It is not even remotely possible to provide an
effective air-defense system for an entire country without the use of fast digital
computers to aggregate all of the torrents of incoming data from thousands of
sources.

SAGE also marked a transition between batch computation, which could
take place at a time convenient to the engineers, to real-time computation,
which processed new data instantly as it occurred. In future decades, real-time
computation would lead to new forms of embedded computers that were
located inside of physical devices such as automobiles and would constantly
monitor and control things like brake systems and fuel injection.

Another important transition introduced by SAGE was continuous opera-
tion with high reliability 24 hours per day, 365 days of the year. Prior to SAGE,
computers would work for a few hours and then be shut down until needed
again. With SAGE, the computers were always needed.

The need for continuous around-the-clock operation also spurred a need for
much better quality control on all software applications. That led to new fea-
tures that allowed computers to monitor their own statuses, or the status of
attached computers, and alert console operators to potential problems before
they occurred. It also introduced the concept of redundancy, or backup, com-
puters that could take over if a computer needed to be repaired or modifi ed.

As a result of SAGE, within a few decades, the Department of Defense would
own more computers than any other organization in the world. Every defense
department in every major country would begin to use computers as critical

ptg11539604

79Military and Defense Computers in the 1950s

components of weapons systems; air defense; and all military operations on
land, on sea, and in the air.

SAGE was not just a computer and software. It was a very large and com-
plex hybrid system that used hundreds of radar receivers feeding real-time data
into 24 Direction Centers, each of which was a large building housing at least
one IBM AN/FSQ-7 Combat Direction Central computer.

The SAGE system interconnected all the Direction Centers, and it also con-
nected with the Army air-defense command posts. Many missile launch sites
were also included in the SAGE architecture, which could direct the fi ring of
Nike air-defense missiles as well as long-range strategic missiles aimed at retali-
ation in the event of an attack.

Prior to SAGE, there were numerous radar installations, but they were inde-
pendently operated. There was also a Ground Observation Corps with 8,000
lookout stations that were only connected by telephones to command centers. A
hurricane or a Nor’easter could shut down air defenses because it would inter-
fere with radar tracks, block visual sighting of anything above the clouds, and
blow down many telephone lines, thus cutting off vital defense communication.

Development of the SAGE air-defense system started circa 1950 at the begin-
ning of the decade, and the system became operational in 1958. There were a
number of upgrades to SAGE computers and other hardware devices over the
years until replacement in 1983.

The original SAGE software package consisted of about 500,000 statements
in a basic assembly language, which is equivalent to about 15,625 function
points. While this was the largest software application at that time, there are
now applications that are more than 10 times larger.

The SAGE system operated until 1983, when it was replaced by newer sys-
tems using a combination of airborne radar and ground command posts. The
total cost of SAGE was not released, but it is estimated to approach $12 billion
during the 1960s (or perhaps $100 billion in today’s dollars).

The IBM AN/FSQ-7 SAGE computer was physically the largest computer
ever built, and that claim is probably true even today because, soon after, tran-
sistorized integrated circuits would shrink computers to a small fraction of
the size of vacuum tube computers. The IBM SAGE computer had about
60,000 vacuum tubes and weighed about 250 tons.

The SAGE technology, developed by IBM in Kingston, New York, would
play a major part in civilian air-traffi c control systems in future years and would
also be part of the SABRE airline reservation system (or Semi-Automatic Busi-
ness Research Environment). In fact, some of the IBM personnel from SAGE
moved into SABRE development later in the decade.

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software80

SAGE and SABRE catapulted computers and software from laboratory curi-
osities used for a narrow band of scientifi c and military calculations into major
tools that would revolutionize both national defense and business operations.
SAGE and later SABRE also catapulted IBM to the top of computer companies,
a place where it still resides today.

SAGE also started a trend that still continues today. The costs of World War
II weapons were a fairly small component of the United States’ annual budget.
Starting with SAGE and other new weapons systems, military spending became
a progressively larger part of the national budget.

BOMARC

SAGE was not the only new computerized weapon system during this decade.
In 1959, the Boeing BOMARC supersonic guided missile was added to the U.S.
arsenal. It used an analog computer for guidance combined with navigation
from SAGE computers.

The name of this missile was a combination of Boeing and the University of
Michigan Aeronautical Research Center. The “BO” came from Boeing and the
“MARC” came from the Michigan research lab.

This was the fi rst long-range operational air-defense missile in the U.S. arse-
nal. It had a range of 400 miles in its later forms and could be launched instantly
because hundreds were kept in constant readiness. The BOMARC could reach
altitudes of 80,000 feet, which was higher than any other combat aircraft at the
time. It fl ew at about Mach 2.5, so it was faster than any contemporary combat
aircraft that it might encounter.

The BOMARC missiles depended on navigation instructions from the SAGE
air-defense system for their initial trajectory, but their own onboard radar,
sensors, and analog computers could handle the fi nal few miles to detonation.

Neither SAGE nor BOMARC were used in actual combat, and that is per-
haps one of their virtues. They were considered to be fairly formidable defense
systems that could wipe out enough inbound attacking aircraft to make air
strikes on U.S. and Canadian territory unlikely to succeed.

Cultural Perceptions of Computers

During the 1950s, computers began to be featured in Hollywood fi lms and in thriller
novels. For example, shots of the actual SAGE computers were used in the fi lms
Voyage to the Bottom of the Sea and Conquest of the Planet of the Apes. When

ptg11539604

81Innovators of the 1950s

Innovators of the 1950s

At the start of the 1950s, mathematically trained human “computers” were
employed by the thousands to perform both sophisticated scientifi c mathemati-
cal calculations and also to do mundane accounting math for billing, salaries,
taxes, and the like.

By the end of the decade, the term “computer” had morphed into meaning a
digital computer, and the occupation of computer programmer was starting to
occur in signifi cant numbers, while the older occupation of human mathemati-
cal “computers” was in rapid decline and would soon disappear.

In the 1950s, universities with strong engineering and science departments
began to teach courses on computers and software. For example, UCLA’s initial
courses in 1950 were taught by Douglas Pfi ster and Willis Ware. The Institute
for Numerical Analysis was formed at UCLA to work with RAND and military
organizations on the use of computers. Other universities, such as Princeton,
Harvard, and MIT, also began to incorporate computer-related courses into
engineering curricula.

During this decade, several major inventions began the expansion of com-
puters and software from being massive and complex laboratory instruments to
becoming global commercial products.

Two critical background inventions, among the most important in the his-
tory of science, were the development of transistors to replace vacuum tubes
and the invention of integrated circuits to replace discrete electronic compo-
nents. The fi rst silicon transistor was produced by Texas Instruments in 1974.
However, a long history led to this result.

In 1947, William Bardeen and Walter Brattan of AT&T Bell Labs developed a
prototype semiconductor based on Germanium. The group leader, William

Hollywood took computers to heart, that also bolstered the attractiveness of
programming as an occupation.

In 1951, Arthur C. Clarke, the science fi ction writer, published a collection of
short stories titled Sentinel of Eternity. One of these stories would later be expanded
in 1968 into both a fi lm by Stanley Kubrick and a novel by Clarke called 2001: A
Space Odyssey, which featured the HAL computer as the chief villain. It is probably
not a coincidence that the letters “HAL” are all one letter below “IBM.”

By the end of the 1950s, computers had become so powerful that it would not
seem unbelievable for HAL to converse with human astronauts.

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software82

Shockley, participated in expanding the idea. In 1956, Bardeen, Brattan, and
Shockley received the Nobel Prize in Physics for the discovery of the transistor
effect.

They were not alone; even earlier work by Julius Lillenfi eld in the 1920s and
by Oskar Heil in the 1930s led to both patenting concepts similar to transistors.
However, these did not lead to working models.

Incidentally, the term “transistor” was coined by John R. Pierce of Bell
Labs from the combination of the words “transfer resistor.” Bell Labs was
the research arm of AT&T. Fortunately for the industry, Bell scientists rec-
ommended sharing and licensing transistor technology. In 1952, Bell Labs
sponsored a nine-day transistor technology symposium, which attracted
100 researchers. Of those who participated, 40 each paid a $25,000 license
fee to gain access to transistor technology.

The openness with patents and intellectual property in the 1950s is very differ-
ent from today’s fi erce patent wars, which are threatening to stifl e innovation or at
least make new products extremely expensive to build due to artifi cially high pat-
ent license fees. This era was also before the “patent troll” subindustry appeared.
The companies in this group buy patent rights not because of their intellectual
value but rather because of their use as threats to gain royalty payments.

In 1949, a German scientist from Siemens AG fi led a patent for an integrated
circuit that he envisioned would use transistors. Later in 1952, Geoffrey Dum-
mer from the British Royal Radio Establishment gave a public lecture on the
need for integrated circuits.

In about 1950, a Russian researcher, S. A. Lebedev, built a vacuum tube
digital computer in Ukraine called MESM to solve equations in nuclear engi-
neering and rocketry. Lebedev moved to Moscow and eventually developed
some 15 different computer models.

A few months after Lebedev’s MESM was operational, another Russian
researcher, Isaac Brook, and his colleagues built the M-1 computer, which used
semiconductor diodes instead of tubes. This is claimed to be the fi rst stored-
program computer built in Russia.

In late 1951, the fi rst American commercial digital computer went on
the market. This was the famous UNIVAC I, designed by John Mauchly and
Presper Eckert. In 1951, Remington Rand purchased the Eckert-Mauchly Com-
puter Company and its name was changed to Univac. In the 1950s, Univac and
IBM competed in the nascent market for mainframe digital computers.

In 1952, President Harry S. Truman signed a letter that authorized the creation
of the National Security Agency (NSA). This agency replaced an amalgamation of

ptg11539604

83Innovators of the 1950s

separate military security groups, and it expanded its role from military intelli-
gence to true national intelligence.

In later years, the NSA would become the world’s most sophisticated user of
computers and also the owner of the world’s most powerful computers. The
NSA itself would contribute to software engineering and the development of
encryption technologies.

In 1957, the Japanese Ministry of International Trade and Industry (MITI)
placed a 25% tariff on computers and components imported into Japan. This
spurred the growth of Japanese computer companies such as Fujitsu, which
soon competed with American companies in global markets. Japan also pur-
sued competition in the market for computer components such as transistors
and dynamic random-access memory (DRAM) chips.

As is widely known, the Japanese industrial companies were among the fi rst
to apply the concepts of W. Edwards Deming and Joseph Juran to industrial
quality control. (Deming’s contributions started in the 1940s and early 1950s.
Juran’s started in early 1954.) In 1950, the Japanese Union of Scientists and
Engineers (JUSE) invited W. Edwards Deming of the United States to teach a
30-day seminar on statistical quality control. This seminar also paved the way
for the later Deming Prize for quality.

The high quality of Japanese products benefi ted their market shares in a
variety of products, including computer chips, computer memory, televisions
and portable radios, and automobiles. Eventually, Japan pulled ahead of the
United States in these markets due in part to very high manufacturing quality
levels.

In 1958, a researcher named Jack Kilby at Texas Instruments demonstrated a
working integrated circuit. This idea was patented in 1959 and was soon used
by the U.S. Air Force. In 2000, Kilby won the Nobel Prize in Physics for his
invention of the integrated circuit.

Suffi ce it to say that without transistors and integrated circuits, none of the
tiny computerized electronic devices that are common today would be possible.
Without transistors and integrated circuits, software would probably be a small
niche industry that supported a few dozen mainframe computers that use vac-
uum tubes. Neither personal computers nor embedded devices would be possi-
ble without low-power microscopic transistors and integrated circuits.

In 1958, a mathematician and statistician from Bell Labs named John
Wilder Tukey used the word “software” in a paper. This was in the context of
being a separate entity from “hardware.” This is the fi rst known use of the
word “software” in a computer context.

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software84

Also in 1958, the fi rst local computer was built in mainland China. It was a
vacuum tube computer called the 901, and it was constructed by the Institute of
Military Engineering at the University of Harbin.

Programming Languages of the 1950s

Three key high-level programming languages were developed in the mid-1950s
and their usage expanded during the 1960s: FORTRAN in 1955, LISP in 1958,
and COBOL in 1959. Ideas and seeds for other languages such as ALGOL also
started prior to 1960. However, for much of the decade, assembly language
was the most common language in use.

COBOL stands for “common business-oriented language.” FORTRAN
stands for “formula translator.” LISP’s name is derived from list processing.
These names refl ect the fact that these new languages were becoming special-
ized for math, business, or other kinds of problems.

While COBOL, LISP, and FORTRAN were developed in the United States,
dozens of other languages were developed in other countries and had different
names, even though some were variations on older languages. ALGOL was
developed jointly between U.S. and European researchers.

Not only do languages have many dialects or variations, but they also change
and add features over time. For example, there were ALGOL versions called
ALGOL 58, ALGOL 60, and ALGOL 68 and another revision in 1973. There
are also dozens of ALGOL-like languages based on some of the defi ned
features, such as SIMULA.

Early computers were coded in machine language, which is so highly complex
that errors were rampant and hard to fi nd and fi x. Assembly languages intro-
duced mnemonic source instructions that were somewhat easier to understand
than binary numbers or machine language.

Originally, assembly languages had a one-to-one correspondence with
machine languages in that each source statement was translated into a single
machine instruction. Later, the concept of macro-assembly languages expanded
the scope of assembly source-code statements.

A macro instruction was a method that allowed a number of statements to
be created and named separately. The collected statements were called mac-
ros; a macro instruction is still a quick way of adding reusable features to an
application.

ptg11539604

85The First Commercial Computers

The First Commercial Computers

A commercial computer is a computer that is built specifi cally to be sold or
leased to paying customers rather than for internal use within the organization
that built it.

The history of early commercial computers is ambiguous and confusing when
you try to pin down who developed the fi rst commercial computer. The U.S.
historical literature claims that the UNIVAC I was the fi rst commercial com-
puter sold to paying clients. Some U.K. literature claims that the LEO I com-
puter was delivered a month prior to the UNIVAC I. Another British machine,
the Ferranti Mark I, also claims to have been delivered before UNIVAC I.

Table 4.1 shows the delivery dates of early digital computers.
Regardless of who built the fi rst commercial digital computer, the idea of

computing as a business tool was rapidly expanding. There would soon be doz-
ens of commercial digital computers on the market, and a wave of startup com-
puter manufacturers would continue to expand for two more decades.

LEO

The British LEO computer has a background that is historically and sociologi-
cally interesting. The J. Lyons Company was not a high-technology company
but rather one of Britain’s largest food-catering and food-producing companies.
It also ran tea shops throughout the United Kingdom.

Two Lyons executives, Oliver Standingford and Raymond Thomson, visited
the United States in 1947 to look at new business methods developed during the
war. While there, they met one of the ENIAC computer developers and saw
the potential of computers for aiding large business operations.

Table 4.1 Early Digital Computer Delivery Dates

Delivery Date Digital Computer Country of Origin

February 10, 1950 Ferranti Mark I United Kingdom

March 31, 1951 UNIVAC I United States

September 5, 1951 LEO I United Kingdom

April 29, 1952 IBM 701 United States

July 14, 1953 IBM 650 United States

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software86

Upon returning to the United Kingdom, Standingford and Thomson visited
the British EDSAC computer, then under development. Standingford and
Thomson reported favorably on computers to the Lyons board, which voted to
provide £3,000 to help speed up the EDSAC development.

Not only was funding provided to EDSAC, but the Lyons board also decided
to build a business-oriented computer for the company. This was a bold adven-
ture for a food-processing company that operated tea shops.

The new computer was called the Lyons Electronic Offi ce, or LEO, I. A
radar engineer named John Pinkerton was hired to run the project and design
the computer. A Lyons engineer named Derek Hemy would be the new com-
puter’s fi rst programmer.

When completed in 1951, the computer’s fi rst production job was bakery
valuation. It was also used for payroll calculations, inventory management, and
order entry. In other words, the LEO I was immediately useful for handling
day-to-day business operations faster and more effi ciently than could be done
manually.

The LEO I also pioneered outsourcing and service bureau operations,
because the computer was soon used under contract to process payrolls for
Ford Motors in the United Kingdom. Other clients followed. Outsourcing and
service bureaus followed almost immediately in the wake of the fi rst commer-
cial digital computers.

Several upgrades called the LEO II, LEO III, LEO 360, and LEO 326 were
built. These were faster and more powerful than LEO I. The later LEO comput-
ers featured a multitasking operating system that could run 12 programs simul-
taneously. Some LEO computers stayed in service as late as 1981, processing
telephone bills.

In 1954, Lyons formed a separate company to build the LEO computers,
called LEO Computers Limited. The LEO company itself merged with the
English Electric Company in 1963 and after several more mergers became part
of the company International Computers Limited (ICL) in 1968.

The LEO experience shows that far-sighted business executives from Lyons
correctly identifi ed digital computers as the best solution for a wide variety of
corporate fi nancial and accounting activities. Their pioneering work helped
other companies also move into the computer era.

IBM

1953 marked the introduction of the IBM 701, which is asserted to be the fi rst
successful commercial computer, although only 19 were ever made. It was

ptg11539604

87The First Commercial Computers

among the fi rst computers used by the Department of Defense. (Currently, the
Department of Defense owns more computers than most entire countries do.)
The 701 was a vacuum tube computer that used magnetic tape for storage. It
was meant for scientifi c and defense calculations.

The IBM 701 triggered the fi rst computer user group. In 1955, a group of
IBM customers in the Los Angeles area founded a user association called
SHARE, Inc. This association later moved to Chicago and became a nonprofi t
corporation.

The idea of computer and software user groups was benefi cial to both cus-
tomers and manufacturers. SHARE members infl uenced IBM in terms of future
features and needs. SHARE members also helped each other with technical
advice and even the creation of programs and source code.

SHARE’s idea of customer user groups would soon lead to many other simi-
lar groups associated with both IBM and other vendors. For IBM, the GUIDE
and COMMON associations would be formed. In the 1960s, the DECUS group
was formed to support digital equipment customers. User associations are now
common for many hardware and software products. The larger associations
such as SHARE have regional subdivisions and chapters in many cities.

There were several upgraded versions of the 701 family, but the biggest tech-
nical advance was the IBM 7090, which was IBM’s fi rst computer with transis-
tors instead of tubes. This computer was announced in 1958. Among its
interesting features was an early operating system called IBSYS. This would
later evolve into much more powerful operating systems that could keep
various hardware components operating in concert. One of the fi rst assembly
languages was created for the IBM 701 by Nat Rochester.

Another important invention occurred in 1953 when engineers at IBM’s San
Jose research facility created the fi rst disk drive, which allowed random access
to data instead of sequential access, which was normally provided by tape
drives. The fi rst commercial disk drive was the IBM RAMAC 350 in 1956.
Without disk drives and random access to data, computers would have very
limited functionality and later database technologies would not have occurred.

In 1953, IBM released the 650, which was aimed squarely at business cus-
tomers (the earlier 701 was designed for science and defense customers). The
IBM 650 was a market success and between the initial release and 1963, more
than 2,000 were sold.

The IBM 650 featured a rotating magnetic drum for memory. Program-
mers had to be sensitive to drum rotation speed to optimize performance. If a
read instruction missed a piece of data, the next opportunity would not occur
until the data rotated under the read head again. There was also a small

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software88

amount of magnetic core memory, used as a buffer between the drum and the
processing unit.

For external storage, at fi rst the IBM 650 used only punch cards, but later
tape drives were added. Disks were not used in the IBM 650. After RAMAC
was invented, disk drives would be added to the later versions of the IBM 650.

One reason for the market success of the IBM 650 was because it was
backward-compatible with IBM’s punch-card calculating machines. For
example, an output deck of cards from an IBM 650 computer could be printed
on an earlier IBM 402 accounting machine.

The early versions of the IBM 650 were programmed in machine language.
But in 1954, Stan Poley of IBM’s T. J. Watson Research Center added the Sym-
bolic Optimal Assembly Program (SOAP). Eventually, more than a dozen pro-
gramming languages would become available for the IBM 650, including
FORTRAN in 1957.

Before the IBM 650, universities had built a number of computers, but they
were used only for a limited range of scientifi c studies and had no connection to
day-to-day university tasks. The IBM 650 started a trend of using digital comput-
ers for academic business activities as well as research tools. Columbia University,
for example, would later have about 200 users of their IBM 650 computers.

Other Computer Business Implementations

The 1950s saw the creation of a number of other companies that would help to
expand computers and software. Among these were Nixdorf in 1952, Burroughs
in 1956, Digital Equipment Corporation (DEC) in 1957, and Control Data
Corporation (CDC), also in 1957. Remington Rand acquired the older Eckert-
Mauchly company, and it was renamed Univac in 1951.

Some of these same inventions began to fi nd their way into consumer prod-
ucts. In 1954, Regency marketed the fi rst transistor radio. This was followed in
1955 by the more famous Sony TR-55.

1957 witnessed the appearance of the Sony TR-63, the fi rst pocket radio
(the TR-55 was too large to be carried in a pocket). This Sony radio pioneered
modern personal entertainment devices and expanded Sony into a major global
corporation.

In the late 1950s, jet aircraft were added to commercial airline fl eets. This
fact, combined with a growing economy, increased air traffi c by more than
1,000% between 1958 and 1977. With such heavy air traffi c, it was becoming
unsafe to fl y because air-traffi c control systems were primitive in the 1950s.

ptg11539604

89Software Applications in the 1950s

In 1956, two planes collided over the Grand Canyon and 128 people were
killed. This spurred Congress to pass the Federal Aviation Act in 1958, which
created the Federal Aviation Administration (FAA) to oversee air-traffi c control
throughout the United States. Computers were used experimentally for air-
traffi c control in the late 1950s, but a true national, computerized air-traffi c
control system would not arrive until the 1970s.

By coincidence in 1953, the president of American Airlines, C. R. Smith,
happened to sit next to an IBM salesman named R. Blair Smith. The two dis-
cussed airline reservations and IBM was invited to visit American Airlines and
suggest cooperative action.

This chance encounter led to the cooperative development of the SABRE air-
line reservation system. It was started in 1959 but not completed until 1964.
When complete, SABRE was the largest software application system yet cre-
ated. An article in Computer World on May 29, 2004, reported that SABRE
had more than 64 applications totaling about 13,000,000 lines of code. That is
roughly equivalent to just over 100,000 function points.

Eventually, the SABRE system would come to be used by more than
350,000 travel agents, 400 airlines, 100,000 hotels, 25 car-rental companies,
50 railroads, and 14 cruiseship lines. The growth and success of SABRE illus-
trate the power of computers and software to make enormous changes in
common business practices.

The downside of computerization is that probably more than 100,000 cleri-
cal personnel in these various companies lost their jobs. This loss was partially
replaced by the addition, usually within those same companies, of perhaps
30,000 software and data center personnel.

Software Applications in the 1950s

In the 1950s, small applications were the norm, in part due to the diffi culty of
coding large applications in low-level languages such as assembly.

Table 4.2 shows the approximate numbers of software applications devel-
oped from 1950 through 1959. Scientifi c and military applications continued to
dominate during this decade.

During the fi rst part of this era, assembly languages and macro-assembly
languages were the norm. Toward the end of the decade, higher-level lan-
guages such as FORTRAN and COBOL began to supplant earlier low-level
languages.

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software90

Function Points in 1955

Function points had not been invented, so all data were measured using lines of
code. Backfi ring or mathematical conversion from lines of code (LOC) to function
points show these results for a project of 1,000 function points in this decade:

• Source code for 1,000 function points: 320,000 logical code statements

• Programming language: Basic assembly language

• Reuse percentage: 0% to 5%

• Methodology: Unstructured cowboy development

• Productivity: 3.5 function points per staff month

• Defect potentials: 7.00 per function point

Table 4.2 U.S. Software Applications from 1950 to 1959

Application Types Applications Percentage

Scientifi c 350 30.70%

Military and defense 300 26.32%

Civilian government 125 10.96%

Systems and middleware 75 6.58%

Embedded software 20 1.75%

Commercial 100 8.77%

Information technology (IT) 150 13.16%

U.S. outsource 0 0.00%

Offshore outsource 0 0.00%

Games and entertainment 15 1.32%

Artistic and musical applications 5 0.44%

Web applications 0 0.00%

Open source 0 0.00%

Smartphone applications 0 0.00%

Cloud applications 0 0.00%

Total Applications 1,140 100.00%

ptg11539604

91Summary

• Defect removal effi ciency (DRE): 80%

• Delivered defects: 1.40 defects per function point

• Ratio of development personnel to maintenance:

• Development: 95%

• Maintenance: 5%

The following are the background data for 1955:

• Average language level: 1.5

• Number of programming languages: 5

• Logical statements per function point: 213

• Average application size: 200 function points

• Average application size: 42,600 logical code statements

This decade was characterized by a burst of intellectual excitement and a
number of key inventions, several of which later earned Nobel Prizes.

At the beginning of this decade, discrete electronic circuits and vacuum tubes
were the dominant components of computers and other electronic devices.
Computer memory was in the form of mercury delay lines or cathode ray tubes.
External memory was paper tape or cards.

By the end of the decade, transistors and integrated circuits were well on
their way to universal adoption. Magnetic cores were used for internal memory.
Magnetic tape and magnetic disks were used for external memory.

The combination of transistors, integrated circuits, and random-access data
storage were all on the critical path leading to the huge expansions of comput-
ers and software in future decades. Seldom in history have so many important
inventions come to fruition in such a short time span.

Summary

At the start of the 1950s, computers were built by hand, and they each used
thousands of vacuum tubes. These custom-built early computers were used pri-
marily for military and mathematical calculations. By the end of the decade,
computers had become commercial products for both the military and

ptg11539604

Chapter 4 Starting the Ascent of Digital Computers and Software92

businesses, and they were manufactured using transistors and integrated cir-
cuits. Programming these commercial computers was made easier by the early
high-level languages of COBOL, FORTRAN, and LISP. The occupation of
computer programmer was starting an ascending trajectory that would soon
make it one of the fastest-growing jobs in history.

ptg11539604

93

Chapter 5

1960 to 1969: The Rise of
Business Computers and
Business Software

In 1960, an IBM patent on magnetic stripes triggered the creation of American
Express, Visa, and MasterCard credit cards, which revolutionized retail sales. The
magnetic stripe also led to automatic teller machines (ATMs) and electric door
locks. To meet a growing demand for new business computers and software, com-
panies such as IBM, RCA, GE, Control Data, and many others marketed new
computers aimed specifi cally at business operations. Database technology also
expanded rapidly. These technical changes triggered a huge increase in demand for
computer programming personnel.

Two major lawsuits that were fi led in the 1960s would change the computer
and software industries forever: A patent case decided that the ENIAC patent
was invalid, therefore moving computer architecture into the public domain. An
IBM agreement to unbundle software as a result of an antitrust suit opened the
fl oodgates to the creation of a huge commercial software industry that would
not have been possible had software remained tied to computer hardware.

In this decade, computers would arrive on Wall Street and change the stock
and fi nancial markets forever, but not always in a healthy way. The Apollo
program took computers and software into space and to the moon. The fi rst
Turing award was given in 1966.

An Evolving Workforce

After World War II, the U.S. business environment began to evolve from manu-
facturing to services. This, in turn, led to a rapid increase in clerical personnel.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software94

According to the Early Offi ce Museum (www.offi cemuseum.com), the number
of U.S. clerical workers increased by 286%, while the entire fi eld of profes-
sional workers, including clerical workers, increased by only 85% during the
years following World War II.

By the start of the 1960s, clerical work was the dominant form of employ-
ment in a number of growing and important industries, including banks, insur-
ance, stock trading, and civilian government operations. A signifi cant number of
military personnel also performed clerical work.

Computers and software did not eliminate clerical work, as originally hypoth-
esized, but they did change the nature of the work. For example, many clerks
handling medical records shifted into being computer data entry personnel.
Clerks handling medical billing began to use computers to track bills. Rather
than vanishing, clerical jobs absorbed the use of computers and software.

There were some reductions in clerical employees during the 1960s, but there
was also a simultaneous increase in computer and software personnel. In fact,
large data centers and programming teams changed banking and insurance
operations from being purely manual to almost fully automated.

As an example of the remarkable growth of software during this decade, con-
sider the city of Hartford, Connecticut, and its surrounding towns. For various
reasons (including favorable taxes), the Hartford metropolitan area was the home
of a number of major insurance companies, including Aetna Insurance, Cigna
Insurance, Hartford Insurance, Mass Mutual Insurance, Phoenix Insurance,
Travelers Insurance, and others.

At the start of the 1960s, most of these corporations in a major industry
were just starting to use computers and software. Yet fairly soon, all of these
insurance companies would have data centers and software organizations that
averaged about 1,000 personnel each, and Hartford would have more than
50,000 software personnel.

Hartford is perhaps unique because of the high concentration of insurance
companies, but all major companies that depended on clerical work were expe-
riencing rapid growth in software and data processing.

Every major bank in America, every insurance company, and every stock
brokerage built data centers and recruited software personnel. The largest of
these companies would end up employing more than 3,000 software and
computer personnel, and even the smaller companies would each employ
perhaps 250.

The growth of the computer and software industries in this decade was
remarkable. The automobile industry, the oil industry, the telecommunications

http://www.officemuseum.com

ptg11539604

95Early Specialized Outsourcing

industry, and the aircraft industry also grew rapidly. However, these other
fast-growing industries needed computers and software personnel, so their
rapid growth also added to the growth of the software industry.

Eventually, every automobile manufacturer, large oil company, telecommuni-
cations company, and aircraft manufacturer would each employ at least 1,000
and sometimes as many as 10,000 software and computer personnel.

Companies such as AT&T, ITT, GTE, and Motorola in the United States and
Siemens, Nippon Telephone, and Nokia abroad would end up not only using
computers and employing thousands of software personnel but also creating
new and innovative kinds of software and computerized telecommunications
equipment.

This decade witnessed the arrival of packet switching, pulse-code modu-
lation, binary synchronous communication (BSC), and the invention of
IBM’s Extended Binary Coded Decimal Interchange Code (EBCDIC) and the
American Standard Code for Information Interchange (ASCII). These led
to high-speed digital telecommunications switching and, of course, more
software personnel for the telecommunications industry.

The arrival of credit cards, debit cards, and ATMs in the early 1960s would
not have been possible using only manual clerical workers. Computers and
software were necessary adjuncts to these major changes because both credit
cards and ATM transactions require real-time processing with results needed in
not much more than a few seconds.

The combination of credit cards and ATMs caused the hiring of perhaps
100,000 new computer and software personnel nationally to handle the
increased data-processing capabilities of these new fi nancial tools.

Early Specialized Outsourcing

Computers alone are not suffi cient for handling large collections of records and
data. The 1960s witnessed the emergence of database technology and the
arrival of commercial database management systems (DBMS). The early DBMS
systems were sequential and handled fi les with fi xed-length fi eld structures.
Future decades would see relational databases added to the mix. The IBM
information management system (IMS) fi rst appeared; it was used on the Apollo
spacecraft and also became a successful commercial application.

Because the development of computers and software is not the primary
business mission of banks, insurance companies, and many other industries,

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software96

the rapid growth of software and computing was a mixed blessing. Businesses
needed computers and software to compete, but they may or may not have
been very effi cient and effective in running their own software organizations,
which required business skills far removed from their traditional focus.

Thus, the rapid rise of computerization and software would soon create
another new industry of specialized companies that provided software and
computer power to companies that needed these modern capabilities but did
not want the burden of running them. One of the archetypes of these new
specialized “outsource” companies was Electronic Data Systems (EDS), which
was founded in 1962 by the famous entrepreneur H. Ross Perot (who in 1992
was a candidate for the U.S. presidency).

Another growth industry that resulted from the rise of computers and software
was that of management consulting. Several of the large accounting companies
created software consulting business units. One of the pioneers was the fi nancial
accounting company of Arthur J. Andersen. The consulting portion of this com-
pany had a fi erce rivalry with the accounting portion, and it eventually split off
and became the modern consulting and outsource group of Accenture.

Many other companies entered the management consulting arena during this
decade. Among them was the Boston Consulting Group (BCG), founded in 1963.

The rise of computers and software not only had direct impacts on U.S. and
global business operations, but these tools also created ancillary businesses in
the areas of specialized consulting and outsource companies.

Computer Programmers in the 1960s

This decade is of personal interest to me because it is when I entered the
computer business and became a programmer. The way this came about illus-
trates the informal methods used in those early days before computer science
and software engineering were fully established. Young software engineers will
probably be surprised and perhaps dismayed at the informal selection process
for computer programmers in the 1960s.

Becoming a Programmer

As an undergraduate and graduate student at the University of Florida, there
were no on-campus computers during my stay from 1956 through 1961. In
fact, the engineering school was only just starting to permit electronic calcula-
tors, instead of slide rules, to be used during exams.

ptg11539604

97Computer Programmers in the 1960s

During my freshman year, I used a Post Versalog slide rule, which was beau-
tifully made from bamboo and white plastic and had a leather case with a belt
strap. Having a slide rule attached to your belt was the hallmark of an engineer-
ing student in the 1950s. I still have that slide rule and it brings back memories
of an earlier and simpler era.

The University of Florida had no computer science or software engineering
courses in those days, although some engineering schools such as Cal Tech and
MIT did.

After graduation and a range of jobs for a few years, including some govern-
ment security work, I became an editor for a medical journal published by the
U.S. Public Health Service in Washington, D.C. At about the same time, the
Public Health Service acquired some IBM 1401 computers and began to adver-
tise for programmers.

In those days, actual trained programmers were scarce, so the method used
was to fi nd people, such as myself, who were familiar with Public Health
Service operations and then send them to programming schools.

The selection process included an interesting and, I thought, well-designed
aptitude test to see whether candidates were qualifi ed. There were combina-
tions of logical questions and some with a smattering of math. This test was
called the programming aptitude test (PAT), and it was developed by IBM. It
took about an hour to complete.

After passing the aptitude test and being hired as a programmer, I was sent
to the local IBM school in Washington, D.C., to learn to program the IBM
1401 using a language called Autocoder.

In the 1960s, programming was not usually taught at universities and never
in high school. It was necessary to go to private schools run by companies that
built computers such as IBM, RCA, GE, Digital Equipment Corporation, and
the like. The instructors were actual programmers and their knowledge was
practical and down to earth. There was little theory and a lot of practical
information.

Since there were few computer science programs at the university level, the
majority of programmers in those days had other majors. In my fi rst program-
ming group, one of the best programmers had been a history major. There were
several math majors and also music majors and English majors. A facility with
music and a facility with the fl ow of words are congruent with programming
because all three skills involve visualizing and expressing logical sequences. One
person in the group only had a high school education but turned out to be a good
programmer. Our group had no engineering majors because we were tasked with
building business applications rather than scientifi c or engineering software.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software98

Once a young programmer learned an initial programming language, it was
fairly easy to learn new languages through self-instruction. I recall later pro-
gramming in COBOL, PL/I, and various dialects of BASIC just by picking
up the language manuals and learning the syntax and keywords. The ability
to visualize patterns is the key to successful programming. The syntax of vari-
ous programming languages is a minor issue that ranges from annoying to
moderately helpful.

The applications we were developing were for the National Institutes of
Health (NIH), and we had to keep track of records of equipment and personnel.
However, my very fi rst program was to recode an earlier application that had
been written for an IBM 650 computer, which was removed from service when
the IBM 1401s arrived. Apparently, it had not occurred to the department chief
who had been running the program that the IBM 650 programs would not
operate on an IBM 1401.

The IBM 1401 that my department of the Public Health Service had availa-
ble only had 4 K of memory (less than a modern wristwatch). To develop some
of the larger applications, we had to go a few blocks away and use an 8-K 1401
that had been acquired by the Internal Revenue Service (IRS).

In the 1960s, computer security was fairly casual and we had no diffi culty
borrowing time on the IRS IBM 1401. Of course, today IRS computers are heav-
ily guarded and IRS software personnel are thoroughly vetted. In the early
1960s, hacking, identity theft, and denial of service attacks were still unheard of.

Computer rooms in those days were signs of technical sophistication, and
many organizations still proudly displayed their computers in glass-walled
rooms that were visible from the street so passersby would know that the
organization was modern.

We developed our programs on lined paper worksheets preprinted with line
numbers; we then punched them into IBM 80-column cards on an IBM
026 punch card. This was before the days of fully staffed data centers, so we often
had to load and run the programs ourselves if the console operator was busy.

This decade was the archetype of the term “cowboy programming.” We
were working before structured programming had been defi ned, and most of us
had learned programming only a few months before. In this era, new program-
mers working on new applications were quite common.

Although IBM and other groups were building large applications, most of
the projects we handled were small and done by single programmers. As I recall,
about 500 lines of Autocoder or 50 function points was the largest application
I did for the Public Health Service before joining the private industry, where we
did have larger systems.

ptg11539604

99Computer Programmers in the 1960s

There were no trained test groups and no formal quality assurance teams.
Even inspections and peer reviews were only just getting started, and they were
used mainly on larger team projects rather than smaller one-person projects.

Because our IBM 1401 computers were used for actual Public Health Service
applications during the day, the time available for testing was usually late at
night. Programming offi ces and computer rooms in the 1960s were fairly busy
places at midnight and afterward.

Due to the shortage of convenient test times, all programmers in this era
became profi cient at desk checking. This was an early and manual precursor to
static analysis. We went through our program listings and checked the accuracy
of all algorithms and the branching structure to be sure our code went to the
right place on every branch.

Although interpreted languages such as BASIC would become available in
this decade, the majority of languages used for commercial and government
applications needed to be compiled. This means that testing had to be preceded
by compilation, and both activities were normally carried out late at night.

Submitting a faulty program for compilation usually meant at least one
wasted day because computer time for a new compilation would not be availa-
ble until the following night. It is obvious why careful desk checking prior to
compilation and testing was the fi rst line of defense against bugs.

In today’s world, enormous computer capacity is available to all program-
mers 24 hours a day, 365 days a year. In the 1960s, the situation was different.
Programmers needed to queue for available computer time slots and sometimes
a programmer might only be allowed 15 to 30 minutes a day for compilation
and testing.

The card decks were carried about in special trays, and for large programs
they could be quite heavy. Woe betide a programmer who dropped a tray and
got the deck out of sequence or the cards bent. If the cards got bent or warped
and swollen from spilled water or coffee, repunching the deck was sometimes
the only option.

The outputs from our programs were printed on an IBM 1403 printer,
which, as I recall, was a chain-driven printer that was quite noisy. The spinning
chains had characters on them, and a hammer would strike it through the paper
at just the right instant. It was fast and printed at a rate of about 600 lines of
text per minute.

These printers had surprisingly clear and pleasing type styles and faces. In
fact, the type styles were much better than later dot-matrix printers. It would
not be until laser printers and inkjets arrived that the IBM 1403 was surpassed
in typographical elegance.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software100

It was possible for a program to have a bug that caused a printer to suck in
paper but not print, so sometimes dozens or hundreds of sheets of paper would
spew out of the top of the printer before it could be stopped.

When processing blank lines, the IBM 1403 could suck in paper at about
75 inches per second, so a program with a bug in its print routine could easily
go through more than 100 linear feet of paper before it was possible to shut it
down. I recall seeing blank paper moving through the IBM 1403 printer so fast
that the paper shot up three or four feet in the air.

The IBM 1403 printer also needed fairly serious maintenance that included
oiling the moving parts. As a result, the area underneath the printer had to have
paper towels or mats below it due to occasional oil leaks.

The IBM mainframe printer paper in those days was not individual sheets
but rather continuous forms with perforations. They were large sheets with 132
print positions. The left and right edges had a separate perforated band with
holes that allowed sprockets to feed the paper through the printer. The printer
paper was delivered in large boxes, and the paper was fed into the printer
directly from the box itself. These boxes of paper were heavy and were nor-
mally moved on wheeled carts.

These printers were so fast and used so much paper that a tidy computer
room was not feasible. All of the IBM 1401 computer rooms had boxes of
paper ready to be loaded in front of the printers and empty boxes ready to
collect outputs at the rear of the printers.

Paper storage was a logistical problem of this era, and it was necessary to
set aside rooms just to hold paper and punch cards. These rooms needed air
conditioning because moisture could expand the paper and cause mechanical
problems with printers and card readers.

Although I enjoyed my time as a programmer for the Public Health Service,
private industry was expanding in computers and software so rapidly that
I decided to look for other programming jobs outside of government.

A High Demand for Programmers

In today’s world, many programmers and software engineers have lived through
the dot-com crash of 2000 and 2001 and the recession of 2008 to 2010.
Although software engineering has fared better than some industries, jobs are
still hard to fi nd, even for qualifi ed software personnel. In the early 1960s, if
you were a competent programmer, you could pretty much have your pick of
companies and locations because they all were hiring as fast as they could.

ptg11539604

101Computer Programmers in the 1960s

This may sound like a bit of an exaggeration, but I recall several times see-
ing biplanes fl ying low over major highways and trailing banners that said:
“Programmers—call this number: 123-4567.” In California, I also recall see-
ing skywriter planes fl ying over public beaches and advertising for program-
mers with streams of smoke that produced letters more than 100 feet high.

Usually the biplanes with banners fl ew over major roads during business
rush hours on weekdays. The skywriters fl ew over beaches and recreation areas
on weekends. I remember seeing these airplanes that advertised for program-
ming jobs all through the 1960s and well into the 1970s. I suspect the software
industry will never see those days again.

In those early days of programming, specialized employment agencies, or
“head hunters,” sprang up to support the burgeoning software business. There
were no fees for the programmers to use their services, since all costs were paid
by the companies who were hiring.

When you contacted one of these head hunters and described your qualifi ca-
tions, the usual next step was to select what major company you might want to
join and what part of the country you preferred. Although I don’t know if anyone
tried to do this, programmers in those days could probably have all-expenses-paid
trips to at least a dozen companies in a dozen states before accepting an offer.

After I had chosen a job in private industry, there remained a few days of
wrapping up work before I left the Public Health Service. In those days, the
programmers shared a large open offi ce space with perhaps a dozen desks for a
dozen programmers. The offi ce phones had a basic number for the department
and an extension for each desk.

I remember hearing phones ringing on some of the vacant desks that had no
programmers at the time. I answered a few of these and the calls were from the
same head hunter I had used. There were so many jobs for programmers that the
head hunter was offering anyone who answered the phone an all-expense-paid
(and confi rm) job interview trip to almost any city in America. The head hunter
was not making calls to specifi c people by name, merely to the programming
offi ce space in the hope of attracting other programmers.

These early days of software engineering were exciting and fun in retrospect.
The programming and software occupations were growing so fast that software
departments were doubling in size in less than a year. So many jobs were avail-
able and turnover was rapid.

Programmers could easily get a 15% salary increase just by changing jobs.
Tenure in jobs often was no more than a year. Some programmers worked for
half a dozen companies in their fi rst fi ve years after learning to program.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software102

Most programming jobs paid well and also had medical benefi ts and pension
plans, and some had stock options, too. Another minor perk from those early
days was that programmers could eat in executive dining rooms instead of
employee cafeterias if they wished to. Some companies had other perks such as
gymnasium memberships.

Other perks may surprise modern software engineers. Even entry-level pro-
grammers had moving expenses paid for by the company if they needed to
move from another location. For experienced personnel on their second or third
jobs, these moving expenses also included brokerage fees on selling homes,
shipment of furniture to the new location (including automobiles), and being
put up in a corporate apartment or hotel for perhaps a month after arrival at
the new job location.

In fact, some companies would even purchase programmers’ old homes so
the employees did not have to bother with real estate transactions prior to start-
ing their new jobs. Upon purchasing a new home, all of the fees for turning on
utilities would be paid by the company.

Some companies paid programmers a “settling in” allowance for expenses
such as new drapes or having a new house painted. In order to not have these
payments be counted as taxable income, they were booked as loans to the
employees, but they had zero interest rates and never had to be repaid.

In retrospect, it is surprising that the IRS did not try to tax some of these
perks because in total their value could top $100,000. However, for some rea-
son, companies in the 1960s had perks for programmers that were not taxable.

The attitude among programmers in those early days was that the companies
needed the programmers more than the programmers needed the companies. It
was fun to be part of this era of rapid expansion and novel applications.

Almost every application being designed in the 1960s was new, unique, and
probably had never been done before. In today’s world, almost 90% of new
applications are replacements for aging legacy software packages.

In the early 1960s, there were only a handful of legacy applications written
for the earlier IBM 650 and IBM 701 computers. Even these were not very old
and were being reprogrammed merely because they did not run on newer
computers such as the IBM 1401 and IBM 1410.

Eventually, specialists such as systems analysts and business analysts would
handle most of the interactions with clients, but in the very early days the pro-
grammers not only had to handle pure coding but also had to deal with require-
ments, architecture, design, coding, debugging, and testing. Some programmers
also did postrelease maintenance because separate change teams and maintenance

ptg11539604

103Computer Programmers in the 1960s

groups were still in the future. Even customer support and answering phone calls
from users were chores that programmers tackled in the 1960s.

Today, more than 115 different occupation groups are associated with large
software organizations. In the early 1960s, there was very little differentiation
and we were all generalists who did whatever was needed.

Emergence of the Software Engineer

The phrase “software engineering” had not become popular then nor was it
especially appropriate given the ad hoc development methods then in use.
Edsger Dijkstra would not publish his famous paper “Notes on Structured
Programming” until 1965.

We called ourselves “computer programmers,” not software engineers. We
had to use “computer” as well as “programmer” to avoid confusion with radio
and television programmers. (I can recall friends of my parents asking what
radio station I worked for when they learned I was a programmer.)

The term “software” was so new to the general public that some thought it
referred to the little Styrofoam peanuts that were used for packing around
delicate electronic components.

Although “software” had been defi ned in 1958, the fi rst notable use of
the phrase “software engineering” did not occur until a NATO conference
in Garmisch, Germany, on October 7 to 11, 1968. The conference title was
“Software Engineering” and the conference chairman was Dr. F. L. Bauer.

More signifi cantly, the conference notes were edited by Peter Naur and Brian
Randall and when they were published in January 1969, the urgency of moving
from ad hoc methods to more scientifi c methods for software development
began to expand widely.

None of the programmers in my group at the Public Health Service could be
hired in today’s world. None of us had computer science or software engineering
degrees (universities were just starting to offer computer engineering degree pro-
grams), and none of us even knew how to program when we were hired as pro-
grammers. Our main assets were nothing more than a working knowledge of
how the Public Health Service operated and our ability to pass a fairly straight-
forward aptitude test.

This unusual period started in about 1950 and lasted until about 1970. Before
1950, there were very few professional programmers. After the 1960s, computer
science and software engineering graduates began to enter the workforce in
suffi cient numbers so that liberal arts majors were no longer actively recruited.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software104

Although on the surface liberal arts majors would not seem qualifi ed for
software engineering jobs, many were extremely capable and had long and
successful careers. In retrospect, the breadth of knowledge that liberal arts
graduates, musicians, and writers brought to software often created elegant
and effi cient programs.

In following up on these programmers from the early 1960s, some left soft-
ware, and some stayed in programming and became lead or chief programmers.
Some entered management and even became software executives. Some became
entrepreneurs and started software companies.

Some of us did more than one of these things. For example, I was a software
executive in a Fortune 500 company, started two software companies, and even
fi led a number of patents on software inventions.

A strong software engineering background today defi nitely makes work easier
for the fi rst year or so. After that, on-the-job experiences become more impor-
tant. After perhaps a dozen successful software projects, academic credentials are
no longer major career factors.

The same is true in other fi elds. A solid educational background is certainly
critical for a surgeon performing the fi rst few operations. After perhaps
100 operations, on-the-job knowledge augments academic knowledge.

The computer programming occupation grew from a few thousand at the
start of the decade to almost a million at the end. Very few occupations in
human history have grown so fast.

IBM System/360

The IBM 1400 series emerged in 1960 and had a good run for about 10 years.
However, in April 1964, IBM announced the larger and more powerful IBM
System/360 (S/360), which became the main computer of U.S. industry after
battling with other vendors for supremacy.

The hardware architect for the S/360 was Gene Amdahl (who later
founded a competitive computer company). The software was managed
by Fred Brooks, whose experiences were immortalized in one of the
most famous computer books ever written, The Mythical Man-Month.
Thomas J. Watson, Jr., was the IBM chairman and the driving force behind
the S/360. John Opel handled the marketing launch. John would later become
President, CEO, and Chairman of IBM, and he was a visionary in his
own right.

ptg11539604

105IBM System/360

Note
John Opel served on a board of directors with Mary Maxwell Gates, who was a successful
businesswoman and the mother of Bill Gates. John Opel and Mary Gates were both on the
board of directors of the charitable organization United Way. It was the connection between
John and Mary that led to John Opel being interested in Microsoft as a company that might be
able to build the operating system for the IBM personal computer in a future decade.

The architecture of the IBM S/360 had features that were unusual at the
time, but it proved to be the key to the long-range success of both IBM and the
S/360 computer system.

One novel feature was that the S/360 was not designed as a single computer
but as a family of related computers that started fairly small and fairly cheap
but could be expanded in power and capacity as the need arose. This meant
that companies could start with low-end versions such as the IBM System/360
model 20 or 30 and then move up to larger and faster versions. All of the
bigger S/360 units were backward-compatible with the smaller units, so they
could run the same applications without any changes.

The original series of IBM System/360 computers included models 20, 30,
40, 50, 60, 62, and 70. The low-end models up through 30 were designed
to replace the IBM 1401 series, and they included emulators that allowed
IBM 1401 software to operate without reprogramming. Models 65 and
75 were added to the high end later, as were the even higher models 85 and 95.
There were also a few special models aimed at military or scientifi c use, such as
model 44 for scientifi c computing. There were so many models it was hard to
keep track of them.

In retrospect, this concept of a family of computers turned out to be a brilliant
business strategy. It switched the computer business model from one-time leases
or purchases to long-term recurring revenues. The clients could start at the low
end and expand as needed without expensive reprogramming or even much lost
time during the transition.

It was the S/360 that led to the aphorism that “nobody ever got fi red for
choosing IBM computers.” The S/360 led to multiyear, multiproduct engage-
ments that would make some companies continuous IBM customers for more
than 40 years. This kind of brand loyalty was unheard of before the S/360 and
remains the envy of almost every other company in the world.

Competitors and some software gurus criticized the operating system as
being less sophisticated than others, and it was also thought that the hardware
should be improved. Even so, the S/360 was the most successful computing line

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software106

in history and one of the most successful products of any kind in terms of brand
loyalty and recurring revenues.

One of the S/360 engineers, Gene Amdahl, left IBM to found a rival com-
pany, Amdahl, in order to compete with the System/360. The Amdahl line of
computers was compatible with the S/360 and could run the same software. But
the Amdahl computers had advantages in being less expensive. They also had
some innovative technical features, such as air-cooled chips that did not need
expensive chilled water-cooling systems. At its peak, Amdahl had about 8% of
the U.S. mainframe market.

As the S/360 line continued to grow and evolve, Amdahl partnered with
Fujitsu and eventually withdrew from the U.S. mainframe market but continued
in Japan.

Other competitors such as RCA and even Russian companies tried to build
competing hardware to match the S/360 line, but none were especially success-
ful and none could overtake IBM’s market share.

The Turing Award

In 1966, the Association of Computing Machinery (ACM) issued the fi rst
Turing Award for contributions to computing and software. This award is
named after Alan Turing, one of the chief theorists of computer and software
design. (Turing’s accomplishments were described in earlier chapters.)

Table 5.1 shows Turing Award recipients from 1966 through 2012. The
awards are given every year and are very important to the history of computing
and software; hopefully, readers will not mind the chronological deviation from
the 1960s. This list of awards is probably the most succinct possible way of
showing software engineering progress from the 1960s through the modern era.

All of the Turing recipients are deserving of the awards. However, a
thoughtful analysis of the list shows that software management is somewhat
underrepresented. Fred Brooks is present, but probably Dr. Barry Boehm
deserves an award for his contributions to measurement and estimation, and
Allan Albrecht deserves an award for the invention of function point metrics.
I would think that Steve Jobs is worthy of an award for the full suite of Apple
innovations under his leadership. A host of useful innovations occurred under
Thomas J. Watson, Jr., when he was Chairman of IBM. In fact, Watson
personally directed several software-quality initiatives and was the visionary
sponsor of the S/360 line.

ptg11539604

107The Turing Award

Table 5.1 Turing Awards from 1966 to 2012

Year Recipients Contributions

1966 Alan J. Perlis Programming techniques

1967 Maurice V. Wilkes EDSAC; program libraries

1968 Richard Hamming Numerical methods; error detection

1969 Marvin Minsky Artifi cial intelligence

1970 James H. Wilkenson Numerical analysis; linear algebra

1971 John McCarthy Artifi cial intelligence

1972 Edsger W. Dijkstra ALGOL; structured programming

1973 Charles W. Bachman Database technology

1974 Donald Knuth The art of computer programming

1975 Allan Newell, Herbert A. Simon Artifi cial intelligence; list processing

1976 Michael O. Rabin, Dana S.
Scott

Finite automata; nondeterministic
machines

1977 John Backus FORTRAN; structure of program-
ming languages

1978 Robert W. Floyd Programming language semantics;
parsing

1979 Kenneth E. Iverson APL; language theory

1980 C. Anthony R. Hoare Defi nition and design of program-
ming languages

1981 Edgar F. Codd Relational databases

1982 Stephen A. Cook Complexity of computation

1983 Ken Thompson, Dennis Ritchie UNIX; operating system theory

1984 Niklaus Wirth Computer languages; ALGOL,
MODULA, PASCAL

1985 Richard M. Karp Theory of algorithms; network fl ow

1986 John Hopcroft, Richard Tarjan Fundamentals of algorithms and
data structure

1987 John Cocke Reduced instruction set computing
(RISC)

1988 Ivan Sutherland Computer graphics

1989 William Kahan Numerical analysis and fl oating
point computation

1990 Fernando Corbato CTSS and MULTICS time-sharing
computer systems

(Continued)

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software108

Table 5.1 (Continued)

Year Recipients Contributions

1991 Robert Milner Multiple achievements

1992 Butler W. Lampson Distributed computing; networks;
security

1993 Juris Hartmanis, Richard E.
Stearns

Computational complexity theory

1994 Edward Feigenbaum, Raj Reddy Large-scale artifi cial intelligence

1995 Manual Blum Complexity theory; cryptography

1996 Amir Pnueli Temporal logic; verifi cation

1997 Douglas Englebart Inventions leading to interactive
computing

1998 Jim Gray Transaction processing; database
research

1999 Fredrick P. Brooks, Jr. Computer architecture; operating
systems

2000 Andrew Chi-Chih Yao Theory of computation; communi-
cation complexity

2001 Ole Johan Dahl, Kristen
Nygard

Object-oriented programming;
Simula

2002 R. L. Rivest, Adi Shamir,
L. M. Adelman

Public-key cryptography

2003 Alan Kay Object-oriented languages;
SMALLTALK

2004 Vinton G. Cerf, Robert E. Kahn Internetworking; TCP/IP

2005 Peter Naur Computer programming;
ALGOL 60

2006 Frances E. Allen Optimizing compilers

2007 E. M. Clark, E. A. Emerson,
J. Sifakis

Model checking for defect removal

2008 Barbara Liskov Foundations of programming
design; fault tolerance

2009 Charles P. Thacker Personal computers; Ethernet;
tablet PCs

2010 Leslie G. Valient Theory of computation

2011 Judea Pearl Calculus for probabilistic reasoning

2012 Silvio Micali, Shafi Goldwasser Complexity theory applied to
cryptography

ptg11539604

109The Invention of the Credit Card

The Invention of the Credit Card

Several important background inventions occurred in the 1960s. One of these
was the AT&T Datanet, the fi rst commercial modem, in 1960. Another was the
development of ASCII in 1963; it is the ubiquitous coding system used to allow
disparate computers to share common information. The most important per-
haps was a major IBM invention in 1960 that would change the way consumers
made purchases.

IBM had developed a technology for a kind of magnetic tape that could be
affi xed to small plastic cards. In 1960, the American National Standards Insti-
tute (ANSI) made the IBM magnetic tape a U.S. standard. In 1962, the Interna-
tional Standards Organization (ISO) also issued a global standard.

Once the new IBM magnetic strip was a global standard, credit card com-
panies and credit card purchases expanded rapidly. The impact of credit cards
on computing and software was enormous. Banks and credit card companies
rapidly expanded their data centers and many created large internal software
groups.

However, credit cards also created new opportunities for crime. In later dec-
ades, cybertheft of credit card numbers would become one of the most frequent
targets for computer hackers.

Note
The fi rst popular credit card, Diners Club, had been introduced in 1950. But it was a cardboard
card without a magnetic stripe. The original Diners Club card only worked at 27 restaurants in
New York, which explains why “Diners Club” was the chosen name.

Credit card purchases rank as one of the most important retail business
changes in human history. But without fast computers and reliable software,
credit card processing could not have taken off as rapidly as it did.

The fi rst credit cards from Diners Club and American Express were proprietary,
closed systems, which meant that only customers, retailers, and the card compa-
nies were involved in the transactions. Banks were excluded. These cards also
required full 100% payment of balances at the end of every month. Revolving
credit was introduced in 1959, with substantial interest payments and fees for late
payments.

In 1966, Bank of America entered the credit card world by forming
BankAmerica Services Corporation. The business idea of this unit was to
franchise credit cards to hundreds of banks nationally and internationally. This
would soon lead to the Visa card.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software110

Also in 1966, another group of banks formed the InterBank Card Associa-
tion (ICA). This group issued MasterCard credit cards, which competed directly
with Visa.

Both the Visa and MasterCard services opened the gates to interbank trans-
fers and cooperation between member banks. These cards were popular, so
smaller banks began to issue credit cards. Eventually, hundreds of companies,
such as airlines, retail chains and, in later years, web companies such as
Amazon, issued Visa or MasterCards in their own names.

The magnetic stripes on plastic cards not only created the modern credit card
business, but they soon proved useful in other areas. For example, many door
locks (usually used by hotels) are now opened by use of magnetic cards.

Note
Alarmingly, the Congressional Cyber Caucus sponsored by Congressman James Langevin of
Rhode Island reported in December 2012 that a hacking device for magnetic-lock hotel doors
has surfaced, and this has been used in thefts of computers and personal property from rooms
at several major hotel chains.

Needless to say, the rapid expansion of credit card usage was mirrored by a
rapid expansion of computer capacities and software applications to process
the card payments. Because small banks could not afford their own software
groups, third-party companies got into the credit card business as service
bureaus or outsourcers who ran or developed credit card applications for banks
that did not have the capacities themselves.

Automation and New Professions

1960 marked the introduction of the IBM 1401 computer, which for 10 years
was the dominant business computer and would greatly expand software from
its scientifi c and military origins into the business world. In 1964, it was joined
by the IBM System/360 line, which would become the most popular computer
line in history.

1960 also marked the introduction of the Digital Equipment Corporation
(DEC) Programmed Data Processor-1 (PDP-1), which would play a signifi cant
role in the development of computer games, the UNIX operating system, and
even computer hacking.

As the IBM 1401 and other business-oriented computers began to be used by
banks and insurance companies, hundreds of clerical employees were phased

ptg11539604

111The DEC PDP-1

out of their jobs as automation began to take over. Another position that
was phased out due to electronic computers was the human “computer” who
handled mathematical calculations.

Digital computers introduced major sociological change that is still far from
complete. Some of the displaced clerical workers became data entry specialists,
program librarians, or part of the administrative teams that surround software
and data center operations.

While thousands of clerical jobs disappeared, companies began to build inter-
nal software organizations that eventually would employ thousands of skilled
workers. In general, computers and software reduced clerical employment but
added new kinds of knowledge work and new kinds of skilled workers. In many
cases, the clerical workers were shifted into computer work and therefore
learned useful new skills.

In the fullness of time, software organizations in large companies would
employ more than 115 new occupation groups, such as business analysts, data-
base analysts, software engineers, webmasters, database administrators, and
the more recent scrum masters and Agile coaches.

As software personnel expanded in numbers, academic departments for
computer science and software engineering opened up and rapidly increased
both in enrollments and in graduations. After the 1960s, formal training would
be a requirement for computer programmers and the period of casual entry into
programming would end.

The DEC PDP-1

The DEC was founded in 1957. By coincidence, the DEC headquarters building
was in a converted mill factory in Maynard, Massachusetts, just a few miles
from my home in the 1970s and 1980s.

The DEC PDP-1 was built and released in 1960. It updated an older com-
puter called the TX-0 that had been built at the MIT Lincoln Lab. The DEC
PDP line was a pioneer in what was called minicomputers, or smaller, cheaper
computers aimed at companies and universities who might not be able to afford
IBM mainframes.

The PDP-1 used modifi ed IBM Model B typewriters (with type bars rather
than balls) for printed output devices. Larger and more robust typewriters
called Friden Flexowriters were also used. Because these printers used regular
typewriter paper and had letter-quality printing, several early word-processing

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software112

programs were developed for the PDP-1. One of these had the provocative
name of Expensive Typewriter.

The earlier TX-0 computer at MIT had attracted programmers to write
experimental games in their spare time. When the PDP-1 replaced the TX-0,
gamers at MIT developed one of the fi rst interactive games called Spacewar.
This happened circa 1961.

Later, in 1969, Ken Thompson and Dennis Ritchie were interested in porting
a game called Space Travel to a PDP-7. In the process of doing this port, Ritchie
and Thompson ended up developing the UNIX operating system. It is a topic of
historical interest that a game program was the main reason for the port, and it
was perhaps the fi rst UNIX application after the port.

The C programming language was developed in a UNIX context and would
eventually become one of the most widely used languages in history. C programs
had access to computing hardware and so were useful for operating systems and
other applications that controlled physical devices. Although C would not
become available until the next decade, the design of C started circa 1969.

Programming Languages of the 1960s

The decade from 1960 to 1969 was fruitful for programming languages and
led to the development of many new languages, including, but not limited to,
the following:

• ALGOL 60

• ALGOL 68

• APL

• BASIC

• BCPL

• COBOL 61

• COMIT

• CORAL 66

• DIBOL

• FORTRAN 66

ptg11539604

113Programming Languages of the 1960s

• InterLisp

• JOSS 1

• LOGO

• Mark IV

• MUMPS

• PL/I

• RPG

• Simula 67

• SNOBOL

• Speakeasy 2

• TRAC

Not only did this decade witness the invention of many new programming
languages, but it also saw the start of a very common trend that would become
commonplace in later decades: the use of more than two languages in the same
application.

Early examples of multiple languages in one application included job control
language (JCL), COBOL, and SQL. More recent examples include Java, HTML,
and .NET languages.

This plethora of programming languages would eventually lead circa 2013
to a grand total of more than 2,500. This raises an important question that is
not yet fully answered: Is this huge number of programming languages a sign of
software engineering sophistication, or are software engineers building new
toys to play with?

While some of these programming languages are helpful in developing spe-
cifi c kinds of applications, the full set of programming languages has several
harmful effects on software engineering that have been more or less ignored by
the software engineering literature:

• Aging and obsolete languages raise the diffi culty of maintaining legacy
applications.

• Aging and obsolete languages have few programmers who know them.

• Multiple languages in the same application make debugging diffi cult.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software114

• There are no fi rm guidelines for language selection; the reasoning resem-
bles that of a cult.

• Security fl aws appear to be endemic in a majority of popular languages.

This book is not the proper place for dealing with the issues surrounding
the existence of so many programming languages and the absence of real
proof that these numerous languages are helpful to the software engineering
domain.

Other authors and other books can prove that so many languages are either
helpful or harmful to software engineering. I think that all these languages may
be doing more harm than good, but that is a subjective opinion from casual
observations and not based on solid data.

JCL was another ubiquitous language developed in this decade in several
dialects and varieties. It was used to schedule the execution sequences of appli-
cations under the various IBM operating systems. JCL is not a true program-
ming language but rather was the forerunner of scripting languages that control
execution sequences. No less a luminary than Dr. Fred Brooks called JCL the
ugliest language ever developed.

Leaving languages, in the middle of the 1960s, Martin Goetz fi led the fi rst
software patent in 1965, and this introduced the fi rst known commercial
software package, Autofl ow, also in 1965.

The early 1960s also witnessed the initial development of database technology,
which later became a primary use for digital computers. The CODASYL data
description and the IBM IMS database were both released circa 1962. Relational
databases would not occur until the following decade.

Based on research at MIT, Ivan Sutherland published an early paper on
object-oriented programming in 1963. Later, in 1967, the Simula programming
language introduced classes and instances, or objects. Many other object-
oriented languages would follow in the next decades.

The programming languages of APL, BASIC, and PL/I were developed dur-
ing this decade. The acronym APL stands for a programming language. This is
a highly mathematical language developed by Ken Iverson with Adin Falkoff of
IBM. The language concepts stem from a report in 1957, but the fi rst working
version of APL was not ready until 1960.

Note
I worked with Dr. Charles Turk to create IBM’s fi rst software estimation tool in 1973. This tool
was called the Interactive Productivity and Quality model (IPQ), and it was coded in APL by
Dr. Turk.

ptg11539604

115The Computer Business of the 1960s

The PL/I language was also developed by IBM. (The abbreviation used a
Roman numeral “I” instead of an Arabic “1” for marketing reasons.) The S/360
computer was envisioned as being suitable for both business and scientifi c pur-
poses. Up until this time, programming languages had either been oriented toward
math and science, such as FORTRAN (which stood for formula translator), or for
business, such as COBOL (which stood for common business-oriented language).

With the S/360 being marketed as a general-purpose machine for both
business and scientifi c uses, IBM wanted a companion programming language
that could also be used for both business and scientifi c applications. The fi rst
defi nition of PL/I appeared in 1964.

The PL/I language was powerful and effective but did not become the stand-
ard language for everything as IBM had hoped. The PL/I language was still in
use in 2012.

The history of the family of BASIC programming languages is well known.
The fi rst dialect of BASIC was developed by John Kemeny and Thomas Kurtz
of Dartmouth College in 1964. The BASIC language was aimed at computer
users who were not mathematicians and who needed a fairly simple language to
complete their tasks. BASIC aimed, and succeeded, in being easy to learn and
easy to use.

In later decades, when the use of personal computers exploded, BASIC dia-
lects were the tool of choice for millions of hobbyists and casual programmers.
Still today, there are more than a dozen dialects of BASIC, including some like
Visual Basic from Microsoft that are used to create commercial and industrial
software as well as for personal applications.

The Computer Business of the 1960s

Computers began to expand rapidly as business tools. The initial expansions
took place in industries with high volumes of paperwork and large clerical staffs.
Banking, insurance, and stock trading are prime examples of paper-intensive
industries that would soon benefi t from using computers and software.

During the latter part of the 1960s, the computer trade press began to use an
unfl attering name, “IBM and the Seven Dwarves,” for the companies in the
computer business. There were actually more than seven computer companies,
but the name had such a provocative ring that it became popular. The compa-
nies included in this set were:

• Burroughs

• Control Data Corporation (CDC)

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software116

• GE

• Honeywell

• National Cash Register (NCR)

• RCA

• UNIVAC

During this decade, the computer and software business was exploding in
size and capabilities. In later decades, the business climate would change and
most of the smaller computer companies would be acquired, withdraw from
computers, or go out of business, as will be discussed in later chapters. The
competition between IBM and these companies is interesting in its own right
but only of peripheral interest to the history of software engineering.

Other computer companies not included in the “seven dwarf” list were
somewhat specialized and included the following:

• Amdahl

• Apollo

• Cray

• Data General

• DEC

• Ferranti

• Fujitsu

• Groupe Bull

• Hitachi

• Mitsubishi

• Nixdorf

• Olivetti

• Scientifi c Data Systems (SDS)

• Sun

• Wang

• Xerox

ptg11539604

117The Computer Business of the 1960s

Not all of these appeared in the 1960s, but it is clearer to list them all in one
place rather than scattering them through several chapters.

In addition to digital mainframe computers, there were also a number of
specialized analog-digital hybrid computers mainly used for engineering and
scientifi c problems. These are not as well known as pure digital computers. Two
examples of hybrids were the HYCOMP desktop analog/digital hybrid from
1961 and the larger HYDAC 2400 analog/digital computer from 1963. Others
included the Beckman hybrid from 1960 and the EAI 680 scientifi c hybrid used
in engineering.

Pure analog computers remained in widespread military service as bomb-
sights, torpedo guidance computers, and missile-navigation systems. Analog
computers would dominate military weapons for more than another decade.
The use of digital computers on the Apollo spaceships would soon pave the
way for digital computers to take over from analogs on aircraft and missiles.

Portable computers and notebook computers will be discussed in later
chapters. However, although commercial notebook computers did not exist in
this decade, Alan Kay created an early concept of a notebook computer called
Dynabook in 1968. His idea was to provide schoolchildren with portable
learning devices.

An article published by Kay in 1972 showed a device that looked remarkably
like a cross between a modern tablet computer and a notebook. This was a vision-
ary idea that would later grow into powerful concepts at the Xerox Palo Alto
Research Center (PARC) in California where Kay worked. Xerox PARC will
come up again in the next decade due to the impact that Xerox technologies had
on Steve Jobs and Apple Computer.

The need for computers as business tools was clearly shown by what
happened to Wall Street. Between 1965 and 1968, shares of stock traded on
Wall Street increased from about 5,000,000 to 12,000,000, which stressed
back offi ce clerical work to the breaking point. Clerical staffi ng increased
rapidly.

One of the reasons for the increase in stock sales was a reduction in the per-
centage of a stock’s price that needed to be paid to acquire it. The rates were
reduced from 100% of the stock’s value down to 70%, which naturally led to
increased sales volumes.

But in 1969 and 1970, stock trading declined abruptly, cutting into broker-
age revenues and causing layoffs and fi nancial distress among brokerage houses.
About 100 Wall Street fi rms went out of business or merged, which was a
shrinkage of about 17%. For Wall Street companies, this was the worst crisis
since the Great Depression.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software118

Many of the Wall Street companies that failed did so in part because they
had lost control of their back offi ce fi nancial records due to huge clerical work-
loads. About 90% of the operating costs of Wall Street fi rms in this decade
were tied up in clerical work. Clearly, Wall Street was ready for a move into
computerization, which would occur in the 1970s.

Litigation Changes the Computer World Forever

The 1960s witnessed several major lawsuits that would change the nature
of computing and software in unanticipated ways. The fi rst of these major
lawsuits were two patent violation cases fi led by Sperry-Rand against Honey-
well and a countersuit fi led by Honeywell against Sperry-Rand. Both suits were
fi led on the same day, May 26, 1967. Honeywell fi led a few minutes before
Sperry-Rand, which later turned out to be important.

Honeywell charged Sperry-Rand with being a monopoly and asked that the
patent on the ENIAC, owned by Sperry-Rand, be invalidated. The impact of
the ENIAC patent was that Sperry-Rand was claiming ownership of the main
features of all digital computers and therefore charging license fees. This patent
was a clear bottleneck to the expansion of the computer industry.

This lawsuit and several predecessor lawsuits were the longest trials in
American history and accumulated thousands of pages of data and informa-
tion about computer technology and the history of digital computing. In total,
more than 150 witnesses were involved.

Not only was this case important for the computer and software industries,
but it happened to be the fi rst major lawsuit where computerized legal fi les
were used.

The fact that Honeywell fi led fi rst led the case to be tried in Minneapolis
rather than in Washington, D.C. At the time, Honeywell was the largest
employer in Minnesota, so the outcome of the case was important locally.

The case was not decided until the 1970s, so it will be discussed again in the
next chapter. The importance to the industry and to this book is that the even-
tual decision invalidated the ENIAC patent. This had the effect of putting most
of the technology used to build digital computers into the public domain. This,
in turn, led to a signifi cant expansion in computers and companies building
computers.

Another momentous event for the software industry occurred in 1969, when
IBM unbundled software as a result of an antitrust suit. Prior to 1969, IBM
computers came with the software bundled and not priced separately. Bundling

ptg11539604

119Computers and Software in Space

or providing software for free was a barrier to entry, and unbundling led to the
creation of today’s vast software market.

The IBM antitrust lawsuit was fi led at the end of the decade on January 17,
1969, by the Department of Justice. It would not be decided until the 1980s,
but by then unbundling was long established. (The case was eventually with-
drawn by William Baxter in January 1982. Baxter was the Assistant Attorney
General in charge of antitrust.)

There were some noncomputer pure software companies during this decade,
and they concentrated on applications packages that were not closely tied to
any specifi c computer brand or model. One of the most successful and longest-
running software companies was Cincom, which was founded in 1968 by
Thomas Nies, Tom Richley, and Claude Bogardus. All three founders had
worked for IBM prior to founding Cincom. (The unusual name of the company
is based in part on the fact that it was started in Cincinnati, Ohio.)

In those days, IBM provided operating systems and systems software and
compilers, but client companies were expected to write their own applications.
Having clients write their own software applications explains the huge increase
in software personnel during this decade.

The Cincom vision was to commercialize common kinds of software applica-
tions that were widely used and needed. One of these areas of common need
was the database. The Cincom TOTAL database package entered the market in
1970 and was a pioneer in commercial DBMS. Cincom was and is a successful
software company that has outlived many of its competitors.

Computers and Software in Space

On July 20, 1969, the Apollo 11 spacecraft landed Neil Armstrong and Buzz
Aldrin on the moon. This was one of the greatest scientifi c achievements in
human history.

The Apollo spacecrafts pioneered the use of digital computers and software
for the space program. The physical computer used on the Apollo program was
among the fi rst to combine integrated circuits and low-power transistors. It was
named the Apollo Guidance Computer (AGC).

The AGC utilized a special kind of read-only memory (ROM) called a core
rope. A magnetized strand passed through hollow cores. Up to 64 separate
wires could pass through a core, and each carried software information. The
advantage of core ropes was high-density storage—about 18 times more data
than conventional magnetic cores could hold.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software120

These core ropes were actually woven by female seamstresses. This gave rise
to a slang term for the memory of "LOL," or "little old lady."

Although the Apollo team included many famous engineers and scientists,
Charles Stuart Draper was one of the Apollo computing pioneers. The famous
MIT lab in Cambridge, Massachusetts, is named for him.

IBM was also a participant in the Apollo program, and the famous IMS
database was fi rst created for the Apollo program, but it was also marketed
commercially.

The Apollo software was programmed using both an assembly language and
an interpreted language. A special real-time, multitasking operating system was
developed for the Apollo program. While the Apollo computer was slow and
limited compared to today’s computers, it was a great step for computing, just
as landing on the moon was a great step for mankind.

Alarmingly, during the descent to the moon, a number of error conditions
and error messages appeared, indicating computer or software problems.
Apparently, too many tasks were executing concurrently and exceeding the
system capacity.

Fortunately, the software had priority scheduling algorithms and it was possi-
ble to eliminate low-priority tasks so that the actual guidance of the descent oper-
ated perfectly. One of the Apollo guidance controllers, Steve Bales, received a
Presidential Medal of Freedom award in recognition of his successfully ensuring
the Apollo landing.

The Apollo computer and software systems were important precursors to
“fl y-by-wire” systems that would become the norm on future aircraft and the
space shuttle. The near disaster during the Apollo 11 descent, and the even
greater problems with later Apollo missions, emphasize the fact that onboard
software for aircraft and space vehicles needed to approach zero-defect quality
levels.

Computer and Software Growth in the 1960s

As the decade neared its end, computer programming was evolving toward soft-
ware engineering, with improved standards and better quality control.

I went to work for IBM at their lab in Boulder, Colorado. During a 12-year
tenure, I was fortunate to meet a number of IBM colleagues who would con-
tribute important insights to the software engineering fi eld.

ptg11539604

121Computer and Software Growth in the 1960s

Among my technical colleagues were Dr. Harlan Mills of “clean room” and
“chief programmer” fame; Dr. Ted Codd of relational database fame; Dr. Ken
Iverson, the inventor of APL; Dr. Charles Turk, the codeveloper of IBM’s fi rst
software cost-estimating tool; and Dr. Gerald Weinberg, the author of The
Psychology of Computer Programming.

Among my management and executive colleagues were Jim Frame, who
managed the IBM Santa Teresa Lab; Ted Climis, the head of the Systems
Development Division; Dr. Fred Brooks, who was in charge of the OS/360
and later wrote The Mythical Man-Month; and T. J. Watson, Jr. Watson per-
sonally sponsored an initiative to improve the quality of IBM software, and
he was the executive who sponsored the S/360 line.

By the late 1960s, computers were also starting to have an impact on sports.
In 1968, a golf pro named Jim Healy built the fi rst computerized tool for calcu-
lating golf handicaps. Later, this kind of software would become the industry
standard for amateur and professional golfers.

The original tool was a one-off build using a custom microcomputer. Later,
in the 1980s, the software migrated to personal computers starting with Radio
Shack Model II and then moving to Apple and IBM personal computers.

The decade also witnessed the development of the UNIX operating system
by AT&T Bell Labs in 1969. The same year, the Department of Defense
Advanced Research Projects Agency (DARPA) introduced ARPANET, which
was the forerunner of today’s internet.

There were cowboy development, low-level languages such as assembly and
later macro-assembly languages, and then mid-level languages such as COBOL
and FORTRAN.

Small applications were the norm at the start of the decade, but size
increased by the end of the decade. Toward the end of the decade, several
newer languages such as ALGOL, LISP, COBOL, and FORTRAN started to
be increasingly used.

Table 5.2 shows approximate numbers of U.S. software applications for
the 1960s. The number of applications was starting to expand across
all kinds of software applications. Software was no longer restricted to
scientifi c and military endeavors but indeed was moving into every aspect of
human life.

All of the major business categories have software applications, and even
games and artistic activities are starting to use software. This would accelerate
in later decades.

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software122

Function Points Backfi red for 1965

Function points had not been invented, so all data were measured using lines
of code. Backfi ring or mathematical conversion from lines of code (LOC) to
function points show these results for a project of 1,000 function points in
this decade:

• Source code for 1,000 function points: 160,000 logical code statements

• Programming language: Macro assembly

• Reuse percentage: 0% to 5%

• Methodology: Unstructured cowboy development

• Productivity: 5 function points per staff month

• Defect potentials: 6 per function point

Table 5.2 U.S. Software Applications from 1960 to 1969

Application Types Applications Percentage

Scientifi c 1,000 15.94%

Military and defense 2,500 39.84%

Civilian government 1,250 19.92%

Systems and middleware 500 7.97%

Embedded software 250 3.98%

Commercial 125 1.99%

Information technology (IT) 500 7.97%

U.S. outsource 100 1.59%

Offshore outsource 0 0.00%

Games and entertainment 25 0.40%

Artistic and musical applications 25 0.40%

Web applications 0 0.00%

Open source 0 0.00%

Smartphone applications 0 0.00%

Cloud applications 0 0.00%

Total Applications 6,275 100.00%

ptg11539604

123Summary

• Defect removal effi ciency (DRE): 83%

• Delivered defects: 1.02 defects per function point

• Ratio of development personnel to maintenance:

• Development: 90%

• Maintenance: 10%

The following are the background data for 1965:

• Average language level: 2.0

• Number of programming languages: 10

• Logical statements per function point: 160

• Average application size: 600 function points

• Average application size: 96,000 logical code statements

Note
The phrase “language level” was developed within IBM circa 1968 and refers to the power of a
language relative to basic assembly language. Thus, for a level 2 language, it would require
two statements in basic assembly language to produce the functionality of one statement in
the target language. The level concept is still in use today. For example, Java is ranked as a
level 6 language. Levels are based on logical code statements, not physical lines of code.

By the end of the decade, applications grew in size and complexity. It was
obvious that the LOC metric was no longer useful. In 1970, many IBM publica-
tion groups exceeded their budgets due to basing document costs on a percentage
of coding costs. When Programming Language/Systems (PL/S) started to replace
assembly code, all of the document departments using a percentage of PL/S
coding costs exceeded their budgets. As a result, IBM began the studies that led to
function point metrics a few years later.

Summary

At the start of the 1960s, software was bundled with computers and given
away with the hardware. The ENIAC patent made it diffi cult for other man-
ufacturers to build computers without heavy royalty payments. Eventually,

ptg11539604

Chapter 5 The Rise of Business Computers and Business Software124

legal case decisions resulted in the unbundling of software and led to the
commercial software industry, putting computer architecture into the public
domain. This decade also witnessed thousands of businesses buying comput-
ers and starting to use them to replace labor-intensive tasks such as record
keeping. Software development organizations and corporate data centers
began to appear at the start of the decade and expanded rapidly. Many new
computer and software companies were created in this decade, but few would
have long lives.

ptg11539604

125

Chapter 6

1970 to 1979: Computers
and Software Begin Creating
Wealth

Thanks to the unbundling of software by IBM in 1969, the 1970s would
witness the creation of several companies that would later expand into the larg-
est and wealthiest companies in U.S. history: Apple, Microsoft, and Oracle are
three examples. The rapid expansion of computer use led to the very rapid
expansion of companies that created commercial software that benefi ted both
corporations and individuals. It was not anticipated at the beginning of this
decade (and confi rm) that software would eventually cause Bill Gates to become
among the wealthiest persons on the planet and Apple Computer to become
among the wealthiest companies.

By the end of this decade, computers and software would be among the
fastest-growing and most profi table industries in human history. The settlement
of the patent case between Honeywell and Sperry-Rand invalidated the patent
on ENIAC and essentially put computer architecture into the public domain.
During this decade, software began to diverge into a number of subcategories
such as business software, embedded software, middleware, and many others.

Software Evolution in the 1970s

The fi eld of software engineering grew faster than almost any occupation in
history during this time. The decade also witnessed the creation of many dif-
ferent subfi elds of software such as business applications, project management
applications, personal applications, systems software, embedded software,
middleware, scientifi c and mathematical software, communications software,

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth126

manufacturing software, database software, and software for games and
entertainment.

Trends in Software

A popular trend during this decade was the emergence of vertical markets
among both computer and software vendors. A vertical market refers to selling
complete packages that support all data-processing needs for a particular
business function or industry. Banks, insurance providers, and health-care com-
panies are good examples of target vertical markets because all three depend on
complex and somewhat specialized calculations using large volumes of data.

In all three industries, there are hundreds of companies with data-processing
needs that are close to being identical. Insurance claims handling is pretty much
the same whether it is completed by Hartford, Farmers, Aetna, Prudential, GEICO,
or American Commerce. Dealing with transactions through an automated teller
machine (ATM) is similar for Bank of America, Wells Fargo, Citizens Bank, and
hundreds of others. Vertical markets make sense when there are a great many
companies in the same business sector with similar data-processing needs.

The concept of time sharing was also popular during the 1970s. Time sharing
had originated in earlier decades but became a major technique for lowering the
costs of computer usage during the 1970s. This was the decade of mainframe
computers and some minicomputers, but before the internet and before personal
computers.

Time sharing allowed multiple users to be connected to a single mainframe
and use it when other applications were paused or quiet. Thus, the rather high
costs of the mainframe lease and software could be apportioned across multiple
users. Time sharing for multiple companies was often offered by service bureaus
that acquired and owned the computers and rented time for a weekly or
monthly fee. In the 1980s, after the arrival of the IBM personal computer and
the Apple II, time sharing would begin to fade away and personal computers
would take over.

Toward the end of the 1970s, security and protective software emerged as a
subindustry in the wake of increasing numbers of viruses and cyberattacks.

This was a very dynamic decade with rapid growth in the number of software
engineers and also rapid acceleration of several companies toward enormous
size, wealth, and infl uence.

At the beginning of this decade, universities did not offer degrees in software
engineering. By the end of the decade, almost all major universities had soft-
ware engineering curricula available and degrees were being offered.

ptg11539604

127Software Evolution in the 1970s

There was also the start of the huge market share by U.S.-based companies
for commercial software due primarily to IBM up until the middle of the
decade. In future decades, Apple, Microsoft, Cullnane, Computer Associates,
Oracle, and other U.S.-based companies would dominate world markets. SAP
in Germany is an exception to the rule and is a major power in enterprise
resource planning (ERP) applications.

Political Failures

Outside of software, the decade was rocked by two political events that shook
U.S. citizens’ confi dence in the federal government and lowered respect for
their highest offi cials. On October 10, 1973, Vice President Spiro Agnew
resigned in disgrace due to accusations of accepting bribes, some of them in his
vice presidential offi ce.

The second and even more discouraging event was the August 9, 1974, resig-
nation of President Richard Nixon in the aftermath of the famous Watergate
scandal. Had he not resigned, Nixon would have faced an impeachment trial.

Note
Watergate involved a break-in at the Democratic National Committee (DNC) headquarters in
the Watergate Hotel. Eventually, 43 trials and convictions occurred, revolving around several of
Nixon’s staff. The famous hidden tape recorder in Nixon’s offi ce provided evidence of a
coverup. There was a mysterious 18.5-minute gap in the recordings where one of the tapes
had been erased. Neither the gap nor the missing information was ever fully explained. After
resignation, Nixon was given a blanket pardon by President Gerald Ford.

There have been other scandals in the past, but these two resignations by the
Vice President and President less than a year apart raised serious doubts about
the integrity of politicians. Even today, confi dence is low for members of
Congress and other national offi cials.

These doubts are often justifi ed for a divisive Congress that frequently issues
partisan diatribes with no substance or data. Time and again, Congress has
stalled until a day or two before some major catastrophe such as a fi scal cliff
(massive tax increases) or sequester (massive spending cuts) takes place.

Both of these problems were caused by a failure by Congress to perform due
diligence or to use any predictive analytics of the consequences. Indeed,
Congress failed to act to prevent the sequester, and neither the House nor Senate
properly assessed the potential harm from this failure.

Without an operations research group, Congress cannot properly apply pre-
dictive analytics to fi nancial and economic issues. This often results in the passing

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth128

of legislation that can be harmful and have little benefi t. The Congressional
Budget Offi ce (CBO) should be such an organization, but it is not always listened
to and is not always on target.

Rapid Rise of Computer Companies

Before the 1970s, the bundled software provided by IBM constituted the major-
ity of systems software and a signifi cant percentage of applications software
used in the United States and throughout the world. After unbundling by IBM,
 the software industry began to show the classic patterns of older industries.

There were numerous small companies with one or two software applica-
tions; a group of midsized companies with up to a dozen software applications;
and a few large companies with dozens or, in a few cases, hundreds of software
packages. There were rapid rises and equally rapid declines of companies within
the sector.

It is an interesting phenomenon that the life expectancy of an American
corporation is less than the life expectancy of an American citizen. The life
expectancy of software and computing companies seems to be worse than
other industries, with many companies dying within a few years of being
incorporated.

These rapid deaths are especially true for venture-backed companies,
which are often pushed toward such fast growth that research and develop-
ment of new products can’t keep up. At the opposite end of the spectrum,
some companies, such as Apple, Microsoft, Oracle, SAP, and Google, have
soared to unexpectedly huge market shares and enormous wealth.

The oldest of the computer and software companies is IBM, which alone
is more than 100 years old, having been formed (under a different name) in
June 1911. As will be discussed in later chapters, IBM had some rough times
during the Depression and also in the 1980s, but it managed to recover in
both cases.

Note
The oldest American technology company seems to be Consolidated Edison, which was
formed in 1823 to provide gaslights long before the invention of electricity. The world’s oldest
company is a Japanese company named Kongo Gumi. It was started about 1,430 years ago to
build Buddhist temples. It remained in one family until 2006, when it was acquired by Taka-
matsu, a larger Japanese construction company. Until 2006, Kongo Gumi was also the world’s
oldest family-owned business.

ptg11539604

129Major Companies Formed During the 1970s

A declining stock market during 1970 and 1971 slowed the growth of
commercial software companies, but this accelerated the growths of internal
software groups within many companies as they acquired computers and
began to automate their business operations.

Major Companies Formed During the 1970s

Several important companies that used computers in new and interesting
ways were created or expanded rapidly during the 1970s, including FedEx,
NASDAQ, and Southwest Airlines.

FedEx

Federal Express was formed in 1971 by Frederick Smith and soon became a
giant of freight transportation due to developing the “hub-and-spoke” model of
air transportation centering on Memphis, Tennessee.

It is most effi cient to move goods to a central facility (the hub) along a direct
route (a spoke). Goods are then moved from the hub to the fi nal destination.
Attempting to ship directly from destination to destination without a hub
would lead to impossible combinatorial complexity.

The FedEx computerized routing and tracking software became a model for
other companies involved with the distribution of goods. This was an excellent
example of operations research applied to optimizing the shipment of goods.
FedEx became one of the most cost-effi cient cargo companies in history, and it
continues to use computers and software to fi ne-tune operations.

NASDAQ

The NASDAQ stock exchange was also created in this decade, and it became an
important stock exchange for computer and software companies when they
decided to issue an initial public offering (IPO). The name of this exchange is an
acronym derived from National Association of Securities Dealers Automated
Quotations.

NASDAQ started operations on February 8, 1971. It was the fi rst comput-
erized and automated stock exchange, so clearly software and computers were
important enabling technologies. At fi rst, NASDAQ was a kind of bulletin
board rather than a true exchange. But as it grew and evolved, it became the
fi rst computerized online stock trading exchange in 1987.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth130

Southwest Airlines

Another company with an effective business model was Southwest Airlines,
which was founded in 1967 by Herb Kelleher but did not change its name to
Southwest Airlines until 1971.

As an example of using computers to aid business operations, Southwest was
the fi rst airline to have a website starting in 1995. Southwest continues to have
more website visits than any other airline and does more business through its
website than any other airline. Southwest was also a pioneer in fuel hedging, or
contracts that buffered the airline against increasing fuel costs.

Southwest eventually became powerful enough to cause the repeal of the
Wright amendment, which had limited the airline’s ability to fl y to states
other than Texas. Southwest is now the largest, most successful, and most
profi table U.S. airline.

Younger readers may not have been aware that three of the most successful
modern companies in America—FedEx, NASDAQ, and Southwest Airlines—
are all relatively young and began their growth to dominance during the 1970s.
All used computers and software in interesting ways to help them grow and
become cost effective.

Computer and Software Companies Formed During
the 1970s

Many companies that have played important roles in software development
were founded during the 1970s. There are many others besides the ones men-
tioned here, but these samples run the gamut of companies that either grew to
become enormously wealthy or quickly passed from view. Both extremes refl ect
the history of software.

Several companies later to become famous in the computer and software
sectors started out as something else: consulting companies or making some
other kinds of electronic products. It was the excitement of the burgeoning
computer and software domains that attracted so many startups that migrated
toward computers and software.

When looking at the companies in software and computers that were formed
during the 1970s, readers will notice that many of them were created in
“Silicon Valley,” which is essentially the Santa Clara valley in California.

The original towns included in Silicon Valley ran north from San Jose up
past Palo Alto. This region included Stanford University and was not far from

ptg11539604

131Computer and Software Companies Formed During the 1970s

U.C. Berkeley on the other side of the Bay. Steve Jobs, the cofounder of Apple,
for example, lived in Cupertino, California, which is fairly near the center of
Silicon Valley. Dozens of software and high-technology companies are still
located in the region, as are many of the venture capital companies that funded
the startups.

Other fruitful areas for software startups are on the East Coast centering on
Cambridge, Massachusetts, and in the state of Texas. But successful software
companies have occurred in many geographic regions, including Cincinnati,
Ohio; Seattle, Washington; Portland, Oregon; and Jacksonville, Florida.

This decade witnessed a number of lawsuits either between software and
computer companies themselves or fi led by governments. Several antitrust suits,
patent infringement suits, copyright infringement suits, and other kinds of
modern litigation against computing and software companies seemed to accel-
erate during this decade, and they have scarcely slowed down in later decades.
Business tends to be litigious, and the software business is no exception.

The following sections are a sampling of the computer and software compa-
nies that formed in the 1970s.

Altair Computers

The Altair 8800 computer was one of the fi rst personal computers. It is famous
because Altair Basic was the initial product developed by Microsoft. The com-
pany that built Altair was the Micro Instrumentation and Telemetry Systems
Corporation (MITS), founded in 1969 in Albuquerque, New Mexico, by Forrest
Mims, Ed Roberts, Stan Cagle, and Bob Zaller.

MITS did not start with computers but rather with model-rocket equipment
(which explains the somewhat complex name of the company). Computers
came later in the 1970s. The Altair 8800 came out in 1975 and was featured in
Popular Science magazine, which made it quite a best seller, with thousands of
units selling in the fi rst month. Paul Allen and Bill Gates moved to Albuquer-
que, founded Microsoft, and developed applications for the Altair 8800,
including Altair Basic.

The Altair 8800 was technically sophisticated for the era, using an Intel
8080 chip and creating what later became the S-100 bus, a de facto industry
standard. This computer was the enabling device that started many other
important companies and inventions.

Apple Computer was founded in part due to Steve Jobs’s and Steve Wozniak’s
desire to improve on the Altair 8800 by offering a full computer. IMSAI comput-
ers were also introduced soon after with the idea of improving on the Altair.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth132

IMSAI is probably the fi rst “clone” that was advertised as being plug-compatible
with the Altair 8800.

Apple Computer

Steve Jobs and Steve Wozniak fi nished building the famous Apple 1 computer
on April 1, 1976, and incorporated Apple on January 3, 1977, in Cupertino,
California. Apple would grow to become one of the world’s wealthiest
corporations.

En route to this milestone, Apple would adopt Objective C as its main pro-
gramming language; pioneer elegant and popular devices such as the iPod,
iPhone, and iPad; and develop scores of innovative software applications.

Other popular technologies by Apple would involve creating the most suc-
cessful online music business, creating a set of popular Apple stores throughout
the world, and in general innovating across a broad range of computer and
software technologies.

Readers interested in the deeper history of Apple can read Walter Isaacson’s
book Steve Jobs: The Exclusive Biography, published by Simon and Schuster. This
book is a fascinating biography of a brilliant but decidedly erratic individual.

Baan

The Baan Corporation was created in 1978 by Jan Baan in the Netherlands. It
started as a consulting company, but Jan and his brother Paul soon built an
interesting software application in the ERP sector.

For a while, Baan grew rapidly and acquired many other software companies.
It had a good technical reputation for its fast and capable database and ERP
packages. Baan became a public company in 1995 and was listed on NASDAQ.

In 1998, Baan got into fi nancial trouble and began to lose its market share.
After a string of consecutive losing quarters, Baan was acquired in 2000 by a
British company named Invensys. One of the reasons for the sale was that Baan
had been accused of exaggerating sales volumes, which lowered its reputation
and value.

Computer Associates (CA)

CA was founded in 1979 by Charles Wang and Russell Artzt in Islandia, New
York. CA was a pioneer in the business-to-business (B2B) software domain. CA
specialized in a variety of business software applications such as accounting,
fi nance, order entry, and the like.

ptg11539604

133Computer and Software Companies Formed During the 1970s

CA tried to develop personal computer packages such as security and
antivirus but decided to leave that line and stay focused on larger business
applications sold to corporations rather than to end users.

They had a large software development staff and created quite a few inven-
tive applications. In fact, CA holds more than 400 patents and has hundreds
more pending.

Over time, CA also grew by acquisition and acquired so many software
companies that the Department of Justice began to examine whether or
not CA might own so many in the same fi eld as to perhaps constitute a poten-
tial monopoly. Some of the companies CA acquired were well known, such
as Applied Data Research (ADR), Cullinet, Capex, Sterling Software, the
Ask Group, and UCCEL. CA has acquired nearly two dozen software
companies.

CA was the focus of a number of government investigations on topics of
insider trading, executive compensation, and accounting methods. For various
reasons, CA had an unusually numerous set of lawsuits involving customers,
competitors, and the federal government. One of the lawsuits was between CA
and another giant, Electronic Data Systems (EDS), in 1996.

Note
As disclosure, I was an expert witness in a customer lawsuit against CA, but I retired before
the litigation fi nally settled.

One of the government investigations was for using accounting practices
that infl ated revenues by booking them before they had been paid. This case
involved the Securities and Exchange Commission (SEC) and the Department
of Justice. It resulted in a 2004 settlement under which CA paid $225 million
to shareholders and revised its accounting methods. This was a serious issue,
and former CA executive Sanjay Kumar, the CEO and Chairman, received a
12-year prison sentence. Eight other CA executives pleaded guilty to fraud
charges.

One government concern was that in 1999, Charles Wang received the larg-
est corporate bonus ever issued by a public company in history during a time of
business slowdown. The stock options awarded in this bonus amounted to
about $670 million, which is certainly a notable bonus.

In spite of intermittent legal problems, Computer Associates has grown fairly
steadily and is one of the largest pure software companies in the world. The
hundreds of CA patents and the large number of software engineers who per-
form research and development in CA show that the company was serious
about software engineering.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth134

Cray Computers

In 1972, the well-known computer designer Seymour Cray left Control Data
Corporation (CDC) and started his own company, Cray Research. The research
labs were in Chippewa Falls, Minnesota, and its corporate headquarters was
in Minneapolis, Minnesota. The fi rst Cray-1 supercomputer was installed in
1976 at the Los Alamos National Laboratory.

Cray computers were among the fi rst supercomputers and, indeed, the
Cray-1 was the fastest computer of the time. Seymour Cray soon dropped out
as CEO and became an independent consultant, starting several more compa-
nies. His original company fi led for bankruptcy in 1995.

The technologies used in the Cray computer lines were advanced for the era
and pioneered a number of innovations. The high-cost, high-speed innovations of
the Cray line became prestigious, and major companies and national governments
were proud to be known as Cray computer users.

The idea of superfast computers resonated through the industry. Cray triggered
a number of competitive companies in later decades and more or less pioneered
the supercomputer.

Supercomputers were used for very diffi cult problems that required intensive
and rapid calculations: weather predictions, nuclear physics, fl uid dynamics,
logistics, and other complex problem areas.

Eventually, monoprocessor supercomputers such as the Cray line began to
encounter competition from massively parallel arrays of computers. Because
fast monoprocessors were expensive, while small parallel computers were
cheap, the market for supercomputers began to shift toward parallelism.

Because a major feature of computers is high processing speed, computer
manufacturers often compete for speed records. In 1976, when the Cray-1 high-
speed computer was fi rst built, it established a world speed record for the era by
calculating at a rate of 160 megafl ops (a megafl op is one million fl oating point
operations per second).

Over the years, IBM, Fujitsu, Cray, and other companies would have heated
competition for these high-end supercomputers.

Cullinane

Cullinane was formed in 1968 by John Cullinane and Larry English. It was
located in Westwood, Massachusetts. The company is cited in this chapter
because it went public in the 1970s.

ptg11539604

135Computer and Software Companies Formed During the 1970s

The Cullinane IPO was the fi rst for a pure software company. It was also the
fi rst IPO handled by Hambrecht and Quist, who would later handle many others.
It was also the fi rst software IPO where a software company was valued at more
than a billion dollars. Later, Cullinane became the fi rst software company to run
an ad during a Super Bowl.

The main software applications for Cullinane were in the database manage-
ment area; its Integrated Data Base Management System (IDMS) was its main
database product. This competed successfully with several others, including IBM’s
Information Management System (IMS). IDMS was based on the CODASYL
data model and would eventually lose ground to relational databases.

In 1982, IBM announced the 4300 series of computers and told clients that
the Cullinane IDMS database product would not run on the 4300, so IMS was
the only choice. Unfortunately for IBM, it turned out that Cullinane was able to
port IDMS to the 4300 series by changing only one single instruction! This, of
course, embarrassed IBM and put them on the defensive.

After many ups and downs, Cullinane (whose name was changed to Cullinet)
was acquired by CA in 1989.

During the 1970s and 1980s, database products were a fairly hot component of
the software market space, and many companies and products entered the market.
Database applications remain important today. Among the numerous database
applications and query methods are Access, dBASE, DB2, Easytrieve, Filemaker,
FoxPro, IDMS, IMS, Informix, Ingres, MySQL, Oracle, Sybase, and many more.

Database technology is also a hot pure research topic, and at least a dozen
navigation models have surfaced, including sequential, CODASYL, relational,
entity-relationship, and many more. This book only deals with a few surface
issues, but the database literature is large and has many excellent sources.

Digital Research

The company now known as Digital Research was founded by Dr. Gary Kildall
and his wife, Dorothy, under the name Intergalactic Digital Research in 1976 in
Pacifi c Grove, California.

The original name was an attempt at humor that was not uncommon in the
era, as shown by the 1975 creation of a journal originally called Dr. Dobb’s
Journal of Tiny BASIC Calisthenics and Orthodontia. Both the company and
the journal changed their names when their ideas started to be taken seriously.
Dr. Dobb's evolved into a respected technical journal and has a website that is
still widely read by software engineers.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth136

Digital Research created the famous control program for microprocessors
(CP/M) operating system that was used on many computers running Intel chips.
For several years, it was the dominant operating system for computers that used
the Intel 8086 and 8088 chips.

It is the stuff of legend that IBM originally asked Digital Research to develop
the operating system for the IBM personal computer in 1980. For one reason or
another, Digital Research declined, which allowed Microsoft to create both the
IBM disk operating system (DOS) and, later, Microsoft Windows. One possible
reason is that Gary Kildall did not want to sign the IBM nondisclosure agree-
ment, but there have been different stories about why Digital Research declined
IBM’s offer.

Note
It is interesting that when fi rst approached by IBM, Bill Gates referred IBM to Gary Kildall of
Digital Research as a professional courtesy. When IBM was rebuffed, Microsoft got the contract.

Digital Research later built a competitive operating system for the IBM PC
called DR DOS that competed head to head with MS-DOS. Some computer
companies offered both. However, Microsoft gave such good licensing terms to
computer manufacturers that included MS-DOS on every machine sold that
sales of DR DOS dried up. This led to an antitrust suit against Microsoft in
1994 and another in 1996.

When Microsoft developed Windows, the original DOS application was
under the covers. However, the Digital Research DR DOS was not supported.
Indeed, one of the claims in the 1996 antitrust suit was that Microsoft detected
the presence of DR DOS and caused system crashes to give the impression that
DR DOS was unstable. Microsoft paid $150 million to settle the 1996 suit and
a condition of the settlement was that evidence from the suit be destroyed.

Eventually, Microsoft expanded into the world’s largest software company,
while Digital Research drifted along until being acquired by Novell in 1991.

Galorath Incorporated

Galorath was started by Dan Galorath in 1979 as a consulting organization
aimed at improving software development, which was a common concern dur-
ing this decade. The company later incorporated in 1987 in Marina Del Rey,
California. Galorath is one of a number of organizations that build parametric
software cost-estimating tools. The main product of Galorath is called SEER,
and it has software, hardware, and manufacturing fl avors.

ptg11539604

137Computer and Software Companies Formed During the 1970s

Parametric estimation for software projects is more accurate than manual
estimation, and the accuracy is even better for large applications with more
than 1,000 function points where few project managers have extensive data or
experience.

Parametric estimation should have been a mainstream technology used on all
major software projects. But for some reason, the parametric companies have
stayed comparatively small and also independent rather than being scooped up
by larger global companies.

Note
Companies named after their founders often encounter problems if the company is sold, as
can be seen in the discussion of Ed Yourdon’s company later in this chapter. The company
retained the founder’s name long after it had gone on to something else.

IMSAI Computers

In 1973, William Millard started a home business called Information Manage-
ment Associates (IMS) in San Leandro, California. In 1974, the company began to
design a special workstation for General Motors auto dealerships, but it did not
fi nish this.

In 1976, IMS brought out a clone of the Altair 8800 called the IMSAI 8080.
Like the Altair, it used the Intel 8080 chip and even copied the S-100 bus. The
IMSAI came out in 1975 and sold well for a few years, perhaps delivering as
many as 20,000 units. However, sales declined and fi nancial problems mounted.
IMSAI was acquired by two former employees, Thomas Fischer and Nancy
Freitas, after IMSAI fi led for bankruptcy in 1979.

The IMSAI computer would serve as a model to the dozens of clones that
would mimic the IBM personal computer in future decades. Once a salable
product shows signs of a large market, dozens of fast followers plunge in
behind, as can be seen by the current markets for smartphones and tablets.

It is a curious phenomenon that getting venture funding for a truly new and
original concept is very diffi cult. But if the concept succeeds in gaining market
acceptance, it is quite easy for the next 10 clones to get venture funding. This is
perhaps because the venture community does not quite understand technology
itself but is pretty good at seeing what sells once it is developed.

InterSystems Corporation

InterSystems was founded in 1978 in Cambridge, Massachusetts, by Philip T.
Ragon. InterSystems is a privately held corporation that has turned a vertical

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth138

market in the health-care area into a multibillion-dollar business. In fact, Ragon
is a software billionaire.

The health-care industry (including the medical records for the Veterans
Administration) was an early adopter of a special language called MUMPS,
which stands for Massachusetts General Hospital Utility Multi-Programming
System. MUMPS originated in 1966 by Neil Pappalardo and colleagues at the
Massachusetts General Hospital. It is a somewhat quirky interpreted language
that features an integral database technology aimed at medical records.

InterSystems was a pioneer of using MUMPS and is one of its original ven-
dors. Later, InterSystems built its own proprietary database called CACHE.
InterSystems is a major vendor serving hospitals and medical records groups.

In 2008, InterSystems fi led an unusual lawsuit against Microsoft, which
had offi ces in the same building in Massachusetts. The suit tried to prevent
Microsoft from expanding and renting more offi ce space. As mentioned
elsewhere in this chapter, the software industry is somewhat litigious.

In the modern era, InterSystems remains a major player in health-care
applications. As a private company, it is not as well known as public compa-
nies such as Apple and Microsoft, but it is a very successful enterprise with a
strong vertical market. It provides proof of the concept that vertical markets
can be successful.

Lawson Software

Lawson was formed in 1976 in St. Paul, Minnesota. The founders were two
brothers, William and Richard Lawson, together with John Cerullo as Chief
Technology Offi cer (CTO).

The Lawson Company was a pioneer in ERP packages, where they competed
with SAP, Oracle, PeopleSoft, and others. Lawson was successful enough to go
public in 2001.

Microsoft

In 1975, Bill Gates and Paul Allen founded Microsoft in Albuquerque, New
Mexico. The future history of Microsoft would be a key element of the growth
of the software industry in this decade and in all future decades. The name
“Microsoft” was developed by Paul Allen as a combination of “microcomputer”
and “software.”

The fi rst Microsoft product was a BASIC interpreter for the Altair 8800
computer built by MITS. This later evolved into the well-known Microsoft

ptg11539604

139Computer and Software Companies Formed During the 1970s

BASIC, which was a major language of the 1970s. In 1979, Microsoft moved
from Albuquerque to Bellevue, Washington, where its world headquarters still
remains.

It is interesting that Gates and Allen approached MITS rather than the other
way around. The fi rst BASIC for the Altair was written by Gates in about eight
weeks.

Note
Bill Gates’s mother, Mary Maxwell Gates, and John Opel, the CEO of IBM, were both on the
executive board of United Way. This contact was how IBM fi rst became aware of Bill Gates and
Microsoft.

Oracle

In 1977, Larry Ellison, Bob Miner, and Ed Oates founded the company that
would later become Oracle. However, its fi rst name was Software Development
Laboratories and it was not renamed as Oracle until 1995.

Reportedly, Oracle was chosen as the name because it was a code name for a
CIA project that Ellison had worked on. In fact, the CIA and the Air Force were
early customers of the Oracle database.

Larry Ellison became interested in relational databases after reading materials
published by Ted Codd of IBM, the famous inventor of the relational model.
Oracle also became a leader in ERP, and it eventually went on a buying spree
and picked up many other software and hardware companies.

Oracle was a model of software success and eventually became a major
player in both the database world and the ERP world. Ellison himself became
famous due to his interest in yachting and yacht racing. He was also famous for
his strong opinions, one of which was a dislike for Microsoft. Ellison was
reported to be the highest-paid CEO of any U.S. company and not just
in software. This is another example of software creating vast wealth. Oracle
annual sales are in the $10 billion range.

There were many competitors in both the database and ERP domains, such
as Informix and Sybase. A major ERP competitor was the German company
SAP. Oracle fi led a software piracy and copyright violation lawsuit against
SAP. In 2010, Oracle was awarded a total of $1.3 billion by the court. This
was the largest copyright award of any lawsuit. Needless to say, there was an
appeal and more legal wrangling. As of 2012, the award was reduced to
around $272 million, but it is uncertain whether there will be further suits or
changes in the amount.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth140

Oracle grew by acquisition as well as by its own development efforts. Some
of the famous companies and products now under the Oracle umbrella include
Sun Microsystems, the famous Java programming language, and the Open
Offi ce suite that competes against Microsoft Offi ce but is free to users. Oracle
also acquired Siebel, JD Edwards, and PeopleSoft.

Oracle has become sort of a software conglomerate with database packages,
ERP, business tools, development tools, and several other kinds of software
packages.

Price Systems

Price Systems designs and builds parametric hardware and software cost-
estimating tools, primarily for military and defense software applications. It
was founded as a division within the RCA Corporation in 1975 in Cherry
Hill, New Jersey.

Frank Freiman was the original founder and one of the developers of the
initial estimation tools together with Robert Park. The current president is Tony
DeMarco, also a pioneer in software cost estimation.

When RCA began its withdrawal from the computer business, Price
became an independent company. Later, in 1998, there was a management
buyout, which moved the company to Mount Laurel, New Jersey. The
management team included Anthony DeMarco, Bruce Fad, Earl King, and
George Teologlou.

Because the military and defense communities often build large software
applications with more than 10,000 function points or 1,000,000 lines of code,
parametric estimation is often used. (A study that I conducted found that the
accuracy of manual estimates became progressively worse with application size
and was always more optimistic than the actual costs and schedules when the
projects were completed.)

Price is now one of a number of companies that design and build parametric
estimation tools. All of these companies are roughly the same size and all are
independent, even though several started within large corporations.

Parametric estimation companies have also been subject to a curious
reversal of startup sequencing. Many software companies started as small
independent companies that were later acquired by major corporations.
Parametric estimation, on the other hand, tended to start in major corpora-
tions such as IBM, RCA, and TRW and were then spun off into independent
companies later.

ptg11539604

141Computer and Software Companies Formed During the 1970s

Prime Computers (Pr1me)

Prime Computers was in the sector of building minicomputers. It was founded
in 1972 in Natick, Massachusetts, by a team of several entrepreneurs, some of
whom had worked on the MIT Multics project. The fi rst Prime computers were
patterned after Honeywell computers and are sometimes called clones.

Note
While “Prime” is spelled using the letter “i,” the company’s logo uses the numeral “1.” This is an
awkward situation for discussing the company, so “Prime” with all alphabetic characters is
used in this book.

William Poduska was the Vice President of Software and became an important
fi gure in the history of software engineering. Poduska eventually left Prime and
founded Apollo Computers.

Prime was one of the companies that achieved success with vertical market-
ing: banking was the industry chosen by Prime, and it did well. By the
mid-1980s, many banks were using Prime hardware and the Prime database.
Prime peaked during the late 1980s when its equipment was used by over
330 Fortune 500 companies.

Prime also tried to diversify and had several interesting computer-aided design
(CAD) products. In later years, Prime fell behind in processing speed and tech-
nology. For example, unlike high-end IBM equipment, Prime computers could
be exported to Russia and the Soviet countries because the U.S. government did
not consider them to have any technologies that might be stolen.

Eventually in 1998, Prime stopped most of its manufacturing and shut down
many operations. The remaining pieces were renamed Computervision and
were acquired by Parametric Technology.

Systems Applications Programs (SAP)

An important kind of software application and an important company emerged
circa 1972. This was the German company Systemsanalyse und Programment-
wicklung, or Systems Applications Programs (SAP), which was a pioneer in
ERP applications. The original name meant systems analysis and program
development.

SAP was founded in Mannheim, Germany. Later, the company kept the
same SAP acronym but changed the legal name of the company to Systeme,
Anwendungen, und Produkte in der Datenverabeitung. This newer name

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth142

meant Systems, Applications, and Products in Data Processing. The fi ve
founders were Detmar Hopp, Klaus Tschira, Hans-Werner Hector, Hasso
Plattner, and Claus Wellenreuther. (These founders were all former IBMers.
For about 100 years, IBM has been a fruitful source of entrepreneurs who
form their own companies.)

The technology used by SAP had a convoluted path. Some of the software
and ideas were originated by Xerox. When Xerox decided to leave the
computer business, it hired IBM to transition some of its software onto
IBM platforms. One of the packages was called SDS/SAPE and was used in
SAP. But there is more to the story. IBM gave the software to the fi ve found-
ers of SAP in exchange for founders’ stock in the company in the amount of
about 8%.

SAP was also interested in vertical marketing. As SAP grew and prospered, it
was able to enter quite a few vertical markets at the same time. Among these
were manufacturing, process control, fi nance, government operations, consumer
products, and services.

SAP grew to become the world’s third-largest software company, and en
route to this rank it also acquired other companies such as Sybase and
SuccessFactors.

SAP also started an interesting academic program that allows university pro-
fessors and students full access to SAP. The SAP University Alliance Program
now includes around 1,200 universities and about 250,000 students. The idea
of a strong university program pays off with future customers who learn to use
products as students and want to continue after graduation.

As mentioned in the section of this chapter on Oracle, in 2010, SAP lost a
$1.3 billion copyright infringement suit fi led by Oracle. There are still ongoing
changes and adjustments, so the litigation and fi nal amounts may not yet
be settled.

Tandem Computers

Tandem was founded in 1974 by Jimmy Treybig, James Katzman, and Michael
Green, with the help of the venture capitalist Jack Loustaunou and others in
Cupertino, California. The founders had worked for Hewlett-Packard and
broached their ideas for fault-tolerant computing but, at the time, HP was not
interested.

The technical idea behind Tandem was important then and is still important
now. For many kinds of critical software packages such as ATMs, stock
exchanges, telecommunications, and hospitals, failures and outages are disasters.

ptg11539604

143Computer and Software Companies Formed During the 1970s

Tandem designed computers that were intended to operate in a nonstop mode
and to not fail. Obviously, to operate without failing, redundant components
were needed, along with a method of quickly switching from a failing component
to an alternate component without losing time or data.

Tandem carried redundancy to new heights. All of the components were
redundant and separate from each other so that the failure of any would not
impact the others. They communicated by sending messages back and forth.

Tandem also created a kind of monitor or watch-dog software feature that
kept track of the reliability of every component and issued warnings as soon as
problems were detected.

In addition, Tandem developed methods of swapping out or changing
components while the rest of the computer continued to operate. These were
important concepts for computers and software that needed high reliability.

At the time Tandem was founded, computer reliability measured in terms of
mean time to failure (MTTF) and averaged only a few days. Tandem stretched
out the MTTF window by at least 100-fold.

The markets served by Tandem recognized the value of what they were
doing, and Tandem became a darling of Silicon Valley with one of the fastest
ascents to Fortune 500 status of any company.

Tandem also had an interesting corporate culture, which engendered both
enthusiasm and loyalty among Tandem employees. (Tandem was one of my
consulting clients in the 1980s. The Tandem managers and technical personnel
were very enjoyable to work with, and all seemed very capable.)

Tandem used a number of unique and proprietary software and hardware
designs. One of these was the Tandem operating system. Unfortunately, when
Tandem tried to enter the PC market in the mid-1980s, its product was not fully
IBM-compatible and not compatible with many boards and physical devices
either. As a result, it was unsuccessful.

Note
Many companies learned to their sorrow that being only semicompatible with IBM was not
enough to succeed, as shown by the ITT and AT&T personal computers, the Tandem personal
computer, and the DEC Rainbow personal computer. The IBM personal computer architecture
had become a de facto global standard and only rival computers that were 100% compatible,
such as Compaq, were able to stay in business.

By the 1990s, Tandem experienced a slowdown in sales and some fi nancial
issues. Tandem was acquired by Compaq, who hoped to achieve success in the
higher ends of the computer market but did not do so.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth144

Compaq also acquired Digital Equipment Corporation (DEC), which had
also fallen on hard times when personal computers replaced minicomputers and
their VAX line, and DEC was late to the personal computer market.

The amalgamation of Compaq with other computer companies was not
successful, so in 2001, the whole combination was acquired by Hewlett-Packard.
Tandem became a line of servers within HP.

One of the reasons for the lack of success of Compaq with Tandem is because
of differences in marketing and sales strategies. Compaq computers were stand-
alone devices that could be acquired and used at once. They did not require a
lot of onsite discussions and negotiations in order to make sales.

Tandem computers, on the other hand, were often acquired to tackle
mission-critical tasks where very high reliability was needed. Therefore, the
sales cycle involved many visits to executives and technical personnel
to show how the Tandem computers would fi t into the overall business
architecture of the potential clients.

The Tandem products and the Tandem corporate culture are part of the Silicon
Valley legends and deserve to be studied. The basic Tandem ideas of aiming at
ultra-high nonstop reliability were sound and solved previously unmet market
needs. But technology changes so rapidly in computers and software that it is not
easy to keep pace.

Yourdon, Inc.

Yourdon, Inc., was founded by the famous software author Ed Yourdon in
1974 in New York. As discussed elsewhere in this chapter, software applica-
tions were becoming large and complex. It was obvious that something more
rigorous than unstructured cowboy development was needed for applications
as big as operating systems.

Yourdon’s interesting new company was among quite a few startups from
this decade that actually made a difference in how software was developed.
Yourdon is one of the pioneers of structured development and also one of
the most prolifi c authors (together with Dr. Gerald Weinberg) of books that
introduced thousands of young software engineers to better methodologies.
Yourdon has written dozens of books, but his most famous, due to its striking
title, is Decline and Fall of the American Programmer, published by
Prentice Hall in 1992.

When Yourdon ran his company, it grew to about 150 people with offi ces in
the United States and Europe. Yourdon provided training and consulting to
hundreds of companies and thousands of software engineers.

ptg11539604

145The Impact of Companies Founded During the 1970s

In 1986, Yourdon was sold to CGI Informatique, a French company that
later merged with IBM. After the sale, Yourdon had some diffi culty in extract-
ing his own name for personal use, which is not uncommon for companies
named after famous individuals.

Yourdon’s company did not build either computers or software directly, but
it provided extremely valuable information via books and training to those
who did build computers and software. The company was a pioneer in a
valuable niche.

Yourdon also created a famous magazine called American Programmer,
which later was acquired and changed its name to the Cutter IT Journal. This
remains one of the better journals associated with software engineering.

The Impact of Companies Founded During the 1970s

The companies cited in this chapter show how important computers and soft-
ware had become to corporate operations during this decade. FedEx, NASDAQ,
and Southwest Airlines all used computers and software to achieve excellence
in customer service and to take their respective businesses in new directions
probably not achievable without computers.

Of the computer and software companies cited in this chapter, four grew to
become among the largest and wealthiest companies on the planet: Apple,
Microsoft, Oracle, and SAP.

A number of the entrepreneurs who started these companies also became
vastly wealthy, with Bill Gates being the world’s wealthiest man for several
years. Other entrepreneurs such as Paul Allen, Steve Ballmer, Steve Jobs, and
Larry Ellison also became personally wealthy, as did Charles Wang, Jeff Bezos,
Sergey Brin, Terry Ragon, and quite a few others.

Other leaders from this decade published scores of books that transformed
software development from an unstructured cowboy style to a more predictable
structured style. Some of the authors whose work was infl uential include Fred
Brooks, Gerald Weinberg, Ed Yourdon, James Martin, Carma McClure, and
Larry Constantine.

The computer and software industries have been attractive for entrepre-
neurs in part because these industries have created many of the more recent
billionaires and hundreds of millionaires. In a comparatively short time span,
the computer and software industries have created enormous wealth and made
permanent changes in business and government operations and even in our
personal lives.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth146

The Troublesome Growth of Software Applications

As software became more pervasive during the 1970s, applications became
larger and more complex. This led to pioneering studies in improving software
engineering. It also led to the publication of two landmark books, among the
most famous software books to date: The Psychology of Computer Program-
ming by Gerald Weinberg in 1971 and The Mythical Man-Month by Frederick
Brooks in 1975. Both authors were colleagues at IBM, which was a hotbed of
software engineering research during this decade.

Other notable books from this decade include The Art of Software Testing
by Glenford Myers in 1979 and Structured Design by Edward Yourdon and
Larry Constantine, also in 1979.

As it happens, my fi rst book, Program Quality and Programmer Productiv-
ity, was published in 1977. In those days, the term “software engineering” was
not yet widely used and those of us who built software were still just called
programmers.

As can be seen from the book titles and publication dates, software began to
be studied as a technical discipline that needed formal methodologies in place
of cowboy programming using random techniques. These books were written
in response to the expansion of software, the increase in size of software
systems, and the mounting numbers of quality problems that began to attract
attention.

Brooks’s classic book The Mythical Man-Month dealt with an issue that fi rst
became important during this decade and that still remains important. The
issue is that as software applications began to get large, software bugs or defects
and the volumes of software paperwork increased at a faster rate than size itself
measured using either function points or lines of code. The IBM operating
system discussed in the book, the S/360, was the fi rst IBM application to top
1,000,000 lines of code, or roughly 10,000 function points.

IBM had not planned on keeping the S/360 for more than about fi ve years.
In the middle of the 1970s, IBM was working on a new operating system to be
called Future System, or FS for short. This would have been at least ten times
larger than the S/360. However, it was recognized that even IBM would
have trouble building such a massive system to meet the planned schedule and
making it reliable enough to meet IBM’s stringent quality standards.

While doing some work on the IBM Future System, I became interested in
the size of the requirements and specifi cations. When they were scaled up from
the size of similar materials for the S/360, the number of pages in total would

ptg11539604

147Numerous Fragmented Software Subcategories

take 40 years for an IBM employee to read. One of the endemic problems of a
big system is that the volume of paperwork grows faster than the code size.

Numerous Fragmented Software Subcategories

The decade saw the overall software industry begin to fragment into a num-
ber of subindustries, each of which would become large and profi table in its
own right.

Younger readers probably take these categories for granted because they
have used computer-controlled devices since early childhood. Older readers
born before World War II have seen the creation of the entire gamut of applica-
tions discussed here because none of them existed until the 1950s and many did
not exist until the 1970s or later.

The following subsections provide short summaries of these software catego-
ries. These are some but not all of the major forms of software that emerged
during the 1970s.

Advanced and Experimental Software

The kinds of applications that are deemed “advanced” change over time. In the
1970s, the fi elds of artifi cial intelligence and natural language translations were
being pioneered and were certainly advanced for the time. Later, mind/machine
interfaces and robotics would become topics of advanced research. Virtual
reality was also an advanced topic. Software that aids astronomers and physi-
cists is often both advanced and experimental. Medical diagnostic software is
also an advanced topic.

Some specifi c advanced topics from the 1970s included embedded medical
devices such as the software used in cochlear implants; GPS mapping, which
would later become the dominant method for navigation and map making;
natural language translation; robotic manufacturing; and artifi cial intelligence.

Business Software

Business software includes software that handles banking and fi nancial transac-
tions, personnel transactions, order entry, accounting, insurance processing, air-
line and hotel reservations, and many other kinds of general business
transactions.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth148

Business software evolved from earlier accounting and fi nancial packages that
used tabulating machines rather than true computers. When digital computers
began to replace tabulating machines, the class of management information
systems, or MIS, applications began to emerge. These soon shifted from using
punch cards to using magnetic tape to using disk drives.

The advent of business MIS software led hundreds of companies to create
internal software development groups and also large data centers for their
mainframe computers. By the end of the 1970s, some of these software and
data center combinations employed more than 5% of the total corporate
workforce.

The comparatively high costs of such groups and their tendency to run late
and have cost overruns led to the development of software outsource compa-
nies, specialized management consulting companies, and the development of
tools such as parametric estimating tools that could help keep software
projects under control. CA was founded in 1979 and is an archetype of a com-
pany that marketed business MIS applications for fi nance, accounting, fi xed
assets, and other common business purposes.

Some specifi c kinds of business software include accounts payable, accounts
receivable, order entry, payrolls for exempt and nonexempt employees, inventory
management, and customer data.

Communications Software

Software and computers quickly moved into standard telecommunications and led
to the creation of digital switches and eventually to digital handsets and smart-
phones. Software also had a major impact on data communications and led to the
creation of email, instant messaging, and other forms of data transfer.

Specifi c kinds of communications software include network management,
central offi ce switching systems, private branch exchange (PBX) switching
systems, cell phone routing, and many others.

Cybercrime and Hacking Software

Computerized storage of valuable information such as bank accounts, social
security numbers, birth records, criminal records, medical records, and other vital
data has caused cybercrime to become an alarmingly large and profi table subind-
ustry. There are now many groups of organized hackers involved in stealing and
selling personal, business, and even government data.

ptg11539604

149Numerous Fragmented Software Subcategories

Specifi c kinds of cybercrimes are too numerous to cite here and are discussed
in Chapter 12. However, cybercrimes include botnets, viruses, worms, hacking,
identity theft, phishing, keystroke logging, and many others.

To counter cybercrime and hacking software, a number of defensive categories
have emerged, including fi rewalls, antivirus and antispam programs, and some
newer programming languages such as E that are intended to raise the resistance
of software to external attacks.

Database Software

Computers and software quickly became the tools of choice for storing and ana-
lyzing large volumes of records and business data. This would not be possible
without special kinds of software applications for storing data in ways that
allowed fairly convenient random access to specifi c records and fi elds. Database
technology is one of the most important byproducts of digital computers and
software.

As a result of database technology, millions of books, vast collections of
laws, and huge volumes of data are available for analysis in unprecedented
ways. This is becoming known as big data and is a concept that will be
discussed in later chapters.

Currently, there are at least a dozen database schemas such as hierarchical,
relations, entity-relationship, etc. There are also dozens of commercial database
engines and query tools such as Access, DB2, SQL, MySQL, NoSQL, Oracle,
and many more. This is a major subfi eld of software engineering and has been
an active topic of research for 50 years or more.

Education Software

In one of their fi nal meetings before Steve Jobs passed away, one of the topics of
conversation between Steve Jobs and Bill Gates was a shared disappointment that
computers had not had as great an impact on education as they both had wished.

Note
Readers of this book will probably fi nd Steve Jobs: The Exclusive Biography by Walter Isaacson
a very rich source of information about computers and software between the mid-1970s and
about 2010. Isaacson’s book includes many interviews with software luminaries and gives their
fi rsthand opinions.

There are some very good education tools available for both normal educa-
tional purposes and also special education for blind, deaf, or handicapped

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth150

students. However, ordinary public schools tend to use software for logistical
purposes, such as schedules and payrolls, more than for educational purposes.
Even in high school, software is more or less used in the background, except in
some schools that do teach programming.

In some states such as Pennsylvania, there are corporations that have pooled
their resources to acquire computers and software, which are then donated to
inner-city schools that may lack the funds to acquire such tools. Some of these
corporate donors also invite groups of students to visit offi ces and see what it
will be like to work at one after graduation. These groups also fund fi eld trips
so grade school students can visit universities, because many young children
have no idea at all what college life would be like.

On the other hand, outside of schools, children start using smartphones and
computers from a very early age. In fact, a number of self-taught hackers have
been found who are no older than 15.

Several school districts, such as those in California, are beginning to replace
paper textbooks with e-books on Amazon Kindles, Nooks, or iPads. However,
computers and software could probably be more effective and more widely
deployed than they are today. Conservatism on the part of school administra-
tors and the fact that school boards and many teachers are themselves not fully
computer literate may be causative factors.

Embedded Software

One of the major subindustries of the software world is that of embedded soft-
ware within physical devices. Some of the more important forms of embedded
software applications include software in medical devices, software that
controls automobile engines, avionics software that controls aircraft during
fl ight, and hundreds of embedded applications in consumer products ranging
from televisions to telescopes.

There are probably more embedded applications installed than any other
known form of software. This is because some embedded applications are used in
millions of physical devices. As an example, almost every modern automobile now
uses embedded software for antilock brakes, and many also use embedded soft-
ware for fuel injection. Millions of “smart” appliances such as television sets,
washing machines, microwave ovens, and even alarm clocks and wristwatches
now are controlled by embedded applications. In industrialized countries, an aver-
age college-educated white-collar worker probably uses at least 50 embedded
devices on a daily basis, often without even knowing it. If we have medical prob-
lems, such as deafness or a heart malfunction, embedded devices may be implanted

ptg11539604

151Numerous Fragmented Software Subcategories

in our bodies. Over the past 35 years, embedded devices have been used in almost
every kind of modern appliance and piece of complex mechanical equipment.

The widespread use of embedded devices is not without new and modern
problems. Lawsuits have been fi led due to brake failures or unintended auto-
motive acceleration. When a computer-controlled device breaks, it is no longer
possible to make repairs; instead, it is now necessary to swap the defective
embedded device for a new one, often at considerable expense.

A fi nal problem based on our recent dependence on embedded devices is that
some can be hacked or accessed remotely by cybercriminals. Worse, an electro-
magnetic pulse (EMP) caused by a nuclear explosion, and possibly by strong
solar storms, can shut down or damage embedded devices, possibly beyond
repair.

Gaming and Entertainment Software

The computer game industry is one of the most striking new kinds of businesses
in all history. The idea of millions of humans interacting in virtual environments
was not even a science-fi ction dream until these games started to appear in real
life. Computers and software have also transformed fi lmmaking and have led to
amazingly realistic special effects and almost photographic realism of images
that are purely computer generated. Music composition and music performances
have also been impacted by computers and software. Indeed, almost every
teenager has access to thousands of downloaded songs at any time.

Some specifi c game and entertainment software include replicas of board
games such as chess and backgammon; hundreds of card games; single-player
games such as the classic Doom; and, more recently, massively multiplayer
online role-playing games (MMORPGs).

Computerized animation is now the dominant tool for cartoons and
full-length fi lms. Computerized music services such as Pandora use sophisticated
algorithms to classify composers and musical types; composers and performers
can now write music and record it using embedded devices and computers.
Music synthesizers are older than computers, but all of the modern ones use
embedded chips and software.

Manufacturing Software

For hundreds of years, assembly lines and machine tools were controlled manu-
ally by skilled operators. During the 1970s, computers began to be applied to
assembly lines and repetitive operations. Eventually, this would lead to fully

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth152

robotic manufacturing with very few humans involved in the process at all.
Not only hardware manufacturing but also chemical, pharmaceutical, and oil
manufacturing would become more and more automated.

Today, many companies practice just-in-time manufacturing, and the whole
sequence from ordering raw materials through fi nal assembly is controlled by
computers. Robotic manufacturing has cut down on shop-fl oor labor in the
automotive and aerospace sectors, as well as in the area of smart appliances and
smartphones.

Middleware Software

Computers and software are symbiotic. The hardware is inert unless controlled
by special kinds of software termed operating systems that handle disk drives,
communication ports, and other physical attributes. The applications that cus-
tomers use and care about sit on top of the operating systems, but not directly
on top. In between the operating systems and the user applications is a layer
called middleware that sends requests from applications to the operating
system, distributed computing, web request processing, and other services. The
exact nature of middleware is somewhat ambiguous.

Some specifi c examples of middleware include game engines that help game
developers interface with graphic chipsets, libraries of services that handle
multimedia, and the multimedia home platform within smart television sets.

Military Software

Starting with SAGE in the 1950s, the Department of Defense and the military
services have been leaders in usage of both computers and software. In fact, even
before digital computers, the military had a long and successful history with
analog computers. These were used for bombsights, torpedo targeting, shipboard
gun controls, anti-aircraft targeting, and numerous other purposes. In fact, analog
computers were the dominant military computing engines through the end of
the Vietnam War. Digital computers are now major operating components of
all sophisticated weapons systems, including combat aircraft, guided missiles,
warships, battle tanks, and essentially any complex device.

Of course, weapons systems are not the only kinds of software used by the
uniformed services. Hundreds of other kinds of applications are needed for
logistics, planning, communications, medical records, personnel records, pay-
rolls, purchasing, and normal kinds of business functions. The U.S. Department
of Defense is currently the world’s largest owner of software, which is starting
to age and have signifi cant maintenance costs.

ptg11539604

153Numerous Fragmented Software Subcategories

Some of the largest software systems in history have been built by the U.S.
Department of Defense and the uniformed services. One of these was the
World-Wide Military Command and Control System (WWMCCS), which
reportedly topped 300,000 function points or more than 21,000,000 lines
of code.

In recent years, the military services have created cyberwarfare units for pro-
tecting U.S. cyberassets and for coming up with possible future offensives
against enemy cyberassets in the event of a physical war.

The U.S. strength in computers and software is a strong military asset. How-
ever, other countries are attempting to catch up, with China being the number
two country in usage of computers and software for military purposes. In fact,
China currently has a larger cyberwarfare unit than the United States.

Open-Source Software

Surprisingly, the fi eld of open-source software has grown about as fast as other
new software fi elds. Even more surprising, the quality of open-source packages
often compares favorably to commercial software applications, some of which
are quite expensive.

The open-source topic is included in this chapter on the 1970s because one
of the founders of the concept, Richard Stallman, began to share software
developed at MIT with other universities from 1970 forward.

The phrase “open source” means that the source code of the software is
available to the user community and users can modify the code if they wish.
The category of open source overlaps but is not identical to the category of free-
ware. As the name implies, freeware is distributed at no cost. However, not
every freeware application provides source code.

Some open-source software ranks among the most widely used applications
of the modern era. Several examples of open-source applications with millions
of users include Mozilla Firefox; the Android operating system; and the Open
Offi ce suite of tools that includes a word processor, a spreadsheet, a slide
program, a drawing package, and more.

Many programming languages and their compilers and tools are also open
source, such as Perl, PHP, Python, and Ruby. The Linux operating system is
also open source.

Just because an application is open source does not give users unlimited per-
mission to do anything they want with the application and its source code. Many
open-source products are distributed using the well-known GNU General Public
License (GPL), which was created by Richard Stallman of the Free Software

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth154

Foundation. The GNU license allows users to modify the code, but products
using either the original or modifi ed code must also use the GNU license. This is
called copy left as opposed to copy right.

There are websites and services that list open-source and freeware tools.
SourceForge.net is such a site. There are currently around 50,000 available
open-source applications, roughly half of which use the GNU GPL license.

The domain of open-source software has a growing number of interesting
and useful applications and a fairly sophisticated way of developing the soft-
ware, releasing it, and fi xing bugs. Open source is by no means chaotic, but
neither is it strict and regimented.

An interesting book on the open-source movement is The Cathedral and the
Bazaar, written by Eric Raymond in 1997. This book was subtitled Musings of
Linux and Open Source by an Accidental Revolutionary. The theme of the
book is that conventional commercial software is built like a cathedral with
careful plans and a formal organization. Open source, on the other hand,
operates like a bazaar with scores of vendors more or less cooperating under
general guidelines.

Personal Software

The 1970s would be only the beginning of applications for personal use,
which would not come to fruition until the arrival of portable computers and
handheld smart devices in future decades. However, applications such as cal-
endar management, word processing, and spreadsheets did arrive during this
decade.

In today’s world, a variety of extremely sophisticated software packages are
available. Some handheld smartphones have voice-activated commands that
can tell their owners useful information such as the names of nearby restau-
rants. GPS maps are endemic and can point out optimal routes by car, bicycle,
or on foot. Among those with an interest in astronomy, star maps provide a
wonderful view of every major star, planet, and constellation in every direction,
including through the earth. Many of us no longer keep manual telephone lists
or address books because our personal records are online.

If we want to buy something, our computers, tablets, or smartphones can pro-
vide information and addresses of local stores. They can also show the compara-
tive prices of specifi c products in local stores. If we don’t need the item today, we
can buy it over the web and probably avoid paying local or state taxes.

Computers and software have made a very big impact on our personal lives
and communication styles. Many of us have many more “friends” on social

ptg11539604

155Numerous Fragmented Software Subcategories

networks than we have in real life. We may spend more time texting with our
real friends than we spend in actual conversation with them.

Programming Tool Software

As software engineers or programmers became more numerous, markets appeared
for specialized tools such as debugging tools, trace tools, and interactive develop-
ment environments (IDEs).

The very oldest programming tools appeared in the 1950s in the form of
assemblers and early compilers for higher-level languages. In today’s world,
modern programmers have more than 50 kinds of tools, including requirements
tools, design tools, inspection support tools, test case generators, test library
support tools, automated testing tools, debugging tools, reengineering tools,
documentation tools, defect tracking tools, and too many more to name.

Project Management Software

The technical parts of project management involve scheduling, resource alloca-
tion, cost estimation and cost data collection, change management, status report-
ing, and quality analysis. Computers and software have long been useful for
project managers in every fi eld. The 1970s witnessed the arrival of parametric
software estimation tools.

In today’s world, this type of software is used by millions of project manag-
ers to handle topics such as staff allocations, progress tracking, budgets, cost
estimating, quality estimating, project offi ce operations, and proposals for new
business.

For software projects, there are a number of powerful parametric estimating
tools that are in general more accurate than manual estimates. These include
COCOMO II, Cost Xpert, KnowledgePLAN, SEER, SLIM, Software Risk
Master (SRM), and TruePrice.

All of these predict software development costs. Some also predict quality.
One, SRM, has special estimates for venture-backed software startups and also
for the probability and costs of litigation between outsource contractors and
their clients.

Scientifi c and Mathematical Software

Computers were created to speed up complex mathematical operations required
by scientists such as astronomers, chemists, and physicists. Specialized software

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth156

for statistics and mathematical operations has now become so easy to use that
it is available to high school students.

Ordinary spreadsheets can handle various common calculations. More spe-
cialized packages such as SAGE, SAS, MatLab, Mathematica, and at least
50 more are available. Some are freeware, some are open source, while others
are fee-based products. One other example is the R programming language,
which is free and widely used for statistical applications.

Security and Protective Software

The arrival of hacking, viruses, worms, and denial of service attacks created a
critical new subindustry of companies that develop and market antivirus tools,
fi rewalls, and other kinds of protective software. There is a heated technical
race going on between cybercriminals and cyberdefenders.

Major threats include viruses, worms, spyware, botnets, denial of service
attacks, identity theft, and many others.

Major defensive products include fi rewalls and over a dozen malware and
antivirus tools such as AVG, Avira, Bitdefender, Kaspersky, McAfee, Microsoft
Security, Norton, and many more.

Social Network Software

Social networks have millions of members in essentially every country in the
world. The most common social networks today are Facebook, Twitter,
LinkedIn, and the older America Online (AOL). Not exactly social networks
per se but having a similar impact on daily lives are craigslist and Angie’s List,
used by millions of consumers to fi nd products and reviews of services. Wiki
sites are another new form of social network, which has led to crowdsourcing,
which is when disparate groups of people can address some fairly complex
issues in one place on the web.

Social networks derived from earlier technologies such as bulletin boards
and email. They gradually added features such as instant chatting, images, pho-
tographs, and other newer features such as audio.

More than 100 major social networks appear on the web and probably one
or two new ones spring up every month. YouTube, MySpace, SecondLife, and
Friendster are other examples of social networks. Massively multiplayer com-
puter games are not pure social networks, but they overlap that fi eld because
the players are in contact with one another.

ptg11539604

157Numerous Fragmented Software Subcategories

Facebook is the largest with 200 million subscribers. However, dozens of
social networks each have more than 10 million subscribers.

Social networking is a phenomenon that started less than 30 years ago, but
the combined memberships of all social networks is probably equal to perhaps
one seventh of the global population.

Users of social networks vary by age, occupation, and other variables.
Schoolchildren through college levels are intense users of social networks.
People under the age of 25 typically are members of several social networks and
use them daily. People older than 65 may not use social networks at all, and
some don’t know anything about them.

Survey Tools Software

One of the more common uses for computers in the modern era is to fi nd out
what people think about various topics. Prior to the internet and the web, sur-
veys were printed on paper and distributed by mail, both of which are fairly
expensive. In today’s world, surveys are easy to design and build, and they can
be distributed globally or to any selected target audience almost instantly via
the web.

A web search of online survey tools found more than 50 of them, ranging
from freeware to fairly expensive commercial products. A few samples include
Survey Crafter, Survey Monkey, Limesurvey, QuestionPro, Keysurvey, Formsite,
SurveyGizmo, and Google Forms.

Utility Software

The generic term “utility software” includes a variety of tools that manipulate
data, code, and other artifacts. Sort programs are a major example of utility
packages. Some common software utility programs include disk drive defrag-
mentation, clutter cleaners such as CClean, Norton Utilities, registry fi xers, and
fi le transfer programs. There are probably more than 100 utilities, but there is
no exact defi nition for what a utility actually is because it does so many things.

As can be seen, the overall fi eld of software engineering, like medical and
legal practice, is forming a large number of specialized fi elds and disciplines.
The taxonomy in this section shows 20 different kinds of software applications.

Prior to the 1970s, there were only two common kinds of software:
scientifi c and military. All of the other diverse forms of software began to
grow and expand at the end of the 1960s but expanded with great rapidity
during the 1970s.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth158

Younger readers have probably used these kinds of software since childhood.
Older readers born before World War II may have been active participants in
creating these categories of software.

A Lawsuit That Changed Computer History

In April 1973, the longest federal business lawsuit in U.S. history was fi nally
decided. This was the patent litigation between Honeywell and Sperry-Rand.
This was a complex case with charges and countercharges, hundreds of
witnesses, and thousands of pages of discovery documents covering the full
history of the computer industry.

A patent application had been fi led on the ENIAC computer in 1947 but not
issued by the patent offi ce until 1964. The ENIAC had been built by J. Presper
Eckert and John W. Mauchly, but the patent had been acquired by Sperry-Rand.

Because the patent covered the essential design and features of digital comput-
ers, other companies such as IBM were required to pay royalties for all digital
computers that had the same or similar features as those covered by the patent.
Some of the companies facing royalty charges included Burroughs, Control Data,
General Electric, Honeywell, National Cash Register, Philco Ford, and RCA.
(IBM did not face charges because it had a patent-sharing arrangement with
Sperry-Rand.)

The federal judge for the case was Earl R. Larson and his decision was issued
on October 19, 1973. The gist of the decision, which was itself a very large
document, essentially found that the ENIAC patent was unenforceable and
invalid for a wide variety of reasons.

One aspect of the decision was and still is controversial. The judge stated in
passing that the inventors of the digital computer were not Eckert and Mauchly,
but rather John V. Atanasoff, whose ABC computer was discussed in Chapter 3.

As it happened, Mauchly had visited Atanasoff and had seen the ABC com-
puter and also written a letter about it. The ABC and ENIAC computers were
different in many respects, so the judge’s opinion remains controversial even
today.

In any case, the decision that invalidated the ENIAC patent opened a path
for dozens of companies to start building digital computers without paying roy-
alties to Sperry-Rand. The implications of this decision are signifi cant to the
growth of the computer and software industries.

It is quite possible that if royalties had remained in force, small companies
such as Apple, Altair, Atari, Commodore, Data General, Prime, Sun, Tandem,

ptg11539604

159Background Enabling Inventions

Tandy, and Wang would never have been started because the royalties demanded
from each company ranged from $20 million to $250 million.

If the lawsuit had gone the other way and the ENIAC patent had been con-
fi rmed, the computer and software industries today would probably be quite dif-
ferent than they have become. Large companies would dominate, and probably
the diversity of hardware and software offerings would be much smaller.

Background Enabling Inventions

Without some convenient method of storing software, it would be diffi cult to
have a true software industry. One of the critical background inventions of the
modern software world was the development of the fl oppy disk and the fl oppy
disk drive in 1971.

The fi rst fl oppy disk was eight inches in diameter and only held about
80 kilobytes of information. But the fl oppy disk was a success and became a
standard feature of IBM’s S/370.

Modern readers who use fl ash drives or external disk drives that weigh only
an ounce or two would be surprised at how big and heavy the early eight-inch
disk drives were. A disk drive sometimes weighed 40 pounds.

Even so, fl oppy disks provided an effective medium for storing, transporting,
and marketing software, without which there might not be a software industry.

Note
I once had an eight-inch drive connected to an early Tandy Radio Shack TRS-80 computer. It
was a large box about 18 inches wide and deep and 12 inches high. I had to put the drive on
the fl oor because it was too bulky and heavy to sit on a desk.

The older storage media of punch cards, paper tape, and magnetic tape
were not suitable for widespread software distributions. Punch cards and
paper tape were short-lived and susceptible to damage from humidity
and water. Magnetic tape was bulky and subject to fairly rapid magnetic deg-
radation. Mainframe disk drives existed but were too heavy and large for
home use.

Equally important, Ted Codd from IBM in San Jose began to publish
descriptive information about the relational database model, which would lead
to vast improvements in data access and data access speed. Relational database
technology also opened up markets for a number of new vendors such as
Ingres and Sybase, as well as IBM’s own System R.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth160

The quartz movement used in modern watches dates back to the 1920s, but
it needed semiconductors to move into small personal timepieces. The Centre
Electronique Horloger (CEH) built a working quartz analog watch in 1967.
Sony built a successful quartz watch, the Astron, in 1969.

In 1972, Hamilton introduced the fi rst digital watch, the Pulsar. This watch
cost about $2,100 when it fi rst came out. Earlier, Hamilton had built a digital
clock that appeared in the movie 2001: A Space Odyssey.

In today’s world, digital quartz movements are inexpensive and dominate
timekeeping. Billions of timekeeping and timing devices are available in
watches, timers, medical devices, military devices, and anything else that needs
accurate timekeeping.

1970 marked the start of the UNIX operating system, which would become
one of the most popular software applications in history.

This decade also witnessed the rise of minicomputers and the rise of specialized
computers for word processing and offi ce tasks. Among the companies in this
niche were DEC with its PDP and VAX computers, Wang with both specialized
word processing machines and small computers, and Prime Computers.

The physical reduction in the size and weight of computers from mainframes
to minicomputers made it obvious that it would soon be possible to have
computers that were small enough to carry around and be portable.

The IBM 5100 computer, released in September 1975, was the fi rst computer
that could be carried from place to place, although it required some physical
strength because it weighed about 55 pounds.

In 1976, this “portable” computer was followed by the NoteTaker from
Xerox Park, which was a prototype that would later be the pattern for the
Osborne and Compaq portables in the next decade. These portables each
weighed about 26 pounds.

In the 1970s, the need for portable computers was seen, but the technology
to shrink computers down to a truly portable form factor would not surface
until later decades.

Also in 1976, the mathematician Tom McCabe developed the cyclomatic
complexity metric. This measures the control of the paths through a software
application. It has remained a key metric for more than 35 years.

This decade also saw the use of embedded software in an ever-growing
family of physical devices. For example, the fi rst widely used cochlear implant
was developed in 1972. Cochlear implants surgically embed wires that replace
damaged cochlea, and sound quality is adjusted by software in the embedded
device.

ptg11539604

161Background Enabling Inventions

In October 1978, Al Albrecht of IBM in White Plains gave the fi rst public
speech on function points at the joint IBM/SHARE/GUIDE conference in
Monterey, California. (After the conference, Al’s paper was republished in my
fi rst book, with the permission of Al and the conference organizers. This fi rst
publication of Al’s paper in Programming Productivity: Issues for the Eighties
by the IEEE Computer Society Press was the fi rst of many articles and books
about function points.)

In 1979, Dan Bricklin and Bob Frankston introduced the VisiCalc application
for Apple computers, which greatly expanded the use of personal computers
for personal fi nance and easy mathematical modeling. VisiCalc was also released
for the IBM PC in 1981.

This decade saw the evolution of higher-level languages. Some of the languages
created in this decade include Pascal and Forth in 1970; C, Smalltalk, and Prolog
in 1972; COMAL and EML in 1973; ELAN in 1974; Scheme and RATFOR in
1975; and SQL in 1978.

These joined COBOL, FORTRAN, and PL/I, and the explosion of languages
was well under way. From this decade forward, new languages appeared almost
every month, and the total number of languages now tops 2,500.

The explosion of programming languages seems to be more of a sociological
phenomenon than a true technical need. The existence of so many program-
ming languages makes maintenance of legacy applications complex and
diffi cult. Indeed, the life expectancy of a large application is sometimes longer
than the life of the language used to create it.

Another phenomenon also occurred in this decade, and it is still expanding
in the present decade. Applications began to use multiple languages such as
COBOL and SQL or, more recently, Java and HTML. From my collection of
data, an average software application contains about 2.5 different program-
ming languages. I have noted that the maximum number of programming
languages in a single application is 15, and quite a few applications use more
than half a dozen.

The plethora of languages is not necessarily benefi cial to the industry. Devel-
opment may be aided somewhat, but the task of maintenance and enhancement
of legacy applications written in dead or dying languages has become a major
cost driver for the software industry.

The 1970s also saw the early evolution of structured programming and the
birth of object-oriented programming. The decade witnessed the rapid migration
of computers and software from the scientifi c and military domains into the
business domain.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth162

This decade, one of explosive growth of software in all industry segments,
also witnessed IBM’s rise to become one of the world’s major providers of com-
puters and software. Table 6.1 shows the approximate numbers of applications
during this decade.

Function Points in 1975

Function points were invented by IBM in White Plains by Al Albrecht and
colleagues circa 1975 and were published outside of IBM in 1978.

Formal inspections were developed by IBM during this decade by Mike Fagan,
Ron Radice, and colleagues in IBM Kingston. During this decade, IBM pioneered
dozens of software engineering technologies and established an excellent reputa-
tion for quality and reliability of both hardware and software.

For the same application of 1,000 function points, the results would be the
following:

• Source code statements for 1,000 function points: 91,426 logical code
statements

Table 6.1 U.S. Software Applications from 1970 to 1979

Application Types Applications Percentage

Scientifi c 4,000 13.33%

Military and defense 10,000 33.33%

Civilian government 2,000 6.68%

Systems and middleware 4,000 13.33%

Embedded software 3,000 10.00%

Commercial 1,000 3.33%

Information technology (IT) 5,500 18.33%

U.S. outsource 350 1.17%

Offshore outsource 100 0.33%

Web applications 0 0.00%

Games and entertainment 50 0.17%

Open source 0 0.00%

Total Applications 30,000 100.00%

ptg11539604

163Summary

• Programming language: C

• Reuse percentage: 0% to 10%

• Methodology: Unstructured waterfall

• Productivity: 6.00 function points per staff month

• Defect potentials: 5.00 per function point

• Defect removal effi ciency (DRE): 85%

• Delivered defects: 0.75 per function point

• Ratio of development personnel to maintenance:

• Development: 80%

• Maintenance: 20%

The following are the background data for 1975:

• Average language level: 3.50

• Number of programming languages: 100

• Logical statements per function point: 91

• Average application size: 950 function points

• Average application size: 86,450 logical code statements

The combination of better programming languages and increased develop-
ment rigor was responsible for the productivity and quality gains. However,
large software projects continued to have cost and schedule overruns and far
too many bugs. Canceled projects with more than 10,000 function points
remained an endemic problem.

Summary

The unbundling of software by IBM in 1969 opened the fl oodgates to the crea-
tion of hundreds of commercial software companies. The patent decision in
1973 that invalidated the ENIAC patent opened up paths for new computer
companies as well, including small companies such as Apple and Commodore.

ptg11539604

Chapter 6 Computers and Software Begin Creating Wealth164

At the start of the 1970s, computers and software were minor niche industries
with uncertain futures. By the end of the decade, computers and software were
on their way to creating wealth beyond imagination and making Bill Gates the
world’s wealthiest individual and Apple Computer the world’s wealthiest com-
pany. The jobs of computer programming and software engineering continued
to expand rapidly.

By 1979, computers and software were well on their way to becoming the
dominant tools for business and government operations, and they were also on
their way to becoming major personal tools as well.

After this decade, the impact of computers and software would permeate
every aspect of business, government, military, and personal activities. The
world was changing, and computers and software created huge networks that
spanned the globe.

ptg11539604

165

Chapter 7

1980 to 1989: The Rise of
Personal Computers and
Personal Software

The 1980s witnessed a major business change in history. The arrival of the IBM
personal computer and the continued expansion of the Apple line turned comput-
ers and software from pure corporate business tools into sophisticated personal
tools. The hardware changes were accompanied by a huge expansion in new
commercial software packages aimed at the personal computer market. Indeed,
“commercial off-the-shelf” (COTS) software began to displace custom-built
software in many industries on both mainframe and personal computers.

The explosion of personal computers had a negative impact on minicomputers,
which had been a growing business up until this time. Mainframes and supercom-
puters continued to be critical tools in major corporations and large government
agencies. By the end of the decade, minicomputers were a dying industry.

The advent of personal computers led to a major expansion of software for
personal use such as offi ce suites, calendars, and home fi nance.

By the end of the decade, notebook computers were arriving, as were even
smaller devices called personal digital assistants (PDAs). Portability became a
new market force as many companies competed for combinations of light-
weight and long-battery-life personal devices. (During the 1980s, I visited
several companies working on prototypes of small computers and handheld
devices that would emerge in later decades.)

This decade also saw the expansion of outsourcing as companies realized
that their internal software groups were large, expensive, and not necessarily
capable of building software well.

Another major advance in this decade was the creation of the World Wide
Web, which would change human communications forever.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software166

Rapid Changes in Computing

The beginning of the 1980s witnessed a world-changing event: the release of the
IBM personal computer in 1981. The marketing power of IBM and the ease of
use of the IBM PC opened up the markets for commercial software because
almost every citizen would soon use a computer for personal tasks.

The IBM PC catapulted Microsoft to become a major player in the software
industry, and Bill Gates became the world’s wealthiest man for many years. The
famous disk operating system, or Microsoft DOS (MS-DOS), had been ordered
by IBM in 1981, and the fi rst version was released to outside customers in
1982. DOS was the main operating system of the early PC era.

The Windows operating system was originally an extension to DOS, but by
the time of Windows 2 in 1982, it began to have a graphical appearance with
overlapping screen images.

Early in the decade, Apple selected the Objective-C programming language as
its main language for Apple products. The language was originally developed by
Dr. Tom Love and Dr. Brad Cox at ITT, and it was acquired by Stepstone Corpo-
ration when ITT sold its telecommunications business to Alcatel. Objective-C
is still used in Apple products, making it one of the longest-lasting industrial
programming languages.

This decade saw the incorporation of the Software Engineering Institute (SEI)
in 1984 and increasing rigor of software development. Software assessments as
designed by Watts Humphrey were offered by SEI, and assessments plus bench-
marks were offered by Software Productivity Research (SPR), starting a year
before SEI. Both methods expanded rapidly in this decade.

Programming languages began to explode in numbers and variety with new
languages such as Ada, Quick Basic, Pascal, C11, Objective-C, and dozens
of others appearing. New languages came out at a rate of more than two
per month during this decade.

This decade witnessed the arrival of the internet and what would later facili-
tate the World Wide Web. The internet is a collection of protocols that connects
computers and networks to each other. The term “world wide web” was coined
by Tim Berners-Lee and is a set of services that use the internet. It would be the
next decade before the World Wide Web actually became global.

The internet derived from the older ARPANET and several other similar net-
works in Europe. Other enabling technologies were needed; among them was
the famous internet protocol suite TCP/IP. The TCP/IP standard facilitated the
emergence of a new commercial business of “internet service providers,” or

ptg11539604

167Rapid Changes in Computing

ISPs as they are commonly called. (Other enabling inventions such as hyper-text
markup language [HTML] are discussed in the next chapter dealing with
the 1990s.)

The International Function Point Users’ Group (IFPUG) moved from Canada
to the United States in 1986. Soon after, the IFPUG began to offer certifi cation
examinations to ensure accuracy in function point counts.

The initial examination was developed by Al Albrecht, who was at SPR at
the time, having retired from IBM. In later decades, the IFPUG would become
the world’s largest software metrics organization with branches in more than
25 countries.

Function point metrics began to replace older metrics such as “lines of code”
and “cost per defect” for economic studies. The lines of code (LOC) metric
ignores requirements and design and penalizes high-level languages. The cost
per defect metric ignores fi xed costs and penalizes quality. Function points are
the most accurate metrics for software economic analysis.

The SPQR/20 estimation tool in 1984 was the fi rst commercial estimation
tool built around function point metrics. It was also the fi rst estimating tool with
integrated sizing. It produced sizes of source code volumes for 30 languages
and sizes of various paper documents such as requirements, design, and user
manuals.

This decade witnessed the rise (and fall) of numerous computer- and software-
related companies. Some of these achieved bursts of glory but eventually suc-
cumbed to technical malaise. Some of the names of companies that thrived during
this decade include Amdahl, Digital Equipment Corporation (DEC), Burroughs,
Control Data Corporation (CDC), Wang (a pioneer in word processing), Data
General, Tandem, the RCA computer line, the Honeywell computer line, the
Bull computer line, the Xerox computer line, the AT&T personal computer line,
the ITT personal computer line (not fully IBM-compatible), and quite a few
others. Some companies that grew rapidly in this era still prosper, such as
Hewlett-Packard. Others such as Sun were acquired, in this case by Oracle.

The rise and fall of companies in the computing and software industries is an
interesting story. Some of the issues that caused business failures included the
rise of IBM, attempts to lock clients into proprietary hardware and software,
and a widespread failure to recognize the importance of personal computers as
a world-changing event in business operations. For example, DEC was late in
bringing out a personal computer, and when it did, its computers were not fully
compatible with IBM’s, which by then was on its way to being the main tool of
millions of corporate personnel.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software168

Although the fundamental technology was designed in the previous decade,
Sony and Philips combined to bring out the very successful “compact disk read-
only memory” (CD-ROM) in 1983. The fi rst music recorded on a CD was
Richard Strauss’s Alpine Symphony in 1981. On March 2, 1983, CD players
and several disks were released in the United States, which started a boom.

These disks were soon applied to personal computers, although briefl y
competing devices such as the Bernouli Box and the Iomega Zip Disk competed
but were soon bypassed by CDs that could be written on as well as read from.
The huge storage capacities of these CDs allowed whole software packages
such as Microsoft Offi ce to be delivered on a single disk, as opposed to dozens
of fl oppy disks.

In the next decade, the even higher-capacity “digital versatile disks” (DVDs)
would become popular for both movies and very high-capacity computer
storage devices.

Although not a pure software organization, the famous Project Management
Institute (PMI) was founded in 1984. It has become well known for its certifi ca-
tion programs in various management disciplines. It has also created a large
library of books and papers called the PMI “body of knowledge,” or PMBOK.

Companies Formed During the 1980s

Table 7.1 shows a sample of companies that were founded during the 1980s.
This is a representative sample but far from complete. Thousands of local
companies serving a single geographic area were also created.

Table 7.1 Sample of Companies Founded from 1980 to 1989

Company Year

Accenture 1989

Adobe 1982

Advanced Business Solutions 1983

Amadeus IT 1987

America Online (AOL) 1983

Apollo 1980

Ashton-Tate 1980

AutoDesk 1982

Avira 1986

ptg11539604

169Companies Formed During the 1980s

Company Year

BASIS 1985

BitStream 1981

BlackBerry 1984

Borland 1983

Broderbund 1980

Capcom 1983

Central Point 1980

CGNET 1983

Cisco Systems 1984

Cognex 1981

Compaq 1982

Computer Aid, Inc. (CAI) 1982

Cutter Consortium 1986

Dell 1984

Digital Consulting Institute (DCI) 1982

Fox Interactive 1982

Intuit 1983

KeySoft 1989

KPMG 1987

Leading Edge 1980

Level 9 1983

Logitech 1981

Lotus 1982

McAfee 1987

MicroGraphX 1982

NeXT 1985

Pegasus 1981

PeopleSoft 1987

Peregrine 1981

Quest 1987

Sage 1981

Table 7.1 (Continued)

(Continued)

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software170

Table 7.1 is only a sampling of companies that became large enough to be
mentioned specifi cally here. There were thousands of smaller local companies
that were also created during the 1980s.

This decade did see some major corporations created such as Accenture,
Cisco, and KPMG. But the previous decade was when the largest software
giants originated: Microsoft, Oracle, and SAP. Many of the companies created
in the 1980s would provide products and services that fi lled in the gaps around
offerings from companies such as IBM and Microsoft.

Future decades would see another wave of major companies when the web
opened up new technical possibilities. The web would lead to modern giants
such as Amazon, Google, and Facebook.

The impact of computers and software has occurred so rapidly that many of
the companies and products we use every day not only did not exist 25 years
ago but the companies themselves also did not exist. Many of the technologies
these companies market did not exist either.

Computers and software have triggered a major new form of industrial revo-
lution where automated methods are transforming not only manufacturing and
business operations but also communications and knowledge sharing.

Recall that in the 1980s, computers were more or less isolated from each
other except by rather slow and primitive connections such as modems. Later,

Company Year

Sapien 1986

SciSys 1980

SEI 1984

SPR 1983

Stepstone 1984

Symantec 1982

Tata 1989

Trilogy 1989

Unisoft 1981

Vero 1988

Wind River 1981

Wolfram 1987

Wyse 1981

Table 7.1 (Continued)

ptg11539604

171Companies Formed During the 1980s

when the web became a global communication channel and all computers were
connected, huge new business opportunities would appear.

Not all of these new web-based businesses would succeed, as will be seen
later when the dot-com bubble is discussed.

There are too many companies to discuss them all, but the ones that had
interesting business models or created novel products are discussed here.

Accenture

The rapid growth of the software industry during this decade and the prior
decade opened up new opportunities for both outsourcing and consulting.
Major companies needed computers and software but were inexperienced and
often blundered. Accenture was able to become one of the largest software con-
sultancies in the world by providing aid to thousands of companies in dozens of
countries.

The history of Accenture is long and too complex for a full discussion, but it
has been used in many business school case studies. Accenture originated as the
consulting wing of the former Arthur Andersen accounting company back in
the 1950s. In 1989, Andersen Consulting split from the accounting side of
Andersen and became a separate business unit, which is why it is cited in this
chapter.

The split between the accounting and consulting groups exacerbated internal
political and fi nance issues between the two sides, which eventually led to a
famous arbitration and a complete divestiture of the consulting organization,
which became a separate company in 2001.

As part of the split, the consulting company needed to stop using any form
of the “Arthur Andersen” name. An internal contest resulted in the name
“Accenture” being selected. It had been submitted by an employee from
Denmark.

Also in 2001, Accenture had a successful IPO. Since then, it has grown to
more than 250,000 employees worldwide. Accenture provides consulting and
outsource services to almost 75% of Fortune 500 U.S. companies and about
90% of the Global Fortune 100 companies.

Accenture is successful due to the universal adoption of computers and
software by hundreds of major companies that are not necessarily skilled in
either computers or software.

When complex technologies such as computers and software become main-
stays of corporations and government agencies, there is a huge need for expert
consultants who can assist groups that may not have suffi cient internal expertise

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software172

to be effective. This is a niche that Accenture has managed to dominate.
Accenture is not alone, of course, but it was certainly among the best known by
corporate CEOs, CFOs, and CIOs in every industrialized country.

It is of both social and technical importance that the original Arthur
Andersen accounting company was found guilty of criminal charges due to the
way it audited the Enron books (Enron went bankrupt in 2001 amid a fl urry of
criminal investigations). Arthur Andersen voluntarily gave up its license to
perform accounting in 2002. Although the U.S. Supreme Court later overturned
the guilty fi nding, by then Arthur Andersen had lost its reputation and most of
its employees and assets.

This was a sad ending for a company whose founder, Arthur Andersen, was
a pioneer in both accounting education and accounting ethics. He was among
the fi rst to provide on-the-job training during business hours. He was also
instrumental in creating accounting standards and the concepts of generally
accepted accounting practices. His personal motto was “think straight, talk
straight.” He was known to be so honest that he turned down business from
clients that wanted to wiggle with accounting standards.

Adobe

Adobe was founded in San Jose, California, in 1982 by John Warnock and
Charles Geschke. Both were former employees of the famous Xerox PARC
research laboratory, which invented many advanced topics but was never
successful in marketing them. The name of the company is taken from Adobe
Creek, a seasonal creek that ran behind the founders’ homes in Los Altos,
California.

Adobe’s fi rst product was the PostScript page-description language used on
millions of laser printers. Adobe also brought out a family of type fonts for
computers but ran into competition from Apple in that business.

Later, Adobe came out with Adobe Illustrator and Photoshop for the end-user
personal computer markets on both Macintosh and IBM platforms.

Among their most ubiquitous products was the almost universal portable
document format, or PDF, fi le, which is now a global standard (ISO standard
3200-1/2008). Adobe also controls the TIFF graphics format for compressed
fi les.

Adobe was slow to enter the desktop publishing market with its own prod-
uct, but it had so much money available that it eventually acquired competitors
in this fi eld such as Aldus and Macromedia.

ptg11539604

173Companies Formed During the 1980s

In 2010, Adobe and Apple had a fairly public dispute due to Apple’s claim
that Adobe was insecure and could not be used on several Apple products.
Adobe countered with a claim that Apple only wanted to keep Adobe away
from its platforms.

Adobe stock has been traded on NASDAQ since 1996. It remains a large and
innovative company with numerous applications and products centering on
digital typography and graphics. Probably almost every reader of this book uses
one or more Adobe products such as PDFs, TIFF fi les, Photoshop, and many
others.

America Online (AOL)

AOL was founded in 1983 under the name of Control Video Corporation. It
changed its name to America Online and then to AOL. The original founder
was Bill Meister. The company’s fi rst product was a modem and a connection to
the Atari 2600 computer-game console.

Later, it brought in new technical and management leaders and change strategy.
After some other name changes and direction changes and the departure of the
founder, the newly named America Online began the service that later made it
famous: a network that was graphically based, easy to use, and provided rich and
varied content to subscribers.

AOL as a corporation was a pioneer in both emails and social groups, which
later became known as “social networks.”

At its peak in around 1995, AOL had about 10 million members. However,
AOL charged for email and other services ($19.95 per month) at a time when
free email services were starting to appear. Also, response time and even access
were often sluggish, leading to customer dissatisfaction and departures.

AOL also had an erratic history as a corporation with both ups and downs,
mergers, divestitures, and other corporate changes. Between 2000 and 2009,
AOL was owned by Time Warner Corporation, an arrangement that apparently
satisfi ed neither side. AOL was spun off into a separate company in December
2009.

As other social networks and email services eroded AOL’s key business, it
was necessary to change directions. The new strategy, which thus far seems to
be helping, is to concentrate on “content” as opposed to the network and net-
work services. For example, AOL acquired the Huffi ngton Post and MapQuest.

In April 2012, the Huffi ngton Post won a Pulitzer Prize, becoming the fi rst
online journal to do so. David Wood was the reporter who won the prize based

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software174

on his series about the postwar experiences of U.S. soldiers back from Afghanistan
and Iraq.

AOL also began a push for generating revenues via online advertising. AOL
continues to experiment with content and ads, which will hopefully keep it
profi table.

Avira

Avira is a successful antivirus company that was founded in Tettnang, Germany,
in 1986. Avira currently has about 100 million customers and is a major player
in the antivirus industry. Avira is one of a number of companies that have an
interesting business model. Avira provides a basic antivirus package for free but
also offers more sophisticated versions for a fee.

As with many specialized niche industries, the antivirus world has frequent
reviews and rankings of relative performance. Avira normally gets good reviews.

Other players in the antivirus market include AVG, Norton, Trend Micro,
McAfee, Kaspersky, and many more. There is a hot race between the virus
producers and the antivirus defenders.

Note
Avira’s CEO, Tjark Auerbach, supports a number of charities and nonprofi t art groups through
his Auerbach Foundation. Quite a few software executives have a strong interest in social and
charitable issues. Others include Bill Gates of Microsoft and Tony Salvaggio of CAI. Given
the accumulated wealth of the software industry, its social and charitable impact has become
signifi cant.

BlackBerry (Research in Motion, or RIM)

The BlackBerry product is a pioneering smartphone. The company itself was
founded in Waterloo, Ontario, in 1984 by Mike Lazaridis. Apparently, he
named the company Research in Motion (RIM) because he liked the phrase
“poetry in motion.” The name “BlackBerry” is due to a slight resemblance of a
computer keyboard to the surface of the actual blackberry fruit.

Some state governments provide seed money for software companies. The
Canadian government played a signifi cant role in funding the RIM startup. In
the United States, venture capitalists provide all the seed money rather than the
federal government. Private investors also provided initial funds for RIM.

The fi rst product from RIM in 1998 was a paging device that competed with
Motorola. The fi rst BlackBerry smartphone came out in April 2000. For several

ptg11539604

175Companies Formed During the 1980s

years, the BlackBerry smartphones did well and their sales, customers, and
revenues climbed quickly. Having a BlackBerry was a status symbol among
both executives and technical geeks.

However, in 2007, the Apple iPhone arrived on the market and the RIM
business prognosis took a turn for the worse. The BlackBerry Storm model
came out in 2008 with a touchscreen, but it suffered from poor reviews and
dissatisfi ed customers.

The proprietary BlackBerry operating system, QNX, also suffered from com-
petition with Android. In its fi rst year on the market, Android pulled ahead
of BlackBerry in U.S. customers. Indeed, BlackBerry had a net decline in U.S.
customers due to Android competition.

Worse, in September 2011, BlackBerry’s network had a massive network failure
that disconnected U.S. customers for several days and garnered huge amounts of
negative publicity. This was front-page news and was even mentioned on national
television news shows.

In spite of increased competition and signifi cant layoffs, BlackBerry contin-
ues to be a major player in the smartphone business. Its newest models are
getting good reviews. In 2013, RIM changed its name to BlackBerry.

The history of RIM and BlackBerry shows that having a good idea and a
good invention do not ensure long-range success. Companies such as RIM need
to keep current with industry trends and hopefully stay ahead of them. They also
need to keep up with quality and reliability, since poor quality is a market killer.

Borland

The history of Borland is a sort of microcosm of many Silicon Valley software
companies, with a few unique factors as well. Borland was founded in Scotts
Valley, California, in August 1981. The founders were three Danish citizens:
Niels Jensen, Ole Henricsen, and Mole Glad. The most famous founder,
Philippe Kahn, joined forces with Borland later. Kahn was Chairman, President,
and CEO from 1983 until 1995, when he left.

The company’s fi rst product was a CP/M add-on, but Borland soon got into a
different niche that was more successful. Its 1983 products of TurboPascal and
SideKick had large sales and made Borland one of the more successful program-
ming language companies. SideKick was a forerunner of features that later
appeared on PDAs to keep track of calendars, address books, phone numbers,
and so on.

Borland had a successful IPO in 1989 and again in 1991. Both were oversub-
scribed and generated substantial capital.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software176

Through a combination of acquisitions and internal development, the
Borland products expanded to include Turbo C, Quattro Pro, dBASE, and
Paradox.

Borland had an unusual copyright lawsuit with Lotus, which had charged
copyright violations over the Quattro spreadsheet. This was one of the fi rst
“look and feel” infringement cases. The case was decided in favor of Borland
by the First Circuit Court of Appeals in Boston, Massachusetts.

What happened next was unusual. Lotus appealed to the U.S. Supreme
Court. One of the nine justices, John Paul Stevens, recused himself, leaving only
eight to hear the case. The eight justices tied 4 to 4 in their decision, which left
the original decision intact. Having a tied decision in a Supreme Court case is
extremely rare.

In the late 1990s, Borland had declining sales and some issues with prod-
ucts that were aging and hard to port to Windows. It tried to compete with
Microsoft Offi ce by partnering with WordPerfect, but that was not a success.

Borland also attempted, with some success, to build software development
environments with products such as JBuilder and Delphi. However, the open-
source subindustry targeted the same fi eld with free products such as Eclipse,
and these were much more successful.

Borland also tried application life cycle management (ALM), but while it had
strong pieces such as StarTeam, Caliber, and Segue (which was a test tool suite),
the integration of the pieces was spotty. In the meantime, IBM Rational,
Microsoft VSTS, and HP Mercury arrived to compete in the same space.

Between its revenue peak in the early 2000s and its fi nal acquisition by Micro
Focus, Borland experienced a string of revenue and earning losses and seemed
to have no strategy to turn things around (or at least not one that worked).

After several changes of CEOs and still more changes of direction, Borland
decided to move toward enterprise applications rather than personal applica-
tions. This led to an ill-conceived name change from Borland to Inprise. The
name change was not a success. Nobody knew what Inprise did because the
name was unknown, and many people thought Borland had gone out of
business when it stopped being mentioned in ads. In 2001, the company
became Borland again.

After a number of different direction and management changes that are very
complex, Borland was fi nally acquired by Micro Focus in 2009. The price was
about $1.50 per share, or $75 million.

The history of Borland is a cautionary tale for software entrepreneurs.
Changing business direction is hard to do successfully. Changing business
direction almost every year confuses customers, investors, and employees. A

ptg11539604

177Companies Formed During the 1980s

rapid sequence of acquisitions and divestitures also makes it hard to have a
solid core business.

In retrospect, if Borland had continued to grow its language products and
personal assistant products, it might have continued to grow. Attempting to
compete with Microsoft in the offi ce suite world and getting into the database
market without really understanding it was not a path to success. Changing
executives and business plans so often that it is hard to keep track of them is
also troubling.

The Borland experience shows that the 1980s was a period of technical
fragmentation combined with lots of companies going after “hot” markets such
as development environments. Increasing competition in niche markets was
part of the reason for Borland’s decline.

Computer Aid, Inc. (CAI)

CAI is primarily a midsized software outsource group, but with some unique
attributes. It was founded by Tony Salvaggio and Winslow Hill in 1981 in
Allentown, Pennsylvania. Of the two founders, Salvaggio was a former IBMer
and Hill was from Bethlehem Steel, which was located only a few miles from
Allentown.

CAI is one of many startups created by former IBM personnel (including the
author of this book). Other famous companies created by former IBM personnel
include Amdahl and Electronic Data Systems (EDS).

CAI grew initially by outsourcing software maintenance of legacy applica-
tions. This is a task that many outsourcers perform better than their clients,
and CAI is no exception. As with many other outsource groups, CAI expanded
globally and has a large team of software personnel located in the Philippines
as well as in Europe and the United States.

The CAI executives, including Tony Salvaggio, recognized that the software
industry needed more and better information. CAI created a wholly owned
subsidiary called the Information Technology Metrics and Productivity Institute
(ITMPI). The ITMPI group has provided seminars, webinars, a monthly
electronic journal, and an increasingly large library of articles and reference
materials. Some of the courses are certifi ed by the PMI. ITMPI is a valuable
information resource for the software industry.

Creating an organization that offers high-quality speakers and authors who
are industry gurus and not corporate employees was a bold and innovative step.
I have participated in a number of ITMPI events and found them to be very well
managed and popular with attendees and clients. The ITMPI library has become

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software178

one of the richer sources of software information for many corporate software
groups.

CAI is also unusual for an outsourcer in that it developed several successful
software packages. One of the recent software tools is the Automated Project
Offi ce (APO), which handles various project and portfolio measurement,
monitoring, and governance functions.

A unique feature of the APO is the ability to integrate third-party software
tools that are called “cartridges” and are intended as useful plug-ins. One of
these is a risk cartridge.

CAI is confi dent in the effi cacy of its proprietary internal tools and methods,
so it offers a number of fi xed-price contract options. Given the uncertainty of
cost and schedule results in the software industry, fi xed-price contracts require
better-than-average capabilities and project-planning discipline.

Another unusual aspect of CAI is its interest in and support of public
schools, especially inner-city schools. CAI has founded a group of companies
in Pennsylvania that provides equipment and support for inner-city schools.

Some of the services this group provides include donating equipment, letting
employees have time off for tutoring and mentoring students, sponsoring fi eld
trips to universities to show children what college life is like, and inviting
students to the corporate offi ces to see what business life is like.

These educational programs are carried out as public services and are not for
profi t. It is unusual for a company to demonstrate this kind of social conscious-
ness, and the CAI executives are to be congratulated for their assistance to inner-
city schools and education.

Cisco Systems

Cisco Systems is another legendary saga from Silicon Valley. Cisco is not a pure
software company but rather is a company that uses embedded software in
routers and communications devices to allow computers to communicate and
also to create wireless networks. However, Cisco does have some “pure” soft-
ware business such as the well-known WebEx internet conference hosting
service for providing webinars and meetings via the World Wide Web.

Cisco was founded in 1984 in San Jose, California, by a married couple who
had worked at Stanford University, Leonard Bosack and Sandy Lerner. Shortly
after starting, they were joined by Richard Troiano.

The Cisco logo is an abstract representation of the San Francisco Bridge. The
name of the company itself is the “cisco” portion of “San Francisco.”

ptg11539604

179Companies Formed During the 1980s

Cisco went public in February 1990. The success of its routers and
communication devices was such that for a while, Cisco was the wealthiest
company in the world with a market capitalization of around $500 million
in 2000 (its peak). Even today, Cisco remains a wealthy and successful
company, even though Apple has pulled far ahead of everyone else.

Cisco supports both corporate mainframe and client-server communications
and also personal computer communications with devices such as the Linksys
routers. The communication and router business is highly complex and in rapid
technical evolution. These products are partly electronic and contain embedded
software, which allows them to be upgraded in the fi eld.

The wealth and success of Cisco are built on the facts that computers and
software are used by all companies and government agencies and by a majority
of private citizens as well. In order to communicate among all of these diverse
and heterogeneous systems, products such as those offered by Cisco and its
competitors are needed in every computer installation.

Digital Consulting Institute (DCI)

Digital Consulting Institute is an interesting example of an ephemeral market
that was strong and growing at the start of the decade but that found that
advances in technology steadily eroded the size of the market.

DCI was a seminar and education company founded by George Schussel and
his wife, Sandi, in 1982 in Andover, Massachusetts. During this decade, there
was a rapid expansion of programming personnel combined with a growing
interest in structured development. Professional seminars and courses were a
high-growth subindustry. Academic education was still somewhat lacking
for corporate needs, so DCI and several other seminar groups offered a large
number of courses for both technical and management personnel.

After 10 years or so of growth, DCI jumped into larger multispeaker events
and also started to do trade shows with vendor showcases. These larger events
attracted audiences in the hundreds and required larger conference halls at
major hotels. At its peak, DCI had hundreds of top speakers and thousands of
clients, many of whom worked for Fortune 500 companies.

Some of the speakers are familiar names and are cited in several other chap-
ters in this book: Steve Jobs from Apple; Larry Ellison from Oracle; Ted Codd
from IBM; Fran Tarkenton, the former football quarterback; Ed Yourdon, the
famous software author; and John Cullinane are samples of the top names in
the DCI stable of speakers.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software180

Note
In the interest of full disclosure, I taught a number of seminars for DCI during the 1980s and the
next decade, too, because I had lived in Massachusetts not far from where DCI had its facilities.

The successes of DCI and Schussel were signifi cant enough so that in 1998,
Schussel was named an entrepreneur of the year by the IEEE Computer Society.
To show the esteem in which he was held, the other recipients in 1998 included
Bill Gates, Paul Allen, Steve Jobs, and Steve Wozniak (the A-list of Silicon
Valley entrepreneurs).

Later, in the 1990s, the internet began to erode the stand-up seminar busi-
ness. Online “webinars” became popular and live events declined. After the
terrorist attacks on September 11, 2001, many companies cut back on air travel
and many professionals became reluctant to fl y. In fact, air travel became much
less enjoyable than it had been due to increased security, which necessitated
arriving at airports hours prior to departure.

However, worse things were in store for DCI. In 2004, Schussel was indicted
by the IRS for tax evasion. The IRS claimed that about $8 million in unreported
income had been diverted to a Bermuda subsidiary and then put into other
accounts without being reported as income. Although Schussel pleaded innocent,
Ron Gomes, who had been President of DCI, pleaded guilty to income tax
evasion. There were other indictments, too. Schussel was eventually found guilty
and sentenced to three-and-a-half years in federal prison.

In part because of these criminal proceedings and in part because the internet
had eroded seminar training, DCI, after a change of names, ceased operations
in 2004.

Note
While running DCI, Schussel had been something of a philanthropist. His experience in federal
prison showed him how diffi cult it was for ex-convicts to reenter normal life and fi nd work out-
side of prison. As a result, Schussel began a series of blogs and other efforts to assist former
prisoners in fi nding work and a new place in society.

When DCI was founded, no one realized how powerful the internet would
become and how it would change normal classroom and seminar training.

The demise of a company due to IRS criminal charges is unique in this book,
although no doubt it has happened many times in many industries.

Huawei

Huawei is not a U.S. company but is included to illustrate that computers and
software became global business sectors during the 1980s. It is also cited

ptg11539604

181Companies Formed During the 1980s

because the telecommunications industry was a pioneer in both computers and
software and also in software quality control.

Huawei was founded in 1988 in Shenzhen, Guandong, China, by a former
military offi cer named Ren Zhenfei. Huawei was originally a private company
that was owned by its employees, which would have been an unusual business
model in the United States. Another unusual aspect of the Huawei business
model is that about 46% of the company’s approximate 140,000 employees
works in research and development. This harkens back to the glory days of
Bell Labs when it was one of the world’s premier research organizations
that developed many of the devices used today, such as transistors in 1953.
Huawei currently has 20 R&D laboratories located around the world in many
countries, including the United States.

Huawei is a global corporation that manufactures communication devices,
networking equipment, cell phones, and other products. Huawei became the
world’s largest manufacturer of telecommunications equipment circa 2012,
when it pulled ahead of Ericsson.

Huawei started operations as a marketing company that sold private branch
exchange (PBX) switching systems developed by a Hong Kong company. After
several years, Huawei began to build its own PBX switches aimed at hotels and
corporations that needed their own telephone systems.

In 1997, Huawei began to expand outside of China. In 1999, Huawei
joined the International Telecommunications Union (ITU), which is a business
necessity for global telecommunications companies. Huawei’s global business
grew so rapidly that by 2005, global sales were larger than sales in China for
the fi rst time.

As companies grow rapidly, their organization structures also need to grow
and stay fl exible. To assist in this rapid growth, Huawei contracted with IBM
from 1998 to 2003. Huawei has also entered into a variety of joint ventures
with U.S. companies such as Motorola and Symantec.

As many readers know, cell phones are becoming a major target of computer
hackers and identity thieves. The joint venture between Huawei and Symantec
is aimed at improving the security of cell phones and other forms of communi-
cation from remote hacking and theft. This collaboration led to a new company
called Huawei Symantec, Inc., located in Chengdu, China.

Corporate organizations in China differ from those in the United States.
Huawei is considered to be a collective rather than a corporation. The distinc-
tion is outside the scope of this book but is of social interest.

For Huawei, as for all other telecommunications companies, software is now
a critical component of all devices and networks. Cell phones, modems, routers,
and other equipment are all controlled by embedded software. Central offi ce

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software182

switching systems and PBX switches are also controlled by software. Billing,
administration, and network management are also controlled by software,
usually running on larger computers and sometimes on custom computers.

Quality Control in Telecommunications

For historical reasons, the telecommunications industry had sophisticated quality
control back in the days of electromechanical switches. When computers and soft-
ware began to be used for telecommunications, the industry was among the fi rst to
have formal software quality assurance groups. It was also among the fi rst to use
pretest inspections of requirements, design, and source code in order to raise defect
removal effi ciency (DRE) up to the 99% range.

Telecommunications companies were also early adapters of Tom McCabe’s
“cyclomatic complexity” metric from 1976 to examine code complexity. They also
quickly adopted various code coverage analytical tools to show testing effectiveness.
Motorola became famous for its Six Sigma quality program. Suffi ce it to say the tele-
communications industry is among the top industries in software quality control.

In the modern world, quality remains a central focus of the world’s telecommuni-
cations companies, and security has been added to the set of quality concerns. Huawei
is a good example that illustrates the technical and social impacts that computers and
software have had on major industries. Recall that in the early days of telephones,
routing calls from one subscriber to another took place in central offi ces staffed by live
telephone operators. Some of these were so large that supervisors used roller skates to
move from operator to operator when there were troubles or requests that needed
special attention. Needless to say, these manual telephone exchanges were highly labor
intensive and costly.

The History of the Telephone

The history of the telephone is ambiguous. In the United States, Alexander Graham
Bell patented the fi rst telephone in 1876, and he is widely regarded as the inventor of
the telephone. But, in fact, about half a dozen other people also claim to have
invented the telephone: Elisha Gray from the United States, Antonio Meucci from
Italy, and Johan Philip Reis from Germany also built telephones or telephone-like
devices at roughly the same time as Bell. However, patents tend to win out, and Bell
was indeed the fi rst to patent the telephone.

But a phone by itself has little social value. It is necessary to be able to connect a
subscriber’s phone to those of other subscribers. Therefore, telephone switching is a
critical component of modern telephone networks.

ptg11539604

183Companies Formed During the 1980s

A Hungarian engineer named Tivadar Puskas seemed to originate the idea of a
telephone switchboard while he worked for Thomas Edison on a telegraph exchange.
The world’s fi rst commercial telephone exchange opened on January 28, 1878, in
New Haven, Connecticut, with 21 subscribers. For more than ten years, manual
switching of telephone lines by live operators would be the norm.

The fi rst electromechanical telephone switch, called the “stepping switch,” was
invented in 1891 in Kansas City, Missouri, by Almon Brown Stowger. What is inter-
esting is that he was not working in the telecommunications fi eld but was in fact an
undertaker who ran a funeral parlor.

The reason that Stowger was interested in a better method of routing calls is
because the wife of the owner of another funeral parlor happened to be the town’s
telephone operator. Stowger was losing business when people tried to call his
company because some of the calls would be connected to the other funeral parlor.

The idea of automated telephone switching was suffi ciently important that Stowger
and various friends and relatives founded the Stowger Automatic Telephone Exchange
Company. Its fi rst switch was installed in La Porte, Indiana, in 1892 and had 75 sub-
scribers. It is of considerable social interest that one of the world’s largest industries
was created due to lost customers whose calls were being routed to a competitor by a
live telephone operator.

The modern telecommunications industry employs millions of workers in every
country in the world. It is one of the largest and most sophisticated industries in
terms of computer and software usage and also in total software personnel. It is also
an industry with many large companies in many countries: Alcatel, Apple, AT&T,
Bell Northern, Ericsson, GTE, Huawei, HTC, Motorola, Nokia, Samsung, and
Siemens are only a few examples.

Intuit

Intuit is a very rare example of a small company competing successfully with
Microsoft. In fact, Microsoft even withdrew from the personal fi nance market
space partly due to the success of Intuit. The failure of Microsoft Money to
compete with Intuit Quicken is a very rare example of a small company taking
market share from Microsoft.

This company was founded in 1983 by Scott Cook and Tom Proult in Palo
Alto, California, in the midst of Silicon Valley, although legally it is a Delaware
corporation. The fi rst product of Intuit was its fl agship application Quicken,
which is a personal fi nancial package that keeps checkbooks balanced and can
handle other personal fi nances such as those generated by rental properties. The
IBM personal computer version was written in BASIC and the Apple version
was written in Pascal.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software184

There were competitive products early on, but by 1988, Quicken was the
top-selling personal fi nance tool. In 1991, Microsoft decided to compete in this
space and brought out Microsoft Money.

Intuit had a successful IPO in 1993 and began to acquire companies in related
fi elds such as income tax preparation, including the well-known TurboTax. In
1994, Microsoft approached Intuit about acquisition, but the Department of
Justice stopped the merger on the grounds that it might create a monopoly. That
left Microsoft and Quicken as the top competitors in a narrow niche.

Intuit is primarily a commercial vendor in the fi nance and tax areas. It also
has some free services, some of which have received favorable reviews. Intuit has
an online research application dealing with taxation called the Tax Almanac that
was launched in 2005. Articles and materials are prepared by tax professionals
and are available free to academics and other tax preparation groups, as well as
to consumers. The Almanac was listed as one of the more useful websites avail-
able as of 2005.

Not every aspect of Intuit’s business operations receives favorable comments.
For years, banks had downloaded consumer fi nancial data in a format called
QIF, which stands for Quicken Interface Format. This was available free of
charge. Quicken developed another proprietary format called QFX that was
fee-based, and it then dropped support for the older QIF format. In fact, Intuit
has received bad reviews for dropping support for older versions and requiring
customers to buy new versions of software and services.

Intuit also spends quite a bit of money lobbying, and some of the things it
lobbies for are not necessarily good for consumers. It lobbied to eliminate free
online tax fi ling for low-income residents of California, and it lobbied to keep
consumers from fi ling income tax returns directly with the IRS.

Microsoft competed with Intuit in the personal fi nancial space, but in June
2009, Microsoft began to withdraw from that market. Microsoft stated that the
market for personal fi nancial software had declined, but Intuit with Quicken is
still successful in that market.

Intuit is still the major vendor of personal fi nancial software and also of
accounting packages such as QuickBooks for various kinds of companies,
including nonprofi ts. However, it is not usually benefi cial for consumers to have
only one major source for fairly important applications such as personal fi nance.

KPMG

The early history of KPMG dates back to 1870 and the early days of account-
ing and auditing companies. Because computers and software were applied to

ptg11539604

185Companies Formed During the 1980s

accounting and fi nance almost as soon as they were invented, accounting
companies became computer experts before most other industries. This exper-
tise soon led to accounting companies forming separate management consulting
groups to aid clients in dealing with their own computers and software.

KPMG is the result of a complex set of mergers and acquisitions that
are too baroque for discussion in this book. The company is cited in this
chapter because two accounting and fi nancial fi rms (KMG Group and Peat
Marwick) merged to create KPMG during the 1980s. The combination was
then called KPMG in the United States. This company has had a lot of name
changes: over half a dozen, in fact. Without doing an exhaustive check,
KPMG has probably had more name changes than any other company cited
in this book.

Today, KPMG has three main lines of business: auditing, tax preparation,
and advisory services. The fi rst two are the older, traditional kinds of business
that date back to the 1870 era. Advisory services is a more modern business
based on computers and software.

The KPMG advisory groups also have three broad ranges of service: man-
agement consulting, risk assessments and management, and restructuring.

Note
The term “risk” is an important word that is in rapid evolution. Up until the computer era, about
1970, risks were either fi nancial or legal. In today’s world of hacking, viruses, and denial of
service attacks, computer and software risks are now a critical component of risk management.

KPMG is a microcosm of the history of auditing, accounting, and manage-
ment consulting. The companies in this group have frequent mergers and name
changes. They play a major role in corporate operations because an annual
audit is a critical milestone that is important for stockholders and business
activities such as venture funding or future mergers. Readers should read the
section on Accenture in this chapter to learn what can happen when audits are
not done well. (Arthur Andersen had to give up its license as a result of the
Enron audit.)

KPMG’s advisory services have become large and well respected and
serve many major corporations. It is a multinational organization, but its
corporate structure is intricate and complex. The KPMG groups in each
country are separate legal entities that are part of a cooperative organization
headquartered in Switzerland. The reason for this perhaps is to provide
liability protection. In any case, KPMG is an interesting case study for
business schools.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software186

Lotus

Lotus shows that Silicon Valley was not the only venue for software startups.
Lotus was incorporated in Westford, Massachusetts, in 1982 by Mitch Kapor
and Jonathan Sachs with fi nancial support from the venture capitalist Ben
Rosen. Jim Manzi started as a consultant and soon joined to become the
President of Lotus. Mitch Kapor had previously worked on the pioneering
VisiCalc spreadsheet at VisiCorp, where he was head of development (VisiCorp
was yet another pioneer company).

As background software application interfaces evolved from command lines to
graphics, a new form of input called “what you see is what you get” (WYSIWYG)
began to emerge.

The fi rst product of Lotus had the awkward name of Lotus 1-2-3. The unu-
sual name is because the product was not only a powerful spreadsheet but also
had graphics capabilities and could be used as a database (i.e., it was three
products in one). This product was released on January 26, 1983. The “Lotus”
part of the name refers to a meditation posture called the “Lotus position.”
(Mitch Kapor used to teach transcendental meditation, although the Lotus
position is common in many Eastern religions that use meditation.)

The timing for Lotus was perfect. The IBM personal computer had come out
in 1981 and was about to become one of the best-selling technical products in
history. Spreadsheets had just come out and were about to enable almost any-
one to have sophisticated mathematical and statistical power at their fi ngertips.

As a result of this synergy, Lotus expanded far beyond the original marketing
plan. In fact, Lotus was briefl y the largest independent software vendor in the
world.

Lotus brought out other products such as Jazz and Symphony (continuing a
policy of eclectic names). These were only marginally successful. They had
mediocre reviews and did not sell well. However, the Lotus Notes email pack-
age did well and would later be a reason why IBM acquired Lotus in 1995.

Lotus was also a pioneer in “look and feel” copyright lawsuits that tried to
expand copyright law into new directions. (The section about Borland in this
chapter cites the most interesting look and feel case, which was highly unusual
in that the U.S. Supreme Court had a four-to-four tied decision, which means
that the arguments on both sides could not be decided.)

The success of Lotus Notes led to another unusual business situation. IBM
made a hostile acquisition offer in 1995 for $60 a share at a time when Lotus
stock was selling for $32 per share. After some wrangling back and forth, IBM
acquired Lotus for a cost of $54.50 per share, or about $3.5 billion.

ptg11539604

187Companies Formed During the 1980s

Lotus personnel were apprehensive about being part of IBM due to their
rather famous corporate culture and also to their very superior benefi ts
program. Among the benefi ts offered by Lotus to employees were a day-care
center, same-sex partner insurance benefi ts, and quite a few others that were
not common in the 1980s.

Note
The history of Lotus reminds us of the fact that there are only two common exit strategies for soft-
ware corporations or any other corporations: they fail and go out of business or they are acquired
by a larger company. Two other options occur for the luckier ones: they generate enough revenues
to go public, or they generate stable revenues and can operate forever as private companies.

NeXT

The history of NeXT is also part of the history of the famous entrepreneur
Steve Jobs, who founded both Apple and NeXT. The excellent biography of
Steve Jobs by Walter Isaacson provides the details of how Jobs was forced out
of Apple and started NeXT. While the politics of Jobs’s leaving Apple are fasci-
nating, what he did at NeXT is the topic of this section: primarily the NeXT
software and to a lesser degree the hardware.

Jobs had been interested in the concept of specialized workstations for edu-
cation and professional scientifi c work, because ordinary Apples, Macs, and
IBM computers were not fast enough and lacked high-end graphics.

After being forced out of Apple in 1985, Steve Jobs founded NeXT in Redwood
City, California, the same year. He was also able to get several of his former Apple
colleagues to join him. (Apple had an unusual employment agreement that allowed
employees to own some of the software they developed at Apple, unless it had been
released. This fact would be useful at NeXT.)

However, the departure of several key Apple players for NeXT put a kink in
the immediate plans when Apple sued. The suit was eventually settled out of
court and the former Apple personnel were allowed to continue their design
work for NeXT.

The prestige of Jobs and his past successes meant that other entrepreneurs
had confi dence in him. For example, Ross Perot, the founder of EDS, invested
$20 million in NeXT and acquired 16% of its stock.

The fi rst NeXT computer came out in 1988 and was called “the cube” because
of its physical dimensions. The case was in fact a cube made of magnesium and
sized 12 inches on each side. While it was elegant, it had some design and perfor-
mance problems.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software188

The NeXT introduced an unusual magneto-optical drive from Canon as its
primary input and storage medium. This was slower than a hard drive. Worse,
there was only one drive on the NeXT, so there was no way to transport fi les
from the NeXT to any other computer without a network, because the single
drive needed to run the software.

Because NeXT was aimed at being a high-end professional workstation, it is
technically and socially important that it was in fact used for several important
inventions. Tim Berners-Lee used a NeXT computer to build his fi rst web browser
in 1991, so NeXT was instrumental in building the World Wide Web. Also, the
game designer John Carmack used a NeXT computer for two games whose
realistic graphics were among the best of the era: Doom and Wolfenstein 3D.

The NeXT hardware was elegant and innovative, but it was the software
that persisted after the hardware manufacturing was closed down in 1993 (with
layoffs of several hundred personnel).

Steve Jobs had acquired the Objective-C language at Apple and it was used
at NeXT to create the NeXTStep operating system. A variant of this, called
OpenStep, was done with Sun.

While this was happening, Apple was considering a replacement for its aging
Mac operating system. After quite a lot of thought and due diligence, Apple
concluded that NeXTStep might be the best choice to create a new OS. Rather
than license the software, Apple decided to acquire NeXT. It is fi nancially inter-
esting that while other NeXT shareholders received $429 million in cash, Steve
Jobs received 1.5 million shares of Apple stock.

The acquisition of NeXT by Apple took place in 1996. After a 12-year
hiatus, Steve Jobs returned to Apple originally as a consultant, then as interim
CEO, and then as formal CEO in 2000.

The NeXTStep operating system became the nucleus of the later generation
of Apple operating systems. Objective-C continued as the main programming
language, and the object-oriented concept fl ourished.

While NeXT was not a commercial success with its hardware products, it
was technically sophisticated and served as a model for other high-end worksta-
tions. The software created by NeXT has persisted long after most of the NeXT
workstations were moved to museums or recycled for their magnesium cases.

PeopleSoft

The advent of computers and software led to a number of specialized niche
applications. One of these niches is human resource management systems
(HRMSs), which encompass a variety of personnel records. PeopleSoft, as the

ptg11539604

189Companies Formed During the 1980s

name implies, was a pioneer in HRMSs. It was founded in 1984 in Walnut
Creek, California, by Dave Duffi eld and Ken Morris.

At fi rst, PeopleSoft concentrated on HR applications but evolved into an
enterprise resource planning (ERP) company after a merger with competitor JD
Edwards in 2003.

PeopleSoft is somewhat unique in that it built a proprietary software devel-
opment methodology called PeopleTools and even a proprietary programming
language called PeopleCode.

As often happens in the software business, the success of PeopleSoft attracted
the attention of a larger competitor, in this case Oracle. Starting in 2003, Oracle
attempted a hostile takeover of PeopleSoft for about $13 million, but the bid
was rejected. The U.S. Department of Justice stepped in and claimed that if
Oracle acquired PeopleSoft, it might lead to a monopoly. However, this claim
was rejected by a U.S. federal judge.

After a series of negotiations, Oracle did acquire PeopleSoft in 2004 for
about $10.3 million. Soon after the acquisition, Oracle laid off about 6,000
personnel out of the 11,000 who had worked at PeopleSoft.

Oracle decided that the JD Edwards name was more popular than the
PeopleSoft name, so several PeopleSoft products were rebranded as JD
Edwards products.

Note
The history of PeopleSoft shows that hostile takeovers are a common social phenomenon in
the software business. Some of these takeovers are because the technology is valuable and
doing well. Some hostile takeovers are done to eliminate competition and remove competing
technologies from the market. Oracle has continued to enhance and maintain many
PeopleSoft applications.

Although the PeopleSoft name is a brand within Oracle, the more recent
products are fusions of the technologies from PeopleSoft, JD Edwards, and
Oracle itself. In fact, the name “Fusion Applications” is what the product or
products will be called. Mergers between competitors are sometimes successful,
sometimes not successful. But mergers are a fact of life in the software business.

Rational

Rational is now part of IBM, but it had an eventful history prior to being
acquired. Rational was incorporated in 1981 by Paul Levy and Mike Devlin in
Westford, Massachusetts. Its name at the time of incorporation was Rational
Machines and, in fact, Rational had hardware as well as software.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software190

The original business plan for Rational was to improve software development
practices centering on the new Ada programming language combined with itera-
tive methods. But code alone is not the only thing that needs to be done well, so
Rational also tackled architecture, requirements, design, quality control, and test-
ing and made useful innovations in all of these disparate fi elds. It also had a kind
of Ada metalanguage called DIANA, which stood for Descriptive Intermediate
Attributed Notation for Ada (certainly on a short list of complicated names).

The initial Rational Environment was a combination of a suite of software
tools and a custom workstation called the R1000. Recall that in the early
1980s, high-end commercial workstations had not yet appeared. When Rational
began to port their tools and methods to other platforms and downplay their
own custom hardware, the company changed its name to just Rational and
dropped the “Machines” part.

There were various concepts and tools under the Rational umbrella, but they
came together into a powerful suite of methods and supporting software called
the Rational Unifi ed Process (RUP). Some of the RUP concepts originated in an
older tool called Objectory by Dr. Ivar Jacobsen, who later joined Rational
when his company merged in 1995.

RUP had a pragmatic and empirical basis that it was necessary to concen-
trate on risk abatement and quality control (historically weak for software).
The RUP concepts codifi ed many of the principles of iterative and structured
development and surrounded them with tools for requirements analysis, design,
coding, testing, and governance.

Although RUP was developed in the 1990s, it still ranks as a top methodol-
ogy today when quality and productivity are accurately measured. For major
applications larger than 1,000 function points, RUP is one of the best method-
ologies even compared to Agile, which has become the most popular method of
the current decade.

Agile tends to run out of steam when an application has more than 100 users
and is larger than 1,000 function points. With hundreds or thousands of users,
no single embedded user can possibly understand all of the requirements.

With large systems, no one understands more than about 10% of what the
system will do. Therefore, more formal architecture and requirements methods
that combine the thoughts of many decision makers are needed, and RUP has
both the methods and the tools to consolidate the diverse requirements for
major software packages.

Among the concepts embedded in RUP is a design representation method
called the unifi ed modeling language (UML), which is the most widely used set
of requirements and design approaches.

ptg11539604

191Companies Formed During the 1980s

The technical and social history of UML is an interesting story in its own
right. UML combines the contributions of three researchers who had similar
goals. They had each developed new forms of representations for software
architecture, requirements, and design. The three were James Rumbaugh,
Grady Booch, and Ivar Jacobsen. When all three began to cooperate on UML,
they became known in the software literature as “the three amigos” after the
Steve Martin comedy.

Dynamic Modeling

One effective feature of UML was visual modeling. Clearly, graphical representa-
tions are superior to text for complex and abstract concepts such as major software
applications. In my view, UML could be extended in today’s world to include
dynamic 3D models in full color that can show two forms of change that are not
included in today’s UML.

One form would represent and model the application when it is executing and
show the dynamics of inputs, outputs, and processing in visual form. Relative speeds
would be realistic but, of course, slowed down for the benefi t of human observers.
Dynamic models would help to eliminate performance bottlenecks and also reveal
security fl aws.

A second form of dynamism would show the continuous growth of requirements
during development and after release. Development requirements change on average
about 2% per calendar month and tend to be messy. Once software is delivered, it
still changes so long as there are active users. Postrelease changes average between
8% and 14% per year after release, sometimes for more than 20 years.

Requirements changes are usually not well defi ned and tend to degrade the structure
of software architecture as they accumulate. The industry needs better and more
dynamic visual representations of software in motion. Software applications are obvi-
ously the most fast-moving products ever built, and they also evolve continuously over
many years.

Another use of dynamic models would be to simulate various kinds of virus
attacks and other cyberthreats which, of course, only occur when the software runs.
Back doors might also be identifi ed.

As Rational grew and evolved, it acquired several companies that added to
the Rational technology stack. However, the most important change occurred
in February 2003, when Rational was acquired by IBM and became known as
IBM Rational.

Some acquisitions by large companies benefi t both, and some are not so suc-
cessful. In the case of Rational and IBM, there appears to be a useful synergy.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software192

Rational has continued to add new tools and methods, and IBM has benefi ted
from the Rational technology stack. Rational has also benefi ted from the
effectiveness of the IBM marketing and sales engines.

An endemic problem of the software industry is the tunnel vision of too
many companies and consultants that offer “solutions” to software problems.
For example, the static analysis companies concentrate only on static analysis.
The automated test tool companies only think about testing. The Agile coaches
only think about Agile.

Rational has perhaps the widest range of tools and methods of any company
that concentrates on improving software development. They have requirements
tools and methods, architecture, design, code, static analyses for both text doc-
uments and code, integration, defect tracking, and many more. It is refreshing
to see a group that recognizes that good software requires a combination of
many partial solutions and not some kind of silver bullet. If the solutions are
cohesive and work well together, that is even better.

SEI

During the 1980s, the Department of Defense (DoD) continued as the world’s
largest user of computers and software. The DoD and the military services also
built very large applications, some of which topped 100,000 function points in
size or more than 10 million source code statements. These big systems had a
distressing tendency to be late and not work well when delivered.

To help improve the technologies of software engineering, the Defense
Advanced Research Projects Agency (DARPA) funded the creation of SEI in
1984. SEI was located partly on the campus of Carnegie Mellon University in
Pittsburgh, Pennsylvania.

SEI was not a normal venture- or equity-funded company but rather a feder-
ally funded research and development center. SEI became an important soft-
ware research group serving initially the DoD and military contractors, but it
eventually expanded to other software industries outside of defense.

The most famous of the SEI software approaches was the widely used Capa-
bility Maturity Model originally called by its initials (CMM) and later adding
the word “integrated” to become CMMI when it expanded to include system
engineering. CMMI is a method of assessing software organization capabilities
by means of a formal questionnaire that examined key process areas (KPAs).

The CMM is based on methods used by IBM in the East Coast labs, which is
not surprising because IBM’s former director of software engineering, Watts
Humphrey, moved to SEI and developed many of their concepts.

ptg11539604

193Companies Formed During the 1980s

Five-Point Ranking Scale

A prominent feature of CMM and CMMI was a fi ve-point ranking scale that evalu-
ated the relative sophistication of the organizations being studied. The original CMM
scale had a distressingly high number of companies that were not very sophisticated.
Table 7.2 shows the early distribution.

The older assessment method developed by the author was based on the IBM
West Coast assessment approach. This method also used a fi ve-point scale but with
very different meanings and rankings. Table 7.3 shows the assessment scale used by
SPR since 1983.

The two scales both attempted to capture software team capabilities but used dif-
ferent numbering systems, which indeed ran in opposite directions. As the SEI
assessments became popular, a mathematical conversion tool was developed by the
author that could do bidirectional conversions between the SEI and SPR scales.
Another estimating tool was developed that could show the time and expense from
moving up the CMMI ladder from Level 1 to any higher level. (The ascent could
take more than six months per level and cost more than $5,000 per capita.)

The SEI assessment approach was generally successful in leading to process
improvements among those who used it thoughtfully. Mechanical adherence was
less successful. In spite of statistical evidence that ascending the CMMI ladder is

Table 7.2 Five Levels of the SEI Capability Maturity Model (CMM) Circa 1990

SEI Maturity Level Meaning Frequency of Occurrence

1 � Initial Chaotic 75.0%

2 � Repeatable Marginal 15.0%

3 � Defi ned Adequate 8.0%

4 � Managed Good to excellent 1.5%

5 � Optimizing State of the art 0.5%

Table 7.3 Five Levels of the SPR Excellence Scale

SPR Excellence Scale Meaning Frequency of Occurrence

1 � Excellent State of the art 3.0%

2 � Above average Superior to most companies 18.0%

3 � Average Normal in most factors 54.0%

4 � Below average Defi cient in some factors 22.0%

5 � Poor Defi cient in most factors 3.0%

(Continued)

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software194

benefi cial, there are still occasional lawsuits against Level 5 organizations. Many
small companies that are Level 1 or don’t use the CMMI at all can do a good job.
There are also other proprietary methods used by companies such as Apple, IBM,
and Microsoft that achieve results equal to CMMI Level 5 but don’t use the CMMI
at all.

As the SEI research programs gathered speed, the SEI assessments expanded
the range of topics considered, and a “people CMM” dealing with personnel
factors was developed by Dr. Bill Curtis and colleagues and published by SEI
in 1993.

There are also other research studies carried out by the SEI staff. One recent
study was on estimation. A major study group is that of computer security
called the Computer Emergency Response Team (CERT).

When SEI was fi rst created, it was uncertain if it would accomplish tangible
results or merely be yet another government think tank that published reports
but had little practical impact on daily activities. Fortunately for the software
industry, the methods developed by SEI had a pragmatic basis, and those corpo-
rations who ascended the CMM and CMMI levels from 1 to above Level 3 also
tended to improve quality and productivity.

More than 30,000 people have been trained as SEI assessors, and they work
globally. The SEI research personnel have published more than 50 books
through Addison-Wesley, with many of them containing valuable contributions.

SEI now has international affi liates and has just created a commercial
subsidiary that will expand the core concepts to a broader range of industries
than defense. Other sources of nongovernmental funding will occur as well.

Overall, SEI has benefi ted the software community and has been a prime
example of a well-run government-funded research establishment that has
achieved practical results.

Software Productivity Research (SPR)

I founded Software Productivity Research along with my wife, Eileen, in 1984
in Acton, Massachusetts. I had designed IBM’s fi rst two software estimating
tools in 1973 and 1974 and later three software estimating tools for ITT.

When the ITT Corporation sold its telecommunications business and closed
its research labs, I decided to become an entrepreneur. SPR was a classic “sweat
equity” startup that began in the home.

(Continued)

ptg11539604

195Companies Formed During the 1980s

As the company grew, it moved into offi ces in Cambridge, Massachusetts,
and then to larger offi ces in Burlington, Massachusetts. At its peak, SPR had
offi ces in Burlington, London, San Francisco, and Chicago.

Note
The original offi ces in Cambridge were in the Henderson Carriage building, which at one time
housed an actual carriage factory. This company had been commissioned to build the chariots
for the fi rst fi lmed version of Ben-Hur, set in ancient Rome, and a working replica of a Roman
chariot had a prominent place in the lobby.

Having designed proprietary software estimating tools for IBM and ITT, it
seemed like a good business idea to bring out an advanced commercial software
estimating tool.

I had studied the economic problems associated with the LOC metric and
knew that this metric was inadequate for either estimation or economic analysis
of software.

Al Albrecht and his colleagues at IBM in White Plains had developed
function point metrics in the mid-1970s, and IBM had placed its metrics into
the public domain in 1979. With function point metrics, noncoding tasks such
as requirements, design, and user documentation could be both measured and
estimated.

The fi rst commercial estimating tool developed by SPR was called SPQR/20.
The name stood for software productivity, quality, and reliability, with the
number 20 being the number of input questions needed to generate estimates.

SPQR/20 was the fi rst commercial software estimation tool based on func-
tion points. It was the fi rst to include sizing of source code and text documents.
It was the fi rst to include quality and reliability predictions, and it was the fi rst
to predict 5 years of postrelease maintenance. SPQR/20 could predict source
code size for 30 programming languages ranging from basic assembly through
PL/I and Ada through application generators.

SPR came close to receiving venture capital, but the venture group attempted
to change the terms of the agreement the day before the planned signing date.
The revised terms were unacceptable, so my wife, who was also on the board,
and I rejected the venture terms.

As an alternative to venture funding, SPR opened up a profi table consult-
ing practice that combined software process assessments with software bench-
mark data collection. It is socially and technically interesting that SPR
was carrying out formal software process assessments 1 year before SEI was
incorporated.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software196

Upon his retirement from IBM, Albrecht, the inventor of function points,
came to work at SPR in 1986. Function point metrics were just beginning their
expansion, and IFPUG had just moved from Canada to the United States.

SPR used function point metrics for both estimating and software bench-
marks, with considerable success in both domains. While working at SPR,
Albrecht developed the fi rst certifi cation examination for IFPUG function point
analysts. This exam has, of course, been updated as the counting rules have
changed but remains in use today.

SPR continued to be a hybrid company with a consulting group and an
estimating research and development group. The data collected from consulting
eventually led to a third business: carrying out expert witness tasks in litigation
for breach of contract lawsuits or for cases involving taxation of software
assets.

For example, a major tax case involved the value of the software portfolio
of EDS when it was acquired by General Motors. A major breach of contract
case was between the State of California and Lockheed over a system that was
supposed to keep track of payments for dependent children. Still another inter-
esting case was between Accenture and the Canadian government over an
increase in requirements, which led to a payment dispute. Function points
were used in this case to prove that the extra features had indeed been commis-
sioned by the client and that the costs were indeed outside the scope of the
original contract.

Charles Douglis was brought in as Chief Financial Offi cer of SPR and was
soon made President, while I served as Chairman of the board. Charles’s
excellent fi nancial background led to ten straight years of profi table growth,
culminating with the sale of SPR to Artemis Management Systems in 1998.

SPR is fairly typical of hundreds of startups that grow using the founder’s
own revenues rather than external venture funding. Friends and colleagues
who started venture-backed companies in the same year that SPR was founded
all eventually left and their companies fi led for bankruptcy due in part to
questionable decisions made by the venture groups.

Some venture-backed companies succeed and grow to become major corpo-
rations, but many others are pushed too fast in the wrong direction and end up
failing.

Although I retired from SPR in 2000, the company is still doing well and is
expanding into South America. The current commercial estimation tool of SPR
is called KnowledgePLAN, and it includes very detailed activity- and task-based
estimation.

ptg11539604

197Companies Formed During the 1980s

One unusual aspect of SPR after the sale to Artemis is that when Artemis
itself encountered a business slowdown, the employees of SPR acquired the
company, with Doug Brindley as the current President. Doug had been the GM
corporate contact in the tax litigation involving EDS, so he was familiar with
the SPR technology.

The assessment and benchmark consulting business started at SPR was so
successful that two former SPR Vice Presidents of Consulting started their own
companies and continue to operate in the areas of function point analysis and
benchmark data collection. These two companies are the David’s Consulting
Group and the Quality/Productivity Management Group.

Stepstone Corporation

Stepstone Corporation was founded in 1983 in Newtown, Connecticut, by
Dr. Tom Love and Dr. Brad Cox with other colleagues who had worked at ITT
Corporation’s Programming Technology Center in nearby Stratford, Connecti-
cut. It was originally called Productivity Products International (PPI).

Note
ITT sold its telecommunications business to Alcatel, which closed down the U.S. research labs
in Shelton, Connecticut, and Stratford, Connecticut. I had worked at the ITT research lab in
Stratford and his wife, whom he met while at ITT, had worked at the ITT research lab in nearby
Shelton. The Shelton lab was a telecommunications research laboratory and the Stratford lab
was a software engineering technology center. Tom Love was the Director of the Advanced
Technology Group at the Programming Technology Center (PTC), and he hired Brad Cox into
that group at ITT.

The main product of Stepstone Corporation was a powerful object-
oriented programming language called Objective-C. The ideas for this lan-
guage started at ITT and were stimulated by the August 1981 issue of Byte
Magazine, which was devoted to Smalltalk. Brad Cox saw the opportunity to
develop an extension of the C programming language based upon reading
this magazine. His ITT work was published as a 1983 SigPlan Notices paper
titled “The Object-Oriented Precompiler: Programming Smalltalk—80
Methods in C Language.” This original language was referred to as OOPC.
A second generation of the language was built from scratch at Schlumberger
Research and then a third language was built from scratch at a startup
company started by Tom Love and Brad Cox called Productivity Products in
June 1983.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software198

The Objective-C language became one of the most important languages in
the software industry when Steve Jobs and his technical staff decided to make
Objective-C the primary language for all Apple software products (which came
about because Steve Jobs had selected Objective-C for the NeXT computer
and its operating system, as discussed in the section on NeXT).

One might think that having Apple (and NeXT) select the language as a key
tool for all future products such as the Macintosh operating system, the iPad,
the iPhone, and others would be suffi cient to catapult Stepstone to Fortune 500
status. This might have happened had the original agreement between NeXT
and the Stepstone Corporation stayed in effect, because it called for a payment
of $5 to Stepstone for every Apple device or workstation that contained
Objective-C code.

However, Stepstone had received venture funding, and contracts were no
longer in the hands of the founders but rather in the hands of offi cers selected
by the venture capitalists. For reasons that do not make any business sense,
NeXT acquired full rights to Objective-C for a single one-time payment of less
than $100,000.

According to one source that analyzes use of programming language on the
internet, the Objective-C language is currently the third most widely used
programming language on the planet.

Symantec

Symantec is now a major vendor of security packages to protect personal com-
puters. It was founded in 1982 by Gary Hendrix in Mountain View, California,
which is one of the central Silicon Valley communities. Symantec was funded by
a grant from the National Science Foundation (NSF).

At fi rst, Symantec built artifi cial intelligence tools and a natural language
database application that ran on DEC computers. These proved to be diffi cult
to port to personal computers, so Symantec more or less had no product, but
they still had some interesting and valuable intellectual property.

Symantec was acquired by another company called C&E Software founded
by the entrepreneurs Dennis Coleman and Gordon Eubanks. They decided to
keep the name Symantec for the merged business. Their products included word
processing, fi le management, and a natural language query tool called The
Intelligent Assistant that was a pioneer in database queries and report genera-
tion. Their combined database and word processing tool was called Q&A for
“question and answer.”

ptg11539604

199Companies Formed During the 1980s

To increase sales, Symantec started a very unusual sales program called six
pack. Every employee was asked to work 6 days a week, visit six dealerships
per day, and train six sales representatives per store. To keep costs low, they
were asked to stay with friends or use a Motel 6 in keeping with the six-pack
theme. For a while, Symantec’s revenues were so low that the Chairman and
President received zero salary, vice presidential salaries were cut 50%, and
other employees’ salaries were cut 15%.

In 1986, Symantec formed a subsidiary division called Turner Hall that
marketed third-party software plus add-ons that supported other products such
as Lotus. As revenues increased, Symantec made an acquisition of Breakthrough
Software, the developer of the TimeLine project management tool. In 1989,
Symantec had a successful IPO.

As a result of the merger plus the Turner Hall subsidiary, Symantec had three
fairly autonomous business units, which seemed to fi t the corporate culture and
business model of growth by acquisition. One of the important acquisitions
was the Peter Norton Computing Company in 1990. Norton Utilities was
a well-regarded suite of applications that tuned up personal computers and
eliminated junk.

Symantec had developed antivirus software for the Mac platform before
its acquisition of Norton. But the Norton name was so highly regarded in
the industry that Symantec released its PC antivirus package under the
name Norton AntiVirus, even though it had been internally developed at
Symantec.

Because antivirus protection is technically sophisticated and must deal with
moving targets, Symantec established a formal antivirus research group with
about 400 personnel. Although consumer antivirus packages are perhaps best
known, Symantec also has corporate and enterprise security packages as a
result of acquiring Veritas. Symantec and the Chinese telecommunications com-
pany Huawei have also created a joint company for cybersecurity research and
analysis named Huawei Symantec.

Symantec is a good company for business school case studies because it
changed directions several times. Its unique “six pack” sales program, which
involved almost every single employee, is also a novel approach that merits
business school attention.

Not all reviews of Symantec have been favorable. For example, in an attack
on the New York Times software and network, only a few of the threats were
detected by Symantec tools. Symantec itself was hacked in 2012, which is
embarrassing for a security company.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software200

Symantec had acquired VeriSign, which supposedly verifi ed websites and
issued security certifi cates. After VeriSign was hacked and had some data stolen
in 2010, the validity of these services came into question. Also, VeriSign was
criticized for delays in reporting the hack.

A fi nal issue with Symantec is that it has not received very high reviews from
consumers or journals for customer support.

Some of the security attacks and issues against Symantec illustrate an impor-
tant point. Hackers and computer viruses are growing more sophisticated and
therefore antivirus companies need to work hard to stay ahead of the game.

TechSoup Global

TechSoup Global is a nonprofi t organization under the 501(c)(3) regulations.
It was started in 1987 in San Francisco, California, by Daniel Ben-Horin
under the name The ComputerMentor Project. The organization changed its
name to TechSoup Global in 2008, becoming another of the hundreds of
software and support companies and organizations to have multiple names
as it grew.

This organization is itself a nonprofi t, and its mission is to support other
nonprofi ts and charitable organizations by providing donations of software,
computers, and other technologies, charging only a small administrative fee.
The TechSoup organization also supports libraries. Many charitable organiza-
tions are staffed by volunteer workers and have small budgets for computing
and software resources, but they are vital to their operations.

Nonprofi ts in Computing and Software

As an example, my wife, Eileen, is deaf but has cochlear implants that restored her
hearing. She started a nonprofi t foundation called the Gift of Hearing Foundation
(GOHF) to help make cochlear implants available to those without insurance,
especially small children. The entire board operates on a volunteer basis.

Much of the work of GOHF involves databases of clients, hospitals, surgeons,
audiologists, insurance companies, and other associations who aid the deaf and hard
of hearing. In order to assist an uninsured patient in receiving a cochlear implant, at
least a dozen groups need to be contacted and agree to work together. There are
numerous forms, applications, and other documents involved. Without computers
and software, the manual effort devoted to paperwork might cost almost as much as
a cochlear implant itself.

ptg11539604

201Companies Formed During the 1980s

The original name of ComputerMentor was apt because the founder and his
colleagues did provide mentoring and training to nonprofi t personnel who
needed computers and software but were not trained in software engineering
or technical skills. Although it started as a local organization in California,
TechSoup grew and expanded so that in the current decade, it supports nonprof-
its and charitable groups in 190 countries.

As mentioned several times in this book, major software companies have
created enormous wealth, and quite a few have decided to use some of that
wealth for charitable and public service projects. In order to provide software
and equipment to charitable groups at lower than retail prices, the major
vendors need to make their products available via donations for charitable
licensing. A number of major companies participate with TechSoup in aiding
charitable organizations by means of donations. Among the companies that
support charities are Microsoft, Cisco, Symantec, Sun, and Adobe.

TechSoup Global now has a network of partner groups in 40 countries, and
it offers a number of services, including recycled and refurbished computers,
training, manuals, and other assistance all aimed specifi cally at other nonprofi ts
and charitable groups.

Just as computers and software have become the main operating tools of
business and government, they are also vital to charitable organizations. For
example, every charity needs a database of the clients it supports and the donors
who contribute. All charities have to keep normal fi nancial records, which in
many ways are more burdensome than the fi nancial records of profi t-making
companies. Nonprofi t taxation is remarkably complicated. (Intuit has a special
version of QuickBooks for nonprofi t groups.)

Overall, TechSoup Global has provided assistance to more than 197,000
charitable and nonprofi t organizations with a combined retail value of software
and computers that approaches $3.5 billion.

Without the donations and assistance of TechSoup and other charitable support
groups such as Freelanthropy, many charities and nonprofi ts would probably not
be able to support as many people as they do because manual methods of record-
keeping would not be suffi cient. Charitable groups and nonprofi ts need software
and computers as much as Fortune 500 companies do, but in general they have
very small budgets and depend on volunteer software and support personnel.

TechSoup Global also provides some specialized services to large organiza-
tions that provide grants and funding to charities and nonprofi ts. Many of these
are located in other countries, and TechSoup helps in ascertaining if their legal
status is equivalent to nonprofi ts in the United States. This is called equivalency
determination.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software202

Needless to say, the groups that offer grants, the vendors who donate
software and computers, and tax authorities such as the IRS want to be sure
that the recipients of grants, donated software, and donated computers are
authentic charities and nonprofi t organizations.

TechSoup Global occupies a very interesting market niche that needs much
more study than it ordinarily receives in the academic software literature. In
fact, business schools should consider case studies of the benefi ts and impact of
computers and software in charitable organizations.

Wolfram Research

Wolfram Research was founded by the mathematician Stephen Wolfram in
1987 in Champaign, Illinois. The two main products of this company are
important, pioneering, and powerful.

One product is Mathematica, which is an advanced mathematics package
widely used by astronomers, physicists, chemists, biologists, and other research-
ers who need to perform sophisticated mathematical calculations. It is also used
by many college students and essentially anyone who needs more mathematical
power than a spreadsheet or scientifi c calculator can provide.

The second major product is Wolfram Alpha, which is a pioneer intelligent
agent that scans the web and returns with an analysis of results rather than just
lists of websites that contain information.

There are other products besides these two, such as Wolfram System Modeler
and Wolfram Workbench. The company also developed the Computable Docu-
ment Format (CDF), which is similar in concept to the PDF but is used for only
interactive documents.

Many of the founders of software systems have interesting backgrounds and
personalities, and Stephen Wolfram is no exception. He was something of a
child prodigy and was known to do mathematical homework for his fellow stu-
dents for a fee. He matriculated through several major schools, including Eton,
Oxford, and Cal Tech, where he received a Ph.D. in physics at the age of 20.
Prior to that, he had published a number of highly regarded papers on physics
topics such as heavy quarks while still a teenager.

Note
Stephen Wolfram is also a consultant for Numb3rs, a television mystery show about the use of
mathematics to solve criminal cases.

It should be recalled from the fi rst chapter of this book that a need to speed
up mathematical calculations was the impetus that led to dozens of mechanical

ptg11539604

203Companies Formed During the 1980s

calculating devices and fi nally to analog and digital computers. Wolfram’s
Mathematica is one of the most advanced mathematical packages in history,
and it shows pretty much everything computers can do for math.

The search engine Wolfram Alpha is also a pioneering tool. When a user
poses a question where factual answers are possible, Wolfram Alpha gives a
useful return. For example, a question such as “How many protons are in a
hydrogen atom?” will yield the return answer “1.” This is not just a pointer to
a document or website, but a true answer.

More sophisticated questions are also answered. For example, a website about
Wolfram Alpha had a sample question of “Tell me about Big Mac nutrition,”
meaning the hamburger sold by McDonald’s. The response to this question is an
itemized list of ingredients plus information on calories, saturated fat, polyunsat-
urated fats, protein, carbohydrates, and basically everything else.

Wolfram is doing continuous research on knowledge capture, taxonomies
for knowledge classifi cation, and other advanced research topics.

The ideas behind Wolfram Alpha can become a major new fi eld of intellec-
tual research as well as software engineering research. Potentially, Wolfram
Alpha can become a kind of worldwide knowledge web that synthesizes facts
and turns them into useful and readable information.

Needless to say, the technology in Wolfram Alpha has implications for
military, defense, and security systems as well as for business and science.
A military question such as “Tell me about North Korean air-defense capa-
bilities” should yield interesting information. Another question of interest
might be “Tell me which countries initiate the most cyberattacks on the
United States.”

It is fairly easy to search the web and fi nd out factual information. But
to synthesize factual information from hundreds of sources and produce a
reasoned analysis is a much harder undertaking. Wolfram Alpha is a true pio-
neer in a fi eld that is likely to have a global impact.

There are numerous business questions that an intelligent agent such as
Wolfram Alpha might soon be able to answer, too. Among these would be
“Which Fortune 500 customers use the Oracle ERP package?” or “How many
copies of the KnowledgePLAN parametric estimating tool are installed in South
America?”

Wolfram Research remains a private company that has not gone public or
had an IPO. However, the value of the Wolfram Research intellectual property
seems to be enormous. No doubt many large corporations such as Google or
IBM that have research laboratories would fi nd Wolfram Research to be a
highly attractive acquisition target.

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software204

The companies cited in this decade are only samples. Many other companies
were also formed during the 1980s. This decade saw the almost universal adop-
tion of computers and software as the key business tools of all major companies
and government agencies. The use of personal computers as private tools also
grew rapidly thanks to the IBM PC (and its many clones) and the Apple computer.

The Growth of Software During the 1980s

Software continued to grow explosively during this decade. Table 7.4 shows the
approximate numbers of software applications developed in the United States
in the 1980s.

Results for 1,000 Function Points Circa 1985

The results of the same application of 1,000 function points would be the
following:

• Source code for 1,000 function points: 58,182 logical code statements

• Programming language: COBOL and SQL

Application Types Applications Percentage

Scientifi c 24,000 8.00%

Military and defense 60,000 20.00%

Civilian government 28,000 9.33%

Systems and middleware 36,000 12.00%

Embedded software 39,000 13.01%

Commercial 16,000 5.33%

Information technology (IT) 90,000 30.00%

U.S. outsource 4,200 1.40%

Offshore outsource 1,600 0.53%

Web applications 0 0.00%

Games and entertainment 1,150 0.38%

Open source 50 0.02%

Total Applications 300,000 100.00%

Table 7.4 U.S. Software Applications from 1980 to 1989

ptg11539604

205Summary

• Reuse percentage: 0% to 15%

• Methodology: Iterative and structured development

• Productivity: 7.0 function points per staff month

• Defect potentials: 4.5 defects per function point

• Defect removal effi ciency (DRE): 87%

• Delivered defects: 0.58 defects per function point

• Ratio of development personnel to maintenance:

• Development: 70%

• Maintenance: 30%

The following are the background data for 1985:

• Average language level: 5.50

• Number of programming languages: 750

• Logical statements per function point: 58

• Average application size: 1,100 function points

• Average application size: 63,800

During this era, the sizes of software applications rapidly increased. Prior to
this era, only a few applications, such as mainframe operating systems, were
larger than 10,000 function points. In the 1980s, a number of major defense
applications and civilian systems began to push past 100,000 function points.

The increase in application size led to an alarming problem that still exists:
about 35% of major applications with greater than 10,000 function points are
canceled without completion. This is because poor quality leads to such major
cost and schedule overruns that the ROI becomes negative.

Summary

At the beginning of the decade, software and computers were still somewhat
experimental in many companies. By the end of the decade, software and com-
puters were well on their way to becoming the main business tools of every

ptg11539604

Chapter 7 The Rise of Personal Computers and Personal Software206

company and government agency in the world that has more than a few
employees.

The growth of computer and software usage by companies who might not
have a suffi cient quantity of skilled personnel led to the rapid growth of several
ancillary subindustries such as management consulting, software book publish-
ing, seminars, and commercial education shops such as Digital Consulting.

Still other high-growth subindustries of this decade were management
consulting groups such as Accenture and outsource groups such as CAI. This
decade also witnessed rapid increases in commercial COTS and the arrival of
some open-source packages.

This was the last decade before the internet and the World Wide Web changed
the fundamental nature of human communications and social interaction.
During the 1980s, people still had more live friends than remote friends known
only by web contact. They still used their telephones more for conversations
than for texting. Smartphones were still in the future.

ptg11539604

207

Chapter 8

1990 to 1999: Expansion
of the World Wide Web
and the Rise of Dot-Coms

During the 1990s, the rapid expansion of the internet and the World Wide Web
changed human communications and social life forever. New companies began
to emerge and carve out new kinds of markets by selling products remotely over
the web.

The exuberance and excitement of vast new global markets based on the
internet led to an enormous explosion of companies and products marketed
over the web by companies termed dot-coms. They were known as dot-coms
because their website addresses ended in a period followed by the term “com,”
which was the offi cial web term for commerce.

Early in the next decade, the dot-coms bubble would burst, and many of
these new companies disappeared into bankruptcy, but the 1990s witnessed a
huge global expansion of communications and remote commerce.

This decade also saw the arrival of online banking and new ways of purchas-
ing articles remotely. It was also a fruitful decade for computer games, which
grew in number and complexity and began to offer realistic backgrounds and
high-resolution graphics.

In 1999, the new euro currency arrived and began circulation. This caused
changes to thousands of banking and fi nancial applications as they were
updated to refl ect the new currency. The euro became offi cial on January 1,
1999, although notes and coins did not begin circulation until 2002.

In the last half of this decade, the “Y2K” problem would emerge and divert
substantial software resources toward converting two-digit dates such as “99”
into four-digit dates such as “1999.” The reason was that when the year 2000

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms208

appeared, the “00” format would damage sort sequences for time-sensitive
information such as taxes and corporate earnings.

Toward the end of the decade, some applications were approaching 20 years
of use, so “maintenance” began to replace new development as the dominant
software work. Legacy applications needing geriatric care were large components
of the euro and Y2K problems.

Emergence of the World Wide Web

The development of the internet itself was discussed in the previous chapter.
Recall that the internet is the network and network tools that allow computers
and other networks to communicate with each other. The World Wide Web is
not the same thing as the internet. The web is a collection of tools and services
that uses the internet but that focuses on sharing documents and information.
A central tool for the web is hypertext, which allows marked phrases in a
document to lead users to other pages and other websites.

In 1990, Tim Berners-Lee coined the term “World Wide Web.” He was very
infl uential in its development and created several enabling inventions, includ-
ing the famous hypertext markup language (HTML), the hypertext transfer
protocol (HTTP), the fi rst web browser, and several other inventions. Probably
every reader of this book uses the letters “HTTP” on a daily basis as an
integral part of web addresses. Not as many readers know that it is a fairly
recent invention.

Because the web consists of millions of hypertext pages, the invention of
HTML ranks as a major human invention in communications. In a hypertext
page, selected phrases are “live” and navigate a computer to another page and
another website. Anyone who uses Wikipedia or other web documents will
notice that the live phrases are usually colored blue or underlined so that they
stand out from the normal black text.

When Tim Berners-Lee developed the fi rst web browser, the computer he
used was a NeXT computer designed by Steve Jobs, which was discussed in the
previous chapter.

The web browser is a critically important invention because it helped convert
the web into history’s most important research tool. The history of browsers and
the so-called browser wars would make an interesting book—probably a thriller.

Tim Berners-Lee published a summary paper of the World Wide Web project
on August 6, 1991. This is usually considered to be the date of the birth of the
World Wide Web.

ptg11539604

209Emergence of the World Wide Web

Senator Al Gore, later to become the Vice President, was the sponsor of an
important bill called the High Performance Computing and Communications
Act of 1991, which was also termed “the Gore bill.” This bill was passed and
signed by President George W. Bush. The Gore bill allotted $600,000 for the
creation of a National Research and Education Network.

Gore is also credited with coining the term “information superhighway.” Gore
was computer literate enough to publish an article in a special issue of Scientifi c
American in September 1991 titled “Communications, Computers, and
Networks.” Scientifi c American was and remains a prestigious scientifi c journal.

The Mosaic web browser fi rst appeared in 1993. This was not the fi rst web
browser, but for several years, it was the most popular. Mosaic was developed at
the National Center for Supercomputing Applications (NCSA) at the University
of Illinois campus in Urbana-Champaign.

Mosaic supported several older internet protocols, had a pleasant interface
and good cosmetics, and ran on IBM personal computers. Basically, it made
the web fairly easy to use by consumers instead of a network used by technical
specialists. But there would soon be many more browsers.

Some of the Mosaic developers also worked on the Netscape browser, which
was another popular tool for web surfi ng.

The phrase “surfi ng the web” was created in 1992 by a librarian named Jean
Armour Polly from Liverpool, New York. She used the phrase in an article she
wrote called “Surfi ng the Internet.”

Computers and software have made substantial changes to our everyday
working vocabulary. Hundreds of new terms or new defi nitions for older terms
have been due to the infl uence of computers and software. A few samples
include application, big data, binding, browser, botnet, bug, computer (the
device), cybercrime, database, deadlock, function point, google (as a verb),
hypertext, hypervisor, interface, internet, malware, object, object-oriented,
patch, program, programmer, relational database, software, URL, virtual, virus,
workstation, and worm.

A special technical vocabulary associated with a scientifi c or technical fi eld
is called an argot. The software engineering argot is one of the largest to date
and is still growing rapidly. New terms are being created probably on a weekly
basis.

Suffi ce it to say that there was much competition and eventually litigation in
the important fi eld of web browsing, including tough competition between
Netscape and Windows Explorer. In the fullness of time, a number of powerful
browsers were established, including Google Chrome, Firefox, Opera, Safari,
and Windows Explorer.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms210

The “browser wars” ran throughout this decade and were not fi nally resolved
until the results of an antitrust lawsuit against Microsoft were implemented in
the next decade. On May 18, 1998, the Department of Justice fi led an antitrust
suit against Microsoft. The claims of this suit were that since Internet Explorer
was included in every copy of Windows, that method of distribution was
anticompetitive.

This was a very messy case with strong opinions on both sides. The decision
by Judge Thomas Penfi eld Jackson might have split Microsoft into two compa-
nies. However, upon appeal, the split was not required. Microsoft was required
to publish application program interfaces (APIs) and to permit certain
third-party applications to connect to Windows.

The case itself has been controversial, with some saying Microsoft was given
monopolistic powers as a result of the appeal. These are legal issues that I am
not qualifi ed to discuss, but there are many articles by lawyers who examine a
number of issues outside the scope of this book. The Microsoft antitrust suit
was front-page news at the end of the decade and into the following decade.

Bill Gates testifi ed and apparently did not make a good impression due to
numerous instances of forgetfulness so that he could not answer specifi c ques-
tions. The entire case was very messy, and almost everyone who participated
ended up with tarnished reputations.

In the aftermath, open-source software has been able to compete successfully
against the browsers of major companies such as Microsoft and Apple.
For example, Firefox and Google Chrome are now both highly successful
competitors against Internet Explorer.

Other Innovations of the 1990s

Another innovation in this decade was the development of the Linux open-
source operating system by Linus Torvalds and colleagues. Linux was an impor-
tant technology and also served as a useful model for open-source development.

One major invention that greatly expanded the use of computers for research
was the development of the Google search engine by Larry Page and Sergey
Brin in 1997. Search engines have made it possible to fi nd information about
any conceivable topic on the web in a matter of seconds.

The year 1993 witnessed Windows 3.1, which departed from older versions
in not being built on the older disk operating system (DOS) but rather on a new
kernel.

ptg11539604

211Other Innovations of the 1990s

The fi rst of the “modern” versions of Microsoft Windows was Windows 95,
which was released in 1995 as the name implies. However, many more releases
and versions were soon to follow.

In 1995, a combination of electronics companies—Philips, Sony, Toshiba, and
Panasonic—brought out a high-capacity optical disk storage device called a digi-
tal versatile disk or digital video disk (commonly called a DVD). These had much
higher capacity than the older compact disks (CDs) from the previous generation.

The DVD format would lead to a subindustry of home theater equipment
that included a DVD player and a high-end audio system with either fi ve or
seven channels of sound. The DVD format held so much information that it
was no longer limited to mere stereo sound. These home theaters were fi lled
with embedded software and indeed probably could not operate successfully
without embedded software. DVD drives also showed up on computers, but in
a computer context, the older CD drives were still the norm.

In 1997, the International Software Benchmark Standards Group (ISBSG)
was formed in Australia. The ISBSG is one of the most convenient sources
of software benchmark data and is also fairly inexpensive. Its data collection of
more than 6,000 software projects is widely used in every major country.

In or about 1997, Electronic Arts commissioned studies that used GPS satellites
to map a number of golf courses. This mapping led to both simulated computer golf
games such as Links and later to the ability to download highly accurate GPS maps
of thousands of golf courses onto handheld and even wristwatch-sized devices.

Technology Changes the Sport of Golf

Golf is a sport that has been changed signifi cantly due to software and microcom-
puters. Computers and software also led to the development of golf-course design
packages that allow both amateurs and professionals to model highly realistic golf
courses. These are often add-ons to computerized golf games but are also used to
design real golf courses.

In today’s world, golfers can buy a variety of small GPS devices, including several
that are worn as wristwatches. These provide useful information such as the exact
distance from any point to the next tee. Some also caution about hazards and
obstructions and will even keep score.

The end of this century witnessed the fi rst use of the phrase “big data,”
which refers to the ability of analyzing large databases with millions or even
billions of records.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms212

This decade saw a rapid increase in higher CMM levels of 3, 4, and 5. It also
witnessed the development of the Rational Unifi ed Process (RUP) and the
increased usage of Joint Application Design (JAD) and the unifi ed modeling
language (UML). Web applications exploded in numbers. Viruses and cyberat-
tacks likewise began to explode in frequency. Identity theft became a national
problem.

The number of programming languages topped 1,750, with Java, Visual Basic,
PHP, JavaScript, and Ruby becoming the best known. Global outsourcing
exploded during this decade, with India, China, Russia, the Philippines, and other
low-cost countries absorbing U.S. software projects. Commercial off-the-shelf
software (COTS) began to approximate 50% of corporate portfolios. Massive
enterprise resource planning (ERP) applications were added to portfolios because
older stove-pipe applications could not easily share corporate data.

The last few years of the decade witnessed two interesting problems that
caused changes to millions of software applications on a global basis: the roll-
out of the euro in 1999 and the Y2K problem at the century’s end when the
calendar changed from 1999 to 2000 and two-digit abbreviations for years
would no longer sort properly.

Companies Formed During the 1990s

Table 8.1 shows many of the companies that formed from 1990 to 1999.

Table 8.1 Companies Formed from 1990 to 1999

Company Year

Agilent 1999

Akamai 1998

Amazon 1994

The Analysis Group 1990

Apache 1999

AVG Anti-Virus 1991

CAST Software 1993

Cognizant 1994

Digital Playground 1993

eBay 1995

ptg11539604

213Companies Formed During the 1990s

Company Year

Expedia 1995

Geek Squad 1994

GoDaddy 1997

Google 1998

Hasbro Interactive 1995

Heartland Payment Systems 1997

Insight Venture Capital 1995

ISBSG 1997

ITT Technical Institute 1994

Macromedia 1992

MCC 1992

Monster.com 1999

Mosaic 1993

NetBank 1996

Netscape 1994

PALM 1992

PayPal 1998

Priceline 1997

R Systems 1993

Red Hat Software 1993

Red Storm Entertainment 1996

Sapiens 1990

SegaSoft 1995

SilverLake 1999

Sirius Satellite Radio 1990

Starfi sh 1994

Symbian 1998

Taligent 1992

ThoughtWorks 1993

Visio 1990

VMware 1998

Table 8.1 (Continued)

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms214

Table 8.1 is interesting in that it shows the evolution of software and computer
use. Many of the companies in prior decades such as Microsoft and Apple were
creating new languages and new tools for building software. Although there were
tool and software companies created during the 1990s, the majority of companies
formed used computers and software to create new kinds of businesses. For
example, Amazon is a successful pioneer in web marketing, PayPal and NetBank
were pioneers in remote fi nancial transactions, Google was a pioneer in search
engine technology, and Sirius was a pioneer in internet radio broadcasts from
satellites.

In the 1990s, computers and software had already become universal tools
for running businesses, government agencies, and “brick and mortar” retail
stores. In this decade, new forms of web-based business models started to blos-
som and expand. Some of these, such as Amazon, are still successful today, but
many did not make it past the dot-com bubble burst of 2000.

As with the other chapters, there were many additional companies created
besides the ones shown here. For example, at least a dozen game companies
were created. However, game companies tend to have their own culture and
seldom commission studies of quality or productivity, so very little data, other
than revenues, are available.

Some of the companies with unusual or interesting business models created
during the 1990s are discussed here.

Akamai

Akamai was founded in 1998 in Cambridge, Massachusetts, by MIT graduate
student Daniel Lewin and MIT professor Tom Leighton. (On a sad note, Lewin
was one of the passengers on American Airlines Flight 11 and was killed during
the September 11, 2001, terrorist attacks.)

This is an interesting niche company. It speeds up web browsing by mirror-
ing sites and web content on very fast servers. There are a lot of servers, and
one of the Akamai value-added features is a set of mathematical algorithms for
optimizing traffi c. (The two founders were both mathematicians.) Akamai has
more than 100,000 servers in 78 countries. Although Akamai provides services
to users, their clients are major corporations that want to provide fast and
secure content to their customers.

Amazon

Amazon was founded in Seattle, Washington, in 1994 by entrepreneur Jeff
Bezos. It went public in 1996. Amazon is currently the world’s largest online

ptg11539604

215Companies Formed During the 1990s

retail store. This company, like Apple, was formed in the garage of the founder.
The name is derived from the Amazon River and was selected because Jeff
Bezos wanted the company to have “A” as the fi rst initial so that it would
appear toward the front of catalogs and phone books.

Amazon started as a bookstore, and it obviously competed with thousands
of brick-and-mortar stores all over the country. The advantage that Amazon
provided was that it offered more content than local stores. Costs were low
because there was no physical warehouse. There were no sales taxes either, but
that advantage is under fi erce attack by numerous state governments.

Amazon’s business plan called for slow growth, and indeed the company lost
money from its inception through the fourth quarter of 2001. However,
Amazon’s stable sales volumes and low operating costs kept it in business
through the dot-com bubble burst of 2000.

Amazon later expanded from books to other kinds of products. Amazon
now brings to mind the older Sears Roebucks catalogs from the 1950s when
Sears sold a huge variety of products. Today, Amazon sells computers, cameras,
all forms of electronics, DVDs, perfume and, of course, books and e-books. The
diversity and marketing success of Amazon caused Time Magazine to name
Jeff Bezos person of the year in its 1999 special edition.

In recent years, Amazon was a pioneer in e-book publishing and also brought
out a line of e-book readers called Kindles, which compete with Apple and
other tablet vendors.

One of the useful features of Amazon is a ranking system where customers
can rank products and also the suppliers of the products. The rankings use a
star system, with fi ve stars being the top rank. This is such a useful feature for
purchasing items such as books and DVDs that it is surprising that traditional
brick-and-mortar stores do not do the same thing. However, the rankings are
sometimes suspect and can become skewed and raised by favorable ratings
placed by friends or employees or even by made-up reviews.

Amazon is also a web host for a number of other companies because its
server farm is so large.

Amazon is currently facing numerous challenges from state governments
because, in many states, no sales taxes are collected on goods sold online.
The reason for this is that Amazon does not have a physical presence
and hence is immune from taxation. This issue is not going away because
many states foolishly gave huge pensions and unsustainable benefits
to unionized workers, which is now driving states toward bankruptcy. Need-
less to say, the states are looking at taxation of internet sales as a method of
providing new revenues.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms216

When the state of Rhode Island attempted to tax Amazon sales, the response
from Amazon was to sever business ties with local companies that had been part-
ners. Individual consumers could still purchase from Amazon. So far, attempts by
state governments to tax Amazon and other web businesses have not been fully
successful and seem to have caused more harm to local companies than good.

Apache

Today, most computer users utilize Apache servers, but very few know this. The
origin of the name is ambiguous and either is an homage to the Apache Native
Americans or is derived from the term “patchy” because the fi rst product was
created by patches to an older product.

The company was formed in 1994 by Robert McCool, more or less. He had
been working on HTTP protocols at the NCSA. When he left, a number of
suggested patches circulated in email form. As they were implemented, the
group doing the code gradually became known as the Apache group.

The Apache group later formed a nonprofi t foundation in 1999 called the
Apache Software Foundation. Having software created and offered by a non-
profi t foundation is an interesting social phenomenon of the software era. The
software created by the foundation is free and open source but controlled by an
Apache foundation license. The Apache Software Foundation has a board of
directors but no actual employees. Instead, software is developed by a network
of more than 2,600 volunteers. This is an interesting business model that
deserves to be studied in business schools.

The main products of the Apache Software Foundation are systems for
controlling web servers. In 2009, the Apache server farm became the fi rst to host
more than 100 million websites. By the end of 2012, almost 64% of global
websites ran on Apache servers.

The web has evolved a fascinating social history as well as an interesting
technical history. It is hard to envision any other fi eld where critical services are
provided to more than 100 million users by unpaid volunteers.

Craigslist

Craigslist is an interesting tale of an entrepreneur accidentally creating a suc-
cessful company out of a part-time hobby. The company was started as a pas-
time in 1995 in San Francisco, California, by Craig Newmark. As it happens,
he was a computer programmer at the time. He was new to San Francisco and
thought a list of local events was a good way to research interesting local topics
and possibly meet new acquaintances.

ptg11539604

217Companies Formed During the 1990s

He started an email list to friends and colleagues of local events and topics of
interest in the San Francisco Bay area. Later, he ported the list to the web. In
1999, craigslist was incorporated in California as a for-profi t company.

Although craigslist started as a source for local events, it soon transformed
into a host for job wanted ads, sales of automobiles and other products, and
even a dating service. (In fact, there have been problems with offensive materials
and adult advertisements.)

Note
A famous murder case involved a medical student named Philip Markoff who posted a fake job
ad on craigslist to lure victims. He murdered Julissa Brisman, who responded to the ad, and he
became known in the media as the “craigslist killer.” Markoff later committed suicide while in
jail awaiting trial.

In 2000, Jim Buckmaster joined craigslist as Chief Programmer and CTO. He
introduced a number of technical changes, such as self-posting of ads, screening
for offensive materials, and interface improvements.

In 2004, eBay bought 25% ownership in craigslist, but the transaction
apparently was not a happy one because eBay and craigslist entered into litiga-
tion in 2008.

Craigslist is currently ranked as the tenth most widely visited website with
about 50 million monthly visitors. Income is derived from charges for various
kinds of ads, such as $75 for a job ad in the San Francisco region.

The success of craigslist as opposed to ads in local papers shows the social
impact of the web on modern commerce. Suppose you live in a small town with
a population of perhaps 20,000 and you want to sell a luxury automobile such
as a Lexus. The local paper and local ad brochures will only reach a few dozen
potential buyers, mainly in your own local community. This is the way business
has been done for more than 200 years.

An ad on craigslist, on the other hand, will also reach people in surrounding
towns and even adjacent states. Instead of a few dozen potential local buyers,
craigslist may reach several hundred potential buyers within a 75-mile radius.
The web and companies such as craigslist were expanding former neighbor-
hood services into wide-area services.

Digital Playground

Digital Playground was founded in 1996 in Van Nuys, California, by an adult
fi lmmaker named “Joone.” One of the unanticipated subindustries associated

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms218

with computer and software was the advent of internet pornography, which has
become a major business.

Although Digital Playground makes adult videos, it is also a pioneer in a
number of technical topics. For example, Digital Playground was a pioneer in
holography and 3D fi lming. They were also among the companies that chose
the Blu-ray format as their choice for high-defi nition fi lms. They also pioneered
interactive videos where a viewer could seemingly communicate with an
actress. The software technology of Digital Playground and other adult
internet companies is surprisingly sophisticated.

The company was acquired in 2012 by Manwin, a larger adult-fi lm company
located in Luxembourg.

The porn industry is now a major computer subindustry on a global basis with
dozens of companies and thousands of technical workers as well as thousands of
actors and actresses. The industry has its own culture and even has annual awards
for best picture, best actor, best actress, and other categories. This subindustry is
seldom discussed in the mainstream software engineering journals and books, but
any software industry that employs thousands of workers and generates billions
in income is signifi cant.

eBay

eBay is a prime example of a Silicon Valley success story in which a basically
sound idea was parlayed into a billion-dollar company, more or less by
accident. It was started in San Jose, California, on September 5, 1995, by a
computer programmer named Pierre Omidyar, who was born in France and
whose family was Iranian. The original name of the company at its foundation
was Auction Bid. It became eBay in 1997. It is an interesting social phenome-
non that many startup companies later change their names for one reason or
another. Without a careful count, more than 25% of the companies cited in this
book have had more than one name.

eBay started as a web-based auction house. This is an excellent example of
how a traditional business such as auctions evolved into a much larger web-
based business as a result of having access to millions of possible clients.

A web history of eBay has an interesting tale of one of the fi rst products sold:
a broken laser pointer, which sold for $14.83. The eBay founder Pierre Omidyar
emailed the buyer to be sure he understood that the pointer was broken and
inoperative. The response was “I collect broken laser pointers.” At that point,
Omidyar realized that web auctions could sell almost anything.

ptg11539604

219Companies Formed During the 1990s

At fi rst, eBay sold physical objects but later expanded into selling services as
well, such as airplane tickets. In today’s world, it sells dozens of services and
thousands of products.

eBay had an initial public offering (IPO) on September 28, 1998, and the
founder became a billionaire, along with Meg Whitman, who had been hired as
President. eBay also grew by acquisition and, among other properties, it acquired
the Skype computer-based telephone conference facility and the PayPal company
for handling online payments.

Once PayPal was acquired and part of eBay, the company began to mandate
PayPal as the sole source of payments, which cut out credit cards from a num-
ber of products. (PayPal will be discussed later in this chapter.)

Although eBay sells a wide variety of products, it does not sell everything.
For a combination of legal, business, and ethical reasons, eBay does not sell
alcoholic beverages, tobacco products, fi rearms, drugs, medicines, bootlegged
or stolen products, harmful products, lottery tickets, and a number of others.

One interesting feature of eBay is the ability of clients to rank sellers using a
fi ve-point star system. In a reversal of roles, eBay itself was compared and
ranked among a set of 15 web vendors.

Another unusual feature of eBay is that it donates a percentage of revenues
to charitable organizations. In fact, users and clients can name specifi c charities
for the donations. This is an unusual aspect of a business plan but laudable.
Other wealthy software companies might follow the same pattern.

Note
A number of software entrepreneurs are philanthropists and donate funds, corporate support,
and energy to worthy charities. The Bill and Melinda Gates Foundation is perhaps the largest
charitable organization started by a software entrepreneur. The software industry has become
one of the most signifi cant sources of funds for nonprofi t charitable organizations. This fact is
of both social and historical importance.

Like other web sales and services organizations, eBay is in the spotlight for
not charging taxes in locations where it does not have a physical presence.
Many state governments are trying to get around this limitation.

A fi nal interesting aspect of eBay is that its new corporate offi ce in San
Jose was designed to be environmentally friendly. Solar panels on the roof
provide almost 20% of the power to run computers and offi ce equipment in
the building. The lighting system also detects and responds to ambient light.
Instead of constant light output, the building adjusts brightness based on
outside light.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms220

eBay has become a diverse company with many business partners and many
forms of business. It is no doubt a key company for business school case stud-
ies. eBay also demonstrates the power of computers, software, and the web to
forge new kinds of remote businesses out of the traditions of older businesses
such as auction houses.

GoDaddy

GoDaddy is an interesting niche company that is based on the existence of the
World Wide Web and the fact that web addresses need to be unique.

The company was founded in 1997 in Phoenix, Arizona, by an entrepreneur
named Bob Parsons. The original name at founding was Jomax Technologies.
Here, too, name changes are very common among software startups. It was
originally a private company that almost had an IPO in 2006 but decided not
to. In 2011, about 65% of the company was sold to a group of venture capital-
ists for a ballpark fi gure of around $2.25 billion.

Bob Parsons had already been a successful entrepreneur with an earlier com-
pany called Parsons Technology, which he had sold to Intuit, and then retired.
GoDaddy was created when he left retirement to become an entrepreneur for
the second time. In an industry populated with young entrepreneurs such as
Steve Jobs, Sergey Brin, and Mark Zuckerberg, it is interesting that GoDaddy
was founded by a former Marine who had already sold one company and came
out of retirement to start a new one.

The name “GoDaddy” was apparently decided in a casual meeting with
employees who were not happy with the previous Jomax name for some
reason. A similar name, Big Daddy, was suggested but was already in use. (Had
this been an East Coast fi rm, the name might have been “Big Papi” after the
Red Sox player David Ortiz.)

The main business of GoDaddy is entirely dependent on the existence of
the internet and World Wide Web. It could not exist without these. After
the web was created and companies began to build websites, it quickly
became obvious that each site needed a unique name. In order to do this, it
was necessary to create a formal registry of names, which are called domain
names.

The alphabetic or alphanumeric domain names are only the surface. These
are mapped to a mathematical and numeric internet protocol (IP) address that
allows automatic jumps from one domain to another. The analogy that comes
to mind is the relationship between human names in a phone book and their
numeric telephone numbers.

ptg11539604

221Companies Formed During the 1990s

Note
The original Domain Name System (DNS) was developed in 1983 by Paul Mockapetris.

In the early part of the decade, the registry of domain names was kept by the
National Science Foundation (NSF). In 1993, the NSF decided to privatize
domain registration.

GoDaddy was not the fi rst company to provide name registration: that was
Network Solutions. The domain name business now has a number of compa-
nies that share the master registry and compete with each other. GoDaddy is
one of the larger competitors, with about 50 million names in their registry.

DNS naming and control are critical aspects of the internet and World Wide
Web, but the specifi c mechanism is beyond the scope of this book. Suffi ce it to say
that keeping track of billions of web pages is not trivial and the math is complex.

GoDaddy achieved a kind of social fame due to its somewhat risqué advertise-
ments. GoDaddy hired a number of attractive female models who became known
as “GoDaddy girls.” One of these is the famous racing driver Danica Patrick.

GoDaddy also garnered quite a bit of social commentary due to its fairly
unconventional ads placed during various Super Bowls. For a company to be
big enough to advertise during a Super Bowl, it needs to be big indeed and prof-
itable. GoDaddy also sponsored a postseason college football bowl called the
GoDaddy Bowl.

Although the advertising strategy of GoDaddy may seem eccentric, the com-
pany has achieved a good reputation. It was cited among Fortune Magazine’s
list of the 100 best companies to work for in 2012. It received a similar award
for being among the best companies in Phoenix from the Phoenix Business
Journal in 2011.

GoDaddy also makes a number of signifi cant charitable contributions.
Among its supported charities are those aiding disabled children; avoiding
domestic violence; and researching solutions for Parkinson’s disease, homeless-
ness, and breast cancer. GoDaddy also contributes to Toys for Tots, the local
Humane Society, and the Phoenix Children’s Hospital. GoDaddy makes many
corporate contributions and encourages employees to participate in charitable
work as well.

Google

The history of Google is a classic entrepreneurial legend. Two graduate students
developed an interesting mathematical method for searching the web and
parlayed it into a multibillion-dollar corporation a few years later. Adding to

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms222

Silicon Valley’s reputation as an incubator for startups, Google was incorporated
by Larry Page and Sergey Brin on September 4, 1998, within a friend’s garage in
Menlo Park, California. Menlo Park is near the epicenter of Silicon Valley.

Note
The name “Google” is derived from a mathematical term “googol.” That term was created in
1938 by a nine-year-old boy named Milton Sirota. A googol was defi ned by Sirota as 10^100
power. But Milton Sirota also proposed a bigger number called a googolplex. That was fi rst
defi ned by Sirota as “one followed by writing zeros until you get tired.” Sirota was the nephew
of the well-known mathematician Edward Kasner, who narrowed the googolplex value to
10^10^100. No matter how they are defi ned, googols and googolplexes are very big numbers.

In 1996, Page and Brin were graduate students at Stanford University in
Menlo Park. They were working on an interesting project called the Stanford
Digital Library Project. The goal of the project was to create an integrated
universal digital library.

As part of the research on the Stanford library project, Page and Brin
explored web links and developed interesting and powerful algorithms for web
searching based on back links. They were not quite alone in the fi eld since
another researcher named Robin Li had a similar idea. Later, Li would patent
his algorithms and create Baidu, his own company and search engine in China.

There were other and competing methods of web searching besides Google,
but Google tended to provide good results quickly, and it gained prominence.
Google also began to generate serious revenues by allowing ads that were
related to specifi c keyword searches. Although Brin and Page had originally
opposed ads, they fi nally decided that revenues were needed and ads were the
most effective way of getting it.

Google had several rounds of private and venture funding prior to going
public with an IPO. Most Google employees were also stockholders, so the
reporting requirements for Google were already quite strenuous.

On August 19, 2004, Google had a successful IPO and sold more than
19 million shares at $85 per share. Google was on its way to becoming a soft-
ware giant. By the end of 2004, Google and its partners were processing
almost 85% of all web searches. There were competitors such as Yahoo, but
Google was the elephant in the room. Later, Microsoft would create its
own Bing search engine. Yet other sophisticated forms of search engines are
emerging such as Wolfram Alpha.

Google continued to grow rapidly both by acquisitions and by expanding
into other fi elds. For example, Google Gmail is now a major email service.
Google’s offi ce suite, Google Docs, competes against Microsoft Offi ce. The

ptg11539604

223Companies Formed During the 1990s

Google Chrome browser competes with Internet Explorer, Firefox, Opera,
Safari, and several more.

Microsoft became a fi erce competitor of Google. In fact, Microsoft sued
Google to stop its key executives from joining Google, on the grounds that their
knowledge of Microsoft applications would benefi t Google and be a violation
of employment agreements. This case settled out of court.

Google became famous for a somewhat quirky corporate culture and for a
tendency to be very eclectic rather than pursuing only a single business path. Its
business strategy is often hard to gauge because it seems to zigzag from one
technology to another.

Like many other software companies, Google has a large nonprofit
philanthropic wing and it started this off with a billion dollars in funding. Google
supports many charities and nonprofi ts in areas of poverty abatement, climate
change, and various public health programs. This is yet another example of
software entrepreneurs with social consciences using some of their large profi ts for
charitable causes. Fortunately, this is not uncommon in the software business.

Staying on the cutting edge of software engineering research and equipment
research is one of Google’s main focuses. The new Google Glass concept of
eyeglasses with an embedded computer is getting good and bad reviews. The
Google development of a hybrid electric vehicle is far from conventional
software but technically interesting.

Several Google products such as Sky Map and Google Maps are now among
the most widely used applications on smartphones. The recent fl ap caused by
Apple attempting to replace Google Maps with its own fl awed mapping
program was front-page news for several weeks.

Google is one of the fastest moving and most rapidly changing companies
cited in this book. It seems to crank out new inventions and products at a very
rapid clip. Many are useful and exciting, but not all. In any case, Google has
added a great deal of excitement to software engineering and is pushing soft-
ware in many interesting new directions. Among these is Google’s research on
secure programming languages and better ways to prevent cyberattacks.

Heartland Payment Systems

Heartland Payment Systems was founded in 1997 in Princeton, New Jersey, by
Robert O. Carr. Its main business is processing credit card payments.

Credit cards were based on IBM’s magnetic stripe that could be pasted onto
plastic cards. Soon after the stripe’s invention in 1960, Visa, MasterCard,
American Express, and others would make credit card purchases universal.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms224

Heartland is one of several companies whose main business is actually
processing the card payments from thousands of merchants and small retail
organizations. These companies are more or less invisible to consumers but pro-
vide the “engines” that make credit cards useful. They all use software and
powerful computers because they process millions of transactions per day.
Heartland currently processes credit card data for around 250,000 businesses
that generate about $120 billion per year in credit card payments.

In 2009, Heartland made front-page news due to a massive cyberattack
that stole credit card data from the magnetic stripes of thousands of individ-
ual consumers’ credit cards. The actual theft occurred in 2008. A man named
Albert Gonzalez was arrested and indicted and later convicted and sentenced
to 20 years in federal prison.

The attack was seemingly based on SQL injections, which introduced
back-door traps that diverted user data to false addresses so information
could be extracted. Once the data are stolen, they can be magnetically
encoded onto phony cards. Similar attacks and other indictments were issued
for attacks against the retail store T. J. Maxx and the Dave and Buster’s
restaurant chain.

The Heartland cyberattack is a cautionary tale that in the modern world,
data stored on computers are more valuable, and sometimes easier to steal,
than gold. In the aftermath of the attack, Heartland introduced new and
improved security methods that include full encryption of all data.

Insight Venture Partners

As can be seen by the number of multibillion-dollar software companies cited in
this book, the software industry has generated enormous wealth. This wealth
is often created when startup companies become successful. Insight Venture
Partners specializes in funding software startups.

The company was founded in 1995 in New York by Jeff Horing and Jerry
Murdock. In total, Insight has invested in about 170 software companies,
including some famous ones such as Twitter, Tumblr, and Quest Software.
About $5 billion has been invested by Insight.

Insight Venture Partners is not a software company itself but has provided
the seed money for many software startups, of which 21 later became large
enough to have IPOs. It is of social and historical interest that the enormous
wealth the software industry has created needed venture funding to get started.
Without venture funds from groups such as Insight Venture Partners, many of
the companies cited in this book would not have gotten started.

ptg11539604

225Companies Formed During the 1990s

The ISBSG

The ISBSG is an interesting niche company that began as a loose cooperative of
metrics organizations in fi ve countries. It was founded by Terry Wright in 1994,
and three years later Peter Hill joined as President and registered the company
in Melbourne, Australia. The ISBSG is organized as a nonprofi t group and it
provides a very useful service to the software community.

The ISBSG collects benchmark data for software productivity and quality.
Today, the volume of available benchmarks exceeds 6,000 projects, and
hundreds more come in on an annual basis. The ISBSG benchmarks cover a
variety of software types from a variety of industries. More than 20 countries
have provided benchmark data to date.

All of the benchmarks in the ISBSG repository use functional metrics. Both
International Function Point Users Group (IFPUG) function points and COSMIC
function points are represented. Some of the other functional metrics such as
NESMA and FISMA are also included.

Function Points and Other Metrics

The plethora of function point variants is not really helpful to economic understand-
ing. The rival claims among the function point variants for being “more accurate”
are also not helpful. Function points in all fl avors are counted using a complex set of
rules, and there are variances in counts even by certifi ed counting personnel. There is
no “cesium atom” or absolute standard against which benchmark accuracy can be
compared.

However, function points are the only available metric that provides useful
economic data and can successfully normalize results. The older lines of code metric
penalizes modern programming languages and makes requirements and design invis-
ible. The widely used cost per defect metric violates standard economic assumptions
and also penalizes quality, achieving the lowest cost per defect for the buggiest
software.

Other metrics such as story points for Agile projects are not standardized and
vary so widely from group to group that statistical analysis is pointless.

Use-case points are more stable (although not standardized) but are only good
for projects that actually design software with use cases. They have no value for
cross-methodology comparisons.

Function points in all fl avors are the best and most reliable metrics yet developed
for software benchmarks and for software economic studies. The ISBSG is a major
source of data using functional metrics.

(Continued)

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms226

(Continued)
One caveat about functional metrics is that manual counting is so slow and so

expensive that functional metrics are seldom used on systems larger than about
10,000 function points. Manual function point counting averages about 500 func-
tion points per day for certifi ed counters. The costs of manual function point counts
range between about $2.50 and $5.00 per function point counted.

Large systems in the 100,000 function point range (such as operating systems,
defense systems, and ERP packages) are almost never counted with function points
and therefore are not included in the ISBSG repository.

There is a mathematical technique called backfi ring that can convert counts of
logical code statements into equivalent function point counts, but this method is not
accurate due to wide variations in individual programming styles. Backfi ring was
fi rst developed in IBM by Al Albrecht and his team, who invented function points in
the early 1970s at the IBM location in White Plains, New York.

There is also a modern and patented high-speed sizing methodology based on
pattern matching that can size applications in fewer than two minutes regardless of
their nominal size, but this method is so new that no data using it are in the ISBSG
repository. This method is owned by Namcook Analytics LLC.

Another new method of automated function point has been announced as a
standard by the Object Management Group (OMG), but no data are yet available
using this approach.

The IFPUG issued a new size metric in 2012 that measures nonfunctional require-
ments. An example of a nonfunctional requirement would be for special features
that improve security or performance but are not counted using function point
analysis. This new approach is called SNAP metrics. Because it is so new, empirical
data and measured results are just starting to appear in 2013. No doubt these data
will be added to the ISBSG repository in the future as they become available.

The ISBSG’s data collection method uses a relatively sophisticated question-
naire that captures useful information about software methodologies, program-
ming languages, and other factors that infl uence software project results.

The ISBSG business model provides the input questionnaire to all clients free
of charge, so there is no charge to have data submitted to the ISBSG repository.
There are charges for extracting data from the repository, but they are not
excessive.

The ISBSG data can be sorted and selected to show a number of subtopics of
interest. For example, there are data on new projects and maintenance and
enhancements; there are data on large systems and small applications; there are
data on Agile projects and waterfalls; there are data on COBOL applications
and C11 applications. The ISBSG provides a number of useful fi lters so that

ptg11539604

227Companies Formed During the 1990s

clients can extract specifi c data. Data can also be shown by industry such as
banking, insurance, telecommunications, manufacturing, and others.

It happens that self-reported data from clients are not always 100% accurate.
Leakage and data errors are not uncommon among the companies that have
provided data to the ISBSG repository. Several consulting companies that go
onsite and interview software development teams may have more accurate data,
but there are substantial consulting fees for onsite data collection, while the
ISBSG data are gathered for free. Also, the consulting companies charge a great
deal more for their data than does the ISBSG.

Overall, the ISBSG benchmark repository is a valuable resource for the
software industry. The data are widely used by many companies to calibrate
estimates and to compare methodologies. The ISBSG data are also published
in various articles and books. There are also special reports that might, for
example, cover an in-depth study of a major bank.

The software industry needs the kind of data that the ISBSG provides, and
this organization has become a valuable resource for academics, corporate
researchers, and government researchers.

Monster.com

Few companies discussed in this book are better exemplars of the power of the
internet and web for infl uencing human life than Monster.com. Monster.com has
become the largest employment website in the world, with more than 1 million
résumés uploaded to it and almost 65 million job-seeking visitors per month. A
company like this could not have existed 20 years ago because the enabling
technologies of the internet, the web, databases, and combinatorial search logic
are all necessary to make it work. Because this book covers social phenomena as
well as technical topics, the success of Monster.com is one of the most signifi cant
job-seeking and job-posting evolutions in human history.

Monster.com was formed in 1999, but it was created from a merger rather
than as a single-company startup. The two pioneering employment sites that
merged were the Monster Board (TMB) and the On-Line Career Center (OLC).
Jeff Taylor was a founder and CEO of the Monster Board. The organization
started in Framingham, Massachusetts, but moved to Maynard, Massachusetts,
where it occupied space in the former offi ce complex of Digital Equipment
Corporation (DEC). (As it happens, I lived only a few miles from the Maynard
complex in the next town over, Acton, Massachusetts.)

The early history is complex and involves multiple mergers and acquisitions.
It started with an older company called Telephone Marketing Programs (TMP)

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms228

Worldwide that was formed in 1967 and started as a print-based “yellow
pages” fi rm. In 1993, TMP started a recruitment division. In 1995, it acquired
the Monster Board and the On-Line Career Center, the two companies that
would later merge. Monster.com itself is owned by Monster Worldwide, Inc.

Monster was a pioneer in web-based job searches and had one of the
fi rst job-search websites in 1994, not long after the web began to function
internationally.

Although Monster.com is very popular with job seekers and companies seek-
ing new employees, not everything was smooth as the company grew. In 2007,
Monster.com was hacked, and personal information for thousands of job-seeking
candidates was stolen from its databases. Although Monster said it would
improve security, there was another hack in 2009 at the U.K. Monster data
center, which may have resulted in as many as 4.5 million records being stolen.

In 2006, the Attorney General’s offi ce of the State of New York began an
investigation on assertions of back-dating stock options. Monster started
its own internal investigation and reported some irregularities, which resulted
in restating earnings from 1997 through 2005. There were some personnel
terminations as well.

The parent TMP Worldwide company went public in 1996 and is traded on
NASDAQ. In spite of hacks and legal issues, Monster.com remains a pioneer
in online employment searches and job postings, and it is also a company that
created many innovations in personnel systems.

Netscape Communications

Netscape was a pioneer among web browsers and was also one of the combat-
ants in the famous “browser wars” by competing against Microsoft. The com-
pany was founded in Mountain View, California, on April 4, 1994, by Jim Clark
and the famous Silicon Valley entrepreneur Marc Andreesen. Originally, the
company was Mosaic Communications Corporation, but as with many software
startups, the name of the company changed.

Many of the same people who developed the original Mosaic web browser
also worked on the development of the Netscape web browser, but the source
code of the two was different. Netscape also created the famous JavaScript
programming language and originated the Secure Sockets Layer (SSL) protocol.

At its peak, Netscape had about 90% of the browser market but eventually
lost market share to Microsoft’s Internet Explorer. This led to an antitrust suit
against Microsoft in 1998 since Internet Explorer was provided as part of
Windows and was not marketed separately.

ptg11539604

229Companies Formed During the 1990s

Netscape was acquired by America Online (AOL) in 1999 for stock and
equity worth perhaps $10 billion.

In the fi rst browser war, Internet Explorer achieved a dominant place, while
Netscape’s usage declined. However, Netscape decided to make its browser source
code an open-source platform, and that helped create the Mozilla Foundation.
The later Firefox browser by Mozilla is a descendant of the original Netscape
browser.

Note
The browser wars continue today and new players have joined the fray. Current browsers
include Apple Safari, Google Chrome, Internet Explorer, Mozilla Firefox, Opera, OmniWeb,
Shira, and a number of others. In today’s world, browsers also operate on smartphones and
tablets as well as on computers. The history and technology of web browsers are among
the most complex but interesting topics in the larger history of software engineering.
The browser wars are leading to rapid increases in browser capabilities and features as the
various browser companies seek to pull ahead of their rivals.

Netscape itself went from being an independent company to being owned by
AOL to being closed by AOL in 2003. However, the name “Netscape” still
continues, as does the browser. A search for “Netscape” on the web leads to the
site of an internet service provider (ISP).

Priceline

Priceline was founded in 1997 in Norwalk, Connecticut, by the software entre-
preneur J. S. Walker. The Priceline business model is interesting and unusual.
Priceline is a conduit for various products and services such as airline tickets,
hotel rooms, and vacation packages. Users specify a price range, and Priceline
then reports back on what companies can match the user’s stated price. The
actual names of the hotels or airlines are concealed from customers until they
make a no-refund purchase agreement. Priceline receives its cut from the
vendors of services that were sold. Priceline has now added a more traditional
business model where the names of the vendors are shown prior to purchase.

Priceline became famous due to its commercials featuring a former Star Trek
actor, William Shatner. Later ads also featured his costar Leonard Nimoy, who
played Mr. Spock. Shatner was given equity in Priceline in exchange for his
presence in the ads.

Priceline is a good example of a company and a business model that is
entirely driven by computers, software, the internet, and the World Wide Web.
All of these are needed to match the requests from millions of consumers to

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms230

thousands of products and services. The Priceline company could not have been
created prior to the 1990s because all of its enabling technologies are part of
the internet era.

Red Hat Software

Red Hat Software is interesting because its business model centers on open-
source software, which is an important phenomenon of the software engineering
world. The company was founded in 1995 in Raleigh, North Carolina, by Bob
Young and Mark Ewing, who merged two Linux and Unix companies to create
Red Hat. The name “Red Hat” derives from a Cornell University lacrosse hat
given to Bob Young by his grandfather, although he himself attended Carnegie
Mellon University.

Red Hat is the largest contributor to the Linux kernel, and it licenses other soft-
ware under the GNU open-source licensing agreement. Red Hat Enterprise Linux
is one of the most widely used Linux versions. Like many open-source companies,
Red Hat offers software itself for free, but it charges for consulting, training, and
support. The company also receives voluntary donations from satisfi ed users.

Although the phrase “open source” brings up an image of nerdy hackers
working alone, in fact quite a bit of open-source development is done by
professional staff and uses professional quality assurance. Red Hat has more
than 600 personnel in North Carolina, for example.

Open-source projects compare favorably to regular commercial software. In
fact, open-source developers pioneered the usage of static analysis tools. The
open-source business model is worthy of business school case studies because it
is popular and seems to be successful.

Red Hat shows that quite a bit of money can be made from the open-source
model. Red Hat had an IPO on August 11, 1999, that was the eighth largest
fi rst-day gain in the entire history of Wall Street! (Their stock is sold on
NASDAQ.)

In 2005, CIO Insight Magazine ranked Red Hat number one in vendor
value. On July 27, 2009, Red Hat replaced CIT Group in the Standard and
Poor’s 500 stock market. This is a fi rst for an open-source company. Also, in
2012, Red Hat became the fi rst open-source company to top $1 billion in
revenues, receiving about $1.25 billion that year.

Since their IPO, Red Hat has acquired a number of other companies and
services and has also opened new offi ces and facilities in other countries, such
as India. Red Hat is proof of the concept that the open-source phenomenon can
be a successful way to run a software business.

ptg11539604

231Companies Formed During the 1990s

Red Storm Entertainment

Red Storm Entertainment is a computer-game company founded in 1996 by
Tom Clancy and Doug Littlejohns in Morrisville, North Carolina. Tom Clancy
is the famous adventure and military novelist, and Doug Littlejohns was a
submarine captain in the British Navy.

This company is a good example of the increasing sophistication of computer
games and the growth of the whole computer-game industry. Computer games
originated as fairly simple games such as Pong. Later, they evolved into more
sophisticated role-playing games, simulations of board games such as chess,
sports games such as tennis and football and, fi nally, massively multiplayer
online role-playing games (MMORPGs) where thousands of participants
wander as avatars through artifi cial worlds. In some games, it is even possible to
build buildings, acquire real estate, and simulate actual urban growth.

The Red Storm games center on the books and concepts that originated in
Tom Clancy’s novels. Some of the Red Storm games include Rainbow Six, Eagle
Watch, Ghost Recon, and Rogue Spear.

In 2000, Red Storm was acquired by the larger game company Ubisoft.
Computer games may seem unimportant, but in fact they are often on the cut-
ting edge of computing and software technologies. The rendering engines for
realistic backgrounds have expanded from games to other forms of business
such as animated fi lms.

Computer Games as a Major Industry

The computer-game business entirely depends on computers and software and could
not exist before they became widely used and popular. Modern games have expanded
from being played on computers to operating on special game consoles such as the
Nintendo Wii and Microsoft Xbox, tablets, special handheld devices such as Game-
boy, and smartphones.

Some of the MMORPGs are played by hundreds or thousands of participants,
and the games operate 24 hours per day, seven days per week. This is a new and
interesting social phenomenon that would not occur without computers, software,
and the web. Computer gaming has also created major new forms of software
technology. Some game systems such as the Wii feature physical attachments that
resemble tennis rackets, golf clubs, and other sports equipment. These allow fairly
realistic simulations of actual sports.

There is some concern among psychologists and medical professionals that
violent computer games may lead to violence in real life. There is also concern

(Continued)

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms232

among medical professionals that games may be somewhat addictive and that
excessive computer-game playing can lead to obesity and lack of muscle strength
due to passive physical posture with no exercise.

The sophistication of computer-game algorithms reached a new high on May 11,
1997, when IBM’s Deep Blue supercomputer beat the world chess champion Gary
Kasparov. The match was close, but Kasparov apparently made a mistake during the
opening moves of game six. This was the fi rst time a computer had beaten a world-
champion chess player. However, ordinary computer chess games on personal
computers play well enough to be tough competitors for unranked amateur chess
players and even for fairly serious ranked players.

Sirius Satellite Radio

Sirius Satellite Radio was founded in July 1990 in Washington, D.C., by the
attorney and entrepreneur Martine Rothblatt. It is currently headquartered in
New York. This was not an ordinary company startup because before it could
begin operations, Rothblatt had to petition the Federal Communications Com-
mission (FCC) to gain its approval for using part of the 2300-MHz band. While
embedded software is what drives the Sirius operation, it is the politics of getting
the company started that is the most interesting and is also unique in this book.

Fortunately, Rothblatt was not only an attorney but also a specialist in com-
munications laws. She demonstrated a prototype from ground-based transmitters
to the FCC in 1992. Getting government approval for Sirius was not a trivial
undertaking. The legal and public policy issues were more complicated than the
technology issues.

Rothblatt was not a novice in satellite communications, having previously
founded the GeoStar satellite navigation system and the PanAmSat television
broadcast group. Clearly, she knew a lot. Rothblatt left Sirius in 1992 due to
her daughter’s illness, and she founded a medical research organization.

Five more years of lobbying and politics would be needed to gain regulatory
approval. Two CEOs followed her: Robert Briskman, a former NASA engi-
neer, and then David Margolese, who had funded Sirius. Needless to say, oppo-
sition from conventional ground-based broadcasters was fi erce. Probably the
politics of starting Sirius are more complex than any other company cited in
this book.

The FCC had shifted from assigning frequencies to auctioning them. In 1997,
Sirius successfully bid $83 million to gain access to the frequencies originally
requested in 1990. The FCC also sold a license to a competitor, XM Radio.

(Continued)

ptg11539604

233Companies Formed During the 1990s

It was also necessary for Sirius to build satellite radio receivers and to
negotiate with major automobile companies to put satellite radios in automo-
biles, without which there was little likelihood of a successful business
model. Before Sirius could become a viable company, several more daunting
tasks were needed. First, Sirius had to launch three satellites and construct a
coast-to-coast transmitter network.

In total, starting up Sirius Satellite Radio took about $2 billion in total funding.
This meant it was the most expensive startup cited in this book as well as the most
expensive startup of any company in history!

As is common and mentioned often in this book, there were several name
changes along the way, including CD Radio, which did not attract enthusiasm.
Prior to acquiring XM, the fi nal name was Sirius Satellite Radio; it is now called
Sirius XM Radio.

Sirius was a startup company, but it also basically invented and founded an
entire new industry. Sirius engineers had to design custom satellites, calculate
optimal orbits, design custom computer chips, and develop custom software.
They also had to lobby the FCC and Congress and even build custom broadcast
studios with glass walls. From the first petition in July 1990 until the
fi rst broadcast on Valentine’s Day in 2002, almost 12 years and more than
$2 billion were needed to get Sirius off the ground.

The business model of Sirius was to offer fee-based high-defi nition music
without commercials. There are commercials on Sirius, and plenty of them, but
not while music is actually playing. (In the interest of disclosure, I have been a
Sirius customer for several years.)

In 2007, Sirius acquired the competitive XM satellite radio after gaining
Securities Exchange Commission (SEC) and FCC approvals, which involved
another complex political process.

Sirius does not just broadcast derivative or common materials. Quite a few
broadcasts are unique, and Sirius has forged relationships with entertainers and
also sports teams and leagues. For example, Sirius broadcasts many college and
professional football games to national audiences. However, it is a curious legal
issue that restricts major league baseball games only to XM and not to Sirius,
even though the two are now merged. That is a legal issue outside the scope of
this book.

Sirius would make a very interesting case study for business schools because
it not only created a new industry but also technical issues were strongly inter-
twined with political and regulatory issues. While software is critical to Sirius
and XM operations, it is the combination of politics and technology that makes
the story unique.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms234

ThoughtWorks

ThoughtWorks is an interesting example of a software company aimed at
improving software itself. The company is also unusual in that it has a strong
social commitment.

In the 1980s, an entrepreneur named Roy Singham started a management
consulting company in Chicago, Illinois, called Singham Business Services. As
so often happens in the software business, Singham changed the name of his
company. Singham incorporated under the name ThoughtWorks in 1993, also
in Chicago.

The new ThoughtWorks company concentrated on trying to improve software
development methods and practices, certainly a laudable goal. The company has
both a consulting portion and a software tool portion called ThoughtWorks
Studios. ThoughtWorks also commingles commercial applications with open-
source applications, which is an interesting and unusual business model.

The well-known software engineer Martin Fowler joined ThoughtWorks in
1999 and became its chief scientist in 2000.

ThoughtWorks pioneered some interesting technologies on its own and
was also an early contributor to the Agile methodology. Indeed, Martin
Fowler was one of the signatories of the Agile Manifesto in 2001. Thought-
Works is also working on continuous development and continuous integra-
tion, or attempting to convert software from discrete releases several months
apart to a kind of process-control fl ow of rapid releases of new functions as
they become ready.

One of the more interesting aspects of ThoughtWorks is its strong commit-
ment to social issues. According to its website, the company mission has three
key elements:

• Run a sustainable business

• Champion software excellence and revolutionize the IT industry

• Advocate passionately for social and economic justice

The third element is both unusual and laudable.
The ThoughtWorks support of social issues includes providing technical aid

to nonprofi t and charitable groups that need technical assistance. ThoughtWorks
also allows employees to provide nonbillable time to charitable groups. Thought-
Works also contributed an application that allowed emergency donations to
fl ood victims in Australia.

ptg11539604

235Companies Formed During the 1990s

Another unusual aspect of the ThoughtWorks social program is that employees
are allowed to contribute open-source code that they have developed. This is a
very unusual concept, and it should be studied by business schools.

Currently, ThoughtWorks has more than 2,000 employees and has offi ces in
Chicago; London; Bangalore; Brisbane; Calgary; San Francisco; and Porto
Alegre, Brazil.

Visio

Visio was an interesting niche company that developed a sophisticated graphics
package that used predefined shapes and links. Visio supported various
software diagramming methods such as fl owcharts and UML diagrams. It also
supported other forms of scientifi c and technical graphics.

This company was formed in Seattle, Washington, in September 1990. The
founders included Jeremy Jaech, Dave Walker, and Ted Johnson. All of the
founders had worked together at Aldus Corporation.

As so often happens with software startups, there were several name changes.
Visio started with the name Axon Corporation. In 1992, it changed its name to
Shapeware. In 1994, it changed its name to Visio 1, and when it did an IPO, the
name was Visio.

I was a Visio client in the late 1990s before Visio was acquired by Microsoft
in 2000. The current name of the company is Microsoft Visio. The acquisition
was in the form of a stock swap and amounted to about $1.5 billion. This was
Microsoft’s largest acquisition at the time.

The graphics technology of the Visio products uses vector graphics and a
proprietary fi le format, so Visio diagrams cannot be read or opened by many
other software applications. However, Visio can open other graphics formats.
(The Libre Offi ce suite can open Visio fi les and in fact may be an industry leader
in opening more fi le formats than other offi ce suites.)

Although Visio is cited in this book primarily because it supports software
engineering diagrams, it is in fact a very eclectic tool that can produce diagrams
for many scientifi c and engineering fi elds, including electrical engineering,
chemistry, and even botany.

The shapes and diagrams are organized as stencils and templates, and it is
fairly easy to scroll through Visio catalogs. In addition, third-party vendors
offer custom stencils and templates for Visio. For example, the networking
company Cisco has a library of Visio stencils for various kinds of networks
and products such as optical networks, routers, security fl ow, and many
more.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms236

Visio is a good example of a “niche” software company that provides a
special kind of tool for special purposes, but graphics design is a pretty large
niche with millions of potential engineering and scientifi c customers. Visio is
not alone and has many competitors, such as SmartDraw and even the open-
source Libre Offi ce. However, Visio has a large market share in a variety of
scientifi c disciplines. With Microsoft’s powerful marketing engine, Visio has
become a major player in the computer software industry.

VMware

VMware is another company whose business is exclusively dependent on
computers and software, and it could not exist without them. The name is a
compression of “virtual machine,” and that is an interesting technology.

The VMware company was founded in 1998 in Palo Alto, California, which
is in the midst of Silicon Valley. The group of founders included Diane Green,
Mendel Rosenblum, Scott Devine, Edward Wang, and Edouard Bougnion.
Mendel Rosenblum was Chief Scientist and Diane Green was President.

Software runs on specifi c computers and specifi c operating systems. A virtual
machine is a software package that imitates a hardware/software combination
so that applications can be run on computers and operating systems different
from the ones originally intended.

VMware was acquired by the larger EMC Corporation in 2004 for about
$625 million. In 2007, EMC had an IPO for part of the VMware stock, which
opened at $29 per share and ended at $51 per share.

In 2007, Diane Green was terminated by the board, and later Mendel Rosen-
blum resigned. Things were apparently not happy inside the VMware/EMC
merger.

VMware has both commercial and open-source applications. This is an
unusual combination but is becoming more frequent in the software industry.

VMware’s products include several forms of hypervisors, which allow guest
operating systems to run on artifi cial, virtual hardware platforms. VMware also
supports dual-boot systems, or running two different operating systems on the
same platform.

Virtual machines offer some signifi cant cost savings for commercial software
development companies and also for large software users. Suppose a software
vendor was building an application that was planned to be released in versions
for Microsoft Windows, Apple Macintosh, and Linux. Without virtualization,
the vendor would need separate hardware devices for each. With virtualization, a
single computer can be made to appear as though it were three different machines.

ptg11539604

237Mass Updates and Aging Legacy Software

There are many other companies besides VMware in the virtualization
business sector. This is an interesting example of a new kind of market niche
that exists only because of computers and software.

In general, the software companies cited here are expanding the uses of com-
puters and software into new directions. Several of the companies cited could
not have existed 20 years beforehand because the internet and the World Wide
Web were needed in order to carry out their business models.

Mass Updates and Aging Legacy Software

Business and commercial software applications began to expand in numbers by
1975. By the middle of the 1990s, some applications, such as IBM’s operating
systems, had been evolving and used for more than 20 years. The same was true
for other industries and applications that had been early adopters of computers
and software: banks, insurance, telecommunications, and a number of others.

The increasing age of many important software packages introduced a new
phrase into software engineering: “legacy applications.” The large volume of
aging legacy applications would soon play a part in a new kind of software
problem called mass updates that require changes to thousands of legacy appli-
cations simultaneously. (Mass updates occur when problems, such as the one
that Y2K posed, that affect thousands of applications need to be changed at the
same time.) This type of problem is going to stay with us from now on and will
get worse in the future.

The task of maintaining aging legacy applications would grow rapidly and
by 2000, software maintenance would absorb more software engineering time
than software development. This is not unexpected and has occurred in other
industries. By the time automobiles had been in use for 30 years, there were
more mechanics who maintained automobiles than there were assembly line
workers building new automobiles.

Consider the software world as it neared the end of the decade, say from
1995 on. The new euro currency was about to be introduced in 1999. The
famous Y2K problem would occur as the calendar changed from 1999 to 2000
at midnight. Neither of these issues is a problem for new applications, but
both were serious problems for the huge inventory of aging legacy software
packages.

Both of these topics would impact thousands of legacy applications that had
been running for many years. They would require the diversion of thousands of
software engineers and millions of staff hours to modify aging applications.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms238

These are among the fi rst instances of mass updates. Mass updates had never hap-
pened before, but they will happen again, with ever-increasing costs and diffi culty
because legacy applications are continuing to grow faster than they can be replaced.

Many problems associated with the insuffi cient numbers of digits will occur
during the next 50 years, too, but when these issues will pop up is somewhat
unpredictable.

An interesting report by Dr. Clifford Kurtzman notes that the population of
the United States will exceed the capacity of unique ten-digit phone numbers
for all callers before the year 2025 and perhaps as early as 2015 due to the huge
increases in multiphone families brought about by smartphones. Already, there
is a need to reassign area codes to help solve this problem.

In 2038, the internal Unix clock will overfl ow, causing a kind of mini-Y2K
problem for Unix systems.

The availability of unique U.S. social security numbers (each nine digits long)
may be exceeded by about the middle of the century, say 2050. Other similar
problems are ISBNs, which now have 13 digits rather than just 10 digits, and IP
addresses.

The cumulative costs of expanding numeric fi elds as their capacity is exceeded
will erode many of the economic advantages derived from using computers and
software. It is obvious that a more permanent general schema must be developed
before numeric-fi eld maintenance expenses in legacy applications become severe.

None of these numeric- and date-related software updates will add useful new
features or functions to applications. Their main purpose is merely to allow the
applications to continue to operate when dates or numeric information exceed
the available sizes of the fi elds originally set aside to store the information.

The software industry is currently dealing with each problem individually as
it occurs, rather than seeking general solutions to the fundamental problem. It
might be time for an international symposium on the problem of dates and
computers in order to address the root causes of such problems.

Four possible solutions can be envisioned for the fundamental problem of
inadequate date and numeric fi eld sizes:

• Developing standard formats for dates that will not expire in short periods

• Developing methods for fi nding hidden or indirect dates with high effi ciency

• Developing mass-update tools and technologies that can make changes
rapidly

• Developing improved testing methods to minimize the risks of missed dates

ptg11539604

239Incompatibilities of International Date Formats

Unfortunately, the current international standards for dates are not adequate
and do not support scientifi c dates or any long-range date calculations. There
are no proven methods for fi nding indirect dates or dates embedded in other
fi elds, such as part numbers. Much of the work of fi nding and repairing date
fi elds remains manual and labor intensive.

Further, testing of software has never been 100% effective, and testing for date
and numeric fi elds has seldom been more than 95% effi cient and often worse.
Looking back at the Y2K problem, almost a third of the reported Y2K problems
occurred in applications that had been repaired, tested, and put back into service.

Incompatibilities of International Date Formats

For centuries, the way in which dates are represented when they are printed has
varied from country to country. These variations presented no real problem
until the advent of the computer era. Even with computers, the problems were
fairly minor, but it was obviously necessary to know which date format was
used in order to ensure correct date calculations.

For example, in the United States, a format of month/day/year such as
10/6/98 for October 6, 1998, is used. In much of Europe, the same date would
be printed using the format of day/month/year or 6/10/98 for the same day. The
European form might be misinterpreted as June 10th in the United States, or the
U.S. format might be misinterpreted as June 10th in Europe if the software
assumed the wrong alternative.

To facilitate international trade and commerce using computers and software,
the International Organization of Standards (ISO) has proposed a standard
date format that expands the number of year digits from two to four. This is the
well-known ISO standard 8601: 1988(E). This same format is supported by the
American National Standards Institute (ANSI) and by the National Institute of
Standards and Technology (NIST).

The ISO date format puts the year fi rst, then the month, and then the day
using the format yyyy/mm/dd. Thus, the date of October 6, 1998, would be
represented as 1998/10/06 using the ISO standard. (Note that the slash symbols
“/” are not part of the date standard but are simply used here to enhance
legibility on the printed page.)

Unfortunately, the most common date format used in the United States
works in the opposite direction and puts the year last. This is the default repre-
sentation on various Microsoft products, although Microsoft’s products can
support the ISO format, too.

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms240

As it happens, the four-digit ISO standard for date formats is not fully
adequate. Both the ISO standard and the normal U.S. date representation share
a common failing when trying to deal with dates and computers. Both of these
date formats exhibit unconscious attempts to conserve storage space without
realizing that this is causing unnecessary problems.

By adding at least one extra digit to the ISO date format, any date represen-
tation could be accommodated by using the extra digit as a key (shown as “x”
in the examples) to identify whether the ISO date format (x-yyyy-mm-dd) or
the U.S. default date format (x-mm-dd-yyyy) was intended.

The key could also identify other alternatives, such as the normal European
date format (x-dd-mm-yyyy) or even Julian dates, which record the number
of days from the beginning of a year starting with 1 and running to 365 or
366. Even the traditional Japanese dates based on Imperial reigns could be
accommodated.

Using an extra digit (or digits) as a key with the meanings listed in Table 8.2
would make identifying which date format is intended a lot less messy than
what is currently used. Today, ascertaining which of the many possible date
formats might be used in software applications either requires advance notifi ca-
tion to programmers and users or extraordinarily complicated algorithms for
deriving dates, with no absolute way of knowing if the date format selected is
the right one without inspection or testing. Consider how versatile date logic
would be if one or more extra digits were utilized.

The examples shown in Table 8.2 illustrate what might be done using only a
single extra digit. For many date and timekeeping purposes, it might be desira-
ble to include not only century, year, month, and day information but also

Table 8.2 Possible Date Format Key That Uses One Additional Digit

Key Defi nition Format

1 ISO date format with four digits for year (yyyy-mm-dd)

2 U.S. default date format with four digits for year (mm-dd-yyyy)

3 Normal European date format with two digits for year (dd-mm-yy)

4 Normal European date format with four digits for year (dd-mm-yyyy)

5 Normal U.S. date format with two digits for year (mm-dd-yy)

6 Julian date with two-year digit (yy-ddd)

7 Julian date with four-year digit (yyyy-ddd)

8 Astronomical time starting from January 1, 4713 bc (dddddddd)

ptg11539604

241Incompatibilities of International Date Formats

weeks, hours, minutes, seconds, and even milliseconds. Thus, if a date key is
used to identify which format is being utilized, even the following 16-digit date
format could be used if needed:

x-yyyy-MM-ww-dd-hh-mm-ss

In this 16-digit format, x is the date code; yyyy represents the year; MM
represents the month; ww represents the week of the year; dd represents the
day; hh represents the hour; mm represents the minute; and ss represents the
second. Even 16 digits are not enough precision for some uses, so the schema
could be extended down to the nanosecond level. If it takes 20 digits or more,
any known date format might be incorporated into the schema, but then
conservation of space is irrelevant.

For a universal date format, there may be hundreds or even thousands of
date variants that would need specifi c keys. Therefore, a four-digit key followed
by 20 digits of date information should be able to accommodate any known
calendar and to operate over arbitrarily long time periods.

The ISO standard date format is not adequate for scientifi c purposes. For
dealing with geological and astronomical time periods, spans of millions of
years must be accommodated, and most of this time would be in the bc era and
hence require negative numbers. For astronomical time, billions of years must
be accommodated. Indeed, for astronomical purposes, the calendars of other
planets such as Mars may eventually need to be accommodated.

We need an effective method for storing dates in computers in an era where
unlimited optical storage is the rule. Storing dates and printing them or displaying
them are not the same issue.

Many standard date formats attempt to use the same format for both date
storage and for date representation. This triggers unexpected problems for
computers and software. If we can develop an effective storage method for
dates and time, then we can display and print the information in any format
that we choose.

Let us design a computerized date-storage format that can last indefi nitely,
support scientifi c as well as business dates and time, and support all of the older
date-format variants. As the situation now stands, there are no current or pro-
posed date standards by ISO or anyone else that are fully adequate even for
business if it is transacted by computers, to say nothing of scientifi c purposes.

Under current date formats, it is almost impossible to utilize technologies
such as data mining and online analytical processing (OLAP) for scientifi c data
associated with geology, archaeology, or astronomy. This is because the dates

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms242

involved exceed the ranges of standard date formats and, in many cases, they
exceed the date-handling ability of normal business software applications such
as spreadsheets and database packages.

Adding extra key digits to date formats in computers would allow any
conceivable date format to be included in the general schema so that geologic
and astronomical time, Julian dates, the Chinese calendar, the Jewish calendar,
or even the Aztec calendar could be utilized as needed.

The date key would not have to be printed or appear onscreen, but the presence
of a date key would enable software applications to handle calendar calculations
with far greater ease and fl exibility than has ever been possible since computers
became business and scientifi c tools.

It should be noted that the general solution of using a key fi eld to identify
which specifi c numeric or alphanumeric format follows can be used to deal
with other problems besides dates. This same method might be used to
handle the international variations in zip code formats or the international
variations used for social security numbers (or their equivalent) in other
countries.

An expanded date format would require changes to software applications
and databases and would be expensive to implement. But between the Y2K
problem, the UNIX date rollover, and other date problems, we are already
going to spend several billions of dollars in software date changes, so we might
as well invest in a permanent solution.

Some of the proposed new replacement dates have the same kind of problem
as the current dates. For example, the new ISO format does not have enough
digits to handle scientifi c date purposes. The ISO format will overfl ow in the
year 10,000 and hence can’t be used for scientifi c purposes.

Computer date storage is far more important than printing or displaying
dates. It would be enormously valuable if a truly effective date-storage stand-
ard could be developed. The heart of this proposal is to separate the way
dates are stored from the way they are displayed. How dates are displayed
can be a matter of personal or national preference. But how dates are stored
in computers needs to be global and suitable for both scientifi c and business
purposes.

Right now, none of the current date standard formats are going to accom-
plish anything but cause more long-range problems for software and computer
vendors and a continuing need for tricky and error-prone date calculations.

The treatment of dates may be something of a non sequitur in a history
book, but date problems fi rst became troublesome and expensive with the Y2K
issue at the end of the 1990s.

ptg11539604

243Growth of Software Applications During the 1990s

The Expansion of Outsourcing

The rapid expansion of software and the increasing volumes of aging legacy soft-
ware packages caused many companies to rethink whether it was cost-effective
to employ large data-processing staffs when their core businesses had little to do
with software.

The 1990s witnessed a rapid increase in both domestic and international out-
sourcing, with many companies reducing or eliminating internal software staffs
and transferring their software projects to outsource vendors. Maintenance out-
sourcing was the most common, but development outsourcing also grew rapidly.

Growth of Software Applications During the 1990s

The numbers of software applications continued to climb during the 1990s, but
the rate of growth was starting to slow down because so many applications
were already in use. Table 8.3 shows the approximate numbers of applications
created in the United States during the decade.

Table 8.3 U.S. Software Applications from 1990 to 1999

Application Types Applications Percentage

Scientifi c 96,000 6.40%

Military and defense 240,000 16.00%

Civilian government 280,000 18.67%

Systems and middleware 180,000 12.00%

Embedded software 312,000 20.80%

Commercial 80,000 5.33%

Information technology (IT) 265,000 17.67%

U.S. outsource 26,000 1.73%

Offshore outsource 15,000 1.00%

Web applications 1,000 0.00%

Games and entertainment 4,500 0.37%

Open source 500 0.03%

Total Applications 1,500,000 100.00%

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms244

Perhaps the most interesting and technically important change in application
patterns during this decade was the emergence of web applications, which were
just starting their own explosive growth path.

The arrival of web applications led to the start of the dot-com bubble, which
saw the creation of hundreds of venture-funded companies whose market plans
were based on web sales, such as Amazon. The bubble would burst early in the
next decade, and most of these companies are now gone.

Amazon was incorporated by Jeff Bezos in 1994 and went online in 1995. Its
original market plan was to rapidly expand its client base regardless of profi ts.
Indeed, Amazon ran at a loss for several years, and its stock declined sharply
during the dot-com bust. However, Amazon persevered and eventually became
the world’s largest retail establishment.

Results for 1,000 Function Points Circa 1995

During the 1990s and the following two decades, many function point “clones”
were developed. The original IBM function point was taken over by IFPUG
in the 1980s. From that point on, alternative functional metrics appeared,
including Mark II function points, COSMIC function points, FISMA function
points, NESMA function points, fast function points, engineering function
points, and the pseudo-functional metrics story points and use case points. The
Mark II function point metric in the United Kingdom by Charles Symons was
the fi rst known alternative to IFPUG function points.

Productivity and quality for the same 1,000 function point application would
be the following:

• Source code for 1,000 function points: 53,333 logical code statements

• Programming language: Java

• Reuse percentage: 0% to 25%

• Methodology: RUP

• Productivity: 8.00 function points per staff month

• Defect potentials: 4.0 defects per function point

• Defect removal effi ciency (DRE): 90%

• Delivered defects: 0.40 defects per function point

ptg11539604

245Summary

• Ratio of development personnel to maintenance:

• Development: 60%

• Maintenance: 40%

The following are the background data for 1995:

• Average language level: 6.00

• Number of programming languages: 1,600

• Logical statements per function point: 53

• Average application size: 950 function points

• Average application size: 50,350 logical code statements

This decade still experienced far too many cancellations and overruns for
large software applications. It also saw a rapid increase in global outsourcing.

Summary

The 1990s witnessed the arrival of the dot-com era, when the internet and World
Wide Web introduced new ways of doing business by selling products and services
remotely. Some companies prospered and created entirely new forms of business.
Others tried but would fail during the dot-com bust early in the next decade.

By the end of the 1990s, hundreds of applications were aging and in need of
geriatric renovations. The double impact of the euro rollout in 1999 and the
Y2K problem at the century’s end showed that mass updates to legacy applica-
tions would be troublesome, and there are many future mass updates just
beyond the horizon, when unique digit combinations will run out for telephone
numbers and social security numbers.

As software applications grow older, software maintenance begins to move
ahead of software development as the main form of software engineering work.
This is not surprising, considering a similar situation where there are more
mechanics fi xing automobiles than there are assembly-line workers building
new automobiles.

This was the fi rst decade of the internet and the World Wide Web. In this
decade, this technology started to change the fundamental nature of human

ptg11539604

Chapter 8 Expansion of the World Wide Web and the Rise of Dot-Coms246

communications and social interaction. During this decade, some people
began to interact more with remote acquaintances than with their families
and friends.

Social networks would blossom in the next decade but had already begun. A
new subindustry of massively interactive computer games had begun and would
continue to grow in the next decade.

ptg11539604

247

Chapter 9

2000 to 2009: The Rise
of Social Networks
and Economic Crises

From 2000 to 2009, social networks such as Facebook and Twitter would enroll
most of the planet’s population to create the largest human online networks in his-
tory. By the end of this decade, many people would have more virtual friends on
social networks than real friends in their daily lives. They would also spend more
time communicating with virtual friends via social networks and smartphone tex-
ting than in actual face-to-face or even phone conversations. This was also a major
decade for computer games with the emergence of more than 50 game companies.

One interesting new form of research was created in this decade. The advent
of the Wikipedia encyclopedia demonstrated the value of crowdsourcing, or
having thousands of minds address common topics. To my surprise and
perhaps to the surprise of readers, Wikipedia has become the largest and most
widely used encyclopedia in history.

Wikipedia has more than 25 million articles written by 39 million contributors.
No other “book” in history has had so many coauthors. It is used by more than
80 million people each month in the United States alone.

Two major economic crises disturbed the growth of technology companies in
this decade. The fi rst was the bursting of the dot-com bubble in 2000, which
sent many startup companies into bankruptcy and essentially stopped the fl ow
of software venture capital for a few years.

The second was the Great Recession of 2008, which saw the bursting of the
housing bubble and the need for government bailouts of numerous banks. This
was a major setback for many companies, and software personnel were laid off
in a number of industries, which is unusual because software personnel had
been growing steadily for four decades.

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises248

In spite of the dot-com bubble bursting and the Great Recession, software
startups continued at a surprisingly fast pace through both crises. But instead of
wildly speculative internet companies, many of these startups had serious
business plans and were aiming at unexploited niche markets. Two examples
are Zillow, which provides national real estate data, and PerfectMatch, which
used computer models to create a web-based dating service.

By about 2005, maintenance and enhancement of legacy applications would
pull ahead of new development as the main activity of software engineers.

The Dot-Com Bubble

In the 1990s, the expansion of the internet and the World Wide Web created
what was called “the new economy” when companies used the vast reach of the
web to try and sell products and services to millions of people rather than sell-
ing locally in brick-and-mortar stores. Some of these dot-coms were Amazon,
eBay, and Priceline, all of which had interesting and effective business plans.

However, the excitement of the web led to many startups whose business
plans were not well thought out. There are many products that are suitable for
remote web marketing, but others are best served by local stores.

The venture capital community is not really very sophisticated in risk and
market planning, and it invested unwisely in companies that proper due
diligence would have led them to avoid. The inevitable result of the rush to the
web was an artifi cial bubble of dot-com startups, many with infl ated market
values. This bubble started to expand during the 1990s, but it could not
continue forever.

Speculative bubbles are common economic phenomena and have occurred
many times over hundreds of years. Indeed, a second speculative bubble, housing,
would crash later in 2008.

The dot-com bubble reached its peak on March 10, 2000, when the NASDAQ
technology stocks peaked at 5,132.52. This was about double the stock value
from a year before. Many of the technology companies whose stock prices were
soaring were losing money, and a few had no revenues at all. The speculative
bubble was about to burst.

The Super Bowl in January 2000 featured 17 advertisements by dot-coms,
each of which had paid at least $2 million. This was a unique phenomenon to
have so many young companies with enough cash on hand to commission Super
Bowl ads.

ptg11539604

249The Dot-Com Bubble

On April 4, 2000, a decision in the Microsoft antitrust litigation was
announced, and Microsoft was found to be a monopoly. NASDAQ dropped to
a low of 3,649 but rebounded to over 4,000 at the end of the trading day.

Barron’s Magazine had run an alarming article that stated that of the
371 dot-coms trading on NASDAQ, many had never made a profi t and would
probably fail when they burned through their venture funds. From that point
on, the bubble shrank rapidly through 2000 and 2001 and into 2002. Dozens
of dot-coms disappeared, and many others saw their stocks drop precipitously.

The dot-com bubble had collateral damages as well. Many network and
telecommunication companies had expanded their own networks to support
the anticipated growth due to dot-coms. For example, WorldCom became
overextended and declared bankruptcy. Many cities and states tried to attract
high-technology companies with tax breaks, business parks, and technology cent-
ers and were left with empty offi ces and unused auditoriums. In total, the
dot-com bubble burst lowered technology stock values by about $5 trillion
compared to their peak value.

Two more recent examples of collateral damages show that effects are still occur-
ring even today. The fi rst was in 2009 when the city of Port St. Lucie, Florida,
offered substantial incentives so that the graphics art company Digital Domain
would move a development lab to the area. A massive 115,000-square-foot offi ce
and studio complex was constructed on the western side of Port St. Lucie and was
occupied by about 300 software and graphics personnel early in 2012.

However, in spite of an IPO in 2011, Digital Domain soon declared bank-
ruptcy in September 2012 and closed its Port St. Lucie facility, with a loss of
hundreds of jobs. The city of Port St. Lucie is now trying to sell or rent the huge
offi ce complex, currently without results. The only space in it being used today
is an auditorium for church services.

Digital Domain was not a novice startup with unproven talent. The parent
company had won seven Oscars for special effects in fi lms, including Titanic
and What Dreams May Come. It employed some of the top computer and
software graphics artists in the world.

After the bankruptcy, quite a lot of the intellectual property of Digital
Domain was acquired, but that did no good for the huge vacant offi ces in Port
St. Lucie, which are now being maintained at municipal expense and may push
the town toward its own bankruptcy.

The second recent collateral damage example was Studio 38, which was
given a $75 million loan by the Economic Development Commission of Rhode
Island in 2005. This was an animated game company started by former Boston

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises250

Red Sox pitcher Curt Schilling. In return for the loan, the company moved to
Providence and began operations with about 250 employees.

As is common with software applications in the $75 million startup range, the
main product of Studio 38 ran behind schedule. As is also common with startups,
the company itself ran low on funds and fell behind in its payments to the state.

In the absence of fresh capital from fi lm credits, external investors, the state,
or other sources, the company missed payrolls, ran out of funds, laid off the
entire staff, and then declared bankruptcy.

The bottom line is that urban and state governments are not necessarily
qualifi ed to judge whether a given company will actually add jobs, as they all
promise, or will merely occupy space until fi nancial problems overcome them.
The software and high-tech industries are attractive to novice investors because
it is true that a number of these companies have become enormously successful
and wealthy. But it is also true that a much larger number of these companies
have failed and gone bankrupt.

The software engineering personnel who had been working for these compa-
nies found themselves out of work and facing a declining job market for the
fi rst time in software history. Even admissions to software engineering curricula
in colleges and universities declined when it became obvious that software jobs
would not expand rapidly forever.

The Great Recession

Although the dot-com bubble was a serious crisis for software and technology
companies, it was not the only bubble to burst during this decade. Starting at
the end of 2007 and running through 2010, the country and much of the world
encountered what has come to be known as the Great Recession, which is an
echo of the Great Depression, which started in 1929.

The recession rippled through the entire economy and affected thousands of
companies and millions of individuals. However, the burst of the housing
bubble and the severe reductions in real estate costs had the greatest human
impact on ordinary consumers.

Real estate bubbles have occurred so many times over history that they have
even been statistically analyzed, but the big bubble burst circa 2008 was par-
ticularly severe. It was caused in part by speculative building of homes for “fl ip-
ping” or purchases by investors rather than by homeowners who wanted to live
in the homes. In some communities in Florida and Nevada, there were actually
more houses on the market than there were people to live in them.

ptg11539604

251The Great Recession

Overall, the Great Recession was caused by a very complex set of
interlocking events and mistakes. In approximate chronological sequence,
they run as follows:

1995

• Opening too many subprime mortgages to home buyers with low incomes.
This was due to the urging of the U.S. government to increase home
ownership among low-income citizens.

• Basing subprime mortgages on variable interest rates. Thus, when interest
rates went up, thousands of subprime mortgages became unaffordable.

• Reducing oversight of fi nancial institutions due to the mistaken belief that
fi nancial markets would be self-regulating. This lack of oversight resulted in
a host of new and complicated fi nancial transactions with increasing risks.

2000

• Dividing and repackaging mortgages into complex fi nancial bundles and
selling the pieces. These bundles were classifi ed as low risk, which was a seri-
ous mistake due to lack of oversight and inadequate audits. Repackaging
and reselling mortgage segments in bundles makes renegotiation of mort-
gages very complicated because there is no longer a one-to-one relationship
between homeowners and banks or mortgage companies.

• Overbuilding homes and condominiums due to escalating real estate costs.
Many homes were built for “fl ipping” rather than occupancy, so the
United States soon reached a surplus of about 500,000 more homes than
there were people to live in them. This surplus was not troublesome when
prices were going up, but when the bubble burst, the surplus caused prices
to drop more quickly than might otherwise have happened.

2008

• Allowing Lehman Brothers to fail in September 2008, which triggered an
abrupt and startling global fi nancial crisis.

• Providing Troubled Asset Relief Program (TARP) funds to banks and
fi nancial institutions without oversight. Although the TARP was intended

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises252

to restore fi nancial fl exibility for consumers and homeowners, the lack of
oversight resulted in decreases in lending by TARP recipients but no
decreases in bonuses and compensation for offi cers.

2009

• Providing stimulus money to states without adequate oversight. As a result,
a signifi cant amount of stimulus money was used to pay the pensions of
retired workers and the salaries of current workers rather than being used to
create new jobs and remove unemployed citizens from welfare.

• Failing to provide really effective stimulus aid for thousands of homeown-
ers who were facing foreclosures but who did not qualify for any of the
new programs.

The results of these mistakes soon led to numerous business and personal
bankruptcies, thousands of foreclosures, and thousands of layoffs. It also led to
huge losses in the stock market. There is more that can be said about the Great
Recession, but its impact on software companies was a reduction in sales vol-
umes and an increase in layoffs of personnel. In order to save money, there was
also an increase in offshore outsourcing to countries with low labor costs such
as India, China, the Philippines, and Ukraine.

The interlocked factors of the Great Recession are what physicists call a
linked oscillating system. That is, so many things are interrelated that changes
in any one of them ripple through all of the others. Here are some examples:

• Every layoff of a worker who is also a homeowner raises the possibility of
one more foreclosure.

• Every foreclosure puts one more home on the market and increases the
surplus of vacant homes that already totaled more than 10% of all U.S.
houses at the peak of the recession in 2010.

• Every foreclosure lowers the property values of surrounding homes and
drives prices down. The more foreclosures there are in a town or neigh-
borhood, the greater the loss of value for the entire community.

• Many foreclosures of rental properties have the unintended consequence
of putting renters on out the street, even though they had been paying
their rents on time.

ptg11539604

253The Great Recession

• Every foreclosure costs banks more money than they gain by seizing the
property. As a result, foreclosures also raise the risk of bank failures.
Renegotiation of loans would be more profi table for banks than foreclo-
sures, but the mortgages are scattered among various institutions so that
simple renegotiations are no longer possible. Banks seem not to have
grasped the essential math that renegotiation would have been more
cost-effective than foreclosures.

• The combination of job losses and foreclosures cut consumer spending by
more than 25% compared to the peak of 2007, which caused serious dam-
age to retail stores, automobile dealers, restaurants, and other businesses.

• The cutback in retail sales also caused cutbacks in manufacturing, in interna-
tional sales, and in shipping and transportation. These cutbacks reduced the
profi ts of shipping companies, railroads, airlines, and trucking companies.

• The combination of job losses, foreclosures, and business shrinkage lowered
the stock market by unprecedented amounts, although a partial recovery
took place during the spring of 2009. Full recovery was not seen until early
in 2013.

• The reductions in retail sales, manufacturing, and transportation coupled
with job losses have seriously reduced tax revenues at town, state, and
national levels. Almost every state and a majority of towns had serious
budget defi cits in 2009. Some of these continued into 2013 due in part
to excessive largess in pensions and health care for retired government
workers.

• Due to high unemployment rates and numerous foreclosures, state and
municipal tax revenues continued to decline from about 2008 through
2011, but there were some increases in 2012.

• Attempts to increase tax revenues via “tax-the-rich” methods backfi red
and caused reductions in tax revenues. The very wealthy are highly
mobile, own properties in several states, and have attorneys and tax
accountants far more sophisticated than state offi cials. There have been
no successful revenue increases in any state that has attempted tax-
the-rich programs. In spite of the failure of this method, many states and
the federal government continue to try and push through these programs
without understanding that revenues will decline rather than increase.

• Attempts to tax internet sales by individual states (such as Rhode Island)
backfi red and reduced tax revenues. This is because major internet vendors

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises254

such as Amazon and Overstock cut ties to Rhode Island companies, as will
most of the other major players. The result is damage to Rhode Island
companies without any corresponding increases in tax dollars.

What is technically interesting about the dot-com bubble, the Great Recession,
and the housing bubble is that these issues could have been predicted and mod-
eled using a combination of historical data and predictive analytics. It does not
require really sophisticated math to predict that if more houses are built
than there are people to live in them, prices must come down. It is also easy to
predict that when home prices fall below average mortgages, there will be many
foreclosures because homeowners can no longer sell their houses for a profi t.
Municipal and state governments and the federal government need better skills in
operations research and in economic modeling than they have today.

A combination of predictive analytics and intelligent agents that bring back
relevant data from web sources allows the construction of powerful economic
planning tools that can chart risks for municipal governments, state governments,
the federal government, and corporations in many key industries.

Innovations of the 2000s

Leaving behind the two burst bubbles, we now return to other interesting
software issues that occurred between 2000 and 2009.

In 2000, IBM began to market a new storage method called fl ash drives or,
more popularly, thumb drives. These are small solid-state devices with persistent
memories that can hold information indefi nitely without needing electric power.
These devices normally plug into a USB port.

The invention of thumb drives occurred in the prior decade, but their com-
mercial entry was in December 2000. Several companies and inventors have
rival claims to being the true inventor, and a number of lawsuits have been fi led,
some of which are still unresolved. IBM; an Israeli company, M-Systems; Trek;
and Netac all have fi led various patents and patent disputes. The bottom line is
that thumb drives are now the most popular method of storing information on
computers since they are easier to use than disks and much smaller.

January of 2001 witnessed the introduction of a new form of research
tool and a new method of creating such tools. This month marked the date
that Wikipedia fi rst went online. Earlier research by Rick Gates and Richard
Stallman contributed, but Wikipedia itself was started by Jimmy Wales and
Larry Sanger, using concepts originated by Ward Cunningham.

ptg11539604

255Innovations of the 2000s

More or less to the surprise of everyone, Wikipedia has grown to become the
largest and most widely used encyclopedia in the world. The method of having
the entries created by thousands of unpaid volunteers turned out to be extremely
effective and has since grown into a method for dealing with other kinds of
problems and issues.

The fi rst years of this decade witnessed the fi nal results of an antitrust law-
suit against Microsoft by the Department of Justice, which is fascinating in its
own right. The gist of the fi nal decision was that Microsoft would no longer
give away Internet Explorer with Windows.

Microsoft also agreed to provide competitors with application program
interface (API) data and to stop interfering with attempts to connect third-party
browsers and software to Windows. This was a major decision for Microsoft
competitors and for dozens of commercial software vendors who needed their
packages to operate under Windows in order to market them.

February of 2001 witnessed an important moment in software history. This
was the meeting at the Snowbird Lodge in Utah, which led to the publication
of the famous Agile Manifesto. The 17 participants included Kent Beck, Mike
Beedle, Arie van Benekum, Alastir Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Bran Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas.

This decade saw the creation of the Information Technology Metrics and
Productivity Institute (ITMPI) by Computer Aid, Inc. The ITMPI began a series
of seminars and webinars to expand knowledge of software engineering princi-
ples. Eventually, the ITMPI had a stable of perhaps 50 top-tier software experts
and public speakers whose topics were recorded for later use.

The year 2004 witnessed the arrival of Facebook by Mark Zuckerberg to
the web, although earlier versions were experimented with. Facebook started
the social network explosion, which is still occurring today, although not
every new social network succeeds. The 2010 film The Social Network
is an interesting account of the creation of Facebook, as well as a warning
about litigation.

The year 2006 saw the arrival of Jack Dorsey’s creation Twitter on the web,
and the site had expanded to 500 million users by 2012.

In 2008, the Brazilian government issued a new regulation that affected all
government contracts. Contractors were required to stop using “effort hours”
and switch to formal metrics. This was the IN04 directive. Although the direc-
tive did not mandate function points, the overall impact of the regulation was
such that the International Function Point Users Group (IFPUG) function points

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises256

became the normal metric for both government and commercial contracts in
Brazil. A number of IFPUG executives have been from Brazil, including a past
president.

The governments of Italy and South Korea also use function points for
government contracts, and they may pass regulations similar to those used
in Brazil. Function point metrics are defi nitely the most reliable metrics for
software contracts and business purposes.

Function point metrics have comparative data available from more than
50,000 software projects. The nonprofi t International Software Benchmark
Standards Group (ISBSG) by itself has more than 6,000 projects measured with
function point metrics.

By comparison, the sum total of other metrics such as story points, use case
points, RICE objects, lines of code, and so forth is only about 1,000 projects.

This decade saw the expansion of Agile methods such as Scrum and Extreme
Programming (XP). It also saw the expansion of Watts Humphrey’s Team
Software Process (TSP) and Personal Software Process (PSP). Many more new
programming languages popped up.

The end of the decade witnessed the resurgence of Apple in the market due
to the success of its famous iPhones and iPads. Indeed, Apple became the com-
pany with the highest market value in the United States, which capped a
remarkable turnaround.

Apple seems to have fostered a culture of innovation, and this has brought
forth a string of new kinds of products that sometimes change the direction of
the entire high-technology business sector.

By the end of the decade, identify theft, hacking, and denial of service prob-
lems were major international concerns. Indeed, “cyberwarfare” was becoming a
global concern, as many attacks are traced to foreign governments.

The phrase “cyberwarfare” started to be widely used by the middle of the
decade. Indeed, apparent cyberattacks involving national governments are
becoming increasingly common, as demonstrated by the attacks on Iran and by
the discovery of hacking attacks on U.S. electric power facilities in 2009.

Earlier in 2007, the McAfee Company reported evidence of 120 countries
gearing up for cyberwarfare, with fi nancial systems and electric power systems
being the targets of choice.

Static analysis tools were added to the quality arsenal in the 2000s, with
good results, although the basic technology of static analysis dates to the 1980s.
However, both open-source and commercial static analysis tools expanded in
numbers and sophistication.

ptg11539604

257Companies Formed During the 2000s

It was during this decade that a major shift occurred: More than 50% of the
U.S. programming population worked on maintenance and enhancement of
legacy applications rather than new development. New languages included C#
and Visual Basic Net, and Microsoft’s suite of languages evolved and added
features.

Toward the end of this decade, cloud and software as a service (SaaS) applica-
tions began to expand in numbers. In addition, smartphone and tablet applications
entered the arena and are now on an explosive growth path. As of 2010, the world
total of programming languages topped 2,500.

The topic of “big data” (or heterogeneous collections of large volumes of
information) would start to attract interest during this decade, as would the fi eld
of predictive analytics. In fact, big data and predictive analytics form a synergis-
tic combination.

Companies Formed During the 2000s

In spite of the economic damages caused by the two burst bubbles of this decade,
many new companies were founded, including Facebook and Twitter, which both
grew rapidly to have millions of customers and earn billions of dollars. Table 9.1
shows a representative sample of companies started from 2000 to 2009.

Table 9.1 Companies Formed from 2000 to 2009

Company Year

AbsolutData Research 2001

Aconics 2000

Advice Interactive Group 2008

Agito 2003

Andreesen Horowitz 2009

App Dynamics 2008

Archon Information Systems 2008

BAE Systems 2005

Barracuda 2003

BMI Gaming 2009

The Book Depository 2004

(Continued)

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises258

Company Year

Booker Software 2007

Canonical Ltd. 2004

Charge Smart 2008

Cloud Fire 2009

Cofi o Software 2006

CoSoSys 2004

Cybertrust 2004

Data Market 2008

DigiCert 2003

Digital Risk 2005

DreamWorks 2000

EHarmony 2000

Etheric Networks 2000

Facebook 2004

Fidelity National Information Services 2006

Freelanthropy 2004

GIANT Company Software 2000

Global Insight 2001

Guidewire 2001

The HIVE Group 2000

Huawei Symantec 2008

IKnowWare 2002

Image Metrics 2000

Intellectual Ventures 2000

The Internet Marketing Association (IMA) 2000

Internet Security Alliance 2001

IT-Block 2001

JIVE Software 2001

Kobo, Inc. 2009

L-1 Identity Solutions 2006

Lite Speed Technologies 2002

Matrix Knowledge 2005

Table 9.1 (Continued)

ptg11539604

259Companies Formed During the 2000s

Company Year

MAXUM Games 2001

Meeting Zone 2002

METALOGIC Software 2001

Microsoft Studios 2002

MicroTask 2009

Mind Genius 2008

Moody’s Analytics 2007

Moody’s Corporation 2000

Mozilla Corporation 2005

My Medical Reports 2008

Natural Insight 2004

Neato Robotics 2009

Open Source Development Labs (OSDL) 2000

Opera Solutions 2004

Oversight Solutions 2003

PerfectMatch 2003

PIER Systems 2000

Point Judith Capital 2001

Rightware 2009

RPX Corporation 2008

ScanSafe 2004

Semantic Web Company 2004

Sirius XM Radio 2008

Skyfi re 2007

Skyhook Wireless 2003

SocialFlow 2009

SolveIT Software 2005

SpaceX 2002

SpamCube 2003

Sumtotal Systems 2004

Survey Gizmo 2006

Table 9.1 (Continued)

(Continued)

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises260

In collecting the information for Table 9.1, at least 50 computer-game
companies were noted to have started during the decade, but most are not
shown in the table. Gaming is an important but specialized industry. The
computer-game companies have a tendency to be ephemeral and either merge
with others or change their names. Only a few game companies are discussed in
this book. (I have never been commissioned to study either productivity
or quality within game companies or within the game divisions of larger com-
panies such as Microsoft.)

Some of the companies with interesting or unusual business models that were
created in this decade are discussed here.

AbsolutData Research

AbsolutData Research is an interesting company that focuses on using the
power of predictive analytics to help major companies with decision making.
This company was founded in India, but it has global clients, including many
U.S.-based Fortune 500 companies.

The company was started in New Delhi, India, in 2001 by Anil Kaul, Suhale
Kapoor, and Sudeshna Datta. Since its foundation, AbsolutData Research has

Company Year

TASC, Inc. 2009

Team and Concepts 2003

Tesla 2003

TrustPort 2008

Twitter 2006

Umbra Software 2007

Verizon Wireless 2000

Vizio 2002

Wiki Spaces 2005

Wikipedia 2001

Working Point 2007

Xbox Live Productions 2008

YouTube 2005

Zillow 2005

Table 9.1 (Continued)

ptg11539604

261Companies Formed During the 2000s

doubled its revenues every year; it opened a new head offi ce in Alameda,
California, near San Francisco, as well as offi ces in New York and Los Angeles.
The main research laboratory is located in Gurgaon, India.

In 2012, Fidelity Growth Partners in India committed $20 million to help the
company expand into big-data analytics. AbsolutData Research has been ranked
high on various lists of analytics companies and also on lists of fast-growing
businesses such as Asian-American companies by Deloitte. The company
employs about 150 analysts.

Two of the newer “hot topics” to emerge in the 2000s are big data and
predictive analytics. In fact, the two are strongly related because without
predictive analytics, big data by itself has little value.

Andreesen Horowitz

The entrepreneur Marc Andreesen and the venture capitalist Ben Horowitz
were well known in Silicon Valley as private investors who liked interesting
technology startups. Andreesen himself is a software engineer who devel-
oped some of the Mosaic browser features, and he cofounded Netscape.
Horowitz was also a technologist and CEO of Opsware, which was sold to
Hewlett-Packard.

On July 6, 2009, the two joined forces to create the Andreeson Horowitz
investment venture capital company in Menlo Park, California. What sets them
apart perhaps from other investors is that both are experts in software and
technology products and hence have an edge in understanding the kinds of new
products and companies that are likely to succeed.

At a time when venture capital was shrinking, Andreesen Horowitz was able
to attract more than $1.2 billion for technology investments. Among the
well-known companies they invested in are many of the top social network
organizations, including Skype, Twitter, Facebook, and Groupon.

Because of the technical sophistication of the founders, Andreesen Horowitz
is not afraid to tackle early-stage investments for true startups that are just get-
ting started. They have invested in 66 startups and a total of about 156 compa-
nies. This is one of the advantages of having proven software entrepreneurs as
venture capitalists.

Andreesen Horowitz is an interesting niche company that helps the software
industry by funding startups as well as larger investments in midstage compa-
nies that want to grow faster. Without companies such as this, the software
industry would be smaller and less eclectic.

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises262

Archon Information Systems

Archon Information Systems is an interesting niche company, and the niche it
occupies is municipal tax collection. Archon was founded in New Orleans,
Louisiana, in January 2008 by Brian P. Barrios, Beau L. Button, and William D.
Sossamon. All three had worked in law fi rms in New Orleans that were involved
in tax matters.

The Archon business is driven by software, and its packages are widely used
by municipal governments. Its brand is CivicSource, which currently includes
CivicSource Administrator for property taxes and CivicSource Auctioneer for
supporting municipal auctions of foreclosed properties, which has had a dis-
tressing increase in frequency due to the Great Recession and the bursting of the
real estate bubble. A third component is CivicSource Services, which supports
routine matters of municipal tax offi ces.

This company illustrates the fact that software is moving into every aspect of
corporate and government activities. As software expands in use, more and
more niches such as property taxation are opening up for software entrepre-
neurs. This decade is fi lled with new niche companies and new niches.

Canonical, Ltd.

Canonical is yet another niche company, and its particular niche involves the
Ubuntu operating system and open-source applications centering on the Ubuntu
version of Linux.

Canonical was founded in 2004 in London, England, by Mark Shuttleworth,
who was born and educated in South Africa. He had founded and sold a domain-
name registration company, which provided about $75 million in funds for other
business opportunities. Shuttleworth became famous by becoming a private
astronaut who took an eight-day trip on a Soyuz spaceship to the international
spacestation for a cost of about $20 million. He invested about $10 million into
the creation of Canonical.

At fi rst, Canonical operated as a virtual company, with the staff working
from their own homes. However, in 2005, offi ces were acquired in London and
later in Montreal, Canada. Today, there are Canonical offi ces in about 30 coun-
tries, including locations in Boston, Lexington, London, Taipei, Shanghai, Saõ
Paulo, and the Isle of Man. Its total employment is about 500.

Note
The Ubuntu operating system is a popular variant of the Linux operating system. The name
“Ubuntu” is apparently based on a word in an African dialect that means something like
“kindness and compassion to all others.”

ptg11539604

263Companies Formed During the 2000s

The open-source business model is to distribute various software packages
for free but to charge for support, consulting, and other various related
services. Sometimes this strategy is profi table, as demonstrated by Red Hat
Software (discussed in the previous chapter). In the case of Canonical, revenues
seem to be moving toward $30 million, which is the approximate break-even
point for Canonical.

Although Ubuntu is the fl agship product, Canonical has many other packages
and also many services. Among the packages are Bazaar for revision control;
Malone (named after Bugsy Malone) for bug tracking; Rosetta for natural
language translation and localization of software packages; and Blueprints, a
planning tool.

Open-source software has become an interesting and unique aspect of the
larger software industry. It is hard to think of any other industry where prod-
ucts are given away for free and revenues derive entirely from support and
ancillary services.

Facebook

Before discussing Facebook the company, readers are urged to watch the interest-
ing movie The Social Network, which describes in some detail both the excite-
ment of software startups and some of the hazards, including being sued. The
fi lm is broadly based on the creation of Facebook with, of course, some artistic
license. It shows the intellectual excitement in Cambridge, Massachusetts, when
software was a high-growth industry. (I also founded a company in
Cambridge, although 10 years prior to Facebook.)

Facebook was founded in February 2004 by Mark Zuckerberg and his
Harvard roommates Eduardo Savarin, Andrew McCollum, Dustin Moskowitz,
and Chris Hughes. The company was actually incorporated in Florida. The idea
of Facebook was that it would be a social website where fellow Harvard
students could share ideas, photographs, and topics of local interest.

Zuckerberg had started an earlier website in 2003 called FaceSmash. This was
a somewhat tactless website where people could compare photographs of two
people and vote for “hot” or “not hot.” Some of the photographs were acquired
by hacking, and later Zuckerberg would face university charges for violating
security and copyright infringement. Eventually, these charges were dismissed.
Had they not been dismissed, he might have been expelled from Harvard.

Zuckerberg also tried a more socially correct form of website. For a class, he
uploaded about 500 images and pictures of ancient Rome and let people share
comments about them. This received a high grade from the professor, and some
of its features were later used in Facebook.

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises264

In 2004, Zuckerberg began work on a project called “thefacebook,” which
would later morph into Facebook. This had the nucleus of later features such as
posting pictures and allowing commentaries. Somewhat surprisingly, about
1,200 people registered on the site on its fi rst day. Within a short time, about
half of the students of Harvard were using “thefacebook.”

However, future legal problems began to surface. Three senior Harvard
students, Cameron and Tyler Winklevoss and Divya Narenda, asserted that
Zuckerberg had agreed to help them create a similar project to be called
Harvard Connection.

At fi rst, Facebook was local to Harvard but soon expanded throughout the Ivy
League and then to many other colleges in the United States and other countries.
In 2004, operations were moved to Palo Alto, California, and the name was
changed to Facebook after that domain name was purchased for $200,000.

Note
Incidentally, buying and selling domain names has become a minor subindustry of the web,
and it is not always an ethical industry. Many potential domain names, especially those with the
names of famous people, are registered purely to be sold for a profi t. Sometimes domain
names sell for many thousands of dollars.

Facebook kept expanding, adding high schools and international universities.
Then, memberships were offered to several high-tech companies, including
Microsoft and Apple. In September 2006, Facebook was opened to anyone over
the age of 13 with a valid email address.

In recent years, Facebook has added corporations as well as living people. In
fact, a Facebook page is something of a status symbol for companies, along
with being “followed” on Twitter.

It is of sociological interest that some of the Facebook features such as
“friending” and “unfriending” have been widely discussed and are seemingly
important to many users. There is some anxiety that “unfriending” a diffi cult
person may have personal repercussions.

It is also interesting that Facebook created an unusual way of hiring software
engineers. Using Facebook itself, a set of quizzes and questions was distributed,
and those who did well in solving them were recruited by Facebook.

The site’s popularity continued to grow, and Facebook is now the largest photo
repository on the web, with more than 100 million images and 350 million users.

Facebook planned for an IPO in 2012. Legal problems occurred shortly
before the planned IPO when Facebook was sued by Yahoo over patent infringe-
ment. The suit was fi led on March 12, 2012.

ptg11539604

265Companies Formed During the 2000s

As Facebook grew, it needed additional funding, and it received both angel
investment funding and several rounds of venture capital funding. Several com-
panies also approached Facebook about partnerships or even acquisition,
including Google, Microsoft, and Yahoo. However, Zuckerberg was cool to
acquisition. The reason additional funding was needed is because Facebook
was operating at a loss.

In 2008, Facebook hired Sheryl Sandberg as Chief Operating Offi cer, and
the company began to plan ways of expanding revenues. Advertisements were
chosen as the optimal solution to higher revenues. This seemed to be effective,
and in 2009, Facebook’s revenues became positive instead of negative. Later in
2012, Facebook had about $3.7 billion in advertising revenues and a profi t of
about $1 billion.

Facebook fi led for an IPO on February 1, 2012. The price was set at $38 per
share. The IPO itself was May 18, 2012. At fi rst, the IPO seemed successful
because it raised $16 billion and was the third-largest IPO in U.S. history. How-
ever, at the closing bell, the stock was only selling for $38.23. By May 25, 2012, the
stock had declined about 16.5% down to $31.91 to the dismay of early investors.

The IPO was soon followed by complaints and investigations about whether
the underwriting banks had improperly shared information with only a select
few clients. The State of Massachusetts also subpoenaed Morgan Stanley over
the same issue. Several lawsuits, including class-action lawsuits, were fi led.
Since these events are quite recent, the way they will turn out is not yet known.

Facebook is an interesting business case for how the web has expanded
human communications and shared the interests of millions of people in every
portion of the globe. Facebook also served as a model for a number of other
social networks. Indeed, the social network space is becoming very crowded,
and probably not all of the new social networks will last for very long.

Getting venture funding is often diffi cult for true startups forging unique or
novel businesses. But once the initial startup company has proven to be success-
ful, venture money fl ows into the next dozen or so startups in the same sector.

The appeal of social networks will probably lead to interesting theses and
dissertations by psychology students. It is not immediately apparent why people
enjoy them so much that they can spend hours each day involved with social
networks as opposed to interacting with living people.

Freelanthropy

Freelanthropy is also a niche company, and the niche appears to be one with
some value to charitable organizations and nonprofi t companies. This company

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises266

was founded in 2004 in La Canada Flintridge, California, by Dan Sheehy. There
were some corporate changes, and the company was formally organized as
Freelanthropy LLC in 2006.

The business model is unusual and interesting. With Yahoo and other browsers,
Freelanthropy builds custom toolbars that are stated to improve client interactions
and generate revenues. There is also a search portal using Yahoo Search and Ask.
About 1.3 million nonprofi ts are supported.

The toolbars provide a “shop and give” option in which some funds go for
product or service purchases and some go to a charity or nonprofi t. These funds
are divided 50/50 between the charity itself and Freelanthropy.

The Freelanthropy tools use the pay-per-click model, which is yet another
unique form of doing business that has only come into existence based on the
World Wide Web. When a potential customer clicks on a specifi c ad in order to
move to its website, the advertiser pays a small fee to the hosting website.
Unpopular ads have little or no costs. The most popular ads pay the most, so
the pay-per-click model is proportional to the popularity of the sites. The model
can have either fi xed or variable costs based on bids. The actual methods are
outside the scope of this book.

Note
The fi rst recorded pay-per-click business activities took place in 1996 for a website called
Planet Oasis. At fi rst, the method was viewed with suspicion, but fairly soon more than
400 companies were paying in the range of $0.005 to $0.25 per click. Soon, larger vendors
such as Google and Microsoft were also offering pay-per-click services.

A number of vendors of products and services have agreed to provide a small
percentage of sales to various charities through Freelanthropy. The toolbar and
search portal make it easy to direct customers to these vendors.

Freelanthropy’s site is not without a few technical problems. One user com-
plained that his browser was hijacked and kept returning to the site. But since
that complaint seemed unique, it was probably some form of technical glitch
and not an intended diversion.

Global Insight

Global Insight is also a niche player, but it is a major fi gure in a very important
niche. Global Insight is the world’s largest commercial economic-study organi-
zation, with a staff of more than 700 and a client base of more than
3,800 organizations. Global Insight uses computers and software as an integral
part of both data acquisition and data distribution.

ptg11539604

267Companies Formed During the 2000s

The founder and President was Dr. Joseph Kasputys in Lexington,
Massachusetts. Global Insight was formed in 2001 by a complex merger of a
number of formerly independent companies: Wharton Econometric Forecasting
Associates, Data Resources Inc., Primark Decision Services, and others. Global
Insight is now a subsidiary of IHS, formerly Information Handling Services.
Global Insight also acquired a number of companies.

The Hoovers Business Guide reports that Global Insight has data from more
than 200 companies and 170 industries. The company has 25 offi ces in a dozen
countries. One well-known client is Wal-Mart. Global Insight developed its new
ad slogan of “Save Money, Live Better,” which replaced the older ad “Always
Low Prices.”

This company provides consulting and data to probably a majority of U.S.
Fortune 500 companies and many global companies as well. The parent com-
pany of IHS is also an interesting niche company in the information-gathering
business. The entire fi eld of information gathering and dissemination has been
transformed by the internet, the World Wide Web, and the vast increase in
converting books and paper text documents for online storage.

HIVE Group

The HIVE Group is another small niche company that specializes in the visuali-
zation of complex information using a patented method called tree mapping,
developed by Ben Shneiderman of the University of Maryland.

The tree-mapping visualization method uses rectangles of various sizes and
colors to show hierarchies and relationships among data elements. This is hard
to explain in words, but a visit to the HIVE Group’s website will reveal quite a
few interesting examples.

The HIVE Group was founded in Richardson, Texas, in 2000. The chairman
is H. William Jesse and the CEO is Jim Bartoo. Ben Shneiderman, the inventor
of tree mapping, is a corporate advisor. He is also a professor at the University
of Maryland.

Ben Shneiderman has a long history of invention in the areas of visualization of
information. He is credited with inventing the method of highlighting text phrases
that would allow users to jump from one website to another based on the specifi c
text. This is now the most widely used method of navigation during scientifi c
research. The word “hypertext” is used for these phrases with active web links.

Visualization of complex information is one of the more common uses of
computers. The tree-mapping method is now widely used by government agen-
cies and major corporations to improve the understanding of complex topics.

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises268

Although tree mapping is successful, the technology exists in the current era
to move beyond static diagrams and into the realm of animated, full-color, and
even three-dimensional representations of complex information.

The HIVE Group is an example of a company built around a single innovation,
but one that has enough interest to keep the company growing and profi table.

Intellectual Ventures

Intellectual Ventures is very controversial and has an interesting business model
that is based on patented intellectual property. Many of the patents are in the
computer and software domains, but there are also patents from other technical
disciplines such as biology, medicine, physics, and all forms of engineering.

The company was founded in Bellevue, Washington, in 2000 by former
Microsoft executives Nathan Myhrvold and Edward Young, with a number of
prominent later cofounders.

The main business of Intellectual Ventures is either fi ling patents based on
their own internal research or acquiring patents from other inventors and
companies. A visit to the website provides information on how to have a patent
reviewed.

The company also has its own research facilities called Intellectual Ventures
Labs. Quite a few famous scientists work at these internal labs, and the disci-
plines include medicine, biology, physics, software, nanotechnology, and others.
Researchers also study global warming and have patented a potential (but
possibly harmful) method of reversing global warming by creating an artifi cial
shield over the earth that would partially block sunlight. (If this method failed, it
might reverse global warming enough to create a new Ice Age.)

Intellectual Ventures is a private company that seems to be well funded with
perhaps more than $5.5 billion from a variety of external sources. Some of the
investors are major companies such as Microsoft; Intel; Sony; Nokia; Google;
and a variety of other high-tech, medical, science, and bioengineering groups.
Some venture funds are also invested.

It is one of the largest holders of patents in the United States. Intellectual
Ventures owns more than 30,000 patents in total, including 2,000 fi led by inter-
nal researchers. It is now fi ling close to 500 new patent applications per year.

The controversy that fl ows around Intellectual Ventures centers on a new
term: “patent troll.” That term refers to a company that acquires patents not to
produce new products but rather to gain revenues by litigating other companies
for patent infringements.

ptg11539604

269Companies Formed During the 2000s

Note
Claims of patent trolling are legal issues outside the scope of this book. I am not an attorney
and have no legal training, so the information discussed here comes from web and journal
articles and other second-hand sources. Readers should discuss patents and other legal
issues with qualifi ed attorneys.

In 2010, Intellectual Ventures fi led patent suits against a number of prominent
companies. However, patent litigation today seems to be endemic for the
software and computer industries and also for equipment manufacturers such as
Apple, Samsung, Motorola, and the like. There are a lot of ongoing patent suits,
and the impression is that many companies are using patents as business
weapons to attack competitors.

Patent Litigation in Recent Years

It would be interesting to look at the statistics of patent litigation fi led each
year for the past 15 years. Apparently, the numbers of patent cases are accelerating.
In 2011, President Obama signed the Leahy-Smith America Invents Act (AIA),
which introduced major changes into U.S. patent law. The gist of the new legislation
is that the patent fi ling date seems to take precedence over the actual invention date.

The full impact of the law has many legal issues and should be discussed with
qualifi ed patent attorneys. The impacts are beyond the scope of this book. A new
method of calculating patent awards called the Nash Bargaining Solution (also out-
side the scope of this book) has also begun to appear. The bottom line is that 2012
was a record year for U.S. patent litigation, either due to the new law or to some
extrinsic reasons that are hard to quantify.

Looking at trends since 1991, the number of patent lawsuits fi led seems to
follow more or less the trends of patents granted each year, and both are increas-
ing. Patent sales are also increasing, especially in the telecommunications sectors
as various phone companies jockey for position, sue one another, and buy up
patent portfolios from older telecommunications companies. Buying and selling
patents is not specifi cally related to software and computers, but both are part
of larger patent trends that include more litigation and very active patent
acquisition.

In any case, the business model developed by Intellectual Ventures of buying and
creating patents seems to be bringing in a lot of money, so it can be viewed as suc-
cessful. Business schools should develop new case studies of the impact of patent
infringement cases on technical progress and also of the impacts of the recent
changes in patent laws and award calculations.

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises270

Internet Marketing Association (IMA)

The IMA is not a corporation per se but rather a professional association. It is
included in this book for several reasons. One is that it is large and important,
with more than 750,000 members. The other is that it illustrates that when
technologies such as the internet and the World Wide Web become pervasive
and important, people need to consider ethics and professional behavior. The
third is that the internet and the World Wide Web have risen to become key
marketing tools in the modern era. In fact, one of the reasons why newspapers
are losing money is because much of the corporate money used for marketing
campaigns has switched from newspaper ads to web marketing.

The IMA was started in 2000 in San Clemente, California, by Sinan Kanatsiz.
Some funding was acquired from various sponsors such as Google, Microsoft,
Facebook, YouTube, and quite a few more. Surprisingly, there are no fees or
dues for members, which may be one reason why membership is so large.

The IMA features training, certifi cation of internet marketing personnel, and
a number of conferences and/or trade shows. It also issues annual awards called
Internet Impact Awards. It provides conferences for clients such as Apple and
also on its own behalf. Some of these conferences are large, with hundreds of
participants.

The IMA is one of many professional associations that have surfaced to
support computers, software, the internet, and the World Wide Web. Others in
this space include the IEEE Computer Society, the Association of Computing
Machinery (ACM), the Association of Information Processing Professionals
(AIPP), the Society for Information Management (SIM), the Association for
Women in Computing, the Society for Technical Communication (STC), and
hundreds more in many countries.

Some of these groups are international, some national, and many, such as the
Software Process Improvement Network (SPIN), are regional or support
personnel in specifi c cities. Some are based on a single manufacturer or vendor,
such as the IBM SHARE group that represents a majority of IBM computer and
software customers. The IMA is included here as one example of a large class of
social and professional organizations that have sprung up since computers and
software became global corporate and business tools.

Meeting Zone

Meeting Zone is another company with a new niche that is entirely based on
computers, software, and the World Wide Web. This company provides

ptg11539604

271Companies Formed During the 2000s

support for online meetings and webinars. This is a popular niche with many
other players, including Adobe, Cisco, JoinMe, DumDum, and quite a few oth-
ers. In fact, Meeting Zone itself offers Cisco WebEx support as well as Presenter
and Glance.

This private company was formed in 2002 in Thame, England, by Steve
Gandy and Tim Duffy. It supports both audio conferences and web conferences.
The idea behind Meeting Zone is to have painless conferences with no intrusive
downloads.

Meeting Zone expanded into the Scandinavian conference markets by
acquiring Malmo in Norway and by collaborating with United Communica-
tions Sweden AB.

The market for video conferencing has been robust, and Meeting Zone has
grown rapidly, having made a list of Britain’s 100 fastest-growing companies in
the Microsoft Sunday Times Tech Track. In 2011, several companies, including
GMT Communications Partners and company management, acquired Meeting
Zone for around £38.5 million.

Moody’s Analytics

Moody’s Analytics was founded in 2007 as a subsidiary of Moody’s Corpora-
tion. It is a niche company that uses software to analyze a variety of fi nancial
and investment risks.

Note
Another interesting Moody’s subsidiary from 2002 is the Moody’s Foundation, which is a
philanthropic organization that donates funds to assist and elevate mathematical and statistical
education. It also sponsors various mathematical contests for high school students to use math
to solve real-life problems.

The original parent company was founded in 1909 by John Moody, who
invented the method of modern bond ratings. Of course, this was long before com-
puters and software, and the calculations were done by hand. But the statistical and
analytical problems were exactly what computers and software would later use to
speed up the calculations. A U.S. fi nancial crisis in 1907 showed a need for
better data, and that motivated Moody to create his rating system and the
U.S. government to create the Federal Reserve System.

Moody’s Analytics has developed proprietary software for fi nancial mode-
ling, risk analysis, and other business-related topics. It also has a consulting
group in the same areas. The Moody’s Analytics subsidiary is a kind of umbrella

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises272

organization that was used to combine a number of formerly independent
companies, including, but not limited to, KMV, which has a software package
for predicting credit defaults; Economy.com (economic modeling); Wall Street
Analytics; Fermat International, the Institute of Risk Standards and Qualifi ca-
tions; CSI Global Education; and others.

The latter company, CSI Global Education, handles training and education
in stocks and bonds and other fi nancial securities. It also certifi es professionals
who handle and market such securities. This is a Canadian company and its
courses are required for all Canadian stock and investment professionals.

Several of the other Moody’s Analytics umbrella companies also provide
training in various countries, but always in the fi elds of stocks, bonds, and
fi nancial instruments.

In the modern world, credit ratings are critical factors for companies and
individuals alike. The mathematics and statistics for calculating these ratings
are outside the scope of this book, but they have serious impacts on individual
and corporate abilities to borrow or receive external funding.

In 2010, Moody’s Analytics formed a partnership with Experian to produce a
software package for allowing fi nancial institutions to manage portfolios of con-
sumer loans. Although computers and software are the key tools for credit ratings
and risk analyses, they are not perfect by any means. There have been frequent
criticisms of their accuracy, and some government investigations have begun.

There was intense criticism of three rating companies—Moody’s, Standard
and Poors, and Fitch’s—due to their favorable ratings of fi nancial companies
that later became insolvent, such as Lehman Brothers, and also for risky mort-
gage-related packages that were implicated in the burst housing bubble.

There is no “cesium atom” or truly objective mathematical method for deter-
mining the accuracy of a credit rating, which is why several independent rating
agencies are used and their results are compared.

The credit-rating fi nancial software packages have also been known to con-
tain bugs and defects, as do all other kinds of software applications. The credit-
rating companies are nominally guardians of corporate and individual fi nancial
health, but the ancient phrase “Who will guard the guardians themselves?”
would seem to apply.

Mozilla Foundation

The Mozilla Foundation has a very complicated history with many players and
companies involved. Because Mozilla is an open-source organization, that is not
surprising: many people are always involved. (The name “Mozilla” is amalgamated

ptg11539604

273Companies Formed During the 2000s

from the phrase “Mosaic killer” because the original browser was meant to
displace Mosaic.)

The Mozilla Foundation was started in Mountain View, California, in July
2003 but has a longer history than that. Mitchel Baker was the founder. Mitch
Kapor of Lotus provided some of the funds. Other funding came from a
number of sources, including America Online (AOL), IBM, Sun, and Red Hat
Software.

Mozilla was an internal name used within Netscape. The Mozilla organization
was charged with creating a Mozilla Application suite with both a browser and
an email client. Later, the browser became Firefox and the email package became
Thunderbird. As discussed elsewhere, Netscape itself was acquired by AOL.
Netscape and Microsoft competed in the browser wars during the previous
decade, with Netscape losing market shares.

Note
While the Mozilla Firefox logo appears to show the front half of a red fox, the actual animal
selected for the logo was a red panda. In fact, red pandas do resemble red foxes slightly but
are a totally different species and are unrelated.

When AOL’s revenues began to decline, it reduced emphasis on Netscape’s
products, and the Mozilla project within Netscape was shut down. When AOL
and Netscape cut back the Mozilla project, the Mozilla Foundation was formed
by a nucleus of former Netscape personnel plus others. There is also a separate
Mozilla Corporation that is not tax exempt. The Mozilla Corporation produces
the Firefox browsers. As can be seen, this is a very convoluted path. As a
for-profi t enterprise, the Mozilla Corporation can generate revenues and sell
products. One of its main clients is Google, whose search engine is the default
search engine on Firefox.

There are several Mozilla products, but the Firefox web browser and the
Thunderbird email client are the best known. There are also SeaMonkey and
Camino, a browser for Macintosh platforms.

Browser Competition

The topic of most signifi cance here is that Microsoft often dominates industry seg-
ments. In the browser segment, Microsoft’s Internet Explorer is still on top, but the
market has several other strong players. The sequence for personal computers is
Internet Explorer, Google Chrome, Firefox, Opera and, fi nally, Apple Safari. Other
platforms such as tablets and smartphones have different patterns.

(Continued)

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises274

(Continued)
The browser segment is more competitive than, for example, offi ce suites, where

Microsoft is the major player by a large margin. (It is interesting that Intuit was able
to compete successfully against Microsoft in the personal fi nance segment; indeed,
Microsoft withdrew from personal fi nance.)

It is technically and socially interesting that an open-source application such as
Firefox produced by a fairly small organization such as Mozilla is able to stay com-
petitive in a major software business segment against well-funded, larger competitors
such as Microsoft and Google.

Open Source Development Labs (OSDL)

The open-source movement in software seems to be unique among major
industries. There are very few other industries where key products are available
for no cost and where revenues derive from services such as training and
consulting and sometimes maintenance and customer support.

OSDL was founded in 2000 in Beaverton, Oregon, and Yokohama, Japan. It
was a sort of consortium aimed at improving and maximizing the usage of the
Linux operating system. The six companies that provided the original funds
were Computer Associates, IBM, NEC, Intel, Fujitsu, and Hitachi. Linux was
of interest both in Japan and in the United States (as well as Finland, where it
originated). Although the developer of Linux, Linus Torvalds, was not a
founder, he did join the labs soon afterward.

Today, membership has grown to perhaps seventy-fi ve organizations, and
Linux is a well-respected and popular platform for embedded applications,
servers, and even notebook computers. It also has become the operating system
of choice for low-cost computers for emerging countries and for providing low-
cost computers to schoolchildren.

In 2007, the Open Source Development Labs and the Free Standards Group
combined to create the Linux Foundation.

Linux Emerges

Linux was derived from Unix and was developed by the Finnish software engineer
Linus Torvalds. Torvalds was a student at the time he developed Linux. This is not
the only important software topic that originated with a student. Facebook was also
developed by students.

Unix was developed at Bell Labs by Dennis Ritchie and Ken Thomson in 1969.
The power and utility of Unix led Richard Stallman in 1983 to consider the benefi ts

ptg11539604

275Companies Formed During the 2000s

of a free Unix system. This led him to create the GNU project and the GNU General
Public License, which is the major license for open-source software, but not the only
one. (The unusual name of “GNU” means more or less “GNU’s not Unix.”)

An interesting feature of the GNU license is something called a “copyleft” as
opposed to a “copyright.” Essentially, this means that users can pass along the code
and deliverables to others and also modify them but do not charge for the result.

In 1991, when Torvalds developed the Linux kernel, it was not a full operating
system. It also had its own custom license. Later, when it was released under the GNU
license, other features were added and the product became known as GNU/Linux.

The name “Linux” had been rejected by Torvalds as being egotistical. A colleague
working with him unilaterally started calling the software “Linux” and this became
well known, so Torvalds eventually agreed. The earlier name was FreaX, which is not
very aesthetic.

As many readers know, the logo or symbol for Linux is a penguin. The reason for
this is not certain, but Torvalds was once bitten by a penguin while visiting a zoo in
Canberra, Australia.

Several people and organizations other than Torvalds attempted to trademark the
word “Linux.” This led to some litigation and eventually Torvalds was awarded the
trademark, which he donated to the Linux Trademark Institute, which is a
subsidiary of the Linux Foundation.

Because the stated mission of the OSDL is to be the central body for Linux expertise
and to expand its usage, this short discussion of Linux is relevant.

Open-source software and Linux in particular have established an interesting and
important niche in the larger software industry. The widespread availability of
source code under the GNU license and the ability of thousands of people to make
improvements have led to many useful technical advances.

There has been opposition to the open-source movement from established com-
panies such as Microsoft, but the open-source community has been successful in
creating new business and achieving large numbers of satisfi ed customers.

PerfectMatch

PerfectMatch is one of a number of new companies in a very special niche. It
uses computers and software to provide matchmaking services for men and
women seeking partners. This book covers both the technical and social aspects
of software, and matchmaking is defi nitely a social issue. Other players in this
subindustry include EHarmony, Christian Mingles, and dozens of others. Some
are national, while others are local.

PerfectMatch was founded in August 2003 in Kirkland, Washington, by Duane
Dahl, Cindy Henry-Dahl, and Jason McVey. The company uses a questionnaire

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises276

designed by a psychologist, Dr. Pepper Schwartz, together with predictive analytics
and a large database of men and women who have specifi ed a number of
preferences.

A visit to the PerfectMatch website shows that some of the preferences that
are used include being a pet owner, being a vegan, being a Democrat or
Republican, and a host of other topics. Matchmaking is an ancient occupa-
tion with thousands of years of history. Many civilizations, including ancient
Rome, India, Japan, and China, have used human matchmakers for centuries
and still do in the modern era.

However, computers and software have added several new levels to match-
making. Among these is a much larger set of potential matches due to the World
Wide Web. The questionnaires used by various computer dating companies also
seem to be fairly sophisticated in sorting out personal interests and background
topics that may be relevant. This subindustry and PerfectMatch and its
competitors show that computers and software are now permeating every
aspect of human life, including how we meet and fi nd our spouses or partners.

RPX Corporation

The RPX Corporation is a company with a novel and highly specialized niche.
It uses predictive analytics to calculate the risks of U.S. patents, which is a very
new niche indeed. (Because I have fi led several patents myself, this company is
of personal interest.)

As most readers already know, the computer, software, telecommunications,
and other high-tech industries have fi led thousands of patents. These industries
are also subject to frequent patent litigation as competitors jockey for position.
A new subindustry of “patent trolls” has surfaced, and the technical name for
patent trolls is nonpracticing entities (NPEs).

The RPX Corporation was founded in 2008 in San Francisco, California, by
John Barker and Geoffrey Amster. Their business model includes defensive
patent aggregation, or acquiring patents that might be subject to litigation and
committing never to litigate themselves about the use of these patents. This
business model is an interesting contrast to the patent model of Intellectual
Ventures, discussed earlier in this chapter, which does initiate patent litigation.

RPX has a number of clients in high-technology and high-risk business sec-
tors. RPX also has a team of technical patent specialists who keep constant
watch for patents that might be used to sue RPX clients. Then, if possible, RPX
acquires these patents and hence prevents them from being used in patent
infringement cases. Sometimes RPX acquires patents even after litigation has

ptg11539604

277Companies Formed During the 2000s

been fi led. (These are fairly complex legal topics and I am not an attorney, so
readers should seek advice from licensed attorneys about patent situations.)

Clients of RPX receive licenses to use the RPX patent portfolio by paying
annual fees, which are not inexpensive. They start below $100,000 per year but
can be more than $6 million per year based on the client’s business and technology
stack.

RPX has acquired more than 2,900 patents relevant to software, computers,
electronics, telecommunications, and also to e-commerce and even computer
games. These patents have been used to settle more than 20 infringement cases
and have led to the dropping of more than 150 patent infringement charges.

The U.S. patent system is increasingly being used as a competitive weapon
and as a source of significant revenues from patent litigation. The RPX
business model is interesting because it is attempting to restore patents to their
primary purpose of developing innovative products rather than being used to
stop competition or to force companies to buy their way out of patent litigation.

SolveIT Software

SolveIT was founded in 2005 in Adelaide, South Australia. The four cofound-
ers were Matthew Michalewicz, Zbigniew Michalewicz, Martin Schmidt, and
Constantin Chiriac. These four were also coauthors as well as cofounders.
Their joint book was Adaptive Business Intelligence, which was published in
2006 by Springer and received favorable reviews on Amazon and other book
sites. The book discusses applying artifi cial intelligence to business problems.

SolveIT uses custom-designed software to apply predictive analytics and
artifi cial intelligence to demand forecasting, scheduling, distribution, and
supply-chain optimization. Because the company was located in one of
Australia’s wine regions, its early customers were from the wine industry,
which is large in Australia.

However, in 2008, it was approached by the Rio Tinto Iron Ore Company and
was asked to develop optimized solutions for mining operations. Seemingly,
SolveIT was successful, because many other mining companies became clients
and SolveIT established a mining unit to support its growing portfolio of mining
clients. In 2011, SolveIT won an Australian award for e-logistics and supply-
chain management. In 2012, SolveIT was acquired by a French company, Schnei-
der Electric.

Computers and software, combined with artifi cial intelligence and predictive
analytics, can solve a number of complex business and manufacturing prob-
lems, some of which had been resistant to prior solutions. SolveIT is not the

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises278

only company using predictive analytics, but it is an example that this fi eld is
growing and becoming important to larger companies and larger industries.

Twitter

Twitter is interesting because it turned a novel way of communication called
microblogging into one of the largest social networks in history. Twitter
has become so popular among so many people that it almost seems like an
addiction. The basic concept is that users can issue short messages of up to
140 characters called “tweets.” These are broadcast to “followers.”

Twitter was founded in 2006 in San Francisco, California, by Jack Derby.
Twitter is based on the concept of the short message service (SMS) that was
introduced into the cell phone domain in 1985 as part of the Global System
for Mobile Systems Communications (GSM) standards. The limit was
160 characters. The fi rst GSM/SMS message was sent on December 3, 1992.
Soon, other networks adopted the same idea. After slow growth, text
messaging became a huge subindustry with trillions of messages and billions
of dollars in revenue.

Jack Derby was in a working discussion about GSM at a company called
Odeo while an undergraduate at New York University. He proposed using SMS
codes for communication. This idea had a working name of “Twittr” derived
from the existing name “Flickr,” both of which used fi ve-character codes. The
term “Twittr” was later expanded to “Twitter,” which had an older and com-
mon meaning of short bird calls. This also led to calling individual messages
“tweets” and to using a songbird as the Twitter logo.

At fi rst, Twitter was used for internal communications within Odeo. In October
2006, a group of employees bought out Odeo and formed another company called
Obvious Corporation. Among the assets acquired from Odeo was Twitter.com.
Among the founders were Biz Stone, Jack Derby, Evan Williams, and others.

Twitter began to gain popularity as the result of a display at a conference in
2007. Two large plasma displays showed Twitter messages from various confer-
ence speakers communicating with each other.

After that successful conference, the rapid growth of Twitter and the
phenomenon of millions of followers waiting for short messages from famous
people deserve to be studied both at business schools and at medical schools
that train clinical psychologists.

From a distance, it is hard to see why millions of short messages have such a
strong appeal that some people spend hours per day reading and writing them.
Twitter may have accidentally tapped into a fundamental factor of the human

ptg11539604

279Companies Formed During the 2000s

brain that demonstrates that most people prefer to absorb short messages of
only a few words rather than full paragraphs or pages of text.

From looking at messages posted on another social network, LinkedIn, there
may be some merit to limiting messages to 140 characters. Many LinkedIn
posts are long, dreary paragraphs of unsupported opinions with nothing very
useful in them. They often run on for hundreds of words. The larger LinkedIn
post limit of 4,000 characters defi nitely leads to an excess of lengthy messages.

Twitter remains a private company with Jack Dorsey as Chairman. Revenues
are not reported but are apparently large enough for the company to have more
than 400 employees and to be in continuous growth mode. Twitter received
two rounds of venture fi nancing. Venture money usually means that either an
IPO or an acquisition will eventually occur because the venture capitalists want
a large return in a fairly short time period.

The Twitter network itself has become phenomenally large and popular, with
more than 140 million users and more than 340 million tweets per day. Twitter
did not stay with short text messages but added the ability to link photographs,
and it also provides a news feed. Companies can also set up Twitter accounts
and use them to communicate with customers.

Note
Jack Dorsey has also founded another interesting company called Square. The Square
company allows credit card purchases via smartphones that use a small square card reader
that plugs into a cell phone port.

Twitter has become an unusual social domain where the famous communi-
cate with fans in a fairly benign and friendly social environment. It is one of the
few places where ordinary people can read messages from celebrities and world
fi gures like President Obama, Tiger Woods, and Jennifer Lopez on a daily basis.

In fact, it is partly due to the use of Twitter by A-list celebrities that makes it
so popular to such a wide audience. Twitter gives ordinary citizens a glimpse
into the daily lives of many of the most famous people in the world.

The fact that thousands of politicians, movie stars, and sports fi gures use
Twitter is proof that computers and software have entered our daily lives and
changed our methods of communication in new and unexpected ways.

YouTube

YouTube is an interesting company whose business is entirely based on new
technologies. One technology is the World Wide Web and a second technology

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises280

is that of digital images for photographs and videos. Of course, computers and
software are needed as well. This company could not have existed more than
20 years ago.

This company was founded in 2005 in San Mateo, California, by Chad
Hurley, Steve Chen, and Jawed Karim. All three had been employed at PayPal.
Like Apple, YouTube was also founded in a garage in Silicon Valley.

The company started with “angel” funding, but in November 2005, it
received about $3.5 million in venture funding from Sequoia Capital.

YouTube hit on what may be a basic human need for people to share images
and videos of things that are important to them. People have kept scrapbooks
and photo albums since the Civil War, but the advent of digital imaging in the
1980s (discussed in Chapter 7) made photography an instant phenomenon
instead of a task requiring chemicals and lengthy development in darkrooms.

For whatever reason, YouTube exploded in popularity and a little more than
a year after it started operation, it was uploading thousands of videos and
pictures per day. It was soon ranked as number 5 in website popularity.

The demographics of YouTube usage is an interesting social commentary on
the use of the World Wide Web in the modern era. For many reasons, young
people are early adapters of new technologies. The majority of YouTube users
are teenagers. Older people have habits and practices of long standing and are
somewhat less energetic in moving to new techniques.

YouTube epitomized the legend of the rapid “rags-to-riches” ascents of
Silicon Valley entrepreneurs. YouTube was started in 2005 and only a year
later in 2006, it was acquired by Google for $1.65 billion. There have been
very few industries in history that can create so much wealth in such a short
time as the software industry.

YouTube not only grew rapidly but also soon caught national attention.
Time Magazine featured YouTube as its “Person of the Year” in 2006 which, of
course, attracted thousands of new clients.

In 2007, YouTube entered the political domain when, with the Cable News
Network (CNN), it provided live footage of some of the presidential debates,
with questions coming in through YouTube. This continues; YouTube also was
part of the 2012 presidential debates and will apparently keep active in the
political domain.

Although YouTube started as a host for amateur videos and pictures, it
added professional fi lms and videos in 2010 and also started a video rental ser-
vice in competition with Amazon, Hulu, and other streaming video companies.
Incidentally, streaming video is another modern technology that could not have
existed 20 years ago.

ptg11539604

281Companies Formed During the 2000s

The popularity of YouTube and its millions of members are factors in
YouTube’s advertising revenues. Many companies advertise via YouTube
(and Facebook and Twitter) in order to reach vast numbers of potential new
customers.

One critical issue affects YouTube and all other web-based video services.
Streaming videos and images use enormous quantities of bandwidth. As more
and more companies enter the streaming video and remote-image subindustry,
it is possible to perhaps saturate the web and slow down overall performance.

In any case, YouTube seems to have hit on a psychological need to share
personal images and information in a structured and reasonably safe environ-
ment. However, no personal information put on the web is truly safe or private.

Zillow

Zillow’s special niche is providing real estate property values. Here, too, the
niche depends on several recent technologies, including the World Wide Web,
large databases, satellite and aerial digital images, and proprietary software
applications that use proprietary algorithms. The company could not have
existed 20 years ago because some of the technologies were not available.
Zillow is a public company whose stock is traded on NASDAQ.

Zillow was started in 2005 in Seattle, Washington, by Rich Barton and Lloyd
Fink. Both founders had been Microsoft executives and were technical entre-
preneurs. Zillow was not the fi rst to enter the real estate evaluation market,
because Yahoo had a service called Yahoo Real Estate that started in 1998.

Real Estate Appraisals and Software

An older company, Vision Appraisal from 1975, has many contracts with municipal
governments in a number of states to perform periodic property assessments. (Vision
Appraisal has a contract with my home city for appraisals. Several years ago, it was
necessary for me to appeal and correct several errors in my property appraisal,
including an error in square footage and another error in elevation.)

Appraisals are frequently controversial and sometimes wrong. This topic is
beyond the scope of this book, but suffi ce it to say that property taxes are based on
formal appraisals often by commercial appraisal companies such as Vision Appraisal.
If the appraisals are wrong, the taxes will be wrong. Real estate valuation is highly
complex and also highly litigious.

There is also an Appraisal Standards Board and a nonprofi t Appraisal Foundation,
which are quasi-offi cial groups that set standards for property appraisals against

(Continued)

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises282

which appraisal companies can be compared, in theory. There are also professional
associations of appraisers, such as the American Society of Appraisers and the
American Appraisers Association. Even so, real estate appraisals impact every home-
owner and therefore will always be controversial and subject to complaints by
disgruntled property owners.

Many appraisal companies use proprietary and secret algorithms, some of which are
not even revealed to municipal tax authorities. What is probably needed is an expert
system that would be a national standard method used by all appraisal companies and
validated by neutral disinterested personnel such as university professors or nonprofi t
research groups.

Zillow generates its revenues by advertising on its website. In 2009, Zillow
formed an interesting consortium by licensing its appraisal data to about
180 local newspapers around the United States. In 2011, Zillow and Yahoo
Real Estate entered into a partnership that became the largest real estate ad
venue in the United States.

Zillow has data on about 100 million U.S. homes and Yahoo had data on about
5 million U.S. homes. The combination of the two probably includes a majority of
all U.S. homes. The data include both current values and historical past values.
There are also images on the Zillow site, including aerial and satellite images.

The company was criticized when it changed its appraisal method in 2011
when it changed both current and historical valuations. Zillow claimed
increased accuracy, but many users were not convinced. Zillow says that accu-
racy improved from matching actual sale prices from about 12% to better than
9%. Why historical data changes is not clear.

The site now has a number of products and services, including searching for
mortgages, applications that work on smartphones, and a tool called Zestimate
that can predict real estate sales prices. Zillow also produces local reports for
about 130 metropolitan areas. Zillow also introduced a kind of Wiki service by
allowing users to ask questions online of a community of appraisers and other
users.

Zillow demonstrates the fact that computers and software now permeate
every aspect of corporate and government activities. Property appraisals for tax
purposes have been in use for more than 1,000 years. Prior to the computer era
with large databases and the World Wide Web, appraisals could only be based
on a small sample of very local properties.

In today’s world, essentially every piece of real estate in the United States has
data available online, so national, regional, state, municipal, and even neigh-
borhood real estate data can be examined.

(Continued)

ptg11539604

283Growth of Software from 2000 to 2010

In theory, appraisals should be more accurate today than in the past, but the
use of software containing proprietary and secret algorithms raises serious
doubts about accuracy. Also, software applications have a distressing tendency
to contain bugs and errors and no doubt this is true for appraisal software as it
is for other kinds of software.

This decade witnessed a large number of niche companies fi lling in the gaps
around more conventional database and corporate applications. Some of the
new niches include predictive analytics, real estate appraisals, and even
personal relationships.

Social networks began to go beyond normal everyday human contacts in
terms of frequency. By the end of the decade, some young people had many
more friends on social networks than in real life. More time was being spent
tweeting and texting than talking to people face to face. Texting was becoming
so common that it began to be a frequent source of automobile accidents,
leading to new laws against cell phone and texting use by drivers.

Growth of Software from 2000 to 2010

The 2000s was an explosive decade in software growth, both among tradi-
tional forms of software and also for computer games and dozens of new niche
applications that sprang up like mushrooms after a rain.

Table 9.2 shows the approximate number of U.S. software applications
created during this decade.

Table 9.2 U.S. Software Applications from 2000 to 2009

Application Types Applications Percentage

Scientifi c 192,000 6.40%

Military and defense 450,000 15.00%

Civilian government 400,000 13.33%

Systems and middleware 360,000 12.00%

Embedded software 700,000 23.33%

Commercial 175,000 5.83%

Information technology (IT) 325,000 10.83%

U.S. outsource 78,000 2.60%

Offshore outsource 53,000 1.77%

(Continued)

ptg11539604

Chapter 9 The Rise of Social Networks and Economic Crises284

Results for 1,000 Function Points Circa 2005

At the end of this decade, a new metric called technical debt was introduced by
Ward Cunningham. Unfortunately, technical debt, cost per defect, and lines of
code are not suitable for economic analyses due to uncertain defi nitions that
have large variability from group to group.

Technical debt only covers about 13% of the true costs of quality, and it
ignores canceled projects that are not delivered. Lines of code ignores require-
ments and design defects and also penalizes high-level languages. Cost per defect
penalizes quality and achieves the lowest results for the buggiest software.

Function points for normalization combined with defect removal effi ciency
are the best for quality metrics. Work hours per function point and function
points per staff month are the best productivity metrics. Benchmark data
expressed using IFPUG function points outnumber other function point
variations by about 10 to 1.

The same 1,000 function point application would look like this:

• Source code for 1,000 function points: 40,000 logical code statements

• Programming language: C # and MySQL

• Reuse percentage: 0% to 40%

• Methodology: Agile with Scrum

• Productivity: 9.50 function points per staff month

• Defect potentials: 3.50 defects per function point

• Defect removal effi ciency (DRE): 92%

• Delivered defects: 0.28 defects per function point

Table 9.2 (Continued)

Application Types Applications Percentage

Web applications 250,000 8.34%

Games and entertainment 15,000 0.50%

Open source 2,000 0.07%

Total Applications 3,000,000 100.00%

ptg11539604

285Summary

• Ratio of development personnel to maintenance:

• Development: 45%

• Maintenance: 55%

The following are the background data for 2005:

• Average language level: 8.00

• Number of programming languages: 2,500

• Logical statements per function point: 40

• Average application size: 550 function points

• Average application size: 22,000 logical code statements

Summary

By the end of this decade, social networks such as Facebook and Twitter had
become a new way of social interaction, with millions of subscribers and some-
times many hours per day devoted to cybercommunications; often, more time
was spent online than in face-to-face communications.

Open-source applications such as Firefox and Linux began to have corporate
signifi cance and were added to thousands of corporate portfolios.

The dot-com bubble burst of 2000 and the Great Recession of 2008 changed
the demographics of the software community and led to a number of downsiz-
ings among large companies and failures among small companies. They also led
to an increase in offshore outsourcing to countries with lower labor rates such
as China, India, and the Philippines. However, offshore infl ation rates are
higher than U.S. infl ation rates.

Cloud computing and big data began to appear in articles and to a certain degree
were in actual use. However, both would have more usage in the next decade.

Agile methods continued to expand in usage. However, in spite of Agile,
failures and cancellations of major applications of greater than 10,000 function
points remained troublesome. These large systems tended to use other methods
such as waterfall due to the fact that Agile does not scale up as well as it might.
Methods such as Rational Unifi ed Process and Team Software Process proved
to be successful for large systems but were somewhat cumbersome for small
projects compared to Agile methods.

ptg11539604

This page intentionally left blank

ptg11539604

287

Chapter 10

2010 to 2019: Clouds,
Crowds, Blogs, Big Data,
and Predictive Analytics

This book was started in the middle of 2012 and fi nished in the spring of 2013.
Therefore, only a little more than two years of actual history were available
to discuss for this decade. Using trends from prior decades, I could make some
predictions of things that might occur between 2013 and 2019. Of course,
knowing the future can be diffi cult.

The early years of this decade witnessed a rapid growth of companies pro-
viding services for the cloud (applications and data stored remotely on the web
but available for local use). There was also a remarkable increase in new
companies that want to use crowds of possibly thousands of people to focus on
common goals. The World Wide Web is a necessary enabling technology for
crowd actions.

An interesting social phenomenon that is accelerating in the current decade is
the widespread use of blogs, or collections of personal web articles that are
published by individuals who have facts or opinions to share. Some blogs have
become famous, are syndicated, and have millions of readers. Others are
obscure and probably read only by personal friends and family members of the
authors.

The emergence of big data has come about from hundreds of disparate data-
bases that are analyzed together. The natural partners of big data are predictive
analytics and intelligent agents. Predictive analytics use big data to examine
large and complicated problems. Intelligent agents are extensions of search
engines that include artifi cial intelligence to analyze fi ndings and generate useful
information based on dozens or hundreds of websites.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics288

Agile development is expanding rapidly. While Agile is popular, there is a distinct
lack of quantitative data that show real progress compared to other leading
methods such as the team software process (TSP) and rational unifi ed process
(RUP). All three seem superior to the older waterfall and “cowboy” methods.

Predicting the Future

Predicting the future is always tricky and usually unreliable. But there are
obvious trends based on current software levels of technology and the results of
recent past decades.

The outcomes of the “patent wars” that are sweeping through the computer,
cell phone, and software worlds are unknown. Amazon and Samsung are
currently suing each other, and in fact almost every large high-technology
company has one or more patent lawsuits in play.

There is also a new subindustry of “patent trolls” that acquire patents not so
much for their intellectual worth but rather to use to sue or threaten to sue
dozens of companies for patent violations.

The whole topic of software patents and patentability is fl uid, and eventual
Supreme Court decisions may change software patents in unknown ways.

Another critical prediction is that software security threats and government-
sponsored “cyberwarfare” will continue to expand in frequency and seriousness
of threats. Financial institutions, personal identities, and electric power grids are
the most likely targets. Denial of service attacks are likely to increase also. Trans-
portation is also at risk because hacking air-traffi c control systems is probably
not as diffi cult as it should be.

Interesting new hardware devices that operate by means of software are
leading to some exciting future possibilities. Among the most interesting of
these new devices is 3D printing, which allows consumers to create plastic
items; wearable computers such as Google Glass; and some potential new
medical devices such as ocular implants, which could restore sight to the blind,
similar in concept to cochlear implants that restore hearing to the deaf.

Of these new inventions, 3D printing technology is already in use for both
industrial and medical purposes. For example, 3D printing can now be used to
create a perfect replica of a tooth that can be implanted by a dentist to replace a
missing tooth. Wearable computers in the form of glasses also exist, but these
are not yet on the commercial market. Ocular implants are still in the experi-
mental stage.

ptg11539604

289Professional Status for Software Engineering

Professional Status for Software Engineering

Even after more than 60 years, software engineering is not yet a certifi ed profes-
sion with licenses, board specialties, and malpractice monitoring, as occurs with
the fi elds of medicine and law. While there have been some improvements in pro-
gramming languages, requirements, design, and development methods, there is
still a need for much more progress.

A number of state governments are beginning to cooperate and offer license
examinations for software engineering. This is just beginning as the book enters
production, so it is too soon to know how effective and benefi cial these licenses
will be.

So long as software applications are based on custom designs and hand-coding
applications line by line, software cannot really be a true engineering fi eld. Worse,
it will remain one of the most labor-intensive occupations in human history.

Currently, software is built more or less like a Formula 1 race car or an
America’s Cup yacht. Skilled designers create custom designs that are then
manually constructed by skilled programming craftsmen.

Consider the labor content of a Formula 1 car compared to an automobile
such as a Ford or Lexus that is built on an assembly line using standard compo-
nents and robotic devices. An ordinary car constructed on an assembly
line from standard parts uses about 30 hours of direct labor. A hand-built
Formula 1 car that may need precision machining and custom-made parts can
take 3,000 hours of direct labor.

An application of 10,000 logical code statements that is hand-coded at a rate
of about ten lines of code per hour will take about 1,000 hours. By contrast, the
same application constructed from a set of 100 standard and certifi ed reusable
modules could be put together in about eight hours.

Today, a normal mix of software applications in the 500 function point size
range developed using Agile and midlevel languages such as Java or C# would
have an average total productivity rate of about 12 function points per staff
month. This includes delivery, project management, and specialists such as
technical writers and quality assurance.

Using the same kind of 500 function point sample with the same size skill
mix but using 85% certifi ed reusable materials, the predicted productivity rate
would be closer to 110 function points per staff month, or 917% higher results
using the Agile approach. Custom designs and hand-coding cannot possibly
provide the economic gains that are possible with standard reusable designs
and certifi ed reusable code.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics290

Quality and technical debt would also be improved using patterns and
certifi ed reusable components. Today, Agile projects average about 4.0 bugs per
function point in requirements, design, code user manuals, and bad fi xes.
About 93% of these are removed prior to release, so the delivered defect rate is
about 0.28 per function point. Technical debt, or fi xing those delivered defects
downstream, would cost roughly $150 per function point spread over the fi rst
18 months of usage.

By contrast, an application constructed from proven design patterns and
certifi ed components would have a defect potential of only about 1.0 defect
per function point (mainly in customized features). Defect removal effi ciency
would be about 99.4%. This leads to a delivered defect volume of only
0.006 defects per function point. Technical debt would be about $12.50 per
function point for 18 months, or only about 8.33% of the technical debt noted
with the Agile example.

Note
Waterfall projects similar to the 500 function point examples discussed above would have pro-
ductivity rates of about 7.5 function points per staff month. Their defect potentials would be 5.0
bugs per function point, 85% defect removal effi ciency, and 0.75 delivered defects per function
point. Technical debt would be around $350 per function point, spread over 18 months. This is
more than twice the Agile result and about 23 times the technical debt of design
patterns and certifi ed reusable components.

Of course, actually building the reusable materials is slow and fairly expensive.
Average productivity for the initial construction of each component, assumed to
be 25 function points, would only be about 4.5 function points per staff month.
However, as usage of the certifi ed components goes up, their economic value goes
up. Needless to say, the reusable components would be subject to rigorous inspec-
tions, pretest static analysis, and a full suite of formal test stages performed by
certifi ed test personnel. The cumulative defect removal effi ciency of the reusable
components would be about 99.7%.

A fundamental question for the software engineering community that hope-
fully will be solved this decade is what are the enabling technologies to move
software from laborious custom designs and hand-coding to reusable designs
and certifi ed reusable modules?

There are bold claims from various methodologies such as Agile that they
make marked improvements in productivity and quality. But so long as
software applications need custom design and hand-coding, they will be intrin-
sically ineffi cient no matter what methodology is used.

ptg11539604

291Professional Status for Software Engineering

The following are some of the enabling technologies needed to move from man-
ual construction and hand-coding of software to automated assembly of software:

• A full, scientifi c taxonomy of common features that occur in many software
applications

• Effective methods of certifying reusable components that can guarantee
with more than 99% certainty that they are free from overt defects and
exploitable security fl aws

• Methods of software architecture and design based on patterns derived
from successful existing software applications (i.e., eliminate custom
designs and use proven patterns)

• Standard interface methods for sending messages and data between modules

• Secure repositories of certifi ed materials that can be extracted and reused
either for a fee or via an open-source license

• Reusable ancillary materials such as test suites, user manuals, HELP screens,
cost data, and histories of any bug reports against the reusable modules

Very few software applications created today are truly “new” in the sense
that no one has ever built similar applications before. The vast majority of
modern software involves either building newer replicas of legacy software or
adding new features to legacy applications.

Probably less than 10% of contemporary software applications on a global
basis are truly new in the sense that they are so novel that no similar applica-
tions have ever been built before. This means that patterns derived from the
most successful historical applications can be encapsulated and used to design
and build similar new applications.

Instead of the current process of conducting lengthy interviews with clients to
ascertain requirements followed by creating custom architecture and design and
then hand-coding, a possible future for software engineering might be as follows:

 1. Engineers will meet with the client and scroll through libraries of stand-
ard design patterns based on the client’s needs. The design patterns will
be derived from successful applications that are already up and running.
The designs will be sorted by industry, by application class, by applica-
tion type, and by other relevant factors.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics292

 For example, there will probably be about 500 historical application
“patterns” for each major industry such as banking, health care, insur-
ance, telecommunications, pharmaceuticals, state governments, munici-
pal governments, and probably more than 150 total industries.
Assembling these patterns may require forensic analysis of samples of
legacy applications.

 2. Once the basic design is selected, engineers work out any special features
that might require manual customization or new development. But prob-
ably these will be rare and if they occur will be less than 5% of the total
application.

 3. Because the costs and schedule benchmarks for the applications used as
patterns are known, engineers can predict the costs and delivery time of
the new application using a straightforward process. This would be very
similar to buying a new automobile that has optional features. There are
standard price lists for each feature.

 4. Because the designs are accompanied by bills of material, the next
step will be merely to select the standard reusable components that will
be needed to complete the application. In fact, this step could be fully
automated: every design will have a full parts list of standard modules
needed.

 5. Assuming that the application is going to be fully constructed from
standard pieces, robots or some other form of automation will carry out
the actual development of the application or connect the modules.
Human developers might be needed to create the original modules
for the fi rst time, but once something reusable has been created, the
development effort is trivial and can be fully automated.

 6. Of course, it will be necessary to test the completed application once it is
put together. But as the test cases and test suites are also reusable and
included in the parts list, testing, too, could be carried out by robots
or automated means. Samples of reusable data could be used to perform
end-to-end testing of the application.

Human software engineers will still be needed to create truly unique applica-
tions and to design the reusable modules. This is the same kind of situation as seen
in the circuit design world for building new computer chips and new integrated
circuits. Each reusable software module is similar to a small integrated circuit.

ptg11539604

293Possible Software Engineering Improvements in the 2010s

There may also be a need for human software engineers and database
specialists to assist in migrating legacy data to the new application. Legacy data
migration is a complex and diffi cult task that today can take many months for
large database applications.

The basic goal of software engineering should be to minimize costly and
error-prone human tasks and replace them with automated tasks made possible
by combinations of standard patterns and certifi ed reusable components.

So long as software is custom designed and coded by hand, it will always be
slow, expensive, risky, and subject to serious security vulnerabilities. Custom
designs and hand-coding are intrinsically error prone, and no known methodology
can do anything other than make comparatively small improvements.

To make really big improvements, software needs to begin to use proven
architectures and design patterns, certifi ed reusable code, and certifi ed ancillary
materials such as reusable test cases and reusable user documents. Reusable
data samples are also needed.

The software engineering community should also move toward professional
licenses and board certifi cation. Although it is theoretically possible to achieve
these goals by the end of this decade, it is more likely that they won’t occur for
perhaps another 25 years.

Near-term goals that might be accomplished by the end of the decade are
more modest and can focus on improving a number of areas that are currently
done poorly, such as quality control and change control.

Possible Software Engineering Improvements
in the 2010s

Software productivity and quality will evolve slowly and sometimes in the fash-
ion of a drunkard’s walk, with progress and regressions both occurring more or
less at the same time.

In order to make really major improvements, a number of chronic software
engineering problems need to be solved:

• Productivity and quality measures are poorly done and usually inaccurate
even today. Lines of code and cost per defect both violate the principles of
standard economics. Function point metrics are the most accurate for eco-
nomic studies, but they have been so slow and expensive that they have
not achieved more than about a 10% penetration of software projects.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics294

Hopefully, the emergence of high-speed, low-cost function points such as
those in Software Risk Master (SRM) will make this metric a standard
economic tool for software productivity and quality studies.

• Repositories of certifi ed reusable components need to enter the main-
stream. Custom design and custom code, even with Agile, are ineffi cient.
Only construction from certifi ed reusable components can achieve high
levels of quality and productivity at the same time. Successful reuse needs
several enabling technologies, one of which is a complete taxonomy of
standard software features. Software reusability remains lower than it
should be. Certifi cation of reusable materials is almost totally absent, and
using uncertifi ed materials can be hazardous.

• Quality control remains only semicompetent today, with inspections and
static analysis not being used as often as they should be. Software quality
measures are a professional embarrassment. It is hard to imagine a physi-
cist or chemist publishing data as fl aky as the software literature. The
industry has depended on testing, which is fairly low in defect removal
effi ciency. High quality comes from a synergistic combination of defect
prevention, pretest defect removal such as inspections and static analysis,
and formal testing using mathematically derived test cases.

• Change control is not well done. Applications grow at between 1% and
4% per calendar month during development and more than 7% per year
after release. Agile applications grow at more than 10% per month. Many
projects are not prepared for this rapid growth. Early predictions of
requirements creep combined with formal change-control methods are
needed for all major software projects.

• Project estimation is not well done and is semi-incompetent for many
projects, as noted during depositions and discovery of projects in litiga-
tion. More than 95% of software projects with fewer than 1,000 function
points still use manual estimating methods. Even above 10,000 function
points, automated estimation is only used on about 25% of projects.
Manual estimates become progressively optimistic above 250 function
points and dangerously optimistic above 1,000 function points. Paramet-
ric estimation tools and predictive analytics hold accuracy up to more
than 100,000 function points.

• Software security remains below the safe level. Cyberattacks, identity thefts,
viruses, worms, botnets, hacking, and spyware are now major business and

ptg11539604

295Possible Software Engineering Improvements in the 2010s

personal problems. Many companies and government agencies are working
to improve security, but fundamental changes in computer and software
architecture may be necessary.

• Software engineering needs to become a true profession with licensing and
board-certifi ed specialists. In this case, software should follow the same
path as older professions such as medicine and law, where professional
licenses are needed before being allowed to practice.

• In 2011, the International Function Point Users Group (IFPUG) issued
guidelines for a new kind of metric for nonfunctional requirements. This
metric is called SNAP, and as this book is being written, new data are
starting to arrive, but the integration of SNAP with normal function point
analysis is not complete.

• Early sizing and estimating before determining requirements are mandatory
to allow time to make technology changes before moving in the wrong
direction. High-speed function point predictions are also mandatory and
fortunately both are available today.

• As the software industry ages, maintenance of legacy applications is now
the dominant work of software engineers. In many companies, more than
65% of total budgets go to enhancing legacy applications and keeping
them operational. Maintenance work is more complex than new develop-
ment and needs much more research than it has received. Professional
books on maintenance have less than a tenth of the frequency of books
on new development. In today’s world, there is a need for much better
methods of renovating and repairing legacy applications, as well as much
better methods for moving aging data onto new application platforms.

This decade is witnessing acceleration in the use of Agile with Scrum and
also extreme programming. However, RUP and TSP are more widely used for
major systems above 10,000 function points in size.

Interesting social trends started to appear in the last decade and are expand-
ing rapidly in the early years of this decade. Now that the internet and World
Wide Web reach millions of people, it is possible to assemble “crowds” that
focus on common goals. The success of Wikipedia and open-source software
illustrate that groups of independent workers can sometimes accomplish better-
than-expected results. These same ideas are now beginning to deal with other
social topics.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics296

The use of personal diaries, or web logs, originated soon after the internet
and the World Wide Web became operational. The early usenet services had
some personal-opinion topics. However, in the fi rst decade of the century, spe-
cial tools became available to make it easier to create these logs. The term “web
log” was condensed into the term blog, which has now entered the vernacular.

There are millions of blogs, and some have become popular enough to have
large audiences. The web and various blogging tools are the enabling technolo-
gies that allow ordinary computer users to share opinions globally with very
little technical diffi culty.

Hybrid software methodologies are increasing that utilize the best features of
various methods such as Agile, TSP, and RUP. The hybrids often have results
that show synergy, or the combination being slightly better than the originals.

Other future trends will probably see an increase in virtualization and an
increase in cloud-related applications and services. A nonprofi t organization
called Software Engineering Methods and Theory (SEMAT) is attempting a for-
mal redesign of software engineering. By the end of the decade, some of their
new concepts should begin to percolate through software engineering schools.

Companies Formed During the Early 2010s

In this chapter, only companies founded from 2010 to 2012 are discussed. For
companies founded in 2013, there is not enough time to judge either their poten-
tial for success or the merits of their business plans. Table 10.1 shows many but
not all of the companies founded from 2010 through 2012. As with earlier dec-
ades, the many small game companies that spring up constantly are not included.

Table 10.1 Companies Formed from 2010 to 2012

Companies Year

Advania 2011

AngelPad 2010

AppAddictive 2011

Applied Communication Sciences 2011

Applogic 2010

Audimated 2010

Authr 2011

ptg11539604

297Companies Formed During the Early 2010s

Companies Year

AVK 2012

Business 2 Community 2010

CharityKick 2012

Cloud Bees 2010

CloudVelocity 2010

Company 85 2010

Continuity 2011

CrowdCube 2011

Digital Clarity Group 2012

Euclideon 2010

Evry 2010

Fiverr 2010

Flattr 2010

Geekli.St 2011

GoFundMe 2010

Guide 2011

HiringThing 2012

Hortonworks 2011

ITT Excellis 2011

Mindshapes 2010

Namcook Analytics LLC 2012

Nest Labs 2010

NetsGroup 2010

Open Data Institute 2012

Peer Index 2010

Pneuron 2011

Raise 5 2012

Skill Bet 2012

Sky Word 2010

Streamworks International 2010

Thumb 2010

Table 10.1 (Continued)

(Continued)

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics298

I now discuss recently formed companies that either have interesting
business plans or are introducing new technologies and pioneering new
business niches.

AngelPad

As shown throughout this book, the computer and software industries have
had thousands of startup companies. Some of these fail quickly, but others,
such as Amazon, Google, and YouTube, grow into large and successful corpo-
rations. Almost all of them needed some kind of seed money in order to get
started when they were too small to attract professional venture capital groups.

AngelPad focuses on aiding startup companies that are too small and too
new to attract regular venture funding but that show a promise of growth and
future success. AngelPad was founded in 2010 in San Francisco, California, by
Thomas Korte together with six former Google employees. The other founders
were Richard Chen, David Scacco, Vibuh Mittal, Gokul Rajaram, Deep Nishar,
and Keval Dasai.

AngelPad does not just write a startup a check and walk away. Candidate
companies have to submit written business plans, which are reviewed. If the
plans are accepted for funding, there are a number of companies grouped
together as a class. In the initial class, ten startup companies are selected.
Classes may have as many as 25 startup companies.

The companies in the same class meet and work together using offi ce space
provided by AngelPad. They are also mentored by AngelPad offi cers as needed.
The class works together for a ten-week period. The idea is to share ideas and

Companies Year

UBI Care 2011

Unifi ed Inbox 2012

Vfi les 2012

Virtual Sharp Software 2010

Vungle 2012

Wahooly 2011

Wikistrat 2010

Yesware 2010

Table 10.1 (Continued)

ptg11539604

299Companies Formed During the Early 2010s

change startups from working in isolation in garages to sharing ideas and
concepts with other entrepreneurs as well as with experienced technology
workers from successful companies. The AngelPad startups each receive up to
about $100,000.

AngelPad is not the only company that helps small startups. Another California
company, Y Combinator, has a similar business plan. And there are several others.
Cambridge, Massachusetts, is a hotbed of technology business startups and has an
interesting business incubator. It will be interesting to see how many of the Angel-
Pad startups succeed and later grow to become successful and possibly have IPOs.

Authr

Authr is a highly specialized but interesting niche company aimed at beginning
authors. It is also a pioneer in the domain of crowdfunding, or obtaining many
small fi nancial contributions that together might be signifi cant.

This company was founded in Los Angeles in 2011 by an author and entre-
preneur named Eric Bownman. Authr.com is a website that allows authors to
showcase book ideas before they are very far along. But the website goes
beyond just presenting ideas. Authors can also request donations from other
participants to help fund their writing. This is a novel concept, and its success is
uncertain, but the idea is interesting. Crowdfunding is an expanding topic of
interest in this decade, and several other similar companies are cited in this
chapter.

With Authr, there is no charge to authors themselves. The authors who sign
up get a book proposal tool, a cover design tool for e-books, and a book
project page on the website where they can place text and information. Funds
for Authr come in from ads. Authr has a novel business plan, and it will be
interesting to see if it grows and expands, stays small, or fades away. In any
case, crowdfunding is an emerging topic that is only made possible by the
internet and World Wide Web.

CloudVelocity

This decade is witnessing the growth of many cloud-service and cloud-support
companies. The fundamental idea of cloud computing is that remote servers,
fi le storage, and applications can provide services to end users without fi lling up
their disks or requiring installation of software packages.

For some companies such as Apple with its iCloud, data can be automati-
cally synchronized across multiple devices, including iPhones, iPads, and Apple

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics300

computers. Thus, a new addition to an address book shows up on every device.
Another cloud-service example is the Google offi ce applications that provide
word processing and spreadsheets from the Google cloud. Of course, using the
cloud depends on fairly high-speed connections with high bandwidth.

CloudVelocity was formed in December 2010 in Santa Clara, California, by
Rajeev Chawla, Raman Chawla, Amand Iyengar, and Panagiotis Tsirigotas.
The original name was Denali Systems, so this is yet another software startup
that has gone through a name change.

The products from CloudVelocity are intended to allow Windows and Linux
applications to run on public clouds with little or no change. The products are
still in development and will come out later in 2013.

CloudVelocity is a private company that has already received more than
$5 billion in venture funds. The principals of CloudVelocity all worked in other
Silicon Valley technology companies, including Sun.

CrowdCube

CrowdCube was formed in 2011 in Exeter in the United Kingdom by Darren
Westlake and Luke Lang. The company is an early pioneer in the new crowd-
funding business model. In place of one or two angel investors or venture capital
groups, crowdfunding opens up investments to dozens or even thousands of
individuals whose investments are usually fairly small. This concept is new but
has conventional bankers worried. A report from the Bank of England said that
crowdsourcing, if successful, could make bank loans obsolete.

In order for crowdfunding to be effective or even legal, it is necessary to gain
approval from various regulatory agencies. One of the reasons CrowdCube is
cited here is because it has received regulatory approval from the U.K. Financial
Services Authority. CrowdCube is the fi rst U.K. crowdfunding organization to
receive this certifi cation.

This approval is quite recent, having been received in February 2013. There-
fore, it is premature to know how successful the approach will be. CrowdCube
has already attracted more than 28,000 investors and more than £5 million in
investments. These are big numbers for such a new concept.

The crowdfunding model operates on an “all-or-nothing” basis. An entre-
preneur specifi es a target capital amount such as £50,000 and submits a busi-
ness plan and relevant data via the CrowdCube website. If the business plan is
exciting and people invest (as little as £10 can be invested), then the startup will
receive the £50,000 or perhaps more in funds. If the total investments fall short
of the goal, then the entrepreneur receives nothing and all funds are returned to
the investors, minus a 5% administrative fee.

ptg11539604

301Companies Formed During the Early 2010s

This all-or-nothing model is socially and technically interesting because
it rewards effective business plans and eliminates ineffective plans. It also
has the virtue of allowing investments to be made with comparatively low
risks.

While crowdfunding will appeal to investors with marginal wealth, it also
has an appeal to very wealthy and very experienced investors. The reason is
that since many startup companies fail quickly, smaller investments in a larger
variety of companies might optimize the chance for investing in a future Google
or Facebook that will become a huge success.

As this book is being completed, crowdfunding is very new and is not yet
available in every country. However, crowdfunding is using the power of the
internet and the web to create an entirely new channel for investments that
could not have existed 20 years ago. This is defi nitely a topic that will get close
attention from the press, investors, and technical entrepreneurs.

Fiverr

Fiverr is another niche company that depends on the internet and the web to
exist. There are thousands and perhaps millions of independent graphic artists,
web designers, gardeners, cartoonists, and other arts and crafts providers.
Fiverr provides a place to advertise services and also to receive payments for
small jobs or tasks that cost as little as $5 or as much as $500.

Fiverr was founded in 2010 in New York by Micha Kaufman and Shai
Wininger. There are also offi ces in Tel Aviv, Israel. Fiverr reports about 1.3 million
services are offered, and many are offered for a fl at fee of only $5.

Some of the services found on the Fiverr website are basically hobbies. For
example, people offer to teach family recipes, restore old photographs, or create
customized cartoons. Other services are more business oriented, such as document
writing or editing.

The draw that Fiverr has for both vendors and potential clients is that it con-
denses into one accessible website hundreds of marketable skills, none of which
are likely to be needed by more than about one person out of 50. But if a mil-
lion or more potential clients visit the website, then enough transactions occur
for some of the vendors to receive signifi cant funds. In fact, about 15% of
Fiverr vendors regard the service as a key source of income, which is surprising
for such a young website.

The Fiverr business model is somewhat reminiscent of eBay, which turned
virtual yard sales into a profi table web business. Fiverr hopes to turn small
“gigs” into a profi table business. The idea is interesting. Fiverr has already been
ranked in the top 20 websites in terms of monthly visits, which is quite a coup.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics302

Fiverr is an example of a company that is providing what seems to be a
useful service to thousands of independent craft and technical personnel. Not
only does it give them access to a huge audience on the web, but it also handles
the complexities of processing payments between clients and vendors.

Flattr

This is another new company with another interesting new niche that could
not exist without the internet and the web. It is in the emerging business of
crowdfunding and allows subscribers to donate funds to interesting websites.

This company was formed in March 2010 in Malmo, Sweden, by Peter
Sunde and Linus Olsson. (Peter Sunde was also a founder of Pirate Bay, which
uses the BitTorrent search engine. BitTorrent is reported to comprise about
35% of all web traffi c.)

The company is a pioneer in the new domain of microdonations. These are
small donations of $200 or less that are contributed over the web from comput-
ers or via a smartphone, often using PayPal or a web fi nance transaction
method. (Surprisingly, microdonations have become so widespread that about
25% of the U.S. 2012 presidential campaign funds came from them. This was
the fi rst presidential election in history where microdonations were large
enough to possibly impact the outcome.)

To use Flattr, a subscription is necessary. Users set up a Flattr account and con-
tribute a fi xed amount monthly, such as a few euros. Flattr itself takes 10% of
these fees for the costs of maintaining the service. Once an account is established,
users of Flattr can make contributions to various websites. The name “Flattr” is
derived from the common word “fl atter.” The idea is to augment verbal encour-
agement of interesting and useful websites with small donations.

In December 2010, a tweet asserted that Flattr was being used to help fund
the famous WikiLeaks site that distributes top-secret classifi ed information to
the dismay of the government and military offi cials. However, this is noted as a
web assertion and is not a verifi ed fact.

In order to receive Flattr donations, websites have to be prepared to accept
them. Some blogging platforms such as WordPress and Blogger support Flattr.
A special FireFox add-in is also available. Money is put in and taken out of
Flattr accounts via PayPal or a number of credit card and fi nancial companies
that support the method, such as Bitcoin. Incidentally, the subindustry of
electronic fund transfers of small amounts is becoming a major new social and
fi nancial topic of great importance during this decade.

ptg11539604

303Companies Formed During the Early 2010s

Note
The Bitcoin method of funding small transactions was developed in 2009 and is rapidly becom-
ing an accepted alternate currency for small web transactions. There is even a new Bitcoin
currency symbol. The Bitcoin is both technically and socially important, being the fi rst new
global currency created since the euro. The Bitcoin currency is technically interesting because
it uses cryptography to guard against the theft of Bitcoins.

Through Flattr, it is also possible to donate to offl ine organizations as
well as websites. The enabling technology that allows this is quick response,
or QR codes. These are the square black-and-white barcodes that are
now widely found on consumer products. The QR codes can be scanned
by smartphones and used for transferring Flattr donations, among other
purposes.

The web is creating a number of new industries, and among these are what
appear to be very important new niches dealing with electronic fund transfers
of small amounts of currency and crowdfunding of both commercial and
charitable organizations.

Geekli.St

The Geekli.St organization has become a signifi cant social portal for software
engineers in 170 countries. The Geekli.St website is part job site, part social
network, and part publication about software achievements.

Geekli.St was founded in San Francisco, California, in 2011 by Christian
Sands and Reuben Katz. The Geekli.St website grew to 10,000 users in about
fi ve weeks. It is a private company that has received external funding from
angel investors.

A unique feature of the Geekli.St website is that it uses special “cards”
that are structured to allow software engineers to illustrate and brag
about their accomplishments. Examples of accomplishments might be devel-
oping new algorithms, building new kinds of websites, or anything else that
is novel and of interest to a software engineering community. The cards are
prominent on the Geekli.St website, and visitors or users can make comments
about them.

Geekli.St is a good example of how the web is allowing people with common
interests or who work in the same fi eld to come together and share ideas or
look for new jobs. There are more than 50,000 Geekli.St members, and the
number is growing.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics304

GoFundMe

GoFundMe is another new crowdfunding organization that is rapidly changing
the nature of philanthropy. The company was formed in San Diego, California,
in May 2010 by Brad Damphousee and Andrew Ballister; it is still a private
company. The original name was CreateAFund, but like so many software
startups, the name was changed. GoFundMe has become one of the largest
U.S. crowdfunding sites and it also has some unique features and services.

GoFundMe supports ordinary charitable and nonprofi t groups, but it also
allows special fund-raising requests for private individuals and personal needs,
such as needing money for a surgical procedure or needing money for buying
new clothes after a major fi re destroys a house. There is even a section for stu-
dents who need funding to cover tuition costs. GoFundMe users can create
their own linked sites that explain their needs and why they are asking for
funds. Photographs and other information can be displayed. GoFundMe gener-
ates its own revenues by taking 5% of each donation to cover the logistical
costs of keeping the site operational.

A few samples of interesting funds that were collected include getting almost
$75,000 for three little girls diagnosed with the medical condition of mucopoly-
saccharidosis, which is a serious metabolic disorder. Another case was a request
for $2,500 to send a terminal cancer patient on a short vacation, which raised
almost $30,000. A third case was a request for $1,000 to support a wheelchair
basketball program for children, which eventually raised about $27,000.

Crowdfunding is a recent innovation but one that is transforming charitable
donations for the better by using the power of the web to provide information
about worthy needs to potentially millions of web users throughout the world.

Namcook Analytics LLC

Namcook Analytics is one of the more recent companies cited in this book, hav-
ing been incorporated in August 2012 in Delaware. Namcook does business in
Narragansett, Rhode Island, and Hingham, Massachusetts. Namcook clients
are globally based.

In the interest of disclosure, this company was cofounded by me and my
business partner, Ted Maroney. I researched and fi led several patents earlier
in 2011 prior to formal incorporation. Namcook Analytics is a private
corporation.

As the name implies, Namcook Analytics LLC is in the business sector
of predictive analytics, with a special emphasis on predicting the results of

ptg11539604

305Companies Formed During the Early 2010s

software projects in terms of application sizing as well as predictions for risk,
quality, schedule, staffi ng, cost, and maintenance.

Namcook patents are based on the use of pattern matching, which allows
unusually early sizing and risk analysis. For example, the company’s main
predictive tool, Software Risk Master (SRM), can predict software project
outcomes prior to full requirements, which is perhaps six months earlier than
other methods of size prediction. The predictions are also rapid and average
about 90 seconds per application regardless of its nominal size.

Pattern matching with SRM uses a proprietary questionnaire to gather infor-
mation on new or planned software applications. The answers to the questions
form a “pattern.” This pattern is then used to extract results from the Namcook
knowledge base of around 15,000 completed projects. The results of the histori-
cal projects with the same or similar patterns provide the base for the predictions
of the new application.

The same questionnaire, augmented by data collection of project schedule,
cost, staffi ng, and quality results for completed projects, is used to add new
projects to the Namcook knowledge base.

Although pattern matching is a new method for software sizing and estimat-
ing, it is common in other industries. For example, the Zillow database of
national real estate listings, discussed in the previous chapter, allows clients to
look at the assessed values of homes similar to their own. This is useful in appeal-
ing possible errors in appraisals, which occur often. Users of Zillow utilize
pattern matching to select comparable properties with similar size, age, layouts,
construction, scenic views, and other topics that impact tax assessments.

Mathematical interpolation of projects without an exact match is a neces-
sary feature. With 122 discrete elements in the Namcook SRM taxonomy, the
permutations total to 214,200,000 possible patterns. Needless to say, more
than half of these patterns have never occurred and will never occur. For the
current software industry, the total number of patterns that occur with
relatively high frequency is much smaller: about 20,000.

New patterns occur from time to time, as when new programming languages
are used or when new methods are developed. (New programming languages
appear almost monthly; new development methods occur at least once per
year.) The SRM tool has a measurement mode that allows it to collect historical
data and therefore absorb new technologies as they occur.

A unique feature is that measurements start with an SRM estimate. Clients
can examine the estimate and accept or modify each activity. This makes the
SRM tool a self-learning tool that can absorb new technical advances as they
occur.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics306

The fact that SRM measures individual activities allows very high precision
measurements that, in theory, can top 1%. However, most corporate historical
data “leak” and are incomplete, so interviews with team members may be needed
to recover missing elements such as unpaid overtime, which seldom gets recorded.

SRM size predictions use function points defi ned by the IFPUG as the primary
metric. However, the SRM tool is metric-neutral and in fact predicts software
application size by using 15 different metrics, including SNAP nonfunctional
metrics, COSMIC function points, story points, use-case points, logical source
code metrics, and others. (COSMIC is a sort of strained acronym for “Common
Software Measurement International Consortium.” This is clearly an artifi cial
arrangement of words.)

The idea behind early sizing and early estimating is that if potential problems
can be identifi ed early prior to determining requirements, then there is still time to
deploy effective technologies before the project proceeds in a hazardous direction.

Many factors infl uence project outcomes. The variables that are used to show
clients the outcomes of software projects include complexity of the problem set,
data complexity, and code complexity; the methodology used for development;
the experience of the development personnel; management experience; the pro-
gramming language or combination of languages used; the level of the organiza-
tion on the SEI capability maturity scale (CMMI); and several others. A total of
34 methods are supported, including Agile, iterative, waterfall, Prince2, Merise,
RUP, TSP, and others. Hybrid methods are also supported.

It is useful to show clients side-by-side results of the same project with differ-
ent technology stacks. For example, it is easy to show side-by-side results for
a future project with one version demonstrating the Agile method and the
C# programming language with 15% reuse, while a second version demonstrates
the TSP method and the Objective-C programming language with 30% reuse.

The major cost drivers for software projects in approximate order are the
following:

 1. Finding and fi xing bugs

 2. Producing paper documents such as requirements and specifi cations

 3. Developing code

 4. Running meetings and other communications

 5. Managing the project

 6. Handling requirements creep

ptg11539604

307Companies Formed During the Early 2010s

The SRM predictive analytics tool is aware of these historical software
patterns and therefore predicts (and measures) software defects found in
requirements, design, code, user documents, and bad fi xes or secondary defects.

The SRM tool also predicts (and measures) the size and completeness of a
variety of paper documents, including requirements, architecture, specifi ca-
tions, test plans, status reports, user manuals, and many more. Paperwork costs
are a major factor in large-system development and especially so in defense
software.

Requirements creep is a troubling phenomenon and averages perhaps 2% per
calendar month. In extreme cases, software projects have doubled in size after
requirements but before delivery. Therefore, dealing with requirements creep is a
necessary feature for software predictive analytics and is a standard feature of
the SRM tool.

Using Predictive Analytics

Predictive analytics, especially when used early prior to funding software applica-
tions, can eliminate or minimize the distressing tendency of software projects to run
late, exceed their budgets, or be canceled without being completed.

Including clauses in predictive analytics can also improve the contracts used
between clients and outsource vendors by asking the vendor to achieve more than
97% in software defect removal effi ciency. Clauses for handling scope and require-
ments creep can also be demonstrated to both the client and vendor during contract
discussions. Vendors could also be required to exceed industry productivity and qual-
ity levels, with some rewards for being better than average and possible penalties for
dropping below average results. Because SRM can be used prior to requirements,
it can also be used during contract negotiations. For that matter, SRM has a special
feature for predicting the amount of venture funding needed for software startups.

Large groups of projects such as corporate portfolios to predict annual mainte-
nance costs also benefi t from predictive analytics. Large portfolios may contain
more than 5,000 applications and total more than 10 million function points. The
cumulative maintenance and enhancement of large portfolios absorb more than
65% of many corporate software budgets.

Predictive analytics are also useful in dealing with complex topics such as the
costs and schedule of installing and deploying enterprise resource planning (ERP)
tools such as SAP and Oracle. The installations and customizations of large ERP
packages are complex and often run late and exceed planned budgets.

Long-range issues associated with global outsourcing can also be determined
through predictive analytics. Because infl ation rates are higher in both India and

(Continued)

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics308

China than in the United States, long-range costs may favor U.S. outsource partners
or partners doing business in multiple countries.

Predictive analytics can also be used to predict the effort and costs of various
process improvement initiatives, such as the costs of ascending the CMMI levels
from 1 to 5. The costs of adoption and the productivity and quality gains from
changing from waterfall development to Agile, RUP, TSP, or any other more recent
methodology can easily be shown to clients. Having specifi c results available makes
technology selection and deployment more effective.

The software industry has a bad track record for running late and delivering soft-
ware with so many bugs or defects it does not work properly. Predictive analytics
can help to reduce or eliminate these endemic problems.

Nest Labs

Nest Labs is creating an interesting niche by using embedded software combined
with a form of artifi cial intelligence to optimize home heating and cooling via
“smart” thermostats. The thermostats are connected to the web and only work
in homes or offi ces with wireless connectivity. Because wireless homes are
becoming common, the potential market for the Nest devices is growing rapidly.

However, products like the Nest thermostat are clearly aimed at affl uent
customers. Low-income families spend a much higher percentage of their
disposable incomes on heating than do the wealthy, and they often do not have
wireless support and probably could not afford the $249 for a Nest device.

This company was founded in Palo Alto, California, in 2010 by Tony Fadell
and Matt Rogers. As energy costs increase, home heating and cooling are becom-
ing major costs for low-income families and annoying costs for everybody else.

While programmable thermostats have been available for years, the Nest
version includes some new features based on embedded software. The initial
product was the Nest Learning Thermostat, which not only could be pro-
grammed but could also collect historical data and learn from and monitor the
surrounding environment.

The physical thermostat devices use standard connections for most HVAC
systems and can be installed either by local service personnel certifi ed by Nest
or by homeowners. The wireless feature of the Nest thermostats allows down-
loading of software releases as needed. The wireless capability also allows
customers to make remote changes to the thermostat settings via smartphones.
For example, if a user decides to take an unplanned weekend trip in winter, it is
possible to lower the home temperature down to 50 degrees until shortly before
the user’s planned return home.

(Continued)

ptg11539604

309Companies Formed During the Early 2010s

The Nest is one of an expanding set of smart appliances that use the internet
for automatic upgrades. Others include modern television sets, Blu-ray disk
players, and even some high-end microwaves and washing machines. Currently,
the Nest thermostats are only sold in the United States and Canada. One reason
for this is that the Nest uses U.S. zip codes to localize some of its seasonal
features.

In 2012, Nest Labs was sued by Honeywell for patent infringements
of seven patents dealing with the remote control of a thermostat, the
circular shape of the wall unit, and other features. Nest Labs has stated
that it will contest the validity of the patents and intends to see the case
through a court trial. As this book is written, the results of the litigation are
not known.

Nest Labs is one of a growing number of smart appliance manufacturers that
are using software and the internet to provide services that were not formerly
available, such as remote access and keeping historical data.

Peer Index

Peer Index is in a brand-new niche that is built on top of a slightly older niche.
As social networks become common and compete with each other, both
their owners and interested parties such as advertisers want to know which
ones are most successful. Peer Index is one of several companies that measure
social-network effectiveness.

Peer Index was formed in London, England, in February 2010 by Azeem Adhar,
Ditlev Schwanenfl ugel, and Bill Emmott (the former editor of The Economist).
The company has developed three complementary measures of website relevance:
activity, audience, and authority. The social networks that are measured include
Twitter, Facebook, LinkedIn, and Quora.

The activity metric deals with visits to a specifi c site. The authority metric
tries to quantify the number of “likes” or favorable recommendations that a
site accumulates. The audience metric tries to ascertain the demographics of site
users when compared to the general population.

As social networks grow in numbers and popularity, derivative companies
such as Alexa and Peer Index have sprung up to provide statistical evidence of
effectiveness. This information is of some importance if the sites depend on
advertisements for revenue. For example, a site used primarily by mature PhD
physicists will probably not have as many ads, or the same kinds of ads, as a
site visited mainly by teenage rock and roll fans. Peer Index attempts to provide
these data.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics310

Unifi ed Inbox

Most computer users (including me) get information daily from dozens of
websites. Unifi ed Inbox attempts to streamline this process by providing a
common focal point for common email and calendar sites and combining
information into a unifi ed inbox.

Unifi ed Inbox was launched in 2012 on Waiheke Island, New Zealand, by
Toby Ruckert and Markus Lehnert. The location of the company is clear proof
that software is now a global commodity. About four years of research were
spent prior to the formal launch. Some of the features are protected by a patent.

The basic idea is to consolidate input information from emails, Facebook,
Twitter, Basecamp, Dropbox, Evernote, Google calendar, and others into a single
stream. For corporate usage, individual input messages can be commented on
and have notes affi xed and are then routed to another user. The notes and addi-
tional information are persistent and are kept with the messages. For example, a
bug report from a customer might be received by a help desk employee, reviewed,
and then routed to a maintenance programmer with notes and text about
customer comments.

The internet and the World Wide Web provide so much information from so
many channels that “information overload” has become an endemic problem.
Unifi ed Inbox is one of a number of companies that are striving to simplify
input information and make diverse sources connect to each other.

Yesware

Yesware is an interesting niche company that offers add-ons to email services.
These additional features are aimed specifi cally at sales personnel, who have to
collect substantial information about client contacts. Yesware was founded
in 2010 in Boston, Massachusetts, by Matthew Bellows, Rajat Bargava, and
Cashman Andrus. Bellows had been a salesman and was attempting to help
other salespersons extract useful information from emails without the tedious
reentry of data into customer resource management (CRM) systems.

Yesware is a private company that has received about $5 million in venture
funding from Google Ventures and the Foundry Group. Usage grew rapidly
from the day of launch to more than 100,000 users in about a year. Major com-
panies such as Motorola have become clients.

Yesware is distributed as a free plugin for the Google Chrome and Firefox
browsers. This plugin provides templates for various kinds of sales emails. It
also shows when emails were opened and which embedded links were clicked.
Email information can also be reformatted and routed to CRM packages.

ptg11539604

311Predicting New Companies and Products from 2013 to 2019

Yesware uses a form of freemium business model (the term is a combination
of the words “free” and “premium”). In this model, a basic application is pro-
vided to clients for free, but additional features are available on a premium-fee
basis. Other applications using the freemium model include Dropbox, CCleaner,
LinkedIn, WebEx, and several newspapers such as the New York Times and the
Providence Journal. The freemium model is also a concept of the open-source
community, where applications are free, but services such as training and
consulting have charges.

The freemium model is deserving of business school case studies. It is
made possible by the power of the web to reach enough clients so that
respectable revenues might accrue from users of a basic free tool or service.
The freemium model does not work for only a few clients but can also be
effective for millions of clients. The internet and the web are the incubators
of the freemium model.

The Yesware concept has gathered favorable comments in business journals
such as Forbes, TechCrunch, and CNN Money. Yesware has received at least
one award for being an effective sales tool.

As computers and software become universal business tools, there are
thousands of new niches waiting to be exploited. Yesware is a good example
of a special niche for sales personnel built on top of slightly older technologies
such as email. Yesware depends on the internet and World Wide Web plus the
existence of email clients. The company could not have been formed more
than about 20 years ago due to the fact that the underlying technologies are
all recent.

Predicting New Companies and Products from
2013 to 2019

One of the most interesting aspects of working in the software engineering fi eld
has been the numerous inventions of exciting new products, some of which are
of life-changing importance. Some of these key inventions include medical
devices such as cochlear implants, credit cards, GPS mapping, smartphones,
social networks, and antilock brakes on automobiles.

Looking forward from today to the end of the decade, current momentum
leads to the conclusion that cloud applications and crowd-based applications
will become the mainstream. Big data and predictive analytics will expand
in usefulness and begin to tackle real-world problems. But what else might
happen?

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics312

The following sections consider some of the potential advances that might
occur based in large part on technologies that exist today. Not every possible
advance will be considered; this is only a sample to show what might be possi-
ble. Not every possible advance will really occur, but it is interesting to consider
them. There may also be totally new inventions just over the horizon that
can lead the industry in unexpected directions. In fact, new and unexpected
inventions are what have made the computer and software engineering fi elds so
exciting over the past 60 years.

Big Data

When computers and software started as business tools in the 1950s, their focus
was on local and specifi c data needed by individual companies or government
agencies. But with time, the World Wide Web has become the largest collection
of data in human history.

Descriptions of every public and many private corporations, fi nancial state-
ments for every public company, sales statistics on millions of products, medical
records for millions of patients, and buying preferences for billions of consumers
all now fl oat on the web. Useful information can be extracted from this universe
of data.

However, extracting and assembling useful information needs a number of
enabling technologies. Ordinary database products are not suffi cient. Heteroge-
neous tools such as Hadoop are needed. Ordinary web browsing is not suffi cient
to fi nd and extract all of the relevant information. New kinds of “intelligent
agents” similar to Wolfram Alpha are needed to search and condense useful
information from perhaps millions of websites.

The potential value of big data is high. It would be possible to analyze the
business strategies of every company in every industry; it would be possible to
evaluate the effectiveness of every possible therapy for critical conditions such
as Lyme disease; it would be possible to compare every health-care program in
the world for both medical results and cost-effectiveness; it would be possible
to compare the performances of every state government and every municipal
government. But new companies and powerful new tools will be needed to
make big data as effective as theory suggests it might be.

Crowd Intelligence and Crowdfunding

The unexpected success of the Wikipedia encyclopedia, written by about
39 million authors, is one of the most surprising intellectual phenomena in

ptg11539604

313Predicting New Companies and Products from 2013 to 2019

human history. Until Wikipedia provided a proof of concept, it was never
envisioned that large crowds working together could accomplish useful intel-
lectual results.

The power of the web has also opened up new kinds of microinvestments
where thousands of people put money into startup companies or new product
ideas. The same idea has expanded to other fi elds such as funding political cam-
paigns or making charitable and philanthropic donations via microdonations of
small amounts. In fact, about 25% of the funds for the 2012 candidates in the
U.S. presidential election were microdonations.

The power of the internet and the web actually could lead to a sort of “direct
democracy” where critical urban, state, and national issues are placed before
crowds who are asked to provide opinions and potential solutions to topics
such as pension reforms and right-to-work laws. We can expect to
see many new startups that will attempt to utilize crowdfunding or crowd
intelligence to deal with an expanding array of issues.

Cybercrime and Cybersecurity

One prediction can be made with great certainty for the rest of this decade.
Cybercrime will increase. Whether cybersecurity will be able to stay ahead
of cybercrime is not as positive a prediction, but hopefully that will turn out to
be true.

It is probably time for a fundamental evaluation of computer architecture and
software constructs. The von Neumann architecture seems to have some intrinsic
security fl aws, and alternate architectures might eliminate them. Virtual memory
is a key area of cybercrime exploitation. Permission mechanisms need a thorough
reevaluation.

Comparing cybercrime to medical illness, fi rewalls are a bit like wearing
latex gloves to prevent infection. Antivirus software packages are a bit like vac-
cines that attempt to keep harmful agents from becoming active by killing them.
Search-and-destroy tools such as Malwarebytes are a bit like white blood cells
that seek out harmful agents and destroy them.

However, as with real medical practice, none of the methods are 100% effec-
tive. Firewalls leak and are probably not more than 97% effective. Antivirus
packages are only partially successful and probably don’t block more than
about 98% of known viruses. Search-and-destroy tools are probably not more
than 95% successful. Assuming the percentages are realistic, the combined
overall effectiveness of the three common cybersecurity methods is only a bit
over 90%.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics314

What is needed is fundamental research on methods of raising the immunity
levels of both computers and software and making them intrinsically resistant
to penetration and attacks.

It would also be useful, although technically challenging, to improve methods
of backtracking attack vectors to their source. The structure of the internet and
the web makes this almost impossible today. But that does not mean that it will
be impossible forever.

Education

Within a period of perhaps ten years, the combination of cost-saving pressures
and technology changes will probably make major differences in software
learning methods. Online web-based information, e-books, and handheld
devices will no doubt replace substantial volumes of paper-based materials.

In addition, virtual reality may introduce artifi cial classrooms and simulated
universities where students and teachers interact through avatars rather than
face-to-face in real school buildings.

The increasing sophistication of intelligent agents and expert systems will
probably improve the ability to scan vast quantities of online information. The
fact that companies such as Google and Microsoft are rapidly converting paper
books and documents into online text will also change the access to information.

However, software has a long way to go before it achieves the ease of use
and sophistication of the legal and medical professions in terms of organization
of and access to vital information. For example, there is currently no software
equivalent to the Lexis-Nexis legal reference company.

Over the next few years, changes in learning methods may undergo changes
as profound as those introduced by the printing press and television. But the
quality of software information is still poor compared to the quality of infor-
mation in more mature fi elds such as medicine and law. The severe shortage of
quantitative data on productivity, schedules, quality, and costs makes software
appear to be more of a craft than a true profession.

As of 2013, the technologies exist to create a virtual reality software univer-
sity that would resemble a real university, only with more sophisticated access
to learning materials. The essential idea is to use concepts from virtual reality
sites such as SecondLife but apply them to practical software education topics.

In order to do this, the process would start with licensing a virtual reality
rendering engine from one of the sophisticated computer-game companies. But
instead of using the engine to create virtual battlefi elds or forests, the engine

ptg11539604

315Predicting New Companies and Products from 2013 to 2019

would create a university campus complete with buildings and students. To be
convincing, a virtual campus would probably need to be aesthetically pleasing
and feature landscaping as well as campus buildings.

Potential students would be able to move their avatars through the campus
and enter the buildings. For example, there would be buildings labeled
Project Planning and Estimating, Project Governance, Project Requirements,
Cybersecurity, Risk Analysis, and so forth.

Upon entering one of these virtual buildings, there would be a series of
virtual classrooms and virtual offi ces for the instructors and professors. This
model assumes that live experts will participate in the virtual university, so the
offi ces would have the names of actual experts such as Dr. Barry Boehm,
Dr. Victor Basili, Capers Jones, and others who entered into agreements to offer
courses through the virtual university.

Of course, the instructional staff would not be present at all times, so offi ce
hours would be posted on the virtual offi ces. In addition, students would be
able to leave messages and requests for the various professors and instructors.

The classrooms would appear to be actual classrooms similar to those at
MIT, Harvard, Princeton, and other major universities. Several kinds of courses
would be offered. One form of course would be presented in real time by the
avatars of live instructors. (It is assumed that the avatars for the virtual univer-
sity would be images of the actual instructors.) These live courses would be
announced and could be scheduled. Some of these would be free, but others
might be fee based.

There would also be recorded course materials that students could download
and use at their convenience. The virtual classrooms would be more sophisti-
cated than most real classrooms, in that all of them would be able to have
multiple screens, feature animation and dynamic materials, and possibly even
use 3D instructional materials.

Interaction between virtual students and virtual professors would be similar
to real life, in that questions could be asked and answered. Some of the interac-
tions might be even more sophisticated than normal human interactions,
because the virtual university envisions working tools for topics such as plan-
ning, estimating, requirements, design, and of course, working compilers and
interpreters for teaching various programming languages.

A very powerful capability of the virtual university would be a sophisticated
curriculum planning engine. Potential students could identify their career
choices or preferred occupations, and an intelligent curriculum engine would
generate a full list of all courses needed to support their choices.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics316

Not only would courses be identifi ed, but also the current books and journals,
professional associations, forms of certifi cation and licensing that might be needed,
and many other attributes for major occupations such as software engineering,
project management, software quality assurance, database analyst, and perhaps
150 more knowledge-based occupation groups would be identifi ed as well.

Every university needs a good library, and the library for the virtual university
would be world-class. It would have features not offered in normal libraries. For
example, suppose a student is interested in the topic of software testing. Not
only would the library have abstracts of every published book and article on
testing, but it would constantly be refreshed by means of intelligent agents that
would scan the web for new materials.

Of course, for many topics, the number of books and reference items might
be in the millions, so the library would also include tools for narrowing searches
and for assigning relevance scores.

Because the virtual university might be accessed by students from several
hundred countries, there would also be real-time translation services among all
major natural languages. Thus, courses might be simultaneously available
in English, Russian, French, Italian, German, Portuguese, Arabic, Spanish,
Japanese, and essentially every human language.

Ideally, the translation services would encompass both text materials and
perhaps even spoken discussions among students and faculty. A sophisticated
virtual university would no doubt license language translation tools plus
perhaps voice-to-text tools such as Dragon.

A virtual university would want to offer world-class facilities for those who
might have physical limits. For example, to aid the deaf and hard of hearing,
all spoken material could be simultaneously translated into printed text.
All video and instructional fi lms would automatically include closed captions
or subtitles. This technology is available today. It would also be possible to
offer simultaneous translations of spoken courses into sign language. How-
ever, translation of printed materials into sign language may not yet be fully
available.

For the blind, all printed materials could be translated into audio fi les. This
technology also exists today. It might even be possible to support simultaneous
translation into Braille (because new 3D printers are now capable of printing in
Braille), although that is perhaps outside the current possibilities.

For those in wheelchairs who prefer that their avatars also have wheelchairs,
the classrooms and buildings of the virtual university would all be accessible to
wheelchairs and also clearly identifi ed verbally for the blind.

ptg11539604

317Predicting New Companies and Products from 2013 to 2019

As with real universities, students would be able to interact with one another
and would also be able to participate in special interest groups or Wiki sites on
topics such as static analysis, inspections, requirements engineering, and dozens
of others.

Because quantitative information is sadly lacking in real universities, the
virtual university would have licenses from all major benchmark groups and
would have working versions of a variety of planning and estimating tools,
testing tools, and many others.

Unlike real universities, a virtual university would be operational 24 hours a
day, 365 days per year. Of course, live instructors would take normal holidays
and vacations, but the library and the recorded course materials would always
be available.

Because topics of interest change fairly often, a virtual university could include
a student center where students from many countries and many fi elds could
interact with one another in order to exchange information and fi nd out what
techniques are being used successfully and which ones are diffi cult to master.

As with real universities, there would be many special interest groups or people
who are all interested in the same topics. One service that the virtual university
could provide would be access to local and national information from many
countries such as the United States, China, Brazil, Japan, India, and many others.
For example, each country might have its own bulletin board that could be used
to announce courses and webinars that are located in the various cities of the
home countries of the students.

Another service that the university might provide is a daily summary of
webinars on selected topics such as testing, requirements engineering, and new
tools and methods. Currently, there are so many webinars offered that it is not
easy even to keep track of them.

In the student center, there could be a virtual bulletin board. Vendors of tools
or services might place ads, and students with interests in special topics might
start looking for “birds of a feather” groups.

The university might also use LinkedIn, Plaxo, Facebook, or another network
service to send messages to students with special interests or with common inter-
ests who might want to communicate with each other.

Because students would not be on campus more than perhaps an hour or two
per day, the university would also include links to various e-book sources such
as Amazon, Barnes and Noble, and Google. Indeed, course curricula and selected
texts would be capable of being downloaded and ordered as e-book packages
for various courses such as testing, estimating, project management, and the like.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics318

The fundamental idea for the university is to consolidate the huge but
unorganized collections of knowledge about software topics into discrete learn-
ing packages that are aimed at specifi c and important topics such as quality
control, estimating, planning, status reports, and dozens of others.

Each of the major professional associations such as the American Society of
Quality (ASQ), IFPUG, the International Software Standards Group (ISBSG),
the Project Management Institute (PMI), or the Software Engineering Institute
(SEI) could have their own virtual buildings and offer both training and
membership services.

The same concept would be available for major corporations such as IBM,
Google, and Microsoft. They could design and commission corporate buildings
on the virtual campus where training in their products could take place. In fact,
some of the funding for the university would no doubt come from fees paid by
corporations for these structures. Smaller corporations such as Computer Aid,
Inc., and SmartBear might also want to have a presence on campus.

Another unique aspect of the university would be links to major conferences
such as the Japanese Symposium on Software Testing (JaSST) or the IBM Inno-
vate Conferences. The university could have several large conference halls where
those who could not attend actual events in person would be able to participate
in the major sessions and tutorials. Attendance policies for these virtual confer-
ences would be set by the conference committees and would probably offer
reductions on the fees for attending in person.

The university might also offer occasional guest speakers who are famous
in the software world: Bill Gates of Microsoft, Sergey Brin of Google, Mark
Zuckerberg of Facebook, and Larry Ellison of Oracle are examples. These
software luminaries sometimes do speeches at real universities and conferences.
But due to logistical limits, they seldom can address audiences of more than
perhaps 5,000 people. With a virtual university, the same speakers might easily
gather virtual audiences of 100,000 or even more.

The early versions of the university would probably offer short courses or
webinars that lasted only an hour or less. However, it is technically possible
to envision the university linking to real universities and offering standard
curricula in virtual environments.

If the idea catches on, then eventually real universities such as Harvard, MIT,
the University of Florida, or the University of Nalanda in India might partici-
pate and offer virtual courses either on their home campuses or through the
facilities of the virtual university.

At some point, the facilities of the virtual university would be suffi cient
to administer examinations and offer professional certifi cation in topics

ptg11539604

319Predicting New Companies and Products from 2013 to 2019

such as requirements engineering, function point analysis, testing, project
management, and perhaps dozens of other technical disciplines where certi-
fi cation is available.

It is not impossible for the virtual university to eventually award actual
degrees up to the Ph.D. level, however. That could only occur if the curricula
and faculty were accredited. Actual degrees from the university might not be
feasible for another 20 years or thereabouts due to the novelty of the concepts
and the logistics of accreditation. The initial versions of the university would be
aimed at professional training rather than undergraduate or academic training.

Security would have to be included as part of the design of the virtual
campus. This is to keep hackers and viruses from damaging the course materi-
als or disrupting the sessions by means of denial of service attacks. There is
always a need for cybersecurity to discourage hacking, phishing, identity theft,
and other endemic problems of the computer era.

Although it may be ten years or more before this kind of virtual university
occurs, it is interesting that the essential technologies to build such a university
all exist today.

Not only do the technologies exist but also the costs for constructing a vir-
tual campus would probably be only in the range of $250,000, which is much
less expensive than building real classrooms. Assuming that companies such as
IBM, Microsoft, and Google, who already have course materials and instruc-
tors, wanted to do this, a virtual university could probably be up and running
within ninety days of starting out.

It is not impossible that a virtual university could do for education what
Facebook and Twitter have done for social networks: make learning so easy
and enjoyable that attendance would reach into the millions.

Because of the lack of expenses for physical buildings and infrastructure, the
virtual university would be much less expensive to operate than a real physical
university. The main cost drivers would be instructional compensation, licenses
for software, and network access fees.

A live one-day seminar that costs $895 per student might be profi table at
$200 per student if offered through a virtual university. Student loads could be
much higher in a virtual university than in normal live instruction.

For live professional training, the class sizes range from ten to perhaps
50 attendees. For virtual training via webinars and other online methods, class
sizes could range from about 200 up to more than 1,500. Thus, lower costs per
student are offset by higher numbers of students.

The concepts of the virtual university could also be used for other forms of edu-
cation, such as medicine and law. (For medicine, it is obvious that real physicians

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics320

would be needed for surgery and conditions involving examination of actual
patients.)

It is even possible to apply the same ideas to primary and secondary educa-
tion. Even today, it would be much cheaper to build a virtual school for the
deaf than it is to build such schools in real life.

For primary and secondary education, there are already rather sophisticated
e-learning tools on the market, such as IStation, Mindplay, Adobe, Riverdeep,
Follett, and others, that use various dynamic and animated approaches to help
hold the attention of students while imparting information. The same ideas can
be applied to many other learning situations. There are also e-learning tools
for faculty such as those by Virtual Education Software (VESi), which are
congruent with the themes of this report.

Currently, it costs between about $75,000 and $100,000 per student per
year to operate schools for the deaf and blind. If the virtual learning tools and
methods discussed here were applied to teaching the deaf and blind, the annual
costs would probably be in the range of $3,000 to $10,000 per student per year.
The main barrier to applying the concepts from the virtual university to train-
ing the deaf and blind would probably be opposition from various educational
unions and resistance from state assemblies and school boards.

The concepts of virtual learning are not as attractive for primary schools, as
most parents depend on real schools to take care of children during the work-
day. But for secondary education and higher education, virtual training is much
less expensive. There are no physical infrastructure costs. Licensing software is
much cheaper than building physical classrooms that need heat, cooling, and
maintenance. The ratio of students to teachers in a virtual classroom can easily
grow to 35 to one or more. The cost savings potentials are signifi cant.

It is possible to envision hybrid schools for the deaf and blind where virtual
training would augment live instruction, and students would spend part of the
time with live instructors and in regular classrooms.

A web search on “average college tuition” found a CNN Money analysis
dated October 26, 2011, that showed that annual tuition costs for state and
community colleges and universities were about $8,244 per year. Living
expenses were about $13,203 per year, with total costs of $21,447 per year.
Private university tuition averaged $28,500 per year with living costs of
$13,724 per year for a total annual cost of $42,224 per year.

Assuming that the concepts of the virtual university were applied to normal
undergraduate college education, the probable annual tuition costs might be
only about $1,500 per year. There would be no physical infrastructure costs at
all, combined with a much greater ratio of students to faculty than with real
universities. Living expenses may or may not be lower with virtual training.

ptg11539604

321Predicting New Companies and Products from 2013 to 2019

However, the real value of virtual training would only be partly based on
cost reductions. It is theoretically possible, and research is needed to prove that
the educational effectiveness of virtual education would equal and perhaps
exceed that of normal classroom education.

For example, immersive training is easily accomplished by virtual methods,
but it is expensive using live instruction. Sophisticated learning tools featuring
animation and dynamic simulations are easy to accomplish with virtual meth-
ods, but they are seldom even attempted with live instruction. Continuing to
study on weekends and during spare time is easy with virtual methods but very
diffi cult with live instruction.

The bottom line is that technologies exist today to make signifi cant technical
advances in professional education. Some of the same technologies might be
usefully applied to special education needs such as teaching the blind and
deaf. Eventually, these technologies could extend to many forms of education
covering many professions.

Intelligent Agents

In the context of this book, an intelligent agent is a software tool that scans the
web for specifi c topics and citations. However, it would not just return web
links and web pages. Instead, the intelligent agent would use artifi cial intelli-
gence and neural networks to analyze and condense some of the information
and return actual summary information.

To a certain degree, the new Wolfram Alpha search tool acts as an intelligent
agent in exactly this fashion. The author found on the web an interesting exam-
ple of a search using this tool. The question was, “What are the ingredients in
McDonald’s hamburgers?” Instead of just providing links to websites and
relevant articles, the tool returned an actual list of ingredients, including meat
products, salt, sugar, and oils together with information on calories, fat
content, cholesterol, and other relevant topics.

It is hard to imagine a single intelligent agent being competent in all disci-
plines. What will probably occur between now and the end of the decade might
be a series of individual intelligent agents that are highly optimized to seek out
and report on specifi c topics.

Some of the kinds of topics where intelligent agents would be useful might be
in experimental therapies for immune disorders, the comparative costs and
revenue streams for open-source companies and products, the comparative
strengths and weakness of health insurance programs in all countries, the
relative learning curves and defect densities of common programming
languages, and the effectiveness of air-traffi c control systems in every country.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics322

Given the huge and growing mass of data now available on the web, no
single person can possibly stay current even in his or her own discipline. A good
set of intelligent agents that constantly scans and summarizes important infor-
mation would be a boon for scientists, college students, business and technical
workers, civilian government personnel, and military planners.

Medical Devices

The impact of computers and software on medical practice has been profound.
This is especially true for the many new kinds of small medical devices that can
be surgically implanted, such as cochlear implants, which have restored hearing
to thousands of profoundly deaf patients.

What we can perhaps expect before the end of the decade would be additional
varieties of implantable devices. One new medical device already being researched
would be an ocular implant to restore at least partial sight to the blind.

The same or a similar technology might also be effective in repairing spinal
damage and perhaps restoring mobility for patients paralyzed because of
spinal injuries.

As it happens, hearing aids are expensive devices and, due to successful
lobbying, are not covered under normal health insurance programs or under
Medicare. As a result, hearing aids, which cost perhaps $20 each to manufac-
ture, sell for about $2,000 to $4,000 each.

The hearing aid manufacturers don’t want insurance coverage because they
fear prices would be driven down. The insurance companies don’t want to
cover the high costs of hearing aids because they know manufacturers want to
keep prices high. (The government, which oversees Medicare, seems to be pow-
erless and inept when it comes to balancing patient benefi ts against political
contributions and persuasive lobbying.)

An interesting alternative solution is technically possible and, indeed, proto-
types already exist. This new model of a hearing aid would put the main software
for adjusting volume, pitch, and background noises into a smartphone. The
device that goes into the patient’s ear would need to be only a relatively simple
receiver, amplifi er, and speaker, probably constructed from standard components
for a very low cost. In fact, such devices can be purchased today for entertain-
ment purposes for $15 or less.

One of the potential side benefi ts of using a smartphone for a hearing aid
might be to direct other kinds of signals such as music, emergency broadcasts,
and possibly TV sound directly to the hearing aid via Bluetooth or some other
form of short-range wireless transmission. Whether or not a similar technology
would work with cochlear implants needs more research.

ptg11539604

323Predicting New Companies and Products from 2013 to 2019

Another possible medical advance, although probably not seen during this
decade, would be the development of submicron nano devices that would be
inserted into patients. These could be remotely controlled or perhaps at some
point made autonomous. Their purpose would be to act as phages and seek
out troublesome conditions such as Lyme disease bacteria, antibiotic-resistant
infectious agents and, possibly at some point, cancer cells.

These nano devices would probably be single-purpose devices that would
operate until their targets were eradicated, and then the devices would be
removed. Computers and software have already made large improvements in
medical devices and diagnostic procedures, and even more exciting advances
are technically possible.

Predictive Analytics

Predictive analytics, or using historical information to predict future trends, is
much older than the computer era. In fact, informal weather predictions and
crop-cycle predictions probably can be traced back more than a thousand years.
Yet modern weather prediction based on a mathematical and statistical model
is surprisingly recent.

Lewis F. Richardson was a mathematician and meteorologist who fi rst formal-
ized the mathematics of weather prediction. His work on “Weather Prediction by
Numerical Process” was published in 1922, which is before the decades covered
in this book, and also long before computers and software, although mechanical
calculators were available. Although Richardson was troubled by inaccurate data
reported by ground stations, his essential mathematics paved the way for modern
weather predictions.

Richardson was also a pacifi st, and he wrote other interesting books that
used predictive analytics to analyze the outbreaks of wars. He studied more
than 200 wars. He wrote two classic papers on the statistical origins of warfare:
“Arms and Insecurity” in 1949 and “Statistics of Deadly Quarrels” in 1950.

Richardson noted that countries locked in an arms race became a linked
oscillating system. He found that as annual costs for weapons and defense
increased, at some point, the costs would be so high that they could not go
higher. Whichever country reached the point of spending so much on weapons
that it was damaging its civilian economy would attack fi rst. The reason for this
aggression is that the country knew its costs had reached a terminal limit, but it
did not know whether or not a rival had reached a limit.

Richardson’s analyses from 1949 and 1950 sound like they could be applied
today to North Korea. North Korea has already reached a point where its
spending on weapons has damaged its civilian economy, which has never been

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics324

very strong. Probably one of the reasons North Korea is so aggressive is that it
is at or near a maximum for weapons. That could easily lead to an ill-conceived
attack on South Korea, whose economy is one of the strongest in Asia.

Predicting the orbits of the planets dates back to Johannes Keppler, who was
born in 1571 and died in 1630. Keppler used the very precise observations of
the astronomer Tycho Brahe as the basis of his calculations.

During World War II, the advent of operations research formalized some of
the math used for predictive analytics and provided real-world benefi ts for the
Allied forces in terms of optimizing logistics and dealing with complex military
problems such as convoy sizes versus submarine attacks.

Computers and software sped up calculations and began to add new forms.
For example, parametric software cost-estimating tools originated in the 1970s,
and a number of them are discussed in this book.

Banks and fi nancial institutions also use predictive analytics for dealing with
the risks of various kinds of investments, including consumer loans. However,
the fi nancial crises of 2008 showed fl aws in the algorithms, and several major
disruptions of the stock market confi rm the fact that predictive analytics are not
perfect by any means.

More than a dozen predictive analytic companies are cited in this book in
various decades, with the more recent decades showing a trend toward expan-
sion of the topics being predicted. Now, predictive analytics are common for
banks, insurance, hedge funds, and any business sector where large sums of
money are subject to external risks.

As most readers who pay attention to national and state affairs know,
the federal government and the political parties don’t seem to have a clue as to
the costs and benefi ts of new federal programs such as “Obamacare.”

For example, Obamacare will increase patient loads by about 30% but will
not increase the numbers of physicians, dentists, or nurses. It is a mathematical
certainty that some new patients will not be accepted by physicians, that some
specialists will be overbooked, and that elective procedures will have much
longer waiting times. The higher costs for some medical procedures have
already led to some hospitals to refuse to perform basic procedures such as
obstetrics childbirth, because they lose money on every baby. Nobody in either
party bothered to calculate such obvious phenomena.

As this book is written, an increasing number of interesting predictive analytic
groups are providing increasingly sophisticated services and models to corporate
clients. However, government agencies lag the civilian sector in use of predictive
analytics by at least 10 years, with the exceptions of military planning and some

ptg11539604

325Predicting New Companies and Products from 2013 to 2019

of the security agencies. The normal civilian agencies are usually wrong and late
regarding everything they predict.

Many state and municipal governments are rapidly heading toward bank-
ruptcy under the ever-increasing debt loads due to overly luxurious pension
systems (i.e., 3% to 6% cost of living adjustments and free lifetime medical care
for retired employees and some relatives). It is simple math to predict that
benefi ts such as these awarded to an increasing population of recipients who
are living longer and retiring younger must lead to bankruptcy. There is no
other destination.

The elected government is probably not qualifi ed to solve these problems
they created due to the fact that politicians pay more attention to lobbyists and
special interests than to the actual good of the electorate. Appointed and sala-
ried offi cials may know about the problems, and some might know solutions,
but they lack the power to overrule bad judgments by elected offi cials.

Given the huge reach of the web, a neutral or benign nonprofi t organization
could apply predictive analytics to federal, state, and municipal laws and regu-
lations before they are passed. The nonprofi t by itself would have no legal
standing, but it would use the power of the web to align millions of citizens to
force elected leaders toward more rational behavior patterns, such as actually
using predictive analytics prior to passing laws that will raise taxes and cause
distress to a majority of voters and taxpayers.

It is too bad that such a nonprofi t using predictive analytics was not able to
tackle the periodic federal flaps on the budget ceiling, on sequester, on
Obamacare, and on various entitlement programs. It is too bad that state non-
profi ts using predictive analytics were not available to tackle pension reforms,
out-of-state college fees for illegal aliens, and welfare costs.

Predictive analytics at government levels are reminiscent of the Greek legend
of Cassandra. She was given the gift of truthful prophesy combined with the
curse of nobody ever believing her.

Wearable Computers

As many readers know, Google has been working on a prototype of a wearable
computer called Google Glass. The device looks like an ordinary pair of glasses
but contains an embedded computer with lenses that can display information.

This concept has been greeted with both favorable and unfavorable com-
ments. The favorable comments are that the new device can provide useful
information such as weather alerts, traffi c problems, and emergency messages.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics326

The unfavorable comments are that the views might occlude or interfere with
ordinary or peripheral vision and hence cause automobile accidents. In fact,
laws and regulations prohibiting Google Glasses from being worn under certain
circumstances are already being promulgated. However, not enough empirical
evidence is available to know whether the favorable or unfavorable views are
the most realistic.

It is premature to judge the device because it is not yet commercially availa-
ble, but the concept is of both technical and social interest. In thinking about
the implications of Google Glasses, it is fairly obvious that computers are now
small enough that they can easily be embedded in clothes or worn as glasses.
The question is, what benefi ts might they provide over and above normal
computers, pads, and smartphones?

There are many hypothetical features that may or may not be included in
Google Glasses but are certainly technically possible. The fi rst and most compel-
ling feature would be the ability to have the glasses monitor the health condition
of the person wearing them. Factors such as pulse rate, temperature, blood pres-
sure, and other surface conditions could be monitored in a real-time fashion.
With an accelerometer, the computer could also check for accidents such as falls
or collisions. In case of a medical emergency, it could automatically summon
assistance, which might not be possible if the wearer had a stroke or heart attack
and was unconscious.

A second potential use might be improved night vision by light amplifi cation.
This is perhaps a bit tricky today but should be feasible by the end of the decade.
A potential downside is that most forms of light amplifi cation for night vision
are somewhat bulky, but that is perhaps a solvable problem in the future.

A third potential use would be very valuable to those who are hard of hearing.
This feature would show closed captions for movies and television shows that do
not currently have captions. Also of value for hard-of-hearing users would be to
include capabilities such as those provided by Dragon. Naturally speaking, or
translating, spoken words into visible text would appear on the glasses.

This instant translation would allow a deaf person to understand verbal
information in close to a real-time mode. In fact, computers are fast enough
today, and will certainly be faster by the end of this decade, that real-time trans-
lation could easily occur. This idea might be opposed by the deaf community,
but since it does not actually exist today, that is an unknown factor.

Yet another service for Google Glasses might be synchronization with
hearing aids or cochlear implants so that important messages such as storm
warnings or evacuation orders arriving via the web could be routed to hearing

ptg11539604

327Projected Growth of Software from 2010 to 2019

aids and cochlear implants as well as being displayed, assuming the glasses had
Bluetooth or some other short-range connectivity.

Once spoken words are captured, it would also be possible to use an auto-
matic natural language translation program. This would be very useful for
international travelers. It is theoretically possible to have a kind of science-
fi ction capability in which, for example, a conversation between a Japanese
speaker and an English speaker would be simultaneously translated into both
languages. If both parties were wearing Google Glasses, they might be able to
carry on what would be pretty close to a normal conversation. The Google
translate application already does this, and coupling it with a verbal tool
similar to Dragon would make global travel a great deal more convenient than
it is today.

In fact, if the translated conversations could also be routed to hearing aids
and cochlear implants, two deaf people who speak totally different languages
might be able to converse fairly well.

Somewhat surprisingly, Google Glasses would also be of benefi t to blind
people if they could include sensors and artifi cial intelligence routines and could
communicate with hearing aids or audible devices. For example, a blind person
approaching an intersection could receive a verbal warning that the traffi c light
was red. It would also be possible that, by turning the head to the left and right,
the glasses would provide additional warnings such as “high-speed auto
approaching: danger.”

Yet another feature for the blind would be the ability to scan text and con-
vert it into spoken words. This might enable a blind person wearing Google
Glasses to “read” ordinary books and e-books by merely aiming the glasses at
them.

Google Glasses might also be of use to those with physical handicaps such as
quadriplegics. If the glasses respond to voice commands, then those who can
speak can use them to communicate. There are other future possibilities besides
the ones discussed here, but these are all fairly important for those potential
users with physical handicaps.

Projected Growth of Software from 2010 to 2019

By the end of this decade, cloud applications and software as a service (SaaS)
should top 50% of all new software projects. However, maintenance and
enhancements of legacy applications will top 65% of all software projects.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics328

Smartphone and tablet applications will probably be more than 70% of
all new personal software applications. Table 10.2 shows projected U.S.
applications for the decade.

All types of software applications will grow in numbers, but currently web
applications and smartphone applications appear to have the fastest growth
rates.

Results for 1,000 Function Points Circa 2015

By the end of the decade, the same 1,000 function point project might look like
this:

• Source code for 1,000 function points: 26,667 logical code statements

• Programming languages: Objective-C and Go

• Reuse percentage: 0% to 85%

• Methodology: Hybrid (TSP, RUP, Agile)

Table 10.2 Projected U.S. Software Applications from 2010 to 2019

Application Types Applications Percentage

Scientifi c 240,000 4.36%

Military and defense 900,000 16.36%

Civilian government 600,000 10.91%

Systems and middleware 720,000 13.09%

Embedded software 1,400,000 25.45%

Commercial 250,000 4.55%

Information technology (IT) 545,000 9.91%

U.S. outsource 156,000 2.84%

Offshore outsource 150,000 2.73%

Web applications 505,000 9.18%

Games and entertainment 30,000 0.55%

Open source 4,000 0.07%

Total Applications 5,500,000 100.00%

ptg11539604

329Summary

• Productivity: 12.00 function points per staff month

• Defect potentials: 2.50 defects per function point

• Defect removal effi ciency (DRE): 96%

• Delivered defects: 0.10 defects per function point

• Ratio of development personnel to maintenance:

• Development: 30%

• Maintenance: 70%

The following are the projected background data for 2015:

• Average language level: 12.00

• Number of programming languages: 4,500

• Logical statements per function point: 26.67

• Average application size: 400 function points

• Average application size: 10,688 logical code statements

Software development in this decade experienced a rapid surge toward Agile
development, but other methods such as RUP and TSP also produce good
results.

Summary

In this decade, clouds and crowds account for the largest numbers of startup
companies. Cloud computing will certainly continue to grow. Crowdfunding
and crowd intelligence show promise, but it is hard to determine what issues
they handle well and what issues they don’t handle well.

Predictive analytics also has a large number of startups, some of which seem
to be growing rapidly. This fi eld is synergistic and congruent with big data and
intelligent agents. In fact, the sum of the value of these three working together
is far greater than if they are used independently.

Specialized social networks are beginning to appear, with musicians and
authors being among the fi rst of the specialties. For example, a recent Google
search came up with 25 different social networks oriented toward musicians.

ptg11539604

Chapter 10 Clouds, Crowds, Blogs, Big Data, and Predictive Analytics330

An interesting one for authors, named “Predators and Editors,” warns against
unscrupulous publishers and literary agents. It can be expected that many other
kinds will follow.

While Agile has grown faster than other development methods (and water-
fall has shrunk faster), hybrid methods are gaining in popularity. Because all of
the major methods have some topics that are useful, it is a useful idea to try and
select the best from each. Hybrid methodologies that utilize the best features of
various methods such as Agile, TSP, and RUP often have results that show syn-
ergy, or the combination being slightly better than the originals.

Other future trends will probably see an increase in virtualization and an
increase in cloud-related applications and services. SEMAT, a nonprofi t organi-
zation, is attempting a formal redesign of software engineering. By the end
of 2015, some of its new concepts should begin to percolate through software
engineering schools.

ptg11539604

331

Chapter 11

Modern Software Problems

Computers and software have brought many new capabilities to the modern
world. But they have also brought many new kinds of problems, some of which
never existed before in all of human history.

This postlude presents a short history of major software failures from the
1960s through the modern era. Each problem is explained, the lessons learned
are discussed, and possible solutions for similar future problems are shown.

Analysis of Major Software Failures

This chapter revisits signifi cant historical software failures. The idea is to
analyze each failure and consider what lessons it taught and which forms of
defect prevention or defect removal might have prevented the problems. Because
the failures in this chapter are famous and information has been published
about them, they are a useful set of historical data points for retrospective
quality analysis.

The following are many forms of defect prevention and removal methods:

• Acceptance testing

• Automated code static analysis for common languages

• Automated text static analysis for requirements and design

• Beta testing with clients

• Code inspections

• Component testing

• Debugging tools

ptg11539604

Chapter 11 Modern Software Problems332

• Design inspections

• Function testing

• Mathematical test-case design based on design of experiments

• Pair programming

• Peer reviews

• Performance testing

• Proofs of correctness

• Quality function deployment (QFD)

• Regression testing

• Requirements inspections

• Requirements modeling

• Risk-based testing

• Security testing

• Subroutine testing

• Supply-chain testing

• System testing

• Unit testing

• Usability testing

It is an interesting phenomenon that all of the problems discussed in this
chapter occurred even after several kinds of testing. A synergistic combination
of pre-test inspections, pre-test static analysis, formal mathematical testing, and
risk-based testing with certifi ed test personnel could probably have eliminated
almost all of the failures discussed here.

Note that the failures and problems discussed here are only the tip of the
iceberg. There are thousands of similar problems, and they occur almost every
day. Some forms of failure appear to be increasing in frequency and perhaps in
severity. For example, automotive recalls due to software problems occur often
for every major manufacturer. There are also recalls for many other kinds of
equipment with computer controls.

ptg11539604

333Analysis of Major Software Failures

1962: Failure of the Mariner 1 Navigation Software

The Mariner 1 probe for Venus went off course 293 seconds after liftoff. The
apparent reason was that a superscript bar was missing in one line of code,
which caused excessive deviations in control patterns.

Lessons learned: The primary lesson from this failure is that a single character
in a single line of code can cause serious problems with software.

Problem avoidance: The problem might have been found via pair programming,
code inspections, requirements modeling, or static analysis. Neither require-
ments modeling nor static analysis existed in 1962, but in today’s world, either
method would almost certainly have found such an obvious syntactical error.

Finding the problem via testing should have occurred but obviously did not.
A test sequence that included control responses to inputs should have done
the job.

1978: Hartford Coliseum Collapse

The Hartford Coliseum was designed using a computer-aided design (CAD) soft-
ware package. The designer assumed only vertical stress on the support columns.
When one column collapsed from the weight of snow, lateral forces were applied
to surrounding columns that had not been designed to take lateral stress.

Lessons learned: The lesson from this failure is more about the human mind
than about software per se. The assumption of pure vertical compression was
faulty, and that was a human error.

Problem avoidance: This problem could have been found via inspections and
probably by requirements modeling. The problem is unlikely to have been
found via static analysis since it was a problem of logic and design and not of
syntax. Because the problem was one of design, pair programming might not
have worked. Ideally, having someone on the inspection or modeling team with
experience in structures designed for heavy snow might have broadened the
assumptions.

Finding the problem by testing should have occurred, but there is a caveat. If
the same designer with the faulty assumption wrote the test cases, he or she
would not have included tests for lateral stress. A certifi ed professional tester
might have found this, but perhaps not. Risk-based testing in today’s world
might have found the problem.

ptg11539604

Chapter 11 Modern Software Problems334

1983: Soviet Early Warning System

In 1983, the Soviet early warning system falsely identifi ed fi ve incoming missiles
that were assumed to have been launched by the United States. Rules of engage-
ment called for a reprisal launch of missiles against the United States, which
could have led to World War III.

Fortunately, the Soviet duty offi cer was an intelligent person, and he reasoned
that the United States would never attack with only fi ve missiles, so he concluded
it was a false alarm. Apparently, the early warning system was confused by
sunlight refl ected from clouds.

Lessons learned: The lesson learned from this problem is that complex problems
with many facets are hard to embody in software without leaving something
out. A second lesson is that bugs in major military applications can have vast
unintended consequences that could possibly cause the deaths of millions.

Problem avoidance: This problem might have been found by inspections with
experienced military personnel as part of the inspection team. The problem
might also have been found by requirements modeling.

It is unlikely that static analysis would have found the problem because it was
one of logic and not a problem of syntax. Pair programming probably would not
have worked either because the problem originated in requirements and design.

Finding the problem via testing obviously did not occur, and it is uncertain
if testing was the best solution. The problem seemed to be that there was
insuffi cient attention paid to false positives.

1986: Therac 25 Radiation Poisoning

Between 1985 and 1987, a number of patients treated with the Therac 25 radia-
tion therapy device received doses much higher than prescribed: some were 100
times larger.

There were two radiation levels with this machine: high power and low
power. Older machines by the same company had hardware interlocks that
prevented the high-power mode from being turned on by accident. In the
Therac 25, the hardware interlocks had been removed and replaced by software
interlocks, which failed to operate under some conditions.

Worse, apparently the operating console did not inform operators when high
power was in use. There was an error message and the machine stopped, but it
only said “malfunction” and did not state what the problem was. Operators
could then push a button to continue administering the radiation.

ptg11539604

335Analysis of Major Software Failures

Because of serious injury to patients, the Therac 25 problems were
extensively studied by several government agencies. Readers who want a more
complete discussion can do a Google search on “Therac 25” to get detailed
analyses.

Lessons learned: The lessons learned from this problem are that medical devic-
es that can kill or harm patients need state-of-the-art quality control. The
Therac 25 apparently was inept in quality control, and government regulatory
agencies did not properly oversee them.

Problem avoidance: The Therac 25 problems could probably have been
found by any combination of inspections, static analysis, and risk-based test-
ing. Later investigations by government agencies found laxness in all forms of
quality control. Apparently, there were no formal inspections, no static analy-
sis, no risk analysis, and far less rigorous testing than needed. Pair program-
ming would not have worked because the problem spanned the physical
operating console and inadequate training of personnel as well as software
problems.

1987: Wall Street Crash

On Monday, October 19, 1987, the Dow Jones average dropped 508 points for
the greatest 1-day loss in history.

The problems are somewhat murky, but apparently the long-running bull
market had been shaken by various Securities and Exchange Commission (SEC)
investigations and other reasons for loss of confi dence. As live human investors
began to sell stocks, programmed trading software that followed patterns began
to generate so many sell orders that various stock-trading systems crashed and
millions of shares were put up for sale, which deepened the panic.

Lessons learned: The key lessons from this problem are that, in today’s world,
software controls so many critical fi nancial and government operations that
bugs or errors can have vast consequences and cause problems almost instantly.

Problem avoidance: This problem might have been found through thoughtful
inspections that included limits analysis. Requirements modeling might also
have found the problem.

Static analysis probably would not have found the problem because it was a
problem of logic and trends rather than a syntactic issue.

Testing might have found the problem but did not. Some of the modern
forms of testing such as risk-based testing might have found this problem.

ptg11539604

Chapter 11 Modern Software Problems336

1990: AT&T Telephone Lines Shutdown

In 1990, a widespread shutdown of AT&T telephone lines lasted for about nine
hours and caused major disruption of telephone traffi c. Many airline reservations
could not be made, and millions of calls, including some emergency calls, could
not be connected.

What seemed to have happened is that one of AT&T’s 114 switching centers
had a minor mechanical problem (not software) and had shut down briefl y.
When this center came back up, it sent a message generated by software to all
of the other centers, which caused all of them to shut down. Apparently, there
was a bug in a single line of code that caused the shutdown.

Lessons learned: The lesson from this failure is that large interconnected
systems governed by software are intrinsically risky and need elaborate buffers
and error-correction protocols.

Problem avoidance: This error could have been caught by either code inspec-
tions or static analysis tools. The error appears to be one of syntax rather
than one of logic. Requirements modeling would not have found the error,
but it might have led to possibly more robust error-checking protocols. Pair
programming is uncertain for this problem.

Why this problem was not found by testing, as it should have been, is an
interesting question. Messages between switching centers is an obvious topic
for testing. Risk-based testing with certifi ed professional testers might have
found the problem.

1991: Patriot Missile Target Error

In spite of many successes during the fi rst Gulf War, in 1991, a Patriot missile
did not stop an inbound Scud that landed in a U.S. base and killed 28 military
personnel and injured 100.

The software error in the Patriot navigation and targeting routines appar-
ently had a rounding error that threw off timing and caused the miss.

Lessons learned: The lesson learned from this problem is that every detail
needs to be examined in mission-critical controls.

Problem avoidance: This problem would certainly have been found by code
inspections. It might have been avoided by requirements modeling. Pair pro-
gramming might have found this problem, too, unless the rounding error was
introduced using borrowed or reusable code falsely assumed to be correct.

It is uncertain whether static analysis would have found this error because it
was not an error of syntax and might have been missed.

ptg11539604

337Analysis of Major Software Failures

Testing should also have found this error but did not. Modern risk-based
testing might have identifi ed the problem.

1993: Intel Pentium Chip Division Problem

In 1993, the new Intel Pentium chip was discovered after release to have a bug
when dividing with fl oating point numbers. The error was small, only a fraction
of a percent, and it did not actually impact very many users.

However, the error was located in about fi ve million chips already installed
and in daily use. Intel’s fi rst response was unwise: It wanted users to prove
that they needed better accuracy than the chip provided in order to get a
replacement. This caused a public relations fl ap of serious magnitude. Intel
relented and provided new chips to anyone who asked for one, assuming the
customer had purchased a computer with the erroneous chip.

Lessons learned: There are two lessons from this problem. One is obvious: Be
sure that all mathematical operations work as they should prior to release.

The second lesson is that when a vendor makes an error, don’t put the
burden of proof on the consumer if you value your reputation and want to be
considered an ethical company.

Problem avoidance: This problem would have been found by inspections. It is
not likely to have been found by static analysis or requirements modeling. Pair
programming probably would not have been used, nor would it have found
the problem.

Why was the problem not found by testing? A possible reason is combinatorial
complexity. A chip with as many circuits, transistors, and features as the Pentium
might require close to an infi nite number of test cases to fi nd everything.

1993: Denver Airport Delays

As originally planned, the new Denver airport was supposed to have a state-
of-the-art luggage-handling system that would be almost fully computerized and
directed by software. What actually happened has become a classic story of a
major software failure with huge costs and delays.

Overall, the software and hardware problems with the luggage system
delayed the opening of the airport by about 16 months and cost about
$560 million. This is one of the few software topics that became a feature
article in Scientifi c American.

A cut-down version of the original luggage-handling design was fi nally
operational and ran for about fi ve years. However, the costs exceeded the
value, and eventually it was replaced by a conventional luggage system.

ptg11539604

Chapter 11 Modern Software Problems338

The problems associated with the Denver airport luggage system are a litany
of common problems found with large software applications:

• Optimistic cost and schedule estimates

• Underestimating bugs and defects

• No formal risk analysis

• Excessive and poorly handled requirements changes

• Inadequate quality control, lacking inspections and static analysis

• Poorly designed test cases

• Serious gaps in testing

• Progress reports that concealed major problems

• Failure to have any effective backup plans in place

• Failure to listen to expert advice

The Denver airport luggage system is one of the most widely studied software
problems in history. In spite of numerous articles and retroactive reports, it is
interesting that similar problems surfaced with luggage handling at Heathrow
Terminal 5.

Lessons learned: The primary lessons learned from the airport fi asco are that
optimistic estimates, poor quality control, and poor change control will inevi-
tably lead to schedule delays, cost overruns, possible termination of the pro-
ject, and almost certain litigation.

Problem avoidance: There were so many different forms of problems with the
luggage system that no single method could have found them all. A synergistic
combination of requirements modeling, pre-test requirements and design
inspections, static analysis of text, static analysis of all code, formal testing
based on formal test plans, and certifi ed test personnel probably would have
reduced the defects to tolerable levels. Pair programming in such a complex
architecture that involved both hardware and software would have probably
added confusion with little value.

1996: Ariane 5 Rocket Explosion

On its maiden fl ight in 1996, the Ariane 5 rocket and four onboard satellites
being carried for deployment were destroyed at a cost of perhaps $500 million.

ptg11539604

339Analysis of Major Software Failures

The apparent reason for the problem was an attempt to convert velocity data
from a 64-bit format to a 16-bit format. There was not enough space and an
overfl ow condition occurred, thus shutting down navigation. The fl ight lasted
just over 36 seconds.

Lessons learned: The lesson from this problem is that all mathematical operations
in navigation systems need to be verifi ed before actually launching a vehicle.

Problem avoidance: This problem would certainly have been found by code
inspections, perhaps in just a few minutes. It might also have been found by
static analysis and also by requirements modeling or pair programming.

The problem was obviously not found by testing, as it should have been. In
this case, there were probably poor assumptions on the part of whoever wrote
the test scripts and test cases that overfl ow would not occur.

1998: Mars Climate Orbiter Crash

After successfully journeying for 286 days from Earth to Mars, the climate orbiter
fi red its rockets in order to shift within an orbit around Mars. The algorithms for
these adjustments had been based on imperial units in pounds rather than in met-
ric units in Newtons, as specifi ed in the NASA requirements. This error caused
the orbiter to drop about 100 kilometers lower than planned, so it encountered
atmospheric problems that caused overheating and system shutdowns that led to
the ship crashing onto the surface.

Lessons learned: The key lesson here is that requirements need to be checked
and understood to be sure they fi nd their way into the code.

Problem avoidance: If inspections were used, they would have found the prob-
lem almost instantly. Both requirements modeling and static analysis might
also have found this problem. Pair programming might have, but if the error
occurred upstream in design, then pair programming might not have found it.

The reason why this problem was not found by testing may be nothing more
than carelessness. Attempting to transmit data from a subroutine using imperial
units to another subroutine using metric units is about as obvious a problem as
is likely to occur.

1999: Failure of the British Passport System

In 1999, the United Kingdom attempted to deploy a new automated passport
system that had not been fully tested when it went operational. The staff using
the new system had not been fully trained. Adding to the confusion was a new

ptg11539604

Chapter 11 Modern Software Problems340

law that required all travelers under age 16 to have passports. This law caused
a huge bubble in new passport applications at the same time that the new
system was deployed.

Roughly half a million passports were delayed, sometimes for weeks. This
threw off travel plans for many families. In addition, the U.K. passport agency
faced millions of pounds of extra costs in the form of overtime and additional
personnel, plus some liability payments to travelers whose passports were late.

Lessons learned: The obvious lesson from this problem is never, ever, attempt
to go online with a major new system without fully training the staff and fully
testing the system jointly with the older system to be sure the new system
works. Also, when a new law is passed that adds a huge bubble of new clients,
be sure you have the staffi ng and equipment to handle the situation.

Problem avoidance: The problems with the passport system appear to be a com-
bination of performance issues with the software and logistical problems with
the passport agency itself. Putting in a new system without training the person-
nel in how to use it is a major management error, not a technical problem.

Neither inspections nor static analysis nor requirements modeling would
have found the logistical and staffi ng problems, although no doubt participants
in the inspections would have warned management to be careful.

Performance and load testing should have found the performance problems
with the new system, but apparently they were either not performed or not
performed with realistic workloads.

2000: The Y2K Problem

The famous Y2K problem is a classic example of shortsightedness. When com-
puter hardware was expensive and memory space limited, it seemed like a good
idea to store dates in a two-digit format rather than a four-digit format. Thus,
the year “1999” would be stored as “99.” This compression of dates started in
the 1950s and caused no problems for many years.

However, because dates are often sorted in ascending or descending order, a
serious problem would occur at the turn of the century. Obviously, the year
“2000” in a two-digit form of “00” is a lower mathematical value than “99.”

Millions of software applications in every country used the two-digit date
format and sometimes used it in new applications as late as 1995 when it was
clearly obvious that time was running out.

Starting in about 1995, thousands of programmers began the labor-intensive
work of converting two-digit dates into four-digit dates. Fortunately, the web

ptg11539604

341Analysis of Major Software Failures

and the internet were in full swing, because they allowed easy communication
among Y2K personnel in sharing information and even sharing reusable code
for affected applications. The fact that Y2K problems were not as severe as
anticipated is due to the communications power of the web.

Y2K was not a pure programming problem. The two-digit date fi elds started
as an explicit customer requirement, often in the face of warnings from
software engineers that the dates would cause trouble.

Lessons learned: The lessons from this problem are not yet fully understood,
even in 2013. For example in the year 2038, the Unix internal clock will
expire, and this will trigger another set of mass updates. Fairly soon, digits
will be added to telephone numbers. At some point, digits will be added to
social security numbers. Field-length problems are endemic in software, and
they always seem to escape notice until just before they actually happen.

Problem avoidance: The Y2K problem could have been found by almost any
method, including inspections, static analysis, pair programming, and testing,
except that two-digit dates were considered to be valid. For more than 30 years,
the two-digit dates were not regarded as erroneous, so nobody wrote test
cases to fi nd them.

Starting in about 1995, this situation changed and not only did testing begin
to look for short dates, but a number of specialized Y2K tools were built to
ferret them out in legacy applications.

Although Y2K itself is now behind us, the problem of not having enough
spaces for numeric information is one of the most common problems in the
history of software.

2004: Shutdown of Los Angeles Airport (LAX) Air-Traffi c Controls

On Tuesday, September 14, 2004, near 5 p.m., the air-traffi c controllers at LAX
lost voice contact with about 400 in-fl ight planes. Radar screens also stopped
working. A total of about 800 fl ights were affected and had to be diverted. This
was a very serious problem. A backup system failed about one minute after being
activated. The system was out of service for around three-and-a-half hours.

The apparent cause of this problem was an internal counter that counts down
from about four billion and then needs to be reset. The counter was used to send
messages to system components at fixed intervals. Usually, it takes about
fi fty days to reach zero. Normally, the counter was reset after thirty days, but
apparently that did not happen. The servers in use were from Microsoft. Appar-
ently, a scheduled reset was missed by an employee who was not fully trained.

ptg11539604

Chapter 11 Modern Software Problems342

Lessons learned: The obvious lesson is that complex systems that require
human intervention to keep running will eventually fail. Several kinds of auto-
mated resets could have been designed, or control could have been passed to
backup servers with different reset intervals.

Problem avoidance: This was a combination of human error and a questionable
design in the servers that required manual resets. QFD might have prevented the
problem. Design inspections would certainly have found the problem. Neither
pair programming nor static analysis would have identifi ed this because of the
mix of humans and software.

2005: Failure to Complete the FBI Trilogy Project

In or about 2000, the FBI started a major effort to improve case fi les and allow
sharing of information. The project was called Trilogy and involved both hard-
ware and software components. One of the purposes was to move data from
dozens of fragmented fi le systems into a unifi ed Oracle database. In 2005, the
project was terminated with losses estimated at perhaps $170 million. The
problems with this FBI system have been widely cited in the literature.

Although not specifi ed, the probable size of the full Trilogy application
would have been in the 100,000 function point size range. Failures and delays
at this size level are endemic and approach 80%.

For big systems such as this, requirements creep runs about 2% per calendar
month during design and coding, and the total development schedules run about
fi ve years. Total scope creep can approximate a 35% increase in required functions.

Defect potentials average close to 6.0 per function point combined with
cumulative defect removal effi ciency levels less than 85%. Make no mistake:
These big systems are very risky and require state-of-the-art methods to have
any chance of success.

Lessons learned: This system’s failure is a textbook example of the problems
of large monolithic software applications. They have rapidly changing require-
ments and they need careful architecture and design prior to coding. They also
need a full suite of pre-test quality steps before testing even begins.

Problem avoidance: Big systems such as this need formal architecture and
design phases combined with a full suite of pre-test inspections of require-
ments, design, and code. In fact, these systems need most of the methods listed
at the start of this chapter: formal inspections, code and text static analysis,
mathematical test-case design, and certifi ed test personnel. Pair programming
would be cumbersome on applications with 500 or so programmers because of

ptg11539604

343Analysis of Major Software Failures

the expense and the training needs. Inspections are a better choice. Proofs of
correctness are probably not possible due to the need for thousands of proofs.

2005: Secret Sony Copy Protection Software

In 2005, Sony BMG secretly placed copy protection software on 52 music CDs.
Customers who played those CDs on their computers had the protection
software installed on their equipment without their knowledge or consent.

The copy protection software used a root kit, interfered with Windows, and
created new security vulnerabilities on affected computers, which affected many
customers. The copy protection also slowed down computers whether or not
they were playing CDs.

When the problem was broadcast on the web, Sony BMG was sued by many
indignant customers. Worse, it turned out that Sony had violated the GNU
license in creating the copy protection scheme. At fi rst, there was a denial of
harm by Sony, but that was quickly proved to be wrong.

Sony’s next response was to issue a pseudo-removal tool that made the prob-
lems worse and caused new problems. Here, too, the power of the web broadcast
the failures of the fi rst attempt and caused more embarrassment to Sony BMG.

Eventually in November 2005, Sony BMG issued a removal tool that seemed
to work. The offending CDs with the copy protection were recalled and taken
off the market, although some copies were found still available in stores weeks
after the nominal recall.

Lessons learned: The lesson from this problem is that unless they are caught,
some vendors think they can do anything they want to protect profi ts.

Problem avoidance: Because Sony deliberately and secretly put the fl awed
copy protection software into the hands of the public, it was outside of the
scope of normal inspections, static analysis, requirements modeling, and every
other quality control approach.

The second part of this issue is the fact that the Sony software was buggy
and damaged host computers. This could have been found by formal design
and code inspections. Neither static analysis nor pair programming would have
found the upstream design issues.

What fi nally eliminated this problem was a combination of skilled software
engineers fi nding out about the problem and using the web to broadcast this
information to millions of others. Expertise on the part of sophisticated cus-
tomers combined with the social pressure of the web caused Sony to withdraw
the offending copy protection scheme.

ptg11539604

Chapter 11 Modern Software Problems344

It is interesting that this problem was fi nally picked up by the attorney generals
of New York, Massachusetts, Texas, California, and some other states. The
Federal Trade Commission (FTC) was also involved and fi led a complaint.

Finally, as a result of class-action lawsuits, Sony paid damages to affected
customers. This is not a good way for Sony to do business in a world with
sophisticated clients who have instant access to the web.

2006: Airbus A380 Wiring Problem

The Airbus A380 is a giant passenger plane designed to compete with Boeing
747s on long-distance routes. The Airbus was delayed by more than a year due
to software problems related to the onboard wiring harness.

Modern aircraft, including the A380, are highly computerized, and most
controls and navigation are handled with software assistance. As a result, there
are miles of electrical wires and thousands of connectors. The A380 has about
550 kilometers, or 330 miles, of onboard wiring.

The CAD design software for the A380 was a commercial package. The
German and Spanish design teams used version 4 of the CAD package, while
the British and French design teams used version 5. This caused confi guration
control problems.

Worse, the design team had the CAD package set up for copper wires, but
aluminum wires were used in the wiring harness for the wings. The difference
between aluminum and copper caused other problems because the diameter of
the wires was not the same, nor was elasticity the same. It is harder to bend
aluminum wires than copper wires.

Lessons learned: The primary lesson learned from this problem is that multi-
ple design teams in multiple countries should all use the same versions of
CAD packages and any other complex technical tools. A second lesson is that
when you use software to model physical equipment such as wire diameters
and elasticity, be sure to have the software exactly match the physical
components.

Problem avoidance: The differences between copper and aluminum wiring
could easily have been found by design and code inspections prior to fi nal
approval on the design. They might also have been found by requirements
modeling. This is not a kind of problem where code static analysis might have
found the problem, but perhaps a text static analysis tool could have identifi ed
it before serious harm was done. The damage was done by using the wrong
settings on a CAD tool, so pair programming would not have found the issue.

ptg11539604

345Analysis of Major Software Failures

The use of testing for this problem was not really in the mix because the
problem manifested itself in physical problems noted during construction of the
plane. Basically, the aluminum wires were too big for some holes and too stiff
to bend around obstructions.

2010: McAfee Antivirus Bug Shuts Down Computers

In 2010, the well-known McAfee antivirus package had a new update. A bug in
this update caused the McAfee software to identify part of the Windows XP
operating system as a malicious fi le, which shut down thousands of computers
that were running XP at the time.

This bug was front-page news in my home state of Rhode Island because it
caused the suspension of surgical procedures in a number of Rhode Island
hospitals. Schedules and contact information for physicians and nurses became
unavailable when the computers stopped working.

Lessons learned: The lesson from this problem is to be sure that all releases of
software are properly regression-tested prior to release.

Problem avoidance: The bug would certainly have been found by means of
code inspections. It might have slipped through static analysis tools because it
was a logical error rather than a syntactic error. Requirements modeling might
have found the problem, but it was not used.

Clearly, testing should have found the problem but did not. The probable
reason is informal test-case design rather than rigorous mathematically based
test-case design.

2011: Failed Investment in Studio 38 in Rhode Island

In 2010, the Economic Development Commission (EDC) of the State of Rhode
Island agreed to loan $75 million to the Studio 38 game company owned
by former Red Sox pitcher Curt Schilling. In return, the company moved to
Providence and began operations with about 250 employees.

As is common with software applications in the $75 million cost range,
the main product of Studio 38 ran behind schedule. As is also common with
startups, Studio 38 itself ran low on funds and fell behind in its payments to
the state.

In the absence of fresh capital from fi lm credits, external investors, the state,
or other sources, the company missed payrolls, ran out of funds, laid off the
entire staff, and then declared bankruptcy.

ptg11539604

Chapter 11 Modern Software Problems346

Looking at the history of what happened prior to the bankruptcy, there
was no due diligence or risk analysis by the state prior to the loan. Once the
loan was given, there was no effective governance. Both should have been
done. It is easy to generate a risk analysis for software packages that cost
about $75 million to develop. That is a very risky region with many failures.

Using industry defaults for projects with about 250 people and a develop-
ment schedule of 42 months, they are almost always late and over budget.
There were no contingency plans for this. A retrospective risk analysis that I
created after the bankruptcy showed the following:

Risk of cancellation of the project 36.76%

Risk of negative return on investment 46.56%

Risk of schedule delays 49.01%

Risk of cost overruns 41.66%

Risk of unhappy customers 56.37%

Risk of litigation 17.15%

Average of all risks 41.25%

Financial risks 88.22%

These risks are so high that it was folly to invest more than $75 million with-
out seeing a very detailed risk-abatement plan provided by Studio 38. Software
startups of this size are among the most risky ventures of the modern era.

Lessons learned: The main lesson from the Studio 38 failure is that govern-
ments have no business trying to operate as venture capitalists in an industry
where they have no experience or expertise.

Problem avoidance: Large software applications with teams of 250 people rou-
tinely run late by six to twelve months. These delays might have been reduced
or minimized by better quality control up front, such as inspections and static
analysis. Over and above normal delays, this project had no effective backup
or contingency plans for how to get additional funds once the initial loan
ran out.

Normal venture investments are preceded by a careful due diligence process
that examines risks and benefi ts. Apparently, Rhode Island ignored due
diligence and risks and was blinded by potential benefi ts.

ptg11539604

347Analysis of Major Software Failures

2012: Knight Capital Stock-Trading Software Problems

On Wednesday, August 1, 2012, a software bug in the Knight Capital stock-trading
software triggered a massive problem that involved 140 stocks fl uctuating wildly.
One of the additional problems was that the stock-trading software had no “off
switch” and could not easily be shut down.

This is a cautionary tale about how software bugs can potentially damage
national and global economies. The problem was almost immediately recog-
nized as a software bug, but in an industry where millions of dollars of
stocks change hands every minute, it took more than 30 minutes to stop pro-
grammed trading with the software. Apparently, the problem was in a new
update installed on the day of the problem, clearly without adequate testing or
validation.

Rogue trading software or major bugs in trading software has the theo-
retical potential of damaging the entire world’s fi nancial systems. Knight
Capital’s own stock declined by about 77% due to this software problem.
There may also be future litigation from stock purchasers or companies who
feel that they were damaged by the event. The SEC called for a meeting to
examine the problem.

Lessons learned: The major lesson from the Knight Capital software bug is
that fi nancial software in the United States needs much stronger governance
than it gets today. Financial applications should have, but do not have, the
same kinds of certifi cation that is required of medical applications by the FDA
and avionics applications by the FAA. In these fi elds, bugs or errors can cause
enormous and totally unpredictable damages. In the case of medical and avi-
onics software, deaths can occur. In the case of fi nancial software, national or
even global malfunctions of the economy might occur.

Problem avoidance: In thinking about the Knight Capital software
problems, formal inspections and requirements modeling are the two
methods with the highest probability of fi nding the problems. Static analy-
sis would probably have missed it since the issue was a logical omission
rather than a syntactic problem. Pair programming might not have worked
because the problem seems to have originated upstream in requirements
and design.

Deeper analysis is needed to fi nd out why testing did not identify the
problem, but the obvious reasons are casual test-case design, lack of risk-based
testing, and probably testing by amateurs instead of certifi ed test personnel.

ptg11539604

Chapter 11 Modern Software Problems348

2012: Automotive Safety Recalls Due to Software

The original intent of this discussion was to show the specifi c software recalls
for a single automobile line such as Toyota. However, the web has so many
stories of software recalls involving so many automobiles that it is becoming an
automotive industry scandal. Software now controls fuel injection, brakes,
automobile engines, navigation packages, and other systems. Any or all of these
software-controlled features can malfunction.

Within the past few years, numerous recalls for software bugs have occurred in
automobiles by Cadillac, Ford, General Motors, Honda, Jaguar, Lexus, Nissan,
Pontiac, Toyota, and others. Some of these involve the same components, but
others are unique. Here are a few samples of very troubling automotive recalls:

• Buick recalled the LaCrosse in 2005 due to software controlling brakes. A
separate recall for the same model was due to software handling climate
control, which could affect visibility.

• Cadillac recalled the SRX in 2011 due to a software problem with air
bags.

• Daimler recalled delivery trucks in 2011 due to a software problem that
caused the outside turn and indicator lights to stop working after perhaps
10 minutes of operation.

• Ford recalled several 2011 truck models due to software problems with
an integrated diagnostic system (IDS) module.

• Honda CR-Z hybrids were recalled in 2011 because the electric
motor could reverse itself and turn in the opposite direction from the
transmission.

• Jaguar recalled some of its diesel models made between 2006 and 2010
because a software bug prevented cruise control from being turned off.
The engine had to be stopped to turn off the cruise control.

• Four-cylinder Accords were recalled in 2011 due to software problems
controlling their automatic transmissions.

• Nissan recalled some of the electric Leaf models in 2010 due to software
problems with air conditioning.

• Toyota Prius models between 2004 and 2005 were recalled due to a soft-
ware problem that caused the gas engines to stall. The electric motor

ptg11539604

349Summary

could be used to pull off the highway or go short distances. In states with
“lemon laws,” some owners were entitled to replacement vehicles.

• Toyota Priuses and some Lexus hybrids were recalled in 2010 due to a
software problem that caused a delay between pressing the brake pedal
and the brakes actually working.

 (Steve Wozniak, the Apple cofounder, owned a Prius and asserted that the
dangerous acceleration problem was due to software rather than a
mechanical problem. Toyota disputed the claim, but probably Steve
Wozniak knows more about software than most people.)

• Volvo recalled a number of 2012 S60 sedans due to software problems
with the fuel pumps.

Lessons learned: Automobiles are now sophisticated devices with a number
of onboard computers and many systems either directly controlled by soft-
ware or assisted by software. Therefore, automobile manufacturers should
adopt a full suite of modern defect prevention and defect removal steps.

Problem avoidance: Because so many automotive features and controls are
now affected by software, many software quality control methods are needed.
These include QFD, pre-test requirements, design and code inspections, static
analysis of text, and static analysis of code. Testing should be formal with
mathematically designed test cases, and it should be performed by certifi ed
test personnel.

Over the past ten years, about ten million automobiles have been recalled
due to software-related problems. One warranty company reported that about
27% of repairs are related to computer and software malfunctions. More
analysis and better data across all automobile manufacturers are needed.

Summary

In the modern world, computers and software are the critical operating components
of aircraft, medical devices, the stock market, banking, business, and government.
Since software controls so many critical activities, it should be obvious that quality
control is a key topic that needs to be fully understood, and companies need to use
state-of-the-art methods.

But in the problems shown here and the thousands of similar problems
that occur with other systems, quality control is often primitive and inept. The

ptg11539604

Chapter 11 Modern Software Problems350

executives of the companies that produce bad software need to realize that
quality problems are serious enough that litigation and damages can possibly
cause bankruptcy, even for major corporations.

A simplistic reliance on testing and a failure to perform pre-test inspections
or use static analysis is not an adequate response and does not lead to effective
quality control. The industry needs to deploy a full suite of synergistic quality
methods that include pre-test inspections; pre-test static analysis of text and
code; and formal, mathematically based testing by certifi ed test personnel. Any-
thing less for mission-critical software applications can lead to the same kinds
of problems discussed in this chapter.

ptg11539604

351

Chapter 12

A Brief History of
Cybercrime and
Cyberwarfare

Because security problems are now endemic and in fact seem to be getting worse
instead of better, this chapter includes a discussion of all known forms of soft-
ware security problems through 2013, including, but not limited to, botnets,
denial of service attacks, identify thefts, and far too many more.

Cybercrime is a “new” form of criminal activity that did not really exist
prior to the development of the internet in the 1990s. There were older forms of
hacking, such as using tones to gain access to long-distance telephone lines, but
these did not actually steal valuable property.

In the modern world, criminals can steal fi nancial data, drain funds from
bank accounts, steal social security numbers and other forms of identity, shut
down computers, and even cause physical damage to manufacturing equipment.

Cybercrime has moved from being committed by clever amateurs to being the
focus of organized crime groups. Even worse, cyberwarfare has been integrated
into the armed forces of every industrialized nation. All of the armed services
now have cyberwarfare units that attempt to steal information and interfere
with military equipment and command and control structures. The world is far
more dangerous today than it was before computers and the internet existed.

A New Form of Crime

New technical devices are always targets for both amateur hackers and profes-
sional criminals. Many are also targets for national governments.

Long before computers, other kinds of technical devices were attacked. For
example, in 1903, during a live demonstration of a supposedly secure wireless

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare352

radio transmission developed by Marconi, a hacker interfered by sending his
own Morse code message to the audience.

Later in the 1960s and ’70s, telephone hackers found that various audio
tones could be manipulated to gain access to telephone lines and make free
calls. These hackers were called phone phreakers and they used a battery-
powered blue box to aid in penetrating phone systems. Steve Wozniak, later to
become famous as an Apple cofounder, built one of these blue boxes in 1972
while he was a student at Stanford.

After monitoring and tracing millions of calls, eventually AT&T brought
charges against about 200 of these phone phreakers, who were convicted.
These convictions put a damper on phone phreaking by amateurs because the
consequences were severe and apprehension was probable.

Attacking computers and software was not feasible in the early days of
the computer industry because each computer was physically isolated and
only a select few programmers and engineers could access them. Later, when
remote connections to computers via modems entered the picture, it was
possible for hackers to gain access to computers and software from a safe
distance.

Data communications between remote computers became possible in about
1968 due to the development of modems and multiplexors. This led to
the ARPANET in 1969, which connected the University of California in Los
Angeles to the Stanford Research Institute (SRI) in Menlo Park.

Internal computer networks began to appear in the mid-1970s. A technical
set of standards that allowed internetwork communication paved the way for
the internet. This standard was called the transmission control protocol (TCP)
and the related internet protocol (IP). These were published under the abbrevia-
tion TCP/IP in 1974.

Other countries had also developed network capabilities, but many used dif-
ferent protocols. It was not until about 1989 that networks from Europe, Asia,
South America, Africa, and the United States were able to share information. The
global network later evolved into the modern internet. Networking, like personal
computers, was to be a signifi cant factor in cybercrime and cyberwarfare.

The Hacker Invasion

There are several points of historical interest that kicked off the arrival of the
computer hacker.

In 1982, a group of hackers broke into 60 computer systems. Newsweek had
a cover story about this and popularized the word “hacker.” This attack led to

ptg11539604

353A New Form of Crime

the fi rst congressional hearings on computer security and also to new laws
against cybercrime.

In 1983, a University of Southern California graduate student named Fred
Cohen fi rst used the phrase “computer virus.” This was the fi rst scholarly paper
on computer software attacks, and it would become an important milestone in
later antivirus defenses. His paper was titled “Computer Virus: Theory and
Experiment.”

Note
As is often the case, science fi ction predated real science. The concept of a computer virus
was published in 1969 in a story by David Gerrold in Galaxy Magazine. And in 1984, the term
cyberspace was introduced in William Gibson’s science-fi ction novel Neuromancer.

It is of sociological interest that hackers soon began to coalesce into organized
groups that shared data and information. These groups started to appear in the
early 1980s. In fact, hackers soon created a national magazine and began to hold
conferences such as the famous Black Hat conference. This alarming social
phenomenon led to a signifi cant advance in virus and threat technologies, includ-
ing polymorphic viruses, worms, botnets, and many others discussed later in this
chapter.

As hacking became popular, several forms of hacking were defi ned by using
hat colors to indicate different levels of ethics and criminality.

• A white hat hacker is one who hacks for benign purposes such as inform-
ing companies of security vulnerabilities. Many white hat hackers assist
law enforcement groups.

• A black hat hacker is one who hacks for malicious purposes such as iden-
tity theft or disrupting computer and network operations. Many black hat
hacks are criminal offenses in most countries, and law enforcement groups
attempt to identify this class and arrest those who have committed serious
criminal acts.

• A gray hat hacker is one who combines ethical and nonethical behavior. For
example, a gray hat hacker might penetrate a security fl aw in a corporate
system. Instead of doing damage, the gray hat hacker might ask for money
to tell the security offi cials of the company exactly what the security fl aw is
and how it can be fi xed. This is not illegal but not ethical either.

• A blue hat hacker is usually an employee of a software or computer com-
pany who uses hacking skills to help test new software prior to release.
This term is used within Microsoft, for example.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare354

During the 1980s and ’90s, hackers and cybercriminals seemed to be better
organized and have access to more current data than those charged with
defending networks from attack.

Note
In the late 1980s, I did an informal survey of books and journal articles on hacking and on
defenses against hacking. The number of pages of hacking material outnumbered the number
of pages of defensive materials by more than seven to one.

Preparing Defenses

As a result of widely reported attacks on computers and software, defensive
antivirus programs began to enter the commercial market. There are many of
these today, but Table 12.1 shows some of the earlier ones.

There are other antivirus and antimalware products besides the ones shown
in the table. Readers are urged to seek out reviews of antivirus products and
acquire one, then keep it updated with the latest threat information.

In 1988, the Defense Advanced Research Projects Agency (DARPA) created a
cybercrime response unit. This unit is called the Computer Emergency Readiness
Team (CERT), and it operates with the Software Engineering Institute (SEI) on
the campus of Carnegie Mellon University in Pittsburgh, Pennsylvania. CERT
carries out a number of research programs in cybersecurity.

Table 12.1 Arrival of the Antivirus Subindustry

Company Year

AVAST 1996

AVG 1992

Avira 1988

BitDefender 2001

Kaspersky 1993

McAfee 1987

Microsoft AntiVirus 1993

Norton AntiVirus 1990

PANDA 1990

TrendMicro 1988

Webroot Spy Sweeper 2002

ptg11539604

355A New Form of Crime

Early hacking and attacks during the 1980s were, for the most part, carried
out by amateurs and often by teenage hackers. In the 1990s, hacking and
cybercrime began to take a more serious turn.

The fi rst cause of the increase in the sophistication of cybercrime is because
the items that might be stolen greatly increased in value and quantity. By the
end of the 1990s, huge corporate databases contained credit card data; social
security numbers; banking information; real estate ownership data; criminal
records; military records; voter names and addresses; medical records; and
purchase information about autos, appliances, and thousands of other things.

Not only were valuable data stored on computers and in databases, but the
defenses against theft of these data ranged from rudimentary to only fairly
effective in the 1990s. As shown in Table 12.1, antivirus packages were fairly
late arrivals. Another defense mechanism, also a late arrival, was that of
computer fi rewalls to fi lter out attacks.

Digital Equipment Corporation (DEC) wrote the fi rst technical paper on
fi rewalls in 1988. Other work was done by Bell Labs circa 1990. Probably the
fi rst commercial fi rewall product was released in 1995 and was called Gauntlet.

In the late 1980s and early ’90s, software defenders began to organize. For
example, the well-known SANS Institute was founded in 1989 to provide
security training and certifi cation.

Other groups formed to study security in a variety of contexts. Many were
associated with universities such as Stanford, MIT, the Imperial College in
London, and most other large schools with computer science curricula.

Major computer companies such as IBM, Apple, and Hewlett-Packard formed
internal corporate security research labs, as did large software companies such as
Microsoft, Google, and Computer Associates.

There were also many government security groups within existing organiza-
tions such as the Secret Service, the FBI, the National Security Agency, the CIA,
the Department of Defense, and the uniformed services. Later, Homeland
Security would play a major role in cybersecurity.

The larger antivirus companies such as Symantec and Kaspersky and
BitDefender found that they needed full-time research groups to keep current
on threats, so this provided another form of cybercrime research.

In 2008, Congressmen James Langevin (a Democrat from Rhode Island) and
Congressman Mike McCaul (a Republican from Texas) formed the Congres-
sional Cyber Caucus. This group collects data on cybersecurity for both con-
gressional use and public use.

Congress has thus far failed to pass enabling legislation on cybersecurity
such as the bill put forth by Senator Joe Lieberman (an Independent from

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare356

Connecticut) and Senator Susan Collins (a Republican from Maine). This bill
failed to pass on November 14, 2012, by a vote of 51 to 47. The name of the
bill was the Lieberman Collins Cyber Security Bill.

This failure by Congress to take effective action on cybersecurity is yet
another sign that Congress has become inept at dealing with cybercrime. With
cybersecurity, congressional failure is often worse than ineffective: It is actually
harmful to the U.S. infrastructure.

Although cooperation and coordination among these disparate groups were
suboptimal, at least computer and software security was getting serious atten-
tion by competent research teams.

Increasing Seriousness of Cyberattacks

The existence of valuable commodities such as credit card numbers that could
be sold or used naturally attracted criminals that had computer skills, which by
the late 1990s was very common.

Compared to stealing physical objects such as money, stocks, jewelry, or elec-
tronics, the theft of computer records has some distinct advantages. First, the
stolen materials have no physical presence and can be removed at almost the
speed of light and relocated to any other computer in the world in any country.

Unlike the theft of physical objects, theft of data does not necessarily remove
the stolen material; it only makes a copy. This makes tracking of stolen objects
diffi cult because they usually are still in place, but a copy has been made.

Computer theft is also fairly hard to track, and even when specifi c computers
are identifi ed that took part in the theft, there is no easy way of knowing who
actually used them to commit a crime.

Apprehending a clever and skilled hacking group is not impossible, but the
rate of apprehension is probably well below the apprehension rate of armed
robberies. Even so, monthly arrests for cybercrime currently top 500 per month
in industrialized countries.

A second factor leading to an increase in computer crime is the attention paid
to computers and the internet by political activists. The term hactivism was
coined in 1996 by a member of a computer hacker’s group. Political hacking
often takes the form of denial of service attacks against offending companies or
political organizations.

However, political hacking is also involved in the theft of secret and propri-
etary information. The political groups Anonymous and WikiLeaks, for
example, are frequently cited in news stories about theft of government and

ptg11539604

357A New Form of Crime

military data. WikiLeaks became notorious for releasing classifi ed emails and
military information.

A third factor was the dissolution of the Soviet Union on December 26, 1991.
The fragmentation and reduction of former Soviet security organizations would
soon lead to an alarming increase on crime throughout the former 15 republics
of the Soviet Union. In time, the Russian Mafi a would become a feared interna-
tional crime organization.

From the standpoint of computer crimes and hacking, a signifi cant number
of former KGB and state security offi cers were left without jobs, or at least
without jobs that paid well. Some of these began to use their skills for hacking,
and others became connected with organized criminal groups in Russia,
Ukraine, and the other former Soviet bloc countries.

A fourth and perhaps the most important factor was the awareness by
national governments of the importance of computers for national defense. A
hundred years ago, wars took place on land, sea, and air. Starting in the
1960s, wars could occur on land, by sea, in air, and in space. Today, wars can
occur on land; by sea; and in the air, space, and cyberspace.

All major industrial countries have large and growing cyberwarfare units
that are staffed and operational: China, Cuba, France, Germany, India, Iran,
Israel, Japan, North Korea, Pakistan, Russia, the United Kingdom, and the
United States probably have, in total, more than half a million cybersoldiers
and cyberoffi cers deployed, and these groups are growing faster than conven-
tional armies, navies, and air forces.

Although these countries are not presently in armed confl icts with one another,
attempted sabotage and theft of secret data probably occur on a daily basis.
Cyberwarfare does not yet have effective treaties or any way of monitoring
attacks that is 100% effective.

In recent congressional testimony, the Chief Security Offi cer of Oracle, Mary
Ann Davidson, put forth the suggestion that the Monroe Doctrine should be
modernized to include cyberattacks on computers in the Americas as hostile
actions that the U.S. government would regard as belligerent.

In fact, truly successful attacks may not be recognized by the country receiv-
ing the attacks for months, if at all. This kind of warfare is new and plays by
different rules from wars fought with conventional weapons.

When a country explodes an atomic bomb or launches a new missile or satel-
lite, everybody knows about it the same day. When a country attacks computer
systems in another country, a major part of the attack strategy is to keep the
attack secret so that no one knows about it.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare358

The antivirus company Symantec publishes lists that show where hacking
attacks originate that have U.S. targets. The top, according to this list, are the
following:

• United States

• China

• Brazil

• Germany

• India

• United Kingdom

• Russia

• Poland

• Italy

• Spain

Computer usage is now global, and computer crime is a phenomenon that
requires global cooperation on the part of cyberdefenders.

Technically, cybercrime and cyberwarfare are about the same, but cybercrime
is carried out by individuals or criminal groups, while cyberwarfare is carried
out by military personnel, government organizations, and their civilian contrac-
tors under the command of senior offi cers or senior government offi cials. Both
cyberattacks and cyberwarfare present increasingly serious threats to individu-
als, companies, governments, and military services.

A Growing Number of Victims

To show readers samples of how prominent cybercrime has become in the modern
era, readers are referred to an interesting article by Taylor Amerding published on
February 15, 2012, on the CSO Online website. The title is “The 15 Worst Data
Security Breaches of the 21st Century.” A few of his samples are discussed below,
together with other noteworthy attacks:

• In March 2008, about 134 million credit card numbers were stolen from
Heartland Payment Systems. The attack used a Software Query Language

ptg11539604

359A New Form of Crime

(SQL) injection. A man named Albert Gonzalez was indicted along with
two unnamed Russians. He was convicted and sentenced to 20 years in
federal prison.

• In December 2006, hackers penetrated the network of TJX Companies
(which owns the chain of Marshall stores). Data on about 94 million
credit cards were stolen. At the time, the TJX internal network had no
fi rewall. It is possible that the theft occurred from in-store kiosks used to
apply for jobs.

• In March 2011, the email service company Epsilon was breached, and
millions of email addresses and customer addresses were apparently stolen.
Epsilon has more than 2,000 major companies as clients and handles
perhaps 40 billion emails per year. The stolen information could be used for
phishing attacks.

• In March 2011, a security company, RSA Security, was breached and had
perhaps 40 million records stolen. This might have been done by a foreign
government. When security companies like RSA are hacked, imagine how
easy it is to hack less sophisticated companies.

• In May 2006, the Department of Veterans Administration was hacked
and about 27 million records were stolen, including social security num-
bers, names, addresses, dates of birth, and other personal data. The data
were not encrypted. This theft was triggered by the physical theft of an
employee’s notebook computer, which was stolen in a burglary. It is curi-
ous that the employee reported the theft to the police at once on May 3,
but the Veterans Affairs Chief did not fi nd out until May 16 and the FBI
was not brought in until May 22. Eventually, most of the data were
returned, but the hackers were not apprehended.

• On April 20, 2011, Sony was hacked and about 77 million PlayStation
accounts were stolen. About 12 million unencrypted credit cards were
part of the stolen data. Home addresses and email addresses were also
stolen.

• In 2007, all internet service in the country of Estonia was shut down for
two weeks. This included services to government sites, banks, newspa-
pers, television, radio, hospitals, businesses, schools, and everything else.
This attack was orchestrated from Russia and was apparently triggered by
the removal of a statue of a Russian soldier from Tallinn on April 27,
2007. Sophisticated hackers sent out messages asking for help in a denial

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare360

of service attack, complete with instructions. These messages stirred up
hundreds of “script kiddies,” or novice hackers. May 9, the anniversary
celebrated in Russia as the end of the war against Germany, would be the
date of the attack. The basic message for the world is that the internet is
the fastest and most powerful tool for social action in human history.

• In July 2011, a South Korean company called ESTSoft was hacked and lost
about 35 million records, which made up more than half of the total South
Korean population. Apparently, this theft was by hackers in China because
Chinese IP addresses were identifi ed. The stolen data included names,
addresses, phone numbers, user identifi cations for software, and passwords.

• In mid-2009, Google and other companies in California were hacked,
apparently by the Chinese government. This attack exploited a weakness
in Internet Explorer. The purpose of the attack was not clear but might
possibly have been to identify Chinese subscribers who might oppose the
government.

• In 2010, the VeriSign security company was hacked. It is bad news when a
security company is penetrated. In this case, the news is even worse. VeriSign
did not announce the theft or even notify anyone until 2011 when the Secu-
rities and Exchange Commission (SEC) mandated notifi cation of security
breaches. VeriSign has not yet disclosed what was stolen. Because VeriSign is
the registry for .com and .net internet names, unknown theft of data is
troubling. Part of the VeriSign business was acquired by Symantec in 2010,
making it even more diffi cult to determine what was stolen.

• In August 2006, American Online (AOL) accidentally exposed records of
650,000 customers on one of its own websites. These data were intended for
internal research purposes but were publicly posted by mistake. AOL
removed the data after one day, but by then the news had spread all over the
internet. The AOL Chief Technology Offi cer resigned due to this mishap.

• In June 2010, a new kind of attack occurred that was called the Stuxnet
worm. Although Stuxnet was spread by Microsoft Windows, it targeted spe-
cialized Siemens industrial control computers. It happens that the Iranian
government uses embargoed Siemens computers in its nuclear program for
uranium enrichment. Although Stuxnet hit a number of computers in
Europe, about 60% of the known attacks were in Iran. The creators of Stux-
net have not been identifi ed but are probably countries at odds with Iran,
which includes Israel and the United States, among others.

ptg11539604

361A New Form of Crime

• In May 2012, another new kind of cyberattack hit the Middle East with
Iran again being the main target. Syria, Lebanon, and the Sudan were also
hit. This new attack was called Flame, and it is an alarming harbinger of
attacks to come. Flame does not just go after a few things such as email
addresses and personal information. Flame enters a computer as a Trojan
horse and, once there, it seeks out and steals data, Skype conversations,
photographs, and audio recordings. It also causes connected digital cameras
to take pictures, which are also stolen, as are screenshots from running soft-
ware. The stolen data are routed back to the source, which has not been
identifi ed. Given the sophistication of Flame, it is hypothesized that it could
only have come from China, Israel, Russia, or the United States.

An alarming news article in the Providence Journal on December 1, 2012,
stated that the former manager of the Social Security Offi ce in Warwick, Rhode
Island, was arrested and is being tried for identity theft. He tapped into social
security fi les, possibly from his own offi ce. He then used the data to create a
stolen identity and a joint bank account. About $160,000 from the identity
theft victim was siphoned into his account. This is an indictment and not a
conviction, but even so, it paints an alarming picture.

Between federal, state, and municipal employees in various tax agencies and
social agencies, almost a million government workers in the United States have
access to everything needed to steal our identities and apply for credit cards or
set up new bank accounts. It is clear that much stronger vetting of government
employees is needed in the computer era. For that matter, internal monitoring
and encryption of government fi les should be much stronger than it is.

An article discussing an unusual confl ict was published by the INFOSEC
Institute on March 21, 2012. According to the report, a member of the hacker
group Anonymous was kidnapped in Mexico by a drug cartel called Las Zetas
in October 2011. Anonymous published a threat on the web that it would begin
to hack into the bank accounts of the cartel itself and of cartel leaders unless the
victim was released. Anonymous also threatened to release cartel member
names and also the names of police and government offi cials who cooperated
with the cartel. Making these names public would not only lead to arrests but
also provide clear targets for rival cartels.

The victim was released but had a note from the cartel saying that it would
kill ten people for every name that Anonymous released. This dispute between
cybercriminals and a drug cartel is an alarming indication that two of the
largest forms of crime in the modern world may be nearing a confl ict that could
harm innocent civilians and cause collateral damages.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare362

As can be seen from these examples of large-scale data thefts and hacking
into major companies, software is both a critical asset and a critical liability to
personal and corporate privacy.

The short list shown here of major attacks on corporations indicates that
more than 200 million U.S. citizens have had some of their personal data stolen:
credit cards, social security numbers, birth dates, email addresses, and so on.
Many of these thefts are probably due to either organized criminal groups or
hostile foreign governments. Make no mistake: Cybercrime and cyberwarfare
are going to get worse before they get better.

To show the magnitude of cybercrime, a Google search on “arrests for cyber-
crime” in November 2012 found that in recent months, the Philippines had
arrested 357 people; China had arrested more than 10,000 people; an FBI sting
operation with a website that seemed to buy and sell stolen credit card and iden-
tity data arrested 26 people; another FBI arrest was for 12 people charged with
stealing a million dollars from Citibank; Bangladesh arrested 12 people; Turkey is
trying ten members of the RedHack group; and even Russia arrested eight people.

The important aspect of these arrests is that no matter in which country the
arrests were made, the crimes themselves spanned the globe and many of the
targets were U.S. companies and banks. Cybercrime is the fi rst known criminal
activity in history where the perpetrator and the victim can be 12,000 miles
apart at the time the crime is committed.

Types of Cyberattacks

As cybercrime and cyberwarfare increase in frequency and severity, they
are also morphing into an alarming number of different kinds of attacks.
Almost every week, some new form of cyberattack is reported in newspapers
and on technical websites. The following list shows the major forms of
cyberattacks:

• Bluetooth hijacking

• Botnets

• Browser hijackers

• Computer voting fraud

• Cyberwarfare against civilian targets

ptg11539604

363Types of Cyberattacks

• Data theft from corporations

• Data theft from unsecured networks

• Denial of service attacks

• Email address harvesting

• Electromagnetic pulses

• Identity thefts

• Keyboard trackers

• Macro viruses in Word and Excel documents

• Malware

• Pharming

• Phishing

• Root kits

• Skimming

• Smart-card hijacking

• Spam

• SQL injections

• Trojans

• Viruses

• Worms

• Zero-day security attacks

The following sections discuss these various security threats. These discus-
sions are representative but not complete. Other forms of cyberthreats exist
today, and new forms of cyberthreats seem to occur almost every month.

Bluetooth Hijacking

Bluetooth hijacking affects not only computers but also smartphones and tab-
lets that have Bluetooth capabilities. This is a fairly short-range form of attack
where the attacker and victim need to be within about ten feet of each other.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare364

Once an attacker establishes a connection with a victim’s device, it is possible
to steal personal information, images and pictures, and perhaps banking
information and other private data.

Botnets

The term “bot” is derived from the last half of the word “robot.” In the con-
text of cybercrime, a bot is a computer that has been seized and is under the
control of a malicious software routine that arrived from the web or from an
external source such as a disk or thumb drive. Botnets are illegal in the
United States and most other countries. Government-sponsored botnets are
another story.

The problem is bigger than just seizing one computer. The malicious software
is self-propagating and can infect and seize dozens or even hundreds or thou-
sands of individual computers. When these captive computers operate in con-
cert, this is called a botnet.

The main use of a botnet is to direct concentrated attacks at websites or the
computers of companies and government agencies with the idea that millions of
incoming messages will swamp their defenses and either shut them down, slow
them down, or prevent their normal work from taking place. This is called a
denial of service attack.

The botnet can be controlled by a bot herder or bot master. The individual
enslaved computers are sometimes called zombie computers. Although botnets
are often used for denial of service attacks, they have other purposes. For exam-
ple, they can be used to send out millions of spam messages or ads or anything
else. Sometimes bot masters rent their bots to other individuals or cybercrimi-
nals who add different kinds of payloads.

Once infected, the individual bot computers may need to be repaired. Some
forms of fi rewalls and network-based intrusion detection systems (NIDS) can
stop bot attacks. Microsoft Windows is a popular target for botnet attacks.
Some antivirus software packages can prevent them, but there is a constant race
between attackers and defenders.

The origin of botnets is ambiguous, but they were found in 2004 and possibly
before. Some of the more famous botnet attacks are named for the offending
software: Confi cker and Mariposa in 2008; Zeus in 2010; Bagle in 2004.

In total, there have probably been several hundred specifi c malicious bot
software packages created, and the total number of computers impacted
appears to be hundreds of millions.

ptg11539604

365Types of Cyberattacks

As an example of the damages done by botnets, consider the Confi cker
attacks in 2008 and 2009:

• In January 2009, a French naval network was invaded and a number of
aircraft were grounded for several days.

• Soon after, the British Ministry of Defense reported a Confi cker attack
that affected several ships and also grounded aircraft for several days.

• The British city of Sheffi eld reported a Confi cker attack against hospitals
and government installations that affected about 800 computers.

• The British city of Manchester reported a Confi cker attack, possibly caused
by the use of a thumb drive, on government computers in February 2009.

• In March 2009, computers used by the House of Commons in the British
Parliament were affected by Confi cker.

As can be seen from the signifi cance of the victims, this was a very sophisti-
cated attack with substantial self-defense mechanisms to prevent removal. The
Confi cker package was able to invade computer networks with serious profes-
sional fi rewalls and protection. Five variants of the Confi cker botnet software
package were identifi ed and called Confi cker A, B, C, D, and E. Later, other
variants were found.

In February 2009, Microsoft formed an international working group with a
dozen or more organizations to help prevent Confi cker attacks and speed up
the removal and cure for infected computers.

At least one of the variants was traced to Ukraine. The origins of other vari-
ants are either ambiguous or not yet published. Botnets pose a serious ongoing
threat to home computers, corporate computers, government computers, and
military computers.

It is apparent that much greater use of encryption for confi dential govern-
ment data is likely to occur in the future. This may also be true for proprietary
corporate data such as client addresses, credit card numbers, and social security
numbers.

Browser Hijacking

Browser hijackers are annoying and are semilegal malware packages that divert
web browsers from their intended destinations and force them to alternate desti-
nations. All of the well-known browsers, such as Bing, Chrome, Firefox, Internet

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare366

Explorer, and others, are affected. Some of the current browser hijackers include
Abnow, CoolWebSearch, MySearch, search.conduit, and search-daily.

As with other forms of malware, browser hijackers attempt to make their
package resistant to removal by antivirus and antispyware tools. If you have a
computer that is infected by one or more browser hijackers, you need to do
a search for effective solutions by contacting your antivirus or antispyware
vendors.

The main purpose of browser hijackers is to divert web searches to alternate
sites that have ads, pornography, or some other topic different from the one the
user wanted. A common form of browser hijacking starts with some kind of
message such as “WARNING YOUR COMPUTER IS INFECTED” If you
click on this, your browser is diverted to a company that wants money to fi x
your computer, and it will not remove the browser hijacker unless paid.

Some browser hijackers rent their tools to others who supply their own des-
tination websites. Sometimes browser hijackers are included in commercial
software on disks or downloaded. The agreements that users have to check
when installing such software may list specifi c spyware or browser hijackers.

Because some web advertising pays based on the number of hits that reach a
specifi c website, a very common reason for browser hijacking is to artifi cially
force hits to a specifi c website so that the advertiser has to pay higher fees.

Browser hijacking is not necessarily illegal. If it is used without the knowl-
edge and consent of a computer user, it is probably illegal. If it is included in a
license and the user agrees to it, then it is probably not illegal. Because most
users don’t read the full text of these licenses, vendors can stuff in alarming
amounts of harmful clauses, including permission to download browser
hijacking tools.

Browser hijacking often shows up in court. A common claim by people who
are charged with downloading illegal pornography is that it was the result
of browser hijacking. These cases are complex and diffi cult to prove one way
or the other. However, the courts do not seem to accept this line of defense very
often.

Computer Voting Fraud

For much of American history, votes were cast anonymously on pieces of paper
and counted by hand by offi cials appointed by community election commis-
sions. Close elections or possible errors could be recounted, also by hand. The
whole process of counting was under scrutiny.

ptg11539604

367Types of Cyberattacks

There were, of course, opportunities to change the paper ballot results
illegally, such as by forging absentee ballots, by bribing voters, or by registering
dead people. However, since all of these things left paper trails, investigation
was possible.

Starting in about 1974, paper ballots were gradually phased out in favor of
electronic ballots. Sometimes paper ballots with holes or special ink were used
as the inputs, but the tabulations were done by computer. The paper documents
provided backup paper trails if needed.

Later versions of computerized voting did away with paper inputs and used
touchscreens or electronic pens for voting. When this happened, there was no
longer an objective way to recount votes or correct errors.

Sometimes the software used to tabulate votes is treated as proprietary trade
secrets by the voting machine manufacturers. In this case, the algorithms are not
revealed to even the election committees in the communities using the machines.

Voting machines are not the only sources of possible election fraud. Every
ten years, states are required to redistrict, and this is now handled by soft-
ware. Quite often, the proposed new districts are overturned by judges or by
complaints that they have bias for or against candidates, usually in favor of
incumbents.

Instead of using free federal software, as did most states, Rhode Island paid
about $600,000 for a custom redistricting package, apparently in order to ger-
rymander. The state had to redraw the districts several times due to visible
biases, and it barely made the required submission date.

More recently in elections held in 2012, several candidates for the Rhode
Island General Assembly were accused of infl ating their popularity by using
ghost respondents to visit their Facebook and Twitter accounts. In other words,
either software or people were creating visits to Facebook and Twitter that
never happened.

There are numerous published instances of voting machine errors, but
whether these are unique or part of a more widespread pattern is diffi cult to
ascertain because of the lack of any paper trail or backup counting methodology.

Software and voting machines are “validated” by state governments prior to
acquiring the equipment. However, problems still occur even after validation,
which shows that for voting machines, as with other kinds of software, testing
has a fairly low level of defect removal effi ciency.

The few sample errors from history listed below illustrate that electronic vot-
ing needs independent and objective quality analysis from neutral parties such
as universities or bipartisan watchdog groups. The software itself should be

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare368

subject to analysis by experts and also to the use of tools such as static analysis
tools that might fi nd errors that escaped the developers.

• In 1992 in Yamhill County, Oregon, computer votes for the district attor-
ney had to be reversed. The computer software assumed the candidates
were in alphabetical order, and it awarded the election to the wrong
candidate.

• In 1993, published voting results in St. Petersburg, Florida, reported 1,492
votes cast in precinct 194, which had no registered voters for that election.
As it happens, the election was decided by 1,495 votes.

• The journal Governing (Governing.com) reported that in Broward
County, Florida, in 2004, voting machines by Electronic Systems and
Software had a maximum limit of 32,000 votes, after which the machines
began to count backward.

• In 2005, a hacker from Finland successfully penetrated voting machines in
Leon County, Florida, just to prove that it was easy to do. He apparently
did not try to modify results but only alerted offi cials to the fact that
almost any hacker could do the same.

• In 2008, Ohio found that voting machines manufactured by Premier
(reported in the Washington Post and USA Today) dropped votes when
data from memory cards were transferred to the central tally point. At
fi rst, the problem was denied, then blamed on an antivirus package, and
fi nally acknowledged to be a software error. The same machines were
used in 34 states and the error apparently had persisted for ten years.
Larger precincts were losing several hundred votes.

• In the 2010 elections, the Republican Party in North Carolina fi led suit
against the State Election Commission, charging that when voters
attempted to select the Republican Party, the direct recording electronic
voting machines overrode the choice and selected the Democratic Party.

The Common Cause website (www.commoncause.org) contains a master list
of 70 verifi ed voting machine problems in a number of states. Common Cause
also reports that only fi ve states (Minnesota, New Hampshire, Ohio, Vermont,
and Wisconsin) had geared up to handle voting machine errors.

One case that deserves special scrutiny is the 2000 presidential election in
Florida, which brought national attention to voting problems and is still

http://www.commoncause.org

ptg11539604

369Types of Cyberattacks

controversial even today. The fi nal recount awarded the election to George
Bush by only 537 votes over Al Gore. A number of the irregularities involved
software and computers.

Florida developed a “scrub list,” or a list of voters to be removed or disfran-
chised because they were felons or for some other reason. Later analysis found
this list to be biased against minorities because it removed about 1% of white
voters and 3% of minority voters.

Worse, of the 96,000 disfranchised voters called felons, many turned out not
to be felons at all and were incorrectly removed. Some were innocent citizens
who had names similar to or identical to felons. About 3,000 were felons whose
voting rights had been restored in other states and hence were eligible to vote in
Florida.

This was a software-controlled activity and clearly defi cient or incorrect in
its results. Given that many of the disfranchised voters were Democrats, this
arbitrary removal of registered voters probably changed the results of the
national presidential race.

The Palm Beach County “butterfl y” ballot had a physical problem that
apparently switched more than 3,000 votes to Buchanan from either Bush or
Gore. The Democrats were listed second in the left column, but punching the
hole next to that listing was counted as a vote for Buchanan by the software
tabulation program. This was more of a physical design error than a software
error.

In Duval County, the presidential choices were spread over two pages, and
the printed instructions on the ballots told voters to “vote on both pages.” The
results were thousands of overballots in which voters accidentally voted for
both candidates instead of only their preferred candidate. Because of ambiguity
of the ballot, some voters wrote the name of their candidate on the ballot, but if
they voted twice (as instructed), their votes did not count. This was a human
error due to poor design and editing of the ballots themselves.

Several thousand absentee ballots from serving U.S. military personnel and
overseas travelers were thrown out because there were no visible postmarks.
Because voters have no control over where and if postmarks are placed, this
was an arbitrary rejection without good sense. Absentee ballots received by an
election commission during a valid time window up to the day of the election
should have been counted whether or not postmarks were visible. Stamping the
arrival time and date should have been suffi cient.

The television news services assumed that Florida polls closed at 7 pm. How-
ever, the western Florida panhandle was not in the Eastern time zone and closed

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare370

at 8 pm est. The major networks announced Gore as the winner of Florida at
7:48 pm. Later interviews in the Panhandle concluded that this error, which was
probably a careless human error, caused about 15,000 voters to go home and
not vote.

The Florida voting mess reached both the Florida Supreme Court and the
U.S. Supreme Court. The fi nal results, after a number of recounts, awarded the
state’s electoral college votes, and thereby the national election, to Bush.

This Florida mess was a cautionary tale that elections “by the people” might
be evolving into future elections “by computer software that uses secret and
unverifi ed algorithms that cannot be validated by election offi cials and votes
that cannot be recounted if they are wrong.”

The bottom line is that computer voting is prone to errors, is fairly easy to
hack, and can modify election results in unknown ways. The lack of paper or
independent backups to validate voting accuracy makes these systems intrinsi-
cally unreliable.

The current “hot topic” in the area of voting is that of a requirement for vot-
ers to have some form of identifi cation when they arrive at the voting precinct,
such as a driver’s license. But a voter ID is only one topic out of a chain of top-
ics that need to be studied. Truly accurate voting needs to span the entire
sequence of the voting process, which includes the following:

• Voter registration

• Logistics of absentee ballots

• Validation of state and municipal voting lists

• Voter identifi cation when casting a ballot

• Removal of disfranchised voters

• Accuracy of electronic voting machines

• Backup and recount logistics in case of error

• Accuracy of precinct tabulations

• Accuracy of statewide tabulation of results

• Accuracy of national results

If each of these steps has a 1% probability of error, the full sequence of all
steps might be off by 10%, which is more than enough to change election

ptg11539604

371Types of Cyberattacks

results. Currently, no one, including state offi cials and election boards, truly
knows if our votes are being accurately counted and tabulated.

Cyberwarfare Against Civilian Targets

Readers may wonder why cyberwarfare should be a concern to civilians. The
reason is that civilian targets are important to national economies and to
defense preparation. They may also have less sophisticated defenses than
military targets. In the United States, our telephone systems, our electric power
generation and transmission systems, and our air and rail transportation sys-
tems are important components of military preparedness. They are also spotty
in defenses against cyberattacks. Our fi nancial systems are also a critical part of
the national economy and are also spotty in defenses against cyberattacks.
Recent web security reports indicate that U.S. banks and fi nancial systems are
prime targets for hacking by other national governments such as China, North
Korea, and Iran.

Consider the impact of a successful cyberattack in winter on New England’s
electric power and communication systems that could shut these systems down
for a two-week period. Without power, many stores would be closed and it
would not be possible to purchase fuel and possibly food. Air and rail travel
would be disrupted due to passengers not being able to make reservations, and
there could also be possible airport and train station closures.

Within about a week, pipes would begin to freeze and burst in homes and
offi ce buildings. Without fuel, some automobiles and trucks would be aban-
doned wherever they stopped, which would interfere with road traffi c. Snow
plowing might stop. Food shortages would soon follow, possibly accompanied
by thefts and riots. Within about two weeks, emergency generators would begin
to fail at hospitals (unless they used natural gas). Thousands of patients might
have to be relocated.

No doubt martial law would have to be declared, and emergency supplies
would need to be brought in by military helicopters. Very likely, there would be
deaths among the homeless and elderly who could not make it to emergency
shelters. Billions of dollars of fi nancial losses would accrue to businesses and
individuals. These fi nancial losses might lower tax and government incomes
and possibly trigger some municipal bankruptcies.

The bottom line is that a long-term disruption of the U.S. infrastructure due
to either cyberattacks or electromagnetic pulses (EMPs) could have wide-ranging
consequences that could damage the economy for an extended period.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare372

International cyberwarfare is already occurring. The Stuxnet worm attacks
on manufacturing equipment were probably created by a national cyberattack
unit. The newer Gauss virus attacks on banks and fi nancial records were also
probably created by a national government.

The Stuxnet worm attacked industrial control computers that are manufac-
tured by Siemens. As it happens, these computers are used in Iran for a number
of nuclear development programs. Based on the sophistication of Stuxnet, it
was probably not done by amateurs. No country has claimed ownership. The
New York Times reported the United States as the probable author, and other
reports claimed it was Israel.

While about 60% of the Stuxnet attacks were in Iran, some were reported in
Germany and other parts of Europe. These were asserted to be collateral
damages from the Iranian attacks that somehow managed to reach other coun-
tries that were not targeted.

In August 2010, the U.S. government issued a public statement that it
believed the Chinese government was gearing up for possible cyberattacks.
Apparently, the People’s Liberation Army of China was using civilian experts as
well as military cyberwarfare specialists.

The Department of Homeland Security reported an increase in cyberattacks
against U.S. industrial sites from nine in 2009 up to 198 in 2011. The targets
included power plants, refi neries, nuclear generators, and chemical plants.

In August 2012, the Saudi Aramco oil company was attacked by a worm or
virus that affected most of its internal computers and workstations, although
apparently not its refi nery operations. As a precaution while eliminating the
attacking malware, Saudi Aramco withdrew completely from internet access for
several days. The specifi c virus or worm was not reported yet as this section
was being written.

As it happens, Congressman Jim Langevin is an expert on cybersecurity and a
member of the Congressional Cyber Security Caucus. He was highly critical of the
failure of the Senate to pass the Cyber Security Act (S.3414), introduced by
Senators Lieberman and Collins. As is becoming the congressional norm, the Repub-
licans and Democrats could not agree even on a topic as urgent as cybersecurity.

Data Theft from Corporations

Verizon did a study of corporate data theft in 2011 and found about 855 incidents
with thefts of perhaps 174 million corporate records. An interesting part of the
study was that about 57% of the stolen data was taken by hacktivists who stole
the data for political purposes rather than for resale to cybercriminals. Political

ptg11539604

373Types of Cyberattacks

groups such as Anonymous and Lulzsec also attack and deface corporate and
government websites. The following are examples of corporate data theft:

• In 2009, three people were arrested for stealing about 130 million credit
and debit card numbers for companies such as 7-Eleven and Hannaford
Brothers. A card payment company, Heartland Payment Systems, was the
target of the attack, which used a sophisticated SQL injection attack.

• In 2011, Norway’s energy, gas, and defense companies were hit by
ten apparently coordinated cyberattacks that swept disk drives for per-
sonal information and industrial secrets. An infected email was the host.

• Early in 2012, about 10 million customer accounts for Visa and MasterCard
were compromised and probably stolen. Apparently, a third-party contrac-
tor, Global Payments, was the actual company targeted for the theft.

• In May 2012, the professional network LinkedIn reported data thefts
of millions of passwords. Indeed, about 6.5 million LinkedIn passwords
actually were displayed on a Russian website.

These samples demonstrate that corporate data theft will probably impact
close to 25% of U.S. citizens within the next fi ve years.

Data Theft from Unsecured Networks

I live in a fairly small town with a population of about 17,000. Within a mile of
the offi ce where I write are at least a dozen free wireless networks at local
coffeeshops and restaurants.

In my neighborhood, all of the neighbors have private networks, which is
common in today’s world. Most home networks are secured, but some home
networks are not. Recently, a friend with an unsecured network noticed a slow-
down on his network and discovered that a teenage neighbor had signed onto
the network and was downloading fi lms and music.

Piggybacking on unsecured networks is fairly common and probably the
least troubling kind of theft. However, it is not a victimless crime. The hijacked
network fees will probably go up, based on the bandwidth and amount of mate-
rial downloaded, so the true network owner will lose money.

Piggybacking is easy to do. If a network is unsecured and shows up on a
computer list of available networks, it is only necessary to click “connect” and
it can be used.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare374

There are also commercial sniffers that will report the brands of local
wireless routers within range. Once the brand is identifi ed, the hacker can then
download data from the manufacturer’s website that gives the original pass-
word for the brand and model of router. With this information in hand, the
hacker can then use the wireless network more or less at will.

Free public wireless hotspots are in daily use by hundreds of students from a
nearby university, as well as by local citizens who happen to use computers,
iPads, Kindles, and other wireless devices in the vicinity. Free wireless networks
are a great convenience but are also fraught with danger of losing passwords,
credit card numbers, and other forms of personal information.

How does this happen? One method is that skilled hackers can tap into the
network and extract information from any or all users by using the router ID,
as already described. A second method is that a hacker can construct a phony
wireless hotspot with the same name as the ones used by coffeeshops or local
restaurants.

When using public networks, be sure to specify “public network” when your
computer asks about what kind of network it is. It is also best to do only casual
browsing and avoid things like online purchases with credit cards or online
banking. Of course, the most common use of a computer today is probably
email or messaging, so there is a high probability of compromising the email
addresses of both senders and recipients.

Denial of Service Attacks

Computers and servers are fast and can handle thousands of transactions per
minute, but they all have a fi nite capacity that can be exceeded. This is why we
sometimes have waits when we attempt to reach a website or perform a task.

The idea behind denial of service attacks is to saturate a computer or a server
by sending millions of messages that require some form of processing and
thereby exceed its capacities so that it no longer functions for its true and legiti-
mate purposes.

In general, denial of service attacks are illegal in most countries, and they
also violate the operating rules of essentially every internet host. Government-
sponsored attacks are another matter.

Denial of service attacks require the coordination of a number of computers
because a single computer or server is not fast enough to saturate a normal
website or server farm. Therefore, botnets are a common adjunct to denial of
service attacks. However, some groups or collections of cybercriminals can
create denial of service attacks by means of voluntary cooperation. Some

ptg11539604

375Types of Cyberattacks

hacker groups have more than 100 members and if they cooperate, they can do
signifi cant harm.

There are many different forms of denial of service attacks. In fact, there are
too many to discuss in this book. They range from relatively minor annoyances
to severe attacks that can actually damage servers and computers.

In today’s world of instant communication, it sometimes happens that a
website has some new and exciting topic that causes millions of individuals
to try and access it at about the same time. The impact on the site being
accessed is the same as a denial of service attack, but it is not an attack but
rather a spontaneous burst of users all trying to get to the same site at the
same time.

This same situation can occur in reverse. An offensive internet posting may
receive millions of indignant complaints at about the same time. As this is
written, an actual offensive event, the publication of a video that mocked
Mohammad and the Islam religion on YouTube, is absorbing millions of emails
and computer cycles.

Electromagnetic Pulses (EMPs)

When an atomic bomb explodes at high altitudes above about 50 miles, an
EMP is released that can shut down or damage unshielded electrical devices,
including computers, cell phones, televisions, power transmission, automobile
electronics, and many more.

The EMP was predicted by Enrico Fermi when atomic bombs were fi rst
being developed in 1941, so military electronics are now shielded in most cases.
However, civilians are both unprepared and unprotected.

The fi rst recorded civilian damages due to EMPs occurred in July 1962 when
the United States detonated a 1.44-megaton atomic bomb about 250 miles
above the Pacifi c. This test was called Starfi sh Prime.

Even though the Hawaiian Islands were about 900 miles away from the det-
onation (and this was a fairly small nuclear explosion), there were still civilian
damages in the form of hundreds of streetlights shutting down, burglar alarms
malfunctioning, and microwave transmissions being damaged.

EMPs are not the kind of threat that can be carried out by amateur hack-
ers or even terrorist groups. They require a fairly powerful nuclear device
that is launched by rocket to high altitudes. In other words, EMP threats are
likely from national governments such as North Korea, Iran, and others who
might be likely to attack the United States using sophisticated rockets and
nuclear devices.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare376

EMPs over areas with high population densities and major electronic usage
could be devastating to a nation’s economy, because many of the damaged
devices might not be able to be repaired and would need replacement.

Imagine the impact on major urban areas such as New York or Los Angeles
if they concurrently lost electric power, radios, telephones, televisions, and
transportation systems, including automobiles, for a period that might last
several months.

Other forms of explosions besides nuclear can produce an EMP but over
shorter ranges. It is possible that “natural” EMP bursts can occur from major
solar fl ares. In fact, on March 9, 1986, the sun ejected solar gas that hit the
earth’s atmosphere above Canada. About six million people lost electric power
for around nine hours. To date, these natural EMP bursts have been less danger-
ous than nuclear EMP bursts.

Although long-range damages from EMPs require sophisticated rocket
launches to altitudes of more than fi fty miles, short-range EMP damages for a
specifi c city or an area of perhaps ten miles in diameter might occur from a
nuclear explosion at the upper limits of jet aircraft fl ight, such as 60,000 feet.

The bottom line is that an EMP is a serious threat that requires a national
response by national military and civilian governments. Individuals, corpora-
tions, and local governments can do very little to protect themselves against
EMP damages.

While EMP harm is discussed primarily as a threat against electronic devices
rather than humans, a major EMP strike would kill a number of civilians. Those
at risk would be hospital patients on life support, patients with embedded
electronic medical devices such as pacemakers, and those who need relatively
sophisticated medical treatments such as chemotherapy or radiation for tumors.

Deaf and hard of hearing citizens would also be affected because the EMP
would no doubt destroy cochlear implants and hearing aids.

Email Address Harvesting

In today’s world, email addresses are valuable commodities that are bought
and sold on a daily basis. In many cases, these lists are available from reputa-
ble companies and often target either specifi c industries or specifi c kinds of
jobs such as executives or technical offi cers. How are these valuable addresses
obtained?

In 2003, laws were passed in Australia and the United States that prohibit some
kinds of email harvesting, but there are still a number of legal ways available.

ptg11539604

377Types of Cyberattacks

There are several ways of obtaining email addresses, and they vary in their
ethics and legality. One way is to use a harvesting bot or spider that searches
public sources of email addresses such as Usenet lists and internet forums. These
email addresses are then collected and added to lists, sometimes collated by
industry or type. This form of harvesting from public data is legal.

More unsavory forms of email harvesting include attacks on specifi c directo-
ries and websites. A clever way of gathering email addresses is to use lists of
common names and then methodically try each name with a specifi c site. Suppose
you have an email address that is something like CJones@privatemail.com. Once
the server “privatemail” is identifi ed, a harvesting tool would then send dummy
emails to the site to see which email addresses are accepted.

For example, the harvesting tool might go through the alphabet and send
email messages to “AJones,” “BJones,” “CJones,” “DJones,” and so on. If any
are accepted, the valid addresses are added to a list and go to market. The same
tool might have a list of hundreds of common names and try things like
“Arthur,” “Betty,” “Charles,” “David,” “Emily,” and so on to see how many
work. This method now seems to be illegal.

A very common and legal method for harvesting email addresses is used
daily by thousands of companies. The companies simply offer a free trial, a free
service, or something else that might be useful and require that anyone who
requests it must provide an email address.

Long before the arrival of computers, some companies such as magazines
and consumer products would sell customer address lists. Address harvesting is
merely a continuation of an idea that is hundreds of years old.

There are a number of countermeasures to reduce the incidence of email
address harvesting.

Address munging, or changing the format of email addresses when they are
displayed, is one measure. Thus, instead of Capers@privatemail.com the
address would be “Capers at privatemail dot com.” This can be overcome but
adds costs to email harvesting.

CAPTCHA is a method that displays numbers or letters in a little box, often
in graphic form. In order to complete a transaction, the user must key in the
characters that are displayed. Harvesting bots are not able to translate this text
or enter the keys. Thus, the CAPTCHA method minimizes the risk of email
harvesting.

Spider traps are part of a website designed to attract email harvesters or
spiders. The website includes a “honeypot” that is assumed by the spider to
contain useful emails but in reality is a trap that blocks access.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare378

There are other methods for harvesting emails, and this is a continuing
problem for the modern world.

Identity Thefts

The crime of identity theft has become one of the most common crimes in the
modern world. Data from the web indicate that about 4.8% of U.S. households
will experience an identity theft. The absolute numbers are in the range of per-
haps 15 million people per year in the United States alone. Surprisingly, identify
theft also includes about three million dead people. Many identity theft victims
are children. A disturbing fact about identity theft is that it often involves rela-
tives or “friends” of the victims.

Identity theft is not a victimless crime because the stolen identities are often
used to steal money from banks, make unauthorized use of credit cards, create
phony credit cards, rent automobiles, travel by air, and do other kinds of
serious harm to the victims. In a few cases, houses have been fraudulently sold
by people who were not the true owners!

Worse, the credit ratings and sometimes the reputations of the victims are
damaged by identity thieves, and recovery is not easy to achieve. Innocent
people have even been arrested when an identity thief performs a crime such as
armed robbery and the identity theft victim is wrongly blamed.

There are numerous ways of stealing identities. Some of these are listed
below:

• Stealing mail such as bills from mailboxes

• Rummaging through dumpsters outside of offi ce buildings

• Stealing wallets and purses

• Phishing or sending bogus emails that request personal information

• ATM skimming or using an illegal device that captures card data

• Hacking into the databases of retail stores and other businesses

• Stealing identity information from relatives or friends

Because identity theft is so common in today’s world, there are, fortunately,
resources available to aid in canceling credit cards and restoring credit ratings.
These will vary from city to city and state to state, but in today’s world, the
police in major cities have trained investigators. Credit card companies can also

ptg11539604

379Types of Cyberattacks

provide support, as can banks. There are also commercial identity theft
recovery companies, although not all of these are competent and effective.

Many government agencies can provide brochures and advice for those
affected by identity theft. These include the Internal Revenue Service, the Social
Security Administration, the Federal Trade Commission, and the FBI. Various
military services have internal aid for members of the uniformed services.

A number of nonprofi t organizations can assist in identity theft recovery
either via the web or by phone. Examples include the Identity Theft Resource
Center and CreditReport.

The credit-reporting companies of Equifax, Transunion, and Experian also
have identity theft support services.

Identity theft is a continuing and growing problem and will probably stay
that way for the indefi nite future. Only the replacement of alphanumeric infor-
mation with unique physical attributes such as retina prints or fi ngerprints is
likely to bring about signifi cant reductions in identity thefts. Encryption of
personal data might also help, assuming that the encryption methods are secure.

Normally, identity thefts are of concern for individuals. However, the
September 15, 2012, edition of the Providence Journal had an article about
the identity theft of an entire LLC corporation, and a security company at
that. The LLC had been registered in Florida. Someone sent in a corporate
amendment form and a fee of $25 to the state. This amendment form, which
was not checked or validated by state offi cials, provided a new owner for the
corporation and a new business mailing address. The theft entitled the
new “owner” to borrow money in the company’s name because the State of
Florida confi rmed ownership by the hijacker!

To date, this may be a unique kind of identity theft without any other exam-
ples. Most state governments do not validate amendments to corporate docu-
ments when they are submitted. But this same kind of corporate identity theft
could potentially take place in probably every state in the union.

Java Vulnerability Attacks

The Java programming language by Oracle is the most widely used program-
ming language on the planet, because it is used in millions of hardware devices.
Java is also used in major web browsers such as Chrome, Firefox, Internet
Explorer, Opera, and Safari.

Unfortunately, Java has had a series of well-known and frequently exploited
security vulnerabilities. Earlier in 2012, about 600,000 Macintosh computers
were infected by the Flashback Trojan malware that entered via a Java fl aw.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare380

Web discussions of Java security fl aws state that the very serious zero-day
attacks seem to have originated from China. There are far too many articles
and websites dealing with Java vulnerabilities to discuss. Readers are urged to
do web searches using phrases such as “Java security fl aws” to fi nd out more
information.

Note
A zero-day attack is one that occurs on the same day that a security fl aw is fi rst recognized
and published. Zero-day attacks take place before software security personnel can build
countermeasures.

Keyboard Trackers

A Google search on the phrase “keyboard trackers” will turn up more than half
a dozen free or open-source tools that can be used to track keystrokes with or
without the knowledge of the person using the keyboard. What would these be
used for? Most of the web ads for these trackers use phrases such as “discreetly
monitor all keyboard activity . . .” Who on earth needs to discreetly monitor
someone else using a keyboard?

Some legitimate examples might be high-security government agencies
or companies with proprietary information to ensure that nothing is sent
out without permission. But the keystroke trackers themselves can dilute
security.

If the keystroke tracker is secretly installed via a worm, Trojan, or virus, then
it can be used to fi nd passwords, bank accounts, social security numbers, or any
other confi dential information that happens to be typed with the infected
keyboard.

There are quite a few different kinds of keyboard trackers—too many for this
book to describe. Some are based on software and some are based on hardware.
Various websites provide instructions for detecting and removing hardware and
software keyboard trackers.

Considering the number of free and open-source keyboard trackers availa-
ble, one might assume many legitimate uses. However, it is hard to envision a
legitimate justifi cation for tracking keystrokes other than as part of a criminal
investigation or to protect highly secret information.

Without any statistical studies that report keystroke-tracking usage, the most
common uses would seem to be something unethical and possibly illegal, such
as seeking passwords, social security numbers, and other kinds of personal
information from unsuspecting computer users.

ptg11539604

381Types of Cyberattacks

Note
The term “malware” is a concatenation based on “malicious” in the sense of something harmful
and the last half of “software.” When combined, the term malware is a generic term that
includes viruses, rootkits, worms, Trojans, spam, and other harmful software topics.

Macro Attacks in Word and Excel Documents

Microsoft Word and Microsoft Excel are two of the most widely used software
applications in the world. Both of these have some advanced features that
utilize macro instruction.

In the context of Word and Excel, macro instructions are small sequences of
code created in Visual Basic for Applications (VBA) that can be used to simplify
repetitive tasks or deal with ranges of information. There is a built-in macro
recorder for storing these, and the macros go along with Word and Excel
documents when they are emailed as attached fi les.

Unfortunately, hackers can use the Excel and Word macro recording feature
to create harmful macros that can spread from computer to computer. Once
inside a computer, the dangerous macro can replicate itself and also attack the
computer fi les.

Pharming

The term “pharming” is based on “farming” and uses the same “ph” combination
as “phishing.” Pharming is a form of phishing that is aimed more at e-commerce
and banking sites than at other kinds of users. One major issue with pharming is
that it can affect routers, and once a router has invalid information, then anyone
joining that network can be infected.

Because phishing and pharming are close to identical, there is some objection
to the term “pharming.” Of the two, phishing seems the oldest and was noted
as far back as 1995.

Phishing

“Phishing” is an obvious play on the word “fi shing” and has more or less the
same meaning—cast an attractive bait and wait to see what bites. Phishing in
several forms predates the computer era. Both surface mail and telephones have
been used to solicit information from unsuspecting victims long before comput-
ers existed. Telegrams were also used in the days when they were a fast form of
communication.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare382

The most common forms of phishing today involve emails or instant messag-
ing. In one very common form, the sender pretends to be an offi cial of a foreign
government (often Nigeria) who needs to transmit funds to an American bank.
The email requests that the recipient send bank information so the money
can be transferred, and the recipient will then be able to keep a portion as a
reward. A more recent variation involves pretending to be a serving offi cer in
Afghanistan or Iraq who has come across funds that can’t easily be taken out of
the country.

More recent and more subtle forms of phishing involve stolen email lists.
Using a name known to the recipient from a stolen email list, the sender writes
an email with a message like “I’m writing this with tears in my eyes . . .” The
message then goes on to describe some kind of tragedy such as a mugging or
stolen wallet that left the person with no money and no identifi cation. There is
a request to send funds to pay for a hotel, rental car, or something else.

Phishing attacks aimed at specifi c individuals using personal information
such as their social networks or lists of friends from stolen email lists is called
spear phishing.

An even more sophisticated form of phishing is called whale phishing because
it is aimed at senior executives. This kind of phishing is preceded by very
focused email thefts from a law fi rm or accounting fi rm known to be used by
the intended victim. Sometimes a credit card fi rm or retail store is used. In any
case, the idea is to present a convincing story that will cause the victim to
provide personal information such as a bank account, social security number,
or something else.

Perhaps the most sophisticated form of phishing appears to come from a
bank used by the victim. However, if the victim clicks on the email to respond,
he or she is diverted to a phony website that is designed to look like the real
bank’s website. Even worse, some phishing emails with web links direct the user
to their own actual bank but secretly insert a pop-up screen that appears to be a
request from the bank for personal information.

Phishing may have become an adjunct to cyberwarfare. There are reports on
the web, not verifi ed by me, that the Chinese government and military have
been involved with attempts to target the Gmail accounts of U.S. government
offi cials and military personnel. China denies this, of course. A study from 2006
showed a high frequency of phishing attacks originating from Russia from a
group called the Russian Business Network, based on U.S. website accounts.

Early phishing was fairly common on the AOL system circa 1995. This was
initially successful, but soon AOL and other internet hosts began to add text to
their screens and messages that said “XXX will never ask for your password and

ptg11539604

383Types of Cyberattacks

billing information . . .” This phrase is now a part of almost every commercial
internet service provider (ISP) and messaging service.

The nominal senders of phishing emails include the Internal Revenue Service,
the FBI, many banks, the government of Nigeria, and many social networks.
These, of course, are all hoaxes. In fact, users of social networks seem to be at
greater risk from phishing than nonusers.

It is not uncommon to get a phishing email along the lines of “Contact this
offi ce of the IRS about an unclaimed tax refund.” Anyone who clicks on the site
is at risk of losing at least their email address and possibly worse if they supply
data such as social security numbers or bank account information.

There is an organization called the Anti-Phishing Working Group that
includes both industry and law enforcement organizations that work to prevent
phishing. What we lack, though, is an effective way of tracking backward to
the phishing site or exposing the site to law enforcement personnel without
putting the nominal recipients at risk.

A useful feature of email services would be a “Suspected Phishing” command
that would alert enforcement personnel and possibly track the message back to
its origin point and do so without putting the target at additional risk.

Rootkits

The Unix operating system uses the word “root” to describe a privileged
account that could make changes to the kernel. Linux uses the same concept.
The word “kit” implies a collection of tools. When put together, a “rootkit” is
a collection of stealth tools that can invade and change operating systems and
software packages without detection by antivirus packages.

Rootkits are complex and diffi cult to eradicate. They attempt to acquire
administrative rights to change operating systems and, if successful, they then
burrow into the operating system and take control of its component parts.

Rootkits also have the ability to subvert tools such as antivirus software that
attempt to fi nd and root out viruses and other kinds of malware.

The Sony BMG copy protection scheme from 2005 is described elsewhere in
this book; the company had secretly inserted a rootkit into music CDs. When
the CDs were played on a computer, the rootkit installed a secret copy of soft-
ware that limited access and prevented the CDs from being copied. But the
rootkit also slowed performance and introduced security vulnerabilities into the
infected computers.

Another rootkit had been used in 2004 in Greece to wiretap more than
100 mobile phones on the VodaPhone network in Greece. Alarmingly, most of

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare384

the taps were on phones used by senior government offi cials. The taps were
removed in 2005, but the identity of the perpetrators was not discovered.

This rootkit was novel in being apparently the fi rst attempt to subvert an
embedded device rather than a normal commercial operating system. The
infected system was an Ericsson AXE telephone switching system.

Rootkits are serious threats because, if secretly installed, the operators of the
rootkit can then open doors to many other kinds of malware.

Preventing rootkits from attacking, identifying them when they have attacked,
and removing them from a computer are among the toughest kinds of computer
and software protection in the modern world. Rootkit elimination is too vast a
topic for this book, but it is a topic of increasing importance because rootkits
can be used in cyberwarfare and can possibly subvert military computers as well
as civilian computers.

Skimming

The presence of thousands of automated teller machines (ATMs) in public
places has created a massive new kind of crime called skimming. Thieves are
able to use either small hidden cameras or Bluetooth-enabled magnetic-strip
readers to capture passwords, PIN numbers, and other information from debit
and credit cards when they are used at ATMs.

There are also commercially available handheld card readers, including new
models that plug into smartphones. Any of these could be used by unscrupulous
retail clerks, waiters, or even gas station attendants to copy debit and credit
card information.

According to an FBI report, magnetic credit card skimmers had been secretly
installed in a number of gasoline pumps in Denver, Colorado. Given the num-
ber and distribution of such devices, this was probably the work of an organ-
ized group of cybercriminals and not the work of individual gas station
employees.

Skimming and other kinds of unauthorized and illegal access to fi nancial
records are now a serious threat to global banking systems. This book only
identifi es such threats but is not large enough to discuss them in detail.

Readers are urged to use web searches to fi nd out more. On the FBI website
is the congressional testimony of Gordon Snow, the Assistant Director of the
FBI Cyber Division. This testimony provides a very instructive summary of
cybercrime. At the time of this testimony on September 11, 2011, the FBI was
investigating more than 400 cyberattacks on fi nancial institutions. These cases
caused total fi nancial losses of about $255 million.

ptg11539604

385Types of Cyberattacks

The problem that both consumers and businesses face in the modern era is
that fi nancial data are comparatively easy to steal and are far safer targets for
criminals than many other kinds of crime. Worse, computerized fi nancial crimes
attract a criminal element that is obviously fairly intelligent and also highly
computer literate. Such criminals are hard to catch because they carry out their
crimes inside their own homes or offi ces and not in public places.

It is unlikely that such crimes can be fully suppressed so long as identities use
only alphanumeric information. Some forms of highly personal information
such as facial recognition, retina patterns, fi ngerprints, or other unique attrib-
utes will probably be needed in the future. This will no doubt be opposed as a
loss of civil liberties. However, citizens and companies need to balance the use
of personal physical identity information against potential fi nancial losses from
cybercrimes.

If cybercrime continues to expand, which seems likely, at some point the
world may need to create some form of unique biometric identifi cation at birth
and to assign unique identity information for each citizen. Perhaps retina prints
or DNA tagging would be unique enough to prevent counterfeiting or the
creation of duplicate identities.

Although “smart credit cards” with onboard chips that contain proprietary
information are not yet used widely in the United States, they are starting to be
used in Europe and abroad. It is fairly easy to extract information from these
smart credit cards from a distance of fi ve feet or more. This has led to the crea-
tion of stainless steel or metallic wallets that screen smart cards from remote
detection.

It is an unfortunate fact of modern life that computer and software technolo-
gies are advancing so fast that unintended consequences of some new inven-
tions are not discovered until criminals fi gure out how to use them to steal or
make money.

Smart Card Hijacking

Smart cards were fi rst patented in 1969 and their use is expanding rapidly, espe-
cially in Europe. Smart cards are plastic cards the size of older credit cards that
have an embedded microchip with memory and sometimes a processor. Smart
cards can contain personal information, fi nancial information, passwords, and
medical records.

Early smart cards required being inserted into a reading device. More recent
smart cards can be scanned and read at a distance of a few inches. However,
hackers can sometimes gain access to smart card data from a distance of a foot

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare386

or more. Therefore, potential victims are at risk when standing in lines, when
visiting crowded locations such as nightclubs, or when commuting on subways
or buses that are full enough to require standing.

The technology used for smart cards is not restricted only to small plastic
cards. Many countries now embed smart card microcircuits into passports. This
brings up the problem that even government-owned passport readers may not
be fully secure.

Hacking into passport readers and computers at major airports such as
Heathrow or New York could be a very serious security threat. It is possible to
envision a whole crew of terrorists entering a country if passport-reading
devices are penetrated.

Note
An interesting white paper by a security analyst, Hagai Bar-El, entitled “Known Attacks Against
Smart Cards,” is at www.discretex.com.

As smart cards grow in popularity, various consumer defenses have entered
the market. One of the most widely advertised is a wallet made of stainless steel
threads, which blocks remote access to smart cards by shielding them.

A very common use for smart cards among the U.S. defense community is
for accessing secure buildings and sometimes secure devices. An article by John
Leyden on January 13, 2012, posted in Security states that the Chinese govern-
ment has attempted to use the Sykipot Trojan to compromise and gain data
from U.S. military smart cards.

Not only are smart cards and smart passports vulnerable to deliberate attacks,
but they are also vulnerable to old-fashioned bugs or defects. In 2009, the late
millennium bug affected the smart cards of about 30 million German citizens. A
programming error caused the software in bank ATMs and credit card proces-
sors to stop working when the calendar changed from 2009 to 2010. German
consumers could not use credit cards or withdraw funds from ATMs until the
bug was repaired.

More than 70 million U.S. passports have been issued with smart card chips.
More than 100 million credit cards in Europe are now smart cards. Because
China uses smart cards for passports and credit, too, the global total of smart
cards is probably passing one billion.

The bad news is that smart card usage seems to be expanding much faster
than smart card defenses. This is a very serious future threat, with the greatest
potential for harm aimed at affl uent citizens with numerous credit cards who
travel internationally.

http://www.discretex.com

ptg11539604

387Types of Cyberattacks

Spam

It is unfortunate that the name of a commercial meat product has come to be
used for an annoying kind of disinformation that can be rapidly distributed by
email and instant messaging. In a computer context, the word “spam” refers to
ads, emails, and pop-up screens that are sent to millions of computer users on a
daily basis. (The term “spam” may have derived from a Monty Python sketch
in which every dish in a restaurant contained the Spam meat product marketed
by Hormel.)

Ordinary spam ads are legal in the United States under the CAN-SPAM
Act of 2003 and are probably protected as a form of free speech under the
Constitution. Spam that contains viruses or can cause harm to computers or
consumers is not legal. The European Union, on the other hand, does have
explicit laws against spam, although that is not the same as stopping it.

In every country, spam usually violates the terms of service of the ISP and
can be blocked or deleted if detected. ISP owners can also attempt to collect
damages from spam originators through lawsuits, although these are not easy
cases to pursue. The damages are based on misappropriation of bandwidth and
server resources, which have fi nancial costs that can be quantifi ed in court.

The fact that sending spam is now the largest user of internet resources has
spawned two growing subindustries. The fi rst is that of the spam creators who
sell their services to clients who want to issue bulk ads. The second and smaller
subindustry consists of the companies that design and market antispam tools
for blocking spam from emails and instant message sources. The fi rst industry
of spam creation seems to be more profi table than the second industry of spam
avoidance.

The actual technology of spam is complex and diverse and outside the scope
of this book. There are more than a dozen variations for creating and sending
spam messages.

The fi rst known spam broadcast was perhaps an ad for DEC computers sent
to 600 ARPANET users in 1978. In today’s world, Microsoft’s security unit
reports that spam makes up about 97% of current email traffi c. A remark by
Steve Ballmer of Microsoft reported that Bill Gates, the Microsoft founder, is
sent about four million emails per year, with the vast majority being spam.

Because spam apparently originated in the United States, it is interesting that
it remains the number one country for spam origination. The European Union
is number two and China is number three.

In today’s world, email without effective spam blocking is almost unusable.
(When I used older email servers that lacked effective spam blocking, about

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare388

200 spam messages arrived per day.) With modern email services, such as
Gmail, that include spam blocking, only one or two spam messages seem to slip
through.

Spam is no longer restricted to computers but is also present on tablets and
smartphones. In fact, robo calling, or using software to make recorded calls to
targeted lists of phone numbers, is a very annoying form of spam for landlines.

There is a technological race between spam originators and spam defenders.
Hopefully, spam defenses will eventually become sophisticated enough to make
spam disappear as a commercial undertaking. The spam-fi ltering approaches
used on modern email services are fairly effective, but spam remains a major
waste of human and computer resources.

SQL Injections

The SQL is a popular avenue for hackers. The idea is to create an SQL
command that, if accepted, will perform some harmful act such as passing
confi dential data to the hacker. SQL injections are used against websites and
databases.

SQL attacks are relatively easy to carry out but also easy to guard against by
using normal, good coding practices that validate inputs including SQL state-
ments. The SANS Institute provides a good paper by Stuart McDonald on avoid-
ing SQL attacks. It can be found on the SANS Institute website, www.sans.org.

Trojans

The word “Trojan” harks back to the Trojan horse described in Homer’s Iliad.
The original Trojan horse was a giant statue of a horse given as a gift to the
Trojans. Inside, a number of Greek soldiers were concealed. At night after the
horse had been moved into the city of Troy, the hidden solders emerged and
opened the city gates to the Greek army.

In today’s computer era, the word “Trojan” means an attractive offering that
conceals a hidden virus or some other nasty payload. A recent prominent
Trojan virus called DNS Changer was front-page news in several papers, so it is
worth considering.

In November 2011, the FBI identifi ed a ring of cybercriminals that had
released the DNS Changer virus. This virus infected about four million comput-
ers globally. Its purpose was to divert clicks on websites to other websites
controlled by the cybercriminals. Apparently, the criminals charged fees for
advertising and made about $14 million from pay-per-clicks until stopped.

http://www.sans.org

ptg11539604

389Types of Cyberattacks

In the United States, about half a million computers were infected. This virus
had some unpleasant attributes besides browser hijacking. It also attacked
antivirus software and kept it from being updated with virus defi nitions and
tools that could stop the DNS Changer!

What happened after the arrests shows how signifi cant some viruses can be.
After the FBI seized the host computers that had issued the DNS Changer
Trojan, it could not just shut them down because all of the infected computers
would probably have stopped working. The FBI could only replace the rogue
addresses with authentic addresses.

The FBI then got a court order that allowed it to keep the host computers
running until July 9, 2012. The reason was to allow time for antivirus compa-
nies and the government to provide tools and methods for safely removing
the DNS Changer without doing serious harm to half a million computers. If
the host DNS Changer computers were merely stopped, then the infected com-
puters would no longer be able to access the internet.

Tools were made available to check for infections in home and corporate
computers, and then other tools were available to remove the Trojan. I used
the DNS analysis tool on all computers used by my family, and fortunately
none were infected. The URL of the inspection site was www.dns.ok.us.
This site returned a green image for clean computers and a red image for
infected computers. Users of infected computers were then routed to several
repair tools.

A study of the DNS Changer Trojan on the web stated that about 12% of
Fortune 500 companies and 4% of U.S. government computers were infected.
No doubt an even higher percentage of private computers were infected.

The DNS Changer story is a cautionary tale that we should all take seriously.
In the modern world, criminals have the technical ability to attack and seize
even computers that have some protections such as fi rewalls and antivirus
packages. The fact that a few clever cybercriminals could infect four million
computers with a Trojan is not a good sign for the future when hostile govern-
ments might attempt something similar or worse.

Viruses

A natural virus is a small organism that has the ability to enter cells and divert
RNA into making new copies of the invading virus. A computer virus is a piece
of software that has the ability to invade computers and divert part of its func-
tionality into making and distributing new copies of the virus and perhaps doing
something harmful as well.

http://www.dns.ok.us

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare390

Viruses are harmful for the same reason that cancer is harmful: It metastasizes
and infects and eventually shuts down host organisms. Computer viruses can do
the same thing to operating systems and other kinds of software. The critical
feature of a computer virus is that it can replicate itself and make other copies,
which can then spread to other computers.

The concept of a computer virus showed up in science fi ction before
real computer viruses were developed. A story by David Gerrold in Galaxy
Magazine in 1969 used the term “virus” in its modern sense. But there were no
computer viruses in 1969. A few years later, a paper on self-replicating software
packages was published in 1972 by Veith Risak, who built a working virus in
assembly language that ran on a Siemens 4004 computer system.

The term “virus” as applied to a self-replicating piece of computer software
was fi rst used in a technical paper in 1984 by Fred Cohen of the University of
Southern California. But apparently the term was coined by a colleague, Leonard
Adelman. Neither seemed to know about the Gerrold science fi ction story.

One of the fi rst known computer viruses was created in the 1970s on
ARPANET. It was called “the creeper,” and it infected computers and displayed
a message that said “I’m the creeper. Catch me if you can.”

There are now thousands of individual viruses and many classes and types of
viruses. This book is not the place to discuss viruses in detail. Readers need to
take viral attacks seriously and be sure that their antivirus packagers are kept
up to date.

There is a serious technological battle that is ongoing between virus creators
and virus destroyers. Usually, the virus destroyers are able to win, but the more
insidious kinds of viruses, such as polymorphic viruses and metamorphic
viruses, are challenging to detect and eliminate.

It is technically possible to build viral-resistant computers, but doing so
requires abandoning the von Neumann architecture. Viral-resistant software
may also be possible, and here, too, there may be a need for fundamental
changes in permissions and access rights.

Worms

Computer worms differ from computer viruses in one important way. Viruses
spread by being attached to other kinds of software such as emails. Worms are
freestanding packages that can travel and reproduce by themselves without
requiring help from other kinds of software.

The actual term “worm” seemed to derive from a 1975 science fi ction novel
called Shockwave Rider by John Brunner. In that book, a self-replicating piece

ptg11539604

391Types of Cyberattacks

of software is unleashed on a global network, and it was called a worm by the
main character.

The fi rst worm to attract national attention was the famous Morris worm
released in 1988 by Robert Morris. Although it did not have a payload and
did not intentionally cause damage, apparently it infected and slowed about
10% of all computers attached to the internet. Morris was the fi rst person tried
and convicted under the Computer Fraud and Abuse Act of 1986.

Worms use the internet as their main mode of transit from one computer to
another. Some worms were created merely to prove the concept and see how far
they could travel. Even though no harm might have been intended, successful
worms devour bandwidth and slow down networks. The Morris and MyDoom
worms are examples of traveling worms without payloads.

Note
The 2004 MyDoom worm set the record as the fastest-spreading worm at the time. It attacked
Microsoft Windows. To deceive recipients, it had a text phrase that read “Andy, I’m just doing
my job, nothing personal, sorry.”

More malicious kinds of worms include payloads that are designed to cause
harm to computers, software, and networks. Some of these can introduce back
doors into software that allow other kinds of malware to have access. Others
can be used to create zombie computers that can take part in botnet denial of
service attacks. Yet another payload encrypts computer fi les, with the idea that
the fi le owners have to pay a fee to get their fi les back in usable form.

Not all worms were designed to do harm. A few were intended to be benefi -
cial. One class of worm was designed by Microsoft to update the Windows
operating systems in a benign and invisible way without user intervention.
However, the results were not satisfactory because the changes were made with-
out the owners’ permission. Some of the changes required restarts of the com-
puter at possibly awkward moments; this was more of an annoyance than a
convenience.

Zero-Day Security Attacks

A zero-day security attack is an attack by malicious hackers that occurs on the
very day that a new security fl aw is identifi ed and news about it is fi rst released.
As it happens, it is much easier and faster to develop an attack against a known
security fl aw than it is to develop an effective defense. Attacks can take place on
the day the fl aw is known, but it usually takes vendors from a week to a month
to develop and release a fi x or an effective countermeasure.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare392

Some antivirus and antimalware packages include fairly sophisticated
algorithms that attempt to seek out new threats that are not yet recorded in
their databases of known threats. These techniques for stopping new kinds of
attacks are not 100% effective, but they are better than nothing and may stop a
signifi cant number.

The Odds of Being Attacked

From reviewing a number of web reports on various kinds of cybercrime and data
theft, it is interesting to speculate on the probability of being impacted by these
events over the next three years. The results shown in Table 12.2 are speculative
but are based on extrapolation from recent cyberattacks reported on the web.

The alarmingly high odds of personally experiencing cybercrime or cyberin-
trusions explain the rapid growth of three fairly new subindustries: insurance

Table 12.2 Approximate Odds of Becoming a Cybervictim

Form of Intrusion Odds

Receive unwanted spam 100%

Receive an unwanted robo call 95%

Have your email address harvested 90%

Receive a phishing email 85%

Have a virus attempt to penetrate your computer 60%

Experience a browser hijacking 35%

Receive a spear phishing email 25%

Have credit/debit cards stolen 20%

Have your social security number stolen 18%

Experience personal identity theft 16%

Experience a zero-day security attack 15%

Have a smart card hijacked 14%

Experience a Java vulnerability attack 13%

Experience slowdowns from denial of service 12%

Have a Bluetooth device hijacked 12%

Have a credit card number used by thieves 10%

Experience an SQL injection 10%

ptg11539604

393The Odds of Being Attacked

companies that protect against cybercrime; professional service companies and
nonprofi ts that assist victims in recovery from cybercrime such as identity theft;
and antivirus and antimalware companies that block or remove attacking
viruses, Trojans, worms, and many other security threats.

Cyberattacks have also created a new professional occupation of Chief
Security Offi cer (CSO) or sometimes Chief Information Security Offi cer (CISO).
These positions began to appear in about 2000. Large companies have always
had security departments, but these groups were mainly concerned with the
physical security of buildings and with vetting new employees to ensure they
did not have criminal records.

The new CSO position and computer security organizations handle com-
puters, software, purchased software, and corporate databases. Most large
companies today have full-time computer security staffs, and they also have a
number of key personnel standing by as emergency responders in the event of
a cyberattack or a denial of service attack. Constant vigilance is the key to
good cybersecurity.

Defending computers and software against viruses, worms, and other threats
is not a task for amateurs. Training and certifi cation of computer and software
security personnel is mandatory to be effective, and continuous education
updates are also needed. We are dealing with threats that morph and evolve
continuously. Some of these threats are created by the brightest minds within
hostile governments. Computer and software defenses are not something to
pass along to untrained generalists.

Form of Intrusion Odds

Have a rootkit invade your equipment 10%

Lose data from an unsecured network 8%

Have viruses penetrate your computer 7%

Have your local voting machines hacked 6%

Have your municipal tax data stolen 5%

Have your credit or debit card skimmed 5%

Have your medical records stolen 3%

Have your federal tax data stolen 2%

Experience an EMP 1%

Average 26%

Table 12.2 (Continued)

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare394

Computers and software have brought many benefi ts. But they have also
brought new kinds of crime and new threats to individuals, corporations,
governments, and military organizations.

Improving Defenses Against Cyberattacks

Countries are often involved in “arms races” with other countries. A very
important arms race is taking place more or less out of sight. This is the race
between cyberattackers and cyberdefenders and between the United States and
possible future enemies such as Iran and North Korea.

Unlike conventional arms races, which are between national governments,
the cyber arms race is between organized criminal groups and government
cybercrime defense units at local through national levels.

To date, conventional defenses against cyberattacks have included fi rewalls
to block intrusions, antivirus packages to prevent and remove intrusions, and
additional tools to block spam and annoyances that are not dangerous.

Because many security vulnerabilities are due to poor programming practices,
a number of research groups have started to publish lists of common coding
problems. The list by the SANS Institute and MITRE is a useful example.
The fi rst list in 2009 had 25 common problems, but newer versions have
added more.

Examples of some of the coding problems from the original SANS list that
cause security fl aws include the following:

• Buffer overfl ows

• Cross-site scripting

• SQL injections

• Operating system command injections

• Uploading hazardous fi le types

• Improper controls for fi le names

• Integer overfl ow or wraparound

• Downloading reusable code without validation

• Failure to authenticate critical features

• Encrypting data using algorithms that have been hacked

ptg11539604

395Improving Defenses Against Cyberattacks

Readers are recommended to go to the SANS website and read the latest
version.

A number of static analysis tools have started to include or beef up checks for
security fl aws in common languages such as Java, C, C##, SQL, and the like. Some
older languages such as ADA, COBOL, and FORTRAN are also covered by static
analysis. However, out of the current total of 2,500 known programming
languages, only about 25 are covered by all of the static analysis tools put together.

A few samples of static analysis tools with security checks include CAST
Software, CheckMarx, Code Armor, Code Sonar, Coverity, Findbugs, HP
Fortify, IBM App Scan analyzer, Intel static analysis, Klocwork, Parasoft,
VeraCode, and XTRAN.

There are many more static analysis tools. In fact, that market seems to be
getting crowded, and the vendors need some new tricks to differentiate them-
selves. It would probably be a smart business move for the larger static analysis
tools to expand by offering text readability tools, text static analysis, inspection
support, mathematical test-case design, test and static analysis coverage tools,
cyclomatic complexity tools, and a suite of other tools and methods proven to
benefi t quality and security.

In 2009, the National Institute of Standards and Technology (NIST) ran a
large study on static analysis tools called SAMATE, which stands for Software
Assurance Metrics and Tools Evaluation. The results can be seen on the web at
http://samate.nist.gov/. More than 100 tools were evaluated of various kinds,
including static analysis tools.

Static analysis tools with security features are a new and useful weapon for
security defenders. These are rule-based applications that can easily be updated
as new threats occur. A vanilla static analysis tool right out of the box might
fi nd 90% of known security fl aws for common languages.

Of course, effectiveness against new zero-day problems can’t be evaluated
until after the fact. If your software is in a language such as BLISS, CHILL,
CORAL, or MUMPS that is not supported by static analysis, then manual
inspections would be needed.

A number of nonprofi t organizations, federal agencies, and also state and
local police departments now have information about cybercrime and resources
to help companies and individuals recover from cyberattacks.

Incidentally, the approximate average cost to recover from a personal iden-
tity theft attack tops $10,000 in lost time, legal fees, and logistics for creating
various notarized and certifi ed documents needed to restore creditworthiness,
remove possible criminal charges fi led erroneously, and restore personal integ-
rity with law enforcement groups.

http://samate.nist.gov/

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare396

A combination of federal agencies, including the Department of Justice and
the FBI, publishes annual reports on cybercrime in the United States. As of the
end of 2012, only 2011 data are available. The group is called the Internet
Crime Complaint Center and the annual report is the Internet Crime Report.

In 2011, there were more than 400,000 cybercrime complaints, which was
an increase of 3.4% compared to 2010. Personal identity theft complaints were
coming at a rate of more than 26,000 per calendar month. The states with the
highest incidence of identity thefts included California, Florida, Texas, New
York, and Ohio. The average amount of money stolen before credit cards and
accounts could be canceled was $4,187 per victim.

Raising Our Immunity to Cyberattacks

The similarities between the fi eld of security and the fi eld of medicine provide
an interesting metaphor. The correlations are not identical, but thinking in med-
ical terms is useful for software and computer security specialists.

Firewalls are a bit like rubber globes or surgical masks: They stop the passage
of harmful vectors such as viruses or worms. However, as with real gloves and real
masks, the fi rewalls might leak. Currently, they seem about 90% to 95% effective
against known threats, but they are of lower effectiveness against zero-day threats.

Static analysis tools are a bit like vaccines, and they also raise immunity
levels. Static analysis tools can identify weaknesses in source code and eliminate
them before applications are released.

Antivirus programs are a bit like antibiotics and vaccines. They can stop
many harmful vectors and can kill most of the vectors that manage to penetrate
to a computer or software package.

However, tests of antivirus packages published on the web and in computer
journals indicate an effectiveness of between 83% and about 99% for stopping
known vectors before they gain access and perhaps 85% for removing known
vectors that have established themselves in a computer. Here, too, effectiveness
is reduced for zero-day vectors that are so new that antivirus vendors have not
examined them and hence depend on heuristics or hypothetical models of
unknown threats.

Organizations that help in recovering from cyberattacks are a bit like
nursing homes or rehabilitation homes. They help injured companies and indi-
viduals to recover stolen identities and to restore damaged credit ratings.

In today’s world, all major banks and many large consumer chains have
full-time security offi ces for dealing with stolen credit cards and identify theft.

ptg11539604

397Raising Our Immunity to Cyberattacks

So do larger police stations, state police, the FBI, Homeland Security, the Secret
Service, and other government groups. These can be helpful, but by the time
their help is needed, something has already been stolen or damaged.

The bottom line is that while defensive methods such as fi rewalls and antivi-
rus programs are pretty good, they are not perfect.

What are the prospects of raising the immunity levels of computers and soft-
ware packages so that they cannot easily be attacked by viruses or worms?
Although a lot of attention is being paid to security by thousands of organiza-
tions, coordination and cooperation could probably be better than it is.

From a distance, it seems useful to design a computer and software security
engine for corporate and government use and also for sophisticated private
computer users with valuable data such as patents and new intellectual prop-
erty. This engine is probably too expensive to work as a retail product, but
access to its features would be available by license.

The computer security engine would be linked to every national security
agency in friendly countries and also to corporate and private security groups.
The engine would perform real-time monitoring on a global basis for new
zero-day threats as soon as they occur in any time zone. This monitoring would
use intelligent agents.

The artifi cial intelligence (AI) kernel in the computer security engine would
also notify major vendors of fi rewalls and antivirus packages in order to alert
them to the threat, and it would, of course, send messages to all government
security offi ces as well. The AI would also analyze known facts about the threat
and classify its method of action against any similar threats detected on a global
basis.

As responses and defensive measures become available, the AI feature would
analyze their effectiveness. The AI would calculate how many networks and
computers had been infected.

As effective countermeasures become available, users of infected computers
and networks would be notifi ed using an uninfected channel such as radio, tel-
ephone, or a special shortwave band (which would be needed since internet
connections may be compromised).

Subscribers to this computer security engine would be able to register their
own computers by make, model, operating system, and other factors. When
subscribers turn on their computers, they would receive a start-up screen that
informed them of current threats that might affect their equipment, including
zero-day threats from other time zones. If proven solutions are available, they
could be downloaded at once. These might even have been downloaded as soon
as the subscriber’s computer powered up.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare398

In case a subscriber’s computer or software had already been hacked and
was under hostile control, the AI engine would direct the most effective removal
method to the computer.

Subscribers could also notify the security engine of the credit cards, banks,
and stores at which they are likely to shop. The subscribers would receive real-
time notices of any attacks or data thefts from the major banks and service
providers used by those companies.

It would be possible but perhaps unsafe to also perform real-time global
monitoring of client names and identities in case a new identity is being created
illegally. Ideally, the computer security engine would have connections to major
banks and businesses so that any suspicious account activity could be reported
to the subscriber in real time.

The computer security engine would also have a constantly updated list of
the security contacts at every bank or store, as well as the contact numbers for
the cybercrime units of local and state police, the FBI, and other government
agencies.

Some of these features are available today, but they are fragmented. Antivi-
rus vendors try to keep tabs on zero-day threats. Banks and major stores keep
tabs on suspicious credit card transactions. However, nobody keeps real-time
tabs on human identities, and the faster duplicate identities can be recognized,
the easier it is to stop damages.

Because many security breaches are due to the theft of notebook computers
and tablets or smartphones, the physical security of portable devices also needs
to be considered. It would not be diffi cult to include GPS tracking in every note-
book and tablet, because they are already in cell phones. With GPS tracking,
stolen computers could easily be found.

It would not be diffi cult to include an electromagnet inside the cases of com-
puter hard drives. If the computer is reported as stolen, a signal would
trigger the electromagnet and degauss the hard drive to erase all data. This
would need a separate battery because thieves would no doubt remove the main
battery.

Other kinds of physical security for portable computers and tablets include
switching from passwords to biometric data such as retina prints.

Data encryption should be offered as a standard feature on all computers.
Every saved fi le such as a spreadsheet or a Quicken bank statement could be
saved in an encrypted form instead of plain text. Encryption should also be at
least an optional feature on thumb drives because they are easily stolen and
easily read by any computer.

ptg11539604

399Raising Our Immunity to Cyberattacks

It would also be possible to have the built-in cameras on portable computers
take a picture of whoever opens the case each time it is opened. These pictures
could be sent to the computer security engine cloud site. This feature might be
set up to activate when a computer is reported as stolen.

This would probably be a secret feature used only on computers assigned to
FBI agents and others who might have very high security information on their
computers. This feature could be activated by notifying the computer security
engine that a notebook computer has been stolen. The activation message might
go over the internet or perhaps through a special radio connection if the
computer is used for really high-value classifi ed information.

These pictures could be transmitted to security sites that have facial recogni-
tion software that would perhaps identify criminals or known terrorists, assum-
ing they tried to use a stolen high-security notebook. In any case, a digital photo
from a computer with its GPS location and a timestamp would probably
provide suffi cient evidence to prove theft.

Another current weakness is the von Neumann architecture itself. Current
computers—both personal and mainframe—are intrinsically vulnerable since
data and instructions are treated the same. At least one highly secure alternate
hardware architecture was patented by a group of retired IBM engineers.
This was the ALTOPS patent number 5,742,823 issued by the Patent Offi ce on
April 21, 1998, to Nathen Edwards.

The long-range prognosis for raising computer and software immunity levels
is theoretically very good, but a lot of work is needed.

The following sections cover a sample of possible approaches for immuniz-
ing software, computers, passwords, and data from external threats by black
hat hackers who attempt to steal information or cause harm.

Access Controls

The topic of access controls is large and complex. It deals with how people,
software, messages from other systems, and data enter a computer or a
software application. Once allowed in, what features can they use and what
features are prohibited?

Users of ordinary personal computers and notebooks know that a class of
user called an administrator is the only person authorized to make changes to
many features of the computer and its operating systems. This is intended to
strengthen security. However, access control is somewhat porous in the modern
world of multitier applications and global internet connections.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare400

It would be helpful for a combination of computer hardware manufacturers,
software companies, security companies, and database companies to create
protocols for access at all levels of software, hardware, and data.

As of 2013, access controls are part of a defense strategy, but they need
formal analysis of how to improve the safety of access by software packages
and external internet messaging.

Authentication Controls

Authentication and access are two parts of a complex problem. Access deals
with what features might be used. Authentication deals with how a person, a
computer, or a piece of software knows that a message or a delivery is truly
what it claims to be.

A few months ago, an email arrived that identifi ed itself as an email from
a personal friend, so it was opened. The message itself immediately looked
like a fraud, which it was. The message started by saying “I’m writing this
email with tears in my eyes.” It then went on to say that there had been a
robbery while traveling abroad in London; wallet and credit cards stolen;
no help from the embassy; hotel was evicting them; please send money; and
so forth.

This is a common scam that occurs when email addresses are stolen and used
by a third party to phish for money or other valuable commodities. But it can
also occur more subtly via a “man-in-the-middle” attack. In this case, my friend
and I might really be sending emails to each other, but someone is intercepting
them and changing them in perhaps subtle ways.

In the future, it might be possible to use biometric information such as retina
prints or voiceprints. Trusted friends and colleagues would have catalogs of
authenticated biometric information. A biometric “tag” might be affi xed to
email messages sent between trusted friends and colleagues to ensure that the
message is really from the true sender and not from an identity thief or a man in
the middle. Of course, biometric tags might themselves be stolen, so they would
need encryption and probably timestamps.

Authentication is a complex issue, and it needs coordinated research. Some
combination of certifi cates, biometric tags, and a real-time database of stolen
email addresses and identities is needed.

In the future, biometric information might also be embedded in smart cards
so that they can be used by only the person with the same unique voiceprint or
retina print as the person to whom the cards were issued.

ptg11539604

401Raising Our Immunity to Cyberattacks

EMP Protection

Unfortunately, transistors and integrated circuits are susceptible to serious dam-
ages from an EMP. They may be physically damaged and will never operate
again. To date, civilians are largely unaware of the EMP threat, and computer
manufacturers ignore it.

A relatively simple and inexpensive device called a Faraday box is capable of
shielding small electronic devices such as cell phones, tablets, and notebook
computers from EMPs. A Faraday box is a metal container made of steel,
copper, aluminum, or some other metal that conducts electricity. It can be made
from either sheet metal or screens, but it must be a continuous and fully closed
container.

Objects placed inside a Faraday box should be safe from an EMP if the box
is closed. A caveat is that whatever is inside can’t touch the metal of the box, so
it would need to be wrapped in plastic or some other nonconductive material.
Another caveat is that whatever is inside the Faraday box should be turned off.
No electric cords should be exposed or plugged in.

As it happens, computers with magnesium or aluminum cases may have
some EMP protection from the cases themselves. Checking EMP resistance in a
lab would be needed to quantify their effectiveness.

Assuming metal cases do provide EMP resistance, it would be inexpensive to
include some kind of metal mesh, probably aluminum, embedded in the Kevlar
or plastic commonly used for notebook computer cases. Tablets and smart-
phones with open screens and no clamshell lids would need separate metal cases
or at least metal screen covers.

Unfortunately for consumers and homeowners, a major EMP attack would
probably leave them without working automobiles if they have embedded com-
puters and without television sets, wireless networks, computers, and “smart”
electric appliances. Old-fashioned appliances without computer chips might
survive. Old automobiles without modern electronics might also survive.

Modern equipment may be destroyed beyond repair. A normal affl uent family
could easily lose almost $500,000 in ruined equipment that will never work again.

Encryption

Encryption, or concealing plain text by means of symbolic substitutions or trans-
position, is much older than the computer era. An excellent book called The
Code Breakers by David Kahn gives the entire history of codes, codebreaking,

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare402

cyphers, and other forms of hiding information. This book starts with the
Sumerians and continues through the date of publication in 1996.

For some reason, China did not excel in codes and encryption, but India did.
An early sutra on the life of Buddha from perhaps 300 ad mentions that
Buddha as a child amazed one of his childhood teachers by explaining 64 kinds
of writing, including several that appear to be cryptographic.

An even older Hindu Indian document from perhaps 200 bc is the famous
Kama Sutra. One section lists 64 skills that women should learn, and skill num-
ber 45 in this list is writing in code.

Encryption with a computer in today’s world is not diffi cult, and many
encryption software applications are available, including some that are free
and from open-source providers. A fairly early form of encryption using
software was an application called Pretty Good Privacy by Phil Zimmerman
in 1991.

Encryption should be more widely used and offered as a standard feature.
Computer experts can easily include encryption packages in their personal
computers, but novice computer users probably don’t even know about
encryption packages.

Some of the things that should be kept in encrypted form for safety include:

• Email address books

• Password catalogs, if stored in a computer

• Quicken and fi nancial fi les

• Credit card information, if stored in a computer

• Text documents with secret or proprietary information

• Spreadsheets with secret or proprietary information

• Database records with secret or proprietary information

In addition, offi ce products such as word processing, spreadsheets, and data-
bases should include an encryption selection when using the “save as” com-
mand. It would not be hard to save an offi ce fi le as an encrypted document.

Estimating Cyberattack Recovery Costs

Cyberattacks are now so common that it is possible to predict the approximate
costs for stopping attacks, assessing and repairing damages, notifying clients of

ptg11539604

403Raising Our Immunity to Cyberattacks

any missing data, and beefi ng up security so that the same kinds of attacks can’t
happen again.

My Software Risk Master (SRM) tool began to estimate cyberattack recovery
costs starting in 2012, and no doubt other commercial parametric estimating
tools will soon include similar estimates. SRM also predicts the probable
number of latent security fl aws in deployed applications.

Latent security-fl aw predictions are based on a combination of factors
that include programming languages, development methodologies, use
of pre-test inspections and static analysis, team experience, and the nature
of the application itself. CMMI levels are a minor factor as well. (The
initials CMMI stand for “capability maturity model integrated,” which is a
software practice evaluation method developed by the SEI and now widely
used.)

Insurance Against Cybertheft and Cyberattack Damages

In the 1990s, insurance companies began to receive new kinds of claims from
corporate clients about damages from hacking and data theft. The existing
policies from that decade did not have any explicit language for these losses, so
some companies paid the claims and some did not.

By about 2000, the insurance industry recognized that these claims were
increasing rapidly, and it began to offer new forms of cybertheft and cyberattack
policies. These did not sell as well as expected because the costs of the damages
varied widely, and there were not effective algorithms for underwriters to use.

According to a study presented at a Cyber Liabilities insurance conference in
April 2012, about 72% of U.S. companies do not currently have any cyber
liability insurance in place. The authors of the study were Peter Foster, David
Molitano, and Brad Gow from various insurance companies.

Of the 28% that do have insurance, about half have small policies that
probably won’t cover more than a fraction of the total costs for a major attack.

The Cyber Security Agency of the European Union, the European Network
and Security Agency, published a similar report that cited fairly low cyberattack
insurances throughout the European Union.

To date, cyberattack insurance costs vary widely and range from between
about $15,000 per million of coverage to $35,000 per million of coverage. This
is perhaps why many companies self-insure for cyberattacks.

Personal cyberattack insurance does not seem to be currently available,
or at least it does not show up in web searches for “personal cyberattack
insurance.”

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare404

Secure Programming Languages

Because many security fl aws are due to poor programming practices, it is
theoretically possible to develop hack-resistant languages that would help in
preventing cybercrime. Several languages such as E and Joule are cited as being
secure.

The SEI started a programming language security initiative as part of the
CERT program. There are security standards and guidelines available for a
number of languages.

However, more and better data about language vulnerabilities are needed.
The computer security engine discussed earlier in this chapter would have a fea-
ture that analyzed all reported attacks, including zero-day attacks, and gener-
ated statistics of attack frequencies by programming language. In addition, the
computer security engine would try to identify the specifi c vulnerabilities that
the attack utilized and generate potential countermeasures.

Some companies such as CAST Software also perform studies of both bugs
and security fl aws associated with various programming languages such as
COBOL, Java, SQL, C and C dialects, and the like.

The software industry has at least 2,500 known programming languages,
and new languages are being announced at rates in excess of two per month. It
is not easy to stay current on the security features of programming languages
without using intelligent agents to gather data in real time followed by statisti-
cal and forensic analyses of successful and unsuccessful attempts at hacking the
languages.

It is also clear that hack-resistant languages need to stay away from
computer hardware and computer BIOS fi les. A synergistic combination of
hack-resistant hardware combined with hack-resistant software and hack-
resistant languages, plus a suite of strong fi rewalls and antivirus packages,
all seem to be congruent in eliminating one of the major threats of the
21st century.

The Increasing Frequency and Costs of Cyberattacks in
the United States

In the autumn of 2012, Hewlett-Packard was wrapping up a security survey of
56 companies. Data from this survey were published in an article by Matthew
Schwartz in Information Week on October 8, 2012, and republished in the
Information Week Security online newsletter on November 28, 2012.

ptg11539604

405The Increasing Frequency and Costs of Cyberattacks in the United States

According to these data, the average damage from a cyberattack against
the 56 survey respondents was about $8.9 million. This was an increase of
6% from 2010 and 38% from 2009.

Alarmingly, these 56 companies were receiving about 102 attacks per week.
This is up from 72 weekly attacks in 2010 and 50 weekly attacks in 2009.

Cleanup and recovery after an attack takes an average of about 24 business
days and costs an average of $591,000. This is an increase of 42% from the
2011 cost of $416,000 for recovery. The increase is probably due to the increase
in attack sophistication.

In August 2012, General Keith Alexander, the Director of the National
Security Agency and head of the U.S. Cyber command, gave a public speech at
the American Enterprise Institute in Washington, D.C. He commented that
cyberattacks and recovery are costing the United States about $250 billion per
year. The fi gure seems to be escalating.

The bottom line about cybercrime and cyberwarfare in today’s world is
alarming:

• Cybercrime is one of the most widespread forms of crime in human
history.

• Cybercrime is the most global kind of crime in human history.

• Cybercrime is the longest-range form of crime in human history.

• Cybercrime has harmed more companies than all other white-collar
crimes.

• Cybercrime may soon have more human victims than any other crime.

• Cybercrime is increasing in frequency faster than any other kind of crime.

• Cyberwarfare aims at civilian targets as well as military targets.

• Cyberwarfare military groups are expanding faster than any other
military group.

Hopefully, a concentrated and coordinated defense against various kinds of
cyberattacks and cybercrime can reverse these recent alarming trends.

It is theoretically possible to raise the immunity of computers and software
to penetration by harmful viruses, Trojans, and worms. Both hardware
and software resistance needs to improve by perhaps an order of magnitude
compared to today’s standards.

ptg11539604

Chapter 12 A Brief History of Cybercrime and Cyberwarfare406

It is technically possible to increase the effectiveness of current defensive
measures such as fi rewalls and antivirus software. Firewalls should block at
least 99% of known threats and 90% of zero-day threats. Antivirus packages
should knock out and remove at least 99% of viruses and worms that penetrate
the fi rewalls.

To reverse the number and seriousness of cyberattacks, it will be necessary
for corporations, universities, and government agencies such as Homeland
Security and the FBI to collaborate on both fundamental research and also on
deployment of proven technologies.

As computers and software continue their exponential growth rates and per-
meate every aspect of business and government, better cybersecurity is a major
concern for every government, company, and citizen.

Summary

Computer and software have brought enormous benefi ts to individuals, compa-
nies, and government agencies. They have also created hundreds of major new
companies and wealth beyond what anyone anticipated prior to the 1970s.

But computer and software failures of medical devices and embedded devices
have taken lives and caused injuries. Identity theft has wiped out savings and
bank accounts for thousands of victims.

The good uses of computer and software are in sharp contrast to the harmful
uses by cybercriminals and cybersoldiers.

Every individual, company, and government agency needs to stay at full alert
and constantly upgrade their security measures in the modern world.

ptg11539604

407

Annotated Bibliography
and References

Most of the research for this book was done using web sources rather than
books. Therefore, it seems best to include an annotated bibliography rather
than a standard set of references. There were also a number of published books
used, but websites outnumbered actual books by more than 100 to one. For
example, I visited websites for about 200 corporations and about 25 nonprofi t
organizations and professional associations.

Many of the books cited in this bibliography are “classics” that have infl u-
enced several decades of software engineering process. For example, Fred
Brooks’s The Mythical Man-Month and Jerry Weinberg’s Psychology of
Computer Programming remain popular today, even though they were fi rst
published in the 1970s. In fact, Brooks’s book even had a 25-year special repub-
lication with new materials.

Book Sources

Like every major industry, the computer and software industries have attracted
authors who are interested in historical and social topics as well as in the actual
technologies of the industry. There are many good books that have historical
slants. Some are pure history, while others mix historical topics with technical
issues. Software engineering also has much to learn from older professions such
as medicine and law.

Boehm, Barry. Software Engineering Economics. Prentice Hall, Englewood
Cliffs, NJ, 1981.

This book is among the best-selling software books of all time, deservedly
so. Dr. Barry Boehm was a pioneer in tackling the complex issues associated
with the architecture, design, and cost predictions for major software projects.
This was a pioneering book that showed many of the factors that infl uence the
results of software projects, and it helped to turn software estimation into an
effective discipline with accurate parametric tools.

ptg11539604

Annotated Bibliography and References408

Brooks, Fred. The Mythical Man-Month. Addison-Wesley, Reading, MA,
1974, rev. 1995.

Dr. Fred Brooks was in charge of the IBM S/360 operating system. This was
the largest IBM software package of the decade and the fi rst to encounter the
problems of cost and schedule overruns, which have become endemic. This
book is a classic of software engineering and is fi lled with sharp insights and
pithy observations, such as adding people to a late project makes it later.

Campbell-Kelly, Martin. A History of the Software Industry: From Airline
Reservations to Sonic the Hedgehog. MIT Press, Cambridge, MA, 2004.

This interesting book came out in 2004 and does a good job of discussing
the companies and trends from the 1950s forward to 2004. The book also
shows sales volumes and revenues for selected kinds of software spanning sev-
eral decades. It was a useful reference source for this book to ensure that the
focuses of each decade were congruent between the two.

DeMarco, Tom, and Lister, Tim. Peopleware. Dorset House Press, 1999.
Tom DeMarco is a famous consultant, public speaker, and author on a

variety of important software topics. Tim Lister is a colleague of Tom’s and a
partner in the Atlantic Systems Guild. The book selected for this annotated
bibliography was chosen because it, along with Jerry Weinberg’s Psychology
of Computer Programming, deals with the fundamental issue that software
applications are designed and developed by human beings.

Weinberg’s book dealt with programmers as individuals. DeMarco and Lister’s
book expands the view to groups and also to the physical environments provided
for the groups. For example, Peopleware was the fi rst book to address the issues
of offi ce space and privacy. This book, along with many others by Tom DeMarco,
has been infl uential across several decades.

Gack, Gary. Managing the Black Hole—The Executive’s Guide to Project
Risk. The Business Expert Publisher, Thomson, GA, 2010.

The current book states several times in several chapters that large software
projects are subject to unexpected delays, cost overruns, and outright failure.
This interesting book by Gary Gack is congruent with the statements in this
book, and it provides additional evidence. It also provides some suggested solu-
tions for avoiding these endemic problems, including use of formal inspections
and better quality control.

Gilb, Tom, and Graham, Dorothy. Software Inspections. Addison-Wesley,
Reading, MA, 1993.

Formal inspections of requirements, design, code, and other deliverables
were invented at the IBM Kingston development labs in the 1970s. Two
well-known pioneers of inspections were Michael Fagan and Ronald Radice.

ptg11539604

409Annotated Bibliography and References

Tom Gilb and Dorothy Graham, as well as several other authors, studied the
inspection methodology and wrote books about it. This book was chosen for
this bibliography for international reasons, because it is popular in Europe.
(Tom lives in Norway.)

For more than four decades, formal inspections have been the top-ranked
method of removing defects in terms of defect removal effi ciency. Inspections
average about 85% of removal effi ciency, or more than twice the average
effi ciency of most forms of testing. This book is a solid introduction to a topic
that every software engineer, and in fact every reader of this book, should know
about.

Glass, R. L. Software Runaways: Lessons Learned from Massive Software
Project Failures. Prentice Hall, Englewood Cliffs, NJ, 1998.

As major software projects began to top 10,000 function points and one
million source code statements in the 1970s, they began to experience severe
problems with cost and schedule overruns and outright cancellation due to nega-
tive returns on investment. These problems remain chronic and endemic prob-
lems of software engineering even today. This useful book by Bob Glass examines
a number of famous failures and explains what went wrong.

For example, the failure of the Denver airport luggage-handling system is a
microcosm of large-system mistakes, including optimistic estimates; poor
architecture and design; arbitrary schedules; poor change control; poor quality
control; and very poor and even deceitful status tracking.

Humphrey, Watts. Managing the Software Process. Addison-Wesley, Reading,
MA, 1989.

This is yet another software engineering classic by a famous software
engineering expert. Watts Humphrey had a long and successful career at IBM.
He was IBM’s Director of Software and introduced many important process
improvements.

Watts then moved to the Software Engineering Institute (SEI), where he
pioneered the famous capability maturity model. Watts also developed the
team software process (TSP), which is one of the strong quality methods used
successfully on large and complex applications.

Overall, Watts had a multidecade impact, starting with IBM in the 1960s
and continuing through the SEI era of the 1980s and up through the 2000 era.
Watts is the author of many more books, but this one was selected because it
has been infl uential for more than two decades.

Isaacson, Walter. Steve Jobs. Simon and Schuster, New York, 2011.
In addition to being an excellent biography of one of the great pioneers of

computing and software, this book is a fascinating account of the emergence of

ptg11539604

Annotated Bibliography and References410

the computer and software industry to global importance. It is an excellent
source of historical information about the rise of the Silicon Valley region from
the 1970s through the 2000s.

All of the big names of software (Bill Gates, Larry Ellison, and Ken Groves)
are included, as are some of their actual conversations with Steve Jobs. This
book is strongly recommended for anyone who is interested in software and
computing history and also interested in the fascinating history of Silicon
Valley. In fact, the entire software industry is refl ected in the book.

The main focus is on Steve Jobs and his companies, including Apple, NeXT,
and Pixar. However, Steve interacted with dozens of other companies and hun-
dreds of software luminaries. He also had interesting relationships with politi-
cians; movie stars; musicians such as Joan Baez and Bob Dylan; and the
California Buddhist community, including the Zen monk Kobun Chino, who
performed Steve’s wedding service. Jobs comes across as brilliant but decidedly
eccentric and also not a very kind person to some of his employees and friends.

This book was a useful source of background information for the chapters
on the 1970s through 2000s.

Jones, Capers. Assessment and Control of Software Risks. Prentice Hall,
Englewood Cliffs, NJ, 1994.

This older book is included in part because it was an attempt at a cross-
disciplinary experiment between medicine and software. The format of the
book was an exact replica of the medical book Control of Communicable
Diseases in Man, published by the U.S. Public Health Service.

As it happens, medical practice has many lessons for us in software engineer-
ing, including diagnostic techniques, immunization against problems, and also
control of communicable problems. The format of the medical book was a good
model for a book on software risks, and the sections on epidemiology, identifi ca-
tion, diagnosis, and treatment are relevant to both fi elds. Of course, software
projects do not have truly communicable diseases such as smallpox so that they
require isolation. However, many of the problems that occur with software pro-
jects are clearly “contagious” because they occur with hundreds of other projects.

Medical practice provides many other valuable lessons for software such as
licenses and board certifi cation and malpractice monitoring. Readers are
referred to the later entry in this bibliography for Paul Starr’s book on the social
transformation of American medicine.

Jones, Capers. Estimating Software Costs, 2nd edition. McGraw-Hill,
New York, 2007.

This older book discusses the methods and techniques used by parametric
software estimation tools, an industry that began in the 1970s. A total of fi ve

ptg11539604

411Annotated Bibliography and References

parametric estimation companies are discussed in the current book, since this is
a signifi cant subindustry of software project management.

The book provides examples and some algorithms for predicting the quality,
cost, schedule, effort, and staffi ng for software development and software main-
tenance projects. It also shows how estimates need to be adjusted for various
methods, programming languages, and team experience levels.

The book is included here because it has a summary treatment of the history
of the software estimating subindustry. Software estimates have been made
easier by the development of function point metrics. These simplify estimates
for requirements, design, and other noncoding tasks. Collectively, the effort
for producing paper documents is sometimes much more than for code itself.
Some military software projects have spent more than twice as much on paper
as on code.

Jones, Capers. Applied Software Measurement, 3rd edition. McGraw-Hill,
New York, 2008.

This book includes some historical data on productivity and quality levels
between the 1960s and the 2000s. The book also includes information on how
quality and productivity rates differ among the various types of software, such
as embedded applications, systems software, commercial software, internal
information systems, web applications, domestic and offshore outsource
groups, and many others.

Jones, Capers. Software Engineering Best Practices. McGraw-Hill, New
York, 2010.

This book includes data and descriptions of a number of development methods
and practices, and it also discusses where past experiences may lead to in terms of
future software engineering. In one chapter, it makes a big leap and considers what
software might be like in 2049.

Software engineering is much more than just coding, so the book covers
requirements, architecture, design, coding, inspections, static analysis, change
control, integration, confi guration control, maintenance, enhancements, plan-
ning, estimating, status tracking, and many other software engineering topics
and software project management topics.

Jones, Capers, and Bonsignour, Olivier. The Economics of Software Quality.
Addison-Wesley, Reading, MA, 2011.

As the current book points out, software quality has been a chronic weakness
of the software industry since it started to grow in the 1950s. This book
discusses the economics of quality and shows the effectiveness of defect
prevention, pre-test static analysis, pre-test inspections, and 25 kinds of test
methods. Poor quality remains an endemic problem in 2013.

ptg11539604

Annotated Bibliography and References412

Kuhn, Thomas. The Structure of Scientifi c Revolutions. University of
Chicago Press, Chicago, IL, 1996.

There is no question that computers and software are both scientifi c revolutions
and also social revolutions in the way they have impacted human commerce, com-
munications, and also medicine and warfare. Kuhn’s book is a classic, but it is not
about software at all. It is a fascinating analysis of many older scientifi c revolu-
tions and their impact on human consciousness.

An interesting phenomenon about many new scientifi c revolutions is that the
technologies were originally resisted. Only when evidence became overwhelm-
ing is there a fairly abrupt adoption. Some of the scientifi c topics resisted at fi rst
include vaccinations, Copernican theory, continental drift, and even quantum
theory.

The same kind of resistance to new ideas also shows up in mechanical inven-
tions. For example, Samuel Colt’s revolver and John Ericsson’s invention of
screw propellers for ships were not only rejected, but both inventors also went
bankrupt. Ericsson even spent time in debtors’ prison.

In the case of Colt, the unexpected acquisition of 100 revolvers by the
Texas Rangers began to turn things around. In the case of Ericsson, he later
became famous when he built the Monitor for the Union navy during the
Civil War.

It is a matter of both technical and social importance that the rejections of
both inventions were not based on due diligence or even full consideration
of their merits. The psychologist Leon Festinger proved that humans have a
kind of “cognitive dissonance” that leads to strong rejection of new ideas
when fi rst encountered if the new ideas are in opposition to existing ideas.
Kuhn’s book on scientifi c revolutions deals with the same concepts in a
historical setting.

Love, Tom. Object Lessons. SIGS Books, New York, 1993.
Tom Love is one of the codevelopers of the Objective-C programming

language (together with Brad Cox). As readers of the current book know,
Objective-C was selected by Steve Jobs as the primary language for both Apple
and NeXT software projects.

Tom Love’s book is a good introduction and history of the object-oriented
paradigm, which is now a major asset of software engineering. The book also
includes a fascinating discussion of an early example of the damages that can be
caused by late and unwise requirements changes.

In 1628, the new Swedish ship-of-the-line Vasa was launched and then cap-
sized and sank after traveling less than a mile. Apparently, as construction

ptg11539604

413Annotated Bibliography and References

was nearing completion, King Gustavus Adolphus ordered an extra gun deck
on top of the existing gun deck against the advice of his naval architect and
the builder.

The new gun deck plus the heavy bronze cannon it carried caused the ship to
become top-heavy. As soon as the breeze freshened, the Vasa keeled over and
sank, with the loss of many lives. Although a ship is not software, the Vasa
provides a strong lesson that ill-considered and late requirements changes can
cause unanticipated consequences.

The ship was recovered and is now located at a permanent museum in
Stockholm, Sweden. This museum has nothing to do with software, but it does
provide interesting historical facts about late requirements changes.

I have visited the museum while working in Stockholm. The Vasa is a beautiful
ship and well crafted, except for being top-heavy. It was intended to be the state
of the art at a time when Sweden was a major military power in northern Europe.

McConnell, Steve. Code Complete: A Practical Guide for Software
Construction, 2nd edition. Microsoft Press, Redmond, WA, 2004.

This book fi rst came out in 1993 and was soon very popular among the soft-
ware engineering community. This is a technical book aimed at practicing
software engineers who actually code applications. It has remained popular
(hence a second edition) and continues to provide practical information even
in the current decade. It remains one of the top-selling books in the software
engineering sector.

Pressman, Roger. Software Engineering—A Practitioner’s Approach,
6th edition. McGraw-Hill, New York, 2005.

This book is an enduring classic by a top professor of software engineering.
Roger Pressman is a good writer, and this excellent book covers software engi-
neering from beginning to end, including requirements, architecture, design,
coding, testing, and even the managerial tasks of planning and estimating. This
book stays current, as can be seen by its number of editions.

This is a large book fi lled with interesting information. It is not the only
book on software engineering, but it was chosen for this bibliography because
of its continuing relevance and its good writing.

Royce, Walker E. Software Project Management—A Unifi ed Approach.
Addison-Wesley, Reading, MA, 1998.

This book dates from 1998 but is still modern enough to be useful. It has
the virtue of looking at and considering a number of older software project
management methods before presenting the method recommended by the
author.

ptg11539604

Annotated Bibliography and References414

Walker Royce is an IBM vice president and the chief economist of IBM
Rational. He has many years of experience behind him, so the book is based on
empirical evidence. The reference is included in the current book because failures
in software project management lead to more lawsuits and canceled software
projects than technical failures by the software engineering community.

Walker was also a pioneer at Rational in the development of the rational
unifi ed process (RUP), although many colleagues at Rational also made major
contributions.

Starr, Paul. The Social Transformation of American Medicine. Basic Books,
New York, 1984.

This is not a software book but rather a history of the emergence of U.S.
medical practice from a minor craft to a major profession. The book won the
Pulitzer Prize for nonfi ction in 1984. There are excellent lessons for the
software community in how the American Medical Association (AMA) was
able to improve medical education, initiate licensing and board certifi cation,
and weed out quackery.

Only 150 years ago, medical practices and medical education were worse than
software today. Many medical schools were for-profi t institutions and did not
demand college degrees or even high school completion. Over half of U.S. physi-
cians never went to college. Medical degrees were two-year programs and did not
include internships or residency programs. Worse, students never even entered
hospitals because the hospitals had their own private medical staffs. There was no
malpractice monitoring. Harmful products such as arsenic and opium could be
freely prescribed. There was no Food and Drug Administration at that time. Paul
Starr’s book should be read by every person interested in software process
improvement or in improving software engineering college programs.

Weinberg, Gerald M. The Psychology of Computer Programming. Van
Nostrand Reinhold, New York, 1971.

Weinberg’s classic book came out in 1971 as software was rapidly expanding
and on its way to becoming a major industry with millions of practitioners.
(Weinberg and I were colleagues at IBM during the same decades, as were Fred
Brooks and Watts Humphrey.) Jerry’s classic book was the fi rst to examine the
tasks associated with software development from a psychological standpoint.

Yourdon, Edward. Decline and Fall of the American Programmer. Prentice
Hall, Englewood Cliffs, NJ, 1993.

Ed Yourdon is a well-known author, public speaker, and software management
consultant. He also does expert witness work in software litigation. (Ed Yourdon
and I have been expert witnesses in several cases, once on opposite sides and once
on the same side.) Among Ed’s books relevant to software engineering are Death

ptg11539604

415Annotated Bibliography and References

March, Rise and Resurrection of the American Programmer, CIOs (per Web) at
Work, and quite a few more.

This book was selected because it was published when offshore outsourcing
to India, China, Russia, and other countries with low labor costs were generat-
ing alarm among the U.S. software engineering community. The theme of this
book is that U.S. software could be world class and highly competitive if we
used effective methods, including effective quality control. The lessons in this
book remain valid even today.

The title of Ed’s book is, of course, a derivative of Gibbon’s famous history
book, The Decline and Fall of the Roman Empire.

Web Sources

Computers and software rank among the newest of industrial technologies. Yet
their social and economic values have led to a very signifi cant number of
museums and historical websites. This is due partly to the wealth created by
computers and software and partly to the donations and contributions of major
companies such as IBM, Microsoft, Oracle, Apple, and others for preserving
the early knowledge of the computing and software industries. Readers with an
interest in computing history are urged to visit as many of the museums as pos-
sible. The websites of the museums also provided data for this book, including
several timelines of computer evolution.

Boston Computer Museum
This museum opened in 1979 and operated as an independent museum

until 1999, when it merged with the Museum of Science in Boston. The Boston
Computer Museum also started an affi liate in California in 1996, which evolved
into the current Computer History Museum in Mountain View, California.
(I founded a software company in Cambridge, Massachusetts, in 1984. While
living in Massachusetts, I made many visits to the Boston Computer Museum
with colleagues, friends, and relatives.)

In the 1970s, Cambridge, Massachusetts, was a major competitor to the
Silicon Valley region of California as a hotbed of computer and software
research, thanks in part to MIT and other Massachusetts universities.

The museum received some materials from the Digital Equipment Corpora-
tion (DEC) Museum, which had been started in 1979 by Gordon Bell and Gwen
Bell. In 1982, the museum became a nonprofi t corporation and soon opened a
facility on the Boston waterfront.

ptg11539604

Annotated Bibliography and References416

Between the materials on display at the Boston Science Museum and the
Computer History Museum in Mountain View, California, the bulk of the
Boston Computer Museum’s exhibits are still available. However, the demise of
the actual Boston museum and its reemergence in Silicon Valley shows how
computing and software technologies shifted from east to west between the
1970s and 1990s.

Computer History Museum; www.computerhistory.org
This museum is now located in a large and impressive building in Mountain

View, California, in the heart of Silicon Valley. The museum started as an off-
shoot of the Boston Computer Museum but soon outgrew its parent. Eventu-
ally, the Computer History Museum absorbed many of the displays from the
Boston Computer Museum when it ceased to operate in 1999.

The computer museum has a rich collection of computing devices and also
large collections of reference materials. The museum features a useful computer
timeline from prehistory through the modern era. In addition to being a
museum, there are also courses and interactive materials. Some information is
broader than just computers, such as a history of Silicon Valley before it became
a technical hotbed. (I lived in Silicon Valley in the 1960s and ‘70s and saw its
transformation from fruit orchards to high-technology companies.)

The Computer History Museum also has a subsection dealing with the
history of computer software, as discussed later in this bibliography.

Computer Science Lab; www.computersciencelab.com
This is a website that offers software training materials. However, it is cited

in this book because it also has a beautiful monograph titled “An Illustrated
History of Computers,” with very good pictures ranging from stone counting
boards and early abacus versions through modern computers. Many of the pic-
tures are in color. The specifi c website for the illustrated history is www.
computersciencelabe.com/ComputerHistory/History.htm.

These interesting photographs provide a quick sweep of human attempts to
speed up calculations from the medieval era through modern times. The early
mechanical calculators are of great historical interest.

Computerspielemuseum; www.computerspielemuseum.de
This interesting museum is located in Berlin, Germany. One of its unique

aspects is a very wide-ranging set of displays dealing with computer games.
Computer gaming has become a major subindustry of both hardware and soft-
ware. In some areas such as computer graphics, the game industry is actually
ahead of other software fi elds.

In fact, the massively interactive games where thousands of players use ava-
tars to move about virtual worlds would have great value in other fi elds such as

http://www.computerhistory.org
http://www.computersciencelab.com
http://www.computersciencelabe.com/ComputerHistory/History.htm
http://www.computersciencelabe.com/ComputerHistory/History.htm
http://www.computerspielemuseum.de

ptg11539604

417Annotated Bibliography and References

education, virtual conferences, military planning, and even business planning.
With actual travel becoming more expensive and less convenient and enjoyable,
it can be predicted that immersive hyperrealistic simulated environments will
move out of the game world and into other forms of activity where groups or
crowds need to communicate.

Congressional Cyber Security Caucus; www.cybercaucus.langevin.house.us
The Congressional Cyber Security Caucus is a rare example of bilateral

cooperation between Democrats and Republicans. The caucus has also devel-
oped into one of the major sources of data on cybercrime and cyberwarfare.
Readers interested in cybersecurity are strongly recommended to subscribe to
the weekly online bulletin.

The bulletin of the caucus is one of the best sources of security data available
from the web. Because congressional sources are more sophisticated than those
available to most civilians, this is a top resource for security topics.

Dr. Dobb’s; www.drdobbs.com
This journal originated in California in the 1970s with the curious name

of Dr. Dobb’s Journal of Tiny BASIC Calisthenics and Orthodontia. This
attempt at a humorous name was soon abandoned. Over time, Dr. Dobb’s
evolved into a signifi cant journal aimed specifi cally at coding programmers
and software engineers. The journal also looks at programming tools and
programming environments, including syntax checkers, debuggers, and other
ancillary tools.

Dr. Dobb’s also issues annual awards for innovative products, called Jolt
awards. For readers interested in the technical aspects of software engineer-
ing and the effectiveness of various programming languages and toolsets,
Dr. Dobb’s is a valuable resource.

In recent years, Dr. Dobb’s evolved from a published paper journal to a web
journal with an associated repository of articles and monographs. (I had several
of the older paper editions, which appeared to be printed on newspaper stock
paper rather than on fi nished paper.)

History Timelines; www.history-timelines.org.uk
This website has numerous timelines dealing with diverse topics. However,

the computer history timeline on this site is very extensive and also includes
enabling inventions such as transistors, circuitboards, and disk drives. The
noncomputing timelines cover wars, national histories, and biographical time-
lines of famous people such as George Washington.

These timelines are useful in showing the context of computers and software
in terms of what was happening in the world during specifi c eras. Often, techni-
cal timelines are closely intertwined with social timelines. For example, World

http://www.cybercaucus.langevin.house.us
http://www.drdobbs.com
http://www.history-timelines.org.uk

ptg11539604

Annotated Bibliography and References418

War II clearly accelerated the need for faster calculations for ballistics,
decryption, and other military purposes.

Hoover’s Business Guides; www.hoovers.com
For readers interested in some of the specifi c companies cited in this book,

the collection of corporate data contained in the Hoover’s Guides is recom-
mended. Hoover’s materials cover not only individual companies but also more
than 900 industry segments. The Hoover’s data also include historical trends
over time. The Hoover’s Guides were used as background information in this
book as a resource for showing the context of software use by industry and
company over time.

IBM Corporate Archives; www.ibm.com/ibm/history
IBM is the only company cited in this book that has lasted more than

100 years. As a result, the IBM archives present a long and varied history of IBM
inventions and business changes. The IBM archives were used in several chapters
of this book, starting with the chapter on the 1930s when IBM as well as other
companies were in the grip of the Great Depression. Indeed, if Thomas J. Watson,
the founder of IBM, had not been ready to help the federal government handle
Social Security processing when the law was passed in 1935, IBM might not have
survived or grown into the major corporation that it is today.

It is diffi cult to imagine the computer industry without IBM, but the Depression
from 1929 through 1935 was a close call for IBM. It is of social interest that IBM
did not have layoffs during the Depression and had even improved employee
benefi ts, as cited in the 1930s chapter of this book.

Other companies have useful corporate histories, but not many companies
have been around as long as IBM or developed so many inventions and innova-
tions that became part of the computer and software industries.

IBM Math Timeline; www.mindsofmath.com
In the 1960s, IBM produced a fascinating wall chart on the history of

mathematics. In commemoration of the centennial of Ray Eames, the chart has
been turned into an interactive application for iPads. Hopefully, the same appli-
cation will be ported to other platforms. For those interested in the close ties
among mathematics, computing devices, and later software packages such as
Mathematica, this timeline provides a fascinating picture. The new interactive
version is a good example of what touchscreens are good for.

IEEE Computer Society; www.computer.org
In one form or another, the IEEE Computer Society dates back to 1946. It

took its current name and structure in 1971 when it was created as a nonprofi t
group from several older organizations. The IEEE Computer Society publishes a
number of leading refereed journals, hosts a number of international conferences,

http://www.hoovers.com
http://www.ibm.com/ibm/history
http://www.mindsofmath.com
http://www.computer.org

ptg11539604

419Annotated Bibliography and References

and also has several subgroups that are interested in computing and software
history. This is a very large and multifaceted group that has been part of the
computer and software industry sectors since they began.

Information Technology Metrics and Productivity Institute (ITMPI); www.
itmpi.org

This organization is a wholly owned subsidiary of Computer Aid, Inc. ITMPI
has offered seminars, webinars, and technical papers for more than 10 years. Its
website has grown to become a very rich repository of technical articles and
monographs on software risks, software productivity, software quality, and
many other relevant topics.

The ITMPI director and the CAI president have not built the organization
just as a sales tool. They have sought out leading authors and software thinkers
and, in total, more than 50 top software engineering researchers have contrib-
uted materials. Some papers deal with historical topics.

ITMPI also offers a variety of courses via the web, some of which are certi-
fi ed by the Project Management Institute (PMI). There is a strong focus in the
ITMPI data and reports on project management issues, as well as on standard
software engineering issues such as quality control.

ITMPI is not a pure programming resource, such as Dr. Dobb’s, but rather a
resource covering a wide bandwidth of software engineering and software pro-
ject management issues using a variety of authors and experts. The combination
of published documents and recorded webinars is a useful resource for readers
interested in modern and successful methods and practices.

The ITMPI source materials increase rapidly in size and probably grow by
more than a dozen papers and monographs per month. ITMPI is a commercial
organization and not an academic organization, so both the authors and the
clients tend to be interested in business applications rather than in more esoteric
software engineering topics.

International Function Point Users Group (IFPUG); www.ifpug.org
Function point metrics were developed at IBM in White Plains by Alan

Albrecht and colleagues in the 1970s. IBM placed function points in the public
domain in 1978. Soon after, a nonprofi t group of function point users was
started in Canada and then moved to the United States.

IFPUG has grown to become the largest software metrics association in
history, with affi liates in about 30 countries. All of the data in all of my books use
function points for normalization. Function point metrics are the only current
metrics that satisfy standard economic criteria for measuring software productivity.
The older lines of code metric does not meet economic criteria and, in fact, I con-
sider lines of code to be professional malpractice for software economic analysis.

http://www.itmpi.org
http://www.itmpi.org
http://www.ifpug.org

ptg11539604

Annotated Bibliography and References420

Very few readers of this book need to know how to count function points.
This is the same as saying very few readers need to know how to calculate
octane ratings for fuel. With octane, drivers just need to know what kind of fuel
to put in their cars.

For function point metrics, every reader should know that productivity rates
above 15 function points per staff month are good; below 5 function points per
staff month are bad. Readers should also know that defect potentials of more
than 5 defects per function point are bad; defect potentials below 2.5 defects
per function point are good. While on the topic of quality, defect removal
effi ciency (DRE) rates above 98% are good; below 85% is very bad, but
unfortunately 85% is close to the U.S. average.

International Software Benchmark Standards Group (ISBSG); www.
isbsg.org

This interesting nonprofi t group was founded in 1997 and discussed in the
chapter dealing with the 1990s. ISBSG collects benchmarks of software produc-
tivity and quality. Their data come from many companies in many industries
and many countries. It is a good source for checking productivity and quality
information. The ISBSG data also include data on many software development
methods, such as Agile, waterfall, and RUP, and on many different program-
ming languages. Although its data only go back to 1997, one of the forms of
data offered by ISBSG is changes in results over time.

IT History Society; www.ithistory.org
This nonprofi t organization has goals similar to this book (i.e., to collect

data on software companies and software technical advances). It currently has a
database with information on about 4,500 software-related companies. Hard-
ware companies are included, too. There is also an honor roll of people viewed
by IT History Society offi cers as having made a contribution.

This is an active and growing site, and readers of this book will fi nd large
volumes of similar information. Overall, this is a good resource for historians
and those interested in software engineering topics. Membership includes both
individuals and also corporate sponsors. The IT History Society will even fund
occasional historical projects, which is unusual, but welcome, for a museum.

Melbourne Computer Museum; www.museumvictoria.com.au
The Melbourne Museum has more than computers, but the computer sec-

tion is home to the famous CSIARC computer. This was the fi rst computer
built in Australia and one of the fi rst in the world. The name is derived from
Commonwealth Scientifi c and Industrial Research Organization Automatic
Computer.

http://www.isbsg.org
http://www.isbsg.org
http://www.ithistory.org
http://www.museumvictoria.com.au

ptg11539604

421Annotated Bibliography and References

The National Museum of Computing; www.tnmoc.org
This British computer museum is located adjacent to the famous Bletchley

Park, where the World War II codebreakers were housed, as discussed earlier in
the 1940s chapter of this book. The National Museum of Computing has a rich
collection of historical devices and also interactive materials and a library. A
Colossus computer is one of the displays.

Rhode Island Computer Museum; www.ricomputermuseum.org
This is an unusual museum with a volunteer staff. It started in 1996 with col-

lections of British automobiles and then switched to computers. It is a true non-
profi t organization organized under 501c(3) Internal Revenue Service code. It
was formally incorporated in 1999. Among the collection can be found Cray
computers, DEC PDP computers, and a variety of smaller computers. The col-
lection is international, with British as well as U.S. computers. Some computer
game consoles are also included. It is socially interesting that private computer
enthusiasts would come together to create such an interesting and useful
museum.

Software Industry Special Interest Group; www.softwarehistory.org
This is a subset of materials in the Computer History Museum, described

earlier in the bibliography. This is a special interest group (SIG) devoted to the
history of software and software pioneers. The content of its website includes
recorded oral histories of famous software gurus; descriptions of a number of
software companies; and collections of essays and monographs on software
topics of interest.

Perhaps the most intriguing are the oral recordings. Among those who pro-
vided recordings are Dan Bricklin, John Cullinane, Robert Frankston, Grace
Hopper, and perhaps 50 more researchers, industry leaders, and inventors.
There are also monographs, technical papers, and histories of interesting meet-
ings among various pioneer organizations. This is a rich collection of software
engineering memorabilia.

Wikipedia; www.wikipedia.com
As discussed in several places in this book, Wikipedia has become the largest

encyclopedia in the world. It was often used as a reference for this book. Among
the uses of Wikipedia for this book were lists of companies incorporated in any
given calendar year. Also useful were numerous histories and short descriptions
of thousands of companies. Not all of the Wikipedia descriptions are accurate,
and some may be closer to marketing material than objective discussion. Even
so, Wikipedia is a useful general reference for many topics, including the his-
tory of software and the history of the computer business.

http://www.tnmoc.org
http://www.ricomputermuseum.org
http://www.softwarehistory.org
http://www.wikipedia.com

ptg11539604

This page intentionally left blank

ptg11539604

423

3D printing, 288
“15 Worst Data Security Breaches of the

21st Century” (Amerding), 358
901 computer, 84
1930 to 1939, 37

innovators, 37–40
small mathematical applications,

40–42
1940 to 1949, 43

global confl icts, 43–44
historical contributions, 73–75
postwar era, 68–72
software applications, 74–75
software building, 75–76
World War II. See World War II

1950 to 1959
cultural perceptions of computers,

80–81
fi rst commercial computers, 85–89
function points, 90–91
innovators, 81–84
military and defense computers, 77–80
overview, 77
programming languages, 84
software applications, 89–90

1960 to 1969, 93
automation and new professions,

110–111
businesses, 115–118
computer and software growth,

120–122
credit cards, 109–110
early specialized outsourcing, 95–96
evolving workforce, 93–95
function points, 122–123
IBM System/360 computer, 104–106
litigation, 118–119
PDP-1 computer, 111–112
programmers, 96–104
programming languages, 112–115

space, 119–120
Turing award, 106–108

1970 to 1979
background enabling inventions,

159–162
companies formed, 129–145
function points in 1975, 162–163
Honeywell and Sperry-Rand lawsuit,

158–159
impact of companies, 145
overview, 125
software applications, 146–147
software categories, 147–158
software evolution, 125–129

1980 to 1989
companies formed, 168–204
function points, 204
overview, 165
rapid changes, 166–168
software growth, 204–205

1990 to 1999
companies formed, 212–237
function points, 244–245
innovations, 210–212
international date formats, 239–242
mass updates and legacy software,

237–239
outsourcing, 243
overview, 207–208
software growth, 243–244
World Wide Web emergence, 208–210

2000 presidential election, 368–370
2000 to 2009

companies formed, 257–283
dot-com bubble, 248–250
function points, 284–285
Great Recession, 250–254
innovations, 254–257
overview, 247–248
software growth, 283–284

Index

ptg11539604

Index424

2001: A Space Odyssey (Clarke), 81
2010 to 2019

companies and products predictions,
311–327

companies formed, 296–311
function points, 328–329
overview, 287–288
predictions, 288
software engineering improvements,

293–296
software engineering professional

status, 289–293
software growth, 327–328

“Abbreviated Computer Instructions”
report (Turing), 55

ABC computer, 40, 64–65
Abnow browser hijacker, 366
AbsolutData Research company,

260–261
Accenture company, 171–172
Access

controls, 399–400
evolution of, 17–18

Accord automobiles safety recall, 348
Accounting practices, 133
“Act to Promote the Progress of Useful

Arts”, 20
Activity metric in social networks, 309
Ada programming language, 190
Adams, Charley, 72
Adaptive Business Intelligence

(Michalewicz, Michalewicz,
Schmidt, and Chiriac), 277

Addition in prehistoric knowledge, 4
Addresses

harvesting, 376–378
munging, 377

Adelman, Leonard, 390
Adhar, Azeem, 309
Administrators, 399
Adobe company, 172–173, 320
Adolphus, Gustavus, 413
Adult videos, 218
Advanced and experimental software,

147

Advanced Research Projects Agency
(DARPA), 121

Agile Manifesto, 234, 255
Agile system, 190–192, 225, 256
Agnew, Spiro, 127
Aiken, Howard H., 40, 66–67
Air-traffi c control systems

need for, 88–89
shutdown, 341–342

Airbus A380 wiring problem, 344–345
Airport luggage handling failure, 337–338
Akamai company, 214
Albrecht, Allan

backfi ring, 226
function point metrics, 106, 161–162,

419
at SPR, 196–197

Alcatel company, 166
Aldrin, Buzz, 119
Alexander, Keith, 405
ALGOL language, 84
Algorithm, concept of, 39
Allen, Paul

entrepreneur of year, 180
Microsoft founding, 131, 138–139
wealth of, 145

Alphabetic languages, 21
Altair Basic language, 131
Altair computers, 131–132
ALTOPS architecture, 399
Amazon company, 214–216
Amdahl, Gene, 104, 106
Amdahl computers, 106
Amerding, Taylor, 358
America Invents Act (AIA), 269
America Online (AOL)

accidentally exposed records, 360
Netscape acquisition, 229
overview, 173–174
phishing on, 382–383

American Express credit cards, 109
American Institute of Electronic

Engineers (AIEE), 68
American Medical Association (AMA),

414

ptg11539604

425Index

Apollo spacecrafts, 119–120
Apple Computer

Adobe dispute, 173
founding, 131
NeXT lawsuit, 187
Objective-C for, 166
overview, 132
wealth from, 145

Appliances, smart, 309
Application life cycle management

(ALM), 176
Applied Software Measurement (Jones),

411
Appraisals, real estate, 281–283
Archon Information Systems, 262
Argots, 209
Ariane 5 rocket explosion, 338–339
“Arms and Insecurity” (Richardson), 323
Armstrong, Neil, 119
ARPANET, 121
Art of Software Testing (Myers), 146
Artemis company, 197
Arthur Andersen company, 172
Artifi cial intelligence (AI), 397–398
Artzt, Russell, 132
ASCII coding system, 109
Assembly language, 22, 84
Assessment and Control of Software

Risks (Jones), 410
Association of Computing Machinery

(ACM), 68
Astronomical time, 241–242
AT&T

Datanet modem, 109
telephone lines shutdown, 336

Atanasoff, John Vincent, 38, 40, 64–65,
158

Atomic bombs
EMP, 375–376
Soviet Union, 69

Auction Bid company, 218
Audience metric for social networks, 309
Auerbach, Tjark, 174
Australia in World War II, 52–53
Australian Computer Society, 68

American National Standards Institute
(ANSI) standard date format, 239

American Programmer magazine, 145
American Standard for Information

Interchange (ASCII), 95
Amster, Geoffrey, 276
AN/FSQ-7 Combat Direction Central

computer, 79
Analog computers

1960s, 117
espionage, 48
gun control, 42
World War II, 46–47

Ancient times to modern era, 1
benefi cial tools, 23–32
harmful inventions, 32–34
human need to compute, 1–3
mathematics inventions, 8–20
numerical knowledge, 3–8
risks, 34–35
software inventions, 21–23

Andersen Consulting company, 171
Andreesen, Marc, 228, 261
Andreesen Horowitz company, 261
Android operating system, 175
Andrus, Cashman, 310
AngelPad company, 298–299
Angles in prehistoric knowledge, 4
Animation, 151
Anonymous group, 356, 361, 373
Anti-Phishing Working Group, 383
Antiaircraft guns, 57
Antitrust lawsuits

IBM, 136
Microsoft, 210, 249, 255
Sperry-Rand and Honeywell, 118–119

Antivirus programs
bug, 345
development of, 199, 354
effectiveness of, 396–397
free, 174

Apache company, 216
Apache Software Foundation, 216
APL programming language, 114
Apollo Guidance Computer (AGC), 119

ptg11539604

Index426

mortgage foreclosures, 253
paper statement fees, 34
predictive analysis, 324
QIF format, 184
security offi ces, 396
vertical markets, 126, 141

Bar-El, Hagai, 386
Bardeen, William, 81–82
Bargava, Rajat, 310
Barker, John, 276
Barrios, Brian P., 262
Barron’s Magazine dot-com article, 249
Barton, Rich, 281
Bartoo, Jim, 267
BASIC programming language

development of, 114–115
Microsoft, 138–139

Bauer, F. L., 103
Bawdsey Research Station, 58
Baxter, William, 119
Bazaar service, 263
Beard, Malcom, 53
Beck, Kent, 255
Beckman hybrid computer, 117
Beedle, Mike, 255
Bell, Alexander Graham, 182
Bell, Gordon, 415
Bell, Gwen, 415
Bell Labs fi rewalls, 355
Bellows, Matthew, 310
Ben-Horin, Daniel, 200
Benchmark data, 225–227
Benefi cial tools and applications, 23–32
Berners-Lee, Tim

NeXT computer used by, 188
World Wide Web, 208
“World Wide Web” term, 166

Bernoulli Box, 168
Berry, Clifford, 38, 40, 64
Bezos, Jeff

Amazon, 214–215
wealth of, 145

Bibliography and references, 407
book sources, 407–415
web sources, 415–421

Authentication controls, 400
Authority metric in social networks, 309
Authr company, 299
Autofl ow software, 114
Automated function points, 226
Automated Project Offi ce (APO) tool, 178
Automated teller machines (ATMs)

development of, 95
skimming, 384

Automatic abacus machine, 50
“Automatic Computing Engine” (ACE)

(Turing), 55, 65
Automatic Sequence Controlled Calculator

(ASCC), 40, 66
Automation in 1960s, 110–111
Automotive safety recalls, 348–349
Avira antivirus company, 174
Axon Corporation, 235

Baan, Jan, 132
Baan, Paul, 132
Baan Corporation, 132
Babbage, Charles, 40
Babbage analytical engine, 9, 40
Babylonia, prehistoric knowledge in, 6
Backfi ring, 122, 226
Background enabling inventions,

159–162
Backus, John, 67
Baez, Joan, 411
Bagle botnet, 364
Baidu company, 222
Baker, Mitchel, 273
Bales, Steve, 120
Ballister, Andrew, 304
Ballmer, Steve

spam report, 387
wealth of, 145

Ballots, 367–371
Bank of America credit cards, 109
BankAmerica Services Corporation, 109
Banks

automation in, 94
credit cards, 109–110
hacking targets, 371

ptg11539604

427Index

Botnets, 364–365
Bottlenecks in von Neumann architec-

ture, 66
Bougnion, Edouard, 236
“Bouncing ball” game, 72
Bownman, Eric, 299
Brahe, Tycho, 324
Brahmagupta (mathematician), 22
Brain size, 4
Brattan, Walter, 81–82
Brazil, function points in, 255–256
Bricklin, Dan, 161, 421
Brin, Sergey

Google development, 210, 222
wealth of, 145

Brindley, Doug, 197
Briskman, Robert, 232
Brisman, Julissa, 217
British Computer Society, 68
British passport system failure, 339–340
“Bronze goddess”, 54
Brook, Isaac S., 53, 82
Brooks, Fred

IBM lab, 121
infl uence of, 145
on JCL, 114
Mythical Man-Month, 104, 146, 408
Turing award, 106

Broward County, Florida, electronic
voting problems in, 368

Browser wars, 210, 229
Browsers

competition, 273–274
development of, 208
hijackers, 365–366

Brunner, John, 390
Bryce, James, 67
Buchanan, Pat, 369
Buckmaster, Jim, 217
Buddha

encryption, 402
teaching transmissions, 17

Buick automobiles safety recall, 348
Built-in cameras on portable computers,

399

Big data, 149, 312
Bill and Melinda Gates Foundation, 219
Binary Automatic Computer (BINAC),

72
Binary numbers, 21–22
Binary synchronous communication, 95
Biometric identifi cation, 385, 400
Bitcoin method, 302–303
BitDefender, 355
Black Hat conference, 353
Black hat hackers, 353
Black Point Park, 63
Black Point ship, 63
BlackBerry company, 174–175
Bletchley Park, 54
Blind people

future products, 322
virtual education, 316, 320
wearable computers for, 327

Blogs, 296
Blue boxes, 352
Blue hat hackers, 353
“Blue ox” bombsight, 59
Blueprints tool, 263
Bluetooth hijacking, 363–364
Boat building and navigating, prehistoric

knowledge for, 7
Boehm, Barry, 106, 407
Bogardus, Claude, 119
BOMARC supersonic guided missile, 80
Bombe machine, 54
Bombsights

Lotfernrohr 7, 48
Norden, 59–61

Bonsignour, Olivier, 411
Booch, Grady, 191
Book sources, 407–415
Books for storage, 18
Boole, George, 39
Borland company, 175–177
Bosack, Leonard, 178
Boston Computer Museum, 415–416
Boston Consulting Group (BCG), 96
Bot herders, 364
Bot masters, 364

ptg11539604

Index428

Change control improvements, 294
Channels for distributing information, 9
Charitable activities, 291

Freelanthropy, 265–266
GoDaddy, 221

Chawla, Rajeev, 300
Chawla, Raman, 300
Chen, Richard, 298
Chen, Steve, 280
Chess programs, 232
Chief Information Security Offi cers

(CISOs), 393
Chief Security Offi cers (CSOs), 393
Child training in ancient times, 7
Chino, Kobun, 411
Chiriac, Constantin, 277
Cincom company, 119
Cipher systems, 49
Cisco Systems, 178–179
CivicSource brand, 262
Civilian cyberwarfare targets, 371–372
Clancy, Tom, 231
Clark, Jim, 228
Clarke, Arthur C., 81
Classrooms, virtual, 315–321
Clerical work in 1960s, 94
Climis, Ted, 121
Cloud applications, 257
CloudVelocity company, 299–300
CMM levels, 212
CMMI, 192–193, 403
COBOL language, 84
Cochlear implants

development of, 160
future products, 322
wearable computers, 326

Cockburn, Alastir, 255
CODASYL data model, 114, 135
Codd, Ted

DCI seminars, 179
IBM lab, 121
relational databases, 139, 159
SECC, 67

Code Breakers (Kahn), 401–402
Code-breaking programs, 55

Bull, Fredrik Rosing, 52
Bull company, 52
Burroughs company, 88
Bush, George H. W., 209
Bush, George W., 369–370
Bush, Vannevar, 37
Busicom company, 50
Business software, 147–148
Business-to-business (B2B) software, 132
Business tools, 23–25
Butterfl y ballots, 369
Button, Beau L., 262

C programming language, 112
C&E Software company, 198
CACHE database, 138
Cadillac automobiles safety recall, 348
Cagle, Stan, 131
Calculating devices, evolution of, 10–14
Caliber product, 176
Cameras on portable computers, 399
Camino browser, 273
Camp Varnum, 63
Campbell-Kelly, Martin, 408
Campuses, virtual, 315–321
CAN-SPAM Act, 387
Canonical, Ltd., 262–263
Capability Maturity Model (CMM),

192–193
CAPTCHA method, 377
Carmack, John, 188
Carr, Robert O., 223
Cartridges in APO, 178
Cassandra, 325
CAST Software company, 404
Catal Huyuk settlement, 4
Cathedral and the Bazaar (Raymond),

154
Cavity magnetrons, 61
Celebrities on Twitter, 279
Centre Electronique Horloger (CEH),

160
Cerullo, John, 138
CGI Informatique company, 145
Chamberlain, Neville, 60

ptg11539604

429Index

Computer Society of India, 68
“Computer” term, 44
“Computer virus” term, 353
“Computer Virus: Theory and Experi-

ment” (Cohen), 353
Computer voting fraud, 366–371
ComputerMentor Project, 200–201
Computerspielemuseum, 416–417
Conferences in virtual education, 318
Confi cker botnet, 364–365
Congressional Cyber Caucus, 110, 355,

372, 417
Consolidated Edison company, 128
Constantine, Larry, 145–146
Continuous operations in SAGE, 78
Control Data Corporation (CDC), 88
Control program for microprocessors

(CP/M) operating system, 136
Control Video Corporation, 173
Cook, Scott, 183
CoolWebSearch browser hijacker, 366
Copy protection scheme, 343–344, 383
Copyleft, 154, 275
Copyright lawsuit of Borland and Lotus,

176
Core memory, 70–72
Core ropes, 119–120
Corporate databases, 355
Corporations

data theft from, 372–373
virtual education, 318

Cost per defect metric, 225, 284
Costs

cyberattacks, 402–406
identity theft, 395
software projects, 306–307
virtual education, 319–321
weapons and defense, 323

Council for Scientifi c and Industrial
Research Automatic Computer
(CSIRAC), 52–53

“Cowboy programming”, 98
Cox, Brad

Objective-C, 166
Stepstone Corporation, 197

Code Complete: A Practical Guide for
Software Construction (McConnell),
413

Code talkers, 16
Cohen, Fred, 353, 390
Cold War era, 68–69

beginning, 69
computer development, 69–72
military and defense computers, 77–80

Coleman, Dennis, 198
Collins, Susan, 356
Colossus computer, 54–56
Colt, Samuel, 412
Commercial computers, fi rst, 85–89
COMMON association, 87
Common Cause site, 368
Communication channels, evolution of,

15–17
“Communications, Computers, and

Networks” (Gore), 209
Communications software, 148
Compact disk read-only memory

(CD-ROM), 168
Companies

1970s, 130–145
1980s, 168–204
1990s, 212–239
2000s, 257–283
2010s, 296–311
predictions, 311–327

Compaq company, 143–144
Compilation, 99
Computable Document Format (CDF),

202
Computer Aid, Inc. (CAI), 177–178
Computer Associates (CA), 132–133
Computer Emergency Response Team

(CERT), 194, 354
Computer Fraud and Abuse Act, 391
Computer-game companies, 260
Computer History Museum, 416
Computer programmers in 1960s,

96–104
Computer Science Lab, 416
Computer security engines, 397–398

ptg11539604

Index430

Cyber Security Agency, 403
Cybercrime and cyberwarfare, 357

access controls, 399–400
attack types overview, 362–363
authentication controls, 400
Bluetooth hijacking, 363–364
Botnets, 364–365
browser hijackers, 365–366
civilian targets, 371–372
corporate theft, 372–373
credit cards, 109, 223–224
criminal activities, 33–34
defenses, 354–356, 394–396
denial of service attacks, 374–375
email address harvesting, 376–378
EMP, 375–376
EMP protection, 401
encryption, 401–402
frequency and cost, 404–406
future, 288, 313–314
growth, 358–362
hacker invasion, 352–354
history, 351–352
identity thefts, 378–379
immunity to, 396–399
insurance, 403
Java attacks, 379–380
keyboard trackers, 380–381
macro attacks, 381
odds of being attacked, 392–394
overview, 351
pharming, 381
phishing, 381–383
recovery costs, 402–403
rootkits, 383–384
secure programming languages, 404
seriousness, 356–358
skimming, 384–385
smart card hijacking, 385–386
software, 148–149
spam, 387–388
SQL injection attacks, 388
start of, 256
Trojans, 388–389
unsecured networks, 373–374

CR-Z automobiles safety recall, 348
Craigslist company, 216–217
Crawford, Perry, 71
Cray, Seymour, 134
Cray Computers, 134
CreateAFund organization, 304
Credit cards and credit card numbers

cyberattacks, 223–224
cybercrime response unit, 355
invention of, 109–110
skimming, 384
smart, 385
theft of, 358, 373, 396

Credit ratings, 272
CreditReport company, 379
Creeper virus, 390
Crime. See Cybercrime and cyberwarfare
Cro-Magnons, 3–4
Crowd intelligence, 312–313
CrowdCube company, 300–301
Crowdfunding

future, 312–313
GoFundMe organization, 304
overview, 300–301

Crowdsourcing, 156, 247
Cryptographic machines, 51–52
Cryptologic bombs, 51
CSI Global Education company, 272
Cullinane, John, 134

DCI seminars, 179
oral recordings, 421

Cullinane company, 134–135
Cultural perceptions of computers,

80–81
Cunningham, Ward

Agile Manifesto, 255
technical debt metric, 284
Wikipedia concept, 254

Curriculum planning engine, 315–316
Curtis, Bill, 194
Cutter IT Journal magazine, 145
Cyber arms race, 394
Cyber Liabilities insurance conference,

403
Cyber Security Act, 372

ptg11539604

431Index

Defenses for cyberattacks, 354–356,
394–396

Degrees from virtual education, 319
Delphi product, 176
Demand for programmers in 1960s,

100–103
DeMarco, Tom, 408
DeMarco, Tony, 140
Deming, W. Edwards, 50, 83
Deming Prize, 83
Democratic National Committee (DNC)

headquarters break-in, 127
Denali Systems, 300
Denial of service attacks, 364, 374–375
Dennard, Robert, 70
Denver airport delays, 337–338
Depth charges, 58, 63
Derby, Jack, 278
Desk checking, 99
Devine, Scott, 236
Devlin, Mike, 189
Diamond v. Diehr, 20
DIANA metalanguage, 190
Differential calculator, 37–38
Digital computers for software, 22
Digital Consulting Institute (DCI),

179–180
Digital Domain company, 249
Digital Equipment Corporation (DEC)

company
Compaq acquisition of, 144
creation, 88
fi rewalls, 355
PDP-1, 110–112

Digital Playground company, 217–218
Digital Research company, 135–136
Digital video disks (DVDs), 168, 211
Digital watches, 160
Dijkstra, Edsger, 103
Diners Club credit cards, 109
Disabled people, virtual education for,

316
Disk drives, 159
Disk operating systems (DOS), 136, 166
Distributing information, channels for, 9

viruses, 389–390
voting fraud, 366–371
worms, 390–391
zero-day security attacks, 391–392

Cybersecurity in virtual education, 319
Cyclomatic complexity metric, 160,

182

Dahl, Duane, 275
Daimler automobiles safety recall, 348
Damphousee, Brad, 304
Dasai, Keval, 298
Data encryption, 398, 401–402
Data theft

from corporations, 372–373
from unsecured networks, 373–374

Data warehouses, 25
Database management systems (DBMS),

95
Database software, 149
Databases, 25, 139, 159, 355
Datanet modem, 109
Date formats, 239–242
Date-related software updates, 238
Datta, Sudeshna, 260
Dave and Buster’s company, 224
David’s Consulting Group, 197
Davidson, Mary Ann, 357
Deaf people

virtual education, 320
wearable computers for, 326

Debit card information
skimming, 384
theft, 373

Decimal numbers, 21–22
Decimal point, 21
Decline and Fall of the American Pro-

grammer (Yourdon), 144, 414
Deep Blue supercomputer, 232
Defect removal, 290
Defense Advanced Research Projects

Agency (DARPA)
cybercrime response unit, 354
for SEI creation, 192

Defense computers in 1950s, 77–80

ptg11539604

Index432

Economic importance, 2
Economics of Software Quality (Jones

and Bonsignour), 411
Education

future, 314–321
software, 149–150
tools, 25

EDVAC computer, 65
Edwards, Nathan, 399
Egypt, prehistoric knowledge in, 6
Einstein, Albert, 49
Electrical Numerical Integrator and

Computer (ENIAC)
Honeywell and Sperry-Rand lawsuit,

158–159
overview, 64–65
Sperry-Rand against Honeywell case,

118–119
women programmers, 44

Electromagnetic pulses (EMP), 375–376,
401

Electronic Data Systems (EDS) company,
96, 133

Electronic Delay Storage Automatic
Calculator (EDSAC), 70–71

Electronic Discrete Variable Automatic
Computer (EDVAC), 55

Electronic Systems and Software com-
pany, 368

Electronic voting ballots, 367–371
Ellison, Larry

DCI seminars, 179
in Jobs, 411
Oracle founding, 139
wealth of, 145

Email addresses
harvesting, 376–378
phishing, 382

Embedded devices, 25–26, 78
Embedded software, 150–151
EMC corporation, 236
Emmott, Bill, 309
Employment websites, 227
Enabling inventions, 10, 18–20
Encryption, 398, 401–402

DNS analysis tool, 389
DNS Changer Trojan, 388–389
Doenitz, Karl, 63
Domain Name System (DNS), 221
Domain names, 264
Dorsey, Jack, 255, 279
Dot-com bubble, 248–250
Douglis, Charles, 196
“Dr. Dobb’s Journal of Tiny Basic Calis-

thenics and Orthodontia” journal,
135

Dr. Dobb’s site, 417
DR DOS operating system, 136
DRAM, invention of, 70
Draper, Charles Stuart, 120
Duffi eld, Dave, 189
Duffy, Tim, 271
Dummer, Geoffrey, 82
Duquesne, Fredrick, 48
Duval County, Florida, election problems

in, 369
Dylan, Bob, 411
Dynabook notebook computer, 117
Dynamic modeling, 191

E-books
readers, 215
virtual education, 317

E-learning tools, 320
E programming language, 404
EAI 680 scientifi c hybrid computer, 117
Eames, Ray, 418
Early Offi ce Museum, 94
Early-warning system failure, 334
eBay company

craigslist ownership, 217
overview, 218–220

Eckert, J. Presper
EMCC, 72
ENIAC computer, 65
ENIAC lawsuit, 158
UNIVAC computer, 82

Eckert, Wallace John, 67
Eckert-Mauchly Computer Company

(EMCC), 72

ptg11539604

433Index

Families of computers, 105
Faraday boxes, 401
FBI Trilogy project failure, 342–343
Federal Aviation Administration (FAA),

89
FedEx

overview, 129
reliance on computers, 145

Fermi, Enrico, 49, 375
Festinger, Leon, 412
Fidelity Growth Partners, 261
Field-length problems, 340–341
Fink, Lloyd, 281
Fire-control computers, 56
Firefox browser, 229, 273
Firewalls, 355, 396–397
First commercial computers, 85–89
“First Draft of a Report on the EDVAC”

(von Neumann), 65
Fischer, Thomas, 137
FISH machines, 49
Fitch’s company, 272
Fiverr company, 301–302
Flame attacks, 361
Flash drives, 254
Flashback Trojan malware, 379
Flattr company, 302–303
Floppy disks, 159
Florida, electronic voting problems in,

368
Flowers, T. H., 54
“Fly-by-wire” systems, 120
Follett tool, 320
Ford, Gerald, 127
Ford automobiles safety recall, 348
Foreclosures, 252–253
Forrester, Jay, 70–72
FORTRAN programming language, 84,

88
Foster, Peter, 403
Foundry Group, 310
Fowler, Martin, 234, 255
Frame, Jim, 121
France in World War II, 52
Frankston, Robert, 161, 421

English, Larry, 134
ENIAC computer, 64–65

Honeywell and Sperry-Rand lawsuit,
158–159

overview, 64–65
Sperry-Rand against Honeywell case,

118–119
women programmers, 44

Enigma code machine, 44, 49, 51
Entertainment software, 151
Epsilon company, 359
Equal rights and equal pay, 38, 44
Equifax company, 379
Equivalency determination, 201
Ericsson, John, 412
Ericsson AXE telephone switching sys-

tem, 384
Espionage, analog, 48
Estimating Software Costs (Jones), 410
Estonia, internet shutdown in, 359–360
ESTSoft company, 360
Eubanks, Gordon, 198
Euro currency, 237
European Network, 403
Everett, Robert, 71
Evolving workforce in 1960s, 93–95
Ewing, Mark, 230
Excel documents, macro attacks in, 381
Expensive Typewriters, 112
Experian company

identity theft support, 379
portfolio management, 272

Extended Binary Coded Decimal Inter-
change Code (EBCDIC), 95

Extreme Programming (XP), 256

Facebook, 157
introduction, 255
overview, 263–265
virtual education, 317

FaceSmash site, 263
Fad, Bruce, 140
Fadell, Tony, 308
Fagan, Michael, 162, 408
Falkoff, Adin, 114

ptg11539604

Index434

Gauss virus attacks, 372
Geekli.St organization, 303
Gender discrimination, 38, 44
Geological time periods, 241
GeoStar system, 232
Germany in World War II, 47–49
Gerrold, David, 353, 390
Geschke, Charles, 172
Gibson, William, 353
Gift of Hearing Foundation (GOHF),

200
Gilb, Tom, 408
Glad, Mole, 175
Glass, R. L., 409
Global confl icts in 1940s, 43–44
Global Insight company, 266–267
Global Payments company, 373
Global System for Mobile Systems Com-

munications (GSM) standards, 278
Global warming reversal method, 268
Glushkov, V. M., 53
Gmail, spam blocking by, 388
GNU General Public License (GPL),

153–154, 275
GNU project, 275
GoDaddy Bowl, 221
GoDaddy company, 220–221
Goetz, Martin, 114
GoFundMe organization, 304
Goldsmith, Thomas, 69
Golf courses mapping, 211
Gonzalez, Albert, 224, 359
Google company

cloud, 300
hacked, 360
overview, 221–223
search engine, 210

Google Glasses, 223, 325–327
Google Maps product, 223
Google Ventures, 310
Googolplexes, 222
Gore, Al, 209, 369–370
Government programs, 324–325
Government-sponsored botnets, 364
Government tools, 26–27

FreaX operating system, 275
Free Standards Group, 274
Free wireless networks, 373–374
Freelanthropy group, 201, 265–266
Freemium business model, 311
Freiman, Frank, 140
Freitas, Nancy, 137
Frequency and costs of U.S. cyberattacks,

404–406
Friden Flexowriters, 111
Fuel hedging, 130
Function points

1955, 90–91
1965, 122–123
1975, 162–163
1985, 204–205
1995, 244–245
2005, 284–285
2015, 328–329
overview, 225–226
use of, 167

Future System operating system, 146

Gack, Gary, 408
Galorath, Dan, 136
Galorath Incorporated, 136–137
Games

bouncing ball, 72
companies, 260
software, 151
Spacewar, 112
success of, 231–232

Gandy, Steve, 271
Gates, Bill

browser suit, 210
on education, 149
entrepreneur of year, 180
in Jobs, 411
Microsoft founding, 131, 138–139
referred IBM to Kildall, 136
social issues, 174
spam to, 387
wealth of, 145, 166

Gates, Mary Maxwell, 105, 139
Gates, Rick, 254

ptg11539604

435Index

Hector, Hans-Werner, 142
Heil, Oskar, 82
Hemy, Derek, 86
Henderson Carriage building, 195
Hendrix, Gary, 198
Henricsen, Ole, 175
Henry-Dahl, Cindy, 275
Hewett, William, 40
Hewlett-Packard company, 40, 404
Hexadecimal numbers, 21
High Performance Computing and

Communications Act, 209
Higher-level programming languages

evolution of, 161
overview, 22

Highsmith, Jim, 255
Hijackers, browser, 365–366
Hill, Peter, 225
Hill, Winslow, 177
History of the Software Industry: From

Airline Reservations to Sonic the
Hedgehog (Campbell-Kelly), 408

History Timelines site, 417–418
HIVE Group, 267–268
Hoff, Ted, 50
Home heating and cooling control

product, 308
Home networks, 373
Honda automobiles safety recall, 348
Honeypots, 377
Honeywell company

Nest Labs lawsuit, 309
Sperry-Rand lawsuit, 158–159

Hoover’s Business Guides site, 418
Hopp, Detmar, 142
Hopper, Grace

Mark I design, 40, 66
oral recordings, 421

Horing, Jeff, 224
Horowitz, Ben, 261
Huawei company, 180–182
Huawei Symantec company, 199
Hub-and-spoke model, 129
Hughes, Chris, 263
Human need to compute, 1–3

Gow, Brad, 403
GPS satellites

golf courses, 211
notebooks and tablets tracking, 398

Graham, Dorothy, 408
Graphical history of mathematics, 9
Gray, Elisha, 182
Gray hat hackers, 353
Great Britain in World War II, 54–59
Great Recession, 250–254
Green, Diane, 236
Green, Michael, 142
Grenning, James, 255
Grosch, Herb, 67
Ground Observation Corps, 79
Groupe Bull company, 52
Groves, Ken, 411
Guest speakers for virtual education, 318
GUIDE association, 87
Guided missile, 80
Gulf War, patriot missile target error in,

336–337
Gun control computer, 42

Hacker invasion, 352–354
Hacking, 148–149
Hactivism, 356
Hambrecht and Quist company, 135
Hamilton, Francis, 67
Hamilton company, 160
Harappa city, 6
Harmful inventions, 32–34
Hartford Coliseum collapse, 333
Harvard architecture, 66
Harvard Connection project, 264
Harvard Mark I computer, 40, 56, 66–67
Harvesting bots, 377
Health condition monitoring, 326
Healy, Jim, 121
Hearing aids

future products, 322
wearable computers for, 326–327

Heartland Payment Systems
credit card theft from, 358–359, 373
overview, 223–224

ptg11539604

Index436

Ideograms, 21
IEEE Computer Society site, 418–419
“Illustrated History of Computers”, 416
Immunity to cyberattacks, 396–399
Impact of software on people and society

benefi cial tools and applications,
23–32

harmful inventions, 32–34
risks, 34–35

IMSAI computers, 131–132, 137
IN04 directive, 255
India

encryption in, 402
scholars, 8

Industrial sites, cyberattacks on, 372
Information management system (IMS),

95, 135, 137
Information storage and access

distribution channels, 9
evolution of, 17–18
recording information, 14

“Information superhighway” term, 209
Information Technology Metrics and

Productivity Institute (ITMPI)
description, 177, 255
website, 419

Infrastructure costs for virtual education,
320

Injection attacks, 358–359, 388
Innovators and innovations

1930s, 37–40
1950s, 81–84
2000s, 254–257

Inprise company, 176
Insight Venture Partners, 224
Instant messaging for phishing, 382
Instant translation, wearable computers

for, 326
Institute for Numerical Analysis, 81
Institute of Electrical and Electronic

Engineers (IEEE), 68
Institute of Radio Engineers (IRE), 68
Instructional staff for virtual education,

315–317, 320
Insurance companies in 1960s, 94

Human resource management systems
(HRMS), 188–189

Humphrey, Watts, 409
software assessments, 166
TSP, 256

Hunt, Andrew, 255
Hurley, Chad, 280
HYCOMP desktop hybrid computer, 117
HYDAC 2400 hybrid computer, 117
Hypertext markup language (HTML),

208
Hypertext transfer protocol (HTTP), 208

IBM
antitrust lawsuit, 119, 136
Apollo program, 120
Automatic Sequence Controlled

Calculator, 66
Bull lawsuit, 52
fi rst commercial computers, 86–88
function points, 162–163
graphical history of mathematics, 9
longevity of, 128
Lotus acquisition, 186
magnetic core memory, 72
magnetic tape, 109
personal computer release, 166

IBM 650 computer, 87–88, 98
IBM 701 computer, 86–87
IBM 1401 computer, 98–100, 110–111
IBM 1403 printer, 99–100
IBM 5100 computer, 160
IBM 7090 computer, 87
“IBM and the Seven Dwarves”, 115
IBM Corporate Archives site, 418
IBM Math Timeline site, 418
IBM Rational company, 191–192
IBM System/360 computer, 104–106
Ichitaro, Kawaguchi, 50
Identity Theft Resource Center, 379
Identity thefts

costs, 395
highest incidence states, 396
overview, 378–379
pervasiveness, 34

ptg11539604

437Index

INTERPROGRAM programming
language, 53

InterSystems Corporation, 137–138
Intuit company, 183–184
Intuit Quicken product, 183–184
Inventions for improved mathematics

calculating, 10–14
communication channels, 15–17
enabling, 18–20
overview, 8–10
recording information, 14
storing information, 17–18

Inventions overview
background enabling, 159–162
harmful, 32–34
for software, 21–23

Investigation on The Laws of Thought
(Boole), 39

Iomega Zip Disk, 168
iPads, 256
iPhones, 256
Iran, cyberattacks on, 360–361, 372
Isaacson, Walter, 132, 149, 409
ISBSG company, 225–227
IStation tool, 320
IT History Society site, 420
Italy, function points in, 256
Iverson, Ken, 114, 121
Iyengar, Amand, 300

J. Lyons Company, 85
Jackson, Thomas Penfi eld, 210
Jacobsen, Ivar, 190–191
Jaech, Jeremy, 235
Jaguar automobiles safety recall, 348
Japan

training in ancient times, 7
World War II, 50–51

Java programming language attacks,
379–380

Jazz product, 186
JBuilder product, 176
JD Edwards company, 189
Jeffries, Ron, 255
Jensen, Niels, 175

Insurance for cybertheft and cyberattack
damages, 403

Integrated circuits
development of, 81–82
as enabling invention, 20
patent, 83

Integrated Data Base Management Sys-
tem (IDMS), 135

Intel Pentium chip division problem,
337

Intellectual Ventures, 268–269
Intellectual Ventures Labs, 268
Intelligent agents

description, 202
future, 321–322

Intelligent Assistant tool, 198
Interactive Productivity and Quality

model (IPQ), 114
InterBank Card Association (ICA), 110
International Computers Limited (ICL),

86
International cyberwarfare, 372
International date formats, 239–242
International Function Point Users Group

(IFPUG)
in Brazil, 255–256
ISBSG functions points, 225
move to U.S., 167
website, 419–420

International Organization of Standards
(ISO) standard date format,
239–242

International Software Benchmark Stan-
dards Group (ISBSG), 225

formation, 211
function point projects, 256
website, 420

Internet Crime Complaint Center, 396
Internet Crime Report, 396
Internet Explorer browser, 273
Internet Impact Awards, 270
Internet Marketing Association (IMA),

270
Internet pornography, 218
Internet protocol (IP), 352

ptg11539604

Index438

Kasner, Edward, 222
Kasparov, Gary, 232
Kaspersky company, 355
Kasputys, Joseph, 267
Katz, Reuben, 303
Katzman, James, 142
Kaufman, Micha, 301
Kaul, Anil, 260
Kay, Alan, 117
Kelleher, Herb, 130
Kemeny, John, 115
Kemp, John, 19
Keppler, Johannes, 324
Kern, Jon, 255
Key inventions for software, 21–23
Key process areas (KPAs), 192
Keyboard trackers, 380–381
Kilburn, Tom, 69
Kilby, Jack, 83
Kildall, Dorothy, 135
Kildall, Gary, 135–136
Kindle e-book readers, 215
King, Earl, 140
King, Ernest, 62
King George V battleship, 42, 56
Knight Capitol stock-trading software

problems, 347
KnowledgePLAN tool, 196
“Known Attacks Against Smart Cards”

(Bar-El), 386
Kongo Gumi company, 128
Korte, Thomas, 298
KPMG company, 184–185
Kubrick, Stanley, 81
Kuhn, Thomas, 412
Kumar, Sanjay, 133
Kurtz, Thomas, 115
Kurtzman, Clifford, 238

LaCrosse automobiles safety recall, 348
Lang, Luke, 300
Langevin, James

Congressional Cyber Caucus, 110, 355
Cyber Security Act, 372

Language levels, 123

Jesse, H. William, 267
Jet aircraft, 88
Job control language (JCL), 113–114
Jobs, Steve

Apple founding, 131
biography, 132, 149, 409
DCI seminars, 179
on education, 149
entrepreneur of year, 180
NeXT company, 187
Objective-C, 198
Turing award, 106
wealth of, 145
Xerox infl uence, 117

Johnson, Ted, 235
Joint Application Design (JAD), 212
Jolt awards, 417
Jomax Technologies, 220
Jones, Capers

Applied Software Measurement, 411
Assessment and Control of Software

Risks, 410
Economics of Software Quality, 411
Estimating Software Costs, 410–411
Namcook Analytics founding, 304
Program Quality and Programmer

Productivity, 146
Software Engineering Best Practices,

411
SPR founding, 194

Jones, Eileen, 194, 200
“Joone” fi lm maker, 217
Joule programming language, 404
Juran, Joseph, W., 50, 83
Just-in-time manufacturing, 152

Kahn, David, 401–402
Kahn, Philippe, 175
Kama Sutra, 402
Kanatsiz, Sinan, 270
Kapoor, Suhale, 260
Kapor, Mitch

Lotus founding, 186
Mozilla Foundation funding, 273

Karim, Jawed, 280

ptg11539604

439Index

LEO computer, 85–86
LEO Computers Limited company, 86
Leon County, Florida, electronic voting

problems in, 368
Lerner, Sandy, 178
Levy, Paul, 189
Lewin, Daniel, 214
Leyden, John, 386
Li, Robin, 222
Libraries

for storage, 18
virtual universities, 316

Licenses
GNU, 153–154, 275
software engineering, 289
virtual education, 317

Lieberman, Joe, 355–356
Lieberman Collins Cyber Security Bill,

356
Life expectancy of American corpora-

tions, 128
Lillenfi eld, Julius, 82
Lines of code (LOC) metric, 167, 225
LINK trainer, 71
Linked oscillating systems, 252
LinkedIn network

data thefts from, 373
lengthy messages, 279
virtual education, 317

Linux Foundation, 274
Linux operating system

development of, 210
emergence of, 274–275
kernel, 230
Ubuntu version, 262

Linux Trademark Institute, 275
LISP language, 84
Lister, Tim, 408
Litigation. See Lawsuits
Littlejohns, Doug, 231
Local information in virtual education,

317
Logarithms, 21–22
London Science Museum, 9
Long lance torpedoes, 50

Languages
alphabetic, 21
programming. See Programming

languages
Larson, Earl R., 158
Las Zetas drug cartel, 361
Late millennium bug, 386
Latent security fl aws, 403
Law, future of, 319
Lawson, Richard, 138
Lawson, William, 138
Lawson Software, 138
Lawsuits

Apple and NeXT, 187
Borland and Lotus, 176
Bull and IBM, 52
CA and Electronic Data Systems, 133
embedded software, 151
Facebook, 265
Honeywell and Sperry-Rand, 118–119,

158–159
IBM and Digital Research, 136
Microsoft and Intersystems, 138
Microsoft antitrust, 210, 249, 255
Nest Labs and Honeywell, 309
Oracle and SAP, 139
patent, 20, 269
Sony copy protection, 344
thumb drives, 254

Lazaridis, Mike, 174
Leaf automobiles safety recall, 348
Learning and education

future, 314–321
software, 149–150
tools, 25

Lebanon, cyberattacks on, 361
Lebedev, S. A., 53, 82
Legacy applications

1990s, 237–239
2000s, 257
maintenance of, 295

Lehman Brothers company, 251
Lehnert, Markus, 310
Leighton, Tom, 214
Leisure tools, 27

ptg11539604

Index440

Mariner 1 navigation software failure,
333

Mariposa botnet, 364
Mark I computer (CSIRAC), 53
Mark I computer (Harvard), 40, 56,

66–67
Mark I computer (Manchester), 69
Mark II computer, 67
Mark III computer, 47, 62, 67
Mark IV computer, 62, 67
Mark VI detonators, 62
Mark 14 torpedoes, 62
Mark 18 torpedoes, 62
Markoff, Philip, 217
Maroney, Ted, 304
Mars climate orbiter crash, 339
Marshall stores, 359
Martin, James, 145
Martin, Robert C., 255
Mass updates in 1990s, 237–239
Massively multiplayer online role-playing

games (MMORPG), 231
MasterCard credit cards, 110
Match-making services, 275–276
Mathematica product, 202–203
Mathematical applications, 40–42
Mathematical software, 155–156
Mathematics

graphical history, 9
inventions. See Inventions for im-

proved mathematics
Mauchly, John W.

EMCC, 72
ENIAC computer, 65
ENIAC lawsuit, 158
UNIVAC computer, 82

Mayans, 22
McAfee Antivirus bug, 345
McAfee company, 256
McCabe, Tom, 160, 182
McCaul, Mike, 355
McClure, Carma, 145
McCollum, Andrew, 263
McConnell, Steve, 413
McCool, Robert, 216

Los Angeles Airport (LAX) air-traffi c
controls shutdown, 341–342

Lotfernrohr 7 bombsight, 48
Lotus company

Borland lawsuit, 176
overview, 186–187

Loustaunou, Jack, 142
Love, Tom

Object Lessons, 412–413
Stepstone Corporation, 166, 197

Luggage handling failure, 337–338
Lulzsec group, 373
Lyons Electronic Offi ce computer, 86

M-1 computer, 82
Machine language

limitations, 22, 84
small mathematical applications, 41

Macro attacks, 381
Macro instructions, 84
Magnetic core memory, 70–72
Magnetic tape, 109
Magneto-optical drives, 188
Magnetrons, 61
Maintenance of legacy applications, 295
Malone program, 263
Malware term, 381
Malwarebytes tool, 313
Man-in-the-middle attacks, 400
Management information systems (MIS),

149
Managing the Black Hole—The Execu-

tive’s Guide to Project Risk (Gack),
408

Managing the Software Process (Hum-
phrey), 409

Manchester Automatic Digital Machine
(MADM), 69

Manchester Mark I computer, 69
Mann, Estie Ray, 69
Manufacturing software, 151–152
Manwin company, 218
Manzi, Jim, 186
Marconi, Guglielmo, 352
Marick, Bran, 255

ptg11539604

441Index

Mills, Harlan, 121
Mims, Forrest, 131
Mindplay tool, 320
Miner, Bob, 139
Minicomputers, 111
Ministry of International Trade and

Industry (MITI), 83
Missiles

BOMARC, 80
target errors, 336–337
World War II, 48

MITRE vulnerabilities list, 394
Mittal, Vibuh, 298
Mockapetris, Paul, 221
Model 1 computing machine, 39
Modeling, dynamic, 191
Modems, 109
Mohenjo-Daro city, 6
Molitano, David, 403
Monster.com, 227–228
Moody, John, 271
Moody’s Analytics company, 271–272
Moody’s Foundation, 271
Morgan Stanley company, 265
Morris, Ken, 189
Morris, Robert, 391
Morris worm, 391
Mortgages, 251–253
MOSAIC computer, 55
Mosaic web browser, 209
Moskowitz, Dustin, 263
Mozilla Foundation, 229, 272–273
Multitasking operating systems, 120
MUMPS programming language, 138
Murdock, Jerry, 224
Mutually assured destruction, 69
MyDoom worms, 391
Myers, Glenford, 146
Myhrvold, Nathan, 268
MySearch browser hijacker, 366
Mythical Man-Month (Brooks), 104,

146, 408

Nalanda University, 7–8
Namcook Analytics LLC, 226, 304–307

McDonald, Stuart, 388
McPherson, John, 67
McVey, Jason, 275
Mean time to failure (MTTF), 143
Medical degrees, 414
Medical devices, 322–323
Medical records, 138
Medical tools, 27–28
Medicine, future, 319
Meeting Zone company, 270–271
Meister, Bill, 173
Melbourne Computer Museum site, 420
Mellor, Steve, 255
Memory

magnetic core, 70–72
Williams-Kilburn tube, 69–70

Mercury delay lines, 71
MESM computer, 53, 82
Metal cases for EMP, 401
Metrics

overview, 225–226
social-network effectiveness, 309

Meucci, Antonio, 182
Michalewicz, Matthew, 277
Michalewicz, Zbigniew, 277
Micro Focus company, 176
Micro Instrumentation and Telemetry

Systems Corporation (MITS), 131
Microblogging, 278
Microdonations, 302–303
Microsoft Basic language, 138–139
Microsoft Corporation

antitrust lawsuit, 210, 249, 255
founding, 131, 138–139
Google competition, 223
Intersystem lawsuit, 138
Visio acquisition, 235
wealth from, 145

Microsoft DOS (MS-DOS) operating
system, 166

Microsoft Money product, 183–184
Middleware software, 152
Military computers in 1950s, 77–80
Military software, 152–153
Millard, William, 137

ptg11539604

Index442

Nishar, Deep, 298
Nissan automobiles safety recall, 348
Nixdorf company, 88
Nixon, Richard, 127
Nonprofi ts

Bill and Melinda Gates Foundation,
219

in computing and software, 200
Google philanthropic wing, 223

Norden, Carl, 60
Norden bombsight, 59–61
North Korea, 323–324
Norton Utilities, 199
Notebooks, GPS tracking of, 398
“Notes on Structured Programming”

(Dijkstra), 103
NoteTaker computer, 160
Number systems, 21–22
Numeric-related software updates, 238
Numerical knowledge, early sequence of,

3–8

Oates, Ed, 139
Obamacare, 324
Object Lessons (Love), 412–413
Object Management Group (OMG), 226
“Object-Oriented Precompiler: Program-

ming Smalltalk—80 Methods in C
Language” (Cox), 197

Objective-C programming language
Apple computers, 132, 166
NeXT computers, 188, 198
Stepstone Corporation, 197

Objectory tool, 190
Octal numbers, 21
Odeo company, 278
Olmecs, 8, 22
Olsson, Linus, 302
Omidyar, Pierre, 218
“On Computable Numbers” (Turing),

38, 54
On-Line Career Center (OLC), 227–228
Online web-based education information,

314–321
Online “webinars”, 180

Nano devices, 323
Napier, John, 21–22
Napier’s bones, 22
Narenda, Divya, 264
NASDAQ stock exchange, 129, 145
Nash Bargaining Solution, 269
National Center for Supercomputing

Applications (NCSA), 209
National defense

cybercrime, 357
tools, 28

National information in virtual educa-
tion, 317

National Institute of Standards and
Technology (NIST)

analysis tool study, 395
standard date format, 239

National Institutes of Health (NIH), 98
National Museum of Computing site,

421
National Research and Education

Network, 209
National Science Foundation (NSF), 221
National Security Agency (NSA), 82–83
Natural language translation, 327
Naur, Peter, 103
Navajo code talkers, 16
Naval gunnery and battles, 56–57
Navigation, prehistoric knowledge for, 7
Neanderthals, 3–4
Nelson ship, 56
Nest Labs company, 308–309
Nest Learning Thermostat, 308–309
Netscape browser, 273
Netscape Communications, 228
New economy, 248–250
Newmark, Craig, 216–217
NeXT company, 187–188
NeXT computer for browser design, 208
NeXTStep operating system, 188
Nies, Thomas, 119
Night vision, 326
Nimoy, Leonard, 229
Nippon Calculating Machine company,

50

ptg11539604

443Index

Patrick, Danica, 221
Patriot missile target error, 336–337
Pattern matching, patents, 305
Pay-per-click model, 266
PayPal company, 219
Pearcey, Trevor, 53
Peat Marwick company, 185
Peer Index company, 309
People’s Liberation Army of China, 372
PeopleSoft company, 188–189
PeopleTools methodology, 189
Peopleware (DeMarco and Lister), 408
PerfectMatch company, 275–276
Perot, H. Ross, 96, 187
Personal computers, 131
Personal data theft, 362
Personal software, 154–155
Personal Software Process (PSP), 256
Personal tools, 28–29
Peter Norton Computing company, 199
Pfi ster, Douglas, 81
Pharming, 381
Phishing, 381–383
Phone phreakers, 352
Pictograms, 21
Pierce, John R., 82
Piggybacking, 373
Pilot Model ACE computer, 55
Pinkerton, John, 86
Pirate Bay, 302
PL/I programming language, 114–115
Plan Calculus language, 47
Planet Oasis site, 266
Plastic

as enabling invention, 20
importance of, 10

Plattner, Hasso, 142
Plaxo for virtual education, 317
Poduska, William, 141
Point Judith battle, 63
Poland in World War II, 51–52
Poley, Stan, 88
Political activists, 356
Political failures, 127–128
Polly, Jean Armour, 209

Opel, John, 104–105, 139
Open-source business model, 263
Open Source Development Labs (OSDL),

274
Open-source software, 153–154
OpenStep operating system, 188
Operations research, 58
Oracle company

overview, 139–140
wealth from, 145

Oshima, Hiroshi, 51
Outsourcing

1960s, 95–96
1990s, 243

Packard, David, 40
Page, Larry, 210, 222
Page-description languages, 172
Palm Beach County “butterfl y” ballots,

369
PanAmSat group, 232
Pandora music service, 151
Paper voting ballots, 367–368
Pappalardo, Neil, 138
Parametric estimation, 137, 140
Park, Robert, 140
Parsons, Bob, 220
Parsons Technology, 220
Passport readers, 386
Patent litigation

Honeywell and Sperry-Rand,
158–159

Nest Labs and Honeywell, 309
recent years, 269

Patent trolls, 82, 268–269, 276
Patent wars, 288
Patents and patent system

fi rst U.S. law, 20
IBM and Bull lawsuit, 52
integrated circuits, 83
invention of, 10, 19
openness with, 82
pattern matching, 305
Sperry-Rand and Honeywell lawsuit,

118–119

ptg11539604

Index444

higher-level, 22
number of, 212
secure, 404

Programming tools, 30–31, 155
Project estimation improvements, 294
Project Management Institute (PMI), 168
Project management software, 155
Protective software, 156
Protective tools, 31
Proult, Tom, 183
Psychology of Computer Programming

(Weinberg), 121, 146, 408, 414
Public networks, 373–374
Punched cards, 52, 99
Purple coding machine, 21, 51
Puskas, Tivadar, 183

QNX operating system, 175
Quality control

improvements, 294
telecommunications, 182

Quality/Productivity Management
Group, 197

Quartz movement, 160
Quattro spreadsheet, 176
Quick response (QR) codes, 303
Quicken Interface Format (QIF), 184
Quicken product, 183–184

Radar, 61
Radiation poisoning, 334–335
Radice, Ronald, 162, 408
Radio, satellite, 232–233
Ragon, Philip T., 137–138
Ragon, Terry, 145
Rajaram, Gokul, 298
Rameev, B. I., 53
Randall, Brian, 103
Random-access storage, 23, 70
Ranking systems on Amazon, 215
Rational company, 189–192
Rational Environment, 190
Rational Unifi ed Process (RUP), 190, 212
Raymond, Eric, 154
RCA Corporation, 140

Pornography, 218
Port St. Lucie, Florida, offi ce failures in,

249
Portable computers

cameras on, 399
early, 160

Portable document format (PDF), 172
Postwar era, 68–72
Predictions

2010s, 288
companies and products, 311–327
software project outcomes, 305

Predictive analytics
future, 323–325
working with, 307–308

Premier company, 368
Presidential election of 2000, 368–370
Pressman, Roger, 413
Pretty Good Privacy, 402
Price Systems, 140
Priceline company, 229–230
Priests in prehistoric knowledge, 5–6
Primary education, virtual, 320
Prime Computers (Pr1me), 141
Printers, 99–100
Printing, 3D, 288
Prius automobiles safety recall, 348–349
Productivity and quality measures

improvements, 293
Productivity Products, 197
Professional associations for virtual

education, 318
Professional status for software engineer-

ing, 289–293
Professional tools, 29–30
Program Quality and Programmer Pro-

ductivity (Jones), 146
Programmed Data Processor-1 (PDP-1)

computer, 110–112
Programming aptitude test (PAT), 97
Programming Language/Systems (PL/S),

123
Programming languages

1950s, 84
1960s, 112–115

ptg11539604

445Index

Rootkits, 383–384
Rosen, Ben, 186
Rosenblum, Mendel, 236
Rosetta program, 263
Rothblatt, Martine, 232
Royce, Walker E, 413–414
RPX Corporation, 276–277
RSA Security company, 359
Ruckert, Toby, 310
Rumbaugh, James, 191
Russia in World War II, 53
Russian Business Bureau group, 382
Russian Mafi a, 357
Ryoichi, Yazu, 50

S-100 bus, 131
SABRE airline reservation system, 79–80,

89
Sachs, Jonathan, 186
SAGE air-defense system

Cold War, 69
overview, 78–80
Whirlwind computer for, 72

Sales taxes, 215
Salvaggio, Tony

CAI founding, 177
social issues, 174

SAMATE study, 395
Sandberg, Sheryl, 265
Sands, Christian, 303
Sanger, Larry, 254
SANS Institute

purpose, 355
vulnerabilities list, 394–395

Satellite radio, 232–233
Satellites, GPS

golf courses, 211
notebooks and tablets tracking, 398

Saudi Aramco company, 372
Savarin, Eduardo, 263
Scacco, David, 298
Scandals, Watergate, 127
Schilling, Curt, 250, 345
Schmidt, Martin, 277
Schussel, George, 179–180

Real estate bubbles, 250
Real estate property values, 281–283,

305
Real-time computation, 78
Real-time translation services, 316
Recalls, automotive, 348–349
Recession in 2000s, 250–254
Recording of ideas and information

invention of, 9
methods and media evolution, 13–14

Recovery costs from cyberattack,
402–403

Recruited software personnel, 94
Red Hat Software, 230
Red Storm Entertainment company, 231
Redistricting packages, 367
Redundancy, 143
Reis, Johan Philip, 182
Relational database model, 159
Relay-based computers, 38–39
Remington-Rand company, 82, 88
Remote computers

input and output, 39–40
security for, 352

Requirements creep, 307
Research in Motion (RIM) company,

174–175
Reusable components, 294
Rhode Island assembly, 2–3
Rhode Island Computer Museum site,

421
Richardson, Lewis F., 323
Richley, Tom, 119
Rio Tinto Iron Ore company, 277
Risak, Veith, 390
Risks

assessing, 185
weighing, 34–35

Ritchie, Dennis, 112, 274
Riverdeep tool, 320
Roberts, Ed, 131
Robo calling, 388
Rodney ship, 56
Rogers, Matt, 308
Roosevelt, Franklin Delano, 61

ptg11539604

Index446

Shneiderman, Ben, 267
Shockley, William, 81–82
Short message service (SMS), 278
Shuttleworth, Mark, 262
SideKick product, 175
Siemens computers, 360
SIGCOM groups, 68
SIGGRAPH groups, 68
Silicon Valley, 130–131
Simula programming language, 114
Singham, Roy, 234
Singham Business Services, 234
Sirius Satellite Radio, 232–233
Sirota, Milton, 222
Six pack sales program, 199
Six Sigma quality program, 182
Skimming, 384–385
Sky Map product, 223
Slide rules, 22, 97
Small mathematical applications, 40–42
Small-Scale Experimental Machine

(SSEM), 69
Smart appliances, 309
Smart cards

biometric information in, 400
hijacking, 385–386

Smart thermostats, 308
Smartphones as hearing aids, 322
Smith, C. R., 89
Smith, Frederick, 129
Smith, R. Blair, 89
SNAP metrics, 226, 295
Sniffers, 374
Snow, Gordon, 384
Snowbird Lodge meeting, 255
Social Network fi lm, 255, 263
Social networks

software, 156–157
virtual education, 317

Social security stolen fi les, 361
Social Transformation of American

Medicine (Starr), 414
“Software”, fi rst use of word, 83
Software

1940s, 75–76

Schwaber, Ken, 255
Schwanenfl ugel, Ditlev, 309
Schwartz, Matthew, 404
Schwartz, Pepper, 276
Scientifi c purposes

dates, 241
software, 155–156
tools, 31–32

Script kiddies, 360
Scrum programs, 256
SDS/SAPE package, 142
SeaMonkey browser, 273
search.conduit browser hijacker, 366
Search-daily browser hijacker, 366
Secondary education, virtual, 320
Secret copy protection software, 343–344
Secure programming languages, 404
Secure Sockets Layer (SSL) protocol, 228
Security. See also Cybercrime and cyber-

warfare
future, 313
improvements, 294–295
software, 156
virtual education, 319

Security Agency, 403
Security staffs, 393
Seeber, Robert, 67
SEER product, 136
Segue product, 176
SEI assessment approach, 193–194
SEI company, 192–194, 404
Selective Sequence Electronic Calculator

(SSEC), 67
Seminars

DCI, 179
virtual education, 319

Sentinel of Eternity (Clarke), 81
Sequence controlled calculators, 40
Sequoia Capital company, 280
Shamans, 5–6
Shannon, Claude, 39
SHARE association, 87
Shatner, William, 229
Sheehy, Dan, 266
Shestakov, Victor, 39

ptg11539604

447Index

Intel Pentium chip division, 337
Knight Capitol stock-trading software,

347
Los Angeles Airport air-traffi c controls,

341–342
Mariner 1, 333
Mars climate orbiter, 339
McAfee Antivirus, 345
overview, 331–332
patriot missiles, 336–337
Sony copy protection, 343–344
Soviet early-warning system, 334
Studio 38 investment, 345–346
Therac 25, 334–335
Wall Street crash, 335
Y2K problem, 340–341

Software Industry Special Interest Group
site, 421

Software Inspections (Gilb and Graham),
408

Software Process Improvement Network
(SPIN), 270

Software Project Management—A Unifi ed
Approach (Royce), 413–414

Software Query Language (SQL) injec-
tion attacks, 358–359, 388

Software Risk Master (SRM) tool
cyberattack recovery costs, 403
overview, 305–307

Software Runaways: Lessons Learned
from Massive Software Project
Failures (Glass), 409

Solar fl ares, 376
SolveIT Software, 277–278
Sony Corporation

copy protection software, 343–344,
383

hacked accounts, 359
Sony TR-63 transistor radios, 88
Sossamon, William D., 262
SourceForge.net site, 154
South Korea

function points, 256
North Korea threat, 324

Southwest Airlines, 130, 145

for education. See Education
invention of, 10
key inventions for, 21–23
patents, 20
security improvements, 294–295

Software applications
1930s, 41
1940s, 74–75
1950s, 89–90
1960s, 120–122
1970s, 146–147
1980s, 204–205
1990s, 243–244
2000s, 283–284
2010s, 327–328

Software as a service (SaaS) applications,
257

Software categories in 1970s, 147–158
Software Development Laboratories

company, 139
Software Engineering—A Practitioner’s

Approach (Pressman), 413
Software Engineering Best Practices

(Jones), 411
Software Engineering conference, 103
Software Engineering Economics (Barry),

407
Software Engineering Institute (SEI), 166
Software Engineering Methods and

Theory (SEMAT), 296
Software engineers

emergence of, 103–104
Geekli.St organization, 303
improvements in, 293–296
professional status for, 289–293

Software evolution in 1970s, 125–129
Software failure analysis

Airbus A380 wiring, 344–345
Ariane 5 rocket, 338–339
AT&T telephone lines, 336
automotive safety recalls, 348–349
British passport system, 339–340
Denver airport, 337–338
FBI Trilogy project, 342–343
Hartford Coliseum collapse, 333

ptg11539604

Index448

State Street Bank v. Signature Financial
Group, 20

Static analysis tools, 395–3496
“Statistics of Deadly Quarrels”

(Richardson), 323
Stepping switches, 183
Stepstone Corporation, 197–198
Steve Jobs: The Exclusive Biography

(Isaacson), 132, 149, 409
Stevens, John Paul, 176
Stibitz, George, 39
Stibitz relay machine, 39
Stock trading

computers for, 117
software problems, 347

Stone, Biz, 278
Storage

evolution of, 17–18
permanence of, 14

Stowger, Almon Brown, 183
Stowger Automatic Telephone Exchange

Company, 183
Strauss, Richard, 168
Structure of Scientifi c Revolutions

(Kuhn), 412
Structured Design (Yourdon and Con-

stantine), 146
Student centers in virtual education, 317
Studio 38 company, 249, 345–346
Stuxnet worm, 360, 372
Submicron nano devices, 323
Subprime mortgages, 251–252
Subroutines, 70–71
Subtraction in prehistoric knowledge, 4
Sudan, cyberattacks on, 361
Sunde, Peter, 302
Super Bowl ads, 248
Supercomputers, 134
Supersonic guided missile, 80
Supreme Court

2000 presidential election, 370
Borland and Lotus case, 176, 186
patent cases, 20, 288

“Surfi ng the Internet” (Polly), 209
Survey tools software, 157

Soviet Union
Cold War era, 68–72
dissolution, 357
early-warning system failure, 334
military and defense computers

against, 77–80
in World War II, 53

Space, computers in, 119–120
Space Travel game, 112
Spacewar game, 112
Spam, 387–388
Spear phishing, 382
Special interest groups in virtual educa-

tion, 317
Specialized outsourcing in 1960s,

95–96
Speculative bubbles, 248
Sperry-Rand company, 65, 118–119,

158–159
Spider traps, 377
Spiders, 377
Sports, 121, 211
SPQR/20 estimating tool, 167, 195
SPR company, 194–197
Spreadsheets, 186
Spy rings, 48
SQL injection attacks, 358–359, 388
Square company, 279
SRX automobiles safety recall, 348
St. Petersburg, Florida, electronic voting

problems in, 368
Stabilized Bombing Approach Equipment

(SBAE), 60
Stallman, Richard

GNU project, 274
open-source software, 153
Wikipedia concept, 254

Standard and Poors company, 272
Standingford, Oliver, 85–86
Stanford Digital Library Project, 222
Star positions, prehistoric knowledge

of, 7
Starfi sh Prime test, 375
Starr, Paul, 414
StarTeam product, 176

ptg11539604

449Index

Thermostats, 308–309
Thomas, Dave, 255
Thompson, Ken, 112, 274
Thomson, Raymond, 85–86
ThoughtWorks company, 234–235
“Three amigos”, 191
Thumb drives, 254
Thunderbird email package, 273
Tillman, John, 49
Time sharing, 126
TimeLine tool, 199
Tizard, Henry, 61
Tizard mission, 61
TJX Companies, 359
Torpedo-aiming devices, 57, 62
Torpedo Data Computer (TDC), 47, 62
Torpedo test areas, 63
Torpedoes, 50
Torvalds, Linus, 210, 274–275
TOTAL database package, 119
Toyota automobiles safety recall,

348–349
Training for children in ancient times, 7
Transistor radios, 88
Transistors

development of, 81–82
as enabling invention, 20

Translation
in virtual education, 316
wearable computers for, 326–327

Transmission control protocol (TCP),
352

Transunion company, 379
Tree-mapping, 267–268
Trends in software, 126–127
Treybig, Jimmy, 142
Trilogy project failure, 342–343
Trojans, 388–389
Troubled Asset Relief Program (TARP),

251
Truman, Harry S., 82
Tschira, Klaus, 142
Tsirigotas, Panagiotis, 300
Tuition for virtual education, 319–320
Tukey, John Wilder, 83

Sutherland, Ivan, 114
Sutherland, Jeff, 255
Sykipot Trojan, 386
Symantec company

cybercrime research, 355
hacking attacks report, 358
overview, 198–200

Symbolic logic, 39, 49
Symbolic Optimal Assembly Program

(SOAP), 88
Symphony product, 186
Syria, cyberattacks on, 361
Systems Applications Programs (SAP)

Oracle lawsuit, 139
overview, 141–142
wealth from, 145

Szilard, Leo, 49

T. J. Maxx company, 224
Tables of useful values, 9
Tablets, GPS tracking of, 398
Tandem Computers, 142–144
Tarkenton, Fran, 179
Tax Almanac application, 184
Taylor, Jeff, 227
TCP/IP protocol, 166, 352
Teachers in virtual education, 315–317,

320
Team Software Process (TSP), 256
Technical debt metric, 284, 290
TechSoup Global organization, 200–202
Telecommunications, quality control in,

182
Telephone

hackers, 352
history of, 182–183

Telephone lines shutdown, 336
Telephone Marketing Programs (TMP),

227–228
Teletype keyboard, 39–40
Teller, Edward, 49
Teologlou, George, 140
The Monster Board (TMB), 227
thefacebook project, 264
Therac 25 radiation poisoning, 334–335

ptg11539604

Index450

V-1 cruise missile, 48
V-2 rocket, 48
Vacuum tube failures, 65
van Benekum, Arie, 255
Vasa ship, 412–413
Venture capital community, 248–250
VeriSign company, 200, 360
Veritas company, 199
Verizon study on corporate theft, 372
Vermam, Gilbert, 49
Vertical markets, 126, 137–138, 141
Veterans Administration hacking, 359
Virtual bulletin boards, 317
Virtual Education Software (VESi), 320
Virtual machines, 236–237
Virtual reality for education, 314–321
Virus, term, 353
Viruses

Antivirus programs. See Antivirus
programs

overview, 389–390
Visa credit cards, 110
VisiCalc application, 161
Visio company, 235–236
Vision Appraisal company, 281
Visual Basic for Applications (VBA), 381
Visual modeling, 191
VMware company, 236–237
VodaPhone network, 383
Voice-to-text tools, 316
Volvo automobiles safety recall, 349
von Neumann, John, 49, 55, 65
von Neumann architecture

bottlenecks, 66
weaknesses, 399

Voting fraud, 366–371

Wales, Jimmy, 254
Walker, Dave, 235
Walker, J. S., 229
Wall Street crash, 335
Wang, An, 70
Wang, Charles

bonuses, 133
CA founding, 132
wealth of, 145

TurboTax product, 184
Turing, Alan

ACE computer, 55, 65
algorithm concept, 39
Bletchley Park, 54
computer description, 38
decryption computers, 51

Turing award, 106–108
Turing-complete computers, 54
Turing machines, 38
Turk, Charles, 114, 121
Turner Hall company, 199
Tutte, Bill, 49
Twitter, 255, 278–279
TX-0 computer, 112

U-boats
attacks by, 58
U-853, 63–64

Ubisoft company, 231
Ubuntu operating system, 262
Ultra program, 55
Unifi ed Inbox company, 310
Unifi ed modeling language (UML),

190–191, 212
United States

cyberattack frequency and costs,
404–406

World War II, 59–67
Univac company, 72, 88
UNIVAC computer, 82, 85
Universities. See Education
University Alliance Program, 142
University of Florida programming

courses, 96–97
University of Nalanda, 7–8
Unix clock, 238, 341
UNIX operating system

development of, 112, 121
start of, 160

Unsecured networks, data theft from,
373–374

Use-case points, 225
Usenet services, 296
User associations, 87
utility software, 157–158

ptg11539604

451Index

overview, 421
success of, 312–313

Wilkes, Maurice, 70
Williams, Evan, 278
Williams, Frederic, 69
Williams-Kilburn tube, 69–70
Windows operating systems

fi rst versions, 166
Windows 3.1, 210
Windows 95, 211

Wininger, Shai, 301
Winklevoss, Cameron, 264
Winklevoss, Tyler, 264
Winslow, Samuel, 20
Wireless networks, 373–374
Wolfram, Stephen, 202–203
Wolfram Alpha product, 202–204, 321
Wolfram Research company, 202–204
Wolfram System Modeler product, 202
Women

Bletchley Park, 54
ENIAC programmers, 44
IBM, 38

Wood, David, 173–174
Word documents, macro attacks in,

381
Word processing, 160
Workforce in 1960s, 93–95
World War II

analog computers, 46–47
Australia, 52–53
France, 52
Germany, 47–49
Great Britain, 54–59
innovations overview, 45–46
Japan, 50–51
overview, 43–44
Poland, 51–52
Russia, 53
United States, 59–67

World-Wide Military Command and
Control System (WWMCCS), 153

World Wide Web, 208–210
World Wide Web term, 166
WorldCom company, 249
Worms, 390–391

Wang, Edward, 236
War. See World War II
Ware, Willis, 81
Warnock, John, 172
Watches, 160
Waterfall projects, 290
Watergate scandal, 127
Watson, Thomas J., Jr.

IBM System/360 computer, 104
quality improvements, 121
Turing award, 106

Watson, Thomas J., Sr.
equal rights and equal pay, 38, 44
Mark I computer, 67

Wearable computers, 325–327
Weather prediction, 323
“Weather Prediction by Numerical

Process” (Richardson), 323
Web browsers

competition, 273–274
development of, 208
hijackers, 365–366

Web logs, 296
Web sources, 415–421
Webinars

popularity of, 180
virtual education, 317

Weighing risks, 34–35
Weinberg, Gerald M.

IBM lab, 121
infl uence of, 145
Psychology of Computer Program-

ming, 121, 146, 408, 414
structured development, 144

Wellenreuther, Claus, 142
Westlake, Darren, 300
Whale phishing, 382
Wheeler, David, 70
Whirlwind computer, 71–72
White hat hackers, 353
Whitman, Meg, 219
WikiLeaks group, 356–357
WikiLeaks site, 302
Wikipedia encyclopedia

contributors, 247
introduction, 254–255

ptg11539604

Index452

DCI seminars, 179
Decline and Fall of the American

Programmer, 144, 414
structured development, 144–146

Yourdon, Inc., 144–145
YouTube company, 279–281

Z1 computer, 38, 47
Z2 computer, 38, 47
Z3 computer, 47
Zaller, Bob, 131
Zero, 21–22
Zero-day attacks, 380, 391–392
Zestimate tool, 282
Zeus botnet, 364
Zhenfei, Ren, 181
Zillow company, 281–283, 305
Zimmerman, Phil, 402
Zombie computers, 364, 391
Zuckerberg, Mark, 255, 263
Zuse, Konrad, 38, 47–48

Wozniak, Steve
Apple founding, 131
blue boxes, 352
entrepreneur of year, 180
on Prius acceleration problem, 349

Wright, Terry, 225
Wright amendment, 130

Xerox
Jobs infl uenced by, 117
SAP infl uence, 142

XM Radio, 232–233

Y2K problem
legacy applications, 237–238
overview, 340–341

Yahoo Real Estate service, 281
Yamhill County, Oregon, electronic vot-

ing problems in, 368
Yesware company, 310–311
Young, Bob, 230
Young, Edward, 268
Yourdon, Edward, 146

ptg11539604

This page intentionally left blank

	Contents
	Foreword by Walker Royce
	Foreword by Tony Salvaggio
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Prelude: Computing from Ancient Times to the Modern Era
	The Human Need to Compute
	Early Sequence of Numerical Knowledge
	Inventions for Improved Mathematics
	Mathematics and Calculating
	Recording Information
	Communicating Information
	Storing Information
	Enabling Computers and Software

	Key Inventions Relevant to Software
	Alphabetic Languages
	Binary and Decimal Numbers and Zero
	Digital Computers
	Higher-Level Programming Languages
	Random-Access Storage

	The Impact of Software on People and Society
	Beneficial Tools and Applications
	Harmful Inventions
	Weighing the Risks

	Summary

	Chapter 2: 1930 to 1939: The Foundations of Digital Computing
	The First Innovators of Modern Computing
	Small Mathematical Applications
	Summary

	Chapter 3: 1940 to 1949: Computing During World War II and the Postwar Era
	Global Conflict and Computing
	Wartime Innovations
	Analog Computers During World War II
	Computers in Germany During World War II
	Computers in Japan During World War II
	Computers in Poland During World War II
	Computers in France During World War II
	Computers in Australia During World War II
	Computers in Russia During World War II
	Computers in Great Britain During World War II
	Computers in the United States During World War II

	Computers in the Postwar Era
	The Cold War Begins
	Postwar Computer Development

	Historical Contributions of the Decade
	Building Software in 1945
	Summary

	Chapter 4: 1950 to 1959: Starting the Ascent of Digital Computers and Software
	Military and Defense Computers in the 1950s
	SAGE
	BOMARC

	Innovators of the 1950s
	Programming Languages of the 1950s
	The First Commercial Computers
	LEO
	IBM
	Other Computer Business Implementations

	Software Applications in the 1950s
	Function Points in 1955
	Summary

	Chapter 5: 1960 to 1969: The Rise of Business Computers and Business Software
	An Evolving Workforce
	Early Specialized Outsourcing
	Computer Programmers in the 1960s
	Becoming a Programmer
	A High Demand for Programmers
	Emergence of the Software Engineer

	IBM System/360
	The Turing Award
	The Invention of the Credit Card
	Automation and New Professions
	The DEC PDP-1
	Programming Languages of the 1960s
	The Computer Business of the 1960s
	Litigation Changes the Computer World Forever
	Computers and Software in Space
	Computer and Software Growth in the 1960s
	Function Points Backfired for 1965
	Summary

	Chapter 6: 1970 to 1979: Computers and Software Begin Creating Wealth
	Software Evolution in the 1970s
	Trends in Software
	Political Failures
	Rapid Rise of Computer Companies

	Major Companies Formed During the 1970s
	FedEx
	NASDAQ
	Southwest Airlines

	Computer and Software Companies Formed During the 1970s
	Altair Computers
	Apple Computer
	Baan
	Computer Associates (CA)
	Cray Computers
	Cullinane
	Digital Research
	Galorath Incorporated
	IMSAI Computers
	InterSystems Corporation
	Lawson Software
	Microsoft
	Oracle
	Price Systems
	Prime Computers (Pr1me)
	Systems Applications Programs (SAP)
	Tandem Computers
	Yourdon, Inc

	The Impact of Companies Founded During the 1970s
	The Troublesome Growth of Software Applications
	Numerous Fragmented Software Subcategories
	Advanced and Experimental Software
	Business Software
	Communications Software
	Cybercrime and Hacking Software
	Database Software
	Education Software
	Embedded Software
	Gaming and Entertainment Software
	Manufacturing Software
	Middleware Software
	Military Software
	Open-Source Software
	Personal Software
	Programming Tool Software
	Project Management Software
	Scientific and Mathematical Software
	Security and Protective Software
	Social Network Software
	Survey Tools Software
	Utility Software

	A Lawsuit That Changed Computer History
	Background Enabling Inventions
	Function Points in 1975
	Summary

	Chapter 7: 1980 to 1989: The Rise of Personal Computers and Personal Software
	Rapid Changes in Computing
	Companies Formed During the 1980s
	Accenture
	Adobe
	America Online (AOL)
	Avira
	BlackBerry (Research in Motion, or RIM)
	Borland
	Computer Aid, Inc. (CAI)
	Cisco Systems
	Digital Consulting Institute (DCI)
	Huawei
	Intuit
	KPMG
	Lotus
	NeXT
	PeopleSoft
	Rational
	SEI
	Software Productivity Research (SPR)
	Stepstone Corporation
	Symantec
	TechSoup Global
	Wolfram Research

	The Growth of Software During the 1980s
	Results for 1,000 Function Points Circa 1985
	Summary

	Chapter 8: 1990 to 1999: Expansion of the World Wide Web and the Rise of Dot-Coms
	Emergence of the World Wide Web
	Other Innovations of the 1990s
	Companies Formed During the 1990s
	Akamai
	Amazon
	Apache
	Craigslist
	Digital Playground
	eBay
	GoDaddy
	Google
	Heartland Payment Systems
	Insight Venture Partners
	The ISBSG
	Monster.com
	Netscape Communications
	Priceline
	Red Hat Software
	Red Storm Entertainment
	Sirius Satellite Radio
	ThoughtWorks
	Visio
	VMware

	Mass Updates and Aging Legacy Software
	Incompatibilities of International Date Formats
	The Expansion of Outsourcing
	Growth of Software Applications During the 1990s
	Results for 1,000 Function Points Circa 1995
	Summary

	Chapter 9: 2000 to 2009: The Rise of Social Networks and Economic Crises
	The Dot-Com Bubble
	The Great Recession
	Innovations of the 2000s
	Companies Formed During the 2000s
	AbsolutData Research
	Andreesen Horowitz
	Archon Information Systems
	Canonical, Ltd
	Facebook
	Freelanthropy
	Global Insight
	HIVE Group
	Intellectual Ventures
	Internet Marketing Association (IMA)
	Meeting Zone
	Moody’s Analytics
	Mozilla Foundation
	Open Source Development Labs (OSDL)
	PerfectMatch
	RPX Corporation
	SolveIT Software
	Twitter
	YouTube
	Zillow

	Growth of Software from 2000 to 2010
	Results for 1,000 Function Points Circa 2005
	Summary

	Chapter 10: 2010 to 2019: Clouds, Crowds, Blogs, Big Data, and Predictive Analytics
	Predicting the Future
	Professional Status for Software Engineering
	Possible Software Engineering Improvements in the 2010s
	Companies Formed During the Early 2010s
	AngelPad
	Authr
	CloudVelocity
	CrowdCube
	Fiverr
	Flattr
	Geekli.St
	GoFundMe
	Namcook Analytics LLC
	Nest Labs
	Peer Index
	Unified Inbox
	Yesware

	Predicting New Companies and Products from 2013 to 2019
	Big Data
	Crowd Intelligence and Crowdfunding
	Cybercrime and Cybersecurity
	Education
	Intelligent Agents
	Medical Devices
	Predictive Analytics
	Wearable Computers

	Projected Growth of Software from 2010 to 2019
	Results for 1,000 Function Points Circa 2015
	Summary

	Chapter 11: Modern Software Problems
	Analysis of Major Software Failures
	1962: Failure of the Mariner 1 Navigation Software
	1978: Hartford Coliseum Collapse
	1983: Soviet Early Warning System
	1986: Therac 25 Radiation Poisoning
	1987: Wall Street Crash
	1990: AT&T Telephone Lines Shutdown
	1991: Patriot Missile Target Error
	1993: Intel Pentium Chip Division Problem
	1993: Denver Airport Delays
	1996: Ariane 5 Rocket Explosion
	1998: Mars Climate Orbiter Crash
	1999: Failure of the British Passport System
	2000: The Y2K Problem
	2004: Shutdown of Los Angeles Airport (LAX) Air-Traffic Controls
	2005: Failure to Complete the FBI Trilogy Project
	2005: Secret Sony Copy Protection Software
	2006: Airbus A380 Wiring Problem
	2010: McAfee Antivirus Bug Shuts Down Computers
	2011: Failed Investment in Studio 38 in Rhode Island
	2012: Knight Capital Stock-Trading Software Problems
	2012: Automotive Safety Recalls Due to Software

	Summary

	Chapter 12: A Brief History of Cybercrime and Cyberwarfare
	A New Form of Crime
	The Hacker Invasion
	Preparing Defenses
	Increasing Seriousness of Cyberattacks
	A Growing Number of Victims

	Types of Cyberattacks
	Bluetooth Hijacking
	Botnets
	Browser Hijacking
	Computer Voting Fraud
	Cyberwarfare Against Civilian Targets
	Data Theft from Corporations
	Data Theft from Unsecured Networks
	Denial of Service Attacks
	Electromagnetic Pulses (EMPs)
	Email Address Harvesting
	Identity Thefts
	Java Vulnerability Attacks
	Keyboard Trackers
	Macro Attacks in Word and Excel Documents
	Pharming
	Phishing
	Rootkits
	Skimming
	Smart Card Hijacking
	Spam
	SQL Injections
	Trojans
	Viruses
	Worms
	Zero-Day Security Attacks

	The Odds of Being Attacked
	Improving Defenses Against Cyberattacks
	Raising Our Immunity to Cyberattacks
	Access Controls
	Authentication Controls
	EMP Protection
	Encryption
	Estimating Cyberattack Recovery Costs
	Insurance Against Cybertheft and Cyberattack Damages
	Secure Programming Languages

	The Increasing Frequency and Costs of Cyberattacks in the United States
	Summary

	Appendix A: Annotated Bibliography and References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

